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ABSTRACT 

We are presenting here an alternative approach to obtain a better description of the 
nuclear level density, its shell effects and energy dependency. Our method is statistical and 
considers a system of neutrons and protons in a single particle energy spectrum. We are 
applying methods from Analytic Number Theory systematically. The obtained results are 
formally related to other areas of Mathematical and Theoretical Physics, where the estimation 
of the coefficients of (formal) Fourier series of partitions functions, e.g. dimensions of root 
spaces, densities of states and the like, play an important role. The acid test of this approach 
and the primary reason to develop it is a comparison of an explicit theoretical calculation with 
experimental data. 
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Introduction 

CHAPTER 1 

INTRODUCTION 

The existence of closely spaced resonances in the total nuclear cross 
sections for nuclear reactions with slow neutrons has its roots in the many 
body problem of strongly interacting nucleons. The introduction of the concept 
of a compound nucleus by N. Bohr (1936) plays a central role up to the 
present In Fig. 1.1, the total cross-section for the Reaction 2 3 8 U + n with 
slow neutrons shows some near lying sharp resonances, as a function of the 
incident neutron energy. The mean spacing between adjacent resonances is of 
only about 20 eV and their widths are of only few eV. 

Figure 1.1 Total cross section for 2 3 8 U + n against the incident 
neutron energy [taken from F. W. K. Firk et al. (i960)]. 
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Introduction 

These features cannot be explained by simple potential scattering or in 
terms of energy differences between neighbouring single particle states. For 
larger incident neutron energies the region of unresolved resonances is 
reached. 

For many applications it is essential to know the average number of 
resonances in a given interval as well as the statistics of their spacings and 
widths. Clearly, this problem is very complicated in general because it 
concerns the description of a finite quantum system of strongly interacting 
Fermions, whose interactions are not yet well understood. Therefore it is quite 
important that a relevant part of the calculation of the nuclear level density 
can be performed using the statistical description; This description treats the 
neutrons and protons as particles distributed according to the Fermi-Dirac 
statistics in a fixed set of energy levels. The calculation is reduced in that way 
to a number theoretical problem. It is still a very difficult task since the 
knowledge of the physically relevant quantities must be clearly included. The 
single particle spectra are in general very irregular and their explicit form 
depends largely on the adopted nuclear model. Rotational and vibrational 
contributions will appear in general. Pairing effects could also be present. The 
shell effects must always be considered carefully. Only this last and most 
important aspect will be studied in detail in this work. 

This contribution was motivated by the original work of H.A. Bethe 
(1936/37), N. Bohr (1936), S. Goudsmit (1937), C. van Lier and G.E. 
Uhlenbeck (1937) and some other researchers. These authors obtained a 
formula which showed with very simple analytical relations the most important 
behaviour of the nuclear level density, parametrized by means of quantities 
with a clear physical meaning. Let p0(U)dU be the number of levels between 
the excitation energies U and U + dU. Bethe considers a Fermi gas of A non-
interacting neutrons and protons enclosed in a sphere of radius R= TQA1/3, 
rQ = 1.48 • 10~13cm, and gives the formula: 

1/2 
PoCU)« i2 a"/4u5/4 exP ( 2 a ^ U 1 ' 2 ) , a= (A/15) MeV"l, (1.1) 

where eF=(34^3n2^3/8) )42A2/'3/MR2 is the average Fermi energy for protons 
and neutrons. The number of states with a given total angular momentum I is 
given by: 

p(U,I) = _ ^ I ± l i _ e x p [ - ( I + l / 2 ) 2 / 2 a 2 ] Po(U). (1.2) 
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Here A 2 =nj(j+1 ) /3 , n= 6 • 2 1 / 2 log(2) ( U A ) 1 / 2 / T T E f is the average number 
of neutrons and protons having energies larger than e F plus the number of 
unoccupied states of energy smaller than eF, j is the average angular 
momentum of the individual particles <(j+i/2)2> = 3 4 / 3 n 2 / 3 A 2 / 3 /10 . This 
angular momentum distribution is based on the very general notion of 
random coupling of the angular momenta of the individual nucleons. 

Van Lier and Uhlenbeck soon noticed that the "a-parameter" introduced 
by Bethe was given in general simply by a= TT2[gn(eFn)+gp(eFp)]/6, in terms 
of the (smooth) densities of individual levels for neutrons and protons at the 
Fermi level. Clearly, no parameter was introduced in an ad-hoc way to 
reproduce experimental results. The connection to number theoretical problems 
was also known, although at a very elementary level. Nevertheless, their 
results are only a crude approximation which still today needs to be 
improved. This occurs mostly because their methods rely completely on the 
Sommerfeld method for electrons in a metal. Sums over discrete energy levels 
are substituted by integrals. 

Experimental data of the mean resonances spacings have essentially two 
origins. The first are the level schemes obtained from high resolution (n,r) 
and transfer reaction data. These schemes provide the lowest excited levels but 
are limited from above because it turns easy to miss resonances with 
increasing energies or because of experimental reasons. In Fig. 1.2, the level 
scheme of 2 3 7 U obtained by resonant neutron capture in 2 3 6 U by T. von 
Egidy et al. (1979) is shown. The second source of experimental values 
of the nuclear level densities are the neutron resonance data arising from 
reactions initiated by low-energy neutrons. These data yield experimental 
values at energies just above the neutron binding energies. Low energy 
neutrons are obtained for example from nuclear reactors or from reactions 
with bursts of particles from accelerators falling on specific targets. It is 
possible to obtain incident neutron energies in a range of some eV up to 
some MeV above the binding energies and to deduce from the resulting cross 
sections (like in Fig. 1.1) the average spacings. This can be done assuming 
that the resonances are evenly distributed if the energy range is not too large 
and the resonances are well resolved. 
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Fig. 1.2. Level scheme of 2 3 7 U obtained from resonant neutron 
capture (taken from T. von Egidy et al. (1979)]. 

In the latter developments it becames clear that adjusting the a-
parameter, a good agreement with experimental results could be achieved for 
fixed excitation energies Nevertheless, a predictive mathematical method able 
to reproduce the energy dependency of the shell structure effects for the a-
parameter does not exist. It is a common practice to compare distinct 
approaches by calculating the corresponding a-parameters. In studies where the 
nuclear level density is the outcome, a Bethe type formula can be fitted to 
the theoretical data which makes comparisons easier. The staircase functions 
from the level schemes (like those of Fig. 1.2) are fitted by a Bethe type 
formula or by a constant temperature formula for low energies. For energies 
near the neutron binding energy, the mean spacings are determined from the 
cross-sections and their inverses are fitted similarly. For example, from Fig. 
1.1 follows an average resonance spacing of circa 20 eV and thus a total 
density of about 50 KeV -1. 

In Fig. 1.3 some curves for the number of levels N(E) up to energy 
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E, fitted to experimental level schemes are shown (cf. T. von Egidy et al., 
1986). One of the curves was computed using the shifted Bethe formula and 
the other using a constant temperature relation (see chapter 5 for more 
details). 

Figure 1.3 Number of levels N(E) tip to an energy E for 2 3 5U, 2 3 7 U, 
2 3 9 U and 244Am. The fitted curves are the Bethe and the 

constant temperature formulae. 

By means of a careful consideration of the shell structure present in the 
(discrete) single particle spectra, we obtain in this work new results expressed 
with simple formulas. For this purpose, we used as guide methods taken from 
the modern Analytic Number Theory (see for example T.M. Apostol, 
"Introduction to Analytic Number Theory", Springer Verlag, 1976). In this way 
it becomes easier to recognize the relevant mathematical quantities which 
must be related to the physical parameters. With the generality presented here, 
the use of analytical number-theoretical methods to this problem has been 
initiated by the author [cf. A. Anzaldo-Meneses (1982, 1983)]. 

The study of the resonances spacings and their widths distributions will 
not be addressed here. The methods necessary for it are very different. 
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However, also in similar questions there are many well known examples in 
Analytic Number Theory. Two examples par excellence are the distribution of 
zeros of a Dirichlet series and the distribution of the prime numbers. 

Within the saddle point approximation, we succeeded to obtain here a 
thorough analytical description for the relevant quantities involved in the 
nuclear level density. This means that only a minimum of numerical computer 
calculations is needed to carry out the comparison with experimental results. 
During the last 30 years, there have been many extensive numerical works 
under the title "microscopic calculations". But unfortunately they are done 
without the existence of a consistent fundamental ("microscopic") nuclear 
theory. It is well known since many years that different spectra lead to the 
same average results for the level density. There is no unique way to fix the 
"correct" nuclear Hamiltonian from these considerations. Furthermore, extense 
numerical computer results are of no aid at problems where the nuclear level 
density forms only a small (although important) part. The underlying physical 
understanding becomes nearly as complicated as to obtain the experimental 
results themselves. 

Here we take a different point of view. We consider classes of single 
particle spectra with common analytic properties. We stress the importance to 
recognize the most relevant parameters, which must be common to all single 
particle spectra, whenever they are to reproduce the experimental data. In this 
way we do not need to limit ourselves to a special kind of Hamiltonian and 
it is also not necessary to diagonalize it. We attempt rather to introduce 
nuclear structure properties in the form of well founded mathematical 
quantities with a corresponding physical interpretation. This approach should 
conduce to the study of invariants associated to complex nuclei. 

In Chapter 2 we state the problem and the saddle point approximation 
which we follow. In Chapter 3 we present our method for a wide class of 
single particle spectra and obtain explicit expressions for all relevant quantities 
mentioned in the preceeding chapter. The consideration of the local structure 
of the single particle spectra is studied in Chapter 4 for a periodic spectrum 
in some detail and observations for more general cases are done. In 
particular, the three dimensional harmonic oscillator with spin-orbit coupling 
and the three dimensional anisotropic oscillator are briefly touched. With the 
results of chapter 4, we finally compute explicitly a physically relevant quantity 
and compare it with experimental data in Chapter 5. 

At the same time we attempt to introduce as many mathematical devices 
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that we consider reasonable for a serious study of nuclear spectra and to find 
a common basis for all analytic studies up to now, as well as for future 
developments. The most important criterium we observed is the achievement 
of a method for explicit numerical calculations ready to be compared with 
available experimental data. 

We report further some results concerning particle-hole state densities in 
Chapter 6 to correct a wrong formula frequently used in practical pre-
equilibrium calculations. 

It is remarkable that many results are formally related with other 
branches of mathematical and theoretical Physics as the reader can see. We 
have included some observations on this theme in Chapter 7. The topics of 
mathematical Physics are the exact evaluation of the Fourier coefficients of 
modular forms and some related results of the theory of Kac-Moody algebras. 
Concerning theoretical Physics, we refer to recent investigations on shell 
structures in clusters and mesoscopic systems. We obtain some new results. 

We show in Chapter 8 an elementary method to obtain colored graphs 
which contain the most relevant information of a given analytic function and 
which we have used during this work to improve our understanding of the 
functions of Analytic Number Theory. 
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CHAPTER 2 

THE STARTING EQUATIONS 

In this chapter, the general equations needed for the calculation of the 
nuclear level density are given. Following the statistical description the 
calculation is performed by estimating the number of accessible states of a 
system of fixed numbers of neutrons and of protons distributed in single 
particle level spectra. Therefore, the nuclear level density is defined 
combinatorially in a form particularly favorable for the application of 
analytical number-theoretical methods. The saddle point method leads to an 
explicit form in terms of functions evaluated at the saddle point These 
functions, including the grand partition function, will be analyzed in the 
forthcoming chapters. 

We follow the Darwin-Fowler method to obtain an analytic expression 
for the level density (see R. Fowler, 1936). The density of excited states of 
a system of N neutrons and Z protons with total energy E and total angular 
momentum projection M is given by p(N,Z,M,E) in the expression for the 
grand partition function : 

Z W O - m i + e x p ( a n + a 3 m 3 v ~ P B v J l l J U + e x P ( 0 C p + a 3 m 3 f p = 

= Y x z xnN X3M y E p(N,Z,M,E) , an ,ap ,oc3 , ß e C , (2.1) 

where: 

N = Z > Z = Z % ' M = Z n f n
m i>„ + Z n u p

m ^ p > ( 2 - 2 ) 

and 

E = Z n u n
E i / „ + Z nUpEvp ' ( 2 - 3 ) 

with Xk=e<Xk , y=e"^ and the single particle spectrum ^ei/n(p)) 
neutrons, respectively for protons. Further, nUn( ^ are the occupation numbers 
associated with the single particle energy level £i/n(p) with magnetic quantum 
number ra^^. The sums for E run over different values of eyn(p). Although 
the numbers zv are in general real numbers, we choose a sufficiently small 
energy unit and consider them as integer numbers. 
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The objective is to obtain a simple expression for p(N,Z,M,E) valid for 
all energies E in a certain interval. We assume that the excitation energy U = 
E-E 0 , where E0 is the ground state energy, is not large enough to excite the 
lowest lying nucleons in the spectrum. This means that we study only so-called 
"degenerated systems". The estimation of p(N,Z,M,E) can also be interpreted 
as the evaluation of the coefficients for the Fourier series of Z(oc,ß). 

The Darwin-Fowler method consists now in the evaluation of the contour 
integral: 

100 1OO too 1 oo (2.4) 
p(N,Z,M,E)= -^-4-JdocnJdapJdoc3Jdß exp[lnZ(ocf0)+ (3E-ocnN-ocpZ-oc3M], 

_ioo -ioo _ioo -ioo 

where the "entropy" of the system is defined by: 

S(cc,/3) = In Z(oc,0) + ßE - ocnN - ocpZ - oc3M , (2.5) 

The series in eq.(l) is only formal within a combinatorial interpretation, 
but if we restrict the complex variables to suitable complex regions we can 
also understand the series as defining relations of specific analytic functions. In 
particular we can deform the integration path to evaluate the integrals in 
eq.(2.4) by means of the saddle point method. To this end we need to 
know the behaviour of S(oc,ß) in C4 to be able to select properly the 
integration contour in the best way. For the spectra we consider this is always 
possible as follows from the rapid oscillatory behaviour of S(oc,ß). The entropy 
is developed locally around the stationary point (a0,/30) given by the solution 
of the saddle point equations : 

3«S(«o,U)= o , aapS(oc,0)= 0 , da3S(oc,ß)= 0 , dß S(oc,ß)= 0 , (2.6) 

disregarding higher order contributions : 

S(oc,ß) ~ S(oc0,ß0) + ^ ( < * i - a i o ) ( a j - a j o ) S a ; « ; S(oc0,/30)/2 , (2.7) 
' > J 

we set here a i = ocn , a2=a.p and «4-[3 . 

The resulting quadratic form can be easily diagonalized by a linear 
orthogonal transformation and the resulting integrals are of Gaussian form 
leading to the expression: 
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p(N,Z,M,E) = ^ ( 2 8 ) 

where D is the determinant of the 4x4 matrix formed with the second order 
partial derivatives of In Z(a,/3) evaluated at the saddle point : 

9 a i 9 a j
 l n Z(oc,0) , i, j = n, p, 3,4 , oc4 = ß , (2.9) D = det 

The equations we like to solve are thus the following : 

N = 2 l/Cl + expC-an-asm^+fle^) ] , VH+exp(-ap-oc3mu+0e l / p) ] , 

(2.10) 
E = Z e u n / ( I + exp(-ocn-a3mu+ tf £Un) ) e v p / ( I + exp(-ap-oc3mv+ /3eUp ) ) , 

M = X m"n / ( I + e x P ( " a n - a 3 m u n
+ )) + X m U p / ( l + e x p ( - « p - « 3 m , 

for the determination of the saddle-point. All sums run over all single particle 
energies available and include also equal e u according to their degeneracy. 

The entropy is given by: 

S(oc0,ß0)= ln Z(oco,0o) (^ei/n-an-a3mi/n)/(l + exp(-an-«3mu+^yn) ) + 

+ similar terms for protons , (2.11) 

and for the determinant we need further : 

dßß ln Z = ^ eyn /4cosh2((ßeu-an-a3mUn)/2) + similar for protons , 

9«3/3 l n Z e i / n
m u n / 4 c o s h 2 ( (^ E i / -° c n- a 3 m v n ) / 2 ) - similar for protons , 

90£ 3OC 3
 l n z = 2 / 4 c o s h 2 ( (^ e v- a n- K 3 m i / n ) / 2 ) + similar for protons , 

In Z = X l/4cosh2((0ey-an-oc3m l /n)/2) , 

dl „ InZ = X l/4cosh2((/3el/-o(p-a3ml/p )/2) , 
(2.12) 

ln Z = - 2 eun/4cosh2((/3e^-an-a3mUn)/2) , 
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3« p (3 In Z = - 2 eUp /4cosh2(((3ey-ap-oc3mU p ) / 2 ) , 

a a n a 3 ^ Z = 2 mvn /^ c o s^ l 2((^ eu~o cn_ o c3m i / I l . 

9 a p a 3 in Z = 2 m U p /4cosh 2 ( (ße u -oc p -a 3 m U p ) / 2 ) , 

9fY (Y In Z = 0 , 

If we introduce additional constants of motion coming from e.g. further 
kinds of fermions, the resulting equations retain the form given above with 
additional terms of the same type for the added chemical potentials. 

We shall follow Bethe's original work (1936) for the consideration of the 
angular momentum dependency and compute the level density p0(N,Z,E) 
without the introduction of M and its Lagrange multiplier in the above 
equations. We will follow in this way the common practice and compute the 
nuclear level density with total angular momentum I dependency by: 

p(N,Z,I,E) « pc(N,Z,E) exp 
2 V2n o 3 

(1 + 1)2 
2a2 (2.13) 

where a 2 is the spin cut-off parameter and gives the width of the Gaussian 
angular momentum projection M distribution. Although the determination of 
cr2 is still not a welt settled problem, it is the only analytical way able to 
approximate the angular momentum dependency. The values commonly used 
are those proposed by A. Gilbert and A.G.W. Cameron (1965), which have a 
reasonable experimental support (see chapter 5 for more details). 

From this point on our calculation departs from the usual one. 
Normally, see for example T. Ericson (1958), the partition function is 
expressed as an integral over a smooth single particle level density. Different 
simple Ansätze for the latter function lead to the well known results [see for 
example the review by V.S. Ramamurthy (1989)] . Instead of doing so, we 
will retain the discrete structure of the single particle spectra in form of 
properties associated with number theoretical functions. Working in this way 
we will be able not only to understand much better all the preceding works, 
but also to improve them and achieve a better description of experimental 
results. 

A major improvement of the saddle point approximation would be to 
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include further terms in the expansion of the entropy around the saddle point 
or/and to select a better integration path as that used to obtain the Gaussian 
integrals. Nevertheless, this can only be done once we know better the 
analytic properties of the entropy as a function of its variables. In this work 
we study more in detail the entropy and other related quantities and show 
that, without going beyond the saddle-point approximation, we can obtain a 
better agreement with experimental data as we have already mentioned. In 
chapter 6, we shall make some observations connected with this problem. 
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CHAPTER 3 

USE OF METHODS FROM ANALYTIC NUMBER THEORY 

We prefer to continue the use of functions from the Analytic Number 
Theory. The formal series and products as those of equation (2.1) have a 
precise analytic meaning if the complex variables are restricted to a particular 
region of the complex plane. We will not consider the angular momentum 
dependence in this chapter. 

Let us now sketch the contents here. First, we introduce a mathematical 
assumption to allow the introduction of mathematical methods which help us 
to consider a large number of single particle spectra physically reasonable. 
This assumption affords to substitute the single particle spectrum energies by a 
small number of constants with a clear analytic meaning. Only global aspects 
of the behaviour of general single particle spectra can be considered in this 
way. The inclusion of general irregularities in the spectra ("shell effects") will 
be treated in the next chapter. 

Next, in Sec. 3.1 we introduce the powerful concept of a Dirichlet series 
through the partition function. The analytic properties of the obtained function 
are analyzed in Sec. 3.2. The logarithm of the grand partition function (Sec. 
3.3) is also expressed in terms of Dirichlet series by means of an integral 
transform. After some algebraic and analytic transformations the logarithm of 
the partition function will be expressed in terms of ("q") series with good 
convergence properties for large "temperatures". The saddle point equations are 
considered in Sec. 3.4. The transformation properties of infinite products of 
the type we are considering under certain modular transformations are treated 
in Sec 3.5. Another exact relation for the logarithm of the grand partition 
function is deduced in Sec. 3.5b, but now with good convergence properties 
for small "temperatures". Finally, in Sec 3.5c, both obtained relations for the 
grand partition function are proved to be equivalent. This means that there 
are two equivalent exact expressions with good convergence properties in 
distinct regions. This is of course of large advantage, wherever we are 
interested in the whole energy range. 

As mentioned, although the single particle energies e y are real numbers, 
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we substitute them by integer numbers using a sufficiently small energy unit. 
The involved error can be made as small as we like. The rather intrincate 
subtleties associated with general real ev will not be regarded. Furthermore, 
we take e n = 1,2, ... , and describe a general single particle spectrum by an 
adequated selection of degeneracy numbers an . Clearly, we can in this way 
approximate locally any prescribed finite sequence of levels. Hence, the an 

give the degeneracy of the corresponding en. We are still allowed to impose 
additional conditions on the degeneracy numbers an to consider particular 
spectra. 

To introduce a physically motivated mathematical assumption, which 
also allows explicit calculations, we proceed as follows. Consider the number 
of particles which can be allocated in the given spectrum up to the level n 
starting from the lowest level. For this number of particles we assume: 

n 

£ ai ~ X 4 5 1 n d m ' dm > dn for m>n , dm>0, (3.1) 
j = l m " m 

where we have introduced a finite set of parameters {Am,dm}, which, for 
physical reasons, must be real. 

The assumption given by eq.(3.1) can be interpreted as a description of 
the increase of the single particle level density. It expresses the maximal 
number of particles which can be allocated up to level n. Of course, in 
particular cases we start from single particle spectra which satisfy eq.(3.1) 
identically and for which we can write instead of the sign an equality sign 
"=". The physical motivation for eq.(3.1) is simply to include the constant 
single particle spectrum (all d m = l ) as well as spectra of the harmonic 
oscillator type (dm= 1,2,3) and other similar spectra in a simple way to allow 
the necessary computations for applications and comparison with experimental 
data. The assumption (3.1) can be generalized to include spectra with 
more general shell structure. Some observations and calculations are given in 
the next chapter. 

Of course, we could introduce first a similar assumption for the an 

themselves and deduce a relation like eq.(3.1) with adequate coefficients, but 
we prefered to work directly with the partial sums since in doing so we 
simplify our treatment of infinite series later. Further, the numbers an are in 
general very irregular arithmetical functions, whereas their partial sums are 
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easier to handle. We shall later see also the importance to have simple 
expressions for the ground state energy and the number of particles. 

In our present method we find thus : 

a ( n ) « 2 aj - £ a k « £ - ( n - l ) d m ) = £ ^ ^ f e m ) ^ ) ^ d m -k 
j= l k=l m d m m d m k=l ( 3 2 ) 

We write an for the discrete function and a(n) for the continuous function 
with a variable n not necessarely integer. The sum over k will have a finite 
number of terms if all dm are integers. 

3.1. Introduction of Dirichlet Series 

In our statistical investigation the partition function plays of course a 
very important role. We write: 

Z(x) = ^ exP( "XEn) = Tr e-xH , en > 0 , (3.1.1) 

In Analytic Number Theory series of the form 

J a n e "sX(n), s e C , X(n) > 0 , an > 0 , 

are called general Dirichlet series if {X(n)> is a strictly increasing sequence 
of real numbers such that X(n)->°° as n->°o. (see T.M. Apostol, "Modular 
Functions and Dirichlet Series in Number Theory", Springer Verlag, 1976) . 
The function associated with the series, in its domain of uniform convergency, 
can further be seen as the generating function of the numbers an. 

The series is called ordinary Dirichlet series if X(n) = ln(n). We 
assume that all Dirichlet series we consider are absolutely convergent for the 
half-plane s > 6 > 0. Further, we assume that they possess an analytic 
continuation in the region s> -c , 0< c <1, and that in such a region they 
are analytic except for a finite number of real simple poles. We write, using 
the single particle spectrum description introduced in the last section: 

Z(s) = X an e_Sn • an - °> Re s > 6 > 0, (3.1.2) 
n>0 

Thus, we can see Z(s) as the generating function of the degeneracies an 

with respect to the functions exp(-sn). 
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We are thus naturally lead to study the function Z(x) in the complex 
plane. In particular, Z(it) is a periodic function of unit period for tGR. 
Further, we will analyse the corresponding ordinary Dirichlet series: 

oo 

= 2 ( r m ) z = n Z ^ r = r f e J x Z _ 1 z ( x > ' R e z > 0 ' 

which will play a central role. 
Formula (3.1.3) follows from the integral representation of the r-function : 

f oo c + i ° ° 
T(z)=J dx e~xxz_1 , Re z > 0, and e"x=2-^ J dz T(z) x~f c>0, Re x>0, (3.1.4) 

o c - i ° ° 

(see for example Erdelyi A. et al (1953)). 

The function D(z) will contain all the relevant information of this 
problem. The most famous and simple case results from e v e leading to 
the Riemann ^-function: 

o o 

n z = 1 d x xz"V(exp(x) - 1) , Re z > 1, (3.1.5) 
n>0 F(z) Jo 

this function has a simple pole at z= l with residue 1; and in this case 
Z0(x)=l/(exp(x)-l) . 

The integral in eq.(3.1.3) is called the Mellin transform of Z(x) (see I.N. 
Sneddon, "The Use of Integral Transforms", McGraw-Hill Book Company, 
New York, 1972). Thus T(z) is the Mellin transform of exp(-x). 

