B.A.R.C.-279

GOVERNMENT OF INDIA
 ATOMIC ENERGY COMMISSION

EVALUATION OF NEUTRON CROSS SECTIONS ON THE bases of optical and statistical models.
 by
 S. B. Garg, K. Balasubramanian and V. K. Shukla
 Reactor Engineering Dlvision.

GOVERTGES OF INDIA
ATOTC BNERGY COMTSSTON

EVALDAETOT OF MEURROA CROSS SFCTIORS ON TEE bases or oprical amo smatigtical hodels ..
 by
 S.B. Garg, K. Balasubramian and V.K. Shukla Reactor Engineering Division

BFABHA ATOMIC RISEARCH CDTPRE bOVBAY, ITDIA

1967

COMPENTS

No. Title Page
1.
2.
3.
4.
5.
6.
7.
8.
11.
Abstract
Introduction1
Theory 1
Hauser Feshbach statistical model 3
Calculations 6
$M i^{58}$ and $N i^{60}$ 6
$\mathrm{Cr}-52$ 8
Th-232 and J-238 9Conclusions10

10.
11. Acknowledgements 11
References 11

TABLES

Table No.	Title of the table	Paga Ne:
1.	Total, elastic and inelastic cross-sections for Cr-52	12-13
2.	Calculated cross-sections for neutron excitations of Cr-52	14-15
3.	Differential elastic cross-sections of Cr-52	$16-17$
4.	Total, elastic and inelastic cross-sections for Ni-58	18-19
5.	Calculated cross-sections for neutron excitations of Ni. 58	20-21
6.	Differential elastic cross-sections of Ni-58	22-23
7.	Total, elastic and inelastic cross-section for Ni. 60	24
8.	Calculated cross-sections for neutron excitation of Ni. 60	25
9.	Differential elastic cross-sections of Ni-60	26
10.	Total, elastic and inelastic cross-section for U-238	27
11.	Calculated cross-sections for neutron excitations of U-238	28
12.	Differential elastic cross-sections for U-238	29
13.	Comparision between measured and calculated inelastic cross-sections: at 080.45 Mev .	30
14.	Total elastic and inelastic cross-sections for Th-232	31
15.	Calculated cross-sections for neutron excitation of Th-232	32
16.	Differential elastic cross-sections for Th-232	33

ABSTRACT

In order to produce accurate calculation of the neutronics of reactors, precise knowledge of inelastic and elastic cross sections and their angular distrim butions is desired. Optical model and Hauser-Feshbach theory have been used to compute total, elastic and inelastic cross sections of several materials which are of special interest from the point of view of a reactor physicist. These calculate ions also serve to test the validity of the se two nuclear models which are frequen tly used in the continuum energy region. In general, the calculated total cross section agrees well with the measured one. The data presented herein will be incorporated into multi-group computer codes for reactor analysis. Strength functions can alsc be calculated on the basis of optical model.

Timpoutonion

Optical model was developed by Feshbach et al (2) to explain the giant resonanes in total neutron cross sections of a large number of nuclei observed by Barsohall et al (4). The broad maxima in cross sections cannot be explained on the basis of compound nucleus mechanism since the compound nucleus states are longlived thereby necessitating narrow resonances and small widths. The shell model, which reduces the many body interaction between the target and the projectile to a two body one through a real potential, predicts widely spaced resonances and slow change of the cross sections with energy quite contrary to the experiment. The optical model combines in it the merits of strong coupling model (conpound nucleus) and weak coupling model (shell model) and falls in between the two. Here the interaction potential is given by

$$
V(r)=-V c(r)-U(r)-i W(r)-V_{S O}(r) \cdots \ldots \ldots \ldots \ldots(1)
$$

Where $V c(r)$ is the Coulomb potential, usually taken to be that due to a uniformly charged sphere of radius R, for neutrons it is zero. $U(r)$ and $W(r)$ are the real and imaginary parts of the central potential and account for refraction and absorption of neutrons in the target nucleus. The imaginary part leads to the formation of a compound nucleus and its magnitude determines the width of resonance. $V_{S O}$ (r) is the spin orbit potentiel and is responsible for the polarisation of the scattered particles.

This model is valid when the interaction averages over a large number of resonances in the conpound system. In practice this occurs when the energy of the incident particle is high enough for there to be many energy levels. At lower energies, where the interaction goes through one or a few resonances, or when one inelastic channel dominates the interection, the model is not valid.

The inelastic scattering of neutrons is treated by Hauser-meshbach theory (1) which is based on statistical model of the compound nucleus. The compound elastic scattering contributions are also obtainable by this method.

Theory:

Only the outline of the broad features of optical and statistical models would be given below.

The enact for of the optical potential given in (l) is

$$
\begin{equation*}
V(\lambda)=-U f(h)-i M g(\ell)-V_{50} h(r) l \cdot \sigma \tag{2}
\end{equation*}
$$

There the real part hes a Saxon form

$$
\begin{align*}
& \text { the real part hes a Saxon form } \tag{3}\\
& f(r)=\left[1+\exp \left(\frac{r-R}{a}\right)\right]^{-1}
\end{align*}
$$

The imaginary part has a Gaussian rom

$$
\begin{equation*}
g(r)=E_{x p}\left[-\left(\frac{r-R}{b}\right)^{2}\right]- \tag{4}
\end{equation*}
$$

and the spin dependent part hes a Thomas form

$$
\begin{equation*}
h(r)=\left[\frac{\hbar}{\mu_{M} c}\right]^{2} \frac{1}{h_{h}} \frac{d f(\hat{r})}{d r} \cdots \cdots \cdots \cdot \tag{5}
\end{equation*}
$$

The Coulomb potential term has been dropped for the case of neutrons.

$$
\text { Now the cross section for reaction } X(a, b) Y \text { is given } b y(3,9) \text {, }
$$

$$
x(a, b) Y=G_{N}(a) G_{c}(b) \ldots(6)
$$

Where $G_{0}(b)$ is the probability for the particular mode of decay and $T(a)$ is the cross section for the formation of compound nucleus given by:

$$
\begin{equation*}
\sigma_{N}(a)=\pi n^{2} \sum_{i, 0}(2 e+1) T_{0 j} \tag{7}
\end{equation*}
$$

