Optical Reaction Cross Sections for Light
Projectiles
A. Chatterjee, K.H.N. Murthy ${ }^{*}$ and S.K. Gupta

Nuclear Physics Division, Bhabha Atomic Research Centre

* CSIR Junior Research Fellow, Dept. of Physics, Mysor Uni versity.

Reproduced by the IAEA in Austria

80-6049

Optical Reaction Cross Sections for Light

 ProjectilesA. Chatterjee, K.H.N. Murthy ${ }^{*}$ and S.K. Gupta

Nuclear Physics Division, Bhabha Atomic Research Centre Bombay 400085

* CSIR Junior Research Fellow, Dept. of Physics, Mysore Uni versity.

OPTICAL REACTION CROSS SECTIONS POR LIGHT projectiles
a chattehjele, K h n murthy* and s a gupta
Wuclear Physice Diviaion, Bhabha Atomic Research Centre Bombay 400085

- CSIR Junior Reeearch Fellow, Dept. of Phybics, Mysore University.

Abstract: The optical reaction cross sections for $n, p_{0}{ }^{2} H_{0}{ }^{3} 11$, ${ }^{3}$ he and ${ }^{4}$ he for several global opticel potentifale evailable in the $1 i$ terature have been parameterized in terms of almple empirical expressions which are smooth functions of the target mass number and the projectile energy. The empiricel forms are 5-10\% accurate over the whole periodic table and energy range upto 50 MeV . They can be oonveniently used in applica. tions where the optical reaction cross-seotions are required as input such as in statistioal eveporation and preequilibrium emission oalculatione.

Eey morde Optioel reaction oross seotions for $n_{0} p_{0}{ }^{2} H_{3}{ }^{3} H_{8}$ ${ }^{3}{ }_{\mathrm{He}}{ }^{4}{ }^{4} \mathrm{He}$; empirical parameterisationg evaporation sud preoquilibriull models.

-3-

1. Introduction

The non-elastic part of the interaction between the incident particle and the target nucleus manifests itself as the reaction cross-section. As a first approximation this interection is deacribed by a complex (opticel) potentiel, the imaginary pert of which leads to a finite reaction crosssection. In the iftersture the projectile-target interaction for terget nuclei over the periodic chart has been given in terms of global optical parameter-sets. The reaction crosssections generated using these global paremeters are employed in severel further calculetions. In the stetistical eveporetion theory and the preaquilibrium model the break-up of the totel reaction cross section into partial modes involving the emission of one or more particles is described by emission rate expressions which involve the inverse cross-section of the emitted perticle as a function of energy. The inverse cross-section is the optical reaction cross-section of the excited residual nucleus with the emitted particle as the projectile. This is approximated as the optical resction oross-section between the residual nucleus in its ground state and the (emitted) particle. Thus optical reaction oross sections are required for the incident channel at the projectile energy and for the exit channels over the energy range of the emitted partioles. The atatistical evaporation theory is a widely-used description for reactions at low energies. At energies in the range of several
tens of MeV the preequilibrium models have been auccessful. Reaction cross-sections are also used in intra-nuciearcascade celculations (Kikuchi and Kawai 1968). In this description of high-energy nuclear reactions, the projectile is asaumed to intersct with the nucieons in the target nucleus in a series of successive two body collisions until it escapes or ia captured by the nuclear potential. Residuel nuclei left after this cascade process undergo particle evaporation, and the evaporation rates are celculated using inverse cross-section. Another application of reaction crosamections is in the calculation of the nuclear-reaction efficiency correction for detectore (Mekino et al 1968). In the detection of charged narticles, on efficiency loss f arises from events where the particles undergo nuclear interactions before they are completely stopped. For a charged perticle incident with energy ${ }^{n} i$ on a terfet with mass number A, f is given by

$$
\begin{equation*}
f=\frac{N_{c}}{A} \int_{0}^{E_{i}} \sigma_{R}(\varepsilon)\left(\frac{d E}{d x}\right)^{-1} d E \tag{1}
\end{equation*}
$$

where σ_{R} is the resction crossmection, $\frac{d E}{d x}$ is the stopping power of the particje in the detector material end N_{0} is Avogodro's number.

Weually the optical reaction cross sections at all the reduired energies and perticle-target combinations are obtalned by a numerical aolution of the Gchrodinger equetion for severel
partial waves. This involves a large amount of computation time. Also, where more than one global optical potential. appears in the ilterature for the same projectile it is quite laborlous to repeat the calculations for each of the sete to see the effeot on the inal results.

