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ABSTRACT 

The authors describe the RFSP programme for unfolding neutron spectra 
from activation data. With spectra satisfying the activation equations they 
use the programme to unfold that spectrum for which the functional characterizing 
deviations from the initial spectrum is at a minimum. The RFSP programme is 
an advanced and more rapid version of the SPECTRA code. The results obtained 
with the codes are identical, but RFSP requires less computer time. In this 
report the authors describe the algorithm of the method, the input/output 
specifications and typical results. 



I. Introduction 

When unfolding neutron spectra from activation data, one measures the 
integrals 

CO 

J <f> (E) a±(E)dE , /i ='1,2 i • • • i n / 
(1) o 

where A^ represents the measured activities of the i-th foil, 

0(E) is the differential neutron spectrum, 

a(E) is the cross-section for the reaction occurring during activation of 

Since we are here dealing with the solution of mathematically indeterminate systems 
of equations (the number of points at which the spectrum is determined is greater 
than the amount of measurement data available to us), certain initial information 
is required for the solution in addition to the measurement data. 

The published theoretical methods differ mainly in the form that this 
initial information takes; in practice, these methods can be divided into two 
groups. The first group comprises methods for which it is assumed that one is 
dealing with a spectrum given in a simple analytical form and that it is only 
the parameters of the analytical form that are unknown. In the case of the 
second group, an initial spectrum given in purely numerical form is varied in the 
course of an iterative process until the activities agree with the measured 
values. 

The method described in this report belongs to the second group. The 
problem is formulated as follows: the initial spectrum 0Q(E) is given, and from 
spectra satisfying the activation equations (i.e. those reproducing the 
measurement results) we determine the spectrum for which the functional 
characterizing the difference between the initial spectrum and the derived 
spectrum is at a minimum. 

1 
the i-th foil, as a function of energy, 

and the spectrum 0(E) has to be determined for known o. (e) and. A.• 

E, max 2 
dE = minimum 

E. 'min ( 2 ) 



- 4 -

(Emin Emax stanci f o r ^ e energy values above and below which the spectrum 
is taken as zero). At this point the question arises as to what accuracy should 
be stipulated when solving the activation equations. If the derived spectrum 
is required to satisfy the activation equations exactly, the problem can be 
solved by applying Lagrange's method of multipliers. The cross-sections of the 
foils used for the measurements (first and foremost those of the threshold detectors) 
are known only to within t. 1Cffo, so it is not always advisable to stipulate that 
the activation equations should be satisfied exactly. Greer and co-workers 
have described an iterative method of which the result agrees with that obtained 
by using Lagrange's method of multipliers. During the iteration process the 
spectrum is varied in such a way that the difference between the measured and 
theoretical activities gradually decreases. The iterations thus result in a 
spectrum satisfying the activation equations only within the limits of the 
measurement accuracy (taking into account the degree of indeterminacy of the 
cross-sections). As will be demonstrated further on, the spectrum derived as the 
iteration limit may be obtained directly, without iteration, by Greer's method. 
The question as to which variant is best used in which particular case and the 
overall questions involved in applying the programme are discussed in Ref. 

The method developed by us is a more advanced and faster version of Greer's 
method. 

II. Mathematical principles underlying the RFSP code 

1. The problem is to find the spectrum in a form such that the product of the 
spectrum and energy E0(E) is a piecewise linear function of the energy; in such 
a case, the system of activation equations can be transformed into the matrix 
equation 

a = Q0 ( 3) 

where a is a column vector consisting of n elements, the measured 
activities A^ being the eLements; 

0 is a column vector consisting of m elements, these being the spectrum 
values sought at individual energy - and hence lethargy - points; 

Q. is a matrix of size n x m, the elements of which are definite integrals 
of the cross-sections, m being greater than n (see Appendix I). 

If we divide the rows of the matrix Q. into the corresponding elements of 
the vector a, we arrive at the system of equations 

C0 = (ln) (4) 
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where (*n) is a column vector consisting of n elements, each element being equal 
to 1. 

Assuming an initial spectrum (a vector consisting of m elements) that does 
not satisfy Eq. (3), let us normalize it so that the sum of the squares of the 
deviations of the elements of the vector C0Q from unity is at a minimum (see 
Appendix II). 

Let us now formulate a function that will characterize the deviations of the 
measured activities from the activities calculated in the unknown spectrum, on 
one hand, and of the initial from the unknown spectrum, on the other: 

A1 - ( a l " W ) * F 2 ( a x - ( ln>) + 0 X - * 0 ) T G 2 ^ - t Q ) ( 5 ) 

where a^ = C0^ 
2 2 G and F are diagonal matrices used for normalization: 

det(G) ̂  O , det(F) ̂  O 

It is advisable, though not essential, to select these matrices in such a way 
that the elements of the matrix G represent the reciprocals of the corresponding 
elements of the initial spectrum, while those of the matrix F represent the 
reciprocals of the relative errors in measuring the activity of the corresponding 
foils; the superscript T is used to designate the transposition operation. 

Let us now attempt to find the spectrum for which this function is at a 
minimum. To do so we shall differentiate expression (5) with respect to 0^, and 
then equate it to zero; from which we obtain 

= (cVc + G2)"1 ( c V ( g + G2 * G) 
(6) 

where the superscript -1 is used to designate the matrix i n ve r s i on 
operation. 

