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PREFACE

This meeting was organized under the auspices of the International Atomic

Energy Agency (IAEA) and the Division of High Energy and Nuclear Physics of

the U.S. Department of Energy to consider in detail the present state of

knowledge of nuclear level densities. This would include both the results of

basic research on nuclear level densities and their application for practical

problems. The basic research on nuclear level densities has been concerned

with various phenomenological and microscopic models, their validation by

comparison with measurements, and the extraction of level density parameters

from experimental data. Neutron cross-sections are needed for a numrer of

applications for fission and fusion reactors, intense high energy neutron

sources, and related problems of neutron shielding and gamma-ray production.

The many measurements of these cross-sections are supplemented by nuclear

model calculations in which the nuclear level density is an important

parameter.

The Meeting was divided into a number of sessions to consider these

topics in review or contributed papers. At the end of these sessions, the

attendees formed two workshop groups: the first on nuclear level density

theories and nuclear model reaction cross-section calculations and the second

on the extraction of nuclear level density information from experimental

data. The reports of these workshop groups discussing the present status of

these subjects and providing specific recommendations for future work were
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approved in a plenary session on the last day of the Meeting and are included

in this volume.

I would l i ke to thank J .J . Schmidt and V.G. Pronyaev of the Nuclear Data

Section, IAEA for their help in the organization of this Meeting. Grateful

thanks are also due to my associates on the Local Organization Committee,

April Donegain, Judy Badal, and Arleen Lancsarics for taking care of the many

detai ls that went into the successful functioning of the Meeting.

June 15, 1983 M. R. Bhat
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Opening Remarks from the IAEA

V.6. Pronyaev

On behalf of the Director General of the International Atomic Energy

Agency I would like to welcome all of you to this IAEA Advisory Group Meeting

on Basic and Applied Problems of Nuclear Level Densities. We meet together to

discuss on the one hand such classical and fundamental questions of the

description of many-body systems as the Level Density of Atomic Nuclei. On

the other hand it is well known that chiefly through the statistical model of

nuclear eactions this fundamental quantity has a strong impact on the results

of calculations and evaluations particularly of neutron reaction cross-

sections needed for many practical applications. The level density formulae

needed for such calculations have to be simple enough for use in the rather

lengthy model calculations of the cross sections, but at the same time they

have to reflect all the basic features of the level density behaviour. Past

developments have shown that it is very difficult to satisfy both these

conditions simultaneously. To discuss ways of solution of this problem will

be one of the main tasks of our meeting from my point of view.

As you know the preparations of this meeting were carried out under

rather difficult circumstances- Mainly due to this fact there occurred some

delay in various stages of preparation of the meeting. Finally problems were

resolved and I would like to thank all of you who contributed to this for your
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understanding and assistance.. On behalf of the IAEA I would like to express

particular gratitude to the Brookhaven National Laboratory as host laboratory

and to the National Nuclear Data Centre and personally to Mulki Bhat and Sol

Pearl stein for their help in organizing this meeting and to the U.S.

Department of Energy for the generous financial contribution to our meeting.

I am also very grateful to the Members of the Organizing Committee of this

meeting for their help and fruitful suggestions on the elaboration of the

Meeting Programme.

Thank you for your attention. I wish you all a pleasant and

scientifically interesting and successful meeting.
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1. Introduction

The earliest theoretical work in the field of nuclear level densities

dates back to the 1930's. In spite of nearly fifty years of increasingly

sophisticated models, many unanswered questions remain. This committee

assessed the current status of level density models in use today and compiled

some recommendations for future work. Recent work in this area has resulted

in some promising new approaches to level density calculations; these should

be utilized and the results compared with data to evaluate the need for more

refinements.

2. Phenomenological Models

The work of Bethe led to the development of the Fermi gas model for level

densities. An analytic form for the level density resulted from this work and

it is tins form which is normally fit to experimental data today. Current

work on phenomenological representations of nuclear level densities attempts

to build on this framework by finding simple functional relations which give

the level density parameters for various nuclei. These forms must include the

important physical features if they are to give the proper values to be used

for extrapolation into new regions. The most important such effects are a)

shell effects, b) odd-even effects, c) collective enhancements and d)

microscopic effects (isospin dependence, finite size corrections).

Several alternate forms have been proposed to take shell effects into

account. It appears that various approaches, which incorporate these effects

into an energy dependence of the level density parameter, an energy shift or a

combination of both, agree on the fact that shell effects anneal out rapidly
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with energy. The different techniques agree reasonably well on the rate at

which this occurs. An important input parameter for these calculations is the

ground state shell correction. At present there is no complete agreement on

the definition of these quantities because of uncertainties in the form of the

energy expression of the liquid drop model. Theoretical estimates of this

parameter from microscopic models are known to contain some unresolved

uncertainties.

Pairing effects can be included in the framework of the superconducting

model (BCS). Most BCS treatments do not include the expected J-dependence and

exciton number dependence of the pairing gap; all levels at a given excitation

are assumed to have the same gap energy. There are indications that the

simplest correction for odd-even or even-even mass differences is not always

adequate. This problem is possibly coupled to problems with ground state

shell corrections discussed above. Pairing correlations tend to wash out

subshell effects and to reduce but not eliminate major shell effects.

Collective enhancements to level densities at low energies are well

established. Agreement has not yet been reached on the detailed energy

dependence of such enhancements. Simple prescriptions based on the adiabatic

approximation are probably valid at low energies. Extrapolations to higher

energies are risky because of the possible change of parameters with energy

and the violation of unitarity caused by adding in levels at low energy even

though they are already present (at an unknown higher energy) in the spectrum.

Microscopic systematics have been investigated recently. Two new

features which have emerged from these studies are the observation of finite

size and isospin dependence effects on the level density parameter "a".
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Studies of these effects should improve our ability to extrapolate the

parameter away from the lines of stability.

Papers in this volume by Arthur, Jensen, Menapace, Ramamurthy, Reffo,

Rohr and Treiner deal with current applications of phenomenological level

density models.

3. Microscopic Fermi-gas Model

Microscopic Fermi gas models utilize shell mcdel single-particle schemes

and the BCS quasiparticle approach to calculate level densities with the

inclusion of shell and pairing effects. The numerical values of the level

density resulting from this type of calculation can often be fit with a

conventional Fermi gas form. Use of such a model therefore allows a test of

the assumed energy dependence of the level density as well as providing a

means of calculating the level density parameter. Unlike phenomenological

models the microscopic model also predicts the parity ratio and spin cutoff

parameter as functions of energy.

Our insufficient knowledge of input parameters as well as complications

of collective states cause difficulty with this approach; extrapolation of

these calculations to nuclei off the stability line is somewhat risky because

of these problems. These calculations are fast and easy to perform however,

and will be valuable both for the direct use of the level densities themselves

as well as the guidance they can provide on the systematics to be expected in

phenomenological level density parameter expressions. Presentations by Arthur

and Menapace at this conference discuss calculations of this type.
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4. Non-Fermi-gas Methods

Alternative methods to the traditional Fermi-gas are also available for

calculating nuclear level densities. These include direct iterative

techniques, number theoretical methods and Hamiltonian moment expansions.

These are much less widely used than Fermi gas procedures but can be useful in

evaluating level densities.

Direct iterative techniques are those which involve direct tabulation of

the level energies, spins and parit ies. They are therefore valuable in

checking the mathematical approximations (principally the saddle point

approximation) made in applying the Fermi gas formalism. They are rather

demanding in terms of computer time, since to calculate the parameters of N

levels, for example, more than N'2 arithmetic manipulations must be

performed. It is clear that such techniques are not at present sufficiently

fast that they can routinely be used for level density calculations. They do

have two special virtues: levels can easily be classified as to exciton number

and the pairing energy can be calculated separately for each state. An

additional advantage is that the J-distribution is obtained exactly. A

disadvantage is that the two-body force (beyond pairing) cannot easily be

incorporated in such a procedure. Further improvements in computer

performance may make the computer limitations less significant. These

calculations can continue to serve as benchmarks for checking approximations

in various other methods; i t remains to be seen whether future theoretical

developments wi l l allow a more general two-body force to be included, such as

perhaps a spreading width as a function of energy. A code LEVBCS6 (See
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Appendix) which makes such calculations i r available from M. Hillman of

Brookhaven.

Number theoretical approaches have been used at Karlsruhe to calculate

nuclear level densities. They have been used to yield not only total level

densities but also level densities as a function of exciton number. As yet

they have not been used with a two-body interaction. They therefore do not

predict collective states and need the enhancement factors required for Fermi

gas calculations. Those using these techniques believe that future work wi l l

allow inclusion of collective states. Work at present is focussed on

obtaining analytical forms for the level density; no computer code is

available at present for general distribution. The talk by Anzaldo Meneses at

this conference discusses this technique.

Both number theoretical and microscopic Fermi gas methods can calculate

the level density for arbitrary single particle spectra. Thus, neither is

t ied to the Bethe level density formula and shell effects can be included with

either approach. Also, by appropriate choice of single particle energies, the

average effect of two-body forces (in the Hartree-Fock sense) can be included

in the calculation. More subtle consequences of the two-body force, such as

shifts in the average single particle energy with temperature, cannot be

incorporated in these "one-body" approaches. It is therefore important to

make detailed comparisons of such calculations with data and with the results

of calculations including the fu l l two-body force to improve our understanding

of the relative importance of the various effects of the two-body force. Such

comparisons should include spin cutoff parameters and parity ratios as well as

level densities.
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Moment methods are being investigated by groups ,.i Europe, Canada and in

the United States. These calculations have the important advantage that a

complete two-body force can be included in the calculations. This allows, in

principle, the nucleus to assume the appropriate deformation and puts the

collective states ir? the appropriate energy regions. Obviously, this can

occur only i f we include a large enough number of active nucleons (a small

enough core) and a two-body interaction and single particle spectrum which are

correct. To some extent we may be guided by shell-model results, but because

we normally use a much larger basis in level density calculations there are

indications that the two-body force strength may have to be modified. This

makes a priori calculations d i f f icu l t at present, but as we gain experience

with such large bases a better understanding of renormalization effects may

emerge, allowing systematic rules to be formulated.

A severe problem at present is that these calculations take approximately

two hours on modern computers. This effectively prohibits parameter searches

and makes i t impossible to use for problems which require level density

information for numerous nuclei. The calculations are much faster i f only a

one-body Hamiltonian is used; in some cases, this could be used to check the

results from other approaches. It is very important to continue efforts to

speed up these calculations, because we must explore the effects of varying

various parameters. Until better information on input parameters is

available, this method wi l l not be used widely. It is clear that an

improvement in computer performance would greatly faci l i tate use of moment

techniques. Efforts should continue to find better theoretical techniques for

evaluating moments. Since nearly al l of the time is used to calculate the

- 10 -



highest moments, development of approximation techniques for these would save

considerable time.

There is increasing demand for level densities for nuclei off the

stabil i ty line or for nuclei which are highly deformed (as are of interest in

studies of fission or heavy-ion reactions). Both of these situations can be

di f f icu l t to deal with Fermi gas models. A correct treatment of the two-body

force is particularly important in calculating level densities in these

situations. Moment methods are able to deal with these nuclei without

fundamental d i f f icu l ty , i f we have the appropriate input parameters

Contributions to these proceedings by Grimes, Halemane and Jacquemin discuss

the use of such techniques.

5 Exciton Level Densities

Calculations of cross sections for pre-equilibrium reactions require

level or state densities as a function of exciton number. Unified models,

which treat the pre-equilibrium and equilibrium reactions consistently,

require not only exciton level densities but also a consistent total level

density.

The Williams formula (Nucl. Phys. A166, 231 (1971)) is frequently used in

pre-equilibrium model calculations. There are, however, small differences in

the way the Pauli corrections are evaluated, as indicated in the contributions

of Anzaldo Meneses and Kalbach to this conference. Normally, pairing and

shell corrections have been neglected.

At this conference, progress was reported in the inclusion of these

corrections in microscopic exciton calculations as reported by Fu and Reffo.
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To include these effects in the Williams formula, a simple parameterization is

needed for these shif ts. Examples of such attempts are the work of Grimes

(Phys. Rev. C13, 2224(1976)) and Fu (this conference), for pairing corrections

and Kalbach (this conference), for shell effects.

For reasons of consistency the sum over all possible particle-hole

components should be equal to the total level density, which can be deduced

from measurements. This is a necessary constraint for unified model

calculations, that leads to constraints on the adopted expressions for the

particle-hole level densities and their spin distributions. The easiest way

to do this is by renormalizing the Williams formula to a phenomenologicel

expression for the level density as discussed by Gruppelaar at this

conference.

In these unified models a simple expression for the spin distribution of

the particle-hole level density is required. It has been found from

combinatorial calculations that the square of the spin cut-off parameter is

proportional to the exciton number for small exciton numbers (Reffo, this

conference). At high exciton numbers i t is expected that the spin cut-off

parameter is less dependent and perhaps even independent of the number of

excitons.

In soire precompound models protons and neutrons are explicit ly

considered. This requires use of an appropriate particle-hole level density

formula, e.g. the one proposed by Ericson (Advan. Phys. 9_, 425 (I960)), with

additional corrections for Pauli blocking etc. This also leads to-modified

expressions of the internal transition rates, as discussed by Kalbach (this

conference).
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In other calculations where the multi-step-direct cross section is to be

differentiated from the multi-step-compound cross-section, separate particle-

hole state densities for bound and unbound states in the continuum are

needed. Progress in this area has also been reported (Kalbach this

conference).

6. Recommendations

As this summary indicates many areas of research in nuclear level density

theory are active. There remain numerous problems, however, and we make the

following recommendations:

(i) Work should continue on phenomenological models. Particular

emphasis should be placed on comparisons with as wide a range of

data as possible, including not only isolated resonance counts but

also evaporation spectra. Detailed examination of the recently

discovered size and isospin effects should be continued. Studies

of the systematics of level density parameters should incorporate

as much as possible the trends and parameter dependence suggested

by microscopic models. The phenomenological models will continue

to be widely used, because of the difficulty of most other

approaches.

(ii) Studies of microscopic Fermi gas calculations should be carried

out systematically in given mass regions to determine appropriate

single particle sets. Equivalently, number theoretical methods

could be used. The purpose of these studies is twofold: to

better understand the relative importance of various two-body
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force effects and to obtain information on the systematics of the

variation of single particle energies with neutron and proton

numbers. Again, the comparisons should be with as broad a range

of data as possible, including parity ratios and spin cutoff

parameters.

(iii) Calculations including the full two-body force exactly as well as

in approximate forms should be continued. Proposals to include

random phase approximation correlations in one-body calculations

are worth investigating. Parameter studies for moment method

calculations are quite difficult, given the present length of the

calculations, but are needed in order to make these calculations

more useful. A high priority should be given to efforts to speed

up these calculations. Comparisons with data over as wide a range

as possible should be made.

(iv) More work on parameterizing pairing and shell corrections to

exciton level densities in the Williams formula is needed. Nearly

all calculations of reactions utilize this closed form for the

exciton level densities.

(v) Additional examination of the consequences of requirements of self

consistency for exciton and total level densities on the spin and

parity distributions is needed. Methods such as the combinatorial

or numbar theoretical approach could be used for these studies.

One stringent requirement on the particle-hole spin distribution

functions is that they le.d to simultaneous consistency between
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exciton and total formula for both the state and level

densities. The spin dependence of the transition state densities

which appear on the internal transition rates also needs to be

studied. Care also needs to be exercised in summing particle hole

state densities for comparison with total state densities. Most

pre-equilibrium model calculations treat only configurations with

a fixed value of the difference between p and h while total state

densities correspond to sum over all values of p and h

independently. It would also be useful to look at two-body and

collective effects on exciton level densities; this may be

possible with moment methods.

(vi) Some further effort is required to study the dependence of the

spin cut-off parameter on exciton number and energy; similarly the

exciton number dependence of the yrast line needs to be

established.

(vii) In summary, the field of nuclear level densities remains an active

one, with many new developments and some continuing problems. We

note that mean square deviations of the order of a factor of two

between calculated and experimental neutron resonance spacings

persist even after all the recent refinements in the calculations

have been included. This can arise either from an inherent

scatter of this order in the experimental values or a physics!

feature missing in the calculations. This aspect consequently

deserves further consideration. Level density calculations are

not only of applied interest but involve many questions of basic

nuclear physics.
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APPENDIX

Microscopic Level Density Codes

CODE/COMPUTER AUTHOR PHYSICS INCORPORATED - INPUT/OUTPUT COMMENTS

NILS
IBM 370

CDC-7600

Grimes
Physics

Dept. Ohio
Univ.

Partition and Saddle Point approximations.
Pairing included via BCS Formalism.
Input: Neutron, Proton Pairing Energies.

Single-Particle Energies:
Nilsson/Seeger + Perish/Seeger +
Howard.

Output: Numerical value of level density
as a function of E, spin-cutoff
parameter, parity rat io. Best
f i t value of "a" and 6 by f i t t i ng
to the data.

The code is fast.
Parameter search

possible.
Single-Particle Energies
for deformed well possible
by inputting deformation
parameter.
Collective bands are not
included. Available for
distribution.

LEVBCS6

CDC

IBM 60

UNIVAX 1110

Hi llman

BNL

Combinatorial c a l c u l a t i o n of l eve l dens i t i es The code has been used i n

w i th BCS p a i r i n g and spin d i s t r i b u t i o n .

Input : Z ,N,E m a x , G. S i ng l e -Pa r t i c l e data

in code. These can be changed.

Output: Level dens i t i es i n energy bins

vs. spin J.

conjunction with Hauser-

Feshbach program. G is

the only parameter. G's

are available based on

neutron capture

resonances. Available for

distribution.



Microscopic Level Density Codes (continued)

CODE/COMPUTER AUTHOR PHYSICS INCORPORATED - INPUT/OUTPUT COMMENTS

SYDMNP
CDC

IBM

Hi 11 man
BNL

Saddle-point approximation method, direct

iterative solution of Non-linear

equations.

Input: Z,N, Emax

Output: Level density one MeV apart.

Not tested.

Inclusion of Pairing

planned. Available for

distribution.

I
SCALJ Oacquemin Fixed J level dens i t ies approximated by

UNIVAC Univ. of Gaussian. Exactly ca lcu la ted centro ids

Paris and w id ths .

Input: One-Fermi on Energies, Two-body

matr ix elements in reduced fo rm.

Output: Centroids E(n,J) and variances

A 2 (n ,J) f o r each p a r t i c l e number

and J va lue .

Higher order moments

impractical. Quasi-

particle code exists,

which is quite similar.

The code is very fast.

Available for

distribution.

CONFJ Jacquemin F ixed J l e v e l d e n s i t i e s approximated by sum

UNIVAC Univ. o f over configurations. Exactly calculated

Paris centroids and widths.

Careful selection of

configurations of interest

required.



Microscopic Level Density Codes (continued)

CODE/COMPUTER AUTHOR PHYSICS INCORPORATED - INPUT/OUTPUT COMMENTS

Input: One-Fermi on Energies, Two-body
matrix elements.

Output: Fixed J configuration centroids
and widths.

Large memory (200,000
words) needed.
Available for
distribution.

00

1
PREMZP
UNIVAC

Jacquemi n
Univ. of
Paris

Exact level densities. Non-interacting
Fermions. Fixed J, Parity and isospin etc.
Input: Single-Particle Energies (Spherical

or Rotational).
Output: Level densities as a function of

A,J,n,T etc.

Inclusion of residual
interaction, pairing etc.
are planned. Available
for distribution.

NUDENS Mai no, e t a l .

IBM 370/168 ENEA,

Bologna

Nilsson-BCS with Blocking effect at f i n i t e

temperatures.

Input: N,Z,E2,E4,B,An,Az(T=0)

hw v i b , N
o .

Applicable in the energy
range of 4 MeV <Ex<20 MeV.
Zero temperature blocking
effect to be considered.



Microscopic Level Density Codes (continued)

CODE/COMPUTER AUTHOR PHYSICS INCORPORATED - INPUT/OUTPUT COMMENTS

Output: EF(N),EF(Z),T,An(T),Az(T) ,S(T),
R, the intrinsic state density
and "a", the phenomenological
level density parameter.

Will be available after
cleaning and testing.

I

SO

0
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Conclusions and Recommendations

A. Resolved Resonance Parameters (Chairman: F.H. FrOhner)

1. The most direct method of level density determination is resonance

counting in the resolved resonance region, but

the count must always be corrected for levels missing because

of counting statistics and resolution effects (unresolved

multiplets). Corrections range from 15% (^%) to 30-40% or

more for less wi l l studied nuclei. Uncorrected level

densities are worthless for most purposes,

one obtains only 1 point of the p vs. E curve, and that for

only 1 or 2 spins.

2. Required accuracies of p for applications-oriented cross-sections

calculations are of the order of 10% for wide energy ranges (e.g.

0.1 to 15 or 20 MeV), a few percent for the unresolved resonance

region (up to 200 or 300 keV). These accuracies are not reached

yet; existing results differ often by factors of 1.3 to 2. The

main cause is inadequate methods of statist ical analysis of

resonance parameters.

3. Missing-level estimators not based on the Porter-Thomas

distribution are now recognized as unreliable. This is true not

only for simple ladder statistics but also for sophisticated

variants such as Dyson's A3 statist ic (see papers in this volume by

FrOhner, Ri bon). Evaluators and compilers of level densities are
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urged to use methods based on the Porter-Thomas d is t r ibut ion as

done for example in the recent evaluations of V. Benzi, G. Mai no

and L. Menapace, Nuovo Cimento, A66, 1, (1981) and Rohr ( this

volume).

4. Some recent shell-model calculations seemed to indicate an

enhancement over the simple Porter-Thomas d is t r ibut ion for very

weak levels but according to others th is discrepancy vanishes i f

due account is taken of the slow energy variation of the mean width

(see e.g. T.A. Brody et a l . Rev. Mod. Phys. _53, 385 (1981) Fig. 10

or J.J.M. Verbaarschot and P.J. Brussaard, Phys. Let t . 87B, 155

(1979)). A l l experimental data support the Porter-Thomas

hypothesis so far .

5. Missing-level estimation codes should be checked against the test

material (EQ, 2gfn values) of the NEADB benchmark exercise

in i t i a ted by P. Ribon. This test material, available from the 4

Nuclear Data Centers, includes the effects of f i n i t e resolution and

counting s t a t i s t i c s . Results could also be compared to those of

the estimators already checked and available from the 4 Centers,

v i z . BAYESZ (M. Moore), ESTIMA (E. Fort et a l . ) and MISDO (G.

Rohr). (See Appendix).

6. The essential input for level density estimation consists of

evaluated sets of resonance parameters, notably those in Neutron



Cross-Sections Vci. I, 4th ed. (formerly BNL-325). It is strongly

recommended that periodic publication of this useful document

continue. Concern was expressed about the drawn-out publication

cycle, and the National Nuclear Data Center (BNL) is urged to

explore whether supplements could be issued between subsequent

publications (or at least the updated file of evaluated resonance

parameters be made available to requesters), The compilation of

experimental resonance parameters in the EXFOR files of the 4 Data

Centers in conjunction with improved retrieval techniques and

formats is of additional value. These activities should under no

circumstances be weakened because of new tasks.

7. Much information on level densities is contained in high-resolution

proton resonance data. The 4 Centers are urged to compile these

resonance parameters so that they become accessible with similar

ease and completeness as has been achieved for neutron resonance

parameters in recent years.

8. It is strongly recommended that estimates of level densities should

not be published or compiled without specification of the energy

range and the method utilized in the estimation process.

9. Compilation and publication of level spacing results should

primarily take the form of tables of level spacings, not of "a"

values.
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10. The experimental data base for neutron resonance parameters is

quite extensive. Gaps exist, however, in particular for higher

actinides (^ ^Am,...) and fission products, where only very few or

no resonances are known. These gaps should be f i l led by linac and

similar other measurements. Among the important f iss i le nuclides
c Pu is an example where the level density uncertainty could be

reduced drastically with polarization data similar to those

obtained at LANL for 2 3 5U. In spite of the dif f icul t ies to

polarize radioactive samples, this avenue should be seriously

studied by experimenters.

11. Although virtually no reliable information on p-wave level

densities has so far been extracted from neutron resonance data,

the methods (high-resolution differential elastic scattering

measurements) used at ORNL e.g. for ^6Fe appear to have the

potential for further development. Experimenters are urged to

study the possibility to make sufficiently complete partial-wave

assignments in favorable cases, e.g. in the Fe region, so that p-

wave level densities can be established.

B. Non-Resonant Reactions (Chairman: H. Vonach)

1. Important level density information can be derived from high

resolution nuclear research studies identifying individual nuclear

levels, from the study of the energy differential particle emission

cross-sections in compound nucleus reactions, and from cross-
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section fluctuations in the excitation functions of compound

nucleus reactions to isolated final states. By combination of

these methods it is possible to derive the total level density as a

function of excitation energy over an extended energy range and to

get additional information on the spin dependence of the level

density. This allows a much more detailed testing of the

phenomenological and theoretical level density model than the

comparison with the neutron resonance data alone which provide the

level density for just one energy and one or two spin values.

2. Study Of Resolved Levels In High Resolution Nuclear Reactions.

2.1 The energy range, where nuclear level schemes are

approximately complete is still rather small covering the first 15-

50 levels and extending to 1-5 MeV depending on A and the type of

nucleus.

2.2 Reliable correction procedures for missing levels could

considerably extend the energy accessible to the level counting

method. Such procedures however are only available for the

extraction of level densities from high-resolution particle spectra

obtained from compound nucleus reactions, whereas as yet no methods

have been developed for correcting either particle spectra from

direct reactions or the level schemes derived from high resolution

Y-spectroscopy for such missing levels. As a consequence, the

completeness of nuclear level schemes above ~ A-70 has to be judged

very cautiously.

- 27 -



2.3 Most existing high-resolution measurements of particle

spectra have been performed with an energy resolution ~ 10 keV

which is about a factor of 3 worse than the presently achievable

values. Thus improved knowledge of the level densities could be

obtained by further experiments with these techniques.

2.4 New high-resolution measurements of particle spectra in the

A=40-60 region where reliable corrections for missing levels are

possible, can probably extend the range accessible to level

counting to a point where reliable extrapolation to the neutron

binding energy is possible.

2.5 Discrete states are often identified by the gamma rays from

(n,y) reactions. The technique of average resonances guarantees

that, al l states in a limited range of spin and parity wi l l be

observed up to several MeV.

3. Determination of Level Densities From Energy-Differential Particle

Emission Cross-Sections

3.1 Level densities with an accuracy comparable to the resonance

data can be derived in the energy range between the region of

resolved levels and the neutron binding energy from such particle

spectra over the whole mass-range. For actinides the presence of

fission neutrons is an additional complicetion, which however, can

be largely overcome by careful difference measurements.
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3.2 These measurements of particle spectra can be performed using

conventional experimental techniques and require only accuracies

(~10%) which can be obtained routinely.

3.3 It is however most important to choose both the type of

reaction and the bombarding energy in a way that minimizes the

contribution of non-compound processes. For heavy nuclei (A>70)

this means that (o,n) and (p,n) reactions should be used, for

lighter nuclei (p,a), (a,p), (n,a) and (n,p) reactions will also

provide good level density information-

s ' In order to obtain the full information contained in the

measured spectra the results should be analyzed by means of the

statistical model with rigorous treatment of angular momemtum

effects and both cross sections for populating resolved levels and

those for populating the unresolved region used in the analysis as

described in one of the contributions to this meeting. (Vonach).

3.5 Results should be reported both in terms of the directly

measured particle emission cross-sections and as level density

values versus excitation energy with realistic uncertainty

estimates taking into account the errors in the statistical model

analysis due to uncertainties of various needed input quantities.
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3.6 Up to now very few of the results reported in the literature

meet these requirements; probably this is the case for the

Livermore and recent USSR (p,n) measurements.

3.7 Most other measurements of particle spectra have either not

been analyzed specifically for the purpose of deriving level

densities or have been analyzed in a way which does not correspond

to the present state of the art.

3.8 Thus reanalysis of a number of such measurements can provide

important information on the level density of a considerable number

of nuclei.

3.9 In addition to this reanalysis, many new measurements of

particle spectra are needed if we want to get a body of data

comparable in scope to the neutron resonance data. The most

efficient way to do this seems to be further measurements of (p,n)

and (a,n) reactions and analysis of the data by means of the

procedures mentioned before.

3.10 The proposed measurements will not only provide total level

densities up to the neutron binding energy, but in addition,

information on the spin-cutoff factor can be obtained both by

comparison with the resonance data and from measurements of angular

distributions in (a,n) reactions.
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3.11 Absolute values >of nuclear level densities up to about two

times the neutron binding energy can be derived from neutron

emission spectra in (p,n) and (a,n) by means of the Grimes method

(see contribution of H. Vonach to this meeting).

3.12 Extraction of level densities from composite particle spectra

suffers still from the lack of adequate procedures for this

purpose. For the simplest case of neutron emission from compound

nuclei with excitation energies below the 3n threshold it should be

possible to develop such procedures.

3.13 Thus also for the excitation energy range up to twice the

neutron binding energy new measurements of (p,n) and (a,n)

reactions seem to be the most promising way to improve our

knowledge on level densities.

3.14 For very high excitation energies (up to 100 MeV)

measurements of a particle emission spectra have proved to be a

very valuable method especially for heavy nuclei.

Extraction Of Level Density Information From Cross-Section

Fluctuations

4.1 Absolute level densities of a number of nuclei in the mass-

range A=20-60 have been derived from cross-section fluctuations at

excitation energies around 20 MeV.
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4.2 Most of these measurements have been performed more than 10

years ago. Because of the considerable improvements in energy

resolution of Tandem accelerators since that time, measurements

should now be possible both to lower excitation energies and to

somewhat heavier nuclei.

4.3 It would be especially desirable to have new fluctuation

measurements in the energy region of ~ 15-20 MeV and compare these

results with measurements by means of the Grimes method on the same

nuclei to get a better idea of the systematic errors of both these

methods.

5. Determination Of Level Densities of Fissionable Nuclei At High

Deformations

For calculations of the cross-section behavior of fissionable

nuclides, it is necessary to have information on the density of

intrinsic levels at the nuclear deformations corresponding to the

peaks in the fission barrier. In the first place it is necessary

to obtain this information experimentally from the analysis of

cross sections, where the fission reaction is induced either by

neutrons or by charged-particle transfer reactions. There is still

room for much improvement in the experimental accuracy of our

knowledge of these cross sections. From the characteristic energy

dependence of these fission cross sections, barrier heights can be

deduced quite accurately; these form the reference point for the
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dependence of barr ier level density on excitat ion energy. From the

cross-sections at higher energy the barrier level density, or

rather i t s effect ive rat io to the normal level density of the

residual nucleus following neutron emission, can be determined.

The broad outlines of th is program have been carried out, but there

is s t i l l a need for more careful analysis, part icular ly to check

the f a i r l y detailed model spectra of the barrier states at low

excitat ion and to determine the energy dependence of the associated

spin cut-of f factor . For t h i s last purpose careful analysis of the

angular d is t r ibut ion of f iss ion products is required.
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APPENDIX

Codes f o r e x t r a c t i n g leve l densi ty in format ion from experimental da ta .

Table A - Computer programs f o r e x t r a c t i o n of l eve l dens i t i es and s t reng th func t ions from resolved
resonance parameters by techniques based on the reduced-width d i s t r i b u t i o n .

Code

BAYESZ
CRAY-1

ESTIMA
IBM 3033-11

MISDO

CAVE

STARA-83
IBM 3033-11

Author

M. Moore
(LANL)

E. For t
(Cadarache)

G. Rohr
(Geel)

M. Stefanon
(Bologna)

F. FrOhner
(KFK)

Estimation
method*

moment methods, eq.
(23) highly automatic

maximum likelihood,
eq. (20)

maximum likelihood,
eq. (20)

maximum likelihood,
grid search

maximum likelihood,
eq. (50)

p-level
admixture

treated
eqs. (49)

excluded by
threshold

excluded by
threshold

yes

yes

Unresolved
multiplets

treated
approximately

neglected

neglected

neglected

treated see
eq. (24)

Available
from

i

NEADB

NEADB

NEADB

Author

Author

* Equation numbers given are those of F. H. Fro'hner's paper i n t h i s volume, where add i t i ona l
in format ion can be found.



Table B - Codes for extracting level density information from energy differential particle
spectra in compound nucleus reactions.

emi ssion

1

Ln

1
— i i

Code

CERBERO
FORTRAN IV, 240 K bytes

ERINNI
FORTRAN IV, 240 K bytes

GNASH
FORTRAN IV, CDC-7600
49 K words, SCM + 260 K words
LCM

HAUSER - 5
FORTRAN IV 336 k Bytes

STAPRE
FORTRAN IV 45 K words

TNG
FORTRAN 300 K bytes

Author

F. Fabbri et a l .
CMEN, Bologna, I t a l y

F. Fabbri et a l .
CNEN, Bologna, I t a l y

P.G. Young et a l .
Los Alamos, USA

F.M. Mann
HEOL, Hanford, USA

M. Uhl et a l .
I n s t . f . Radiumf.
Vienna, Aus t r i a

C. Y. Fu
Oak Ridge, USA

Models/References

Spherical OP + HF (s ing le -s tep)
RT I F I (74) 36 (74) and
RT/RI (77) 6 (1977)

Spherical OP + HF (two-step)
RT/FI (77) 4 (1977)

E M ( l s t step) + HF (mu l t i - s t ep )
LA-6947 (1977)

EM ( 1 s t step) + HF (two-step)
HEDL-TME 78-83 (1978)

EM ( 1 s t step) + HF (mu l t i - s tep )
IRK-76/01 and Addenda

EM ( 1 s t step) + HF (mu l t i - s t ep )
ORNL/TM-7042

Abbrev ia t ions: OP . . . o p t i c a l model EM . . . exc i ton model ( f o r p reequ i l i b r ium emission)

HF . . . Hauser-Feshbach model

A l l codes are ava i l ab le from the NEA DATA BANK, F-91191 G i f -Sur -Yve t te , Cedex, France.
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APPLIED USES OF NUCLEAR LEVEL DENSITIES

Robert C. Haight

University of California
Lawrence Livermore National Laboratory

Livermore, CA 94550

ABSTRACT

General and specific applications of nuclear level densities
are described. Areas of particular applied interest are fission
reactors, fusion reactors, and astrophysics.

I. INTRODUCTION

Nuclear level densities are a crucial ingredient in nuclear reaction
models and in neutron transport calculations. Fermi's Golden Rule
expresses the general importance of the density of final states, p, which
includes the nuclear level density, in relating the transition rate w
between initial and final states to the matrix element H^f:

w = |2 |Hif|
2 p

For applications in nuclear science the approach of Hauser and Feshbach [1]
restates this rule in a form that describes cross sections:

•ill -iTT I i

a... = o. „.,(£) • — where

acc' = the cross section for the reaction e+c' with total angular
momentum J and parity ir,

f
°c CH^ = t'ie c o m P ° u n d nucleus formation cross section through the

' reaction channel c,
fT , = the transmission function for decay of the compound nucleus

through the exit channel c1,
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I Tc" = tlie sum of • t r a n s m i s s i ° n functions through all possible
c" channels, namely the channel of interest plus all Competing

channels. j

As an example of the transmission function, consider the neutrpn (inelastic
scattering) channel which may be written: ;

/

emax

e

/

v emin
where the transmission functions are summed over discrete levels v, of
the residual nucleus, and integrated over unresolved levels. The density
of unresolved levels of particular ,F and excitation energy e is
represented by p(e,J7r).

The representation of nuclear level densities is only one ingredient
out of many required to generate nuclear data for applications. Optical
model parameters for calculating the particle transmission functions as
well as strength functions for gamma and beta emission, coefficients of
fractional parentage, and specification of the reaction mechanism itself
are also necessary. In analogy to the study of a great cathedral, the
nuclear level density is like the north transept: it is crucial to the
spiritual, historical, and aesthetic unity of the building but it is not
the whole cathedral. And at times other parts of the building may be more
important for "applications" to religion, to architectural progress, and to
the human condition.

In other parts of the nuclear reaction "cathedral," significant
advances are taking place and these will influence the developments in the
area of nuclear level densities. One need point only to the calculation of
optical model parameters from the fundamental nucleon-nucleon interaction
as pioneered by Brieva and Rook [2] and by Jeukenne, Lejeune, and Mahaux
[3]. Work at many laboratories is now extending and refining this approach
so that in a few years one can expect a firm basis for and a few changes in
the phenomenological approach that we have followed for decades. Similarly
new approaches to strength functions as guided by studies of giant
resonances and by moment-method calculations (e.g. ref. 4) are providing a
much improved understanding of the continuum.

Unlike the analogy of the cathedral, where one area, complements and
may give new dimension to the others, these developments restrict the range
of physically reasonable parameters used in conjunction with
representations of the level density. The shape, for example, of the
optical model potential is no longer a free parameter but rather is
constrained from other data (mainly electron scattering) through a model
that folds the nuclear mass distribution with a nucleon-nucleon interaction
which itself is constrained by data and meson-exchange models. The
possibilities of "fixing-up" a nuclear reaction calculation so that it
agrees with data are therefore more limited. Consequently we may in the
near future be able to define more precisely the level densities obtained
from experiment.
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With the prospect of better experimental determinations of level
densities, one can pose more strongly the question of whether a given
representation is physically reasonable. At the applied level, this
question is whether the representation agrees with experimental data. We
should also ask how the representation corresponds with our understanding
of a quantum-mechanical system of interacting fermions: Is the
representation physically reasonable at this level? New approaches from
microscopic calculations (e.g. ref. 5) are beginning to shed light on this
latter question.

In this paper, I focus on some applications of nuclear level densities
for applications. Certain applications are so general as to be treated
together and they are collected in section II. Other applications are more
application-specific, such as those to fission reactors, fusion reactor
development, and astrophysics. Section III gives some of these specific
applications. The representations of level densities and their
interpretation from a basic physics perspective are discussed by others at
this meeting.

II. GENERIC APPLICATIONS

This section treats broad-rangi^c applications of nuclear level
densities.

A. Neutron Transport Applications

Nuclear level densities can be used to describe cross sections in the
resonance region. [In the ENDF/B system of evaluated nuclear data, nuclear
level densities (or average spacings) are employed explicitly to specify
cross sections in the unresolved resonance region. Interestingly enough,
ENDF/B does not explicitly use level densities anywhere else.] This
specification also requires average competitive widths, reduced neutron
widths, radiation widths, and fission widths. For example the fission
cross section is given by the following expression: [6]

NLS

V f ( E ) •

£=0

with
NLS

(E) ]lL V _ ^ i _CTn,f {t) ~ ~T Zu n \ r / A.J
o 1

where TJ. , is the mean level spacing (inverse of the level density) for a
given £. and J, and
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where the Rf. , is the fission fluctuation integral and the T's are average
widths. TJ("U

From these expressions, cross sections can be calculated by processing
codes. The result is processed data that should account for the
fluctuations in the cross section, self-shielding effects, and so forth.
To this end, the values used for the parameters including the level density
could be taken as parameters and adjusted to fit the microscopic data as
well as integral experiments. A more satisfying approach and the one
usually followed is to fix those parameters (such as the level density)
that can be obtained from resolved resonances for s- and p-wave neutrons
and then letting the less well known parameters vary until good agreement
with the integral experiments is found. Because this region is just above
the resolved resonance region, the extrapolation of known quantities such
as the s-wave strength function is usually reliable.

B. Nuclear Reactions Calculations

The compound nuclear reaction mechanism is able to account for a
wealth of nuclear cross section data, especially neutron data, if the
energy of the compound nucleus is not too high, say less than 20 MeV or
so. Other reaction mechanisms, such as direct or pre-compound mechanisms,
account for only a small fraction of the total reaction cross section at
these energies.

There are many motivations for wanting to calculate reaction cross
sections. One is simply to make sense out of experimental data. To
understand the effects of thresholds and competing reactions, to deduce
information on spins and parities from angular distributions, and to deduce
information about the level density itself—all require detailed
calculations. A second motivation is to understand the contribution of a
particular reaction mechanism so that the effects of a different mechanism
can be isolated. For example one often wants to subtract the compound
nuclear reaction contribution to investigate direct or pre-compound
mechanisms.

The major motivation for many calculations, however, is to provide
nuclear data for applications. Because experimental data often do not
exist for a particular reaction on a target isotope at a given energy, the
cross sections must be calculated. The result is an interpolation or
extrapolation from existing data or a true ab initio calculation.
Extensions of existing data can thereby by made to unmeasured or
unmeasurable regions in energy, isotope, excitation energy, or other
nuclear property such as deformation. In the cases where experimental data
exist and are discrepant, a reaction model calculation may help to decide
which data are physically reasonable and which are clearly erroneous.

- 42 -



Hauser-Feshbach calculations have been performed in many cases to
provide evaluated nuclear data for applications. The two examples given
here illustrate the importance of level densities in those calculations.

The cross section for the 51v(n,p)5lcr reaction has been measured
several times by activation techniques. The experimental results are
discrepant, and they extend only from 13 to 18 MeV, while the threshold for
the reaction is 1.7 MeV. An evaluated data file for this and other
reactions on vanadium was achieved [7] using Hauser-Feshbach calculations.
The results are reproduced in Fig. 1.

This calculation first of all showed that the shape of the excitation
function measured from 13 to 18 MeV is reasonable. A less smooth
excitation function that might have been conjectured from the single-energy
measurements was ruled out. The calculation also demonstrated that the
magnitude of the experimental values could be reproduced with a compound
nuclear reaction model. To within the uncertainties of the parameters,
including the level densities, the cross sections are again reasonable.
Finally the calculation was able to extend the (n,p) cross section over the
energy range from threshold to 13 MeV where there are no measured data.
The calculational results show that the preceeding version of ENDF did not
correctly take into account the threshold effects and thereby gave
unreasonable values for the cross section from 5 to 13 MeV. This example
shows how level densities are able to extend cross section data to
unmeasured energies.

A second example is from the analysis of proton emission spectra from
neutron-induced reactions. The pre-compound part of the spectrum is of
interest, and, to isolate it, one must calculate the expected compound
nuclear component. The results from one such analysis are shown in Fig. 2
for 15-MeV neutrons incident on isotopes of Cr, Fe, Ni, and Cu [8]. The
difference between the compound nuclear (Hauser-Feshbach) calculation and
the experimental spectra, especially above 8 MeV proton energy, are
interpreted in terms of a pre-compound reaction mechanism (Fig. 3). It is
important to know how the nuclear level density varies with energy in this
application: one could describe the measured spectra as compound nuclear
evaporation if a very unusual form were chosen for the level density of the
residual nuclei. Measurements of the spectra at lower incident neutron
energy together with results of charged-particle experiments rule out such
an unusual form, however. This is an example of how the nuclear level
densities are used to extend our knowledge of reaction mechanisms.

III. SPECIFIC EXAMPLES

A. Fission Reactors

The cross section for fission induced by fast neutrons is basic to all
fission reactors, even those with a small fraction of fast neutrons. For
235u, the fission cross section from 100 keV to 6 MeV has structure which
is not fully understood even now. And if that cross section, which has
been studied so often, cannot be calculated reliably from a basic model,



how then can the fission cross section for unmeasured isotopes be
calculated with confidence?

A recent attempt [9] to understand the structure in the 235u fission
cross section was based on a Hauser-Feshbach calculation of the competition
between fission and inelastic scattering. In this work the densities of
levels at the fission barriers in the compound nucleus 236y were varied
until good agreement was obtained with the experimental fission cross
section. The resulting level densities and the calculated cross section
are shown in Figs. 4 and 5.

The remarkable features of the deduced level densities at the fission
barriers are their shapes which were used to explain the structure in the
fission cross section between 1 and 2 MeV. An alternative analysis could
have attributed this structure to the shape of the level density in 235y
reached by inelastic scattering. In either case there is an indication of
an anomaly at low excitation where collective levels.and single-particle
excitations compete. It is possible that structure in the level density is
a characteristic of nuclei at very high deformations such as at the fission
barrier; however, information there on nuclear structure properties
including the level density is almost non-existent.

A second area of application of level densities in fission reactors is
the calculation of cross sections for the fission products. These data are
needed for predicting the neutronic performance of a reactor after the
buildup of fission products and they are also used in analyzing the
consequences of accidents.

Fission products can affect criticality parameters, sodium void and
Doppler coefficients, the required enrichment for the fuel loading, and the
breeding ratio. The importance of fission products on these quantities
depends of course on the concentration of these products and therefore is
greatest after long burn-ups. Short-lived products do not have a great
effect. In fact, most of the important products have undergone beta-decay
so that they are stable and measurements can be made on them. Compound
nuclear reaction calculations are used in these cases to fill in the
unmeasured regions and to decide between discrepant data sets [10].

For accident analysis, the inventory of radioisotopes is required.
Many of these isotopes are fission (and subsequent beta-decay) products.
Others result from neutron-induced reactions on those products. The
nuclear data required to predict the abundance of the latter generally must
be calculated. Great accuracy is usually not required in these
calculations because other uncertainties in the accident analysis (in the
models of dispersal of the isotope, its chemical form, and how it enters
biological systems) are large.

A third area of potential importance to fission reactors is the
calculation of the fission neutron spectrum. In principle the spectrum
could be obtained from statistical emission of neutrons from the excited
fission fragments after averaging over the fragment charge and mass
distribution. A kinematic transformation from the fragment rest frame to
the laboratory frame then would yield the observed neutron spectrum. In
practice a representative spectrum is calculated, to avoid the complexity
of the many possible combinations of fragments, and then the kinematic
transformations are made [11]. The more ambitious approach of treating
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each fragment separately would put additional demands on the representation
of level densities because most of the fragments are far from the valley of
stability. Extrapolations from stable nuclei are therefore less reliable.
In addition the excitation energies of interest are lower because of the
lower neutron separation energies. Similar problems are encountered in
astrophysical applications as discussed oelow.

Finally, many other evaluations for fission reactor applications
depend on Hauser-Feshbach calculations and therefore on level densities.
Cross sections for neutron transport, especially inelastic scattering and
radiative capture, are coordinated through this reaction mechanism and
calculation. Evaluations of dosimetric reaction cross sections also rely
heavily on this approach. While these applications depend on level density
information in "well-known" regions, they are the most demanding in terms
of the accuracy required. For this reason, the level density is often
normalized at a few points so that the Hauser-Feshbach calculation agrees
with the'experimental data. It would indeed be a triumph of nuclear
science if ab initio or even independent, empirical approaches to the level
density gave results that required no further normalization.

B. Fusion Reactor Applications

Fusion reactors with deuterium or deuterium-tritium fuel will produce
copious quantities of 14-MeV neutrons. For many reasons one can expect the
effects of these neutrons to be much different than those in a fission
reactor: The average number is higher, which is important in the context
of threshold reactions; the energy of the neutrons for a given reactor
power is higher than that of a fission reactor by a factor of 7 or so; and,
for magnetic confinement schemes, the neutrons interact practically not at
all with the low-density fuel but rather impinge uncollided with structural
and blanket components. Nuclear data needs for fusion have been summarized
by many authors previously (see e.g. refs. 12 and 13).

Much of the nuclear data for fusion reactor applications will of
necessity be provided by calculations employing level density
representations. The reasons are technical as well as economic. One area
where calculations will provide most of the data is for neutron energies
between about 10 and 14 MeV. In this energy region most experimental
neutron sources are not monoenergetic but contain low-energy neutrons from
breakup of the projectile or the target in the neutron source. It is thus
very difficult to measure, for example, the neutron emission spectrum for
incident neutron energies in this range.

Another area of technical necessity is cross section data for
broad-spectrum neutron sources for radiation damage studies. A source
using a reaction such as d+Li can produce a very large and useful flux of
neutrons with a broad peak centered at 14 MeV. The range of the neutron
energies is large, however, and neutrons at higher energies (to 35 MeV or
beyond) are also produced. Data in this higher energy range are very
scarce [14], yet they are needed to analyze the radiation damage effects.

The economic incentive for calculating the required data is large
since the nuclear data needs for fusion are so extensive [11]. To have
confidence in the calculational results, one must have an accurate



representation of the reaction and therefore accurate nuclear level
densities. Because these applications extend the current models beyond the
experimental data, some further experiments will be necessary to confirm
the calculational results.

One area of recent progress is the production of hydrogen and helium
by neutron reactions with candidate materials for fusion reactors. These
reactions generally have an effective threshold of several MeV and are less
important in fission reactors. Recent measurements with a variety of new
techniques have provided not only the integrated gas-production cross
sections but also the spectra of charged particles from the (n,p), (n,d),
and (n,alpha) reactions. Examples of these data are shown in Figs. 2 and
3. It is a remarkable success of Hauser-Feshbach calculations that they
can describe the major part of the charged-particle emission spectra quite
well (see for example the calculations in Fig. 2). The remaining part of
the emission spectra at the high energy end are attributed to precompound
particle emission. The success of these calculations is especially
important to give confidence in predicting cross sections at lower incident
neutron energies which will be important in fusion reactors but where
experimental measurements are difficult because of present-day source
intensities.

Cross sections at higher energies for d+Li neutron sources present a
different type of challenge in that level densities at much higher
excitations are required. For example, one of the materials considered as
a dosimeter is cobalt. Cross sections as a function of incident energy are
required to unfold the neutron flux spectrum from the observed activities.
These cross sections have been calculated [15], and the results are given
in Fig. 6. The excitation energies of the residual nuclei are well above
those encountered with 14-MeV neutrons incident: For an incident energy of
40 MeV, level densities are required up to 40 MeV in 59r,o, 29 MeV in
58co, about 36 MeV in 59pe ancj so forth. Because of level densities
increase very rapidly with increasing excitation energy, a small inaccuracy
in the values at lower energies can become a very significant error after
this extrapolation. Unfortunately there are few neutron data to confirm
the calculational results at these higher energies. One must instead rely
on charged-particle-induced reaction data.

To round out the perspective of the importance of level densities,
some note must be made of reactions which are not described well by
Hauser-Feshbach calculations. The pre-compound component of particle
emission already mentioned is one such process that is beyond the compound
nuclear reaction picture. Another is tri-nucleon emission where other
mechanisms, perhaps direct reactions, are significant [16]. Finally the
reaction mechanisms in light nuclei are influenced by resonances and final
state interactions, that is by non-statistical effects. Another way of
stating this problem is that the level density can be so low as to be an
inappropriate concept from the beginning.

C. Astrophysical Nuclear Reaction Applications

Nuclear reactions in astrophysical systems take place over a wide
range in time scales, densities, temperatures, and elemental compositions.
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Thus it is not surprising that reactions of importance occur with nuclides
in the valley of stability (s-process, helium burning, etc.)5 very neutron-
rich nuclides (r-process, fission), and neutron-deficient species (rp and
p-processes). The energies at which the reactions take place (usually tens
of keV or more) and the spread in this energy from the Maxwellian
distribution usually imply that the compound-nuclear reaction mechanism is
predominant.

Neutron-induced reactions on nuclides near the valley of stability are
important in s-process nucleosynthesis, which is where the neutron-induced
reaction rates are slow compared to beta-decay half lives. To parameterize
the data near the valley of stability, nuclear level densities are used
with Hauser-Feshbach calculations [17]. This approach yields a consistent
description of the measured neutron capture cross sections to within a
factor of 2 or so. It also serves as a calculational tool for predicting
unmeasured capture cross sections as well as those for (n,p) and (n,alpha)
reactions, very few of which have been measured at the low energies of
interest in astrophysics.

Calculations of proton capture in the rp and p-process are carried out
in a similar manner [18]. Here the data on the proton capture cross
sections are usually at higher energies than of astrophysical interest.
The calculations then are used to extend the data to those low energies.

Understanding the r-process, that is rapid neutron capture on time
scales short compared with beta-decay half-lives, requires the calculation
of reactions on neutron-rich nuclides far from the valley of beta-
stability. Here there are no experimental data to guide the calculations.
Neutron capture is the most important process and inelastic scattering and
(n,2n) reactions should be considered. To carry out such calculations one
needs nuclear level densities that are extrapolated from stable or nearly
stable nuclides. Since this extrapolation is large, significant uncertain-
ties can be introduced. An additional challenge is that the excitation
energies of interest are in general lower than those in stable nuclei where
the nuclear level density can be obtained from resolved resonances. This
is because the neutron separation energy is less and in fact becomes zero
at large neutron excesses where the nuclides become unstable to neutron
emission (the so-called "neutron-drip line"). The nuclear level density at
the neutron separation energy therefore decreases as the neutron excess
increases and eventually becomes an inappropriate concept.

An example of Hauser-Feshbach calculations to predict neutron-capture
cross sections in cadmium isotopes for the r-process is given in Fig. 7
[19]. The isotope T30cd(Z=48, N=82) is of particular importance since it
is a "resting point" in r-process nucleosynthesis: it must beta decay
before elements of higher atomic number can be formed. It is therefore
partly responsible for the abundance peak at A = 128 to 130. For this
nucleus, the level density at the neutron separation energy is so low that
there may be no compound nuclear resonance available for resonance neutron
capture. An alternative mechanism, direct neutron capture, may in fact be
dominant (see Fig. 7). For more neutron-rich isotopes, the level densities
are even lower. This example then points out some of the challenges and
the difficulties in using nuclear level densities for astrophysical
processes far from the valley of beta-stability.
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IV. CONCLUSION

This brief report of some of the uses of nuclear level densities
illustrates their broad use in a wide variety of applied fields. In future
applications, their use will require more accurate representations and
extensions to nuclear regimes beyond the frontiers of our present
experience: to nuclides far from the valley of beta-stability, to higher
excitations, and to large deformations.
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Fig. 1. Measurements and evaluations of the 51v(n,p) cross section [7].
The solid curve is the result of Hauser-Feshbach calculations.
The dashed curve is the ENDF/B-IV evaluation.
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Fig. 2. Proton emission spectra from isotopes bombarded with 15-MeV
neutrons [8]. The solid curves are Hauser-Feshbach calculations.
The dashed curves are the calculational results for emission from
the initial compound nucleus.
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10

10

>

10

CO

LU
Q 2
10

10

10

RESIDUAL NUCLEUS - CONST. TEMP. ABOVE 1 MEV

BARRIERS A & B - CONST. TEMP. ABOVE 3.5 MEV

ENERGY CORR. TO 1 MEV NEUTRON:
INELASTIC FISS. BARRIERS

BARRIER A = 5 .63 MEV

BARRIER B = 5 .53 MEV

- • - RESIDUAL NUCLEUS
( INELASTIC SCATTERING)

NEUTRON SEP. ENERGY = 6 . 5 4 MEV

1.0 1.5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5

ENERGY ABOVE FISSION BARRIER(S) (MEV)

(OR) EX I TAT I ON ENERGY OF RESIDUAL NUCLEUS

Fig. 4. Level densities used to calculate the 235u(nsf) cross section
[9] .

6.0

- 53 -



2.0
HAUSER-FESHBACH CALCULATION OF 235U(N,F) CROSS SECTION

NO WIDTH FLUCTUATION

CORRECTION INCLUDED

O 235U(N,F) EVALUATION, REF. 10

0.8
-1
10 10

NEUTRON ENERGY (MEV)

Fig. 5. Calculated cross section for 235u(njf) using the level densities
of Fig. 4. The structure in the range 1-2 MeV requires structure
in the level densities.

10



O.OOI
48

En(MeV)
Fig. 6. Activation cross sections for neutron reactions with 59co [15].

The curves result from Hauser-Feshbach calculations.



10

O 2

^ 10

o

GO 1
(/I 10
o
o

r", 10

o
2 -1

10
II

-2
10

72 74 76 78 80 82 84 86 88 90 90

a: -3
10

— -4
-I 10

-5
10

CADMtUM ISOTOPES (Z = 48)

DROP DUE TO NEUTRON CLOSED SHELL

, AT N = 82

STATISTICAL MODEL

THIELEMANN, 1980 (MUNICH)

DIRECT CAPTURE

MATHEWS,MENGONI.THIELEMANN,& FOWLER, 1982

(LIVERMORE,KARLSRUHE,MUNICH,CALTECH)

STATISTICAL MODEL

HOLMES ET AL., 1976 (CALTECH)

J L_

120 122 124 126 128 130

A

132 134 136 138

Fig. 7. Maxwellian-average cross sections for neutron capture by
neutron-rich isotopes of cadmium [19]. The direct capture
mechanism becomes larger than the statistical mechanism for the
heavy isotopes where the level density at the neutron separation
energy becomes smal1.

140

- 56 -



MOMENT METHOD CALCULATIONS OF
NUCLEAR LEVEL DENSITIES

S.M. Grimes

Physics Department, Ohio University
Athens, Ohio 45701, U.S.A.

ABSTRACT

A summary of the limitations of level density calculations
which omit the two-body force is presented. An alternative pro-
cedure which allows inclusion of such forces is now available.
Some early results with these moment methods suggest that they
will be very useful in level density calculations. Significant
remaining problems include the uncertainty in some of the input
parameters and the computer time demands of these calculations.

INTRODUCTION

Most calculations of nuclear level densities utilize the Fermi gas
model [1]. This formalism is based on the assumptions that the nucleons
are non-interacting Fermions bound in a well. Obvious virtues of such a
picture include the fact that the methods of statistical mechanics can be
used to calculate the level density and the limited number of parameters
needed by the model. In the original formulation, only one parameter, a,
denoting the average single particle state density multiplied by IT2/6, is
needed in the model.

More recent refinements have allowed pairing and shell effects to be
incorporated into the model [2]. The non-interacting Fermions may be
replaced by the quasi-particles of superconductivity theory. This allows
inclusion of pairing effects in a one-body approach. Another recent modi-
fication is to relax the assumption that the single particle states are
equidistant and put in single particle states with shell gaps where
appropriate. In principle this forces us to give up an analytic expression
for the level density. We can carry out the calculation numerically on a
modern computer and the results can often be fit with the original form,
where i\re use a (the level density parameter) and 6 (the energy shift) as
fitting parameters. Deviations from this form normally occur only for low
energies, where pairing and shell effects are most important. At these
energies a constant temperature form (exponential) is often used to represent
the level density and is matched in height and slope to the Fermi gas form
at an energy of a few MeV.
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Some problems with the Fermi gas model remain, however, even after we
incorporate pairing and shell effects. Many low-lying levels of the nucleus
are collective states and these will not be located properly in a calcula-
tion which ignores the two-body force. It has been suggested [3] that this
deficiency could be remedied by adding rotational or vibrational levels to
the low-lying spectrum. Two difficulties are associated with this solution
to the problem. The fundamental problem is that this represents "double-
counting" in that our original calculation had the correct total number of
levels in the basis. Omission of two-body forces resulted in levels not
being brought down to low excitation, but the levels are present in the
spectrum at higher energies. If we add in levels, we should subtract them
from the level density at higher energies. This, of course, cannot be done
since we do not know precisely from which energy region they should be
removed.

An additional difficulty is that such levels can be added only if we
know the collective parameters (separation between levels in a band) for the
nucleus in question and their energy dependence. We often know the infor-
mation required at low energy, but are not in as good a position at higher
energies. Calculations by Moretto [4] indicate that at high energies both
deformed and spherical nuclei have levels with a range of deformations with
the most likely shape being spherical. This result is plausible, since at
high energies one would expect deformed and spherical nuclei to become
similar in their nuclear properties. The rate at which this limit is
approached is not well known, however, making use of a model with ad hoc
deformation parameters difficult.

A closely related problem occurs when one uses Fermi gas parameters
found for nuclei on the stability line to extrapolate to nearby nuclei off
the stability line. Since the deformation parameter can change very rapidly
as a function of N and Z, this extrapolation procedure could lead to serious
errors in level density calculations.

Some indication of additional problems comes from studies of the spin
cutoff parameter and the positive-parity negative-parity ratio of nuclear
levels [5]. Both of these parameters are necessary to define the level
density distribution as a function of spin and parity. It appears that the
Fermi gas model does not always predict these parameters correctly even when
the total number of levels is correctly given. Our information is not
sufficiently complete to let us determine how extensive these discrepancies
are, but it appears as though the spin cutoff parameter and parity ratio
may be more sensitive to two body forces than is the total level density.

SPECTRAL DISTRIBUTION THEORY

The theory of spectral distributions allows the inclusion of two-body
forces in level density calculations in an enormous basis. It is routine to
include two-body forces in shell model calculations, but these involve
diagonalization of a large matrix and are therefore limited to a basis of
104 or less. Level densities are often needed in bases which have as
many as 1010 levels or more. Even if life could diagonalize a very large
matrix, this would not be an efficient way to proceed. We actually do not
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want all 1010 eigenvalues or eigenfunctions but only the distribution of '*
levels with energy. French and collaborators [6] have developed a method
which yields the level density (and spin cutoff and parity ratio) directly,
without requiring a diagonalization. This formalism utilizes the assump-
tions that the Hamiltonian is two-body factually a combination of one- and
two-body parts) and that the distribution of levels with energy for such a
Hamiltonian is nearly Gaussian. If we can calculate the total number of
levels in our basis and also the average energy (<H>) and dispersion
([<H2> - <H>2] 2 ) , we can make a Gaussian expansion of the level density.

