1057

NEANDC (E) - 212 U Vol. V INDC (Ger) - 22/L + Special

PROGRESS REPORT ON NUCLEAR DATA RESEARCH IN THE FEDERAL REPUBLIC OF GERMANY

for the Period April 1, 1979 to March 31, 1980

June 1980

Edited by S.M. Qaim Institut für Chemie (1): Nuklearchemie Kemforschungsanlage Jülich GmbH

NEANDC (E) - 212 U Vol. V INDC (Ger) - 22/L + Special

PROGRESS REPORT ON NUCLEAR DATA RESEARCH IN THE FEDERAL REPUBLIC OF GERMANY

for the Period April 1, 1979 to March 31, 1980

June 1980

Edited by S.M. Qaim Institut für Chemie (1): Nuklearchemie Kernforschungsanlage Jülich GmbH

a

This document contains information of a preliminary or private nature and should be used with discretion. Its contents may not be quoted, abstracted or transmitted to libraries without the express permission of the originator.

FOREWORD

This report has been prepared to promote exchange of nuclear data research information between the Federal Republic of Germany and the other member states of NEA and IAEA. It brings together progress reports from KFZ Karlsruhe, KFA Jülich, the Universities of Hamburg, Kiel, Köln, Darmstadt, Mainz, Marburg, Stuttgart und München, as well as from PTB Braunschweig and FIZ Karlsruhe. The emphasis in the works reported here has been on measurement, evaluation and compilation of application oriented nuclear data, such as those relevant to fission and fusion reactor technologies, development of intense spallation neutron sources, production of medically important short-lived radioisotopes, etc.

Each contribution is presented under the laboratory heading where the work was done. If the work is relevant to requests in the World Request List for Nuclear Data, WRENDA 79/80 (INDC(SEC)-73/URSF), the corresponding request identification numbers have been listed after the title and authors' names of the respective contribution.

Acknowledgement is made to the Board of Directors of KFA Jülich for a financial grant to publish this report. The CINDA type index has been prepared by Dr. H. Behrens and Mr. G. Schust of FIZ Karlsruhe.

Jülich, June 1980

S.M. Qaim

CONTENTS

INSTITUT FÜR ANGEWANDTE KERNPHYSIK KERNFORSCHUNGSZENTRUM KARLSRUHE

1.	Isochronous Cyclotron	1
1.1	Determination of High-Precision Resonance	1
	Parameters for 12 C+n and 16 O+n in the Region	
	3 to 11 MeV	
	S. Cierjacks, F. Hinterberger, G. Schmalz, D. Erbe,	
	P. v. Rossen, B. Leugers	
1.2	Experimental Investigation of ${}^{16}_{0+n} \rightarrow {}^{17}_{0}$ (T = 3/2) Resonances	4
	F. Hinterberger, S. Cierjacks, G. Schmalz, P. v. Rossen,	
	D. Erbe, B. Leugers	
r	3 MV Van de Graaff-Accelerator	-
2. 2 1	Structural Materials	5
2.1		-
2.1.1	Determination of the Capture Width of the 27.7 keV	5
	s-Wave Resonance in Fe	
	K. Wisshak, F. Käppeler	
2.1.2	The Neutron Capture Cross Sections of Yb, 170 Yb, Lu, 175 Lu and 184 W	5
	H. Beer, F. Käppeler, K. Wisshak	
2.2	Fission Products	9
2.2.1	Neutron Capture Cross Sections of 138 140,142 Ce, 175,176 Lu and 181 Ta at 30 keV	9
	H. Beer, F. Käppeler	
2.2.2	Capture Cross Sections of Noble Gases	9
	B. Leugers, F. Käppeler	

		Page
2.3	Actinide Cross Sections	14
2.3.1	The Neutron Capture and Fission Cross Sections of ²⁴¹ Am in the Energy Range from 10 to 250 keV K. Wisshak, F. Käppeler	14
2.3.2	Fission Cross-Section Measurement of ²⁴¹ Am in the Energy Range from 10 to 1030 keV W. Hage, K. Wisshak, F. Käppeler	14
2.3.3	The Branching Ratio in ²⁴² Am following Neutron Capture in ²⁴¹ Am K. Wisshak, J. Wickenhauser, F. Käppeler	15
2.3.4	The Distribution of Fragment Mass, Fragment Kinetic Energy and the Number of Prompt Fission Neutrons from Fast Neutron Induced Fission of ²³⁷ Np A.A. Naqvi, F. Käppeler, F. Dickmann, R. Müller	17

INSTITUT FÜR KERNPHYSIK

KERNFORSCHUNGSZENTRUM KARLSRUHE

1.	SIN Cyclotron	20
1.1	Absolute Yields and Spectra of Neutrons and	20
	Secondary Protons from 590 MeV (p,x) Reactions	
	on Lead Targets	
	S. Cierjacks, M.T. Rainbow, M.T. Swinhoe, L. Buth	
1.2	Determination of Fast Neutron Spectra via Proton	20
	Recoil Detection using Unfolding Techniques	
	M.T. Swinhoe, S. Cierjacks, M.T. Rainbow, L. Buth	

		Page
INSTIT	UT FÜR NEUTRONENPHYSIK UND REAKTORTECHNIK	
KERNFC	RSCHUNGSZENTRUM KARLSRUHE	
1.	Nuclear Data Evaluation	25
1.1	Neutron Cross Sections for Actinides	25
	F.H. Fröhner, B. Goel	
1.2	Very Fast Calculation of Doppler-broadened Multi-level	26
	Cross Sections	
	F.H. Fröhner	
TNOMTO		
TNOLL	OF FOR CHEMIE (1): NORLEARCHEMIE	
KERNFC	RSCHUNGSANLAGE JULICH	
1.	Neutron Data	27
1.1	Measurement of (n,t) and (n, He) Reaction Cross Sections	27
	S. Khatun, S.M. Qaim, R. Wölfle	
1.2	Statistical Model Analysis of (n,t) and (n, He) Reactions	27
	H.V. Klapdor, S.M. Qaim, H. Reiss	
1.3	Cross-Section Measurements on Hydrogen and Helium	28
	Producing Reactions	
	S. Khatun, S.M. Qaim, R. Wölfle	
1.4	Review of Cross-Section Data	30
	S.M. Qaim	
2.	Charged Particle Data for Radioisotope Production	30
2.1	Excitation Functions for the Production of "Organic"	30
	Radioisotopes	

H. Backhausen, S.M. Qaim, G. Stöcklin, R. Weinreich

 \sim

(viii)

		Page
2.2	Cross-Section Data for the Production of "Inorganic"	30
	Radioisotopes	
	G. Comparetto, S.M. Qaim, G. Stöcklin, R. Weinreich	
2.3	Radiation Dose Calculations	31
	R. Weinreich	
INSTITUT	FUR KERNPHYSIK: EXPERIMENTELLE KERNPHYSIK II	
KERNFORS	CHUNGSANLAGE JÜLICH	
	Studies at the Fission Product Separator JOSEF	35
	G. Battistuzzi, K. Kawade, B.D. Kern, T.A. Khan,	
	W.D. Lauppe, H. Lawin, H.A. Selic, K. Sistemich,	
	A. Wolf	
I. INSTI	TUT FÜR EXPERIMENTALPHYSIK	
UNIVERSI	TÄT HAMBURG	
1.	Postfission Neutrons from Proton Induced Fission of	37
	235,236,238 _U	
	P. Plischke, R. Langkau, W. Scobel, R. Wien	
2.	Spin Depletion by Preequilibrium Neutron Emission	39

H.H. Bissem, Md. A. Rahman, W. Scobel

	Page	Э
INSTITUT FÜR REINE UND ANGEWANDTE KERNPHYSIK		
UNIVERSITÄT KIEL, FORSCHUNGSREAKTOR GEESTHACHT		
Fast Chopper Time-of-Flight Spectrometer	4:	1
H.G. Priesmeyer, U. Harz, P. Fischer		
INSTITUT FÜR KERNCHEMIE		
UNIVERSITÄT ZU KÖLN		
1. Integral Excitation Functions of Nuclear Rea	actions Relevant 4	5
to Cosmochemistry		
R. Michel, G. Brinkmann, W. Herr		
2. Experimental Excitation Functions of p-Induce	ed Reactions 50	с
on Ba and Comparison with Theory		
K. Prescher, G. Brinkmann, W. Herr		
FACHBEREICH ANORGANISCHE CHEMIE UND KERNCHEMIE		
TECHNISCHE HOCHSCHULE DARMSTADT		
(p,t) , (d,t) and (α,t) Cross Sections for	or Al, V, Nb and Au 55	5
M. Merkel, H. Münzel		
INSTITUT FÜR KERNCHEMIE		
UNIVERSITÄT MAINZ		
Influence of Prompt Neutron Emission and Scission	on Shape on 5	7
the Product Yield Distribution in ²³⁵ U (n, f)		
H.O. Denschlag, H. Braun. W. Faubel, G. Fischbad	ch, H. Meixler,	
G. Paffrath, W. Pörsch, R. Sehr, B. Sohnius, M.	Weis, H. Schrader,	
G. Siegert, J. Blachot, Z.B. Alfassi, H.N. Erter	n, T. Isak-Biran,	
T. Tamai, A.C. Wahl, K. Wolfsberg		

	Page
INSTITUT FÜR STRAHLENPHYSIK	
UNIVERSITÄT STUTTGART	
Analyzing Power of Uranium-238 and Lanthanum for	60
7.6 MeV Neutrons	
J.W. Hammer, D. Kollewe, W. Kratschmer, G. Schleußner, E. Speller	
REAKTORSTATION GARCHING, FACHBEREICH PHYSIK	
TECHNISCHE UNIVERSITÄT MÜNCHEN	
1. Coherent Neutron Scattering Lengths	64
L. Koester, K. Knopf, J. Meier	
2. <u>Neutron Cross Sections</u>	65
L. Koester, W. Waschkowski	
PHYSIKALISCH-TECHNISCHE BUNDESANSTALT	
1. Radionuclide Data	
Gamma and X-Ray Emission Probabilities	66
K. Debertin, U. Schötzig	
2. Neutron Cross Sections	66
Evaluation of a "Best" Set of Californium 252 Spectrum-	66
Averaged Cross Sections	
W. Mannhart	
3. Variable Energy Cyclotron	70
High-Precision Fast Neutron Scattering Experiments	70
H.J. Brede, H. Klein, H. Schölermann, B.R.L. Siebert	

	Page
INSTITUT FÜR KERNCHEMIE	
PHILIPPS-UNIVERSITÄT MARBURG	
1. Gamma-Ray Catalog	73
U. Reus, W. Westmeier, I. Warnecke	
2. Alpha-Energy Table	73
W. Westmeier, R.A. Esterlund	

FACHINFORMATIONSZENTRUM ENERGIE PHYSIK MATHEMATIK

Status Report				
H. Behrens, J.W. Tepel				

APPENDIX	I.	Addresses of Contributing Laboratories	77
APPENDIX	II.	CINDA Type Index	81

INSTITUT FÜR ANGEWANDTE KERNPHYSIK KERNFORSCHUNGSZENTRUM KARLSRUHE

- 1. <u>Isochronous Cyclotron</u>
- 1.1 Determination of High-Precision Resonance Parameters for ¹²C + n and ¹⁶O + n in the Region 3 to 11 MeV*

S. Cierjacks⁺, F. Hinterberger⁺⁺, G. Schmalz, D. Erbe, P. v. Rossen⁺⁺, B. Leugers

Narrow resonances in the 12 C + n and 16 O + n systems have been investigated from total neutron cross-section measurements performed at the Karlsruhe fast neutron facility with a spectrometer resolution of 5.5 ns \cdot m⁻¹. Resonance energies and total and partical decay widths have been determined employing either a single- or multi-level Breit-Wigner formalism of noninterfering resonances. The results of the resonance analyses are listed in Tables I a and I b. Resonance energies and widths are given for the laboratory system as well as the cm system. Using neutron binding energies from Wapstra's data tables [1], the analyses also yielded very precise 13 C and 17 O excitation energies which are given in column 7. Spin and parity assignments in column 8 were taken from references 2 and 3. In cases of unknown J^T values a possible J^T value was derived from our analysis.

* Work published in Nucl.Instr.Methods 169 (1980) 185

Now at Institut für Kernphysik, Kernforschungszentrum und Universität Karlsruhe

' Institut für Strahlen- und Kernphysik, Universität Bonn

-1-

Lab. system			cm system					
E _R (keV)	Γ(keV)	Γ _{no} (keV)	E _R (keV)	Γ (keV)	Γ (keV) n _o	E _x (keV) ⁸	Ĵ ^π ρ	
3211.70 ± 0.1	7 1.45 <u>+</u> 0.05	1.45 ± 0.05	3020.89 ± 0.16	1.38 ± 0.05	1.38 <u>+</u> 0.05	7165.19 ± 0.8	5 -	
3438.38 ± 0.19	9 0.68 <u>+</u> 0.24	0.68 + 0.24	3243.08 ± 0.19	0.64 ± 0.23	0.64 <u>+</u> 0.23	7378.38 <u>+</u> 0.8	<u></u> 2 +	
3441.73 ± 0.1	+ 1.02 ± 0.21	1.02 <u>+</u> 0.21	3237.23 ± 0.14	0.96 ± 0.20	0.96 <u>+</u> 0.20	7381.53 <u>+</u> 0.8	$\frac{5}{2}$ -	
3767.76 ± 0.2	$2 15.4 \pm 0.3$	13.8 <u>+</u> 0.6	3543.86 <u>+</u> 0.21	14.4 <u>+</u> 0.3	- 13.0 <u>+</u> 0.6	7688.16 <u>+</u> 0.8	$\frac{7}{2}$ -	
4463.41 ± 0.20	6 12.1 <u>+</u> 0.5	8.6 ± 0.3	4198.08 ± 0.24	11.4 ± 0.5	8.1 ± 0.3	8342.38 ± 0.8	$\frac{1}{2}$ +	
4527.12 ± 0.0	7 6.56 <u>+</u> 0.14	5.05 ± 0.12	4258.00 ± 0.07	6.17 <u>+</u> 0.13	4.75 ± 0.11	8402.30 ± 0.8	$\frac{-5}{2}$ +	
4594.83 ± 0.09	2.26 ± 0.12	1.25 <u>+</u> 0.04	4321.67 ± 0.09	2.13 \pm 0.11	1.18 <u>+</u> 0.04	8465.97 ± 0.8	$\frac{1}{72}$ +	
4631.78 ± 0.12	2 7.33 <u>+</u> 0.23	3.04 <u>+</u> 0.09	4356.38 ± 0.11	6.89 <u>+</u> 0.22	2.86 ± 0.08	8500.68 ± 0.8	- 	
4829.9 + 0.4	58.8 <u>+</u> 0.6	52.0 <u>+</u> 1.2	4542.7 ± 0.4	55.3 <u>+</u> 0.6	48.9 <u>+</u> 1.1	8687.0 <u>+</u> 0.9	$\frac{1}{2}$ -	
5127.0 + 1.6	28.0 <u>+</u> 2.0	25.0 <u>+</u> 2.0	4822.1 <u>+</u> 1.5	26.3 <u>+</u> 1.9	- 23.5 <u>+</u> 1.9	8966.4 <u>+</u> 1.7	$\frac{1}{2}$ -	
5368.90 ± 0.09	- 3.75 ± 0.14	2.52 <u>+</u> 0.08	5049.61 <u>+</u> 0.08	3.53 ± 0.13	2.37 ± 0.08	9193.91 ± 0.8	$\frac{1}{5}$ +	
5919.67 ± 0.1	+ 24.6 <u>+</u> 0.3	19.1 <u>+</u> 0.6	5567.53 <u>+</u> 0.13	23.1 ± 0.3	18.0 <u>+</u> 0.6	9711.83 ± 0.8	7 +	
5995.68 ± 0.1	5 12.4 ± 0.3	10.9 <u>+</u> 0.3	5639.00 ± 0.14	11.7 <u>+</u> 0.3	10.3 <u>+</u> 0.3	9783.30 <u>+</u> 0.8	3 +	
6076.08 ± 0.1	5 4.26 ± 0.24	3.58 + 0.21	5714.61 + 0.14	4.01 + 0.23	3.37 + 0.20	- 9858.91 + 0.8	$(\frac{5}{2}-)^{c}$	
6094.8 + 1.0	17.8 + 1,8	- 11.6 + 1.3	5732.3 + 0.9	- 16.7 + 1.7	10.9 + 1.2	9876.6 + 1.2	$(\frac{1}{2})^{c}$	
6404.6 <u>+</u> 0.5	52.2 ± 0.8	- 23.7 <u>+</u> 0.6	6023.5 ± 0.5	49.1 <u>+</u> 0.8	22.3 ± 0.6	10167.8 <u>+</u> 0.9	$\left(\frac{7}{2}-\right)^{c}$	
6820.7 ± 0.6	45.2 <u>+</u> 1.2	18.3 <u>+</u> 0.7	6414.8 <u>+</u> 0.6	42.5 ± 1.1	17.2 <u>+</u> 0.7	10559.1 ± 1.0	$\left(\frac{7}{2}-\right)^{c}$	
7199.3 ± 1.3	44.4 <u>+</u> 1.5	28.1 <u>+</u> 1.0	6770.8 <u>+</u> 1.2	41.7 <u>+</u> 1.4	26.4 <u>+</u> 0.9	10915.1 ± 1.4	$(\frac{5}{2}+)^{c}$	
7373.31 ± 0.18	3 2.5 <u>+</u> 0.3	2.00 <u>+</u> 0.13	6934.38 <u>+</u> 0.17	2.4 <u>+</u> 0.3	1.88 <u>+</u> 0.12	11078.68 <u>+</u> 0.8	$\frac{1}{2}$ -	
8848.8 ± 0.6	7.3 <u>+</u> 1.2	1.35 ± 0.15	8321.7 <u>+</u> 0.6	6.9 <u>+</u> 1.1	1.27 ± 0.14	12466.0 ± 1.1	$\frac{3}{2}$ -	
9414.9 ± 0.6	2.7 ± 1.1	0.43 ± 0.06	8854.0 ± 0.6	2.5 <u>+</u> 1.0	0.40 <u>+</u> 0.06	12998.3 + 1.0	<u>5</u> -	
10725.5 ± 1.5	21.8 ± 1.7	2.20 ± 0.17	10086.0 ± 1.4	20.5 <u>+</u> 1.6	2.07 <u>+</u> 0.16	14230.3 <u>+</u> 1.6	$\frac{7}{2}$ -	

Table I a. 16 O + n resonance parameters from the resonance analysis and recommended 17 O excitation energies

a 16 0 + n binding energy B = (4144.3 + 0.8) keV from ref. [1].
 b Ref. [2] unless otherwise noted. ^C Present work.