Where $\mathbb{T}_{\mathrm{l}} \mathrm{j}$ are the transmission coefficients given by

$$
\begin{equation*}
T_{l j}=1-\left|\eta_{\ell j}\right|^{2} \ldots \ldots \ldots \tag{8}
\end{equation*}
$$

$\eta_{\ell j}$ is the relative amplitude of the outgoing wave and is obtained by the solution of the schrodinger equation with complex potential given by (2).

$$
\begin{equation*}
\eta_{\ell j}=e^{2 i \delta_{\ell j}}, \delta_{\ell j} \quad \text {, being the phase shifts } \tag{9}
\end{equation*}
$$

The calculation of the $\bar{\zeta}_{\ell}$ is thus dependent on η_{ℓ}; which is further governed by several factors:
(1) The real and imaginary parts of the logarithmic derivative $f_{l} j$ of the radial wave functions.

The shift factor $S_{l} j$ which gives a measure of the level shift due to extranuclear interaction.

The penetration factor $P_{\ell} j$ which gives a measure of the probability of the $\ell^{\text {th }}$ partial wave penetration of the centrifugal angular momentum barrier.

$$
\begin{equation*}
T_{l j}=\frac{-4 P_{l j} I_{m}\left(f_{l j}\right)}{\left[R_{e} f_{l j}-S_{l j}\right]^{2}+\left[I_{m} f_{l j}-P_{l j}\right]^{2}} \tag{10}
\end{equation*}
$$

The quantity $\eta_{\ell j}$ is the essential feature of reaction cross section calculations, it also completely determines the shape elastic scattering cross section

$$
\begin{aligned}
& \text { through the well-known relationship. } \\
& \qquad \sigma_{S C}(0) d \Omega=\pi \pi^{2}\left[\sum(2 l+1)\left(1-\eta_{l j}\right) \frac{P_{l}(\cos \theta)}{\sqrt{4 \pi}}\right]^{2} d \Omega \ldots \text { (11) }
\end{aligned}
$$

Eqn. (11) is employed in optical model analysis in which the primary objective is to determine the optical model parameters which best fit experimental data by humerically solving the radial wave equation, thereby determining the logarithmic derivative $f_{l} j$ and hence $\eta_{l} j$. The criterion to obtain the best fit is to determine best para meters which minimise the function.

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{N}\left[\frac{\sigma_{h}\left(\theta_{i}\right)-\exp ^{N}\left(\theta_{i}\right)}{\Delta \sigma_{e x p}\left(\theta_{i}\right)}\right]^{2} \tag{12}
\end{equation*}
$$

where $\sigma_{t h}\left(\theta_{i}\right)$ is the theoretical differential cross section and $\Delta \sigma_{\exp }\left(\theta_{i}\right)$ is an experimental error.

Optical model would predict total, shape elastic and compound nucleus formation cross sections.

$$
\sigma_{t}=\sigma_{s e}+\sigma_{C N} \cdots \cdots-\cdots-\cdots(13)
$$

Hauser-Feshbach Statistical Model
The Hauser-Feshbach model $(1,5)$ is based on the statistical assumption that all states of the compound nucleus which are accessible on the basis of conservation

Q Energy, angular momentum and parity do participate, but that formation and decay thine place in an incoherent manner. A consequence of this is that all angular distributions if scattered particles are symmetric about 90°. The extent to which this is satisfied by the data is a measure of the validity of the assumption.

Hawser and Feshbach considered $\left.T{ }^{\prime} E\right)$ to be a function of ℓ only. The total cross section for the scattering of neutrons of incident energy E by a nucleus with a ground state having spin I_{0} and parity Π_{0} to produce outgoing neutrons of energy E^{\prime} leaving the residual nucleus in a state with energy F_{q} having spin I_{q} and parity Π_{q} is given by :

$$
\sigma\left(E, E^{\prime}\right)=\frac{\pi \pi^{2}}{2\left(2 I_{0}+1\right)} \sum_{l} T_{l}(E) \sum_{J} \frac{E_{j \ell J}(2 J+1) \sum_{e^{\prime} j^{\prime}} \epsilon_{j^{\prime} \ell^{\prime} J} T_{l^{\prime}}\left(E^{\prime}\right)}{\sum_{P e^{\prime \prime \prime} j^{\prime \prime}}^{\prime} \epsilon_{j^{\prime \prime} \ell^{\prime \prime} J} T_{l^{\prime \prime}}\left(E_{p}^{\prime}\right)} \cdots(1
$$

Where the sum over p in the denominator is taken over all accessible levels $E_{p}<E$ including the ground state $E_{0}\left(E_{p}^{\prime}=E-E_{p}\right)$, the ℓ^{\prime} and $\ell^{\prime \prime}$ sums run over all values which lead to final states consistent with parity conservation.

$$
(-1)^{e^{\prime}} \pi_{q}=(-1)^{l} \pi_{0}, \quad(-1)^{l^{\prime \prime}} \pi_{p}=(-1)^{l} \pi_{0}
$$

and $\dot{j} ' S$ are the channel spins and take on values

$$
\begin{aligned}
& \dot{j}_{1,2}=I_{0} \pm \frac{1}{2}, \quad \dot{j}_{1,2}^{\prime}=I_{q} \pm \frac{1}{2} \text { arad } \dot{j}_{1,2}^{\prime \prime}=I_{p} \pm \frac{1}{2} \\
& \epsilon_{\dot{j} l J}=\left\{\begin{array}{l}
2 \text { if both } \dot{j}_{1} \text { and } \dot{j}_{2} \\
1 \text { only one of } \dot{g}_{1} \text { and } \dot{j}_{2} \\
\text { o neither } \dot{j}_{1} \text { nor } \dot{g}_{2}
\end{array}\right\} \quad \text { satisfy }|J-\ell| \leqslant \dot{j}_{i} \leqslant(J+l)
\end{aligned}
$$

