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The International Centre for Theoretical Physics has main
tained an interdisciplinary character in its research and training 
programmes in different branches of theoretical physics. In 
pursuance of this objective, the Centre has organized extended 
research courses and workshops, including topical conferences, 
with a comprehensive and synoptic coverage in varying disciplines. 
The first of these — on Plasma Physics - was held in 1964 and 
then repeated in 1977; the second in 1965 was concerned with the 
Physics of Particles. Between then and now, the following courses 
were organized: four on Nuclear Physics (1966, 1969, 1971,1973), 
two on Nuclear Theory for Applications and Power Reactors 
(1978, 1980), seven on the Physics of Condensed Matter (1967, 
1970, 1972, 1974, 1976, 1978, 1980), four on Atomic Physics 
(1973, 1977, 1979, 1981), three on Geophysics (1975, 1977, 
1980), one on Control Theory and Functional Analysis (1974), 
two on Complex Analysis (1975, 1980), one on Applications of 
Analysis to Mechanics (1976), one on Mathematical Economics 
(1975), one on Systems Analysis (1978), two on Teaching of 
Physics at Tertiary Level (in English in 1976, in French in 1977), 

and four on Solar Energy (1977, 1978, 1979, 1981). Most of the 
Proceedings of these courses have been published by the Inter
national Atomic Energy Agency (Vienna, Austria). 

The present volume contains the Proceedings of the Winter 
College on Advances in Nuclear Theory and Nuclear Data for 
Reactor Applications conducted from 25 January to 9 February 
1982. The Course was held in response to the growing need of 
developing countries which plan to establish a nuclear power 
programme to familiarize themselves with the nuclear physics 
foundations of nuclear energy and their applications in the design 
of nuclear reactors. 

The programme of lectures and working sessions was organized 
by J.J. Schmidt (International Atomic Energy Agency, Vienna, 
Austria) and M.K. Mehta (Bhabha Atomic Research Centre, 
Bombay, India). 

Abdus Salam 





This volume contains the text of invited lectures presented 
during the Course on Advances in Nuclear Theory and Nuclear Data 
for Reactor Applications held at the International Centre for 
Theoretical Physics (ICTP) in Trieste, Italy, from 25 January to 
19 February 1982, within the framework of the nuclear physics 
activities of the ICTP during the winter of 1982. The Course was 
jointly organized by the IAEA Nuclear Data Section and ICTP, and 
was attended by 70 participants from 23 developing countries, 
2 from 2 developed countries and 1 from an international 
organization. 

The purpose of the Course was, pursuant to similar courses 
held in 1978 and 1980, to offer nuclear scientists from developing 
countries who are implementing a nuclear science and technology 
programme a review of recent progress in the theory of low-energy 
neutron nuclear reactions, to introduce new advanced nuclear 
model computer codes and to review the nuclear physics and data
bases needed for thermal reactor physics design and safety analysis. 

The Course comprised lectures, special seminars and extended 
topical discussion sessions primarily covering: 
1. Advances in the theory of basic fast neutron/nuclear inter

action mechanisms and its applications; 
2. Advances in the understanding of nuclear fission dynamics; 
3. Nuclear data for nuclear power reactor core and safety analysis. 

Discussions were held during the Course for follow-up action 
based on the findings of the special workshop held during the 

second Course in 1980 regarding the new IAEA Technical Co
operation Interregional Project on Nuclear Data Techniques and 
Instrumentation (TC/INT/1/018). 

The lectures given during the Course built upon those given 
at the two earlier Courses on Nuclear Theory for Applications held 
at the ICTP in Trieste in 1978 and 1980 and published as reports 
IAEA-SMR-43 and IAEA-SMR-68/1, respectively. They are ex
pected to be of interest to nuclear scientists both from developing 
countries where the interest in nuclear data and reactor physics 
research is steadily growing and from developed countries where 
such research is in an advanced stage. To keep the size of the 
Proceedings within reasonable limits and to avoid duplication of 
published material, only an outline of the lecture content with 
references to the published literature is given for those cases where 
the lecturer felt that full text was not necessary. It is expected 
that the Proceedings will serve as reference in the field and as an 
advanced textbook for post-graduate studies. 

The organizers wish to express their deep appreciation to the 
lecturers, speakers at the special seminars and participants at the 
extended discussions for their very active engagement and co
operation in achieving the objectives of the Course. The excellent 
of the staff of the ICTP was indispensable for the successful 
organization and conduct of this Course and is most gratefully 
acknowledged. 
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RECENT ADVANCES IN UNDERSTANDING 
LOW-ENERGY REACTIONS 

S.E. KOONIN 
W.K. Kellogg Radiation Laboratory, 
California Institute of Technology, 
Pasadena, California, 
United States of America 

These lectures were a pedagogic review of some recent 
theoretical work in low-energy nuclear reaction theory, with 
particular emphasis on the multi-step compound and multi-step 
direct reaction mechanisms. The goals were to impart a basic 
understanding o-f the physics involved, to review some o-f the 
formalism developed to treat such processes, and to describe some 
schematic models which implement this formalism. 

The first lecture began with a review of the basic 
classification of low-energy reactions and of the various 
physical characteristics associated with each type. These 
ranged from the statistical compound to the dynamical direct, 
with the multi-step pre-equi1ibrium falling between these two 
extremes. The simple exciton model of equilibration through a 
sequence of increasingly complex nuclear configurations was then 
introduced and was used to estimate the time-scales involved, as 
well as the spectral characteristics of each reaction mechanism. 
Simple Fermi-gas expressions for the total nuclear level density 
and for the density of levels at each stage in the equilibration 
process were derived, and the basic physical features governing 
evaporation and pre-equi1ibriurn spectra (e.g., damping widths 
relative to escape widths) were discussed. 

The second lecture started with a review of single-particle 
scattering theory. The Lippmann-Bchwinger equation, the Green's 
function, the S-matrix, and the T-matrix were introduced and were 
related to observable cross sections. The elaboration of this 
mathematical apparatus to treat many-body reactions was then 
discussed, with emphasis on the partition of the Hilbert space 
into "relevant" and "irrelevant" sectors using projection 
operators. The resulting expressions for the S-matrix in the case 
of a single resonance were related to the familiar Breit-Wigner 
form. The concepts of energy-averaging and fluctuation 
cross-sections were then introduced to handle the many-resonance 

case and expressions were derived for the fluctuation cross 
section in terms of the average resonance parameters and, 
ultimately, in terms of the energy-averaged S-matrix. Connection 
was also made with the naive Hauser-Feshbach expressions. 