We now introduce the notation 
C = FGG-1 

and B = (CTC + l)_1 ' 
where this time I designates a unit matrix of the order m. On the basis of a 
brief computation it can easily be seen.that expression (6) now assumes the 
following foim: 

• x - G"1 B (CT F(ln) +;G*0) 
(7) 
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It can "be demonstrated (see Appendix III) that the matrix 32A1/9<(>2=CTF2C+G2 

is positive and therefore transformable; hence, there is a solution of 
expression (6), and with this solution the function A^ does assume a minimum 
value. It can also be demonstrated £~lj that, if 0 Q is not a solution of 
Eq. (3), neither is 0-̂ . 

As with expression ( 5 ) , we can now formulate a new function in which we 
write 0^ instead of0 Q and 02 instead of 0-^ If this process is repeated 
several times, we arrive, after k steps, at the following expression for the 
next spectrum approximation: 

•k+i - G_1 a + G •k) ( ° ) 
Here we have derived a formula which is suitable for the iteration 

process, and by applying formula (8) several times we obtain progressively 
better spectrum approximations. These approximations tend to a limit. Further 
calculations are required for a direct determination of the limit. If we express 
0^ in Eq. (8) by means of the iteration spectra referred to, we arrive at the 
expression 

W = G _ 1 ( I + S + a 2 + - - - + 5 k ) B CT F(1 ) + G1 B k + 1 G<f> 
(9) 

It can be demonstrated (see Appendix III) that, if some vector is an eigenvector 
T 

of the matrix C C and it has an eigenvalue A, then this vector is at the same 
time an eigenvector of the matrix B, and in this case the eigenvalue is 
l/(l + A-). Since the rank of the matrix C C is equal to n, zero is its 
m-n-fold eigenvalue. Thus, 1 is the m-n-fold eigenvalue of the matrix B, while 
the other eigenvalues lie between 0 and 1 (see Appendix III). 

The matrix B is symmetric, so that its right-hand and left-hand eigenvectors 
T 

are identical and it can be written in the form PLP , where L is the diagonal 
matrix containing eigenvalues and P is the matrix containing the orthonormalized 
eigenvectors as column vectors. Let us arrange the elements of the matrix L 
in ascending order and let the order of the column vectors in the matrix P follow 
the same order. Equation (9) can be rewritten in the following form: 

(10) 
• = g" 1 p(l+L+L 2+...+Lk) PTBCT FCln) + g"1 PL k + 1 PTG<j>c 

(here we have made use of the identity resulting from the fact that the 
T -1 T N eigenvectors have been orthonormalized: P = P , so PP =1). 
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Let us determine the limit of this expression for k -» <» . It is easy to 
k + 1 determine the limit of the second term: lim L = H, where H represents a 

k-»°° 
diagonal matrix, of which the first n diagonal elements are equal to 0 and the 
others equal to 1. 

To determine the limit of the first term,in expression (10) let us look at 
T T T the matrix product P BC . Since, .the .matrix .B is symmetric, B = B , so that 

PTBCT = PTBTCT = (GBP)T. In the last of the (m-n) columns of the matrix CBP 
there are only zeros (see Appendix IV), so that, if we take the diagonal matrix 
L q, the first n elements of which coincide with the corresponding elements of the 
matrix L, while the other elements are equal to zero, then the following 
relationship is valid for any k: 

Lk P T BCT = L* P T BCT 

Consequently, we can everywhere write LQ instead of L in the first term of 
expression (10) without affecting the result. The limit of the expression in 

2 ic brackets, (i+L +L +...+L ), for kr*00 can easily be determined; the individual ' v o o o 
diagonal elements are the suras of infinite geometric series. If in this case, 

T as above, the non-zero eigenvalues of the matrix C C are designated by 
X, , . . . , \ , then the non-zero diagonal elements of the matrix L will be 1 d ' n o 
l/(l+^), 1/(1+^2) ••• j while the elements of the matrix K corresponding 
to the limit of the matrix sequence will be (l+X^)/^, (l+A^)/^' •••» ( A n) • 

Thus, the spectrum limit for k""* is 

d> = lim * = g" 1 PKPT BCT F (l ) + G - 1 PHPT G<|> y k-»-«> k — n o 
(11) 

It can be demonstrated that this spectrum satisfies either Eq. (3) or 
Eq. (4) and agrees with the solution obtained by Lagrange's method of multipliers; 
1.e. for this spectrum the integral (2) does assume its minimum value. However, 
the proof is complicated and, as it is fully described in Ref. _/~l_7» w e do not 
include it here. 

2. Complicated and laborious matrix operations are required to determine the 
limit by means of Eq. (ll). Later on we shall show that there is a simpler but 
rapid method of determining it. By appropriate conversion of the iteration 
formula one obtains a formula with which, after only one iteration, one can find 
the limit with the desired accuracy (if necessary, the convergence rate can be 
adjusted to the desired value). 



- 8 -

Let us write the result of the first iteration and. the limit expression 
of the iteration process, with the restriction that matrix G contains the 
reciprocals of the initial spectrum 0q; the diagonal elements of matrix 
then coincide with the elements of the vector 0Q. The fact that the problem 
concerns a diagonal matrix rather than a vector is underscored by designating 
the matrix by In this ca^e, the product G0q appearing in Eqs (7) and (ll) 
is a column vector with each element equal to unity. We will denote this 
vector by (lm). Formulas (7) and (ll) can then be written in the following 
form: 

^ = ̂ (PIPTBT£TF(ln) + PLPT(lm)) 

$ = <J£(PKPtBtCtF ( l n ) + PHPT(lra)) 
The difference between the two spectra is 

(P(Lo+Lo+- 0 *VcTF(ln> + P(H-L) * * ( l j ) 
(14) 

Further on we will describe a method by means of which, without affecting 
the flux 0, the difference 0 - 0 , can be reduced in such a way that the flux 
can be derived with sufficient accuracy after only one iterative step. 