In this work the opticel resction orossasections for n, $p_{,}{ }^{2} H_{y}{ }^{3}{ }_{H},{ }^{3}$ He and ${ }^{4} \mathrm{He}$ are directiy parameterized in a aimple form. The parameterimation prediote the optioal remction oross aections for nuclei over the periodic table and energies upto 50 MeV . In the energy space these empirical forms are simple polynomiala and consequently the emiasion rate expresaions (using aimpie forms for the level density) are integrable over the epectrum of final states in a closed form. This work can be considered as a major improvement over an earlier parameterization (Dostrovaky et al 1959) where the continumm model cross seotions were the input. A preliminery report of this work has been given earlier (Chatterjee and Gupta 1978b, Murthy et al 1979a and 1979b).

In section 2 the globel optical model potentials considered in this work are discuseed. The parameteric forms which describe the resction cross section generated by these potentials are desoribed in seotion 3. The application of these empirioal expressions in statistical model calculations is discussed in seotion 4.
2. Optical Model Potential

The form of the optical potential is (Yerey and Perey 1974)
$U(r, E)=-U_{N}(r, E)+V_{C}(r)+U_{\text {SO }}(r)$,
where V_{C} is the Coulomb potential due to a uniformiy oharged sphere with radiue $r_{c}, U_{S O}$ is the apin-orbit potential and U_{N} is the complex central potential taken as
$U_{N}(x, E)=V_{R}(E) f\left(x_{R}\right)+i\left[W_{V}(E) f\left(x_{V}\right)+W_{S}(E) g\left(x_{S}\right)\right],(3)$
where $f\left(x_{R}\right)=\left(1+e^{x_{R}}\right)^{-1}$ with $\quad x_{R}=\left(r-x_{R} A^{\frac{1}{3}}\right) / a_{R}$
$g\left(x_{s}\right)=-4 \frac{d}{d x_{s}} f\left(x_{s}\right) \quad$ (Woods-Saxon derivative)
or $\exp \left(-x_{s}^{2}\right) \quad$ (Gaussian).
Here x_{v} and x_{s} are defined in the aame manner with appropriate radius parameters r_{s}; r_{v} and diffuseness parameters a_{s}, a_{v}. The spin-orbit potential $U_{\text {So }}$ is given by

$$
\begin{equation*}
U_{s_{0}}(r)=\lambda_{\pi}^{2}(\vec{l} \cdot \vec{\sigma}) \frac{1}{r} \frac{d}{d r} f\left(x_{s o}\right) V_{s o} . \tag{4}
\end{equation*}
$$

Uaing this form of the potential several extensive anclyses of differential elastio, polerization and reaction cross section date have been carried out by various workers reaulting in global parameter aete. For neutrone the global set of iflmore and Hodgson (1964) can be considered to be the most useful one.

This is the local enuivelent version of the non-local potential of Perey and Buck (1962). The potentiels of Becohetti and Greenlees (1969) both for protons and neutrons are also well known. Me have aleo incluted the optical potentials of fani et al both for protone and neutrons alnoe the tables (Mani et al 1963) using these sets are often used. For protons the parametermete of Perey (1963) and Menet (1971) are aleo considered. For the other projectilea the parametermete used are those of Lohr and路eberil (1974) and Schwand and Heveril (1969) for deuterons; and Beoohettl and Greenlees (1979) for ${ }^{3}$ H nod ${ }^{3}$ He. Fox alpha partioles there does not exist a clearmout global phenomenolopical parameter set. Hers the cross sections listed in Huigenge nnd Igo ${ }^{\circ}$ (1961) teble were used directiy in fitting the parameteric forme.
3. Parametric forme for the reaction orosis eeotion

Uring the global optioel potentiol paramitere deacribed above the code SCAT (Smith 1969) wae used to genegeto the reeo

 the reaction orons sections over an enerry sange $2-46$ HeV and mase range $20-206$ were taken from the exinting tabulation (Hudzenge and Igo 1961). The parameters of the enpleal forma were determined by alt to these crome notome

