INDSWG-31

INDC (IND) +001/G

GOVERNMENT OF INDIA

NUCLEAR DATA MEASURING FACILITIES

IN INDIA

HIS LIBRARY GOOV

Indian Nuclear Data Group Nuclear Physics Division Atomic Energy Establishment Trombay Bombay-72, India

December, 1963

NUCLEAR DATA MEASURING FACILITIES IN INDIA

Indian Nuclear Data Group Nuclear Physics Division Atomic Energy Establishment Trombay Bombay-74, India

CONTENTS.

· * .

.

١

I.	Crystal Spectrometers	••	• •	1
II,	Pile Oscillators	••	••	3
III.	Particle Accelerators	• •	••	5
IV.	Mass Separators	••	••	14
v.	Special Mass Spectromet	ers	••	15
VI.	Research Reactors	• •	••	16

•

I. CRYSTAL SPECTROMETERS

1. Single Crystal Spectrometer

•

1.	Organisation responsible for: design, construction and operation	Nuclear Physics Division, Atomic Energy Establishment Trombay
2.	Location :	Apsara Reactor, Atomic Energy Establishment Trombay, Bombay 74, India
3.	Main purpose of apparatus :	Cross section measurements (both scattering and absorption scattering measurements) and spectra from crystals for studying high order contamination etc.
4.	Status :	Year of first operation 1957
5.	Scientist in charge of experi- mental programme	K.R. Rao, Nuclear Physics Division, Atomic Energy Establishment Trombay
6.	Number of staff employed :	Three to four
7.	Available reference for more detailed description	Nil
8.	Literature on neutron research already accomplished	(1) Higher order contanination in a single crystal spectrometer V.P.Duggal, K.Raghavendra Rao C.L.Thaper and V.Singh Proc. of Nuclear Physics Symp. Waltair (1960), published by Department of Atomic Energy, Bombay.
		<pre>(2) Anamolous reflections in a single c_ystal spectrometer V.P.Duggal, K.Raghavendra Rao C.L.Thaper and V.Singh Proc. Ind. Acad. of Sc. Vol.LIII No. 2,59 (1964)</pre>
		 (3) Thermal Neutron Inelastic Scat- tering effects in a single crystal Neutron Spectrometer V.P.Duggal Nucl. Sc. and Engg. <u>6</u>, 76 (1959)

••••2

- (4) Removal of Higher order in the thermal region from a Neutron Crystal Spectrometer V.P.Duggal and C.L.Thaper Rev. Sci. Instr. <u>33</u>, No. 1, 49(1962)
- (5) Neutron Cross Section Measurements in basal and subthermal energy range V.P.Duggal and C.L.Thaper Proc. of Nucl. Phys. Symposium, Madras (1962), published by Dept. of Atomic Energy, Bombay.
- (6) Frequency Distribution of Atomic vibrations in Solids and resonant absorption of slow neutrons K.R. Rao and C.L.Thaper Proc. of Nucl. Phys. Symposium Dombay (1963), published by Dept. of Atomic Energy, Bombay.

9. Programme in progress

: The spectrometer is being used at present for studies of resonant absorption of resonant scattering in Iridium and its compunds

10. Future Programme

: Similar lines

- 11. Special Specifications:
 - Type: Single crystal, plane crystal
 - Collimater : Cross section area of the collimator sometimes 1 mm x 5 cms, sometimes 5 mm x 5 mm

-2-

- Crystals available: Various crystals have been used from time to time Be(1122), Ge(111), Al(111), NaCl(200) ACl etc.
- Energy range: ith Be(1122) max. energy 3 ev., .005 ev. to 0.3 ev
- Sample: Useful area 5 cm x 5 cm.
- Specifications: Distance for crystal to detector 150 cms
- Other details: Accuracy in angular position is 1 minute.
- ----