-2-

Lab. system				cm system	
E _R (keV)	Γ (keV)	Γ _{n_o} (keV)	E _R (keV)	Γ(keV) Γ _{n_O} (keV)	E_{x} (keV) ^a $J^{\pi b}$
4937.12 <u>+</u> 0.09	1.87 <u>+</u> 0.08	1.72 + 0.04	4553.45 <u>+</u> 0.09	1.72 ± 0.08 1.60 ± 0.04	9499.84 \pm 0.09 $(\frac{5}{2} -)^{c}$
5365.21 <u>+</u> 0.18	25.7 <u>+</u> 0.4	22.3 <u>+</u> 0.5	4948.19 ± 0.17	23.7 ± 0.4 20.6 ± 0.5	9894.58 <u>+</u> 0.17 <u>-</u> 3-
6297.07 ± 0.32	55.2 <u>+</u> 0.6	47.0 <u>+</u> 1.0	5807.42 ± 0.30	50.9 ± 0.6 43.4 ± 0.9	10753.8 \pm 0.3 $\frac{7}{2}$ -
6361.1 <u>+</u> 0.6	19.6 <u>+</u> 1.1	5.1 <u>+</u> 0.3	5866.5 <u>+</u> 0.6	18.1 <u>+</u> 1.0 4.7 <u>+</u> 0.3	10813.0 <u>+</u> 0.6 (5 -)
6646.71 <u>+</u> 0.20	4.3 <u>+</u> 0.4	2.71 <u>+</u> 0.17	6129.78 <u>+</u> 0.19	4.0 <u>+</u> 0.4 2.52 <u>+</u> 0.16	$11076.20 \pm 0.19 (\frac{1}{2})$
7726.8 <u>+</u> 2.1	88.3 <u>+</u> 3.6	74.8 <u>+</u> 3.3	7125.6 <u>+</u> 2.0	81.5 <u>+</u> 3.3 69.0 <u>+</u> 3.0	$(\frac{3}{2}-)^{c}$

Table I b. 12 C + n resonance parameters from the resonance analysis and recommended 13 C excitation energies

^a 12_C + n binding energy B = (4946.392 <u>+</u> 0.030)keV from ref. [1].

^b Ref. [3] unless otherwise noted.

^c Bresent work.

1.2 Experimental Investigation of ${}^{16}0 + n - {}^{17}0$ (T = 3/2) Resonances*

F. Hinterberger⁺, S. Cierjacks⁺⁺, G. Schmalz, P. v. Rossen⁺, D. Erbe, B. Leugers

Very sharp, isospin-forbidden, resonances have been studied by a measurement of the total neutron cross section of oxygen. Employing an improved neutron time-of-flight system, measurements were performed with a time-resolution of 1:2100 for 10 MeV neutrons. The absolute energy calibration allowed the determination of resonance energies with an accuracy between 10^{-5} and 10^{-4} . Besides the investigation of 10 known T = 3/2 states, a search for additional T = 3/2 resonances was undertaken. From resonance analyses of narrow cross section excursions, energies and total and partial decay widths (or upper limts of the last two quantities) were derived. In the neutron energy range from 11 - 15 MeV seventeen energy-sharp anomalies were found in the cross section at the predicted neutron energies of possible 16 O + n \rightarrow 17 O (T = 3/2) resonances. The obtained results have been compared with shell-model predictions of isospin non-conserving particle decays.

References

[1] A.H. Wapstra, K. Bos, At.Data Nucl.Data Tables <u>19</u> (1977) 177
[2] F. Ajzenberg-Selove, Nucl.Phys. <u>A 281</u> (1977) 1
[3] F. Ajzenberg-Selove, Nucl.Phys. <u>A 268</u> (1976) 1

* Work to be submitted for publication in Nuclear Physics

- Institut für Strahlen- und Kernphysik, Universität Bonn
- ++ Now at Institut für Kernphysik, Kernforschungszentrum und Universität Karlsruhe

2. **3**MV Van de Graaff-Accelerator

2.1 Structural Materials

2.1.1 Determination of the Capture Width of the 27.7 keV s-Wave Resonance in Fe *

K.Wisshak , F. Kāppeler
(Relevant to request numbers: 692101, 692103,
692104, 714005, 741040, 741046, 753036, 792201)

The capture width of the 27.7 keV s-wave resonance in 56 Fe has been determined using a setup completely different from previous experiments. A pulsed 3 MV Van de Graaff accelerator and the 7 Li(p,n) reaction served as a neutron source. Capture gamma-rays were observed by a Moxon Rae detector and gold was used as a standard. The samples were positioned at a flight path of only 7.6 - 8.0 cm. This allowed the use of very thin samples avoiding large multiple scattering corrections. Three metallic discs enriched in 56 Fe were used with a thickness between 0.6 and 0.15 mm. Events due to capture of resonance scattered neutrons in the detector or surrounding material were completely eliminated by timeof-flight. The result for the capture width is $\Gamma_{\gamma} = 0.99$ with a statistical uncertainty of 1.3 % and a systematic uncertainty of \sim 5%.

2.1.2 The Neutron Capture Cross Sections of Yb, 170 Yb, Lu, 175 Lu and 184 W

> H. Beer, F. Käppeler, K. Wisshak (Relevant to request numbers: 682037, 691204, 692309)

The neutron caputre cross sections of ¹⁷⁰Yb and ¹⁷⁵Lu in the keV range

^{*} Submitted to Nucl.Sci.Eng. for publication

are of particular importance to s-process nucleosynthesis as they can provide information for the only s-process cosmochronometer 176 Lu [1,2]. The neutron caputre cross section of 184 W which is one of the main isotopes of natural tungsten is relevant for fast reactor design because tungsten is used as a structural material.

The measurements were carried out at a pulsed 3MV Van de Graaff accelerator. The experimental set-up was almost the same as reported previously [3,4]. Neutrons were generated via the 7 Li(p,n) and T(p,n) reactions with proton energies at 20 and 100 keV above threshold, respectively, to obtain a kinematically collimated neutron beam in the entire energy range from 5 to 200 keV. Neutron energies were determined by time-of-flight. Table I summarizes some important parameters of the experiment.

	RUN I	RUN II_
Neutron producing reaction	⁷ Li(p,n)	T(p,n)
Average beam current	20 µA	10 µA
Repetition rate	2.5 MHz	2.5 MHz
Pulse width	700 ps	700 ps
Proton energy above		
reaction threshold	20 keV	100 keV
Time resolution	1.2-1.3ns	1.2-1.3ns
Flight path	67 mm	69 mm
Energy range	5-90 keV	50-200 keV

Table I. Experimental parameters

The prompt capture gamma rays were recorded with a Moxon-Rae detector. All cross sections were measured relative to the ¹⁹⁷Au standard cross section.

The results of the measurements are plotted in Figs. 1-4 together with cross sections from previous work. The present data are indicated in full black circles and squares for the measurements with 7 Li(p,n) (RUNI) and T(p,n) (RUN II), respectively. The solid line in Figs. 1-3 represents a least squares fit of the present data by means of the statistical model.

-6-

Figs. 1-4 Experimental results from the present capture cross section measurements in the energy range 5 to 200 keV (full black circles and squares) compared to previous work.

- [1] H. Beer, F. Käppeler, Phys.Rev.C 21 (1980) 534
- [2] H. Beer, F. Käppeler, K. Wisshak, Proc. of the Int.Conf. on Nuclear Cross Sections for Technology, Knoxville, Tenn., Oct. 1979, to be published
- [3] K. Wisshak, F. Käppeler, Nucl.Sci.Eng. <u>66</u> (1978) 363; Nucl.Sci.Eng. 69 (1979) 39
- [4] K. Wisshak, F. Käppeler, Proc. of the Int.Conf. on Nucl.Cross Sections for Technology, Knoxville, Tenn., Oct. 1979, to be published
- [5] B.J. Allen, D.D. Cohen, Aust.J.Phys. 32 (1979) 447
- [6] R.L. Macklin, J.H. Gibbons, Phys.Rev. <u>159</u> (1967) 1007
- [7] Kapchigashev, Russian compilation 1964
- [8] V.N. Kononov, Yu.Ya. Stavisskij, V.E. Kolesov, A.G. Dovbenko,
 V.S. Nesterenko, V.I. Soroka, Sov.J.Nucl.Phys. 4 (1965) 6708
- [9] Z.M. Bartolome, R.W. Hockenbury, W.R. Moyer, J.R. Tatarczuk, R.C. Block, Nucl.Sci.Eng. 37 (1969) 137
- [10] J.H. Gibbons, R.L. Macklin, Phys.Rev. 122 (1961) 182
- [11] R.C. Block, G.G. Slaugther, L.W. Weston, F.C. Vonderlage, Proc.Symp. on Neutron Time-of-Flight Methods, Saclay, July 1961, Ed. J. Spaepen (Euratom Brussels 1961) p. 203
- [12] J.R.D. Lépine, R.A. Douglas, H.A. Maia, Nucl. Phys. A 196 (1972) 83
- [13] V.S. Shorin, V.N. Kononov, E.D. Poletaev, Yad.Fiz. 20 (1974) 1092
- [14] V.A. Konks, Yu.P. Popov, Yu.I. Femin, Yad.Fiz. 7 (1968) 493

2.2 Fission Products

2.2.1 Neutron Capture Cross Sections of ¹³⁸Ba, ^{140,142}Ce, ^{175,176}Lu, and ¹⁸¹Ta at 30 keV: Prerequisite for Investigation of the ¹⁷⁶Lu Cosmic Clock*
H. Beer, F. Käppeler

(Relevant to request numbers: 682037, 691192)

The capture cross sections of 138 Ba, 140,142 Ce, 176 Lu, 181 Ta and the capture cross section of 175 Lu to the 3.68 h isomeric state in 176 Lu have been determined at 30 keV neutron energy using the activation technique. Neutrons were generated via the 7 Li(p,n) reaction just above the reaction threshold at a 3 MV pulsed Van de Graaff accelerator. The capture cross sections are of importance to stellar nucleosynthesis. With the 138 Ba and 140 Ce cross sections the time integrated average neutron flux for the s-process was determined to be 0.22 mb $^{-1}$. This result, the capture cross section of 176 Lu and the 175 Lu cross section to the 3.68h isomeric state in 176 Lu were used to analyze the 176 Lu cosmic clock. The mean s-process age of solar matter before the solidification of the solar system was estimated to be 6x10⁹ yr. In addition the Hf/Lu abundance ratio was determined.

2.2.2 Capture Cross Sections of Noble Gases

B. Leugers, F. Käppeler

(Relevant to request numbers: 742040, 752014, 792069)

The experimental technique for capture cross section measurements on gaseous samples has been described in the previous progress report [1]. In the following some typical results are given. More complete information on data analysis and the evaluation of uncertainties is available in Ref. [2].

a) Total cross sections - Fig. 1 displays the total cross sections of ⁸⁴Kr and natural krypton. The error bars on the data points indicate the

^{*} Phys. Rev. C 21 (1980) 534

statistical uncertainties. These are much smaller than the systematic uncertainties, which vary from about 20 % at 7 keV neutron energy to 7 % at 200 keV. Obviously, the resonance structure in the cross section for natural krypton is predominantly due to 84 Kr. The dashed line above 100 keV represents a recent optical model calculation by Prince [3] which describes existing measurements above 100 keV rather well.

b) Capture Cross Sections - The capture cross section of natural xenon is shown in Fig. 2. Again the error bars indicate only the statistical uncertainties. At present a systematic uncertainty of 15 % has to be quoted which is dominated by the uncertainty of the effective neutron binding energy for the isotopic mixture as it is required in the calculation of the cross section by the pulse height weighting technique.

In Fig. 3 the respective results for natural krypton and 84 Kr are given. Compared to natural xenon the cross sections are much smaller leading to rather large statistical uncertainties below 10-20 keV. Similar to the total cross sections the 84 Kr resonances clearly show up in the capture cross section of natural krypton, too. For 84 Kr a systematic uncertainty of less than 4 % was estimated. The cross section of natural krypton was calculated with an effective binding energy.

$$B_{n} = \sum_{\Sigma} \frac{\sigma_{i} H_{i} B_{i}}{\sigma_{i} H_{i}}$$
(1)

where the index i denotes the various isotopes and H_i are the relative isotopic abundances. As averaged capture cross sections σ_i were used in eq. (1), the estimated systematic uncertainty of about 5 % is also only valid for the average capture cross section of natural krypton. Therefore, the cross section is overestimated by up to 15 % in those energy intervals which correspond to strong ⁸⁴Kr resonances. In Table I the capture cross sections of natural xenon and natural krypton are listed for energy bins of 10 and 20 keV.

Similar results were obtained for mixtures enriched in 83 Kr, 82 Kr and 80 Kr. These data together with the relative abundances and the isotopic cross sections define a system of linear equations. The solution of this system for the isotopic cross sections is complicated by the unexpected large values for 78 Kr, so that the systematic uncertainties for

Fig. 1 The total neutron cross sections of natural krypton and ⁸⁴Kr between 7 and 200 keV. The error bars indicate the statistical uncertainty only.

Fig. 2 The neutron capture cross section of natural xenon between 2.5 and 200 keV. The error bars indicate the statistical uncertainty only.

-11-

Fig. 3 The neutron capture cross sections of natural krypton and 84 Kr between 2.5 and 250 keV. The error bars indicate the statistical uncertainty only.

the cross sections of 80 Kr and 82 Kr are of the order of 15-20 %.

References

- [1] B. Leugers, F. Käppeler, Report NEANDC(E)-202 U, Vol. V (1979) p.10
- [2] B. Leugers, "Die Neutroneneinfangquerschnitte der Kryptonisotope und ihre Bedeutung für die Astrophysik", KfK-Report 2895, Kernforschungszentrum Karlsruhe, December 1979
- [3] A. Prince, "ENDF/B-IV Neutron Cross Section Evaluation for the Krypton Isotopes", BNL-Report NCS-51028, Brookhaven National Laboratory, January 1979
- Table I. Average capture cross sections of natural xenon and natural krypton including the statistical uncertainties. The systematic uncertainties are 5 % for natural krypton and 15 % for natural xenon

Neutron energy interval (keV)	Capture cross secti on(m b), natural Krypton		Statistical uncertainty(%) natural xenon	
10- 20	119.0	2.4	491	1.2
20- 30	77.5	2.0	416	0 .7
30- 40	63.7	1.6	370	0.6
40- 50	52.3	1.6	302	0.6
50- 60	46.4	1.7	259	0.6
60- 80	41.1	1.3	207	0.5
80-100	34.4	1.5	173	0.5
100-120	30.0	1.6	150	0.6
120-140	27.7	1.7	137	0 .7
140-160	26.4	1.7	128	0.7
160-180	24.3	1.9	122	0.7
180-200	23.2	2.3	116	0.9

2.3 Actinide Cross Sections

2.3.1 The Neutron Capture and Fission Cross Section of ²⁴¹ Am in the * Energy Range from 10 to 250 keV

K. Wisshak, F. Käppeler

(Relevant to request numbers: 712108, 712109, 712110, 721099, 741127, 742108, 752033, 761098, 792228, 712103, 732115, 742018, 742107, 761099, 792227)

The neutron capture and subthreshold fission cross section of 241 Am was measured in the energy range from 10 to 250 keV, using 197 Au and 235 U as the respective standards. Neutrons were produced via the 7 Li(p,n) and the T(p,n) reaction at the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by a Moxon-Rae detector and fission events by a NE-213 liquid scintillator with pulse shape discriminator equipment. Flight paths as short as 50-66 mm were used to obtain optimum signal to background ratio. The capture cross section could be determined with a total statistical and systematic uncertainty of 4-10 % while the respective values are 13-20 % for the fission cross section. The results are compared with recent data of other authors which in some cases are severely discrepant.

2.3.2 Fission Cross-Section Measurement of ²⁴¹Am in the Energy Range from 10 to 1030 KeV W. Hage , K. Wisshak , F. Kāppeler (Relevant to request numbers: 712103, 732115, 742018, 742107, 761099, 792227)

The neutron fission cross section of 241 Am was measured in the energy range from 10 to 1030 keV using 235 U as a standard. The measurements were carried out at the Karlsruhe 3 MV pulsed Van de Graaff accelerator with ⁷Li targets for the generation of a continuous neutron spectrum below 120 keV and monoenergetic neutron spectra between 120 and 1030 keV. Fission events were detected by measuring the prompt fission neutrons with a NE 213 liquid scintillator with pulse shape discrimination. The

accepted for publication in Nucl. Sci. Eng.

CEC Joint Research Centre, Ispra

flight path was as short as 60 mm in measurements with continuous neutron spectra leading to a moderate energy resolution of 23 ns/m. The statistical uncertainty was between 0.8 % and 10 % and the systematic uncertainty between 3 % and 7.5 %. Discrepancies were found comparing our results with those of other experiments.

2.3.3 The Branching Ratio in ²⁴²Am following Neutron Capture in ²⁴¹Am K. Wisshak, J. Wickenhauser, F. Käppeler (Relevant to request numbers: 671135, 671136, 681807, 741127, 752033, 762153, 762170, 792231)

Neutron capture in ²⁴¹ Am populates not only the ground state, but also an isomeric state of ²⁴² Am. While the ground state has a half life of only 16 h the life time of the isomeric state is 152 years. In the neutron flux of a reactor ^{242g} Am will decay predominantly to ²⁴² Cm via β -decay, whereas ^{242m} Am may be transformed to ²⁴³ Am in a second capture event. The partial capture cross section to the ground state determines essentially the amount of ²⁴² Cm produced in a reactor during burn up. This nucleus, however, is of interest because of its high specific neutron activity due to spontaneous fission.

The present experiment is the first attempt to determine the partial capture cross section to the ground state in 242 Am in a differential measurement.[1,2] . A thin 241 Am sample ($\sim 200\mu$ g weight, 7 mm diameter) is activated with monoenergetic neutrons for a period of ~ 20 h. The 242g Am nuclei produced are detected directly via the electrons emitted in beta decay. The beta spectrum was observed with a mini orange spectrometer [3,4] which offers the possibility of a selective detection of electrons in a high background of alpha-, gamma- and X-ray radiation. The measurements were performed relative to gold.

At thermal energies monoenergetic neutrons of 14.75 meV were provided from a triple axis spectrometer at the Karlsruhe FR2 reactor. The fast flux was obtained from our 3 MV Van de Graaff accelerator using the ⁷Li(p,n) reaction. The proton energy was adjusted at 25 keV and in a second experiment 10 keV above the reaction threshold. The neutron spectrum produced is slightly asymmetric and has an energy of 30 $^{+35}_{-20}$ keV and 25 $^{+25}_{-15}$ keV, respectively. For the narrower distribution the neutron flux is a factor of three lower.