We clearly depart from the typical Fermi gas approach in two ways:
two-body forces are included and we deal with a finite (though large) basis.
This latter difference may appear troublesome, since a finite basis
obviously has no_ levels beyond a particular energy (that of the highest
level). The Fermi gas form yields a level density which increases inde-
finitely with energy.

Actually, the limited basis assumption is physically more realistic [7].
For a nucleus such as 56Fe with 56 nucleons and a binding energy of 8 MeV/
nucleon, the nucleus will be totally dissociated into constituent nucleons
at 8 x 56 = 448 MeV. For energies lower than this, many levels will have
more than one nucleon in an unbound state and will have an extremely short
lifetime. These are arrangements of 26 protons and 30 neutrons but probably
do not live long enough to be considered excited states of 5GFe. Thus, a
level density which reaches a peak and then declines to 0 with increasing
energy is actually more realistic physically than the traditional Fermi gas
level density. The peak and region of negative slope, of course, will be at
very high energies (E ̂  4A MeV).

Because these Gaussians span an enormous energy range, the shape of
the predicted level density for moderate energies (E ̂  30 MeV) does not show
dramatic effects of this cutoff. Indeed, it has been shown [5] that a Fermi
gas form and a Gaussian are nearly indistinguishable over a wide energy range
for proper choice of parameters. Fig. 1 illustrates this similarity. The
Fermi gas form for a = 4 and 6 = 0 is fitted with Gaussians corresponding
to two different dimensionalities with appropriate values for the average
energy and width. Discrepancies between the two forms are extremely small
over a 10-15 MeV range of energy. This similarity indicates that the general
agreement of level density data with the Fermi gas form does not provide an
argument against the spectral distribution approach.

Calculation of the parameters which enter the spectral distribution
expansion is not difficult. The number of states in the basis will be the
binomial coefficient

CO-
\ m /

V
m! (N Q-m)!

where m is the number of particles and N the total number of particle

states available. We may obtain <H> and <H2> through use of a relation
called the propagator theorem:

The expectation value of an n-body operator will be an n+1 order
polynomial in the particle number.
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As an example, consider the application of a one-body Hamiltonian to
a system of 20 single particle states. By putting 10 particles in these

states, we generate (10) = 184756 states, and evaluating the average energy

would seem to be difficult. According to the propagator theorem, the average
energy will be a two-term polynomial in the particle number. Thus,

= CQ

If we define <H> to be 0 for 0 particles, then CQ = 0. To evaluate <H>

for a one particle system (= <H>..), we need a twenty term sum

From the above form it is obvious that C. = <H>1. Thus,

20

and we can evaluate the average energy for a system of 184756 states by
multiplying two numbers together. For a one-body operator, the validity of
the theorem can be appreciated immediately: we have the average energy of
the system being given by the product of the average energy per particle
times the number of particles.

For a realistic nuclear Hamiltonian, the situation is somewhat more
complicated. The Hamiltonian is a two-body operator and <H2> is a fouj-
body operator. Thus, for a latter operator, a five term polynomial will be
required. In addition, we want information about the energy dependence of
the spin cutoff parameter, <J 2>, the average of the square of the z pro-
jection of the angjlar momentum. This requires, in addition to <J 2>, the

expectation values of <HJ 2> and <H2J 2>. These are two-body, four-body,
z z

and six-body operators, respectively.

The binomial coefficients \ m J are symmetric about a reflection
NfN0\ /N0 \

through m = N-/2, i.e. \, / = I M / •/ Dimensionalities are therefore

smallest for particle numbers which are small or near N_. For example, the

dimensionality for no particles or for m = N_ will be one, for one particle
0 NOCNQ-1)

or N - 1 will be Nn, and for two or N. - 2 will be ^ • It is

therefore easiest to evaluate the moments for systems which are either
nearly full or nearly empty. Evaluation of the moments of operators of
higher rank is complicated not only by the complexity of the operator itself
but also the fact that we need to evaluate it for systems with larger
dimensionalities. It might appear that we face an additional problem in that
H is not a diagonal operator in the shell model basis. Unitarity implies
that the trace of an operator is the same in any representation, diagonal or
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not, so we are free to calculate the moments (normalized traces) in our
non-diagonal basis.

Obviously, the utility of a Gaussian expansion for a level density
depends on how nearly Gaussian the level density is. It is fairly easy
to check the Gaussian assumption for one-body Hamiltonians. As an example,
consider the system consisting of 20 single particle states, all spaced at
equal intervals. For one particle, the level density is constant with
energy, but for two particles, the distribution already is close to Gaussian,
as can be seen from Fig. 2. The addition of more particles to the system
causes the distribution to become even more Gaussian (Fig. 3} until we reach
10 particles. As the number is further increased, we find tha^ p(E) for m
particles is the reflection in energy of p(E) for 20 - m particles. Thus,
as long as m is more than 2 and less than 18 in this example, the level
density is nearly Gaussian. Since we have assumed nor-interacting particles
and have used an equidistant level spacing, we have essentially the same
situation as a Fermi gas, with the one difference being the truncated basis.
The contribution from higher energy single particle states will not be
important at low energies, so our level density should agree with the classic
Permi gas in the low energy region. This is an alternative way of demon-
strating the result presented in Fig. 1; the Fermi gas and Gaussian forms
are very similar over a range of 10 MeV or more.

This comparison does not, of course, show that the level density has
a Gaussian distribution with energy for an arbitrary two-body Hamiltonian.
Specific Hamiltonians, for example a pairing Hamiltonian in a basis of
originally degenerate states, do give non-Gaussian distributions. It has
been shown that most two-body interactions yield a distribution of levels
with energy which is essentially Gaussian [8]. An example of a shell
model calculation for which all eigenvalues have been obtained and compared
with a Gaussian distribution is shown in Fig. 4. Note the very nearly
Gaussian behavior of this level distribution.

In a larger system the diagonalization cannot be carried out. In such
a case the deviations from Gaussian form may still be investigated. Cal-
culated values for <H3> and <H"> may be compared with those predicted by a
Gaussian distribution based on the calculated <H> and <H2> values. Cor-
rections to the Gaussian distribution could be calculated by incorporating
the known <H3> and <Uh> values into a Hermite polynomial expansion.

An alternative procedure for investigating these possible discrepancies
is to partition the space into configurations. If we consider an sd shell
nucleus and do a calculation involving the d,. ._, s^ ,_, d,^ and £y,7

orbitals, the moments could be calculated for the entire distribution,
resulting in a single expansion. Another possibility is to group states
into configurations and calculate the moments for each of these separately.
In the above example, one configuration could be all states with particles
only in the sd shell, a second would include all states with one particle
in the f_ ,_ orbital and a third would encompass those states with two

particles in the f-,/.? shell. This division results in configurations

identified by the number of particles in each of two groups of orbitals.
One could also divide the space into three (or more) groups of orbitals,
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making the total level density the sum of an even larger number of component
distributions. Any such decomposition results in the expansion of the level
density as the sum of a number of configuration distributions, each centered
on a separate centroid. If each of these is carried out to order <Hn>, the
resultant summed distribution will have the correct moments to that order
of the total distribution. In addition, it carries some information about
higher moments of the distribution. For example, if each configuration is
expressed as a Gaussian, the summed distribution will deviate in general
from a Gaussian form, although the deviations will be small in most cases.
Similarly, a configuration expansion to order <Hlt> will give a combined
distribution which has correct moments through <Hif> but also incorporates
some information about higher moments.

Calculation of moments beyond <H2> becomes increasingly difficult with
the propagator theorem. The higher order operators require more sums, some
of which have many more terms than the corresponding sums for lower rank
operators. An alternative approach, called the random vector method, has
recently been developed [9,10]. This procedure utilizes a Monte Carlo
approach to calculate higher moments of the Hamiltonian. Slater deter-
minants are selected at random from either the entire basis or a particular
configuration as desired. Amplitudes are chosen at random and the vector
|r> is normalized. The expectation value <r|H|r> is then calculated and
a new vector |r'> constructed:

|r*> = H|r> - <r|H|r> |r>

It can be seen that this vector is orthogonal to |r> by construction. We
normalize this vector and then construct a third vector |r">

|r"> = cos 9 |r> + sin 9 |r'> ,

where 9 is determined so that <r"|H|r"> has the correct value of <H> as
calculated with the propagator theorem. It can be shown that a 8 can be
found which meets this condition unless |r> is an eigenvector of H or unless
all components of |r> have values of <H> which are on the same side of the
correct value of <H>. By choosing our vectors to have 15 components we make
the second situation extremely unlikely and the first condition is never
fulfilled in a shell model basis (the real eigenvectors have many more than
15 components). By forcing the vector to have the correct value of <H>, we
drastically reduce the dispersion in <HZ>, <H3>, and <HI*>. We normally
require approximately fifty such random vectors in order to obtain statis-
tical convergence on the higher moments of the Hamiltonian.

The use of this correction algorithm is absolutely vital to making
calculations with the random vector technique. Total calculation time for
the level density parameters of one nucleus is about 1.5 hours with the
correct technique; without it, convergence of the higher moments would be
sufficiently poor that more than 100 times as many random vectors would be
required for convergence.

A calculation of the level density parameters of 28Si has recently
been completed using the random vector technique [11] . The basis included
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the dc/2> si/2' ̂ "M2 anc* ^7/2 s t a t e s with the single particle energies

based on energies of the appropriate spin and parity in 1 70. Thus, 2BSi
was treated as twelve active nucleons outside a 160 core. The two-body
matrix elements were based on the interaction of Petrovich et al. [12].
Initial calculations with this potential showed that inclusion of the f7/2

state caused considerable broadening of the distribution. Although the
slope of the level density function was approximately correct for the sd
calculation, the sdf_ ._ calculation, notwithstanding the larger number

of states in the basis, had too slow a rise for small values of the energy.
By trial and error, it was found that a reduction of 35% in the strength
of the two-body interaction gave an appropriate slope for the level density.

This renormalization is not unexpected. As the basis is enlarged,
more couplings become possible and each shell model state is spread over a
wider energy range. Most interactions used in shell model calculations have
an implicit or explicit renormalization to make the force larger to
compensate for basis truncation effects. As we enlarge the basis beyond
that used in conventional shell model calculations, we expect that the force
strength should be reduced. A similar finding in a spectral distribution
calculation has recently been reported by Verbaarschot et al. [13].

Calculations were performed with two different partition of the space.
The first (two partition) expansion corresponded to specifying the number of
particles in the sd orbitals and the number in the fy/2

 0I>bitals. A second

expansion (three partition) was carried out with the number of particles
specified in (a) the d_,_ and s.. ,„, (b) the d,,_, and (c) the fy/2

 orbital

separately. The value of making the calculation with different partitions
is that the results can be compared to check for convergence.

Fig. 5 presents a comparison of the calculated level density for 28Si
for these two partitions with measured values. The open circles at low
energy represent points determined by counting the levels tabulated in
Endt and van der Leun [14] while the open square is calculated from the
levels in Ref. 14 by Beckermann [15] by estimating how many levels at this
energy had spins and parties such that they probably would have been missed.
The points at energies about 20 MeV were deduced from Ericson fluctuation
measurements and are due to Singh et al. [16], Shaw, Katsanos, and Vanden-
bosch [17], and Eberhard and Mayer-Boricke [18]. Table I presents a
comparison of level density parameters from Z8Si inferred from the present
data with parameters obtained by Beckerman [15] and Roeders et al. [19].

The present calculations would give a poor fit to the data if we chose
the energy zero based on the first predicted level in the calculation. Thus,
we shift the scale so as to normalize the integral of the calculation to the
experimental integral over the the first eight MeV of excitation. This
produced about a 3 MeV shift in the energy scale. One possible explanation
for the need for such a shift is the fact that 28Si has only two energy
levels below 4.5 MeV, making a continuous approximation difficult to apply.
This normalization procedure accounts for the difference of about 20% in
the two- and three-component distributions at 20 MeV. In fact, these
distributions were virtually identical at this point and differed by 20% at
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low energy. Our normalization procedure transfers this discrepancy to
higher energy. This difference is an estimate of the numerical convergence
uncertainty produced by our configuration decomposition. This discrepancy
is smaller than the estimated error in the experimental points (̂  50%)
and is also smaller than the uncertainty produced by the uncertainty in
theoretical input parameters.

We find generally good agreement between calculation and experiment
for the level density. Some refinement of parameters could result from
an effort to match theory and experiment more exactly, but given the uncer-
tainty in the experimental values, such a procedure would be premature at
this time.

The parity ratio and spin cutoff parameter were also calculated and
are presented in Figs. 6 and 7, respectively. The crosses are calculated
from the levels listed in Endt and van der Leun [14]. The various lines
show the results for the two partitions with four moments of the Hamiltonian
and for one partition with two moments. The agreement is good for the
parity ratio but it appears the calculation approaches the asymptotic value
too slowly itfith energy. For the spin cutoff parameter, the A points are
from Ref. 20. A slight tendency to overestimate the spin cutoff parameter
is seen, but the agreement is generally good.

SUMMARY

Spectral distribution methods allow a calculation of the level density
and related parameters for a nucleus with inclusion of the two-body force.
This allows collective levels to be placed in their proper position (if
our input parameters are correct) and makes extrapolations to nuclei off
the stability line more reliable, since the two-body force incorporates the
differences between n-n, n-p and p-p interactions. We therefore require two-
body force parameters in addition to the single particle energies needed for
a Fermi gas calculation. The need for extra input is a disadvantage, but
it is the price we must pay for a more detailed description of the nucleus.
It also affords us an opportunity, in that it allows comparison with shell
model calculations and thereby makes possible a study of basis truncation
effects. A significant remaining problem is the need to speed up the
calculations. The slowness of the present calculations makes parameter
searches extremely difficult. Undoubtedly, some improvement will come as
faster computers are developed. More efficient calculational procedures
are also needed, however. We are presently investigating the effects of
correcting random vectors for both <H> and <H2>. This may lead to more
rapid convergence of <H3> and <Hlt> and cut down the computer time require-
ment significantly.

Although much additional work is needed, spectral distribution methods
show promise as a technique for improving our ability to calculate nuclear
level densities. Other benefits, including a better understanding of basis
truncation effects and the physics of the two body interaction itself, may
also result from these investigations.
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TABLE I

LEVEL DENSITY PARAMETERS FOR 28Si

Previous Values (fitted to data)

Beckerman * a = 2.168 c = .00187

Roeders etal. ** a = 3.11 6 = 3 . 5

Present Result ** a = 2.87 6 = 2.57

* Based on the form ce

2/a(u-<5)
** Based on the form

24 y/2 o
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Figure 1: Illustration of the similarity between the Gaussian and Fermi
gas level density forms. The solid line represents the energy
dependence of the Fermi gas form for a = 4 and 5 = 0 ; the
x-dashed and dot-dashed lines indicate fits to this form for
Gaussi&ns with two different dimensionalities. Note the close
agreement over a wide energy range.
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Figure 2: Level density for systems of one or two particles in a set of
equidistant single particle levels. The lower curve is the
Gaussian fit to the exact level density (dots) of a one particle
system in a basis of twenty levels with energies of 1, 2, . . .,
20 energy units. The curve on top is the corresponding fit
to the level density of the two-particle system.
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Eigenvalues for 21Ne calculated with an 1 60 core are grouped
in bins and plotted with a dot; the solid line is the corre-
sponding Gaussian fit, while the dashed line shows the modest
changes produced by including Hermite polynomials through
eighth order in the expansion.
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A NILSSON-BCS MICROSCOPIC APPROACH FOR LEVEL DENSITIES, EXTENDED TO

ODD NUCLEI, AND RELATED PHENOMENOLOGICAL PARAMETERS

G. Maino and E. Menapace

E.N.E.A., Via Mazzini 2, 40138 Bologna (ITALY)

ABSTRACT

A phenomenological and analytical formula for nuclear level

densities is proposed, that reproduces microscopic Nilsson-BCS cal-

culations, with inclusion of the blocking effect for odd N and/or Z

nuclei. A simple energy dependence of the level density parameter

"a" is obtained in the interval ranging from 4 to 20 MeV for a num-

ber of nuclei in the mass region 124<A<16O.

INTRODUCTION

A reliable knowledge of nuclear level densities over a wide range of ex-

citation energies and in a broad mass region, is requirsd by cross-section and

emission spectrum calculations. The experimental information - mainly from

the analyses of s-wave neutron resonances and from the cumulative number of dis

crete levels - is rather poor in many cases to permit an accurate determination

of the adjustable parameters in the usual level density formulae based on the

Fermi gas model ]1| . Microscopic approaches to nuclear level densities,

starting from realistic single-particle states and including residual inter-

actions as the pairing correlation in the BCS approximation |2| , are based on

more realistic assumptions, but require a lot of computing time. As a compro-

mise, in the last few years many efforts were accomplished to obtain reliable

but still closed-form expressions for the level densities, that would take into

account shell and pairing effects |3,4,5,6| .

In ref.|7| a mixed theoretical-phenomenological method is proposed and

an analytical formula is given able to reproduce both the experimental data at

the neutron binding energies and the theoretical calculations, based on a

Nilsson or Woods-Saxon level spectrum and the BCS treatment of the pairing in-
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teraction. In particular, the level density parameter "a" was found to depend

on the excitation energy. Subsequent works | 8,9 | essentially confirmed the .

simple exponential dependence of the "a" parameter, proposed in | 7| .

In the present paper, a very simple expression for the level density is

suggested, similar to that of ref. 7|, starting from NBCS microscopic calcula-

tions that take into account the blocking effect of single-particle levels due

to unpaired nucleon(s) in odd-A and odd-odd nuclei |10 , as the main differ-

ence with respect to the previously quoted papers.

THEORY

In the frame of NBCS microscopic calculations of the grand partition fun£

tion and of the saddle-point approximation to the Laplace inverse transform,

the level density is given by |11| :

S -J(J+1)/2o2

where U is the excitation energy in MeV, J the angular momentum in 'fi units, S

the nuclear entropy related to the intrinsic degrees of freedom, D a 3x3 deter-

minant, a the spin cut-off factor. Expressions for S,D and a ,with blocking

effects, aro. reported in ref.|io|.

The collective enhancement factors are (see ref.|i2 where the symbols

are explained):

for vibrational contr. (2a)

Fcoll

3/2 "
(2TT) i-exp(-WT) g

1

,3/2 // " Ki.j
exp K (

(2b)

-K ( - ) for rotational contr.

The form.(1), taking into account the blocking effect for odd N and/or Z

nuclei, was checked by calculations of level densities at the neutron binding

energies for 148 nuclei in the mass region 90<A<250 11| and comparisons with

the empirical s-wave neutron resonance spacings. The theoretical results agree

within a 30% with the experimental data and represent a considerable improve-

ment with respect to the usual "unblocked" treatment of odd nuclei.

This microscopic method can be applied with confidence in the excitation

energy range 4-20 MeV, where the involved approximations are still valid. At

lower energies, any statistical approach fails and would have to be replaced,

e.g., by combinatorial techniques; above 20 MeV the present rough treatment of

the collective degrees of freedom could be inadequate. Moreover, a constant

nuclear deformation, corresponding to the ground-state shape, is assumed over

the whole energy range. This assumption is justified only for nuclear tempera
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tures below 1-1.5 MeV [13|, (for the nuclei in Table I, the excitation energy
of 20 MeV corresponds to about 1 MeV of temperature).

A very simple expression is adopted to reproduce these NBCS calculations,
in-the energy range 4-20 MeV:

2/aU -J(J+1)/2a2

P(U,J) = e... . — . F ..(U.J) (3)

2/;fa1/4 U 5 M a3 C ° U

The following energy dependence

a = a (1 - e"YU) (4)

is derived from the microscopic entropy of form.(1), by means of the relation
a=S /4U , with a proper choice of the adjustable parameters a and y .

The collective enhancement factors are the same of forre.(2a,2b). The spin
cut-off factor a is approximated by the rigid body value:

a = K A ' /uTI <5)

with A mass number and K a constant.
Note that in form.(3), we do not introduce the odd-even mass difference

parameter 6 , which usually appears in Fermi gas-like formulae. This is why
the difference between the treatments of even and odd nuclei is introduced "ab
initio" in our microscopic blocked formalism, whose results are phenomenologically
reproduced by form.(3,4). An advantage of the present approach, with respect
to the Gilbert-Cameron expression, is that form.(3,4) can be extended to low
energies, possibly with a suitable change of the adjustable parameters a and y .

RESULTS

The formalism of the previous section has been applied to the analysis
of nuclei with mass number 124<A<160, corresponding to the second peak in the
yield of fission product nuclei. In Table I the phenomenological parameters,
obtained from a fit of the experimental information and of the Microscopic cal-
culations, are listed. At the excitation energies here considered, shell effects
are expected to be not negligible |14| ; since form.(3,4) are very simple, the
possible shell effects are loaded on the mass dependence of the a and y para-
meters. Figs. 1 and 2 show, respectively, a versus the neutron number N and y
versus the mass number A. The level density parameter a changes strongly
around the shell closure N=82, while the y parameter is smooth over the whole
mass region. An higher mean value <y> for odd than for even nuclei is found
as expected on the basis of a faster increase of the level density with the
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excitation energy for the odd nuclei. All the data of fig. 2 are approximated

to some extent, within the statistical errors, tc an overall mean value

<Y> = (0.2H0.06) MeV . The microscopic spin cut-off factor is reproduced at

energies higher than the neutron binding energy by form.(5) with K = 0.018. At

lower energies, the discrepancies may be considerable, as shown in fig. 3.

However, the introduction of the blocking effect, that reduces the pairing corre

lations in the odd nuclei, involves a microscopic calculated spin cut-off factor

closer to the rigid body value (see fig. 3, Eu in comparison with Eu).

Finally, in fig. 4 the theoretical NBCS and the phenomenological level

densities p(U,J=t/2) for '-* Sm are drawn and compared with the relation of

ref. |7|.
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TABLE I

Phenomenological level density parameters, deduced from microscopic NBCS cal-

culations.

124
Te

126
Te

127Te

13°I
132

Xe

131
Ba

136
Ba

137
Ba

138
Ba

1 39
Ba

139
La

141
Ce

142
Pr

143
Nd

144
Nd

U 5Nd

146
Nd

147

151
Nd

148
Pm

150
Sm

151
Sm

N

72

74

75

77

78

75

80

81

82

83

82

83

83

83

84

85

86

87

91

87

88

89

52

52

52

53

54

56

56

56

56

56

57

58

59

60

60

60

60

60

60

61

62

62

a

14.4

14.1

16.4

15.3

14.8

16.4

14.3

16.3

13.7

14.1

15.5

15.8

17.4

16.2

16.1

18.2

17.3

18.4

18.8

20. 1

17.8

19.2

0.21

0.21

0.31

0.45

0.20

0.26

0.19

0.29

0.19

0.23

0.33

0.22

0.29

0.21

0.21

0.30

0.21

0.23

0.24

0.34

0.19

0.23

(M.V-',

0.04

0.05

0.11

0.19

0.02

0.04

0.01

0.06

0.02

0.03

0.10

0.02

0.07

0.03

0.02

0.05

0.02

0.01

0.03

0.10

0.02

fi.O?
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Nucleus

152cSm

153
Sm

155
Sra

152
Eu

153
Eu

154
Eu

155
Eu

156Eu

153Gd

155 ,
Gd

156 ̂
Gd

157
Gd

158Gd

159Gd

161Gd

16°Tb

N

90

91

93

89

90

91

92

93

89

91

92

93

94

95

97

95

Z

62

62

62

63

63

63

63

63

64

64

64

64

64

64

64

65

a
(MeV"1)

17.8

19.0

18.6

19.7

17.9

19.8

17.8

18.8

19.4

19.2

17.9

18.9

17.6

18.0

18.6

17.9

y
(MeV"1)

0.19

0.24

0.23

0.29

0.22

0.25

0.21

0.26

0.23

0.24

0.19

0.23

0.19

0.24

0.26

0.30

AY

(MeV-1)

0.02

0.03

0.03

0.06

0.03

0.10

0.03

0.07

0.02

0.03

0.02

0.03

0.02

0.04

0.06

0.08
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line: NBCS calculations without blocking effect; dot-dashed line;

rigid body value o = | 0.018 A5//3T | 1-/2.
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lated phenomenological expression (form.3,4) with the parameters as

in Table I. Dashed line: calculations as in ref.l 7|.



LEVEL DENSITY APPROACH TO PERTURBATION THEORY
AND INVERSE-ENERGY-WEIGHTED SUM-RULES

T. Raya Halemane

Physics Department
State University College

Fredonia, New York 14063, U.S.A.

ABSTRACT

The terms in the familiar Rayleigh-Schrodinger perturbation
series involve eigenvalues and eigenfunctions of the unperturbed
operator. A level density formalism, that does not involve
computation of eigenvalues and eigenfunctions, is given here for
the perturbation series. In the CLT (central limit theorem)
limit the expressions take very simple linear forms. The evalu-
ation is in terms of moments and traces of operators and
operator products.

INTRODUCTION

In a conventional shell-model calculation, the dimensionalities of the
matrices to be constructed and diagonalized become too large to handle too
quickly as the number of nucleons is increased and the model space is ex-
tended to allow more excitations. It is desirable to approach the problem
from a different angle focusing on the simplicities available in a many-
particle system. A level density approach can make good use of the
central limit theorem operating in such spaces £l,2j. We give here such
a procedure £ 3 j for perturbation theory.

THEORY

Let the Hamiltonian H of a nucleus be perturbed by aK where a is a
small parameter and K is the perturbing operator. Let E and E denote the
corresponding eigenvalues of H and E = H + aK respectively. Let E be
expressed as a power series in a by
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(where S (E) = E). This implies that the S (E) are the same as the terms
in the Rayleigh-Schrodinger perturbation series. That is,

5l ( E } = < E | :< < E > (2)

E'*E (3)

We shall now obtain T.3 J expressions for S (E) in terms of the level
density p(]rl) of the Hamiltonian H. This, along with the moment calcu-, g
lating techniques ̂ 11 of the spectral distribution methods \_2~\ will make
it possible to calculate S (E) without having to diagonalize the
Hamiltonian matrix. Let p and p denote the density (normalized to
unity) of eigenvalues of H and H by p and p respectively and the
corresponding p t n moments by M and M (a). Now M (a) can be
written in two different ways. By the standard definition of
moment,

9
- O u

However, the perturbation H ->- H takes the eigenvalue F. to E . The number
of eigenvalues E which thus go to E is p(E)dE. T'.ien the pt!l

moment goes to

M u i * > = I C b « V '< lE> •A': (5)
™ -"cw

Using Leibnitz theorem in differential calculus and combinatorial
arguments it can be shown from (4) and (5) that for all integers n > o

where

+' P ' ~ (7)

where the partitions P are such that

1 -C, - n , -H " a (8)
k

- 86 -



It then follows that

Here F (E) is the distribution function ' p (x)dx
o; j o.

— t»

For n = 1 and n = 2 equ. (9) gives

(9)

(ID

By looking at their Rayleigh-Schrodinger forms it is clear that S (E) is
the expectation value K(E) of operator K at energy E and S (E) is the
inverse-e^ergy-weighted sum.

In a many-particle model space consisting of ra particles distributed
over N single-particle states, the central limit theorem (CLT) dictates
that in the limit of large particle number, the smoothed eigenvalue "
distributions for most Hamiltonian operators in the model space become
close to Gaussian Cl^- In this limit it can be shown that

CUT , v"> A- <K(H-<HwY/ (E £)
---> ^ ' - ? — - i r i (12)

5 E> (O £l )̂
•X. • - _ i

d " (13)

Where we use the notation that for any operator G, « G >> denotes the
trace over the model space and < G > denotes the average expectation value.
5 is the centroid and 0^ ±s the variance of the distribution p(W). Thus

% = M, = <H> , a n \
CTZ= M,-Mf = <H2> - <H>
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Also, -£, - < K - is the

representing thecorrelation coefficient between H and K with
variance of K.

The CLT results can be extended [3l to incorporate corrections due to
deviations of p(x) from Gaussian. These involve higher order moments and
correlations of H and K.

Applications of this theory to perturbations of model interaction
Hamiltonians and to moment of inertia in nuclei has been made £3] with
encouraging results.
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ABSTRACT

The application of certain mathematical methods
of number theory to compute the nuclear level densi-
ty is a well established procedure since many years.

The analytical calculations provide closed for-
mulas which have the advantage , on one side, to show
the physical meaning of the appearing parameters and,
on the other side, to provide simple analytic rela-
tions useful for applications. In this work, thr- most
relevant contributions related to number theory -
are briefly reviewed. The asymptotic calculation of
the partition function (needed to estimate the entro-
py at the saddle point) is an example of the useful-
ness of the standard methods of number theory for
level density studies. The application of such me-
thods led recently to more general results than tho
usual Bethe-formula or similar relations.

INTB.ODUCTrON

It was clear very early [ll , [2] , [3] , U] that for lar-
ge excitation energy there is a strong relation between
the computation of the .-a -called "partitions of integer
numbers" in number theory [5] and the calculation of the
nuclear level density. For example, for the simple case
of a systen. of N independent ermi particles on equidis-
tant energy levels £K= fc for k.=l, 2,3, . . . , the number
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p(NjE) of par t i t ions of an integer number E in par ts not ex-
ceeding N is related to the number 0 (N,£ ) of pa r t i t i ons of
an integer number £ in N different par ts t>y the r e l a t ion :

p ( N , E ) = p ( N , £ ) ( 1 )

where E is the excitation energy and £ =N(N+l)/2 + E is
the total energy . This relation can "be easily proved
using the relations :

2 p (N,E) efA N"^E = ~ j | 1 ( 2 a )
E,N k=0 1 - xy k

and
CO

= "T (1 + xy
k) (2b)

And using the following representations of Euler 1.6] :

N, = T i-* (3a)
00

1 +

N=l - y ) i,_i J - ̂ y

and

xNyN(N+l)/2

N=l

Moreover, for unrestricted partitions we have the celebra-
ted asymptotic representation of Hardy and Ramanujan and
Rademacher £ 5 ~\ :

which gives practically the exact value for p(E) after the
consideration of the f i r s t terms. The leading term in eq.(
(AjfEjrrl) gives :

( 5 )
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essentially the well known result [l] , [3] . The number
\/2h is also included in some computations of the nu-
clear level density for this simple problem [7j .

After thesft first studies to deduce simple analyti-
cal representations for the nuclear level density, like
relation (5)» there has been little progress in this sen-
se, although the mathematical methods of analytic number
theory have experienced several important advances. In the
next sections recent results for the level densities will
be described. These results have been deduced using methods
of the modern number theory.

THE PARTICLE-HOLE STATE DENSITY

The computation of the particle-hole state density
TAJ (E) for a Fermi system with p particles and h holes
for the equidistant spacing model is possible through the
application of techniques used for the calculation of res-
tricted partitions of integer numbers (the so-called "Fe-
rrar graphs", see ref, C5] )t One finds :

a p h <T F
3 = h UJh(E) q (6)

(q) p (q) h

where (q) = (l-q)(l-q ) ... (l-qP) , which is symmetric

on p and h .
From eq.(6) follows the exact recurrence relation :

TAJ h(m+p+h-i) - tOph(m+h-l) - U)ph(m+P-1)
 + U3ph(m-l) =

^Ulp.^j,.,!"') , m=l,2,... , (7)

And after the., application of the saddle-point method
to eq.(6), follows the relation :

UJph(E) „
p! h! (p+h-1)!

where

A(p,h) = ph - p(p+O/1» - h(h+l)A (9)
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which is symmetric also in p and h like the exact Uj H
Relation (9) differs from the result of Williams [8] : p"

A(p,h) = (p
2+h2)A + (p-h)/2 - h/2 (10)

which is only valid for p = h .
The result given by eqs.(8) and (9) agrees also with

the first term of the exact analytic expressions given in
C9] for low p and h .

It can be proved also that :

q p hy
P (q) (q)

p ( n ) q "

for p(n) equal to the number of unrestricted partitions
of n .

The calculations using the recurrence relation (7)
are also in agreement with the combinatorial computations
of BBhning tlO] using

E-ph

p(p,m) p(h,E-Ph-m) (12)

m=0

The application of similar technics to compute \fj •L.
for arbitrary energy spectra is under study.

NUCLEAR LEVEL DENSITY FORMULAE

The use of the methods of analytic number theory
can be applied to obtain an asymptotic expression for
the partition function which leads to a more rigorous and
more general result for the nuclear level density. The
partition function is expressed with the help of a Dirich-
let series and the parameters given by the analytical pro-
perties of the series determine the asymptotic representa-
tion of the level density .

The starting point is the usual relation for the nuclear
level density inclu ding pairing effects and obtained with
help of the saddle point method till • The nuclear level
density reads : ,-»

y
 r exp (S)
( e )
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where C is the total energy, K is the number of neu-
trons (protons), ^ n > p

 a r G the Lagfange parameters for neu-
trons (protons), to be determined, S is the entropy and
det \~6 M-- M-. S| is a certain determinant.

The entropy is given by :

s = m z

where Z(u , W. , ft ) i s the par t i t ion function given by :

p

(15)

i n Z = - p £ ( £ k - X - E k ) - ( 3 ^ + 2 £ l n ( l + e x p ( - | i E k ) )
k

The quasiparticle energies E are given in terms of the
single-particle energies £. ) t h e chemical potential K
and the energy gap /\ by :

G is related to A by the equation :

| = 2 | tgh( ^Ek/2) (17)

The saddle point equations are :

\ l n Zn = Nn ' Z>(tp
 l n Z

P = Np ' -

if ln Z = ln Z + ln Z , from which it is possible to ob-
tain : n P

S = 2 ( 1 -8^,2,4? In (1 + exP(-AE )) ) (19a)

= Z J £ , (1 - — tgh((3E./2) ) - • n ' p - > (

i,p k ^k E ^ r k n,p G

Nn =Zj (1 - -£ tgh( ftEk/2) )n (19c)
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where the subscripts n,p denotes neutrons and protons
respectively and S = S + S , £, = ? + ^

To compute these expressions asymptotically it is
useful to define the "quasiparticle partition function" :

;i + exp(-£E k) ) (20)

and rewrite :

S = 2 (1 - fib* ) In Z (f$) (21 )

The estimation of A Z(A) goes as follows :

.
= £., are substituted by integral multiples

i /of some energy unit 1/g :
A

6-k =
 e

k/g »
 f o r e

k positive integers (22)

thus :

In Z = 2 an In ( 1 + exp(- fi | (n/g) + fi ) (23)
n

where :

and

a = degeneracy of 8. , if n = e, for some e,n K K.

a = 0 otherwisen

We apply the Mellin transformation
i

)= 1 f dz(|)"zA (2A
C-1O0

' ( ^ K(z+l)/2

where K ( t ) i s a modified Bessel function of the second
kind. v

We define the Dirichlet series :

fn (25)
tn
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Which will be assumed to be analyt ic except for simple real
poles a t the points PC.̂ >CC> . . . >£?(>• 0 with r e s i -
dues A ,A , e t c . . And af ter some contour in tegra t ions i t
is possible to find

in Z = 1 i t i L f t g ) )
1 (26)

where L, (x) denotes the Riemann ^-function .
And for the entropy at the saddle-point :

= 2 D ( 0 ) l n 2 + 2 ( l - 2 - O 6 i ) r ( 0 C i + l ) ^ ( l + o C i ) 2 A i ( p / g ) ( l + _

+ 0( p-*MU) (27)

which leads after some algebra to :

S = SMj^i.Aj) Emi{DC0 , rn j> m j + 1 (28)

This is a descending- series of the excitation energy
E = £ - ̂ 0 - 5 P ( £o is the ground state energy and &P
is a correction for pairing and shell effects). The coe-
fficients M.(o£-,A.) and the exponents m.(oC-) are given

J 1 x »• J 1

by the Lagrange equations for C- and for N. The leading
term is of the form :

(29)
With equation (28j we have thus an explicit analytic expre-
ssion for the entropy which shows how the relevant charac-
teristics of the discrete single particle spectrum deter-
mines the nuclear level density for large excitation ener-
gies.
This formalism can be directly applied if the single parti-
cle energies have an explicit analytical expression . We
show below several examples without the inclusion of pairing
effects .
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Constant s ing le -par t ic le level densi ty .

In this case the Dir ichlet ser ies reads

D(s) = \ ( £ ( s , x ) + ^ ( s , l - x ) ) , f o r 0<x^ l /2 (30)\

where C (s,x) is the generalized Riemsnn £-function.This
series leads to :

p ( E ) = g ( X ) l / 2 6 expfff^l 2RE/3 ) (31)

ffn gp 12

which i s the well known t i l Bethe-formula for the nuclear
level dens i ty with g = g + g . I n t h i s case M(oC,A) i s

and m(oC) i s 1/2 .

Constant s ing le p a r t i c l e leve l dens i ty with constant dege-
neracy e •
For t h i s example :

D(s) = | e( J ( s , x ) + ^ ( S ' 1 - ^ ) ) . ^ 1 ^ (Kx-^1/2 (32)

This s e r i e s leads to the entropy :

S = if j|£ (E - I^TTlexCl-x)) (33)

which is in complete agreement with the result of Rosen-
zweig \\h~\ . In Fig.l. one can see the effect of the fi-
lling of the last energy level on the entropy.

Periodic single-particle spectra.

The Dirichlet series is given now by :

D(s) = £ (£(s,xo+m(l)) + £(s,l-xo+n,(l)) ) (3*0
1= 1

The s i n g l e - p a r t i c l e energies are given by (see ref. Ul5] ):
£.= k + m(1), Tl m(1) = 0 , k = 0 , l , . . . , 1=1,2, . . . , e (35)

K 1=1
And the entropy i s :

2
S = f; m(l)+i ̂
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which is in agreement with ref. [l 5] .

Harmonic Oscillator.

The Dirichlet series depend now also on the chemical poten-
tial M. :

D( s) = /^T0 ) 2 J £
f o r the s i n g l e p a r t i c l e e n e r g i e s £ = (k + 3/2)yi , k = O , l , . . .

For the en t ropy we have :

M °shell

where _ .
( 3 N ) 2 / 3 ( - l + 1 2 x ( l - x ) ) (39)

and

S = E + I. + tshell

These last two equations are in agreement with the results of \J6] ,
The consideration of a harmonic oscillator poten-

tial with the inclusion of deformation is also possible. In
general , it is possible to deduce explicit analytic expre-
ssions for every algebraic representation of the single-par-
ticle energy levels.

THE SHELL CORRECTION METHOD

The mathematical treatment applied in the preceding
section provides also a method to study the closely related
Strutinsky calculations for ground state shell corrections
[173 .

The effect of the shell structure on the potential
energy surface is expressed usually in the form :

&U = U - U (ii2)

- 99 -



where U is the total single particle energy sum given "by :

U = J dy yg(y) , N = J dy g(y) (43)

w i th

-i

using the partition function:

= £ e-f>Bk (45)
k

The smoothed energy U is determined "by the system :

P r
U = j d £ £ g(£) , N = J d£ g(£) (46)

where g(£ ) is the smoothed level density function :

e(t) = I
defined by the energy-smoothing parameter % and by the
smearing functions :

EM(x) = PM(x)W(x) (

where V.A-x) is a so-called curvature polynomial of M-th
degree and vJ(x) is a weight function .

To compute g(£) the partition function Z (j3 ) is
estimated using the Mellin transformation :

c+i

c - i '

to fin d :
n

3=1

where :

D o (B) = Z ^ £ ^ £ f o r k ^ n, ( 50 )
k

- 100 -



b i s t h e d e g e n e r a c y o f t h e l e v e l £ a n d w e a s s u m e t h a t

D ( s ) h a s o n l y s i m p l e p o l e s a t s = A . /* ^ j + 1 ^ 0 w i t h

r e s i d u e s B , W e o b t a i n i n t h i s w a v :
j

g ( £ ) = E B . t 1 " 1 + D o ( 0 ) 5 ( £ ) ( . ' I )

w i t h o u t t h e i n t r o d u c t i o n o f a n y p a r a m e t e r s i n a d d i t i o n t o
t h o s e d e f i n i n g t h e s i n g l e - p a r t i c l e s p e c t r u m .
T h u s , f o r t h e s m o o t h e d s i n g l e - p a r t i d e l e v e l d e n s i t y o f a
c u b i c b o x p o t e n t i a l o f s i d e L , o n e f i n d s :

( 5 2 )
w h i c h a g r e e s w i t h t h e r e s u l t o f r e f e r e n c e C l $ 1 o b t a i n e d
u s i n g a s e m i c l a s s i c a l p r o c e d u r e .

A n o t h e r e x a m p l e v e r y e a s y t o c o m p u t e i s t h e i s o t r o -
p i c h a r m o n i c o s c i l l a t o r w i t h a c o n s t a n t s p i n - - o r b i t i n t e -
r a c t i o n w i t h h a m i l t o n i a n :

H = "A" v2 +

l e a d i n g t o :

~ ( 1 - k 2 ) g.2 k\ 1 0 k 4 - 9 k 2 - 3
° S 9 9 9 99 99

r (fiW (l-k ) 12KW(l -k r

, 5 4 ,

w h i c h i s a l s o i n a g r e e m e n t w i t h t h e s e m i c l a s s i c a l c a l c u
l a t i o n o f t h e s a m e q u a n t i t y £ l 9 ] .

C O N C L U S I O N S

F r o m t h i s p a p e r i t i s p o s s i b l e t o s e e t h a t t h e m e t h o d s o f
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t h e m o d e r n a n a l y t i c a l n u m b e r I h e o r } ' r e p r e s e n t a v e r y
u s e f u l t o o l t o s t u d y t h e n u c l e a r l e v e l d e n s i t y a n d t h e p o -
s s i b i l i t y t o r e p r e s e n t i t t h r o u g h s i m p l e a n a l y t i c a l f o r m u -
l a s . T h e s e f o r m u l a s a r e o f a m o r e g e n e r a l n a t u r e t h a n
t h o s e n o r m a l l y u s e d i n t h e p r e s e n t l i t e r a t u r e .

P a r t i c u l a r l y , i t i s e a s y t o s e e t h a t t h e o b t a i n e d
a s y m p t o t i c e x p r e s s i o n f o r t h e e n t r o p y ( e q . { 2 8 ) ) • w i l l l e a d
t o m o r e g e n e r a l r e l a t i o n s t h a n f o r t h e c a s e o f o n l y o n e
p o l e . B u t e v e n f o r o n l y o n e p o l e w e o b t a i n a m o r e g e n e -
r a l e x p r e s s i o n t h a n t h e u s u a l B e t h e f o r m u l a . I t m u s t b e
s t r e s s e d t h a t t h e a n a l y t i c p r o p e r t i e s o f t h e D i r i c h l e t s e -
r i e s D ( t ) d e p e n d o n l y o n t h e s t r u c t u r e o f t h e q u a s i p a r t i -
c l e s p e c t r a a n d t h a t t h e k n o w l e d g e o f t h i s w o u l d d e t e r m i n e
e n t i r e l y t h e n u c l e a r l e v e l d e n s i t y t h r o u g h t h e p a r a m e t e r s
a p p e a r i n g i n e q . { 2 8 ) .

T h e u s u a l a s s u m p t i o n s o f a c o n t i n u o u s s i n g l e p a r t i -
c l e l e v e l d e n s i t y w e r e n o t r e q u i r e d , r e p r e s e n t i n g t h u s
a n o t h e r a d v a n t a g e o f t h i s m e t h o d . O f s p e c i a l i n t e r e s t i s
t h e p o s s i b i l i t y t o s t u d y t h r o u g h t h e a n a l y t i c b e h a v i o u r
o f D ( t ) v e r y i m p o r t a n t c o n t r i b u t i o n s a s t h o s e a r i s i n g f r o m
t h e s h e l l s t r u c t u r e o f t h e s p e c t r a a n d t h e i r e x p e c t e d d i s a p -
p e a r a n c e f o r v e r y h i g h e x c i t a t i o n e n e r g i e s .

T h e s o - c a l l e d a - p a r a m e t e r d e f i n e d b y :

o
a = S / 4 E ( 5 5 )

c a n a l s o b e c a l c u l a t e d i n t e r m s o f t h e g e n e r a l c h a r a c t e -
r i s t i c s o f t h e s i n g l e p a r t i c l e s p e c t r u m . P r e l i m i n a r y c a l -
c u l a t i o n s u s i n g d e f o r m e d s i n g l e - p a r t i c l e p o t e n t i a l s o f t h e
N i l s s o n t y p e r e p r o d u c e q u a l i t a t i v e l } ' t h e e n e r g y d e p e n d e n c e
o f t h e a - u a r a m e t e r r e p o r t e d i n r e f e r e n c e s [2 0] , [ 2 l 3 a n d
[ 2 2 l . F i g u r e 1 s h r o w s t h e r e s u l t s o f r e f e r e n c e [2 0 ] c o m p u t e d
n u m e r i c a l l y f o r a s i n g l e - c o m p o n e n t s y s t e m h a v i n g p a r t i c l e
n u m b e r s 4 0 a n d 5 0 w i t h a N i l s s o n s p e c t r u m . F i g u r e 2 s h o -
w s t h e p a r a m e t r i z e d e n e r g y d e p e n d e n c e o f t h e a - p a r a m e -
t e r o f r e f e r e n c e 2 1 f o r P r o a n d U . F i g u r e 3 s h o w s
t h e e n e r g y d e p e n d e n c e o f t h e a - p a r a m e t e r o f t h e n e u t r o n
c h a n n e l ( a ) d e r i v e d f r o m a n a n a l y s i s o f c r o s s - s e c t i o n s f o r
t h e r e a c t i o n P b ( c d , f ) f r o m r e f . [ 2 2 ] . I t i s c l e a r t h a t
t h e o b s e r v e d e n e r g y d e p e n d e n c e c a n b e w e l l r e p r o d u c e d
b y t h e e x p a n s i o n g i v e n b y e q u a t i o n ( 2 8 ) •
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EXACT CALCULATION OF LEVEL DENSITIES FOR
HON INTERACTING MANY-FERMION SYSTEMS

C. JACQUEMIN

Division de Physique Theorique , Institut de Physique Nucleaire,
F-9H06 ORSAY

ABSTRACT

We have developed a recursive method to exactly calculate
level densities of many fennion systems in large model spaces. A
short review of the method is given.Some illustrative calculations
are made for Calcium isotopes and lead 208. Results of saddle
points approximation are compared to exact ones for Calcium isoto-
pes.

The spectral distribution method which has been extensively
studied for many years has proved to be very usefull for describing the
statistical properties of many fermions systems [1] . However, in any appli-
cation of the method it would be very usefull to distinguish between the
physical approximations made through the choice of the model hamiltonian
and the numerical ones made in the derivation of the state densities L2) .
For non interacting fermions systems exact calculations have already been
made [3] which involve a tedious one by one counting of configurations and
are therefore strongly limited to small models spaces.

In this work we introduce a recursive method to exactly cal-
culate states densities of non-interacting fermions. As it avoid any
detailed counting it apply to large model space. Furthermore, in addition
to the energy dependance of state densities with respect to excitation
energy, its dependance with respect to total angular momentum, isospin,
parity, number of particle-hole can be exactly calculated.

The one fermion space, denoted by S(l), is made of 1 sub-
shells, and may contain particle and hole protons and neutrons states. The
subshells are specified by their energies {(ev)v = 1,..., A}, angular momenta
{(jv)v = 1,..., 1}, parities {(rrv)v = 1,...,£}, and isospins {(xv)v = 1,...,
&}. One also considers a complementary quantum number {{bv)v - l,-,&} to
distinguish between hole subshells (bv = -1) and particle ones (bv = +1).
A one-fermion state of S(l) is completly specified by its angular momentum
projection m and the subshell v to which it belongs. Such a one fermion
state is denoted by a and its various quantum numbers by m(a) = m , £(a) =ev,
J(a) = Jv, ... and so on.

IPNO/TH 83-17

Laboratoire associe au C.N.R.S
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For scalar state densities the basic recursion relations
write [4] :

pa(n,E) = p(n-l,E-e(a)) - pa(n-l ,E-e(a))

nP(n,E) =Spa(n,E) (1)
a

Here the scalar state density P(n,E) is the number of n-fermions Slater
determinant whose energy is E, pa(n,E) is the number of those Slater deter-
minants in which the one-fermion state a is occupied. The recursion relations
(1) start with p(l ,E) which is known once S(l) is specified and pa(l,E) =
6(E-e(a)). These recursion relations are easily generalized to a set of one-
body operators commuting two by two. For the operators HQ and Jz for instance
they write :

pa(n,E,M) = P(n-l,E-£(a),M-m(a)) - pa(n-l ,E-e(a) ,M-m(a))

np(n,E,M) =Z)pa(n,E,M) (2)

From which the level density fi(n,E,J) is then obtained by :

pa(n,E,J) = P(n,E,M=J) -PCn^M^J+l) (3)

To calculate a fixed parity state density one writes it as
a two dimensional vector whose upper component is the positive parity state
density and lower component the negative parity one. The set of equations
(1) then writes :

Pa(n,E) = Pa{p(n-l,E-e(a))- p
a(n-l ,E-e(a)) }

P(n,E) = n"1 Z P (n,E) (4)
a

Here P Q is a two by two matrixes which is equal to the unity matrix if
if(o£) = +1 and to :

0 1
1 0 if ir(ct) = -1.
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The method shortly reviewed above has been applied to some
calcium isotopes and to lead 208. The phenomenological one-fennion spaces
which have been taken from Bohr-Mottelson [ 5] , are displayed in Table 1.

For calcium isotopes one has calculated fixed J and parity
level densities (Fig.l). One notice that the level density is alternatively
dominated by its positive parity component and its negative one. This occurs
for all J values and all Ca. isotopes (39^A<45) and is due to the structure
of the one fermion model space. Indeed the hole states (s,d shell) have a
positive parity while the particle states (f,p shell) a negative one. As a
result the lp-ih, 2p-2h, 3p-3h, state which appears successively with exci-
tation energy have negative parity, positive parity and so on.

Approximate scalar state densities p(r.,E) can be obtained by
,use of the saddle point approximation from which fixed J level densities
»(n,E,J) are deduced by the spin cut-off formula :

( J* 1 ) 2

where the spin cut-off factor a(E) is the square root of the the fixed
energy mean value of Jz. Comparison has been made (Fig.2) of- these approxi-
mate densities [6] with the exactly calculated ones for calcium isotopes.
The saddle point approximation systematically overevaluate scalar densities ;
relative error which is more than 40% at 10 MeV decreases to less than 15%
at 50 MeV. In addition to that the spin cut-off factor approximation over-
evaluate (=; 20%) the relative intensities of low J values and underevaluate
(-10%) those of large J values (i.e. J>2cr(E)).

For lead 208, one has carried out calculation of state densi-
ties with fixed parity and fixed number of neutron (protons) hole and par-
ticle (Fig.3). Comparing these results to those of Calcium isotopes one
notice that (one particle- one hole states excepted) positive and negative
parity densities have almost equal values. As for the calcium case this is
due to the one fermion space structure but here, hole states and particle sta-
tes have not a definite parity.

To conclude this short review of the proposed method let us
say that the residual interaction may be approximately taken into account.
The set of recursive equations 1 can be completed by similar equations rela-
ting k-body propagation functions p >•••> k(n,E). These functions are used
to calculate the moments of the residual interaction V over eigenstates of
HQ with eigen-energy Eo- Approximate level densities are then obtained as
sums over EQ of gaussian partial ones. Numerical calculations of such densi-
ties are one progress.
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TABLE 1

One body model space and hamiltonian. For calcium 40 (col.l) neutron
and proton spaces and hamiltonian are identical. The first three
subshells (s, d shell) are hole ones thefour last (f,p shell) are
particle ones. For lead 208 neutron space (col.2) and proton
space (col.3) are very differents. These model spaces deduced from
experiment have been taken from ref.[5].
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CA40 2*J= 0

Fi'gure 1 : Exactly ca lcula ted level dens i ty of Calcium 40 for J » 0.
The c o n t i n u o u s l i n e i s f o r p o s i t i v e p a r i t y s t a t e s ,
dotted l ine for negative ones. The model one p a r t i c l e space and
one-body hamiltonian are specif ied in Table 1 column l.They have
been taken i d e n t i c a l for neutrons and protons .



CA40 2*J= 0

E(MEV)
Figure 2 : Comparison of exactly and approximatly calculated level densities

for Calcium 40 and J = 0. The continuous line is for exact calcu-
lation and the dotted line for approximated one. Approximate re-
sults are obtained by the use of the saddle point approximation to
calculate the inverse Laplace transform of the grand-partition
function, together with the use of spin cut-off factor approxima-
tion.



Figure 3 : Fixed parity, fixed number of particle-hole state densities for
lead 208. From top to bottom are lp-lh, 2p-2h, 3p-3h and 4p-4h.
Exactly calculated partial state densities. The model one particle
spaces an one-body hamiltonian are specified in Table 1 column 2
(neutrons) and column 3 (protons).
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PARTICLE-HOLE STATE DENSITIES
FOR PREEQUILIBRIUM REACTION CALCULATIONS
AND FOR CLOSED AND OPEN CONFIGURATIONS

C. Kalbach

Triangle Universities Nuclear Laboratory
Physics Department
Duke University

Durham, North Carolina 27706, U.S.A.

ABSTRACT

The current status of simple state densities for
fixed numbers of quasiparticle degrees of freedom is
discussed. The state densities are derived for the
case of equally spaced single particle states. Special
emphasis is given to the case in which states with
unbound particle degrees of freedom are differentiated
from the remaining configurations. Some important
details are discussed and open problems, particularly
relating to deviations from the simple equi-spacing
model, are considered.

I. INTRODUCTION

State densities for systems with fixed numbers of
quasiparticle degrees of freedom play the same role in
preequilibrium reaction calculations that total state densities
play in compound nucleus (or equilibrium) reactions. They
determine the relative phase space for emission into different
exit channels and thus the relative yields of different types of
particles and the energy distributions of the emitted particles.

But quasiparticle state densities do more. They also are
used to describe the redistribution of the projectile's energy
within the composite nucleus and the competition between
particle emission and the residual interactions which accomplish
the redistribution.

While quasiparticle (or particle-hole) state densities play
a role similar to total state densities, so too they are beset
with some of the same problems. For the sake of simplicity
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in reaction calculations, the state density formulae are usually
derived in a very simple model with a simple set of single
particle states assum'ng particles (fermions) which are non-
interacting. Then, almost as an afterthought, phenomena such as
pairing interactions and shell structure must be introduced in
some approximate way. In addition, there are other problems,
such as taking the finite depth of the nuclear potential into
account, which are peculiar to preequilibrium studies using
particle-hole state densities.

The purpose of thir talk is to review the state of
quasiparticle state densities in their most commonly used form
for preequilibrium reaction calculations and then to go on to
discuss how these results are extended when it is necessary to
differentiate between states which do and do not have unbound
particle degrees of freedom or, to put it differently, between
closed and open configuration?. This differentiation is useful
in certain calculations of angular distributions for particles
emitted in the preequilibrium phase of a reaction. [l-3j

There are more realistic microscopic approaches to
particle-hole state densities which can serve as guides for the
simpler, more phenomenological models. They will, however, not
be discussed in this paper which is restricted to state density
formulae suitable for routine use in phenomenological
preequilibrium reaction models.

II. QUASIPARTICLE STATE DENSITIES IN THE EQUI-SPACING MODEL

While a few calculations of particle-hole state densities
have been done using a realistic set of single particle states
(see e.g. 4̂-7"] ) • ̂ Y fai" the majority of calculations for use in
preequilibrium reaction models are done using a set of equally
spaced single particle states. This set, at least initially, is
assumed to be infinitely deep. The rationale for using the
equi-spacing model (or ESM) is that it is simple. For the most
part the degrees of freedom in a real nucleus sample the single
particle states in the neighborhood of the Fermi level, and the
density of the single particle states in the equi-spacing model
is supposed to represent an average of the density for realistic
levels taken in the neighborhood of the Fermi level.
Corrections to the state densities to account for both long and
short range deviations from the ESM can be included later.

General Results

What we seek to calculate in quasipar tide state densities
is the density of distinguishable configurations available to a
particular nucleus at a fixed excitation energy and with fixed
numbers of particle and hole degrees of freedom.

- 114 -



When the Pauli exclusion principle is neglected, the result
can be arrived at using simple combinatorial techniques starting
from the single particle state density by folding in additional
degrees of freedom. The result is given by Ericson [8] . To
include the Pauli principle requires much more sophistication.
Williams [9j works from partition functions and uses the Cauchy
residue theorem (rather than the saddle point method of
integration). His result has the same basic form as Ericson's
but contains the added correction function A(p,h) which includes
the Pauli blocking effect. Williams' result for a single type
of fermion is

<o(p,h,E) p{ h! (n-1) ! ' ( 1 )

where n=p+h is the total number of degrees of freedom consisting
of p particles and h holes. The quantity g is the single
particle state density, and E is the excitation energy of the
system. The exact form of A(p,h) used in calculations varies
somewhat from group to group and is discussed below.

Williams also generalized his result to the case' of two
distinguishable types of fermions. Letting the subscripts w and
v denote protons and neutrons respectively, the result becomes

,P
gn?r g n v (E-A(p ,h ,p ,h

* y \ ' ! 7 y,P ,h ,E> = y u\—, ! 7 ny, (2
IT -v v p ! h ! p ! h J (n-1) 1

7f 7T V V

Williams' work was extended by Betak and Dobes D*Ol to
include the limitations imposed by the finite depth of the
nuclear potential. Equations (1) and (2) allow hole degrees of
freedom to be arbitrarily deep. Eliminating those states which
have holes deeper than the assumed v»ell depth, V, produces the
state density

(E-A . (PrhJ-jV)11"1 9(E-A ,(p,h)-jv) (3)

where 0(E) is the Heaviside function which is zero for a
negative argument and unity otherwise. The subscripts on the A
function indicate the number of particle and hole degrees of
freedom whose minimum energy is specified by some condition
other than the exclusion principle. The form of Eq. (3) can be
seen more clearly if it is expanded and the zeroth order term
factored out. This gives
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. h (h-1) 9(E-2V) ... ] (4)

Here the A's have been neglected in all but the leading term.
The first term is the infinite well result, the second term
subtracts those states which have a hole with excitation energy
(measured relative to the Fermi surface) greater than V. But
any states which have two such holes have been counted twice;
those with three have been counted three times, and so on. This
requires the extra terms. For convenience in further
calculations Eq. (4) is rewritten as

E J ^ j n G(E-jV) . (6)

Exactly the same correction function can be applied to Eq. (2)
for the case of two types of fermions.

Densities of States Accessible in Residual Interactions

In preequilibrium models such as the exciton model it is
generally recognized that the particle-hole states are not
eigenstates of the system. While the main part of the
nucleon-nucleon interaction is assumed to have gone into the
potential well in which the single particle states exist,
residual interactions will cause transitions from one
particle-hole state to another. For energy conserving, two-body
interactions the transitions which can occur involve either the
creation or annihilation of a particle-hole pair (a third degree
of freedom must be involved to conserve energy) or the exchange
of energ" between degrees of freedom leaving n unchanged. These
types of interactions are denoted by the subscripts +, - and 0,
respectively. Their rates are given by time-dependent
peiturbation theory and have the form

X+(p,h,E) = ^f M
2 0)+(p,h,E) , (7)

where M is some appropriate average effective matrix element and
0)+ is the average number of final states accessible to an
initial state specified by p, h and E in a pair creation
interaction. Thus for many reaction calculations it is crucial
to have the densities of accessible final states U)+ and u)_ .
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The scattering interactions in the one fermion model are not
important because they leave the system in the same class of
states, but in the model with two types of fermions they can
lead to the transformation of a proton particle-hole pair into ;
neutron pair.

These densities of accessible final states (or transition
state densities, as they are also called) have evolved in the
same way as the full particle-hole state densities. The first
results [llH were for an infinite well and did not include the
effects of Pauli blocking. Later Dobes and Betak £l2j derived
both exact (relatively intractible) results and approximate
results which include Pauli blocking. They used the Darwin-
Fowler method of statistical mechanics. Similar results can be
obtained by combinatorial methods starting from the full state
densities. The results vary in detail but have the same basic
form. The results corresponding to the results for closed and
open configurations to be considered later are

0) (Prh,E) = —3. il
2(n+l) (E-A(p,h))n L

o)o(p,h,E) = 2—(E-A(P,h)) {p(p-l)+4ph+h(h-l)} (9)

u_(p,h,E) = g ph(n-2) ( i o )

The results of Dobes; and Betak [12] and of Oblo"zinsky e.t at [13]
differ in that they replace A(p+l,h+l) in u)+ with A(p,h) and add
extra Pauli blocking corrections to each of the three equations
For WQ each of the three terms in the sum has a slightly
different correction function.

