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ABSTRACT

The authors describe the RFSP programme for unfolding neutron spectra
from activation data. With spectra satisfying the activation equations they
use the programme to unfold that spectfﬁm for which the functional characterizing
deviations from the initial spectrum is at a minimum. The RFSP programme is
an advanced and more rapid version of the SPECTRA code. The results obtained
with the codes are identical, but RFSP requires less computer time. In this
report the authors describe the algorithm of the method, the input/output

specifications and typical results.



I. Introduction

When unfolding neutron spectra from activation data, one measures the

integrals

A, = S ¢(E) o (B)AE , . /i =1,2,...,n/
J .

(1)
where Ai represents the measured activities of the i-th foil,
HE) is the differential neutron spectrum,

%(E) is the cross-section for the reaction occurring during activation of

" the i-th foil, as é function of energy,

and the spectrum ¢(E) has to be determined for known Oi(E) and Ai'

Since we are here dealing with the solution of mathematically indeterminate systems
of equations (the number of points at which the spectrum is determined is greater
than the amount of measurement data available to us), certain initial information

is redquired for the solution in addition to the measurement data.

The published theoretical methods differ mainly in the form that this
initial information takes; in practice, these methods can be divided into two
groups. The first group comprises methods for which it is assumed that one is
dealing with a spectrum given in a simple analytical form and that it is only
the parameters of the analytical form that are unknown. In the case of the
second group, an initial spectrum given in purely numerical form is varied in the
course of an iterative process until the activities agree with the measured

values.

The method described in this report belongs to the second group. The
problem is formulated as follows: the initial spectrum ¢°(E) is given, and from‘
spectra satisfying the activation equations (i.e. those reproducing the
measurement results) we determine the spectrum for which the functional
characterizing the difference between the initial spectrum and the derived

spectrum is at a minimum,

Emax

2
S [ ¢°(E) ¢ (€) :| dE = minimum
E

5 &) .
min ° (2)



(Emin and Emax stand for the energy values above and below which the spectrum

is taken as zero). At this point the question arises as to what accuracy should
be stipulated when solving the activation equations. If the derived spectrum

is reQuired to satisfy the activation equations eiactly, the problem can be
solved by applying Lagrange's method of multipliers. The cross-sections of the
foils used for the measurements (first and foremost those of the threshold detectors)
are known only to within ¥ 10%, so it is not always advisable to stipulate that
the activation equations should be satisfied exactly. Greer and co-workers 1—1;7
have described an iterative method of which the result agrees with that obtained
by using Lagrange's method of multipliers. During the iteration process the
gspectrum is varied in such a way that the difference between the measured and
theoretical activities gradually decreases. The iterations thus result in a
spectrum satisfying the activation equations only within the limits of the
measurement accuracy (taking into account the degree of indeterminacy of the
cross-sections). As will be demonstrated further on, the spectrum derived as the
iteration limit may be obtained directly, without iteration, by Greer's method.
The question as to which variant is best used in which particular case and the

overall quesiions involved in applying the programme are discussed in Ref. 172;7.

The method developed by us is a more advénced and faster version of Greer's
method.

II. Mathematical principles underlying the RFSP code

1. The problem is to find the spectrum in a form such that the product of the
spectrum and energy EP(E) is a piecewise linear function of the energy; in such
a case, the system of activation equations can be transformed into the matrix

eduation
a=Q¢ (3)

where a is a column vector consisting of n elements, the measured

activities Ai'being the elements;

® is a column vector consisting of m elements, these being the spectrum

values sought at individual energy - and hence lethargy - points;

Q is a matrix of size n x m, the elements of which are definite integrals

of the cross-sections, m being greater than n (see Appendix I).

If we divide the rows of the matrix Q into the corresponding elements of

the vector a, we arrive at the system of equations

cp = (1) . (4)



where (ln) is a column vector consisting of n elements, each element being equal

to 1.

Assuming an initial spectrum (a vector consisting of m elements) that does
not satisfy Eq. (3), let us normalize it so that the sum of the squares of the
deviations of the elements of the vector C¢o from unity is at a minimum (see

Appendix II).

Let us now formulate a function that will characterize the deviations of the
measured activities from the activities calculated in the unknown spectrum, on

one hand, and of the initial from the unknown spectrum, on the other:

b= (ay = )T P2 (ay - @) + (oy - 00 G2(oy - 8)  (5)
where a; = C¢l

2 2
G and P are diagonal matrices used for normalization:

det(G) # 0 , det(F) # O

It is advisable, though not eSsential, to select these matrices in such a way
that the elements of the matrix G represent the reciprocals of the corresponding
elements of the initial spectrum, while those of the matrix F represent the
reciprocals of the relative errors in measuring the activity of the corresponding

foils; +the superscript T is used to designate the transposition operation.