The third lecture was concerned with the extension of the 
many-body reaction formalism to multi-step processes. The notion 
of a chained-partition of Hilbert space was introduced and, using 
several key algebraic identities, the many-body T-matrix was 
expressed as a sum of contributions -from different regions of the 
chain, beginning with the simple direct reactions and ending with 
compoud-nucleus processes. Upon invoking extreme statistical 
assumptions, including "self-averaging" and the presence of 
incoherent "exit modes", the cross section was shown to be 
composed of both multi-step compound and multi-step direct 
contributions. The -former involves only quasi-bound processes 
and corresponds to decay following propagation along the bound 
portion of the chain; i-t results in an angular distribution 
symmetric about 90°. The multi-step direct contribution is a set 
of convolutions of single-step direct cross sections; its angular 
distribution is forward peaked and, in certain limits, it can be 
described by a diffusion equation. 

The final lecture was devoted to an explicit schematic model 
of multi-step compound processes. States along the chained 
partition were modelled by increasing numbers of particle-hole 
excitations coupled to a fixed total angular momentum. Simple 
but plausible estimates were made of the matrix elements of the 
residual interaction; these resulted in explicit expressions for 
the double-differential (energy-angle) cross section. Particular 
physical features of the model were discussed and a sucessful 
application to the experimental data on 181Ta(p,n)181W was 
described. 
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CONTINUUM SPECTRA IN PROTON- AND 
NEUTRON-INDUCED REACTIONS 

T. TAMURA 
Department of Physics, 
University of Texas, 
Austin, Texas, 
United States of America 

It does not seem necessary to publish the notes of the lectures, 

given at the Winter College, 1982, with the title shown above. It is beeause 

the lecture was given based on a paper entitled as "Multi-Step Direct Reaction 

Analysis of Continuum Spectra in Reactions Induced by Light Ions" by T. Tamura, 

T. Udagawa and H. Lenske, and this paper is published in the Physical 

Review C 26 (1982) 379* There is, however, a remark to make. 

During the Winter College, I detected a significant interest among 

the participants in getting" access to the computer program, which our Austin 

group had been using. I thus decided to publish the program in the Computer 

Physics Communications, and it will be submitted for publication in a few 

weeks. The paper will be coauthored by T. Udagawa and M. Benmahou, and the 

program will be called ORION/TRISTAR. The version we are publishing this time 

handles the direct reaction as one-step only, but may be used well to analyze 

continuum data induced by nucleons whose energy does not exceed 40 MeV, say. 

(Multi-step version will be published later.) It calculates, not only the 

angular distribution of various reactions as a function of E , the excitation 

energy of the residual nucleus, but also gives the cross sections in the form 

of o(E ;IM), where I is the spin of the residual nucleus and M is its projec

tion. One may use this information as an input to the usual Hauser-Feshbach 

program, and thus calculate the contribution to the evaporation component, 

which is additional to the usual Hauser-Feshbach contribution. I hope the 

reader will find the program ORION/TRISTAR useful for his/her research. 
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RECENT ADVANCES IN 
NUCLEAR MODEL CODE DEVELOPMENTS 

M. UHL 
Institut fiir Radiumforschung und Kernphysik, 
University of Vienna, 
Vienna, Austria 

Abstract 

Model calculations can be used to provide nuclear data for 
applications. Computer codes for the calculation of average 
cross sections are reviewed. The codes are discussed together 
with the models - the spherical and deformed optical model, 
the statistical compound nucleus model and phenomenological 
precompound models - and the required parameters. 

1. Introduction 

Nuclear cross section data are needed for many applications 
in science and technology. A comprehensive review on this topic 
has been presented by Schmidt at the 1978 Trieste Winter Course 
/1/. In general these cross section data are supplied by ex
periment. There are, however, many situations where model cal
culations can supplement experimental cross sections. Some 
examples are: 

i) Gaps in excitation functions can be filled by model cal
culations as illustrated in fig. 1. Many excitation functions 
of threshold reactions of importance for reactor neutron 
dosimetry are based on calculations in some energy regions. 

ii) The development d+Li neutron sources for fusion materials 
irradiation test facilities requires the knowledge of neutron 
cross sections for energies up to 40-50 MeV. As the ex
perimental data are very scarce in this energy region 
most of the requirements have to be met by model calcu
lations which reproduce experimental data at lower energies. 
Similar "extrapolations" of experimental cross sections are 
employed for biomedical applications, too. 

iii) There exist many cross sections of interest with no experi
mental data at all and for which no measurements will likely 
exist as the target nuclei are instable. Great efforts to 
calculate such cross sections for astrophysical applications 
are reported by Woosley et al. /2/. Cross sections for 
instable target nuclei are also important in energy related 
technology as for instance for the assessment of the build
up of fission products and actinides. 

These examples show how nuclear model calculations can be used 
to provide lacking cross section data. However, they cannot 
replace experiment at all. On the contrary, the various reaction 
models rely on auxiliary information in terms of model parameters 
which for the time being cannot be derived from pure nuclear 
theory with sufficient accuracy and hence have to be adjusted 
to carefully selected experimental data; examples are optical 
model parameters, fission barrier parameters and level density 
parameters. These parameters are as important as the computer 
codes used to perform the model calculations. To obtain reliable 
results each calculation of an unknown cross section should be 
based on parameters which simultaneously reproduce available 
experimental data in the mass region of interest. 

These lectures concern computer codes for average cross 
sections which are based on the optical model (spherical and 
deformed), the statistical compound nucleus model and on 
various phenomenological precompound models. By means of these 
models nearly all cross sections of interest for applications 
can be calculated as illustrated in Dr.Strohmaiers lectures at 
this course. 