The results of Eqs. (8)-(10) can be easily generalized to
the case of two types of fermions. The main difference is that
there are separate rates for creation of proton and neutron
particle-hole pairs and for annihilation of proton and neutron
pairs. Further there is the possibility of converting a proton
pair to a neutron pair or vice versa while leaving the exciton
number n unchanged. The appropriate transition state densities
are

,_ > _ -u, —» g fn g + 2 n g
iti (P /h ,P ,h ,E) = ^ T T 7T TT V ^

TT+ TT IT V V
n

(E-A(p +l,h +l,p ,h )
* * v v (11), n - l
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to (p , h , p , h
TTV ^ 7 T TT V V

p h gg E-B(p ,h ,p ,h
I T ' I T " - v v

n - 1

n |A(p^h,pv,h)-A(p7r-l,h77-l,Pv+l,hv+l) |} (12a)

( ( p i i , i r P v v p i r i T p v v ) ( 1 2 b )

a) ( p , h , p , h , E ) = PTT
 h i r ( { n - 2 ) g + 2 n g ) ( 1 3 )

I T - ^ T T TT V V = l TT IT V \K

whete the subscripts TT+, TTV and IT- denote creation of a proton
pair, transformation of a proton pair into a neutron pair and
destruction of a proton pair.

Finite well depth corrections can be introduced into the
transition state densities as well. This is commonly done by
multiplying Eqs. (8)-(13) by the correction function, f,
appropriate to the final class of states.

The Pauli Correction Function

The previous subsections have indicated the general form of
the quasiparticle or particle-hole state densities. But, as has
already been mentioned, there is some difference in the way in
which the correction function A(p,h) is evaluated by different
groups .

The first question is the location of the Fermi level.
Williams [9] has taken the Fermi level to coincide with the last
occupied single particle state in the ground state of the
nucleus in question. This is illustrated in Fig. 1. The
excitation energies (in units of 1/g) of the single particle
states accessible by the particle degrees of freedom are then
1,2,3,4... while the energies for the hole degrees of freedom
are 0,1,2,3... Williams' result for A(p,h) is then

A(p,h) = (p2+h2+p-3h)/4g (14)

This has the obvious disadvantage that it is not symmetric in
particles and holes. On the other hand, Eq. (14) can be
rewritten in terms of Epauj.i(p,h) , the minimum energy that the
configuration must have in order to satisfy the requirements of
the exclusion principle given by the sum of the excitation
energies of the first p excited particle states and the first h
excited hole states. This gives
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A(p,h) = E n ..(p,h) - {p(p+l)+h(h+l)}/4g . (15)

Thus the lack of symmetry between particles and holes in A(p,h)
was in the Pauli energy. It is thus possible to move the Fermi
level to its correct position half way between the last filled
and first vacant single particle states in the ground state of
the nucleus (see Pig. 1) and reevaluate the Pauli energy. This
gives

A(Pyh) =
!±!

Each time a particle is emitted or absorbed by the system, the
Fermi level must be moved accordingly.

The second question was discussed in [l4j. Equation (16),
and indeed all of the energy correction functions discussed so
far have assumed that the number of particle degrees of freedom
may be different from the number of hole degrees of freedom.
Thus, typically, for a nucleon induced reaction the first states
of the composite nucleus are p,h=2,l states. These are loosely
referred to as 2-particle, 1-hole states, yet it is clear that
each time a particle is excited above the Fermi level a hole
must be created below it. Thus, strictly speaking, the number
of particles must be equal to the number of holes. The apparent
discrepancy disappears when the need to differentiate between
particles and particle degrees of freedom on the one" hand and
between holes and hole degrees of freedom on the other is
recognized. When a nucleon projectile enters a nucleus, the
Fermi level moves up. This leaves a hole just below it (see
Fig. 2) . The projectile indeed is a degree of freedom. It can
give up excitation energy in a two-body interaction and still
remain a particle. The hole cannot. It is fixed at the Fermi
surface and is not a degree of freedom. It is, so to speak,
passive. Yet it has an effect on the energy required for the
configuration by the Pauli principle. Thus to properly
calculate the Pauli energy for Eq. (15) it is necessary to
define

p = maximum(p,h) (17)

2
E ,. = p /g (18)
Pauli m

with equal contributions to the Pauli energy coming from
particles and holes. Thus the function A(p,h) becomes

„ , T,V P2 p(p+l)+h(h+l)
A(p,n) = _jm - (19)

g 4g

with an analogous expression for systems with two types of
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fermi on s [14J.
The form of A^jfp,!!) is discussed in Section III.
While the effects considered here are not large, it is

useful to think carefully about such details, particularly when
attempting to derive quantities such as state densities for open
and closed configurations from the full particle-hole state
densities.

Numerical Results

In actually calculating particle-hole state densities in
the equi-spacing model with an infinite well depth, the only
adjustable parameter is the density of single particle states,
g. When protons and neutrons are treated as indistinguishable,
g is usually taken from the level density parameter a=Trzg/6.
Thus quite commonly the single particle state density used is

g = A/(13 MeV) (20)

which corresponds roughly to a=A/(8 MeV). Sometimes g is taken
from the Gilbert and Cameron fl5] values for a. Similarly, for
the distinguishable case Eq. (20) becomes

g = Z/(13 MeV) (21a)

gv = N/(13 MeV) (2lb)

When finite well depth corrections are included, the depth
of the potential well is also needed. It is usually taken to be
of the order of 38 to 40 MeV.

Figure 3 shows the dependence of the particle-hole state
density on the number of particle and hole degrees of freedom.
Calculations are shown using Eq. (1) both with A(p,h)=0 and with
A(p,h) given by Eq. (19). At low particle numbers the state
density increases rapidly with the number of particle degrees of
freedom due to the E n - 1 dependence. Eventually, however, the
factorials in the denominator cause the curve to turn over.
Including the effects of the exclusion principle has little
effect on the very simple states where there should be little
1 locking, but it drastically reduces the state densities for
more complex states and causes a shift downward in the peak
particle number. The peak in the curves in Fig. 3 represents
the most probable configuration at equilibrium since all states
should be populated with equal likelihood. It is designated
by p,h=p,E.

The corresponding transition state densities are shown in
Fig. 4. The most important thing to notice is that they are
such that they will tend to push the system toward the most
probable equilibrium states. Pair creation is dominant for the
simple states while pair destruction dominates for the most

- 120 -



complex states.
A test for the consistency of the full state density with

the transition state densities is that they satisfy the steady
state equilibrium condition

u(p,h,E) co+(p,h,E) = w(p+l,h+l,E) u_ (p+l,h+l,E) (22)

This guarantees that if the system is at statistical equilibrium
the residual interactions will not disturb that equilibrium.
Equation (22) is satisfied by the state density expressions from
Eqs. (1), (8) and (10). The same is true if the finite well
depth corrections are included by replacing Eq. (1) with Eq.
(5), multiplying Eq. (8) by f(p+l,h+l) and Eq. (10) by
f(p-l,h-l).

Deviations from the Equi-Spacing Model

For particle-hole state densities, just as for total state
densities, it is sometimes necessary to include such physical
effects as pairing and shell structure in order to obtain
suitable accuracy in reaction calculations.

With regard to the pairing interaction, the convention here
as in evaporation calculations has been to subtract a pairing
energy from the excitation energy. In the equilibrium case this
is supposed to correct for the effect of the pairing interaction
on the ground state of the nucleus, since the pairing effects
are presumed to have washed out at the relatively high
excitation energies typically encountered. This seems to be
appropriate for the moderately complex states in the particle-
hole scheme, but not for the very simple states populated in the
early stages of a reaction. For the simple states Grimes
[16,17] has proposed using a pairing correction determined from
the number of unpaired nucleons in the state in question
relative to the ground state of the nucleus. The difficulty is
that most calculations are still done using state densities for
one type of fermion whereas the preequilibrium pairing
corrections should depend on how the excitons, or degrees of
freedom, are distributed among protons and neutrons.

Extending Grimes' suggestion, the proton pairing energy may
be found by taking the minimum number of unpaired protons in the
particle-hole configuration (0, 1 or 2) and subtracting the
number (0 or 1) in the ground state of the same nucleus. This
number of extra unpaired nucleons is then multiplied by 6^, the
usual pairing shift appearing in, for instance, the Gilbert and
Cameron [l5[] or Nemirovsky and Adumchuk [18]] prescriptions.
The preequilibrium proton pairing correction appropriate to the
very simple, few-exciton states becomes
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A (p ,h ) = 0 for odd Z

= 2<S for even Z and odd p
IT 7rm

= 0 for even Z and even p (23)
Trm

and similarly for the neutron pairing correction. The utility
of this prescription coupled with the usual equilibrium-type
corrections for the more complex states is currently being
tested in reaction model calculations. It is interesting to
note, however, that the average of Eq. (23) over all possible p
values gives the usual equilibrium pairing correction.

Inclusion of shell structure effects also requires the use
of state densities for two types of fermions. A simple approach
which has been checked against numerical calculations based on
realistic sets of single particle states but is only now being
compared with data in reaction calculations is the so-called
shell-shifted equi-spacing model or S2-ESM [l4j. It is
illustrated in Fig. 5. In this model the usual ESM state
density expressions are employed, but the Pauli energy in the
two-fermion-type counterpart of Eq. (15) is evaluated from the
states in the S2-ESM. The Fermi level is, of course, given its
physical location relative to the shell gap. Additional shell
corrections may be applied by using different g-values for
proton particles, proton holes, neutron particles and neutron
holes. These are obtained by averaging in the S2-ESM scheme
over a suitable energy interval.

Finally corrections to the single particle state density g
for long range deviations from the ESM have occasionally been
employed. Most frequently this involves using different g-
values for particles and holes. These can be chosen assuming
that the density of single particle states varies as the square
root of their energy measured from the bottom of the well and
using the average energies for particle and hole degrees of
freedom as in Ref. [2j. Alternatively the effective single hole
state density can be chosen so that there are A states between
the bottom of the well and the Fermi level £ioj. This gives
gjlo^e=A/V. . In this scheme the particle value is A/ (14 MeV) .

III. CLOSED AND OPEN CONFIGURATIONS

In calculating angular distributions for particles emitted
in preequilibrium reactions it is often convenient to know how
often the system passes through a series of particle-hole states
all of which contain an unbound particle degree of freedom
since under these conditions the angular distribution is
expected to be forward peaked rather than symmetric about 90°.
To do that calculation it is necessary to distinguish between
those quasiparticle configurations which contain an unbound
particle degree of freedom and those which do not.
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Derivation of the Density of Unbound Particle-Hole States

The density of states containing an unbound particle (what
will be loosely termed the density of unbound states) is most
easily derived in the infinite well depth limit assuming that
there can be no more than one unbound particle. It is then
given by

fE-A(p-l,h)
oT ; (p,h,E) = a)(l,0,e) o)(p-l,h,E-e)

0{E-A(p-l,h)-e) de (24)

where S is the energy mid-way between the last bound and first
unbound single particle states, and S+A(1,O) is the minimum
energy required for the state density 0)(l,0,e).

In Eq. (24) the integrand is the density of states
specified by p and h which has one particle degree of freedom at
energy e. By integrating this from what is essentially S up to
the maximum allowed energy, all unbound particles in this class
of states are counted. If there are no states with two or more
unbound particles, then the result is the density of unbound or
open configurations. It has the form

•at , . „•) n - 1

O) ( U ) (p,h,E) = g I ~ l,0(P' '~ '
(p-1)i hi (n-1)!

O(E-A (p,h)-s) (25)
1 , U

where it has been a s u m e d that A(1,0)+A(p-1,h)=A X r 0(p,h).
Equation (25) looks like Eq. (1) for the full quasiparticle
state density. There is a slight change in the Pauli blocking
term, the excitation energy is reduced by the amount S, and p!
has become (p-1)I because the unbound particle is now assumed to
be distinguishable from the others.

When there can be more than one unbound particle (roughly
speaking if E>2S) then the integral in Eq. (24) counts doubly
unbound states twice and triply unbound states three times. The
problem is almost identical with the correction for the finite
potential well depth where states with holes below a certain
depth were to be eliminated. Here states with particles above a
certai" height are to be counted. Mathematically the solutions
have the same form so that the density of particle unbound
states is no longer given by Eq. (25) but becomes

, . n p h
... <u) /- x. ™\ _ 9 _ v v i_i

(E-A. .(p,h)-iS-jv)n X 6(E-A. .(p,h)-iS-jv) (26)
1 i 3 ! i 3
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or, neglecting the A's in all but the leading term

M
(u)(p.h.E) = g " (E-A^.CP-I^J-S)"- 1

 p )

(p-1)1 hi (n-1)!

e(E-iS-jV). (28)

The quantity CO (p,h,E) contains all states specified by p and
h that have at least one unbound particle degree of freedom.

The density of bound states (those that do not have an
unbound particle degree of freedom even though E may be greater
than S) are denoted w(b) (p,h,E) and are found by simple
difference:

<D(b) (p,h,E) = w<p,h,E) - co(u) (p,h,E) . (29)

Densities of States Accessible in Residual Interactions

As before, in order to do reaction calculations it is often
necessary to have the transition state densities; the densities
of states accessible in the residual two-body interactions.
Now, however, instead of one hierarchy of states there are two,
one for bound states and the other for unbound states. This is
illustrated in Fig. 6. Thus instead of one transition state
density for pair creation, there are four: U)_j>.uu), ai^ut>) , ^
and lujL-frk) . Here the first superscript denotes the bound or
unbound character of the initial state and the second the
character of the final state in the interaction. Similar
considerations exist for exciton scattering and pair
annihilation.

The procedure which has been used is to derive these
transition state densities from the state densities for open and
closed configurations ignoring the finite well depth corrections
and corrections for multiple counting of multiply unbound states.
The necessary state densities are given by Eqs. (1), (25), (29)
and the analog of Eq. (25) for states with two or more unbound
particles. This procedure, described in Ref. [2J, yields the
simplest results,to which correction functions can be applied.

The state density u) +
u u' (p,h,E) contains three distinct

contributions: one from excitation by the unbound particle, one
from excitation by one of the bound particles and one from
excitation by a hole,

w ( u ) (1,0,e) u(p-l,h,E-e) -* os(u) (2,1,e) w(p-l,h,E-e)

w(l,0,e) co(u) (p-l,h,E-e) -* w(2,l,e) io(u) (p-l,h,E-e)
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io(O,l,e) w ( u ) (p,h-l,E-e) -*• to(l,2,e) to(u) (p,h-l,E-e)

If, however, E>2S so that there can be multiply unbound states,
then transitions of the type

u:(u)(l,O,e) to(u) (p-l,h,E-e) +w ( u )(2,l,e) to(u) <p-l, h,E-e)

have been counted twice, once in each of the first two cases
considered above. To remove this double counting of transitions,
contributions from this fourth category need to be subtracted.
The resulting transition state density then becomes

2n(n+l) [E-A1 Q(P,1

n+1(E-A. .(p+l,h+l)-sl

3-15 (E-A2>o(p+l,h+l)-2S)
n+1J

g3

= i i. (30j

2n(n+l) X^ x(p)

Here and in subsequent equations the notation

X.(p) = (E-A. o(p,h) -is] 0(E-A (p,h)-is) (31)
1 1 , U i. , U

is employed. The subscript i denotes the number of unbound
particles required in each energy term. The functions x^ used
in Refs. (_2J and \J-9j are related to the present functions by
the relation X^ (p) = xi+i(P)• I n a similar way, the other
transition state densities needed in preequilibrium calculations
can be derived.

The results of Eq. (30) and the other necessary transition
state densities do not yet contain corrections for the multiple
counting of multiply unbound states in co(u)(p,h,E) and the
similar corrections to u) ̂ 2u' (p,h,E) , the density of states with
two or more unbound particles. Neither do they contain the
finite well depth corrections.

Clearly it would be preferable from a theoretical viewpoint
to derive all of the transition state densities using the more
exact quasiparticle state densities of Eqs. (3), (26) and the
analogous expression for states with two or more unbound
particles (rather than Eqs. (1), (25) and their analog). This,
however, has not yet been done. Instead, a procedure involving
use of the correction functions f, f^ and f2 (the analog of f^
for doubly unbound states) has been employed.

The method used in Ref. [2] was to correct the particle-
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hole state densities for the initial states which appear in the
denominators using the appropriate f functions. In the
numerator the f function for ' the initial state was also applied
as was a special correction function for the final state of the
degrees of freedom involved in the interaction. In [_19j a
somewhat similar procedure was adopted, although for bound
initial states populating unbound final states only the
correction functions for the initial states were applied and for
d!+(bu) the finite well depth corrections were included in the
limits of integration.

In the present report a different method is employed. As
before the initial state densities appearing in the denominator
are corrected with their appropriate f functions. The numerator
of each integral contributing to a transition state density is,
however, corrected by two f functions, one each for the initial
and final states considered in that integral. Thus, for
instance, the first three contributions to W+(

uu) are all
corrected by the product fi(p)•fi(p+1) while the term which
corrects for double counting of transitions is corrected by
f2 (p) "f2(P+1) • This has the advantage that the resulting
transition state densities satisfy a number of consistency
conditions which were not met by the earlier results. This is
discussed in more detail below.

The resulting corrected transition state densities for the
transitions indicated by arrows in Fig. 6 are

,.(uu)
;-"'(P,h,E) = — a _ ±

2n(n+l) x" (p)•f1(

j~(n+l) X^ + 1 (p+1) • f 2 (p) • f x (p+1)
f2(p)f2(P+D ( 3 2 )

j - " , P , h . M -
2n(n+l)

- fx(p)-f

I-I
f1(p)

{§ [XQ(p+1)-Xx(p)]
2+§[x2(p+1)-xj(p)] +xo(p+1) X2(p)}

(P-Dx2

2

(P)

D-x2

• f 2 ( p ) - i

(P)]2+f[
+ 2 (p-1)

:X(P+D

^ ( p + D - X

X ^ + 1 ( P + 1 )

'l(p)]+-

• f 2 ( p ) -

^ ( P + D -

f 2 (P+,D

X 2

J < 3 3 >
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(bu) • _ g 3 h

2n(n+l)

f ( p j - f
f2(p+l)J

( P , h ,E) = — 2 ^ =

2n(n+l) Xn
Q

 1 ( p

[ n x J + 1 ( p + D - f (p)- f (P+1)

- px j~ 1 (p ) - f 1 (p ) - f (p+D-

{J [x0(p+i)-xx(P)]2+|[xJ

- P x " ~ 1 ( p ) - f 1 ( p )

- x j ( P ) ] +X0(P+1)• x

f 1 (p)- f 1 (p+D

f 2 ( p ) - f 1 ( p + D

(p,h,E)

</Ub) (p,h,E) = 2_
2n

f (p){nXQ(p)-(n-2)X1(p)

l(p-l) (n-2)X2(p)- f2(p)

f2(p)
1

{nX1(p)-(n-2)X2(p)}J
{P,h,E) = a!

2n

- 4(n-l)x!J(p)

- f (p) { n X 0 ( p ) - ( n - 2 ) X 1 ( P )

4 (p-1) ( n - 2 ) X 2 ( p ) - f 2 ( p )

f 2 (p ) -

( 3 4 )

( 3 5 )

( 3 6 )

J.

{ n X 1 ( p ) - ( n - 2 ) X 2 ( p ) M (37)
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o)(uu)(p,h,E) =

(n-l)xj '

/Ub)(p,h,E) =

f2(p)-f2(p-l) | (38)

. fx(p)-f (p-l)

~̂1 J (39)

4 X^ (p) f(p) - pX_
U X.n-3

q J(p-D- f (p)-f1(p-l){(n-2) (n-3) X^ (p-l)

l-l) (n-3)X1(p-l)-X()(p) + (n-l) (n-2)X^

- (p-2)X^~3(p-l)- f1(p)-f2(p-l){(n-2) (n-3) X^ (p-l)

-l) (n-3)X2(p-l)-

f2(p)- f2(p-l)l (40)

«(bb)(p,h,E) = 3Sh
2 X^ X(p)- f (p) - pxj 1(p)-f1(p)

(n-2)xj l(p)-f(p)-f(p-l)

p-l) (n-3)}xj 1(p)-f1(P)-f1(p-l)

-l) (p-2) + (p-l) (h-l)}xJ~1(p).f2(p)-f2(p-l)J

(p,h,E) (41)

These results differ from those of Refs. [_2"\ and £lsT| not
only in the way that finite well depth corrections and
corrections for multiple counting of multiply unbound states are
made. They differ also in the way that the effects of multiply
unbound states on the transitions are accounted for.
Transitions to bound states are not possible in a single two-
body interaction if the initial state has more than one unbound
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particle. In the earlier papers this was accounted for by
multiplying w +(

ub), to0(
ut>) and u)_ (ub) by the factor l-m(p) where

m(p) is the fraction of the unbound initial states that have two
or more unbound particles. The strength thus removed from these
transitions was added back into the corresponding unbound-to-
unbound transition state densities. In this work the
correction is considered directly by requiring the initial
state to have only one unbound particle. In addition,
corrections for double counting of transitions were generally
not included in the earlier papers. It is important to note,
however, that in the limiting case of E<V and E<2S the present
results do agree with the results of Ref. [l9J. (In Ref. [2]
the distinguishability of bound from unbound particle degrees of
freedom was generally not recognized.

Consistency Checks

The present total and transition state densities for closed
and open configurations, either with or without the f functions,
satisfy a number of consistency criteria.

With respect to the steady state equilibrium condition
there are now five relations which are satisfied. They are

(42)

(4 3 )

E) (44)

(p,h,E) OJ (p,h,E) =
(hi _ . /hVit

E) (45)

(p

(p

(p

, h

,h

, E ) o > ; -

,E) J u i

, E ) o ) ( b ^

' (P

' } ( P

(0

l> ( p

, h ,
(u)

, h ,

(b)

, h .

E) =

<P+l,h+

E) =

( P + I , h +

E) =

1,E) ^ U U )

1,E) u)^b u )

0)(u)(p,h,E) < " " ' (p,h,E) = U)Vi" (p,h,E) 0 ) ^ u / (p+l,h+l) (46)

In addition, if the original expressions for iii+ and a)_ given in
Section II indeed represent averages over bound and unbound
states alike, then the following two conditions should be (and
are) satisfied by the present results:
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u(p,h,E) o)+(p,h,E) =

^ ( p ^ E ^ ^ f p ^ E ) + o,_[Ub) (p,h,E)]

+ u(b) (p,h,E) [w^bu) (p,h,E) + c/bb) (p,h,E)] (47)

and the analogous expression for pair destruction.

The Pauli Correction Function

In addition to the functions A(p,h) discussed in Section II,
it is also necessary to define the quantities A^(j(p,h) where
i particles and j holes are considered to have their minimum
energy requirements specified by some other criterion in
addition to the Pauli exclusion principle and to therefore, in
some sense, be distinguishable from the remaining particles and
holes.

The work of Williams implies that the energy correction
used in quasiparticle state densities can be divided into two
parts. The first part (which is subtracted from the excitation
energy) is the minimum energy required for the configuration.
The second part includes a term of the type p(p+l)/4g for each
distinguishable type of degree of freedom. This second part is
added back to the excitation energy.

The minimum energy required for a configuration with i
unbound particles and j holes below the bottom of the potential
well is

(p - i ) 2 + i 2 + (P - j ) 2 + j 2

m- + iS + jV
2g

Here it is assumed that S is the excitation energy midway
between the last bound and first unbound single particle states
and that V is defined similarly. The i particles must occupy
single particle states with energxes S + l/2g/ S + 3/2g
S + 5/2g .. . Taking the sum of the lowest i single particle
states gives the minimum energy requirement for having i unbound
particles. Similar considerations apply for the j holes below
the bottom of the potential well. Recalling that the terms iS
and jV are subtracted from the excitation energy directly, they
should not be included in A^ j(p,h) which thus takes on the form

A. ,(p,h) - ^m-^2+i2+^m-J)2+J2

i, J _. .. .2g

(p-i) (p-i-
4g (48)
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Numerical Results

Before performing calculations for systems in which unbound
particle degrees of freedom are to be distinguished, a value of
S must be chosen. For neutrons S should clearly be the
separation or binding energy. For charged particles there is
the ambiguity of whether or not to include the Coulomb barrier.
If the equations of this section, derived for one
distinguishable type of fermion, are used to describe a physical
system with both protons and neutrons, then there is the
question of whether to use the lowest of the neutron and proton
values or, perhaps, an average. Fortunately all of these
physically reasonable choices give very similar results for
preequilibrium reaction energy spectra \_2~] . The value adopted
in Ref. [_2~] is

S = minimum(B ,B +C ,B +C ) (49)
n p p a a

where the B's are binding energies and the C's are Coulomb
barriers.

Figure 7 shows results for the density of states with at
least one unbound particle compared with the full particle-hole
state density. It can be seen that the proportion of the states
which are unbound falls off dramatically as the number of
degrees of freedom increases.

Figure 8 is taken from Ref. L̂ Ĵ an<^ shows the rates for
transitions between bound and unbound configurations. These are
proportional to the corresponding transition state densities.
While these latter are evaluated from expressions somewhat
different from the ones given here, the qua'.itative trends are
expected to be the same. As in Sect. II it is seen that pair
creation dominates over pair destruction in the early stages of
the reaction. In addition, a preference for unbound states to
populate other unbound states in pair creation is also noticed.

As a further check on the validity of the present equations,
results of calculations performed for a system with gE=21.0 and
gS=5.0 have been compared with the results obtained by direct
counting. Equations (5), (27), (32)-(41) and the analog of (27)
for states with two or more unbound particles were used both
with the approximate correction functions of Eqs. (6) and (28)
(and the corresponding result for f2) and with "exact"
correction functions in which the appropriate A-L f j ' s have been
included in each energy term. A value of gV>21.0 was assumed.
The results of this comparison are given in Table I.

It is interesting to note that while U)(2,l,21) and
U)(2u) (2,1,21) are essentially exactly reproduced, w ( u ) (2,1,21)
is overestimated by 4 or 5%. This, in turn, causes a 30 to 35%
underestimate in u><b) (2,1,21) . A possible explanation is that
the general state density formulae are most accurate when either
none or all of the particle degrees of freedom are required to
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be unbound. This is related to the fact that unbound particle
degrees of freedom are not truly distinguishable from the other
particle degrees of freedom in the same sense that particles and
holes or proton and neutron degrees of freedom are
distinguishable. In particular, in addition to counting doubly
unbound states twice, Eq. (25) for U)(u) (p,h,E) also counts
states with two different unbound particles occupying the same
single particle state (simply because of the way in which the
Pauli blocking correction is made). Perhaps a better way to
correct for double counting is to subtract all contributions to
Eq. (25) which have a second particle with energy greater than
S but where that second unbound particle is treated as
indistinguishable from the other p-2 particles. This gives the
density of states with one and only one unbound particle. To
get the desired density of states with one OK mOKZ unbound
particles, the density of states with two or more must be added
back in. This latter state density will have the same sort of
correction as the density of unbound states itself whenever p>2.
Thus the density of'states with at least one unbound particle is

, n-1
.(u)

gn(E-Alj0(p,h)-2S)

(p-1)J h! (n-1)!

n-1

,(u)
(p'h'E) = hi (n-1)!

P-1 (E-A.

r

rr~ e(E-Alr0(P,h)-s)

©(...) + w(2u)(P,h,E)

(E-AifO(p,h)-is)
n-1

. i! (p-i)! e

(50)

Z
i = 1 ii (P-Di

which corresponds to Eq. (27) but with

(51)

fx(p) - i ©
E-A. (p,h)-iS

1/ U
E-A (p,h)- S

1/0

n-1

0(E-A± O(p,h)-is)

_ y
P-1

f) -S

n-1

(52)

where the finite well depth corrections have been neglected and
the Heaviside functions abbreviated. The f2's are similar.

Using these new correction functions to recalculate the
full quasiparticle state densities and the corresponding
transition state densities produces the results shown in the
last column of Table I. Now all of the quasiparticle state
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densities for the p,h=27l states are essentially exactly
reproduced.

In spite of the improvement in 0)(u) (p,h,E) resulting from
using the improved correction for double counting of doubly
unbound states, the corresponding transition state densities
still show serious discrepancies with the direct counting
results. The most obvious remaining difficulty is that the
multiple counting corrections are applied only in an approximate
way while the transition state densities frequently involve
taking relatively small differences between large numbers so
that any errors in making the corrections are greatly magnified.
Clearly it would be advantageous to rederive the transition
state densities using Eq. (51) for U)(u) (P/h,E) as a starting
point.

Deviations from the Equi-Spacing Model

Both the long and short range deviations from the equi-
spacing model which were considered in Sect. II can also, at
least in principle, be included here. The only one which has
seriously been considered, however, is the use of different
effective single particle state densities for different kinds of
degrees of freedom. In Refs. [2] and [.19] separate effective
single particle state densities are defined for unbound
particles, for other particle degrees of freedom a"<3 for hole
degrees of freedom.

Pairing effects can presumably be handled as was suggested
in Sect. II, except that the extra requirement of having an
unbound particle may increase the minimum number of unpaired
particles an unbound configuration may have (compared to the
corresponding number for the full quasiparticle state density).
This has not yet been investigated.

Inclusion of shell structure effects through the shell-
shifted equi-spacing model as well as any reasonable inclusion
of pairing corrections would require derivation of state
densities analogous to those considered in this section but for
two types of fermions. This has not yet been done.

IV. SUMMARY AND CONCLUSIONS

Simple expressions for the densities of states with fixed
numbers of particle and hole degrees of freedom appropriate for
use in preequilibrium reaction calculations have been reviewed.
Full state densities as well as transition state densities have
been considered, as have state densities for open and closed
systems.

Derivations have all been based on the simple equi-spacing
model for the single particle states. Within the context of
this model the basic mathematical form for the state densities
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considered are well understood, but many details need further
study. In particular, transition state densities for bound and
unbound configurations with more accurate corrections for
multiple counting of multiply unbound states should be studied.

In terms of deviations from the simple ESM, work remains to
be done to confirm and perhaps improve on the prescription for
handling preequilibrium pairing corrections proposed by Grimes
[_16,17J . (In this connection please see also the contribution
of C. Y. Fu to this conference.) Work to study the utility of
making shell corrections in the context of the shell-shifted
equi-spacing model is still in a relatively early staap and
needs to be completed. The advisability of using different
effective single particle state densities for particles and
holes and perhaps, also, for bound and unbound particle degrees
of freedom likewise needs investigation.

The question of angular momentum in particle-hole state
densities fo? preequilibrium reaction calculations has not been
addressed here but is considered, for example, in the
contribution of H. Gruppelaar to this conference.
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TABLE I

Calculated Numbers of States
Compared with the Results of Direct Counting

Quantity

(1/g)u(2,l)

(l/g)o> u (2,

(i/g)co(b)(2,

(i/g)co(2u)(2,

(l/g)^ u u )(l,

(l/g)eojub}(l.

(l/g)u,juu)(2,

(l/g)u/ub)(2,

(l/g)^bu)(2,

(l/g)^bb)(2,

(l/g)u)(5
ub) (2,

( 1/Q1) W (2 fo

(l/g)a/uu) (2,

d/g)^ub)(2,

1)

1)

*>

0)

0)

1)

1)

1)

1)

1)

1)

1)

1)

1)

Direct

Counting

90

80

10

20

80

10

4.

16.

16.

3.

24 .

1.

0.

1.

0.

•

•

35

6

5

08

7

Approx.
f's a

90.25

83.3

7.0

20.25

83.3

7.0

14.5

3.4

22.8

95.

6. 6

52.

1. 00

0. 00

1. 00

0. 00

Calculations

f's with
A's

90.25

84 . 8

5.4

20.25

84.8

5.4

15.3

2. 9

31.0

112.

6.1

64.

1.00

0.00

1. 00

0. 00

Revised f's
with A's

90.25

80.25

10.00

20. 25

80. 25

10.00

17.7

0.7

20.4

64.

7.6

41.

1.00

0. 00

1. 00

0.00

A value of gS'=5.5 (the value corresponding to the first
unbound single particle state) was used in evaluating fx and f2

rather than the value of 5.0 which was used elsewhere in the
calculations.
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symmetric

Fig. 1. Schematic diagram showing the
placement of the Fermi level for calcula-
tions of particle-hole state densi-ties.
The excitation energies of the single
particle states available to the particle
and hole degrees of freedom are also
indicated.

target composite nucleus
p,h=QO 1,0 2,1
pm= 0 1 2

Fig. 2 Schematic diagram of the first
stage of a nucleon induced reaction. The
quantities p and h denote the numbers of
particle and hole degrees of freedom while
pm is the number of particle-hole pairs
relative to the ground state of the nucleus.
The target nucleus is shown in its ground
state, and the composite nucleus is shown
both before and after the initial pair
creation interaction.



- i 1 r

Fig. 3. Particle-hole state densities as
a function of the number of particle (and
hole) degrees of freedom for a ̂ Co
nucleus at an excitation energy of 43.3
MeV. At this energy finite well depth
corrections are insignificant. A single
particle state density of g=4.23/MeV was
used.

6 8 10 12
p=h+1

Fig. 4. Transition state densities as a
function of the number of particle (and
hole) degrees of freedom for a 55Co
nucleus at 43.3 MeV of excitation and
g=4.23/MeV.
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Figure 5. Single particle states for one type of fermion as a
function of energy in the potential well for the equi-spacing
and shell-shifted equi-spacing models.

unbound
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Figure 6. Schematic drawing of the two hierarchies of states
one with and one without unbound particle degrees of freedom
The arrows indicate the types of transitions which must be
considered in preequilibrium reaction calculations.

- 140 -



10 -

Figure 7. Particle-hole state densities for particle-unbound
configurations compared to the full particle-hole state
densities as a function of the number of particle (and hole)
degrees of freedom. The calculations are for the system
considered in Figure 3. The squares are for the unbound states.
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LEVEL DENSITY IN UNIFIED PREEQUILIBRIUM AND
EQUILIBRIUM MODELS

H. Gruppelaar

Netherlands Energy Research Foundation ECN, P.O.Box 1,
1755 ZG Petten, The Netherlands

ABSTRACT

In this paper the use of phenomenological level-density formulas
in statistical pre-equilibrium and equilibrium models is discussed
with the aim to obtain a simple expression for insertion in a pro-
posed "unified" model. A renormalized particle-hole level-density
formula that is asymptotically equal to the backshifted Fermi-gas
expression of Dilg et al. is suggested. Furthermore, the relations
between various statistical models are discussed. It is shown that
the Hauser-Feshbach, Weisskopf-Ewing and (pre-)equilibrium exciton
models can be derived from the unified model mentioned before.
However, some factors containing spin cut-off parameters remain.
Theje problems are due to assumptions with regard to the spin
distribution of the level density and the spin population during
equilibration of the composite state.

INTRODUCTION

In statistical models for predicting nuclear cross sections pheno-
menological formulas are adopted for the description of the level density
in the energy range where "discrete" level scheme information is not
available or incomplete. The most commonly used level-density formulas in
statistical Hauser-Feshbach (HF) model codes are based on those of Gilbert
and Cameron C1] or Dilg et al. [2]. These formulas describe the level
density as a function of excitation energy, spin and parity by means of a
factorized expression:

P(E,J,TT) = R(J)PU)po(E) (1)

with

R(J) . ilitii c.
2a2 2a2
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where a is the spin cut-off parameter; P(ir) is the parity distribution that
is assumed to be 0.5 in this paper. The state density is given by

<o(E) = I (2J+l)p(E,J57r)^ /27a p (E). (3)
J,7T

In this paper we will frequently use the notation

P(E,J,TT) = f(J,E)(o(E), (4)

where

f(J,E) = • — — R(J)PU). (5)

The energy dependence of f is due to the spin cut-off parameter a.
At high energies the HF-model approaches the more simple Weisskopf-

Ewing (WE) expression in which the state density"'' u(E) occurs. In pre-
equilibrium models the state density w(n,E) is assumed to be a function of
the exciton number n. In these models the formula of Williams [3J is usually
adopted. When the exciton model is used to calculate the equilibrium
part of the cross sections as well (PE model) it is required that

I w(n,E) = w(E). (6)
n

Assuming that the system is in equilibrium before emission is possible it
follows that the exciton model is equivalent to the WE model (provided
that the spin cut-off factor is independent of energy).

Recently, there are some attempts (e.g.[4]) to include spin and parity
conservation into the exciton model to obtain a "unified" model (UM). For
these series of models it is required that the level density of n excitons
satisfies the condition

I p(n,J,7r,E) = p(J,7r,E). (7)
n

With these definitions the HF-, PE- and WE-models should follow as limiting
cases of the unified model.

In this paper we first discuss some problems with regard to a satis-
factory phenomenological expression for the n-dependent level density
p(n,J,IT,E), for use in unified statistical-model codes. Next, we discuss
the relation between the various models, mentioned before. This shows some
difficulties, originating from the spin distribution of the level density.
A summary of the discrepancies is given in the last section.

In this paper we assume that the state density co is used in the WE model,
rather than the total level density pQ. The difference is irrelevant
when the spin cut-off parameter is independent of energy.
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LEVEL DENSITY IN HF MODELS

In the two most frequently used expressions [1,2] the level density is
described by a Fermi-gas type of formula (at least at high energies), with
an energy shift

U = E-A (8)

to account for odd-even effects. The expressions of Gilbert-Cameron (GC)
and Dilg et al. (D) are denoted as

(\j) = /l. exp 2/zlT
WGC 12 l , ,,s/ <u>ux), (9)

(10)

r e spec t ive ly . Eq.(9) isacj^asupstited by a low-energy part tha t smoothly
jo ins itat^Jiis—^ri^rtSing energy Ux. The nuclear temperature t in Eq.(lO)
s a t i s f i e s the r e l a t i o n

U = at' ( 1 1 )

The main difference between GC and D arises from differsnt—Sxpressions
for the: energy shift: in Eq. (9) A=P is taken as atakrMEed pairing energy
[1], in Eq.(lO) A is assumed to be a frt^pae?aSleter. In the two formulas--"""
there are additional fit parameters—Conly a in case of Eq^JJJXy)—tfiat are
used to obtain agreemenf with the low-energy "dis_c.r&frei1' level scheme and
the level spacing of resolved (neutron) jzes-errtances. Therefore, there are
at least two energies, e.g. E = E (cut-off energy of discrete level scheme)
and E %B (neutron binding energy), where the two equations give almost
the same level density.

We note that the expressions for the spin cut-off factor are also
different in Refs.[l,2]:

t A 2 / 3 (U>U X), (12)

where c = 0.0888 [1] or c = 0.146 [5], and

a2
D(E) = 0.01495 tA

b / 3

(assuming I ., = I . . , r = 1.25 fm, see [2]).

At high energies these expressions converge to

(13)

2/3a2
GC(E) 2f

a2
D(E) 2? 0.1 18/57 A

Z / 3,

(14)

(15)
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where it has been assumed that a=0.1265 A MeV (corresponding to
g=A/13 MeV"1, see Eqs.19,20). We conclude that Eqs.(14) and (15) are almost
the same, apart from the uncertain numerical constants. At low energies
(U << Ux) the value of GC for a

2 is not well-defined. It has been proposed
[6] to follow a linear function of energy to match the experimental spin
distribution at low energies (near Ec) and the theoretical value at Ux-P.

The differences between the GC and D formulas may become quite large
at high energies (E >> B) or in between Ec and B. This is illustrated in
Table I. This might affect the computed cross sections significantly, see
Table II.

STATE DENSITY IN EXCITON MODELS

The particle-hole state density of Williams [3] is given as

where n=p+h and A i~ a Pauli correction factor:

A(p,h) = (P
2+hz+p-3h)/4. (17)

Williams has shown [3] that the sum over all excitons is asymptotically
equal to (cf. Table I)

.(E) =
n

where the relation between a and g is given by

IT2

a =\ g. ( 1 9 )

As the numerical factors in front of Eqs.(9,10,18) are almost the same,
the main differences occur in the denominators: a1'ttU5''+, a}'k (U+t)5' "* and
U, respectively.

In the application of Eq.(16) it is often assumed that

g = A/13 MeV"1, (20)

neglecting shell effects. However, this seems to be too rough at low
excitation energies. Furthermore, a pairing energy correction (U=E-P) is
frequently assumed, where P is taken from Ref.[l]. This leads to problems,
in particular at low excitation energies, where Eq.(16) vanishes.

For these and other reasons we have suggested in Ref.[7] to require
that the summed particle-hole level density agrees with the experimental
level density. This is most easily accomplished by means of a renormalization
of the Williams formula:

(n,E) = / f — ro)(n,E), (21)
3 l / l +(U+t)5 / 4
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with the property that at high energies its sum over all n approaches the
backshifted Fermi-gas formula, Eq.(lO). The introduction of Eq.(21) into
the exciton model hardly complicates the calculations [7]. It appeared
(see Table I) that the parameters a and A of Dilg et al. are almost the
same as those for this "renormalized Williams. . formula". We note that a
renormalization to the Gilbert-Cameron formula is much more involved, at
least at low energies.

LEVEL DENSITY IN UNIFIED MODELS

Introduction of the renormalized Williams1 formula Eqs.(16,21) into
a "unified" model satisfies condition (7). However, the spin distribution
is also a function of n with the requirement

p(E,J,?r) = I R(n,J)P(ir)po(n,E)
n

% I f(n,J)w(n,E). (22)
n v

:

For the n-dependent spin cut-off factor it is assumed that (cf. [1])

a2(n) = n<m2> ^ 0.24 nA 2/ 3. (23)

This is consistent with Eq.(12) when c=0.146. Recently, it has been found
[8] that o2(n) '% 0.28 nA2'3, based upon combinatorial calculations. We
note that a2(n) is independent of energy, in contrast with Eqs.(12-15).
This is consistent with the definition of the equilibrium exciton number

n = 1.09 /gTL (24)

However, the value of a2(n) exceeds the value of O 2 Q Q ( E ) . In order to ac-
count for pairing effects it seems better to limit the value of a2(n) to
the equilibrium value Eqs. (12-15). For instance, Eq. (12) should be used
when n exceeds

n = 0.780 /p: . (25)

With this restriction and assuming that terms with n « n give a negligible-
contribution, condition (22) is satisfied.

Also the pairing-energy correction is n-dependent. Again this could be
a linear function of n at low values of n |4| with a saturation near equi-
librium. When the renormalised Williams' formula Eq. (21) 5s used the energy
shift A is a fit parameter. There seems no need to make this parameter n-
dependent.

We summarize that the use of Eq. (21) combined with Eqs. (22,23) and
a limitation on a2(n) provides a useful formula for insertion into a unified
model. A similar approach could be made based upon the Gilbert-Cameron
formula, cf. Ref. |4|.
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RELATION BETWEEN HF AND WE MODELS

The HF formula for continuum emission can be written as:

j.t(E)pb(I',7r',E')de

(26)

I T*(E) I Tj,.t(E)pb(I',7r',E')de

where:
a = index of incoming particle with c.o.m. energy E,
b = index of outgoing particle with c.o.m. energy z,
J,n = spin and parity of compound state,
I = spin of the target,
£,j,s = orbital angular momentum, channel spin and intrinsic spin

of incident particle,
£',j',s' = same quantities for emitted particle(s),
E1 = residual energy of excited state after emission of particle b,
Ta.(e) = transmission coefficient of particle a with quantum numbers

J I and j,
pb = level density in final nucleus reached by particle b.

The summation in Eq. (26) is restricted by spin- and parity conservation laws.
In the denominator a summation is made over all outgoing particles b'.
Eq.(26) can be reduced to the more simple WE-expression by ignoring the j-
dependence of T^ and assuming that the spin-parity dependence of p(I,ii,E)
can be factorized as P(I,TT,E) « (21+1 )to(E), where co is the state density."'"
It then follows that (see, e.g. [9]):

aab(E,E)de = aa(E) (^+1) ub e abCE)-b(E')de , ( 2 ? )

Z (2sb,+ l) yb, / e'ab,(r')Mb.(E
l)dcI

where aa is the compound-formation cross section and y^ is the reduced mass
of the outgoing particle.

In the derivation of the WE-formula from the HF-formula the spin cut-off
of the level density has been neglected. Inserting Eq. (A) into Eq. (26) and
using the approximation

I f(J,E) (28)
I'j'

we may obtain a somewhat more accurate expression.

1See footnote in INTRODUCTION.
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First we note that from Eq. (27) it follows that:

I < ] iT^j,(£)pb(I',7r'E') % ^ (2sb+l)f(J,E^)cab(e)a)b(E'b) (29)

In the denominator usually the neutron emission dominates. This gives a
similar factor fn(J,<E'>n) at an "average" excitation energy <E'>n of the
target. The remaining J-dependence in Eq. (26) is (2J+1)fb(J,E')/fn(J,<E'>n).
Once more Eq. (28) is applied, leading to:

fb ( I' Eb ) WE
o-ab(E,E)dE =

 b °, ^ a Wfc(E,E)de. (30)
rn V.I,<E. nj

The factor fb/fn is a weak function of the target spin I with a significant
energy dependence (see Table III). Since most of the spectrum is emitted in a
narrow evaporation peak we may further approximate Eq. (30) by replacing
fb(I,Eb) by fb(I,<E'>b). This is denoted by

f (I,<£'>,)
oab(E,e)d£ - £ n

b
( I, < E. > nV a b

W E(E,e)dc. (3D

Eq. (30) has been derived previously by Schmittroth [10] for the (n,y)
reaction. When cf2(E) is independent of energy the exact WE formula is ob-
tained. From Eq. (31) it follows that for neutron scattering the WE formula
is retained as well. This is indeed its most important application. However,
for charged-particle reaction cross sections Eq. (30) is an improved version
of the WE formula. Similar factors are needed in the exciton model; see below.

RELATION BETWEEN WE AND PE MODELS

The Weisskopf-Ewing formula can be written as:

Wb(E)de

where the emission rate is given by:

yb a. (E')

^ 2 8b + I ) E°bCO i ;2 Tg r (33)

with uc the state density of the compound nucleus at t.ie incident energy.
The total emission rate is given by

wt = I /W ,(e')de'. (34)
b'

In this notation Eq. (2) is quite close to the formulation of the (pre—)
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equilibriuni exciton model, where:

I Wb(n,e)T(n)

gab ( E ) = q a " l W (n)T(nr ( 3 5 )

with
Ub w (n-b,E')

and

Wt(n) = I / Wb(n,c')dc'. (37)
b'

The factor Qu.(n) accounts for the fact that for low values of n there is
enhanced emission of particle a; at equilibrium Q{,(n) approaches unity [1J].

The mean life t(n) is the time-integrated occupation probability:

T(n) = / q(n,t)dt. (38)
o

The occupation probability follows from a master equation:

^ = q(n-2,t)A+(n-2)+q(n+2,t)A_(n+2) +

-q(n,t) TWt(n) +A+(n) +A_(n)], (39)

where A (n) are interna.l transition rates. The mean life times x(n) satisfy
the equation

-q(n,t=0) = x(n-2)A+(n-2) +r(n+2)A_(n+2)

-T(n) [Wt(n) +A+(n) +A_(n)], (40)

with initial condition

q(n,t=0) = 6nno, (41)

where no is the initial exciton number. From Eqs. (40>4l) it follows that
the denominator of Eq. (35) equals unity (conservation of probability); thus:

crab(E) = 0 a I Wb(n,e)T(n). (42)
n

This equation approaches to the WE formula when

« (n,E)

( 4 3 )

assuming that Eq. (6) holds and Qb(n)=I. This result is obtained by looking
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for the stationary solution of the master equation (39), i.e. ' = 0 and
Wt (n) =0. Assuming detailed balance and A + (n) proportional to
o)c(n±2), it is found that

q(n,eq) = a)c(n,E)/u>c (E) . (44)

Substituting this into Eq. (40^ as the "initial" condition we find that
Eq. (43) is the approximate solution of Eq. (40).

We note that in order to obtain Eq. (30) rather than Eq. (32), the
emission rates need to be multiplied by a factor proportional to fj)(I,E

I).
This will be studied in more detail in the next section.

UNIFIED MODEL

In the usual exciton model the formation of a "composite" state is
described by the compound-formation cross section summed over all possible
states:

ac = I o JI1 (45)
jn

It is imagined that this process takes place immediately and that the
decay starts at t=0 from the composite state with n = n , i.e. q(n,t=0)=<5nn .
If we extend this picture to include angular-momentum conservation, it
is clear that the occupation probability at t=0 should be:

JH
o

q(n,J,II,t=0) = - S — 6 n n Q, (46)

i.e. the spin-parity population is completely determined by the compound-
formation process. •*

Analogous to the usual exciton model (cf. Eq. 35) we assume in the
"unified" model (cf. [4]):

~ W (n,£)x (n)de
a a b d c = a I q(n0,j,n,t0) - , (47)

jn 7, Wt (n) T (n)
n

where T follows from a time-integrated master equation like Eq. (39), sub-
joined with J,fl-indices. This simple extension holds, since the internal
transitions should not change the total angular momentum and parity of the
system. The denominator of Eq. (47) equals q(n,J,n,t=0); therefore we have:

aab d E = °a I £ Wb
Jn(n,e)TJn(n)dE . (48)

jn n

The expression for the emission rate is straightforward:
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jn 1 b p (n-b,lV,E r)

\ ("'^ - 2^ I^,.,7t,
 Tl<i<(e) Q b ( n ) p'(n,J,n,E) ( 4 9 )

We note that the J-dependence of this quantity is rather weak,' since
after summation over I' the numerator becomes approximately equal to f(n-b,J),
partly compensating the factor f(n,J) in the denominator:

VVOfc^Sfiyn.e). (50a)

Since a2(n) is proportional to n at low \alues of n, the ratio of f-factors
is proportional to [n/(n-b)]3'2. At values of n > n Eq. (50a) needs to be re-
placed by (cf. Eq. 29):

W, (n,e) % T— 1 T ̂  W, (n,e), (50b)
• r v,J, li) Dc '

where the ratio of f-factors is proportional to (E/E')3'1*.
For the solution of the J-dependent master equation we also need to

know the internal transition rates. As a first estimate we may follow the
"golden rule":

.JJI, . 2TT
A± (n) = —

jn
(5J)

Lack of knowledge about the average matrix element prevents the solution of
the spin- and parity-dependent master equation. However, in two limiting
cases, at t=0 and at equilibrium we may draw some conclusions without a
detailed knowledge of A^(n).

At t=0 we know the initial occupation probability from Eq. (46). Fol-
lowing the same arguments as given for the justification of Eq. (44) it fol-
lows that after a long lapse of time (teq) the occupation probability be-
comes: , .

p (n,J,H,E)
q(n,J,n,teq) = -• ,•• .- q(no,J,n,t=0), (52)

approaching q(n0,J,n,t=0) for values of n close to n. This indicates that
(when the preequilibrium emission is small) the spin-parity population
"equilibrates" from q(no,J,n,t=0)6nn at t=0 to Eq. (52) at t =t e a.

jjj M

The mean lifetime can be written as T^n) =s(n,J,H)x(n). Neglecting the
(weak) spin-parity dependence of Wt we find from conservation of probability

I s(n,J,n)Wt(n)x(n) =q(no,J,n,t=0). (53)

The simplest possibility is

TJII(n) = q(no,J,n,t=0) x(n), (54)
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corresponding to the solution of the master equation with W and A+ in-
dependent of J and II [i.e. constant spin-parity population q (no, J,II7t=O) at
all values of n]. Assuming that the system is in equilibrium before emission
is possible (and W-JH independent of J and H) we find:

c < , )
(n) = f ( J > E ) q(no,J,n,t=0) T(n) , (55)

together with Eq. (43).

Constant spin-parity population

Substitution of Eq. (54) into Eq. (48) leads to the following replace-
ment in the HF formula (Eq. 26):

I * ^ ' (56)

to obtain the unified model with "constant spin-parity population".
This model is considered in the limits of the exciton model (summation over
spins and parities) and of the HF-model (Eq. 43), first by assuming that
a2(n) is proportional to n, valid at n<n. This leads to an additional
factor in the exciton-model emission rates given by Eq. (50a) and to the
following replacement in the HF model:

p (n-b.I'.ir'.E1)
pd.ir'.E') - I J^-JJ Qb(n), (57a)

However, for values of n near n the approximation (50b) should be used in
the exciton model, consistent with the improved WE relation, Eq. (30).
Furthermore, the terms in Eq. (57a) with n<n are very small with respect
to the terms near equilibrium; therefore (57a) should be replaced by:

p (I'.ir'.E')

* ' . E ' ) * - b
£ ( J E ) • (57b)

This shows that assuming a constant spin-parity population agrees with the
HF model. The relations between the various models are illustrated in Fig. 1.

Other approximations

Assuming that Eq. (55) holds also for the non-equilibrium case one has

A further simplication is possible by replacing J by I in Eq. (56).
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to make the following replacement in the HF formula (Eq. 26):

p(I',7T',E') + I Pb(n-b,l',7r\E') Qb(n) T(n)/wc(n,E) (58)
n

to obtain a unified model with "equilibrium spin population". This pres-
cription was followed by Fu [4]. It leads to consistent equilibrium models,
see Fig. 2. However, the model does not correspond to the preequilibrium
exciton model, unless Eq. (36) is multiplied with a factor proportional to
f[3(n-bjl). This leads to large discrepancies at low values of n. Application
of Eq. (58) overestimates the precompound part and enhances a-emission (b=4).

In most statistical-model codes a preequilibrium option is introduced
without subdividing the spin distribution of the level density into n-
dependent distributions. The exciton model is then used to obtain the pre-
compound parts of the cross sections. However, there is an inconsistency,
since in these "extended" HF codes each exciton component is multiplied with
a spin factor ft,(I,E'); to obtain consistency these factors also need to be
introduced in the exciton model (see Fig. 3). However, that seems to be in-
correct at low values of n (cf. Fig. 1).

CONCLUSION

We have considered the phenomenological formulas of Gilbert and
Cameron [13, Dilg et al. [23 and Williams [33 for the level density in
statistical equilibrium and pre-equilibrium models. In spite of the sig-
nificant differences (see Table I) between the first two formulas, both are
frequently used in Hauser-Feshbach calculations. Summation over all excitons
in Williams' formula gives the total state density that is easily renorm-
alised to the formula of Dilg et al. We propose to use this "renormalised
Williams" formula Eq. (21) in unified-model calculations. The recommended
spin cut-off parameter is given in Eq. (23) with a limitation to the equi -
librium value of Dilg et al. [23.

The various statistical models: Hauser-Feshbach, Weisskopf-Ewing and
the exciton model are limiting cases of a proposed unified model. This is
easily demonstrated when it is assumed that the spin cut-off parameter is
independent of n and E. Otherwise, additional spin factors occur in the
various models, depending upon the assumptions with regard to the "equi-
libration" of the spin population. We have studied these assumptions,
summarized in Figs. I to 3. In all cases the right equilibrium models are
obtained, with an improvement of the WE model as given in Eq. (30).
However, different spin factors occur in the preequilibrium emission rates
of the exciton model. Since the assumption of a constant spin-parity
population seems to be correct at the lowest values of n, we prefer this
description (Fig. 1), leading to factors [(n/n-b)33'2 in the emission rates.

Further study with regard to the spin population during equilibration
might be needed to establish the present views.

The author would like to thank Dr. J.M. Akkermans, Drs. H.A.J. van der
Kamp and Mr. D. Nierop for some useful contributions to this paper.
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E
(MeV)

0.2

0.4

0.6

0.8

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

12.0

14.0

16.0

18.0

20.0

Comparison <

Williams
g = 6.10
A =-0.299

2.93

4.61

7.09

10.7

15.9 *

90.2

398

1 490

4 960

15 100

42 800

114 000

291 000 *

710 000

3.81xlO6

18.lxlO6

78.3xlO6

313 xio6

1 170xl06

TABLE I

no
:>f various level-density formulas for Nb (

Asymt. formula
g = 6.10
A =-0.299

3.59

5.45

8.18

12. 1

17.6

95.4

400

1 510

4 960

15 000

42 100

112 000

282 000

684 000

3.62xl06

17.1x1OG

73.5xl06

292 xlO6

I 090xl06

Dilg et al.
g = 6.79
A =-0.521

3. 10

4.78

7.20

10.7

15.5 *

84.2

367

1 380

4 630

14 300

41 300

113 000

292 000 *

728 000

4 07x106

20.3x106

91.8xlO6

384 xlO6

1 500x]06

Williams x f(E)
g = 6.72
A =-0.591

2.94

4.62

7.10

10.7

15.8 *

89.6

394

1 480

4 920

15 000

42 600

114 000

291 000 *

726 000

4.07xl0e

20.0xl0G

90.4xl06

377 xio6

1 470xl06

MeV~')

Gilbert-Cameron
g = 7.66
P = 0.72

4.58

5.96

7.77

10.1

13.2 *

49.5

185

696

2 610

9 610

32 500

102 000

300 000 *

837 000

5.74xio6

34.1xlO6

181 xio6

875 xlO6

3 910xl06

Fitting points at E c = 1 .15 MeV (Nc =9.5) and B =8.83 MeV (D o b s =41.17 eV).
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TABLE II

Effect of using GC and D formulas on '^Nb+n
cross sections (mb) calculated with the HF model

Cross section
(only first
emission)

a(n,n')

a(n,p)

a(n,a)

o(n,y)

E = 10 MeV

GC

1814

4.6

2.7

1.6

D

1814

5.6

2.9

0.9

E = 20 MeV

GC

1648

25.8

3.7

0.7

D

1653

18.0

6.5

0.5

Ratio of

E' (MeV)

1

3

6

9

12

15

spin cut-off

1=0

7.56

3.33

1.99

1.46

1.18

1.00

TABLE III

factors f(I,E

1=1

7.05

3.23

1.96

1.46

1.18

1.00

)/f(I,E

1=2

6.13

3.04

1.90

1.43

1. 17

1.00

) at E=15 MeV

1=3

4.97

2.78

1.82

1.40

1.16

1.00
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PRE-EQUILIBRIUM +
EQUILIBRIUM

EQUILIBRIUM

UNIFIED MODEL

with
constant

spin population

HF MODEL

Summation over spins:

EXCITON MODEL

(MODIFIED)

f(n-b,
fc(I,E)

WE MODEL

(IMPROVED)

constant a'-

\f

EXCITON MODEL WE MODEL

Fig. 1. Relation between various models, assuming a
constant spin-parity population. At low values
of n the emission rates in the exciton model
are multiplied with a factor f(n-b,I)/f(n,I);
at n close to n this factor becomes f^(I,E')/fc(I,E)
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PRE-EQUILIBRIUM +
EQUILIBRIUM EQUILIBRIUM

UNIFIED MODEL

with
equilibrium

spin population

HF MODEL

>/

Summation over spins:

EXCITON MODEL

(MODIFIED)

f(n-b,I)

fc(I,E)

£ b ( I ' E '
fc(I,E)

\l

constant a2:

EXCITON MODEL

V

WE MODEL

(IMPROVED)

f b ( I ' E l )

f^CCE)

WE MODEL

Fig. 2. Relation between various models, assuming the
equilibrium spin population. At low values of
n the emission rates in the exciton model are
multiplied with a factor proportional to
fk(n-b,I); at n close to n.this factor becomes
fb(I,E'), independently of n.
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PRE-EQUILIBRIUM +
EQUILIBRIUM

EQUILIBRIUM

UNIFIED MODEL

without

spin dis
endent
tribution

>

HF MODEL

Summation over spins:

I \

EXCITON MODEL

(MODIFIED)

fb(I,E')

fc(I,E)

\

EXCITOt*

f

WE MODEL

(IMPROVED)

fb(I,E')

fc(I,E)

constant a2

\

<! MODEL WE M

1

ODEL

Fig. 3. Relation between various models, assuming that the
spin distribution is independent of n.
The emission rates in the exciton and WE models are
multiplied with a factor proportional to f^CljE1).

- 160 -



ENERGY DEPENDENCE OF THE ROTATIONAL ENHANCEMENT FACTOR IN THE
LEVEL DENSITY

G. Hansen and A. S. Jensen

Institute of Physics, University of Aarhus, DK-8000 Aarhus C,
Denmark

ABSTRACT

The one-shell SU3-energies are given and the correspond-
ing level density is calculated approximately by use of a di-
stribution function for the SU3-quantum numbers. The calculation
is extended to include many shells by a renormalization proce-
dure and an effective one-shell interaction. The traditional
level density is then obtained from the related mean-field Ha-
miltonian which corresponds to a deformed harmonic oscillator
potential. Various rotational enhancement factors are consi-
dered. Numerical results are obtained and comparison between
SU3- and traditional level density allow the first computation
of the energy dependence of the rotational enhancement factor.
A transition from axial to spherical level density is found. A
simple parametrization is suggested in terms of a deformation
dependent half value energy and a transition width.

INTRODUCTION

The nuclear level density often crucially enters both in analyses
of experimental results and in theoretical calculations. It is there-
fore a much studied quantity [1-4]. One particularly interesting and not
yet understood problem is how much the collective degrees of freedom
contribute.

The collective states of even-even nuclei dominate the spectrum at
the very low excitation energies whtre the nature of the individual
states are known. If this situation extends to higher energies, the ro-
tational bands build on top of each deformed intrinsic state should be
counted in addition to the intrinsic excitations. The resulting level
density expression [6] retain its structure for small spin values. It
contains at least one constant, i.e. the single particle level density
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at the Fermi energy. Therefore, if this constant is unknown, it does
not matter from a practical point of view whether the rotations are
counted or not. The problem was not aolved, but its solution apparent-
ly would not have any practical implication.