3.2. Poles and Residues of the Dirichlet Series. 

The function Z(x) can be obtained, once we know D(x), using the inverse 
Mellin transform: 

CT + ioo 

Z(x) = ~ J d z x"z r ( z ) D(z) , Re x > 6 >0, a>0, (3.2.1) 
a - i o o 

where we assumed that D(z) has only poles, localized to the left of the 
contour. For simplicity, we will further assume that these poles are simple 
(higher order poles can be also included). In Figure 3.1 we show the 
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integration contour. 

1 1 1 1 

i 

I I 

\ 

1 1 1 1 1 1 

Figure 3.1 Contour integration for eq.(3.2.1) 

We will study now the analytic consequences of the form of the 
spectrum introduced by eq.(3.1) on the series Z(x) and D(s). 

From relation (3.2.1) we see that the quantities to which we have to 
give a physical interpretation are the residues and the position of the poles of 
D(x), which determine the analytic structure of the infinite sum. 

From (3.1), using partial summation, we can approximate D(s) as follows: 

D(s) = f n - s [ 2 aj - f aj ] « Y n ' n d - - ( n - l ) S , (3.2.2) 
n = 1 1 j= 1 j=i 1 n=1 m u m 

and then : 

D(s) « X (km ) ( - l ) k + V s - dm+ k) , (3.2.3) 
m a m K= 1 

and this means that D(s) has simple poles at s =dj-k+l . The leading poles 
are localized at d; with residues Aj . For dm integer the sum over k is 
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finite. Nevertheless, for simplicity, we shall consider only finite sums, 
disregarding the remaining terms which arise if dm is non integer. 

From Riemann's functional equation for C(s): 

C(s) = 2r( 1 -s)(2n)S_1sin(ns/2)C( 1 -s), or: C(l-s) = 2(2n)"sr(s)cos(ns/2)C(s), (3.2.4) 

(see Abramowitz M. et al. (1964)). 

We find further: 

(-l)^
+

^2r(l-s+dm-k)(2TT)
s

 ~^m+'c-\in(7V(s-dm+k)/2)^(l-s+dm-k), 
m u m k=l 

(3.2.5) 

This equation gives us the analytic continuation of D(s) to the left of its 
poles. Additionally, we can use eq.(3.2.5) to obtain D(-k) entirely in terms of 
the set {d;,Aj}. We need only to remember the values: C(0) = -1/2, C(-2m) 
= 0 and C(i-2m) = - B2m/2m for m=l,2,..., where the Bn are the Bernoulli 
numbers (B 0=l, B2 =-1/2, B 2 =l /6 , B3 = 0, B4 = -l/30, etc.). Note also that if 
we naively write z=0,-1,-2.... in eq.(3.1.3) we obtain an infinite number, the 
analytic continuation cq.(3.2.5) gives the correct answer. 

The last observation leads to the ^-function regularization in quantum 
gravity (see for example D. Ray and I. Singer (1971) or S.W. Hawking 
(1977)) , where the determinant of the operator H with eigenvalues en is 
given by the product of all its eigenvalues and is formally : 

det H = J | en = exp{-dsI><s)|s=0} 
n>o 

where the Dirichlet series D(s) is called the Minakshisundaran-Pleijel zeta 
function and its corresponding series Z(x) is related to the heat kernel by: 

Z(x) = f doc(t) 2 V'nd) VUO e"£nx = f d<x(t) G(t,t;x) 
J N J 

where the eigenfunctions (ipn) are assumed to be orthonormal with respect to 
the measure da . Some further technical assumptions are needed. 

If we now compute the inverse Mellin transform to D(s) we find from 
eqs.(3.2.1) and (3.2.3) : 
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um oo 
Z ( x ) « ^ A m ( d m - l ) ! Y (-l)k + 1x"dm+ k-1 + Y(- l )k xk D(-k)/k! , Re x>6>0, 

^ ' (3.2.6) 

We can recognize in the first sum over k the first terms in the expansion of 
the exponential function and thus we can write: 

Z(x)«2>m(dm -1)! S.P.{x"dm_1(l-e-x)} +2(-l)k*kD(-k)/k!, (3.2.7) 
m k>0 

where the symbol S.P.{f(x)} means the singular part of f(x) for x->0. Another 
way to express this result can be found using the incomplete gamma function: 

X L £T = e _ x r ( d m+l, -x) = Jdt tdme-*-t, (3.2.7a) 
k=o ' ~ x 

The infinite series on the right hand side of eq.(3.2.6) converges only for 
a restricted set of values of x. For example, for the simple case of a constant 
spectrum as mentioned before, we obtain D(s) = C(s) and using : 

00 

from the definition of the Bernoulli numbers Bn , we find the condition 
0< |x| <2n. In this simple example we note the transformation formula: 

Z0(x) = -e~x Z0(-x) , or well : Z0(t) = -( l / t)Z0( l / t) , if t=ex , (3.2.9) 

this result motivates us to study the general case nearer. 

Similarly as we have done for D(s) using partial sums, we can obtain for 
Z(x) the relation: 

Z(x) - f ( n d m - ( n - l ) m ) - 2 ^ y ( d P)( -D k + 1 I ^ m - V - , 
n = I m um \ > m um k= 1 ^ ' n = l 

(3.2.10) 

for x outside the negative real axis. If we transform x^-x, the infinite series 
must be substituted by its analytic continuation. To perform this 
transformation we define: 
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Za(x)= 2 n<* e_xn = ( _ I ) « A A Z Q ( X ) , (3.2.11) 
n>o 

this functions have the simple transformation properties: 

Z«(x) = ( - l ) a + 1 Z a ( - x ) , «=1,2, ... , (3.2.12) 

For non integral a there exists also a transformation rule with an additional 
term, but for our purposes it is not necessary. Using these functions we 
rewrite Z(x) as: 

(3.2.13) 

z (x ) ( - i ) d m + i y ( k m ) a d m ~ k z 0 ( x ) = 2 ^ I ! 1 { ( - 9 ) d m - ( - a - i ) d m ) z 0 ( x ) ) 

m Q m k^ l \ ' 0 m 

and recalling the form of the function a(x) given by eq.(3.2): 
Z(x) = a(-9) Z0(x) , and: Z(-x) = -a(3) exZQ(x) = -a(3) (ZQ(x)+l) ,(3.2.14) 

we remark here that, in general, the function a(x) has not well defined parity, 
i.e. a(x)=£±a(-x). 

Let us now resume some important facts. We started with the estimation of a 
sum over the set (eu} , say : 

C-Hoo 
S(x) = Y f(xev) = 1 ds fM(s) D(s) x _ s , c>0, Re x >0, (3.2.15) z77' 2m J . V C-loo 

where the function f(t) has a Mellin transform given by (Mellin's inversion 
formulae) : 

. o o -C + i o o 

fM(s) = dt f(t) t s _ 1 , f(t) = JL. ds fM(s) t"s , c> 0, Re t >0. (3.2.16) 
J n 2mJ . ° C-loo 

Here, fM(s) with s = <r + ir is assumed to be regular in the strip: {z|a<cr<b} 
and ce(a,b). We have introduced the Dirichlet series D(s) defined by 
eq.(3.1.3). The residue theorem leads us now to a result if we know the 
analytic structure of the functions fM(s) and D(s). In our case we set f(t) = 
exp(-t) and we express the function D(s) using relation (3.2) and finally we 
obtain eq.(3.2.6) for Z(x). 

Let us express now our final result for Z(x) in a different form. Mellin 
transforms satisfy the following relation: 
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x"sfM(s) = fdy f(xy) ys~] (3.2.17) 
o 

using this formula for fM(s) = r(s), s=dm-k+1, we rewrite eq.(3.2.6) as: 
oo oo 

Z(x)«[dt m D(-k)5^(t)/k!l , 
J o- i m d m k / Y ^ o ^ 

or (cf. eq.(3.1.1)) : 

oo 

Z(x) = X e xP( - x en) » / dt e~xt g(t) , (3.2.18) 
o-

where we have introduced what we will call the single particle level 
density, which is thus naturally defined by: 

, , O O 

g ( t ) = 2 ^ - Z ( d v - ) ( - D k + 1 t m" D(-k)«°° WA! > (3.2.19) 
m d m k = r k ' k = o 

or : 

g ( t ) = 2 Ap- [t - (t-l)dm 1 + ^T D(-k) 6 ( k )(t)/k! , (3.2.19a) 
m m k20 

we recognize, of course, in the first term, the expression for a(n) given by 
eq.(3.2). Hence, for any t>0 both functions g(t) and a(t) are equal. From this 
relation we can evaluate approximately for example the accumulated number 
of levels up to a given energy by simple integration. Such a procedure is of 
practical interest if we know from independent considerations (say geometrical, 
like Weyl's area rule) the coefficients of the corresponding asymptotic 
expansion. 

We stress here again the fact that for an , for which for all n, expression 
(3.1) is an equality, we can also in all other formulae of this section write the 
equality sign "=" instead of the sign This will occur for example in the 
case when the numbers an are given by a polynomial in the integer n. In this 
case, the function a(n) is given trivially by the same polynomial, but of a 
complex variable and the partial sums of eq.(3.1) can be readily computed 
using: 

V V m - B m + l ( n + l ) " B m + 1 1 <•) / K - , m,n= 1,2, ... , (3.2.20) 
k < i m+1 
where the Bernuolli polynomials Bm(t) are generated by: 
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xt / \ 

f . = Z , |x|<2n , and Bn(t) = Y ( k ] B k t""k , (3.2.21) 
e " 1 n >0 k=o 

with Bn = Bn(0) . The first polynomials are: B0(t)=l , Bi(t) = t-i/2 , B2(t)=t2-
t + l / 6 , B 3 ( t ) = t 3 - 3 t 2 / 2 + t /2 . 

Remarks. It is important to note that in our approach, we start from the 
single particle spectra in the form given by assumption (3.1). Thus we do not 
consider directly the problem related with the calculation of the single particle 
spectra for a given spectral operator H and associated boundary conditions. 
The analytic form we assume, also avoids the problem connected with the 
calculation of a "smooth single particle level density" obtained from a given 
sequence of eigenvalues (en>. For both mentioned problems exist large 
amounts of efforts and important results, but for our purposes, we find much 
more adequate to start directly from a simple explicit and general expression 
for the eigenvalues themselves. 

We remark the different interpretation of g(e). In the literature g(e) is 
the result of a smoothing procedure starting from a given discrete spectrum. 
Here g(e) is defined for any discrete spectrum by eq.(3.2.19). For e-»0, the 
derivatives of 6(e) lead to additional contributions not present in the formula 
coming from any smoothing procedure of a discrete spectrum. These 
contributions are physically important for the description of the shell effects 
and mathematically indispensable for reasons which will appear clearer in the 
course of this work. 

3.2a. An Alternative Procedure. 

In the method we have presented, the partial sums, eq.(3.1), contain all 
the necessary information about the single particle spectrum we consider. 
Alternatively, we could proceed in the following different way. Suppose we 
start with the knowledge of the position of the poles (here assumed to be 
simple) and their residues of the Dirichlet series. 

In such a case we can again obtain directly Z(x) and g(e) in the same 
way as we have done before. If for example D(s) has poles at z=bj>0, with 
residues Bj, then from eq.(3.2.1) we find : 
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Z ( x ) = 2 y b m r(bm)Bm + 2 > i ) k x k D ( - k ) / k ! > (3.2.22) 
m k>o 

and: 

g ( e ) = 2 e b m _ 1 B m D(-k) 5 ( k ) (e)/k! , (3.2.23) 
m k>o 

Similarly, many of the results we will obtain later can be found also directly. 

Nevertheless, to obtain the partial sums given by eq.(3.1) or to write the 
numbers an in terms of the position of the poles and the corresponding 
residues of D(s) is a non trivial problem. By a formula due to Perron (c.f. 
T.M. Apostol, 1976), we know that: 

where the last term in the sum must be multiplied by 1/2 if ß0 is an integer. 
Here, tra is the abscisa of absolute convergency of D(z) and the integral is 
understood as a principal value. From this formula for s=0 and if D(z) has 
only simple poles at dj with residues Aj, we shoud obtain eq.(3.1). Actually, 
Perron's formula is not quite useful for our purposes as it stands, since if we 
write the complete expression for D(s) given by eq.(3.2.3) we do not obtain 
easily eq.(3.1). The result of a contour integration around the (simple) poles 
of D(s) gives for s=0, instead of the partial sum over an, the integral of the 
continuous function a(y) up to iiQ. We can see this as follows. From eq.(3.2) 
we obtain after integration: 

and this is the expression we obtain after the mentioned contour integration 
in Perron's formula using the explicit form for D(s) and setting the constant 
equal to D(0). Of course, this is possible only when we can assume that the 
a(y) are integrable functions. Nevertheless, it is clear that, once we know the 
position of the poles of D(s), we can find readily the leading term of the 
partial sums over an without a previous explicit knowledge of them. The 
reason of the discrepancy is that the integral in Perron's formula is a principal 
value integral and we have interpreted it as a contour integral around the 
poles of the integrand. 

c>0, flo>0, Re s > aa - c , (3.2.24) 

J m <Jm k=l 
}(dm-k+l) + constant , (3.2.25) 
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The assumption (3.2) can be understood as follows. In general, the series 
D(s) will be defined in terms of discrete functions an of the integer n, which 
can not be easily described by a continuous function a(n) (for n not 
necessarely integer). But with expression (3.2) being at least approximately 
valid, we have such a continuous function a(n) and for D(s) we find eq.(3.2.3) 
described in terms of the Riemann C-function, but only as far as there are 
only a finite number of poles. It is not difficult to construct examples of 
Dirichlet series with an infinite number of poles, but we shall assume that all 
the Dirichlet series D(s) that we study have only a finite number of poles. 

Since the straightforward application of Perron's formula is difficult in 
general, a simple method equivalent to assumption (3.2) for the partial sums 
could be quite useful. 

The following formula solves our particular problem: 
m m 

'^L-Jdz D ( z + s ) ^ n z-x « £ , m= 1,2, ... , (3.2.26) 

where the contour T encloses all poles (here assumed to be simple) of D(z) 
and supposed to be different from zero. If we set s=0 and insert eq.(3.2.3) 
for D(z) we obtain eq.(3.1) for the partial sums. Only if all dm are integer 
numbers we can write signs "=" instead of signs. For s=-k, k=l,2, ... , we 
obtain also closed expressions for the partial sums if all dm are integer 
numbers. The similitude of eq.(3.2.26) with Perron's formula can be made 
clearer if we note that: 

m 1 2 
2 n z _ 1 = f Z + fZ~ + . . . , Re z>l , (3.2.27) 
n= 1 

obtainable from the Euler-Maclaurin summation formula. The first terms 
result from the integration of nz_1. Thus, if we replace in relation (3.2.26) the 
sum by m z /z (viz. we replace the finite sum in the contour integral by the 
integral over nz _ 1) we find the smooth result. 

From relation (3.2.26) for s = 0, we find: 

aj = 2^rJdzD(z) j2"1 , (3.2.28) 

this relation yields eq.(3.2) if we use eq.(3.2.3) for D(s). It is interesting to 
note the similitude of (3.2.28) with the expression for the coefficients of the 
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Laurent series of a function f(z) holomorphic in the outer region bound by a 
contour C surrounding the origin: 

f ( z ) = Z a n z _ n , and a n = 2 ^ r J d z f(z) z n _ 1 , (3.2.29) 
n > o C 

This similitude results from the fact that the Dirichlet series Z(x) (see 
eq.(3.1.2)) can be written as a Laurent series if we do the change of variables 
z=exp(x). 

3.3. Expression of the Grand Partition Function by the Poles and 
Residues. 

In this section we introduce one further element. We consider the 
additional complex variable a which accounts for the chemical potential 
introduced to fix the number of particles. 

In the next section we will analyse the saddle point equations, the 
solution of which will then be parametrized by the set of constants {dj, A;}. 
But first we need to estimate Z(cc,ß) which we rewrite as: 

a + ioo 

In ("l)k+1 T e k a 2 W ) = "zJff J d z T s ^ n z j ^ • 0 < a < 1 ' ( 3 3 A > 

The last integral on the far right hand side can be shown to be equivalent to 
the infinite series of this equation using the Laurent series: 

oo 
— n = + 2z y (-l)k (3 3 l a ) Sin HZ Z z 2 - ' \J.J.L<*.) 

and evaluating the residues at z=l,2,... . 
With eq.(3.2.9) we have, for a restricted kind of spectrum, a Laurent 

series for Z(x) which allows a very simple integration of eq.(3.3.1), under the 
condition that the sums are well defined, at least asymptotically. 

The integration in eq.(3.3.1) has now three different contributions: 

a) The pole at z=0 with terms of different multiplicities, resulting from the 
poles of D(x). 

b) The simple poles of 1/sin (nz) for z<0 integer. 

c) The singularities from the function given by the infinite series in eq.(3.2.6) 
with coefficients D(-k). 
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Let us write these contributions separately as: 

ln Z(oc,0) = Ia + Ib + Ic , (3.3.2) 

In Figure 3.2, we show the integration contours. For the contribution (a), we 
have a small circle around the origin. For (b), the contour encloses all 
negative integers. And for (c), the contour encloses all the positive and all the 
negative imaginaiy integer numbers. The straigth line parallel to the imaginary 
axis is the integration path used in eq.(3.3.1) . 

We evaluate them now further. First we have from eqs.(3.3.1) and 
(3.2.6), expanding 1/sin x around x=0 : 

1 1 , V ( - l ) k " 1 2(2 2 k " 1 - l )B ? i f x 2 k - 1 

s m x ~ "x + ^ £k)! , |x| <n , (3.3.3) 

the expression: 

c 

~ / J \ / \ 

1 J 

r 
" i 

\ 

\ 

Figure 3.2 Integration contours for eq.(3.3.2) . 
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Co m * oo 
+ ^ ( - l ) - W D ( - k ) / k ! \ • (3.3.4) 

k=o ' 

- + - + (nz)2 + • • • + ( - l ) k " 1 2 ( 2 2 J - 1 - 1 ) ( n z )2 j -2B 2 -+ • • • 
I t t 2T 6 360 (2j)! J 

where C0 is a small contour enclosing the origin. 
We find after contour integration: 

™ d m k = i 

a d m - k + 2 a d m - k
 7 n 2 a d m -k -2 

(d m -k+2)!n 2 + (dm-k)!6 + (dm-k-2)!360 + 

, ( - l V - 1 ^ ^ - D n ^ m - ^ y • + ... 
(2j)! (dm-2j-k+2)! 2J + oc D(0) -ß D ( - l ) , (3.3.5a) 

where the sum in the bracket has a finite number of terms. If we take into 
account all terms, the only approximation involved would be the assumption 
(3.1) for the partial sums of the an, which for particular spectra are anyway 
satisfied exactly. Using now the definition for g(/x), eq.(3.2.19), we arrive at : 

Ia= fde g(e)(«-*) + Z ( - 1 ) j y y B 2 ig ( 2 j '2 ) > ( 3 3 ' 5 b ) 

or: 

Ia= [de g(e)(oc-ße) + JL2g(ß) + TnL. g"(ß) + 0(gM(ß)) , 
o— 6ß 360ß3 

4 

which is formally equal to the known results obtained using a "smooth" single 
particle level density (see Bohr A. & Mottelson B. (1968)). Nevertheless, this 
is only one part of our results and we have additionally a deeper 
understanding of the analytic behaviour of the involved functions as well as a 
better method for practical explicit computation, as we shall see in chapter 
five. 

For the second integral around the negative integers we obtain formally 
from eq.(3.3.1), shifting the contour to the left: 
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Ib = In Z(-oc, -ß) = 2 ( - l ) k + 1 k - 1 e~koc Z(-kß), (3.3.6) 
k>o 

We shall disregard this term later in the calculation with the saddle point 
method (see section 3.4), since we shall consider degenerated systems for 
which oc> 1. Nevertheless, let us mention that this term is very relevant for 
another reason. It reflects important properties associated with modular forms 
(see for example H. Rademacher, 'Topics in Analytic Number Theory", 
Springer-Verlag, N.Y., 1973). Actually, this occurs for the simple case where 
the single particle spectrum consists only of equally spaced levels with equal 
degeneracy. But as our calculation shows, it is possible to extend some 
important properties to the more interesting case we are considering. In a 
later section and in the next chapter we will analyse these aspects more in 
detail. 

Finally, for the last integral we need a similar estimation as for the first 
case. Since we evaluate the integral in eq.(3.3.1) over the imaginary axis 
(without the origin), we need to know the behaviour of Z(s+it) for s-» + 0 
and fixed |t|>0. 
The last infinite sum in cq.{3.2.10) can be rewritten using (see for example 
K Chandrasekharan (19h5)) : 
C O ae> 

n P-1exp(-nz) = H p ) V (z + 2nin) "p , p > l , Re z > 0, (3.3.7) 
n = 1 n 

yielding for dm>k : 

A k < i 0 0 

z w ~ Z a f 5 . f r ) < - • > <33-8> 

we see clearly that this function will have for |Im x|>0 poles of order dm-
k+1 at x=±2nni, n*0 . With eq.(3.3.8) we have an analytic continuation for 
Z(x), which gives us also the residues of the poles located at the imaginary 
axis. The terms with dm = k give additional contributions which are regular for 
the integration contour considered for Ic and thus, they disappear after 
integration. Explicitly : 
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y e-™ = c o s h ^ / ? ) - 1/2= z -1- 1/2 + 
n>0 2 sinh(z/2) 

n îU 

+ o o 
1 1 

z + 2nin 2nin 
(3.3.9) 

where we see clearly that the first two terms do not contribute to Ic . 

The series given in eq.(3.3.8) are also expressible in terms of the logarithmic 
derivative of the T-function and its derivatives : 

i>(z) = r(z)/r(z) , and ^»>(z)= ( - l ) n + 1 n £ 7^rn+1 (3.3.10) 
k>o ^ ' 

Finally, the terms with k>dm have no poles at the imaginary axis and so they 
also do not contribute to Ic . 

We obtain from eqs.(3.3.1) and (3.3.7), for d m all integers: 

. ^ W l - l f " V ^ t e « 1 , ( 3 . 3 . u ) 

m , k+1 0 0 J i V A m n y / d m w . i f 1 y gdm-k e 
z sin(nz) z = 2rtin/ß d m fc-j V̂  / 0 d«-k>i 

n =t=0 

where the (dm-k)-th derivative respect to z is to be evaluated at 2nin/ß. With 
the change of variable z = 2nint, t = l / ß and sin(ix) = i sinh(x) we find: 

dm k (3.3.12a) 
gdm-k 2 ,ycr(jrn_jccos(27jocnt)+ia(jm_k+isin(2rto(nt) 

c 4x1 d m t = i k ; (2n .n ) d m- T + l t ~ n > o n d m - k + W h ^ n t ) 

with °"2m=l a n c l °2mM = Ü- f° r HI = 0,1,2, ... , or : 

m dm (2n\ß)a™ K + 1 1 (3.3.13) 

where we have introduced the following q-series (set q = exp(2nt)) : 

C 2 m + l f e t ) = y cos(2nnz) ( S2m(z,t) = Y sin(2nnz) } ( 3 3 1 4 ) 
£ r o n2m + i sinh(2nnt) n^o n 2 m sinh(2mit) 

for |Im(z)| <nRe(t) . We recognize further that, for each t= ir and r beeing 
a rational number, these series have a singular point. In other words, the unit 
circle |q| = l is a natural boundary. 

But, for z in the strip of uniform convergence we can differentiate and 
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integrate the series term by term and in this way we relate both q- series to 
each other: 

SzC2m + l = - 2 n S2m » 2rrjdz C 2 m + i = S 2 m + 2 , 

r (3.3.15) 
9zS2m = 2 n C2m-1 » 2nJ dz S 2 m = - C 2 m + 1 , 

for m = 0,±l ,±2, ... . Thus, we can select any of them as "fundamental". For 
us C1(z,nt) is the most important because, save a constant, it is precisely the 
well known q-series for the logarithm of Jacobi's ^-function (see later). 
Furthermore, Ci is the coefficient of the largest power of the chemical 
potential for Ic as we shall see and it is always present for the kind of spectra 
we study. 

The expression (3.3.13) for Ic is exact if the spectrum satisfies eq.(3.1) 
also exactly. For practical calculations, however, we can simplify the expression 
much more, if we consider the problem of a system at large temperature 
(small |/3|). In this case, we need only to consider the largest powers in the 
chemical potential cc/ß . We compute now explicitly the derivatives appearing 
in eq.(3.3.12). We begin with: 

g g y exp(2mn<xt) - f c r n l ^ y i 2 K K c o s ( 2 n n o c t ) KocK"1sin(2nnoct) 
' ^ltnK+1sinh(2n2nt) V t n s inh(2n2nt) ~ nt2n2sinh(2n2nt) 

(3.3.16) 
K«K~12r[sin(2nn«t)cosh(2n2nt) 

tn sinh2(2n2nt) 
+ O ( o r 2 e " 2 n 2 t ) , 

we set now k = dm-k , t=l /ß , ß = oc/ß : 
d 

I =yAm y(dp\ ( - l ) k [ y|2/3oc m"cos(2TTnM) (dm-k)|32adm-k-1sin(2nnn) 
° ' 11 sinh(2n2n/ß) mi2sinh(2n2n/0) 

(3.3.17) 
(dm-k)g«dm~k"12nsin(2nrm)cosh(2n2n/<3)] n / dm-k-2 -2n2ts 

n sinh2(2n2n/|3) J ^ ; 

we evaluate now the summations over k and m using eq.(3.2.19) for g(ß) and 
find: 
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j - V f g(n)cos(2nnjx) + g'(ß) &in(2nnß) + 
c n sinh(2n2n/ß) 2nn2sinh(2n2n//3) 

+ g'(M-) nsin(2nnjx)cosh(2n2n/ß) 
0n sinh2(2n2n/ß) 

and finally, using the q-series defined by eq.(3.3.14) : 

+ 0(g"(At)e 2 n 2 t ) , 

Ic= -g(ß)Ci(ß,nt) + j . g'(fx)S2(M,nt) - g'(M)9tS2(M,nt) + 0 ( g » e ~2n2t) , 
(3.3.18) 

The contributions given explicitly in eq.(3.3.18) are the only terms necessary 
for practical calculations for spectra of the class we consider (those which 
fulfil eq.(3.1)). Of course, only if the "temperature" 11//3| is large enough. 