3.1 Neutrons

For energy dependence in the oase of neutrons the optical reection orose section σ_{R} (in millibanns) is written as

$$
\begin{equation*}
\sigma_{R}=\lambda \varepsilon+\mu+\nu / \varepsilon \tag{5}
\end{equation*}
$$

where λ, μ, ν are mass-dependent parameters and ε is the neutron laboratory energy in M. The addition of the linear term $\lambda \varepsilon$ greatiy improves the fit ab oompared to the parameterie form of Dostrovaky it al (1959). Separating out the energy dependence as in (5), the dependence of λ, μ, ν on target mase number, A were obtalned empirically as

$$
\begin{align*}
& \lambda=\lambda_{0} A^{-1 / 3}+\lambda_{1} \\
& \mu=\mu_{0} A^{1 / 3}+\mu_{1} A^{2 / 3} \\
& \nu=\gamma_{0} A^{4 / 3}+\nu_{1} A^{2 / 3}+\nu_{2} \tag{6}
\end{align*}
$$

The seven parameters λ_{0} through ν_{2} were determined by a Ifnear-least-squares fit of σ_{R} and are given in Table.1. A comparison of the σ_{R} predioted by the empiricel parameterieation and thet generated from the global optical potentiale for neutrons 1s shown in Figol.
3.2 Charged Particles

For oharged particies an adequate description of the energy dependence of σ_{R} and partioularly the rapid fall below
the Coulomb berrier was obtained by using an enerry dependence
as In (5) above the Coulomb barrier, E_{c} and a quedratic encrey dependerice

$$
\begin{equation*}
\sigma_{R}=p \varepsilon^{2}+q \varepsilon+r \quad(m b) \tag{T}
\end{equation*}
$$

for $\varepsilon<E_{c}$ - Here E_{c} is token as

$$
\begin{equation*}
\varepsilon_{e}=1.44 z Z /\left(1.5 A^{1 / 3}+\delta\right) \quad(\mathrm{MeV}), \tag{8}
\end{equation*}
$$

where z and Z are the charge numbers of the projectile and
terget respeatively and $\delta=0$ fos protons and 1.2 for the other cherred projeotiles. Matching expreselons (5) and (7) for their value and derivative at $\varepsilon=E_{c}, q$ and or an bo eliminated,

$$
\begin{align*}
& q=\lambda-\nu / E_{c}^{2}-2 p E_{c} \\
& q=\mu+2 \nu / E_{c}+p E_{c}^{2} \tag{9}
\end{align*}
$$

and σ_{R} is expressed over the full energy dometn as

$$
\begin{equation*}
\sigma_{R}=p(\varepsilon-\xi)^{2}+\lambda \varepsilon+\mu+\nu(2-\varepsilon / \xi) / \xi \tag{10}
\end{equation*}
$$

where

$$
\xi=\max \left(\varepsilon, E_{c}\right)
$$

Here the parameters p and ν play a dominont role in the desorim ption of σ_{R} below the Coulomb berrier and were parameterized In terme of E_{c}. The other parameters λ and μ were paremeterized in term of the targot mass number A. The followm Ing peremeterization wer found successful
$p=p_{0}+p_{1} / \varepsilon_{c}+p_{2} / E_{c}^{2}$
$\lambda=\lambda_{0} A+\lambda_{1}$
$\mu=\mu_{0} A^{\mu_{1}}$

$$
\nu=A^{\mu_{1}}\left[\nu_{0}+\nu_{1} E_{c}+\nu_{2} E_{c}^{2}\right]
$$

The paremeters p_{0} through ν_{2} were determined by a leant squares fit to the optical crobe seatione σ_{R} for various globel parameter sets for the projeotiles p, $^{2}{ }^{2},{ }^{3} \mathrm{H},{ }^{3} \mathrm{He}$ and ${ }^{4}$ He. In the fitting process μ_{1} is the only non-linear parameter. Its yalue was obtoined by a search in small eteps while the other parametere were determined by a 11 near-leastsquares oode. Valng these 10 parameters the mese numbor and onergy dependence of σ_{R} 1/ edequately desoribed. The Bucosis of the paremeterization for protons Le LILumtrated in 1 Fig . Yor ${ }^{2} \mathrm{H},{ }^{3}{ }_{\mathrm{H}}$, ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ aleo these parametrio forme are equally eucooseful. The values of the peremeters for all these projeotileo and varlous optioel potential peremater sote is given in Table 1 .