Let us go back to Eq. (4). Physically, this equation means that, when 
multiplied by the corresponding cross-sections, the flux should give the measured 
activities. If both sides of the equation - i.e. all the elements of the matrix G 
and of the vector (ln) - are multiplied by the same number to, there will be no 
change in the physical meaning of the equation; i.e. the spectrum obtained as 
the iteration limit remains unchanged. This operation comes to the same thing as 

T —1 
writing C1 =« C in Eqs (5)-(l4) instead of the matrix C, B' = (C' C'+l) instead 
of B, and the column vector (^n) - all the elements of which are equal to w -
instead of the vector (ln)« 

If we multiply all the elements of some matrix by the same number, the 
eigenvectors of the matrix remain unchanged, while the eigenvalues are multiplied 
by the same number. Having multiplied the matrix C by a>, we multiply each 

•p 2 T element of the matrix C G by u ; accordingly, the eigenvalues of C1 G' will be 
2 T ' a) -fold values of the eigenvalues of C C, and the eigenvalues of B' will 2 
therefore be l/(l-Ko X^)/i=l, 2, ... n/. As was pointed out, the introduction 
of these changes does not affect 0, but01? and therefore 0 - a r e changed. 
In this case the difference will be 

(12) 

(13) 
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• - - [p(Lo+Lo2 + - ) p V T £ ' I r K ) + P(H-L') PTClm)] 
(15) 

where the matrix L* contains all the eigenvalues of B1, while the matrix L^ 
contains only the first ri of these values. ' 

After multiplication and. addition, the square brackets in Eq. "(15) contain ' 
one column vector of m elements. As this column vector is multiplied from the 
left by the diagonal matrix any element of the column vector can be multiplied by 
only one corresponding element of the initial spectrum; each element of the 
column vector 0 - 0 ^ is therefore obtained as a result of only one multiplication 
of this kind. 

In Appendix V it is demonstrated that for any positive £ there will .be a w 
for which the absolute value of the'largest element of the column vector standing 
in square brackets in expression (15) will be smaller than In other words, 
if we use a large enough value of u, then the difference cam be reduced to 
the desired value. Appendix V also contains formula (V-ll), which can be used to 
determine the required value of « for a given value of 

Hence, if we multiply the matrix G by u according to formula (V-ll) at the 
veiy beginning of the computation, 0 is determined with an accuracy of the order 
e in the first iteration step. It should be pointed out here that the phrase 
"with an accuracy of the order e" does not in this case mean that the following 
expression is satisfied for any element of the vectors 0, 0^, 

"is < e 
(16) 

but that only 

v l s 

'OS 
< e 

(17) 

is satisfied, since the s-th element of the exact solution 0g may be very small 
or equal to zero, in which case the inequality (l6) cannot be satisfied, even if 
0 — 0. is very small.. 

S X s 
It should also be noted that, when calculating w, we always took into 

account the most unfavourable conditions as regards the accuracy of the result. 
In practice, the accuracy of this method is much better than it would seem from 
Eqs (V-ll) and (V-12). 
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3. With the method described by Greer ,/~l_7» "the limit is determined with the 
help of Eq. (ll), in which one has to calculate all the eigenvalues and 

T 
eigenvectors of a matrix whose dimensions coincide with those of matrix C C; one 
must then still orthogonalize the eigenvectors belonging to the eigenvalue 0. 

Examining the sequence of the calculations, we see that, when our method is 
T 

used, after forming the matrix C C we have to calculate its n non-zero eigenvalues 
and from this determine the multiplier u; we can then determine the limit of 
the iteration process by multiplying the matrix G by this multiplier, using the 
simple formula (7)- 'Thus, the use of our method helps to save a considerable 
number of cells in the computer's internal memory and a great deal of computer 
time. 
III. RFSP code 

The RFSP code, which is written in FORTRAN IV, was developed for the 
translator of our Institute's ICT-1905 computer. Two regimes (modes of operation) 
are possible with the code; in the first it determines the neutron spectrum using 
the method described in Section II, while in the second it performs functions 
connected with the storing of cross-sections: 

(a) It compiles a new magnetic tape; 

(b) It records new cross-sections on library tape already available; 

(c) It erases the cross-section for a particular reaction from the tape; 

(d) It prints out the cross-section for a particular reaction on a line 
printer. 

At present, the cross-sections are stored on "RFSP LIBRARY" tape. 

In the first regime, the sequence of operations is as follows: 
T After compiling the matrix C C, the code determines The value w may 
~ T sometimes be too large, in which case some elements of the matrix C' C' 

12 T exceed 10 and in the sum G1 C' + 1 the addition is not performed 
accurately. To avoid this situation, the programme (after determining u) 
checks whether or not this value is too high. If it is, the highest 
value of a) not leading to inaccuracy is determined. Then, on the basis 
of formula (V-12), the programme determines the number of iteration steps 
required to calculate the limit with the desired accuracy using the new value 
of co . 