We have thus obtained relations useful for applications for a large class 
of spectra. Nevertheless, here too, it becomes possible to write the full series 
in terms of the derivatives of g(ß). We find from eq.(3.3.11): 

dm-k 

Z . dm Z - U L d m - k + i Z l Z , I J J01 e °z Z Sin rtz 2nin/ß 

Ic = - X gG ^ . t_ 1Di^nt) , (3.3.12b) 
i t o ßJA-.lM^TT^J-1 1 JV ' ' V J 

i m kTl P m~ 

we interchange now the sums over j and k and find : 

ĵ O /jj(]'-l)!(2ni)J 

where we defined (cf. eq.(3.3.14) : 

Dj(M,nt)= <yj_1Cj(M,7Tt) + iajSjfont) , (3.3.19) 

(remember that : cr2m = 1 , a 2 m + i = 0 ). 

Now, we can add all contributions to obtain the final formula for the grand 
partition function: 

ß j-l 2j_i 2] 
lnZ(a ,0) = lnZ( -« , -0 )+fdeg(e ) (« - |3e ) + ^ (-1) 2(2 - l ) n B 2 j g ( 2 j ' 2 ^ ) -

Jo- jTo (2j)!ß J 

(3.3.20) 

- Z - ö ^ . ^ r V ^ n t ) . 

j>0 /3J(j-l)!(2ni)J 1 JV 

where the single particle level density g(e) is given by eq.(3.2.19). With this 
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expression in terms of the derivatives of the single particle level density we 
can conclude that also for the general case where the numbers dm are non 
integers, we obtained a relation for the partition function with g(e) given by 
eq.(3.2.19a). With this expression we arrive thus essentially to a Fourier series 
for the logarithm of the partition function Z(oc,ß) . 

In a later section we will find expressions which are completely 
equivalent to the equations we have obtained in this section, but are given 
only in terms of ß itself. Such expressions will be important if the 
temperature is low. 

From eqs.(3.3.12) we recognize an oscillatory behaviour as function of the 
"chemical potential" ß = <x/ß and damped by the "temperature" 1/ß. This 
contribution leads to the energy dependent shell effects which will allow a 
better description as that given in the current formulae for nuclear level 
densities. This term is in some respect the most interesting, also from a 
mathematical point of view. As we already mentioned, it can be related to 
the logarithm of a Jacobi theta function for a constant single particle 
spectrum. This is important since these functions have a very far developed 
theory. 

3.4. Explicit Expressions for the Saddle Point Equations. 

The saddle point equations can now be readily written using the two 
contributions for In Z(c*,ß) given by equations (3.3.5) and (3.3.11). The 
parameter set {dj,AjJ could be selected for protons in a different way as for 
neutrons. 

The partial derivation with respect to ß of eq.(3.3.5a) leads to an 
"asymptotic" series in positive powers of the chemical potential ß-oi /ß and 
the temperature 1/ß plus a constant term : 

(3.4.1a) 
where the sum in square braquets is finite. This contribution constitutes what 
is usually called the "smooth part" of the excitation energy. The constant term 
is a shift of the ground state energy. This is the proper origin of what leads 
to the so called "back-shifted" formulas of the literature of nuclear level 
densities. On the other hand, this constant is intimately related to the 
"dimensions" of the modular forms mentioned after eq.(3.3.6). 
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We can express all the coefficients of powers of 1//3 by g(a//3) and its 
derivatives using eq.(3.2.19), for example: 

2 £ s l - y (df)(-l)k +}dm-k+l)Md m _ k = g(ß) + g'(ß)ß , ß>0 (3.4.2) 
m a m k^i 

is the coefficient of 1//J2 in eq.(3.4.1). The first term in eq.(3.4.1) plus the 
constant term can be easily recognized as the "smooth" ground state energy 
defined by: 

Eo = f d c g ( e ) e = £ ^ Y + D(-l), (3.4.3a) J o - m u m kTi 

if ß 0 is the "smooth" Fermi level. This quantity can be obtained in terms 
of the particle number solving eq.(3.4.5a). We call it "smooth" since an 
integral replaces the sum appearing in the ground state energy E0, given 
by: 

E . - Z t . + S - J n a n + 5 » l t L l ( d
k

m ) ( - ) k + 1 1 n < i m"k + I+ a , (3.4.3b) 
en<Mo n<Mo m m n < ß 0 

where ßQ is the Fermi level, situated anywhere between the last (partially) 
filled level and the following empty level. Here, 6 is the contribution from 
the last (partially) filled level. We can express ßQ in terms of the particle 
number solving eq.(3.4.5b). Note that if we replace in the last sum of 
eq.(3.4.3b) the sum by an integral from 0 up to ß0, we obtain eq.(3.4.3a) up 
to a constant. The sum is rather given, for dm integer, in closed form in 
terms of the Bernoulli polynomials (see eq.(3.2.21).) 

Remark. The "ground state energies" E0 and E^ have no physical meaning. 
Only their difference will play a relevant role. The "smooth" energy will be 
replaced by the liquid drop ground state energy to make comparisons with 
experimental data. 

We have the following alternative expression to eq.(3.4.1a), using the 
definition of g(^) given by eq.(3.2.19): 
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'o- p o (2j)! ß2> 
or : 

ß 
ä ß l a - / d e g « E - i > g - ( , ) + g M ] g»- ^ g - + 0 ( g > ) ) , (3.4.1b) 

which, of course, follows also directly from eq.(3.3.8b). 
The partial derivation of Ia with respect to a is: 

a « * , - z K C - ^ n * - ] + D ( 0 ) • 
(3.4.4a) 

where again we can express all coefficients in terms of g(ot//3) and its 
derivatives. In particular, if again ß~ß0 (the smooth Fermi level), then we 
recognize in the first term the particle number : 

N = f j l g(s) - J ^ Z f i ? ) + * < » • (3.4.5a) 

in contrast with the formula (cf. eq.(3.1), exact for dm all integer): 

N = X an + r ~ Y !>o] d m + r , (3.4.5b) 
n < ß 0 ™ d m 

where r is the number of particles in the last (half) filled level. Here [x] 
means the integer part of x. 

Using g(fi) we write (3.4.4a) as follows: 

a«Ia= jdeg(e) + y - ^ V V 
o— jr0 (2j)! /32J 2Jg w 

or also : 
rM 2 

9«Ia= j d e g ( e ) g'(n) + 0 ( g » ) , (3.4.4b) 

and this expression results also from eq.(3.3.8b) directly. 

The second order derivatives are: 

9«oc I a = gO-O/0 + Zcjg^Hfx) , with: Cj = ( - ) j " 1 2 ( 2 2 j - l - l ) T T 2 j B 2 j / ( 2 j ) ! ^ j + l , 

j>o 
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dßßh= ^ L h + 1 2jcj[(2j-l)g(2j-2)(M) + 2Mg(2j-l)(M)] , 
j>o 

92a/3la= - ^ L h " l2jc jg(2i-D(u). 
j>o 

If we consider only the contributions given explicitely in eq.(3.4.1) to the 
saddle point eqs.(2.6), we obtain a result valid for large excitation energies 
but without energy dependent shell corrections. That is, if we disregard the 
second saddle point equation 3 a S = 0 and write ß=ßQ. Nevertheless, also in 
such a situation, we have a good explanation for the constant shiftings in the 
excitation energy dependency. We find easily neglecting terms expressed in 
higher order derivatives of g(ßQ) in eq.(3.4.1) as well as the contribution 
coming from Ic : 

U + (E0 - go) « ~jjf2 Z ^ | k i n ) ( - 1 ) k + 1 ( d » - k + l ) ffd
0

m"k, (3A6) 

where U is the excitation energy , E0 is the ground state energy and E0 is its 
estimate given by eq.(3.4.3a), where the chemical potential ß 0 is obtained 
solving eq.(3.4.5a) in terms of N . We will call the difference E 0 - E 0 the 
ground state shell energy correction E sheu(0). In this crude 
approximation we would have disregarded all temperature dependent 
irregularities of the spectra. Thus, for example the chemical potential ß would 
be approximated by the smooth Fermi level ß0 . The following calculations 
will remove these restrictions. 

From eq.(3.3.15b) we find: 

3f lI = Y f g t-1Dj+2mg(i~1)(n)at
J" t"1 Dj-i , g " " t o + t d O d i ^ f 

C j^r 1 (j-l)!ßj+1(2ni)-'~1 ß>+1 (i-l^iri)^ 

where we have suppressed the arguments for simplicity. The first terms are: 

and evaluating the derivative respect to a, we obtain for the last contribution 
finally: 
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g T . . V g ( j )(n)9t J " 1 f 1 Dj + 2m g ^ W r V ^ j - l , « 4 « 
a c " -To W 1 ^ ( } 

Thus, the complete expressions for the saddle point equations are : 

E = -30 ln Z(oc,(3) = [deg(e)e B2 i[(2j-l)g (2 j-2)
+Mf j_1)] 

j>0 (2j)!{3 J J 
V J; (3.4.9) 

V f g ( j ) ( fx )9 , J " 1 t - 1 Dj + 2 n i g ( j - 1 > ( u ) 9 t " 1 f 1 D i - l ß + ^ W j + t a o a r V f r i 
jTo1 (j-l)!^ j+2(2TTi)J-1 0 j + 1 ( i - l ) ! (2m) j " 1 

and: 
ß j-i 2j-l 2' 

N = 90(ln Z(oc,ß) = fdeg(e) + £ ( - 1 ) 2 ( 2 ~ 1 ) n ' B 2 j g ( 2 ^ ( ß ) -
j>0 (2j)!ß2 j (3.4.10) 

y g ^ Q ^ t ^ V P j + 2ni g(i"1)(M)9t~1t"1Dj-l 
jTo ö-l)!/3J+1(2niy-1 

We recognize in these formulae that the infinite sums for N in the last 
equation are also present in the expression for E (save a common factor ß). 
This fact leads to further simplifications. For the entropy evaluated at the 
saddle point we arrive at: 

S(oc,/3) = In Z(<x,ß) + ßE-ocN = y ( - l ) J 2(2J - 1 ) ^ ß (2j-2)( . _ 
j>0 ( 2 j - l ) ! ^ j - i 2 J* 

_ z g(i"1)3|t''fla|i"1t"1Di(u,nt) 
ß (j-1)! (2ni)J 

The determinant appearing in the formula for the nuclear level density 
follows after the similar evaluation of the remaining second order derivatives 
of the contributions Ic [cf. eq.(3.3.12b)] without additional problems. 

With these formulae we have explicitly calculated all contributions that 
we need for an explicit computation. It remains only to give the set of 
parameters which define the Dirichlet series associated with the spectrum. The 
series used have precise domains of convergency which of course must be 
taken into consideration. (Remember the strip of uniform convergency 
mentioned after eq.(3.3.14).) In the next chapter we shall see some concrete 
examples. The simplest application is the Bethe formula, which follows 
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disregarding all contributions except the most important for |/3|-»0. In this 
case: U + (E 0 -E 0 ) « n2g(eF)/60o and S(a0 )Po)«n(a(U+Eo-Eo))1 /2 with a= 
2g(ep)/3. Here g(eF) is the smooth single particle level density of eq.(3.2.19) 
evaluated at the Fermi level. 

It is worth mentioning that in the literature, neither the relation with the 
•^-functions for the constant single particle spectrum has been recognized, nor 
the more general analytic properties we are studying have been considered. 

To be able to compute the needed sums also for the cases where the 
temperature is not large enough or near a discontinuity we need to transform 
the sums in terms of 1/ß into sums in terms of ß. This transformation 
will be studied in the next section. 

3.5. Transformation Properties. 

As mentioned in the preceding sections, the obtained relations are all 
in terms of the temperature 1//3. This is an adequate starting point, if we like 
to consider problems where |/3| is small. But if we want to be able to make 
good estimations for the general problem where |ß| is not necessarily small or 
for systems with half filled shells, we need to do additional work. 

We can transform all the formulae we have obtained in the last section 
into relations containing ß instead of 1/ß. Certain important aspects of the 
theory of modular forms will appear in the sequel. We will first review some 
important facts from the theory of Jacobi theta functions and then we will 
proceed to develope some analogue formulas for our more general problem. 

3.5a. Motivation, Theta Functions and Related Results. 

In our investigation, the q-series C2m + i(z,t) and S2m(z>t) (see 
eq.(3.3.14)) are the most important functions for the transformation of ß into 
1/ß, i.e. small into large temperature expansions. For the constant single 
particle spectrum these functions are directly related to logarithms of the 
Jacobi theta functions, which in terms of infinite products are given by (see 
for example H. Rademacher (1973) ) : 
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OO OO 2 
I £ 0 ( Z | T ) = C ( T ) JX(l-q2 n - 1e2 n i z)( l -q2 n _ 1e~2 n i z) = ^ ( - l ) n q n exp(27rinz) ,(3.5.1a) 

n = 1 - oo 

oo oo 
-^^zlr)=2q1 /4sin(nz)C(r)IT(l-q2ne

2n iz)(l-q2ne-2™) = i]T(_)nq(n-l/2) e ( 2 n"1 ) n i z 

n = 1 (3.5.1b) ' 
oo oo 

^ 2 ( z | T ) = 2q1 /4cos(TTz)C(r)IT(l + q
2 n e

2 ni2 ) ( i + q2n e-2niz) = ^ q ( n - l / 2 ) e (2n- l )niz ^ 
n = 1 (3.5.1c) 

OO OO 2 
i*3(z|T) = C(T) IT(1 +q2 n _ 1e2 n i z)( l + q 2 n - 1 e _ 2 n i z ) = ^ q n exp(2ninz) , (3.5.1d) 

n =1 -oo 

with q=exp(nir), lmr>0, and the product: 

3 n 2 + n l-q*n) = e 7)(r) = / (-)••( 
n= 1 

C (r )= IT(l-q^) = e~niT^12 „(t) - I (-)"q
3

""
+n

 , (3.5.2) 

where V(T) is the Dedekind r)-function. The equality between the infinite 
products and the Fourier series in eqs.(3.5.1a-d) are essentially the so-called 
Jacobi triple product identity. They imply directly similar expansions for 7)(T) 
like: T J 3 ( T ) = T>1'(0|r)/(2nq1/4) , where the prime denotes the derivative with 
respect to z. The infinite series for C(r) was found, first empirically and after 
some effort proved, by Euler, but can be derived from eq.(3.5.1c) . 

From the infinite products, we recognize that, if we write ß = -2mr and 
oc=2niz , we obtain from a n d partition functions for fermions and 
antifermions in constant single particle spectra, with energies en=l,2, ... , and 
en = l /2 , 3/2, etc., respectively. And, if Re ß>0 the r will be in the upper 
half plane as required. Thus, their appearance in our work is not surprising. 
The kind of spectra we are considering is much more general, since the single 
particle levels have in general a degeneracy growing as a(n) (see eq.(3.2)). But 
nevertheless we will find many similitudes. 

The logarithms can be obtained from the infinite products as: 

ln ^ 0 (z |r )=ln C(r) - 2 Y V j x V j ™ ) = l Q( ) + y cos(2nnz) ( 3 5 3 } 
nVo n( l-q2 n) ~ > i n sin(ninr) 

ln ^(Z|T) = In C(T) + ln(2sin(nz)) - 2 ^ ^ J l ™ ^ , (3.5.3b) 
n > 0 ^ ' 
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In *2(Z|T) = In C(T) + + ln(2cos(nz)) - ( ' 1 } " f ^ 2 " 1 1 ^ , ( 3 . 5 . 3 c ) 
n>0 nv Q / 

in . !„ C(r) - ^ ^ ^ , (3.5.3d) 
n>0 V 4 ' 

and : 

q 2 n , x , (3.5.3e) In C(T) = - X ' 
n>o 

where |Im z| < Im r for and -1*2 anc* 2|Im z| < Im r for and . 

The sums shown for the logarithms of the if's are precisely of the kind 
we found for the C 2 m + i(z,t) and S2m(z,t) in eq.(3.3.16), but in general, 
instead of n in the denominators, we have higher powers of n. 

Finally, the most important fact in the theory of the theta functions we 
have shown, is their transformation properties with respect to the elements of 
the modular group. The full modular group SL2(Z) is the group of 
fractional substitutions: 

•f = a r + b , for a,b,c,d e z and: ad - be = 1 , (3.5.4) 
CT + d 

it is a discontinuous group of infinite order, i.e. for each r in the definition 
domain U, the set of images by all elements of the group does not 
accumulate at any point of U. All its substitutions map the upper half plane 
lm(r)>0 onto itself. The group is generated by the transformations T^T +1 
and T»-»_I/T. We will consider in this work only substitutions of this kind 
and thus show only the most simple transformation properties. These are the 
following: 

^1(z/T|-l /T) = - i l / V r e , n / V T - j t 1 ( z | T ) , ^ 1 ( z l r + l ) = e m / ^ 1 ( z |T) , (3.5.4a) 

* 2 ( Z / T | - 1 / T ) = l^7i~e , t u 2 /V 0 (Z |T) , * 2 ( z | r+ l ) = e n / \ * 2 ( z | r ) , (3.5.4b) 

^ 3 ( Z / T | - i / T ) = 1 r r j r e
i n z 2 / T ^ 3 ( Z | T > , * 3 ( Z | T + I ) = * 0 ( Z | T ) , ( 3 . 5 . 4 0 

^O(Z/T | -1 /T)= 1PFJT e i 7 T z 2 /T^2(z|r) , * 0 ( Z | t + 1 ) = * 3 ( z | r ) , (3.5.4d) 
and for the Dedekind rj-function: 
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TJ(-1/T) = RJ(R) , R)(r+b)= einb/12TJ(T) , (3.5.4e) 

These relations are relevant for us since, as we mentioned before, ß is given 
by - 2nir for the constant spectrum and thus to transform ß into 4TT2//3 
corresponds to transform r into -1/r. More general spectra satisfy similar 
relations as we show in the next section. However let us remark that, to some 
extent, general modular transformations can also be studied for general 
partitions functions in a similar way as it occurs for the Jacobi -i^-functions . 

We would like to mention further that the transformation properties we 
have displayed are directly related, by a Mellin transformation, to the 
functional relation of the Riemann £-function, eq.(3.2.4). The key formula is: 

r 00 

C(s) = 2-17Ts/2r(s/2)~1J dt (^3(0|it) - 1 } t" 1 + s / 2 , Re s> 1/2 , (3.5.5) 
o 

this formula results from the application of the Mellin transform eq.(3.1.4) 
written as: 

00 c + i o o 

n
-s

 =
 „ s / 2

r ( s / 2
) - l f

d t ts/2-l
 e
-n m

 ? e
-n

2

in
=
 J _ f ^

 n
~2s - s

p ( s ) ? ( 3 5 6 ) 

o 2ni J _ i o o 

If we introduce the transformation law for 1^3(0 |r) from eq.(3.5.4c), we find 
the functional relation eq.(3.2.4). However, we are not especially interested in 
such relations, but in series expansions for Z(x). It is noteworthy that the two 
expressions we have obtained for Z(x), for the particular case of a constant 
single particle spectrum, transform through adequate Laplace transforms in 
both functional relations for C(s) and for if3(0|T). For a constant spectrum we 
showed with eq.(3.1.5) the well known fact : 

00 o" + i 00 

C(s) = r ( s ) - iJ dx x s _ 1 ZQ(x) , Z0(x) = 2-^.J dz x-zr(z)C(z) , <T>0 , (3.5.7) 
° O - i o o 

for ZQ(x)= l/(exp(x)-l). By contour deformation and using a Laurent series for 
ZD(x) [cf. eq.(3.3.13)], the functional relation eq.(3.2.4) can be obtained [see 
for example H. Rademacher (1968)]. 

Similarly, using Laplace transformations it is possible to derive the 
Laurent series for ZQ(x), for the constant single particle spectrum, from the 
functional relation for I£3(0|T). We know that [cf. Erdelyi et al. (1953)] : 
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exp(-nx) = TT1 /^ dt t"1/2 exp(-x2t-n2/4t) , Re x2 > 0 , (3.5.8) 
-'o 

and from this we obtain: 

OO 

Z 0 ( X ) = I X - 1 / 2 2 - 1 X f dt t-V2exp(-x2t) (^ 3 (0 | - l /4mt) - 1 } , ( 3 . 5 . 9 ) 
J o 

If we insert now both expressions for ^3(0|-l /4nit) , we obtain the 
transformation relations for ZD(x). Analogously, from the relations for ZQ(x) 
we can obtain the transformation formula for ^(Ojr). We see in this way the 
equivalence of the functional relation for C(s), the transformation for 1^3(0 |r) 
under T ^ - 1 / T and the Laurent expansion for Z0(x). To these relations we 
can add the Euler-Maclaurin summation formula, the Poisson summation 
formula and certain Fourier series expansions, as H. Hamburger (1922) has 
shown in a different context. In this work we did not use the mentioned 
summation formulas but some of our results can also be obtained in such a 
way. 

The purpose of the last remarks is just to make plausible why the use of 
Laurent series help us to transform formulas depending on 1/ß into relations 
containing ß for general spectra in the next sections. 

In an analogous way, we can define more general -iP-functions (or C-
functions) by similar Fourier series with coefficients n~s with s complex: 

•^3,s(zlT) = 2 (n+a)~ s q n 2 cos 2nnz , oc^-1, -2, ... , 
n > o 

which for s equal to a negative integer k and oc = 0 is equal to the derivatives 
of order k of the usual if3(z|r) as given by the series in eq.(3.5.1d). And in 
such case they are related to the series C 2 m+i and S2m defined in eq.(3.3.16) 
with m negative. In particular for m^-1 they are elliptic functions. But for k 
positive they are integrals and we do not know their explicit infinite product 
representations. However, some properties are easily found like for example 
that the function satisfies the heat equation: 

9 Z ^ 3 , S ( Z | T ) = 4 n i a ^ 3 , S ( Z | T ) , 

In the limit q-»l and z->0 we obtain essentially Hurwitz ^-function (if 
additionally oc = 0 then Riemann's C-function.) 
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On the other hand, the infinite products we have studied are of the 
following kind (remember q=exp(nir)) : 

these products are periodic in z and their logarithms are related to the series 
C2m+i a nd S2m for m positive. But in this case, we do not know in general 
simple Fourier series as those for the Jacobi iMiinctions, i.e. the 
generalization of Jacobi's triple product identity (obtainable for k=0). As we 
mentioned in section 3.3, eq.(3.3.20) provides us a Fourier series only for the 
logarithm of the partition function. We obtained several interesting relations 
for the mentioned products, like for example: 

relating T^(Z+T|T) with TJ(Z|T) and j= 0,1, . . . , k . In the next section we 
will show some results for the modular transformation (Z,T) »-» (Z/T,-1/T) . 

It is needless to say that it is naive to try to generalize the whole theory 
of theta functions in this way. Fortunately, for our applications in the next 
chapter, precisely the aspects we need can be generalized with similar 
methods. 

3.5b. The Partition Function as a Function of ß. 

To obtain a relation, where the partition function is a function of ß 
explicitly, there are two possible ways. The first way consists in starting again 
from ln Z(a,/3) and proceed somehow, with a different method, to find such 
an expression. This is the way we follow in this section. The second possibility 
is to transform the obtained expressions, in terms of 1/ß, into expressions in 
terms of ß itself. This is the procedure we follow in the next section and it 
constitutes a consistency proof. 

We start with: 

T k ( 2 | r ) = n a + q n " 1 e n i l ) n • k - 0 , 1 , . 