I will mainly concentrate on representative codes which are 
internationally avaiable and hence can immedeately be applied 
by each participant of this course. In this connection I would 
like to direct your attention to the N.E.A. Nuclear Data Bank 
Program Library, Saclay, 91191 Gif-Sur-Yvette CEDEX, France, whic 
distributes free of charge a large number of computer codes. 
A program package consists of the source program, a sample 
input and output and a reference manual. Further I would like to 
encourage authors of new codes to make them available to this 
institution. 

At the 1978 Trieste course lectures on the same topic were 
presented by Prince /3/. Most of the codes discussed then are 
still in use; some of them were substantially extended in the 
meantime. A few new codes, mainly referring to preequilibrium 
decay were developed since. 

I will discuss the codes in connection with the employed 
models and the required model parameters. The above mentioned 
models are not independent. The relations between them show 
up when calculating the average cross section in terms of the 
scattering matrix. 

2. Average cross sections 

In general the energy dependence of nuclear reaction cross 
sections is very complicated and therefore is best described in 
terms of statistics. For practical applications in the region 
of overlapping resonances one is mainly concerned with averages 
of cross sections a(E) with respect to energy E 

<a> = -r̂  / dEa(E) , 

whereAE is a suitably chosen energy interval. 
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In nuclear reaction theory cross sections are expressed in 
bilinear terms of the scattering matrix S. The scattering matrix 
element S . is the ratio of the amplitude of the outgoing wave 

in channel b to that of the incoming wave in entrance channel a. 
Due to this definition the integrated cross sections for a binary 
reaction from channel a to channel b is essentially (except for 
trivial factors) given by 

°ab(E) = !*ab ' Sab ( E )! 2 • <2-1-> 

Time reversal invariance and flux conservation require the S-
matrix to be symmetric S . = S. and unitary 

I Sac(E)S*bc(E) _ « (2.2.) 
c 

The complicated energy dependence of the S-matrix which is 
responsible for the statistical behaviour of the cross sections 
becomes apparent in form of a resonance pole expansion /4/ 

sab<
E> - *£- i I ^ T — • '2.3., 

E-e +^Tp 

The first term is approximately constant in the energy 
range of interest. In the isolated resonance situation each 
pole term represents a resonance at E = E with width r • The 

p u 
statistical properties of the resonance parameters {z , g } 
are known and well understood in the frame of the statistical 
theory of spectra /5/. As soon as the average width <r> of the 
resonances exceeds their average spacing D (<r>/D > 1, over
lapping resonances) the pole parameters have not such a clear 
physical meaning and their statistical properties are much more 
complicated /6/. 

In the statistical theory of cross sections the S matrix is 
decomposed into its average <S . > and a fluctuating part 
fl 

Sab ( E ) - <Sab> + Sfi ( E ) • 
The average <S , > is related to direct reactions and can be cal

culated by means of models involving relatively few degrees of 

freedom: the single channel optical model in case that <S ,>is 

diagonal and the multi-channel optical model otherwise (see 

section 3). The fluctuating part S . reflects the excitation of 

complicated degrees of freedom and thus describes compound nucleu 
reactions. 

6 

The resulting average cross section 

- I * c I2 4. lcfll2 _ D R . f l <o A \ 
<°ab> - l6ab " < SabH + ^ a b l * = aab + <°ab> (2'4*} 

consists of two contributions: the direct reaction cross section 
DR 2 

aah = | <5 w ~ < s v.> | a n < ^ t n e average of the fluctuating cross 
f 1 f 1 2 section <a .> = <|S . | > which represents the compound nucleus 

CN cross section <a - >. ab 
The average of the unitarity relation (2.2.) 

I <Sac><Sbc>* + I <Sac S b c % = 6 ab (2'5') 

c c 

shows that the average of the scattering matrix <S , > is not uni
tary. 

Its unitary deficit is the penetration matrix P /!/. 

Pab = 6ab " I <Sac><Sbc>* • (2'6'> 
c 

In absence of direct reactions the diagonal elements of P , are 
just the (single channel) optical model transmission coef
ficients T = 1 - I<S > I2 

a ' aa ' 

Pab = 6ab <1 - l<Saa>!2>= *ab Ta • (2'7") 

The statistical theory of nuclear reactions aims at expressing the 

average fluctuating cross section <c , > = <|S . |>or more generally 

averages of the type <S ,S ,> in terms of the average S-matrix. 

Analytic formulae were derived for isolated resonances <r>/D << 1 
or for strongly overlapping resonances <r>/D >>1. For intermediate 
values of <r>/D convenient formulas were found which accurately 
reproduce the results of computer experiments (see section 4). 
Excellent reviews exist on this topic by Moldauer /6/, Mahaux 
and Weidenmiiller /8/ and Brody et al. /5/. 

The above mentioned formulae are based on the statistical 
properties of the S-matrix characterizing an equilibrated compound 
nucleus. Thus they do not account for preequilibrium decay and 
their applicability is restricted to low incident energies, say 
below 10 MeV. Recently several fundamental approaches /9/ - /12/ 
to describe preequilibrium decay in the frame of general reaction 
theory were proposed. They are discussed in other lectures at 
this course. For practical applications, however, preequilibrium 
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decay is treated in the frame of simple phenomenological models 
(see section 5). The average of the fluctuating cross section is 
decomposed into an equilibrium and an equilibrium portion 

fl fl,eq , fl,pre /0 Q . 
<°ab> = <aab > + <aab > ' (2'8-} 

Finally it should be pointed out that the formulae for actual 
cross sections are more complicated than equ. (2.1.) . In particu-

3oab lar, differential cross sections' • require the consideration of 

angular momentum coupling. The formulae for various coupling 
schemes can be found in a review article by Robsen /13/. 

3. Elastic scattering and direct reactions (optical model) 

At the 1978 Trieste Winter course the theoretical background 
of the optical model was reviewed by Mahaux /14/ and its practical 
aspects by Prince /3/. The next section presents a short descrip
tion of some of the concepts required for the characterization of 
the pertinent codes. 

3.1. Models and parameters 

The single channel or spherical optical model describes the 
scattering of a particle by a complex (absorptive) spherical 
potential U(r). The Schrodinger equation for the radial wave 
function u (r) in channel a reads 

ct 

I" h (T2 - ^ 1 ^ > + U(r) - El u a ( r ) = °« (3-1') H dr r 

Each channel can be treated separately. The average of the scat
tering matrix <S > is obtained by numerically integrating this 

aa 
equation from the origin to a point where the potential U(r) can t 
neglected and by matching the asymptotic solution. 