Let us now attempt to find the spectrum for which this function is at a
minimum. To do so we shall differentiate expression (5) with respect to ¢1, and

theri equate it to zero; from which we obtain

-1
¢; = (c"ric + c?) (cTrz(ln) + G2 ¢o)
(6)
where the superseript -1 is used to designate the matrix inversion
operation.
We now introduce the notation
C = Feg Tt
T

(e + 1)

where this time I designates a unit matrix of the order m. On the basis of a

and B

brief computation it c¢an easily be seern that expression (6) now assumes the

following form:

4, =c¢1p (gT P(1,) +‘G¢6)

(7N



It can be demonstrated (see Appendix III) that the matrix 32A1/3¢i=CTF2C+G2
is positive and therefore transformable; hence, there is a solution of
expression (6), and with this solution the function TS does assume a minimum
value. I% can also be demonstrated Z—L;7 that, if ¢o is not a solution of

Eq. (3), neither is b, -

As with expression (5), we can now formulate a new function in which we
write ¢1 instead of‘¢0 and ¢2 instead of ¢l. If this process is repeated
several iimes, we arrive, after k steps, at the following expression for the

next spectrum approximation:

b1 =G B (QT F(1,) +¢ ¢’k)
(8)
Here we have derived a formula which is suitable for the iteration
process, and by applying formula (8) several times we obtain progressively
better spectrum approximations. These approximations tend to a limit. Further
calculations are required for a direct determination of the limit. If we express
¢k in Eq. (8) by means of the iteration spectra referred to, we arrive at the

expression

S | 2
Sx+1 = © (x+§+§

+...+8%) B T F(1) + el 8% g

(9)

It can be demonstrated (see Appendix III) that, if some vector is an eigenvector
of the matrix g?g and it has an eigenvalue A, then this vector is at the same
time an eigenvector of the matrix B, and in this case the eigenvalue is

1/(1 + A). Since the rank of the matrixlg?g is equal to n, zero is its -
m-n-fold eigenvalue. Thus, 1 is the m-n-fold eigenvalue of the matrix B, while

the other eigenvalues lie between O and 1 (see Appendix III).

The matrix B is symmetric, so that its right-hand and left-hand eigenvectors
are identical and it can be written in the form PLPT, where L is the diagonal
matrix containing eigenvalues and P is the matrix containing the orthonormalized
eigenvectors as column vectors. Let us arrange the elements of the matrix L
in ascending order and let the order of the column vectors in the matrix P follow

the same order. Equation (9) can be rewritten in the following form:

-1 2 X ) T, T -1 _ k+l T
= . + prXtl pTg
byyy = © p(z+r+12+. . .+1%) pTRC F(1) +G 6y

(10)

(here we have made use of the identity resulting from the fact that the
-1 T
eigenvectors have been orthonormalized: P° =P , so PP = 1).



Let us determine the limit of this expression for k - o . It is easy to
k
determine the limit of the second term: 1lim L +1 = H, where H represents a
k— 00
diagonal matrix, of which the first n diagonal elements are equal to O and the

others equal to 1.

To determine the limit of the first term in expression (10) let us look at
the matrix product PTEQT. Since the .matrix B is symmetiric, B = §T, so that
PTacT = PTBTCT = (cBP)T. In the last of the (m-n) columns of the matrix CBP
there are only zeros (see Appendix IV), so that, if we take the diagonal matrix
Lo’ the first n elements of which coincide with the corresponding elements of the
matrix L, while the other elements are equal to zero, then the following
relationship is valid for any k:

¥ pT BT = Lﬁ pT BT

Consequently, we can everywhere write Lo instead of T in the first term of
expression (10) without affecting the result. The limit of the expression in
brackets, (I+LO+L§+...+L§L for k=% can easily be determined; the individual
diagonal elements are the sums of infinite geometric series. If in this case,

as above, the non-zero eigenvalues of the matrix‘g?g are designated by
Al’x2’°"’§1’ then the non-zero diagonal elements of the matrix Lo will be
1/(1+Al), 1/(1+K2)..., 1/(1+An), while the elements of the matrix K corresponding

to the limit of the matrix sequence will be (1+xl)/x1, (LA Mgy eeey (LA ).
Thus, the spectrum limit for k =% is

1 1

¢ = m o =¢" PKPT gg? F(1) + G

k<o

PHPT G¢o

(11)

It can be demonstrated that this spectrum satisfies either Eq. (3) or
Eq. (4) and agrees with the solution obtained by Lagrange's method of multipiiers;
i.e. for this spectrum the integral (2) does assume its minimum value. However,
the proof is complicated and, as it is fully described in Ref. 1—1;7, we do not

include it here.

2. Complicated and laborious matrix operations are required to determine the
limit by means of BEq. (11). Later on we shall show that there is a simpler but
rapid method of determining it. By appropriate conversion of the iteration
formula one obtaing a formula with which, after only one iteration, one can find
the limit with the desired accuracy (if necessary, the convergence rate can be

adjusted to the desired value).



Let us write the result of the first iteration and the limit expression
of the iteration process, with the restriction that matrix G contains the
reciprocals of the initial spectrum ¢B; the diagonal elements of matrix G
then coincide with the elements of the vector ¢o' The fact that the problem
concerns a diagonal matrix rather than a vector is underscored by designating
the matrix by ¢¥. In this cade, the product G¢B appearing in Eqs (7) and (11)
is a column vector with each element equal to unity. We will denote this
vector by (lm). Formulas (7) and (11) can then be written in the following

form:

(12)

¢ = M(ere"eTCTF (1) + PreT (1)

(PKP B'CF(1) + PHPT(lm)‘) S (13)

The difference bvetween the two spectra is

¢~ ) = ¢ ( (L +1.2 ote e TBTgTr(ln) + P(H-L) pT(lm))

(14)
Further on we will describe a method by means of which, without affecting

the flux ®, the difference § - ¢1 can be reduced in such a way that the flux

can be derived with sufficient accuracy afier only one iterative step.