It may sometimes prove necessary to study the way in which a spectrum varies 
as one approaches an exact solution. In such a case, of course, the method we 
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, T 2 describe (i.e. determining to and multiplying the matrix C C by u is not 
applicable, since it gives the limit at once. However, bearing in mind that the 
rate of convergence is determined by u , we can take some value w1 such that 

T 2 
1 < w* < (o, multiply the matrix C C by w ' » and thereby vary the rate of 
convergence which would be obtained by using Greer's method - i.e. if we used 
co' •' - 1. 

As part of the input information we have to indicate whether we want'to 
apply this iteration method (see further on). If we do, the rate of convergence 
is controlled by means of keys. If neither the third nor the fourth key is 
inserted then «' if only the third key is inserted, then r.i' =1; if the 
fourth key is inserted, then «' = -pz. (the latter may be required if the yw 
iteration process converges very rapidly even for «' =1; i.e. for = 1 a 
solution that is "too good" is obtained after the first step). 

In certain cases it may prove necessary not to normalize the initial flux -
i.e. not to make the calculation described in Appendix II. There is no 
normalization when key 1 is inserted. When key 2 is inserted, the code - before 
calculation begins - prints out the response functions of the individual foils 

M 
in a given spectrum - i.e. the elements of the matrix C0Q. Questions connected 
with calculating a specific spectrum, using the different regimes and 
interpreting the results are described in detail in Ref. ' 

When compiling the RFSP code we drew considerably on the SPECTRA code.' 
The input data for both codes are virtually identical, but our code nevertheless 
differs greatly from the SPECTRA code. Apart from the mathematical differences 
described in Section II, the two codes are dissimilar in the following respects: 

(a) In the RFSP code E0(E), and not 0(E), is the piecewise linear energy 
function. In the case of conventional reactors, 0(E) varies within 
eight orders of magnitude and we have to describe the spectrum by a 
limited number of points (a maximum of 50 in this case). Taking 
0(E) as the piecewise linear function, we can permit an error of up 
to 10-12fo in the activities. If E0(E) is taken as the piecewise 
linear function, the error is virtually eliminated, but this is only 
a slight modification from the standpoint of programming and 
mathematics; 

(b) As already mentioned in Section II, with the SPECTRA code we calculate 
all the eigenvectors of a matrix of size m x m and then orthogonalize 
some of them, whereas there is no calculation of eigenvectors with the 
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RFSP code. As a result of this difference, the number of cells in 
the computer's internal memory required to accommodate the RFSP 
programme is considerably smaller than for the SPECTRA programme. 
With the ICT-1905 computer programmed with the RFSP code, a spectrum 
can be unfolded at 50 points, whereas the SPECTRA code can be 
accommodated in the computer only when the number of points drops 
to 25. 

The RFSP programme occupies 25 500 cells in the computer's internal memory. 
The computer time required to solve one problem is a function of the size of the 
matrix C and - when an iteration process is used - of the number of iterations. 
In the case of 10 foils and 50 energy points it takes ~ 250 seconds to solve 
one problem, i.e. to determine the limit. 

Introduction of the input data 

The input data are introduced on punched tape or punched cards in the 
form described below, as required by the rules for using FORTRAN; each format 
corresponds to one line. 

Format l/lOA8/ - This line stipulates the operational regime for the 
programme. The information recorded in this line 
consists of only one of the following words and has 
to be recorded at the beginning of the line. 

RUN - Unfolding of neutron spectra by the method described 
in Section II. 

NEWTAPE - Compilation of a new magnetic tape library storing 
the cross-section data. 

ADD - Recording of new reactions and cross-sections on 
existing magnetic tape. 

DELETE - Erasure of any reaction or cross-section from the tape. 

EDIT - Print-out of any reaction or cross-section on a line 
printer. 

ENDEND - End of punched tape containing input data. 

The information given after this line depends on the operational regime 
set in the first line. 
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(a) In the case of RUN 

Format II/10A8/ 

Format III /3l3,E12.5,I5,I2/ - IFOIL 

IENER 

MODE 

Any text; 80 alphanumerical symbols; 
the title of the problem may be put 
in here. The programme prints out this 
line at the beginning of each page on 
the line printer. 

Number of foils ^ 30 

Number of energy points ^ 50 

May have the following meanings: 

(i) If the LIMIT regime is used by itself, only the three variables 
mentioned (IFOIL, IENER and MODE) need be given in this line, while 
the other spaces remain empty; in this case, if MODE = 1, the code 
produces a linear representation of the spectrum, while if MODE = 2, 
the mode represents it logarithmically (this only relates to a 
schematic representation of the spectrum and does not affect the code's 
operation); 

(ii) If the REPETE regime is used, then the value of the remaining 
variables must be given and, furthermore, one must indicate whether 
the REPETE regime is being used by itself or whether the REPETE 
and LIMIT regimes are being used in sequence. If MODE = 1, the 
spectrum is unfolded only during the REPETE regime; if MODE = 2, it 
is unfolded in both regimes. The remaining variables are 

A k - A 1 n 
ERRE = - Y n i=l 

or the permissible mean error, where A^ is the activity of the 
i-th foil at the k-th iteration step: 

MITE - Maximum number of iterations 

IPLT - If it is equal to 1, the spectrum 
is represented linearly; if it is 
equal to 2, it is represented logarithmically. 
The REPETE regime is terminated when 
the mean deviation of the activities is 
less than ERRE, or when the number of 
iterations attains MITE. If a separate 
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error is given for the foils (see type V), 
the operation is also terminated when 
each activation error is less than the 
corresponding measurement error. 