In addition to the transmission coefficients T = 1-1<S >| 
a ! aa ' 

the following quantities are obtained in terms of <S > by well 
aa 

known formulas (see e.g. ref. /15/): total, elastic and ab
sorption cross section, polarisations, scattering radius and the s 
and p-wave strength functions. 

The phenomenological optical model potentials used in most 
investigations are of the following form: 

U(r) = - V f(r,R,a) + i^-Aa
s^s'ir

 f ( r' Rs' as ) ~ Wv f (r'Rv'av) ] + 

+ Vc(r,Rc) + 2 V s o l £ f(r,R80,a80). (3.2.) 

Thus the potential consists of a real part with depth V, an ab
sorptive surface and an absorptive volume component with depths W 
and W respectively, a Coulomb potential and a spin orbit term 
with strength V . The depth V, W and W depend on energy E-. 

The radial form factors commonly used are of Woods-Saxon type 

f(r,R,a) = [1 + exp(^je "1 , (3.3.) 

where R and a represent the radius and the diffuseness, respecti
vely. The Coulomb potential is assumed to result from a uniform
ly charged sphere. 

The phenomenological optical potentials depend on many para
meters which have to be determined by comparison with experimental 
data. Automatic search procedures to find an optimum set of para
meters have been developed; they are usual based on the least 
square fit method. 

Theoretical considerations require the optical potential to 
be non-local. For a non-local potential equ. (3.1.) has to be re
placed by an integro-differential equation with a kernel k (r,r*) 

[- U- (£-* - 1 ( 1+ 1 )) - E] u (r) + /dr'K fr^'Jutr') = o. 
Zu -, Z Z a ' a a p dr r 

(3.1 ' .) 

Perey and Buck /16/ demonstrated that an energy_iQ4e.Ee.D£?.!2i:_22GI 
i°.c§i_E2tential reproduced experimental data over an extended~ener 
range? They~found also a recipe how to construct an energy^de-_ 
gendent_local_eguivalent of an energy independent non-local poten-
tial7~In~this"sense~the phenomenologicdl energy dependent poten
tials of equ. (3.2.) can be regarded as local equivalents of a 
non-local potential. 

While the single channel optical model for <S= > treats each 
aa 

(elastic) channel separately the coupled channels optical model 
considers coupling between different channels.Such calculations ar 
more involved - in particular if rearrangement channels are accoun 
ted for. Therefore in practical applications the only direct 
reaction usually considered is excitation of low lying collective 
levels by inelastic scattering. Compared to other direct reactions 
these processes have large cross sections. The theory of direct 
inelastic scattering was reviewed by Tamura /17/, Madsen /18/ and 
Delaroche et al. /19/. 

A model which describes elastic and collective inelastic 
scattering on a macroscopic basis assumes that the phenomenologi
cal optical potential of equ. (3.1.) is deformed ("deformed optica 
potential"). 

For permanently deformed nuclei the radii R. entering in the 
various radial form factors of equ. (3.2.) are expressed in terms 
of deformation parameters 8^ 
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R.(G') = Roi(1 + I BAYXo(0')) , (3.4.) 

where e1 refers to a body fixed system. For spherical (vibrational 
nuclei the corresponding equation reads 

R ^ ) = R o i d + I« A uY A M(n)), (3.4'.) 

where n refers to an arbitrary space fixed system and the aXy are 
operators describing the vibrational motion; deformation para
meters 3x can be defined in terms of expectation values of these 
operators: 0 -

6X
2 - « i I K „ I 2 I > -

v 
The wave function Y of the considered system is expanded in terms 
of channel surface functions A which are defined by Lane and 
Thomas /20/: y = £ *_u (r)/r. These quantities « consist of the 

c 
wave functions of the projectile, the target nucleus in its differ 
ent states and the angle dependent part of the wave function of 
relative motion and include the angular momentum coupling. The set 
of coupled equations for the radial wave function results from the 
Schr6dinger equation (H - E)V = 0 and the orthogonality of the 
surface functions and reads 

M dr r 

= -I <*al UIV ub ( r )' (3.5.) 
b-/a 

where U is the deformed (local) potential and E represents the 
a. 

channel energy. The coupling between different channels is caused 
by the matrix elements <* |U |*. > which depends on the deformation 
parameters B and the structure of the target states. Analytic 

expressions were derived by Tamura /17/ in the frame of a vibra
tional and/or a rotational model for the target nucleus. 

The average S-matrix <S .> is found by numerically integratin 

the coupled equations (3.5.) and matching the appropriate asymptot 
solution. In addition to all the quantities which result from the 
spherical optical model the coupled channels optical model also 
provides the (direct) inelastic cross sections for the considered 
levels of the target nucleus and the penetration matrix 

ab ab £• ac be c 
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Unfortunately coupled channels calculations are rather time 
consuming. In case of vibrational nuclei with small deformation 
parameters inelastic scattering cross sections can be calculate 
by means of the much faster DWBA method /15/ which only considers 
the coupling between the entrance and one exit channel in first 
approximation. Fu /21/ and Arthur et al. /22/ recently applied 
the DWBA method for the evluation of neutron induced cross section 

40 54 56 for Ca and ' Fe, respectively. For strong coupling between 
channels, however, the use of the coupled channels models is in
dispensable; this applies in particular to strongly deformed 
nuclei. 

With regard to applications the most important problem is the 
parameterization of the optical potentials. In the past years 
several global potentials were proposed which are valid in a wide 
mass and energy region /15/. Global neutron potentials were re
viewed by Wilmore et al. /23/ and by Delaroche et al. /19/. Such 
global potentials do a reasonable good job in predicting the overa 
trends but when applied to a particular nucleus it often turns out 
that the experimental data are not adequately reproduced. There
fore for accurate evaluations one has to optimize the parameters i 
a more restricted mass region. For this purpose the Bruere-le-
Ch&tel-group developed for neutrons the very efficient "SPRT-
method" /19/, /24/. The parameters are found by an analysis of 
low energy data in the keV region namely the s- and p-wave strengt 
functions and the potential scattering radius R1 and by reproducin 
the total cross section from a few keV to 20 MeV. An additional 
restriction . is the reproduction of differential elastic and in
elastic cross sections. Due to the wide energy range covered by 
the SPRT-method the resulting potentials are particularly useful 
for deriving the transmission coefficients for statistical model 
calculations. 