Let us go back to Eq. (4). -Physically, thié equation means that, when
multiplied by the corresponding cross-sections, the flux should give the measured
activities. If both sides of the eguation - i.e. all the elements of the matrix C
and of the vector (1 ) - are multiplied by the same numbértu, there will be no
change in the phys1ca1 meaning of the eauatlon, i e. the spéctrum obtained as
the 1terat10n limit remains unchanged. This operatlon comes to the same thlng as
writing C' =w C in Egs (5)-(14) instead of the matrix C, B' = (C' g'+1) instead
of B, and the column vector @un) - all the elements of which are equal to w -

instead of the vector (1 ).

If we multlply all the elements of some matrlx by the same number, the
elgenvectors of the matrix remain unchanged while the elgenvalues are multlplled
by the same number. Having multiplied the matrlx [ by w, we multlply each
element of the matrlx CTC by w2, accordingly, the elgenvalues of e C' w111 be
wz—fold values of the eigenvalues of QTQ, and the elgenvalues of B! will '
therefore be 1/(14w %, )/1 1, 2, ... n/. As was pointed out, the introduction
of these changes does not affect ¢, but $,, and therefore @ - ¢i, are changed.

In this case the difference will be



o - op = o [e(ugrng? v ) PP Te R () + B(an) BT(L)]

o

(15) -

where the matrix L' contains all the eigenvalues of B', while the matrix Lé

contains only the first n of these values. .

After mulfiplicatién and addition, the square brackets in Eq. “(15) contain
one column vector of m elements. As this column vector is multiplied from the
left by tﬂe diagdnal matrix ¢%, any element of the column vector can be multiplied by
only one corresponding element of the initial spectrum; each element of the
column vector ¢-¢i is therefore obtained as a result of only one multiplication
of this kind.

In Appendix V it is demonstirated that for any positive € there will be a w
for which the absolute value of the largest element of the column vector standing
in square brackets in expression (15) will be smaller than €. ‘In other words,
if we use ‘a large enough value of w, then the difference - ¢lvcan be reduced to
the desired value. Appendix V also contains formula (V-11), which can .be used to

determine the required value of ® for a given value of §€.

Hence, if we multiply the matrix C by w according to formula (V-11) at the
very beginning of the computation, ¢ is determined with an‘accuracy of the order
¢ in the first iteration step. It should be pointed out here that the phrase
"with an accuracy of the order €" does not in this case mean that the following

expression is satisfied for any element of the vectors ¢, ¢1, ¢o:

I ¢s ; ¢15 <e
8 (16)
but that only
R <e
Pos | (17)

is satisfied, since the.s-th_elemehtvof.the exact solution ¢s may be very small
or equal to zero, in which case the,ineQuality_(16) cannot be satisfied, even if

¢g *.¢ls,is very small. .

It should also be noted that, when calculating @, we always took into
account the most unfavourable conditions as regards the_accuracy of the result.
In practice, .the accuracy of this method is much better than if wo&ld_séém from
Eqs (V-11) and (V-12). | B
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3. With the method described by Greer / 1 /, the limit is determined with the
help of Eq. (11), in which one has to calculate all the eigenvalues and

. s
eigenvectors of a matrix whose dimensions coincide with those of matrix g?g; one

must then still orthogonalize the eigenvectors belonging to the eigenvalue O.

Examining the sequence of the calculations, we see that, when our method is
used, after forming the matrix QTQ we have to calculate its n non-zero eigenvalues
and from this determine the multiplier w; we can then determine the limit of
the iteration process by multiplying the matrix C by.this multiplier, using the
simple formula (7). Thus, the use of our method helps to save a considerable
number of cells in the computer's internal memory and a great deal of computer

time.
III. RF'SP code

The RFSP code, which is written in FORTRAN 1V, was developed for the
translator of our Institute's ICT-1905 computer. Two regimes (modes of operation)
are possible with the code; in the first it determines the neutron spectrum using
the method describéd in Section II, while in the second it performs functions

connected with the storing of cross-sections:
(a) It compiles a new magnetic tape;
(b) It records new cross-sections on library tape already available;
(c¢) It erases the cross-section for a particular reaction from the tape;

(d) It prints out the cross-section for a particular reaction on a line

printer.
At present, the cross-sections are stored on "RFSP LIBRARY" tape.
In the first regime, the sequence of operations is as follows:

After compiling the matrix QTQ, the code determines w. The value @ may
sometimes be 100 large, in which case some elements of the matrix Q'Tg'
exceed 1012 and in the sum Q'Tg' + 1 the addition is not performed
accurately. To avoid this situation, the programme (after determining w)
checks whether or not this value is too high. If it is, the highest

value of ¢ not leading to inaccuraqy is determined. Then, on the basis

of formula (V-12), the programme determines the number of iteration steps
required to calculate the limit with the desired accuracy usihg the new value

of w.