The advent of the computer soon made it possible to calculate the
level density directly from the microscopic single particle spectrum.
This was done by counting only intrinsic excitations [7-10] as if ref.6
had been forgotten. Also the microscopic formulation [11] of the spin de-
pendence was done without any consideration of the collective states.

Actual numerical calculations [12] based on a realistic single par-
ticle potential and the collective rotations included for deformed nu-
clei demonstrated the importance of the rotational contribution of the
level density. Together with the lack of qualitative understanding of a
series of fission cross sections [13] this called for a general theoreti-
cal framework [14] describing the role of collective degrees of freedom
in the nuclear level density.

Afterwards the inclusion of the collective states have become prac-
tically mandatory in calculations [15] and analyses [16]. However, the
problem is still unsolved, since ref.14 only describes how to complete-
ly omit or fully include the collective contributions, argues that th'~e
are the correct limits for very low and very high excitations and esti-
mates a characteristic energy in the transition region in the case of
collective rotations.

Then a quantitative investigation appeared [17,18] of the full
energy dependence of the vibrational enhancement factor, i.e. the ratio
of the correct level density to that where the vibration is completely
neglected. A similar investigation for collective rotations is very de-
sirable, since the rotational enhancement factor amounts to one to two
orders of magnitude and the transition occurs within the physically in-
teresting excitation energy region [14]. To our knowledge the only exi-
sting attempt is the phenomenologically extracted information [19] from
measured fission cross sections. Since the result is independent of de-
formation it contradicts the simple estimate of ref.14.

In this paper we present the first calculation of the energy depen-
dence of the rotational enhancement factor. We use the Elliott Sub-
model [20], which can be analytically solved for one oscillator shell.
We then include many shells and calculate the corresponding level den-
sity containing all states without reference to their collectivity. Then
the mean field is calculated and the ordinarily derived microscopic
level density obtained both when collective rotations are included and
completely discarded. Comparison of the "exact" and usual level density
as function of energy then gives the desired information about the ro-
tational enhancement factor.

The paper is organized in the following way. In section 2 is de-
scribed the details of the necessary theory. Section 3 contains the nu-
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mericai results, a discussion of the accuracy of the applied approxi-
mations and methods and extracts the rotational enhancement factor as
function of deformation and excitation energy. Section 4 gives a brief
summary of the results together with the conclusions and a few of the
implications.

THEORY

The behaviour of the rotational enhancement factor can be investi-
gated quantitatively in model calculations. The model requirements are
then that it is possible and preferably easy to find (i) the total level
density, including all states, as function of excitation energy and
(ii) the corresponding traditional level density both with and without
rotational contribution. This means that the model Hamiltonian must be
soluble and the corresponding mean field obtainable. The calculations
should be as simple as possible to allow maximum or at least a certain
amount of flexibility. These reasonable conditions lead almost uniquely
to the SU3-model and the related deformed harmonic oscillator mean field.

One Shell SU3-Model

The SU3-Hamiltonian is given by [20,21]

H=Ho-iKQ-Q (1)

Q.Q= I <-l)y0 (i)Q (k) (2)
i.k.ji y " P

where H is the one-body spherical harmonic oscillator Hamiltonian and
K is the strength of the two-body quadrupole-quadrupole interaction. The
particle positions and momenta are given in spherical coordinates
(r.G ,<t> ) and (p,8 ,<J> ). The length b ia given in terms of the nucleon

rr D D 2 m ~
mass m and the frequency io0 of Ho as b =- m^—. The matrix elements of Q^
within one shell are identical to those of°the ordinary quadrupole ope-
rator, i.e. the first term in eq.(3).

If we have k particles in the oscillator shell of principal quantum
number N, the eigenvalues of H are given by

CAu = f(A2+Ay+u2+3(A+p)) (5)
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where (Ay) is the SU3-quantum numbers and the angular momentum L assumes
the values

L=K,K+1, ,K+max{A,y}, K*0

K=min{A,y},

L=max{A,y},max{A,y}-2, A^ K^O (6)

The number of L-values n, (L) for a given (A,y) can be written [22]

(7)

where [x] is the integer part of x for x _ 0 and zero otherwise.
When the values and degeneracies of (Ay) are known, we have the full

energy spectrum and therefore the level density. This information can be
obtained in two ways, either from tables which in general would limit ap-
plications to fairly light systems, or from a computer program. The lat-
ter possibility is clearly the most flexible, but it represents simulta-
neously a substantial amount of numerical and mathematical difficulties.
Instead of choosing one of these options we shall push the analytical de-
rivation a little further at the expense of several approximations.

Level Density in the One-Shell SU3-Model

The level density p as function of energy E and angular momentum L
is given by

p(E,L)= ^6(E-Ei)-(S(L-Li) (8)
i

where the summation index i runs over all SU3-states, except the trivial
degeneracy (2L+1) due to the projection of angular momentum on an exter-
nal axis. The degeneracy g(N) of the harmonic oscillator shell N is

g(N)=2(N+l)(N+2) (9)

Where spin up and down of both neutrons and protons is included. The total
number of levels is therefore

//p(E,L) (2L+l)dEdL=

When all SID-states are known, eq.(8) can in principle be used di-
rectly to calculate the level density. This is possible in special cases
used as test exauples. In general we use instead the distribution func-
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tion [23] P^p which approximately describes the number of times (the
degeneracy) the SU3-quantum numbers (A,y) occur in the spectrum for each
set of the remaining quantum numbers (angular momentum and its projec-
tions) . The number D^y of these sets, the dimension of (A,y), enters
by an interesting coincidence in the definition of the distribution
function

- °# ) (ID

(12)

where d is the difference between the number of oscillator quanta for
one particle in two different directions and f is a normalization con-
stant found by the requirement

(\(N)k
V I D, -P, (15)
/ Ay M Xp

The factor D ^ is from the angular momentum summation and A and y r u n

over the possible values [20,21] consistent with k particles in the
shell N, i.e.

2y+A+3m =kN

2A+y 12A +y (16a)
o o

2A+y+3m2=(g(N)-k)N

2y+A <2JJ +A (16b)
o o

where m. and m_ are non-negative integers and (A ,p ) are the (A,y)-values
of the ground state.

The right hand side of eq. (15) is now estimated by replacing the sum-
mation by an integration

(8,[N)j=f//dAdyg(A,y)D^exp(-CA(j/a
2) (17)

where the density of points in the (A,y)-plane is found from eq.(16) to^-
be g(A,y)= A- The integrand has maximum exponent in the point A=y=-l+a/--
which in the case of interest is in the interior of fi. Expansion to secotid
order of the exponent around this point then leads to

£ ) (18)
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The level density eq.(8) is then approximated by

P(E'L)= I % J % < JAp L
which, in case we don't need the spin distribution, can be integrated
to give

p(E)=/p(E,L)dL=JP [n (U^CE-EJ ) (20)
Ay y L V y

SU3-Model, Many Shells

The Hamiltonian in eq.(1) has non-vanishing matrix elements be-
tween oscillator shells of principal quantum number differing by an even
number. An exact analytic solution can therefore not be obtained.

It is convenient to work with the spherical one-shell solutions and
fortunately this can be justified at least for small deformations. The
corresponding effective interaction is namely approximately given by [24]

H=H -\(l+2n)KQ*Q (21)

where Q only acts within shells and ri, a number to be determined later,
may depend on particle number and shell. Thus the energy spectrum is
simply that of eq.(4) where K is renormalized to (l+2r))K=K and N and
k assume appropriate values.

Level Density in the Many-Shell SU.3-Model

The partition function Z(|3) for A particles can now be calculated
for the Hamiltonian in eq.(21). It is conveniently expressed in terms of
the partition functions Zĵ  for given distributions {k} of the A particles
in the oscillator shells

Z(3)= I Z (B) (22)
. {k}

Then Z^ is in turn a product of one-shell partition functions Zĵ  (£>) over
the shells containing particles

• Zk(3)=n ZN (|3) (23)

Nk k

where N, means the shell N with the number of particles given from the
distribution {k}.

The level density Pcin^) as function of excitation energy for given
A is then the inverse Laplace transform of Z

-i°° {k} N k
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The integral is evaluated in the saddle point approximation as

Pk ( E )

)32lnZN (3N

PSU3 ( E ) = E Pk ( E ) (25)

{k){k)32lnZN (3 ) -,-i

N, N, J N, k kk k k
where the saddle point g is a solution of the equation

3111W
k k
Let us therefore first calculate the one-shell partition function

of k particles in the shell N
-gtfw (N+3/2)k 33KDC,

Z (3)=e ° J/ "
k

Z X y (28)
L

When the number of active particles, min{k,g(N)-k}, is less than or equal
to three, we calculated ZJJ, exactly. Otherwise the distribution function

i-s used, n^y is approximated by a continuous function and the summa-
tions over (Ay) and L are replaced by integrals. This leads to

-Btfu) (N+3/2)kf f33*,,0*,,

Z^ (B)«e ° idXduP. e K AP-G(A,u,Kn,S) (29)
\ Jfi3 Ay

 L
R

where the density of points account for the factor -^- (see eqs.(16) and
(17)), the angular momentum integration results in G, calculated in
appendix A and the integration area fi is confined by the lines

A+2)j=Ao+2uo+i/3
2A+u=2Ao+|Jo+^/3 (30)

Compared to eq.(16) Q, is enlarged in order to treat the boundary contri-
bution in a better approximation.

The first and second derivatives of Z needed in eq.(26) can then
be written as ^ *•

-M •? -3tfu) ( N - 4 ) k . „ _
3 1 n Z N v 3 e ° 2 r i 3 S RCAy . 3G

Nk
 Jfi P p
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Nk
33K C, ar 9 2 r

In the actual calculations are the integrals eqs.(29) and (31) evaluated
by numerical integration whereas the second derivative of lnZjj, is found
by numerical differentiation of the first derivative.

The SU3-level density is now given bv eqs.(25)-(32). It is expressed
as function of excitation energy for a given number of nucleons. We have
been working with the micro-canonical ensemble of exact nucleon number
and not the traditional grand-canonical ensemble.

Traditional Level Density

The Hamiltonian corresponding to the ordinary quadrupole-quadrupole
interaction is given by

H =H -£KQ*Q (33)

In one-shell calculations is it equivalent to that of eq.(1). The re-
lated Hartree mean-field is the deformed harmonic oscillator

V 2m"+|m(a)xx2+U)y y 2 + U Jz z 2 ) (35)

where the frequencies are expressed in terms of the deformation parame-
ters, Z and £_

U )y = U )o ( 1 +| ( eo + £2 ) ) ( 3 6 b )

'^=U)o(1-I£o) (36C)

e =3 A
o

Here < > denote expectation value with respect to the eigenfunction of
HJJ and

u) u) u)
< Q >=2S — -S — -S -2- (38a)
vo zu)z x u) y a) '
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x y yJ

where all information about the occupied single particle states is con-
tained in the quantities S

S = I (n (i)+J), etc. (39)
X . X

i occ
For given values of S , the lowest lying states are occupied, are the
selfconsistent set of equations (36)-(38) solved to give e and £2- T n e

single particle energy spectrum of Hy is then given by

£ =tfu) (n +i)+ti(u) (n + j)+Ku) (n + 5) (40)n n n x x y y z zx y z J J

where nK are non-negative integers. Each of these levels is fourfold de-
generate, neutrons and protons of spin up and down.

The intrinsic level density pj(E,A), corresponding to the spectrum
in eq.(40), is expressed as usual [4,5] in the saddle point approximation.
From this intrinsic level density we can calculate the level density for
an assumed given rotational symmetry [14]. After integration over spin
we can express the resulting level density in terms of P^ and the spin
cut-off factors Ox> Oy and oz. In case of axial symmetry we name them
dnScr and Oj_=Ox=Oy. The following possibilities will be considered:

(i) spherical symmetry
(ii) axial and R-symmetry
(iii) axial symmetry without R symmetry
(iv) no rotational symmetry
(v) only time reversal symmetry
(vi) only time reversal symmetry and parity invariance

The corresponding level densities are given as function of excitation
energy and nucleon number by [14]

(41)
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The spin cut-off factor O|| is obtained microscopically simultaneously
with p-j[ whereas a± is approximated by the rieid body expression for the
given deformation.

The Values of K and n

The selfconsistency conditions eqs.(36)-(38) can explicitely be
solved to first order in the deformation parameters to give

2S -S -S
<Q > =

 2 * y (42)
1-6 ™2-

JftO)
o

/T (S ~S )

3 k
where we consistently have neglected terms of second order in the dif-
ference between two of the quantities S and introduced S by

S = -=-(S +S +S ) (44)
o 3 x y z

When the expectation values in eqs.(42) and (43) are calculated by
using a spherical oscillator potential we obtain results where the deno-
minator is changed to unity. The same is true when only the moments of
the last (partially) filled shell is used in the evaluation. Thus an ef-
fective one-shell interaction of the same form as in eq.(33) can be found
[24] by the requirement of identical Hartree mean-field solutions of
eq. (33) and eq.(21). Then the deformation parameters K<Q0> and <Q2+Q-2>
of the deformed harmonic oscillator must remain unchanged for the ef-
fective interaction (eq.(21)) for all shells and particle configurations.
These two conditions are identical and therefore the operators Q only
should act within the shell while the strength is renormalized to K^

K =K(l+2n)= ^ - (45a)

For the one-shell calculations in question it is equivalent: to change Q
(eq.(33)) into Q (eq.(3))

This first order calculation [24] can easily be improved by exact
evaluation of <Q> and <Q>. Then eq.(45a) is generalized to

(l+2n)<Qo>!:<Qo
> (45b)

(l+2n)<Q2+Q_2>=<Q2+Q2> (45c)

where the expectation values <Q> depend on < and the total number of particles,
and the expectation values <Q> of the one-shell operators Q* depend on both
shell quantum number and particle configuration. Foranaxially symmtric case
is eq. (45c) the identity zero equals zero and eq. (45b) is used to determined r\
as function of N and k. For triaxial configurations is it
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not possible to fulfill both eq.(45b) and 45c). As an approximation we
then use eq.(45b) and ignore the hopefully less important eq.(45c).

A particular value of n results for the partially filled shell in
the ground state configuration. Using this value throughout for all N
and k is probably a reasonable approximation, because a contribution from
a larger r|-value always has a corresponding contribution from a smaller
n~value.

The procedure is now to calculate the traditional level density from
the Q*Q-interaction with a given K. Then perform the many-shell SU3-cal-
culation with an effective one-shell interaction of strength determined
from eq.(45b). The desired information about rotational enhancement fac-
tors can then be extracted by comparison.

An especially interesting value for the strength K is the so-called
selfconsistent value < (see ref. 24):

Ks.c. 12 S2-S
2-2S2 x y z {Ubd)

x y z
which for small deformations (first order in S -S ) reduces to

12MeV ,.,,.
( 4 6 b )

3 2/3
where <r2> = v- (1.2 fm)2A is used. This value where the solutions to
the Hartree mean-field Hamiltonian are reasonable approximations to those
of the original two-body Hamiltonian, can be obtained in many ways [25,26,
3]. It arises most simply from the quadrupole-quadrupole interaction (not
the SU3-operator) by assuming equal ratios of half axes of Hartree poten-
tial and density distributions. The quadrupole moment of the last parti-
ally filled shell is then to first order equal to that of the remaining
fully occupied lower lying shells. In other words K =2K or r)=l/2 for
K = K S C . In the actual calculations we used this first order strength
K = 2K and the resulting value of K from eq.(45b).

NUMERICAL RESULTS

Various approximations and numerical methods are used in these model
calculations. It is for our purpose extremely important to have estimates
of the resulting inaccuracies, because we want to studv differences between
the SU3- and the ordinary level density. Thus first we investigate the re-
liability of our procedure and then we continue to study the level densi-
ties themselves.
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Inaccuracies of the Approximations

The most important simplifications was achieved by introduction of
the distribution function PAu (eq.(ll)). It is calculated for 8 particles
in the N=4 shell and compared to the exact distribution of the SU3-quan-
tum numbers in fig. 1. The overall agreement is satisfactory. The scat-
tering around the approximation is about 30% (in P_̂  ) when C-^ is less
than 100. It increases to a factor of about 10 at Cxj/»500 where the number
of representations is insignificantly small for our purpose. Because
small CAy corresponds to large energies (see eq.(4)), the accuracy of the
approximation using the distribution function improves with increasing
excitation enerey. On the other hand, this approximation breaks down at
low excitation energy. The example in fig.l is typical.

The normalization constant f, determined by eq.(18), is slightly
underestimated by not more than 10%. Thus the line on fig. 1 should be
moved a little bit upwards in order to represent the correct total num-
ber of levels. Still the accuracy of P. quoted above holds.

The angular momentum summation is replaced by an integral (see
app. A) for shells containing more than three active particles. The re-
sulting function G is shown in fig. 2 for two cases and compared with e-
xact calculations. For small 3 (large temperature) is the approximation
very accurate over a large region of X-values whereas a systematic under-
estimate up to 20% occurs for large 3 and large \/\i.

The accuracy of the calculated level density is now investigated in
one-shell calculations. Fig. 3 compare an exact result with those where
all described approximations are used and where only the P^-distribution
is used instead of the exact values. Most of the inaccuracy arises from
the distribution function. The remaining uncertaintv is less than about
10%. At very low excitation energy is the level density underestimated
by a factor of 4 but in the important (for our purpose) energv region
above 20 MeV we have obtained a relative approximation of better than 25%.

In the many-shell calculations are particle excitations restricted
to less than 10 Huî . This implies that the level density is underesti-
mated for excitation energies larger than about 11 Huo0=ll*41 MeV/A '-*.

Level Density Results

As we treat shells with up to three active particles exactly the
accuracy of the SU3-level density is a one-shell problem up to around
4 Huo. F°

r energies between 4 Hu)0 and 8 tfu)o uncertainties from two shells
will appear and uncertainties from three shells will show up in the re-
gion above 8 Jiuto •

The calculated SU3-level density is for energies below 4 tfu)o at the
most underestimated by a factor 4 and at the most overestimated by a fac-
tor 1.2. The corresponding factors for the two higher energy regions are
(6, 1.5) nnd (8, 1.7), respectively. These numbers are the really extreme
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limits and most of the contributing configurations are very accurately
determined. Under normal circumstances are Pgy3 determined in the re-
spective energy regions to within factors of 1.2, 1.5 and 2.0.

The largest part of these uncertainties arises from the distribu-
tion function ?X]i- However, the accuracy may be better than these un-
certainty estimates as indicated by a comparison with calculations where
the distribution is used for three active particles. The level density
changed by less than 10%.

We concentrated on the N=5 oscillator shell and supplemented with
a few cases for N=4. In fig. 4 is shown typical examples with the strength
of the interaction KJ>=2KSIC. The low energy (E£l5 MeV) behaviour is in
general not reliable due to the inaccuracy of the distribution function.
In the high energy region above 80 MeV is pgu3 smaller than the level
density corresponding to a spherical shape. This is due to the restric-
tion of particle excitations to less than 10 jiioj0 and the general decrease
of accuracy at high excitation energv.

In spite of these unreliable limits we clearly observe the general
trend that Dgy-j increases slower than the other level densities in the
intermediate energy region.

For all four nuclei, Pgu3 furthermore follows the axial and R-sym-
metric level density p,, in a certain energy range above the very uncer-
tain low energies. By increasing the energy, Dcy^ turn away from po. and
after a while approaches the spherical level density pi. This behaviour
is exactlv as anticipated for axialiy symmetric nuclei and for those ea-
sily understood in terms of an energy dependent rotational enhancement
factor. The triaxial nuclei seems to make the transition to the spherical
level density in two steps. The first transition to the intermediate
axial level density occurs at low energy where our calculations are in-
accurate due to the distribution function and from then on they behave
like axiallv symmetric nuclei.

The Rotational Enhancement Factor

The rotational enhancement factor R is defined as the ratio between
the "correct" level density (Pg^) w n e r e all degrees of freedom are pro-
perly included and the level density of a spherical nucleus (p^ in eq.
(41)) where collective rotations do not exist. This function of enerey
•is in principle easily extracted from our calculations. The inaccuracies
of the level densities are, however, inherited in the process and there-
by complicating the determination of R.

Let us first consider axialiy symmetric nuclei and extract Ra. Its
fundamental behaviour is a decrease from a certain value at low energy
towards unity at large energv. One characteristic parameter of such a
function is the half-value energv Ef where Ra is reduced to half the
value at low energy. The numerical computations support the expression
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2 OJ +0)

i-^r^-^y (47)

where ya=(14±3) MeV. Provided the excitation energy is equal A/Y
times the temperature squared, eq.(47) is of the same form and nume-
rically in good agreement with the simple estimate of ref.14. The un-
certainty in Ya contains both the computational inaccuracies and the
fluctuations in nucleon number.

The calculations furthermore show that the width of the transition
region roughly is proportional to (^L4"^-^ ) 2 . The inaccuracy in the
width determination is lareer than that of ZE? due to the larger un-
certainty at high excitation energy. It nevertheless suggests the para-
metrization

fa = l—~a ( 4 9 )

l+exp((E-E?)/d )
5 3.

where V =(1.2±0.5) MeV. The uncertainty in Va reflects again both numeri-
cal inaccuracy and (of special importance here) variation with nucleon
number. Thus a better parametrization of d may exist.

The above parametrization of the rotational enhancement factor can
be expressed in terms of the axis ratio q= (u)x+u)v) /2uJz. Using the volume
conservation condition and the value Jiu)0=41 MeV/A^/3 we find

E?«sl20 MeV«A1/3 (q-l)2-q~A/3 (51a)

d «l£00 MeV A~2/3(q-l)2-q~4/3 • . (51b)
a

It is then tempting to use en.(51) as a crude generalization to arbitra-
ry axially symmetric quadrupole shapes. It is, however, also very dange-
rous due to the absolute lack of results for deformations of q^l.25 and
the possible model dependence of the obtained results for the smaller de-
formations.

In the SU3-model is only rather few nuclei axially symmetric. We
have therefore also investigated triaxial nuclei and chosen to concen-
trate on the same mass region. As indicated by the results in fig. 4 is
the rotational enhancement factor defined in eqs.(47)-(50) apparently
also applicable to triaxial nuclei in the transition region around Ea.

In fig. 5 is it compared to the "exact" enhancement for a few nuclei.
The average parameter set is fairly good except perhaps at the end of the
transition region. An improvement is of course obtained bv individual
parameter adjustment but the agreement is only marainallv better.
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There is apparently no difference at these energies (above 20 MeV)
between the axial and triaxial nuclei. Thp low-energy transition from
triaxial to axial level density must of course be present, although at
the moment it is outside our reach. The total enhancement factor R can
then be imagined parametized as a product of R and R where

P6 TF
R t ( E + 0 ) « _ E

R (Ef-2d In3)
t j a

Rt(uJx=W ) = 1

This can be achieved analogously to eqs.(48)-(50) by the definitions

RtEl-ft+ft ^ (53)

f = 1 (54)

1+exp —j-2-
\ d t /

-a) >2 (55)
Yt

d t=€ K-Wy)2 (56)

where "y >1 MeV and Vt>0.01 MeV are the limits from the numerical results.
Thus it is possible that (y ,\> ) = (Y ,V ).

Clearly both forms and actual values in eqs. (55) and (56) are sug-
gestions from symmetry and plausibility arguments without any support
(except the limits) in numerical computations. However, it is important
to stress, that a functional form of R similat to that of Ra (or Rt) for
triaxial nuclei is inconsistent with the numerical results, but consi-
stent with R=R -R .

a t

SUMMARY AND CONCLUSIONS

The energy dependence of the rotational enhancement factor is in-
vestigated in a model calculation. It consists of a two-body quadrupole-
-quadrupole interaction. The total level density is calculated as func-
tion of energy for several nuclei. From the Hartree mean-field of the
Hamiltonian is the traditional level density evaluated both with and with-
out collective rotational contributions. By comparison is the rotational
enhancement factor then extracted.

- 175 -



To make the computations possible in practice a number of appro-
ximations had to be done. The two most essential of these are use of an
effective one-shell quadrupole-quadrupole interaction and a continous
distribution function for the quantum numbers of the eigensolutions.
Only the averaee over different angular momenta is considered and dege-
neracy with respect to the nucleon spin and isospin is assumed. Thus
the excitation energy, the total nucleon number and to a certain ex-
tent the deformation are the independent variables.

A number of other approximations are also applied, i.e. substitu-
tion of integrals for discrete summations, saddle point approximation to
calculate the inverse Laplace transform, rigid body values of the x and
y spin cut-off parameters and the full rotational enhancements in terms
of simple factors a .

The price paid to obtain the numerical results is rather high in
terms of inaccuracies. They are consequently carefully estimated and con-
cluded to be small enough to allow important deductions. First of all a
transition from axial- to spherical level density does apparently oc-
cur for all axially symmetric nuclei. The transition region extends over
an energy interval consistent with the estimate of ref. 14. Triaxial nu-
clei seems to make two transitions, i.e. one at low excitation energy
to the axial level density and then another similar to that of axially
symmetric nuclei.

The transitions are then attempted parametrized in terms of simple
analytical, energy dependent rotational enhancement factors. The intro-
duced parameters are estimated together with the related uncertainties
arizing from both numerical inaccuracies and fluctuations in nucleon
number. The resulting level density is given in an easily applicable
form in terms of the axes ratio of ellipsoidally deformed shapes. However,
only ground state deformatir-s (resulting from the self-consistency re-
auiretnent for K) of N=5 at.J a few N=4 nuclei are investigated. Extra-
polations to very different nuclei and deformations (in particular much
more deformed) may therefore, although not expected, turn out to be er-
roneous .

The quoted parameter uncertainties do not include a possible model
dependence. It is conceivable that the transitions discussed here depend
on the two-body interaction for example through the resulting softness of
appropriate deformation degrees of freedom.

The qualitative main conclusion of this investigation is that the
nuclear level density increases significantly slower with excitation
energy in a transition region than the traditional mean-field based mi-
croscopic or macroscopic level densities with or without rotational en-
hancements. Thus the nuclear temperature (i=31np/3E) should consequently
be significantly larger in the region. Including this effect in the va-
rious analyses, where the level density enters, is almost inevitably
leading to different numerical results for the deduced parameters. It
may even lead to qualitatively different interpretations of the physics
involved in the process considered.
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APPENDIX A

The Contibution of the Partition Function from the Orbital Angular
Momentum.

According to eq.(28) the following factor ZL, is the contribution to
the one shell partition function from the orbital angular momentum for
a given SU3-representation

A+y -|SL(L+1)-K
ZL(3)= I nA (L)e

 Z K (A.I)
L=o

where the function n^y is given in eq.(7).
To give a simple analytical expression, G, for Z (3) we substituted

the summation by an integral

X+U
I ~ (" dL (A.2)

L=o ]_,

and approximated n. by the following continous function n.

~ ( L ) = l+min{A,i j} , M K L i m i n { m a x { A , u } + l , A + y } = M 2
Ap £.

A+p+ | - L
2 ' M2<L£A+u+| (A.3)

The integration can now be done analytically and with a=3BK_ we get for

j _ { e _ e ( 3 / 2 + M 2 ) }

4a

1 ea/'4{erf((l+A+y)/a)-erf((l+M2)^a')i (A.4)
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-10.0
0 200 400 600

Fig. 1 The degeneracy of the occuring SU3-quantum numbers (A,)j)
divided by the dimension of the set as function of the ex-
pectation value Chy of the Casimir operator. The line is the
approximation described by the distribution function P, from
eq.(ll). A W

- 181 -



Fig. 2 The angular momentum partition function as function of A for
fixed p and a=33icp. The circles are the exact values (see eq.(A.l))
and the line is ti'e approximation G of eq.(A.4).
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10
E(MeV)

Fig. 3 The SU3-level density as function of mean excitation energy
for mass number A=88, 8 particles in the N=4 oscillator shell
with K=0.004645 MeV. The full line is the exact calculation, and
the dashed line is obtained with the distribution function P\u
as the only approximation. Applying all the approximations de-
scribed and used in the text leads to a curve which on this
figure can not be distinguished from the dashed line.
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60-

80

Fig. 4 The SU.3-level density (circles) as function of energy for four
nucleon numbers A. The three lines for each nucleus are p^
(spherical), P2 (axial- and It-symmetry) and pt (triaxial for
quadrupole degrees of freedom). The strenght ?K R is equal to
the selfconsistent value from eq. (46a). The SU3 ground states
of A=152 and 164 are axially symmetric and those of A=156 and
160 are triaxial.
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Energy dependence of the axial rotational enhancement factor
(circles) for the four nuclei in fig. 4. The full line is the
parametrization from eqs.(47)-(50) with the average parameters.
The dashed line is the same parametrization with the following
individual parameters in MeV from A=152-164:(ya,va)=(15.5, 0.8),
(16.9, 0.8), (15.9, 0.8), (U.0, 0.8).
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REVIEW OF RECENT PHENOMENOLOGICAL APPROACHES TO THE
DESCRIPTION OF NUCLEAR LEVEL DENSITIES

V.S. Ramamurthy, S.K. Kataria and S.S. Kapoor

Nuclear Physics Division
Bhabha Atomic Research Centre
Trombay, Bombay 400085, India

ABSTRACT

The phenomenological approaches to the nuclear
level density problem are discussed in the light of
recent numerical calculations based on sophistica-
ted microscopic models of nuclei. Recent serniempi-
rical prescriptions to take into account shell and
pairing corrections, collective effects and finite
size and shape corrections to nuclear level densi-
ties are reviewed. Uncertainties and possible
improvements are also discussed.

1. INTRODUCTION

In the last few years, a number of semi-empirical
formulae C^~&J have been proposed for the calculation of the
nuclear level densities, which take into account the nuclear
shell, pairing and collective effects. While the different
formulae idffer in detail, all of these exploit the possible
separation of the nuclear thermodynamic properties into a smooth
macroscopic part and a shell and pairing contribution in analogy
with a similar separation /^~9_y in the calculations of nuclear
masses and deform'ation potential energies. Analyses of availa-
ble experimental data have shown that the proposed formulae can
explain most of the systematics in the available neutron reso-
nance spacing data and excitation functions. These fc^mulae
contain an important feature ^"~10, 11_J7, that the shell and
pairing effects on the nuclear level densities disappear at
moderate excitation energies, and in a hot nucleus the thermody-
namic properties are determined by a smooth macroscopic part
alone. Another feature brought out by these formulae is that
the shell independent part of the level densities also exhibits
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significant deviations from the conventional linear dependence
of the level density parameter on the mass number of the nuclei,
arising from the finite size of the nuclei, finite binding of
the nucleons in nuclei and the diffuseness of the nuclear sur-
face. We present here a comparative review of the different
semi-empirical level density formulae proposed in the recent
years incorporating both the local nuclear structure effects,
namelj-' shell and pairing corrections and the global mass, charge
and deformation dependences.

2. WHY PHENOMENOLOGY?

In the past, there has been considerable success in accoun-
ting for the thermodynamic properties of excited nuclei on the
basis of numerical calculations starting from the single-particle
spectrum given by a shell model calculation £~\2-\1 J. This
approach takes into account in a natural way the influence of
both shell and pairing effects and also their dependence on the
excitation energy. However, for practical applications there
exist a few inherent drawbacks in this approach. First ofcourse,

is the requirement of detailed shell model calculations
for all nuclei, resulting in a considerable computational effort.
While this in itself is not a big constraint, because of a number
of single particle level schemes currently available in litera-
ture and easy accessibility of fast computers, this is a step
which one will like to gladly dispense with for routine calcula-
tions. A more intrinsic drawback of microscopic calculations is
as follows: In all these calculations, the quantity on which the
calculated level density crucially depends is the density of
single particle states near the Fermi level. This is not a
quantity which is crucially adjusted in any calculation of shell
model energy level schemes. In fact, differences to the extent
of 1Q-20% are known to exist between the calculated average
single particle state density near the Fermi level for the
various level schemes currently being used in literature for the
calculation of nuclear shell correction energies and level densi-
ties. Even the ground state shell correction energies evaluated
from different single particle level schemes are found to be
appreciably different. A similar dependence of the calculated
level density parameters on the nucleon-nucleon effective inter-
action used in a self-consistent modified Thomas-Fermi calcula-
tion has been demonstrated by Barranco and Treiner ^~18_7. It
is therefore necessary to adopt a normalization procedure which
ensures that the structure independent part of the calculated
level densities are consistent with a macroscopic model estimate
and the structure dependent part is consistent with the experi-
mental ground state shell and pairing corrections. Another
objection which can be raised against these microscopic calcula-
tions of level densities is that they are carried out in the
independent particle model approximation and therefore do not

- Ib8 -



include effects arising from coherent motion of nucleons of a
collective nature. At present, therefore, one cannot fully rely
on these microscopic calculations of level densities but allow
for some parametric adjustments to fit the experimental level
densities. Alternately, one can look for simpler phenomenologi-
cal descriptions which take into account, to the necessary ex-
tent, the main features of the above microscopic calculations
while remaining sufficiently simple and convenient for practical
applications. Some of the well known experimental features of
nuclear level densities are their extremely rapid increase with
excitation energy, dependence on nuclear shell effects and odd-
even effects. New features which have been brought out by the
microscopic theories are the excitation energy dependence of
shell and pairing effects and an enhancement of the level
densities due to collective rotations and vibrations of nuclei,
so well known in the structure of low lying nuclear levels.

3. THE MODEL

The statistical properties of excited nuclei are to a large
extent similar to those of a degenerate ideal Fermi gas as has
been demonstrated by the success of the model in describing
excitation functions, evaporation spectra etc. £~ \2 -M J.
Simple analytical relations for the density of states KXj~( E )
and for the density of levels __J (E ,1) of a nucleus with a
given excitation energy E and angular momentum I, have been
obtained in the frameworkXof the above model £~ 11,12j. On the
assumption that the single particle states are equispaced with
a density g, one has

e*V C A^aX^

where £̂ _ — C"1 "̂ / O ^ f and <y is known as the spin cut
off parameter. One also has for the other thermodynamic
functions of hthe nucleus,

^ IT1

5 — 2, 9,T

where T is the thermodynamic temperature, S is the entropy, and
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2.

^ 4 - i s t h e average value of the square of the projection of
the angular momentum of the single particle states lying close
to the Fermi energy, which can also be associated with the ^
moment of inertia of the nucleus 3a by the relation "3O — %

y~r\ •
In the framework of the Fermi gas model, based on the semi-
classical approximation, the parameter a_ is related to the mass
number A of the nucleus by

1

3O - ~
where m is the nucleon mass and ^"o is the radius parameter.
Nuclear shell and pairing effectsand collective effects result
in deviation of the level densities from those calculated as
above. These are the deviations which are of current interest
and form the focal point of all recent phenomenological formulae,

For the general case of many Fermion system whose parti-
tion function is known, the state density can be expressed by
the relation /~~12,17_7

1 0 = •

where J5 is the thermodynamic entropy and D is a determinant
of second derivatives of the logarithm of the grand partition
function. Both S and D are dependent on the thermodynamic
temperature of the nucleus and the density of single particle
states near the Fermi energy. Inclusion of shell and pairing
corrections and finite size corrections usually involve a
redetermination of the entropy S and the coefficient D. On the
otherhand, collective effects are expected to manifest them-
selves as enhancement factors of the calculated level densities
One can therefore write in general,

Additional enhancement factors can be introduced nith each addi
tional loss of symmetry of the nuclear shape /^~19,20,2~\J. We
discuss below phenomenological prescriptions proposed for the
calculation of the different terms in the above formula.

k. NUCLEAR SHELL EFFECTS ON LEVEL DENSITIES

One of the well known deviations of experimental level
densities from the predictions of the Fermi gas model is that
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arising from nuclear shell effects. Early in 1956, Newton ^
analysed available neutron resonance spacing data and showed
that not only the fitted level density parameters show apprecia-
ble deviations from the expected linear dependence on the mass
number but also the deviations could be correlated to the c"sri-
sity of single particle states near the Fermi level. A subse-
quent analysis by Cameron and coworkers /^~"23,24_7 further demon-
strated that the deviations from the Fermi gas model are corre-
lated to the ground state shell correction energies. Based on
this observation they proposed a semi-empirical formula of
nuclear level densities which has been commonly used in the past
for reaction rate calculations. In retrospect, however, this
formula missed an important physical feature, namely, the exci-
tation energy dependence of nuclear shell effect on the thermo-
dynamic properties of nuclei /̂ 10,1 1__/7- The recently developed
semi-empirical formulae essentially incorporate this feature by
treating the level density parameter a_ as dependent on both the
ground state shell correction energy and the excitation energy
of the nucleus. We discuss below two prescriptions, one by
I_gnatyuk et al /~1_/> and the other by the present authors
j_ 3,kJ, the other investigations in this area being essentially
minor modifications of either one of these. Both of these start
from the now well established feature of microscopic shell model
calculations of the thermodynamic properties of excited nuclei
that a plot of the square of the calculated entropy versus exci-
tation energy shows an asymptotic behaviour such that at high
enough excitation energies, it exhibits the linear relationship
of the Fermi gas model provided the excitation energy is measu-
red from an effective Liquid drop model ground state /~*10, 1 1 ,25_J7.
Defining an effective level density parameter d^f __ ̂ /(^ £ x^
to describe the energy dependence of the parameter, Ignatyuk et
al £~^J use the formula

[\-f
where O_ is the asymptotic value of £ at high excitation
energies and S w is the ground state shell correction energy
The dimensionless function f(E ) determines the trend of the
excitation energy dependence o? 2: a^ lower excitation
energies.

-f CEO /E* -^

From calculations of f(E ) carried out for a number of nuclei,
an approximate relation of the form

- 191 -



-f C fc. ^ "̂ ) - \ —" £X Vs C— T t ye ) 1Q)

was deduced as a universal behaviour. A value of "2T = 0.054
was deduced by fitting the formula to available experimental
neutron resonance spacing data. Thus the main improvement of
Ignatyuk et al ^~1_7" is the introduction of an excitation energy
dependence of the level density parameter, a feature which was
missing in earlier formulae. It should be pointed out here
that the proper asymptotic excitation energy dependence of the
square of the thermodynamic entropy of a nucleus is

s^— A- a. M C£* - S^O do)

and not

"here 2L - S
as can be seen from microscopic calculations for model single
particle level schemes and shell model level schemes £~"[ 0, 1 1 ,25/.
However, this different is perhaps of little consequence in
level density calculations for practical applications. An
alternate form which exhibits a better asymptotic behaviour is
the back shift Fermi-gas r;odel proposed by Hurwitz and Bethe
£~2.bJ, A global fit to the neutron resonance data has also
been attempted by Dilg et al /~27_/? incorporating an energy
shift. However, an excitation energy independent shift is valid
only asymptotically and it is necessary to have an excitation
energy dependent shift to extend the validity in the low excita-
tion energy region also. One can write in such a case

s r 4 a L Ex ~ SuihCEx^J (12J

with h(E ) —*> 1 as E —=> o^>

As can be seen later, the function h(E ) can be identified with
the function f(E ) introduced by Ignatyuk et al. In an alter-
nate approach, tne present authors f^^i^J start from a Fourier
expansion of the shell fluctuations in the single particle
level density

where LO is a parameter characteristic of the wavelength of
shell oscillations and therefore of the major shell spacing.
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For the range of temperatures of interest in nuclear reaction
analysis, it was shown that g(E) can be well approximated by a
constant value go and one can neglect all terms with m > 1.
The following approximate expressions were obtained for the
entropy and excitation energy as a function of the thermodynamic
temperature of the nucleus.

-* (15)

=• a T

where
a - -^-a*

From the known mass dependence of the major shell spacing in
nuclei proportional to k~'^\. a mass dependence of the parameter
UO of the form cO = u>oA was also introduced. Least square

fit to experimental neutron.resonance spacing data results in a
value of 03o = 0.185 MeV and &** O.UA MeV . This value.,,
of U3O corresponds to a major shell spacing of about 34.5A
MeV in good agreement with the values used in literature j^~2&,
The value of aLi>^ ^ A/7 is also close to the values generally
used in literature. Typical mean square deviations of the cal-
culated level spacings from the experimental neutron resonance
spacing values defined as .

for about 100 spherical nuclei is of the order of 0.4, indica-
ting an average discrepancy of a factor 2 between experiment and
calculation. The prescriptions of both Ignatyuk et al ,/~~1_7 a n d

the present authors incorporate similar features namely, the
excitation energy dependence of the thermodynamic properties of
nuclei, in particular, the washing out of shell effects at high
excitation energies, but in different ways. It is therefore of
interest to relate the two parameters introduced by Ignatyuk
et al and by the present authors respectively. For this, we
write the J»*TT values as defined by Ignatyuk et al in terms of
the S — E relationship given by us.

e"ff X i
a = s /
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Thus

N . _ - TTLO-T TTZ'lOX-

Comparing with eq.(9)

2. x X
li CO T

0

-73
~- ^ " ̂  J ^ o-Af A

The value of "!S" thus obtained for nuclei in the actinide
region are indeed close to the value obtained by Ignatyuk et al
£~ij/. But the above relation in addition brings out a weak
mass dependence of the parameter *?f . A similar mass depen-
dence of the parameter "if has also been obtained by Schmidt
et al ^ ~ B _ 7 . On the assumption that the influence of major
shell effects is determined by the ratio of the average single
particle energy difference between shell closures at the
Fermi level and the nuclear temperature, they obtain

Y

» o.3S A (19)

One can therefore conclude that in the Ignatyuk's formalism, it
is perhaps necessary to include a weak mass dependence of the
form ~X" = "Ŷ  A"?'^ i n a least square determination of the para-
meters, and then the two formalisms of Ignatyuk et al and of
the present authors would have similar physical features. By a
similar consideration, it is also possible to relate the fun-
ction h(E ) of eqn.12, to the parameters of Ignatyuk et al and
Kataria e£ al. By definition,
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Thus the energy dependent function h(E ) can be identified as
the function f!E ) introduced by Ignatyuk et al on (F-G) intro-
duced by Kataria et al. This simple modification of the back
shifted Fermi-gas model will extend the range of validity of
the model to low excitation energy region also.

5. EVEN-ODD EFFECTS

Apart from nuclear shell effects, another well known fea-
ture of nuclear level densities is the odd-even effect. The
experimental level densities of even nuclei are systematically
lower than those of their odd neighbours. A very early prescri-
ption to incorporate this feature in level density calculations
is to use an effective excitation energy defined as

-Kr (

E__ = E._ - | ^2."^" ^ N f° r even-even nuclei.

£> g" for nuclei with even Z or N.

Q for odd-odd nuclei.
in the relations of the Fermi gas model. ̂ and o^ are the

even-odd differences in the nuclear masses £~23_y. It is well
known that residual interactions of the correlation type, in
much the same way as the correlation interactions of electrons
in a superconductor, are responsible for the observed even-odd
mass differences. The same mathematical apparatus has also been
employed in studying the statistical properties of excited
nuclei ^~12-14,30_J7. The most characteristic feature of the
superfluid model is the existence of a critical temperature at
which the nucleus undergoes a phase transition from the super-
conducting to the normal state. Above the critical temperature,
the thermodynamical properties are identical to those of a
non-interacting system with an effective excitation energy
E* = E - E where E is the ground state condensation energy
wn"ich mustcbe expended in order to destroy the pair correlations
in a cold system. Though microscopic calculations of condensa-
tion energies yield results strongly dependent on the number of
nucleons and on the single particle level scheme used, the
energy difference between adjacent odd and even systems is about
1 HeV, in-reasonable agreement with the phenomenological shifts

o_ and S N . There however remains some ambiguity in defining
the reference system as the odd-odd or even-even system and may
influence the determination of the parameters of the model.
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Below the critical temperature, the behaviour of the thermodyna-
mic functions differs considerably from the above simplified
picture. Some experimental evidence for the presence of two
regions with different excitation energy dependence of the
thermodynamic functions has been obtained by Ignatyuk et al in
the fission channel level densities /~31_J7. While, even from
the theoretical point of view the exact nature of the phase
transition from the superconducting to the normal phase is not
known, simple analytical prescription have been proposed to
mock the energy dependence of the thermodynamic functions in
the superconducting phase also /~30_y. One can therefore say on
the whole, that even-odd effects in level densities can be rea-
sonably incorporated in phenomenological level density expre-
ssions, though the microscopic basis for this is only at present
qualitative.

6. MACROSCOPIC SYSTEMATICS OF LEVEL DENSITY PARAMETERS

An important feature brought out by the recent phenomenolo-
gical formulae is that in addition to excitation energy depen-
dent shell and pairing corrections, even the macroscopic part
of the level density parameters exhibits deviations from the
conventional linearpdependence on the mass number of the nuclei.
In particular, an A"' dependence, arising from the finite
size of the nuclei, is often looked for. However, there is
some ambiguity in literature in the determination of the coeffi-
cient of the A ^3 term from least square fits to the experi-
mental data. While the present authors ^f~3_7 extract a negative
coefficient for the kx'^ term, Ignatyuk et al /f~21_7 conclude
that the statistical significance of the data is not sufficient
to uniquely determine the coefficient, while not being inconsis-
tent with a positive A2"'1^ term, indicated by simple models of
the distribution of single particle levels in potential wells.
Kataria and Ramamurthy i^~32_/

> have studied the distribution of
energy eigenvalues in realistic Woods-Saxon potential wells and
showed that there is a complicated interplay of various effects
arising from the finite size of the nucleus, binding of the
nucleons in nuclei and the diffuseness of the nuclear surface
leading to the observed dependence of the level density parameter
£ k ^ ^ on the mass number of the nucleus. A general leptodermous
expansion for the density of single particle levels in thin-
skinned potential wells has also been investigated by Ramamurthy
et al ^f~33_7 and used to study the various corrections to the
macroscopic level density parameters. It was shown that for a
determination of the A3"^2" term, it is necessary to make expli-
cit assumptions regarding the mass and charge dependence of the
parameters of the potential wells such as the depth, the radius
and the surface diffuseness. With droplet model potential
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parameters /̂~~3 2 ,3 3_J7̂  "the calculated level density parameter
values were found to be still lower than the experimental
values. Recently Toke and Swiatecki /̂~34_J7 have obtained finite
size corrections to the macroscopic part of the level density
parameters making use of the Thomas-Fermi model of the nucleus.
However, it has been showed by Ramamurthy et al /~33_7 that
not only it is necessary to add semi classical corrections to
these calculations, but one should also incorporate in these
calculations the mass and charge dependence cf the parameters of
the matter distributions such as the central density and the
surface diffuseness parameter. A simple dependence on powers
of A^2" is perhaps an over simplification. The results of
Kataria and Ramamurthy "̂~32_J7 obtained from a study of levels
in realistic Woods-Saxon potentials clearly demonstrate this
point and have even lead to the postulation of a separation
energy dependence of _au"D'^ £~5,32_y>. Such a dependence also
leads to interesting isospin dependence of the level density
parameters £~32,35_J. Further investigations along these lines
are required to clearly bring out the mass and charge dependence
of the macroscopic part of the level density parameter.

7. COLLECTIVE CONTRIBUTIONS TO NUCLEAR LEVEL DENSITIES

It is well known that nuclei exhibit near their ground
state many low energy collective levels, rotational and vibra-
tional. In general, each intrinsic level may therefore be
expected to give rise to a band of collective levels and the
total level spectrum for a given angular momentum is to be
obtained as a sum over a set of intrinsic states. Such an analy-
sis has been performed by Ericson /~"19_7 a n^ Bjornholm et al
f̂~2O_J7 and shown that in nuclei having static deformations in
their ground state, the level densities are enhanced over those
for spherical nuclei because of the contributions from the avai-
lable rotational degrees of freedom. For the spherical nuclei
themselves, the availability of the vibrational degree of freedom
enhances the level densities over those calculated on the basis
a static shell model. Phenomenological determination of the co-
efficients of the level density increase Kyoi and K v ;^ due to
the collective modes in excited nuclei is usually based on the
adiabatic assumption ,̂ f~20_/'.

V\ , — -Jj_ ~f~ for deformed nuclei

— \ for spherical nuclei
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where —>j_ is the perpendicular moment of inertia, T is the
temperature of the excited nucleus, ^di.Yo'p ^s ^he coefficient
of the surface tension in the liquid drop model, and the ratio
*-1C&YTJP characterizes the difference between the restoring
force coefficients of the excited nucleus and the corresponding
coefficients of the liquid drop model ,/~21_J7. K ~^-o\- ranges
from 45 to 65 for nuclei with A values ranging from 150 to
250, rigid body moment of inertia and excitation energies equal
to the neutron binding energy. While there have been some
indications from microscopic shell model calculations of level
densities ^~36-38_/" for such collective enhancements, the
inherent uncertainties of such calculations mentioned earlier,
and the results of phenomenological analysis /~~1j3_J7 do not
substantiate collective enhancements of a magnitude indicated
by the above equations. The problem is further complicated by
the expected but as yet unknown excitation energy dependence of
the effect. This aspect of the problem requires further
investigation both from the theoretical point of view and
experimental analysis.

8. SUMMARY

The semi-empirical nuclear level density formulae proposed
in the last few years incorporate several new features not con-
tained in earlier formulae, the most important ones of these
being the excitation energy dependent shell and pairing
corrections, enhancement of level densities due to the colle-
ctive degrees of freedom, and corrections arising from the
finite size of nuclei. The need for these new features have
come partly from the available experimental data and partly
from theoretical models. In spite of their simplicity,
these formulae contain all the essential features of the
detailed microscopic calculations. The formulae, however,
do involve a few free parameters, whose values can not, at
present, be obtained from theoretical models alone, without
recourse to a comparison to the experimental data. Since the
experimental data are so incomplete, confined to a narrow range
of nuclei around the beta stability line and a narrow range of
excitation energies, there is a need for reliable theoretical
estimates of the parameters of the formulae. Several investi-
gations are currently in progress along these lines.
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LIMITS AND VALIDITY OF THE PHENOMENOLOGICAL GILBERT-CAMERON

LEVEL DENSITY APPROACH

C. Reffo

E.N.E.A., Via Mazzini 2, 40138 Bologna (ITALY)

ABSTRACT

The level density models studied and the methods adopted for practi-

cal purposes are briefly reviewed, with special emphasis on the problem

of pairing correction and spin distribution of p-h level density.

INTRODUCTION

The interest in high energy cross sections for medical and technological

purposes has stimulated a renewed interest in level density studies.

Recently, a large amount of works have been carried out on this subject,

that it is now particularly useful to start a critical comparison of results.

To this end I will briefly review and comment the work done recently,

which is specifically aimed at cross section calculation need.

We follow simultaneously several paths and use different approaches depen

ding on the purpose.

For our applicative purposes, namely cross section calculations, the

Gilbert-Cameron /I/ approach is used, supplied by the local systematics we

have determined for all involved parameters 12/.

Nilsson model is also used to supply information on deformation dependen-

ce of the spin cut off /2/ and on the local systematics for the level density

parameter, lacking experimental information.

Interacting Boson Approximation by Arima-Iachello /3/ can be used to fill

gaps or to clarify doubtful, situations in the discrete level region, when evâ l

uation of very important cross sections is requested.

At the same time research efforts /4/, /5/ are carried on in the frame-

work of the superconductivity model and by means of combinatorial calculations.

We have investigated the important properties of the density of nuclear levels
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and quasi-particle states as well as the possibility to fit by means of the

usual simple formulae, very sophysticated theoretical calculations, which,

hopefully, should not be involved in very complicated cross section codes.

THEORETICAL BACKGROUND AND RESULTS

Nilsson-BCS-Combinatorial Approach to Particle-Hole State Density

The recent developments in the understanding and formulation of preequi--

librium reaction mechanisms should be coupled with reliable particle-hole

(p-h) spin dependent level density p (E,J) in order to draw more meaningful
Ph

conclusions.

As an example, angular distributions of emitted particles are very sensi-

tive not only to exciton number, but also to spin distribution of exciton

levels, see fig. 1.

Usual theoretical expressions for exciton level density are expected to

work better for higher exciton numbers and at higher excitations where the

underlying statistical assumptions are better satisfied. On the contrary, at

lower incident energies (which are of technological interest as well) preequi-

librium contributions are mostly dominated by the early steps of the intra-

nuclear cascade, characterized by lower exciton numbers.

In any case one expects that, for consistency reasons, whatever the exci-

tation energy, the sum over all p-h states of p (E) be equal to the total

level density p (E).

As an example, in Nb the ratio between Gilbert-Cameron /1/ and the

usual Williams formula /6/ tends to one only above 10 MeV excitation, whereas

it raises up to ̂  10 below 1 MeV excitation.

This example raises the doubt that, unless appropriate actions are taken,

many preequilibrium investigations might be biased. This also indicates that

more precise p (E) estimates should be adopted, expecially at lower excita-
ph

tions and in the region of discrete levels.
We have investigated this subject by means of combinatorial calculations

in the framework of the superconductivity model. Details of the model are

given in ref. /4/.

The work is not completed. At the moment only spherical nuclei have been

considered; however some useful conclusions 11/ may be anticipated here.

- / p (E) of our theoretical approach reproduced satisfactorily the density
8h phiscrete levels of all investigated isotopes like in fig. 2.

- The spin distribution of exciton levels was proved /4/ to be consistent with

the law
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(2J+1)exp[-J(J+1)/2o2(E)]

f(E,J) = (1)

2o;'(E)
n

(see f igs.3, 4) ,where neglecting a weak energy dependence,the spin cut off was

found to be o£=.28A ' n (n being the exciton number p+h) in excellent agree-

ment with our preceding Nilsson model calculations /4/ which gave <m >=.24A ' .

- Yrast lines were deduced for each exciton configuration, see fig. A and were

found /4/ to have approximately a parabolic trend in J . The Yrast line for

total level density (as obtained by summation over all exciton numbers and as

used in compound nucleus calculations) was found to be in perfect agreement

with the predictions of Augustiniak and Marcinko^ski /8/, see fig. 5.

Recently this author observed that:

- the theoretical level densities calculated 111 for different exciton config-

urations start above certain energy thresholds, exciton dependent, see fig. 6.

The energy gap G for the lowest configuration possible was found to be the sum

of the shell gap S and pairing correction A . In particular, the difference

G-S was found in excellent agreement with the pairing correction of Gilbert-

and Cameron.

For higher exciton configurations, the pairing correction was found to be

exciton and, thereby,' energy dependent. Analysis of the data obtained is still

in progress and we are confident it is possible to provide with a closed ex-

pression for A = A (n,E).

Glibert-Ca.meron Phenomenological Approach

For applicative purposes we have been using since many years the phenome-

nological approach by Gilbert and Cameron /I/. This choice is justified by the

flexibility and simplicity of the formulae involved, which are particularly

suited to big cross section computer codes.

In particular this approach allows for a pretty reliable fit of all avail-

able experimental information in the excitation energy range up to a few MeV

above neutron resonances. Only two free parameters are sufficient to comple-

tely characterize total level density, while all involved parameters a, U , T

(level density parameter, matching energy and nuclear temperature respectively)

obey to well.'known global, as well as local, systematic trend which are predict

able in terms of nuclear models /2/. Our local systematics allow for a preci-

sion _<30% in D (observed neutron resonance spacing) predictions.

Microscopic calculations of a_ and spin cutoff o' performed by means of the

single particle levels from the Nilsson model HI, allowed for precise model

guided local systematics of a. and for the dependence of o2 on neutron, and

proton numbers, as well as on the deformation parameter.
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In addition, by way of definition, the parameter a. turns out to be nuclear

temperature and, thereby, excitation energy dependent, in particular its behav-

iour fluctuates rapidly and encreases with energy,at low temperatures, becoming

asymptotic at high temperatures. These results well agree with those of

ref. /9/.

A few drawbacks, however, affect this approach. Its parameter systematics,

even if model guided, should be cautiously extrapolated, away from the stability

valley. All this cannot be neglected in cross section calculations at high inci

dent energies.

In addition, the whole approach is expected to gradually lose its predic-

tion power at increasing excitation energies, far from the normalization inter-

val, if the energy dependence of the parameter a , and the residual interactions

are not properly accounted for.

As an example to illustrate the latter statement, one recalls the well

known residual e-o effect which this author finds it affects the parameter, a_

over the whole periodic table, see fig. 7 .

This evidence can be explained as one usually corrects total excitation

energy only for the pairing energy of the last pair, whereas our combinatorial

calculations showed that more than one pair can be broken at the neutron reso-

nance energy where a values are deduced. In particular, the number of broken

pairs depends on the isotope considered and particularly on the resonance energy

and on the shell gap. As a possible way to account for the pairing correction

to total excitation, when dealing with total level dersity, this author suggests

one should introduce the concept of an 'effective" energy dependent pairing,

which is defined as the weighted average over all exciton configurations possi-

ble at that energy.

I A P (E)
A (E) = ** P h ?h (2)
eff 2. P (E)

Ph Ph

Nilsson-BCS Microscopic Approach for Level Densities

The difficulty of taking into proper account the pairing interaction is

overcome by Maino et al. /5/, 19/ using the Nilsson-BCS approach with inclu-

sion of blocking effect even at finite temperatures. This lead to two important

results.

- A microscopic level density approach was found able to predict D with a

precision comparable to that obtained with a local systematics of rer. 12/.

This having the advantage of more reliable extrapolations away from the stabili

ty valley.

- A fit could be found to the theoretical BCS calculations by means of the
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Gilbert-Cameron high energy formula, provided an energy dependence of a is

allowed for, of the type

a = a (1-e"YE) (3)
o

a and y being fit parameters.

Maino and Menapace /9/ show that a vs. neutron number has the usual trend
o

with the characteristic deeps at magic numbers, and depression in the region of

rare earths.

The usual e-o effect however, is still evident in fig. 1, ref. /9/, while

Y values are found constant with mass number A , but depending on the various

e-e, o-o or e-o, o-e combination possibilities, see fig. 2 of ref./9/.

This result is not surprising because even if the pairing interaction is

appropriately accounted for in the hamiltonian system of the BCS approach of

ref./9/, this was not included in the Gilbert-Cameron formula adopted by ref.

/9/, where it was assumed A=0 in all cases. This way,formula 3 is inclusive

of the energy dependence of a=a(E) as well as of the energy dependence of the

effective pairing correction A =A(E) (which are not easily separable) and

therefore the fit parameters a and y are consequently affected. Consistency

with BCS treatment of the pairing interaction would not be obtained anyhow,

even including usual pairing corrections. In fact, at the moment, lacking a

close form for (2) one cannot easily reach the aim this way, unless resorting

to detailed combinatorial calculations.

In principle, the sign of the pairing correction could be checked fitting

to BCS calculations a Gilbert-Cameron type formula with different assumptions

about the appropriate pairing and verifying which one is in better agreement

over the whole excitation energy range.

The trend of the energy dependence found for a(E), which exhibits a charac

teristic "knee" at some critical energy, confirms and explains the necessity

for a composite formula approach like Gilbert-Cameron's in order to reproduce

the change in slope of level density.

Effective Excitation Energy

The problem of the effective excitation energy is characteristic of Fermi

gas models and it may greatly affect parameter systematics, and their validity

over the whole energy and mass range.

In fact our parameter systematics 111, are valid only locally, in energy,

because uncertainties from model approximations are moved to the fit parameters

involved.

The most important parameter involved in macroscopic approaches, based on

the Fermi gas assumption,is the level density parameter a_ . It is derived

mostly from the mean neutron resonance spacing D
OBS
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Values of £ derived from particle spectra analysis are very useful to test

the overall validity of level density approaches and inherent parametrization.

One has to be cautious however, because in this case, large uncertainties

may come from the assumptions underlying the reaction model adopted.

The total amount of potential energy to be introduced in order to deter-

mine the effective excitation energy becomes crucial when it is comparable with

the total excitation energy available and causes a breakdawn of the statistical

models approaching it.

Both the energy dependence of a vs. E and the corrections for the residual

and the long range interactions affect not only the absolute value of £ , but

also the energy trend of p(E). As an example, in the case of e-o or o-e nuclei,

the ratio of the entropies S , according to the two usual assumptions on the

sign for the pairing correction, is S(B-A)/S(B+A) = 1 at the resonance ener-

gies B , but by no means this ratio is conserved over the whole excitation ener

gy range.

Another question mark may be arised whether the pairing interaction may be

introduced "a posteriori", as a correction to total excitation energy or it must

be introduced "a priori" in the total Hamiltonian of the system as it is done

in the framework of the superconductivity approaches.

Some useful indications may be found in Weiszacker mass formulae /10/ for

the total energy of the ground states.

As it is known introduction of the corrections for the Coulomb energies

and the energies due to neutron-proton mass differences int.-j the total energy

of ground states of an isobar family, move ground state energies according to

characteristic parabolas in the plane (E,T ) , see Fig. 8.

In particular, the vertex of the parabolas are shifted from each other by

an amount A equal to the binding energy of the last nucleon pair. In fact,

the ground states of e-e isobars having all nucleons bound into pairs are the

lightest of all isobars and therefore are distributed on the lowest parabola,

whereas the ground states of o--o isobars having the last nucleons unpaired are

the heaviest and therefore accupy the highest parabola.

In addition the energetically lowest states with a given isobaric spin T

(isobaric analogue states) are all placed at the same excitation energy if

counted from an appropriate origin in the energy axis.