Of special theoretical and practical interest are nucleon opt 
cal potentials which in the frame of the Lane-model /25/ simul
taneously reproduce (p,p), (n,n) and quasi-elastic (p,n) data. 

Successful applications of this approach to light /26/ and 
intermediate nuclei /27/, /28/ were reported. Extensive ex
perimental and theoretical investigations of Lane-model con
sistent potentials for actinides are being performed by Hansen 
et al. /29/ at Livermore. 

A comprehensive review on the determination of nuclear de
formation parameters from fast nucleon scattering was presented by 
Haouat at the 1979 Smolenice Symposium /30/. In general the de
formation parameters derived from inelastic scattering and from 
electromagnetic excitations are very similar. For vibrational 
nuclei systematics trends of the small difference of deformation 
parameters for different "probes" can be explained in the frame of 
a theory proposed by Madsen et al. /31/ and Brown et al. /3 2/. 
A recent comparison of e~ for vibrational nuclei obtained with 

different probes was published by Bernstein et al. /33/. 



3.2. Computer codes 

A first I present some characteristic examples of computer 
codes based on the spherical or the deformed optical model which 
in addition have the advantage of being generally available at 
the N.E.A. Data Bank Program Library. For an easier comparison 
these codes are compiled in table 1. Column 1 contains in
formation on the documentation and in most cases on the size of th 
code. Special features of each program are listed in column 2. 
Many optical model codes also perform compound nucleus model calci; 
lations. These are characterized in column 3 and discussed later c 

Among the codes equipped with an automatic parameter search 
procedure (CRAPONE, ELIESE, PELINSCA) I would like to mention in 
particular CRAPONE which was developed by the Bologna group. This 
code has an efficient search routine which in case that a non
local potential is used fits simultaneously data sets at up to 10 
different energies. 

The DWBA code DWUCK-4 allows for various direct reaction 
mechanisms. The calculation of inelastic scattering cross sections 
with macroscopic form factors corresponding to a deformed optical 
potential is only one of the options of this code. 

Due to its flexibility JUPITOR-1 is certainly the most popula 
coupled channels code. Many different versions exist all over 
the world. In fact, a recent international intercomparison of 
coupled channels codes which was organized by E. Sartori /34/ 
from the N.E.A. Nuclear Data Bank actually turned out to become ar. 
intercomparison of different versions of JUPITOR. 

Naturally there are many other codes with features similar 
to those compiled in table 1. At first I would like to mention 
F. Perey's famous unpublished GENOA code. This code is equipped 
with a very flexible and efficient search procedure which permits 
to fit simultaneously several sets of data by one average poten
tial. These data sets may refer to different nuclei and different 
energies. Hence GENOA can search for a global potential. 

J. Raynal developed a powerful method to solve coupled dif
ferential or coupled integro-differential equations by sequential 
iteration. This ECIS method (Equations Couplees en Iterations 
Seqentielle) is described in ref. /35/. This method, though re
quiring more storage, is much faster than the conventional inte
gration methods. It is incorporated in Raynal's ECIS code. From 
an informal Karlsruhe (KFK)-report I learned that in particular 
at higher energies the ECIS code is at least three times faster 
than conventional coupled channels codes. In view of the large 
amount of computation time spent for coupled channels calcu
lations this is an important achievement. 

Finally I want to mention two recent spherical optical model 
codes. The first one - SCAT2 (Fortran-IV, 27 k words) was develope 
by Bersillon /36/ at BuSre-le-Ch&tel. Besides a local potential 
also the local equivalent of a non-local potential may. be used. 
In addition to the usual optical mod-el cross sect ions the code 
calculates polarisations, strength functions and scattering radius 
and transmission coefficients. By an advanced programming techniqu 

the running times are very short. SCAT2 is extensively used at 
Bru^re-le-Chatel and at Los Alamos. 

P.A. Moldauer /37/ developed a new version ABAREX (Fortran, 
250 k bytes) of Auerbach's ABACUS code /38/. ABAREX uses a 
spherical optical model and calculates the total, differential 
elastic and inelastic cross sections as well as the fission and 
the capture cross section. The compound nucleus model calculations 
are based on the "M-cancellation" principle to be discussed in 
the next section. A search procedure is available. Fits to the 
total, differential elastic and differential inelastic (up to 
seven groups of levels) cross sections may be performed simultanec 
ly at up to 14 different energies. At present the code is devised 
for neutrons; inclusion of charged particle channels is planned. 
The code ABAREX will be made available for general distribution. 

4. Statistical compound nucleus reactions 

4.1. Models and parameters 

Processes involving an equilibrated compound nucleus are 
described by generalisations of the celebrated Hauser-Feshbach 
formula /39/, which gives the cross section in terms of the 
(spherical) optical model transmission coefficients 
Tc = 1 ~ ! < S c c H 2 

T T 

fl ,0f1 ,2 axb ,„ , , 

1 c 

At first we neglect direct reactions and hence assume a diagonal 
average S-matrix: <S , > = 6 , <S >. For that case Moldauer /40/ ^ ab ab aa 
porposed in 1975 the following formula for the average of the 
fluctuating cross section 

fl TT
 Ta Tb < aab > = Wab —T" ' 

E T 
C 

"ab - <1 + - «ab> / ^ " "+- ^ r ' ^ ^ V ' ab v ab » C ! T , , (4.2.) 
o c c 

where the sums and the product are over all open channels. 
The quantities v (the "channel degree of freedom parameters") 

depend on the transmission coeffciientsi recently Moldauer /41/ 
found the following representation: 

— E T 
v„(T . z T ) = 1.78 + (T 1' 2 1 2 - $.78)e C . (4.3.) 