Equation (10) prodiote unphysioal or nebative values of σ_{R} over emall domain ore< E_{0}. In uaing (10) σ_{R} bhould bo set to zero in thit domaln. The energy E_{0} can be determined from the roote $\varepsilon_{1}, \varepsilon_{2}$ of the quadratio quation, $p \varepsilon^{2}+q \varepsilon+k=0$ as,

$$
\begin{array}{rlr}
E_{0} & =\max \left(\varepsilon_{1}, \varepsilon_{2}\right) & (p>0) \\
& =\min \left(\varepsilon_{1}, \varepsilon_{2}\right) & (p<0) \tag{12}
\end{array}
$$

where E_{0} is zero when expreselion (12) is negative.

4. Applications

In both the statiatical evaporation (Meisakopf
1937) and preequilibrium (Blenn, 1975) models the emiasion rate for a particle x is written as

$$
W_{x}=\frac{\left(2 s_{x}+1\right) m_{x}}{\pi^{3} \hbar^{3} \rho_{c}\left(\varepsilon_{c}\right)} Q x \int_{\varepsilon_{0}}^{E} \varepsilon \sigma_{x}(\varepsilon) \rho_{R}(E-\varepsilon) d \varepsilon ; \quad(13)
$$

where A_{x} and m_{x} are the apin and mase of the partioles Q_{x} is a combinatorial factor (Kalbach 1977), which is unity for the evaporation model: $E=E_{c}-S_{x}$ where E_{c} is the compound eyatem excitation enerfy and S_{x} is the binding energy of the partiole; P_{C} and P_{R} are the level denadties of the compound and residual syotems: σ_{x} is the inveree reaction cross section approximeted as the optical resction oross section of x with the residual nuoleuss and $\varepsilon_{0}=0$ is the minimum energy of x. The some expression onn be used with $\varepsilon_{0}>0$ to desoribe the emission of aecond particig with the gsaumption that the seoond particle is emitted whenever it is energeticaliy possible.
4.1 Statiotical Evaporation Theory

For the statiaticel evaporation then with a level density such as (Bethe 1937)

$$
\begin{equation*}
\varphi(E)=\rho_{0} \exp 2 \sqrt{a(E-\Delta)} \tag{14}
\end{equation*}
$$

the integration in (13) is analytio when the empifioni expresaions (5) and (7) are used for σ_{x}, provided the anergy
dependence of P_{0} is neglected. In eq.(14) a is the level denaity parsmeter and Δ is the pairing energy. For charged particle emission, the integral is split into contributions below and above E_{c}, and the lower limit ε_{0} is modified to E_{0} in case $\varepsilon_{0}<E_{0}$. The integral in (13) is proportional to $\int_{\varepsilon_{0}}^{U} \varepsilon \sigma_{x}(\varepsilon) \exp 2 \sqrt{a(U-x)} d \varepsilon=$

$$
\begin{equation*}
\frac{1}{2 a}\left[\sum_{i=0}^{3} \frac{(-)^{i}}{i!(4 a)^{i}} J_{i} \frac{d^{i}}{d v^{i}} F(U)+\sum_{j=0}^{2} \frac{(-)^{j}}{j!(4 a)^{j}} K_{j} \frac{d^{j}}{d U^{j}} G(U)\right], \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
& U=E-\Delta, \\
& F(U)=p U^{3}+q U^{2}+r U,
\end{aligned}
$$

$$
\begin{align*}
& G(U)=\lambda U^{2}+\mu U+\nu, \\
& J_{n}=\int_{t\left(E_{c}\right)}^{t\left(\varepsilon_{0}\right)} x^{2 n+1} e^{x} d x \quad \text { and } \quad k_{n}=\int_{0}^{t\left(E_{c}\right)} x^{2 n+1} e^{x} d x \tag{16}
\end{align*}
$$

with

$$
t(x)=2 \sqrt{a(u-x)}
$$

Here the integrals J_{n} and K_{n} can be evaluated from

$$
\begin{equation*}
\int x^{2 n+1} e^{x} d x=-(2 n+1)!e^{x} \sum_{r=0}^{2 n+1}(-)^{r} x^{r} / r! \tag{17}
\end{equation*}
$$

For neutron emission also eq.(15) epplies with $E_{C}=0$ and the first summation term in the paranthesis set to zero.
4.2 Preequilibrium Model