and J. takes on values

$$
\left|\ell-\dot{j}_{i}\right| \leq J \leq\left(\ell+\dot{j}_{i}\right)
$$

The angular distribution has the form

$$
\begin{align*}
& T\left(E E^{\prime}, \theta\right)=\frac{\eta^{2}}{4} \frac{1}{2\left(2 I_{+}+1\right)} \sum_{l} T_{l}(E) \sum_{J}^{-: 5:-} \frac{\epsilon_{j l J} \sum_{l^{\prime} j^{\prime}} \epsilon_{j^{\prime \prime} \ell^{\prime} J} T_{l^{\prime}}\left(E_{q}^{\prime}\right)}{\sum_{B_{\ell^{\prime \prime}} j^{\prime \prime}} \epsilon_{j^{\prime \prime} \ell^{\prime \prime} J} T_{l^{\prime \prime}}\left(E_{p}^{\prime}\right)} \tag{15}\\
& \times \sum_{\text {Leven }}\left|Z\left(\ell J \ell J, j^{\prime} L\right) Z\left(l^{\prime} J l^{\prime} J, j^{\prime} L\right) P_{l}(\cos \theta)\right|
\end{align*}
$$

Where $L \leqslant \min \left(2 l, 2 l^{\prime}, 2 J\right)$ and $Z(a b c d, e f)$ are the Z-coefficient of Flatt and Bieden-harm. If dependence of transmission coefficient on \dot{j} is accounted for and the channel spin notation is dropped in favour of one which considers the total neutron angular momentum, expressions analogous to (14) and (15) are obtained as foil lows:

$$
\begin{align*}
& \sigma\left(E, E^{\prime}\right)=\frac{\pi \lambda^{2}}{2\left(2 I_{0}+1\right)} \sum_{\ell_{j}^{\prime}} T_{l j}(E) \sum_{J} \frac{(2 J+1) \sum_{\rho^{\prime} \ell^{\prime}} T_{\ell^{\prime} j^{\prime}}\left(E^{\prime}\right)}{\sum_{j_{j \prime \prime \prime}^{\prime \prime \prime} \ell^{\prime \prime}} T_{\ell^{\prime \prime} j^{\prime \prime}}\left(E_{p}^{\prime}\right)} \tag{14a}
\end{align*}
$$

$$
\begin{align*}
& \times \sum_{\text {Leven }}(-1)^{-I^{-} I^{\prime}} Z\left(l^{\prime} \dot{j}^{\prime} e^{\prime} j^{\prime}, \frac{1}{2} L\right) Z\left(\ell j \ell j, \frac{1}{2} L\right) \\
& \times W\left(J \dot{j}^{\prime} J \dot{j}^{\prime}, I^{\prime} L\right) W(J \dot{j} J \dot{\partial}, I L) P_{\ell}(\cos \theta)
\end{align*}
$$

Here $J, \dot{g}^{\prime}, \dot{g}^{\prime \prime}$ satisfy the relations

$$
\begin{aligned}
& \left|I_{0}-\dot{g}\right| \leqslant J \leqslant\left(I_{0}+\dot{g}\right) ;\left|J-I_{q}\right| \leqslant \dot{g}^{\prime} \leqslant\left(J+I_{q}\right) \\
& \left|J-I_{p}\right| \leqslant \dot{j}^{\prime \prime} \leqslant\left(J+I_{p}\right)
\end{aligned}
$$

ℓ 's satisfy the relations $l=\dot{j} \pm \frac{1}{2}$ and

$$
(-1)^{l^{\prime}} \pi_{q}=(-1)^{l} \pi_{0} ;(-1)^{l^{\prime \prime}} \pi_{p}=(-1)^{l} \pi_{0}
$$

Compound elastic scattering contributions are obtained by letting $E^{\prime}=E, I_{q}=I_{0}$ and $\pi_{q}=\pi_{0}$ in equations (14.a) and (15.a).

Calculations

We have made optical model analysis of neutrons heving energy between 0.1 and 4.0 MeV and elastically segttered on $\mathrm{Cr}-52, \mathrm{Hi}-53, \mathrm{ML}-60$, Th-232 and $\mathrm{U}-238$. The total sonttering cross sectuon beve been taken either from BiJJ- 325 or from KFK- 120 and wo hevo assigned an error of io in the deta sine these mearurements
 b are adjusted to give the best fit to the measured differential elastio scatteming cross section and these are then utilized in the prediction of the botal crossusection. The caiculated total orosswection is then directly comparahle to the messured one.

In the present analysis we heve varied R and W to get a best fit vhile reeming all other parmeters fixed. To test the acoureoy of the model and computer code ABACJSom (7) we heve ued the parameters of Moore and Avcrbach to culoulate the total and differenticl elastio soetbering oross sections of than 32 and U-2 30 . We have issued tables of differential elastio cross ections at vericus encries so that they can be usea to compute $\bar{\mu}$-the arerage cosine of the scattering angle in the laboratory system and hence the transport cross section wioh is required in deffusion theory calculations of reactors.
Ni^{58} and Hi^{60}
Mi ${ }^{53}$ constitutes 67.85% end ${ }^{60} 26.22 \%$ of natural niokel. It is impexetive to know the nuclear behaviour of each of these two isotopes since niokel is one of the constituents of stainless steel which finds a frequent usage as a structural material in nuclear reactors. The parennters $0=45.0 \mathrm{MeV} ; \mathrm{a}=0.5 \mathrm{fm}$ and $V_{\mathrm{GO}}=0$ were kept fixed in the whole range 0.1 to 4.0 MeV which is sub-divided into the following four parts to obtain the best values of n and W :-

(i) $(0.1 \leqslant E \leq 0.5 \mathrm{MeV})$	$W=18.0 \mathrm{MeV} ; R=1.45 \mathrm{fm}$
(ij) $(0.5<E \leq 1.5 \mathrm{MeV})$	$W=5.0 \mathrm{MeV} ; R=1.45 \mathrm{fm}$
(iii) $(1.5<E \leq 3.5 \mathrm{MeV})$	$W=5.0 \mathrm{MeV} ; R=1.35 \mathrm{fm}$
(iv) $(E=4.0 \mathrm{MeV})$	$W=4.0 \mathrm{MeV} ; R=1.35 \mathrm{fm}$