-3-

II. PILE OSCITLATORS

1. Pile Oscillator

1.	Organisation responsible for design, construction and : operation	Reactor Engineering Division Atomic Energy Establishment Trombay
2.	Location	Engineering Hall No. 1, Atomic Energy Establishment Trombay Bombay 74, India
3.	Main purpose of the apparatus	: Measurement of absorption cross sections of reactor materials
4.	Status :	Scheduled date for completion: August 1964
5.	Scientist in charge of : experimental programme	M.Srinivasan Reactor Engineering Division, Atomic Energy Establishment Trombay
6.	Number of staff employed :	4
7 _.	Available references for : more detailed description	Nil
8.	Future programme :	Includes measurement of absorption cross section of organic coolants and Zircolloy and other reactor grade material produced in India
9.	Important characteristics not included in the list	-
10.	Reactor at which the monotor is installed	ZERLINA (Prombay)
11.	Special specifications:	ι.
	 Principle of oscillation: Location in the reacor : C Medium surrounding the osci Nature of neutron flux at o 	Overall modulation ore llator: Heavy water scillator position: Thermal

- Gradient along oscillator direction : Cosine

,

- Sample used as reference: boron (exact form in which it is to be used has yet to be finalised.
- Maximum size and dimensions of the tested sample: Not yet optimized
- Oscillation wave: Shape: square Period: 20 to 50 seconds Stroke: 100 to 160 cms
- Sensitivity or minimum absorption detectable: It is expected that the sensitivity of the above oscillator would be $0.01\ {\rm cm}^2$

-4-

III. PARTICLE ACCELERATORS

1. 5.5 MeV Van de Graaff Accelerator

1. Organisation responsible for : High Voltage Engineering Corpn., a. Design and construction burlington, Mass., U.S.A. b. Operation : Nuclear hysics Division, Atomic Energy Establishment Trombay 2. Location : Van de Graaff Laboratory North Site, Atomic Energy Establishment Trombay, Bombay 74, India. 3. Main purpose of the apparatus: Charged particle reaction studies, neutron scattering studies, fast neutron fission studies. 4. Status : Statted operation in February 1962 5. Scientists in charge of : A.S.Divatia and N.Sarma experimental programme Nuclear Physics Division Atomic Energy Establishment Trombay 6. Number of staff employed. a. Operation and development : - 9 : 25 b. Research experiments 7. Available reference for . A.S.Divatia et. al AEET/NP/5 (1962) more detailed description 8. Programme in progress : 1. Proton and alpha particle scattering 2. He³ induced reactions 3. (p, n'y) reactions 4. Fission studies 5. (n, \propto)reactions 9. Future programme : Same lines as the present programme 10. Special specifications: - Type of accelerator : HVEC type CN 5.5 MeV Van de Graaff Accelerator Manufactured by the High Voltage Engincering Corporation, USA - Nature of accelerated particles: Protons and alpha particles; arrangements for accelerating He³ ions are being made at present - Energy : 1 MeV - 5.5 MeV

- Energy stabilization : 0.1% (Slit controlled corona stabilization)

....6

- Maximum beam current: 10 micro amps upto 5 MeV and 5 micro amps between 5 and 5.5 MeV
- Current stabilization: + 10%

•

.

•

- Targets available : Lithium and tritium targets for neutron production

2. 400 kev Van de Graaff Accelerator

1.	Organisation responsible for		
	a. design and construction	:	High Voltage Engineering Corpn. (Europa), Amsterdam
	b. Operation	•	Nuclear Physics Division Atomic Energy Establishment Trombay
2.	Location	••	Engineering Hall No. 1 North Site, Atomic Energy Establishment Trombay, Bombay 74, India
3.	Main purpose of the apparatus	s	To study the feasibility of a method for estimating non-destructively the plutonium content in an irradiated fuel rod using a lead spectrometer
4.	Status	00	The machine was installed in August 1962
5.	Scientist in charge of experimental programme	80	M.P.Navalkar Nuclear Physics Division Atomic Pnergy Establishment Trombay
6.	Number of staff employed	; :	8
7.	Available reference for more detailed description	•	-
8.	Literature on neutron researd already accomplished	cł :	
9.	Programme in progress	"	Trying to establish whether the method for non-destructive testing of plutonium is feasible or not using pure samples of plutonium and U-235