For the preequilibrium model, the atate density of an n-exciton state with p-particles and h-holes (nepth) is given by (:31111ems 1971)

$$
\begin{equation*}
\rho(p, n, E)=g^{n}\left(E-A_{p h}\right)^{n-1} / p!h!(n-1)!, \tag{18}
\end{equation*}
$$

where g is the single particle level density, usually taken as $A / 13 \mathrm{MeV}^{-1}$ and \mathbb{A} ph is a Pauli correction term.
In this case also the use of the empirical σ_{x} yields a closed expression for the emission rate. For charged particles the integral in (13) is oroportional to
$\int_{\varepsilon_{0}}^{u} \varepsilon \sigma_{x}(\varepsilon)(u-\varepsilon)^{n-1} d \varepsilon=$
$\sum_{i=0}^{3} \frac{(-)^{i}}{i!} P_{i} \frac{d^{i}}{d v^{i}} F(v)+\sum_{j=0}^{2} \frac{\left(-j^{j}\right.}{j!} Q_{j} \frac{d^{j}}{d u j} G(u)$,
where $u=E-A_{p h}$,
$P_{m}=\int_{U-\varepsilon_{c}}^{u-\varepsilon_{0}} x^{m+n-1} d x$ and $Q_{m}=\int_{0}^{u-\varepsilon_{c}} x^{m+n-1} d x$.
For neutron emission. Eq. (19) applies with $\varepsilon_{c}=0$ and the first summation term set to zero.

These closed form integrals have been employed earlier in preequilibrium model calculations (Chatterjee and Gupta 1978 end 1979).
5. Discussion

The present empirical parameterization of reaction cross-sections for $n, p,{ }^{2} H,{ }^{3} H,{ }^{3}$ He and ${ }^{4}$ He reproduces the optical model values satisfactorily over the mass range 16214 and energies upto 50 MeV . Thus this parameterization should be useful for several applicetions. For neutrons the parametric form gives a description of the gross behaviour but does not reproduce the oscillatory behaviour of σ_{R} as a function of A at low energies. These oscillations are due to the size resonance effect. For $\varepsilon>3 \mathrm{MeV}$ the agreement is
generally better than 5% except for the oscillations. For $\varepsilon<2 \mathrm{MeV}$ the reaction orossmections are not well reproduced particularly for the optical cross-acctions of Meni et al (1963) at low mass numbers. For protons the size resonence effect is not prominent because of the Coulomb barrier. The parametric form reproduces the optical croseseations to better than 5\% sccurpy over the entire mass-energy domain considered. except at $\varepsilon \sim 4 \mathrm{MeV}$: Here the agreement is better then 10% except for $A>60$, but in this case the optioal cross-seotions are amall and do not contribute aignificantly in epplications where an integral over a lerge energy domain is computed. for ${ }^{2} \mathrm{H}$, ${ }^{3} \mathrm{H}_{6},{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ the oross sections are reproduced to better then 5\% accuracy except for heavy targets at energies well below the Coulomb barrier where σ_{R} is small. The present parametric form cannot be extrepolated far beyond $\varepsilon=50 \mathrm{MeV}$. This is because of the inear term $\lambda \varepsilon$ in eq.(5) which bscomes inoreasingly dominant at higher energies. However this parametrization can be extended to henvier projectiles. This should be useful in view of the great potential for applications.

Acknowledgements

One of the authors ($K H M M$) thanks Dr M K Mehta and Prof B. Sanjeevalah for their encouragement during this work.

$$
-16-
$$

Figure captions

Fig.1. Comparison of the neutron optical reaction crosssections (solid curve) with the predictions of the empirical formula (dotted curve) as a function of the target mass A for the global potentials of (a) Milmore and Hodgeon (1964) (b) Mani et al (1963) and (c) Becchetti and Greenlees (1969). The numbers to the right of the curves indicate the lab. energy in MeV. For the sake of clarity some of the curves have been displaced as indicated.

Fig.2. Comparison of the proton optical reaction crosssections (solid curve) with the predictions of the empirical formula (dotted curve) as e function of the target mass A for the global potentials of (a) Recchetti and Greenlees (1969) (b) Menet et al (1971) (c) Perey (1963) and (d) Mani et al (1963). The numbers on the curves indicate the lab. energy in MeV 。