It may sometimes prove necessary to study the way in which a spectrum varies

as one approaches an exact solution. In such a case, of course, the method we
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describe (i.e. determining ¢ and multiplying the matrix g?g by w2 is not
applicable, since it gives the limit at once. However, bearing in mind that the
rate of convergence is determined by w, we can take some value w' such that

l <ow' <w, multiply the matrix QTQ by(n'z, and thereby vary the rate of
convergence which would be obtained by using Greer's method - i.e. if we used

w' = 10

As part of the input information we have to indicate whether we want: to
apply this iteration method (see further on). If we do, the rate of convergence

is controlled by means of keys. If neither the third nor the fourth key is

inserted then w' =4/w ; 1if only the third key is inserted, then ' = 1; if the
1

fourth key is inserted, then w' = —— (the latter may be required if the
[A)

iteration process converges very rapidly even for ' = 1; i.e. for o' =1 a

solution that is "too good" is obtained after the first step).

In certain cases it may prove necessary not to normalize the initial flux -
i.e. not to make the calculation described in Appendix II. There is no
normalization when key 1 is insefted. When key 2 is inserted, the code - before
calculation begins -~ prints out the response functions of the individual foils
in a given spectrum —‘i.e. the elements of the matrix C¢¥. Questions connected
with calculating a specific spectrum, using the different regimes and

interpreting the results are described in detail in Ref. 1—2;7.

When compiling the RFSP code we drew considerably on the SPECTRA code.
The input data for both codes are virtually identical, but our code nevertheless
differs greatly from the SPECTRA code. Apart from the mathematical differences

described in Section II, the two codes are dissimilar in the following respects:

(a) In the RFSP code EE), and not P(E), is the piecewise linear energy
function. In the case of conventional reactors, $(E) varies within
eight orders of magnitude and we have to describe the spectrum by a
limited number of points (a maximum of 50 in this case). Taking
¢XE) as the piecewise linear function, we can permit an error of up
to 10-12% in the activities. If EHE) is taken as the piecewise
linear function, the error is virtually eliminated, but this is only
a slight modification from the standpoint of programming and

mathematics;

(b) As already mentioned in Section II, with the SPECTRA code we calculate
all the eigenvectors of a matrix of size m x m and then orthogonalize

some of them, whereas there is no calculation of eigenvectors with the



- 12 -

RFSP code. As a result of this difference, the number of cells in
the computer's internal memory redquired to accommodate the RFSP
programme is considerably smaller than for the SPECTRA programme.
With the ICT-1905 computer programmed with the RFSP code, a spectrum
can be unfolded at 50 points, whereas the SPECTRA code can be

accommodated in the computer only when the number of points drops
to 25.

The RFSP programme occupies 25 500 cells in the computer's internal memory.
The computer time required to solve one problem is a function of the size of the
matrix C and - when an iteration process is used ~ of the number of iterations.
In the case of 10 foils and 50 energy points it takes ~ 250 seconds to solve

one problem, i.e. to determine the limit.

Introduction of the input data

The input data are introduced on punched tape or punched cards in the
form described below, as reduired by the rules for using FORTRAN; each format

corresponds to one line.

Format 1/1048/ - This line stipulates the operational regime for the
programme. The information recorded in this line
consists of only one of the following words and has
to be recorded at the beginning of the line.

RUN ~ Unfolding of neutron spectra by the method described
in Section II.

NEWTAPE — Compilation of a new magnetic tape library storing
the cross-section data.

ADD - Recording of new reactions and cross-sections on
existing magnetic tape.

DELETE — Erasure of any reaction or cross-section from the tape.

EDIT - Print-out of any reaction or cross-section on a line
printer.

ENDEND - End of punched tape containing input. data.

The information given after this line depends on the operational regime

set in the first line.
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(a) 1In the case of RUN

Format II/10A8/ 4 . ~ Any text; 80 alphanumerical symbols;
the title of the problem may be put
in here. The programme prints out this
line at the beginning of each page on

the line printer.

Format III /3I3,E12.5,I5,I12/ - IFOIL - Number of foils g 30
IENER ~ Number of energy points g 50
MODE - May have the following meanings:

(i) If the LIMIT regime is used by itself, only the three variables
mentionedv(IFOIL,vIENERband MODE) need be given in this line, while
the other spaces remain empty; in this case, if MODE = 1, the code
produces a linear representation of the spectrum, while if MODE = 2,
the mode represents it logarithmically (this only relates to a
schematic representétion of the spectrum and does not affect the code's

operation);

(ii) If the REPETE regime is used, then the value of the remaining
| variables must be given‘and, furthermore, one must indicate whether
the REPETE regime is beiﬁg used by itself or whether the REPETE
and LIMIT regimes are being used in sequence. If MODE = 1, the
'épectrum is unfolded only during the REPETE regime; if MODE = 2, it

is unfolded in both regimes. The reméining variables are

. n
ERRE = & )
n =

or the permissible mean errof, where Af is the activity of the
i-th foil at the k-th iteration step:

MITE - Maximum number of iterations

IPLT - If it is equal to 1, the spectrum
is represented linearly; if it is
equal to 2, it is represented logarithmically.
The REPETE regime is terminated when
the mean deviation of the activities is
less than ERRE, or when the number of

itérations attaing MITE. If a separate
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error is given for the foils (see type V),
the operation is also terminated when
each activation error is less than the

corresponding measurement error.

(iii) If MODE = 4 and we do not assign a value to the variables ERRE, MITE
and IPLT, the programme determines only the mean cross-section for the
reactions under consideration in the spectrum given as the programme
input; 1in this case, the activation values have to be given a value

of unity (see type V).