The particular regularities and simmetries of these parabolas indicate

that equal level densities are expected for all isobars of a family at excita-

tion energies differing from each other by the amount of pairing + Coulomb +

simmetry + n-p mass difference energy. In particular, this means that the same

level density parameter a characterises the whole family, in agreement with

Fermi gas prediction that a^A.

From all the above observations one deduces that the concept of effective

energy which implies "a posteriori" corrections to total excitation energy,

applies to ground as well as to isobaric analogue states.
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Excitation energies may be referred to a whatever origin in the energy

axis, provided all simmetry properties and energy gaps between isobar ground

states are respected.

CONCLUDING REMARKS

From our efforts on combinatorial calculations in the framework of the

superconductivity model, we cannot yet be sure whether or not a parametrization

exists (with parameters obeying to model systematics) which allow for a safe

and reliable use of Williams or any other similar expression in the whole exci-

tation energy range. However the results of our studies cast light on the spin

distribution of p-h levels and on the way to treat pairing corrections A(p,h,E)

exciton and energy dependent.

From the studies on superconductivity models it has been proven that

Gilbert-Cameron composite formula for total level density is valid over the

whole energy range provided a suitable energy dependence of a is adopted. The

form of energy dependence of the level density parameter a was determined and

it was also proven that both parameters involved a and y obey to systematic
o

trends^but these must be reconsidered.
An idea how to treat in a comprehensive way the level density parameter

systematics and the problem of effective excitation energies (to be used in

connection with a Gilbert-Cameron type formulae) comes from considerations on

the masses of the ground and isobaric analogue states.

Like the Fermi gas model this approach predicts that a. only depends on

mass number A.

Being rather high the global energy correction for residual and long range

interactions, the range of validity of the Fermi gas statistical assumptions is

shifted to higher excitations, which makes the formalism more useful for the

determination of asymptotic values a and for emitted particle spectra analysis.

The more comprenhensive concept of effective energy, above indicated,

becomes necessary for introducing into the level density, rotations in the iso-

spin space. These play a role in weighting reaction channels which involve

competitions of particle with different charge quantum numbers.

On the whole one may say that exception made for exiton level density, in

all other cases with introduction of proper improvements, a Gilbert-Cameron

type formula can be found reliable in the whole energy range and for all cross

section computational needs in reactor technology.
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STATISTICAL INFERENCE OF LEVEL DENSITIES
FROM RESOLVED RESONANCE PARAMETERS

F.H. Frohner

Kernforschungszentrum Karlsruhe
Institut fur Neutronenphysik und Reaktortechnik

Postfach 3640, D-7500 Karlsruhe
West Germany

ABSTRACT

Level densities are most directly obtained by counting the
resonances observed in the resolved resonance range. Even in the
best measurements, however, wp.*>k levels are invariably missed so
that one has to estimate their number and add it to the raw
coimt. The main categories of miss ing-level estimators are dis-
cussed in the present review, viz. (i) ladder methods including
those based on the theory of Hamiltonian matrix ensembles
(Dyson-rianta statistics), (ii) methods based on comparison with
artificial cross section curves (Monte Carlo simulation,
Garrison's autocorrelation method), (iii) mechods exploiting the
observed neutron width distribution by means of Bayesian or more
approximate procedures such as maximum-likelihood, least-squares
or moment methods, with various recipes for the treatment of
detection thresholds and resolution effects. The language of
mathematical statistics is employed to clarify the basis of, and
the relationship between, the various techniques. Recent progress
in the treatment of resolution effects, detection thresholds and
p-wave admixture is described.

1. INTRODUCTION

Accurate information on level densities, apart from providing test material
for level density theories [1-4], is indispensable for level-statistical
calculations of average partial cross sections. These are roughly propor-
tional to the level density if the relevant mean partial widths are known
for instance from analysis of high-resolution neutron (or proton) resonance
data. The level densities themselves are also most directly obtained in the
resolved resonance region just above the neutron (or proton) separation
energy, where it seems simple enough to count the resonances observed in a
given energy interval.
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Weak levels are always missing, however, because of limited counting
statistics and finite instrumental resolution. The preponderance of small
values in the Porter-Thomas distribution of entrance-channel widths [5]
and hence of weak levels aggravates the problem. As a consequence even
the best contemporary high-resolution resonance data, for instance the
2 3 SU transmission data shown in Fig. 1, are affected by about 20 % missing
s-wave levels, and 30 or 40 % are quite common for less well studied
nuclei. Level densities uncorrected for missing levels are therefore
useless for most purposes. Nor does it help to take only the low-energy
portion of the cumulative level count N(E) with its typical nicely linear
behaviour. This linearity is frequently mistaken as an indication that no
levels are missed. Of course it indicates merely that the missing fraction
does not depend on energy.

The whole problem of level density estimation is truly an evaluator's item
- replete with missing data, shaky statistical models suggested by rather
abstract spectral theories, rigorous equations which are so intractable
that approximations must be invoked, logical and numerical traps etc. Even
benchmark calculations have recently made their appearance in this field
[7], showing that (and why [8]) impeccably conceived and carefully tested
programs can produce less than satisfactory results. Liou [9] has reviewed
a number of level density estimation techniques, giving a short functional
description of each one. In the present paper (which updates and expands a
recent similar review [10]) the emphasis will be on the probability-theore-
tical aspects. Since the very concept of level density is statistical it
seems appropriate to use the tools of mathematical statistics to develop
and to compare methods for the estimation of level densities and missing
levels. It will then be seen that many of the seemingly quite different
techniques which exist are mere variants of the same basic approach.

2. THEORY OF LEVEL STATISTICS

Strictly speaking there is nothing random or statistical about resonance
energies or widths. They are determined as eigenvalues and by the eigen-
functions of a Schrodinger equation with suitable boundary conditions. A
statistical description is justified only by the complexity of the spectra
which reflects the complicated interaction between the many nucleons in the
nuclear systems we consider here. The square roots of the reduced neutron
(proton, photon,...) widths, for instance, are essentially surface inte-
grals over rapidly oscillating eigenfunctions in the 3A-dimensional con-
figuration space associated with the A nucleons of a given nucleus. Without
any further information one can therefore expect them to be normally dis-
tributed around zero. This hypothesis leads immediately to the Porter-
Thomas distribution [5] for the reduced widths P,

e ~ X r
P ( r | < r » d r = — dx , o < X

/irx
where (V ) is the ensemble average (for clarity we omit the usual sub- and
superscripts for reduced widths). Recently there were reports that in
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large-scale shell model calculations including two-body residual inter-
actions the width distributions deviated from (1) [11, 12]. According to
other studies [13, 14] the deviations vanished, however, if the secular
variation of the average reduced width was properly taken into account (or
if the sampling was restricted to reasonably narrow energy bins). So far
all experimental neutron, proton and photon resonance data support local
validity of the Porter-Thomas hypothesis;.

The level spacing distribution is much more difficult to find. The level
energies are the eigenvalues of a Hamiltonian matrix H which can be taken
as real and symmetric since the nuclear interaction is invariant under time
reversal. Furthermore, the probability density function p(H) must be in-
variant under rotations in Hilbert space because all representations of H,
including the diagonal form, are equally valid. The additional requirement
that the matrix elements be independent of each other yields the Gaussian
orthogonal ensemble (see [15]). This independence is, however, unfounded
physically and leads to an unrealistic semi-circular dependence of level
density on energy. Dyson (see [15]) introduced the circular orthogonal
ensemble by assuming that some unitary (otherwise unspecified) matrix
function S of H has its eigenvalues distributed uniformly around the unit
circle. He showed that with this very general assumption one can reproduce
any reasonable energy dependence of the level density. Mello et al. [16]
studied the more physical statistical shell model where not the elements of
H but only those of the residual (two-body) interaction are considered as
random variables. Both the orthogonal ensembles and the statistical shell
model (or two-body random ensemble) yield a level spacing distribution that
is very close to Wigner's famous surmise (see [14, 15])

2 r~
p(D|<D»dD = 2xe~X dx, 0 < x 3 -| -^y <- => , (2)

where (D> is the ensemble average. In addition to the level repulsion
(improbability of small spacings) implied by (2) all random-matrix models
predict that nuclear level sequences possess "nearly crystalline" regulari-
ty or stiffness in the sense that the cumulative level count N(E) follows
closely a straight line with slope p = 1/{D), excursions by more than one
unit being extremely unlikely. This implies that spacings are correlated in
such a way that a large spacing is followed by a short one more often than
not and vice versa. The mean-square deviation from a best-fit straight line
in an interval containing N levels, called the A3 statistic by Dyson and
Mehta [17], has the expectation value

<A3> = ^ {ln(2^N) + Y - l i - | } (3)

(2f = 0.5772... is Euler's constant) and the variance

var A3 =i^ ( £ £ + 7-) = 0.012 . (4)

Absence of levels or presence of spurious levels from other sequences
obviously increases A3. One has therefore tried to use it as a test
statistic for the purity of level sequences. According to Dyson the best
test statistic for the presence of spurious or missing levels in an almost
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pure and complete level sequence is (see [18])

F, = I ar cosh -r=——r , (5)

where JJ runs through all levels between E^-I/2 and E^+I/2 and I is an
arbitrary test interval (for instance 20 times {D)). Expectation value and
variance are, with m = irI/(2{D}),

{FA> = m - In m - y + 2 , (6)

var F^ = In m , (7)

if E^ is a true member of the sequence. If it is the energy of a spurious
level in an otherwise pure sequence one gets

<FA> = m , (8)

so that a spurious or missing level should produce, on average, a peak or a
dip of magnitude In m in an almost constant trend. The catch, however,
lies in the words "on average" (see [19]). In practice one finds that the
A, and F, test criteria for purity and completeness are often satisfied for
samples that are known to be neither pure nor complete.

3. ESTIMATION BASED ON LEVEL POSITIONS ALONE

It was already stated that simple ladder estimators such as a straight
line fitted to the linear portion of the level number staircase curve N(E)
are usually rather worthless, and this is true also if they appear under
the more pretentious name of A, statistic.

The seemingly straightforward approach of fitting the Wigner distribution
(2) to the observed distribution of level spacings is ruled out by the bad
distortion of the latter if 20 % or more of all levels are missing. Un-
fortunately none of the tests described so far permits unambiguous identi-
fication of spurious or missed levels. Nevertheless, as the Columbia group
demonstrated, one can purify almost pure level sequences further by a com-
bination of all available tests [19]. Such an ambitious program involves
much judgement and is therefore not easily cast into the form of a computer
code. Moreover, as already mentioned the tests based on orthogonal-ensemble
theory are not as sensitive as one might expect [20-22], For instance
evaluated 238U resonance parameters, after application of the A3 test,
yielded a seemingly pure and complete sequence of s-wave levels [23]. The
mean spacing corresponding to the slope of the fitted straight line,

<D> = 24.78 ± 0.14 eV,

(see Fig. 2) was obtained from the W statistic recommended by Dyson and
Mehta [17] as the optimal estimator for nearly pure level sequences,
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w = y I'1 - ' A "* J~K ¥l

where I and E are length and midpoint of the energy interval considered.
As will be seen below, however, the width distribution shows quite clearly
that about 20 °o of the levels are missing. Similar discrepancies for the
stable iron isotopes [24] can be traced back to the same weakness of the
A3 and other related statistics. Now if the ladder tests suggested by
orthogonal-ensemble theory are of such doubtful value already in these
favorable cases, where levels are well separated and only one spin is
possible for s-wave resonances (so that level repulsion is fully effective)
they are quite useless for resonance data afflicted by severe level overlap
and unknown level spins such as those for 2 3 3U, Z39Pu and other
fissile target nuclei with two superimposed s-wave sequences.

4. ESTIMATION BASED ON LEVEL POSITIONS AND WITHS

For the last-mentioned nuclei Monte Carlo techniques have proven useful.
One generates artificial cross sections from resonance parameters sampled
from the relevant distributions. By varying the mean widths and spacings
.one tries to make the artificial, Doppler and resolution broadened cross
section curves statistically as similar as possible to the measured data.
The number of unrecognisable and unresolved levels in the artificial cross
section can then be taken as estimate for the number missed in the real
data (see e. g. [25, 26]).

The difficult judgement of the statistical similarity between experimental
and artificial cross sections was put on a quantitative basis by Garrison
[27]. He uses the same energy grid and also the same cross section bin
structure for both cross section curves and then generates a bivariatc
distribution in matrix form by considering all pairs of data points that
are separated by the same energy difference AE (which is to be chosen as
comparable to the mean level spacing). If the two cross sections of such a
pair fall into the i-th and the k-th cross section bin the value one is
added to the (i,k) matrix element. The two matrices thus created from the
experimental and the artificial cross section are then compared by means of
either a maximum-likelihood or a chi-square criterion to determine the
degree of statistical similarity between both. Varying the level density
and the mean widths one can maximise the statistical similarity. This
method can cope with data that are quite badly affected by missing levels
and unresolved doublets. Garrison's estimate for 2 3 SU,

(D) = 0.38 ± 0.04 eV

[27], deduced from spin-merged data, is consistent with the value

<D> = 0.44 ± 0.04 eV

found later by Moore et al. from spin-separated data measured with polar-
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ised beam and sample [20], whereas previous, less quantitative comparisons
with Monte Carlo generated cross sections had given much higher values
[25]. It is obvious, however, that simpler techniques are required for
routine extraction of level densities from the vast body of modern reso-
nance parameter data.

5. ESTIMATION BASED ON WIDTHS

In contrast to the spacing distribution the neutron width distribution is
only slightly affected by missing levels. The upper part of the Porter-
Thomas distribution, corresponding to the strong levels, can usually be
regarded as unperturbed. It is then possible to estimate the mean width
from this part, for instance by a straightforward least-squares fit [28].
The expected number of missing levels and the level density can be calcu-
lated once the mean width is known. This, in essence, is the basis of the
best level density estimation techniques available at present, even if they
employ more refined methods. In order to introduce the relevant principles
of probability theory we begin with a discussion of the simplest parameter
estimation problem involving the Porter-Thomas distribution.

5.1 Unperturbed Porter-Thomas Distribution

Suppose we have a sample of reduced neutron widths F], ̂  , - . • Fpj from a
pure Porter-Thomas distribution. The joint probability that in a random
sample of size N, drawn from the distribution (3) with given ^F), the sample
values lie in the infinitesimal intervals dF at F-, dF at T ,... dF at

L(r ...r |<r»dr ...dr = n P(r.|<r»dr. .
i = l

The joint probability density function L is called the likelihood function.
It specifies the relative probabilities for different samples if the parent
distribution and its parameter(s) are given. Our problem, however, is just
the reverse. We want the probability density function not for the sample
(that is given) but for the parameter {T} of the parent distribution. The
recipe for the necessary inversion of conditional probabilities is provided
by Bayes' theorem (see e. g. [29]) which thus constitutes the very basis
for all scientific inference from experimental (uncertain.ty-affected) data.
It states that the required (a-posteriori) probability is the product of
the likelihood function and the a-priori probability for the estimated
parameter(s). Writing p (̂ F]>)d{P̂  for our a-priori probability we get

p«r>|r],...rN)d<r> « L(r1,...rN|<r»po«r»d<r>

This distribution, the Bayesian solution to the estimation problem, is the
optimal solution: it contains the complete information about {F^ which can
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be extracted from the sample, including all error information. Its useful-
ness depends, however, on knowledge of the prior probability, and this is
often unknown in the case of continuous parameters. In our case (V) is a
scale factor. Jaynes [30], arguing that the prior probability cannot depend
on the scale chosen, showed that for scale parameters the appropriate prior
probability is d{F)/{F> = d In (Y), thus giving a rigorous group-theoreti-
cal proof for a conjecture due to Jeffreys [29]. Next the qaestion arises
which value of •(!'} should be quoted as the best estimate, the maximum
(mode) of p or the expectation value or something else? The recommended
Porter-Thomas distribution should of course be the same whether we estimate
(I? or 1/^F) (both must be equally possible for a scale parameter). The
Jeffreys-Jaynes prior probability suggests that we consider ln{F) as the
basic parameter, hence L as its probability density function. The maximum
of L with respect to ln{F) is then determined by

d L = , . d L _ _J_ d L
d in<r> v ; > d<r> <r> d ( i / < r » ~ '

which shows that in each case we have to maximise the likelihood function,
and that the recommended value is in fact the same in all three cases.

We could have avoided Bayes' theorem and the Jeffreys-Jaynes prior probabi-
lity by use of the more familiar maximum-likelihood technique (see e. g.
[29]). Writing down L explicitly for the Porter-Thomas distribution one
sees that L is a product of one factor containing the sample values and a
second factor which depends only on the true mean {F) and the sample
average

r E W-lh • (13)

i=l _
The factorisation shows that F is a minimal sufficient statistic, i. e. it
is a number that can be calulated from the sample, contains all information
about (Ty that the sample contains and has the smallest scatter around its
expectation value among all possible sufficient statistics. Small scatter
is one property which a useful estimator must have. The second property is
that it should be unbiased which means that its expectation value should be
equal to the estimated true value. The sample average F has both proper-
ties. Furthermore it maximises the likelihood function, i. e. the value
to be recommended is, as might have been expected,

<T> = T . (14)

The statistic F has a X2-distribution with N degrees of freedom [31],

P ( r | < r » d r = r (N/2)~ 'e~ y
y

N / 2 ~ I dy ,

0 < y = w>K"
(where F(N/2) is a gamma function, not a width), as follows upon substitu-
tion of §i = /r^/(2{F>) and integration in the space of the £̂  over all
angles, for fixed radius. Now (15) is seen to be basically the distribution
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ojf the ratio Y/(T). It can be interpreted either as the distribution of
F for given <F^ or, equally well, as that of {T) for given T,

P(7|{r»d7 = P((r>|~)d<r> . (i6)

The importance of this distribution lies in the fact that it contains the
uncertainty information about the {T) estimate. One can establish confi-
dence limits for any confidence level P by demanding that y-integration
over (15) yield the value P between, and equal values (l-P)/2 below and
above the limits, and then converting y-limits to {r)-limits. (P = 0.68
corresponds to the error bars of ± 1 standard deviation usually quoted for
Gaussian distributions.)

Exactly the same estimate and the same associated probability distribution
would have been obtained immediately with the Bayesian approach, i. e. by
insertion of the Porter-Thomas distribution (l) and of the Jeffreys-Jaynes
prior in Bayes' theorem, Eq. (11), and determination of the most probable
value of ln{r). In fact, the Bayesian and the maximum-likelihood solution
coincide whenever a scale parameter (or a position parameter, with constant
prior probability density [30]) is estimated. It should be understood,
however, that in more general cases the maximum-likelihood solution only
approximates the rigorous Bayesian solution (which is the price one has to
pay for not working with the correct prior probability).

5.2. Porter-Thomas Distribution with Given Threshold

Let us now consider a less academic case. We assume that the sample con-
tains only reduced widths that exceed a given detection threshold Pc. If
the threshold depends on energy we must start from the bivariate distribu-
tion (properly normalised to unity)

p(r.,Ei|<r>,rc)dr.dEi

(17)

where the bar over the complementary error function denotes the energy
average in the interval (Ea...Eb). The joint probability to obtain the
given sample of level energies and entrance-channel widths is

L dr drKdEr..dEN = ( — — ) e"5 d 5 -——r ( 1 8 )
/TT erfc/x (E, -E )

c b a

where £2 = (N/2)(T/{P)) is the sqared radius ..nd d £ is the volume element
in the space of the_£- defined before. Factorising L one sees again that
the sample average T is a minimal sufficient statistic. As before its dis-
tribution can be obtained by integration over all angles in the space of
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the ?i for fixed level energies E^ . The resulting solid angle factor must
then be averaged over level energies. The final distribution can again be
interpreted either as that for F or as that for {F>. Since the energy-
averaged solid-angle factor does not depend on (F) one finds in the latter

p((r>lr,rc)d<r) <*

N T
0 < y - I<rT< ^

Since we estimate a scale factor again, the maximum-likelihood solution
coincides with the rigorous Bayesian solution. Maximising L with respect to
{ } one obtains

T = < r > ( i + 1 -

- x
c

VTT e r fc /xc

( 2 0 )

The factor in parantheses corrects for threshold effects. Since it depends
on (Vy one must solve iteratively, for instance with the Newton-Raphson
method. Once |F) is known one knows also erfc/x7 and thus the estimated
true number of levels, N/erfc/x^.

Although this may not be readily apparent from the available documentation
(20) is the basis of the algorithms dev^lopped by

- Fuketa and Harvey [32] (with Tc/r = c»E , c and b being
given constants characterising experimental
conditions),

- Fort et al. [33] (ESTIMA code, Tc = const, chosen so as
to exclude practically all p-wave levels),

- Rohr et al. [34] (MISDO, modified Fuketa-Harvey code with
threshold chosen so as to restrict p-wave
admixture to a given small fraction).

In none of these algorithms, however, is the {T)-uncertainty calculated
from the exact distribution (19).

Another approximate estimation procedure is the moment method. One equates
the sample moments with the true (ensemble) moments of the probability
distribution whose parameters one tries to estimate. Moore [20] derived a
missing-level estimator by equating the first two moments of the distribution
of /T (essentially the width amplitude) with their expectation values, for a
sharp width threshold Fc,
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N
/r = 4 I /FT = / /f P(Ddr / / P(Ddr , (21)

i , 1 r r

T E 1
IN

c

Inserting (1) explicitly one gets

T E 1 I r. = / r P(r)dr / / P(r)dr . (22)
1=1 rc rc

For given sample averages this is an equation for x which can be solved
by iteration. If, in addition, the threshold Fc is known one obtains
{F) = Fc/(2x ). Moore, on the other hand, prescribes a value for xc

(e. g. 1/8 for the 238U sample considered in [36]) which determines
the right-hand side of (23). He then varies the threshold and thus the
number N of levels included, beginning with a high threshold. Lowering
the threshold he includes weaker and weaker levels in the sample averages
until the left-hand side of (23) equals the fixed number on the right-
hand side. The true number of levels is then estimated as N/erfc/xc.
The mean level spacing found with this estimator for 238U was

(D) = 20.9 ± 1.5 eV.

This is to be compared with the 24.78 ± 0.14 eV obtained from essentially
the same data base by means of the ortogonal-ensemble statistics A3 and
W (see Sect. 3.). The 19% discrepancy corresponds to weak levels that are
clearly missing from the width distribution but did not show up in the A3
test because they were fairly uniformly distributed over the energy range
covered (0 to 4 keV). This illustrates the insensitivity of the orthogonal-
ensemble test statistics mentioned before and the general superiority of
estimation procedures based on the width distribution.

An estimator similar to the one devised by Moore could be based on (20).
Assuming with Moore that the threshold does not depend on energy one can
rewrite (20) as

-x

ir = ^-(!+"^r =r) • (24)
c c errcvx

c
For given right-hand side one can again vary the threshold T c and thereby
also the number N of widths included in the statistic V until both sides
of (24) are equal. With the final value of N the estimated true number of
levels is N/erfc/x c as before. For given threshold, however, it is not
more difficult to find {T} and thus erfci/x"̂  from (19). This rigorous
(Bayesian) approach has the additional advantage that confidence limits
can easily be calculated from the correct distribution (19) whereas for
Moore's missing-level estimator and the simpler one based on (24) the
correct error estimation recipe is not so obvious.
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5.3. Porter-Thomas Distribution with Unknown Threshold

The missing-level estimators discussed in the preceding section require
thresholds to be set on the basis of experimental characteristics [32]
or of pri^r knowledge about strength functions [33, 34] or by judging
how far the unperturbed part of the width distribution extends [20, 28].
It will be shown now that for a pure Porter-Thomas distribution the thre-
shold can be automatically estimated from the resonance parameters them-
selves without any other prior knowledge. We adopt the notation

u- = erfc u (E) = erfc /xc(E) (25)

so that uc(E) is the fraction of observed levels in the interval dE at E.
In this representation the bivariate distribution of level energies and
reduced neutron widths (normalised to unity) assumes the simple form

p(ri,Ei|{r),rc)dridEi = ==i

0 < u

du_. dE.

uc(E.) E < E. < E,
a i b (26)

This means that in an (E,u)-diagram the sample points (E^.u^) are uniformly
distributed below the threshold u = u (E) as shown schematically in Fig. 3.

;L
u = uc(E)

Fig. 3 - Threshold and distribution of sample points in (E,u)
representation

Next we factorise , pulling out the energy average denoted by the overbar,

u (E) = IT f(E) , (27)

and assume the energy dependence f(E) to be known. This function can easily
be obtained from the resonance data with adequate precision by least-
squares fitting of a suitable test function to the cumulative level numbers
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N(E). Choosing a polynomial we can write for the fitted function and its
derivative

_ E 2

N(E) - N(E ) = pu / f(E)dE = Cj(E-Ea) + c2(E-Ea) + ... (28)
E

— a
§ = p^Tf(E) = Cj + 2c2(E-Ea) + ... (29)

where the coefficients cnare known from the fit. The apparent level densi-
ty ucp is easily expressed by known quantities if we put E = E^ in (28)
and utilise f(E) = 1. One finds

c + 2c2(E-E ) + ...

• . ; * . ( W »

A parabolic fit (c3 = 04 = ... = 0 ) , corresponding to a linear energy depen-
dence of uc, is usually quite adequate. Fig. 4 shows examples for parabolic
fits.

Clearly {T} is a scale parameter again but the role of uc is less clear.
Not knowing the prior probability we cannot invoke Bayes' theorem. Instead
we try to find sufficient statistics by factorisation of L, and then their
probability distribution by integration over as many widths and energies
as possible. We start with a constant threshold, f(E) = 1. The joint
probability for the whole sample is

-NT7(2<r» N dr.
L(r r |<r>,r )dr drH = - ^ /2 n — H(r,-rc) (3i)

u \V) 1=1 V2TTT .

where_H is the Heaviside function and T| the smallest width. This shows
that T and Tj are jointly sufficient statistics. Integration over all
angles in the (N-l)- dimensional space spanned by ?2>---% results in the
distribution _

p(T.r1|<r>.rc)drdrI « ^ e ^ ^ ^ ^ ' d y . y = ̂  . (32)

This is the product of the joint probability that I\ lies in dlj and all
other widths are larger, viz.

u N-l du.

P(u >u >...uN|u )du, = N(—} ir- , (33)
c c
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and the probability that the sura of these other widths is NF-F] given that
F] is the lower threshold, viz.

^ ( N - 1 ) / 2 - ! . (34)

Going to (F) and uc as variables one finds from (32) the joint distribution
of the estimated parameters,

(N-1)/2-1 duc

u
c

0 < uc < 1 . (35)

For given Fj the probability becomes maximal if ucis minimal, i. e. uc= Uj.
This estimate is biased, however, being always low. Calculating the expec-
tation value of u./u from (33) one finds that

N+l N+l , /— ,„,.
u = —jr- u. = -77- erfcyx. (36)
c N I N J

is an unbiased estimator of the observable fraction of levels. Differentia-
tion of L with respect to <F)yields

. N e VxT

Thus {F^ can be found from (37) whereupon u and the estimated true number
of levels N/u follow from (36). If the threshold depends on energy (37)
remains valid but instead of (36) one finds

N! l
Uc " ~ f(E,) • (38)

In both (37) and (38) the subscript 1 refers now to the sample point which
relatively speaking is closest to the threshold, i. e. which has the
highest ratio u./f(E.) (but not necessarily the smallest F.).

So far we assumed thresholds to be sharp. In reality, however, thresholds
are diffuse. It is then better to base the estimation not on all members of
the sample, but to discard the points in the region of the diffuse threshold.
It is not difficult to derive the corresponding equations. If the sample
members are enumerated in descending order of u^/f(Ej) and the estimation is
based on the members k to N only one finds as generalisation of Eqs. (37) and
(38)
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1
N-k

c

N

I r- =
i=k+l X

N+1
N+l-k

erfcy/xT

f(Ek)

2
e k / ~

erfc/xT
(39)

(40)

One can begin the estimation with the outermost point (k=l) and then move
inward point by point to check the stability of tb.3 results against thre-
shold variations. It should be pointed out that the rigorous result pre-
sented here differs from the maximum-likelihood result given in [8],
especially for small samples.

Another way to deal with, diffuse thresholds is to replace the Heav:'side
function in (31) by a function with smooth edges. This precludes a rigo-
rous solution and one has to use the maximum-likelihood approximation,
as is done in the STARA code [35]. Fig. 5 shows results for 2 3 8U, ob-
tained from the same data base as the mean level spacings quoted before
(24.78 ± 0.14 eV [23], 20.9 ± 1.5 eV [36]). The average s-wave level
spacing estimated with STARA was [35]

<D> = 20.4 ± 0.3 eV ,

in good agreement with the value from Moore's missing-level estimator.

5.4 Porter-Thomas Distribution Distorted by Unresolved Multiplets

The level density estimators based on the observed width distribution
which we discussed so far gave satisfactory results when tried on Monte Car-
lo generated resonance parameter sets, with reduced widths sampled from
the Porter-Thomas distribution, resonance energies from the Wigner dis-
tribution or orthogonal-ensemble theory, and levels with a reduced width
below some critical value rejected as missing. It came, therefore, as an
unpleasant surprise when in the recent NEADB benchmark exercise [5] all
of them systematically underestimated the level density by 4-8 % in cases
which must be considered as quite favorable, viz. large, almost pure s-wave
samples resembling those observed for actinides.

The NEADB test material was prepared as follows. Level widths and energies
were produced by Monte Carlo sampling as usual, but not distributed. In-
stead, they were utilised by P. Ribon to generate Doppler- and resolution-
broadened cross sections which were in addition subjected to simulated
counting statistics. These "experimental" data (but not the original para-
meters) were handed over to H. Derrien who tried to recover the resonance
parameters by multi-level shape analysis. His extracted resonance energies,
neutron widths, spins and parities were then distributed to the partici-
pants. They contained thus not only threshold effects due to counting
statists ; in a very realistic way but also resolution effects in the form
of resonance parameters that had been extracted from peaks mistaken for
singlets while actually they were doublets and triplets. This latter effect
is totally absent in resonance parameters directly obtained by Monte Carlo
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sampling. That it was significant can be seen in Table I which shows
characteristics of benchmark test material representing almost pure s-wave
samples together with STARA results. Strength functions were estimated
correctly but level densities were underestimated. One recognises that
adding the true numbers of levels lost in unresolved multiplets (disclosed
after the benchmark exercise) to the estimated miss ing-level numbers one
gets almost exactly the correct numbers in all three cases. The conclusion
is that most of the bias in the STARA results was due to unrecognised
multiplets that had been analysed as singlets.

Table I - Characteristics of NEADB benchmark data and STARA results.
Numbers in parantheses give STARA results modified by
addition of the true number of levels lost in multiplets
to the original STARA estimates of missing levels.

Benchmark

Case

5A

5B

5C

so
QO' 4)

2.22
2.231.30

2.47
2.521.25

1.79
1.81±.25

(eV)

1.85
2.02±.08
(1.84)

1.43
1.56±.O5
(1.42)

1.82
1.9O±.O9
(1.77)

all

levels

173
158±2
(174)

224
204±l
(226)

170
162±3
(175)

missing

levels

33
26±2
(42)

50
30±l
(52)

40
32±3
(45)

lost in

multiplets

16
0
(16)

22
0
(22)

13
0
(13)

origin

true
STARA
( " )

true
STARA
( " )

true
STARA
( " )

Let us now consider the problem that levels are missed not because of a
detection threshold but because limited instrumental resolution causes
pairs, triples etc. of closely spaced levels to be mistaken for single
peaks. We assume that this happens whenever spacings are smaller than some
critical separation D which of course must be of the order of the instru-
mental resolution. The fraction of levels lost in unresolved multiplets is
then

D
C

q = p(D)dD (41)

where p(D)dD is the level spacing distribution. If one assumes that the
apparent neutron width extracted from an unresolved multiplet peak is equal
to the sum of the true component widths one can show that the observed
width distribution is given by [8]
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e r
P ( r | < r > , q ) d r = (i-q)(i+v) — dx , o < x sTTX

with

v = /rrz e2 (1 + erf z) , z = q/x

(42)

(43)

in the case of a single Porter-Thomas distribution. The distortion factor
(l-q)(l+v) multiplying the undistorted width distribution reduces the
relative frequency of small widths and increases that of large ones as
was to be expected (Fig. 6).

It is quite easy to modify the estimators described so far (and the
corresponding codes) by replacing the unperturbed Porter-Thomas distri-
bution everywhere by the distorted distribution (42), (43). This analytic
treatment of resolution effects is much more convenient than Monte Carlo
cross section simulations. It is used in a new version of the STARA code
for statistical resonance analysis which gave the improved benchmark
results [8] shown in Table II.

Table II -

Benchmark

Case

5A

SB

5C

Comparison between NEADB benchmark values and STARA-81
results obtained with analytical estimation of levels
lost in unrecognised multiplets.

so
(io~4)

2.22
2.201.30

2.47
2.491.30

1.79
1.781.22

<D>

(eV)

1.849
1.811.19

1.428
1.441.05

1.824
1.861.09

origin

true
STARA-81

true
STARA-81

true
STARA-81

5.5. Mixtures of Level Sequences

So far we treated only a single s-wave level sequence as occurs for target
nuclei with spin 0. For target nuclei with nonzero spin one has two s-wave
level sequences. It is well known that the quantities gT of the mixed
sample (g being the spin factor) are again members of a Porter-Thomas
distribution provided that the strength function is the same for both
sequences and their level densities can be taken as proportional to 2J+1, J
being the resonance spin quantum number. This means that the methods dis-
cussed so far are applicable to all isotopically pure s-wave samples, from
both even and odd nuclei.
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distorted RT. (q = 0.2)

Fig. 6 - Undistorted Porter-Thomas distribution (perfect resolution,
q = 0) and Porter-Thomas distribution distorted by 20 %
missing levels lost in unrecognised multiplets (q = 0.2),
according to the analytic approximation Eqs. (42), (43).
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The problem of p-wave admixture with unidentified level parities is more
difficult. One can use artificial thresholds to reject practically all
p-wave levels (which usually have very small widths) as is done in ESTIMA
[33], MISDO [345] and in the original version of STARA [35], or one can
estimate the p-wave strength function together with the s-wave strength
function and the level density, as is done in Stefanon's CAVE code [37]
where the maximum of the likelihood function is determined by a simple
grid search procedure. We shall look first at the simplest possible esti-
mation problem involving an s-wave distribution PQ ( G | G ° ) and a p-wave
distribution pj(G|G*) of neutron widths, where we use the notation

G S grnVl eV/E (= gr^(E)) , G* = <grn> , (44), (45)

g is the statistical spin factor, Fn the neutron width and v^ the centri-
fugal-barrier penetrability (equal to 1 for the s-wave). As we assume that
spins and parities are not or not always known we cannot calculate reduced
widths from the gFn-values which resonance analysis yields (because this
would require division by v# which depends on parity). For s-wave levels G
is, however, just the reduced neutron width times the spin factor. For zero
target spin both p 0 and p( are Porter-Thomas distributions (pj at least in
good approximation) and we can write

-G/(2G°) -G/(2G V((Ef) ) dG.dE.
p ( G . , E . | G ° , G l ) d G i d E . = (w e + w e • = - ) 1 1 (46)

1 /2TIGG° /2TT GG^VAE.) E -E
1 i b a

where w ^ w are the a-priori probabilities that a given resonance is
excited Dy tne s- or -he p-wave, viz.

p— TTZT f unknown panty

W0 = V ' WI 0 for < s-wave level (47)

.1 ^p-wave level

where pQ, pj are the densities of s- and p-wave levels (p, = 3 p0 for
target spin zero and approximate (2J+1)-dependence of the level densities).
The likelihood function becomes maximal for

Go . <gr»>. k5>& , e.. <gr.>. k w w (46)
h "oi h ®ii

where W Q > wj are the a-posteriori probabilities that a level with
given Ef and Gf belongs to the s- or the p-wave part,

W0 P0 w i p
i piLJ

0
(49)

o o ] l

Both estimated parameters occur in the a-posteriori weights so that the
eqs. (48) are coupled and must be solved iteratively. For a pure s-wave
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sample (p = 0) the weighted average for 1 = 0 reduces to the unweighted
sample average (14). Since we estimate scale parameters, the maximum-
likelihood solution is rigorous and the probability distribution for them
is just the likelihood function, from which confidence limits (and the
covariance) can be calculated.

Eqs. (48) suggest a general approach for samples of mixed parity: Start
with guess values for the parameters, calculate the a-posteriori proba-
bilities for each member of the sample and go through the estimation

'procedure for pure s- and pure p-wave samples separately, with weighted
G-values weighted by WQ and wj , respectively. This yields improved
estimates for -(g^^ and {gF^with which improved posterior probabilities
can be calculated. Repeat the process until convergence is achieved. Moore
adopted this prescription to generalise his missing-level estimator to
mixed parities. The generalised estimator is implemented in the code
BAYESZ, available from the neutron data centres. BAYESZ handles also
resolution effects in a simple approximation.

It should be clear by now how the formulae derived for single Porter-
Thomas distributions can be generalised. We shall only state the result
for given, energy-dependent threshold: The maximum-likelihood equations
to be solved for the two parameters {gf°) and (gl^) are (1=0, 1)

)". w •
( ^y _

• y. w. . /ir i w-.erfc/x +w..erfcv'x ,
2,1 Li. Hi Oi cO li cl

(50)
where G (E)X = f (
It is not clear at present how much better the more rigorous Bayesian and
maximum-likelihood methods are compared to ad hoc techniques such as
Moore's missing-level estimator or the simple approach of finding, ̂ gFn^
and the s-wave level density from a least-squares fit to the uppe-r, un-
perturbed part of the width distribution, then subtracting the extrapo-
lated s-wave distribution from the lower part and fitting the remainder
with an average p-wave width. For small samples differences may become
noticeable. In any case the more rigorous methods give clearer recipes
for error estimation.

6. SUMMARY

Level density estimation methods have been reviewed with emphasis on the
mathematical and statistical aspects. A new rigorous solution is given for
the problem of simultaneous estimation of mean width and level density (or
true number of levels) for a Porter-Thomas distribution affected by a
detection threshold with known energy dependence but unknown height.
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The generalisation to mixed (s- and p-wave) resonance samples is also
indicated briefly.

A number of conclusions can be drawn from experience with experimental
data and benchmark test material:

- Estimators based on level energies (ladder statistics) are not
\iseful except with extremely pure single sequences.

- Estimators based on the reduced-width (Porter-Thomas) distribution
work well. Rigorous solutions for the parameter estimation problem
can be given for simple models (known sharp detection threshold,
sharp threshold with known energy dependence but unknown height),
maximum-likelihood solutions are possible also for more complex
models (diffuse threshold, p-level admixture).

- Resolution effects (levels missed in unresolved multiplets) can be
treated analytically at least for pure (or almost pure) s-wave
samples.

- Estimators should be tested with the NEADB benchmark test, material
(available from the neutron data centres). Simple tests wii'h Monte
Carlo generated resonance parameters are not sufficiently sensitive
to resolution effects.

- New estimators could also be compared with well tested and documented
codes such as BAYESZ, ESTIMA and MISDO (all available from the neutron
data centres).
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ABSTRACT

The currently used methods to derive nuclear
level density from study of non-resonant nuclear re-
actions are critically reviewed. The problem of ex-
tracting level densities from the particle spectra
observed in compound nucleus reactions are addressed in
some detail. Problems discussed include optimum choice
of experimental conditions to minimize non-compound
contributions, procedures to invert the equations of
the statistical model with angular momentum conser-
vation in order to derive specific level density in-
formation from comparison of model calculations with
measured particle emission cross-sections, choice of
optical model parameters for such calculations and
uncertainty estimates for level densities derived in
this way including the uncertainties in the input pa-
rameters for the model calculations. Other methods
for deriving level densities like level counting in
the region of resolved levels or the analysis of nu-
clear level widths derived from Ericson fluctuations,
blocking experiments or other methods are discussed
only briefly with respect to their most important me-
thodological problems. Finally, after a short summary
of the level density results achieved from the study
of nuclear reactions,suggestions are made how our know-
ledge of nuclear level densities could be improved in
the most efficient way by further use of the discussed
methods.

1 . INTRODUCTION

In this talk I want to give a survey on the various me-
thods which can be used to determine nuclear level densities
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from the study of nuclear reactions except for the area of reso-
nance reactions which are delt with in other lectures.
The main topic of this lecture will thus be the discussion of
the procedures which have to be used to derive absolute values
of the level density of nuclei as function of their excitation
energy from the directly observed quantities and the problem how
to get reliable uncertainty estimates for the deduced level den-
sities taking into account both the experimental errors and the
theoretical uncertainties inherent to the various procedures for
deducing the level density values. Lack of time will not permit
me to do this in full detail for all methods which have to be
addressed. Therefore I will cover just one problem,the determi-
nation of level densities from energy-differential particle
emission cross-sections in compound nucleus reactions in some de-
tail, because it appears to me that this area is the most promi-
sing one to improve our knowledge on level densities. For the
other methods I will to a large extent have to refer to the rele-
vant literature. Also because of the limited time I will restrict my-
self to the determination of the total level density p(U) and
cannot address the interesting question of the spin and parity
dependence of level densities. In addition to the mentioned pro-
blem of how to deduce level densities in the best possible way
from the various experiments I will, however, try to give a
summary on the results which have so far been accumulated by their
use and discuss the question what seems to be the most efficient
way to improve our present still very incomplete knowledge of
nuclear level densities.

2. DETERMINATION OF LEVEL DENSITIES FROM COUNTING OF RESOLVED
LEVELS IDENTIFIED BY THEIR POPULATION IN NUCLEAR REACTIONS

At low excitation energy the level density can be determined
by direct counting of the number of levels per unit energy. The
individual levels of nuclei may be identified either from high-
resolution measurements of charged particle spectra emitted in
nuclear reactions like (p,a) or (d,p) or from high-resolution
measurements of the y-radiation emitted in reactions like thermal
neutron capture, (n,n'y) or (n,py). In the first case (s. fig. 1)
each level populated in the reaction manifests itself in a par-
ticle group of the corresponding energy,in the second case the
gamma-energy corresponds to the energy differences between all
pairs of levels and the level scheme has to be established by means
of Rytz' combination principle and/or additional coincidence
measurements. (Fig. 2) Quantitatively there are two problems in-
herent to this method. First of all there is certainly a loss of
levels when the average level spacing approaches the experimental
energy resolution. Secondly and this is the more difficult pro-
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blem there is the possibility that levels may escape detection
because they are too weakly populated. These problems have up to
now only been solved for one group of such experiments:for high
resolution measurements of the particles emitted in compound nu-
cleus reactions. Thus high-resolution magnetic spectrograph mea-
surements of charged particles from compound nucleus reactions
e.g. nuclear reactions like (p,a) or (P/P1) in medium mass nu-
clei offer the best possibilities to derive rather complete nu-
clear level schemes up to relatively high excitation energies.
In such reactions most levels are populated with comparable cross
sections [1] and the possible loss of levels because of too low
cross-section can either be neglected or estimated reliably from
the known spin distribution of the levels [2]. Likewise proce-
dures for correcting the loss of levels due to unresolved levels
and estimating the uncertainty of this correction have been given
[3]. Accordingly these reactions have allowed to use the level
counting method up to densities of ^ 50/MeV [1,4] (s. fig. 3).
With the presently achievable resolution of t 3 keV in such mea-
surements this can certainly be extended to densities of 100/MeV.
Unfortunately they are restricted to nuclei below ̂  A = 70 as for heavier
nuclei almost all compound nuclei decay by neutron emission and
charged particle emission proceeds predominantly by direct processes.

For heavier nuclei the situation becomes somewhat more diffi-
cult. Up to now no method has been developed to estimate the
number of levels escaping detection in direct reactions. This
number is certainly also very sensitive to the experimental con-
ditions especially background and counting statistics. Thus in
heavy nuclei we cannot hope to get reliable level density infor-
mation from study of just one charged particle reaction. We can,
however, hope to get better information by investigating the same
nucleus by different reactions which populate different classes
of levels (e.g. (d,p), (d,t) and (d,d') for populating particle,
hole and collective states.

Likewise no procedure has been developed so far to estimate
the number of missed levels if level schemes are derived from
high resolution measurements of y~spectra from either slow neu-
tron capture or (p,ny) and (n,n'y) reactions. The latter reactions
proceed mainly by means of compound nucleus formation and are
therefore non-selective as discussed before. Accordingly it has
been found that such reactions may successfully be used to iden-
tify reliably about the 20 lowest levels of many nuclei. At
higher excitation en rgies the increasing complexity of the gamma
spectra results in a loss of levels, the amount of which is hard
to estimate.

Thus in most medium and heavy nuclei levels have been in-
vestigated by a number of methods, each of which is rather incom-
plete (s. fig. 4) and ore has to make a somewhat qualitative
judgement on the excitation energy up to which most (e.g. more than
90%) of the levels have been identified.

The results obtained so far by this method are summarized
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in fig. 5, which shows my certainly somewhat subjective estimate
on the present status of the level counting method for those nu-
clei for which also neutron resonance data exist. This figure
shows two important points:
1) The energy range accessible to direct counting is still rather
smalliespecially for the heavier nuclei. For most nuclei the level
counting data give us just one significant piece of data, an
average value of the level density in the low energy range or
more precisely the integral over the level density between U = 0
and U -v 1-5 MeVmax
2) This integral information is available, however, for the whole
mass range with reasonable statistical accuracy.

Actually there are of course many more levels known than indi-
cated in fig. 5, but excitation energy regions where only a part
of the levels has been identified cannot be used for deriving the
level densities because no reliable procedures for estimating the
fraction of missed levels are available, except for the discussed
case of charged particles emitted in compound reactions in light
and medium weight nuclei A < 70. For these cases (s. fig. 3)rea-
sonable corrections for missing level can be applied
which increases the usable excitation energy range by 1-2 MeV
compared to figure 2.

After this description of the present situation I want to add
a few words on the future possibilities. Unlike the resonance
method the level counting method has by far not been pushed to
its limits. Up to now most measurements of charged particle spec-
tra have been performed with resolutions around 10 keV, whereas
2-3 keV have been achieved with magnetic spectrographs of the
Q3D type and high-quality Tandem-van de Graaff beams [5]. With
this resolution it should be possible to determine level densi-
ties up to ^ 100 - 200 levels/MeV which correspond to excita-
tion energies of 7 MeV in 56pe o r 5 MeV in 55jyjn. Unfortunately no
experiments of this kind seem to be planned at present.

3. DETERMINATION OF LEVEL DENSITIES FROM ENERGY DIFFERENTIAL
PARTICLE EMISSION CROSS-SECTIONS IN COMPOUND NUCLEUS REACTIONS

3. 1 BASIC CONCEPTS FOR DEDUCING LEVEL DENSITIES FROM PARTICLE
SPECTRA FROM COMPOUND NUCLEUS REACTIONS

Now I will proceed to the main topic of this talk/the extrac-
tion of level density information from the study of compound nu-
cleus reactions. This is the oldest method for obtaining nuclear
level densities. Nevertheless the results obtained so far are
somewhat disappointing compared to the enormous amount of work
that has gone into the development and use of the method and I will
try to explain why this has been so.

In order to better see the essential points we will first
start with a very simplified picture of a compound nucleus reac-
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tion neglecting all angular momentum effects by assuming the
spin of all levels involved to be zero. The result of such a re-
action is shown schematically in figure 6. The compound nucleus
will decay to all accessible levels of the residual nuclei which
can be reached by particle emission and the decay probability to
any specific energy level is determined only by a barrier trans-
mission factor and a phase space factor for the emitted particle.

Thus we get:

o(ea»£b) = cross-section for population of a certain level of
Lev the residual nucleus by emission of particle b with

energy e^

with G = Z Z p^. . a. ..<e, , ) (2)
c eb'n

e , e channel energies for bombarding and emitted particle

a = cross-section for compound nucleus formation

p, = square of particle momentum

a. (e^) = cross-section for the inverse reaction to the
i n b considered decay channel that is absorption of

particle b by the residual nucleus in the con-
sidered excited level and formation of com-
pound nucleus

If the excitation energy of the compound nucleus is suffi-
ciently high we may replace the sums over levels in G by inte-
grals over a level density p, ,(U) of the residual nuclei reached
by the emission of the different particles (n,p and a)

Umax 2

6 " b- 0 Pb'

Umax = Uc~ Bb' (SeParation energy of particle b') (4)

and e^, = Umax-Ubl<Channel energy of emitted particle) (5)

If we consider particle emission into an energy bin de, we
have to sum equation (1) over all levels in the corresponding ex-
citation energy bin dU = deb and we get for the energy differen-
tial particle emission cross-section

*o u , - a tE ,
 Pb • ginv h

( eb ) pb(Umax~£b) .,.
- ac ( ea } ' G ( 6 )
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If we measure the spectra of emitt^.J particles for such reactions
e.g. the ct-spectra we will in genera1 get both information of
type (1) and (6) that is cross-sections for population of resol-
ved levels or groups of such levels and particle emission cross-
sections leading into the excitation regions where the levels
are no longer known.

From such data we can get the following level density in-
format i ons:
1) From the cross-sections o we can determine the quantity G,
which is dominated by the neutron emission term

U
max
f
Q
 Pn ( > ( U ) d U

Pn(U) being the level density reached by neutron decay of the
compound nucleus. As fig. 6 shows,the main part of the integral
comes from a relatively small energy region just below U and it
is qualitatively obvious that from our knowledge of G we can ex-
tract a value of p at an excitation energy corresponding to
about the centroid of the neutron spectrum.

Quantitatively it can be shown that the integral can be
used to derive a value of p at the excitation U -2T, which is
to first order independent of the assumed energy dependence of
the level density (T being the inverse logarithmic derivative of the
level density in the region of neutron emission).

2) Knowing the so-called Hauser-Feshbach denominator G we can
simply invert eq. (6) in order to calculate the level density of
the compound nucleus reached by the emission of the measured par-
t i c l e | 2 _ (u _ H ) . G

dejj max b
P b(U b) - -2 (7)

P b "

Actually the situation is somewhat more complicated because
of angular momentum effects. Absorption of the bombarding particle
leads to formation of compound nuclei with different spins and
parities. Thus we have different kinds of compound nuclei, each
of which decays in different ways to the accessible levels of the
residual nuclei determined in addition to the factors men-
tioned before by the centrifugal barrier dependingon the angular mo-
mentum difference between the compound nucleus and the respective
level of the residual nucleus. The observed cross-sections are of
course those due to the decay of all kinds of compound levels.
Thus equ. (1) and (6) have to be replaced by a sum of terms cor-
responding to the different kinds of compound nuclei whereby each
of those terms has basically the same structure as equ. (1) and
(6) .
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The well-known formulas, again for angle-integrated cross-
sections are [6].

r ^ FbU^' W V
o -, ( E j U j - I . t r . ) — 2 0 T _ v E _ / r f i IT'I

L e v a b t > b CJTT a t> v. J , uv

da , Jt- ™T_

and d ^ {ea' eb } " J
with a = cross section for formation of compound nuclei with
angular momentum J and parity it by absorption of particle a with
energy e . In terms of transmission coefficients it is given by

a , i . -n

• ' • - |l-i | 1. - IJ-SJ (2V1)(2Ia+l)

a ' a
and F{,(J,t,eb,Ib, TI^) = decay probability of compound nucleus with quantum
numbers J,ir by emission of particleb to the.selected residual level with ex-
citation energy Ub andquantum numbers Ifc>, fb- It is the sum over the contri-
butions of particles of all angular momenta.allowed by the conservation laws
of J .and 7r. Thus in term of transmission coefficients it can be written as

I +i J+S
b b b lb f-i^b , ,

and G(J,TT) is again the sum over all decay probabilities which can be expressed
in terms of sums respectively integrals over the level densities of the re-
sidual nuclei P, (U, I,fr)which now in principle depends also on J and IT

b max

G(J > 1 f ) = Z f Z F (J.ir, V V W V W ^ b ( 1 1 )

b 0 l b ) 1 r b

P (U ,1, ,f, ) = spin and parity dependent level density for residual nucleus
reached by emission of particle b. We will assume it to be independent of pa-
rity and parametrize in the usual way as a product of a total level density
P t o t (u) and a conventional normalized spin distribution function f(I, ,7T^).
This results in

W V V - ptot(V • f(VV (12)

with fClb,irb) = — J — (2Ib+1)exp [-Ib(Ib+1)/2a
2(Ub)j (13)

4a (U)
a being the so-called spin cutoff-factor.

The quantities I , i , Ib and ib are the spins of the target, projectile, re-
sidual nucleus and emitted particle respectively, Sa and Sb are the channel
spins in the entrance and exit channels, la and lb are the orbital angular
momenta and ffa,7rb the parities in the entrance and exit channels.The quantities
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6 and <S are 1 ore zero depending whether its two arguments are
IT, IT, TT „ IT r 6 <=

b a
equal or not and serve to insure parity conservation. Though eq. (8) and (9)
are considerably more complicated than equ. (1) and (6) they are very similar
in structure. Each term of the sum in equ. (8) and (9) has exactly the same
structure as equ. (1) and (6). Therefore we can use the described procedure
for extraction of level densities from particle emission spectra also in the
frame-work of the rigorous angular-momentum conserving theory.

We proceed again in two steps
1) We use equ. (8) to calculate the total level density pn (U -2T) of the

, , , , , . . "tot max
compound nucleus reached by neutron emission at an
excitation energy corresponding to the centroid of the neutron spectra. This
is done by assuming a suitable functional form for the energy dependence of
pntot(U) and adjusting the absolute normalization until the
cross-section calculated by means of equ. (8) matches the measured value. To
first order the level density pn at the excitation energy Umax-2T is still
independent of the choice of the functional form for Pr,(U) (s. fig. 7), it
does, however, depend to some extent on our choice of the spin-cutoff factor
and this has to be taken into account in the uncertainty analysis.
2) Using the Pntot(^) derived from (1) and a guess for the wanted level den-
sity Pbtot^h^ w e c a l c u l a t e —2_(Eb)• Comparison of these calculated values
with the measured ones ° allows us to derive the level density

as

V o t ( U ) = (pbtot<U) Assumed

Finally it has to be mentioned that equ. (8) and (9) do not take into
account the partial isospin conservation which has been observed in compound
nucleus reactions [7,8]. Extensions of the Hauser-Feshbach formalism to in-
clude complete or partial isospin conservation have been given [9,10], which,
however, are only of restricted practical value because of the large uncer-
tainty in the actual amount of isospin mixing. Fortunately the deviations
from equ. (8) and (9) due to isospin conservation are rather small (< 10%)
except for (p,p') reactions which have also large contamination from non-com-
pound particles and thus should not be used for extraction of level densi-
ties. Thus use of equ. (8) and (9) is completely adequate in most cases;
possible deviations due to isospin conservation should, however, be conside-
red in the uncertainty analysis (s. 3.2.5).

3.2 PRACTICAL IMPLEMENTATION OF THE METHODS DERIVED IN 3.1

Before we can actually use equ. (8) and (9) for the determination of
level densities we have to solve 3 problems:
1) Check the measured cross-sections for contamination by non-compound re-
actions and if necessary apply corrections,
2) choose appropriate optical potentials for the calculation of the trans-
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mission coefficients for the incident and all emitted particles,
3) choose appropriate level densities as starting point for the calculation.
In the following I will make some general remarks to these questions and also
as a practical example show the analysis of a recent measurement of ° q for
the 5°Fe(n,a)53Cr reaction at E n = 14.1 MeV. Finally I will address

 dE<*
the problem how to estimate the uncertainty of the level density values de-
rived by the described procedure.

3.2.1 CONTAMINATION OF EVAPORATION SPECTRA BY NON-COMPOUND PARTICLES

All measured particle spectra are to some extent "contaminated" by con-
tributions of both direct and preequilibrium reaction. Quantitatively, how-
ever, this contamination depends strongly on the type of reaction and the
incident and outgoing particle energy showing the following general trend:
1) Inelastic scattering reactions like (n,n'), (p,p') or (a,a') always con-
tain relatively large non-compound contributions, reactions of the type (n,p)
or (p,n) are considerably better and reactions of the type (a,nucleon) or
(nucleon,a) have the smallest non-compound cross-sections. In addition we
have to keep in mind that above about A = 70 emission of charged particles
from compound nuclei becomes s o much inhibited by the coulomb barrier, that
non-compound contributions dominate for all types of reactions.

Thus for up to about A = 70 the reactions (a,n), (a,p), (n, a) and (p,a)
are about equally well suited for level density determinations whereas above
A = 70 preferably the (a,n) and (p,n) reactions should be used.
2) For all reactions precompound emission strongly increases with incident
particle energy.
3) Non-compound emission is always most important for the high-energy ends
of the emitted particle spectra. Thus it is advisable always to use the
lowest bombarding energy compatible with the excitation energy-range which is
to be studied and to use the highest energy levels from the region of resolved
levels for the level density calculations according to equ. (9).

Non-compound contributions to the spectra manifest themselves in the an-
gular distribution. Whereas compound nucleus theory predicts exact symmetry
of "20 around 8 = 90°, both direct and preequilibrium reactions are for-

d e d £2 warc] peaked. As an example fig. 7 shows the angular distribution for
the 56fe(n)a) reaction, which clearly shows the gradual increase of non-com-
pound reactions with increasing a-energy. Because of this difference in angu-
lar distributions only cross-section measurements from the backward hemi-
sphere should be used for calculations of _ .

de

3.2.2 CHOICE OF OPTICAL POTENTIALS

The transmission coefficients needed both for the
entrance channel (for calc of acj-fI^and for the exit channels have to be cal-
culated from appropriate optical potentials. There exists a large variety of
:̂ uch potentials derived from differential elastic and total reaction cross-
sections. In choosing among these potentials we should avoid to use poten-
tials outside the mass and energy range of the data which were used to derive
them and always check that the potentials predict the correct total reaction
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(non-elastic) cross-sections for all energies relevant for the analysis.
For the emitted particle this means that, if possible,we should use po-

tentials derived from low energy data like the neutron potentials derived by
A. Smith's group for many elements from 0.5-5 MeV elastic and inelastic
scattering [11]. For cases where no such potentials are available one has to
use one of the common global potentials [12-14]. For protons the global po-
tentials of [15] and [16] have been found satisfactory down to the lowest
energies of interest at least for medium mass nuclei (A = 40-70). For ct-par-
ticles this is true for the Satchler-McFadden potential [17], however, it
has recently been found [18] , that the widely used Huizenga-Igo potential
[19] seriously overestimates the total reaction cross-sections at low ener-
gies and should no longer be used for the analysis of evaporation spectra.

For the incident particles with their higher energies the choice of the
potential is not critical as most of the common global potentials predict
very similar reaction cross-sections above 10 MeV and we may use the men-
tioned global neutron [12-14], proton [15,16] and a-particle [17] potentials
also for the calculation of the compound nucleus formation cross-sections,
ô ĵ .We have to keep in mind, however, that these cross-sections only des-
cribe the formation of a composite system of total angular momentum J, which
may decay partly by direct or precompound particle emission. Thus in the
presence of such reactions the 0£,j1T value calculated from the optical poten-
tials have to be reduced by an appropriate factor. As no detailed knowledge
exists how these non-compound processes effect the different J states one
can only reduce all o^.j^ values by a common factor 1 - fp - fpg, fD and fpE
being the fractions of direct and preequilibrium processes in the total reac-
tion cross-section. The preequilibrium fraction fpE can be estimated from
either the exciton [20] or hybrid model [21] , the direct fraction fD is only
important for inelastic scattering to collective states where it may be
estimated from DWBA calculations except for deformed nuclei where coupled
channel calculations may be necessary.

3.2.3 CHOICE OF LEVEL DENSITIES

In order to use equ. (8) and (9) for deriving level densities we have to
start with initial values for the level densities that is both for the total
level densities Ptot(U) and the spin distribution functions f(J,ir) of all re-
sidual nuclei populated in the reaction.

The starting values for the total level densities Ptot(U) do not strong-
ly influence the final result and are thus uncritical, the backshifted
Fermi-Gas [22] , the Gilbert-Cameron model [23] or just the constant tempe-
rature part of the Gilbert-Cameron model can be used. If the corresponding
information is available,these parameters should be adjusted to reproduce the
total proton to neutron emission ratio of the compound nuclei.

For the spin distribution - lacking more detailed knowledge - it seems
best to use the standard form of equ. (13) and choose values of the spin cut-
off-factor a which correspond to an effective moment of inertia equal to the
full rigid body moment as calculated with a nuclear radius constant of
r o =1.25 fm. For medium mass nuclei (A % 40 - 70) there is considerable evi-
dence that these moments of inertia are correct to better 30 %; for heavier
nuclei the. evidence is much weaker and there are indications that moments of
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inertia may be smaller than the rigid body values by up to 50%. It has to be
pointed out that the choice of the spin dependence of the level density does
effect the values of Cxev and l£ calculated from equ. (8) and (9) to some
extent and (see section 3.2.5)de our uncertainty in the distribution func-
tion f(J,Tr) will produce a corresponding error in the Ptot(U) values calcu-
lated from equ. (8) and (9).

