A. E. E. T. -257
A. E. E. T. -257

GOVERNMENT OF INDIA
 ATOMIC ENERGY COMMISSION

THERMAL AND SIXTEEN GROUP CROSS SECTION DATA
FOR $\mathrm{Pa}^{233}, \mathrm{U}^{234}$ and U^{236}
by
R. Shankar Singh
Reactor Engineering Division

ATOMIC ENERGY ESTABLISHMENT TROMBAY BOMBAY, INDIA
R. Shankar Singh Reactor Engineering Division

Abstract

Latest available nuclear date have been collectea for $\mathrm{Pa}^{233}, \mathrm{~T}^{234}$ and U^{236} and recommended values of thermal cross sections and resonance integrals have been given for these isotopes for use in thermal reactor calculations in the analysis of thorium fuel cycles. Sixteen-group cross sections for studying fast systems based on the same fuel cycle, have been prepared. Accuracies in the present data and the need for further measurements and improvements have been specified.

Therrai and sixtern group cross section data FOR Pa233, U234 and U236

by

R. Shankar Singh

1. INTRODUCTION

Nuclear data for reactor calculations are required not only for the materisle which are used in a reactor to start with, but also for such elements or isotopes which ere produced in a reactor during its operation. Such data are essential when one studies the long term behaviour of a reactor like the fuel burn-up estimates or the reactivity changes during operation etc. Availability of cross section date for the heavier isotopes of fuel has been limited due to several reasons and attemps are being made to make measurements in the existing gaps to reduce the errors involved in making rough estimates or guesses in certain energy regions. The users of nuclear data have to keep in touch with the latest information on them and also have to 'prepare' the data in the manner required by them as and when such information becomes available.

The present work is part of such an attempt to prepare the cross-section data for the isotopes $\mathrm{Pe}^{233}, \mathrm{U}^{234} \& \mathrm{U}^{236}$ which are needed in the study of thorium fuel cycles in different types of reactors. Iatest information available on thermal cross sections and resonance integrals has been presented for these isotopes and sixteen-group cross sections heve been prepared for studying fast reactor systems, using the material collected from various sources such as CINDA ${ }^{(1)}$, EAVDC (European Anerican Nuclear Data comittee), UKAEA Nuclear Data Library, ENL compilations etc.
2. DATA FOR THERMAL REAGTOR CAIMULATIOTS

The usual parameters required are the cross sections for capture ($\sqrt{(}$) and fission (σ), the resonance paraneters and the resonance integrals for absorption and fission. These are discussed for the isotopes $\mathrm{Pa}{ }^{233}, \mathrm{U}^{234}$ and U^{236}, and tabulated in Table I.
2.1. Protactinium - 233

Most of the data for thermal neutrons ($2200 \mathrm{~m} / \mathrm{sec}$) are from the latest BNT $-325^{(2)}$ compilation. Values selected here are those either recommended in
this compilation or chosen from the other various reported values.

The recommended value of capture cross section, $\sigma c=43 \pm 5$ barms, is from the different measurements which have been reported. The resonance capture integral measured at ORNL is $=920 \pm 90$ barns.

The resonances are measured upto 16 ev (16 resonances) but have been analysed for the resonance parameters only upto 5.152 ev .

The calculated resonance absorption integral comes out to be only ... 500 barns (3) Obviously more data on resonance parameters are required to overcome this large disparity.

There is no fission reaction for this isotope at thermal energies.
2.2. Uranium - 233

This isotope is also included here in thermal data to give the latest information available on it.

The cross sections recommended (2) here are those obtained from a. least square fitting of the various measured values.
$\sigma_{c}=49 \pm 6$ barns $; \sigma_{\mathrm{I}}=524.5 \pm 1.9$ barns;
$\sigma_{a}=573.1 \pm 2.1$ barms $; \eta=2.292 \pm 0.006$
The resonance integral values are:
$\operatorname{RI}($ fission $)=746 \pm 15$ barns (0.45 ev cut off) RI (Capture) $=147$ barns (sub-cadmium spectrum).
Resonances have been measured (2) upto 40 ev , but the resonance parameters have not been accurately determined because of the multi-level analysis required for them.

The least square value of $\alpha\left(=\sigma_{\mathrm{c}} / \sigma_{\mathrm{f}}\right)$ at $\mathrm{En}=.0253 \mathrm{ev}$, determined indirectly.is given as $\alpha=0.0926$.

It would be of interest to note the epithermal (0.5 ev cut-off) values of α measured by different people here.

ORNJ value ${ }^{(4)} \alpha=0.17 \pm .017$
GE - KAPL value ${ }^{(5)} \mathcal{\alpha}=0.165 \pm .012$ (This source gives
$R I($ fission $)=820 \pm 65$ barns and
RI (capture) $=138 \pm 10$ barns.)
The latter value of α seems to be preferable after the scrutiny of the two sources.