Format 1V/6E12.5/ _ - E, ¢(El),...Em, ¢(Em), in all 2 x IENER
" variables; energy and inpuyt flux values.
The energy should be given in ascending order.
This format is fed in as many times as the

JENER value requires.

Format V/248, E12.5, E13.5/ — The first two variables contain the foil
designation, whicn should tally with the name
of the reaction given in Table 1. This is
followed by the measured foil activity and
by the measurement error, which does not
necessarily have to be determined; if the
measurement error is not stipulated the
diagonal elements of the matrix I are equal
to unity. The measurement error has to be
stipulated for all the foils or for none of
them. This type is inserted IFOIL times.
Then comes the line in which the next regime

is given (Format I).
(b) In the case of NEWTAPE or ADD

Format VI/2a8,14/ — The first two variables contain the foil
designation, after which comes the number of
data (i.e. a number twice the number of energy
points used to determine the cross—sections);

it should not exceed 3500.

Format ViI/6E12.5/ . — The foil cross-sections in the sequence
By o(El), Ep 0(E2), ee.; the energy is
given in ascending order. This type of punched
card is inserted in numbers corresponding to

the number of poinfs.
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This is followed either by the line giving
the regime (Format I) or again by a line of
Format IV.

(c) 1In the case of DELETE or ADD

Format VII1/248/ ~ The name of the reaction that it is intended

to erase or to print-out on the line printer.

This is followed either by a line of
Format VIII or by the line of Format I giving

the regime.

The programme enables separate regimes to be run one after the other,
following the order of the input data. After the final data the punched tape or
card bearing the data should be temminated with the line of Format I containing

the word ENDEND.

The input data

In the NEWTAPE, ADD and DELETE versions of the RFSP programme, the input
data include the name of a given reaction, while for EDIT they also contain the

reaction cross—section at all points.

. In the RUN version, the title of the problem is followed by the designations
of the foils, their measured activities and (if stipulated) the activity
measurement errors. After this, the initial flux, ¢(E) and EE), and then the

activity ratios, are printed out.

After the normalization described in Appendix II, there come the normalized
fluxes and the corresponding normalized activity ratios. This is followed by w
and then (if there are any) by the results of the LIMIT version — i.e. the
theoretical fluxes $(E) and EP(E), the activity ratios and the percentage errors.

In the case of the REPETE version, the output is the same as for LIMIT;
each of the first ten iterations is printed out, after which every fifth
iteration up to 100 and then every hundredth iteration. However, when REPETE

is used, not more than 50 iterations are usually'required.

Appendices VI and VII describe the set of input data and the result as
calculated and printed out by the RFSP programme.
APPENDIX I: DETERMINATION OF THE ELEMENTS OF THE MATRIX C

As pointed out, the flux is given in such a way that E(E) is a piecewise

linear energy function. Let Eyr Epy eeey Em-be the corresponding energy values),
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and ‘¢1, ¢2, ceey ¢ulthe corresponding fluxes. The flux values between Ej and
E. are then

J+l
&) E - E, E " E
E¢(E) = ¢, , E, — + ¢, E, =1L
j+1 i+l Ej+1- Ej 373 ’Ej+l Ej
(I-1)
Let us assume that below E1 and above Em the flux is zero, i.e. that

¢1 = ¢m = 0. Substituting the expression given above into Eq. (1) for the
activity of the i-th foil, we get the following equation:

E

2 a,(E) 3 a,(E) -
: o
Ay = S E¢(E) i dE-+X E¢(E) iE dE +...+ S E¢$ (E) iE dE =
E E ) ,
1 2 I:m-l
E
2
E-E E,~E (E) -
- 1 2 o3 ?n E-E__
= $,E, =—=— + B, =% | i e m-1
é [ 22 55, Y 0B E2-El] g 4B +...4 OnFm EE__; '
1 ' En-1
E_-E g, (E)
m i )
¥ ¢m—1 Em—l E ~E -l] E dE
m m (1_2)

If the integral sign is removed from E,, E, ..., E and ¢l’ ¢b, ceey ¢nﬂ
which are independent of the variable of integration, we get the following

expression:

e R o, (E) 3+l g 1B o, (E) g S (E)
coot ¢.E.§ v i-1 4 + J———-i—dE tooot § B ol iy
3] E.-E 1 E : -E; . E ~-E E
E i- E J+1 3 B m m-1 ‘

i-1 v 3 m-1
(1-3)

The values in square brackets are the corresponding elements of the matrix Q.
When one actually calculates these matrix elements, the funciions oi(E) are .
given at very closely grouped pointsr while linear interpplation is_applied_
between points. Since the points afe very close together, linear interpolation

provides satisfactory accuracy.
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APPENDIX II: NORMALIZATION OF THE INITIAL FLUXES AND SOME PROPERTIES OF
NORMALIZED ACTIVITIES
Let us assume we are given an initial fl?x ¢é and let it produce the
activities dl’ d2, N dn when multiplied by matrix C. If each element of the
flux vector is reduced by the constant x, then the activities are multiplied by
this constant. It is desirable to normalize the flux in such a way that the

following condition is satisfied:

n
iXi(xdi - 1)2 = minimum ,
' (11-1)

Differentiating this expression with respect to x and then equating it to
zero, after simple transfommations we arrive at the following result:
n
1k 9
no o, _
1£1 di (11‘2)

X =

In this report the normalized flux is designated by ¢o’ i.e, x¢é.