3.2.4 ACTUAL PROCEDURE FOR DERIVING LEVEL DENSITIES

In this section I will demonstrate the procedures described in the pre-
ceding sections for a definite example,the analysis of our recent measure-
ment of the double differential a-emission cross-sections in the reaction
56Fe(n,a) for En = 14.1 MeV.

Fig. 8 shows the angular distribution for different energies of the
emitted ct-particles and fig. 9a gives the angle-integrated cross-section
ĝ.a derived from the data in the backward hemisphere assuming symmetry around
90°. The figure also shows the position of the resolved levels in the resi-
dual nucleus 53cr_ From fig. 8 we conclude that for the highest a-energies
non-compound reactions are already dominating. We thus decide to restrict our
analysis to the a~energy range 6-12 MeV corresponding to excitation energies
of 2-8 MeV in 53cr- The upper limit is given by the neutron binding energy of
53cr (7.9 MeV).

Starting with a parameter set (transmission coefficients, level densi-
ties) which has succesfully been used to describe nt'tron cross-sections for
many nuclei in the56pe regiori [24] we calculate first the cross-section

£ a contributing to the a-emission cross-section in the 11-12 MeV bin.
Lev

U=2.1
According to the deviation of this first guess from the measured value ('-25%)
we slightly adjust the level density pn and pp of the residual nuclei -'"Fe
and ->°Mn reached by neutron and proton emission until we get agreement with
the measured value while simultaneously preserving the right neutron to proton
emission ratio. This agreement Is reached with the level density parameters
as listed in table 1. While this parameter set is by no means unique we may
use it to derive the one uniquely determined quantity pn(U-2T) (s. fig. 7)
and get for the nucleus -'"Fe, which is reached by neutron emission

p (11 MeV) = 2.65 • 103 levels/MeV
56Fe

which is in good agreement with an extrapolation of the level counting results
shown in fig. 10.

In the second step of the analysis we calculate the a-emission cross-
section ^fea(ea) using the level density parameters of table 1 by means of
equ. (9) and determine the level density of •̂ -'Cr, the residual nucleus reached
by a-emission from equ. (14) as indicated in fig. 9a and 9b.

3.2.5 DETERMINATION OF UNCERTAINTIES FOR THE LEVEL DENSITY VALUES

Realistic uncertainties for the level densities derived by use of equ.
(8) and (9) must take into account the experimental errors of the measured
particle emission cross-section, the uncertainties in our estimate of the
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contribution of non-compound reactions and the uncertainties in the calcula-
ted cross-sections due to the parameter uncertainties (s. sect. 3.2.2 and
3.2.3). Detailed consideration of the various sources of errors gives the
following result
1) For the method of determining pn(U-2T) from the cross-sections aj^ev

 t o re~
solved levels I have summarized the error contributions in table 2. The error
contributions due to our incomplete knowledge of the optical model parameters
and the spin distribution function f(J,ir) of the nuclear levels can be esti-
mated from calculations of OLev using different optical potentials and vary-
ing the nuclear moments of inertia within the limits of our present knowledge
(s. sect. 3.2.2 and 3.3.2); the uncertainty due to contribution of non-com-
pound reactions to the measured particle spectra has already been discussed
in section 3.2.1, uncertainties due to neglect of isospin effects can be
estimated by calculations assuming complete isospin conservation . This will,
however, only be necessary for reactions involving protons in the entrance or
exit channel and target nuclei of small neutron excess. The uncertainty in
the compound formation cross-sections due to prior direct and preequilibrium
particle emission (s. sect. 3.2.3) will in general be dominated by the uncer-
tainty of the preequilibrium fraction fpjj which can in most cases not be
estimated to better than 30% of its value.
2) In order to discuss the relevant uncertainties for the level densities de-
rived for the nucleus populated by the measured particles we rewrite equ. (14)
in a somewhat different form

H ....
p U ) • 55 • Assumed iV) <'5)

d E Lev calc

This equ. is obtained from equ. (14) by multiplication with the ratio
°Levmeas /°Levcalc which is unity as the parameters'of the calculation are
adjusted to reproduce °Lev- This form of the equ. shows clearly that the
level density at excitation energy U is essentially obtained as quotient of
2 ratios each of which is more accurate than its constituents due to the can-
cellation of uncertainties e.g. absolute cross-section normalization factor
in the experimental values and a number of theoretical uncertainties common
to the calculation of aLev anc' — • T n e remaining uncertainties are summari-
zed in table 3, they can be e estimated as discussed before.

The error estimates obtained in this way for our example, the reaction
,a), are also shown in fig. 9b and fig. 10. These uncertainties are about

typical for what can be obtained with presently available techniques of mea-
surements and analysis and we may summarize the situation as follows.
1) Level desities accurate to 15-25% can be derived from equ. (9) for a resi-
dual nucleus in a compound nucleus reaction from the emission cross-sections
of the particles populating it.
2) Level densities for the residual nucleus formed by neutron emission can be
derived from the cross-section for formation of resolved levels of any of the
residual nuclei with somewhat larger uncertainties.
3) These uncertainties are, however, only achievable if the contribution of
non-compound reactions can be kept sufficiently small (< 20-30% for the worst
parts of the spectra used for the analysis).
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4) Only a relatively small fraction of uhe total uncertainties of p(U) is due
to the experimental errors of the measured particle emission cross-sections.
This means that the presently achievable accuracy of a. 10% for energy-diffe-
rential particle emission cross-sections is sufficient in most cases.

The discussed error estimates can and should be checked experimentally
by the use of different reactions and bombarding energies in the study of
one nucleus (s. fig. 12).

3.3 ACCESSIBLE EXCITATION ENERGY RANGE

The accessible range for extraction of level densities from -5— measure-
ment (equ. (9)) is limited to energies below the neutron binding energy,
as for higher excitation and correspondingly lower particle energies the ex-
perimental spectra are "contaminated" by particles from cascade reactions
(e.g. our 56jre(nja) spectrum will contain contributions from the Fe(n,n'a)
reaction).

The alternative procedure to determine pn(U) from OLev according to equ.
(8) is in principle applicable to arbitrarily high excitation energy. In prac-
tice unfortunately two effects limit the maximum obtainable excitation energy
also to about the neutron binding energy.
1) Due to the exponential dependence of the nuclear level density on excita-
tion energy the cross-section for any selected level or group of levels de-
creases exponentially with excitation energy and measurements become diffi-
cult if cross-sections decrease below about 1ub/Sr which corresponds to about
105 competing levels. This number is reached at about 15 MeV around mass 50
and it decreases strongly with A.
2) As already discussed, "contamination" by non-compound reactions increases
strongly with increasing bombarding energy and eventually such contributions
will become important for all resolved levels of any residual nucleus and
this imposes another limit on the maximum excitation energy accessible to
this method of level density measurement. This limit is mostly even lower
than the limit due to restriction 1 even for the reactions which have the
lowest non-compound contributions like (a,n) or (n,a). This may also be seen
from our example. As fig. 8 shows we are just at the limit where non-compound
reactions start to become important for the population of all resolved levels
at the chosen bombarding energy of 14 MeV which permits study of the level
density Pn(U) of 56pe up to 11 MeV which is about the neutron binding energy
of that nucleus. Thus also the method of extracting level densities from re-
solved levels is in practice restricted to excitation energies not much lar-
ger than the neutron binding energy.

3.4 DERIVATION OF LEVEL DENSITY INFORMATION FOR EXCITATION ENERGIES ABOVE
THE NEUTRON BINDING ENERGY

3.4.1 GRIMES' METHOD

The excitation energy range accessible to the application of equ. (8)
(cross-sections to resolved levels) can be increased considerably by a modi-
fication proposed by S. Grimes [25-27].

Instead of measuring excitation functions to a few isolated levels he
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measures in (p,n) and (a,n) reactions the total cross-section for population
of all levels below the neutron binding energy that is sum of all excitation
functions for all levels with excitation energies below the neutron binding
energy.

This has two advantages: , ,
O The count-rate is increased by factors of 10 to 10 compared to measure-
ment of excitation functions for individual levels. This increases the exci-
tation energy range by about 5 MeV for heavy nuclei and allows to study level
density up to about two times the neutron binding energy for most nuclei.
2) The influence of direct reactions is also reduced, as most of the levels
included in the summation have rather high excitation energies and their
direct cross-sections are thus much smaller than for the low lying levels
used in the study of isolated level excitation functions. Moreover corrections
even for these small direct contributions can be derived from the measured
neutron spectra.

The price one has to pay for these advantages is a more difficult way of
analysis and the introduction of additional uncertainties in the determination
of the absolute values of the level densities. Instead of using equ. (8) di-
rectly one has to sum it over all levels below the neutron binding energy.
The measured quantity (neutrons populating all levels below the neutron bin-
ding energy) is thus given by

o (neutrons with energies above e +B -B ) = I a, (e ,U,I,ir)
n 3 3. n LJGV 3.

where the summation extends over all levels from the groundstate to the neu-
tron binding energy and

o (e ,U, I,TT) is given by equ. (8).
Lev a

The summation can of course only be performed as an integral over the
level density.

This results in
Bn -

a = / r I p (U,I,TT) OT (e ,U,I,ir) (17)
n U=0 J=0 TT n Lev a

Thus in order to calculate the level density of some nucleus for excitation
energies above the neutron binding energy one has already to know the level
density below the neutron binding energy Bn. As a consequence the limited
accuracy of the level density data for energies below Bn causes corresponding
errors in the results obtained for the level densities at higher excitation
energies.

3.4.2 ANALYSIS OF COMPOSITE EVAPORATION SPECTRA

At high bombarding energies compound nuclei will decay by successive
emission of several particles and the observed particle emission spectra will
be the superposition of the particle spectrum emitted by the first compound
nucleus and the spectra emitted in all later stages of the reaction. In prin-
ciple such composite evaporation spectra can also be calculated in terms of
the statistical model of nuclear reactions. The necessary generalizations cf
equ. (8) and (9) are rather straight-forward and have been given in the lite-
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rature [28-30]. However, obviously such spectra do depend on the level densi-
ties of all residual nuclei populated in successive stages of the reaction.
Furthermore the fraction of the total reaction cross-sections leading to pre-
equilibrium particle emission increases strongly with bombarding energy and
this creates additional difficulties for the interpretation of the spectra
from multistage compound reactions. Thus in many cases it is not possible to
extract useful information on the level densities of the individual nuclei
from such measurements.

Thus it appears that at present extraction of level density information
from composite spectra with reasonable accuracy is possible only in 2 special
situations
a) If the composite spectrum contains only two components that is if the ex-
citation energy of the compound nucleus is kept below the 3n threshold. In
this case the particle spectra depend only on two level densities, the level
density of the first c.n. in the region between the binding energies for one
and two neutrons and the level densit ' of the second compound nucleus in the
energy region below the neutron binding energy, which can be determined by
the methods described before.

The best way to do such measurements (s. sect. 3.2.1) is the observation
of the neutron spectra from compound nuclei formed by either a-particle or
proton bombardment. It can be expected that such measurements,which can be
combined with absolute level density measurements according to Grimes1 method
(s. sect. 3.4.1), can supply reasonably accurate level densities up to about
two times the neutron binding energy for the whole mass range. However, the
necessary procedures for quantitative extraction of level density values and
deriving reliable error estimates have still to be worked out.

Existing data on such two component evaporation spectra are mostly mea-
surements of secondary neutron spectra from nuclei irradiated with 14 MeV
neutrons [31-34] which nave large precompound contributions (-v 30%). In addi-
tion these measurements have mostly been analyzed either by means of the
approximate Lang-LeCouteur relation [35] or by visual comparison with model
calculations and the result obtained in this way must be considered somewhat
uncertain.
b) A second favourable region for level density studies from composite evapo-
ration spectra is the investigation of a-particle spectra from (a,a1) and
(p,a) reactions at very high bombarding energies and thus compound nucleus
excitation energies (50-100 MeV) [36-38]. It has been shown in the pioneering
work of Halpern and coworkers [36] that such reactions are especially useful
for determining nuclear level densities at high excitation energies because
of two features:
1) At excitation energies above ^ 40 MeV the a-particle spectra emitted at
backward angles do contain well defined evaporation parts, which can be sepa-
rated from the precompound background reasonably well also for the heaviest
nuclei (s. fig. 11).
2) The a-emission probability decreases strongly with decreasing excitation
energy as expected from the energy dependence of the nuclear temperature
according to the Fermi-Gas model. Thus one can approximately neglect the a-
emission in the later stages of the evaporation process and analyze the eva-
poration spectra with equ. (9). Measurements of this kind have so far concen-
trated on the region around the A = 208 shell where they have produced inter-
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esting results on the energy dependence of the shell effects in the level
density, but the method should be applicable for the whole range of medium
and heavy nuclei.

3.5 PRESENT STATUS OF LEVEL DENSITY INFORMATION FROM PARTICLE EMISSION
SPECTRA

A huge amount of work has been devoted to the determination cf nuclear
level densities from evaporation spectra in compound nucleus reactions. How-
ever, many of the experiments used reactions which have a large contamination
by non-compound reactions like (n,n') or (p,p') and much of the early work on
neutron spectra seems to suffer from large unidentified systematic errors.
Most measurements of a-spectra from (p,oc) , (n,a) or (a ,a') reactions have
used in their analysis the Huizenga-Igo potential [19] which does not ade-
quately describe the a-absorption cross-section at low energy [18].

In addition most experiments have not been analyzed in the optimum way.
Most authors have analyzed their results by the use of the so-called Weisskopf
approximation (equ. (6)) and completely neglected angular momentum effects.
Those authors which did compare their results with correct treatment of spin
and parity conservation have mostly restricted themselves to finding sets of
level density parameters for which they get reasonable agreement between
measured and calculated particle spectra and have not quantitatively extrac-
ted level density information in the way described in section 3.2.

Thus it appears that at present only (p,n) experiments have reached
sufficient quality both in the experimental data and thp procedure used
in the extraction of level densities as to produce level density information
comparable in accuracy with the neutron resonance work.. There has been some
discrepancy between the early (p,n) work of the Wisconsin group [39-41] and
the later Livermore work of Grimes [25-27] . Careful (p,n) experiments in
Russia and lately also in East Germany [42-47] - which may be considered as
the most important experimental contribution in the field of level density in
the last decade - have, however, clearly confirmed the Livermore work both
with respect to measured primary data and procedures used to correct for the
"contamination" of non-compound particles. Extraction of level densities was
done mostly by use of the Weisskopf approximation which in this special case,
however, seems justified because of the small orbital angular momenta invol-
ved in this type of reaction, although it still has the disadvantage that it
does not provide an absolute normalization for the level density. Thus these
experiments [25-27, 42-47] have provided a consistent set of level density
measurements between the region of resolved levels and the neutron binding
energy for about 10 nuclei in the mass range A = 50-209.

The results indicate that the energy dependence of the nuclear level den-
sity at low energy seems to be closer to a constant temperature than to the
Fermi-Gas predictions (fig. 12-14) for all nuclei investigated. Comparison
with neutron resonance data for the nucleus ^ 1 ^ s e e m s to confirm the assump-
tion of an effective moment of inertia equal to the full rigid body moment
also for heavy nuclei; this, however, should be checked by experiments on
other nuclei.

In addition to the discussed (p,n) data there exists a considerable
amount of data which - if reanalyzed with the procedures described before -
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will probably make a significant contribution to our knowledge of level den-
sities. In this connection I would like to mention especially the (a,n) mea-
surement of the Livertnore group [25-27], the (p,a) and (a,p) results of the
Huizenga [48-50] and Porile [51-54] groups, the (n,a) and (n,p) results of
the Livermore group [55-58] and the Hamburg (n,a) results [59-60].

No relevant information can probably be extracted from the very discre-
pant rather old inelastic neutron data nor from the (p,p') data which mostly
suffer from serious non-compound "contamination".

Thus we may summarize the situation as follows. Only for relatively few
nuclei we have level density data of an accuracy comparable to that obtain-
able from average neutron resonance spacings. For a somewhat larger number of
nuclei such information is probably obtainable by reanalysis of existing ex-
perimental results. This refers to the situation below the neutron binding
energy.

Above the neutron binding energy we have at present only the discussed
results of the "Grimes method" on a few nuclei and the somewhat uncertain
results derived from the neutron emission spectra from the interaction of
14 MeV neutrons with nuclei [31-34]. The latter data can probably be im-
proved considerably by a consistent evaluation combined with a reanalysis in
terms of the exact statistical model formalism.

4. DETERMINATION OF LEVEL DENSITIES FROM MEASUREMENTS OF LEVEL WIDTHS IN
THE REGION OF OVERLAPPING LEVELS

4.1 PRINCIPLE OF THE METHOD

The average width r f (U ) of a compound nucleus of spin J and exitation
energy U (in the region of overlapping levels) and its level density
p(U ,J,TT ) are connected by the relation [49, 61].

F, (U ) = •= vrX—:—s- . G(J,TT) (18)
Jit c 2ir p (u ,J,IT)

with G(J,*) defined by equ. (11).
This relation can be used to derive absolute level densities at high

excitation energies. In this method the compound nucleus level width (from
fluctuation studies) is measured as a function of the compound nucleus exci-
tation energy Uc and the level density of the compound nucleus at that exci-
tation energy is calculated from equ. (18). This method of course requires
that the level densities of the residual nuclei in the low excitation energy
region are already known (from measurements of particle emission spectra) and
G(J,TT) can be calculated.

In the following we will first discuss the problem of deriving level
widths Fj ̂(U^ from various experimental methods and then discuss the proce-
dures for calculating the level density from the level width by use of equ.
(18).
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4.2 MEASUREMENT OF LEVEL WIDTHS OF HIGHLY EXCITED NUCLEI

4.2.1 DETERMINATION OF LEVEL WIDTHS FROM FLUCTUATION MEASUREMENTS

Level widths of highly excited compound nuclei (in the region of over-
lapping levels FJ/DJ » 1 for all relevant J values) can be determined as
follows in the framework of the fluctuation theory of Ericson [61,62,63].
1) An excitation function for some isolated residual level e.g. the (p, a o)
or (p,pi) excitation function is measured with high energy resolution in
small energy increments (s. fig. 16).
2) Fluctuation theory predicts that the "average period" of such fluctuating
excitation functions is equal to the average level width. This average period
can be determined in a number of ways [63], the most reliable of which seems
to be the determination of the half-width of the auto-correlation function.
The auto-correlacion function defined as [63]

C(e) = <a(E + e) a (E)> -<a >^ (19)

(< > means average over the energy interval AE covered by the measurement
of all excitation function)
is calculated and its half-width determined (fig. 16 ). For such measurements
it is of course necessary that the energy resolution in the excitation func-
tion measurements is at least somewhat better than the width to be measured
[63]. This condition can be relaxed to a certain extent, however, if the so-
called fluctuation attentuation method is used [64].
3) The half width determined in this way gives the average width of the com-
pound levels contributing to the special reaction channel selected by the
choice of the excitation function used for the analysis. It is in general an
average over several J values and both parities. The J values contributing to
the average and their relative weight depend on the type of reaction chosen
and on spin and parity of the selected residual level. The weighting factors
have been calculated from the statistical theory of nuclear reactions by
Gadioli et al. [65]. They obtained

1/r2 = i pT/r
2
T / £ P , (20)

meas , J J . J

with PT = I exp[J(J+1)/2a2] T 2(e )T 2 ( E , ) (21)
J V 2 V 2 C 3l1 a bl2 b

where a is the spin-cutoff factor of the compound nucleus at its excitation
energy Uc and the summation extends over all combinations S-j 1 -j and S2I2
connecting the entrance and exit channel respectively with the compound spin J.

4.2.2 OTHER METHODS FOR DETERMINING LEVEL WIDTHS

In special cases the so-called blocking effect can be used to measure
directly average life-times ofcompound nuclei [66-69] if these times are in
the range of 10~'6-10~'' sec and single crystal targets are available. Due to
these limitations such life-time measurements lave so far only been performed
for Germanium and Uranium;not much more can be expected in future.
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Recently it has been pointed out [10] that the width f of the compound
states manifests itself also in the spectra of atomic electrons ejected cohe-
rently prior to and after nuclear scattering. The authors show that in princi-
ple T can be derived from coincidence measurements between nuclear reaction
products and atomic electrons. The necessary measurements of energy spectra
of very slow electrons (.1-10 keV), however, will also be quite difficult.
This method would make it possible to measure much smaller T values than
accessible to the fluctuation method.

4.3 DETERMINATION OF LEVEL DENSITIES FROM LEVEL WIDTHS

The total level densities ptot(Uc) °f the compound nuclei at their exci-
tation energies Uc can be calculated from the measured level width
using equ. (18) as follows;
We assume the compound level density pc(Dc,JC,TTC) to be given by

Pc(Vc'Jr'lrc) = p t o t ( V ~ h (2J +1)exp[-J (J +D/20 2] (22)
C C (_ <_ LUL l_ ^ Q Z C C C C

is independent of parity.
Then equ. (18) can be rewritten as

2o~

which can be combined with equ. (21) to give „
, 2 (2J + 1)

F ^ = tptot(Uc)] {l PJ T ~ 4 2 2> / * pr
lmeasZ t O t J ac exp[Jc(Jc+1)/2ac ]G(J,ir) J "

From this equation Ptot^c^ c a n '3e calculated provided we know in addition to
the measured level width the following quantities: •
a) The spin-cutoff factor oc of the compound nucleus at its excitation energy
Uc which should be chosen as discussed in sect. 3.2.3.
b) Values of the quantities G(J,TT), the sums over all open channels must be
known.
For obtaining these G(J,ir) values two methods can be used:
1) If the excitation energy is so high, that a very large number of residual
levels is populated, the G(J,TT) values can be calculated using equ. (11) [71].
In this case we have to know the level densities of all residual nuclei up to
the maximum possible excitation energy e.g. the level density of the residual
nucleus reached by neutron emission has to be known up to a maximum energy
U m a x r e s = Uc-Bn (Bn = neutron separation energy). Bn being -v 10 MeV for me-
dium mass nuclei this means that for example we use the residual level den-
sities up to U = 10 MeV if we want to determine U at 20 MeV. Using the
available information on the level densities from neutron resonances and level
counting G(J,IT) can be calculated with an uncertainty of about a factor of two
and accordingly also Ptot^uc' c a n ̂ e determined only with this accuracy.
2) The calculation of the G(J,IT) values and the corresponding large uncertain-
ties can be avoided, if excitation functions used for the fluctuation analysis
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are measured on an absolute scale and the absolute value of the average cross

section Ojjev is determined. Then the quantities G(J,TT) can be removed from
equ. (18) by combining it with equ. (8). In this way one obtains [49]

2
a T . F, (J, IT , E, , I, , IT, ) . 4CT

C

toe c ZTI i M e a s j a ( 2 j + l).exp[-J(J+l)/2ac ]

This equation doesn't follow exactly from cqu. (18) and (8) as discussed in
ref. [2]. In order to be able to eliminate the quantities G(J,ir) one has to
use weight factors Pj1 somewhat different from the exact values given by equ.
(21). However, as discussed in ref. [4S1] the error introduced by this appro-
ximation is negligible in most cases.

As the average cross-section can be measured easily to an accuracy of
about 10%, the use of equ. (25) allows a nrach more accurate calculation of
the compound level densities than use of equ. (18) and calculation of the
G(J,TT) values from the residual level densities. Overall accuracies of +_ 30%
(mostly due to the exp. errors of r (typically •*• 20%) and the errors due to
ac uncertainties (typically also + 20%) are possible for the compound level
densities derived in this way. Thus whenever possible fluctuation measurements
should be supplemented by absolute measurements of the corresponding average
cross-sections. Of course equ. (25) is only applicable if the excitation
function selected for the fluctuation measurements has no contribution from
non-compound reactions. If the excitation function used for the fluctuation
analysis does contain an unknown contribution from non-compound processes,
application of equ. (25) introduces large systematic errors while the method 1
(calculation of the G(J,u) values from the residual level densities) is not
affected at all by such direct contributions and may thus be preferable in
such cases.

Up to now level widths have been measured by fluctuation analysis of ex-
citation functions (mostly for (p,a) or (p,p) reactions) for a large number of
nuclei in the mass-range A = 20-60 mostly for excitation energies around 20
MeV [63, 72]. In addition level densities have been derived from total neutron
cross-sections for a number of nuclei in the same mass-range for relatively
large ranges of excitation energies [76, 77]. Beyond mass 60 measurements be-
come increasingly difficult for two reasons:
a) Due to the increasing level density the cross-sections for any individual
exit channel become extremely small.
b) The level width decreases strongly with increasing mass number and above
mass 60 r becomes smaller than the energy resolution of conventional Tandem-
beams .

Thus only one investigation concerning nuclei with A > 65 has been per-
formed to date [64]. Using Tandem-beams of improved energy resolution and
stability (i> 0.5-1 keV) new and improved fluctuation measurements in the
mass-range 65 < A < 140 seem possible and desirable. Above A = 140 no fluctu-
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ation measurements seem possible at present due to the described difficulties.

SUMMARY AND CONCLUSION

A) NUCLEAR LEVEL DENSITIES BELOW THE NEUTRON BINDING ENERGY

1) Absolute nuclear level densities can be derived from the study of par-
ticle emission cross-sections in compound nucleus reactions with an accuracy
of 20-30% for the whole mass range and excitation energies below the neutron
binding energy.
2) These level density measurements can be performed using conventional ex-
perimental techniques and well established methods of analysis, if the expe-
riments are carefully chosen to minimize contributions of non-compound reac-
tions. For heavy nuclei (A >70) this means that the (p,n) and (a,n) reactions
should be used, for lighter nuclei (p,a) , (a,p), (n,a) and (n,p) reactions
will also provide good level density information.
3) Only very limited use has so far been made of these possibilities (s.
sect. 3.5). This situation can only to some extent be improved by reanalysis
of existing data.
4) The most efficient way to improve our level density information below
the neutron binding energy seems to be further measurement of neutron
emission cross-sections in (p,n) and (a,n) reactions and analysis of the data
by means of the procedures described in sect. 3.2.

B) NUCLEAR LEVEL DENSITIES ABOVE THE NEUTRON BINDING ENERGY

1) Absolute nuclear level densities for energies up to about two times the
neutron binding energy can be derived from neutron emission spectra in (p,n)
and (ce,n) reactions by means of the Grimes method (s. sect. 3.4) with an
accuracy of 30-40%.
2) Extraction of level densities from composite evaporation spectra suffers
still from lack of adequate procedures for this purpose. For the simplest case
of neutron emission of compound nuclei with excitation energies below the 3n
threshold it should be possible to develop procedures which permit extraction
of level densities of an accuracy comparable to the Grimes method.
3) Thus also for the excitation energy range up to twice the neutron binding
energy new measurements of neutron emission cross-sections from (p,n) and
(a,n) reactions and analysis both by means of Grimes'method and analysis of
the composite neutron spectra seems to be the most promising way to improve
our knowledge on level densities.
4) For very high excitation energies (up to 100 MeV) measurement of a-eva-
poration spectra has been proved a very valuable method especially for heavy
nuclei.
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TABLE I

Level density parameters for the residual nuclei formed in the
56Fe(n,a) reaction, which reproduce the a-emission cross-section
to the resolved levels in " c r in the U = 2.1 - 3.1 MeV range

Res. Nucleus

Mn
DJCr

a(MeV~1)

6.00
6.53
5.56

A(MeV)

.8
- 1.54
- .72
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TABLE II

Sources of error in themethod of determining the level density of the
residual nucleus reached by neutron emission from absolute cross-
sections ®Lev for population of resolved levels

Source of error

exp. error of a

error .in estimate for
contr. of non-compound
reaction to 0Lev

uncertainty in acj-n. because
of uncert. of opt. model
parameters

uncertainty in 0cj7j- because
of uncertainties of pre-
corapound and direct
fractions fpg and fp

uncertainty of G(J,ir)
because of uncertainty in
opt. model parameters

uncertainty of G(J,ir) be-
cause of uncert. of spin
distribution of levels

uncertainty because of
isospin effects neglected
in calc.

total uncertainty

Estimated Contribution to

in general

-\, 5-15

strongly dependent on
type of reaction and
incident energy

* 5

-x, 5-20
smaller for incident
a-particles than for
incid. nucleons

^ to

^ 5-15

0-15
except for (p.p1)
where error may be
much larger

~ 20-30

for

Ap/p (in Z)

specific example
56Fe(n,a)

-v 8

-v, 10

a, 7

•x. 8

a 15

* 10

% o

^ 25

- 273 -



TABLE III

da
Uncertainties in derivation of level densities from -3— measurements

Source of error

exp. error in -j-2 / av de Lev

error in —• 1 aLev because of
uncertainty of precompound
cont. to both quantities

errors in (-̂  / 0Lev)calc
due to:
uncertainty in spin distri-
bution of levels

uncertainty in optical po-
tential for the measured
emitted particle

total uncertainty

Estimated Contribution to Ap/p (in %)

in general

-v 3-10

strongly dependent
on type of reaction
and incident energy

^ 5-15

^ 5-15

-v 15-25

for specific example
56Fe(n,a)

9-11

^ 10

% 7

^ 7

-v 17
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Ep = 10.965 MeV Q = 3.223 MeV
Lab. Angle = 120°
Magn. Field =6.0 kG

1.00 1.50 2.00 2.50 3.00 3.50

3.50 4.00 4.5O 5.00 5.50 6.00
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Fig. 1 Identification of nuclear energy levels from high resolution
charged particle spectroscopy; a-particle spectrum from the
59co(p,a)56Fe reaction (Fig. 2 of ref. 1)

- 275 -



152Eu

>
<V
C.
UJ

§

o
X
LU

^mcno^vm>^^9Z SSgSSS^S

s-^fSx *«a
i££g&&£SB.-I S = 5 !=SS?

^gg w^™»sss -1=i" 5

0- 00

Fig. 2 Identification of nuclear energy levels from high resolution study
of y-radiation following thermal neutron capture in '51gu (Fig. 4
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doublets (Fig. 8 of ref. 4)
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Fig. 4 Level scheme of Pb as derived from a variety of nuclear

reactions (Table of Isotopes, ed. CM. Lederer, 7th Ed, Wiley,
N.Y., 1978)
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Fig. 6 Scheme of a compound nucleus reaction for the specific example
56 4 1 M V neutrons
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Fig. 8 Angular distribution of a-particles from the reaction Fe(n,a) at
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Fig. 9 Extraction of level density information from the a-spectrum ob-
served in the ^°Fe(n,a) reaction
(a) measured and calculated a-emission cross-sections da/de

(b) level densities derived from comparison of experimental and
calculated a-emission cross-sections, also shown density of re-
solved levels at low excitation energy and level density at
the neutron binding energy derived frow average s-wave reso-
nance spacing assuming a spin cutoff factor a = A
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Fig. 11 Energy spectra of a-particles from (a.a1) reactions on gold and tan-
talum at 160° (Fig. 2 of ref. 36)
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SYSTEMATICS OF THE NUCLEAR LEVEL DENSITIES

G.H. Rohr

Commission of the European Communities - JRC
B-2440 Geel, Belgium

ABSTRACT

Neutron resonance data are applied to study properties of
highly excited states in nuclei. A level density systetnatics of
compound resonances for a large number of nuclei of different
even-odd character is discussed. The interpretation of the rather
complicated structure in the systematics is that there is a step-
shaped base line for the level density parameter formed by nuclei
with minimal effects from residual interaction and no shell effects.
This base line is used to answer questions relevant not only to
level densities but also to nuclear physics in general. The step-
like behaviour of the base line for light and medium-light nuclei
is interpreted as changes in the level density due to changes of
the average number of particles and holes participating in the
compound excitation. The proof that the "compound states" in light
and neutron closed shell nuclei are doorway (2plh) states and
therefore do not fulfil the Bohr assumption for a compound state
may explain non-statistical effects observed in the capture process.
Deviations of the level density parameter from the base line are
interpreted as the effect of short range forces. A few examples
are given and discussed for different mass regions. In the neigh-
bourhood A ~ 75 the reduction of the pairing energy is assumed to
be due to the blocking effect. In the mass range of the actinides
the pairing energy has been readjusted at high excitation energy
and at A ~ 105 it is shown that for neutron rich nuclei n-p inter-
actions play the major role. Finally, the question is discussed
whether or not there is a collective enhancement at higher excita-
tion energy.

INTRODUCTION

In this contribution neutron resonance data are utilized to study the
properties of highly excited states in nuclei. A level density systematics
of compound resonances for a large number of nuclei of different even-odd
character is investigated. The rather complicated structure of the system-
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atics can be interpreted not only with respect to the specific problem of
level densities but also to other nuclear physics aspects. These aspects
are discussed in the following in connection with nuclear models used for
calculations of excited nuclear states. The corresponding level schemes of
the nuclear models are drawn schematically in Fig. 1.

The single particle states are explained with the shell model, assuming
that the nucleon moves in an average potential including spin-orbit coupling.
The calculated single particle level spacing for closed shell nuclei agrees
quite well with the observed states at low excitation energy but deviates by
several orders of magnitude at neutron separation energy. To allow for an
increase of the level density at higher excitation energy a residual inter-
action, not specified, has to be introduced allowing a nucleon in an excited
state to share its energy with other nucleons, resulting in a more compli-
cated state. The conditions that with a collision the energy of the single
particle states do not change and that the energy, spin and parity are con-
served are the basis of the independent particle model. Then we expect, in
an odd nucleon system, that 2plh states become energetically possible at a
certain threshold and with further increase in energy successive states of
higher hierarchy (3p2h, 4p3h, ... states) are created.

We may ask, what is the hierarchy of these states at neutron separation
energy? Is the hierarchy small enough that steps in the level density sys-
tematics may be seen due to the transition from one hierarchy to the next?
Are the compound states so complicated that the Bohr assumption (for creation
and decay of the compound state) is fulfilled for all nuclei?

For even nuclei the most important residual interaction, the pairing
force, has to be included. It consists of a short range attractive force
between identical nucleons. In a crude approximation the inclusion of a
short range force (delta-force) in the shell model Hamiltonian results in a
suppression of the ground state without altering the other single particle
states. The application of the independent particle model with the lowered
ground state causes an energy gap A (Pairing energy) and reduces the level
density corresponding to an excitation energy of (U-A) at neutron separation
energy. The change in the level density compared to a nucleus with no spe-
cified residual interaction can be taken as a measure of short range forces.
We may ask, does the pairing energy change with the excitation energy? Have
other interactions to be included?

A more accurate description of the pairing interaction is expected with
the quasi-particle model. The single particle states will be transformed
into quasi-particle states by means of the gap equation and quasi-particles
will be treated in the independent quasi-particle model. Do we describe in
principle all states with the independent particle model? The answer frcm
the literature is no; the collective states explained with the liquid drop
model have to be added. However the vibrational states, for instance the
first excited 2 + state, can also be interpreted in the shell model as a two
quasi-particle state obtained from one broken pair. The linear combination
of one broken 2 + terms causes an oscillating deformation of the whole nucleus
and results in a shift of energy for one state so that it becomes the first
excited state of the nucleus. The two phonon state (second 2* ) corresponds
to a four quasi-particle state consisting of 2 broken pairs as indicated in
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Fig. 1c). Until now the rotational states cannot be understood in the frame-
work of the shell model, but with the introduction of the IBA model it may
become possible. Let us assume that collective excited states are quasi-
particle states with a very rhythmic collision pattern which causes its shift
in energy. We then expect that the number of states in an interval AE at
high energy (higher than the shift due to collective character) can be pre-
dicted by the particle models. In a first approximation the number of col-
lective states which are shifted out of the interval will be replaced by
quasi-particle states of higher energy shifted into AE. Whether or not the
assumption is justified we hope to answer by means of the level density
systematics performed at neutron separation energy.

The talk is organized as follows: In the first part the data used for
the level density systematics and its interpretation are presented. In the
second part the rather complicated structure of the systematics is inter-
preted and a base line for the level density parameter a. for nuclei with
minimized residual interactions and no shell effects is proposed. In the
last part examples are given to answer the questions posed in the introduc-
tion.

NEUTRON RESONANCES AND CALCULATION OF PARTIAL LEVEL DENSITIES

Neutron resonances

The main sources of information for neutron resonances are the BNL 325
third edition (197 3) [1] and Neutron Cross Sections Part 1 (1981) [ 2] , which
represents BNL 325 fourth edition and supersedes the resonance data of nuclei
up to Z = 60 given in ref. [ i]. In both editions lists of recommended reso-
nance parameters for each isotope are presented.

Based on data of ref. [ 2] and other data published later than 1972, an
evaluation for the level spacing and for the s-wave strength function So had
been performed at Geel [ 3] . In preparation of this contribution the data of
ref. [2] have been included so that the average level spacing for more than
265 nuclei are now available [4] . The average resonance parameters have been
determined by means of a computer programme [ 3] , called MISDO, and is availa-
ble at the NEA DATA BANK. A method is used which applies the Bayes1 theorem
to establish a threshold, for a given p-wave strength function Si , which is
used to separate large s-wave resonances from p-wave resonances and small
s-wave resonances. The number of small resonances which have been lost are
estimated by an iterative procedure assuming a Porter Thomas distribution for
the reduced neutron widths. Small modifications of the method have been used
for light nuclei (A < 40) and nuclei with a large p-wave to s-wave strength
function ratio. In the latter case the experimental parity assignment of
s-wave resonances has been used.

In Fig. 2 the neutron widths for 2 3 8U resonances are plotted against the
neutron energy together with threshold curves, which are labelled and deter-
mine the 1%O probability limit of p-wave resonances for the p-wave strength
function S3 .
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In total 20 Si values can be used in one run and the results are given
in a printed graph. The CPU-time is ~ 9 sec for 400 resonances using the
IBM 4341. The influence of the threshold on the results of the level spacing
D and s-wave strength function So are plotted in Fig. 3.

The level spacing for low thresholds is contaminated with p-wave reso-
nances up to Si = 3* I0~". The average of the first values above this thresh-
old has been used to determine D and So. The behaviour of the average parame-
ter for higher thresholds reflects properties of the neutron width distribu-
tion, which is an additional information with which to judge the accuracy of
the obtained data.

Calculation of partial level densities

In the following the partial density of states for a fixed number of
particles (p) and holes (h) are discussed in the framework of the independent
particle model. An exact calculation of p-h excitations, assuming uniformly
spaced single particle states has been performed by Bohning, using a combina-
torial method [5]. The results are compared with those of the level density
formula, which are derived by means of statistical approximations in the con-
ventional way. According to this, the Ericson formula agrees better than
others with the exact determination for the (p-h) distribution of states at
constant excitation energy [ 6] . The formula is improved by Williams [ 7] thus:

with A = j (p2 + h2) + j (p-h) - | h .

In this equation g is the single particle state density and U the excitation
energy. In Fig. 4 the ratio of partial particle level density to single par-
ticle level density has been plotted for a specified number of p and h and
for fixed excitations.(M = gU) between M = 9 and 100. The distribution has a
sharp maximum at p ~ -j vK~ and drops down to zero for p > VST The maxima of
level densities for 3p2h, 4p3h and 5p4h states are at M = 20, 36 and 64
respectively. In the following section it will be checked whether these
values are relevant in the level density systematics, but we expect that
shell effects play a major role for the partial level density of states.

For a more realistic single particle level density distribution only
the combinatorial method has been applied to calculate partial level densi-
ties of states at neutron separation energy. The starting point of these cal-
culations are in general Nilsson's single particle states and the pairing
correlation has been taken into account using the quasi-particle formalism
and pairing energies from Cameron [ 8] .

Two and four quasi-particle states of allowed spin and parity have been
calculated for 6 nuclei in the 3s resonance range [ 9] . The predicted level
spacing at neutron separation energy is in good agreement with the experi-
mental spacing of 4 7. 4 9Ti, 57Fe and 6INi but disagrees for 43Ca and 53Cr.
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In another publication [ 10] the level density of doorway states, that
means all states which are obtained by one collision of the incoming neutron
with a nucleon of the target-nucleus, has been calculated for 20 nuclei, also
in the 3s resonance range, in order to investigate the fluctuations of the
experimental strength function values around the average curve predicted by
the optical model. These calculations have been extended to more than 240
nuclei spread over the whole atomic weight range [ 11,12] . The data have been
used to get support for the interpretation of the level density systematics
and have been included in Fig. 7.

THE LEVEL DENSITY SYSTEMATICS

For many years the observed nuclear states have been interpreted with
the level density theory which was mainly initiated by Bethe and based on the
framework of the Fermi gas model [ 13] . The level density, at excitation
energy U and spin of the compound state J, is given by:

.,,, n _ 1 _ 2J+1 exp [2(a(U-A)) J / z

24-\/T a ' o* {U-&)'

The parameters in expression (2) are taken as:

spin cut-off factor a = \f 0.1045-a- f A2'3

nuclear temperature t = V (U-A)/a'

pairing energy A taken from Gilbert and Cameron [8].

According to the Fermi gas model the level density parameter CL is pro-
portional to the level density of the single particle states at Fermi surface
energy g = 6" a./n2 and is expected to be proportional to the atomic number A.

The systematics of a is not strongly dependent on the correct level
density expression since ft is determined by one value for each nucleus,
namely the level density taken at similar excitation energies (between 6 and
10 MeV). It may influence the gross structure of the systematics, but the
behaviour of neighbouring nuclei is preserved. This behaviour is expected to
be used in the level density systematics.

A level density systematics on the very recent evaluated level spacing
of neutron resonances is shown in Fig. 5. For comparison another systematics
performed 15 years earlier is given in Fig. 6, a drawing which is taken from
reference [14]. In the latter case data from measured resonances and calcu-
lated values (open circles) are included. We cannot compare the data in
detail but the following properties are common to both sets of data:

1) The level density parameter increases with the atomic number, and has
strong minima at nuclei with a magic number of neutrons (N = 28, 50, 82
and 126) and also a strong maximum at A ~ 150 corresponding to a neutron
number of N = 90.

2) There are steps (steep increase of a) for light and medium light nuclei
at atomic numbers A = 38, 69 and 94 with a ~ 5, 10 and 15 respectively.
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3) There are strong fluctuations of a values cor nuclei around A ~ 110 and
A > 235.

Additional minima are indicated in Fig. 5 at N = 20 (A = 40), Z = 50
(A = 125) and A = 175 and 183. The latter may be explained by subshell
structures as could be expected from Mi' :son's model for strongly deformed
nuclei. The strong maximum observed at A = 150 with N = 90 has its counter-
part at A = 230 with Z = 90 seen in Fig. 8 and is therefore interpreted as a
shell effect. As shown in Fig. 6 the increasing trend of the level density
parameter has been represented by a linear function, which is expected from
the Fermi gas model.

A more detailed interpretation based on the framework of the independent
particle model is given in Fig. 7,8 [ 11,12,15] where in Fig. 7 the calculated
values for the level density of the doorway states are included. As shewn,
the doorway state level density agrees quite well with the observed level
density of compound resonances for all nuclei A < 37 and approaches the ob-
served values at closed shell nuclei. The deviations from the doorway state
density indicate an increase in compound states due to the existence of more
complex states created by more than one collision. The number of collisions
in the compound reaction process is reflected in a step-like behaviour of the
level density parameter <X. Therefore the steps at a - 5, 10 and 15 may be
interpreted as transitions to 3p2h, 4p3h and 5p4h states created by 2, 3 and
4 collisions respectively.

In Table 1 the excitation energy M at steps a 10 and 15 has
been calculated and compared with the excitation energy M _ where the
density of 3p2h, 4p3h and 5p4h states have the maximum based on da'"1, obtained
with the uniform single particle model (expression (1) and Fig. 4). In spite
cf the simplicity cf the model, the agreement is rather good and supports the
interpretation given above. The relative change of the level density at the
steps decreases with the atomic number and no steps are to be seen for nuclei
A > 100. The level density parameter for A > 170 may be described with one
line which now has a slope predicted from the Fermi gas model.

TABLE I

The excitation energy at the steps in the systematics are compared
with the excitation energy where the partial level density of 3p2h,

4p3h and 5p4h have their maxima

Hierarchy

3p2h

4p3h

5p4h

a
step

[MeV]""1

5

10

15

U
[MeV]

7.7

7.3

6.8

M
step

23

44

62

M
peak

20

36

64
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The lines drawn in Fig. 7 and 8 are based on data for odd-odd nuclei
(Fig. 8), where the residual interaction is expected to be minimized. In
between the steps the slope is based on calculated values for the level
density of doorway states in the range A = 20 to A = 100. Finally, the base
line assumed as the level density parameter description for nuclei with
(almost) no residual interaction and no shell effects is given by:

a = 0.07! • A + VAR

VAR = 1.64 A < 38
VAR = 3.7A 38 < A < 69
VAR =.6.78 69 < A < 94
VAR =8.65 94 < A < 170

and a = 0.1080 • A + 2.4 A > 170 .

As seen from Fig. 7 the base line is a lower limit for the data points
except for nuclei with shell closure and a few nuclei at A > 235.

APPLICATION OF THE LEVEL DENSITY SYSTEMATICS

In this section a few remarks are made concerning the application of
the hierarchy concept of the level density systematics in respect to the
capture process and the base line of the level density parameter is utilized
to answer questions posed in the introduction.

The hierarchy concept

The compound states at neutron separation energy for nuclei A < 37 and
neutron closed shell nuclei are formed by only one collision and are in fact
doorway resonances. The formation and decay of these simple states are not
independent, even when mixing of states is assumed i.e. the Bohr assumption
is not fulfilled. Consequently correlations between widths of different
reactions, or so-called non-statistical effects, are expected in these
resonances. The partial capture widths have been exclusively predicted by
means of the valence nucleon model. Deviations from this model are explained
by postulating interference between valence and doorway amplitudes [ 16] . In
other examples the observed transition strength is related to valence or
doorway amplitude separately.

Until now no doorway-capture calculations have been performed but by
knowing the fact that there are compound resonances which decay only in this
manner, such calculations are highly recommended. The resonances are present
in nuclei A < 37 (2p-resonance range excluded) where capture in (doorway)
resonances for neutron closed shell nuclei can be composed of at most two
components, namely the valence- and doorway-amplitude. The comparison of
experiment and theory will certainly contribute to the understanding of the
capture process in resonances.

In a contribution to the 7-ray spectroscopy conference at Grenoble, the
known hierarchy of more complicated compound states has been applied to
assign collective excited doorway states and to study the pigmy resonances
but is not repeated here [ 15] .
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Interpretations of the deviations from the base line

The base line of the level density parameter represents nuclei with a
minimum of effective interaction and no shell effects. Deviations from this
line will be discussed and a few examples given for different mass regions.

i) Nuclei in the neighbourhood of A ~ 75.

The level density parameter for nuclei around A ~ 75, in between the neutron
closed shell nuclei 28 and 50, are shown in Fig. 9. These values are sys-
tematically higher than the base line for odd-even and even-even nuclei,
which may be explained by a reduction of the pairing energy at high excita-
tion energy due to the so-called blocking effect. This effect describes the
fact that the excitation of about 4 particles and 3 holes in this mass region
reduces the number of quasi-particle states participating in the pairing
correlation. The pairing energy has been determined using equation (2) and
CL values given by the base line. They yielded, an average, a reduction of
A by 7 % for the even-even nuclei and 35 % for the odd-even nuclei.

ii) Mass range of the actinides.

In contrast to the first example a few a values for the actinides are clearly
below the base line. Also here the deviations have been taken as 3 measure of
the pairing energy [ 12] . The results for proton and neutron pairing energy
are drawn in Fig. 10 and Fig. 11 respectively. The average values have been
indicated by crosses, assuming that the pairing correlation is limited to an
even number of both neutrons and protons. It can be seen that the pairing
energy for neutrons determined at high excitation energy (A ) is systemati-
cally higher than that determined at the ground state (-̂p) °f t n e nucleus,
and for protons below Z = 94 it is reduced by about 50 %.* Assuming a 5-force
for the pairing energy proportional to (2j + l) [ 17] , the reduction of A for
protons is interpreted as showing that single particles of low spin-values
are important in this mass region [ 12] . In Fig. 12 a level density systematic
has been performed using the pairing energy A predicted by the base line.

The pairing energy has also been used together with the base line and
equation (2) to predict the level density of nuclei P . The ratio p jp
(experimental) is plotted in Fig. 13 and Fig. 14 for A and A respec-
tively. The respective figures of merit for 24 resonances are " F = 1.6 and
F = 1.22, favouring the A obtained by the baseline [ 12j . The prediction of
the level density of compound states as described above can be applied to any
mass range, even for nuclei far from the stability line. Furthermore the
deviation of the observed level density parameter for closed shell nuclei
from the base line can be used to determine the shell effect in units of MeV.

iii) Nuclei in the neighbourhood of A ~ 105.

The determination of the pairing energy in the range A = 100 to 110, per-
formed as described in the previous examples, was not successful. This is seen
by the fluctuation of the level density parameter in Fig. 12 (A determined
as described in i), ii) and [12]) not being reduced as compared to Fig. 7
(AG taken from [8]). The reason is shown in Fig. 15 where, in the upper part,

the level density parameter for two isotope series (Ru, Pd) are plotted
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against the atomic number. The deviation from the base line increases with A,
i.e. the residual interaction decreases with increasing odd number of
neutrons. In the lower part of Fig. J5 the energy of the lowest 2 state is
plotted in dependence of A and shows an anticorrelation to the level density
parameter. The energy of the 2 + states decreases with increasing number of
neutrons. There are isotopes where the change from spherical to deformed
shapes, indicated by a change in the energy of the 2* state, is even much
stronger. For example, for Zr9s and Zr100 the energy is 1.22 MeV and
0.21 MeV respectively [ 18] .

The level density parameter of the neutron rich nuclei with the strong-
est deviation from the base line are presented in Fig. 16. The deviation of
the level density parameter corresponds, on average, to an increase of the
level density by a factor six. The a values approach the base line if we
assume that there is no effective residual interaction in these nuclei
(A = 0), indicated with the arrow-heads, and there is in addition a change
in the moment of inertia from 0.7 I . to I . , indicated by the dots on the

er seem to behave like normal matter
and that the spherical-to-deformed transition \jith increasing number of odd
neutrons may be explained by a phase transition from su;'crfluid to normal
s tate.

What is the mechanise for this transition? The explanation for the
abrupt change to deformed nuclei (N > 60) is still a challenge in nuclear
physics.

A shape transition due to a second deformed minimum has been excluded
by calculations of the potential energy surface using the Strutinsky method
[ 19] . More recently, Federman and Pittel have shown, using explicit shell-
model calculations, that the n-p interaction may be responsible for this fact
[ 20]. This interaction is largest for particles in spin orbit-partner orbits
of large spatial overlap and counteracts the n-n and p-p pairing correlations
which try to stabilize the spherical shape of nuclei. In the mass region
A ~ 100, according to the authors, the strong attraction between Jg9/2 proton
and lg7/2 neutron can break the pairing correlation by a polarization mecha-
nism which causes mutual promotion of neutrons and protons from lower single
particle states into ig7/2 and lg9/2 respectively. But the polarization effect
can only occur ii the gain in the n-p interaction exceeds the loss of single
particle plus pairing energy. In contradiction to the observation, this should
be indicated by a level density parameter lower than the base line.

But the increase of the level density parameter with odd neutron number
supports the n-p interaction. Furthermore, all the nuclei with the strongest
deviation from the base line have two or more protons in the lg9/2 orbit
and one or more neutrons in the J g 7/2 orbit (Mo, Ru, Pd), or two or more
neutrons in the 2d5/2 orbit (Cd). Therefore no polarization mechanism is
needed to explain the n-p interaction in these nuclei.

The spin coupling possibilities are increased for n-p interactions com-
pared to the pairing correlation, where the alignment of the spins of the
same nucleons are prevented by the Pauli principle. A coupling to spin zero
may also be obtained by two pairs of (n-p) nucleons. Does one of the possible
explanations used for the backbending effect of high spin states play a role
here too?
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The study of residual interaction by means of the level density systema-
tics will be extended to other mass regions where (n-p) interactions have
been predicted.

Collective enhancement

Collective enhancement at high excitation energy has been proposed and
discussed in several papers. Bj^rnholm et al. have studied the dependence of
the level density formula on the symmetry of the nuclear shape [ 21] . Malov
et al. used a semi-microscopic approach to study the effect of the rotational
motion on the level density [22]. The calculation of the level density at
neutron separation energy, with and without accounting for rotational, motion,
performed for 12 nuclei spread over the mass range 155 < A < 245 yielded an
enhancement of collective states from 1.7 to 6.9, with 'i average value of
3.2.

The collective enhancement in both papers is large and can be tested
with the huge amount of data contained in the level density systematics. The
level density parameters for some of the isotopes of Sn, Te, Xe and 56Ba

1

are presented in Fig. 17 together with the base line (full) and the next
lower hierarchy line (dotted). This figure contains the nuclei with the
largest deformation for stable nuclei and A < 135; namely s 4 Xe

!2 4 and S 6Ba
1 3 0

where, near the data point of the latter isotope, the rotational spectrum is
drawn. Most of the data points, in particular the Sn isotopes, are in between
both lines due to the proton closed shell (Z = 50), but there are no values
which significantly exceed the base line.

In the mass region of nuclei with the strongest deformation
150 < A < 180 there is also a value significantly larger than the base line
except for the data around A = 150 (N = 90), where the sharp peak has been
interpreted as a shell effect with its counterpart at A = 230 (Z = 90).
Furthermore, the fluctuation of the level density parameter in the range
160 < A < 180 is so small that sub-shell effects, caused by the deformation,
can be identified.

In conclusion the study of the level density systematics indicates no
enhancement of collective states at high excitation energy as expected (see
introduction).
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THE IMPACT OF NUCLEAR LEVEL DENSITY MODELS ON CROSS SECTION CALCULATIONS
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ABSTRACT

The role of different level density formulations in applied
Hauser-Feshbach calculations is examined through comparison to
varied types of neutron-induced experimental data. Results obtained
using two phenomenological models that are widely employed in cross-
section calculations, the Gilbert Cameron and back-shifted Fermi-gas
models, are compared with each other and to such data. Addition-
ally, results from microscopic level density calculations that use
realistic single particle levels are presented. Such calculations
provide stringent tests with which the performance of these micro-
scopic models in applied Hauser-Feshbach calculations can be as-
sessed. In the course of such comparisons, experimental data that
are particularly sensitive to level density effects are identified.
Finally, the question of consistency between state densities occur-
ring in preequilibrium calculations and level densities employed in
statistical calculations is addressed. Examples are provided of
initial efforts to ensure such consistency in cases where phenomeno-
logical density models are used.

INTRODUCTION

Nuclear level densities are an important facet of theoretical calcula-
tions that employ the Hauser-Feshbach statistical and preequilibrium models.
Since such calculations are used to interpolate or predict nuclear data f-or
applied purposes, reasonable calculational accuracies are required. These
accuracies in turn depend to a large degree upon the realistic description of
the nuclear level density. Such tasks are complicated by the necessity to
know level densities at nuclear excitations or for nuclei where measurements
do not exist. Further complications occur because most applied calculations
continue to rely upon pheonomenological models developed almost twenty years
ago.
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This paper examines the most commonly utilized level density models and
provides a qualitative assessment of their utility through comparison to sev-
eral classes of experimental data. Data were selected that provide unique
conditions under which these models and their parameters can be tested. These
comparisons also include cross sections from calculations that employ micro-
scopic level-density models based on realistic single particle schemes. Such
models eliminate simplifying assumptions, such as equidistant level spacing,
used in the derivation of closed-form Fermi gas expressions. They also pro-
vide the possibility for more realistic extrapolation to unmeasured nuclei or
excitation energy regions. They are, however, more complicated to use in
nuclear model calculations, and have less flexibility for adjustment in cases
where they disagree strongly with experimental data.

Finally, the question of consistency between state densities used in pre-
equilibrium calculations and the equivalent level density employed in Hauser-
Feshbach models is addressed. Some recent theoretical calculations that
represent preliminary attempts to resolve this problem are described.

LEVEL DENSITY MODELS

The majority of theoretical calculations for applied purposes employ
phenomenological level-density models, the two most popular being the Gilbert
Cameron formalism fl] and the back-shifted Fermi-gas model [2]. The Gilbert-
Cameron model dates from 1965 and utilizes a Fermi-gas expression for the
level density at higher excitation energies:

VJF exp(2VaU) _1
12

where U=E-A includes empirically determined pairing contributions, A. Values
of the level density parameter a are determined from fitting experimental data
for s-wave resonance spacings, D_, at the neutron binding energy. Gilbert and
Cameron found the systematic behavior of this parameter over a range of a'-omic
masses to be linearly related to shell corrections that they too empirically
deduced. The spin cutoff parameter O is discussed below.

At lower excitation energies, expression (1) does not reproduce cumula-
tive level data or particle emission spectra very well, so instead, a constant
temperature expression is used:

p(E) = (1/T) exp[(E-E0)/T] (2)

The parameters E_ and T can be adjusted to reproduce the cumulative num-
ber of levels occurring up to a given excitation energy while joining smoothly
to the Fermi gas form at some adjustable energy, E .
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The density of levels of a given angular momentum J (assuming equal
contributions from both parities) is then

p(U,J) = p(U) (2J+1) exp[-(J+%)2/2CT2]/2o2 . (3)

The spin cutoff parameter a has the following systematic behavior:

o2 = 0.0888 VaU A 2 / 3 , (4a)

where A is the atomic mass. This original Gilbert-Cameron expression has been

modified by Reffo [3] to be

a2 = 0.146 4aV A 2 / 3 , (4b)

which provides a better representation of spin distributions obtained from
discrete level information as well as microscopic thermodynamic calculations
[3].

The second commonly used formalism is the back-shifted Fermi-gas model
proposed by Gadioli and Zetta [4]. This model employs a single Fermi-gas
expression for the entire excitation energy range, but treats the fictive
ground state position A and level-density parameter a as adjustable parameters.
Thus,

where the thermodynamic temperature is defined by

E - A = at2 - t . * (6)

The ]°vel density as a function of J is given by Eq. (3), but in this model,
the spin cutoff parameter is related to the rigid body moment of inertia

a2 = I . . , t/ff2 = 0.015 A5/3t . (7)
rigid v

The third level density formation considered here is the microscopic
Fermi gas model. Its detailed description is not appropriate for this paper
(see Refs. 5-7 for such detail), but basically the state density u)(E) is cal-
culated using realistic sets of single particle levels combined with the grand
partition function for a system of interacting fermions. The use of the
superconductivity formalism that employs a BCS Hamiltonian [8] allows the
inclusion of pairing effects so that, at low excitations, the calculated level
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density has roughly a constant temperature energy dependence. At higher ener-
gies above the transition point where superconductivity effects disappear, the
results return to the Fermi gas form. The model produces state densities and
spin cutoff parameters as a function of excitation energy.along with energy
dependent positive and negative parity ratios. The absence of an analytic
form for this model adds a greater degree of complexity to nuclear reaction
calculations. Some attempts [9] have been made to circumvent this difficulty
through determination of equivalent Fermi gas parameters a and A. These were
then employed in Hauser-Feshbach preequilibrium calculations through use of an
expression similar to Eq. (3).

Application of these two phenomenological models discussed previously
generally requires use of published parameter sets adjusted to reproduce
experimental s-wave resonance data (Dn) over a wide mass range. Very complete
analyses of such data using the GilBert-Cameron formalism have been made by
Cook et al. [10] to obtain shell and pairing parameter systematics. Their
original effort has been updated recently [11] to include new resonance data
as well as to incorporate the spin cutoff parameter representation provided by
Eq. (4b). The constant temperature parameters and the matching energy E can
be adjusted to fit discrete level information appropriate to a given calcula-
tion. This step is done automatically in several modern Hauser-Feshbach codes
[12-14]. If this capability does not exist, then the constant temperature
systematics of Gilbert-Cameron or more recent works can be used [15].

A very complete study of the parameters £ and A (and their systematics)
for the back-shifted Fermi-gas model was completed by Dilg et al. [2]. These
two parameters were adjusted to reproduce simultaneously discrete level and
s-wave resonance (D_) information. Additionally, proton resonance data were
employed in some cases. Again, in present-day calculations, some improvement
of the model parameters may be achieved through use of up-to-date discrete
level information as well as consideration of D- data in a restricted mass
region pertinent to the problem of interest.

Application of the microscopic level-density model leaves little room for
parameter adjustment. In calculations of D_ values [16,17], the most common
practice involves modification of the neutron and proton pairing gaps to opto-
mize agreement to experimental data. Such efforts have a reduced effect
around shell closures where the shell gaps are the dominant factors influenc-
ing the calculated results. Finally, a judicious choice of single-particle
levels appropriate to a given mass region must be made; otherwise striking
differences in the calculated density can be obtained [9j.

III. COMPARISONS TO DATA

To qualitatively assess the formalisms described in the previous section,
calculated cross sections and emission spectra obtained using these models
will be compared to a variety of experimental data types. We selected two
regions of spherical nuclei for this purpose, one involving the structural
materials occurring near the Z = 28 closed shell and the other in the mass 90
region around the N = 50 closed shell. By concentrating on spherical nuclei,
we avoid problems (particularly for microscopic calculations) associated with
level density enhancements occurring in deformed nuclei that result from
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discrete levels built upon rotational or vibrational bandheads [18]. Mass
regions around closed shells provide circumstances where level densities
fluctuate greatly between nearby nuclei because of such shell effects, and
where a plentiful supply of very complete D.. data exist for several isotopic
chains. These conditions can serve as very stringent tests of models or
parameter systematics. These two mass regions also have a variety of avail-
able experimental data, ranging from neutron and charged-particle emission
spectra to isomeric state production cross sections. Furthermore, some nuclei
that we examined have large differences between neutron and proton binding
energies, a situation that provides some unique illustrations of level-density
effects on calculated cross section data.