-6--

...7

10.	Future programme : Once the feasibility experiments are completed, the experiment will be extended to the actual estimation of plutonium in an irradiated rod
17.	Important characteristics : A slowing down time spectrometer not included in the list has been constructed with about 100 tons of lead
12.	Special Specifications:
	- Type of accelerator: PN-400 neutron generator manufactured by High Voltage Engineering Corporation (Europa), Amsterdam
	- Nature of accelerated particles : Deuterons
	- Inergy: 700 - 400 kev
	- \mathbb{E} nergy stabilization : \pm 10 percent
	- Maximum beam current : 150 microamperes on D _o C. and 100 micro- amperes on pulsed condition
	- Current stabilisation: <u>+</u> 10 percent
	- Targets avilable : Tritium target
	- Neutron energy - 14 MeV
	- Pulsation system : Makes use of a pulsing electrode at the base of ion source bottle
	- Pulse length: Variable in six steps 1. 200 microseconds 2. 200 ,, 3. 200 ,, 4. 150 ,, 5. 50 ,, 6. 10 ,,
	- Pulse repetition rate: Variable in six steps
	1. 1 pulse per second 2. 10 ,, ,, ,, 3. 100 ,, ,, ,, 4. 500 ,, ,, ,, 5. 1000 ,, ,, ,, 5. 10,000 ,, ,, ,,
	Maximum duty cycle is 10 percent
	- Peak neutron yield per second during the pulse: 10 ⁸ neutrons per second
	- Neutron flight path : -
	8

-7-

- Neutron detector: Different detectors are being used. Some of these are as follows:

 EF3 counters
 Proton recoil counter
 Scintillation counter using different fast and slow neutron crystals

 - 4. Long counter
- Time analyser: Ten channels, 20 microseconds, 10,000 rulses per second

3. TIFR Cockcroft Walton Accelerator

. 1. Organisation responsible for

. •

	a. design and construction	:	Phillips Company, Netherlands
	b. operation	0 6	Tata Institute of Fundamental Research Bombay
2.	Location	0 8	Tata Institute of Fundamental Research Colaba, Bombay-5, India.
3.	Main purpose of the apparat	us	Study of nuclear reactions
4.	Status	:	In operation from 1953
5.	Scientist incharge of experimental programme	0	E.Kondaiah
6.	Number of staff employed	•	16 .
7.	Available reference for more detailed description	•	-
8.	Literature on neutron research already accomplished		 E.Kondaiah et. al, Nucl. Phys. <u>5</u>, 346 (1958) E.Kondaiah, et al, Nucl. Phys. <u>9</u>, 561 (1958) E.Kondaiah, et al, Nucl. Phys.<u>27</u>. 166 (1961) R.Ramanna et al, Jour. Nucl.Energy Vol. 2, 1956 R.Ramanna et al, Proc. Ind. Acad. Sc. Vol. XLV, 1957

-8-

		·
	- 9 -	
	6. 7. 8. 9. 10. 11.	S.B.D.Iyengar et al, Proc. Ind. Acad. Sc. Vol. XLV, 1957 V.C.Deniz et al, Proc. Ind. Acad. Sc. Vol. XLV, 1957 S.B.D.Iyengar et al, Proc. Ind. Acad. Sc. Vol. XLV, 1957 V.P.Duggal and S.M.Puri Jour. of Applied Phys. P 675 (1958) R.Ramanna et. al, Nuvo Cimento Ser. 10, 1 No. 4, 1955 S.B.D.Iyengar et al, Proc. of Nuclear Phys. Symp., Madras (1962)
9.	Programme in progress : St	udy of $(n, \&)$, (n, p) reactions
10.	Future programme : 1.	Systematic studies of (n, α) and (n, p) reactions
•	- <u></u> 2.	Determination of multiplication constants of U-BeO lattices using pulsed neutron technique
11.	Important characteristics : Th not included in the list to b) Th	ne accelerator has two accelerating obes (referred to hereafter as a and working on the same high tension. Ne second one was added in 1963
12.	Special specifications:	
	- Type: Cockcroft Walton type a. Phillips - 0 to 1 M b. Home made - 0 to 400	leV - Main) kev - auxiliary unit
	- Nature of accelerated particl	es : Protons and deuterons
	- ⊡nergy : a. 0 - 1 MeV in mai b. 0 - 400 kev in a	n unit uxiliary unit
	- inergy stabilization : Nil	
	- Maximum beam current : a. 200 b. 400) mA in main unit) mA in auxiliary unit
	- Current stabilization: Nil	
	- Targets and reactions availab	ble: Be, H^3 , and H^2
	- Neutron yield in 4 geometry 10 ¹⁰ to 10 ¹¹ neutrons/second	during continuous operation:
	- Neutron energy : 2 ileV - 14 M	leV .