Let us see what can be said of the activities derived with the aid of the
normalized flux. We shall calculate the sum of the normalized activities and

the sum of their squares

!

[u
a
[
e’
N

e~

&

]

"
ffe~—13

o

]

P

Uk 2 N iaac=]

=1 1 121 4 42
=1 1 (11-3)
. 2
n . n ( 2 di)
] (xa,)? = § af -2l
i=1 i=1 121 d2
i=1
(1I-4)

This means that the two values are equal. If we substitute x from
Eq. (II-2) into expression (II-1), then after the corresponding transformations

we arrive at the following expression:

1 4 ‘ (11-5)
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If we bear in mind that in Eq. (II-1) this value is derived as a sum of

squares, it is clear that

s
k=]
fur}
=8
-
i
N

A
=

(11-6)

hes s
-~

[N
N

[

On the left-hand side we have the sum of the normalized activities. If both
sides are divided by the number of foils (i.e. by n), we find that both the
arithmetic mean and the arithmetic mean of the sdquares of the normalized

activities are less than unity.

APPENDIX III: THEOREMS CONCERNING AND PROOF OF THE EXISTENCE OF THE MATRIX B
AND ITS EIGENVALUES

Let us first demonstrate that each matrix of the form QTQ is a positive
semi-definite matrix.

We know that the scalar product of any vector multiplied by itself cannot
be negative: (V,V) = VTV > 0. Let V be an eigenvector of the matrix g?g and
A the eigenvalue pertaining to that vector. Then A(V,V) = A(V,V) = (QTCV,V) =
V?gfgv = (gv)T (cv) = (¢v, cV) > oO.

Thus, A(V,V) > 0, and therefore A > 0. We have thereby proved that the
eigenvalue of Q?g cannot be negative, i.e. that this matrix is a positive semi-

definite one.

If V is an eigenvector of the matrix‘g?g, then it must at the same time be an
eigenvector of the matgix QTQ + I, and the corresponding eigenvalue will be
A+ 1, for if

then
(Cc+1)v=ax+v=(r+1)

T . -
If » > 0, itfollows that A + 1> 0, i.e. the matrix C'C + I is a positive

definite matrix.
On the other hand (see determination of the matrix C),

2
3 A1
2,2
9 ¢1

= ¢"r%c + 6* = g(c’c + 1)

(111-1)
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If we multiply any positive definite matrix by a diagonal matrix whose
diagonal contains only positive elements, we again obtain a positive definite

matrix, so that QTQ + I is positive definite.

Let us now go back to the matrix QTQ + I. It is positive definite with

an inverse matrix that can be designated as B.

il
Let V again be one of the eigenvectors.of the matrix gqg + I and let the

corresponding eigenvalue be A + 1, i.e.

0O

(c'c +1)v = (a+1)v
(111-2)

Let us multiply from the left both sides of this equation by the matrix B:

B(c"c + 1)v = (a+1)v (111-3)

from which we get
v = (a1)Bv, BV =1/(M1)v

(I11-4)
Consequently, the vector that is an eigenvector of Q?Q and g?g + I is also an
eigenvector of B, and the corresponding eigenvalue will be 1/(K + 1), It follows

from the relationship A > O that any eigenvalue 1/(l + 1) of the matrix B is

less than or equal to unity.

APPENDIX IV: ONE OF THE PROPERTIES OF EIGENVECTORS OF THE MATRIX QTQ AND THE

PORM OF THE PRODUCT PBC
1. As already pointed out, the rank of QTQ is n, so that in the m-dimensional
space of the flux vectors there is a subspace containing all the linear
combinations of m-n linearly independent vectors which, when multiplied by
QTQ, give us zero. The matrix C also possesses a subspace with the property
indicated above. If we consider any element of the subspace of the matrix C,

we find that this element is also an element of the subspace belonging to the

matrix ¢'C, for if Cp = O, then C.CP = O.

Both the above subspaces are m-n-dimensional. Hence, if for any element
of the first subspace there is one, and only one, corresponding element in the
second subspace, the opposite statement (i.e. if g?g¢ = 0, then g¢)= 0) will

also be true.
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2. Let us now consider the product PBC.

The matrix P consists of eigenvectors of B, so that the columns of the matrix
BP contain eigenvectors of B multiplied by the corresponding eigenvalues. The
last m-n columns simply contain eigenvectors, since the corresponding eigenvalues

of B are equal to unity.

These eigenvectors are also eigenvectors of matrix QTQ, and the corresponding
eigenvalues are equal to zero. Hence, it can be stated on the basis of the
theorem proved in the first part of Appendix IV that, if these vectors are
multiplied by .the matrix C, the result will be zero; consequently, there are

zeros in the last m-n columns of the matrix PBC.

APPENDIX V: CALCULATION OF THE MULTIPLIER

For any positive € there will be a ¢ for which even the absolute value of
the element with the greatest absolute value of the column vector - in square
brackets in expression (15) - will be less than ¢€; in other words, if a high

enough w is used, 9 —-¢l can be reduced to the desired value.