These parameters were used to calculate differential elastic and total cross sections. Saxon-Woods form of central potential was used both for real and imaginary parts. The measured and calculated total cross sections have been compared in table I. In the energy range 0.1 to 0.5 MeV the total cross section of $\mathbb{N i}{ }^{58}$ shows some fluctuations

जat at not always possible to obtain sufficiently energymaveraged data to make adtal oodel calculations which are meaningful in the fluctuating regions. However, 002 salountions represent the general trend very well if viewed on the average besis in the range 0.1 to 0.5 MeV . The agreement between measured and calculated total oross sections is almost ocmplete in the range 0.5 to 4.0 MeV . In the energy range $0.5<E \leq$ 1.5 MeV, we studsed the effect of variation of W on the total crose section by keeping the 2 fixed at 1.35 Im and found thet total oross aection increased slowly with wivt did not shom an agreement with the measured one. It indicated that a slight increase ir the cross section was due to the fact that more pronomod levels were included while tokng the average but to account for all levels which had \bar{H} wit was necessery to vary Ω. Vaxiation of N did imorove the egreement. As the enexgy of the incidert bean of neutrons increases, the levels of the compound nucleus tend to form a continuma \dot{i} e. $\lceil\gg$. In this region variation of r does not make a significant ontribution and both A and W can be suitebly adjusted to give best results.

To detemine compound elastic and inelastic soattering cross sections we have taken the following enengy levels, their spins and parities mom the nuelear a tate sheets.

	N1-58
Energy $\text { (} \mathrm{HeV} \text {) }$	level J^{π}
0.0	0^{+}
1.452	2
2.458	$4^{+}\left(2^{+}\right)$

Ni-60	
Energy level	J^{π}
0.0	0^{+}
1.332	2^{+}
2.158	2^{+}
2.502	4^{+}
2.627	2^{+}
3.130	2^{+}
3.523	2^{+}

The exset prediction of inelastic scattering cross sections is dependent on the precise knowledge of the energy levels, their spins and parities. If any energy level jes not resolved, it would affect the calculated result. Thus in the case of Ni 58 inelastic cross sections above 3.0 MeV should be taken qualitatively rather than quantitatively. We have calculated inelastic cross sections of 2.458 level with $\mathcal{J}^{\text {IT }}$ as 4^{+}and 2^{+}and found that cross section for 2^{+}was higher. It is so because it is easier to exoite low J levels. Compound elastic cross section should decrease with an inorease in energy since the number of channels increase. The calculations support it. Also since the scattering takes place only after the formation and decay of compound nucleus
 of mess system. AI these whonomen have been weil represented in the celculations. $N 1^{60}$ has not been extensively measured from cross section point of view. Our calculations serve to provide aome infometion to those who sye involrea in nuclear data work. The calmated amameotrons tor these two sotopes are tabulated in Tables to 6 and the veniations of σ_{t} with onewgy and W dre shown eranhiceny in Figs. 1 to 5. Chromiun-5?

It is elso a constituent of stan?ess steel and as sueh noeds a betbex repre-
 been thken to bo the sam as for Wi ond the energy mone 0.5 to 4.0 Met has bean broken up into two perte for r and $\%$

(i)	$(E=0.5 \mathrm{MeV})$	$W=6.0 \mathrm{MeV}$
(ii)	$(0.5<E \leq 4.0 \mathrm{MEV})$	$\mathrm{W}=4.0 \mathrm{MeV} ;$
	, $2=1.45 \mathrm{~m}$	

We have not et teapted to calculate oxome nections below 0.5 Hev sinoe thexe are large fibetuations and their representetion would be nore aisficult on the besis of optical model. The deioulated and meesured orocs sections are reeorded in Teble 7 and it can be inferred that the oalculated results fre within the experinentel error. We have stadied the effeot of ratiation of r and W on the total aross seotion and found that it was not rexy sensitive to the change in but the chamge in Rmade significant differences. These studies indicete that fitting of parameters to deta for one nucleus or even perhape fow a few molei can hardly give a potential which is adequate to describe data for a large number of nuclei. This is expected since the observed differences in parameters ought to correlete with the details of nuclear structure, such as the nuclear size and shape, the texture of the surface, the effects of closed chells and of nuclear spin.

We have used the following energy levele to compute inelestic scattering cross sections.

Energy level	J^{π}
$($ MeV $)$	
0	0^{+}
1.46	2^{+}
2.43	4^{+}
2.965	2^{+}
3.112	6^{+}

The shape of angular distributions is dependent on $U R^{2}$ and Wo and so an agreement can slwaye be struck by varying either u or P and keeping all other parem neters fixed; or by varying W and b in such a way that $m=$ constant. The change of nuclear surfece diffuseness has a narked effect on the ghape of onguler distributions. Thus various possible combinations an be worked out which fit in the measured elastio distributions. The only disadrantage of such a process sonetimes is thet one has to put forward a new set of parameters for each energy point but it is alweys possible though laborious to optimise it and obtain average perameters which give a good representation of scattering phenomena in a certain energy renge. the calculated results are shown in Tables 7 to 9. Figs. 5 and 7 represent the veriation of σ with energy and i at a fixed $\begin{aligned} & \text { respectively. }\end{aligned}$
Th^{232} and U^{238}

We have checked the calculations of Moore and Auerbach using the same perameters and energy levels and found that our adapted code was correct. We studied the effect of variation of spin orbit term in potential and concluded that this part of the potential mainly affected the polarizations without making any significant contris bution to the total and reaction cross sections. The energy levela and pacameters used in caiculations are given below:-

$\mathrm{J}=47.3 \mathrm{MeV} \mathrm{F}=7.28 \mathrm{MeV} ;$
$\mathrm{V}_{\mathrm{SO}}=7.0 \mathrm{MeV:} x=1.32 \mathrm{Fm}$
$a=0.47 \mathrm{Pm} ; \bar{b}=1.0 \mathrm{~mm}$.