- Pulsation system: Electronic pulsing of ion source probe voltage

...10

•• . . .

-10-

- Pulse length : 10 usec. to 10 msec.
- Pulse repetition rate : 50 c/s to 500 c/s
- Neutron detector : Plastic scintillator and BF_3 counter
- Time analyser : Number of channels: 50 Minimum channel width: 3 usec.

4. Saha Institute Cockcroft Walton Accelerator

- 1. Organisation responsible for : Saha Institute of Nuclear Physics design, construction and operation
- 2. Location : Saha Institute of Nuclear Physics, 92, Acharya Prafulla Chandra Road, Calcutta-9
- 3. Main purpose of apparatus : Stady of fast neutron reactions, cross sections, fast neutron induced transmutations with $\beta \gamma$ spectro-scopy

4. Status : Year of first operation 1959

5. Scientist in charge of : D.N. Kundu experimental programme

6. Number of staff employed : 5

- 7. Programme in progress : Study of fast neutron reactions, cross sections and fast neutron induced transmutations
- 8. Future programme : To change the site to make improvement so as to enhance neutron flux

9. Special specifications:

- Type of accelerator: Cockroft-Walton generator (home made)
- Nature of accelerated particles : Deuterons
- Energy : 400 kv
- Energy stabilization: Voltage stabilization 0.1%

- Maximum beam current: 1.2 mA
- Current stabilization: nil

.

- Targets available (admissible current on target): Tritium about 1 mA over $\frac{1}{4}$ inch diameter

-11-

- Neutron yield in 4T geometry: 10¹¹/sec.
- Neutron energy : 14 MeV.

5. Saha Institute Cyclotron

 2. Location 3. Main purpose of apparatus 4. Saha Institute of Nuclear Physics 92, Acharya Prafulla Chandra Road, Calcutta-9 3. Main purpose of apparatus 4. Saha Institute of Nuclear Physics 92, Acharya Prafulla Chandra Road, Calcutta-9 4. Saha Institute of Nuclear Physics 92, Acharya Prafulla Chandra Road, Calcutta-9 5. Main purpose of apparatus 6. Internal beam irradiation of target for producing isoioisotopes for β - γ spectroscopy 			
3. Main purpose of apparatus for producing isoioisotopes for $\beta - \gamma$ spectroscopy			
	3		
4. Status : Full beam operation 1959			
5. Scientist in charge of : D.N. Kundu experimental programme			
6. Number of staff employed : 8			
7. Programme in progress : Beam extraction			
8. Future programme ; Experiments on external beam			
 9. Special specifications: Type of accelerator: (Cyclotron (Home made)) Nature of accelerated particles: protons Energy: Fixed - about 3.5 MeV Energy stabilization: Nil Maximum beam current: 40 uA average; the machine operates on 50 cycles A.C. 			