(iii) If MODE = 4 and we do not assign a value to the variables ERRE, MITE 
and IPLT, the programme determines only the mean cross-section for the 
reactions under consideration in the spectrum given as the programme 
input; in this case, the activation values have to be given a value 
of unity (see type V). 

Format IV/6E12.5/ - E.^ 0(E ),...Em, 0(Em), in all 2 x IENER 
variables; energy and input flux values. 
The energy should be given in ascending order. 
This format is fed in as many times as the 
IEHER value requires. 

Format V/2A8, El2.5, El3.5/ - The first two variables contain the foil 
designation, whicn should tally with the name 
of the reaction given in Table 1. This is 
followed by the measured foil activity and 
by the measurement error, which does not 
necessarily have to be determined; if the ' 
measurement error is not stipulated the 
diagonal elements of the matrix F are equal 
to unity. The measurement error has to be 
stipulated for all the foils or for none of 
them. This type is inserted IFOIL times. 
Then comes the line in which the next regime 
is given (Format i). 

(b) In the case of NEWTAPE or ADD 

Format Vl/2A8,14/ — The first two variables contain the foil 
designation, after which comes the number of 
data (i.e. a number twice the number of energy 
points used to determine the cross-sections); 
it should not exceed 3500. 

Format VII/6E12.5/ — The foil cross-sections in the sequence 
si' CT(Ei)' e2' • •••» the enersy is 
given in ascending order. This type of punched 
card is inserted in numbers corresponding to 
the number of points. 
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This is followed either hy the line giving 
the regime (Format i) or again "by a line of 
Format IV. 

(c) In the case of DELETE or ADD 

Format VIII/2A8/ - The name of the reaction that it is intended 
to erase or to print-out on the line printer. 

This is followed either "by a line of 
Format VIII or by the line of Format I giving 
the regime. 

The programme enables separate regimes to be run one after the other, 
following the order of the input data. After the final data the punched tape or 
card bearing the data should be terminated with the line of Format I containing 
the word ENDEND. 

The input data 
In the NEWTAPE, ADD and DELETE versions of the RFSP programme, the input 

data include the name of a given reaction, while for EDIT they also contain the 
reaction cross-section at all points. 

In the RUM version, the title of the problem is followed by the designations 
of the foils, their measured activities and (if stipulated) the activity 
measurement errors. After this, the initial flux, 0(E) andE$E), and then the 
activity ratios, are printed out. 

After the normalization described in Appendix II, there come the normalized 
fluxes and the corresponding normalized activity ratios. This is followed by w 
and then (if there are any) by the results of the LIMIT version - i.e. the 
theoretical fluxes 0(e) and Ep(E), the activity ratios and the percentage errors. 

In the case of the REPE'TE version, the output is the same as for LIMIT; 
each of the first ten iterations is printed out, after which every fifth 
iteration up to 100 and then every hundredth iteration. However, when REPETE 
is used, not more than 50 iterations are usually required. 

Appendices VI and VII describe the set of input data and the result as 
calculated and printed out by the RFSP programme. 

APPENDIX I: DETERMINATION OF THE ELEMENTS OF THE MATRIX C 

As pointed out, the flux is given in such a way that E0(E) is a piecewise 
linear energy function. Let E-̂ , E2» •••, Em be the corresponding energy values', 
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and. the corresponding fluxes. The flux values between E . and 
E. , are then J+1 £ — £ £ _ £ E<f»(E) = E.+1 — + E, —i±i 

j+1 j+1 Ej+1 - E. "j Ej+1 - Ej 
(I-D 

Let us assume that below E^ and above E m the flux is zero, i.e. that 
= 0 m = 0. Substituting the expression given above into Eq. (l) for the 

activity of the i-th foil, we get the following equation: 

A± = J e*(e) ̂ ^ dE •+ j , x °i(E) f1" E<ME) -=g— dE +...+ I E4> (E) — dE 
V i 

• r 
E-E, 

*2*2 + HE1 E ^ 
e 2 - e O^E) dE +...+ 

"m-1 

E_Em-l VEm E-E . + m m-X 

E-E m 4* d> p 
m-1 E -E , m m-1 

(E) dE 
(1-2) 

If the integral sign is removed from E-̂ , E^t •••» Em and "A?' ^m' 
which are independent of the variable of integration, we get the following 
expression: 

Ai = *1E1 

. ..+ (JijEj 

2 E2-E a1(E) ( 2 
i E2"E1 

dE + ^2E2 
lE1 
E. E.., 
r3 E-Ei-i gi<E> , r3 1 ) E.-E, E 
V l 3 j Ej 

"Ei °ifE) „„ , (3 V E aiCE) f e - e x a (E; r e 3 - e 2 e dE 

+ . . .+ <f> E m m 
m 
f W i E 
m-1 

(1-3) 
The values in square brackets are the corresponding elements of the matrix Q,. 
When one actually calculates these matrix elements, the functions are 
given at very closely grouped points, while linear interpolation is applied 
between points. Since the .points are very close together, linear interpolation 
provides satisfactory accuracy. 
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APPENDIX II: NORMALIZATION OP THE INITIAL FLUXES AND SOME PROPERTIES OF 
NORMALIZED ACTIVITIES 

Let us assume we are given an initial flux 0^ and. let it produce the 
activities d^, d^, dn when multiplied by matrix C. If each element of the 
flux vector is reduced by the constant x, then the activities are multiplied by 
this constant. It is desirable to normalize the flux in such a way that the 
following condition is satisfied: 

n . j 
y fxd. - l) = minimum i=l 1 ' (II-1) 

Differentiating this expression with respect to x and then equating it to 
zero, after simple transformations we arrive at the following result: 

n 
ill di 

n 2 1=1 dI (H-2) 
In this report the normalized flux is designated by 0Q, i.e. 