2.3. Uranium - 234

The absorption cross section has been determined from the measured values of the total cross section (6). The recommended value ${ }^{(2)}$ is $\pi_{a}=95 \pm 7$ barms.

Leonard and Odegarden (7) have shown that the fission cross section at the 5.2 ev resonance is very small compared to the total cross section and the $2200 \mathrm{~m} / \mathrm{s}$ value of σ is less than 60 mb .

Resonance paraneters have been measured upto 369 ev (20 resonances) and Halperin ${ }^{(8)}$ reconmends for the resonance capture integral a value of 700 ± 70 barns. Wore measurements in support of this figure are perhaps necessary.
2.4. Uranium - 236

A number of measurements of the capture cross section in thermal energy region have been reported.
The recommended value is $\sigma_{c}=6 \pm 1$ barns.
Le onard and Odegarden ${ }^{(7)}$ have shown that at the 5.49 ev resonance, the fission cross section is less than 100 mb while the thermal cross section is less than 0.2 mb .

Resonance parameters have been measured upto 384 ev (14 resonances) and the recomended values for the resonance capture integral based on activation measurements at ORNL by Hal perin ${ }^{(8)}$ is 400 ± 50 barns. The calculated value of resonance integral from level parameters is smaller and measurements for resonance parameters as well as resonance integral are needed to resolve the differences.
3. SIXTEEN-GROUP CROSS SECTIONS

Multigroup cross sections have been prepared by different laboratories for most of the materials used in fast reactors. For the isotopes Pa^{233}, U U^{234} and U^{236}, however, there have been very few attempts. The main reason is the
lack of sufficient experimental data for these materials at higher energies to prepare such sets. The situation is improving and measurements are being undertaken in the existing gaps for these isotopes. But it will be a long time before all the required data are obtained through experiments and hence theoretical estimates have to be taken recourse to. In the present compilation, the latest available experimental data, supplemented by calculated values, have been used. The sixteen group structure is the same as YoM ${ }^{(9)}$. The group cross sections have been prepared by weighting with a neutron energy spectrum corresponding to a Pu-fuelled matallic core of about 500 litres. The sources of different cross sections and their respective accuracies for the three isotopes have been discussed below. Sixteen-group cross sections are given in Table II, III and IV for $\mathrm{Pa}^{233}, \mathrm{U}^{234}$ and U^{236} respectively.
3.1. Protactinium - 233

There is very little information available on this isotope so that most of the values selected are based on the estimates and guesses made by Goldman ${ }^{(10)}$. No measurements have been reported above 16 ev .

The fission cross section of Pa^{233} is expected to resemble closely that of U^{238} and therefore σ_{f} and \mathcal{U} (number of neutrons produced per fission) are taken to be the same as for U^{238} from a latest (11) compilation.

The capture cross sections (σ_{c}) have been chosen ${ }^{(10)}$ as follows:
$2 \mathrm{ev}-10 \mathrm{Kev}$: Average capture cross sections computed using statistical theory with average resonance parameters. $10 \mathrm{Kev}-100 \mathrm{Kev}$: From the smooth curve drawn between the adjoining regions.
$100 \mathrm{Kev}-500 \mathrm{Kev}$: Values from Hauser - Feshbach calculations.
Above 500 Kev : Cross section extrapolated to very small values.
Elastic removal (σ_{er}) and transport (σ_{tr}) cross sections have been taken to be the same as for U^{238}.

Inelastic scattering ($\sigma_{\text {in }}$) cross sections are taken from the estimated values from Hauser - Feshbach calculations.

Inelastic transfer cross sections ($\sigma \mathrm{j} \rightarrow \boldsymbol{\sigma}+\mathrm{k}$) have been computed using the new ${ }^{(12)}$ transfer matrix $P j \longrightarrow j+k$ for U^{238}.
3.2. Ureniun - 234

A 22-group set was prepared for this isotope in earlier studies (13). More infomation has become available since then and the present 16-group set includes the improved values of the fission and capture cross sections, compiled by Paricer (14).

Fission cross section (threshold 50 Kev) has been taken from the data neasured at ORNI by Lamphere ${ }^{(15)}$ and the $\quad D(E)$ values from Parker's (14) data.

No measurements of capture cross sections have been reported, but Hamilton's celculated values reported by Parker (14) in the 1 Kev - 1 Mev range have been used. Above 1 Mev the cross section is extrapolated to 1 mb for energies greater then 4 Mev.

Elastic renovel (Jer) and transport $\left(J_{t_{r}}\right)$ cross sections have been taken fron earlier compilation (13).

Tnelastic scattering cross sections have been taken from Parizeris compilation given in the form of a curve.