OO 

n = 1 

j = o 
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In Z ( « , 0 ) = 2 an ln(l+e<*-ßn) (n-l)dm_1) ln(l +e a~^n) , 
(3.5.10) n > o m u m n > o 

that is, we apply our method from the beginning. Then, for Re ß>0 and 
0<Re(a/(3)< 1: 

In Z ( « , 0 ) = £ ^ - Z l k i C - l ) k + 1 Y n
d m ~ k ln( l + ea~^n) = 

m u m k = l n > o (3.5.11) 

m k = 1 

now, for Re ß>0 : 

2 ndm"k e = (-1) d f n - k i/k"dm 9dm-k 

n > o 

\ l - e - P " I ' n > o 

lead us to: 

Jß 

m k = 1 

in an analogous way: 

in Z ^ ^ ^ Z ^ j f - » " 
V e-v(oc-ß) 

Hl i />o V 

and now we substract both relations to find: 
0 - e ^ ) 

m z w o - m H f - 5 ; : f r f 
m m k = l l l / > o v 

v „ 

k+l 
. / ( ~ U 1 ^ + ( - 1 ) \ | ( n k y ( - l ) y e 

V _ e-ßv/2 I 

the last sum survives, after partial derivation, only for dm=k as: 

i / > o V - ln(l + e ~ a ) = - ln(2cosh(£-)) 

and introducing again: a 2 m = 1 , cr2m + 1 = 0, we obtain: 

(3.5.12) 

m ffi+i"^ . (3.5.13) 

(3.5.14) 

(3.5.15) 

(3.5.16) 
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In Z(oc,0) = In Z(-oc,-0) + 2 -^m-[-(-l)d m ln(l +e"a) + 
m m (3.5.17) 

+ (-1) d m + u e~ßv/2 (o-dm-k cosh(i/a) + gdm_k+1sinh(u«)) 
Z . ydm-k+i sinh(/3y/2) 

k= 1 i/>0 

We introduce now, in an analogous way as in section 3.3, the Fourier series 
[q-series or Lambert series cf. eq.(3.3.14)] : 

(3.5.18) 

i i(7
i
t) = y (~l)n 6"2nnt cos(2nnz) S2|n(y.t) = Y ( - D n e2"nt sin(2nnz) , 

n > 0 n 2 m + 1 sinh(2nnt) n^o n 2 m sinh(2nnt) 

these series have also the unit circle |exp(2nt)| = l as a natural boundary. And 
thus, we write finally: 

In Z(a,0)=ln Z(-a,-ß) + ] T ^ p - L ( - l ) d m ln(l + e"a) + 
m m l (3.5.19) 

+ 
k=l 

with : 

Z ( k m ) ( - l ) d m a p m " k f>dm-k+ l(ioc/2n,/3/4n)j , 

ömfet) = am_i Öm(z,t) - iam 3m(z,t) , (3.5.20) 

[remember sin(iz)=i sinh(z)]. These are the analogous formulae to those of 
section 3.3. [see eq.(3.3.19) and eq.(3.3.20)]. In the next section we show 
their equivalency for Re ß>0 and 0<Re(oc/ß)<l. 

3.5c. Equivalency of the Two Relations for the Partition Function 

With eq.(3.3.20) and eq.(3.5.19) we obtained, by two alternative ways, 
two expressions for In Z(oc,ß). We like to show now that these two expressions 
are indeed equivalent. We will prove this for Re (3>0 and 0<Re(oc//3)<l : 
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(dm-k+2)! m k) ß £ (2j)!(dm-2j-k+2)! ^ 

= d ß 
dm-k ~ dm-k-1 

ln(l + e a ) + ( - l ) m " ~ £ > d m - k + i ( ^ > J ^ ) j • (3.5.21) 

This relation gives clearly the transformation properties of the Fourier series 
Dj(oc/ß,n/ß) into the Fourier series f)j(ia/2n,ß/4n). Because of the parity 
involved in the definitions eq.(3.3.19) and eq.(3.5.20), we have two sets of 
equations: one for the cosine series Cj and one for the sine series Sj , which 
can be treated similarly. We shall show the proof only for the cosine series to 
save space. 

For the hyperbolic functions we shall use Laurent series. Other possible 
ways are to apply Poisson's summation formula or to use Mellin transforms. 
We consider first the case dm = k since it is slightly different, althougth easier, 
to show the method and afterwards consider the general cosine identity. 

We consider thus: 

(3.5.22) 

i r - 1 + f - h + c > ( ? • f > - f - l n ( 2 c ° s h * / 2 > • 

now we use the following formulae to transform Cj (cf. Erdelyi et al.,1953) : 

a a r z - 4 = - f - « + * . o<Re 1.(3.5.23) 
k>o n>o 

and : 
(3.5.24) 

Z ^ f - " A ' f f ' 2 * - & • 0<*' « I . - d I ( - ^ - „ V . 2 , u k>o 

set a=k/2t and get: 

CiCz.t)= — - — + n ? 2
+ ü t , y(-)kcosh(kn(l-2z)/2t) n c ? n 

12t 2t 2nt 6 ^ ksinh(kn/2t) ' ( 3 ' 5 - 2 5 ) 

here we set t = n/ß and z=a/ß and recognize the left hand side of eq.(3.5.22) 
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if we put the polynomial terms of eq.(3.5.25) in its right hand side: 

r JL\ , a? Jl2_ V (-)kcosh(k«)cosh(k/3/2) , _a , , c 
^ l { ß ' ß } ~ 12 2 " 2/3" 6 / 3 k sinh(k/3/2) 2 » 

where we have used the identity : cosh(a-b) = cosh(a)cosh(b)-sinh(a)sinh(b), and 
also : E(-l)ksin(kx)/k= - x/2, -n<Re x<n (cf. Erdelyi et al., 1953). Finally 
the r.h.s. of eq.(3.5.26) can be written as: 

r-h"S- = I ^ " 1n(2cosh(a/2)) + f , (3.5.27) 
f^o k sinh(k/3/2) 2 

because: E(-)kcos(kx)/k = -ln(2cos(x/2), -n<Re x<n (cf. Erdelyi et al., 1953). 
Since this is the right hand side of eq.(3.5.22) this concludes the proof for 
dm=k. This proof is equivalent to the proof of eq.(3.5.4b) or eq.(3.5.4d), as 
we can see taking the logarithms of those equations. 

To perform now the calculation for dm>k, we can apply the same 
method, except that we need some additional infinite sums. We need first (cf. 
Erdelyi et al., 1953) : 

y c o s ^ n z ) = 0 < z , l 5 (3.5.28) 
< 1 n (— ) 
n>o 
and we need the partial fractions expansion for : 

K / 2 ~ 1 . K/2 

f = 1 = - i - J_ f _ y (-) ! + ( z l _ f (2 5 29) K nK(n2 + a2) " a2 K"2 aK K ' v ' j=o 

for K even. This relation implies, with eq.(3.5.24) and eq.(3.5.28), an 
elementary identity for ()<Re z<l and k = 0,2, . . . : 

ICN K/2 K / 2 (3.5.30) 
y cos(2nnz) = (-) ncosh(an(l-2z)) (-) ' y (2na)K"2jBK-2j(z) 
^-n K (n 2 + a2) 2aK4,sinh an " 2 ^ + 2 ^ (K - 2j)! 

n>o v ' j = o v iJ 

it is interesting to write this relation in the simple form: 
7 c g s / 2 " n z ) = (1 -S.P.) ( " ) K / 2 " C

1 ° S h ( n a ( 1 ~ 2 z ) , (3.5.30a) 
n (n2 + a2) 2 a K + 1 sinh(na) 

where S.P. means the singular part. The sum eq.(3.5.30) enables us to write 
down [cf. eq.(3.3.14)] with a=k/2t : 
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. K / 2 L+JC/2 ic-2] k / 2 

CK+i(z,t) - 2 _ n t 2a2j+2(»c-2j)! Bk-2J(Z) + 2aK+1sinh an I + 

k>o j = o v JJ 

+ ("0( 2"+2)! 2 B k + 2 ( z ) ' 0 < R e z < 1 > (3-5-3 1) 

this reciprocity relation can also be written in the form: 

y cos(2nnz) = y (z 
\+K/2 (2tf cosh(kn(l-2z)/2t) , 

nK+1sinh(2nnt) kK+1sinh(kn/2t) 
n>o 

Corresponding series can also be obtained for negative even K. This 
relationship is a generalization of the logarithm of the transformation formulas 
for the Jacobi functions [cf. eqs.(3.5.4a-d)]. Actually, eq.(3.5.31a) 
corresponds to a generalization of eq.(3.5.4d), but it is also possible (but here 
omitted because of lack of space) to obtain generalizations for the other 
identities. With relation eq.(3.5.31) we transform the left hand side of the 
cosine transformation rule into: 

k>o (3.5.32) 

2k2i+2(fc-2j)! -(jc + 2)! ^ j = o x n = o x ' n = o 

where we used the expression eq.(3.2.21) for the Bernoulli polynomials Bn(z) 
in terms of the Bernoulli numbers Bn. After some simplifications and using 
the values C(l-2m) = -B2 m /2m , B 0 =l , B ^ - l / 2 , B 2 = l / 6 , B 2 m + 1 = 0 for 
m>0, we obtain: 
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. K y + M J2n2j n-2 2 j "S OIc~2i+2K\ r tK+i a
K j c - i y (-)kcosh(k((x-l/2t)) 

(ic-2j + 2)!(2j)!ßK+1 J 1 k K + 1 sinh(k/2t) 

and thus the equality we like to show reduces to*. 

t K+i 9
K

 t K - i y (-)kcosh(k(tt-l/2t)) _ y (~)ke ~k<3/2cosh(ka) (3534) 
1 t>o kK + 1 sinh(k/2t) " 13 tt6 kK+1sinh(k/3/2) 

but: cosh(a-b) = cosh(a)cosh(b)-sinh(a)sinh(b) leads us to: 

t K + i K t K - i y ( - ) k e - k / 2 t c o s h ( k « ) = ( _ ) K gjc y (-)ke-kg/2cosh(koc) ( 3 5 3 5 ) 

i>o k sinh(k/2t) ß fco kK+1sinh(k|3/2) 

Thus both operators acting on the same function must be equal: 

t K + i 3 K t K - l = ^ (3.5.36) 

to prove this equality we introduce the following notation: s = 9t , a = 3ß . 
These operators satisfy : [s,t] = l and [a,/3] = 1 and are related by [<3,t] = 0 
and the following quadratic relations [a,t] = -t2 , [s,ß] = - ß2, [a,s] = 1-
[oc,ß] + and [a,/3] + + [s,t] + =2 . The equality we like to prove reads now : 

t
is+l

s
«c

t
jc-i

 = ( t
2

s )
Jc

 ? ( 3 > 5 > 3 7 ) 

the same equality will hold for a and ß. "Classically", i.e. if s and t commute, 
we have indeed an equality. The "quantum" result can be proved by induction 
using : 

min(m,n) 
s m t n = £ j '-ff) ( j ) tn"jSm-->, ( 3 . 5 . 38 ) 

j=o J 

which leads to: 

K-l 
t i c + i s B t K-i = y j , ^ ) ( K - 1 ) t2ic- j s i c - j = ( t 2 s ) « > ( 3 5 3 9 ) 

j = o 

This concludes the proof for all K even, i.e. the cosine series. 
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Since the same method can be applied for the sine series without any 
additional difficulty we suppress the proof here. The only needed identities 
are, for K = -1, 1, 3, . . . : 

[k/2] k/2+1/2 ic-2\ 0 / 2 ] + i (3.5.40) 
Vsin(2nnz) y (-) (2n) J

p M (-) nsinh(an(l-2z)) 
^ n K ( n 2 + a2) " ^ 2a2i+2(>c-2j)! 2aK+1sinh an n>o v ' j=o v J/ 

and the reciprocity relation: 

y sin(2nnz) _ y ( - ) k + 0 c + 1 ) / 2 (2 t f sinh(kn(l-2z)/2t) 
^on' c + 1sinh(2nnt) kK + 1 sinh(kn/2t) 

, w (3.5.41) (jC + 3)/2 „
 9

; , ;
 V

 ' 

± i iK+1v2n v t (2 - n r - V B 2 j _ . . + ( - ) (2n) 2 - (K-2J'+2)! ( i f r B K-2j + 2(z) , 
j=o 

Corresponding series for negative even jc+ 1 can also be easily found. We 
conclude thus that the two obtained expressions for the partition function 
Z(cc,ß) are equivalent for Re /3>0 and 0<Re(oc/ß)< 1. 

From the obtained transformation properties it is now possible to do the 
corresponding calculations for the nuclear level density. The infinite sums 
appearing in the entropy, the saddle point equations and the determinant can 
be transformed straightforwardly. In the next chapter we show such explicit 
calculations for periodic spectra introducing at the same time additional 
elements which are important for physical reasons. 
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C H A P T E R 4 

S I N G L E P A R T I C L E S P E C T R A WITH S H E L L S T R U C T U R E 

Analyzing general spectra, we will notice, besides the growth of the 
degeneracy of the single particle levels given by an , also a local distribution 
of levels in the form of "shells". By a "shell" we loosely mean a set of levels 
separated by gaps from the rest of the spectrum. We could think of these 
shells as a result of a spreading of levels originally degenerated, by a residual 
interaction. In the preceding chapter, we have addressed only the problem 
concerned with the general growth of the number of available states in a 
spectrum up to a given energy. In this chapter, we look at the effects 
produced on the nuclear level density by a local regularity in the spectra in 
the form of shells. This is a problem extensively analysed at zero temperature, 
for the calculation of the shell corrections to the semi-empirical mass formula, 
using mostly numerical methods. Our method uses the Analytic Theory of 
Numbers as a basis and is a refinement of the results in the preceding 
chapter for excited Fermion systems. 

In the first section, we consider the simplest spectrum, consisting in 
equally spaced levels with constant degeneracy. We do this, to show that 
already at this elementary level the (partial) filling of the levels ("shells") 
leads to characteristic properties. The second section extends the calculations 
to a periodic general spectrum. This spectrum is also very simple, but it will 
be precisely the type of spectrum that will allow us to compare our results 
with experimental data in the next chapter. It was not necessary for the 
purposes of this work to attempt the full calculations of shell structures for 
the more general single particle spectra studied in the preceding chapter. 
Therefore, we close this chapter with some simple calculations and 
observations for more general single particle level schemes. The harmonic 
oscillator with spin-orbit coupling and the anisotropic oscillator are considered 
as examples. 

4 .1 . Constant S ing le Particle Spectrum. 

We shall show now the simplest possible case. The spectrum consists of 
equally spaced shells of zero width with constant degeneracy equal to 
aj=J4wg0, where J4w is the constant distance between adjacent shells, )4wg0 is 
the constant number of single particle levels in each shell and gQ is the 
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constant single particle level density. The single particle levels are thus given 
by: e n/H w = 1.2, ... . This is the only problem analysed in the consulted 
literature (using different methods) in a similar way as we have done in the 
last chapter, but for large excitation energies only. Some results are clarified 
only using the present method, like for example the temperature dependency 
of the shell effects or the low energy behaviour. 

For the assumption eq.(3.1) we obtain simply: 

J=i 

Thus, we have only one dm (equal to one) and the corresponding residue is 
A m = jlcog0. The Dirichlet series is : 

this leads to the values D(0) = -Jiug0/2 and D(- l ) = -J4cog0/12. Furthermore: 

n 

(4.1.1) 

n>o n 
(4.1.2) 

Z ( x ) = e J ^ n = Hugo X exp(-xn) = ^ g o C A

F W ~
 1

 n>o n >o n! (4.1.3a) 

and from eq.(3.2.19) : 

g(e)= go + go Z ( M k+H(-k) 6(«0(e)/k! , (4.1.3b) 
k>o 

The grand canonical partition function is given by eq.(3.3.20) as: 

In Z(a,0)= In Z(-«,-0) + f ^ « g 0 - f K « g 0 + ^ g 0 + o~ ^ D ^ n t ) , 

(4.1.4) 
with: 

(4.1.5) 

For simplicity, we measure n and 1/(3 in units of Jiw . 

The saddle point equations are now:(see eqs.(3.4.9) and (3.4.10)) 

E/(H«)2g0= 6J2 + j ß 2 - ± ~ 2ni/xt D0 - iHl+tdOr^ , (4.1.6) 

with 
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and 

(1 +t9() t" 1 D 1 (n ,nt)= - 2 n 2 Y cos(2nnfx) cosh(2n2nt) ^ ( 4 A g ) s inh(2n / nt) / 

The particle number determines the chemical potential ß through: 

N/tfto g o = ß - i _ - 2nit D0(ß,nt) , (4.1.9) 
2 

The entropy is given by eq.(3.4.11) : 

S(<x,0)/tfo>go = j j? - 9 tt DiOvrt ) , (4.1.10) 

The s m o o t h ground state energy, eq.(3.4.3a) : 

E o / ( M 2 g o = Y ffo - J2 ' w i t h : = ßo- Y » (4.1.11a) 

or : 

E 0 = + f 4 ( M 2 g o . (4 .1 .Hb) 

The exact quantities are: 

E o / ( ( M 2 g o ) = Y ^ o K t M 0 ] + l)+x([»Xo] + l ) . N / ( ^ g 0 ) = [ , i 0 ] + x , (4.1.12a) 

where [a ] denotes the integral part of the real number a. In terms of N : 

E ° = Ü + 2 _ ) 4 w + 2 ^ ) l g o X ( 1 • x ) ' ( 4 - L 1 2 b ) 

The difference between the smooth and the exact ground state energies is 
given by: 

Esheii(0) / (OlM) 2 go) = ( E 0 - E 0 ) / ( ( ) iw) 2 g 0 ) = " ^ + x(l - x) , (4.1.13) 

and we call it the ground state she l l energy correct ion. We want to stress 
the fact that this "ground state" quantities are obtainable completely from our 
definition of g(e) by eq.(3.2.20) after integration. The saddle point 
approximation will enable us to extend this result to finite excitation energies. 
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Now we analyse closer the saddle point equations. From eq.(4.1.9) we 
find ß in terms of N and D0. We substitute this value into eq.(4.1.6) and 
find: 

E / ( M 2 g o = (U + E 0 ) / ( M 2 g 0 = l £ 2 + E 0 / ( M 2 g 0 + 2n2t2D2- t 2 ( l+ t3 t)r1D1 , 
' (4.1.14) 

and thus we obtain for the excitation energy U : 

U = 6^(K«) 2go + Eshell(t) - Eshc„(0) , (4.1.15) 

where we defined the temperature dependent shell energy correction by: 

E s h e l l ( t ) / ( M 2 g o = 2n2t2 D2(n,nt) - t2(l +t9() t ^ D ^ n t ) . (4.1.16) 

This definition is unique in the sense that it consUtutes that part of the 
excitation energy which is given in terms of the q-series Dj(ji,nt). These series 
are periodic functions of the chemical potential ß damped by the temperature. 
Furthermore, in the limit t-»0 it gives exactly Esheu(0) as computed before 
(cf. eq.(4.1.13)) as we shall show now. 

First, we shall transform the given expressions in terms of 1/0 into 
relations in terms of ß itself. As explained in section 3.5, we need only to 
use the well known results for \f-functions under the modular transformation 
r»-»-l/r. Actually, we have solved this problem in section 3.5b explicitely for 
a much more general case without reference to the theory of modular forms, 
but we find it important to relate our work to this very developed 
mathematical field, at least for the simple cases. 

We identify now the function Dx as the logarithm of a theta function 
(cf. eq.(3.5.3a) and eq.(4.1.5) ) : 

Dj(/i,nt) = In C(2nit) - In v>0(n|2nit) . (4.1.17) 

We notice further from the transformation formula of the i£-functions, 
eq.(3.5.4d) : 

In i*-o(oc/0|2m/0)= In (0 /2n) 1 / 2 - ß{ß)/2 + In ^ 2 (« /2ni | -0 /2ni) , (4.1.18) 

where {ß} denotes the fractional part of ß . And from the explicit form for 
the logarithm of the -dL

2-functi°n. eq.(3.5.3c), we arrive at: 
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«> - £• g •t2- r • «»» 
and this is the desired formula, which gives a good approximation for for 
small temperatures (i.e. large ß) with only few terms of the infinite series. 

In terms of theta functions we find further: 

(2cosh(oc/2)) exp(-Ha)go/3/2) C ( -0 /2ni ) Z(cc,ß) Z(-oc,ß) , 
(4.1.20) 

In the analytic theory of numbers, the k-th powers of the zero values of the 
i>-functions are well known, since the coefficients of their Fourier series give 
the number of ways rk(n) into which a positive integer number n can be 
written as the sum of k squares of positive and negative integers nj , taking 
care of the order of the summands: 

3̂k(o|r) = X • • • Z = Z rk(n) qn • 
n j G Z , n ^ e z n>o 

We can now analyse the saddle point equations. First we calculate from 
eq.(4.1.19) the sum appearing in the particle number, i.e. 2niD0(j i ,nt) in 
eq.(4.1.9) : 

_ 2 n y sin(2nnM) ß { f l } 1 + ß J ( - ) \ i n h ( n ß ( { M } - l / 2 ) ) ( 4 M ) 

nVo s inh(2n 2 n/ß) 2 b s inh(n0/2) 

Hence, from eq.(4.1.9), we find for the particle number: 

N/#«go = W - Z ( - ) n S ^ h ^ 2 ) " 1 / 2 ) ) = CM°3 + X * ( 4 - 1 ' 2 2 ) 

For the sums appearing in the shell energy correction, eq.(4.1.16) : 

- t 2 ( l + t 3j ) t - 1 Dj( /x ,nt )= - t 2 ( l + t 3 l ) t ~ i y (- )ncosh(nP({ß} -1/2)) + n sinh(n/3/2) 

• + -L _ JL2 + <M}((M>-1) (A l 2 3 ) 
12 6ß2 2 ' { * A m Z Ö ) 

and : 
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2n2
t
2D

0

2

 = --i- + 3 L (1-X) - x - ±.(ß-iß
0
))

2

 + ( M - [ / I 0 ] ) ( X + 1 / 2 ) . 

The complete expression for the shell energy follows from this relations as: 

E s h eu(t) /(M2go= E she l I(0)/(M2go - t*(i+tat) r i j ] ( - > " r s ^ h f n ß / j ) " 1 ^ + 

- - ( [ M ] - [ M 0 ] X ( U ] - U O ] ) / 2 + { M > - 1 - X ) + x({^> - 1) , (4.1.24) 

thus, for the excitation energy, eq.(4.1.15) : 

- ( [M]-[Mo])(([M]-W)/2+{/ i>- l -x) + x({^) ~ 1) , (4.1.25) 

where all terms containing [n]-[ f i 0 ] or {/x}-l will vanish at zero 
temperature (see later). 

Finally, for the entropy we arrive at the following result inserting eq.(4.1.19) 
into eq.(4.1.10) : 

S / M o - P
2

3 g g"' I "
 C

n
S

s
h

iri.(ng/2)"
1/2)>

 • <
4

-'-
2 6

> 

The above formulae are particularly useful in the limit for small 
temperatures, i.e. as . For the particle number we Find from eq.(4.1.9) 
and eq.(4.1.21) : 

N/tfco
go
 «

 [ ( l
] « » e x p ^ t M ) - ! ) ) « [|i] +

 1 +
 i ,

( < i M ) )
 t

4

-
1

'
2 7

) 

n>o 

we notice now that: N/)icdg0=[M0]+x and find: 

x « l / ( l + e x p ( - 0 « n ) - l ) ) ) , or : {ß} « 1 - ± ln(l/x - 1) , (4.1.28) 

since [fi] = [/x0] for in Figure 4.1, we show the energy dependent 
shell filling parameter y = { ß } - i / 2 computed numerically. It can also be 
obtained using the lowest order terms appearing in eqs.(4.1.9) and (4.1.22). 
We show the parameter y for different values of x in steps of 0.1 and for 
temperatures between zero and 0.3)4M . For low temperatures y is described 
very well by the linear relation eq.(4.1.28) and for larger temperatures by the 
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shell filling x plus an exponentially decreasing correction. This picture shows 
rather clearly the "washing out" of the shell effects, which also is present in 
other quantities. 

1.0 

0.5 

0.0 
Figure 4.1 Energy dependent shell filling 
parameter y={/z}- i /2 as a function of the 
temperature for x=0.0, 0.1, . . . , 0.9, 1.0 
and x=0.0 corresponds to the absisas axis, 
the lowest curve to x=0.1, etc. 

For the energy shell correction we evaluate for large ß : 

Ü+ta/K-iDifunri « --L
 +
 (f*)({n>-l)

 +
 (p) - 1 C4 1 29) 

^ 0 U l { ß > n t ) 12t2 6 2t2 t2(l+exp(-/3({fi}-1))) ' 

and thus, in the limit we recover the energy shell correction Eshejj(0) 
given by eq.(4.1.13) from eq.(4.1.16) for Eshen(t). 

Similarly, we find for the entropy in the limit the following 
result : 

S/^wgo = - x ln x - (1 - x) ln (1 - x) , (4.1.30) 

the entropy is different from zero at zero excitation energy, since the ground 

0.3 
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state for this system is degenerated. Note the invariance under the change x>-* 
(1-x) as expected. 

4.2. Periodic Single Particle Spectrum 

In this section we consider a periodic spectrum studied first by P. Kahn 
and N. Rosenzweig (1969) (after preliminary work by N. Rosenzweig (1957a), 
(1957b), (1966)) and given by : 

e k j = (k + i/j) Jdco , keiN ; j=l,2, . . . , e ; e= , (4.2.1a) 

where the positive numbers Uj >un if j give the position of level j in each 
shell, the number e gives the degeneracy of each shell and Jiw is the spacing 
between any two equivalent levels in adjacent shells. The levels can in general 
coincide. The absolute width of the shell is given simply by W= (i/e - ujjitd 
and we will assume that W<J4a) , i.e. that the shells do not overlap. In the 
limit W—»0 we obtain clearly the spectrum of the last section with e=Ji&)g0. 

To analyse the spectrum given by eq.(4.2.1) on the same lines as we 
have done up to now, we also need to give the numbers in terms of 
integer multiples of a certain unit. However, some results are also valid for i/j 
all real. As mentioned in chapter 3, this is not difficult, if we choose a 
sufficiently small energy unit i/G. We write Jiw=pi/0 and v}=n}/p for p a fixed 
positive integer and nj an integer ^p . The degeneracies an form a periodic 
sequence of integer numbers with a n =a n + p and a n >0 for n=j mod )4to/v0 

and zero otherwise, where juQ is the position of a level in the first shell. 
Thus: 

P 

e n = n)4u/p , for an*0 and e = ^ a r a , = P^o • (4.2.1b) 
m = 1 

For the relations in terms of 1/0, however, it is simpler to work explicitly 
with the uj . In Figure 4.2 we show an example for a periodic spectrum 
with period 14i/0 and an absolute shell width equal to 10i/o . In general, the 
distribution of the levels within a period will be arbitrary rational numbers, 
allowing for example distributions with a smaller or a larger degree of level 
repulsion. 