Let us see what can be said of the activities derived with the aid of the 
normalized flux. We shall calculate the sum of the normalized activities and 
the sum of their squares 

2 
n n 
I xd = x I d. = 

i=l 1 i=l 1 
a - j 

n o I i-1 1 (II—3) 

f ( x d j W I 
i=l i=l i n -

(II-4) 
This means that the two values are equal. If we substitute x from 

Eq. (II-2) into expression (il-l), then after the corresponding transformations 
we arrive at the following expression: 
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If we bear in mind that in Eq. (il-l) this value is derived as a sum of 
squares, it is clear that 

a 
2 

— < n 
n 2 

i£l di. (11-6) 

On the left-hand side we have the sum of the normalized activities. If both 
sides are divided by the number of foils (i.e. by n), we find that both the 
arithmetic mean and the arithmetic mean of the squares of the normalized 
activities are less than unity. 

APPENDIX III: THEOREMS CONCERNING AND PROOF OF THE EXISTENCE OF THE MATRIX B 
AND ITS EIGENVALUES 

T 
Let us first demonstrate that each matrix of the form C C is a positive 

semi-definite matrix. 
We know that the scalar product of any vector multiplied by itself cannot 

T T be negative: (V,V) = V V > 0 . Let V be an eigenvector of the matrix C _0 and 
T A the eigenvalue pertaining to that vector. Then X(V,V) = \(V,V) = (C CV,V) = 

vTcTcv = (cv)T (cv) = (cv, cv) > 0. 
Thus, X(V,V) > 0, and therefore A. > 0. We have thereby proved that the 

T " 
eigenvalue of C C cannot be negative, i.e. that this matrix is a positive semi-
definite one. 

T If V is an eigenvector of the matrix C C!, then it must at the same time be an T 
eigenvector of the matrix C C + I, and the corresponding eigenvalue will be 
A + 1, for if 

CTCV = XV 
then 

(cTC + l)v = XV + V = (X + l) 
T 

If A > 0, it follows that X + 1 > 0, i.e. the matrix C C + I is a positive 
definite matrix. 

On the other hand (see determination of the matrix C), 

82A = c tF 2C + G2 « G(CtC + I)G 
324>£ " (III-1) 
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If we multiply any positive definite matrix by a diagonal matrix whose 
diagonal contains only positive elements, we again obtain a positive definite 

T matrix, so that C C + I is positive definite. 
T 

Let us now go back to the matrix G C + I. It is positive definite with 
an inverse matrix that can be designated as B. 

T 
Let V again be one of the eigenvectors.of the matrix G £ + I and let the 

corresponding eigenvalue be X + 1, i.e. 
(cTc + i ) v = (x+i)v 

(III-2) 

Let us multiply from the left both sides of this equation by the matrix B: 

B ( C T C + I)V = (X+I)BV 
(III-3) 

from which we get 

V = (X+l) B V, B V = l/(X+l)v 

(HI-4) 
T T 

Consequently, the vector that is an eigenvector of C C and C C + I is also an 
eigenvector of B, and the corresponding eigenvalue will be l/(X.+ l). It follows 
from the relationship X 0 that any eigenvalue + l) of the matrix B is 
less than or equal to unity. 

APPENDIX IV: ONE OP THE PROPERTIES OF EIGENVECTORS OF THE MATRIX CTC AND THE 
FORM OF THE PRODUCT PBC 

T 1. As already pointed out, the rank of G C is n, so that in the m-dimensional 
space of the flux vectors there is a subspace containing all the linear 
combinations of m-n linearly independent vectors which, when multiplied by 
T 
C C, give us zero. The matrix G also possesses a subspace with the property 
indicated 'above. If we consider any element of the subspace of the matrix C, 
we find that this element is also an element of the subspace belonging to the m m matrix C C, for if C0 = 0, then C G0 = 0. 

Both the above subspaces are m-n-dimensional. Hence, if for any element 
of the first subspace there is one, and only one, corresponding element in the 

T 
second subspace, the opposite statement (i.e. if C C<f> = 0, then = 0) will 
also be true. 
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2. Let us now consider the product PBC. 

The matrix P consists of eigenvectors of B, so that the columns of the matrix 
BP contain eigenvectors of B multiplied by the corresponding eigenvalues. The 
last m-n columns simply contain eigenvectors, since the corresponding eigenvalues 
of B are equal to unity. 

T 
These eigenvectors are also eigenvectors of matrix G C, and the corresponding 

eigenvalues are equal to zero. Hence, it can be stated on the basis of the 
theorem proved in the first part of Appendix IV that, if these vectors are 
multiplied by - the matrix G, the result will be zero; consequently, there are 
zeros in the last m-n columns of the matrix P3C. 
APPENDIX V: CALCULATION OP THE MULTIPLIER u 

For any positive e there will be a w for which even the absolute value of 
the element with the greatest absolute value of the column vector - in square 
brackets in expression (15) - will be less than e; in other words, if a high 
enough u is used, <p can be reduced to the desired value. 