Energy level (MeV)	J^{π}
0	0^{+}
0.05	2^{+}
0.163	4^{+}
0.330	6^{+}
0.725	0^{+}
0.775	2^{+}
0.738	2^{+}
0.838	3^{+}
0.875	4^{+}
1.045	1^{-}
1.095	3^{-}

$$
\begin{gathered}
\frac{U^{238}}{} \\
U=39.8 \mathrm{MeV} ; \mathrm{V}=6.9 \mathrm{HeV} ; \\
V_{\mathrm{SO}}=15.0 \mathrm{MeV} ; \mathrm{r}=1.32 \mathrm{Mm} ; \\
\dot{a}=0.47 \mathrm{Bm} ; \quad \mathrm{b}=1.0 \mathrm{Mm} .
\end{gathered}
$$

Bnergy level	\mathbb{T}^{\top}
$($ MeV $)$	0^{+}
0	2^{+}
0.045	4^{+}
0.143	6^{+}
0.308	1^{-}
0.651	3^{-}
0.710	5^{-}
0.728	0^{+}
0.935	2^{+}
0.986	3^{+}
1.03	4^{+}
1.11	4^{+}

Tables 10 to 15 record σ_{t}, σ_{Q}, differential elastic scattering and neutron excitation crossmseetions to different levels.

CONGLUSIONS

We have used spherical optical model with local potential to calculate these rather Lew cases and based on this meagre deta we conclude that it is possible to find average paraneters which contain structural information of the intergoting nuclei and give good fita to the measuremente. These parameters con then be employed to predict elastio distributions, total and reaction cross sections in those energy regions where no measumements have been made. By fitting the data at a number of energy points the dependence of parameters on energy can be approximately known and the data can then be extrapolated or interpolated to compute cross sections at other energy points. This type of calculation gives results within 10% or 15%. However, to get very reliable results it is better to switch over to inon-local optical model potentials and deformed
rival model in the case of deformed nuclides and include the effects of width distributions. We propose to undertake these studies in the future.

Hauser-Feshbach theory with a resonable set of level assignments reproduces the general experimentel features quite well. We would be able to say more about these two models in future when we have extensively used them. ACKNOWIEDGERENTS

Thanks are due to Shri H.K. Bhatia for many helpful discussions and Shri P.V. Suryanarayanan for helping us with the figures. We also express our sincere thanks to Dr. E.H. Auerbach and Miss Frances Pope of Brookhaven National Leborotory (U.S.A) for making their code ABACUS-2 available to us.

REFERENCES

1. W. Hauser and H. Feshbach; Phys.Rev. 87, 366 (1952)
2. H. Feshbach et al; Phys.Rev. 96, 448 (1954)
3. P.A. Moldauer; Mucl. Phys. 47,65 (1963)
4. H.H. Barschell; Phys.Rev. 86், 431 (1952)
5. E.H. Auerbach and S.O. Moore; Rev. 135, B895 (1964)
6. B. Buck and F. Perey; Nucl. Phys. 32, 353 (1962)
7. E.H. Auerbach; BNI - 6562 - ABACUS -2 Code
8. A.B. Smith; Phys. Rev. 126, 718 (1962)
9. P.E. Hodgson; The optical model of elastic scattering
10. D.J. Hughes and J.A. Harvey; BNL - 325
11. M.D. Goldberg et al; BNL - 400
12. J.J. Schmidt; KFK - 120

E_{B} (Mov$)$	$\sigma_{t}(b)$		$\sigma_{e}(b)$	$\sigma_{\text {in }}(b)$
	KFK $=120$	Calculated		
0.1	$7.86 \pm 10 \%$	5.07	5.07	-
0.2	$5.65 \pm 10 \%$	4.49	4.49	-
0.3	5.0 ± 808	4.25	4.25	\bullet
0.4	$2.55 \pm 10 \%$	4.06	4.06	\bigcirc
0.5	$3.83 \pm 10 \%$	3.91	3.91	\odot
0.7	$3.48 \pm 10 \%$	3.59	3.59	-
0.8	$3.42 \pm 10 \%$	3.50	3.50	-
1.0	3.34 ± 100	3.38	3.38	${ }^{\infty}$
1.5	$3.25 \pm 10 \%$	3.24	2.95	0.29

$-: \mathcal{E}:-$

Table 2
Mi-58

Caloulated Cross-Sections (barns) for Neutron Excitation of Ni-58

$\mathrm{B}_{\mathrm{n}}(\mathrm{MOV})$	Compound Mastic	Excited levels (HeV)	
		1.452	2.458
0.1	1.871	-	-
0.2	1.527	-	-
0.3	1.447	-	-
0.4	1.382	-	-
0.5	1.291	-	-
0.7	1.493	-	-
0.8	1.465	-	-
1.0	1.419	-	-
1.5	1.043	0.293	\cdots

Calculeted Cross-Sentions (bams) for Neutron Excitation of Nia-58

- Corresponde to $2.458\left(2^{\dagger}\right)$ Level.

M1-58
Differentiel Elastic CrosswSections of Ni-58 (barns)

$\begin{gathered} \cos \varnothing \\ c_{0} m_{0} \end{gathered}$	Energy (HeV)								
	0.1	0.2	0.3	0.4	0.5	0.7	0.8	1.0	1.5
+1.0	0.499	0.515	0.563	0.599	0.633	0.578	0.718	0.799	0.948
0.9	0.484	0.499	0.525	0.550	0.573	0.578	0.609	0.648	0.721
0.8	0.470	0.469	0.498	0.506	0.599	0.495	0.505	0.526	0.543
0.7	0.457	0.448	0.460	0.466	0.471	0.427	0.427	0.428	. 0.406
0.6	0.445	0.430	0.430	0.430	0.429	0.371	0.363	0.350	0.303
0.5	0.434	0.410	0.404	0.397	0.391	0.325	0.312	0.290	0.228
0.4	0.424	0.393	0.380	0.368	0.357	0.288	0.272	0.245	0.176
0.2	0.405	0.363	0.338	0.319	0.309	0.236	0.217	0.186	0.121
0.0	0.350	0.337	0.305	0.280	0.258	0.204	0.185	0.158	0.107
$\infty .2$	0.378	0.316	0.279	0.250	0.226	0.188	0.172	0.150	0.114
∞ 0.4	0.370	0.301	0.260	0.230	0.207	0.185	0.173	0.157	0.129
-0.5	0.367	0.295	0.254	0.223	0.208	0.190	0.179	0.166	0.137
-0.6	0.364	0.290	0.249	0.219	0.198	0.198	0.190	0.179	0.147
-0.7	0.353	0.286	0.247	0.218	0.199	0.212	0.206	0.198	0.158
-0.8	0.363	0.284	0.247	0.220	0.203	0.233	0.229	0.223	0.172
∞	0.363	0.283	0.250	0.226	0.211	0.261	0.260	0.257	0.191
-1.0	0.364	0.283	0.256	0.235	0.228	0.298	0.301	0.302	0.217