The preliminary results obtained until now are compiled in Table I. The ratio of the capture cross section to the ground state in 242 Am and gold could be determined with a total accuracy of ~ 5 % at all energy points. The statistical accuracy of the measurement is ~ 1 %. For the determination of the isomeric ratio IR from the experimental data the total capture cross sections of 241 Am and gold are required. The respective values are given in the second part of Table I. The data at 14.75 meV were calculated from the 2200 m/sec values of 625 b for 241 Am [5] and 98.8 b for gold [6] assuming a 1/v-dependence of the cross sections. For the fast energies a weighted cross section for the experimentally determined energy distribution was calculated from the data given in Ref. [7] and from the ENDF/B-IV gold cross section.

Preliminary results for the capture cross section to the ground state in ²⁴¹ Am and the isomeric ratio are given in the third part of Table I.

Neutron Energy	$\frac{\sigma_{\gamma}^{242} g_{Am}}{\sigma_{\gamma}^{242} Au}$	Adopted cross sections for the determination of IR	σ _γ , ^{242g} Am	IR
30 +35 -20 keV	2.86 <u>+</u> 0.14	$\sigma_{\gamma}, Am=2.46 + 0.12 b$ $\sigma_{\gamma}, Au=0.580 + 0.015 b$	1.66 <u>+</u> 0.09 b	0.67 <u>+</u> 0.05
25 + 25 + 25 - 15 keV	3.06 <u>+</u> 0.17	$\sigma_{\gamma}, Am=2.67 \pm 0.13 \text{ b}$ $\sigma_{\gamma}, Au=0.624 \pm 0.015 \text{ b}$	1.91 <u>+</u> 0.12 b	0.72 <u>+</u> 0.06
14.74 meV	5.87 <u>+</u> 0.3	$\sigma_{\gamma}, Am=818 + 26 b$ $\sigma_{\gamma}, Au=129 + 0.4 b$	756 <u>+</u> 39 Ъ	0.92 <u>+</u> 0.06

Table I. Preliminary results for the capture cross section to the ground state and for the isomeric ratio IR

References

- [1] K. Wisshak, J. Wickenhauser, F. Käppeler, Proc. of the Int.Conf. on Nuclear Cross Sections for Technology, Knoxville, Tennessee, October 1979, to be published
- [2] K. Wisshak, F. Käppeler, J. Wickenhauser, W. Hage, Proc. of the 2nd Technical Meeting on the Nuclear Transmutation of Actinides Ispra, April 1980, to be published

- [3] J. van Klinken, K. Wisshak, Nucl. Instr. Methods <u>98</u> (1972) 1
- [4] J. van Klinken, S. J. Feenstra, G. Dumont, Nucl. Instr. Methods 151 (1978) 433
- [5] B. Goel, Proc. of a Specialists' Meeting on Nuclear Data of Plutonium and Americium Isotopes for Reactor Applications, BNL 50991, NEANDC L-116 (1979) p. 177
- [6] S.F. Mughabghab, D.J. Garber, BNL-325, 3rd ed., Brookhaven National Laboratory (1973)
- [7] K. Wisshak, F. Käppeler, Nucl.Sci.Eng., in press
- 2.3.4 The Distribution of Fragment Mass, Fragment Kinetic Energy and the Number of Prompt Fission Neutrons from Fast Neutron Induced Fission of ²³⁷Np
 - A. A. Naqvi, F. Käppeler, F. Dickmann, R. Müller*

Details of the 4-parameter spectrometer which was developed for the measurement of Kinetic energies and velocities of correlated fragments from fast neutron induced fission were reported previously [1]. In the meantime, data analysis has been partly completed. Some typical results are given below.

a) Mass distribution

Fig. 1 shows the distribution of the primary fragment mass (before neutron evaporation) for incident neutron energies of 0.8 and 5.5 MeV. At the lower excitation energy the valley in the region of symmetric fission is very deep. We find peak to valley ratios between 450 and 650 dependent upon how wide we define the region of symmetric fission. This is in reasonable agreement with radiochemical values of 670 ± 70 [2]. At higher excitation the peak to valley ratio is reduced to 30 ± 5 . For the lower neutron energy we observe also a fine structure in the mass distribution with a period of 2.5 - 3 amu. As pairing effects should not be significant for the odd-odd system ²³⁸Np, this fine structure may be due to sub-shell effects in the fragments.

Universität Tübingen

Fig. 1 Distribution of primary fragment masses for incident neutron energies of 0.8 and 5.5 MeV. For the points on the abscissa no events were recorded.

b) Kinetic energy distribution

The total kinetic energy distribution is given in Fig. 2 for both the excitation energies. One finds a pronounced maximum around A = 132 which reflects the spherical configuration of the doubly magic fragment with Z = 50 and N = 82. With increasing excitation energy the influence of shell effects is decreased.

Fig. 2 The total kinetic fragment energy, as a function of fragment mass for incident neutron energies of 0.8 and 5.5 MeV.

c) Number of prompt fission neutrons

The number of evaporated prompt fission neutrons gives a measure for the excitation energy of the fragments. Fig. 3 shows the typical saw-tooth shape of these curves for incident neutron energies of 0.8 and 5.5 MeV. Again for A = 132 there is a minimum in fragment excitation as one would expect for this magic shell configuration. It is interesting to note that the number of prompt fission neutrons from the light fragments does not depend on the excitation energy of the fissioning system, whereas the heavy fragments exhibit a significant effect.

Fig. 3 The number of prompt fission neutrons as a function of fragment mass for incident neutron energies of 0.8 and 5.5 MeV.

References

- [1] A.A. Naqvi, F. Käppeler, R. Müller, F. Gönnenwein, Report NEANDC (E) - 202 U, Vol V (1979) p. 18
- [2] N.I. Borisova, V.I. Novgorodtseva, V.A. Pchelin, V.A. Shigin, Sov. J. Nucl. Phys. <u>2</u> (1966) 173

INSTITUT FÜR KERNPHYSIK KERNFORSCHUNGSZENTRUM KARLSRUHE

1. <u>SIN Cyclotron</u>

1.1 Absolute Yields and Spectra of Neutrons and Secondary Protons from 590 MeV (p,x) Reactions on Lead Targets

S. Cierjacks, M.T. Rainbow, M.T. Swinhoe, L. Buth*

Time-of-flight measurements of neutrons and secondary charged particles produced by bombardment of thick lead targets with 590 MeV protons have been performed at the ring cyclotron of the Swiss Institute for Nuclear Research (SIN). Experimental data were taken at angles of 30°, 90° and 150° with respect to the incident proton beam for different penetration depths of protons in a 10 cm diam x 60 cm long target. The detector was an NE 213 liquid scintillator used for its pulse-shape (n/γ) discrimination properties. At present date evaluation has been completed for all neutrons and part of the secondary proton spectra observed at 90°. In Fig. 1 the 90° neutron spectrum integrated over the total target length is shown. It is a reasonable approximation to take this spectrum as representing the average spectrum for all angles of emission. On this 12.2 neutrons with a mean energy of 22.2 MeV are emitted from the whole target into all angles per incident protons. The spectrum of secondary protons emitted at 90° from the first 5 cm of 10 cm diam. lead targets is shown in Fig. 2. This figure indicates that elastic scattering of protons in lead is small. The bulk of the spectrum is the result of inelastic and nuclear reactions. Results obtained so far for lead and comparisons of these data with intranuclear-cascadeevaporation model predictions were presented at the 1980 Brookhaven Symposium [1].

Presently, data evaluation is proceeding on data already collected. In the near future similar measurements will be performed with a uranium target using the 590 MeV proton beam at SIN. Later this year the proton beam from SATURN (Saclay, France) will be used to measure neutron and proton yields from lead and uranium targets for an incident proton energy of 1.1 GeV.

1.2 Determination of Fast Neutron Spectra via Proton Recoil Detection Using Unfolding Techniques

M.T. Swinhoe, S. Cierjacks, M.T. Rainbow, L. Buth*

An important piece of information for the use of a spallation neutron source with moderated spectra concerns the fraction of fast neutrons escaping together

^{*} Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum Karlsruhe

Fig. 1 Differential spectrum of neutrons emitted at 90⁰ integrated over the first 30 cm of the 10 cm diam. lead target. The histogram is a possible energy grouping for numerical calculations.

Fig. 2 Differential spectrum of secondary protons emitted at 90[°] from the first 5 cm of the 10 cm diameter lead target for an incident proton energy of 590 MeV.
with thermal neutrons through the beam tubes of a shielded target device. Even though time-of-flight measurements of fast neutron spectra would have been most desirable, this method was not applicable at the SIN cyclotron, where the only available pulse structure comes from the cyclotron microstructure providing proton bursts at 20 nsec intervals (or 60 nsec intervals at a particular operation mode). This time structure is much too narrow compared with the large time spread associated with the moderation process and so an unfolding method was necessary.

A measurement of the fast neutron spectrum in a moderated beam was made using an 8.9 cm thick NE 213 liquid scintillator with n/γ discrimination. A first result for light water moderated spectra from bombardment of 15 cm diameter Pb-Bi and U targets with 590 MeV protons is shown in Fig. 3. The resulting spectra were rectangularly unfolded. This gives an estimate for both the total number of neutrons and the shape of the spectrum from 5 to 140 MeV.

By simulating the experiment using charged particle spectra calculated by the Monte-Carlo programme of Cecil et al. [2] the error involved in the analysis was estimated. It turned out that the rectangular unfolding gives a very good estimate of the total number of neutrons, but underestimates the fraction of neutrons above about 30 MeV. The latter is to be expected as the response of the scintillator to monoenergetic neutrons above \sim 30 MeV is far from rectangular due to charged particles produced from carbon. In addition, the finite size of the detector allows a significant fraction of high energy recoil protons to escape.

In order to achieve more reliable results for the high energy tails of the spectra, work is in progress on an iterated method of unfolding. Preliminary investigations indicate that this will allow a good determination of neutron spectra up to 100 MeV using an 8.9 MeV thick detector. For the current experimental programme an even higher energy limit is necessary, and it is planned to use a 30 cm thick NE 213 scintillator which should allow accurate spectra unfolding at least up to 200 MeV. The poorer energy resolution resulting from the larger detector size does not appear to be an important disadvantage for the intended application which deals with relatively smooth neutron spectra.

References

- S. Cierjacks, M.T. Rainbow, M.T. Swinhoe, L. Buth, Proc. Symposium on Neutron Cross Sections from 10 - 50 MeV, Brookhaven, May 1980, in press
- [2] R.A. Cecil, B.D. Anderson, R. Madey, Nucl.Instr.Methods 161 (1979) 439

-23-

Fig. 3 Spectral distribution of fast neutrons in a light water moderated thermal neutron beam from 15 cm diameter Pb-Bi and U targets. Absolute neutron fluxes are given for a 10 mA proton current and a distance of 6 m from the target.

INSTITUT FÜR NEUTRONENPHYSIK UND REAKTORTECHNIK KERFORSCHUNGSZENTRUM KARLSRUHE

1. Nuclear Data Evaluation

1.1 Neutron Cross Sections for Actinides

F.H. Fröhner, B. Goel

(Relevant to request numbers: 691262, 691263, 702025, 691286, 692385, 714016, 732113, 781193, 691336, 681805, 681806, 712106, 792169, 681807, 681808, 752032, 792230, 792229, 792257, 79271, 792258, 712113, 711806, 792236, 762174, 792259, 732109)

Thermal cross sections and resonance parameters were reevaluated for ²³⁵U and ²³⁸U and newly evaluated for ²⁴¹Am, ²⁴²Mam, ²⁴³Am and ²⁴⁴Cm (see Table I). Bound levels were adjusted so as to reproduce the evaluated thermal cross sections correctly [1]. Other "distant" levels were accounted for by appropriate R-matrix contributions calculated from level-statistical parameters [2]. Missing fission widths for ²⁴¹Am were generated from their known distribution by Monte Carlo sampling. Point data were calculated from resolved resonance parameters with multi-level formulae where enough information existed, with single-level formulae otherwise (in case of capture and fission of fissile nuclides). Level-statistical parameters and Hauser-Feshbach formulae were used to generate further data points up to 100 keV.

Target nucleus	Energy range	Cross section formalism	Bound level
235 _U	1meV - 100eV	MLBW/SLBW	2
238 _U	1meV - 4keV	Reich-Moore	1
241 _{Am}	1meV - 150eV	MLBW/SLBW	1
242 _{Am}	1meV - 4eV	MLBW/SLBW	1
243 _{Am}	1meV - 250eV	MLBW/SLBW	1
244 _{Cm}	1meV - 1keV	MLBW/SLBW	1

Table I. New KEDAK evaluations in the resolved resonance region

Data above 100keV were obtained with the HAUSER+4 code. Calculations with optical model parameter extracted from the analysis of 238 U cross sections and angular distributions gave excellent agreement for 241 Am with the experimental data of

Phillips et al [3] for the total cross section. Agreement for capture and fission cross sections with the experimental data is also good. The resonance parameters and point data will be part of the new version KEDAK-4 of the Karlsruhe evaluated file.

References

- [1] F.H. Fröhner, KfK 2669 (1978), p. 53
- [2] ibid, p. 52
- [3] T.W. Phillips et al, Nucl. Sci. Eng. <u>69</u> (1979) 375

1.2 Very Fast Calculation of Doppler-broadened Multi-level Cross Sections

F. H. Fröhner

Single-level formulae permit very fast calculation of Doppler-broadened cross sections via the well-known Voigt profiles ψ and χ , whereas no equally fast techniques were available for unitary multi-level formalisms of the Wigner-Eisenbud or Reich-Moore type (cf. e.g. [1]). By combining Turing's method for Gaussian broadening of meromorphic functions [2] and a convenient prescription for conversion of real (Wigner-Eisenbud, Reich-Moore) to complex (Kapur-Peierls) R-matrix parameters [3] one can calculate Dopplerbroadened multi-level cross sections practically as fast as single-level cross sections [4]. This removes the main computational obstacle which often prevented (rigorous) multi-level expressions to be used in resonance fitting and group constant preparation instead of (approximate) single-level expressions that can fail badly, especially near cross section minima and maxima [3].

References

- [1] F.H. Fröhner, KfK 2669 (1978)
- [2] A.M. Turing, Proc. London Math. Soc., Ser. 2, <u>48</u>, (1943) 180
- [3] F.H. Fröhner, Proc. Int. Conf. on Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes, Harwell (1978) p. 306
- [4] F.H. Fröhner, Proc. Jahrestagung Kerntechnik 1980, Karlsruhe-Bonn (1980) p. 83

INSTITUT FÜR CHEMIE (1): NUKLEARCHEMIE KERNFORSCHUNGSANLAGE JÜLICH

- 1. Neutron Data
- 1.1 Measurement of (n,t) and (n, ³He) Reaction Cross Sections S. Khatun, S.M. Qaim, R. Wölfle

In continuation of earlier radiochemical and mass spectrometric studies on fast-neutron induced trinucleon emission reactions [1], the (n,t) and (n, 3 He) cross sections were measured for isotopes of the elements Al, V, Cr, Mn, Fe, Co, Ni and Nb with neutrons produced via break-up of 30 MeV deuterons on a thick Be target. The data are appreciably higher than those at 14 MeV [2].

Work on the measurement of excitation functions of (n,t) reactions in the energy region 15 to 20 MeV was initiated in collaboration with the CBNM, Geel. Segments of Al were irradiated at various angles to the deuteron beam falling on a tritium target. These angles correspond to neutron energies of 16, 17, 18 and 19.5 MeV. The accumulated tritium was separated by vacuum extraction and counted in the gas phase. First results show that the (n,t) cross section increases sharply with the incident neutron energy.

1.2 Statistical Model Analysis of (n,t) and (n, He) Reactions H.V. Klapdor*, S.M. Qaim, H. Reiss*

Total cross sections of 14.6 MeV neutron induced reactions (n,n'), (n,p), (n,d), (n,α) , (n,t) and $(n,^{3}\text{He})$, on the target nuclei in the mass region A = 27 to 59, were calculated (for the first stage decay) by the Hauser-Feshbach method using a unified set of optical model parameters. The strong reaction channels are described well by the calculations. The data for the (n,t) and $(n,^{3}\text{He})$ reactions are given in Table I. The (n,t) reaction on target nuclei in the (2s,1d)-shell seems to proceed predominantly via statistical processes; for heavier nuclei non-statistical contributions become important. In the case of $(n,^{3}\text{He})$ reactions, the few experimentally measured cross sections are much higher than those obtained by theoretical calculations [3].

^{*} MPI für Kernphysik, Heidelberg

m		σ(n,t)μb	$\sigma(n, 3H)$	σ (n, ³ He) μb		
Target nuclide	theor.	theor. exp. or from [systematics]		exp.		
Al-27	2860	3000 ±400	< 0.01			
Si-28	energetic	ally not possible	0.7			
P-31	1400	[800 ±300]	< 0.01	<u><</u> 13		
S-32	9	7.2± 1.6	560			
к-39	500	184 ± 37	113			
к-41	380	[150 ± 60]	< 0.01	6 ± 3		
Ca-40	6	27 ± 8	200			
Sc-45	90	[70 ± 20]	0.02	9 ± 4		
Ti-4 6	< 0.1	115 ± 35	2.0			
Cr-50	< 0.1	66 ± 20	7.4			
Fe-54	< 0.1	105 ± 35	15.1			
Co-59	70	640 ±130	< 0.01	4.6±2.1		

Table	I.	Experimental	and	theoretical	cross	sections	of	(n,t)	and
		(n, He) react	tions	induced by	14.6	MeV neutro	ons		

1.3 Cross-Section Measurements on Hydrogen and Helium Producing Reactions S. Khatun, S.M. Qaim, R. Wölfle (Relevant to request identification numbers: 762071, 762073, 762080, 762081, 762082, 762086, 762087, 781022, 781023, 781024, 781025, 781026, 781027, 781090, 781102, 781210, 781211, 781212, 781213, 781215, 781216, 781219, 781220, 792199, 792209, 792210)

Fission neutron spectrum averaged cross sections were measured for the relatively less known hydrogen and helium producing reactions ${}^{58}Ni(n,\alpha){}^{55}Fe$, ${}^{62}Ni(n,\alpha){}^{59}Fe$, ${}^{60}Ni(n,p){}^{60}Co$, ${}^{61}Ni(n,p){}^{61}Co$, ${}^{58}Ni[(n,n'p)+(n,pn)+(n,d)]{}^{57}Co$ and ${}^{50}Cr[(n,n'p)+(n,pn)+(n,d)]{}^{49}V$ by the activation technique using enriched isotopes as target materials, radiochemical separations and high-resolution γ - and X-ray spectroscopy [4].