...12

-12-

6. 3.5 MeV Electron Lincar Accelerator

1.	Organisation responsible for design, construction and operation	:	Tata Institute of Fundamental REsearch, Bombay
2.	Location	:	Tata Institute of ^{L'} undamental Research, Colaba, Bombay-5, India.
3.	Purpose	•0	Experience in Accelerator design, and construction: use as an electron irradiation source
4.	Status	•	Completed as 1.5 MeV accelerator in 1960; as 3.5 MeV in 1962
5.	Scientist in charge	0 O	R.V.S. Sitaram
6.	Number of staff	•	6
7.	Programme in progress	00	 Study of: 1. Solid state and Biological irradiation effects 2. Bremstrahlung properties 3. Accelerator techniques 4. Nuclear resonance fluorescence
8.	Future programme	90	Same lines as present programme
9.	Important characteristics not included in the list	0	It is a travelling wave electron linear accelerator operating at 3 G.C./sec. 2 usec pulsos. Pulse repetition rate variable upto 400 P.P.S. continuously operated at 100 P.P.S. with peak pulse current of about 30 mA. It is powered by a 2 M.W.magnetron
10.	Special specifications: - Nature of accelerated partic	cl	es: Electrons

- Energy : 3.5 MeV fixed

·

- Energy stabilization : About + 10 percent
- Maximum beam current: 30 mA pulse 25 us. max. average 10 uA average continuous operation

٠

- . Current stabilization: + 10% of value set
 - Targets available : (1) Frovision to incorporate any target in vaccum chamber; (2) Electron beam comes out of thin window for irradiation purposes

·

-

- Pulsation system: 5 M.W. line type pulse modulator, 2 usec pulse upto 400 P.P.S.
- Pulse length : 2 usec.

-13-

-14-

IV. MASS SEPARATORS

Mass Separator

	·		
1.	Organisation responsible for design, construction and operation	:	Nuclear Physics Division Atomic Energy Establishment Trombay
2.	Location	•0	Tata Institute of Fundamental Research, Colaba, Bombay-5, India
3.	Main purpose of the apparatus	•	To supply inactive pure isotopic targets for nuclear reactions, spectroscopy experiments etc.
4.	Status	:	Scheduled for completion in early 1964
5.	Scientist in charge of experimental programme	•	K.K.Damodaran
6.	Number of staff employed	•	6
7.	Special specifications:		
	- Ion source : Extraction volt beam - 10 mA	ېنځ ر	ge - 30 KV; Ion current in the
	- Deflection magnet : Weight - D.C. Motor generator; Stab Max. field - expected 12 K	il: gai	5 tons; Power supply - 600 V 20 A ization - expected one in 5,000; uss
	- Vacuum : 10 ⁻⁶ mm of Hg		
	- Radius of curvature : 50 cms	3	
	- Angular deflection in the id	on	beam : 60°
	- Collector efficiency : Expe	ct	ed 15%
	- Resolution : 150		

V. SPECIAL MADS SPECTROMITER

1.	Organisation responsible for design, construction and operation	•	Saha Institute of Nuclear Physics
2.	Location	8	Saha Institute of Nuclear Physics, 92, Acharya Prafulla Chandra Road, Calcutta-9
3.	Main purpose of apparatus	90	Studies in ion-ion collison, sputtering and other solid state experiments
4.	Scientist in charge	:	D.N. Kundu
5.	Number of staff employed	:	4
6.	Programme in progress	0	Studies in ion-ion collision sputtering and other solid state investigations
7.	Future programme	•	along similar lines
8.	Special specifications:		
	- Ion source: · <u>Source a</u>		Source b
	Ion density 10^{-11} A/cm	2	$7 \times 10^{-3} \text{ A/cm}^2$
	Extraction 8 KV voltage		5 KV
	Ion current 0.1 uA		
	- Deflection magnet: Weight Stabilization - 1 in 10,000	 ;	14 ton; Power supply - 2.5 KW Maximum field - 3800 gauss
	- Vacuum : about 10 ⁻⁵ mm		
	- Eurvature radius of ion pat	h	: 38 cm
	- Angular deflection of the i	on	beam : 255°
	- Resolution : 125		

VI. RESEARCH REACTORS

.