Differential Elastio Cross-Sections of Ni-58 ($\left.\frac{\text { beyns }}{\text { Sr }}\right)$

$\begin{gathered} \cos \phi \\ \operatorname{m} \end{gathered}$	Energy (${ }_{\text {Hiol }} \mathrm{V}$)				
	2.8	2.5	3.0	3.5	408
$+1.0$	0.369	1.147	1.297	1.454	1.682 ${ }^{\prime}$
0.9	0.750	0.850	0.929	0,990	P. 118
0.8	0.574	0.619	0.648	0.656	0.708
0.7	0.434	0.441	0.438	0.420	0.432
0.6	0.325	0.308	0.287	0.258	0.249
0.5	0.241	0.211	0.181	0.152	0.134
0.4	0.178	0.142	0.119	0.086	0.067
0.2	0.099	0.067	0.044	0.031	0.024
0.0	0.063	0.043	0.033	0.029	0.030
-0.2	0.053	0.044	0.043	0.044	0.050
-0.4	0.063	0.058	0.057	0.058	0.060
-0.5	0.074	0.069	0.064	0.062	0.050
-0.6	0.098	0.083	0.073	0.066	0.057
$\infty .7$	0.115	0.101	0.084	0.070	0.055
-0.8	0.843	0.125	0.100	0.076	0.057
-0.9	0.183	0.159	0.124	0.089	0.068
-100	0.234	0.208	0.160	0.112	0.095

$\mathrm{E}_{\mathrm{n}}(\mathrm{MoV})$	$\sigma_{t}(b)$	$\sigma_{0}(b)$	$\sigma_{\text {in }}(b)$
0.1	5.13	5.13	-
0.2	4.55	4.55	-
0.3	4.30	4.30	-
0.4	4.11	4.19	-
0.5	3.96	3.96	-
0.7	3.66	3.66	
0.8	3.56	3.56	-
1.0	3.41	3.41	
1.5	3.23	2.80	0.43

Tabie 4 continued

4in-60

$\mathrm{E}_{\mathrm{n}}(\mathrm{MeV})$	$\sigma_{t}(b)$	$\sigma_{0}(b)$
2.0	3.29	2.67
2.5	3.37	2.54
3.0	3.39	2.42
3.5	3.39	2.35
4.0	3.50	2.46

-: 19:-
pabie 5
Hioso

Caleulated Crossmections (barms) for Neutron Excitation of Ni-60

$\left.\mathrm{E}_{\mathrm{a}} \mathrm{MmaV}\right)$	Compound Elastic	Excited levels (HeV)					
		1.332	2.158	2.502	2.627	3.130	3.523
0.1	1.872	-	--	-	-	-	-
0.2	1.532	-	-	-	-	-	-
0.3	1.454	-	-	-	-	-	-
0.4	1.390	-	\cdots	-	-	-	-
0.5	1.349	-	-	-	-	-	-
0.7	1.442	-	-	-	-	-	-
0.8	1.410	-	-	-	-	-	-
1.0	1.360	-	-	-	-	-	-
1.5	0.846	0.431	-	\cdots	-	-	-

		Excitad levels (Mav)					
$\mathrm{man}_{0}(\mathrm{meV})$	Compound 포astic	1382	2.158	2.502	2.627	3.130	3.523
2.0	0.765	0.619	-	-	-	-	-
2.5	0.551	0.531	0.202	-	-	-	-
3.0	0.367	0.558	0.261	0.019	0.124	-	-
3.5	0.242	0.465	0.272	0.060	0.169	0.075	-
4.0	0.158	0.365	0.254	0.080	0.175	0.102	0.058

M1 60
Differentia? Dlastio Cross-Sections of Mi-w (berns

$\begin{gathered} \cos \not \theta_{0} \\ c o s \end{gathered}$	Bnergy (HeV)								
	0.8	0.2	0.3	0.4	0.5	0.7	0.8	8.0	1.5
+1.0	0.506	0.523	0.573	0.609	0.644	0.686	0.722	0.797	0.905
0.9	0.491	0.499	0.534	0.559	0.583	0.585	0.607	0.548	0.698
0.8	0.476	0.476	0.498	0.514	0.528	0.504	0.511	0.528	0.528
0.7	0.463	0.455	0.466	0.473	0.479	0.435	0.433	0.431	0.390
0.6	0.451	0.435	0.436	0.436	0.435	0.379	0.370	0.354	0.292
0.5	0.439	0.416	0.409	0.403	0.397	0.333	0.319	0.294	0.220
0.4	0.429	0.399	0.385	0.373	0.362	0.296	0.279	0.249	0.169
0.2	0.410	0.367	0.342	0.323	0.305	0.243	0.223	0.191	0.117
0.0	0.394	0.341	0.308	0.283	0.261	0.210	0.192	0.163	0.104
-0.2	0.382	0.320	0.281	0,252	0.229	0.194	0.177	0.155	0.111
$\cdots 0.4$	0.373	0.304	0.262	0.232	0.208	0.190	0.178	0.161	0.124
-0.5	0.370	0.297	0.256	0.225	0.202	0.194	0.183	0.169	0.131
-0.6	0.368	0.292	0.251	0.221	0.200	0.202	0.193	0.181	0.137
-0.7	0.366	0.289	0.249	0.220	0.200	0.215	0.208	0.198	0.144
-0.8	0.366	0.286	0.279	0.222	0.205	0.234	0.229	0.221	0.152
-0.9	0.367	0.285	0.252	0.228	0.213	0.259	0.257	0.251	0.162
-1.0	0.367	0.285	0.258	0.237	0.226	0.293	0.294	0.391	0.175