In connection with the measurement of (n,x) reaction cross sections on FRT materials for radiation damage calculations [5], we recently constructed a 30 MeV d(Be) neutron source at the Jülich Isochronous Cyclotron (JULIC) and characterized the forward peaked neutron spectrum using the multiple foil activation technique. Integral cross sections were also measured [2] by the activation technique for some (n,2n), (n,p), [(n,n'p)+(n,d)] and (n,α) reactions on isotopes of the elements Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb and Mo. The data are given in Fig. 1 as a function of (N-Z)/A of the target nucleus. The trends are somewhat similar to those at 14 MeV. As is evident, in the light mass region the reactions involving the emission of charged particles compete strongly with the (n,2n) process increases and, as a general feature, those of processes involving the emission of charged particles decrease.

The measured integral cross-section data agree within 20% with the spectrum averaged cross-section values deduced from the known excitation functions of a few reactions.

Fig. 1 Systematic trends in cross sections of (n,2n), (n,p), [(n,n'p)+(n,d)]and (n,α) reactions induced by 30 MeV d(Be) neutrons on some structural materials.

1.4 Review of Cross-Section Data S.M. Qaim

A survey of the recent developments in the study of (n,charged particle) reactions was carried out and presented at the Gaussig Symposium [6]. Similarly the field of fast neutron induced reactions involving the emission of complex particles was covered at the IAEA-Winter College on Nuclear Theory for Applications held in February 1980 at Trieste [7].

2. Charged Particle Data for Radioisotope Production

2.1 Excitation Functions for the Production of "Organic" Radioisotopes

H. Backhausen, S.M. Qaim, G. Stöcklin, R. Weinreich

In view of the increasing importance of positron tomography in nuclear medical in-vivo diagnostics, emphasis has been on the development of newer methods of production of short-lived B^+ emitters. Thus, measurement of the excitation functions for the formation of 18 F (T_{1/2} = 110 min) via the reactions 20 Ne (3 He, α p) 18 F and 20 Ne (3 He, α n) 18 F ($\pi_{1/2}$ = 110 min) via the reactions compare the directly produced 18 F from that formed via 18 Ne. Similarly for the formation of 30 P (T_{1/2} = 2.5 min) three further reactions, 28 Si (3 He, p) 30 P, were investigated. Of all the reactions investigated for the production of 30 P, the reaction 27 Al (α ,n) 30 P was found to be the most suitable. In continuation of the cross-section data measurements for the production of 75 Br (T_{1/2} = 1.6 h) [8], investigation of the 75 As (3 He, xn) ${}^{74m-76}$ Br reactions was completed and the results are given in Fig. 2. Furthermore, the high-energy process 79 Br (d, 6n) 75 Kr (B^+) 75 Br was investigated over the deuteron energy range of 60 to 88 MeV. The yields are rather low. The reaction 75 Br at medical compact cyclotrons.

2.2 Cross-Section Data for the Production of "Inorganic" RadioisotopesG. Comparetto, S.M. Qaim, G. Stöcklin, R. Weinreich

In continuation of earlier cross-section measurements [9] for the production of some specific inorganic radionuclides, excitation functions were measured for the formation of 94,95,97 Ru in α - and 3 He-particle induced nuclear

Fig. 2 Excitation functions for the formation of 74m,75,76 Br in 3 Heparticle induced nuclear reactions on arsenic.

reactions on molybdenum [10]. The results on the ³He-induced reactions are shown in Fig. 3. The three short-lived neutron deficient isotopes of ruthenium, ⁹⁴Ru ($T_{1/2} = 52 \text{ min}$), ⁹⁵Ru ($T_{1/2} = 1.6 \text{ h}$) and ⁹⁷Ru ($T_{1/2} = 2.9 \text{ d}$), can be produced in good yields using the ³He-induced reactions at compact cyclotrons.

2.3 Radiation Dose Calculations R. Weinreich

The whole body radiation doses caused by the medically useful neutron deficient radioisotopes of bromine were calculated by means of the classical

Fig. 3 Excitation functions for the formation of ^{94,95,97} Ru in ³Heparticle induced nuclear reactions on molybdenum.

MIRD-model using the recently reported decay data on those radioisotopes. The results are given in Table II. The high dose rate for 76 Br is due to its longer half-life. 77 Br is the isotope which can be used with conventional Anger cameras, but it is useless in positron emission tomography. Because of its physical properties 75 Br appears to be the best bromine isotope for positron emission tomography.

Nuclide	^T 1/2	Decay mode	$\overline{D}(\frac{mR}{mCi})$
Br-74m	41.5 min	β ⁺ (92.6%) E.C.(7.4%)	81
Br-75	98 min	β ⁺ (73.0%) E.C.(27.0%)	78
Br-76	16.2 h	β ⁺ (57.1%) E.C.(42.9%)	1080
Br-77	56.0 h	E.C.(99.2%) B ⁺ (0.8%)	281

Table II. Whole-body radiation doses by medically useful neutron deficient isotopes of bromine

References

- [1] C.H. Wu, R. Wölfle, S.M. Qaim, Activation and mass spectrometric study of ³He particle emission in the interactions of fast neutrons with medium mass nuclei, Nucl.Phys. A329 (1979) 63
- [2] S.M. Qaim, S. Khatun, R. Wölfle, Integral cross-section measurements on (n,x) reactions induced by 30 MeV d(Be) break-up neutrons on FRT wall and structural materials, Proc.Symp. on Neutron Cross Sections from 10 to 50 MeV, Brookhaven (May 1980), in press
- [3] S.M. Qaim, H.V. Klapdor, H. Reiss, Statistical model analysis of cross sections of (n,t) and $(n, {}^{3}\text{He})$ reactions induced by 14.6 MeV neutrons on target nuclei with A = 27 to 59, Phys.Rev.C, in press
- [4] R. Wölfle, S.M. Qaim, Measurement of fission neutron spectrum averaged cross sections of some (n,p), (n,n'p) and (n,α) reactions on nickel and chromium, Radiochimica Acta 27 (1980) 65
- [5] S.M. Qaim, Nuclear data needs for radiation damage studies relevant to fusion reactor technology, Proc. Advisory Group Meeting on Nuclear Data for Fusion Reactor Technology, Vienna, IAEA-TECDOC-223 (1979) p. 75
- [6] S.M. Qaim, Recent developments in the study of (n, charged particle) reactions, Proc. IX Symposium on Interaction of Fast Neutrons with Nuclei, Gaussig/Dresden (November 1979), in press

- [7] S.M. Qaim, Integral cross sections for the emission of complex particles in neutron induced reactions, IAEA-Winter College on Nuclear Theory for Applications, Trieste (February 1980), Lecture Notes to be published
- [8] R. Weinreich, Z.B. Alfassi, G. Blessing, G. Stöcklin, Short-lived neutron deficient bromine isotopes for applications in nuclear medicine, Proc. 17th Intern.Annual Meeting, Soc.Nucl.Med., Innsbruck (September 1979), in press
- [9] R. Weinreich, H.J. Probst, S.M. Qaim, Production of ⁴⁸Cr for applications in life sciences, Int.J.appl.Radiat.Isotopes 31 (1980) 223
- [10] G. Comparetto, S.M. Qaim, A comparative study of the production of short-lived neutron deficient isotopes ^{94,95,97}Ru in α- and ³He-particle induced nuclear reactions on natural molybdenum, Radiochim.Acta, in press

INSTITUT FÜR KERNPHYSIK: EXPERIMENTELLE KERNPHYSIK II KERNFORSCHUNGSANLAGE JÜLICH

Studies at the Fission Product Separator JOSEF

G. Battistuzzi, K. Kawade⁺, B.D. Kern⁺⁺, T.A. Khan⁺⁺⁺, W.D. Lauppe^{*}, H. Lawin, H.A. Selič^{**}, K. Sistemich, A. Wolf^{***}

The separator JOSEF at the research reactor FRJ-2 "DIDO" of the Kernforschungsanlage Jülich is used for nuclear spectroscopic investigations on fission products. Presently the main aims are the study of the onset of nuclear deformations around A=100 and of the nuclear shell structure near 132 Sn. In 98 Zr [1], 99 Zr [2], 100 Zr [3-5], 99 Nb [2], 132 Sn [6,7], 134 Te [8] and 136 Xe [8] the properties of special levels (like spin, parity and life-time) have been studied through γ , γ angular correlation and through delayed β , γ coincidence measurements. For 104 Mo [9,10] a detailed level scheme has been established (Fig. 1) which indicates a permanent deformation of this nucleus. The properties of new levels in 132 Te [11] support the interpretation that 132 Sn is a good closed shell nucleus.

Fig. 1 Partial energy level diagram of 104 Mo. The energies are in keV. The dots indicate observed (γ, γ) coincidences.

On leave from Nagoya University, Japan
Permanent address: Dept. of Phys. and Astron., University of Kentucky, USA
Now at the Tandem Laboratory, McMaster University, Hamilton, Canada
Now at the Programmgruppe Kernenergie und Umwelt, KFA Jülich
Presently at the Weizmann Institute of Science, Rehovot, Israel
*** Permanent address: Negev Nuclear Research Centre, Beer Sheva, Israel

References

- [1] K. Kawade, G. Battistuzzi, H. Lawin, K. Sistemich, F. Schussler, Institut für Kernphysik der KFA Jülich, Annual Report 1979, p. 62
- H.A. Selič, G. Sadler, T.A. Khan, W.D. Lauppe, H. Lawin, K. Sistemich,
 E. Monnand, J. Blachot, J.P. Bocquet, F. Schussler, Z.Physik <u>A 289</u> (1979) 197
- [3] T.A. Khan, W.D. Lauppe, K. Sistemich, H. Lawin, H.A. Selič, Z.Physik A 284 (1978) 313
- [4] H.A. Selič, W. Borgs, W.D. Lauppe, H. Lawin, K. Sistemich, Z.Physik A 286 (1978) 123
- [5] A. Wolf, G. Battistuzzi, K. Kawade, H. Lawin, K. Sistemich, Institut für Kernphysik der KFA Jülich, Annual Report 1979, p. 63
- [6] K. Sistemich, W.D. Lauppe, M. Iyer, K. Kawade, H. Lawin, O.W.B. Schult, Proc.Int. Winter Meeting on Nuclear Physics, Bormio/Italy, ed. I. Jori (1979) p. 224
- [7] K. Kawade, G. Battistuzzi, H. Lawin, K. Sistemich, J. Speth, Institut für Kernphysik der KFA Jülich, Annual Report 1979, p. 65
- [8] K. Kawade, G. Battistuzzi, H. Lawin, K. Sistemich, J. Blomqvist, Institut für Kernphysik der KFA Jülich, Annual Report 1979, p. 67
- [9] B.D. Kern, W.D. Lauppe, H. Lawin, K. Sistemich, Institut für Kernphysik der KFA Jülich, Annual Report 1978, p. 42
- [10] K. Sistemich, W.D. Lauppe, H. Lawin, H. Seyfarth, B.D. Kern, Z.Physik A 289 (1979) 225
- [11] K. Sistemich, W.D. Lauppe, H. Lawin, F. Schussler, J.P. Bocquet, E. Monnand, J. Blomqvist, Z.Physik A 292 (1979) 145

I. INSTITUT FÜR EXPERIMENTALPHYSIK UNIVERSITÄT HAMBURG

1. Postfission Neutrons from Proton Induced Fission of 235,236,238

P. Plischke, R. Langkau, W. Scobel, R. Wien

A system of time-of-flight detectors for the measurement of fast $(E_n^{lab} \ge 0.7 \text{ MeV})$ neutrons in coincidence with fission fragments has been presented recently [1]. Neutrons can be measured at 0° and 90° with respect to the fission fragment direction, and pre- and postfission neutron spectra are separated by means of an iterative procedure [2] that assumes isotropic emission in the c.m.s. system of the emitting compound nucleus or fragment, respectively. The masses of the initial fragments are calculated from their velocities with the techniques reported in [3]. The mass resolution obtained in our experiment varied between 2 and 5 mass units (fwhm), depending on the fragmentation.

Measurements were performed in 1979 with targets 238 U, 236 U and 235 U for projectile energies 12.7, 15.2, 18.3, 22.4 and 25.6 MeV (236 U: not for 25.6 MeV; 235 U: only for 12.7, 15.2 MeV). Targets had a thickness of typically 150 µg/cm² on 50 µg/cm² carbon backing.

Off-line analysis of the list mode data showed that for all systems under investigation the number of prefission neutrons is as least a factor of 5 smaller than that of the postfission neutrons for both fragments. The mass dependence of the number of neutrons emitted per fragment presented in Fig. 1 shows the well-known sawtooth dependence. The minimum at A = 132 is seen for 235 U as well as for 238 U. It is, however, washed out rapidly with increasing projectile energy.

Postfission neutrons are predominantly detected from the fragment flying towards the neutron TOF detector; therefore, the low energy threshold prevents neutron detection only for a few low energy neutrons, and the average neutron energies $\langle \varepsilon_n^{\rm CM} \rangle$ shown in Fig. 2 are scarcely affected by this low energy cutoff. It is interesting to note that the differences between $p + {}^{235,236,238}$ U at the same projectile energy are concentrated on the heavy fragments. The same applies for the comparison of $p + {}^{238}$ U at different excitation energies, indicating that most of the increased excitation energy seems to be transferred to the heavy fragment.

-37-

-38-

2. Spin Depletion by Preequilibrium Neutron Emission

H.H. Bissem, Md.A. Rahman, W. Scobel

Preequilibrium emission (PE) influences the energy and spin population of the residual nuclei. If they are radioactive and have a spin isomer, information on the amount of PE contributions and the resulting spin distribution may be obtained from the excitation functions $\sigma_{g}(E)$ and $\sigma_{m}(E)$ for the population of ground and isomeric state, respectively, and from the isomeric ratio σ_{g}/σ_{m} . We analyze data of the ⁹³Nb(³He,xn)^{96-x}Tc reactions [4] this way. Hauser-Feshbach calculations, including γ -deexcitation with multipolarities L \leq 3, indicate too strong a population of the ground (i.e. high spin) state in all cases, where PE dominates in the excitation function $\sigma_{\alpha} + \sigma_{m}$, cf. Fig. 3.

If we assume that (i) the PE depletion as given by the Hybrid Model is equally distributed over all partial waves of the entrance channel and (ii) the relative spin distribution after PE of a neutron of energy ε is identical with that following neutron evaporation with energy ε , the discrepancies between experimental and calculated isomeric ratios are reduced (Fig. 3). Replacement of (ii) by the assumption (iii), that due to the forward peaked angular distribution in PE, the angular momentum carried away by the neutron is parallel to that of the reaction system ⁹⁶Tc^{*}, we obtain a spin population (Fig. 4) that results in a very good prediction of the isomeric ratios, in particular if the spin cutoff parameter σ is reduced to 70% of the rigid body value $\sigma_{\rm Rig}$. Assumption (iii) also is in agreement with conclusions drawn from ($\alpha, xn\gamma$) reaction data [5].

References

- [1] P. Plischke, H. Krause, R. Langkau, W. Scobel, NEANDC (E) - 202U Vol. V (1979) p. 65
- [2] Z. Fraenkel, I. Mayk, J.P. Unik, A.J. Gorski, W.D. Loveland, Phys. Rev. C12(1975)1809
- [3] Y. Patin, S. Cierjacks, J. Lachkar, J. Sigand, G. Haouat, F. Cocu Nucl. Instr. & Meth. 160(1979)471
- [4] H.H. Bissem, R. Georgi, W. Scobel, J. Ernst, M. Kaba, J. Rama Rao,H. Strohe, Phys. Rev. C, in press
- [5] H. Sakai, H. Ejiri, T. Shibata, Y. Nagai, K. Okada, Phys. Rev. C20(1979)464

Fig. 3 Excitation functions and isomeric ratios for ${}^{93}Nb({}^{3}He,xn)$. Data are from [4]. Calculations: Hauser-Feshbach with $\sigma/\sigma_{Rig} = 1$ (thin solid line), 0.7 (solid), 0.5 (dash dotted); PE competition included with $\sigma/\sigma_{Rig} = 1$ and assumption (ii) (dashed) and (iii) (short dashed), respectively.

Fig. 4 Population of 95 Tc* following neutron emission for (from left to right) pure Hauser-Feshbach calculation, inclusion of PE with assumption (ii), and with assumption (iii). Population drops by $\sqrt{10}$ between two lines.

INSTITUT FÜR REINE UND ANGEWANDTE KERNPHYSIK UNIVERSITÄT KIEL, FORSCHUNGSREAKTOR GEESTHACHT

Fast-Chopper Time-of-Flight Spectrometer

H.G. Priesmeyer, U. Harz, P. Fischer

1. Improvements Concerning the Experiment

The shut down period of research reactor FRG-1 was used to improve the Fast-Chopper Spectrometer in several aspects: both hardware and software of the data acquisition system have been modernized; the storage capacity for time-of-flight spectra was doubled; an integrated rotor speed control has been developed and remote adjustment of the neutron beam collimators was installed. A cryostat for LN_2 or LHe investigations and a device for measurements on gaseous samples have been built. As a result of the FRG-1 backfitting the neutron intensity increased.

2. Recalibration of the flight Distance

It was considered necessary to redetermine the flight path length by a calibrating transmission experiment. Reference neutron energies were those of the low-lying 238 U resonances recommended by James. [NBS SP 493 (1977), 319]. The result is a flight path length of 42.93 ± 0.01 m.

3. Transmission of ⁹⁹Tc below 30 eV

The experiment is completed and the final results of the resonance shape analysis are given below. The exceptionally high values of Γ_{γ} for the first two resonances - found in a slowing-down-time experiment - were the reason for a reinvestigation by time-of-flight. Contaminations in the slowing-down-time samples are thought to have caused the high capture width values. Consistency with values derived from Russian measurements at higher energies is achieved. The contribution of the first two resonances to the resonance capture integral is 258 b.

The	following	data	were	determi	ined:
-----	-----------	------	------	---------	-------

E [eV]	Γ [meV]	2g Γ ^o n
5.59 ± 0.01	171.5 ± 4.5	1.45 ± 0.07
20.32 ± 0.01	176.0 ± 3.9	1.49 ± 0.015

4. Cs-Fission Product Mixture

The sample was investigated in 1969. Two resonances were seen, but no isotopic identification could be given. After 10 years 21% of the 137 Cs originally present in the sample have decayed: this is adequate to allow for an isotopic identification of the resonances. The 1979 measurement with better resolution and statistics shows a third resonance at about 380 eV. Resonance analysis is in progress. The resonance at 42.08 eV can be assigned to longlived 135 Cs (T_{1/2} = 2.3 \cdot 10⁶ y). SHAPE analysis gives the following preliminary results: $\Gamma = 214$ meV and $_{2g} \Gamma_n = 33.4$ meV. The contribution to the capture resonance integral is calculated to be ≈ 33 b.

Figa. 1 and 2 show the transmission spectra of the Cs Fission Product Mixture. The four resonances belonging to the either radioactive isotope are marked with an arrow. Co and Mn contaminations from the steel sample canning can also be seen.