The two preceeding formulae are based on Moldauer's "M-cancellatic 
principle" which is discussed in detail in refs. /6/, /40/. For 
weak absorption (T << 1) equs. (4.2.) and (4.3.) reduce to the 

"width-fluctuation-corrected Hauser-Feshbach formula"/42/ which ca 
be derived for isolated resonances(<r>/D <<l)from equ. (2.3.) unde 
the assumption of uncorrelated partial width distributed according 
to the law of Porter and Thomas /43/ (i.e. v = 1 ! ) . In the gener 

case equs. (4.2.) and (4.3.) are verified by computer experiments 
based on unitary S-matrices constructed according to the statistic 
theory of spectra; no analytic derivation exists. 

Various properties of the width fluctuation correction factor 
Wab i n e(3u* (4.2.) are discussed by Gruppelaar et al. /44/ and 
Reffo et al. /45/. 

The M-cancellation principle can also be used to evaluate 
averages of the follwing type 

< s £ 8 £ * > - t ^ - D < ^ " "'<lsab!2> <«•«•> 
fl *fl 

<Sa, S , > = 0 unless to pairs of indices (4.5.) 
coincide. 

These expressions are e.g. required for the calculation of average 
differential cross sections. Note that due to equ. (4.5.) average 
differential cross sections for compound nucleus reactions are 
symmetric about 90 . 

A different method to calculate average cross sections was 
developed by Hofmann, Tepel, Richert and Weidenmiiller. This 
HRTW-approach is described in detail in refs. /46/ and 
/47/. Under the assumption of a diagonal average S-matrix the 
results of computer experiments are fitted by the following ex
pression: 

<°lb> = r r ' 1 + *ab (Waa " 1>> <4'6'> 
c 

which accounts for factorisation and elastic enhancement. The 
unitary condition (2.2.) relates the V to the channel transmissic 
coefficient by c 

' Ta = va + I ^ <waa " !> • <4-7-' 

This relation can be solved for the V by iteration. A convenient 
c 

formula for the enhancement factor W in terms of the channel 
aa 

transmission coefficients was found as well as for <S S* > 
aa bb 

(see ref. /47/). 10 

Numerical studies have shown that in general the agreement 
between the HRTW-approach and the M-cancellation scheme is very goo 
Some exceptions were discussed by Molaauer /48/. In the limit of 
strong absorption both methods give essentially the Hauser-Feshbach 
formula with a compound elastic enhancement by a factor of 2: 

<l>> - (1 + 6ab> TT; • <4-8-> 
Experimental evidence of compound elastic enhancement of this magni 
tude has been given by Kretschmer et al. /49/. 

Both methods hold for the case of diagonal average S-matrix. 
Engelbrecht and Weidenmiiller /50/ found a way to transform a proble 
with direct reactions to the previously considered case. The Engel-
brecht-Weidenmilller transformation is the unitary transformation U 
that diagonalizes the penetration matrix P , defined in equ. (2.6.) 

(U P U+)ab * V 6 a b , 0 < Ta' < 1. (4.9.) 

T By means of U and its transposed U one constructs a transformed 
T scattering matrix S' = U S U with diagonal average. Further, S' ha 

the same statistical properties as the S-matrix in absence of direc 
reactions. Hence the average of bilinear expressions in S' can be 
evaluated in terms of the eigenvalues Ta' of the matrix P by means of 

the M-cancellation scheme or the HRTW-approach. 
As discussed by Moldauer /51/ direct reactions between channel 

a and b cause an enhancement of the fluctuating cross section. This 
effect may be of the same order as the elastic enhancement if there 
are just two channels strongly coupled by direct reactions. For 
three or more coupled channels the enhancement is in general not 
very significant. 

The theory described so far is restricted to binary reactions. 
It is extended to multiple particle emission by assuming that the 
particles are emitted sequentially and that for any intermediate 
nucleus the branching ratio for decay in channel d is given in term 
of the transmission coefficients by T./ET as suggested by the simp 

lest version of the Hauser-Feshbach formula equ. (4.1.) . In a very 
schematic way one may represent cross sections for reactions with 
two or three emitted particles as 

<0CN > = ^ C N . ^ C , <CCN ^d_ 
abc ab ET ' abed abc IT * ' 

c c 
Similar expressions are used for the treatment of gamma-ray cascade 
/52/. Calculations based on equ. (4.10.) under consideration of 
angular momentum and parity conservation are referred to as multi-
step Hauser-Feshbach calculations (m.s. HF). To save time one may 
use instead :multi-step Weisskopf-Ewing calculations (m.s. WE) /53/ 
which neglect angular momentum and parity. 



This section is concluded with some remarks on the most impor
tant model parameters and auxiliary Quantities. 

The level density which describes the excited states of the 
residual nuclei at higher excitation energies is of crucial im
portance. Most codes employ phenomenological models the most popula 
being the Gilbert-Cameron model /54/ and the back-shifted Fermi gas 
model /55/. Both models use parameters which are adjusted to repro
duce information on resonances and low lying levels and assume the 
same density for both parities. Reffo /56/ improved the Gilbert-
Cameron model in the low energy region by deriving the parity de^ 
pendence and a more realistic spin cut-off factor from level data; 
these improvements are incorporated into the codes CERBERO and 
ERINNI listed in table 1. 

The above mentioned phenomenological models do not account for 
the effects of shell structure and pairing on the energy dependence 
of the level density. Tnese deficiencies may be overcome by a 
"microscopic" calculation of the level density based on the BCS 
model and on realistic single particle states /57/. A recent comparison 
of such calculations with experimental s-wave resonance spacings 
was reported by Benzi et al. /58/. So far microscopic level densitj 
calculations are not used for routine calculations of cross sectior 

In the past few years new semi-empirical level density formulc 
were proposed by Kataria and Ramamurthy /59/, Jensen /60/ and by 
Ignatyuk et al. /61/. These formulae parametrize shell effects in 
terms of the shell correction to the nuclear ground state mass. 
The latter two approaches also account for pairing. I believe that 
due to its simplicity this type of parametrization is extremely 
useful for applications. Furthermore it provides a better basis foi 
extrapolations to higher energies and to nuclei with no resonance 
data than the two phenomenological models mentioned before. 

While the transmission coefficients for particles are provided 
by the optical model additional assumptions are required for those 
of other decay modes. 