Assumption eq.(3.1) (with dm = l) has been extended from the constant 
spectra to: 
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(n-l)p+i p 

I a k = nA® , a k s . m o d ( p ) = A® ; I A® - e . (4.2.1c) 

k = i mod(p) 

with i = l,2, ... ,p and n =1,2, ... . For p = l this relation reduces to the 
formula for a constant spectrum. 

Figure 4.2 A periodic spectrum. The pattern between any 
two equivalent points (see arrows) repeats upwards and down-
wards. Here, the period is equal to 14 units A/A p=14, the 
absolute shell width W=10uo and we have 8 different levels i/j 
in each shell. If the levels are assumed to be non-degenerated, 
then e=8 and all an = 0 or 1 . 

The Dirichlet series is given by : 

e e p p 
D(s) = X Cfci/j) = £ a £ T T T V I ajCfcj/p), (4.2.2) 

j=l n > o ( J' j= l j=l n > o ( n + j / P ) j=l 

where C(s,a) is the Hurwitz C-function given by: 
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OO 

C(s,a) = 2 > + a ) ~ S = r(s) _1[clt t ^ e " 3 1 (1 - e - 1 ) " 1 , (4.2.3a) 
n >o ° 

for Re s > l and Re a>0 , or well : 
(4.2.3b) 

1 c
 0 0 

« * > • K s - f ^ r + r « ~ l d t " l i r V - r f + t ! • 

for Re s > - l and Re a>0 . From this last relation we recognize that C(s,a) 
has a single simple pole at s= l and residue 1 on the rigth half plane. Thus, 
D(s) has a simple pole at s= l (i.e. d = l ) with residue equal e. Using the 
well known values £(0,a) = i/2 _ a and £(-m,a) = -Bm + 1(a)/(m+1) for m = 0,l, 
... , we find : D(0)= e/2 - Ei/J and D(-l) = -e/12 -EU2J/2 + Ei/j/2 . 

The analytic continuation for D(s) can be found using the functional 
relation of Rademacher (1932) for the Hurwitz C-function: 

C(tj/p)= 2r(l-t)(2np)
t _ 1

 [ s i n f X c o s ^ - ) C(l-t, n/p) + 
n = 1 

P . 

+ cos fX «1-t, n/p) | , 

(4.2.4) 

n = 1 

and from this equation we found easily : 

D(s) = 2r ( l - s ) (2np) S _ 1 [ s in^D c ( l - s ) + cos^f-Ds(l-s)] , (4.2.5) 

where the Dirichlet series Dc and Ds are obtained from D(s) after substitution 
of the numbers an respectively by the following finite Fourier cosine and sine 
transforms : 

c„ = ^ aj c o s ^ - , sn = ^ aj s i n ^ - . (4.2.5a) 
j=l j=i 

For the partition function holds : 
e e 

z ( x ) = 2 2 e x P ( - x ( n + " j ) ) = e xP(- x ( 1 ~ v j ) ) • (4-2-6> 

j = l n>o j=l 

Its power series around the origin follows immediately from the definition of 
the Bernoulli polynomials, eq.(3.2.21) : 
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e

 p n 

Z M
 =

 *
n _ 1 B

n(l-"j)= f + 2 > £ ^ C(-n, V n ) , (4.2.7) 
j=l n>o j=l n j o 

which can be transformed into a Laurent series using Rademacher's relation 
eq.(4.2.4) : 

ZOO - f • f - I V i I + . (4.2.7a) 
2 P i p l T Z o 4n2(Nn+j)2+x2 

This relation shows explicitely the position of the poles at the imaginary axis. 
It is additionally possible to obtain the functional relation for D(s) (cf. 
eq.(4.2.5)) by a Mellin transformation. 

For the single particle level density we find from eq.(3.2.19) : 

e 
g(e))iu = e + (Mk + 1C(-k,i /j) 6 « ( e ) / k ! • (4.2.8) 

j=l k>o 

The grand canonical partition function results from eq.(3.3.20) as the 
following function : 

e 
In Z(oc,0) = In Z(-oc,-ß) + + + SS +M. + £ 2 " i^i" 1 ) " 

e e 
" « 2

 v

i ~ X D i ^ - ^ O • (4.2.9) 
j=i j=l 

where the series Difcnt) is given by eq.(4.1.5). 

We measure as before ß and 1/ß in units of Jiw for simplicity. 

For the particle number relation we find from eq.(3.4.10) : 

e e 
N= /ie +-§- ~ X v i - 2 n i t 2 DoOA-Vpiit) , (4.2.10) 

j=i j=i 

and for the energy, eq.(3.4.11) leads us to : 
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e e 
= + ^ - ( T O " 2ni>itZ Do(^-^nt) 

j=l j=i 

- t2(l + t3t) t " 1 ^ DxOx-i^nt) . 
j=l 

For the entropy we easily find (cf. eq.(3.4.3a) : 
e 

S(oc,(3) = - dt £ DiCn-i/j.nt) 
3ß j=l 

here ji = a / 0 and t= 1/0 . 

(4.2.11) 

(4.2.12) 

1.0 

0.5 

0.0 
t e m p e r a t u r e 0.3 

Figure 4.3 Temperature dependent shell filling parameter 
y= (fi) -1/2. Shell width equal to 0.5Mw for a shell of 10 

equally spaced levels. 

In Figure 4.3, we show the temperature dependent shell filling 
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parameter y= {ß} - 1 / 2 computed numerically. The curves correspond to 
values of x in steps of 0.1 for a total shell width of 0.5J1M and for a 
shell consisting of 10 equally spaced levels. The absisas axis corresponds 
to x=0.0, the lowest curve to x=0.1, etc. . Again, the washing out of the 
ground state shell structure is clearly observed as the temperature increases. 

Now we analyse the smooth ground state formulae. For the ground state 
we find after integration of g(e) directly : 

~ 2 

i f " f « v 2 > - < v > ) , and: N=e/Z0+ i - e - <v>e . (4.2.13) 

In terms of the second and first moments: <i/2> = Zi^?/e, and <u> = Z .y-Je. 
These relations yield the expression : 

E0/}ia) = £ + JL +N<v/> - - | - « „ 2 > _ < l , > 2 ) # (4.2.14) 

Note that the quantity in the last brackets is the variance: v 2 = <v2> - <u>2. 

Whereas for the exact quantities we obtain : 

xe 
-|-[Mo3([Mo] + l)+xe([M0]+l) + (CMo] + l)<^> + , (4.2.15) 
z

 i=i 

and N = ([/i0] + l)e+xe . Solving for [mq] : 

xe 
Eo/J4w = 2~e ~ f + 2~ X(1 ~ X) + ^ V> + (N"xeXy> • (4-2-16> 

i=i 

Subtracting now the obtained expressions for the exact and the smooth 
energies we are lead to : 

xe 

Eshell(0)/^= f x ( l - x ) " ^ + Z (yr<v>) + f (<u2>-<u>2) . (4.2.17) 
j=i 

Note that for closed shells (x=0,l) the first and third terms are zero. As 
expected, this ground state shell correction does not depend on the position of 
the lowest eigenvalue . 

Using now this relation and solving for ß eq.(4.2.10) and substituing it in 
eq.(4.2.11) for the energy, we obtain for the excitation energy the result: 
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U ~ + E s h e l , ( t ) " Eshell(0) , (4.2.18) 

where the temperature dependent shell energy correction is given by : 

e 2 e 

EsheU(t)/K« = ^ ( Z Do(^j»"t)) - t2(l+ta t) t - 1 ^ D 1 . (4-2.19) 
j=l j=l 

here ß-oc/ß and t=l /ß . 

All the above relations reduce, letting i/j—»0, to the corresponding 
expressions obtained in the preceding section for vanishing shell width. 

The expressions we have obtained can also be transformed into relations 
containing ß instead of l / ß , as shown in the preceding section. From 
eq.(4.1.19) we obtain the necessary transformation rule. The resulting 
expressions for the particle number, the excitation energy and the entropy are 
similar to those of last section, respectively eq.(4.1.22), eq.(4.1.25) and 
eq.(4.1.26) . The diffcrcnce is only a sum over the numbers an [cf. 
eq.(4.2.1b)] and, of course, with Eshen(0) given by eq.(4.2.17) in this section. 

Let us finally mention that now the grand partition function can be 
expressed in terms of products of ^-functions with characteristics: 

^ab(z|T) = C(r) e n i a V O m * t 7 * l , ) J7(l + q2 n + 1e 2ni(z+aT+b) )(1 + q2 n + 1e2 n i ( z + a T + b ) ) 
n 20 

oo 

= ^T expi »n(n * a)2r + 2ni(n + a)(z+b) } , (4.2.20) 
- oo 

this function satisfies the following transformation formula found by Gauß 
(1808) : 

^a,b(z|r) e"1"'^ * 2n iab *_m(Z/T|-1/T) , (4.2.21) 

which contains as particular cases the relations eqs.(3.5.4a-d). 

Products of these kind of theta functions are called higher order -tf-
functions (with characteristics). The order is related for our problem with the 
shell degeneracy e . The full development of our treatment would involve 
many properties of these functions, but for now the results we have displayed 
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are sufficient. See section 7.3 for more results. 

4.3 . Genera l S ing le Particle Spectra. 

The extension we have made in the preceding sections can also be 
carried out for the general case of chapter three, although the treatment 
becomes more difficult. We have not yet worked out the general case because 
the results obtained in the preceding section allowed us to improve the 
theoretical understanding of certain experimental results we had in mind and 
which will be explained in the next chapter. Nevertheless, it is still necessary 
to analyze more in detail the experimental results concerning nuclear level 
densities to be sure that the periodic single particle spectra considered in the 
preceding section are sufficiently powerful to cover the most relevant 
characteristics. At present there is no way to be sure of this fact and it would 
not be surprising if more general spectra were necessary. 

In the preceding chapter we studied spectra with a general single particle 
level density growing. In the context of this chapter these considerations 
should be extended to include a clear characterization of the local distribution 
of the single particle levels, in particular near the Fermi level. Let us 
remember that in the preceding chapter, the shells were considered as if they 
would have zero width. But if the single particle level density is an increasing 
function, a finite shell width will lead to an overlapping of shells. The lowest 
order approximation to the general problem is already at hand, if the 
excitation energies are not too high. We need simply to substitute the constant 
shell degeneracy by the value of the general single particle level density 
evaluated at the Fermi level. 

One part of the forthcoming result can also be visualized now. From the 
results of the preceding section, the information about the local structure of 
the spectra is present through the first two moments of the distribution around 
the Fermi level. Also in the general case we expect to be able to express in 
a similar way the most relevant quantities associated with the single particle 
spectrum. 

To conclude this chapter some general observations concerning the 
generalization of the spectra of chapter 3 will be presented. Applications to a 
three dimensional harmonic oscillator with spin-orbit coupling and to an 
anisotropic three dimensional oscillator will be initiated. 

A first simple generalization can be induced from eq.(4.2.1c). As it can 
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be seen, the simple summation over all integers present in the general 
assumption eq.(3.1) has been simply divided into sums modulo an integer p. 
Thus, in general it is reasonable to propose instead of eq.(3.1) the new 
assumption: 

( n - l ) p + i ( i ) ( i ) 

I a k = I nd™ , i = l,2, ... , p ; d « >0. (4.3.1) 
k>o m "m 

k = i mod(p) 

This means simply that a set of p spectra with single particle level densities 
of polynomial growth has been introduced. With this assumption a shell 
structure has been introduced in the spectra. The partition function [cf. 
eq.(3.1.2)] will be now: 

Z ( x ) = £ £ a k e _ x k / P - R e x > 6 > 0 . (4 .3 .2 ) 
i = l _k>o 

k = i mod(p) 

Since no essentially new complications have been introduced, the method of 
chapter 3 can also be applied here. Instead of sums over a single type of 
spectrum, there will be now sums over the p types introduced. In many cases, 
to attach a new upper index i = l, ... , p to the residues Am and the pole 
orders dm and to sum over i will be enough. However, it is necessary to be 
careful to rewrite the sums over all the integers as sums over the integers 
modulo p. We do not want to follow this approach further here. 

A second simple generalization of the results of chapter 3 to include 
spectra with shell structure is the following. It occurs offen that instead of a 
single Dirichlet series a sum of products of series is present, i.e. a sum of 
terms like: 

Z(x)= IT Zj(x) , with Zj(x) = £ ani e " ^ , iq>0, (4.3.3) 
i n > o 

Sometimes the products can be expressed without large efforts as a single 
series, but the new coefficients will be in general more involved. Alternatively, 
the methods of chapters 3 and 4 can be applied first to each factor Z;(x) and 
in some cases be extended to the grand partition function. We will consider 
now two examples where this is possible. 

A very simple shell model in Nuclear Physics is the harmonic oscillator 
with spin-orbit coupling and Hamiltonian: 
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H= + 4r M«2r2 - 2KwkX.<t 
2M 2 ' 

(4.3.4) 

nr,X = 0,1, (4.3.5) 

Here )<w«41A~1/3 and the spectrum is: 

e j=X + l / 2 = (2n r + X+ 3/2)Jio - icJiwX ; 
e j = X - l / 2 = (2n r + X+ 3/2)flu + kJ4o>(X+1) , 

with degeneracies 2(X+1) and 2% respectively. The parameter KJSSA-1/3/4 lies 
between 0.03 and 0.1 . In Fig. 4.4a, the first levels for the harmonic 
oscillator with spin-orbit coupling parameter K6 (0.0, 0.1) are shown. And in 
Fig. 4.4b with an additional correction term (X-l)X)ta> (X=0.85) to yield a 
better agreement with the nuclear magic numbers. 

Figure 4.4 Harmonic oscillator spectra. In (a) with spin-orbit 
and kg(0.0, 0.1). In (b) with an additional term (X-l)JlwX 

to yield magic numbers as shell closures. 
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Set now for simplicity J4w = l. Thus: 

Z(x)= 2 l e X [ ( x + 1 ) e + = 
X>o n >o 

2e 
-3x/2 

1-e 
-x(X-K) 

1 
(l_

e
-x(X-K)y2 +

 1 - e
 -x(X-fc) + ( ^ g - x C X + K ) 

-x(X + 2K) 
(4.3.6) 

To each sum there is a Dirichlet series associated, for example t(s,3/2) for 
the first and £(s-l) + £(s) for the second. It is also possible to apply the 
methods to work out the logarithm of the grand partition function as in 
chapter 3. 

Figure 4.5 Spectrum of the anisotropic oscillator as a function of the 
deformation parameter 60SCe (-1.0,1.0). 
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The anisotropic oscillator (see for example A. Bohr and B. Mottelson, 
1975) can be considered similarly. The Hamiltonian is now: 
H = +

 " ^ y
2 +

 "
3 2 a z 2 )

 •
 ( 4 3 J ) 

with eigenvalues: e(n1,n2,n3)/Jil= (o1n1 + w2n2+W3n3 + (co1 +w2+W3)/2. In Fig. 
4.5, the spectrum for an axially symmetric oscillator is displayed. The 
eigenvalues are: e(n3,n)/)fia)0= N + 3/2-6o s c(2n3-n)/3, with N= n3 + n, n = 
ni+n 2 , 3w0= co1 + W2 + W3= 2W + W3 and deformation parameter 6 o s c= 3(w-
w3)/(2w + co3). The partition function is now: 

Z(x)= 2JX I e " ^ n + 1 / 2 ) = 2 J I e - ^ ^ / O - e ^ i ) . (4.3.8) 
i n > 0 i 

The associated Dirichlet series for each factor are (Hui)"s^(s,1/2). For the 
harmonic oscillator ca1 = co2 = co3, the Dirichlet series associated to Z(x) = 
£ ( n + l ) ( n + 2 ) expt-xJiw^n+SA)] is C(s-2,3/2)-£(s,3/2)/4. The further steps 
of the calculation of the grand partition function will not be presented here. 
It is clear that our method is also applicable in this case. 
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CHAPTER 5 

COMPARISON WITH EXPERIMENT 

In this chapter, some of the theoretical results will be compared with 
experimental data of nuclear level densities. This is the most important part 
of this work. We will consider only the simple periodic spectrum as studied in 
section 4.2 of the preceding chapter and will show that such a simple 
spectrum, when considered carefully, helps us to understand some aspects of 
the shell structure observed experimentally. Further, we shall achieve in this 
way a better theoretical description of the nuclear level density as that 
currently known. Since the calculation we have in mind is the most simple 
application of our work in chapter three, we can expect further improvements 
from the consideration of more general spectra. Such extensions as well as the 
full computation of all possible quantities usually studied in relation with the 
nuclear level density are left for the future. 

We resume first the formulae that will be needed from last chapter. 
Next the a-parameter is calculated at the neutron binding energies for the 
same elements considered in the compilation of T. von Egidy et al. (1986, 
1988). After the selection of only few values for the shell width the 
experimental data are reproduced to a great extent. As a last point, we 
observe that, although the calculation has been done to compute the a-
parameter at the neutron binding energy, there is a by-product. This last 
corresponds to the shell corrections to the semi-empirical mass-formula [cf. 
eq.(5.13)]. The experimental values for the correction are taken from the 
compilation of A.H. Wapstra and G. Audi (1985) and are compared with our 
results obtained during the a-parameter calculation. A relative good agreement 
shows the consistency of the procedure. 

We will consider only the so-called "a-parameter" which we define by the 
following relation: 

a = S2(o£,ß)/4(U-6) . (5.1) 

This quantity appears as a constant for the constant single particle spectrum or 
as the lowest order approximation for a general spectrum for large excitation 
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energies. At lowest approximation order it is given by n2g(ep)/6, where g(ep) 
is the (smooth) single particle level density at the Fermi level. In general it is 
well known that this parameter is energy dependent and that it shows a shell 
structure consisting in strong deviations for magic nuclei. The energy shift 6 is 
given naturally as: 

5 = E s h e l l ( l /0) - EshcII(0) , (5.2) 

which is clearly energy dependent. Nevertheless, this is not the parametrization 
used in the relevant literature. As we will explain, the constant 6 commonly 
used is the pairing energy A and given according to: 

A = Ap + An , for even-even nuclei, 

A = AD , for even-odd nuclei, 
(5.3) 

A = An , for odd-even nuclei, 

A = 0 , for odd-odd nuclei. 

From experiments it is well known that approximately An p«11.5 MeV/|fA . 
There is a slight tendency for Ap to exceed An and the sum An+Ap is 
somewhat smaller than 2An p ; a possible result of the attractive interaction of 
the unpaired neutron with the unpaired proton in odd-odd nuclei. 

There are severa! compilations of the a-parameter obtained in a variety 
of ways. We have selccred the work by T. von Egidy and co-workers (1986 
and 1988) because it is the most complete recently published contribution 
with a very clear explanation of the fitting procedure used to tabulate the a-
parameter. This aspeet i» very important since there are very many effects 
involved, some of them very poorly understood. Von Egidy et al. use a 
(shifted) Bethe formula for the observable nuclear level density for the Fermi 
gas model given by: 

p(U) - Ip(U,I) « c x p ( 2 i »<"-Ei>> « \ P o(U) (5.4) 
I 12J/T a a1 /4(U-E1) / (2n)1/2ff

 o W 

Here p(U,I) is the density of levels of given angular momentum I at an 
excitation energy U and is given by: 

P(U,I)= - 1 — - f(I) P0(U) , (5.5) 
(2n)

1

/
2

a 
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with Bethe's Gaussian angular momentum distribution: 

f(I) = exp(-I2/2a2) - exp(-(I+ 1)2/2CT2) « l ^ l l ) e x p [ - ( I + i/2)2 /2ff2], (5.6) 
2 a

z 

The density pD(U) defibed in eq.(5.4) is the total level density: 

P o ( U ) = Z (21+1) P(U,I) , 
I 

and includes the degeneracies of the magnetic quantum number. 

The level density a-parameter as well as the energy shift Ex were 
obtained by a fit to the experimental results. Energy spacings from 
experimental nuclear level schemes [see for example Fig.(1.2)] for the first 
excited levels as well as the average neutron resonance spacings were included 
in a least squares fit The spin cut off parameter a is given by the relation of 
U. Facchini et al. (1968) : 

a 2 = 0.24 A 2 / 3 g(cp) t . (5.7) 

where g(ep) the single particle level density at the Fermi level and t the 
temperature. 

As noticed by Ii Hurwitz and H.A. Bethe (1951), the ground state 
energy should be renormalizcd by a shift involving shell effects as well as odd-
even effects to obtain a better agreement with experiments. Nevertheless, as 
mentioned by A. Gilbert and A.G.W. Cameron (1965), following the works of 
T.D. Newton (1956) and of A.G.W. Cameron (1958), both effects cannot be 
unambiguously separated These authors considered only a constant shift which 
takes account of the odd-even differences, whereas the shell structure effects 
were involved onlv in the parametrization of the a-parameter. This leads to a 
clear dependency of the a-parameter on the mass number A=N + Z, with an 
analogous behaviour as that of the shell correction to the nuclear binding 
energy. Such dependency does not constitute directly a renormalization of the 
ground state energy as our results suggest. The efforts of the last decades were 
directed towards a description of the energy dependency of the obtained a-
parameter as defined above. Other possible ways to define the a-parameter 
have been proposed, but since the way followed by Gilbert and Cameron is 
by far the best established, we have also adhered to their definition for our 
present comparison. 

We shall take account of the angular momentum of the studied nuclei 
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as usual only by the Gaussian distribution f(J), which multiplies the whole 
level density as explained in chapter two. This separability of the angular 
momentum dependency means that for given numbers of neutrons and of 
protons, we fix the ground state configuration for a given single particle 
spectrum by filling the corresponding single particle levels without exception 
starting from the lowest allowed level upwards. Doing so, we forget any 
possible prescription of the angular momenta associated with each single 
particle level as required by the shell model. Although this point of view 
seems to have a rasonable experimental support since its introduction by 
Bethe, a quantitative analysis of the involved approximation is still lacking 
and is beyond our goals presently. Effects of collective rotational motion in 
the nuclear level density have been considered by T. Ericson (1958) and by S. 
Bj^rnholm et al. (1974), but we will not take into account this corrections. 
However, for strongly deformed nuclei such considerations are important. To 
include effects like angular momentum selection rules or similar phenomena, 
it is necessary to select particular configurations from all possible 
configurations. In our language, this means to consider restricted partitions of 
integer numbers into smaller numbers under fixed conditions. We have 
considered in this work only unrestricted partitions (except for chapter seven). 
Thus the consequent work to include selection rules would be the study of 
restricted partitions. 

As referred before, von Egidy et al. adjusted two parameters. One 
of them is a normalization of the ground state and the other gives the slope 
of the exponential growing of the level density. From their reported results, 
we can recognize, that the behaviour of Ei is indeed like a pairing correction 
A plus a constant, which does not depend on the parity of the nuclei. Some 
shell structure is still present but it is much more damped than the shell 
dependency present in the aexperimenrparameter. This difference results from 
the much larger sensibility of the level density to changes in the a-parameter. 

The formulas we obtained in section 4.2 correspond to a general 
distribution of the single particle levels in a shell. Nevertheless, the relations 
show us that the important quantities are, besides the filling factor x 
associated with the ground state, the first two moments <u> and <v2>. The 
second moment is present only in the variance v2= <u2>-<i/>2 which is a 
measure of the width of the shell. Thus, a parametrization of the experimental 
data after our results for the periodic spectra is equivalent with a 
parametrization according to the spread of the shells, as well as of course 
taking care of how far the magic numbers are and of the local distribution of 
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levels in a shell. 

We quote now the needed equations from chapter four. From 
eq.(4.2.18), eq.(4.2.19) and eq.(4.2.17) the excitation energy is given by : 

U = ^ - e + E s h e l l ( l /0) - EsheI1(0) , e = en + ep , (5.8) 

with temperature dependent shell energy contribution : 

* r i c o s ( 2 n k^y2 k / g ) +-—• 
with ground state value: 
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+ Y [ Z uj?n/en - ( X vj,n/en) ] + s i m i lar for protons . 
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The chemical potential ßn p can be determined from eq.(4.2.10) : 
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An analogous equation holds for protons. For the entropy we have from 
eq.(4.2.12) : 

e; 
o/ «x _ n2e . V V cos(2nk(Mryj;)) 

i = n,p 

here en(p) give the constant shell degeneracy for neutrons (protons). The 
numbers i/j ; (i=n,p) are the positions of the sublevels in a shell. 

To find out which distribution of sublevels in a shell is the most 
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adequate we have two different ways. The first consists in the selection of the 
most simple distribution with a minimum of physical assumptions. The second 
way follows the opposite path and considers the largest amount of information 
from other sources. An example for the first possibility could be a selection of 
the numbers i/j statistically distributed, e.g. as the eigenvalues of a random 
matrix subject to general symmetry principles. To take the values uj as the 
single particle levels of the last shell(s) of a shell model calculation with a 
Nilsson- type or a Woods-Saxon potential could be an example for the 
second. We have selected an intermediate way and have used the magic 
numbers as fixed by the harmonic oscillator potential levels with spin-orbit 
coupling. As an orientation the corresponding shell variances are also used. 

Figure 5.1 We show a/A in MeV -1 for the shell widths between 
(0.5))dtd and (0.95)Jiw bounded by the upper and lower curves. The 
central curve displays the experimental data of von Egidy et al. 

The straight line gives their mean value at about }4w/9 MeV. 
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The sublevels in a shell have been selected as uniformly distributed in 
each shell and we associated mostly the same shell width for all 
nuclei belonging to the same shell at the ground state. We expect that 
different distributions with the same variances will not lead to strongly 
different values for the a-parameter. 