Fig. 2 Transmission spectrum of the Cs fission product mixture (1200-72 eV).

5. ¹²⁹I Transmission Experiment

An experiment on ¹²⁹I using the sample in its original canning showed 5 known resonance levels below 160 eV. The neutron intensity had to be considerably reduced. The measurements will be continued after repacking the material into another geometry.

Publications

P. Fischer, U. Harz, ASTA - a FORTRAN program for transmission calculations from time-of-flight spectra (in German), GKSS 78/E/47

P. Fischer, U. Harz, H.G. Priesmeyer, The total cross section of ⁹⁹Tc from 4.5 eV to 44 eV, Proc.Int.Conf. on Neutron Physics and Nuclear Data for Reactors and other Applied Purposes, Harwell (September 1978), NEA-Paris (1979) p. 718

H.G. Priesmeyer, Nuclear physics aspects of radiation damage in materials (in German), GKSS 79/E/16

H.G. Priesmeyer, Low energy neutron cross-section measurements of radioactive FP nuclides, Proc.Fission Products Nuclear Data - Specialist Meeting, Bologna 1979, NEANDC, in press

INSTITUT FÜR KERNCHEMIE UNIVERSITÄT ZU KÖLN

Integral Excitation Functions of Nuclear Reactions Relevant to Cosmochemistry

R.Michel, G.Brinkmann, W.Herr

Extending our studies of p-induced reactions with targetelements $22 \le Z \le 28$ [1-4], we investigated a-induced reactions for the same elements in the energy region from 25 to 172.5 MeV. Both p- and a-induced reactions have to be considered for the interpretation of the various cosmic ray produced radionuclides observed in extraterrestrial matter. For specific cosmochemical applications, e.g. the determination of exposure ages, high precision σ -measurements are needed, but unless the respective experimental data are easily available, reliable theoretical predictions are necessary.

1.1 <u>a-Induced Production of ²⁴Na and ²²Na from Aluminium</u> In order to check the absolute magnitude of our cross sections as well as the quality of the energy determination, we first measured excitation functions for the well-known reactions ²⁷Al(α ,4p3n)²⁴Na and ²⁷Al(α ,4p5n)²²Na using the 100 µm stopping foils in our stacks. A detailed description of the experimental procedure is given elsewhere [1-3,5].The crosssection results are presented in Table I and as an example our data for ²⁴Na are given in Fig.1 together with those from other authors.

The data for both radionuclides are in excellent agreement with earlier determinations, with the exception of the works of Bowman et al [13] and Lindner et al [6]. The excitation functions of the latter authors are evidently too low.

-45-

In the case of 24 Na the production from Al by secondary neutrons was corrected for as described by Martens and Schweimer [12]. The neutron contribution which was measured in Alfoils below 25 MeV was ~ 10 µb.

Thus the results for ${}^{24}Na$ and ${}^{22}Na$ in the stopping aluminium foils allow for a continuous quality control of the measurement of excitation functions of α -induced reactions on other target elements.

Fig.1 Excitation function for the reaction 27 Al(α ,4p3n) 24 Na. The data from other authors [6-14] are also shown. Three different symbols are used for our experimental data in order to distinguish between different experiments.

$E_{\alpha} + \Delta E_{\alpha}$	Cross-S	ection	$E_{\alpha} + \Delta E_{\alpha}$	Cross-S	ection	E _a +ΔE _a	Cross-Section
[MeV]	[mb] 24 _{Na}	22 _{Na}	[MeV]	[mb] 24 _{Na}	22 _{Na}	[MeV]	[mb] 24 _{N2}
170.78	30.07	43.50	170.38	29.99	42.24	1	Na
+ 0.28	+ 3.00	<u>+</u> 3.92	+ 0.41	+ 2.74	+ 2.95		ALL THE REAL
161.68	30.78	43.60	160.97	30.84	45.27		
+ 0.44	+ 3.10	<u>+</u> 4.36	+ 0.58	+ 2.82	+ 3.17	I NAME OF T	again ann
152.39	32.04	43.52	151.27	30.99	43.70	William I	A AP CALL
+ 0.55	+ 3.20	+ 3.92	<u>+</u> 0.70	+ 2.83	+ 3.06		Contractor da
144.04	32.03	42.94	142.39	32.14	43.47		1.1.1.1.1.1.1.1.1
+ 0.62	<u>+</u> 3.52	<u>+</u> 4.73	+ 0.77	+ 2.93	+ 3.04		
135.28	32.82	42.25	133.00	32.94	44.78		1
+ 0.68	+ 3.28	+ 3.80	+ 0.85	+ 3.00	+ 3.13	1 The second	
126.07	33.17	40.96	123.11	33.79	43.61	- Lings	ing instruction
<u>+</u> 0.75	<u>+</u> 2.99	<u>+</u> 4.10	+ 0.92	+ 3.08	+ 3.05	1.681.91	TISY PART
117.69	34.47	40.66	114.08	34.99	40.32	S. Martin	and the second
<u>+</u> 0.80	+ 3.10	<u>+</u> 3.66	<u>+</u> 0.98	<u>+</u> 3.19	+ 2.83		
108.79	35.99	40.19	104.46	35.99	39.24		
<u>+</u> 0.86	+ 3.96	+ 3.62	<u>+</u> 1.05	+ 3.28	+ 2.75	1	area a la secora
99.29	36.43	36.06	94.13	37.59	34.20	Strate.	
<u>+</u> 0.90	+ 3.28	+ 3.25	+ 1.12	+ 3.42	+ 2.39		
89.02	38.47	30.38	86.66	37.76	33.34		
<u>+</u> 0.96	<u>+</u> 3.84	+ 2.43	+ 0.60	+ 3.02	+ 2.66		
86.96	37.82	33.57	82.85	39.79	30.92	84.37	38.77
+ 0.39	<u>+</u> 3.03	+ 2.35	<u>+</u> 1.20	+ 3.62	+ 2.48	+ 0.64	<u>+</u> 3.88
81.76	39.20	31.11	80.73	39.18	30.69	77.98	40.77
+ 0.47	<u>+</u> 3.53	+ 2.18	+ 0.70	± 3.13	+ 2.46	+ 0.74	± 4.08
76.29	40.09	30.20	74.42	42.31	30.33	71.11	40.77
± 0.54	<u>+</u> 3.61	+ 2.12	± /.79	+ 3.38	+ 2.43	+ 0.83	± 3.92
70.50	38.99	33.73	67.70	40.84	33.62	63.69	32.87
± 0.60	+ 3.12	+ 2.36	<u>+</u> 0.87	+ 3.27	+ 2.69	+ 0.93	± 3.13
64.31	32.53	40.61	60.40	29.53	44.87	55.45	13.97
+ 0.66	+ 2.60	<u>+</u> 3.65	+ 0.96	+ 2.36	+ 3.59	+ 1.03	+ 1.12
57.63	16.76	53.58	52.30	10.53	55.66	46.15	1.85
+ 0.72	+ 1.34	+ 3.75	± 1.07	+ 0.87	+ 4.45	+ 1.16	<u>+</u> 0.17
50.26	4.10	50.69	46.38	2.34	45.54	35.12	0.033
<u>+</u> 0.81	+ 0.33	+ 3.55	+ 1.16	+ 0.23	+ 3.64	+ 1.38	± 0.003
41.95	0.423	10.35	39.47	0.488	12.96	1000	in the second
± 0.89	+ 0.038	+ 0.73	+ 1.28	+ 0.039	+ 1.04		1
35.69	0.040		31.87	0.021			
± 0.97	+ 0.003	1	+ 1.47	+ 0.002			

Table I. Experimental cross sections for the reactions $27_{A1(\alpha,4p3n)}^{24}$ Na and $27_{A1(\alpha,4p5n)}^{22}$ Na

1.2 Measurement and Hybrid Model Analysis of α-induced Reactions on Cobalt

20 individual excitation functions were measured for the production of 61 cu, 57 Ni, ${}^{60m+g}$ co, ${}^{58m+g}$ co, 57 co, 56 co, 55 co, 59 Fe, 52 Fe, 56 Mn, 54 Mn, ${}^{52m+g}$ Mn, 51 cr, 48 v, 47 sc, ${}^{46m+g}$ sc, 44m Sc, 44g Sc, 43 K and 42 K from cobalt for α -particle energies from 25 to 172.5 MeV. The experimental data and a detailed discussion are given elsewhere [5]. Although the target element Co is of secondary importance for cosmochemical applications due to its rather low abundances in extraterrestrial matter, it is well suited for comparing excitation functions with theoretical predictions, since it has just one stable isotope. In our case, the experimental data were compared with calculations based on the hybrid model of Blann [15]. The excitation functions of nearly half the product nuclides are dominated by preequilibrium effects over wide energy ranges. From the reaction 59 Co(α ,2n) 61 Cu an initial exciton number between $n_0 = 4$ (2n-2p-Oh) and n = 5 (2n-3p-Oh) or (3n-2p-Oh) is deduced. The theoretical predictions, however, which for p-induced reactions were very successful, show severe shortcomings for α -induced reactions. The excitation functions for $60m+g_{CO}$ (Fig.2) and for $58m+g_{CO}$ and ⁵⁹Fe (Fig.3) are underestimated by up to two orders of magnitude. For ^{60m+g}Co the discrepancy between theory and experiment can be attributed to break-up reactions of α -particles, whereas for the two other product nuclides even more complex reaction mechanisms have to be assumed. Moreover, the strong contribution of preequilibrium emission of α -particles observed for $(\alpha, 2pxn)$ and $(\alpha, 4pxn)$ reactions, which are not accounted for by the program OVERLAID ALICE[16], indicate that the initial reaction phase of α -induced reactions is more differentiated than is assumed by the hybrid model in its present form [17].

Fig.2 Comparison of the experimental excitation function for the reaction 59 Co(α ,2pn) ${}^{60m+g}$ Co with theoretical predictions.

Fig.3 Comparison of the experimental excitation function for the reaction 59 Co(α , 3pn) 59 Fe with theoretical predictions.

1.3 <u>Revision of Cross-Section Data for the Reaction</u> <u>Ti(p,xn)</u>48V

A typographical error occurred in our last year's progress report [4] in Table I (p.69) with respect to the cross section data for the production of ^{48}V from titanium. The corrected data are:

 $\sigma = 213 \pm 26 \text{ mb at } E_p = 16.42 \pm 0.19 \text{ MeV}$ $\sigma = 324 \pm 39 \text{ mb at } E_p = 14.77 \pm 0.26 \text{ MeV}$ $\sigma = 395 \pm 47 \text{ mb at } E_p = 12.97 \pm 0.35 \text{ MeV}$ $\sigma = 379 \pm 45 \text{ mb at } E_p = 10.93 \pm 0.38 \text{ MeV}$ $\sigma = 358 \pm 31 \text{ mb at } E_p = 8.02 \pm 0.48 \text{ MeV}$

Experimental Excitation Functions of p-Induced Reactions on Ba and Comparison with Theory

K.Prescher, G.Brinkmann, W.Herr

The cosmochemical interpretation of solar cosmic ray produced stable Xe-isotopes in meteorites and lunar samples is impeded by the lack of production cross-section data for these nuclides at proton energies < 100 MeV. In extraterrestrial matter, spallation-Xe is predominantly produced by proton reactions on Ba and most Xe-isotopes receive their main contributions from radioactive precursors.

Therefore, we have measured excitation functions for the production of ${}^{135}La$, ${}^{133}La$, ${}^{132}La$, ${}^{135m}Ba$, ${}^{133m}Ba$, ${}^{133}Ba$, ${}^{131}Ba$, ${}^{129}Ba$, ${}^{136}Cs$, ${}^{134}Cs$, ${}^{132}Cs$, ${}^{129}Cs$ and ${}^{127}Xe$ from Ba in the proton energy range of 12 to 45 MeV. The cross sections also allow a test of the applicability of the hybrid model predictions to specific cosmochemical problems.

Ba-glass targets of natural isotopic composition were irradiated at the Jülich isochronous cyclotron JULIC. The excitation functions were determined using the stacked foil technique. In order to check the accuracy of the determination of the proton beam current as well as of the energy determination throughout the stack, we used vanadium-foils and the respective excitation functions for 51 Cr and 47 Sc as monitors. The cross-section data are shown in Table II.

Table II. Experimental cross sections for the production of 51Cr and 47Sc in the p-induced reactions on V

^E p [±] ∆E _p	Cross Sec	ction [mb]	^E p ⁺ ∆E _p	Cross Sec	tion [mb]
[MeV]	⁵¹ Cr	47 _{Sc}	[MeV]	⁵¹ Cr	47 _{Sc}
44.95	22.8	6.24	33.06	37.1	11.8
<u>+</u> 0.11	<u>+</u> 2.5	<u>+</u> 0.62	<u>+</u> 0.38	<u>+</u> 3.7	<u>+</u> 1.2
43.56	25.3	6.92	31.03	40.2	9.45
<u>+</u> 0.18	<u>+</u> 2.3	<u>+</u> 0.69	<u>+</u> 0.40	<u>+</u> 4.0	<u>+</u> 1.04
43.43	24.4	7.20	29.26	45.1	7.41
<u>+</u> 0.10	<u>+</u> 1.9	<u>+</u> 0.50	<u>+</u> 0.42	<u>+</u> 4.5	<u>+</u> 0.81
41.58	28.3	8.43	28.99	$\begin{array}{r} 46.8 \\ \pm 3.3 \end{array}$	9.06
<u>+</u> 0.25	<u>+</u> 3.1	<u>+</u> 0.84	<u>+</u> 0.28		<u>+</u> 0.63
39.49	29.0	9.69	27.39	51.4	5.06
<u>+</u> 0.28	<u>+</u> 2.6	<u>+</u> 0.87	<u>+</u> 0.44	<u>+</u> 5.1	<u>+</u> 0.55
37.49	31.5	11.4	25.35	59.5	2.85
<u>+</u> 0.31	<u>+</u> 3.2	<u>+</u> 1.0	<u>+</u> 0.46	<u>+</u> 6.0	<u>+</u> 0.28
35.33	34.4	12.7	23.09	72.4	1.81
<u>+</u> 0.34	<u>+</u> 3.1	<u>+</u> 1.2	<u>+</u> 0.36	± 5.8	<u>+</u> 0.13
34.48	33.8	13.4	22.51	81.1	1.55
<u>+</u> 0.11	<u>+</u> 2.7	<u>+</u> 0.94	<u>+</u> 0.14	<u>+</u> 6.5	<u>+</u> 0.12

In Fig.4 the overall concordance with the data from the literature [3, 18, 19] is demonstrated.

Fig 4 Experimental cross sections of the reactions $V(p,xn)^{51}$ Cr and $V(p,3pxn)^{47}$ Sc.

Our new experimental excitation functions for Ba were compared with calculations using the computer code OVERLAID ALICE [16], which combines the concept of the compound nucleus in statistical equilibrium with that of preequilibrium reactions.

The general good agreement between theory and experiment is shown as an example in Fig.5. The shape of the 132 La excitation function is well reproduced; the theoretical curve, however, is shifted by ~ 4 MeV to lower energies. The reason may be the application of the rather crude mass formula from Meyers and Swiatecki [20]. There is also a discrepancy in the low energy part of the 132 Cs-excitation function which results from the emission of α -particles.Similar deviations have already been observed for p-induced reactions on Ti [1] and on Ni [2]. They were explained by preequilibrium emission of α -particles, which is not considered in the hybrid model.

Fig.5 Experimental excitation function and hybrid model calculations of the reaction $Ba(p,xn)^{132}La$.

References

- [1] R.Michel, G.Brinkmann, H.Weigel, W. Herr, J.Inorg.Nucl.Chem.40 (1978) 1845
- [2] R.Michel, H.Weigel, W.Herr, Z.Phys.A 286 (1978) 393
- [3] R.Michel, G.Brinkmann, H.Weigel, W. Herr, Nucl.Phys.A 322 (1979) 40
- [4] R.Michel, G.Brinkmann, W.Herr, in NEANDC (E)-202 U Vol.V/ INDC(Ger)-21/L + Special (1979)
- [5] R.Michel, G.Brinkmann, Nucl.Phys.A 338(1980) 167
- [6] M.Lindner, R.N.Osborne, Phys.Rev.91 (1953) 342
- [7] H.J.Probst, S.M.Qaim, R.Weinreich, Int.J.Appl.Rad.and Isot. 27 (1976) 431
- [8] N.T.Porile, Phys.Rev.127 (1962) 224
- [9] R.H.Lindsay, R.J.Carr, Phys.Rev.<u>120</u> (1960) 2168; idem 118 (1960) 1293
- [10] B.Gordon, BNL-50082 (1967) 82
- [11] G.H.Bouchard, A.W.Fairhall, Phys.Rev.116 (1959) 160
- [12] U.Martens, G.W.Schweimer, KFK-1083 (1969); Z.Physik 233 (1970) 170
- [13] W.W.Bowman, M.Blann, Nucl.Phys. <u>A 131</u> (1969) 513
- [14] A.Karpeles, Radiochim.Acta <u>12</u> (1969) 115
- [15] M.Blann, Phys.Rev.Lett.27 (1971) 337
- [16] M.Blann, UR-NSRL-181 (1978)
- [17] M.Blann, A.Mignerey, W.Scobel, Nukleonika 21 (1976) 335
- [18] E.Gadioli, A.M.Grassi Strini, G.Lo Bianco, G.Strini, G.Ragliaferri, Nuovo Cim. 22 A (1974) 547
- [19] S.Hontzeas, L.Yaffe, Can.J.Chem.41 (1963) 2194
- [20] W.D.Meyers, W.J.Swiatecki, Nucl.Phys.<u>81</u> (1966) 1

FACHBEREICH ANORG. CHEMIE UND KERNCHEMIE TECHNISCHE HOCHSCHULE DARMSTADT

(p,t..), (d,t..) and (a,t..)-Cross Sections for Al, V, Nb and Au*

M. Merkel, H. Münzel

Our previous studies about the cross sections for (p,t..), (d,t..) and $(\alpha,t..)$ reactions were extended to higher projectile energies. Stacks of Al, V, Nb and Au foils were irradiated at the Karlsruhe Isochronous Cyclotron and the Jülich Isochronous Cyclotron (JULIC). Thick target yields for triton formation have been measured for proton induced reactions up to 45 MeV, deuteron induced up to 70 MeV and α -induced up to 104 MeV. After the irradiations the foils were heated in a hydrogen-atmosphere and the activity of the extracted tritium was determined in a proportional counter using methane as counting gas [1]. The thick target yields are given in Table I. From those thick target yields cross sections were calculated.

Fig.1 Measured cross sections
 for (α,t..)-reactions

As an example the corresponding cross sections for the $(\alpha, t..)$ -reactions versus the energy ΔE^{*} are shown in Fig. 1. ΔE^{*} is the difference $E_{CM} - E_{TH}$ between the projectile-energy in the center of mass system and the reaction threshold energy [1]. The excitation functions for different target materials show a similar behaviour. The cross sections increase up to a maximum which is located at about 70 MeV. It should be pointed out here that cross sections of 100 mb for triton emission are surprisingly high.