Gamma-ray transmission coefficients TXI(e ) of multipole type 

and for energy e are related to the gamma-ray strength function 
Y 2L+1 

f XL(e ) by T X L U ) = 2-rr e f X L (e )- Two models for the strengl 
functions are generally used. The Weisskopf model /62/ assumes the 
strength function to be energy independent while the Brink-Axel 
model relates it to the gamma-ray absorption cross section. Often 1 
transmission coefficients are normalized so as to reproduce 
<r >/D, the ratio of the average radiation width <ry> and average 
spacing D of s-wave neutron resonances. If information on <rY>/D 
is lacking the use of systematics for this quantity may lead to 
considerable errors in particular near closed shells. Gardner et a. 
/64/ reduced these difficulties by developing systematics for E1 ai 
M1 strength-functions (the most important ones) in a limited Z-A 
range. The E1-strength function is related to the giant dipole re
sonance while for f 1(e ) the Weisskopf model is used. As the 
normalization of the strength functions varies slowly between neigl 
bouring nuclei it can be found by fitting low energy capture cross 
sections. The resulting strength functions can be used in this Z,A 

range to calculate T£1(e ) and TM1(e ) for nuclei with no capture 

data. Fig. 2 illustrates that the capture cross sections of Rb a) 
87 

Rb though differing by a factor of 10 can be reproduced with the 
same E1-strength function. 

The transmission coefficients for fission are related to the 
transition states at saddle point deformation /65/. For a single^ 
hymB§£_f ission_b^rrier of parabolic shape with height E f and cur
vature hoi the penetrability P(E) is given by the Hill-Wheeler 
formula /66/ 

P(E) = {1 + exp [|l (Ef-E)]}"
1. (4.11.) 

The total fission transmission coefficient T(E,J,n) for compound 
nucleus states with excitation energy E, spin J and parity n is the 
sum of the contributions of all transition states with quantum 
number Jf|. 

00 

Tf(E,J,H) = / dE' pf(E',J,n) {1 + exp[|^ (E
,-E)]"/'

,(4.12.) 
o 

where p£(E',J,n) is the density of transition states. 

For a double_hun\2ed_fission_barrier the follwoing consequences 
of the secondary minimum~have to~be~considered: 

i) Damgin2_in_the_second_well: Interaction of the fission mode 
with Internal degrees of freedom excites compound nucleus 
states in the second well. Fission decay of these states pro
vide an "indirect" contribution to fission in addition to the 
"direct" contribution. 

ii) l2termediate_class_II_structure2. Coupling of compound nucleus 
states in the first~well~TcTass~I-states) and those in the 
second well (class II-states) enhances the indirect fission 
contribution for energies near a class-II state. This intermedia 
structure in fission cross sections is of importance mainly 
for sub-barrier fission. . 

Back et al. /67/ formulated a model which allows for all these 
effects. Of special interest is the limit of complete damping (no 
direct fission contribution) and smeared out class-II structure whic; 
is realized at higher incident energies. In that case the total 
fission transmission coefficient is given by 

Tf
A(U,J,n)T B(U,J,II) 

Tf(E,J,n) =-ir - = , (4.13.) 
Tf

A(U,J,II) + Tf
D(U,J,n) 

A B 
where T f and T^ refer to the inner and the outer barrier respecti
vely and are calculated as in equ. (4.12.). As described in ref. /52/ 
the model of Back et al. /67/ is incorporated into the code STAPRE 
(see section 5.2.). 
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The parametrization of fission is by no means simple nor 
unique. Recent reviews of interest for the calculation of fission 
cross sections are quoted in refs. /68/ - /73/. Furthermore fission 
is treated in detail in three lectures in this course. 

4.2. Computer Codes 

Some of the codes listed in table 1 compute also cross sections 
for statistical compound nucleus reactions. 

ERINNI which is designed for higher incident energies uses the 
original Hauser-Feshbach formula equ. (4.1.) . All other codes of 
table 1 correct for width fluctuation and elastic enhancement under 
the assumption of no direct reactions <S , > = 6 <S >. While c ab ab aa 
PELINSCA employs the HRTW-approach the others rely on Moldauer's 
formalism. Some of them (ELIESE-3 and COMNUC) use a somewhat older 
formulation which was proposed in 1964 /74/. The most recent version 
of the M-cancellation principle is incorporated in Moldauer's 
ABAREX code mentioned in section 3.2. 

As far as I know there exists only one code which calculates the 
average fluctuating cross section under consideration of direct 
reactions. This is Moldauer's program JUSTSO /37/ which incorporates 
the JUPITOR code to generate the penetration matrix. However, JUSTSO 
is not yet available for general distribution. 

While most codes of table 1 are restricted to binary reactions 
ERINNI and COMNUC are multi-step Hauser-Feshbach codes. At the 
Lawrence Livermore Laboratory an extended version of COMNUC is 
used which includes charged particle emission. The Los Alamos 
version of COMNUC was recently improved by Arthur /75/ by incorpo
rating a double humped fission barrier in the frame of the model of 
Back et al. /67/ and by updating the calculation of the width 
fluctuation correction. 

All the codes mentioned so far do not account for preequilibriu 
emission. Thus their results are not very reliable at higher inci
dent energies when this mechanism becomes important. This also 
applies to the m.s. HF codes ERINNI and COMNUC which in principle 
could be used for higher incident energies. All considerations of 
section 4.1., however, are also relevant to those m.s. HF codes 
which in addition to compound nucleus reaction consider preequilibri 
decay (see section 5.2.). 

5. Preequilibrium reactions 

This section is devoted to the description of computer codes 
which account for preequilibrium and equilibrium reactions. As the 
more sophisticated theories of preequilibrium decay and the 
associated codes are subject of other lectures of this course I will 
restrict the discussion to programs which employ relatively simple 
phenomenological models. So far, these are the models commonly used 
in nuclear data evaluation. A list of representative codes of this 
type which are extensively used for the evaluation of neutron in
duced reaction data is presented in table 2. Some features of the 
underlying models which are required to characterize these codes 
are reviewed in the next section. 