To prove this statement let us consider separately the two terms of the
sum in sqQuare brackets in expression (15) In the first term we shall write out
the matrix Q'T in greater detail: ¢M CTF(w ) Since F andwﬁ are diagonal
matrices, i.e. F = P dﬁﬁM = ¢MT we do not designate the transpos1t10n operation

for these matrices. In that case, the first term becomes

P(L(’)+L<'>2+...) pTe'T b cT Fz(wi) (v1).
The sum of the infinite geometric series contained in bracket° is a

diagonal matrix of which the elements are in sequence 1/(x w ), l/(Azw Yy esey 1/(A w )

Each element of the vector (w ) is equal to w2, so that multiplication by this

vector can also be performed in such a way that each element of the diagonal

matrix obtained as the sum of the matrix series is multiplied by wz, and instead

of the column vector Qon) we write (1n). In this case, the first term can be

written as
= LT, M T.2
PL P B'" ¢, CF7(1))
(v-2)

where the elements of the diagonal matrix ﬂo are in sedquence 1/Kl, 1/A2, cen, 1/Kn.
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Let us now consider the individual components of this product.

1. As the matrix P consists of eigenvectors of the matrix B' and as P?E'T = L'PT,

we can multiply the diagonal matrix L' directly by Eo’ while the diagonal matrix

foL' containg the following elements:

1l 1l 1
Al(l + ,‘,2)‘1) ! 7\2(1 + w2)‘2) resne xn(l + “’%An )

(v-3)
2. The i-th column of the matrix:¢§ CT contains the following elements
€11%1 S12%027° "¢ imPom

The sum of these elements is equal to xdi, i.e. to the normalized activity
ratio pertaining to the i-th foil. If we divide each column by the corresponding
activity ratio, then in the i-th column of the new matrix (designated Cg) we will

find the elements

€31%1  Ci2%02 ©imPom
’ reesy
xd1 xd1 X i

(v-4)

Thus, the sum of the elements in any column is equal to unity, so that the sum

of the squares of the elements cannot be greater than unity:

2
i e S IALS Y BN
j=1 xdy - =

(v-5)

for all the elements are positive and less than unity, so that their squares are
smaller than the numbers themselves. For this reason, the sum of their squares

ig greater than their sum.

To obtain the matrix ¢% CT, the matrix Cg has to be multiplied by a diagonal
matrix of size n x n whose elements are the corresponding normalized activity
ratios xdi. This diagonal matrix is designated by D. In this case the

expression (V-2) takes the following form:

- T.T..2
PL_L'P"C;DF (1n)
(v-6)
. 2 . .
3. The matrices D and F are diagonal matrices of the order n. Let us use
f2 to designate the sum of the squares of the elements in the diagonal of the

matrix DF2. The sum of the squares of the elements of the column vector
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DFa(ln) is then also equal to f2. It should be noted that, if the errors of the
individual activation measurements are taken as identical (i.e. if no weight is
attributed to the foils), the elements of the matrix F are equal to unity, and
then f2<5 n, since the sum of the squares of the normalized activity ratios

cannot exceed n (see Appendix II).

Let us now multiply together the products considered separately in

paragraphs 1-3.

PT is an orthonormalized matrix, so that, when we multiply EOLF from the right
by PT, the lengths of the row vectors of the matrix -I-.'OL'PT will be equal to the
lengths of the corresponding row vectors of the matrix LOL', i.e., to the values
of its corresponding diagonal elements. Hence, the sum of the squares of the
elements of the i-th row of the matrix foL'PT is not greater than the square of
the i~th diagonal element of matrix '1', L', and if the matrix 'L'oL'pT is multiplied
by Cg, no element of the i-th row of the matrix L L'PTCT can be greater than
l/(k (1+K w )), and for i > n all the elements are equal to zero. In view of
the fact that in this matrix there are n elements in one row, the sum of the -
squares of the elements of the i—-th row is not greater than

n
Ai(l + X

)

If the matrix E;L'PTca is multiplied by the column vector DF2(ln), the

i

elements of the resulting column vector of m elements are equal to the scaler
products of the rows of the matrix L L'P C as vectors and the column vector
DF (l ). Because of the properties of the scalar product, the i-th element of

this vector cannot be greater than

£/
Ai(l + Ay mz)

and for i > n the value of the elements is zero.

.

Thus, the sum of the squares of the elements of this vector is not greater

than
2. ° 1
£°n )
3 VAV
151 A2(1 + g wf)

while its length is not greater than

_ ? )
f \In

L 73

i=1 Ai(l *

S D)
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P is an orthonormalized matrix, so that, when the matrix is multiplied by
any vector, the vector length remains unchanged. The maximum value of the
element with the greatest absolute value cannot exceed the length of the vector,
so that the absolute value of the largest element of the first column vector
in square brackets in Eq. (15) cannot be greater than the value of

expression (V-T). \
Let us now consider the second term in square brackets in Eq. (15):
T
P(r - L) PT(1)
(v-8)

The diagonal elements of the matrix H-L' are

-1 - 1 1
T Tt T TEaT
1Y +Agu

1l + ).nw~

The sum of the squares of the elements of the vector (1m) is m, which fact
remains unchanged when the vector is multiplied by the orthonormalized matrix PT;
consequently, the sum of the squares of the elements of a column vector consisting
of m elements, PT(lm), will also be m. Thus, by multiplying it by the diagonal
matrix —Lé, the maximum value of the sum of the squares for the resulting column

vector consisting of m elements cannot exceed

. 1
m
ih (1 + Aimz)z

Multiplication by matrix P does not alter the sum of the squares in this
case either so that the length - and at the same time the element with the

greatest value — of the vector P(H-L') PT(lm) cannot exceed

e
RPLIRN Egn ok

The absolute value of the largest element of the column vector in square

(v-9)

brackets in Eq. (15) cannot be greater than the sum of expressions (V-T7)
and (V-9). ’