^{*} Supported by the Bundesministerium für Forschung und Technologie, Federal Republic of Germany and the Nuclear Research Centers in Karlsruhe and Jülich

Projectile	Incident	Thick	Thick target yields *			
	projectile energy (MeV)	Aluminium	Vanadium	Niobium	Gold	
p	16.0	_	1.20E-7	_	8.64E-8	
P	20.0	-	2.84-6	4.05E-6	-	
р	21.0	-	-	-	4.49E-6	
p	25.0	1.53E-5	1.51E-5	1.35E-5	1.53E-5	
р	35.0	8.24E-5	6.02E-5	4.12E-5	4.88E-5	
р	45.0	2.36E-4	1.72E-4	1.06E-4	1.26E-4	
đ	12.0	2.05E-6	2.05E-6	2.37E-6	6.80E-7	
đ	18.0	2.03E-5	1.51E-5	1.85E-5	1.97E-5	
đ	24.0	7.27E-5	5.19E-5	5.14E-5	5.08E-5	
đ	38.0	2.91E-4	1.99E-4	1.60E-4	1.46E-4	
đ	50.5	-	4.61E-4	-	-	
đ	50.8	7.53E-4	-	3.42E-4	2.69E-4	
đ	60.0	1.31E-3	8.96E-4	5.45E-4	4.79E-4	
đ	70.0	1.77E-3	1.23E-3	7.26E-4	5.98E-3	
α	20.0	1.02E-6	3.36E-7	1.88E-8	-	
α	25.0	3.14E-6	-	-	7.55E-8	
α	30.0	8.60E-6	4.93E-6	1.54E-6	4.50E-7	
α	40.0	3.10E-5	1.70E-5	9.71E-6	4.79E-6	
α	48.0	7.05E-5	-	-	-	
α	50.0	-	5.75E-5	2.99E-5	1.49E-5	
α	60.0	2.33E-4	1.48E-4	7.60E-5	3 .96E-5	
α	70.0	3.65E-4	2.82E-4	1.33E-4	8.00E-5	
α	80.0	5.39E-4	3.76E-4	2.23E-4	1.58E-4	
α	90.0	9.24E-4	6.28E-4	3.40E-4	2.32E-4	
α	102,0	1.19E-3	7.95E-4	5.01E-4	3.45E-4	

Table I. Thick target yields for (x,t..)-reactions

* The yields are given as the number of tritons per incident projectile

Reference

 M. Merkel, H. Münzel, Formation of tritium in nuclear reactions induced by deuterons and α-particles, Nucl.Phys. <u>A333</u> (1980) 173 INSTITUT FÜR KERNCHEMIE UNIVERSITÄT MAINZ

Influence of Prompt Neutron Emission and Scission Shape on the Product Yield Distribution in $\frac{235}{U(n_{th}, f)}$

H.O. Denschlag, H. Braun, W. Faubel, G. Fischbach, H. Meixler, G. Paffrath, W. Pörsch, R. Sehr, B. Sohnius, M. Weis, H. Schrader¹⁾, G. Siegert¹⁾, J. Blachot²⁾, Z.B. Alfassi³⁾⁺, H.N. Erten⁴⁾⁺, T. Izak-Biran⁵⁾⁺, T. Tamai⁶⁾⁺, A.C. Wahl⁷⁾⁺, K. Wolfsberg⁸⁾⁺

Fission products were separated according to mass, ionic charge state, and kinetic energy [1,2] using the mass separator LOHENGRIN. The yields of single members of the mass chains were obtained by measuring the γ -rays emitted following their β -decay. Absolute γ -ray line intensities and branching ratios - when not known - were determined by separate radiochemical experiments [3].

¹⁾Institut Laue-Langevin, Grenoble, France
²⁾Centre d'Etudes Nucleaires, Grenoble, France
³⁾Ben Gurion University, Beer Sheva, Israel
⁴⁾Middle East Technical University, Ankara, Turkey
⁵⁾Soreq Nuclear Research Centre, Yavne, Israel
⁶⁾Kyoto University Research Reactor Institute, Japan
⁷⁾Washington University, St. Louis, Missouri, USA
⁸⁾Los Alamos Scientific Laboratory, Los Alamos, New Mexico, USA
⁺ Guest Scientist at Universität Mainz

Since the kinetic energy of a given fission product is related to the shape of the compound nucleus at scission and is inversely correlated to the internal excitation energy (i.e. mainly prompt neutron emission) of both complementary fragments, the results may be discussed with respect to these parameters.

The discussion presented in [1] may be summarized in four points.

(1) A preferential formation of neutron rich (low Z) chain members is found at high kinetic energies of the fragments and is presumably accounted for by the decreasing prompt neutron emission with increasing excitation energy.

(2) The persistence of an even-odd pairing effect in the yields throughout the range of kinetic energies studied leads to the conclusion that the high internal excitation energy of the fragments is appearing in the form of collective energy (e.g. deformation energy) at scission rather than in the form of single particle excitation.

(3) Generally, the yield distribution at constant kinetic energy is invariant with respect to the ionic charge state of the isotopes separated. However, a converted isomeric transition of a ns-isomer decaying in the vacuum of the separator before entering the magnetic field will produce a higher than average ionic charge state due to Auger events. In consequence, this nuclide is observed preferentially at high ionic charge states and the other chain members will be relatively depleted. The effect was observed in chains 99, 102, 133, 136 [1] and 139 [2].

(4) A particularly interesting aspect of the results obtained is the variation of the independent formation ratio of single isomeric states with the kinetic energy of the fragments. All the isomeric pairs observed (Nb-99, Nb-102, Sb-132, Te-133, I-134, and I-136) show a more or less pronounced decrease in the yield of the high spin isomer with increasing kinetic energy. The results can be interpreted in terms of the angular momentum produced at the scission point and its dependence on fragment deformation.
References

- [1] H.O. Denschlag, H. Braun, W. Faubel, G. Fischbach, H. Meixler,
 G. Paffrath, W. Pörsch, M. Weis, H. Schrader, G. Siegert, J. Blachot,
 Z.B. Alfassi, H.N. Erten, T. Izak-Biran, T. Tamai, A.C. Wahl,
 K. Wolfsberg, in Physics and Chemistry of Fission (Proceedings Symp.
 Jülich, 1979), IAEA, Vienna (1980), in press
- [2] H. Braun, H.O. Denschlag, W. Faubel, W. Pörsch, R. Sehr, B. Sohnius,
 H. Schrader, ILL-Annex to the Annual Report (1979) und H. Braun,
 H.O. Denschlag, H. Erten, W. Faubel, H. Meixler, W. Pörsch, R. Sehr,
 B. Sohnius und H. Schrader, Jahresbericht 1979, Institut für Kernchemie,
 Universität Mainz
- [3] Progress Report on Nuclear Data Research in the Federal Republic of Germany (1979), Report NEA NDC (E)-202 U Vol V and INDC (Ger)-21/L + Special

INSTITUT FÜR STRAHLENPHYSIK UNIVERSITÄT STUTTGART

Analyzing Power of Uranium-238 and Lanthanum for 7.6 MeV Neutrons J.W. Hammer, D. Kollewe, W. Kratschmer, G. Schleußner, E. Speller

With a scattering experiment using 50 % polarized neutrons of the ${}^{9}\text{Be}(\alpha,n){}^{12}\text{C}$ reaction the analyzing power of Uranium-238 and natural lanthanum has been determined. The α -beam of 2.8 MeV was delivered by the high current Dynamitron accelerator of the Institut für Strahlenphysik at Stuttgart. The used DC-beam currents were in the range of 300 μ A to 1 mA. The resulting neutron energy was 7.6 MeV at a reaction angle of 60°.

The Stuttgart scattering facility consists of a shielded source, a spin flip magnet between source and scattering sample and 4 neutron detectors which are properly shielded too. The reaction angle can be varied between O and 70 degrees, the angle of the detectors between O and 125 degrees. Fig. 1 shows a schematic top view of the neutron scattering experiment.

Neutron spectroscopy has been performed by unfolding the proton recoil spectra, obtaining a resolution of about 8 - 10 %. Gamma events have been nearly totally removed by $n-\gamma$ -discrimination. Background has been measured and subtracted separately. Measuring left-right asymmetries with symmetrically arranged detectors and with spin up and down we could eliminate apparative asymmetries and evaluate the analyzing power. Fig. 2 shows a plot of the analyzing power of uranium-238 and Fig. 3 of lanthanum.

We have made an optical model analysis using a coupled channels code for both the elements. The results are shown as solid lines in Figs. 2 and 3. The agreement of the coupled channels calculations with the experiments are not yet satisfactory and will have to be improved.

-60-

Fig. 1 Schematic top view of the Stuttgart neutron diffraction experiment.

Fig. 2 Analyzing power of uranium-238 (solid line) and optical model calculations (dashed line).

Fig. 3 Analyzing power of lanthanum (solid line) and optical model calculations (dashed line).

REAKTORSTATION GARCHING, FACHBEREICH PHYSIK TECHNISCHE UNIVERSITÄT MÜNCHEN

1. Coherent Neutron Scattering Lengths

L. Koester, K. Knopf, J. Meier

In continuation of the work for the determination of the fundamental spin state scattering lengths we applied the Christiansen filter technique to measure the bound coherent scattering lengths in particular for separated isotopes of the elements arsenic, selenium, bromine, strontium, yttrium, zirconium, silver and indium.

Some results are available at present.

We found for As and Se the following values:

As: $b = 6.58 \pm 0.01$ fm and $b_{+} = 6.04 \pm 0.05$ fm, $b_{-} = 7.47 \pm 0.08$ fm Se: $b = 7.970 \pm 0.009$ fm and $b(76) = 12.2 \pm 0.1$ fm; $b(77) = 8.25 \pm 0.08$ fm $b(78) = 8.24 \pm 0.09$ fm; $b(80) = 7.48 \pm 0.03$ fm and $b(82) = 6.34 \pm 0.08$ fm

These results were compared with the resonance parameters of the nuclei and with different sets of potential scattering radii. We found that there is no evidence for a bound level of 76 As, but clear indications for strong bound levels of 77 Se and 78 Se.

Measurements on silver and indium isotopes resulted in values for the bound scattering lengths as follows:

Ag: b = 5.97 ± 0.01 fm b(107) = 7.64 ± 0.04 fm and b₊ = 8.22 ± 0.09 fm, b₋ = 5.9 ± 0.2 fm b(109) = 4.19 ± 0.03 fm and b₊ = 3.27 ± 0.08 fm, b₋ = 7.0 ± 0.2 fm In: b = 4.065 ± 0.020 fm b(113) = 5.39 ± 0.06 fm b(115) = 4.00 ± 0.03 fm and b₊ = 2.1 ± 0.1 fm, b₋ = 6.4 ± 0.1 fm

-64-

These values are consistent with the resonance data listed in BNL 325, Vol. I, 3rd ed. (1973), if bound levels of silver isotopes are assumed.

Experiments on Christiansen filters filled with gases at various pressures and with powder as reference led to preliminary data for the coherent scattering lengths of the bound atoms as listed in the following:

> argon : $b = 1.85 \pm 0.10$ fm neon : $b = 4.547 \pm 0.011$ fm krypton : $b = 7.80 \pm 0.10$ fm deuterium : $b = 6.65 \pm 0.05$ fm

These values are only in fair agreement with data obtained recently by interferometer experiments [1].

2. Neutron Cross Sections

L.Koester, W. Waschkowski

Exact values for scattering cross sections at "zero-energy" σ_0 and coherent scattering lengths are needed for the determination of the fundamental spin state scattering lengths, which describe completely the scattering of slow neutrons by nuclei.

Zero-energy scattering cross sections are derived from total cross sections measured in the eV-region of the neutron energy. Transmission measurements were carried out on powdered samples of compounds of ordinary elements or separated isotopes with neutrons of 1.2 eV and 5.2 eV energy detected by means of rotating resonance detectors. From the measured total cross section the value of the scattering cross section at zero energy was obtained by taking into account the absorption, solid state effects and resonance contributions.

Measurements were performed on samples of the ordinary elements Zr, Mo and Se and on compounds containing the elements Y, As, Ca and Br.

The results for As and Se are: $\sigma_0(As) = 5.43 \pm 0.02 \text{ b}$ and $\sigma_0(Se) = 8.22 \pm 0.10 \text{ b}$. These values contain incoherent parts of $\sigma_{inc}(As) = 0.06 \pm 0.01 \text{ b} [2]$ and $\sigma_{inc}(Se) = 0.34 \pm 0.10 \text{ b}$.

References

[1] H. Kaiser et al., Z.Physik <u>A291</u> (1979) 231
[2] H. Glättli et al., J. de Physique <u>40</u> (1979) 629

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT BRAUNSCHWEIG

1. Radionuclide Data

Gamma- and X-Ray Emission Probabilities K. Debertin, U. Schötzig

Gamma- and X-ray emission probabilities of several radionuclides were determined by using activity-calibrated sources and germanium spectrometers. Particular emphasis was given to measurements with nuclides emitting gammaor X-rays in the energy range from 30 to 400 keV. Most of the results which are quoted in Table I have already been published [1,2]. The given uncertainties correspond to one standard deviation and include systematic uncertainties.

2. Neutron Cross Sections

Evaluation of a "Best" Set of Californium-252 Spectrum-Averaged Cross Sections W. Mannhart

In continuation of earlier published work [3], the data of six different experiments [3-9] were reanalyzed to generate the specific covariance matrices containing the complete uncertainty information of each experiment. Based on this data, the experiments were combined by a non-diagonal weighted leastsquares fit to generate a "best" set of recommended cross-section data. The procedure used [9] in combining the various data allows in a purely mechanical (i.e., independent of any arbitrary weighting) way the evaluation of data as soon as the covariances of the data are determined. Additionaly, each new data set with a covariance matrix can simply be added to the present evaluation without the need of starting the whole evaluation from the very beginning. The results are given in Tables II and III. With the exception of a few measurements with standard deviations evident larger than 2%, representing data only measured in a single experiment, one recognizes from Table III that there are strong correlations between all non-fission reactions and between all fission reactions. However, one recognizes also relatively small correlations between the fission and non-fission reactions. This fact indicates the need of performing an additional experiment which connects closer the fission and non-fission data to improve the consistency of the total data set.

-66-

Nuclide	Energy in keV	p
⁵¹ Cr	320.1	0.0985(9)
⁵⁷ Co	136.5	0.1058(8)
^{1 3 3} Ba	30.8(K) 35.1(Kα) 53.1 79.6 81.0 356.0	0.971 (16) 0.232 (5) 0.0220 (4) 0.0261 (7) 0.340 (8) 0.623 (7)
^{1 4 1} Ce	145.4	0.489(4)
¹⁵² Eu	39.9(Sm-K) 45.7(Sm-K $^{\alpha}$) 42.8(Gd-K $^{\beta}$) 48.9(Gd-K $^{\alpha}$) 121.8	0.591(12) 0.149(3) 0.00648(22) 0.00176(18) 0.2837(24)
¹⁸² Ta	31.7 42.7 58.0/59.3(K_{α}) 65.769.1(K_{β} + γ) 84.7 100.1 113.7 116.4 152.4 156.4 179.4 198.3 222.1 229.3 264.1 1121.3 1189.0 1221.4 1231.0 1257.5 1289.2	0.00892(21) 0.00266(8) 0.2802(52) 0.571(13) 0.0263(10) 0.1423(42) 0.0187(6) 0.00445(15) 0.0695(9) 0.0263(5) 0.0309(4) 0.0144(2) 0.0750(10) 0.0364(5) 0.0362(6) 0.3530(32) 0.1644(15) 0.2717(25) 0.1158(11) 0.0136(2)

Table I. Gamma- and X-ray emission probabilities p per decay

~

Reaction	< J >	Std. dev.
		۵
Mg-24(n,p)	1.918	4.90
Al-27(n,p)	4.862	3.55
Al-27(n,α)	1.014	2.00
S-32(n,p)	71.78	4.50
Ti-46(n,p)	14.11	2.20
Ti-47(n,p)	19.26	2.12
Ti-48(n,p)	0.4240	2.41
V-51(n,p)	0.7156	8.94
Fe-54(n,p)	86.55	2.12
Fe-56(n,p)	1.459	2.36
Ni-58(n,p)	115.4	1.67
Co-59(n,a)	0.2186	7.41
Zn-64(n,p)	40.14	2.46
In-113(n,n')	162.2	2.27
In-115(n,γ)	125.7	2.96
In-115(n,n')	197.9	2.19
Au-197(n,γ)	76.83	2.27
Au-197(n,2n)	5.512	2.51
U-235(n,f)	1204	1.61
Np-237(n,f)	1339	2.14
U-238(n,f)	319.1	2.08
Pu-239(n,f)	1798	1.83

Table II. Evaluated set of californium-252 spectrumaveraged cross sections

Table III. Correlation matrix (x 100) of the evaluated data

Mg-24(n,p)	100									
Al-27(n,p)	21	100								
Al-27(n,α)	36	48	100							
S-32(n,p)	22	26	38	100						
Ti-46(n,p)	28	38	69	30	100					
Ti-47(n,p)	30	40	72	32	74	100				
Ti-48(n,p)	27	36	63	28	73	67	100			
V-51(n,p)	5	15	18	6	15	16	14	100		
Fe-54(n,p)	31	41	71	33	63	66	5 8	15	100	
Fe-56(n,p)	30	38	67	31	58	62	55	14	65	100
Ni-58(n,p)	33	46	82	36	77	81	70	17	83	6 8
Co-59(n,α)	9	19	23	12	18	19	17	9	19	18
Zn-64(n,p)	27	39	64	29	55	59	51	15	57	54
In-113(n,n')	33	43	70	31	61	64	61	18	63	60
In-115(n,y)	25	32	53	23	46	49	47	14	48	46
In-115(n,n')	35	44	71	32	63	66	66	18	66	62
Au-197(n,γ)	31	43	69	30	61	63	59	18	63	59
Au-197(n,2n)	28	42	64	27	55	58	54	19	58	54
U-235(n,f)	8	11	19	9	17	18	16	4	19	16
Np-237(n,f)	6	8	14	6	13	13	12	3	14	12
U-238(n,f)	5	7	12	6	11	12	10	3	12	10
Pu-239(n,f)	7	10	17	8	15	16	14	ц	16	14

21	100										
64	19	100									
70	20	56	100								
53	15	43	68	100							
73	20	58	85	65	100						
70	20	56	83	65	84	100					
64	21	52	75	57	74	81	100				
27	5	15	16	13	17	16	15	100			
20	4	11	12	9	13	12	11	73	100		
17	3	10	10	8	11	11	10	89	75	100	
24	5	13	15	11	15	15	13	73	61	70	100

100

3. Variable Energy Cyclotron

High-Precision Fast Neutron Scattering Experiments H.J. Brede, H. Klein, H. Schölermann, B.R.L. Siebert

Recently some details of the multi-angle TOF-spectrometer have been published regarding the properties of the cyclotron [10], the multiparameter data acquisition system [11], the multichannel collimator [12] and the design of liquid scintillation detectors [13].