We show in Figure 5.1 the a-parameter at the neutron binding 
energy for the shell widths between (0.5)}1!« and (0.95)J4w, bounded by the 
upper and lower curves. All neutron binding energies were taken from the 
tables of A.H. Wapstra and G. Audi (1985b). The central curve represents the 
experimental results of von Egidy et al. . Since the experimental results are 
completely embedded into the curves of figure 5.1 (we could use also smaller 
shell widths). We can reproduce exactly the experimental values if we wish, 
selecting the adequate shell width for each nucleus. Nevertheless, we prefer a 
less arbitrary shell widths selection. 

0.2 

r - l I MeV 

0.0 
15 50 100 150 200 A 

Figure 5.2 Comparison of a particular set of shell widths 
with the experimental results. 
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In Figure 5.2, the obtained theoretical results can be seen in 
comparison with the experimental compilation, selecting the same shell 
width for nuclei with neutrons and protons numbers belonging to the 
same shells. The selected shell widths vary between (0.5)Jico (for ligth 
nuclei) and (0.95))4w (for deformed nuclei). As we can see, we were able, also 
subjected to the just mentioned restriction, to reproduce the experimental 
data rather well with our prescription. 

As mentioned before, the evaluation of the aexp-parameter at the 
neutron binding energy corresponds to a selection of the energy dependent a(h.-
parameter at different excitation energies. These energies oscillate in the 
considered nuclei between 11.417 MeV (for 34S) and 4.604 MeV (for 210Bi). 

9.0 

MeV 

15 50 100 150 200 A 

Figure 5.3 Experimental values for the nuclear binding energies 
in MeV. The curve gives the liquid drop model fit. 

This work was oriented only towards the study of the nuclear level 
density and to a better understanding of the observed shell effects. 
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Nevertheless, at an early stage the relationship with the ground state 
properties of nuclei became clear. After we had evaluated the simple formulae 
for the periodic spectrum as 
we have shown in this chapter, we were also interested to see what occurs 
with the shell effects contributions to the nuclear binding energy. We repeat 
that the study of this problem is not our primary interest, but a consequence 
of the treatment of excited nuclei. 

In Figure 5.3, we show the experimental values for the nuclear binding 
energy for the same nuclei we have considered before. The values were taken 
from the compilation of A.H. Wapstra and G. Audi (1985a). The curve is 
calculated using the well known Bethe-Weizsäcker semiempirical mass formula 
(von Weizsäcker C.F.(1935), Bethe H.A. and Bacher R.F. (1936)) : 

10.0 
MeV 

0.0 

-15.0 

Figure 5.4 The difference between the experimental results and 
the semi-empirical mass formula. 
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B(N,Z) = b v o l A - b
s u r f

A V 3 - j .
b s y m

( ä ^ l
2

 - b c o u I ^ / 3 (5.13) 

where we used the parameters of A.E. Green and N.A. Engler (1953): 
bvol= 15.56 MeV, bsurf=17.23 MeV, bsym = 46.57 MeV, b

Co
ul = 0.697 MeV. 

We recognize in the figure a systematic deviation, the shell effects, which can 
be better appreciated in Figure 5.4 . 

Thus it is natural to compare these "experimental" shell corrections with 
our simple result for the uniform periodic spectrum for the shell effects (cf. 
eq.(5.10)), includding of course the pairing energies (cf. eq.(5.3)) taking into 
account the even-odd effects. 

-15.0 

15 50 100 150 200 

Figure 5.5 The theoretical results for a uniform periodic spectrum, 
for widths between (0.5)}ta and (0.95))*« are bound by the curves 

with markers "+ . The experimental values are also shown. 
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In Figure 5.5, we show the region of values that we obtain after 
variation of the shell widths between (0.5))laj and (0.95)j4a) . The experimental 
curve cannot be covered as well as we did for the a- parameter (see figure 
5.1), but the result is still acceptable, especially if we fit a shell width for 
each nucleus. Much better is to select precisely the same shell widths as we 
have done for the a- parameter, i.e. to select the same shell widths for 
those nuclei with protons and neutrons numbers belonging to the same shell, 
respectively . 

Figure 5.6 Comparison between experiment and the uniform periodic 
spectrum results for the shell effects. The shell widths are the same as 

those selected for figure 5.2 . 

In Figure 5.6 we can see the result of this prescription with relatively 
good agreement with the "experimental" shell corrections. Let us remember 
that the present calculation corresponds to the most simple possible 
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application of our analytical results. Furthermore, we are obtaining acceptable 
results at very different energies. 

Let us remark that we have not included error bars in the figures 
because these calculations are only preliminar. A careful error analysis, also 
for the theoretical calculations, is necessary, if we want to take more seriously 
the method presented in this work. However, we do not present such analysis 
here because it differs largely from our main topic. 

The theoretical calculation provides us with an expression valid in an 
energy range (depending on the mass number) around the neutron binding 
energies which could be subjected to a comparison with the experimental data 
in the future. The present computations are still not quite complete since we 
still need to calculate the whole nuclear level density and not only the a-
parameter as we have done. Notwithstanding, we are sure that the adopted 
method is a very valuable procedure for the study of the level density (at not 
very large excitation energies) for a large number of nuclei as a function of 
the excitation energy. We also expect to be able to study other interesting 
effects related with the nuclear level density, like for example nuclear 
deformation and some aspects of nuclear reaction theories. 
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CHAPTER SIX 

PARTICLE-HOLE STATE DENSITIES 

In this chapter we like to show some results which we obtained some 
years ago. They are related to the results of the preceding chapters, but are of 
a somewhat different nature. We consider only non-interacting Fermions in a 
constant single particle spectrum. We compute the particle-hole state density 
and give a simple proof for a result we stated long ago [cf. A. Anzaldo-
Meneses (1983)]. This result contains a correction to the so-called Williams 
formula, still in use in almost all pre-equilibrium calculations despite its clear 
failure for a different number of particles and holes. We give in the following 
the first correction terms and show that our methods provide also the exact 
relations after some additional calculations. We show that the particle-hole 
state densities consist in general of a smooth part and a fluctuating 
contribution. Both parts increase in absolute value with the excitation energies. 
At the end of the chapter we show results for the inclusion of pairing 
correlations when they are taken into account by means of a gap in the single 
particle spectrum. 

The estimation of the cross section for pre-equilibrium reactions involves 
as a very important quantity the particle-hole state density (cf. H. Jahn, 1984). 
Because of the complexity of this problem it was up to now only possible to 
analyse the equidistant spcctrum. We begin with only one kind of Fermions. 
The first relation published was the so called Ericson-formula [c.f. T. Ericson 
(1960), but see also V. Strutinsky (1958), who includes an additive pairing 
correction for p = h] : 

m(pau) -Pl c u • <6-° 
for p particles, h holes and excitation energy U expressed in units of the 
constant single particle energy separation. This was obtained assuming 
Boltzmann statistics. Later, F.C. Williams (1971) attempted to do the same 
calculation for Fermi particles and found: 
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p + h-l 
(6.2) 

where the constant Aw(p,h) accounts for the Pauli principle and reads: 

which has the drawback of being unsymmetric in p and h. Other attempts 
after that of Williams' lead to the same failure or to arbitrary ad-hoc 
symmetrizations (see for example C. Kalbach, 1983). Williams formula 
remains generally in use. 

6.1 The Correct Formula 

We prove now that A w as given by eq.(6.3) is incorrect if p^h and give 
the correct result as well as the first correction terms and a procedure to 
compute recursively w(p,h,U). This discrepancy is of course dependent on the 
definition. To compare particle-hole state densities from the current literature 
is not very easy since the definitions do not always coincide. We apply the 
methods of number theory as presented by G.E. Andrews, "The Theory of 
Partitions", (1976) for the representation of an integer number by sums of 
smaller ones. Let us also mention that M. Böhning (1970) observed correctly 
the combinatorial character of the calculations, but did not arrive at closed 
expressions. 

The most natural way to solve this problem consists first in the 
construction of the generating function for co(p,h,U). For a given 
degenerated system we define particle (hole) states in the following way. The 
considered spectrum is given by single particle levels at all the integers with 
occupation numbers zero or one. We define the ground state as formed by 
filling the spectrum starting from the lowest level upwards leaving no gaps. 
We define a reference energy eQ arbitrarily as a positive non-integral 
number and call a "particle state" an occupied level at an energy greater 
than eQ and a "hole state" an empty level at an energy smaller than eQ. 
Obviously, it is not possible to define unambiguously particles or holes if eQ 

is integer. The reference energy eQ differs in general from the Fermi energy 
ep defined as an energy between the last filled level and the next empty level 
in the ground state. 

If we consider now the excited system, the number of "excitons" n=p+h 

Aw(p,h) = j-(p2 + h2) + -J-(p - h) - \ h , (6.3) 
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will increase successively by two units. But |p-h| will remain constant and 
characterize a class of excitations associated with eG. There is no difference 
between the number of excited states for a (p,h) configuration from a (h,p) 
configuration as long as the system remains degenerated and thus the result 
must be necessarily symmetric. 

The generating function can now be easily deduced and it consists of 
three parts. The simplest one is given by the factor qPh since ph is the 
necessary energy for the first excited state with p particles and h holes. This 
can be seen starting from the configuration kO (for p>h , analogous for p<h) 
at the ground state and observing that to form an excited state with k+1 
particle states and one hole state, we need at least k+1 energy units and so 
succesively to form higher excited states. In general, to form a state with k+h 
particle states and h hole states, we need at least (k+l)+(k+3) + . . .+(k+2h-
1) energy units , that is hk+h(h+l) - h = (k+h)h = ph as stated. The two 
other factors for the generating functions follow from the well known fact that 
the number of representations wN(m) of an integer number m by sums of N 
positive integers has the generating function (cf. Andrews, 1976): 

1 _ 1 

(q)N (l-q)(l-q
2

) • • • (l-q
N

)
 m

>
0 

wN(m) qm , (6.4) 

and thus the complete generating function reads: 

= 2
 w

( p »
h

>
m

) q
m

 > (6-5) 
qPh 

(q)
P
 (q)h

 m
>

0 

which is symmetric in p and h as required. We were not able to give a 
closed expression for w(p,h,m) and arbitrary p and h, but it is possible to 
obtain several useful results, which generalize Williams formula for p=t=h and 
give additional information usually only conjectured. In particular, for h = 0 
and p>0, we obtain the generating function for the partitions of an integer 
number into at most p parts. 

First, we prove that the sum of all densities w(p,h,m) gives the total 
exact density w(m) : 

II ( 1
 1

 n\ = Z w ( m ) q m = Z ( f ( n ) = Z Z »(pm qm > (6-6) 
n>o v

1

 - q )
 m

>
0
 p (q)p (q)h pi£r>o 

where the sums over p run over all particle states keeping p-h constant. We 
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need now only the following relation due to Cauchy (1893) (cf. Andrews, 
1976) : 

2 
,n -n „ n 

1 + z 5 — - , (6.7) 

nto (1-q) • • • (l-qn)(l-z) • • • (l-zqn _ 1) k>o (l-zqk) 

from which we find : 
Q n

2 - n ( k + l ) < 

2 - 5 = J !
 l

- , (6.8) 
^ 0 ( l - q ) • • • (l-qn)(l-q) • • • (l-q«"

1

^)
 o

>
0
 (1 - q

n

) 

setting here k=n-l-h and n=p , we obtain eq.(6.6) concluding the proof of: 

w(n) = 2 w(P.h,m) , (6.9) 
P 

To obtain a simple way to compute numerically o(p,h,m) we deduce a 
recursion formula directly from eq.(6.5) : 

(6.10) 
w(p,h,m+p + h- l ) - w(p,h,m+h-l) - w(p,h,m+p-l)+w(p,h,m-l) = Q(p-l,h-l,m) . 

Finally, we obtain the first terms of an expansion for w(p,h,m) in powers 
of (m-A) with A being a constant to be determined. From eq.(6.5) we 
obtain: 

cr+ioo £ ^ 

This integral can be evaluated using the following expansion: 

1 _ C p ( p + l ) / 4 f j _ ' _ P 

n i r P - 94n!/-P-2 * ^ *> | » S n p ~ 
k = l 

1 Cp(p + l)/4f 1 S2p 4 _ p 1 ^ 

6 I W 2 W 3 2 + } I ' S n p = 4 ' ( } 

and similar for holes. The numbers snp can be given in terms of Bernoulli 
polynomials [cf. eq. (3.2.20)]. We find thus : 
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' ' p! h! (p+h-1) ! p! h! 24(p+h-3)! 

Higher order terms can be easily found in the same way. The constant energy 
shift A is given by: 

A(p,h) = ph - i ( p ( p + l ) + h(h+l» . (6.14) 

This expression is of course symmetric in p and h. Hence, expressions 
eq.(6.13) and eq.(6.14) are to be preferred over the expressions of Ericson 
and Williams in general. M.Avrigeanu et al. (1989) use our correct result for 
A(p,h) in a fast neutron reaction data calculation. 

We can rewrite the expansion as follows : 

«o(p,h,m)= p , h , ^ + h ) , X ak(P>h) 9m(m-A)P + h , (6.13a) 

where the coefficients oĉ  do not depend on m and thus, if p>h (or h>p) , 
the coefficients of higher order become more important as when p = h . We 
have oci = l, a2 = 0, a3 = -(s2p+S2h)/24 , etc. . 

Let us now return to the total states density obtained after summation of 
the partial quantities. As shown above [cf. eq.(6.9)], the generating function 
eq.(6.5) leads to the exact correct result. However, we are also interested to 
know whether the first term in the expansion eq.(6.13a) leads us to a good 
approximation. We consider only the case where p«h , the other cases are 
more involved and need the consideration of further terms of the expansion. 
For simplicity we take p=h+i / 2 and write coh(m)« <o(h+i/2,h,m). Then 
[remember T(m+1)= m!]: 

2h + l/2 93/2 2 h + 1/2 
co Cm") = 9 03 _ ± g (om) 

hv ) m r (h+i / 2 ) r (h+i ) r ( 2 h+i / 2 ) n m (4h+2)i 

where for the second equality we applied twice the duplication formula 
r(z)r(z+i /2) = n 1 / 2 2 1 - 2 z r (2z ) . The total density reads now : 
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u(m)«2, wh(m) « m 2^2"n m 

This formula is in good agreement with the asymptotic result in which instead 
of 8 in the exponential appears 2n2/3~6.6 and in the denominator instead of 
2|/Tn«8.9 appears ^48«6.9 . 

As an example for the obtained expansion, we show in Table 6.1 the 
particle-hole states densities for p -h= l and at an "excitation energy" of 80 
units. We give the results for the first three terms of our expression eq.(6.13) 
and the exact values. The exact quantities were computed using the recurrence 
formula eq.(6.10). As we see, the larger the particle-hole numbers, the more 
important becomes the relative contribution of the correction terms. 

TABLE 6.1 

(P,h) First Second Third Sum Exact 

(1,0) 1 0 0 1 1 
(2,1) 1 600 0 0 1 600 1 600 
(3,2) 131 852 -203 0 131 649 131 651 
(4,3) 1 858 603 -17 698 37 1 840 942 1 840 952 
(5,4) 6 573 415 -248 034 2 692 6 328 073 6 328 096 
(6,5) 6 742 366 -798 323 31 203 5 975 246 5 974 821 
(7,6) 2 043 903 -664 775 77 551 1 456 679 1 452 834 
8,7) 168 373 -140 060 44 171 72 484 66 336 

(9,8) 3 062 -6 365 5 219 1 916 185 
Sum 17 523 175 -1 875 458 160 873 15 808 590 15 796 476 

In Figure 6.1, we show the logarithm of the particle-hole states density 
for excitation energies below 80 units. The upmost curve is the total density 
and the lower curves correspond from left to right (see n-axis intersection 
points at ph=n) to w(2,l,n), w(3,2,n), co(4,3,n), w(5,4,n), w(6,5,n), w(7,6,n) and 
w(8,7,n) respectively. 

In principle, we can calculate explicitely the exact expressions for any 
number of particles and holes using the same procedure as above. As example 
of this fact we give now the exact expressions for some distributions: 
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u(l,0,m) = 1 , (6.15a) 

w(2,l,m)= m 2 /4 + ( ( - l ) m - l ) /8 , m= 2 A2>1 = 0 , (6.15b) 

w(3,2,m)= (m-3/2)4/288 - (m-3/2)2 57/1728 + (m-3/2)( l , - l ) circ 2 m + 

+ (~5V2' ^608 ' ^08 ) d r C 3 m ' m = 6 ' 7 , • * ' ' A ^ = 3 / 2 ' ( 6 - 1 5 c > 

where (a^a^ . . . ,ar_1)circ rm is Cayley's circulator which takes the value as 

when m= s+rk, k=0,1,2, . . . . 

Figure 6.1 Logarithms of the exact particle-hole states densities 
w(p,h,n) for p - h = l and up to n = 80. The upmost airve gives the 

total states density. 

Other exact relations are: 
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«(1,1,m) = m , (6.16a) 

«(2,2,m)= (m-l ) ( (m-l ) 2 /3 - 5/6 + ( - ) m /2) /8 , A2 ,2=l , (6.16b) 

«(3,3,m)= (m-3)f (m-3)4 - 70(m-3)2/3 + 503/6 + (-)m"3135/2 + X3z3"m+ 

+ ^3*
z

4 
-m /4320 , A3t3= 3 , (6.16c) 

where X3 = (132+i53/l/^3)/3 and z3=Z4* = exp(2ni/3). We have obtained many 
other exact expressions but we stop here to save space. 

An interesting result arises, which can only be seen clearly after the exact 
formulae have been worked out. Namely, the states densities with fixed 
particles and holes numbers are composed of two parts. The first is a smooth 
(polynomial) function and the second is a fluctuating contribution 6« of 
increasing complexity as the exciton number grows. In the above exact 
relations, eq.(6.16b) and eq(6.16c), we have explicitely: 

6w(2,l,m) = ( - r / 8 . (6.20a) 

M3,2,m) = ^ ( I , . ) n r c 2 m + ( J j L . J L "JjL ) c i r c 3m , (6.20b) 

and similarly for the other densities. In general, the fluctuating contributions 
grow also polynomially (although slowlyer) with the excitation energy. In other 
words, in this most simple case the fluctuations of the state densities are not 
the same at all excitation energies . 

6.2 Formula for n Kinds of Fermions 

If we choose to consider now n kinds of Fermions, then the 
generalization of the preceding lines is not very difficult, although laborious. 
We must simply multiply the corresponding partition functions of the form 
given in eq.(6.5), viz.: 

TT a Pk hk 

11 — S
T — = X «(Pi, • • - ,pn,hi, • • • ,hn, m) qm , (6.17) 

k = 1

 (q)
P k
(q)h

k
 m >0 

here «(p^ . . . »Pn,!̂ , . . . ,hn, m) will be the states density at excitation 
energy m with fixed numbers of particles and holes of types 1 to n. The 
application of the same method leads to: 
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t 0 ( p

'
h

'
U ) =

 faff ""iff n n . h . »
 p =

^
p k

 '
 h =

£
h k

 '
 ( 6 J 8 ) 

(p+h-1)! np k ! hk! 

where the energy shift A is given by: 

A(p,h) = £p k h k - (Pk(Pk+1) + hk(hk+l)) . (6.19) 
k k 

This quantity is again symmetric in pk and hk . 

6.3 Pairing Correlations 

The effect of pairing correlations has also been studied since the first 
contribution to this subject by V. Strutinsky (1958) for Boltzmann particles. 
Using our method we can easily extend his result to Fermi particles for the 
case of different number of particles and holes. We consider only the case 
where the pairing correlations can be approximated by a gap A in the 
constant single particle just above the Fermi level at the ground state 
configuration. Firstly consider p>h. If we follow now the same method we 
applied before, we find the generating function : 

qPh+Ah(1 n-h . i ) . - • ( l -qP"h + A) ^ 
3

 ' —
 1

 = X "A(p,h,m) q m , (6.21) 

where we assumed that A is measured in units of the single particle spacing, 
here equal to one. In this problem the generating function is not symmetric 
in h and p, since their s;>cctra are clearly different because of the presence of 
the gap in only one of ihem. The procedure is completely analogous and we 
obtain for the largest order contribution : 

(h)!2(p + A)!(p + h - l ) ! 

where the Pauli correction is now : 

(6.22) 

AA(p>h) = ph - i - ( p ( p + i ) + h(h+l)) + A A p _ J_A h . (6.23) 

For A = 0 we obtain of course again the results without pairing. This relation 
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is not symmetric in h and p , if we interchange p and h we find the relation 
for h>p . Further correction terms can be computed as well as exact 
expressions for low h and p. A system with n kinds of Fermions could also 
be easily analysed in a similar way. 
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CHAPTER SEVEN 

RELATION WITH OTHER TOPICS OF MATHEMATICAL 

AND THEORETICAL PHYSICS 

During this work we have mentioned that our formalism is related to 
some other problems of modern Mathematical and Theoretical Physics. In this 
chapter we would like to give examples of such relations. It is actually very 
easy to find such similitudes because the counting problems we have studied 
can also be understood in different ways outside the Nuclear Physics problem. 
These similitudes are not only of combinatorial character but are also 
analytical. This occurs in an analogous way as the original identities of Euler 
were first only formal (infinite) series or products which contained, as found 
later, a deeper analytical meaning. 

The relation to other fields of Mathematical Physics is expected to be 
fruitful in both directions. First, as we have shown, the application of our 
method leads to results which can be confronted succesfully with experimental 
data of the level density shell effects problem in Nuclear Physics. Thus, we 
could expect to be amused to see what occurs with the most relevant 
mathematical concepts, with sound physical meaning, in at least formally 
similar problems. Secondly, in the inverse direction, there are many beautiful 
results in other research fields, with or without clear physical interpretation 
(reads: experimentally tested), which could lead to a better foundation of our 
understanding in Nuclear Physics. 

The relation to other branches of Physics is of great importance. The 
consequence is a clearer physical understanding of natural phenomena and a 
better foundation of the involved branches. 

In the first part of this chapter, the important result of H. Rademacher 
and H. Zuckermann (1938) is sketched. It concerns the Fourier series 
expansion of modular forms and is a generalization of the exact 
representation of the number of partitions p(n) of a positive integer n in 
terms of sums of positive integers. The purpose is to motivate the possibility 
to obtain correction terms (the expressions of Rademacher and Zuckerman 
contain all contributions in a convergent series) beyond the saddle point 
approximation considered in this work. The second topic in this chapter is 
directed towards the relation between modular forms and the infinite 
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dimensional Lie algebras of V. Kac (1967 and 1985) and R.V. Moody 
(1967). The connections with Analytic Number Theory are multiple and some 
methods are identical. Again, here the objective is to estimulate further work, 
relating the classification of nuclear spectra with the representations theory of 
infinite dimensional Lie algebras. 

The last topic of this chapter will be physically more motivated. It 
regards recent results in nuclear, atomic and molecular clusters [see 
contributions in M. Brenner et al., Eds. (1992)]. For example, interesting 
experimental results with small metallic particles show shell structure effects 
akin with those effects we studied here. Our mathematical framework can also 
be applied in some cases and new results are presented. 

7.1 Fourier Series of Modular Forms 

As mentioned in chapter two, it is, at least in principle, possible to 
compute the next order contributions to the saddle point approximation given 
there. Although the method is relatively clear, no such calculation exists 
presently, as far as we know, in our Nuclear Physics application. The method 
of the steepest descent applied to the Partitio Numerorum problems [first 
studied deeply by L. Euler (1750)] has its roots in the important work of 
G.H. Hardy and S. Ramanujan (1918), where these authors obtained an 
asymptotic (divergent) series for the number of unrestricted partitions p(n) 
of integer numbers n expressed as sums of smaller ones. As pointed out by S. 

Goudsmit (1937), the level density p(N,E) for a system of N Fermions of 
only one kind in a spectrum consisting of equidistant energy levels and total 
energy E= M + |N(N+1) is equal to the number of partitions PN(M) of the 
integer M in parts not exceeding N [we have p(M)= pN(M) for M<N]. In 
chapter 6 we denoted P N ( M ) by CJ^(M) in eq.(6.4) to be in better agreement 
with the literature cited there. Thus, for a degenerated system the level density 
is given by the coefficients p(n) in the Fourier series for the Dedekind 17 
function : 

-rrir/12 2 p ( n ) e
2 n i n T

= J _
 =

 ^ 
•nir/12 

n >0 JX(l-exp(2nikr)) 
k>o 

As noticed by C. van Li er and G.E. Uhlenbeck (1937), PN(M) gives the 
number of states either of a system of N Bosons in a spectrum of equidistant 
levels, or alternatively a system of Bosons with an undetermined number of 
particles in a spectrum of only N equidistant levels, both with a total energy 
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M. 

Ramanujan conjectured further the existence of an exact relation for 
p(n), which indeed was found later by H. Rademacher in 1937 refining the 
same method. A little later the method was applied by Rademacher (1938) to 
find again an exact expression for the Fourier coefficients of the modular 
invariant: 

i 2
3
 j ( t ) =

 (*2 + + )
 =

 ^ ^
 q = e

2 n i r
 a i ) 

l ( T ) n >o 

The Fourier coefficients an are integer numbers (e.g. a0 = 744, 32 = 196884, 
a 2= 21493760, etc.). This function satisfies : J((ar+b)/(cr+d))= J(r) , for a, 
b, c, d, integers and ad-cb=l, i.e. J(r) is invariant with respect to the 
transformations of the full modular group. The Fourier expansion of 
Rademacher for J(r) was, however, obtained earlier by H. Petersson (1932) by 
very different methods, applicable only for negative or zero dimensions (see 
below). 