To prove this statement let us consider separately the two terms of the 
sum in square brackets in expression (15)- In the first term we shall write out 

T T ' _TM T / \ . M the matrix C1 in greater detail: C' = <p C J. Since F and® are diagonal 
T M MT ~ ® n 

matrices, i.e. F = F and0Q = 0 Q we do not designate the transposition operation 
for these matrices. In that case, the first term becomes 

The sum of the infinite geometric series contained in brackets is a 
2 2 2 diagonal matrix of which the elements are in sequence l/(A,U ), l/(\?o) )» l/(A a> )• 

2 2 Each element of the vector (wn) is equal to cj , so that multiplication by this 
vector can also be performed in such a way that each element of the diagonal 

2 
matrix obtained as the sum of the matrix series is multiplied by u , and instead 
of the column vector (wn) we write (ln)» In this case, the first term can be 
written as 

P l / b ' 5 C T F 2 ( l n ) 

(V-2) 

where the elements of the diagonal matrix LQ are in sequence 
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Let us now consider the individual components of this product. 
T T T 

1. As the matrix P consists of eigenvectors of the matrix B1 and as P B' = L ' P , 

we cam multiply the diagonal matrix L ' directly by LQ» while the diagonal matrix 
L Q L' contains the following elements: 

1 ^ 1 ^ 1 
X,(l + m2X,) ' X,(l + o.2X2) Xn(l + u»2X ) 

(V-3) 
-M T 2. The i-th column of the matrix C contains the following elements 

cil*ol' cL2*o2"-" cim*om 

The sum of these elements is equal to xd^, i.e. to the normalized activity 
ratio pertaining to the i-th foil. If we divide each column by the corresponding 
activity ratio, then in the i-th column of the new matrix (designated G^) we will 
find the elements 

cil*ol °12*o2 ° inborn 
xd. ' xd. 

(V-4) 
Thus, the sum of the elements in any column is equal to unity, so that the sum 
of the squares of the elements cannot be greater than unity: 

i t ^ y *1 
(V-5) 

for all the elements are positive and less than unity, so that their squares are 
smaller than the numbers themselves. For this reason, the sum of their squares 
is greater than their sum. 

To obtain the matrix ̂  C^, the matrix C^ has to be multiplied by a diagonal 
matrix of size n x n whose elements are the corresponding normalized activity 
ratios xd^. This diagonal matrix is designated by D. In this case the 
expression (V-2) takes the following form: 

PL L'PTC'DF2(1 ) o a n 
(V-6) 

2 
3. The matrices D and F are diagonal matrices of the order n. Let us use 
2 
f to designate the sum of the squares of the elements in the diagonal of the 

2 matrix DF . The sum of the squares of the elements of the column vector 
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2 2 DP (l ) is -then also equal to f . It should be noted that, if the errors of the 
individual activation measurements are taken as identical (i.e. if no weight is 
attributed to the foils), the elements of the matrix P are equal to unity, and 

2 
then f ̂  n, since the stun of the squares of the normalized activity ratios 
cannot exceed n (see Appendix II). 

Let us now multiply together the products considered separately in 
paragraphs 1-3. 

T — P is an orthonormalized matrix, so that, when we multiply L L1 from the right 
T — T by P , the lengths of the row vectors of the matrix LQL'P will be equal to the 

lengths of the corresponding row vectors of the matrix LqL'i i.e. to the values 
of its corresponding diagonal elements. Hence, the sum of the squares of the 

— T elements of the i-th row of the matrix LqL'P is not greater than the square of 
the i-th diagonal element of matrix L L', and if the matrix L L'P^ is multiplied O (J1 (p 0 

by C^, no element of the i-th row of the matrix LQL'P C^ can be greater than 
l/( ), and for i > n all the elements are equal to zero. In view of 
the fact that in this matrix there are n elements in one row, the sum of the 
squares of the elements of the i-th row is not greater than 

To »2v 
- T T 2 If the matrix L L'P C^ is multiplied by the column vector DP (ln)» "the 

elements of the resulting column vector of m elements are equal to the scaler 
— T T 

products of the rows of the matrix LqL'P Ĉ  as vectors and the column vector 
DF^(ln). Because of the properties of the scalar product, the i-th element of 
this vector cannot be greater than 

f yff 
X±(l + Xi a,2) 

and for i > n the value of the elements is zero. 
Thus, the sum of the squares of the elements of this vector is not greater 

than 
,2 ? 1 f n I — 5 7 2\Z~ i=l X̂ (l + X± 0) ; 

while its length is not greater than 

(V-7) n 
I i=l 1 + X, 
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P is an orthonormalized matrix, so that, when the matrix is multiplied, by 
any vector, the vector length remains unchanged. The maximum value of the 
element with the greatest absolute value cannot exceed the length of the vector, 
so that the absolute value of the largest element of the first column vector 
in square brackets in Eq. (15) cannot be greater than the value of 
expression (V-7). s 

Let us now consider the second term in square brackets in Eq. (15): 

P(H - h ' ) P T ( l m ) 

The diagonal elements of the matrix H-L' are 

(V-8) 

2 ' 5 i • • • i ~ ———— 
1 + X.w 1 + 1 + X w 1 » n 

The sum of the squares of the elements of the vector (l ) is m, which fact 
m T 

remains unchanged when the vector is multiplied by the orthonormalized matrix P ; 
consequently, the sum of the squares of the elements of a column vector consisting 
of m elements, P (lm)» will also be m. Thus, by multiplying it by the diagonal 
matrix -L^, the maximum value of the sum of the squares for the resulting column 
vector consisting of m elements cannot exceed n m 

(i + V ) 2 

Multiplication by matrix P does not alter the sum of the squares in this 
case either so that the length - and at the same time the element with the 

T greatest value - of the vector P(H-L') P (lffl) cannot exceed 

1 
"2VZ" , i=l (l + X.u2)" , . 