The mass region encompassing the structural materials is attractive for
reasons other than the neutron cross section data available there. It was
this region that formed the basis for a rather complete analysis [9] of
particle emission spectra using microscopic level density calculations. This
study was sensitive to, and examined, regions of the level density at excita-
tions above and below the neutron binding energy. Heretofor many analyses
[16,17] employing microscopic level density models concentrated on the region
around the binding energy through their comparison to s-wave resonance data to
verify such models.

Experimental data exist in this region that span a largo range of excita-
tion energies so direct comparisons of level-density calculations can be made.
Such a comparison is made in Fig. 1 for one such case, 60Ni. The three curves
represent the level-density models described earlier. In particular, the
microscopic level-density calculations were made using the Seeger-Perischo
single-particle levels [19], along with pairing energy values (at zero excita-
tion) equal to those of Gilbert and Cameron [1]. All three models reproduce
the data reasonably well, although the microscopic level-density results are
perhaps more impressive considering the lack of adjustable parameters. There
are differences in the shape predicted by these models, as illustrated in Fig.
2. The comparison shows the ratio of the Gilbert-Cameron and back-shifted
Fermi-gas model results with those from the microscopic calculation for 60Ni.
All densities were normalized to each other around the neutron binding energy
(~ 11 MeV). Of the two phenomenolocial models, the shape of the back-shifted
Fermi-gas results lies closer to the microscopic values. The difference in
the low energy shape of the Gilbert-Cameron results can be attributed primar-
ily to the use of the constant temperature expression in this model.

Further tests of these three level-density models appear in Fig. 3,
where ratios of calculated to experimental Dft values [20] are illustrated for
several isotopic chains in this mass region. For the two phenomenological
models, published parameter systematics [2,10] were useci, whereas microscopic
calculations were made using the Seeger-Perischo levels. This comparison
illustrates a situation one often encounters in multistep Hauser-Feshbach
calculations of reaction paths that involve several members of an isotopic
chain. If one has available such D_ information and uses a phenomenological
level density expression within their nuclear model calculations, then the
level-density parameters can be adjusted locally to optimally reproduce such
results. The comparison of Fig. 3 also indicates the predictive capability of
microscopic calculations since agreement to within a factor of two or three
generally occurs.
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To place these level density models under more scrutiny, we examined in
detail a series of neutron-induced reactions on 65Cu with comparison to sever-
al types of cross-section data. In Fig. 4 the neutron emission spectrum
calculated for 8.5 MeV incident neutrons is compared with the data of Kinney
et al. [21]. Such data were chosen for comparison because, at these energies,
preequilibrium contributions that can camouflage level-density effects are at
a minimum. Secondly, for inelastic scattering reactions that dominate, re-
gions of excitation energy are reached in the target nucleus where the descrip-
tion of the level density is important, particularly for an odd-A nucleus such
as 6SCu. The 65Cu nucleus is also interesting owing to a lack of experimental
resonance information, which causes a reliance upon the predictive capability
of the level-density model. In the application of the Gilbert-Cameron expres-
sions, one is constrained by discrete level information available at low
excitation energies. At higher excitations, one must rely upon parameter
systematics to determine the appropriate value of a_ in expression (1). Simi-
larly, for the back-shifted Fermi-gas model, discrete level information pro-
vides low-energy constraints. At higher excitation energies, Dilg et al. [2]
determined the level density parameter a through use of proton resonance data.
For the microscopic calculations shown, the Seeger-Perischo levels were again
used.

At first glance the data in Fig. 4 appears to best be reproduced using
the back-shifted Fermi-gas model, except for the disagreement for emitted
neutron energies around 1.5 MeV. These neutrons correspond to excitations of
about 7 MeV in 65Cu and the underprediction there is symptomatic of problems
encountered for this nucleus at higher excitation energies with the back-
shifted Fermi-gas results. Further evidence for this discrepancy appears in
Fig. 5 in which comparisons are rcade with the proton emission spectrum meas-
ured [22] for 14.8-MeV neutron reactions on 65Cu. Such spectra are comprised
of protons from three primary sources: (a) (n,np) and (n,pn) reactions that
account for most of the low-energy proton emission; and (b) (n,p) reactions
that produce higher-energy protons. In this comparison, a sizeable overpredic-
tion in calculated results occurs because of the lower level density values
for 65Cu (relative to the two other models) produced using the back-shifted
Fermi-gas results. This problem can be identified because the (n,p),
(n,np+n,pn) and (n,2n) reaction channels produce residual nuclei (65Ni, 64Ni,
6 4Cu), where D_ information is available to constrain the level density.
Additionally, the (n,np), (npn), and (n,2n) reactions populate, in appreciable
amounts, discrete levels in their respective residual nuclei, so that level
density effects are reduced. The failure to predict correctly the 65Cu level
density results in an underprediction of competition from (n,n*Y) processes.
This, in turn, causes the overprediction in proton emission, as shown occur-
ring from (n,p) and (n,np) processes. Figure 6 compares explicitly the level
densities calculated for 65Cu using the three models discussed here. The
results agree reasonably well at lover excitation energies. At the higher
energies that directly impact the calculated proton emission spectrum, the
level-density values diverge with a sizeable underprediction occurring for the
back-shifted Fermi-gas results. This problem appears to be related to the
small value for the Fermi-gas parameter a derived for 65Cu by Dilg et al. [2]
using proton resonance data [23].
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Similar problems occur in the calculation of proton emission spectra
induced by 14.8-MeV neutrons on 63Cu, as shown in Fig. 7. In this case, sig-
nificant contributions originate from (n,np) reactions since the proton bind-
ing energy in the 63Cu compound nucleus is 5 MeV lower than that for neutrons.
Both phenomenological level density models predict lower 63Cu level densities
than does the microscopic model, although values for the other residual nuclei
are equivalent. In the case of the Gilbert-Cameron model, the lower 63Cu den-
sity produces less (n,nv) competition so that increased (n,np) emission takes
place. The back-shifted Fermi gas model predicts the lowest 63Cu density of
the three models and leads to larger (n,p) and (n,pn) contributions. Neutron
emission from the first compound nucleus is reduced so that a smaller (n,np)
contribution occurs. Again, for this model, the smaller 63Cu level density
originates from the a value deduced from proton resonance data.

As was the case for the structural materials, the A = 90 mass region en-
compassing the N = 50 closed shell provides several unique conditions for
level-density tests and assessments. Plentiful s-wave resonance spacing data
are available for several isotopic chains. Discrete levels are also known up
to relatively high excitation energies so that the magnitude and energy depen-
dence of spin cutoff parameters can be deduced and compared to theoretical
predictions. Finally, the existence of measurable isomeric levels provides
further experimental data with which to examine the spin cutoff parameter com-
puted using various level-density models.

The value of the spin cutoff parameter o and particularly its energy de-
pendence can have significant effects upon calculated quantities in instances
where sizable differences exist between spin values occurring in competing
reaction channels. Reffo [3] illustrated the importance of the assumed energy
dependence of cr on calculated 1°°Mo(n,-y) cross sections. His results appear
in Fig. 8a. The solid curve was obtained from calculations that assume an
energy dependence of a2 given by the solid curve in Fig. 8b. The cross sec-
tion represented by the dashed curve was calculated for the assumption of a
constant o2 below the energy E shown in Fig. 8b. This assumption produces a
spin distribution peaked at J = 5, while the linear extrapolation produces a
most probable spin of J = 1.5. Since the target spin is 0 and, at low ener-
gies, the target spin distribution is peaked at lower values, the wider spin
distribution produced by the constant o2 assumption decreases slightly th3
inelastic competition that mainly populates levels having lower spins. The
small change in the inelastic channel is accompanied by a large effect in the
capture as seen in Fig. 8a.

A more direct determination of a and its energy dependence can be ob-
tained through use of discrete level spins and a cr̂  _ T obtained through the
maximum likelihood estimator:

^LEVELS = 2N" .^ <Ji

Such results are shown by the histogram in Fig. 9 for 98Mo. The curves la-
beled 1 and 2 represent a values obtained for the Gilbert-Cameron model
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(Expression 4a) and the back-shifted Fermi-gas model (Expression 7). Also
shown by Curve 3 are the microscopic level density results for O. In this
case (as with others in this mass region), microscopic calculations were made
using the Seeger-Howard single particle levels. [24] The Gilbert-Cameron
expression underpredicts the magnitude of a, while the other models reproduce
the data in a better fashion. The microscopic model provides the best agree-
ment of theory with the discrete level data. A significant improvement occurs
when Reffo's expression for a2 is used [Eq. (4b)], the results of which are
represented by the curve labeled 4.

Ratios of cross sections for ground to metastable state production are
often used to deduce information relating to spin cutoff parameters. To fur-
ther test the effect of spin cutoff parameters in cross section calculations,
we have calculated the m/g ratios populated in the 89Y(n,v)90Y and 90Zr(n,p)
90Y reactions. The calculations were made using a detailed gamma-ray cascade
model [13,25] that allowed deexcitation through El, Ml, and E2 transitions.
Values of the 90Y metastable to ground state ratios populated in the 89Y(n,y)
reaction are compared with the data of Grench [26] in Fig. 10. The Gilbert-
Cameron results fit these data better than the results of the other two models
which produce m/g ratios that are about 20% higher. The spin cutoff parameter
from the Gilbert-Cameron expression also agrees with the result of a = 3-4
deduced by Grench et al. [26], using cruder models for analysis. Figure 11
illustrates the 90Y m/g ratio populated in the reaction 90Zr(n,p)90Y. The
quality of the experimental data [27] is poorer, but the trends in calculated
results are similar to those shown in Fig. 10. Again, calculations using the
Gilbert-Cameron spin cutoff parameters reproduce these data better than the
two other models. This result seems inconsistent with our conclusions and
those of others [28] who find an underprediction of the spin cutoff parameter
in this mass region when Eq. (4a) is used. However, Fig. 12 shows that the
spin distribution obtained by examining 90Y discrete level information up to
E =2.5 MeV is better fit by the Gilbert-Cameron results. For spin populations
in the 90Y residual nucleus, these three data types appear to be consistent in
the magnitude of the deduced spin cutoff parameter.

Figure 13 again returns to the use of measured proton emission spectra to
illustrate sensitivities to level-density models and parameters. The experi-
mental proton emission spectrum [29] produced by 14.8-MeV neutrons on 90Zr is
shown. For the 90Zr compound system, the proton binding energy is about 3 MeV
less than that of the neutrons, so that a sizable amount of the (n,np) reac-
tion occurs. Such (n,np) spectral contributions are sensitive to the level
density used to describe the 90Zr target nucleus. All of the calculations
shown employ the Gilbert-Cameron formalism; however, the Fermi-gas parameter
values for 90Zr have been varied by ± 10% to illustrate the effect on the cal-
culated spectrum. Since the 90Zr level density cannot be normalized to experi-
mental Do values, the parameters must be deduced from their systematic behav-
ior, and these uncertainties are probably reasonable. Deviations of 30% or
more are produced in portions of the calculated spectrum as a result of this
change. When the 90Zr level density is reduced, proton production increases
mainly due to larger (n,np) contributions. This at first seems inconsistent
because this level-density change should produce smaller amounts of neutron
emission ,to populate the 90Zr residual nucleus in the first stage of the (n,np)
process. However, (n,np) reactions are enhanced because of less competition
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from (n,n'y) processes. Conversely, a larger level density for 90Zr leads to
greater neutron emission to populate the 90Zr residual nucleus. However, the
increased (n,n'y) competition results in a reduction of the calculated (n,np)
cross section. While such level-density effects are readily apparent in this
comparison with proton emission data, there is little discernable effect on
other channels, such as the 9°Zr(n,2n) reaction shown in Fig. 14.

Level-density differences that occur between nearby nuclei can cause
deviations from their systematic behavior for other types of cross section
data. Such an example appears in Fig. 15 where calculated gamma-ray produc-
tion spectra [30] produced by 6.5-MeV neutron interactions with natural tan-
talum and tungsten are compared. The significant differences in the portions
of the gamma-ray spectra above 2 MeV for these materials arises primarily from
level-density effects, as illustrated in Fig. 16. Here the cumulative number
of low-lying levels for 181Ta and 182W is shown. The odd-odd 181Ta nucleus
(which constitutes 100% of natural tantalum) has a significantly higher level
density than does 182W or the other even-even tungsten isotopes that make up
most of elemental tungsten. At this incident energy, the great majority of
the gamma-production spectrum is made up of contributions from (n,n'y) deexci-
tation of the continuum region of these target nuclei. Thus, level densities
that accurately describe the excitation energy region from 1 to 6 MeV are
necessary to produce valid calculational results.

NUCLEAR DENSITIES IN PREEQUILIBRIUM AND STATISTICAL MODEL CALCULATIONS

This paper has been explicitly concerned with the characterization and
effect of nuclear level densities as they appear in Hauser-Feshbach statisti-
cal model calculations. However, some of the previous examples shown and many
of the calculations performed for applied purposes involve preequilibrium
models used in conjunction with such Hauser-Feshbach methods. Until recently,
there has been little concern for consistency between state densities involved
in the calculation of emission rates in preequilibrium calculations and level
densities used in statistical models.

Earlier we showed the general reliance in Hauser-Feshbach codes upon
phenomenological level density forms, with parameters adjusted to reproduce
experimental data or determined from the behavior of their systematics. In
the master equation exciton model, one of the most widely used preequilibrium
formalisms for applied calculations, the state density for a system of excited
particles p and holes h is given by [31]:

p+h-1

where g is the density of uniformly spaced single particle,levels. In most
such preequilibrium calculations, g has the value A/13(MeV ) where A is the
atomic mass. To obtain an expression equivalent to the Fermi-gas level density
[(Eq. (1)], a sum must be made over particle-hole pairs so that [32],
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p(U) = I -i iu(p-l,h,U) . (10)

p -J2n a

Fu [32] has compared level densities for 63Cu calculated using the Gilbert-
Cameron formula [Eq. (1)] to values obtained using Eq. (10) above. Figure 17
shows the results. The curve labeled 1 was calculated using Eq. (10). Curve
2 is based on the Gilbert-Cameron formalism. The disagreement between these
two curves is symptomatic of the inconsistency that exists between state den-
sities used in preequilibrium models and level densities occurring in Hauser-
Feshbach calculations. Fu has produced an improved form for the preequili-
brium state density through incorporation of pairing corrections that depend
upon the particle-hole numbers of the states involved. Inclusion of such
pairing effects improves the agreement of Eq. (10) with the Gilbert-Cameron
results, as shown by curve 3 in Fig. 17.

Another attempt to unify the level density description in preequilibrium
and Hauser-Feshbach models has been made by Akkermann et al. [33] They modi-
fied the state density constants in the initial compound nucleus and residual
nuclei, g and g , respectively, to be more consistent with the behavior of
the Fermi-gas parameter a in the Gilbert-Cameron model through the relation-
ship g = 6a/7l2. Large and unsatisfactory preequilibrium contributions were
obtained as a result of this change because of the sensitivity of the preequi-
librium transition rates to g . Phenomenological determinations [34] of the
form of the square of the empirical matrix element of residual interactions,
M2 generally assume g = A/13. For the change g = 6a/7t2 to be made, new
systematics would have to be developed. Instead, Akkermann et al. chose to
keep g equal to its A/13 value and adjust the state density parameter g for
each residual nucleus.

The principal emphasis for the prequilibrium model work in Ref. [33] was
related to fits obtained to continuum angular distribution data [35] induced
by 14 MeV neutrons. In particular, the comparison of experimental and calcu-
lated first order Legendre coefficients for neutrons having secondary ener-
gies between 6 and 10 MeV was an important facet of this paper. Figure 18
shows the effect upon the fit to such f.. data after the g changes described
above were made.

SUMMARY AND CONCLUSIONS

The two major level density models used in applied theoretical calcula-
tions have been compared to each other and to experimental data in the A = 60
and A = 90 mass regions. Additionally, results from microscopic level density
calculations were included in these comparisons. We provided several examples
in which level densities needed for nuclei lacking s-wave resonance data had a
significant impact on calculated quantities. Analysis of particle emission
spectra, particularly recent results for proton emission, could provide quali-
tative information needed to adjust Fermi gas parameters.

We subjected microscopic level densities to more severe tests than had
generally occurred in previous comparisons to D data. Again, analysis of
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emission spectra places stringent constraints on the densities predicted by
such models at excitations above and below the neutron binding energy. We
found that reasonably good agreement with measured data could be obtained using
such microscopic models, although their lack of sensitivity to easily adjust-
able parameters could possibly cause problems in their general application.
Certainly more calculations of this type should be included in nuclear model
efforts to further test them, as well, as to develop improved systematics.

The lack of consistency between density expressions and results obtained
in preequilibrium and Hauser-Feshbach calculations is a significant problem in
current nuclear model calculations. Some initial attempts to resolve these
discrepancies show promise, but more work is needed to solve the problem in
the case of phenomenological density expressions. Furthermore, an even greater
effort will probably be needed to achieve consistency with Hauser-Feshbach cal-
culations that employ microscopically calculated state densities.
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0.0 4.0 aO 12.0 16.0 80.0 24.0 28.0
EXCITATION ENERGY (MeV)

Fig. 1. Comparison of the nuclear level density calculated using the three
models described in the text to experimental data for 60Ni. The solid
curve was calculated using the Gilbert-Cameron model; the dashed curve,
the back-shifted Fermi-gas model; and the dotted curve, microscopic cal-
culations.
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12.0 16.0 20.0 24.0 28.0
EXCITATION ENERGY(MeV)

Fig. 2. Level densities calculated using the two phenomenological models are
compared to results from microscopic calculations for 60Ni. All calcula-
tions were normalized at 11 MeV. The dashed curve represents the Gilbert-
Cameron results, while the dotted curve was calculated using the back-
shifted Fermi gas model.
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Fig. 3. The ratio of calculated to experimental values for the s-wave neu-
tron resonance spacing, D.,, are presented for several isotopic chains
around A=60. The squares represent the microscopic results; the circles
are the Gilbert-Cameron results; and the trianges the back-shifted Fermi-
gas results.
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Fig. 4. Calculated neutron emission spectra for 8.5-MeV neutron interactions
with 6SCu are compared to the data of Kinney et al. [21]: The solid
curve was calculated using the Gilbert-Cameron model; the dashed curve,
the back-shifted Fermi-gas model; and the dotted curve, the microscopic
model.
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14.0

Fig. 5. The calculated proton emission spectra induced by 14.8-MeV neutrons
on 65Cu are compared to the data of Grimes et al. [22]. The level-density
models associated with each curve are identified in Fig. 4.
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EXCITATION ENERGY (MeV)

14.0

Fig. 6. Calculated level densities for 65Cu. The natural logarithm is shown
and the curves are identified as in Fig. 4.
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2.0 4.0 6.0 8.0 10.0 1&0 14.0 1&0
PROTON ENERGY (MeV)

Fig. 7. Calculated proton emission spectra resulting from 14.8-MeV neutrons
on 63Cu are compared to the Grimes et al. data [22], The curves are iden-
tified in Fig. 4.
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Fig. 8a. The effects of the spin cutoff parameter on the calculated 10oMo(n,Y)
cross section. See Fig. 8b for more details.
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Fig. 8b. Energy dependence assumed for the spin parameter in l00Mo(n,y) cal-
culations by Reffo [3J. The solid curve is a linear extrapolation to a
constant value of cr2 at the pairing energy and was used to produce the
solid curve in Fig. 8a. The assumption of a constant value for a2 for
excitation energies below 6 MeV produced the dashed curve shown in Fig.
8a. The dashed curve here represents an extrapolation from higher ener-
gies of Eq. (4b).
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Fig. 9. Spin cutoff parameters calculated for 98Mo are compared to results
obtained from discrete level data represented by the histogram. The
curves labeled 1 and 2 represent the Gilbert-Cameron and back-shifted
Fermi-gas models; Curve 3 results from microscopic calculations; Curve
Curve k was calculated using Eq. (4b), as suggested by Reffo [3].
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0.0 02 0.4 0.6 O8 1.0
NEUTRON ENERGY (MeV)

Fig. 10. Ratios of metastable to ground state yields for 90Y produced in the
89Y(n,-y) reaction are compared to the Grench et 2l [26] data. The solid
curve was calculated using the Gilbert-Cameron model, the dashed, the
back-shifted Fermi-gas model, and the dotted, the microscopic model.
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Fig. 11. Metastable to ground state ratios for 90Y populated in the 90Zr(n,p)
reaction. The curves represent calculations using models identified in
Fig. 10.
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Fig. 12. The 90Y spin distribution (histogram) obtained from discrete level

information for excitations up to 2.5 MeV. Curve 1 was produced using
the Gilbert-Cameron spin cutoff parameter; that labeled 2 results from
microscopic calculations; while Curve 3 was obtained using the back-
shifted Fermi-gas spin cutoff parameter.
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Fig. 13. Calculations of proton emission spectra from 14.8-MeV neutrons on
90Zr are compared to experimental data [29]. All calculations were made
using the Gilbert-Cameron model. The solid curve represents results ob-
tained using standard Gilbert-Cameron values for the level density para-
meter, a; the dashed curve results when the parameter a for 90Zr is de-
creased by 10%; the dotted curve results when £ for 90Zr is increased by
10%.
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Fig. 14. Calculated 9oZr(n,2n) cross sections with the level density para-
meter a changes described in Fig. 13 are compared to experimental data.
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GAMMA RAY ENERGY (MeV)

Fig. 15. Calculated tungsten (solid histogram) and tantalum (dashed histogram)
gamma-ray production spectra induced by 6.5-MeV neutrons are compared to
each other to illustrate level-density effects on such spectra occurring
for nearby nuclei.
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Fig. 16. The cumulative number of low-lying discrete levels of 181Ta and 18ZW.
The solid curves are constant temperature expression fits to these data.
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14

Fig. 17. Level densities for 63Cu calculated by Fu [32]. Curve 1 was cal-
culated using Eq. (10); Curve 2 was obtained using the Gilbert-Cameron
expression; while Curve 3 results when pairing effects are introduced
into Eq. (10) for particle-hole densities.
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Fig. 18. Fits to £ = 1 Legendre coefficients obtained from an analysis [33]
of the Hermsdorf [34] data. The solid curve represents theoretical val-
ues obtained with g = A/13, while the dashed curve assumed g = 6a/7t2 for
the residual nuclei state density.



FISSION CROSS-SECTIONS AND THE NUCLEAR LEVEL DENSITY

J E Lynn

A.E.R.E, Harwell

ABSTRACT

We have reviewed fission cross-section theory to draw atten-
tion particularly to its requirements For information on the
nuclear level density and in particular its dependence on nuclear
deformation. The status of level density theory is reviewed from
this point of view, and it is demonstrated again that collective
enhancement factors must play a major role in affecting the
magnitude of fission cross-sections. The collective enhancement
appears to remain at least partially effective up to excitation
energies of at least 20 MeV.

INTRODUCTION

Although the main theme of its solution was formulated almost half a
century ago [i3> the nuclear level density problem remains one with several
controversial aspects, all of which are relevant to the theory of fission
cross-sections. Among the important factors that bear upon the magnitude of
the level density and its dependence on excitation energy are the influences
of nuclear shell effects and pairing correlation energy, the effect of
nuclear deformation and the contribution of collective excitations. The last
factor also has an important bearing upon the dependence of the level density
on angular momentum. The knowledge of level density behaviour is central to
the theoretical calculation of ffssion cross-sections. In gleaning this
knowledge, theoretical formulation and understanding is imperative, direct
experimental evidence being confined to low excitation energies, to the
neutron resonance window at higher excitation energy, and to nuclear deforma-
tions mostly confined to values near that of the ground state.

In this paper we review the current knowledge of nuclear level density
behaviour and its consequences in the theory of fission cross-sections. We
commence, in Section 2, with a summary of the theory of the fission reaction
as deduced from compound nucleus theory, including special reference to the
actinides and the complicated behaviour of the fission barrier that dominates
their fission properties. This section introduces the level density as a
central concept and, in particular, explicitly draws attention to its depen-
dence on nuclear deformation. In Section 3» we discuss the evaluation of the

- 345 -



level density from the almost universally used starting point of the Laplace
transform of the grand partition function. The normal method, borrowed from
statistical mechanics for evaluation of the Laplace transform, depends on
the possibility of describing nuclear energy levels as a superposition of in-
dependently occupied single particle states. Within this framework we describe
shell effects in the level density and deformation effects that are conse-
quent upon the extension of shell concepts to deformed nuclei, and we review
attempts that have been made to include the effects of nuclear residual forces
that cannot be included within the smooth potential well description of the
single particle states.

In Section 4 we extend this discussion to the question of the dependence
of level density upon angular momentum. This is crucial for the comparison
of theoretical deductions with neutron resonance observations, which are
limited to a very narrow range of angular momentum, and is also very import-
ant for the evaluation of fission cross-sections at low to moderate excita-
tion energies. A key element in this discussion is the question of
collective enhancement, the extent to which the independent particle degrees
of freedom are insufficient, at any given excitation energy, to account for
the total level density and therefore must be enhanced by rotational and
vibrational degrees of freedom.

The comparison of theoretical calculations with direct experimental
data on nuclear level density is pursued in Section 5. Comparisons of the
theory with observed fission cross-section behaviour or deductions on level
densities from fission cross-sections form the main elements of Section 6.

More information on interesting aspects of the level density is drawn
together in Sections 7 and 8. In Section 7 we discuss cross-sections of the
nuclides in the thorium region of the periodic table. In Section 8 we deal
with the extension of level density knowledge to higher excitation energies
and the consequent problems in calculating high energy fission cross-sections.
Finally, our overall conclusions are given in Section 9-

2. Fission cross-sections

The fission reaction is assumed to proceed almost entirely through the
compound nucleus mechanism. In its simplest form this implies that the
cross-section for the reaction may be factorised into a part O_.,, represen-
ting formation of the compound nucleus in a highly excited state through
absorption of the initial projectile by the target nucleus, and a part
representing the probability of decay of the excited compound nucleus state
by fission. This last factor is commonly written either as the ratio of the
fission width to total width of the compound level,

Pf-r(f)/r 0)

or alternatively as the ratio of the corresponding transmission coefficients

P f = T ( f ) / T (2)

Equation (l) is strictly valid only for energies close to a single level; the
average over many levels (assuming their widths to be much smaller than their
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spacing) is

< > > P ( J )

where # is the de Brog l ie wave length for p r o j e c t i l e a , g j is the sp in
t fs t a t i s t f c a l f ac to r fo r forming the compound nucleus w i th t o t a l angular

momentum J and p(J) ( = D"1) is the densi ty
spin J . This expression is normally w r i t t
use o f an averaging co r rec t i on fac to r S , :

s t a i s t c a fac t f o g e p g
momentum J and p(J) ( = D"1) is the densi ty of compound nucleus levels o f
spin J . This expression is normally w r i t t e n in terms o f average widths by

E x p l i c i t expressions and methods f o r c a l c u l a t i n g the.wid th f l u c t u a t i o n
fac t c - s S can be found in many references ( [ 2 ] to [ 4 ] ) .

For over lapp ing l e v e l s , a reasonable genera l i sa t ion of eq.(4) is

where

_.. , = TrA2q . T f . (6)
CN,J aMJ J(a)

Eq.(6) def ines the transmission c o e f f i c i e n t T

The t ransmiss ion c o e f f i c i e n t s T can be w r i t t e n in terms of the level
widths [_5~\ :

TJ(a) = 1 " « P (" Z ^ j ( a ) / D j ) , (7)

While the widths in this expression are, s t r i c t l y speaking, those of
S-matrix theory, no great inaccuracy is normally introduced by using
R-matrix wi dths.

The f iss ion transmission coeff ic ient T, is often regarded as the sum
over the coeff ic ient for individual f iss ion channels, u:

TJ(f)=Vj(v) ( 8 )

This is the generalisation of Bohr and Wheeler's concept of the t ransi t ion
state [ 6 ] , which describes the internal state of the f issioning nucleus, as
i t passes over the f iss ion barr ier , as a superposition of a l l energetically
available states of in t r ins ic excitat ion of the nucleus, thus giving

E" " ^D
T ( f ) = /

wo

where E" is the excitation energy of the fissioning nucleus, V is the
barrier height and PD(E) is the density of levels of intrinsic excitation at
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the barrier deformation. In eq.(8), the individual transmission coefficients
include the quanta! penetrability factor through the fission barrier. This
is normally assumed to have the Hi 11-Wheeler form [7] for a barrier with
quadratic dependence on deformation:

T. , = [l + exp 2TT (E - E'^/fia)]"1 (10)

a) being the circular frequency of an oscillator well of the same curvature
and inertial parameter as the barrier. The energy E is the sum of the
barrier height and the excitation energy of the intrinsic state defining the
channel p.

When only a few channel energies E are lower than or close to the
excitation energy E': eq.(8) should be us'ed, if possible, to evaluate the
total fission transmission coefficient T,..., from a finite number of discrete
channels. But even in this situation there can be a contribution from the
near-continuum of higher channels, a consequence of the nature of eq.(ii).
This contribution can be taken into account by the use of the density
function for intrinsic states and an integration.

For excitation energies that are much greater than the barrier height
it is natural to replace the summation of eq.(8) by integration over a level
density function:

dEP[)(E,J) [1 + exp 2TT(E + VQ- E"}/fia)JX 1

dEP[)(E,J) [1 + exp 2TT(E + VQ- E"}/fia)J (U)
The evaluat ion of the f i s s i on transmission coe f f i c ien t is considerably

more involved when the bar r ie r has the double-humped form that is common to
most of the act in ides L^J- The existence of a complex intermediate s ta te of
i n t r i n s i c motion associated wi th the secondary wel l deformation e f f ec t i ve l y
decouples the nucleus from i t s f i ss ion mode of motion at an advanced stage
along i t s path. A s t a t i s t i c a l treatment of th is decoupling gives the
approximate expression

T ( f ) = T ( A ) T ( B ) / t T ( A ) + T ( B ) + T l l ( b ) ] < 1 2 >

where T,.» and T,_* are transmission coe f f i c ien ts for the inner and outer
b a r r i e r s , respect ive ly , and have the form of the r .h.s o f eq.(8),the i n t r i n s i c
states u having, in general , d i f f e ren t character for the two deformations.
The quant i ty T ( , \ i s the transmission coe f f i c ien t for decay of the i n t e r -
mediate states By p a r t i c l e emission and rad ia t i on .

Equation (12) implies that the energy average is made over an in terva l
that is large compared not only wi th the spacing of f i ne -s t ruc tu re levels but
also wi th that of the intermediate levels (usual ly ca l led c l a s s - l i levels)
associated wi th the secondary w e l l . I f th is l a t t e r condi t ion is not met, and
the intermediate levels are narrower than t he i r spacing, the f i s s i on t rans-
mission coe f f i c i en t w i l l have an intermediate resonance form [9 ,K)J

T(f) = V w A< f >' [ ( E " \ 2 + ( ' V 2 ] 03)
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Here, A denotes the c l a s s - l l leve l at exc i t a t f on energy E, wi th f i s s i o n
II \JT

width F, / v for coupling the intermediate state to the f ine-st ructure

(class- l ) levels, and tota l width I \ = F , < + T\ /. \ + T, , , for
• ^ 1 1 ^ 1 1 ^ ' A x i V D J Ajjic)

t o t a l decay plus coup l i ng . These widths f l u c t u a t e from level to level j u s t
as the c l a s s - I level widths do. In consequence the energy average over the
resonance terms o f eq . ( i 3 ) must be w r i t t e n in a form invo lv ing average
c l a s s - n widths and f l u c t u a t i o n fac tors S}.1 £ i i ] analogous to that o f e q . ( 5 ) ;
t h i s is t C

< T ( f ) > -

where the transmission c o e f f i c i e n t s T f£ \ ,T(g) and T-J-J can now be expressed in
terms of the mean widths and spacing o f the c l a s s - l l levels by the equations

(15a)

(15b)

(15c)

These expressions are analogous to the first order expansion of eq.(7)- If
the barriers A and B are assumed to have the inverted harmonic oscillator
form, the barrier transmission coefficients T^j,T/g\ take a form, analogous
to eq.(10) or, at higher excitation energies, its approximation by an
i ntegral eq.(11).

T(A)

T(B)

Tn(b)

= 2TT ]

= 2TT 1

= 2TT

rii(c)/Dn

^i(f) /D i l

7ri(b) /Dn

TJ(A) = ^ [ i ^ x P 2 , ( E A v + l / A - E A ) ^ A ] - 1 (16a)

J - 1

dEpA(E,J) [ l + exp 2TT(E+(/A- F.")/fia)A] (16b)

dEpA(E,J) [ l + exp 2TT(E+(/A- F.")/fia)A]

wi th a prec ise ly analogous form fo r 7(Q)• Here p/\> PB represent the dens i t -
ies of i n t r i n s i c exc i t a t i ons at the deformations o f the inner and outer
ba r r i e r s w i th b a r r i e r heights V , V and tunne l l i ng frequency parameters

"fiwA, -fiw.- respec t i ve l y .
The nature o f the s t a t i s t i c a l f l uc tua t i ons o f the level widths is worth

a note here since they govern the value of the s t a t i s t i c a l f l u c t u a t i o n fac -
tors in the expressions fo r average c ross-sec t ions . I t is wel l known that
the f l u c t u a t i o n s o f f i ne s t r u c t u r e widths for decay processes through a
s i n g l e channel are governed by the Porter-Thomas d i s t r i b u t i o n L12 ] , which
is a member (wi th v = 1) of the chi-squared fami ly governed by the parameter
v (the "number o f degrees o f freedom"). The r e l a t i v e variance of a member
w i th parameter value v is 2 /v . This d i s t r i b u t i o n is almost c e r t a i n l y
appropr ia te for the decay widths o f the c l a s s - l l levels a l so . However, the
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coupling width of the c lass- I l state requires special consideration [ i i j .
While i t is useful to think of this quantity as composed of contributions
from channels analogous to those for the passage over the f ission (outer)
barrier these are not s ta t i s t i ca l l y independent in the same way as the decay
channels. Rather, the contributions to coupling from overlapping c lass- l l
levels are to be considered s ta t i s t i ca l l y independent and the f luctuation
factors ( l ike S1*) are to be computed accordingly.

Thus the level density concept enters the description of f ission cross-
sections in several dif ferent ways. The most obvious is the f ine-structure
resonance density, requiring the level density Pj of the compound nucleus at
high excitation energy (several MeV) and with deformation approximately that
of the ground state. At neai—barrier or sub-barrier energies the prominent
intermediate resonance structure is governed by the level density p l r of the
compound nucleus at effect ive excitation energies a few MeV lower and at the
much greater deformation of the secondary well in the barr ier . At rather
higher excitat ion energies of the compound nucleus or for computation of
average cross-sections the densities of in t r ins ic states of the compound
nucleus at the barrier deformations but at low to medium effective excitation
energies are required (eq.16). Other level density functions are required
for the calculation of the total transmission coeff ic ient , which includes
a l l the competitive processes. The competing radiation decays are governed
by the level density function at normal or secondary deformation.

(Y)
-• T E dEY f (EY )P i (E"- Ey) (17a)

Jo

where f(E ) represents the gamma-ray energy dependence of gamma t rans i t ions .
This depends on the mul t ipo lar i ty L of the t ransi t ions and hence on the
angular momentum and pari ty dependence of the level density, e.g.

T. * = f1 1 dE E f, (E )p (E:c- E , J j (18)
J(Y) Y j u . u i Y P l Y1 f'

<Jo f

P a r t i c l e decay is governed by the leve l dens i t i es o f res idua l n u c l e i , e i t h e r
at normal or secondary w e l l de fo rmat ion . Thus the t ransmiss ion c o e f f i c i e n t
f o r neutron emission from c l a s s - i s t a t e s , i n teg ra ted over a l l channels, is

<T) i " + 4 J + s "

J ( n . t o t ) " . " •- " • " " I M K - :

•

TJ(n,*)<EX-l. l<E*- SnT
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where E is the energy of the emitted neutron and S the neutron separation
energy of the compound nucleus (mass number A) and E.n is the exc i t a t i on
energy of the residual nucleus s ta te i " , of spin I .

In a l l the above expressions par i t y and par i t y changes governed by
m u l t i p o l a r i t y and angular momentum select ion rules are taken to be i m p l i c i t .

3. The evaluat ion of the level density

The nuclear level density is normally evaluated from the grand p a r t i t i o n
funct ion

exp $ = I^exp [ -3Ej + Z B ^ C ^ ] (20)

where the sum is over a l l the eigenvalues E. of the nuclear system, each wi th
a set o f quantum numbers C, . fo r quant i t i es that are constants o f the motion
( to the number of N ) . In thermodynamic terms the quant i ty 3 plays the ro le
of a rec iprocal temperature, the JJ^ are a set of chemical po ten t ia ls and the
quan t i t y $ is then re lated to the free energy, $ = BF. The level density
can be obtained from the Laplace transform of the grand p a r t i t i o n funct ion
and evaluated by saddle point i n t eg ra t i on , g iv ing

p(E, C , . . . , Ck, . . . ) = [ i / (2 i r ) ( N l<+ i ) / 2 (det G) ̂ J e x p d ^ E - ^ x ^ C ^ ) (21)

with the saddle-point conditions defined by

E + 0* /3&) g = 6 = 0 (22)
o

C - O*/3x ) = 0 i (23)
k k xk Xko

The quantities x, are the products Bu. • The elements of G are

Gn = (32$/332 )R_R (24a)
33

G,k = O2$/333xk) (24b)
o k ko

G, , , = (32<f>/3x. 8x. i) (24c)kk' k k x. =x. ,x. i=x. ik ko k k o

The grand p a r t i t i o n funct ion can be readi ly ca lcu lated i f the eigen-
values and quantum numbers of the levels can be approximated by an indepen-
dent p a r t i c l e system in the form

E*= V-/S (25a)
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ck* = V r a ) c k r (25b)

where the e. are the eigenvalues o f s i n g l e - p a r t i c i e (or q u a s i - p a r t i c l e - see
below) l eve l s , the c t h e i r quantum numbers (of purely sca lar type) and
n . W t h e i r occupation numbers w f t h i n the nuclear s ta te £. For a fermfan
system w i th magnetic quantum numbers e x p l i c i t l y included amongst the con-
stants of motion c these equations a l low <t> to be w r i t t e n ,

[ e;+ Zk\ck])~\ (26)

and i ts derivatives, giving the saddle point conditions for the total energy
E and constants of the motion c are

= £.[-£.exp(-Se.+ V y ^ . ) ] / D + exp(-ge.+ V ^ ; ) ] (27a)

k = Z.ck?exp(-ee.+ E ^ c ^ ) / [ l + expHte,+ V k c l d ^ (27b)

The introduction of the numbers of neutrons, N, and protons, Z, of the
nuclear system as two of the constants of the motion, and of the concept of
the single part ic le level density g at the Fermi-levels defined by the
ground state occupation of N neutrons and Z protons allows the independent-
part ic le model level density function to be wr i t ten in the zero-order Fermi-
gas approximations

p(E,M) = e " M / 2 0 p ( E ) / [ 2 a ( 2 T 7 ) i ] (28a)

p(E) = (TTVl2a% E A) exp [2 (aE) i ] (28b)

The spin dispersion coeff icient a entering the d is t r ibut ion of the level
density over the magnetic quantum number M and the "Fermi-gas" parameter a
are given by

a = Tr2g /6 (29a)

a2 = O.D88a0 (N+Z) /a (29b)

G = (EA>)* (29c)

The dependence of the level density on total angular momentum J is found by
the Bethe device of subtracting the density for M = J+l from that for M=J,
gi ving

p(E,J) = p (E,M=J) - p (E,M=J+1) £ (2J+l)e 2 ' p (E) /4o 3 (2rr)* (30)

This form fo r the nuclear level densi ty has played a dominant ro le in
a l l discussions of the subject s ince i t s f i r s t fo rmula t ion by Bethe C113 in
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1937. Important modif icat ions have had to he made to i t in the l i g h t of
major physical e f fects that have been found to modify the independent-
p a r t i c l e system of the nucleus and the comparisons wi th improved experimental
data.

One o f these major physical e f fects is the occurrence of shel l gaps in
the s i n g l e - p a r t i c l e s ta te density at the Fermi leve ls . In f i r s t approxima-
t ion th is can be accounted fo r by employing a reduced value of the density
g and hence o f a., but t h i s w i l l not account for the energy dependence of
tne level densi ty . The average quant i ty g is in fact to be evaluated
around the Fermi levels over an energy i n t l r v a l o f the order of the tempera-
ture 3 of the system; hence, in a shel l nucleus, i t can be expected to
increase rap id ly w i th exc i t a t i on energy to some asymptotic value [ l 3 J , and
th is increase w i l l be ampl i f ied by i t s appearance in the exponent of the
level densi ty . This e f f ec t can be accounted f o r , at least p a r t i a l l y , by a
development of the independent-part ic le equations in which the sub-shel l
magnetic quantum number degeneracy of spherical nuclei is e x p l i c i t l y
included [.1^,15!). An a l t e rna t i ve approach is that of the back-shi f ted
Fermi-gas model [ i 6 j in which a "normal" s i n g l e - p a r t i c l e s ta te density is
used but the extra binding of the ground state of a closed she l l nucleus is
taken in to account by adjustment of the exc i t a t i on energy; the e f f ec t i ve
exc i t a t i on energy U to be employed in place of E in eqs.(28),(29) is

U = E - A (31)

In p r i n c i p l e , the shel l e f fec t can be properly accommodated w i t h i n the inde-
pendent-par t ic le model by the numerical evaluat ion of eqs. (22),(25) and
(27) using a r e a l i s t i c s ing le p a r t i c l e level scheme.

Another important physical e f fec t is that of pa i r ing co r re la t ion energy.
This can be accommodated semi-empir ical ly w i t h i n the Fermi-gas formula by
another adjustment to the e f f ec t i ve exc i ta t i on energy, which depends on the
odd-even character of the neutron and proton numbers, the most general form
bei ng

U = E - P(Z) - P(N) (32)

P(Z) and P(N) are zero for odd values of Z and N. Empirically determined
values for even arguments of P(Z) and P(N) have been tabulated [ ] i7 ] ; normally
these empirical values are close to the odd-even differences in nuclear
separation energies.

A proper treatment of the pairing correlat ion effect can be achieved
approximately within the independent-particle formulation of the level
density by moving to the concept of constructing the nuclear excited states
from independent quas i -part i cl es [18,19]]

E = 1 n W e - kgb2 (33)
1 J J J s

(I)
where the n. are now the quas i -pa r t i c le occupation numbers for quasi -
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particle excitations

e. = / e . - A ) 2 + A2 ; (35)

the gap quant i ty A and the Fermi energy A are determined from the strength of
the pa i r ing i n te rac t i on , the s i n g l e - p a r t i c l e energies e. and to ta l number of
par t i c les (paired and unpaired)in the system. The ground state of an even
nucleus contains no quasf -par t ic les and hence has the energy ( re l a t i ve to an
independent-part ic le system) - ^g A2 . An odd-mass nucleus necessari ly
contains one quas i -par t i c le in i t s ground s ta te , which therefore has energy
^ A - kg A2 . The ground state of a double-odd nucleus has two quasi-
par t i c les and energy 'v 2A - %g A2 .

These energy ef fects in tfle corre lated ground-state are c ruc ia l for the
descr ip t ion of level densit ies in two ways. F i r s t l y , they imply odd-even
ef fects in the level density at low exc i ta t ion energies, and, by impl icat ion
at higher energies [ 2 0 ] . For example, the low- ly ing levels of a double-odd
nucleus have a two quas i -par t i c le character and a corresponding densi ty .
Such leve ls , and the i r densi ty, do not occur in even nuclei below an exc i ta -
t ion energy of 'v 2A. Hence, the semi-empirical adjustment to the e f f ec t i ve
exc i ta t ion energy as described in eq.(32) can be understood. Secondly, the
gap quant i ty A is dependent on exc i ta t ion energy and vanishes above a
c r i t i c a l exc i ta t ion energy [ i9 . ,20 ] . Above th is energy the nucleus can be
assumed to revert to a normal independent-part ic le system, but the e f f ec t i ve
exc i ta t ion energy avai lab le for d i s t r i b u t i n g par t i c les over the s ing le
pa r t i c l e levels is reduced by the extra pai 1—correlated binding energy of
the ground s ta te as given above, i . e .

U ~ E - kg A'z , even nuclides3s o

~ E - kg A2+A , odd-Aas o o

s E - ^g A2+2A double-odd (36)
s o o

where A denotes e x p l i c i t l y the gap quant i ty for the ground s ta te . The gap
quant i ty also depends upon the projected angular momentum quantum number of
the system [21 , 2 2 j , and in pa r t i cu la r Moretto £22] has presented consistent
equations for evaluat ing the grand p a r t i t i o n funct ion for the quas i -pa r t i c le
model including the e f fec t of angular momentum on the blocking phenomenon.

The independent-part ic le (or quas i -par t i c le ) formulat ion, o r i g i n a l l y
developed for spherical nuc le i , can readi ly be extended to deformed nuc le i .
In th is case the main sub-shell degeneracies over angular momentum pro ject ion
of the spherical shel l model are removed, only the two-fold degeneracy
associated wi th the sign of the angular momentum project ion fl. on the
cy l i nd r i ca l symmetry axis of spheroidal nuclei remaining. Hence, the quantum
number M, the pro jec t ion of the to ta l angular momentum of the system on a
laboratory-based axis is replaced, as a constant of the motion, by the
pro ject ion K on the nuclear ax is .

With changing deformation of a nucleus the single pa r t i c l e state density
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a t the Fermi energy v a r i e s . From e q s . (28,29) we might expect a q u a l i t a -
t i v e l y l a r g e r v a r i a t i o n , in the same d i r e c t i o n , of the level d e n s i t y . In t he
S t r u t i n s k y theory of the deformat ion energy s u r f a c e £8J the s h e l l c o r r e c t i o n s
to the b a s i c l i q u i d drop term are f u l ly c o r r e l a t e d with the i . ingle p a r t i c l e
s t a t e d e n s i t y , (n the a c t i n i d e s the nuc lea r deformat ions cor responding to
energy minima and maxima a r e very c l o s e to the deformat ions at which the
s i n g l e - p a r t i c l e s t a t e d e n s i t i e s have minima and maxima r e s p e c t i v e l y . Hence
i t might be expected t h a t , for cor responding a v a i l a b l e e x c i t a t i o n e n e r g i e s ,
level d e n s i t i e s a t the f i s s i o n b a r r i e r deformations w i l l be cons ide rab ly
g r e a t e r than those for primary and secondary well s h a p e s . The argument has
been g e n e r a l i s e d by Reisdorf j_23], who has employed the theorem of Bal ian
and Bloch [_2hj for the e igenva lue dens i t y in an a r b i t r a r y - s h a p e d c a v i t " .
With an expansion of the s i n g l e - p a r t i c l e s t a t e d e n s i t y in powers of A h ,
thus i nc lud ing a s u r f a c e a rea and a c u r v a t u r e dependence, Reisdorf can
reproduce neu t ron resonance s t a t e d e n s i t i e s reasonably wel l for s p h e r i c a l
and deformed n u c l e i , provided a s h e l l c o r r e c t i o n , dependent on e x c i t a t i o n
energy , is a l s o taken i n t o accoun t , and shows t h a t the same procedure with
e m p i r i c a l l y - a d j u s t e d and deformat ion-dependent s h e l l c o r r e c t i o n s , can account
for exper imenta l f i s s i o n p r o b a b i l i t i e s a t 11 MeV e x c i t a t i o n energy .

The s imple argument i g n o r e s , however, the dependence of the energy gap
q u a n t i t y A on the s i n g l e - p a r t i c l e d e n s i t y . For c o n s t a n t nuc lea r volume t h i s
dependence is s i g n i f i c a n t . The consequent e f f e c t of t h i s change in A on the
leve l d e n s i t y a t low and medium e x c i t a t i o n e n e r g i e s is o p p o s i t e to and
g r e a t e r than the change in the e f f e c t i v e Fermi-gas pa ramete r , p a r t l y ( a t
low e n e r g i e s ) because of i t s e f f e c t on the q u a s i - p a r t i c l e energy and p a r t l y
because of the change in e f f e c t i v e e x c i t a t i o n energy from the p a i r - b i n d i n g
e f f e c t in the ground s t a t e . This has been demonstra ted in c a l c u l a t i o n s of
B r i t t e t al £25] a n c ' Dossing and Jensen^263- With s i n g l e - p a r t i c l e s t a t e
d e n s i t i e s t h a t a r e r e a l i s t i c for the a c t i n i d e s i t appears t h a t i n t r i n s i c
b a r r i e r s t a t e d e n s i t i e s can be lower than those for the primary and secondary
w e l l s up to e x c i t a t i o n e n e r g i e s of the o rder of 8 MeV.

More genera l c h a r a c t e r i s t i c s of the r e s i d u a l n u c l e a r forces a r e impor t -
an t for the c o n s i d e r a t i o n of the deformation dependence of the n u c l e a r energy.
The dependence of the energy of i n d e p e n d e n t - p a r t i c l e s t a t e s on the deforma-
t i o n is found to be r e a l i s t i c only over a l imi t ed range of small deformation
from the s p h e r i c a l . I t was demonstra ted by S t r u t i n s k y [ 8 ] t h a t the o v e r a l l
deformat ion dependence of the ground s t a t e could be r ep re sen t ed by adding a
she 1 1 - c o r r e c t i o n energy to a smoothed l i q u i d - d r o p energy which c o n t a i n s the
fu l l e f f e c t of t he s h o r t - r a n g e r e s idua l nuc l ea r f o r c e s , the s h e l 1 - c o r r e c t i o n
be ing p r e s c r i b e d as the d i f f e r e n c e between t he a c t u a l i n d e p e n d e n t - p a r t i c l e
s t a t e energy and smoothed i n d e p e n d e n t - p a r t i c l e energy computed from a
smoothed s i n g l e - p a r t i c l e s t a t e spec t rum. I t has been shown£2?3 t h a t t h i s
p r e s c r i p t i o n is e q u i v a l e n t , in second o r d e r approximat ion to a Har t ree-Fock
r e p r e s e n t a t i o n of the ene rgy .

In a c t i n i d e n u c l i d e s t hese methods lead to a double-peaked form ( the
double-humped f i s s i o n b a r r i e r ) of the dependence of "ground" s t a t e energy
on deformat ion owing to the s u p e r p o s i t i o n of the o s c i l l a t i n g s h e l 1 - c o r r e c t i o n
upon a b roadly-peaked l i q u i d - d r o p term. The s h e l 1 - c o r r e c t i o n term is depen-
dent upon the s i n g l e - p a r t i c l e s t a t e dens i t y a t the Fermi-energy , peaks
cor respond ing to high d e n s i t y , and t roughs to low. The she l1 - b i n d i n g
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corresponding to the trough, close to the l iqu id-drop peak gives r ise to the
secondary wel l of the f i ss ion b a r r i e r .

I f the same concept is applied to the states at high exc i ta t i on energies
the shel1-correct ion term can 6e expected to be washed ou t , the averaging of
the s i n g l e - p a r t i c l e s ta te spectrum now being defined over a wide energy
in terva l around the Ferrai-energy; the f i ss ion ba r r ie r is said to revert to
the l iqu id-drop form. Gottschalk and Ledergeber |_28j have considered th is
e f fec t in the procedure for ca lcu la t ing the level densi ty . S ta r t i ng from
Hartree-Fock theory they show that the grand p a r t i t i o n funct ion can be
w r i t t e n , in zero-order, as the sum of a terra derived from a uniform s ing le -
p a r t i c l e s tate density and one derived from the energy- f luctuat ing component
of the s i n g l e - p a r t i c l e densi ty . Appl icat ion of the saddle-point equations
for the energy leads to the in te rp re ta t i on of the f i r s t der iva t ive of the
g .p . f . as the sum of the smooth part of the exci ted energy surface plus a
temperature-dependent shel l co r rec t ion . Gottschalk and Ledergeber argue that
i f the exc i ta t i on energy is calculated from the p resc r ip t ion ,

to ta l energy = shel l model energy at local deformation

ground state energy = Strut insky renormalized ground-state energy,

the res idua l - in te rac t ion term in the ground-state energy does not have i t s
counterpart in the exci ted state energy and the level density ca lcu la t ion
w i l l be erroneous. This omission w i l l not be f e l t however i f exc i t a t i on
energies are adjusted to experimentally observed bar r ie r energies rather
than calculated ones.

h. Angular momentum dependence

The formal development of Section 2 can only t reat angular momentum
cor rec t ly fo r spherical systems. The dependence of level density on angular
momentum pro jec t ion , M, on an a rb i t r a ry axis can be used to y i e l d i t s
dependence on to ta l angular momentum in such a system (eq-30). In a
spheroidal system however only the dependence on angular momentum projected
along the cy l i nd r i ca l symmetry axis K can be found. To proceed to the to ta l
spin dependence, strong assumptions must also be made about the nature of
the components on the remaining ax is .

At very low exc i ta t ion energies the independent-part ic le (or quasi-
pa r t i c le )s ta tes determined by the method of Section 2 can be regarded as the
band-head states for bands of co l l ec t i ve ro ta t iona l states of increasing
angular momentum. The extension of th is concept to higher exc i ta t ion
energies allows us to develop an expression for the angular momentum depen-
dence of the level density w i th in a u n i f i e d , independent-part icle plus
r o t a t i o n , model. Close to a given e x c i t a t . j n energy E" i t is assumed that
the density of independent-part ic le (band-head) states can be expressed as

PBH(E,K) = p i p ( E , K ) = ( l /ak(27T) i) e " K V 2 a k 2 p i p (E*) e
( E ' E ] /& (37)
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where 6- (3£np/9E) - . I f , at excitation energy E" the rotational energy

) - Kz] (38)

is unavailable then the total level density for total angular momentum I is

I

p(E",i) = I PBHCE"~ E ro t ' K ) ( 3 9 a )

K=-I

= (1/a, (2TT)"2)pTP(E")exp [-(-fi2/2T0) i ( i + l ) ] S exp [-K
2 (Via2,- -R2/276) ] (39b)

k I P K—I

= ( i / a k ( 2 i 7 ) i ) p i p ( E * ) ( 2 l + l ) exp [-(-n"2/2le) I ( i + l ) ] (39c)

provided ( i / 2 a 2 - -fi2/2T0) is much smal ler in magnitude than I 2 . This is to
be cont ras ted w i t h the expression tha t would be obta ined i f k1 were simply
assumed to be an a r b i t r a r y p r o j e c t i o n of the angular momentum; from eq.(30)

i -(i+J) 2/2a2]

Thus the enhancement of the level density from collective rotations in the
spheroidal model is roughly by the factor 2a£ (assuming that a£ ~ I8/fi2).

The validity of such a rotationa;! enhancement at medium to high excita-
tion energies is controversial. In principle all degrees of freedom of
motion are comprised in the independent particle system. In practice only at
extremely high excitation energy are they effectively exhausted in describing
the state wave-functions. At medium excitation energies (such as the neutron
separation energy) in heavy actinides only perhaps about six particles are
excited in the typical independent-particle states. On the other hand
rotations, involving as they do a collective motion of many nucleons will
require a description in terms of a coherent superposition of very many
excited particles, hence of independent particle states drawn from a very
much higher excitation range. Bjornholm, Bohr and Mottelson [29] indicate
that the characteristic temperatures involved for such states will be of the
order of 1.5 MeV, and hence the excitation energies are an order of magnitude
greater than the neutron separation energies.

Support for the hypothesis of the rotational enhancement factor comes
from an analysis by Huizenga et al [_30J. Neutron resonance densities were
calculated using eqs. (21) to (26) with realistic single particle energies.
With angular momentum dependence based on eg.(30) the experimental data on
spherical nuclides were closely reproduced J_313» b u t those on deformed
nuclei required the rotationally enhanced form, eq.(39c). Other workers
L32,33j consider that the rotational enhancements are not required to explain
the data, but these analyses employ semi-empirically determined (yet syste-
matic) shell energy correction terms. The balance of evidence best supports
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the concept of ro ta t iona l enhancement at moderate exc i ta t ion energies.
The concept of ro ta t ional enhancement can be generalised as one of

enhancement due to symmetry-breaking in the shape of the nucleus [29J . The
factor 2ak represents the enhancement due to breaking spherical symmetry,
reducing the nuclear shape to one of axial symmetry. A fu r ther stage of
symmetry breaking is introduced when the shape is not symmetric w i th respect
to ro ta t ion about an axis perpendicular to the major axfs (thris operat ion is
referred to as R) but is symmetric w i th respect to re f l ec t i on in a plane
containing the major ax is . This has the e f fec t of doubling the s ta te densi ty ;
for every i n t r i n s i c state of d e f i n i t e par i t y a ro ta t ional band of opposite
par i t y is introduced. Such a shape is energet ica l ly favoured in calculat ions
of the deformation energy of an ac t in ide nucleus as i t passes over the outer
barrier [33].

Maximum enhancement of the ro ta t iona l states is obtained when the nuclear
shape is completely lacking in symmetry. In th is case the nucleus w i l l be
able to make co l l ec t i ve rotat ions ahout the three perpendicular body-f ixed
axies,wi th the resu l t that there w i l l be 2 l+ l d i f f e ren t states for every value
of ro ta t iona l angular momentum 1 in each ro ta t iona l band. I f each of these
states is label led by a number T , the to ta l level density based on a density
o f bandhead sta>.°s )

' - • • 1

p(E,i) = L, (E - E ( T , I ) ) (Ala)

T=1

= (2l+DpB H(E) (it ib)

i f E r o t ( T , l ) is much less than the temperature 6 of the level density formula
(37) for Ppu. For th is expression we note that the density of band-head
states w i l i be double that for an a x i a l l y symmetric nucleus, because K is no
longer a good quantum number, and negative values of K can occur independently
in the basis s ta tes ; the quant i ty pg|_|(E) is to be taken as the sum of the
densi t ies of the basis states over a l l values of K. Eq.(4i) is thus higher
by a factor ^ 0^(877)2 than the density for an a x i a l l y symmetric nucleus w i th
R-invariance.

The rotat ional states of the completely asymmetric nucleus can be b u i l t
up from basis states of spec i f ied symmetry wi th respect to rotat ions through
TT about the three body-f ixed axes. The quantum numbers for these rotat ions
(r.., r ? , r . J ( r .= ± l ) f a l l in to four sets . Any one of these sets is
appropriate for the descr ip t ion of a s ing le ro ta t iona l band of a nucleus that
lacks axial symmetry but otherwise possesses the symmetry of an e l l i p s o i d .
This is expected ^3^ ] to be the condi t ion of a deformed act in ide nucleus as i t
passes over the inner peak of the double-humped f i s s i o r b a r r i e r . The density
of i t s ro ta t iona l states is therefore expected to be one quarter of the
density fo r the completely asymmetric nucleus i . e . a|<(iT/2)a times that of the
ax ia l l y symmetric nucleus w i th R-invariance.

5. Comparison of level density data wi th theory

The a v a i l a b i l i t y o f d i rec t experimental data against which theory can be
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checked Is s t r i c t l y l i m i t e d . For the actinides. data are
wave neutron resonances at the neutron separation energy
exci ted states confined to an energy in terva l of about 1
lower. These data are l im i ted to normal deformation (e

l im i ted to the s -
and the low- ly ing
to 1.5 MeV or
0 .2 ) . The data, on

c l a s s - H levels from f i s s i on Intermediate s t ruc tu re re la te to the secondary
we!1 deformation (e ^ 0.56) , but the e f fec t i ve exc i ta t i on energy which is
taken to be the d i f fe rence of the neutron separation energy and the spontan-
eously f i s s i on ing isomer is poorly known for these s ta tes , the energy o f the
isomer having to be in fer red from data on neighbouring nuc l ides. Level
density data for the ba r r i e r deformations are not , o f course, ava i lab le and
the theory can only be checked at these deformations by i t s adequacy in
reproducing f i s s i on cross-sect ions; th is comparison is made in the next
sec t ion .

We have made ca lcu la t ions o f the level density of the act in ides using a
s i m p l i f i e d version of the independent q u a s i - p a r t i c l e , or p a r t i c l e , level
densi ty theory o f Section 3 to check that the neutron resonance densi t ies can
be reproduced wi th reasonable values of the parameters. The basic equations
that have been used are the fo l l ow ing :

1
£nH.<h + Z exp (-ge.+ I, , x.

i ( _ i k^p I"

+ exp [-2(3(e.- A) + 2

•{' | f i .