1. Apsara

Name	:	Apsara
Situated	*	Trombay, Bombay 74
Critical	•	August 1956
Туре	` • •	Pool type, highly enriched uranium, light water moderated, cooled and reflected.
Owner	:	Government of India
Operator	•	Atomic Energy Establishment Trombay
Designer	:	Atomic Energy Establishment Trombay
Use	٩	Experimental neutron physics, isotope production, biological irradiation and training
Power	•	1 MW maximum
Fuel	¢	Uranium enriched to 46%
Flux	80	Avorage thermal : 7.6 x 10 ¹² n/cm ² sec
		Peak thermal : 2 x 10 ¹³ n/cm ² sec
		Average fast : $1 \times 10^{13} \text{ n/cm}^2 \text{sec}$

٠

.

ی اور					ہیں سے خان نے سے وی جل کیا اس ہیں جب ہے۔
Designation	No.	Position	useful dimen- sions (cm)	(n/cm ² sec.)	Remarks
Horizontal beam tubes reaching reflector	4 3	(1)	10 diam. 15 diam.	-	-
Horizontal through tube tangential to core	1	(3)	. 10 diam.	-	- '
Shielding corner	1	(4)	245 high 245 wide on each side		Concrete wall replaced by 1 in(2.5 cm) Al + remova- ble concrete blocks
Thermal column	1	(5)	1 26 x 126 258 long		Cd ratio: max 455; at the end of thermal col. 280
Vertical in lattice positions (for isotop production	e 4		5 diam.	Th.max.10 ¹¹	Flux: 10 ⁶ r/hr. temp. 35°C

Experimental Facilities

-17-

.

....18

-18-

2. Canada India Reactor

	Name	: Canada India Reactor
	Situated	: Trombay, bombay 74
	Critical	: 10th July 1960
:	Туре	: Heavy water moderated, light water cooled, Graphite reflected, Natural uranium type
	Owner	: Government of India
	Operator	: Atomic Energy Establishment Trombay
	Designer	: Atomic -nergy of Canada Ltd.
	Power	: 40 MW
	Fuel	: Katural Uranium
	Flux	: Average thermal: 2.4 x 10^{13} neutron flux $(n/cm^2 \text{ sec.})$
		Peak thermal : 6.7×10^{13} ,, ,,
		Average fast : 1.6 x 10^{13} ,, ,,
		Peak fast : 4.4×10^{13} , , ,

Experimental Facilities

-19--

Designation	No.	Position	Useful dimen sions (cm)	- Neutron flux (n/cm ² sec.)	Remarks
Horizontal experi- mental holes rea- ching reflector	20	(1)	10.2 diam.	th.max.1.2x ¹⁰ ¹³	7700r/se c
	5	(2)	30.5 diam.	th.max.1.7x10 13	11000r/sec
"Self serve" units horizontal reaching reflector	6	(3)	6.35 diam.	th.max.1.7 x^{10} ¹³	11000r/sc c
Thermal columns	2	(4)	178x178 228.6 long	$th.10^8 - 10^{11}$	
Central thimble ("in pile")	1	(5)	14.6 id.	th.av. $3.7x10^{13}$ th.max. $5.9x10^{13}$ f.av. $2.4x10^{13}$ f.max. $3.9x10^{13}$	11000 r/se c
Loops ("in pile")	6	(6)	10.2 id.	as (5)	
Tray rods ("in pile	") .		5.4 diam.	th.av.2.6-6.7x10 th.max1.6-4.3x10	13 replacinf 13 fuel ele- ments
J-rods (in J-rod annulus)	92	(7)	6.35	th.max 1x10 ¹³	3700 r/scc

.

-20-

3. Zerlina

Name	•	Zerlina
Situated	8 0	Trombay, Bombay 74
Critical	e 0	1961
Type	0 0	Variable fuel, heavy water, uncooled
Owner	e	Government of India
Operator	7 0	Atomic Energy Establishment Trombay
Designer	8	Atomic Energy Establishment Trombay
Use	0	Lattice investigation
Power	•	Maximum 100 w thermal
Fuel	•	Variable
Flux		Variable
Experimenta facilities	:	The reactor as a whole may be used for zero energy lattice studies, tempera- ture coefficient measurements, etc. One cadmium shutter for bare reactor studies heavy water heating arrangement for tem- perature coefficient measurements.

i

•

1

.