Table 1. Paremeters for empirical reaction cross sections. The numerical values listed here yield σ_{R} in mb when the energies are in MeV

	p_{0}	p	p_{2}	λ_{0}	λ_{1}	μ_{0}	μ_{1}	$\%$	ν_{1}	ν_{2}
Heutrons										
$\begin{aligned} & \text { Man1 } \\ & (1963) \end{aligned}$	-	-	-	15.30	-14.98	297.7	30.58	0.320	-47.08	74.19
$\begin{aligned} & \text { Becchetti } \\ & (1969) \end{aligned}$	-	-	-	18.57	-22.93	381.7	24.31	0.172	-15.39	804.8
$\begin{aligned} & \text { Wilmore } \\ & (1964) \end{aligned}$	-	-	-	31.05	-25.91	342.4	21.89	0.223	0.673	617.4
Protone										
$\begin{aligned} & \text { Man1 } \\ & (1963) \end{aligned}$	12.97	15.65	-348.5	0.0247	-7.01	300.4	0.4	330.0	-223.6	-3.251
$\begin{aligned} & \text { Perey } \\ & (1963) \end{aligned}$	10.53	52.53	-414.0	0.0310	-10.16	327.9	0.4	323.7	-243.4	-3.037
$\begin{aligned} & \text { Hecchett1 } \\ & (1969) \end{aligned}$	15.72	9.65	-449.0	0.00437	..16.58	244.7	0.503	273.1	-182.4	-1.872
Menet (1971)	16.99	46.13	-1298	-0.0795	-11.90	127.8	0.66	306.8	-118.5	0.225
Deuterons										
$\begin{aligned} & \text { Schwandt } \\ & (1969) \end{aligned}$	-43.73	934.1.	-2518	-0.0761	-8.83	337.5	0.49	417.5	-353.0	5.515
Lohr (1974)	-38.21	922.6	-2804	-0.0323	-5.48	336.1	0.48	524.3	-371.8	5.924

Tritons

He-3

He-4
$\begin{array}{llllllllllllll}\text { Hu1zenga } \\ (1961)\end{array} \quad 10.95-85.2 \quad 1146 \quad 0.0643-13.96781 .20 .29-304.7-470.0-8.580$

- 19-

Refererces

Becchetti F D and Greenlees G W 1969 Phys. Rev. 1821190. Becchetti F D erd Greenlees G î 1961 Polarization Phenomena in Nuclear Reactions ed. H.H. Borschall ond W. Hae berli (Univ, of Wisconsin Press) p 682.
Bethe HA 1937 Rev. Mod. Phys. 269.
Blann M 1975 Ann. Rev. Nucl. Sc. 25123.
Chatterjee A and Gupta S K 1978a, Phys. Rev. C18 2118.
Chatterjee A and Gupta S K 1978b, Proc. Nucl. Phys. \& Sol. St. Phys. Symp. 21B 118.
Chatterjee A and Gupta S K 1979, Int. Conf. on Nucl. Cross Sections for Technology, Knoxville, contributed paper fB10. Dostrovsky I, Fraenkel Z and Friedlander G 1959 Phys. Rev. 116633.

Huizenga J R and Igo G T 1961 Argonne National Laboratory Report No. ANL-6373 (unpublished).

Kalbach © 1977 Z. Phys. A283 401.
Kikuchi K and Kawai M 1968 Nuclear Matter and Nuclear Reactions (North Holland, Amsterdem) p. 262
Lohr J M and Haeberli $W 1974$ Nucl. Phys. A232 381.
Makino M Q, Weddel C IN and Eisberg R M 1968 Nucl. Inst. Meth. 60109.

Mani GS, Melkanoff MA and Iori I 1963 Meports CEA-2379 and -2380 (unpubIished).

Menet J J H, Grose E E, Malanify J J and Zucker A 1971
Phys. Rev. C4, 1114.
Murthy K H N, Chatterjee A and Gupta S X 1979a, Nucl. Phyo. and Sol. St. Phys. Symp., Madras, contributed paper NO4.

Murthy K H N, Chatterjee A and Gupta S K 1979b, Int. Conf. on Nucl. Cross Sections for Technolopy, Knoxville, contributed páper GB11.
Perey C M and Perey F G 1974 Atomio and Nucl. Dota Tables 13293
Perey F G and Buck B 1962 Nucl. Phys. 32353.
Perey FG 1963 Phys. Rev. 131145.
Schwandt P and Heeberli $W 1969$ Nucl. Phya. 1123401.
Sinith W R 1969 Comp. Phys. Comm. 1106
Weisakopf V F 1937 Phys. Rev. 52295
Willifms FC 1971 Nuct. Phyb. A166 231.
Wilmore D and Hodgson P E 1964 Nucl. Phys. 25673.

PROTON REACTION CROSS SECTIONS