- 24 -

Let us now determine which value of @y is required for known n, m, f and
7\1, 7\2, ey An for this sum to be less than a certain €. This condition

can be written in the following form:

ft e~ 33

L] i
t 1 !
e >fln} 5 AV 212
1=1 (1 + 20?) 1=1 (1 + r?)
(v-10)

2
If we regard the unity in each denominator as negligible compared to ?\.lw y the
2 .
square root sign can be removed from w and we arrive directly at the required

value of w:

n ! n !
w> \|L|£ \[n ) 14 + nm —lT-
€ 1=l A} i=1 Af
(v-11)
It should be noted that, if we wish to find out what the greatest error can

be after the k-th iterative step, by disregarding the unity in each denominator

we arrive at an inequality similar to expression (V-10)

n ! n !

o 1 1
€ > —3x f\l“ e g S W
B 151 22 121 A2
(v-12) .
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Table 1

Reactions recorded on RFSP LIBRARY MAGNETIC TAPE
and their energy limits in MeV

U235/NF /FP-CD
U235/NF/FP-CD
PU239/KF/FP-CD
NA23/NG/NA24~CD
MG24 /NP/NA24
IN115/NN/IN115M
S832/NP/P32
AL27/NP/MG27
AL27/NHE/NA24
RH103/NN/RH103M
FE56/NP/MN56
NI158/NP/C058
P31/NP/SI31
PU239/NF/FP
DY1le4/NG/DY165
LU176/NG/LU177
EU151/NG/EU152
IN115/NG/IN116
AU197/NG/AU198

0,7,10° - 18
1,0.1078 = 18
0,6,107C - 18
0,5.10"8 - 18

0,05 - 18
0,05 - 18
0,05 ~ 18
0,05 ~ 18
0,05 - 18
0,05 - 18
0,05 - 18
0,05 ~ 18
0,05 ~- 18

0,5.1071% 107>
0,33,10"1010"5
0,5,1071% 1077
015910—10— 10_5
0,5,10710% 107>
0,5.1071% 2,107
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APPENDIX VI: Set of input data

TEST CASE FCR RFSP — REPCRT.

9 50 2
5.00000E~04

2.10000E-03
5.50220E=03

1 .00000E=02
1.80000E=02
1 .00000E=01
1,80000E=01
4 ,0000CE=01
9,00000E=01

1.20100EZ00
1.,70900E 0O

0,0000CE 00

1,000)0E=-03

1.57000E+10 6,50700E=03
1.20000E02
2.10000E02
1.,20000E=01
2 , 00000E=01
6 . 000COE=01
9.50000EZ01
9.92000E+08 1,35100E-00

3,00000E+09
2 ,50000E+09
9,00000E+09
7 .S0000E+09
5,TCGO00E+09
2, TOOOO0E+09

8.48235E+08

2.43300E 00 5.19910E+08

3.46300E 00
4.93000E 0O
7.01900E 00
9,99200E 00

1.,69401E+08

IN115(HN)IN1158 3,69300E 08
NIS8(NP)CC58 1.87500E 08
AL27(NHE)NA24 1.38100E 06
MG24(NP)NA24 2,91160E 06
FES6(NP)LAI56 2.,21020E 06
AL2T(NP)MG27 6.56420E 06
RH103(NN)RH1034 1,97220E 09
U235(NF)FP-CD 9.68650E+09
NA23(NG)NAZ24~-CD 1,28500E 07

ENDEND

5.-2
5.22

=2
5.22
5.22
5.22

=2
5.22
5.22

5.50000E+10
$,50000E+10 3,10220E~03 %,50000E+10
1.53000E+10
2.50000E+09
3. 00000E+09
8.50000E+09
T . 30000E+09
4 ,80000E+09
1,70000E+09
9,59300E+08
1.,92300E 00 T.66264E+08
2.,T37T00E 00 3.49759E+08B
3,89600E 00 9,77683E+07
4,34825E+07 5.54600E 00 4.44581E+Q7
1,79139E+07 7.89600E 00 8,45628E+06
1,88431E+06 1,12400E+01 6,61172E+05
1.42200E+01 $,39000E+04 1,80000E+0t1 0,00000E 00

1.40200E-03
4,600)3E-03 3,00000E+10
8.50000E=03
1.,40000E=02
4 ,60000E=02
1.40000E=01
2.,80000E=01
8 .00000E=01
1.06000E_00 1,30000E+09

1,51900E
2.16300E
3.07T900E
43383008
6.23900E
8,88200E

00
00
00
oo
(8]0
00

5,50000E+10

1.30000E+10
2 .50000E+09
9, 50000E+09
8,20000E+09
6,60000E+09
4,20000E+09

9,096T4E+08
6.54626E+08
1.95804E+08
5.33872E+07
3,.36522E+0Q7
4,527T01E+05

1.26400E+01 2,02586E+05
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