Differential Elastic Cross Sections of Ni-60 ($\frac{\text { barns }}{\text { Si }}$)

$\cos \varnothing$ c. mII^{2}	Energy (fev)				
	2.0	2.5	3.0	3.5	4.0
1.0	1.007	9.178	1.322	1.474	1.712
0.9	0.769	0.652	0.934	0.992	1.117
0.8	0.580	0.617	0.640	0.646	0.700
0.7	0.431	0.431	0.423	0.403	0.416
0.6	0.317	0.293	0.268	0.239	0.230
0.5	0.230	0.194	0.162	0.133	0.114
0.4	0.166	0.126	0.093	0.068	0.049
0.2	0.089	0.054	0.031	0.019	0.010
0.0	0.057	0.036	0.025	0.022	0.025
-0.2	0.052	0.041	0.039	0.040	0.048
-0.4	0.064	0.056	0.052	0.052	0.056
-0.5	0.076	0.065	0.057	0.054	0.053
-0.6	0.091	0.076	0.062	0.054	0.046
-0.7	0.113	0.091	0.068	0.052	0.038
-0.8	0.141	0.110	0.077	0.052	0.032
-0.9	0.179	0.136	0.092	0.056	0.035
-1.0	0.227	0.173	0.162	0.069	0.053

－㠼：

Qaloulated Cross Sections (burns) Por Neutron Exeitations of Orw 52

E_{n} (\%eV)	Compound Elastic	Exeited levels (${ }_{\text {der }}$ (ev)			
		1.46	2.43	2.955	3.112
0.5	1.402	-	-	-	\cdots
0.8	1.447	-	-	-	-
1.0	1.514	-	-	\pm	\cdots
1.5	1.405	0.226	-	-	-
2.0	0.897	0.685	-	-	-
2.5	0.633	0.811	-	-	*
3.0	0.446	0.811	0.052	-	-
3.5	0.290	0.620	0.104	0.167	\cdots
4.0	0.212	0.497	0.137	0.226	0.002

Differentiai Elastic Gross Sections of Or (barme $\frac{\text { Stis }}{\text { E }}$

$\begin{gathered} \cos \phi \\ c_{0} \pi m_{0} \end{gathered}$	Enexcy (rov)								
	0.5	0.8	1.0	1.5	2.0	2.5	3.0	3.5	4.0
1.0	0.525	0.629	0.744	1.020	1.216	1.412	1.583	1.697	8.788
0.9	0.471	0.530	0.607	0.720	0.885	0.991	1.058	1.112	1.142
0.8	0.424	0.448	0.496	0.591	0.632	0.073	0.693	0.697	0.095
0.7	0.383	0.330	0.405	0.445	0.440	0.440	0.429	0.413	0.357
0.6	0.347	0.325	0.334	0.334	0.299	0.275	0.251	0.227	0.207
0.5	0.317	0.280	0.278	0.251	0.200	0.166	0.137	0.114	0.096
0.4	0.290	0.243	0.233	0.191	0.134	0.097	0.071	0.052	0.040
0.2	0.246	0.189	0.171	0.122	0.069	0.043	0.030	0.022	0.020
0.0	0.213	0.154	0.136	0.098	0.053	0.048	0.046	0.047	0.051
-0.2	0.190	0.134	0.119	0.092	0.058	0.068	0.072	0.075	0.078
-0.4	0.176	0.130	0.122	0.106	0.085	0.082	0.083	0.082	0.081
-0.5	0.173	0.935	0.132	0.121	0.096	0.036	0.082	0.076	0.072
-0.6	0.174	0.148	0.149	0.142	0.108	0.089	0.077	0.055	0.058
-0.7	0.178	0.367	0.176	0.172	0.125	0.094	0.072	0.053	0.042
-0.8	0.187	0.196	0.214	0.214	0.149	0.104	0.070	0.043	0.029
∞ 0.9	0.201	0.235	0.266	0.271	0.183	0.422	0.076	0.042	0.026
- 1.0	0.221	0.289	0.335	0.349	0.233	0.155	0.097	0.057	0.042

Table 10
U-238

E_{n} (Mev)	$\sigma_{t}(b)$	
	ENL - 325	Calculated
0.475	$7.6 \pm 10 \%$	6.60
0.57	$7.2 \pm 10 \%$	6.55
0.60	$7.1 \pm 10 \%$	6.55
0.65	$7.0 \pm 10 \%$	6.55
0.72	$6.8 \pm 10 \%$	6.56
0.77	$6.7 \pm 10 \%$	6.58
1.10	$6.5 \pm 10 \%$	6.73
1.17	$6.6 \pm 10 \%$	6.77
1.50	$6.70 \pm 10 \%$	6.94
2.0	$6.9 \pm 10 \%$	7.02
2.5	$7.0 \pm 10 \%$	6.99
3.0	7.5 ± 108	6.79
3.5	$7.8 \pm 10 \%$	6.44
4.0	7.7 ± 100	6.01

$\sigma_{e}(b)$	$\sigma_{\text {in }}(b)$
5.09	
4.97	1.51
4.96	1.58
4.96	1.59
4.98	1.59
5.02	1.58
5.27	1.56
5.36	1.41
5.72	1.22
6.04	0.98
6.07	0.92
5.86	0.93
5.51	0.93
5.08	