SsnA2(E,K)
J 5 Z Z (42a)

where p labels p ro jec t ion of angular momentum and | f l | is the absolute value
of th i s quantum number for the generalised quas i -pa r t i c l e or s i n g l e - p a r t i c l e
l e v e l , i , w r i t t e n here as

e . = [ ( e - A ) 2 + A 2 ( E . K ) ] * + ( c . - A ) - | e . - A

h
<-• nE = E.n 2c. + [N - 2h l e . - h g A? +

g 1=0

h
Z . 2 2c. + [Z - 2h le

1=0 1 L z -

n" j

- h g A2 - 5
sz zo nz

where l< is the total spin-projection. The ground-state energy is written
h

E = £ . n 11. + [N - 2h l e . - h Q A? +
g 1=0 1 L n n J s n n o

h
,2.

z z-1 k -'sz zo nz
z

i=O I
E,_. 2E, + |N " 2 h j e , - h Sc_Az_ - &

where h ,h denote the largest integers less than or equal to the numbers of
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neutrons N and protons Z in the nucleus, j = hn + ] , k = h z + 1 and e^ =
£(e0 - A)2 + A 2 j i . The quant i ty 6 n 2 is an addi t ional binding e f f ec t a v a i l -
able to odd-oda nuclides from the residual in te rac t ion between the f i n a l
unbound neutron.

In these ca lcu la t ions the fermi energy is taken to be j u s t that fo r an
independent p a r t i c l e system of a given number of nucleons. The energy gap
quant i t ies A (E,K), A (E,K), are taken from the numerical behaviour as a
funct ion of exc i t a t i on energy and spin pro jec t ion K determined in other
work [ 20 ,22 ] ; the ground-state values ApO, A are input parameters. The
main purpose for the use of eq. (42,C»3) in trie Darwin-Fowler expressions is
to al low the ca lcu la t ion of the independent-part ic le model of the s ta te den-
s i t y and i t s trend downwards in to the "superconducting" region. The Darwin-
Fowler expressions are solved by i t e r a t i o n , s t a r t i n g w i th input approximations
to B and the x, , adjustments being made to these according to the magnitude
of the di f ferences between the successive approximations and target aims of
the exc i t a t i on energy and constants o f the motion.

For large (but phys ica l ly reasonable) values of the ground s ta te gap
quant i t ies for neutrons and protons, A n o , A z 0 the dependence of the level
density on these quan t i t i es is very considerable. This is shown in F i g . l fo r
some typ ica l act in ides at the neutron separation energy. The s i n g l e - p a r t i c l e
level scheme used for the ca lcu la t ion are taken from re f . [ ]33 ] . In F ig . l the
deformation e = 0.205- The dependence of Tevel density on deformation is
shown for 2̂ )0 Pu in Fig.2 for f i xed exc i t a t i on energy (E=6.52 MeV) and pa i r -
ing gaps. The q u a l i t a t i v e co r re la t i on w i th s i n g l e - p a r t i c l e s ta te density is
obvious, the level density being much greater at the bar r ie rs than at the
primary and secondary w e l l s .

I f the values of the pa i r ing gap parameters An o and A z o are taken from
neutron separation energy di f ferences (with some smoothing) the level density
resu l ts for a se lec t ion of act in ides at t h e i r neutron separation energies is
shown in Table 1. The calculated densi t ies fo r values of the ax ia l spin
pro jec t ion K=0 or j agree w i th observat ion reduced to minimum J using eq. 40
w i t h i n a fac tor o f 6 or so at wors t , which is about the usual degree of
sca t te r agreement that any theory achieves. I f the s ing le p a r t i c l e level
scheme is adjusted to give agreement w i th quas i - pa r t i c l e energies observed
for 233"Pa and 231~Th, the resul ts are improved in that immediate mass
region.

This suggests reasonable v a l i d i t y for the model, at least at medium
exc i t a t i on energies, w i th the co ro l l a ry that the c o l l e c t i v e ro ta t ion repre-
sent a f u l l ingredient o f the level density at these energies.

We are thus encouraged to extend th i s s imp l i f i ed model of independent-
p a r t i c l e exc i ta t ions to the bar r ie rs and secondary wel l deformation regions.
Typical behaviour o f the level densi ty so calcu lated as a funct ion of e x c i t a -
t i on energy w i th various deformations is shown in F ig.3- In these ca lcu la -
t ions the pa i r ing gap quan t i t i es are assumed to depend on s i n g l e - p a r t i c l e
s ta te density according to the s t a t i s t i c a l expression [ 3 5 ] :

A <* (sinh d /G) ' 1 (kh)

where d is the single particle level spacing and 6 the pairing coupling
constant.
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The e f fec t observed in r e f . [ 2 6 , 2 5 ] i . e . the lower level density fo r the
b a r r i e r deformations up to qu i te high exc i t a t i on energies is very apparent.
The ca lcu la t ions can be made for a range o f K-values and from these the spin
d ispers ion parameter cr̂  can be deduced. These are shown Fn Table 2 fo r a
range of deformations; they increase at f i r s t w i th increasing deformat ion,
r e f l e c t i n g the f a c t , for the ac t i n i des , that high fi s ing le p a r t i c l e states fran
higher she l ls are brought down at the greater deformation. The o^ value
decreases markedly w i th decreasing exc i t a t i on energy; t h i s is shown fo r 233Th
in F ig .4 . However the level density ca lcu la t ions can be expected to be
inaccurate at very low e x c i t a t i o n , f i r s t l y because of the general behaviour
of the Darwin-Fowler approximat ion, but n. j inly because of the treatment of
the pa i r i ng gap in the ca l cu la t i on of the grand p a r t i t i o n f u n c t i o n ; the
energy-dependent quan t i t y is e f f e c t i v e l y fac to r i sed out o f the sum-of-states
to al low the treatment of the l a t t e r as a product o f independent p a r t i c l e
fac tors in the usual way. Combinatorial ca lcu la t ions ind ica te considerably
smal ler level dens i t ies at very low energy, p a r t i c u l a r l y for odd-odd nuc l ides .

Comparison of the ca lcu la ted level densi ty w i th the recommended forms of
ref-L36J a r e shown in Table 3> in the form of r a t i o s . The level densi ty
recommendations for act in ides [ 3 6 ] are, for normal deformat ion, essen t i a l l y
the Gilbert-Cameron parameters [ j 7 j w i th a mod i f i ca t ion of the f i r s t MeV
range of e x c i t a t i o n for even and odd-A nuc l ides. For b a r r i e r deformations
the level dens i t ies in ref. j_36j are adjusted so that the f i s s i o n cross-
sect ions o f a few key nuclides can be reproduced. However these parametr isa-
t ions can only be good up to exc i t a t i on energies of a few MeV or so. Above
that they are l i k e l y (from the observat ion of near-constancy of f i s s i o n
p r o b a b i l i t i e s to e x c i t a t i o n energies of at least 10 to 20 MeV) to be s i m i l a r
to those of the normally deformed nucleus, but wi th an enhanced constant o f
p r o p o r t i o n a l i t y . This enhanced constant of p r o p o r t i o n a l i t y , which is p a r t i -
cu la r l y not iceable at low energies in the parametr isat ions of r e f . L 3 6 j , seems
very l i k e l y to represent the ro ta t i ona l enhancement due to a x i a l l y deformed
shapes at ba r r i e r A and r e f l e c t i o n asymmetric (pear) shapes at ba r r i e r B.

In Table 3 i t is apparent that the level density computed from the
microscopic model and the assumption o f a normal ro ta t iona l enhancement is
not too d i f f e r e n t (to w i t h i n a fac tor o f 3 e i t h e r d i rec t i on ) from the forms
used in ref .L35J for normal deformation. On the other hand, for high e x c i t a -
t i on energies at b a r r i e r deformations the r a t i o is la rge , implying that the
ro ta t iona l enhancement is very s u b s t a n t i a l .

6. Calcu la t ion of f i s s i o n cross-sect ions from microscopic level dens i t ies

Pioneering ca lcu la t ions of th is k i n d , but appl ied to the e x c i t a t i o n
cross-sect ions for y i e l d i n g spontaneously f i s s i o n i n g isomers were o r i g i n a l l y
ca r r ied out by B r i t t et al [ 25J . Here we have used a s i m i l a r , but s i m p l i f i e d
level density model to compute f i s s i on cross-sect ions.

Results of the present computations are shown in Figs. 5 and 6 in com-
parison w i th experimental data on the f i s s i o n cross-sect ions o f 2 l l 0Pu and
21t lAm. The resul ts o f the level density ca lcu la t ions on the compound nucleus
at ba r r i e r deformations and on the residual nucleus at normal deformation have
been approximated by constant temperature forms over s p e c i f i c energy ranges.
These parametr isat ions have been employed to ca lcu la te f i s s i o n and neutron

- 361 -



transmission coefficients and hence fission cross-sections in the computer
programme EVAPF described in ref.L36J.

In the cases shown in F igs. 5 and 6 the computed cross-sect ions are
c l e a r l y inadequate. At some energy the ca l cu la t i on approaches the data in
magnitude but then f a l l s away by up to an order of magnitude over several MeV.

In a semi -quan t i t a t i ve way the nature of t h i s discrepancy may be ascribed
p a r t i a l l y to the ro ta t i ona l enhancement of the level densi ty a t the dominant
inner b a r r i e r of a x i a l l y asymmetric shape. The fac to r of enhancement is there
0|<(Tr/2)s. A l lowing fo r the energy dependence o f the d ispers ion c o e f f i c i e n t
a^ (see F ig .^ ) the energy dependence and magnitude o f the c ross-sec t ion data
w i l l to some extent be matched.

7. Cross-sect ions o f low charge ac t in ides

The cross-sec t ion behaviour of ac t in ides w i t h low charge, such as the
isotopes of thorium and protoact in iurn, is anomalous as viewed from the frame-
work of the double-humped f i s s i o n b a r r i e r . The " g i a n t " resonance s t r u c t u r e
exh ib i t ed by these cross-sect ions is explained by t h e i r correspondence to
simple s tates o f v i b r a t i o n a l motion w i t h i n a we l l o f the f i s s i o n b a r r i e r
s t r u c t u r e , but the r e l a t i v e l y undamped nature of these resonances implies a
much shal lower wel l than the usual secondary we l l tha t is ca lcu la ted from
St ru t insky theory. Quite soph is t i ca ted c a l c u l a t i o n s [ 3 3 ] in fac t i nd ica te the
poss ib le existence of a shallow wel l b i f u r c a t i n g the outer hump in the f i ss ion
b a r r i e r of thorium nuc l ides .

A number o f imp l i ca t ions fo r cross-sect ions fo l low from the hypothesis
of a t e r t i a r y minimum. The f i r s t is the r e l a t i v e lack o f damping o f the
v i b r a t i o n a l resonances that appear in the c ross -sec t i on . The second is the
ove ra l l magnitude o f the f i s s i o n cross-sect ions at above-barr ier energ ies;
t h i s is now governed almost e n t i r e l y by the level densi ty fac to rs at the outer
b a r r i e r (the inner b a r r i e r being much lower, according to theory [39 J ) • The
c o l l e c t i v e enhancement fac to r fo r the s ta te densi ty at the outer b a r r i e r is
only 2, the nuclear shape being re f lec t ion-asymmetr ic and axia 1ly-symmetr ic.
Calcu la t ions ind ica te that th is e f f e c t could lower the c ross-sec t ion in the
f i r s t few MeV above the b a r r i e r by a fac to r o f about 2 compared w i t h the
double-humped b a r r i e r model. The t h i r d e f f e c t is tha t a f l u c t u a t i o n might be
superposed on the cross-sec t ion fo r a l i m i t e d energy range ( M - 2 MeV) above
the inner b a r r i e r ; the modulat ion and ampli tude fo r such f l uc tua t i ons wi11 be
governed by the s ta te densi ty at the inner b a r r i e r deformat ion.

The v i b r a t i o n a l resonance s t r u c t u r e is governed very c lose ly by the
ava i l ab le s i n g l e - p a r t i c l e s tates near the Fermi energy associated w i t h the
t e r t i a r y w e l l . Calcu lat ions that include the e f f e c t o f v ib ra^ iona l motion or
the s i n g l e - p a r t i c l e behaviour[3&3 have demonstrated that the s i n g l e - p a r t i c l e
level scheme o f [ 3 3 ] gives a very reasonable p i c tu re of the v i b r a t i o n a l
resonances at these extreme deformat ions.

8. F iss ion cross-sect ions at much higher e x c i t a t i o n energies

The c a l c u l a t i o n o f f i s s i o n cross-sect ions up to some ten? o f MeV of
e x c i t a t i o n energy demands a range o f level densi ty in format ion over a wide
range of energy and q u i t e extensive chain o f nuc l ides . Bar r ie r dens i t ies are

- 362 -



requi red for the i n i t i a l l y exc i ted compound nucleus up to high e x c i t a t i o n
energy, and normal dens i t ies are required for the residual nucleus formed
a f t e r emission of one neutron, in order to ca lcu la te the primary f i s s i o n
c ross -sec t i on . To th i s c ross-sec t ion must be added the ene rge t i ca l l y allowed
(n ,xn f ) c ross -sec t ions ; the level dens i t ies o f lower mass nucl ides are
required not only fo r c a l c u l a t i n g the branchfng ra t i os along the cha in , but
a lso the d i s t r i b u t i o n of e x c i t a t i o n energy in the residual n u c l e i .

Our i ns i gh t i n to the behaviour of the level densi ty funct ions at these
higher e x c i t a t i o n energies i s , from a q u a n t i t a t i v e point o f v iew, severely
l i m i t e d . The general i nd ica t ions from the independent -par t ic le model w i t h
p a i r i n g is that the b a r r i e r s t a t e dens i t ies w i l l r i se rather more rap id ly
(above 5 to 10 MeV e x c i t a t i o n ) than the primary we l l dens i t i e s , owing to the
greater s i n g l e - p a r t i c l e level dens i t ies at the Fermi energy. Eventual ly
however these d i f fe rences in s i n g l e - p a r t i c l e level densi ty w i l l be washed out
w i t h increasing temperature and the rates o f increase a£ d i f f e r e n t deforma-
t ions should be s i m i l a r . The tendency of b a r r i e r s ta te dens i t ies to increase
espec ia l l y rap id ly in the in termediate e x c i t a t i o n energy range (say 10 to 20
•Hev) could wel l be cance l led , however, by the onset o f the disappearance of
the c o l l e c t i v e enhancement f a c t o r .

Ex t rac t ion of emp i r i ca l l y adjusted level densi ty funct ions from neutron-
induced f i s s i o n c ross-sec t ion data up to about 20 MeV suggests that the com-
pensation from these two trends must be remarkably c lose . In r e f . ^ 3 8 ]
b a r r i e r level dens i ty funct ions were deduced from the f i s s i o n cross-sect ions
of 2 3 5 U , 2 3 8 U , 237Np and z 3 9 P u . For an odd-A nucl ide the temperature deduced
at about 20 MeV e x c i t a t i o n is about 0 .82, very close to the value given by
the Fermi-gas fo rmu la t i on , eq . (29c) , on the assumption that a%30 MeV~^.

Examples of level dens i t ies ca lcu la ted for normal deformation and
b a r r i e r deformation from our model at e x c i t a t i o n energies up to 18 MeV are
shown in F igs .7 and 8 f o r 2 3 9Pu and 2l<2Am. The parametrised forms deduced in
ref .L38J f o r the inner b a r r i e r are also shown fo r comparison. I t is apparent
that although the general energy dependence is very s i m i l a r over a very targe
range of e x c i t a t i o n energy, the ca lcu la ted densi ty l i es a fac tor o f about 3
to 5 below the empir ica l curve, suggesting that the ro ta t i ona l enhancement
e f f ec t is s t i l l ope ra t ing . By cont ras t the parametr isat ion for normal defoi—
nat ion Q36J, which was used in the analys is o f ref.[_38] by ex t rapo la t i ng the
Fermi-gas form to these high e x c i t a t i o n energies, is remarkably close to the
curve marked e = 0.205 in F i g . 7 .

9. Conclus ions

We have surveyed the requirements o f f i s s i o n c ross-sec t ion theory fo r
knowledge o f level dens i t ies at d i f f e r e n t deformations o f the nucleus. In the
normal framework of a microscopic independent -par t ic le or q u a s i - p a r t i c l e mode)
using r e a l i s t i c p a i r i n g gaps and ca lcu la ted Ni lsson s i n g l e - p a r t i c l e o r b i t a l s
from deformed folded Yukawa po ten t i a l i t is apparent, as observed in e a r l i e r
work [ 3 l ] ' that neutron resonance spacings can be reproduced w i t h i n a
reasonable f a c t o r , provided that the independent -par t ic le s tates are taken
as the band-heads of ro ta t i ona l s tates associated w i th an a x i a l l y - and
re f lec t ion-symmet r i c body. Although th i s approach represents there fore a
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reasonable one to understanding the nature of level densities it is clear frcm
the calculations of level densities at barrier deformations that it is not yet
sufficiently developed to give reliable quantitative estimates of fission
cross-secti ons.

The greatest difficulties seem to occur at lower excitation energies.
Here we can expect the rotational enhancement factor for the barrier state
densities to be quite strongly energy dependent, even when fully operational.
At much higher excitation energies where sub-shell and pairing effects
become almost fully damped out we can be more confident in the correctness of
the independent-particle model, but we become increasingly uncertain of the
legitimacy of including a collective enhancement effect in the barrier state
densities. Our comparisons of calculation with empirically deduced barrier^
level densities suggest that collective enhancement is still partially
operative even at excitation energies of about 18 MeV.
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TABLE I

Calculated independent q u a s i - p a r t i c l e model level dens i t ies f o r
some a c t i n i d e s , using r e a l i s t i c gap quan t i t i es and the

Ni lsson o r b i t a l s o f r e f . [ 3 3 ] - The e x c i t a t i o n
energy is the neutron separat ion energy

SM and the compared neutron
resonance data are reduced
to J=0 or j ( b o t h p a r i t i e s ) .
The deformation assumed

e = .205

,Nucl eus

2 3 3

Th

2 32
Pa

2 3k
U

2 3 5

U

2 38
Np

2 39
Pu

2 M 2

Pu

Am

Cm

S
n

(MeV)

4.79

5.57

6.85

5-30

5.49

5.66

6.31

5.54

5.52

K

i

0

0

s

0

i
2

0

0

1
2

A
no

(MeV)

0.65

0.66

0.61

0.64

0.62

0.61

0 .58

0-59

O.56

A
zo

(MeV)

0.86

0.93

0.78

0.82

0.86

0.79

0.72

0.77

0.66

p(SnK)

Orbi tals
of ref
[33]

!
0.247x105

.694x106

1.15x106

0.11x10

1.73x106

0.45xl06

0.37*106

1.21x106

0.12x106

Adjusted
orbi ta l s

0 . 2 1 8 X 1 0 5

0.458xl06

0.42x106

0.75x105

1.42x106

p(Sn,J=K

Expt.

0.12x106

0.61x10

0.28x106

0.19x106

0.24x106

0.21x106

0.48x106

0.22x106

O.Ux iO 6
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TABLE I I

Calculations of the spin-projection dispersion coeff icient o,
as a function of deformation and excitat ion energy for

2<<<)Pu Gap quantit ies assumed to be A = A = 0.75

(MeV)

5.

6.

7.

E

\

5
5
5

5
6

7

21

• 96

.47

.0

6

7
8

.42

• 56

.4

.0

7

7

7

56

• 3

• 56

.8

6

7
7

82

.64

.1

.4

TABLE III

Ratio of level density recommendation of ref.([35j to level
density computed on present microscopic model

Nucli de

1

1

2

3
4

5

i-A

5

6

e

E*

.0

.5

.0

.0

.0

.0

.24

.66

.52

2 3

3

3

0

0

tJPu

205

.62

.02

.69

.61

2

2

0

0

p[ref.35]/p(model)

•ik

205

.66

.45

.67

.34

aPu

.42

0.79

1.28

8.61

13.4

21.4

.205

3-8

2.13

0.83

0.71

JPu

.42

5.4

8.3

26.7

e=

1

0

0.

>A.

.205

6

3
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F ig . l Level density (at the neutron separation energy) of a number of
nuclides as a function of A and A . The chosen deformation is
£ = 0.205 (close to normal ground state deformation).
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TEMPERATURE-INDUCED DEFORMATION -
A POSSIBLE MECHANISM FOR WASHING OUT OF SPHERICAL SHELL EFFECTS

K.-H. Schmidt, J.G. Keller, D. Vermeulen

Gesellschaft fur Schwerionenforschung mbH, GSI
D6100 Darmstadt, Federal Republic of Germany

ABSTRACT

The interplay of shell structure and rotational motion in
the nuclear level density is discussed. The result of a
schematic calculation reveals a washing out of spherical shell
effects at much lower excitation energies than expected if
only the intrinsic level density is considered.

INTRODUCTION

In a recent analysis of the cross sections of heavy evaporation resi-
dues, it was deduced that the influence of spherical shells on the level
density is much weaker than that of deformed shells (1).

Microscopic calculations of the intrinsic nuclear level density are
well established now, and recently also the justification of analytic
expressions (e.g. ref 2) has been shown (3). From this work, a different
behaviour of spherical and deformed shells as a function of excitation
energy is not expected.

We will discuss the interplay of shell structure and collective
effects in the nuclear level density. As the role of collective effects is
still under discussion, we intend only to show up some important effects
in a schematic way. In particular we will investigate the possibility of
a different behaviour of spherical and deformed shells as a function of
excitation energy.

A SCHEMATIC MODEL FOR THE NUCLEAR LEVEL DENSITY

The intrinsic level density represents all levels of a nucleus. Col-
lective motions may, however, lower several levels considerably. This
leads to an increase of the level density at low excitation energies.
Rotational motions may be included at low excitation energies by superpos-
ing a rotational band on each intrinsic level. This "rotational enhance-
ment" is expected to be damped into the intrinsic background at higher
energies. Qualitative considerations about this damping are published by
Bj0rnholm, Bohr and Mottelson (4). They discuss that a separation between
rotational motion and intrinsic motion can only be preserved at temper-
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atures low enough to ensure a well defined deformation of the nucleus.
Bj0rnholm et al. propose a limit of T = 40 MeV A"1/3 6. The dependence of
the limiting temperature T on the deformation 6 causes an interesting
interplay of shell effects and rotational enhancement.

For a qualitative consideration, the rotational enhancement was
assumed to be exponentially washed out (in analogy to the influence of
shell effects on the level density). This was achieved by an additional

factor l+o2exp(-E /aT2) in the nuclear level density with o being the
spin cutoff parameter and a being the level density parameter. Only
axially symmetric shapes were considered.

Guided by microscopic calculations, we treated the deformation
dependence of the shell effects by the following analytic expression:

6U = 6Uo cos(0/O.47 - 0 Q) exp(-0
2/2.2)

with 0 = 0.671 6 A1/3

The parameters 5U Q and 0 were adjusted to reproduce the experimental

shell effect and deformation of the ground state including the liquid drop
energy.
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are labeled with the height of the nuclear level density
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In fig. 1, the calculated nuclear level density is shown as a function
of excitation energy and deformation for a spherical and a deformed magic

10°
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4 »-l A 18O+2DBPb

^ B" O 'Bo+^Pb
/ 1n • <°Ar+Hf
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Fig. 2: The maxima of the ln-
and the 4n-cross sections as a
function of the neutron
number(6-8). The factor
1/(lift215* ) was applied in order
to remove trivial entrance chan-
nel effects for different target
projectile combinations and to
make the abcissa approximately
equal to the survival probabili-
ty JI(T /rtot) times the trans-
mission coefficient of the
fusion barrier for low angular
momentum (7).

/-rotational levels
included

i . i

Fig. 3: The survival probability
I t ( r r ) for zero angular

momentum, calculated for the
systems shown in fig. 1, using
different level densities.

115 120 125 130 135

^residue '

nucleus. The inclusion of rotational enhancement changes things dras-
tically. As the limiting temperature increases with deformation, a nucle-
us which is spherical in the ground state will be driven to deformation at
higher excitation energies because of the gain of rotational levels. This
fact was already stated in ref. (5), however, without considering shell
effects. Consequently, spherical shell effects will be washed out at much
lower excitation energies when the rotational enhancement is included,
whereas the influence of deformed shells remains nearly unchanged.
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COMPARISON WITH EXPERIMENTAL DATA

For Thorium, evaporation residue cross sections have been measured
over a long isotopic chain, crossing the spherical N=126 shell. The maxi-
ma of the In- and the 4n-cross sections are shown in fig. 2. While the In
cross sections show a pronounced structure at N=126, the 4n cross sections
seem to be influenced only little by the strong shell effect around 216Th.
The calculated survival probability, shown in fig. 3, reproduces this
behaviour when only liquid drop properties of the nuclei are considered.
As the existence of the shell effect in the ground state masses is known
experimentally, a mechanism is needed to wash out the shell structure in
the level density at low excitation energy. The inclusion of the rota-
tional levels brings the survival probability in the range of the exper-
imental data. However, the remaining shell structure seems still to be
somewhat too strong.

CONCLUSION

The rotational enhancement leads to a temperature-induced deformation
which tends to destroy a spherical shell effect in the nuclear level den-
sity at rather low excitation energies. This general statement is inde-
pendent of the special schematic model used in this work, if only
collective motions tend to enhance the total level density with increasing
deformation. At energies above 20 to 30 MeV where the shell effect in the
intrinsic level density is destroyed by the nuclear temperature, the beha-
viour of the collective levels is not essential for the described addi-
tional shell smearing mechanism.
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PAIRING CORRECTION FOR PARTICLE-HOLE STATE DENSITIES

C. Y. Fu

Oak Ridge National Laboratory
Oak Ridge, Tenn. 37830 U.S.A.

ABSTRACT

The pairing correction proposed by Ignatyuk and Sokolov for
particle-hole state densities has been examined. It has been
found that the accuracy of the correction isi sufficient for prac-
tical applications only if the system is in its normal state
(A = 0). In the superfluid state (A 4 0), a consistent pairing-
Pauli correction is developed here for improved accuracy. Prac-
tical implementations of the pairing correction are given and
further developments are outlined.

INTRODUCTION

The particle-hole state density formula widely used for preequilibrium
reaction calculations is given by Williams [1]:

with the usual notations. The Pauli correction, A, is given by [1]:

A = (p2 + h2 + p - 3h)/4g . ' (2)

A pairing correction, to be added to A, has been proposed by Ignatyuk
and Sokolov [2]:

P = i g(A§ - A2) , (3)

where AQ and A(U,n) are, respectively, the ground-state and the excited-state
gap parameters; A(U,n) is calculated from a SL-E of pairing equations in the
uniform model [2,3].
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However, the accuracy of the pairing correction is unknown. Calculations
of A for given U and n are difficult. The corrections, P and A, are incon-
sistent where A ^ 0. These are problems that inspire the present work.

CONSISTENT PAIRING-PAULI CORRECTION

The Pauli correction, A, was derived [1] on the basis of a uniform
single-particle level spacing, 1/g. If the system is in a region where
A ^ 0, one has to deal with quasiparticle energies and the level spacing can
no longer be considered as uniform. However, an effective level spacing,
l/ge» m a v b e inferred from the minimum excitation energy for given n, which
has been derived by Moretto [3]:

U . = 7 g(A§ - A2) + S- /(n/2g)
z + A2" , (4)

mm 4 u 2

where the first term is the change in condensation energies from the ground
state to the excited state. This change is an energy loss and is the pairing
correction proposed by Ignatyuk and Sokolov. The second term is the addi-
tional energy needed to excite n/2 particles from just below the Fermi sur-
face to just above. Compairing this energy with n2/4g, the minimum excitation
energy for a system without the pairing interaction, one obtains the effective
level spacing:

j = /(1/g)* + (2A/nf . (5)

Replacing 1/g in Eq. (2) by l/ge leads to a modified Pauli correction:

Ap = A /I + (2gA/n)
z (6)

that is consistent with P and Umin*

ACCURACY OF THE PAIRING COREECTION

Calculations using Eq. (1) with A replaced by P + Ap are shown in Fig. 1
in comparison with a calculation by Moretto [3] using the saddle-point
approximation. Except for n = 2, the agreement is good. For n = 2, the
saddle-point approximation lacks accuracy [3] while the present calculation
above 3 MeV (where P 1̂  0 and Ap = 0) is nearly exact [1]. Thus the present
pairing correction may be considered sufficiently accurate. The dashed lines
were calculated with the original Pauli correction A only, to illustrate the
importance of the pairing correction.

Use of P + A instead of P + Ap in Eq. (1) results in an increase in the
state densities up to a factor of two where A 4 0, so the consistent pairing
Pauli correction derived here is the more accurate.
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PRACTICAL IMPLEMENTATIONS

All relevant quantities were solved numerically and iteratively from a
set of pairing equations in terms of reduced variables so that the results
depend only on U and n, but not on the parameters g and A . The results were
then parameterized as explicit functions of U and n. In term of C =(1/4)gA^,
nc = (In 4)gTc with Tc = 2 A0/3.5, the minimum excitation energy (threshold),
Umin> is calculated from:

,3.23 — - 1.57 (n/n ) 2 if n/n < 0.446 ,
U . | n c c
m m _ ; c
~~c— ~ )

(-1 + 0.627 (n/n ) 2 if n/n > 0.446.
c c

The pairing gap parameters, A(U,n), are calculated from:

,0.68
•£- = 0.996 - 1.76 (n/n )1-6°/(U/c)(

A0 c /
2 17

if U/c'> 0.716 + 2.44 (n/n ) , otherwise A = 0. These results define the
pairing correction P to 3%Con the average up to U/c < 80.

FURTHER DEVELOPMENTS

Several useful developments involving pairing effects are in progress
and have to do with spin distributions, two kinds of particles, and consist-
ency with the Fermi-gas level density formulas.
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SEMI CLASSICAL APPROACH TO NUCLEAR LEVEL DENSITIES

J. TREINER

Division de Physique Theorique*, Ins t i tu t de Physique Nucleaire,
F-914O6 ORSAY CEDEX

A signif icant progress has been achieved, within the past decade,

in the study of the shell effects on nuclear level densities. This is

i l lust rated in f i g . l , where are plotted the values of the level density

parameter extracted from neutron resonance level spacinqs using either

( f i g . l - b ) Bethe's expression -which is derived assuming an equidistant

single part icle (s.p.) spectrum— either ( f ig . l -a ) a method incorporating

in a simple way the shell structure of the s.p. spectrum [ l . a ] . The

method is sketched in Dr. Ramamurthy's contribution to this conference.

VO ?J <SO CO W 100 l iO Hi) ICO i iO iCO ; -

Fig. l : systematic of level density parameters a) from ref [ l .a] b) from ref II.b]

Laboratoire associe au C.N.R.S.
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One can see that no fluctuations remain in the systematics of a : one may
thus consider that the macroscopic part of a which we shall denote ^i»n

is now well determined experimentally ; indeed a rather detailed and
interesting feature of the systematics of the level density parameter could
even be pinpointed in ref [la], namely the fact that, when one considers a
series of isotopes, a

LDM shows a minimum for the (i>-stable element.
Another interesting aspect is the determination of the variation of the
surface energy coefficient with excitation energy : from the data plotted
on fig.l-b a negative temperature correction was found, whereas model
calculations using a Hill-Wheeler box as well as a harmonic oscillator
predict an increase of surface energy with temperature [2,3]. Different
studies using Woods-Saxon potentials [4] have discussed these various
aspects and a dependence of aLPM on the separation energies has been pro-
posed. However if one is to explain such a refined effect as the isospin
one mentioned above, a self-consistent approach is clearly necessary.

We shall now present some of the recent theoretical results
obtained using a semi classical approach —the Thermal Thomas Fermi (TTF)
method. A very simple formula can be given for O-UOM v/hich exhibits the
properties of the nuclear effective interaction involved. Notice that the
method does not allow to treat shell effects so that i t is essential to
have at our disposal experimental values where these effects have been
removed.

The TTF method [ 5 ]

Let us f irst briefly sketch how the Hartree-Fock (HF) method is generalized
to finite temperature (THF). The semi classical approximation is then s t ra i -
ghtforward. The system is described by a HF hamiltonian H which, in the
case of a Skyrme type effective interaction, is a function of the density
and the kv c>tic energy density only. The equilibrium state at temperature T
is calculated by minimizing the free energy P = H-TS , where S is the
entropy. S is calculated using the non-interacting Fermi gas expression :

(1)

- 384 -



where n^ is the occupation number of particle state u with energy Lu :

r^ * * (2)

The chemical potential i> is determined by the normalization condition

I ^ -_ A

The density P̂  and the kinetic energy density r̂  are given by

and the <% 's and L^ 's are solutions of a set of HF equations

V i— V + u 1 <&, = £ 4-

U -- ^ (6)

where i\V* denotes the nuclear effective mass, whose origin lies in the
non locali ty of the HF potential (in the case of a Skyrme type interaction,
1\V/ln\* is a linear function of p ). The TTF method is now straightforwardly
derived : one assumes plane waves with momentum k. for the states 4^ arid
replaces the discret sums in eqs (3) and (4) by integrals over k • 0r»e
gets the following equations :

«- -" / * * L X )'L T ,
\ ^ I *'h<J\) (8)
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(the correct ive terms in fe and 2S in eq.(9) represent the 1 - corrections

to the pure Thomas-Fermi funct ional ) .

to

where J j

M^ " If (10)

yfy) = j — (11)
0 (?

/ T *

One can now make a low temperature expansion of the Fermi integrals J,

f

This allov-;s one to wr i te for the energy and the free energy

E ( T U £„ + a T l (15)
' ton

£O - a T l (16)
ion

where £" is the ground state eneray and <X is given by
° l-Oti

Notice that A u O n is expressed in function of the equilibrium nucleon
densities P° at T = 0 which makes i t particularly easy to calculate. The

1 t«

change in /> w i l l appear at the order T only in the expansion of the
free energy. Consequently the effective interaction appears explicitely

- 386 -



through the qffective mass only (of course i t plays an indirect role in
determining the equilibrium density prof i les).

Temperature dependence of the surface and curvature energy coefficients

Next, assuming a Fermi shape for the nucleon density, we can derive from
eq.(17) an A expansion of < Û[>n » by use of the following theorem (6)
i f -f denotes a Fermi distribution with radius R and surface diffuseness
then for any value of v and for integer p "s,

j
with » ^ (18)

ii ^

writing

one gets

^ -1

In eq.(21) £x denotes the surface energy and K the incompressibility
nwdulus. An expression can also be derived for a c but we shall not write
it with full length here as it is rather involved, due to the fact that,
besides the leading term, which writes :

a number of small corrective terms, arising from the central compression of

the nucleus, have to be added to Q̂ " (they involve in particular the surface

and the curvature energy coefficients).

The values of HKc n^'s are the following
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t/ - 2.55482 ir ^ -0.44518

7v; - 9.13381 £ ' * S.1 « J^ & 1.46935

Taking some typical values *?*/** t? 0.8, k̂ . ~ 1.35 fm , £ i 20 MeV,

cU 0.55 fm, K = 200 MeV, one gets

flv = 0.052
&x = 0 . 2 2 MeV"1

4 ^ = 0 . 6 7 MeV"1

One thus sees that the temperature dependence of both the surface and the
curvature energy coefficient is positive, and large (compared to the volume
contribution). For example for A = 216 one gets

ft«m= 0.052 x 216 + 0.22 x 36 + 0.67 x 6

= 11.23 + 7.92 + 4.02 = 23.17 MeV"1

Although surface and curvature corrections appear to contribute as much as
the volume term (this is due to the fact that the integrand in eq.(17) goes
like p , i .e. decreases very slowly), the value of AL0Ois s t i l l too small
compared to the experimental value &ibn - 30 MeV" (see f i g . l ) . Self
consistent calculations including Coulomb and asymmetry effects show that the
discrepancy of ~ 25% cannot s t i l l be removed. Clearly a physical effect is
missing, which wi l l be analyzed below. Let us f i r s t br ief ly show how the
isospin behaviour of & t D n in a series of isotopes can be understood
from eq.(17).

Isospin behaviour of

We have already mentioned that i t seems that 4u>n shows a minimum value
for the fi-stable isotope. We shall now see that this effect is related to
the behaviour of the surface contribution to ftto^ • Eq.(21) shows that •
is roughly proportional to the surface diffuseness d which is different for
neutrons and protons in the case of a neutron excess. Now the internal and
external part of the surface are determined by different nucleon properties
[7 ] : in particular the external part of the surface dexjJt. is directly
related to the separation energy S (<\-*,p) : ^ 1 . ^ Vi/T • ^s "V c 'GCreases
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and *S increases (both roughly

l inearly) with increasing asymmetry

i t follows that a ^ increases

v;hile d-,^ decreases. As for the

internal surface thickness one can

show, from semi classical arguments

that c{iru is the same for neutrons

. d <r*t- an<1 Photons ( i . e . varies as 1 ), so

that the difference between the total neutron and proton surface thickness

is due to the differences in 5^ and Sp . As a result a ^ increases and

a ^ O n decreases with increasing asymmetry. This explains the dependence

of A t£)f1 on the separation energies proposed in r e f . l l . a ) . Besides, one

understands qualitat ively that these opposite behaviours of a t O n and ALC>n

may produce a minimum in the sum #- ton • This minimum is indeed obtained

when one feeds eq.(17) with the self consistent extended Thomas-Fermi ground

state densities. I t is interesting to note that the semi classical interpre-

tation of this fact involves a rather detailed feature of the nucleon densities,

indeed not established experimentally, namely the evolution of the nuclear

surface thickness with asymmetry.

Effective masses in nuclei

Let us now turn to the analysis of the discrepancy of ~> 25% observed between

experimental values and values calculated using eq.(17). As the equilibrium

densities cannot be at fau l t , the origin of the discrepancy must l ie in the

effective mass.

In the HF scheme, the effective mass YV\* arises from the non local i ty

of the potential. The smaller the value of IY>* , the smaller the corresponding

density of states ; a value of mv in the range (0.6-0.8) leads to a reaso-

nable agreement with experiment concerning the deep states but not in the

v ic in i ty of the Fermi surface ; optical model analysis show that )f\" should

show an energy dependence [ 8 ] , raising i ts value up to ~ 1.2 near the Fermi

surface. This effect is beyond the HF approach and is not present in the
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s ta r t ing assumptions leading to eq.(17). However i t can be incorporated

simply as fo l lows:

In a semi classical p ic ture, the Fermi surface corresponds to the

geometrical surface, in the sense that the nuclear surface is b u i l t up

mainly by the states near the Fermi level (high angular momentum means less

bound s ta tes) . Thus the energy dependence of the ef fect ive mass can be converted

into a modified r -dependence, schematically represented in f i g .2 :

such a modified n\*fr) incorporated in

a HF calculat ion leads to a density of

par t i c le states in good agreement v/ith

experiment near the Fermi surface as

>* well as for the deep states, and removes

the discrepancy in the calculated O.Lbn

Of course the volume term Qv (eq.(20))

remains unchanged. The change appears

2* in the surface and curvature contr ibu-

f i g . 2 t i ons , which are increased by ~- 50%.

Analysis along these l ines have been

carried out recently in re fs . [9 -10 ] . One of the in terest ing consequences

pointed out in re f . [ 9J concerns the f iss ion barr ier : a rapid evaluation shows
240

for example that the f i ss ion barr ier in Pu is reduced by a factor of ^ 2

at a temperature of T - 1.5 MeV, i . e . at an exci tat ion energy of -^ 70 KeV.

To summarize, one can say that the semi classical approach provides

a sat is factory scheme explaining the known features of the macroscopic syste-

matics of the level density parameters. The transparency of the method makes

i t easy to incorporate the experimental information in the nuclear e f fec t ive

interact ion used in more microscopic approaches.
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Chairman's Concluding Remarks

J.E. Lynn

I have discovered since coming here that one of the duties as Chairman is

to give a closing t a l k . I believe that this is due to the excellent

organizing a b i l i t y of Dr. Pronyaev, who anticipated correctly that time would

remain after the summaries of the Working Group meetings before the o f f i c i a l

closing time of 12 noon. That gives me 52 minutes: however, I shall

disappoint Dr. Pronyaev by refusing to use a l l this t ime.

I do not wish to give here anything that may be interpreted as a

def in i t ive summary of this meeting, but rather to give my personal impressions

as a physicist who has not specialized part icular ly deeply in i t s subject

matter.

May I f i r s t of a l l say that i f th is meeting is typical of the Advisory

Group meetings held by the Agency, then they are extremely hard-working

meetings. Even on Wednesday, for example, our excursion day, some of us found

ourselves subjected to a mathematical minimization project, organized by Sol

Pearlstein. The objective of th is project was to minimize the time we spent

in the Atlant ic City Casinos. The process adopted was to walk the f u l l length

of the At lant ic City board-walk in both direct ions. This certainly achieved

i ts stated aim, which is just as wel l , for the experimentally determined
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results of the rate of increase of density of funds close to the Casino gaming

tables turned out to be very high, but, unlike the level density function,

also negative, although it was observed that there were fluctuations in this

rate; but these, being statistical Ericson-type fluctuations, rather than

predictable inte .nediate structure resonances, could not be used to any

advantage. However, it seems particularly appropriate that the only member of

our group who comes from a non-capitalist society was the only one to make a

net profit; it amounted, I believe, to 50 cents.

The subject of this Advisory Group meeting should be viewed within the

overall political and financial climate surrounding nuclear technology at the

present time. Over many years there have been increasing pressures from

governments to decrease expenditure in this field, especially in the basic

research that is directly relevant to it. At the same time it is apparent

that with the increasing sophistication and extension of technological

developments in nuclear power, the demands in range and quality of nuclear

data are certainly going to continue and probably increase in the longer

term. To meet these demands when, at the same time, the amount of

experimental effort that is being funded in this field is markedly decreasing,

the importance of being able to calculate many of the required nuclear data

from nuclear theory, or to be able to use theory as a reliable tool in helping

to evaluate the available experimental data (including its interpolation and

extrapolation) is now very great.

Within this context the role of knowledge of the nuclear level density is

of paramount importance, and it is most timely in view of the problems and

difficulties of the subject, and at the same time the significant progress
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that is nevertheless being made on these problems, that the IAEA should have

called this meeting,

I believe that this meeting has brought much illumination to the

perspectives of the subject. The way in which level density theory can be

used in data applications, applications that arise in several fields of

science and technology, were admirably summarized in the opening paper and

enlarged upon subsequently by several speakers. The theory itself was

approached from several angles. The importance of phenomenological approaches

to the problem was emphasized both from the point of view of the simplicity of

the analytical formulae produced for level density description, and from that

of the surveyability of the parameterization required. Within this approach,

some of the mathematical developments that we heard about were most

impressive.

The so-called microscopic approaches seem to be based on two distinct

philosophies. One is the belief that the use of a realistic representation of

single-particle level schemes will allow a more realistic calculation of the

level density for an individual nucleus, especially if some account is taken

of the major residual two-body forces that are not included in the potential

well used to describe the single-particle scheme. Normally this is taken to

be the pairing force. We heard about the developments in this field and the

important attempts to link the results to those of phenomenological

approaches. The other philosophy concentrates especially upon the residual

forces, and techniques, such as the moment methods, important progress in

which was described at this meeting, attract much interest. The computer time

required for such calculations is clearly high, and probably prohibits their
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use in large general reaction codes. But nevertheless I feel that

developments along these lines will be most important in underpinning o"r

understanding of these level density problems and hence our confidence in

using simpler methods for actual calculations.

A very important sub-area of methods that seek to incorporate the more

subtle features of the Hamiltonian into the derivation of level densities

concerns the treatment of angular momentum, particularly in deformed nuclei.

The question of the validity of the rotational enhancement factor at moderate

to high excitation energies is a controversial one. The work described at

this meeting that seeks to investigate the question quantitatively from a

fundamental basis is therefore clearly a valuable new departure. In relation

to this, there was also much discussion about the spin cut-off factor, a

quantity which appears in all kinds of problems ranging from calculation of

nuclear reaction cross sections to the interpretation of resonance level

sequences.

We also heard about significant progress in evaluating level densities

for specified particle-hole number combinations, a topic that has assumed much

importance as the role of pre-equilibrium mechanisms for higher energy

reactions has become identified.

The difficulties found in the theoretical study of the nuclear level

density are mirrored in the experimental study of the problem and these in

turn interact with and complicate the verification of. theory. This meeting

has concentrated particularly on the means by which reliable information on

level densities can be deduced from raw experimental data, and again
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considerable progress has been reported, both in the direct (resonance region)

data and the less direct (evaporation spectra) data. Brute force measurements

of level spectrum data were also discussed in one talk, but this is a topic to

which we were unable, in the time available, to give full attention.

I shall not attempt to summarize the summaries of the Workshop sessions

that occupied the second part of our meeting. It is sufficient to say that

these seem to me to give an excellent overall and definitive view of the state

of the subject and several valuable recommendations for future work to resolve

presently seen problems, particularly those that relate to the use of level

density knowledge in the field of technology.

Finally, on behalf of the participants in this meeting, may I express our

deep thanks to the Nuclear Data Section IAEA particularly Dr. Pronyaev, for

organizing the program of this meeting in very difficult circumstances, and to

all our hosts at Brookhaven National Laboratory for the excellent local

organization, and the fine hospitality, social arrangements, and care that

they have lavished upon us.



IAEA ADVISORY GROUP MEETING ON
BASIC & APPLIED PROBLEMS OF NUCLEAR LEVEL DENSITIES

Brookhaven N a t i o n a l L a b o r a t o r y , U .S .A .
11 - 15 A p r i l 1983

PROGRAM

( I = I nv i t ed ; C = Contr ibuted)

Monday morning, 11 Apr i l

9:00 - 9:15 Opening of the Meeting
Elect ion of Chairman and Secretar ies

9:15 - 9:55 R. C. Haight (Lawrence Livermore National Laboratory)
( I ) APPLIED USES OF NUCLEAR LEVFL DENSITIES

9:55 - 10:05 Discussion

10:05 - 10:45 S. M. Grimes (Ohio Un ivers i ty )
( I ) MOMENT METHOD CALCULATIONS OF NUCLEAR LEVEL

DENSITIES

10:45 - 10:55 Discussion

10:55 - 11:10 (Coffee break)

11:10 - 11:50 G. Maino and E. Manapace (ENEA, Bologna)
(C) A NILSSON-BCS MICROSCOPIC APPROACH FOR LEVEL

DENSITIES, EXTENDED TO ODD NUCLEI AND RELATED
PHENOMENOLOGICAL PARAMETERS

11:50 - 12:00 Discussion

12:00 - 14:00 (Lunch)

Monday af ternoon, 11 Ap r i l

14:00 - 14:15 T. Raya Halemane (State Un ivers i t y Col lege, Fredonia)
(C) LEVEL DENSITY APPROACH TO PERTURBATION THEORY

AND INVERSE-ENERGY-WEIGHTED SUM-RULES
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14:15 - 14:25 Discussion

14:25 - 14:40 S. Raman (Oak Ridge National Laboratory)
(C) BRUTE FORCE LEVEL DENSITY

14:40 - 14:50 Discussion

14:50 - 15:30 A. M. Anzaldo Meneses ( I n s t . f u r Neutronenphysik,
Karlsruhe)
( I ) APPLICATION OF NUMBER THEORETICAL METHODS FOR

THE CALCULATION OF NUCLEAR LEVEL DENSITIES

15:30 - 15:40 Discussion

15:40 - 15:55 C. Jacquemin ( I n s t . de Physique Nuc lea i re , Orsay)
(C) EXACT CALCULATION OF LEVEL DENSITIES FOR NON

INTERACTING MANY-FERMON SYSTEMS

15:55 16:05 Discussion

16:05 - 16:20 (Coffee break)

16:20 - 17:00 C. Kalbach (Tr iang le U n i v e r s i t i e s , Durham)
( I ) PARTICLE-HOLE STATE DENSITIES FOR PRE-

EQUILIBRIUM REACTION CALCULATIONS AND FOR
CLOSED AND OPEN CONFIGURATIONS

17:00 - 17:10 Discussion

17:10 - 17:25 H. Gruppeiaar (ECN, Petten)
(C) LEVEL DENSITY IN UNIFIED PREEQUILIBRIUM AND

EQUILIBRIUM MODELS

17:25 - 17:35 Discussion

18:00 Mixer (North Room, Brookhaven Center)
Courtesy of the IAEA

Tuesday morning, 12 Apri 1

9:00 - 9:40 . G. Hansen and A. S. Jensen (Un ive rs i t y o f Aarhus)
( I ) ENERGY DEPENDENCE OF THE ROTATIONAL

ENHANCEMENT FACTOR IN THE LEVEL DENSITY

9:40 - 9:50 Discussion

9:50 - 10:30 V. S. Ramnmurthy, S. K. Ka ta r i a , S. S. Kapoor
(BARC, Bombay)
( I ) REVIEW OF RECENT PHENOMENOLOGICAL APPROACHES

TO THE DESCRIPTION NUCLEAR LEVEL DENSITIES
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10:30 - 10:40 Discussion

10:40 - 10:45 (Coffee break)

10:45 - 11:25 G. Reffo (ENEA, Bologna)
( I ) LIMITS AND VALIDITY OF THE PHENOMENOLOGICAL

GILBERT-CAMERON LEVEL DENSITY APPROACH

11:25 - 11:33 Discussion

11:33 - 12:13 F. H. Frohner ( I n s t . f u r Neutronenphysik,
Karlsruhe)
( I ) STATISTICAL INFERENCE OF LEVEL DENSITIES FROM

RESOLVED RESONANCE PARAMETERS

12:13 -

12:35 -

Tuesday

12:

14:

:35

00

af ternoon, 12

Discussion

(Lunch)

A p r i l

14:00 - 14:40 P. Ri bon (C.E.N. Saclay)
( I ) EXTRACTION OF INFORMATION ON NUCLEAR LEVEL

DENSITIES FROM THE RESONANCE REGION

14:40 - 14:50 Discussion

14:50 - 15:30 H. Vonach ( I n s t . f u r Radiumforschung und Kernphysik,
Vienna)
( I ) EXTRACTION OF LEVEL DENSITY INFORMATION

FROM NON-RESONANT REACTIONS

15:30 - 15:40 Discussion

15:40 - 15:55 (Coffee break)

15:55 - 16:35 G. H. Rohr (CBNM, Geel)

( I ) SYSTEMATICS OF THE NUCLEAR LEVEL DENSITIES

16:35 - 16:45 Discussion

17:30 - 18:30 Cockta i l Party (Berkner Ha l l ) Courtesy o f the
Associated Un ive rs i t i es Inc .

18:30 - 20:30 Banquet

20:30 Concert (Berkner Hall)
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Wednesday morning, 13 April

9:00 - 9:40 E. D. Arthur (Los Alamos National Laboratory)
(presented by Dave Madland (LANL))
(I) THE IMPACT OF NI'CLEAR LEVEL DENSITY MODELS ON

CROSS SECTION CALCULATIONS

9:40 - 9:50 Discussion

9:50 - 10:30 J. E. Lynn (AERE Harwell)
(I) FISSION CROSS-SECTIONS AND THE NUCLEAR

LEVEL DENSITY

10:30 - 10:40 Discussion

10:40 - 10:55 (Coffee break)

10:55 - 11:10 K-H. Schmidt, J . G. Keller and D. Vermeulen
(GSI, Darmstadt)
(C) TEMPERATURE - INDUCED DEFORMATION -

A POSSIBLE MECHANISM FOR WASHING OUT
OF SPHERICAL SHELL EFFECTS

11:10 - 11:20 Discussion

11:20 - 11:35 C. Y. Fu (Oak Ridge National Laboratory)
(C) PAIRING CORRECTION FOR PARTICLE-HOLE STATE

DENSITIES

11:35 - 11:45 Discussion

11:45 - 12:15 J . Treiner ( I ns t i t u t de Physique Nucleaire, Orsay)
(C) SEMI-CLASSICAL APPROACH TO NUCLEAR LEVEL

DENSITIES

Wednesday afternoon, 13 Apri l

12:15 SHARP Coach leaves for excursion to At lant ic City from
Berkner Hall. (Boxed lunch served in the coach.)

Thursday, 14 April

Working Group discussions and drafting of reports.
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Friday morning, 15 April

9:00 - 10:00 WORKSHOP I: S. M. Grimes
NUCLEAR LEVEL DENSITY THEORIES AND NUCLEAR
MODFL REACTION CROSS-SECTION CALCULATIONS

10:00 - 11:00 WORKSHOP II: F. H. Frbhner and H. Vonach
EXTRACTION OF NUCLEAR LEVEL DENSITY
INFORMATION FROM EXPERIMENTAL DATA

11:00 J . E. Lynn
CHAIRMAN'S CONCLUDING REMARKS

12:00 Adjournment
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NEUTRON DATA REFERENCES

Element Quantity Energy (eV) Type Documentation Lab Comments
Min Max Ref Page Date

" C a Lvl Dens i t y S . 0 + 5 8 . 0 + 6 Theo BNL -NCS-51694 A p r 8 3 BOL Ref f O.PG203.GRPH CALC CFD LVL SCHEME

40Ca Lvl D e n s i t y 1.2 + 7 7 . 6 + 7 Theo BNL-NCS-51694 Apr83 PAR Jacquemin.PG105.GRPHS CALC CFD EXACT

5 6Fe adir l n ] 2 . 5 + 6 8 . 5 + 6 Theo BNL-NCS-51694 Apr83 BOL Rerfo.PG203.GRPHS ANGD1ST CFD EXPT.

60Ni Lvl Dens i t y 8 . 5 + 6 4 . 0 + 6 Theo BNL-NCS-51694 A p r 8 3 BOL Reffo.PG203.GRPHS SPIN CUTOFF E DEP.

60Ni Lvl Dens i t y 2 . 8 + 7 Theo BNL-NCS-51694 A p r 8 3 LAS Arthur.PG311.GRPHS CALC CFD EXPT

6 3Cu CTn p 1 .5 + 7 Theo BNL-NCS-51694 A p r 8 3 LAS Arthur .PG311.GRPH CALC CFD EXPT

" C u Lvl Dens i ty NDG Theo BNL-NCS-51694 A p r 8 3 LAS Arthur .PG311.GRPH D1FF.CALC.CFD

8 5Cu o-n e m 8 . 5 + 6 Theo BNL-NCS-51694 Apr83 LAS Arthur .PG311.GRPH CALC CFD EXPT

e 5Cu anp 1.5 + 7 Theo BNL-NCS-51694 A p r 8 3 LAS Arthur .PG311.GBPH CALC CFD EXPT

" C u Lvl D e n s i t y 1.0 + 6 1.4 + 7 Theo BNL-NCS-51694 A p r 8 3 LAS Arthur .PG311.GRPH CALC LVL DENSITY

89Y o n 7 1.0 + 5 1.2 + 6 Theo BNL-NCS-51694 A p r 8 3 LAS Ar thur .PG3U.CALC M/G CFD EXPT

9 0 Zr <Jn Zn 1.2 + 7 1.5 + 7 Theo BNL-NCS-51694 Apr83 LAS Arthur.PG311.CALC CFD EXPT

""Zr CTn p 6 . 0 + 6 1 .5 + 7 Theo BNL-NCS-51694 Apr83 LAS Ar thur .PG311 .P SPECT.CALC M/G CFD EX

9 3Nb Lvl Dens i ty 2 . 0 + 5 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 RCN Gruppelaar.PG143.TBL.CALC CFD CALCS.

100Mo any 1.0 + 5 7 . 0 + 6 Theo BNL-NCS-51694 A p r 8 3 LAS Arthur.RG311.GRPH SPIN-CUTOFF

n o S n Lvl D e n s i t y 5 . 0 + 5 4 . 0 + 6 Theo BNL-NCS-51694 A p r 8 3 BOL Reffo.PG203.GRPH CALC CFD LVL SCHEME

1 2 4Te Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

I 2 6Te Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHEN0MEN.PARS.

' " T e Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

130I Lvl D e n s i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

132Xe Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

13JBa Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

l 3 6Ba Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

13eBa Lvl Dens i ty 2 . 5 + 6 1.8 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL ReffO.PG203.GRPHS SPIN CUTOFF E DEP.

137Ba Lvl D e n s i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

l 3 7Ba Lvl Dens i ty 5 . 0 + 5 3 . 0 + 6 Theo BNL-NCS-51694 A p r 8 3 BOL ReffO.PG203.GRPH CALC CFD LVL SCHEME

138Ba Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PABS.

139Ba Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

I 3 9La Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

M I Ce Lvl D e n s i t y 4 . 0 + 6 S . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

1 4 2 Pr Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

143Nd Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

1 4 4Nd Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHEN0MEN.PARS.
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145Nd Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.CRPHS,TBL.PHENOMEN.PARS.

145Nd Lvl Dens i t y 4 . 2 + 3 Theo BNL-NCS-51694 Apr83 KFK Froehner.PGS19.GRPH 'STARA' EST.LVLS

14BNd Lvl Dens i ty 4 . 0 + 6 3 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHEN0MEN.PARS.

147Nd Lvl D e n s i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.CHPHS,TBL.PHENOMEN.PARS.

151Nd Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS,TBL.PHEN0MEN.PARS.

iiaPm Lvl D e n s i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

1 4 3 S m Lvl Dens i t y 2 . 4 + 2 Theo BNL-NCS-51694 A p r 8 3 KFK Froehner.PG219.GRPH 'STARA' EST.LVLS

1 5 0 3m Lvl D e n s i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

L51Sm Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

1 5 2 Sm Lvl D e n s i t y 4 . 0 + 6 2.0+.7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.GRPHS.TBL.PHENOMEN.P ARS.

1 5 3 Sm Lvl D e n s i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS.TBL.PHENOMEN.PARS.

1 5 s Sm Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

' j a E u Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHEN0MEN.P ARS.

1 5 3Eu Lvl D e n s i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PC75.GRPHS,TBL.PHENOMEN.PARS.

1 5 3Eu Lvl Dens i t y 1 .1+2 Theo BNL-NCS-51694 Apr83 KFK Froehner .PG219.GRPH 'STARA1 EST.LVLS

1 5 4 Eu Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS.TBL.PHENOMEN.PARS.

1 5 5Eu Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PC75.GRPHS,TBL.PHENOMEN.P ARS.

I 5 6 Eu Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

153Gd Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

155Gd Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

156Gd Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PC75.GRPHS.TBL.PHEN0MEN.PARS.

157Gd Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

158Gd Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 Apr83 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

150Gd Lvl Dens i t y 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS.TBL.PHENOMEN.PARS.

161Gd Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino+PG75.GRPHS,TBL.PHENOMEN.PARS.

I 6 0 T b Lvl Dens i ty 4 . 0 + 6 2 . 0 + 7 Theo BNL-NCS-51694 A p r 8 3 BOL Maino + PG75.GRPHS,TBL.PHENOMEN.PARS.

181Ta CTnX7 6 . 5 + 6 Theo BNL-NCS-51694 Apr83 LAS Arthur .PG311.GRPH CFD W

W <yn.y.y 6 .5 + 6 Theo BNL-NCS-51694 Apr83 LAS Arthur.PG311.GRPH CFD TA

2 0 8Pb Lvl Density 3 .0 + 6 2 . 4 + 7 Theo BNL-NCS-51694 Apr83 PAR Jacquemin.PG105.GRPHS.PART.STATE DEN

234U Lvl Density NDG Theo BNL-NCS-51694 Apr83 HAR Lynn.PG345.GRPH VS PAIRING GAP

S38U Res.Params. 4 . 5 + 3 Theo BNL-NCS-51694 Apr83 GEL Rohr.PG291.GRPH. RED. WN VS E

23BU <T>/D NDG Theo BNL-NCS-51694 Apr83 GEL Rohr.PG291.GRPH.SO VS DIFF SI THRESH

a3eU Lvl Density 4 .2 + 3 Theo BNL-NCS-51694 Apr83 KFK Froehner.PG219.GRPH 'STARA1 EST.LVLS
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" e N p Lvl Density NDG Theo BNL-NCS-51694 Apr83 HAR Ly nn.PG345.GRPH VS PAIRING GAP

e M Pu Lvl Density NDG Theo BNL-NCS-51694 Apr83 HAR Lynn.PG345.GRPH VS PAIRING GAP

!*°Pu ant 5.0 + 5 5.0 + 6 Theo BNL-NCS-51694 Apr83 HAR Lynn.PG345.GRPH CALC CFD EXPT

240Pu Lvl Density NDG Theo BNL-NCS-51694 Apr83 HAR Lynn.PG345.GRPH VS PAIRING GAP

2 4 !Pu Lvl Density NDG Theo BNL-NCS-51694 A.r83 HAR Lynn.PG345.GRPH VS PAIRING GAP

2 " P u Lvl Density NDG Theo BNL-NCS-516S4 AprB3 HAR Lynn.PG345.GRPH VS PAIRING GAP

a41Am CTn r 1.0 + 6 4 .0 + 6 Theo BNL-NCS-51694 Apr83 HAR Lynn.PG345.GRPH CALC CFD EXPT

242Am Lvl Density NDG Theo BNL-NCS-51694 Apr83 HAR Lynn.PG345.GRPH VS PAIRING CAP

z45Cm Lvl Density NDG Theo BNL-NCS-51694 Apr83 HAR Lynn.PG345.GRPH VS PAIRING GAP

Many Lvl Density NDG Theo BNL-NCS-51694 Apr83 GEL Rohr.PG291.GRPHS.LVL PAR 'A' VS MASS
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