Finally 1938, the method was applied succesfully by H. Rademacher and 
H. Zuckerman to homogeneous modular forms of positive dimension and 
invariant with respect to the full modular group. Afterwards, the result was 
extended to include also modular forms invariant with respect to subgroups 
of the modular group. For example, for the level-N principal congruence 
subgroup T(N), given by matrices with: Q § ) - (o i ) moc* N , see H. 
Zuckerman (1939). 

Let us quote now the result of Rademacher and Zuckerman (1938) : 

Let F(r) be an entire modular form of positive dimension r and 
multiplier system e(a,b,c,d), i.e.: F(r) is analytic in the upper half-plane 
and : 

If further, its Fourier series contains only a finite number of terms with 
negative exponents (i.e. finite order pole at q=0) : 

F G T T T ) = e(a,b,c,d)(-i(cr+d))-r F(r) , c> 0, |e| = l , 

F(r+1)= e 2 n i K F(r) , 0<<x<l . 2nioc 
(7.2b) 

(7.2a) 
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F(t)= e ^ ^ e 2 " ™ 7 , (7.3) 
m>-ß 

where the coefficients are given by: 

a m = 2 ^ j T d r e - ^ F W r — 1 , (7.4) 

and the contour C lies inside the unit circle, then, for m>0 : 
ß 

am = 2 n 2 a ^ A k j i / m ) ( ^ p ^ ) ( f + 1 ) / 2 Ir + 1(4n(u-a)1 / 2(m + oc)1/2/k) , (7.5) 

with: 

Ak,u(m) = y e(h', -(hh'+l)/k, k, -h)"1 exp{(-2ni/k)((i/-a)h' + (m + a)h)} , (7.6) 
o<Ti<k 
(h,k) = l 

where Ir + i(z) is a Bessel function of the third kind. • 

The key of the proof is the subdivision of the integration path into 
smaller paths near the "rational points" of the unit circle. The transformation 
relation eq.(7.2a) allows then the reduction of the resulting integrals into an 
infinite sum of integrals of the same kind around the unity. The remaining 
integrals can be evaluated exactly. All contributions resulting from the paths 
around the "irrational points" of the unit circle can be shown to be zero. 

The most simple example is the convergent series of Rademacher for 
unrestricted partitions, as we mentioned before, for which: r=l /2 , ß=l, 
A = 23 /24 , F(T)=1/TI(T) and the numbers A ^ Y has been expressed by Selberg 
as [see A.L. Whitemann(1956)] : 

Ak,„ = ( k / 3 ) V 2 2 ( - ) j cos n , A M = 1 . (7.7) 
( 3 j 2 + j ) / 2 S - V mod(k) 

The argument of the Bessel function in eq.(7.5) is 4n((i/24)1/2(n-i/24)1/2/k) 
with n=m + ß in this case. Now, since Ir+i(z) ~ (2nz)-1/2exp(z) for large z, 
the asymptotic form to which the exact result reduces is precisely the Hardy-
Ramanujan expression: p(n)~ (4n)-13_1/2exp(nj/ 2(n-i/24)/3 ) . 

In relation (7.5), we recognize a "shell effect" given by ß-oc., since the 
number of partitions in eq.(7.3) is shifted by - a . This means that the "level 
density" am_ß is given in terms of the "excitation energy" m shifted by an 
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amount equal to il-ol. The leading term for high excitation energies is of the 
form exp{4n(jx-a)1/2[m-(M-a)]1/2} , where the numbers a and ß are fixed 
respectively by the transformation given by eq.(7.2b) and by the pole order in 
eq.(7.3). 

From these results of Rademacher and Zuckerman, we see that, at least 
for many products in one variable, it is possible not only to obtain additional 
correction terms, but astonishingly to find an exact expression. In our work we 
have studied products depending on one variable for each nucleon number 
and one for the excitation energy, but as we mentioned, we considered only 
degenerated systems. With this last assumption we simplified sufficiently the 
problem to obtain the lowest order term using the saddle point method. It 
could be very interesting to try to obtain further correction terms, if not an 
exact relation, for general spectra and degenerated systems using similar 
methods. 

An interesting generating function appearing in the theory of infinite 
dimensional Lie algebras [see V. Kac and D. Peterson (1984) and V. Kac 
(1985)] is the following: 

N 

f(r) = q* IT (1 - q n / N ) - a « , a = I a„ , (7.9) 
n = 1 

n > o 

with q = exp(2nir) and where the sequence an is periodic with period N with 
aj = ajsj_j. The constant £ is : 

N 

* = I T + 4N* ^ n(N - n) an . (7.10) 
n = l 

The function f(r) is a modular form with respect to some subgroup of the 
modular group, depending on the integers an and provided aj = a

N
_j, see 

eq.(4.2.2) with N=p. Let us observe now that, from our point of view, we can 
associate a Dirichlet series to any product of the type q~^f(r) as we did in 
chapter three for more general products : 

(T + loo 
In / 

2 r r i J 
cr-ioo 

with : 

_ a+ioo 
f ( T )

 =

~ 2 h J
d s

 r ( s ) c ( s + 1 ) D ( s ) T _ s

'
 a > 1

 •
 ( 7

-
n ) 
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N 

D(s) = X ai ^ i/N> • <7-12) 
J=I 

which has a simple pole at s= l with residue a . This is exactly the same 
series as for the periodic spectrum we studied in section 4.2 with aj=aN_j . 
The values at the negative integers can be readily computed, in particular, we 
find : 

N 

- D ( - l ) C(0)= - i + i 2 X n ( N - n) an . ( 7 - 1 3 ) 

n=l 

which is interestingly equal to the constant £ given by eq.(7.10). We find the 
following expansion : 

In f(r) = R M N 2 a/24 +D'(0) - T£(0)D(-1) + R(T) , (7.14) 

where we have have written the coefficient of the first term in such a form to 
make clear its relation with the first term in eq.(7.13). The remaining 
contribution R(R) can also be calculated explicitly using the functional relation 
eq.(4.2.4) for the Hurwitz ^-function. We find : 

(T + ioo 

R ( s ) =

d i N /
 d S r ( s ) C ( S ) D c ( s + 1 )

 (
4 t t 2 n

/
t

)"'
S a > 1

 ' (7-15) 
(T—ioo 

The Dirichlet series Dc(s) is obtained as in eq.(4.2.5) after the substitution of 
the numbers an by the finite Fourier cosine transforms given in eq.(4.2.5a). 
From eqs.(7.14) and (7.15) it is possible to obtain many identities for the 
function f(r). In particular the simplest application corresponds to the 
Dedekind 17-function and the immediate result of eq.(7.14) is the 
transformation formula eq.(3.5.4e). If we proceed now as we did in chapter 3 
and analyse the q-series associated here with the function f(r), we equally find 
a number of identities under modular transformations. We have still not 
compared all our results with the large number of available relations on this 
topic, but it could be an interesting task, which we cannot cover here. 

It is simple to obtain the asymptotic form of the leading term of the 
Fourier coefficients of the infinite product in f(r). We can use the steepest 
descent method and find the first term of the Rademacher and Zuckerman 
relation as a power of n times exp{4n(a(n+C)/24)1/2). Thus, the constant £ 
appearing in the definition of the function f(r) [cf. eq.(7.9)] will be related to 
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the analogue of the "shell effect" in the level density problem [see for 
example eq.(5.4)]. 

The transformation properties of the function f(-r) play an important role 
in the theoiy of affine Kac-Moody algebras [cf. V.G. Kac (1967,1985) and 
R.V. Moody (1967)]. In particular, the relevant relations known as 
Macdonald's identities [cf. I.G. Macdonald (1972)] can be proved using the 
fact that the function f(r) is a modular form. The mentioned identities relate 
infinite products with theta series associated with root lattices. As is well 
known, the theta series have excellent convergence properties, which makes 
very desirable to reduce or rewrite partition functions in terms of similar 
functions for explicit numerical evaluations. 

7.2 On Kac-Moody algebras 

One way to initiate the study Kac-Moody algebras consists in starting 
from a nxn matrix A of rank X, called the (generalized) Cartan matrix, 
whose elements satisfy: a;i=2 ; ajj<0 for i=*=j ; a;j=0 implies aji = 0. Next, 
consider the algebra g, whose generators satisfy : 

[h,h'] = 0, 

[h,ei] = <oc;,h>ej , 

with i,j=l, .... , n; h,h'eh a complex vector space of dimension 2n-X. And 
<oqv,cxj> =a;j, oqeh*, aj

v

Gh. The algebra g(A)=g/I is called a Kac-Moody 
algebra, where I is the maximal ideal in g, which intersects the Cartan 
subalgebra h trivially. The oq are called simple roots and the center of 
g(A) is c = {he h| <oq,h> =0, i = l, ... ,n}. Kac-Moody algebras are classified 
into three classes: i) Finite iff all principal minors of A are positive; ii) 
Affine iff all proper principal minors are positive; iii) Indefinite if there 
exist u>0 such that Au<0 and if Av>0 and v>0 implies v=0. To each 
matrix A there is associated a Dynkin diagram S(A) whose vertices i and j 
are connected by | ajj | lines (with an arrow toward i if |a;j| > 1) if ajjaj; < 4 and 
|aij|>|ajj|; but are connected by a bold face line equiped with an ordered 
pair of integers |ajj|, |ajj| if a^aj;>4. For affine A the diagram S(A) has 
labels aj which are the coordinates of a vector 6 = (a0,ai, ... ,ax) such that 
A6 = 0. The labels of S(Al) are denoted by aiv. The Cartan matrix A is called 
symmetrizable if there exists an invertible diagonal matrix D=diag(e1, ... , en) 
and a symmetric matrix B such that A=DB. A symmetric bilinear C-valued 

[ei,fj] = 6ij<xf , 

[h,fj] = -<oc;,h>fi , 
(7.16) 
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form (-I-) on h is defined by («iv|h)= <«i,h>ei, (h'|h") = 0, for h,h',h"eh, 
i = l, ... ,n. 

A fundamental result of the representation theory of Kac-Moody algebras 
with symmetrizable Cartan matrix is the Weyl-Kac character formula for an 
integrable highest weight modul L (with highest weight A) : 

The first sum is over all distinct weights of the representation. A+ is the set 
of all positive roots; p€h* is such that <p,ociV> = l; mult a = dim gK; 
g a = {xGg(A)|[h,x] = a(h) for all h e h } is the root space attached to <x. The 
Weyl group W is generated by the reflexions ri(X)=X-<X,oqv>oq with Xeh*. 
The character formula can be rewritten in terms of multivariable af-functions 
with characteristics and string functions. This leads to a direct relation with 
the theory of modular forms. A famous example for the character formula is 
the level one character for I;^1) given by 12(qJ(r))1/3 [cf. eq.(7.1) to the 
power 1/3] which is modular invariant and whose Fourier coefficients are 
thus dimensions of certain weight modules. The modular invariant itself is 
related with the "Monstrous Moonshine" [cf. I.B. Frenkel, J. Lepowsky and A. 
Meurman (1983)]. 

The irreducible representation with highest weight A = 0 is the trivial one 
dimensional representation with ch L(0)=1. Thus the character formula leads 
to the denominator formula : 

I 7 [ l - e x p ( - a ) ] m u l t ° « V det(w) exp[w(p)-p] . (7.18) 

However, this formula has only formal meaning, since for a general Kac-
Moody algebra its explicit form is unknown. Only certain cases have been 
worked out in detail. 

In particular, for affine algebras the denominator formula is a 
generalization of the Macdonald's identities and of Weyl's (polynomial) 
denominator formula for the finite algebras. The infinite sum can be 
expressed as a if-series. The most simple examples of the Macdonald's 
identities are the Jacobi relations eqs.(3.5.1a-d) resulting from the A^ 1) root 

ch L(A)= 2 multA(X)e 
X 

X _ w e w 
X det(w)exp [w(A+p) - p ] 
G W (7.17) 
J J [ l - exp( -a ) ] m u l t ( a ) 

a e A + 
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lattice, as well as the positive integer powers of the Dedekind's T)-function 
expressed as infinite series convergent in the upper half plane. Some of these 
relations were independently found by F. Dyson (1972). 

To establish a first contact with the possible applications we have in 
mind for periodic single particle spectra in Nuclear Physics, introduce now 
the following gradation of type s. Consider a non-zero sequence of non-
negative integers s={s0 , ... , S£> and set m=k]T oqsj, i = 0,...,X; and k= 1,2,3 is 
the order of a diagram automorphism ß of the finite dimensional simple Lie 
algebra g of type XN . Then, g=g ö ©gj if k=2 and g=göffigj©g2 for k=3. 
Let A0 be the root system of g 0 (fixed point set of ß on g) and Aö+ be a 
subset of positive roots for which a l t ... , a^Gh0* are simple roots. Let g = 
©j gj be the associated Z / k Z gradation. Let furthermore p0 be the half sum 
of elements from A 5 + ; r s e h * be defined through (rs|aj)=ks;/m, i = l,...,X. 
For sj > 0 , the sequence s defines a homomorphism F : C[[exp(-a1), ... , 
exp(- ccx)]]-> <C[[q]] by F(exp(-a))=q<hS»a>, h s e h , <hs,ai>=Si. This map 
is called a specialization of type s. Then, the denominator formula can be 
written as: 

q-2iklpo-grs|2JY (1 _qj)"dj mod(m)=£ e ( w ) XDs(w(p0)+g«)qik|w(Po)+g«-grs |2 

J^L W E W £ A G M 

(7.19) 

for the affine Lie algebras of type with Z~gradation of type s: g(A) = 

®j<=Z 9j(s)> d i m 9j(s)= dj mod(m)* In Eq. (7.19): 

D
s
(*)= I T CX|«)/(Psl«) . for X e h o , 

« G A s + 

where As+ is the subset of roots of g 0 which are linear combinations with 
non-negative coefficients of the roots from the set {oq|si = 0, i = 0,l, ... ,£} and 
ps is the half-sum of the roots from As+. And where Wo s is the subgroup of 
the Weyl group WQ of A0 generated by reflexions in the roots from As and 
W^ a set of representations of right cosets in WQ for the subgroup Ws 

(generated by ra, oc<=As+) so that W0=W0 SW®. The lattice Mch* is spanned 
over Z by elements WO-0O (resp. W0 • 0 o /2) if X N ^ + A ^ (resp. = A ^ ). 
The element 0 o e h * is called the highest weight and has the decomposition 
0 o

= Z a j a j ; the dual Coxeter number g is given by g=ZaiV> i = 0,1, ... 

Now, since the right hand side of eq.(7.19) is a modular form 
(essentially a theta series, from other considerations), the following "very 
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strange formula" results : 
m 

1 
24

 d i m 9 ö

 ~ j(m-j)dj(s,k) . (7.20) 

This equation relates the "degeneracies" dj m od(m) die periodic spectrum 
with important quantities of the affine Lie algebra g(A). Let us remark again 
that the right hand side of eq.(7.20) [cf. eq.(7.10) with dim g 5 =a, m=N], 
are related to the analogues of the experimentally measurable ground state 
shell correction in the Nuclear Physics problem. 

With an affine Lie algebra of type X^W there is associated a 
realization of type s given by: Z j e Z tJ®gj mod(m)(s'»k) © <Cc © (Cd, with 
the Lie algebra structure: 

[P<g>x©Xc©nd,Q®y ©X'c©/i'd] = [x,y](PQ+n9Q-M'9P)©ifi-Res(P9Q)(x|y)c 

here X,)i,X',^€C; x,y,eg; P,Q eC[t,t"1], the algebra of Laurent polynomials 
in t; 9 = d/dt; ( - | - ) a normalized invariant bilinear form. Also: (d|d) = 0; 
(c|c) = 0; [d,c]= 0; d(P®x) = t9P®x; (<Cc+Cd|P®x) = 0; (c|d)= m/k; 
(P®x|Q®y)= Res(t-1PQ)(x|y). Finally, consider an interesting fact, noticed by 
Kac and Peterson after observation of the related Virasoro algebra given by: 

here a and £ are the same constants as above [cf. eq.(7.10)]. This is a 
centrally extended algebra of meromorphic vector fields on the Riemann 
sphere and singular at most at 0 or at «>. A realization of the centerless 
algebra is given by the generators z , + 1 9 . As we see, the constants appearing 
in the central term are connected in a simple way with the constants 
appearing in the asymptotic behaviour of the Fourier coefficients of the 
function f(r) [see eq.(7.9) and second paragraph after eq.(7.15)], as well as in 
the very strange formula, eq.(7.20). This coincidence has not been yet fully 
clarified. 

We have performed calculations also for more general algebras of 
differential operators on Riemann surfaces with punctures. In particular, 
algebras of vector fields and their central extensions has been studied. 
However, the extension of the calculations leads us to publicate these results 
sepparately [cf. A. Anzaldo-Meneses (1992)]. 

[Li , Lj ] = (i - j) Lj+j + ( ^ i3 + 2 i | ) 6 i + j ) 0 , i,j GZ, l.o » (7.21) 
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The kind of relations appearing in the nuclear level density problem 
have analogous counterparts in the theory of affine Kac-Moody algebras only 
for periodic single particle spectra. And as shown in chapters four and 
five, periodic single particle spectra permit a good description of experimental 
data of the nuclear level density. It is therefore desirable at this stage, to 
systematize or classify the most relevant physical parameters (for example the 
shell widths W) in a clear way. But also from the point of view of the 
explicit evaluation of the level densities it is important to study more in 
detail the appearing partition functions. These facts are enough motivation to 
see how the results of the representation theoiy of affine Kac-Moody algebras 
can be used to clarify further the nuclear level density problem and related 
matters. 

Now, in the general nuclear level density problem, modular 
transformations play also an outstanding role and this occurrs not only for the 
simple infinite products of periodic single particle spectra, of the same type as 
those for the modular forms of eq.(7.19), but for the more general products 
studied in chapter three. Some relations, that we have obtained in chapter 
three, do not seem to have a counterpart in the theoiy of affine Kac-Moody 
algebras. However, it would not be surprising when the indefinite Kac-
Moody algebras would lead to formulas containing polynomials of the index 
number, instead of periodic constants for mult a in eq. (7.18). We think that 
these topics are worth to be studied more in detail. 

7.3 Shell Effects in Clusters and Mesoscopic Systems. 

Shell structure occurs in nuclei in a subtil way. It is certainly related to 
the symmetries of the finite system constituted by the strongly interacting 
nucleons. In the way in which we have studied the shell structure, the validity 
of the shell model was assumed and the question about its origin was not 
stated. We preferred simply to consider general kinds of single particle spectra 
and to distribute non-interacting nucleons on them. The discrete spectra had a 
form manageable with the methods of Analytic Number Theoiy. It was shown 
how to proceed to calculate some quantities to be confronted with experiments 
and to select parameters associated with the most adequate spectra. 

Atomic clusters or sufficiently small metal particles are other 
physical systems which can be studied using discrete single particle spectra on 
which Fermions or Bosons are distributed [see for example J. Perenboom et 
al. (1981)]. In the last years, methods of Nuclear Physics have been applied 
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succesfully to these systems. Both aspects have been considered: The methods 
of random matrices and the shell model. The first has been applied not only 
to the level spacing distributions as in Nuclear Physics, but also to the theoiy 
of conductance in small conductors (see B.L. Altshuler et al., 1991). However, 
this important and vast field is not a topic of this work and will not be 
contemplated here. Rather, the second aspect concerning shell effects is of 
relevance for us. 

0 20000 60000 
M a s s [ a m u j 
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Csn .22(S02) z 

h v = 2.<8 eV 

12000 
Mass (amul 

14000 

Figure 7.1 Mass spectra of Csn+2(S02). The selected values of n, 
are magic numbers. Taken from Göhlich et al. (1990). 

Electronic shell structure in metal clusters is a field of intensive research 
[see for example M. Brenner et al., Eds. (1992)]. Generally, a large (but 
finite) number of delocalized electrons is assumed to move in a finite space 
region. This region is given by a cluster or "small particle" of few up to 
thousands of atoms or molecules. In Fig. 7.1, the mass spectrum of 
Csn + 2(S02) clusters [cf. H. Göhlich et al. (1990)] clearly shows a shell 
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structure as an abrupt increase or decrease of the intensity peaks. Ionizing 
laser photon energies of 2.33 eV to 2.53 eV are displayed. The values of n 
are also given at shell closures, i.e. at the magic numbers. A simple 
explanation of this mass spectra given by Göhlich et al. is the following. The 
delocalized electrons move freely in the cluster and occupy subshells of equal 
angular momentum. Therefore, the clusters will not appear in the mass spectra 
when one of these subshells is closed and the laser photon energy is smaller 
than the ionization energy. Also numerical shell model calculations have been 
performed by Göhlich et al. supporting this approach. 

The arrangement of atoms in a cluster depends on many factors, for 
example their preparation and their size. The possible kinds of discrete spectra 
are very diverse and thus our general method could be also of help here to 
classify spectra according to a small number of mathematical quantities. 

As early as 1937, H. Fröhlich considered small metallic particles using 
methods for a bulk metal and studied quantum size effects on the electronic 
specific heat. The most important observation was that the mean spacing 
between levels decreases with increasing particle size. In fact, the average level 
separation 6 near the Fermi level eF is 5 = 2/p(eF), where p(£p) is the density 
of states evaluated at £p. For a system of N conduction electrons in a small 
particle it follows that 6 is of order ep/N. Thus, for a small metallic particle 
of size of order 10~8m and containing about 105 conduction electrons it 
would correspond 6—0.1 meV or equivalendy a temperature of 6/kB~l°K. 
Fröhlich considered a constant single particle spectrum, but R. Kubo 
(1962) replaced it by a random spectrum (with Poisson spacings distribution) 
and included additionally the important distinction between an even and an 
odd number of electrons. Finally, L.P. Gor'kov and G.M. Eliashberg (1965) 
pointed out the possibility to use the more general distributions used in 
Nuclear Physics. These considerations are of importance for the low 
temperature behaviour of the specific heat averaged over the size and shape 
distributions of all particles in a sample. 

But here our point of view departs towards the study of general single 
particle spectra and the degree of "bunching" of the single particle levels into 
shells. These aspects are necessary to understand the mass spectra of clusters 
and phenomena like the density of excited states of individual clusters or 
also of colloids, gases and plasmas containing them. 

R. Denton et al. (1971, 1973) based on the studies of Fröhlich and 
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Kubo considered a system of N electrons in a magnetic field H allocated in a 
single particle spectrum with energy levels en . To calculate the heat capacity 
and the spin susceptibility they studied the canonical partition function: 

Q(N,ß) = -^-r fdy y~N_1 JJ[l+yexp(sh-/3en)], 0=l /k B T, (7.22) 
2m J c n=0 

s = ± l 

where y= exp(ßfi) is the fugacity and h= ßgß^H/2. The integration contour 
C encloses the origin. The ground state energy is given by: 

f-i 

E0(N)= 2 l e n + x£f . (7.23) 
n = l 

Here, ef is the topmost occupied level and contains x= l or 2 electrons. 
Denton et al. considered next the constant spectrum studied by Fröhlich and 
showed that Q(N,/3) can be given in a closed form for ß(ef-c0)> 1 using 
Jacobi theta functions. But the most important part and goal of their 
calculation was to study the low temperature behaviour of the specific heat 
averaging single particle level spacings. They followed the statistical description 
of the random matrix models of Nuclear Physics. Since they were not 
interested on shell structure effects, they analyzed only the constant single 
particle spectrum. 

This is precisely the point where our method could be applied. The 
spectrum involved in eq.(7.22) can be assumed to be of the kind studied in 
preceding chapters of this work. For example, we have an explicit expression 
for the logarithm of the above infinite product [cf. eq.(3.3.20)]. Also for 
periodic spectra with shell structure, we could use the results of chapter four. 