		Exathed levels(MeF (${ }^{\text {a }}$											
E_{n} (Mev)	Compound Elastic	0.045	0.148	0.308	$0.654{ }^{\text {\% }}$	0.78!	0.728	0.935	0,936	1.03	18.1	Q. 13	B. ${ }^{\text {d }}$
. 475	1.155	1.415	.093	∞	∞	\cdots	\square	\cdots	∞	\cdots	-	\cdots	-
- 570	0.964	1.448	. 138	∞	\cdots	-	-	∞	∞	-	-	∞	\cdots
.60	0.910	1.444	. 143	-	-	-	∞	-	∞	∞	\cdots	∞	-
.65	0.851	1.428	. 158	-	-	∞	\cdots	∞	\bigcirc	-	-	∞	-
.72	0.749	1.345	.169	-	0.063	0.007	-	-	\checkmark	-	-	∞	-
. 77	0.698	1.306	. 177	-	. 067	.09	\cdots	-	∞	\cdots	-	-	∞
1.10	. 314	. 661	. 118	∞	. 062	.027	0.002	. 178	. 221	.195	∞	\cdots	∞
8.17	- 271	.565	.100	-	. 059	. 029	0.003	. 169	. 230	.209	∞	∞	∞
1. 50	.147	-324	. 075	. 002	. 052	. 039	0.008	.938	. 235	. 221	. 033	. 024	. 028
2.0	.075	. 176	. 052	. 004	. 047	. 052	. 096	. 084	. 131	. 180	. 104	. 041	. 040
2.5	. 054	.132	. 056	093	.0 .47	. 077	. 088	. 058	.137	0137	. 091	. 044	. 044

Differential Elastic Cross Sections of U-238 ($\frac{\text { barns }}{\text { Sr }}$)

$\begin{aligned} & \cos \varnothing \\ & \text { c.m. } \end{aligned}$	$E_{n}(M \odot v)$									
	0.475	0.60	0.65	0.72	0.77	1.10	1.17	1.50	2.0	2.50
1.0	1.328	1.640	1.768	8.938	2.074	2.825	2.980	3.637	A. 297	4.789
Q. 9	1.058	1.242	1.318	1.418	1.498	1.923	2.009	2.326	2.608	2.662
0.8	0.836	0.925	0.363	\$.012	1.053	\%. 254	1.298	1.445	8.498	1.449
0.7	0.656	0.678	0.690	0.705	0.718	0.774	0.786	0.30 星	0.797	0.749
0.6	0.514	0.491	0,486	0.478	0.475	0.448	0.844	0.417	0.380	0.348
0.5	0.403	0.353	0.338	0.319	0.307	0.241	0.231	0.193	0.156	. 0.133
0.4	0.328	0.258	0.239	0.215	0.200	0.125	0.115	0.283	0.060	0.048
0.2	0.225	0.161	0.144	0.124	0.113	0.072	0.070	0.067	0.072	0.079
0.0	0.196	0.149	0.140	0.131	0.128	0.136	0.142	0.164	0.179	0.194
-0.2	-0,211	0.183	0.180	0.180	0.183	0.214	0.223	0.248	0.261	0.259
-0.4	0.252	0.234	0.333	0.234	0.236	0.252	0.256	0.270	0.265	0.239
-0.5	0.278	0.260	0.258	0.256	0.255	0.249	0.248	0.250	0.235	0.209
-0.6	0.306	0.285	0.280	0.273	0.268	0.232	0.226	0.212	0.187	0.158
-0.7	0.335	0.309	0.300	0.284	0.274	0.203	0.191	0.150	0.129	0.116
-0.8	0.365	0.330	0.315	0.292	0.275	0.167	0.149	0.102	0.074	0.063
-0.9	0.396	0.351	2.330	0.297	0.273	0.129	0.107	0.050	0.042	0.052
-1.0	0.427	0.372	0.344	0.309	0.270	0.096	0.073	0.089	0.060	0.212

Table 83
Comparion Betwer Neosured \& Caloulated Inelastio Xostotions At .045 Mey

E_{n} (Mev)	$\sigma_{\text {in (barns) }}$ (Measured)	$\begin{aligned} & \sigma_{\text {in (barns) }} \\ & \left(\text { Calculated }^{2}\right. \end{aligned}$
. 475	$1.32 \pm .10$	1.42
. 570	1.44.土.06	1.45
. 60	$1.26 \pm .10$	1.44
. 650	$1.20 \pm .10$	1.43
. 77	$1.14 \pm .10$	1.31
1.10	$0.64 \pm .16$	0.66
1.17	$0.75 \pm .18$	0.57

$T h=232$

ε_{n} (Mev)	$\sigma_{i}(\mathrm{~b})$		$E_{e}(0)$	$\nabla_{\text {in }}(0)$
	BHL - 325	Caleulated		
0.56	$7.70 \pm 10 \%$	6.49	5.37	1004
0.70	$7.300 \pm 10 \%$	6.18	5.85	1.03
1.0	$6.80 \pm 10 \%$	6.08	4098	1.10
1.5	$6.60 \pm 10 \%$	6.52	5.46	0.92
200	$6.70 \pm 10 \%$	6.50	5.73	0.77
2.5	$7.0 \pm 10 \%$	6.59	5.82	0.77
3.0	703 \pm 10\%	6.54	-	-
3.5	-	6.40		
4.0	-	6.16		

Calculated CrossmSeqtions for Neutron Excitations of Th-232

Dizferential Elastio Crossuseotion

Ev)

1.5	2.0	2.5
3.233	3.904	4.432
2.069	2.373	2.884
1.259	1.368	1.359
0.717	0.728	0.700
0.376	0.342	0.388
0.183	0.142	0.194
0.092	0.617	0.038
0.072	0.554	0.036
0.096	0.909	0.086
0.138	0.845	0.153
0.189	0.202	0.215
0.237	0.248	0.255
0.271	0.279	0.269
0.288	0.289	0.262
0.284	0.276	0.248
0.260	0.242	0.212
0.219	0.193	0.175
0.165	0.135	0.826
0.106	0.081	0.683
0.538	0.050	0.056
0.214	0.089	0.248

FIG. $2 \quad \mathrm{Ni}-58$
TOTAL CROSS SECTION
FROM 1.O-4.OMev.
$[\pm 10 \%$ DEVIATION ASSUMED]
x - MEASURED σ_{t}
x