1 (v-9) 
The absolute value of the largest element of the column vector in square 

brackets in Eq. (15) cannot be greater than the sum of expressions (V-7) 
and (V-9). 
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Let us now determine which value of u is required for known n, m, f and 
.„, .... X for this sum to be 1 2' * n 

can be written in the following fora: 
., X for this sum to be less than a certain e. This condition n 

n 
e > f l n I 

i=l X 2( 1 + X ^ 2 ) 2\T- + V mJ 2\2 i=l (l + XiU)2) 
(V-10) 

If we regard the unity in each denominator as negligible compared to X.u , the 
2 1 

square root sign can be removed from go and we arrive directly at the required 
value of u: 

(v-11) 
It should be noted that, if we wish to find out what the greatest error can 
be after the k-th iterative step, by disregarding the unity in each denominator 
we arrive at an inequality similar to expression (V-10) 

e > 2k i=l X 2k+2 
n 

» I i=l ,2k 
(V-12) 
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Table 1 

Reactions recorded on RFSP LIBRARY MAGNETIC TAPE 
and their energy limits in MeV 

U255/NF/FP-CD 0,7*10-® - 18 
U235/NF/FP̂ -CD l,o.lO" -8 18 
PU239/NF/FP-CD 0,6,10" -8 18 
NA23/NG/NA24-CD o,5.10 - 18 
MG2VNP/NA24 o,o5 - 18 
IN115/NN/IN115M 0,05 - 18 
SJ2/NP/P32 0,05 18 
AL27/NP/MG27 0,05 - 18 
AL27/NHE/NA24 0,05 - 18 
RHIOJ/NN/RHIOJM 0,05 - 18 
FE5 6/NP/MN56 o,o5 - 18 
NI58/NP/C058 0,o5 - 18 
PJl/NP/SIJl 0,05 - 18 
PU259/NF/FP o,5.10" -lo_ 10-5 
DY164-/NG/BI165 0,53.10 -io"5 
LD176/NG/LU177 o,5,10" -lo_ 10-5 
EU151/NG/ED152 0,5,10" -lo_ 10-5 
IN115/NG/IN116 o,5.10" -lo IP'5 
AU197/NG/AUI98 o,5.10 - 2.10"' 
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APPENDIX VI: Set of input data 

RUN 
TEST CASE PGR RPSP - REPORT. 

9 50 2 
5 .00000©-04 0 .OOOOQE 00 1 .000JOE-03 5.50000E+10 1 .40000E—03 5 .50000E+10 
2 .10000B-03 5 .50000E+10 3 .10030E—03 5.50000E+10 4 ,600 ODE—03 3 .00000E+10 
5 .500'DOES 03 1 .57000E+10 6 .50000Er03 1.53000E+10 8 ,50000E=03 1 .30000E+10 
1 .00000E502 3 ,00000E+09 1 .20000E502 2.50000E+09 1 .40000EE02 2 .50000E+09 
1 ,80000Er02 2 .50000E+09 2 .10000E=02 3.00000E+09 4 .60000E502 9 .50000E+09 
1 .00000EE01 9 .00000E+09 1 .20000E501 8.50000E+09 1 ,40000E=01 8 .20000E+09 
1 .80000E501 7 .50000E+09 2 .0O00OE501 7.30000E+09 2 ,80000E=01 6 .60000E+09 
4 .00000E501 5.70000E+09 6 .00000E£01 4.80000E+09 8 .00000E501 4 .20000E+09 
9 .00000E501 2 .70000E+09 9 .50000E=01 1.70000E+09 1 . 0600012100 1 .30000E+09 
1 .201OOEHOO 9 .92000E+03 1 .351OOEIOO 9.59300E+08 1 .51900E 00 9 .09674E+08 
1 .70900E 00 8 .48295E+08 1 .92300E 00 7.66264E+03 2 .16300E 00 6 .54626E+08 
2 .43300E 00 5 .19910E+08 2.73700E 00 3.49759E+08 3 ,07900E 00 1 .95804E+08 
3 .46300E 00 1 .69401E+08 3 .89600E 00 9.77683E+07 4 r38300E 00 5 .33872E+07 
4 .93000E 00 4 .34825E+07 5 .54600E 00 4.44581E+07 6 .23900E 00 3 .36522E+07 
7 .01 900E 00 1 .79139S+07 7 .89600E 00 8.45628E+06 8 .882 OOE 00 4.52701 E+05 
9 .99200E 00 1 .88431E+06 1 . 12400E+01 6.61172E+05 1 .26400E+01 2 .02586E+05 
1 .42200E+01 5 .39000E+04 1 .80000E+01 O.OOOOOE 00 

IN115(inOlN115U 3 .699OOE 08 5 . - 2 
NI58(NP)C058 1 .87 500E 08 5 .=2 
AL27(NHE)NA24 1 .381OOE 06 5 .52 
MG24(NP)NA24 2 .91160E 06 5 .=2 
PE56(HP)tai56 2 ,21 02OE 06 5 .52 
AL27(NP)MG27 6.56420E 06 5 .=2 
RH103(NN)RH1 021 1 .9722OE 09 5 .=2 
U235(NP)PP-CD 9 .68650E+09 5 .=2 
NA23(NG)NA24-CD 1 .28500E 07 5 .=2 
ENDEND 
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