In addition, details of the experimental setup for high precision neutron scattering experiments in the energy range of 6 MeV to 14 MeV have been studied with regard to:

(a) $D(d,n)^{3}$ He neutron source

This reaction is often used because of the simple handling of deuterium gas targets. Assumming that the material and thickness of the entrance foil as well as the beam stop of the deuterium gas cell are optimized the applicability of this neutron source is limited due to the energy and angular resolution and to background neutrons [14]. The large amount of neutrons from d-breakup reactions, which rapidly increases with the projectile energy, finally restricts inelastic scattering experiments.

(b) Sample size corrections

The corrections due to the neutron flux attenuation and the multiple scattering within the sample and the influence of the geometrical setup of the gas cell, the scatterer and the detector on the evaluation of the angular distribution have been studied. For various samples of carbon, polyethylene or iron the time-of-flight (TOF) spectra have been simulated by means of Monte-Carlo technique because often used analytical approaches fail in correcting the scattering on light nuclei where kinematical effects become important. Calculations on the basis of averaged cross sections ($\Delta E = 0.5 \text{ MeV}$) for carbon (Fig. 1a) and polyethylene (Fig. 1b) samples of the same size demonstrated the need to fully simulate the TOF-spectra. The contributions of multiple scattered neutrons in the region of elastic and inelastic scattering on carbon are quite different and therefore require quite different evaluations.

This program is used to optimize the shape, size and geometrical setup of scattering samples [15]. An improved version based on point cross sections will allow to determine all corrections with sufficient accuracy.

(c) Detector efficiency

The efficiency of our various liquid TOF-scintillators for neutrons in the energy range of 1 MeV up to 20 MeV will be calibrated with reference to a proton recoil telescope. A Monte-Carlo program [16] has been developed which simulates the geometry of the neutron source, the telescope and various detectors and computes appropriate correction factors. In addition the well known differential cross sections of the D(d,n)-reaction [17] and n-p-scattering in a polyethylene reference scatterer are considered. This calibration will be compared to extensive MC-calculations of response functions [18]. The analysis of recent experiments is in progress.

References

- [1] K. Debertin, Nucl.Instr.Methods <u>165</u> (1979) 279
- [2] U. Schötzig, K. Debertin, K.F. Walz, Nucl.Instr.Methods 169 (1980) 43
- [3] W. Mannhart, NEANDC(E)-202 U, Vol. V (1979) p. 86
- [4] V. Spiegel et al., NUREG/CP-0004, Vol. 2 (1978) p. 959
- [5] M.C. Davies, G.F. Knoll, Annals Nucl. Energy 5 (1978) 583
- [6] V.M. Adamov et al., NBS Spec.Publ. No. 493 (1977) p. 313
- [7] J.J. Wagschal, R.E. Maerker, D.M. Gilliam, Proc. Third ASTM-Euratom Symposium on Reactor Dosimetry, Ispra, Italy (Oct. 1979), in press
- [8] K. Kobayashi, I. Kimura, ibid.
- [9] W. Mannhart, F.G. Perey, ibid.
- [10] H.J. Brede, M. Cosack, G. Dietze, H. Gumpert, S. Guldbakke, R. Jahr, M. Kutscha, D. Schlegel-Bickmann, H. Schölermann, Nucl.Instr.Methods <u>169</u>, (1980) 349
- [11] H. Klein, H.J. Barrenscheen, G. Dietze, B.R.L. Siebert, Nucl.Instr.Methods <u>169</u> (1980) 359
- [12] D. Schlegel-Bickmann, G. Dietze, H. Schölermann, Nucl.Instr.Methods <u>169</u> (1980) 517
- [13] H. Schölermann, H. Klein, Nucl.Instr.Methods 169 (1980) 25
- [14] H. Klein, H.J. Brede, Contribution to the IAEA Consultants Meeting on Neutron Source Properties, Debrecen (March 1980), in press
- [15] B.R.L. Siebert, H.J. Brede, H. Klein, H. Schölermann, Contribution to the Neutron Interlab Seminar, Paris (June 1979), to be published
- [16] B.R.L. Siebert, H.J. Brede, H. Lesiecki, to be published
- [17] M. Drosg, Nucl.Sci.Engineering 67 (1978) 190
- [18] G. Dietze, to be published

Fig. 1 Monte-Carlo simulation of TOF-spectra to be expected at 28.75 degree for the scattering of 10 MeV neutrons on carbon (a) and polyethylene (b) samples of the same size (2.55 cm in diameter, 3.15 cm in height). A deuterium gas target (10⁵ Pa, 3 cm in length) at a distance of 17.5 cm and a liquid scintillator (25.4 cm in diameter, 5 cm in length) at a distance of 1050 cm are considered.

INSTITUT FÜR KERNCHEMIE

PHILIPPS-UNIVERSITAET MARBURG

1. Gamma-Ray Catalog

U. Reus, W. Westmeier, I. Warnecke⁺

The catalog has been described in the last Progress Report NEANDC (E) - 202 U Vol. V p. 98, and we refer to this description for details. A total of 250 copies of the catalog were printed under the sponsorship of GSI^+ . The demand has been such that in the beginning of 1980, no more copies were left. We therefore regret not to be able (at the moment) to fulfil further requests.

A second, updated edition of the catalog is in preparation. It will include references to the literature through January 1980, and also some minor modifications will be made, e.g. the inclusion of the most important X-ray data. Discussions are being carried out at the moment with regard to publishing the catalog in an appropriate journal, in order to make it generally available.

The appearance of this second edition is scheduled for the end of 1980.

2. Alpha-Energy Table

W. Westmeier, R.A. Esterlund

A compilation covering data on alpha energies, intensities and abundances for all known alpha emitters is updated from the literature informations in two month intervals. At present, the table covers data on 516 alpha emitters with a total of 1579 alpha energies.

A computer printout of the table, ordered by increasing energy, is available on request from the authors.

⁺Gesellschaft für Schwerionenforschung mbH, Darmstadt

FACHINFORMATIONSZENTRUM ENERGIE PHYSIK MATHEMATIK

Status Report

H. Behrens, J.W. Tepel

1. Information System for Physics Data in the Federal Republic of Germany

This project has been described earlier in the Progress Reports NEANDC (E) - 172 U Vol. V, NEANDC (E) - 182 U Vol. V and NEANDC (E) - 192 U Vol. V. No details are therefore given here.

2. New Data Compilations

The	following new is	ssues in the series Physics Data were published in the						
mear	ntime:							
3-4	(1979):	Datensammlungen in der Physik. Data Compilations in						
		Physics.						
		H. Behrens and G. Ebel. 86 pages.						
		Supplement to No. 3-1, 3-2 and 3-3 containing about						
		420 further references to tables and compilations.						
5-5	(1979):	Gases and Carbon in Metals (Thermodynamics, Kinetics						
		and Properties). Part V: Group IVA Metals (1):						
		Titanium (Ti).						
		H. Jehn, H. Speck, E. Fromm and G. Hörz. 84 pages.						
5-6	(1979):	Gases and Carbon in Metals (Thermodynamics, Kinetics						
		and Properties). Part VI: Group IVA Metals (2):						
		Zirconium, Hafnium (Zr, Hf).						
		H. Jehn, H. Speck, E. Fromm and G. Hörz. 80 pages.						
15	(1979):	Karlsruhe Charged Particle Reaction Data Compilation.						
		H. Münzel, H. Klewe-Nebenius, J. Lange, G. Pfennig and						
		K. Hemberle.						
		Loosleaf collection, XLVI, 1652 pages.						
-:	1	Entry 1-35. XIV, 762 pages.						
-:	2	Entry 36-80. XIV, 818 pages.						
-:	Index	Index to Entries 1-35 and 36-80. XVIII, 72 pages.						

16-1 (1979): The oxygen framework in garnet and its occurrence in the structures of Na₃Al₂Li₃F₁₂, Ca₃Al₂ (OH)₁₂, RhBi₄ and Hg₃TeO₆. E. Hellner, R. Gerlich, E. Koch and W. Fischer. 40 pages.

17-1 (1980): in preparation.

3. Bibliography of Existing Data Compilations

As mentioned under 2 a new supplement (Physics Data 3-4 (1979)) has been issued to this worldwide survey of all existing physics data compilations.

4. The Evaluated Nuclear Structure Data Files (ENSDF)

The contribution of the Fachinformationszentrum Energie, Physik, Mathematik to the international collaboration in the evaluation of nuclear structure data (ENSDF) was reported in detail in the 1978 Progress Report. In the past year two mass chains were published, viz. A = 84 [1] and A = 87 [2]. Three further chains, viz. A = 85, 91 and 92 have passed the review procedure and are to appear shortly. Data for the mass chains A = 93, 95 and 96 are in preparation.

In order to improve the retrieval capabilities from ENSDF the data file was restructured as an ISAM file using a special 16-digit key [3]. This key was designed in such a manner, that the original sequence of data records in ENSDF is preserved in the new file, enabling the use of all analysis and display programs. However, in contrast to the old system, where retrieval was purely data set-wise, direct retrieval of individual records is now possible. This feature is particularly useful for horizontal compilations, where specific properties are selected from the file for many different nucleides. As an application a systematic study of log ft-values in beta decay was undertaken [4].

In view of the importance of radioactivity and decay data from ENSDF, which is normally computed from decay data sets via the computer code MEDLIST, a separate data file MEDGEN was constructed from the MEDLIST results. Retrieval from this new file is possible via A- and Z-values of the parent or decaying nucleides. In this manner it is not necessary to recalculate the quantities of interest for each application, but only to update the file once with results from new decay data sets entered into the ENSDF-file.

5. The Nuclear Structure References File (NSR)

The bibliographic data file associated with ENSDF, the "Nuclear Structure References" or NSR, was updated and implemented on our computer. Besides enabling us to decode references appearing in the ENSDF-file, new keywords were introduced which make retrieval of literature documents from this file possible according to the method of inverted lists.

References

[1] H.-W. Müller, J.W. Tepel, Nuclear Data Sheets 27 (1979) 339

[2] P. Luksch, J.W. Tepel, Nuclear Data Sheets 27 (1979) 389

[3] J.W. Tepel, Bull. Am. Phys. Soc. <u>24</u> (1979) 837, EC14

[4] H. Behrens, P. Luksch, H.-W. Müller, J.W. Tepel, Verhandl. DPG (VI), (1980) 15, 1119

APPENDIX I

Addresses of Contributing Laboratories

Institut für Angewandte Kernphysik II Director: Prof.Dr. G. Schatz Senior reporters: Dr. S.W. Cierjacks Dr. F. Käppeler Kernforschungszentrum Karlsruhe Postfach 3640 7500 Karlsruhe

Institut für Kernphysik II Director: Prof.Dr. A. Citron Senior reporter: Dr. S.W. Cierjacks Kernforschungszentrum Karlsruhe Postfach 3640 7500 <u>Karlsruhe</u>

Institut für Neutronenphysik und Reaktortechnik Director: Dr. G. Keßler Senior reporter: Dr. F.H. Fröhner Kernforschungszentrum Karlsruhe Postfach 3640 7500 Karlsruhe

Institut für Chemie (1): Nuklearchemie Director: Prof.Dr. G. Stöcklin Senior reporter: Dr. S.M. Qaim Kernforschungsanlage Jülich Postfach 1913 5170 Jülich

Institut für Kernphysik: Experimentelle Kernphysik II Director: Prof.Dr. O. Schult Senior reporter: Dr. K. Sistemich Kernforschungsanlage Jülich Postfach 1913 5170 Jülich I. Institut für Experimentalphysik
Director: Prof.Dr. H. Neuert
Senior reporter: Prof.Dr. W. Scobel
Universität Hamburg
Luruper Chaussee 149
2000 Hamburg 50

Institut für Reine und Angewandte Kernphysik Director: Prof.Dr. K.O. Thielheim Senior reporter: Dr. H.G. Priesmeyer Universität Kiel, Geesthacht Reaktorstr. 1 2054 Geesthacht/Tesperhude

Institut für Kernchemie Director: Prof.Dr. W. Herr Senior reporter: Dr. R. Michel Universität zu Köln Zülpicher Str. 47 5000 <u>Köln</u>

Fachbereich Anorganische Chemie und Kernchemie Senior reporter: Prof.Dr. H. Münzel Technische Hochschule Darmstadt Hochschulstr. 6100 <u>Darmstadt</u>

Institut für Kernchemie Director: Prof.Dr. G. Herrmann Senior reporter: Prof.Dr. H.O. Denschlag Johannes Gutenberg-Universität Mainz Friedrich von Pfeiffer Weg 14 6500 Mainz Institut für Strahlenphysik Director: Prof.Dr. K.-W. Hoffmann Senior reporter: Dr. J.W. Hammer Universität Stuttgart Allmandring 3 7000 Stuttgart 80

Fachbereich Physik der Technischen Universität München Abteilung E14, Forschungsreaktor Head and senior reporter: Prof.Dr. L. Köster 8046 Garching/München

Physikalisch-Technische Bundesanstalt Abteilung 6, Atomphysik Director: Prof.Dr. S. Wagner Senior reporter: Dr. W. Mannhart Bundesallee 100 3300 Braunschweig

Institut für Kernchemie Senior reporter: Prof.Dr. P. Patzelt Philipps-Universität Marburg Lahnberge 3550 Marburg/Lahn

Fachinformationszentrum Energie, Physik und Mathematik Director: Dr. W. Rittberger Senior reporter: Dr. H. Behrens Kernforschungszentrum 7514 Eggenstein-Leopoldshafen 2