We will generalize now the result of Denton et al. for the canonical 
partition function. Instead of a constant single particle spectrum (with only 
twofold degenerated levels) we consider now a periodic single particle 
spectrum. Let us use the notation of section 4.2 and write for a system of N 
electrons the grand canonical partition function: 

Z(oc,ß)= X Q(N,ß) yN , y=exp(a), (7.24a) 

with the canonical partition function given by: 
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e 

Q(N,0)= - L _ fdy y-^TI I T (1 + yeßSa-ßSui ) , (7.24b) 
2 m J

c
 j=l n >o 

where the energy levels are enj=6(n+i/j), n=0, l , .... ; j = l , ... ,e; e is the 
degeneracy of each shell, 6 the spacing between adjacent shells. Now we 
divide the infinite product in two parts according whether the single particle 
levels are smaller or larger than the topmost occupied energy level 
£f=6(f+u f), f integer. After rearranging terms and changing the variable y —> 

it follows: 

Q(N,0) = j ^ j ^ e / d z 

n > o ^ 
f 

• ] I ( l+z" 1 e / J f i , / je -< j S m ) - I I ( l -e - < 3 6 n ) ( l+ze- 0 6 l , j e ^ ö n ) j , (7.25) 
m=l n>o 

where E x = 6ef(f-i) /2+ 6ef<i/>+ 6exf+ 3öe<i/>/2+ öe/s , <v>= £ v \ fc • 
Also N = ef+ex, i.e. x is the filled fraction of the last shell. Now, we assume 
thermal degeneracy ßöf^l and extend the upper limit f in the finite product 
to infinity. Define: q 2 = exp(2nir)= exp(-/35) , set zexp(-ßSi/j)= exp(2mZj) 
and look at the infinite product representation of the Jacobi of2-faction 
given in eq.(3.5.1c). The canonical partition function will read: 

Q ( N , ß ) , , ( 7 , 6 ) 

where we used also the infinite product representation eq.(3.5.2) for the 
Dedekind i?-function. To integrate the product of theta functions, remember 
their infinite series representation eq.(3.5.1c) and write: 

Q ^ exp(-gE1-g6e/24 + g e < u » y ^ . . . ^ f ^ z E n r
e x - i

 ? ( ? 2 y ) 

- n W {n
x
, ... ,n

e
} J c 2 m 

where the sums are over the n ; e Z and ocj=exp[-/35(nj-i/2)2/2 - /35nji/j]. 
The integration is now immediate and leads to: 

[ni2-(ex+Vg-u^nj] - ß ö Z V j ) • (7.28) 
{«!. ... .ne.,} 

The primed sums run over i,j = i, ... , e - i and E 2 =6ef ( f - l ) / 2 + 6ef<u> + 
+ 6efx +6ex(ex-i)/2 +6e/24 +6exi/e. 
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To transform the infinite multiple sum in eq.(7.28) into known functions, 
consider the following symmetric bilinear form: 

<n + a,n + a>= (n+a)1 Q (n+a), (7.29) 

where n and a are the (e- i ) dimensional vectors (% , ... , n ^ ) and (al5 ... , 
ae-i) with a i=u i-<u>-x . The (e- l )x(e- i ) matrix ft has components f?ü=2 
and fiik=l for i=t=k. Explicitly, it follows: 

j <n+a,n+a> = Z'(ni2 + a?) + Z'(n inj+ a iaj) + 2 £ n ^ + Z'fanj+niaj) = 
i<j i<j 

= Z V + ä*2) + Z V i - ^ e - e x ) n i + Z ' ( n p j + ^ j ) , (7.30) 
i<j 

where we have used: Z' i<j(ainj + n i a j ) = Z' n j (Z' a i - a i ) and Z ^ - y p ^ e - 0 * • 
The only terms in the inner product which are not in the exponential of 
eq.(7.28) are: 

Z V + ZW», = -ze(e-i)x2 - ex<v> + §-«u 2>-<i/> 2) + exi/c . (7.31) 

But this constant can be allied to the constant E 2 yielding the final result: 

Q(N,j3)« exp(-2TxirE0/6) 0a(O|T)/Tje(r) , with 2nir = -/35, (7.32) 

where E 0 is precisely the smooth ground state energy: 

E 0 / 6=e( f+x+<u>- i / 2 ) 2 / 2 - e/12 + e<v>/2 - e<u2>/2 , (7.33) 

as given by eq.(4.2.14), setting N=ef+ex and We introduced further 
the 0-function (with characteristic a) in (e-1) variables [see for example V. 
Kac (1985)] defined by: 

0a(z|r) = Zexp( nir<n+a,n+a> - 2niz.(n+a)) , n GZ6"1, (7.34) 
n 

In our case only z = 0 is needed. 

With relation eq.(7.32) we arrived at a closed expression. The most 
interesting observation is that (for rational a) the canonical partition function 
is given by the product of the modular form 0a(O|r)/r)e(r) and the 
exponential factor exp(2niTE0/6) containing only the smooth ground state 
energy. Note also the Bosonic partition function l/r)e(r). Since -|36= 2mr, 
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eq.(7.32) is given in terms of the inverse of the temperature. The obtained 
analytic form allows also the application of the methods of Analytic Number 
Theory developed in chapter four. 

From eqs. (7.24a), (7.32) and (7.33), the grand partition function is: 

Z(oc,ß)= q-4*y „-»(T) 0a(O|rKa(ez|er), (7.35a) 
xe=o 

where the "anomaly" -e/24 + e<u>/4-e<w
2

>/4 is again the same constant 
appearing in eq.(7.10) and in the central term of the Virasoro algebra, 
eq.(7.21) [Set there a=e and parametrize the (rational) v{ with the numbers 
a,,.] Here we used the if-function in one variable with characteristic a = 
xe+e<i/>-e/2 , [cf. eq.(4.2.20)]. 

Further, note that the assumption of "thermal degeneracy" /36f̂ > 1 before 
eq.(7.26) is equivalent to take as grand canonical partition function the 
infinite product: 

Z(oc,0)=n I T a + q 2 n c2 n i ( z + T l , ' ))( l + q 2 n + 2
 e

_2n i(z+Tl /i) ). (7.35b) 
i = l n >0 

Using now the \Munctions in one variable with characteristics v r i / 2 , it 
follows: 

e 

Z(oc,ß) = q-4*y n < (r) IT 1/2 (z|r) . (7.35c) 
i= 1 

In other words, we found two equivalent expressions for Z(a,/3). Therefore, we 
arrive at the identity: 

e c - i 

L L ^ R I / 2 ( Z | T ) = Z ö.(0|r)^a(ez|er) . (7.36) 
i = l xc « 0 

Using the same method we have derived many other identities which include 
also 0-functions in several variables of higher levels. Identities of this kind 
are the result of the underlying ring structure of the 0-functions. 

The particular case e = l of eq.(7.32) yields the result of Goudsmit 
mentioned at the beginning of this chapter: 

Q(N,0)» exp(2mrE0/6)/rj(r), (7.37) 
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with E Q /6=f ( f - l ) /2 + V24 and <v>=0. 

The next particular case e=2 reduces to the result of Denton et al. 
(1973) taking <v> = 0, a=i/j-x and the two values x=0, 1/2. 
The two corresponding relations are: 

Qcvcn«exp[2niT(E0,even/6+g2M^H2/4)] ^3(-TgMBH|2r)/7,2(r) , for x= 0, (7.38) 

with Eo e v e n/6 = f ( f - l ) + i / i 2 - g2/igH2/2. And the second leads to: 

Q0dd«exp[2mr(E0i0dd/6 + g 2 ^H 2 / 4 ) ] ^2(-rg/iBH |2r)/r,2(r), for x = l / 2 , (7.39) 

with E o o d d /6=f 2 - 1/6 - g2jigH2/4. Here we have written the background 
magnetic field dependence in the z-argument of the ^-functions. 

The transformation formulas given by eqs.(3.5.4a-e) can be used to 
express QeVen,odd i n terms of k B T=-6/2mr. Also for the general result 
eq.(7.32) holds a similar modular transformation. These transformations permit 
us to find expressions with better convergence properties for large 
temperatures. 

Remember now the first section of this chapter. We mentioned that for 
a given modular form (defined with respect to a certain subgroup of the 
modular group) it is possible to obtain the exact Fourier coefficients. In other 
words, from eq.(7.32) we can assert that (for rational v/j) it is possible to 
obtain the exact Fourier coefficients of the canonical partition function for a 
system of Fermions in a periodic single particle spectrum. Here we can return 
to the nuclear level density problem of section 4.2. Note that the Fourier 
coefficients of the canonical partition function are nothing else but the nuclear 
level density itself. Thus, we have found a way to solve exactly the calculation 
of the nuclear level density for (rational) periodic single particle spectra and 
not too high excitation energies. 

Whether the new expression for the canonical partition function leads to 
a better understanding of concrete physical problems needs to be studied more 
in detail. Let us remark that eq.(7.32) and eq.(7.35) lead us naturally to the 
consideration of some affine Kac-Moody algebras. The Weyl-Kac character 
formula eq.(7.17) has a similar form. In the numerator it contains a 0-
function and in the denominator infinite products related with Dedekind's 17-
function. This can be shown more clearly for particular affine cases. Of course, 
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the mere definition of a character [first equality in eq.(7.17)] is the origin of 
the analogies. However, we will make here only some general observations. 

Most important in the classification of the affine Kac-Moody algebras are 
the (generalized) Cartan matrices. As mentioned in the last section they are 
linked with the definition of a symmetric bilinear form. It is therefore 
appealing to tiy to interpret the bilinear form given by eq.(7.29) as a bilinear 
form associated with a Kac-Moody algebra. The simplest possibility could be 
that Q would be itself a Cartan matrix of finite type. However, the 
nondiagonal elements are not negative as required. This can be solved easily 
by a simple matrix transformation. We obtain directly the XxX Cartan matrix 
for a finite algebra A^ with R=e-i: 

A = 

2 - 1 

- 1 2 
0 -1 

0 
0 

0 0 

-1 0 

2 - 1 

0 

0 

0 

-1 2 - 1 

0 - 1 2 

(7.40) 

This Cartan matrix is related to Q by A=VQVt with: 

V = 

1 - 1 0 0 

0 1 - 1 0 

0 

0 

0 

0 

0 1 0 

0 0 - 1 

V - 1 = 

1 1 1 

0 1 1 

0 • 

0 • 

1 0 

1 0 

0 1 0 

0 0 - 1 

The quadratic form of the lattice is thus x'Ax with X-dimensional vectors x. 
The Cartan matrix A can be written as A=GG' where G is constructed with 
the basis vectors of the lattice and is called the generator matrix. For the 
lattice A^, we can take for example one of the Xx(X + i) matrices: 

G = 

- 1 1 0 0 

0 - 1 1 0 

0 

0 

0 

0 

-1 1 0 

0 -1 1 

G ' = 

- 1 0 0 

0 - 1 0 

0 

0 

1 0 

1 0 

-1 1 0 

0 1 -1 

The first leads to A and the second to Q. Clearly, the lattice is given by 
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{(x^ • • • , Xj()€Z | XQ+ • • • +X£ = 0>. The Dynkin diagram of Ax is: X+i 

- o o 
«X-i

 a

X 
(7.41) 

and has X vertices, each corresponding to the square of a coordinate in the 
quadratic form and a line for each cross term in the corresponding 
variables: jX*Ax= x^-x1x2+x^-x2x3+ • • • . The Dynkin diagram 
of the affine Lie algebra (for X>2) is: 

This diagram has X +1 vertices. The extra vertex is related to the imaginary 
roots, which lead to the infinite sets of roots A+ in the Weyl-Kac character 
formula and in the denominator identity [cf. eqs.(7.17-18)]. 

Equation (7.37) for the nondegenerated single particle levels corresponds 
to the trivial lattice. Eor zero magnetic field eqs.(7.38-39) correspond to the 
lattice A r sZ . In general, for the e-fold degenerated single particle levels, the 
lattices (and their translates) associated with the affine algebras su(e) will 
arise. 

More general bilinear forms could be introduced by starting with the 
single particle energy levels: e n j k = 6 k n + n s ; n=0, 1, . . . ; j= l , • • •, e; 
k= l , - • •, f; for positive integers 6k, e, f and jXj€E{0,l,* • • ,6k- l} . Although 
the corresponding single particle spectra could also be understood using the 
original levels (i.e. all 6t=6 and ß} rational), the underlying number 
theoretical symmetries would become more apparent 

The 0-function in the expression for the canonical partition function, 
eq. (7.32), contains additionally to Q the characteristic a. Accordingly, the 
associated mathematical structures become richer. For example, the elements ŝ  
could be identified with the gradation of type s referred just before eq.(7.19). 
The very strange formula [eq. (7.20)] seems to bear a more important and 
clearer role for the study of periodic single particle spectra in Nuclear and 
Clusters Physics. 

Here we want to conclude this chapter. We leave open the possible 
developments of the obtained new relations. 

(7.42) 
ö o 
l l 

O Ö 
1 1 
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CHAPTER EIGHT 

COMPLEX ANALYSIS AND GRAPH THEORY 

The functions we have considered in this work were sometimes well 
known functions of Analytic Number Theoiy and in other occasions we could 
not found references about them. Nevertheless in both cases it is difficult to 
have a clear picture of them, since, involving infinite series and products, they 
are quite complicated. The simplest (and certainly the most fundamental) 
function of this kind, the Riemann C-function, keeps still hidden some secrets 
like for example its zeros distribution. We were very interested to "see" 
somehow all the considered functions and after some attempts we came to a 
very simple and interesting method, which we like to expose shortly here. 

We try now to give a graphical meaning to each analytic function we 
considered. We have stressed many times our interest not on the particular 
values that a function attains but rather on the understanding of its most 
relevant characteristics in terms of as few parameters as posssible. For an 
analytic function, we look after its singularities and after its transformation 
properties. Similarly? if we like to have a clear graphical representation for a 
given function, we do not look for its particular values but mainly for a 
graphical representation for its singularities and its transformation properties. 
We tiy therefore to introduce concepts from the Theoiy of Functions into 
Graph Theory, i.e. a kind of "analytic Graph Theory". Needless to say that 
our considerations are very modest since both mentioned theories are very 
developed and the author's knowledge on them scarse. An introduction to 
Graph Theoiy can be found in B. Bollobäs "Graph Theory", (1979). 

We start with some definitions to settle ideas. A graph G is an ordered 
pair of disjoint sets (E,V) such that the set of edges E is a subset of the set 
of unordered pairs of vertices V. An edge vw with endpoints v,w€ V is said 
to join the vertices v and w. Two vertices joined by an edge are called 
adjacent. If v coincides with w we call the edge a loop. If two edges have 
the same endvertices they are called multiple. Any edge has at least one 
vertex but the vertices can exist isolated. The order of a graph is its number 
of vertices. The degree of a vertex is the number of its adjacent vertices. We 
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will consider only graphs without loops and with vertices of order at least two. 
Further restrictions will appear in the sequel, although extensions of our 
considerations to more general graphs will often be possible. 

Let us now follow first a path from Complex Analysis towards Graph 
Theory. Later, we shall make some comments concerning the inverse path. 
For a given single valued function f(z) of one complex variable z in certain 
domain U c c , we associate a graph Gf in the following way. We define a 
four colorable graph assigning to each point in U a label ("color") according 
to the following scheme: 

Color Re f Im f 

1 >0 >0 

2 >0 <0 

3 <0 <0 

4 <0 >0 

This labeling is of course arbitrary and the resulting tessellation, tiling or 
parketing is a natural extension of the old well known two coloring : color 1 
(2) for the upper (lower) half plane, for complex maps. 

The set of points for which we cannot assign a single color are, besides 
the singularities (say poles, zeros, saddle points, essential singularities, cuts, 
etc.), the points at which Re f=0 or at which Im f=0. This set of points 
constitutes the edges of the graph Gf with vertices at the singularities. 
Multiply valued functions can be considered assigning a set of graphs 
depending on the number of branches. 

Clearly, at a simple pole and at a simple zero we have the following 
local behaviour : 
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Re<0 
lm>0 4 

Re>0 
1 lm>0 

Re<0 3 
lm<0 

2 Re>0 
lm<0 

Re<0 
lm<0 3 

Re>0 
2 lm<0 

Re<0 4 
lm>0 

1 Re>0 
lm>0 

Near a simple zero Near a simple pole 

We have in this way associated a positive (counterclockwise) direction for the 
colors around a pole and a negative (clockwise) direction around a zero. In 
general for poles (zeros) of order n we will have 4n sectors of n/2n , in 
positive (negative) direction. It can futher occur near a saddle point the 
following picture: 

Color a Color b 

Color b Color a 

That is, a vertex with only two contiguous colors: a=(b±l)mod 4. But this 
will not happen in general. For the moment this fact is immaterial. 

We notice also the following eight possible permutations after the 
displayed mappings : w 

(1, 2, 3, 4) 
(2, 3, 4, 1) 

f(z) 
-if(z) 

(4, 3, 2, 1) 
(3, 2, 1, 4) 

- l / f (z) 
-i/f(z) 

(3, 4, 1, 2) 
(4, 1, 2, 3) 

-f(z) 
if(z) 

(2, 1, 4, 3) 
(1, 4, 3, 2) 

l/f(z) 
if(z) 

In all these transformations the number of vertices, edges and regions are 
conserved, only the orientation of the colors around vertices is changed or/and 
their relative positions are changed. 

The corresponding maps for the complex conjugated functions are also 
easily recognized since 1/f = f*/|f|2. The missing combinations can be 
achieved including also branch cuts. 
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If we consider first only rational functions then the above 
considerations are enough. We obtain a tiling of the Riemann sphere and the 
corresponding graph satisfies Euler's equation : 

X = 2 - 2 g = V - E + F , (8.1) 

were g is the genus (for the sphere g=0), V the number of vertices, E the 
number of edges and F the number of faces. The number X is called the 
Euler-Poincarg characteristic. We show in Figure 8.1 and Figures 8.2 
examples for rational functions. 

The set of Figures 8.2 shows automorphic functions of the sphere. An 
automorphic function is an analytic function that takes the same values at 
points which are equivalent under a discrete group of linear fractional 
transformations (cf. eq.(3.5.4)), i.e. a subgroup of the modular group. The left 
figure corresponds to the tetrahedral function f t e ( r(z)= 12i/~3 u 2 /v 3 and u = 
z (z 4 - l ) , v=z 4 + 2i^~J z 2 + l . The right figure represents the icosahedral 
function f i c o s . (z)=u2 /1728 v* with u=z 3 0 + 522 z 2 5 -10005 z 1 0 -522 z 5 + l and 
v = z 5 ( z 1 0 + l l z 5 - l ) . We recognize easily the circles associated with the 
Möbius transformations forming the groups. The additional feature not present 
in the well known two colored tesselations (see for example W. Magnus, 
"Noneuclidean Tesselations and their Groups", Acad.Press, N.Y., 1974) are the 
non-circular curves, which among other things, provide us the distinction 
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between poles, zeros and saddle points. With respect to these new curves we 
couid also define groups of reflexions. 

Figure 8.2 Automorphic functions of the sphere. 

At first it appears, that we have obtained just a two colorable graph, 
since the colors 2 (3) and 4 (1) do not touch each other along any edge. But 
it is easy to find a four colorable graph by means of the following 
deformation usual in Graph Theory. We add a small circle around each 
vertex and give to the enclosed area one of the surrounding colors. This leads 
to a graph with vertices of valence three, this procedure is equivalent to the 
following reductions : 

We have selected the color 1 for vertices corresponding to zeros and the color 
2 for poles. The simplest example corresponds to f(z) = z and leads to a four 
colored tetrahedron. 
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As next we consider also the presence of essential singularities. In 
general such functions lead us to higher genus surfaces with punctures. The 
resulting graphs can be infinite and non-planar. In Figure 8.3 we display 
graphs for the T-function and for the Riemann ^-function, both with one 
essential singularity at infinity. For the first: Re zG( -4 , l ) , Im zG (-2.5,2.5) 
and for the second: Re ze ( -10 ,3 ) , Im z e ( - l , 2 2 ) . 

Figure 8.3 The T-function and the Riemann ^-function 
For the last can recognize two non-trivial zeros at 

z= 0.54 i 14.135 and z= 0.5 + i 21.022 
•j 

The series of graphs of Figure 8.4 show a Jacobi function I £ ( Z | T ) as a 
function of z. We show aivn a quotient of these functions, in this case it is an 
elliptic function (i.e. a doubly periodic meromorphic function). A fundamental 
region of the doubly periodic tiling yields a single cover of the torus and a 
double cover of the sphere. 

Functions with natural boundaries are also well known and 
good examples are the partitions functions of statistical physics. These 
functions cannot be analytically continued across a boundary on which they 
are in general singular, say at all "rational points". Examples are the 
Jacobi i£(z|t) functions as, functions of r as well as rational functions on 
them. We take z = 0 and the natural boundary is in this case the real line 
and r must be on the upper half plane. 
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Figure 8.4 A Jacobi -^-function and the quotient •dt2(z)A*i.(z)-
For the last we can visualize easily a fundamental region with 

corners at four-fold vertices. 

In Figure 8.5 we show some examples. We display pictures for Klein's 
modular invariant J(r) and for the elliptic modular function X(r). 

Figure 8.5 Modular invariant J(R) and elliptic modular function X(T). 
For the first we see twice the fundamental region (and a corner at 

For the second once the fundamental region (ana a corner at 0 0 ) . 

The resulting graphs are infinite and planar, but if we consider quotients 
by certain discrete groups or identify equivalent edges, we can obtain again 
tessellations of the sphere. Both functions are automorphic functions, the 
first with respect to the full modular group, the second with respect to the 
congruence subgroup of level 2 ( a = d = ± l mod 2, b = c = 0 mod 2) . 
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The above graphical representation of functions can be extended further 
to higher genera and to non-differentiable boundaries, but such considerations 
are not important now. 

Let us observe that the above 4 coloring results from the selection of 
two curves from a vector f ield with sources and sinks defined on the 
defining domain of the complex function f. Thus, we could also select other 
pairs of different curves and find essentially the same tilings. If we map the 
set of curves we recognize the vector field with critical points at zeros, poles 
and saddle points (for single valued functions). The resulting graph is the 
union of two dual graphs on the surface. One graph, say Gf , has regions 
with vertices at the zeros (resp. poles for the dual Gf') and centered at the 
poles (resp. zeros for the dual Gf') . In Figure 8.6 we show examples of the 
associated direction fields using a set of narrow bands (bounded by two 
integral curves of the field) connecting poles with zeros and sometimes with 
saddle points. In both cases we show elliptic functions. The left is the same 
function as the right function of Fig.8.4. The right function of Fig.8.6 shows 
i f2 ( z )A* i ( z ) plus a constant. 

? Figure 8.6 Direction fields 

For orientable compact surfaces the index theorem of H. Poincare(1885) 
establishes that the sum of indices of the critical points for a given vector 
field with V sources, each of index 1, E saddle points, each of index - k 
(according to their multiplicity), and F sinks, each of index 1, satisfies Euler's 
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equation eq.(8.1). It is easy to verify that the presented fields in Figures 8.6 
and 8.8 correspond to genus one. Most important is the fact that the graph 
with vertices at the zeros (resp. poles) and edges formed by integral curves 
avoiding the poles (resp. zeros) provides a cell decomposi t ion of the 
enveloping surface. Each cell is completely covered by fibres (integral curves) 
joining poles with zeros. 

In Figure 8.7 we display the corresponding decompositions provided by 
Fig.8.6. The (shifted) horizontal foliation of the left figure can be easily 
computed using the Green's function for the square, but the foliation of the 
right is only pictorical. Both foliations can be thought as horizontal foliations 
of half infinite cylinders joined at the cells edges. The graphs formed by the 
edges of the cell decomposition are called fat graphs, when the edges are 
thickened slightly into bands. Let us add, that the number of colors necessary 
to assign a different color to any two adjacent cells for genus one is equal to 
seven, whereas for genus zero remains equal to four. 

BP mm 
Figure 8.7 Cell decomposition and foliations for Fig.8.6 . 

We can associate an orthogonal vector f ie ld after a carefull 
observation of the vector fields above. We find out that the field given by the 
absolute value of the function f, i.e. |f(z)|, leads us to a vector field consisting 
of concentric deformed circles around the zeros and poles, whereas near the 
saddle points the field lines look similar as for the original field but rotated 
by n/2 . We ascribe an orientation to the displayed direction fields giving a 
positive (clockwise) orientation near poles and a negative near poles. In 
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Figure 8 .8 we can see an example of this kind. 

Figure 8.8 Orthogonal direction fields to figure 8.6 

In Figure 8.9 we can see a projection of a three dimensional 
embedding for two elliptic functions with a double pole and two simple zeros 
at different positions. 

Figure 8.9 Three dimensional embedding for elliptic functions. 

In these computations we recognize the foliation of the surface of the 
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three torus by "closed strings" or deformed circular trajectories joining and 
splitting at 3 "interaction points" located at the middle horizontal axis. It is 
important to notice that the presented embedding is rather arbitrary, since 
before we join two equivalent edges of the fundamental region, we could twist 
them by any multiple of 2n. This situation is a result of the freedom we have 
to define the fundamental region by any "rectangle" of unit area, bound by 
two pairs of congruent curves and with vertices at four equivalent points. We 
can also understand this symmetry as an invariance under modular 
transformations of the quotient of both lattice periods. In Figure 8 .10 we 
display the foliations of the type of Figure 8.6 for an elliptic function, with a 
double pole and a double zero in the fundamental region, under the area 
preserving map: x'=x+y , y'=x+2y , or equivalently, under the modular 
transformation: r' = (r+ l ) / ( r + 2 ) . 

Figure 8 .10 Three dimensional embedding for a direction field 
under a modular transformation. 
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Conclusions 

C O N C L U S I O N S 

In conclusion we like to stress the following results: 

1) We have shown a consistent method to study and include the most 
relevant characteristics of an adopted single particle spectra for the explicit 
calculation of the nuclear level density. This includes the "smooth" behaviour 
as well as the shell energy corrections and their excitation energy dependency. 

2 ) Only the consideration of an energy dependent chemical potential can lead 
to a correct description of the shell effects in the nuclear level density. This 
follows from the discontinuous character of the infinite sums as a whole. 
Instead of taking only few terms of a given series, it is necessary to 
understand them as analytic functions and to study their transformation 
properties. 

3 ) All other analytic attempts in the current literature (to our best 
knowledge) on nuclear level densities can be seen as particular cases of the 
presented method. This is also true for those investigations which assume a 
smooth single particle level density given by a power series or by a Fourier 
series. A large class of single particle spectra was considered additionally. 

4 ) The presented method is not only of academic interest but provides us 
with a useful tool for applications as our calculations in chapter five clearly 
show. We were able to reproduce experimental results introducing a minimum 
of physical assumptions (periodic spectra). The consideration of more "realistic" 
spectra, e.g. of the Nilsson or Woods-Saxon types, is also possible in principle. 

5 ) As we have shown, in particular in chapters six and seven, the methods of 
Analytic Number Theory can also be applied successfully in related problems 
in Nuclear Physics or in other fields of Mathematical and Theoretical Physics 
in a similar way as we have done here. Some new results were obtained for 
the particle-hole state density in chapter sue. A new expression for the 
canonical partition function for a system of Fermions in a periodic spectrum 
was found in chapter seven. The theories of modular forms and of Kac-
Moody algebras were shown to be related to the study of partition functions 
in Nuclear and in Clusters Physics. 

6) We introduced additionally, to improve our understanding of the involved 
analytical functions, a simple graphical method (cf. chapter eigth) which is 
applicable in a more general context. 
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