Inelastic transfer cross sections heve been computed from the above values using the transfer matric $P j \rightarrow j+k$ of U^{238}.
3.3. Uranium - 236

Parler (16) has compiled the data for this isotope in $1 \mathrm{Kev}-16 \mathrm{Mev}$ energy range.

Fission cross section has been measured from 700 Kev to 7 Mev. at Los
Alamos 17$)^{\text {and ornm }}(15)$.
) (E) values are also chosen from those recommended by Parker.
The capture cross section has been measured in the energy range 0.36 3.97 Mev by Barry et al (18). In the energy range $1 \mathrm{Kev}-300 \mathrm{Kev}$, calculated values by Hamilton, reported by Parker (16) have been used.

Elastic removal (σ_{r}) and transport $\left(\sigma_{r}\right)$ cross sections have been taken to be the same as for T^{234}.

Inelastic scattering cross section has been taken from Parker ${ }^{\prime}$ s curve based on comparison with U^{238}.

Inelastic transfer cross sections have been computed using the transfer matrix $P j \rightarrow j+k$ of U^{238}.

Accuracy of the Present Data.
Since no measurements have been made for Pa^{233} at higher energies, the value obtained by estimates and comparison with other elements may involve large errors and hence, for this isotope, the data need lot of improvements and is not the ultimate information.

For U^{234} and U^{236}, the fission cross sections should be accurate to \pm 6% upto 6 Mev . The capture cross-sections, wherever the measurements are made, should not be in error to more than 10%, but in other regions (below 300 Kev) the errors may be larger. The scattering and transport data may be considerably in error due to the rough methods in their estimation.

1. CINDA (Computer Index Neutron Data); An index to the Iiterature on miscroscopic neutron data; EANDC - 46'U' (1965); Supplement, (March 1966)
2. BNTL - 325 Neutron cross section; second Edition, Supplement No.2, Vol III (August 1965)
3. D.T. Goldman; A review of existing data on the thermal cross sections and resonance integral of Pa^{233}, KAPL - M - DTG - 2.
4. Halperin et. al.; Nucl. Sci.Eng. 16, 245 (1963).
5. L.J. Esch and F. Feiner; ANS transactions, 7, 272 (1964).
6. R.C. Block, et al.; Nucl. Sci.Eng. 8, 112 (1960).
7. B.R. Leonard and R.H. Odegarden; Bull. An. Phys. Soc. 6, 8 (1961).
8. J. Halperin and R.W. Stonghton; Proc. Second International Conf. on Peaceful Uses of Atomic Energy, 16, 64 (1965). Also, Nucl. Sci. Eng. 6, 100 (1959).
9. S. Yifteh, et al. Tast reactor cross sections Perganon Progs. (1960).
1.0. D.T. Goldman; Tast neutroncross sections; MDA 2134-2 (1960).
10. R. Avery et al.; Physics of fast reactors; Proc. Third International Conf. on Peaceful. Uses of Atomic Fnergy P/259 (1964).
11. S. Yifteh and M. Sieger, Nuclear cross sections for fast reactore. Proc. Thixd Internetionel Conf. on Peaceful Ises of Atomic Energy P/510; Hiso I A-980 (1964).
12. R.S. Singh and H.H. Hummel; Parametric studies of reactivity coefficients for large U^{233}-Th-fueled fast reactors; ANL - 6930 (1966).
13. K. Parker; Neutron cross sections of T^{236} in the energy range $1 \mathrm{Kev}-$ 15 Mev ; ATRE 0 - 37/64 (1964) .
14. R.W. Lemphere; Phys. Rev. 104, 1654 (1956).
15. K. Parker; ANRE 0-30/64 (1964).
16. R.I. Henkel : LA - 2122 (1957)
17. J. F. Barry et al.; Proc. Phys. Soc. 78, 801 (1961).

Quantity *	Pa^{233}	U^{233}	U^{234}	U^{236}
σ	43 ± 5	49 ± 6	95 ± 7	6 ± 1
σ_{f}		524.5 ± 1.9		
$\sqrt{\text { a }}$		573.1 ± 2.1		
Resonance Integral (Capture)	920 ± 90	147	700 ± 70	400 ± 40
Resonance Integral (Capture)		746 ± 15		
$\alpha\left(=\sigma_{c} / \sqrt{J_{f}}\right)$		$0.0926 \pm .0027(\mathrm{a})$		
		$0.165 \pm .012(b)$		
r		2.292 ± 0.006		

* Cross sections correspond to $2200 \mathrm{~m} / \mathrm{s}$. values and all quantities except α and η are in barns.
(a) $2200 \mathrm{~m} / \mathrm{s}$. vaiue.
(b) Epithermal (0.5 ev cut off) value.

Table II 10-Group Cross Sections for Pe ${ }^{233 \text { (barno) }}$

Table IV 16-Group Cross Sections for U^{236} (barns)