APPENDIX II

CINDA Type Index

ELEMENT S A	QUANTITY	TYPE	ENERGY MIN MAX	DOCUMENTATION REF VOL PAGE DAT	LAB	COMMENTS
MA NY	TOTAL	THEO-PROG	15+7	NEANDC (E) -2120 680	JUL	VOL-5-P-27-KLAPDOR+ STATMDL ANAL NDS
MA NY	N,ZN	EXPT-PROG	+7	NEANDC(E)-2120 68	JUL	VOL-5-P-28-KHATUN+STG VS(N-Z)/A GPPH
MA NY	N, ALPHA	THEO-PROG	15+7	NEANDC(E) -2120 68	JUL	VOL.5.P.27.KLAPDOR+ STATMDL ANAL.NDG
MA NY	N, PROTON	EXPT-PROG	FAST	NEANDC (E) -2120 68	JUL	VOL.5.P.30.QAIM. ABST.NDG
NA NY	N. PROTON	THEO-PROG	15+7	NEANDC(E)-212U 680	101	VOL-5-P-27-KLAPDOR+ STATEDL ANAL NDG
MA NY	N. PROTON	EXPT-PROG	+7	NEANDC (E) -2120 680	JUL	VOL-5-P-28-KHATUN+SIG VS(N-Z)/A.GPPH
HA NY	N. DEUTERON	THEO-PROG	15+7	NEANDC (E) -2120 68	JUL	VOL 5. P.27. VI APDORE STATEDI AVAL MOS
NA LY	N.N PROTON	EXPT-PROG	+7	NEANDC(E)-2120 68	1 1 11	VOI -5-P. 28 KHATIINASIC VC/N-7)/4 CDDU
NA NY	N.ALPHA	EXPT-PROS	+7	NEANDC(E) -2120 68		VOL 5 P.25 PUATINASTE VEIN-TY/A CODU
0 002	THERMAL SCAT	EXPT-PROC	NDC	NEANDC(E)-2120 68		VOL S P 44 MORETEDA FOU CEAT LEUETH
H PLE	SCATTERING	EXPT-PROG	10.47	NEANDC(E)-2120 68	D PTP	VOL 5 P 20 BREACE TOE-PRECTOR CALL
H PLF	SCATTERING	EXPT-PROG	10+7	NEANDC (E)-2120 68	1 PTD	VOL 5 P 70 BPERSA TOF-SPECTRA CALC
-	SCATTERING	EXPT DOGG	10.17	HEANDE/E2-2120 60		VOL 5 P 70 DELET TOF SPECIAR CALL
	SCATTERING	EAPT-PROG	70.44 14.7	NEANDC(E)-2120 08	, Pla	VOL.S.F. TO BREDE TOF-SPECIAR CALC
C (12	HESON PARANS	EXPT-PROG	30+6 11+7	NEANDLIES -2120 68	JAFK	VOL.J.P.T.CIERJACKS+RESPARS EN,WT,WN
0 010	RESON PARAMS	EXPI-PROG	11+/ 15+/	NEANDC(E)-2120 68	J KFK	VOL-5-P-4-HINTERBERGER+ ABST,RESPARS
0 010	RESON PARAMS	EXPT-PROG	30+6 11+7	NEANDC(E)-2120 68) KFK	VOL.5.P.1.CIERJACKS+RESPARS EN, WT, WN
NE	THERMAL SCAT	EXPT-PROG	NDG	NEANDC (E) -2120 68	O MUN	VOL.5.P.64 KOESTER+ COH SCAT LENGTH
MG 024	N, PROTON	EVAL-PROG	FISS	NEANDC(E)-2120 68) PT8	VOL.5.P.66.MANNHART.CF252 SPEC SIG
AL	N, TRITON	EXPT-PROG	FAST	NEANDC(E)-2120 68	JUL 0	VOL.5.P.27.KHATUN+ SIG, EXCIT FN, NDG
AL	N,HELIUM3	EXPT-PROG	FAST	NEANDC(E)-2120 68	JUL	VOL.5.P.27.KHATUN+ SIG,NDG
AL 027	N, HEL TUH3	THEO-PROG	15+7	NEANDC(E)-2120 680	JUL	VOL.5.P.27.KLAPDOR+ STATHDL
AL 027	N, TRITCN	THEO-PROG	15+7	NEANDC (E) -2120 68	JUL	VOL.5.P.27.KLAPDOR+ STATHDL, CFD EXPT
AL 027	N, ALPHA	EVAL-PROG	FISS	NEANDC (E) -2120 68	PTE	VOL.5.P.66.MANNHART.CF252 SPEC SIG
AL 027	N, PROTON	EVAL-PROG	FISS	NEANDC(E) -2120 68	PTE	VOL.5.P.66.MANNHART.CF252 SPEC SIG
SI 028	N,HELIUM3	THEO-PROG	15+7	NEANDC(E)-2120 68	JUL 0	VOL.5.P.27.KLAPDOR+ STATHDL
P 031	N, TRITON	THEO-PROG	15+7	NEANDC (E)-2120 68	JUL 0	VOL.5.P.27.KLAPDOR+ STATMDL, CFD EXPT
P 031	N,HELIUM3	THEO-PROG	15+7	NEANDC(E) -2120 68	JUL 0	VOL.5.P.27.KLAPDOR+ STATMDL, CFD EXPT
S 032	N, TRITON	THEO-PROG	15+7	NEANDC(E) -2120 68	JUL	VOL.5.P.27.KLAPDOR+ STATHDL, CFD EXPT
s C32	N, PROTON	EVAL-PR OG	FISS	NEANDC(E)-2120 68	0 PT8	VOL-5-P-66-MANNHART-CF252 SPEC SIG
s 032	N_HELIUM3	THEO-PROG	15 +7	NEANDC (E) -2120 68	D JUL	VOL.5.P.27.KLAPDOR+ STATMDL
AR	THERMAL SCAT	EXPT-PRCG	NDG	NEANDC (E) -2120 68	-	VOL.5.P.64.KOESTER+ COH SCAT LENGTH
к сз9	N, TRITON	THEO-PROG	15+7	NEANDC(F)-2120 68	JUL 0	VOL.5.P.27.KLAPDOR+ STATMDL, CFD EXPT
K 039	N.HELIUM3	THEO-PROG	15+7	HEANDC (E)-2120 68	JUL	VOL.5.P.27.KLAPDOR+ STATMDL
K 041	N, TRITON	THEO-PROG	15+7	NEANDC (E) -2120 68	O JUL	VOL.5.F.27.KLAPDOR+ STATMOL, CFD EXPT
K 041	N, HELIUM3	THEO-PROG	15+7	NEANDC(E) -2120 68	JUL 0	VOL.S.P.27.KLAPDOR+ STATHDL
CA 040	N, TRITON	THEO-PROG	15+7	NEANDC(E)-2120 68	JUL O	VOL.5.P.27.KLAPDOR+ STATPDL,CFD EXPT
CA 040	N, HELIUM3	THEO-PROG	15+7	NEANDC (E)-2120 68	U JUL	VOL.5.P.27.KLAPDOR+ STATHDL
SC 045	N, TRITON	THEC-PROG	15+7	NEANDC (E)-2120 68	O JUL	VOL.S.P.27 KLAPDOR+ STATNOL, CFD EXPT
SC 045	N, HELIUN3	THEO-PROG	15+7	NEANDC (E) -2120 68	O JUL	VOL.5.P.27.KLAPDOR+ STATMOL, CFD EXPT
TI 646	N. TRITON	THEC-PROG	15+7	NEANDC(E)-2120 68	D JUL	VOL-5-P-27-KLAPBOR+ STATMDL.CFD EXPT
TI 646	N.PROTON	EVAL-PROG	FISS	NEANDC (E) -2120 68	0 PTB	VOL.5.P.66.MANNHART.CF252 SPEC SIG
TI 046	N.HELIUM3	THEO-PROG	15+7	NEANDC (E)-2120 68	0 JUL	VOL-5-P-27-KLAPDOR+ STATMDL
TI 047	N. PROTON	EVAL-PROG	FISS	NEANDC (E) -2120 68	0 978	VOL.S.P.66.MANNHART.CF252 SPEC SIG
TI 048	N.PROTON	EVAL-PROG	FISS	NEANDC(E)-2120 68	O PTR	VoL.5.P.66.MANNHART.CF252 SPEC SIG
	N. TRITON	EXPT-PROG	FAST	NEANDC (E)-2120 68	0	V01 -5-P -27 - KWATUN+ SIG NDG
v	N NEI TIMT	EXPT-PROG	FACT	NEANDC(E) -2120 68	0 100	VAL S P 27 KHATIIN+ STG NDG
V 054	N PROTON	EVIL-PROC	F100	NEANDC(E)-2120 68	0 500	WALE D 44 MANNAET (235) CDEC 516
V 051	A,FROTON	EVAL-FRUG	F135	NEANDC(C)-2120 08		VOL 5 P 37 KULTUNA EVE NOC
LR	N, TRATON	EAPT-PHOU	FAST	NEANDC(E)-2120 60	0 302	Wel E D 37 KHATUNT SIG, NDG
	H, HELIONS	EXPT-PROG	TAST	NEANDC(E)-2120 68	0 300	VOL 6 0 38 PUTTURE 016 100
CK USU	N,N PROTON	EXPT-PROG	1155	ACANDECED-2120 68	JUL	
CR USU	N, THITON	THE O-PROG	15+7	NEANDC(E) -2120 68	U JUL	. VUL-S-P-27-KLAPDOR+ STATMDL,CFD EXPT
CR 050	N, HEL IUH3	THEO-PROG	15+7	NEANDC(E)-212U 68	U JUL	VOL-S-P.27.KLAPDOR* STATMOL
CR 050	N, DEUTERON	EXPT-PROG	FISS	NEANDCCED-212U 68	0 JUL	VOL-S-P-28.KHATUN+ SIG, ND6
MN	N, TRITON	EXPT-PROG	FAST	NEANDC(E) -2120 68	0 101	VOL -> -P =27.KHATUN+ SIG,NDG
MN	N, HELIUM3	EXPT-PROG	FAST	NEANDC (E) -2120 68	0 JUL	. VOL.S.P.27.KHATUN+ SIG,NDG
FE	N, TRITON	EXPT-PROG	FAST	NEANDC (E) -2120 68	0 JUL	. VOL.5.P.27.KHATUN+ SIG,NDG
FE	N,HELIUM3	EXPT-PR OG	FAST	NEANDC (E)-2120 68	0 JUL	. VOL.S.P.27.KHATUN+ SIG,NDG
FE 054	N_PROTON	EVAL-PROG	FISS	NEANDC(E)-212U 68	0 PTE	VOL.5.P.66.MANNHART.CF252 SPEC SIG

ELEMENT	QUANTITY	TYPE	ENERGY MIN MAX	DOCUMENTATION L REF VOL PAGE DATE	AB CORMENTS
FE 054	N.TRITON	THEO-PROG	15+7	NEANDC (E)-2120 680 J	UL VOL-5-P-27-KLAPDOR+ STATMOL, CFD EXPT
FE 054	N.HELIUM3	THEO-PROG	15+7	NEANDC (E)-2120 680 J	UL VOL.5.P.27.KLAPDOR+ STATADL
FE 056	RESON PARANS	EXPT-PROG	27+4	NEANDC(E)-2120 680 K	FK VOL.5.P.5.WISSNAK+ WG,S-WAVE
	N, TRITON	EXPT-PROG	FAST	NEANDC(E) -2128 680 J	UL VOL.5.P.27.KHATUN+ SIG,NDG
0	N, HELIUM3	EXPT-PROG	FAST	NEANDC (E)-2120 680 J	UL VOL.5.P.27.KHATUN+ SIG,NDG
0 059	N, ALPHA	EVAL-PROS	FISS	NEANDC (E)-2120 680 P	TB VOL.5.P.66.MANNHART.CF252 SPEC SIG
co 059	N, TRITON	THEO-PROG	15+7	NEANDC(E)-2120 680 J	UL VOL.5.P.27.KLAPDOR+ STATHDL,CFD EXPT
0 059	N, HELIUM3	THE O-PROG	15+7	NEANDC(E)-2120 680 J	UL VOL.5.P.27.KLAPDOR+ STATHDL, CFD EXPT
I	N, TRITON	EXPT-PROG	FAST	NEANDC (E)-2120 680 J	UL VOL.5.P.27.KHATUN+ SIG,NDG
NI	N,HELIUM3	EXPT-PROG	FAST	NEANDC (E)-2120 680 J	UL VOL.5.P.27.KHATUN+ SIG,NDG
NI 058	N, PROTON	EVAL-PROG	FISS	NEANDC(E)-2120 680 P	TB VOL.5.P.66.MANNHART.CF252 SPEC SIG
N P 058	N, DEUTERON	EXPT-PROG	FISS	NEANDC(E)-2120 680 J	UL VOL.5.P.28.KHATUN+ SIG, NDG
NI 058	N,ALPHA	EXPT-PROG	FISS	NEANDC (E)-2120 680 J	UL VOL.5.P.28.KHATUN+ SIG, NDG
NI 058	N,N PROTON	EXPT-PROG	FISS	NEANDC (E) -2120 680 J	UL VOL.5.P.28.KHATUN+ SIG, NDG
NI 060	N, PROTON	EXPT-PROG	FISS	NEANDC(E)-2120 680 J	UL VOL.5.P.28 KHATUN+ SIG, NDG
NI 061	N, PROTON	EXPT-PROG	FISS	NEANDC (E) -2120 680 J	UL VOL.5.P.28.KHATUN+ SIG, NDG
NI 062	N_ALPHA	EXPT-PROG	FISS	NEANDC (E)-2120 680 J	UL VOL.5.P.28.KHATUN+ SIG, NDG
AS	THERMAL SCAT	EXPT-PROG	00+0	NEANDE(E)-2120 680 M	UN VOL.5.P.65.KOESTER+ SCAT SIG
AS	THERMAL SCAT	EXPT-PROG	ND G	NEANDC (E) -2120 680 M	UN VOL.5.P.64.KOESTER+ COH SCAT LENGTH
SE	THERMAL SCAT	EXPT-PROG	00+0	NEANDC(E)-2120 680 M	UN VOL.5.P.65.KOESTER+ SCAT SIG
SE	THERMAL SCAT	EXPT-PROG	NDG	NEANDC (E)-2120 680 M	UN VOL.5.P.64.KOESTER+ COH SCAT LENGTH
KR	N, GAMMA	EXPT-PROG	25+3 20+5	NEANDC (E) -2120 680 K	FK VOL.5.P.9.LEUGERS+ GRPHS, TBL
KR	THERMAL SCAT	EXPT-PROG	NDG	NEANDC(E)-2120 680 M	UN VOL-5-P-64-KOESTER+ COH SCAT LENGTH
KR	TOTAL	EXPT-PROG	70+3 20+5	NEANDC (E)-2120 680 K	FK VOL.5.P.9.LEUGERS+ GRPHS
KR 084	TOTAL	EXPT-PROG	70+3 20+5	NEANDC (E) -2120 680 K	FK VOL.5.P.9.LEUGERS+ GRPHS
KR 084	N, GAMMA	EXPT-PROG	70+3 20+5	NEANDC(E)-2120 680 K	FK VOL-5.P.9.LEUGERS+ GRPHS
NB	N, HELIUM3	EXPT-PROG	FAST	NEANDC(E)-2120 680 J	UL VOL.5.P.27.KHATUN+ SIG,NDG
18	N, TRITON	EXPT-PROG	FAST	NEANDC(E)-2120 680 J	UL VOL-S.P.27.KHATUN+ SIG,NDG
TC 099	RESON PARAMS	EXPT-PROG	+1	NEANDC(E)-2120 680 K	IG VOL.5.P.41.PRIESMEYER+ WT, WN, EN
AG	THERMAL SCAT	EXPT-PROG	NDG	NEANDC(E)-2120 680 M	UN VOL.5.P.64.KOESTER+ COH SCAT LENGTH
IN	THERMAL SCAT	EXPT-PROG	NDG	NEANDC(E)-2120 680 M	UN VOL.5.P.64.KOESTER+ COH SCAT LENGTH
LN 113	TOTAL	EVAL-PROG	FISS	NEANDC (E)-2120 680 P	TB VOL.5.P.66.MANNHART.CF252 SPEC SIG
IN 115	N,GAMMA	EVAL-PROG	1122	NEANDC(E)-2120 680 P	TE VOL-S-P-000-MANNHART-CF252 SPEC SIG
1 120	DECON DADAME	EXPT-PROG	47	NEANDC (E) -2120 600 F	TE VOL 5 D 14 DETECTEVEVEDAND ENCATES CPE
1 127	RESON PARANA	CYPT-PROC	2547 2045	NEANDE (E)-2120 680 K	The Toles a telecost cools Tol
	DECON DADANC	EXPT-PROG	3041 1243	NEANDC(E)-2120 680 K	TE VAL 5 & 41 DETERMENTERATEAUCORF CODU
CS 135	RESON PARAMS	EXPT-PROG	42+1	NEANDC (E) -2120 680 K	16 VOLESETEN LEFTESHETER TRANSFEL GRP
cs 135	RESON PARAMS	EXPT-PROG	62+1	NEANDC (E) -2120 680 K	IG VOL 5.P.41.PRIFEMENERS A CAPTURE
BA 138	N.GAMMA	EXPT-PROG	30+4	NEANDC (E) -2120 680 K	FK VOL-5-P-9-REER+ ARST
LA	SCATTERING	EXPT-PROG	76+6	NEANDC (E) -2120 680 I	FS VOL-5-P-60-HAMMER+ POLARIZED BEAMS
CE 140	N, GAMMA	EXPT-PROG	30+4	NEANDC (E)-2120 680 K	FK VOL.5.P.9.BEER+ ABST
CE 142	N, GANMA	EXPT-PROG	30+4	NEANDC (E)-2120 680 K	FK VOL.5.P.9.BEER+ ABST
YB	N, GAMMA	EXPT-PROG	50+3 20+5	NEANDC (E) -2120 680 K	FK VOL.5.P.5.BEER+ GRPHS, TOF, VDG
YB 170	N, GARMA	EXPT-PR OG	50+3 20+5	NE ANDC (E) -2120 680 K	FK VOL.5.P.S.BEER+ GRPHS, TOF, VDG
LU	N.GAMMA	EXPT-PROG	50+3 20+5	NEANDC (E) -2120 680 K	FK VOL.5.P.5.BEER+ GRPHS, TOF, VDG
LU 175	N, GAMMA	EXPT-PROG	30+4	NEANDC (E) -2120 680 K	FK VOL.S.P.9.BEER+ ABST
LU 175	N, GAMMA	EXPT-PROG	50+3 20+5	NEANDC(E)-2120 680 K	FK VOL.5.P.S.BEER+ GRPHS, TOF, VDG
LU 176	N, GAMMA	EXPT-PROG	30+4	NEANDC(E)-2120 680 K	FK VOL.5.P.9.BEER+ ABST
TA 181	N, GAMMA	EXPT-PR OG	30+4	NEANDC (E)-2120 680 K	FK VOL.5.P.9.BEER+ ABST
w 184	N. GAMMA	EXPT-PROG	50+3 20+5	NEANDC (E)-2120 680 K	FK VOL.5.P.5.BEER+ GRPHS, TOF, VDG
AU 197	N,GARMA	EVAL-PROG	FISS	NEANDC (E) -2120 680 P	TB VOL.5.P.66.MANNHART.CF252 SPEC SIG
AU 197	N, ZN	EVAL-PROG	FISS	NEANDC(E) -2120 680 P	TB VOL.5.P.66.MANNHART.CF252 SPEC SIG

U 235 EVALUATION EVAL-PROG 10-3 10+2 NEANDC (E)-212U 680 KFK VOL-5-P+25-FROEHNER+ SIG+RESPARS,NDG

 U
 235
 FISS YIELD
 EXPT-PROG PILE
 NEANDC(E)-212U
 680
 NNZ
 Vol.5.P.57.DEMSCHLAG+
 ABST

 U
 235
 N.FISSION
 EVAL-PROG
 FISS
 NEANDC(E)-212U
 680
 PTB
 Vol.5.P.66.MANNHART.CF252
 SPEC
 SIG

 U
 235
 FISS
 PROG
 FISS
 NEANDC(E)-212U
 680
 PTB
 Vol.5.P.66.MANNHART.CF252
 SPEC
 SIG

 U
 235
 FISS
 PROG
 PILE
 NEANDC(E)-212U
 680
 JUL Vol.5.P.35.BATTISTUZZI + MO-104
 LVLS

 U
 238
 EVALUATION
 EVAL-PROG
 10-3
 A0+3
 NEANDC(E)-212U
 680
 KFK
 Vol.5.P.25.FROEHNER+
 SIG+RESPARS,ND6

- 83 -

ELEMENT S A	QUANTITY	TYPE	ENERGY MIN MA	x	DOCUMENTATION REF VOL PAGE	DATE	LAB	COMMENTS
U 238	SCATTERING	EXPT-PROS	76+6		NEANDC(E)-212U	680	IFS	VOL.5.P.60.HAMMER+ POLARIZED BEAMS
U 238	N,FISSION	EVAL-PROG	FISS		NEANDC(E)-212U	680	PTB	VOL.5.P.66.MANNHART.CF252 SPEC SIG
NP 237	FISS YIELD	EXPT-PROG	80+5 55	+6	NEANDC (E)-212U	680	KFK	VOL.5.P.17.NAQVI+ GRPH
NP. 237	N,FISSION	EVAL-PROG	FISS		NEANDC (E) -2120	680	PTB	VOL-5-P.66-MANNHART.CF252 SPEC SIG
NP 237	NUBAR (NU)	EXPT-PROS	80+5 55	+6	NEANDC (E) -212U	680	KFK	VOL.5.P.17.NAQVI+ GRPH
NP 237	FRAG SPECTRA	EXPT-PROG	80+5 55	+6	NEANDC (E)-212U	680	KFK	VOL.5.P.17.NAQVI+ GRPH, TOT KIN EN
PU 239	N, FISSION	EVAL-PROG	FISS		NEANDC (E)-2120	680	PTB	VOL.5 .P.66.MANNHART.CF252 SPEC SIG
AM 241	N,GAMMA	EXPT-PROG	10+4 25	+5	NEANDC (E)-2120	680	K FK	VOL.5.P.14.WISSHAR+ ABST
AM 241	EVALUATION	EVAL-PROG	10-3 15	+2	NEAND CCE) -2120	680	KFK	VOL.S.P.25.FROEHNER+ SIG+RESPARS, NDG
AM 241	N, FISSION	EXPT-PROG	10+4 10	+6	NEANDC (E)-2120	680	KFK	VOL-5_P.14.HAGE+ ABST
AM 241	N, FISSION	EXPT-PROG	10+4 25	+5	NEANDC (E)-2120	680	KFK	VOL.5.P.14.WISSHAK+ ABST
AR 241	SPECT N, GART	EXPT-PROG	14-3 30	+4	NEANDC(E)-2120	680	RFK	VOL.5.P.15.WISSHAK+ BRANCHING RATIO
AM 242	EVALUATION	EVAL-PROG	10-3 40	+0	NEANDC(E)-2120	680	KFK	VOL.5.P.25.FROEHNER+ SIG+RESPARS, NDG
AM 243	EVALUATION	EVAL-PROG	10-3 25	+2	NEANDC(E)-212U	680	KFK	VOL.S.P.25.FROEHNER+ SIG+RESPARS,NDG
CH 244	EVALUATION	EVAL-PROG	10-3 10	+3	NEANDC (E)-2120	680	KFK	VOL.5.P.25.FROEHNER+ SIG+RESPARS,NDG