Due to shortage of time these lectures do not deal with codes 
based on the intranuclear cascade model which in general are used 
at rather high energies of at least several tens of MeV. However, 
it should at least be mentioned that Alsmiller et al /76/ recently 
applied this model to the calculation of (n,n') double differential 
cross sections between 14.9 and 60 MeV and that Alsmiller et al. /77 
included the fission process into the intranuclear cascade model 
code developed at the ORNL. 

5.1. Phenomenological preequilibrium models 

All cross sections considered in the following are average 
cross sections. Hence the symbol < > is omitted. The codes referred 
to are listed in table 2 and further described in section (5.2.). 

5.1.1. The exCiton model 

The excitdn model was suggested by Griffin /IS/ in 1966. In 
this model the states of the system are characterized by the exci
tation energy E and the numbers p of excited particles and h of 
excited holes. Particles and holes are defined with respect to a 
closed shell reference state and are called excitons. The exciton 
number is given by n = p + h. 

Starting from a simple particle hole configuration the composit 
system is assumed to equilibrate through a series of two body inter
actions and to emit particles from all intermediate states. Two 
body interactions may change the exciton number by an amount of +2, 
0 or -2; the respective average rates are: X+(n,E), XQ(n,E) and 

X_(n,E). The equilibration of the system is described by a version 
of the Pauli master equation of quantum statistics for the dependenc 
on time t of the population probabilities q(n,t) of configurations 
with n excitons and excitation energy E /79/, /80/: 

^ ( j ^ , t ) = X + (n-2)q(n-2,t)+X_(n+2)q(n+2,t)-q(n,t) (X + (n)+Xw(fi)+L(n) ). 

(5.1.) 

The quantity L(n) in the loss term accounts for particle emission an 
is given in terms of the average rates W (p,h,E,e„)for emission of 

P b 

particle B with channel energy e from states with p particles and 
h holes 

egmax 
L(n) = L(p,h,E) = I J de.W (p,h,E,e ) . 

3 .o 6 6 B 

This master equation was justified by Agassi et al. /9/ in the frame 
of the statistical theory of nuclear reactions in connection with a 
random matrix model for the nuclear Hamiltonian. 

The initial conditions for the master equation q(n,t=0)= 6^ 
depends on the projectile type. For nucleon induced reaction the 
commonly used inital condition is n = 3 corresponding to p Q = 2 
and h_ = 1. 



In matrix form equ. (5.1.) reads 

- ~ q(t) = A.q(t) , (5.1 ' .) 

where q(t) is the vector with the components q(n,t) and A is a tri-
diagonal matrix. 

The master equation represents a system of coupled linear 
differential equations which can be solved either numerically by a 
finite difference method /79// /80/or more elegantly in terms of the 
eigenvalues and eigenvectors of the matrix A /81/, /82/. 

The angle integrated spectrum of particle B is obtained in 

terms of the absorption cross section of the projectile a and the 
particle emission rates W(j(n,E,eft; 

ag (eg) = °l I J dtq(n,t)W6(n,E,e6)=c^ £ (-Aq (0) ) ̂  (n ,E , E fi), 

(5.2.) 

where the relation q(n,«>) = o has been used. The master equation is 
supposed to describe the equilibrated system,too. Hence the spectrum 
given by equ. (5.2.) contains the preequilibrium and the equilibrium 
contributions as well. The codes AMALTEE and PREANG employ equ. (5.2 
to calculate the total emission spectrum. 

The preequilibrium contribution to the spectrum is given by 

do „ eq 
ag , , c - - M <eJ = ° I J dtq(n,t)W (n,E,e ) , (5.3.) 

d e B " B' ° n o ' • ' 

where t is the time at which the system has reached a (partial) eq 
equilibrium. The codes GNASH, HAUSER-5, PRECO-A/B and STAPRE use 
the master equation to derive the preequilirbium contribution 
according to equ. (5.3.) and add an equilibrium contribution 

da eq 
ct 6 

~ — which is corrected for depletion by preequilibrium decay: 
, , pre , eq 
da do / da _ 

ag _ ag + ag 
de„ de„ de„ 

(5.4.) 

Most of these codes account for conservation of angular momentum J 
and parity n and assume for the preequilibrium portion the same 
Jn-distribution in the residual nuclei as given by the compound 
nucleus model. So, the equilibrium contribution has to be calcu
lated in any case. 

The master equation (5.2.) depends on time as a continuous 
variable. The equilibration process can be described also by means 
of a discrete variable M which represents the number of internal 
transitions after the formation of the composite system. The 
corresponding master equation for the population probability reads 

9(n'M) = rfn^if1 < 3 < n - 2 ' M - 1 ) + ^ T S(n'M-1)+iTTnTTf q<n+2,M-1) ; 

X(n) = X + (n) + X (n) + X_(n) + L(n). (5.5.) 

The spectrum of emitted particles is given by 

TTT^- = aC I [ I q(n,M)X~1 (n) ] W (n,E,e.) . (5.6.) 
eg a n M=0 p p 

These equa t ions are used in the code STAPRE /52/ to calculate the 
do 

preequilibrium contribution of the spectrum -3 (the M-sum in 
6 

equ. (5.6.) extends up to a suitably chosen value M ). 

Recently Ackermans et al. /83/ studied the properties of 
equs. (5.5.)and (5.6.) in great detail and extended them to the 
calculations of angular distributions by applying the model of 
Mantzouranis et al. /84/ and to the treatment of multiparticle 
preequilibrium emission. The authors of ref. /83/ pointed out that 
equs. (5.5.) and (5.6.) describe the equilibration process as 
"random walk" in particle hole space and showed that the resulting 
particle emission spectra agree with those from equs. (5.1.) and 
(5.2,) Another stochastic preequilibrium model was proposed by 
Gudiroa et al. /85/. 

Closed form expressions for the preequilibrium emission spectra 
result from the "random walk equations" (5.5.) and (5.6.) by neglec
ting the rates x_(n) and x (n) : 

da „ p r e „ n , We(n,E,eB) 
JSLfi 

I Dn X (n)+L(n)' (5'7') 
de„ a L n X, (n)+L(n 

6 n +, 
where the "depletion factors" D are given by 

Dn = TT X + ( V ) • Dn = 1, (5.8.) 
r=nQ+2 x+(v)+L(v) o 

and n" % /2gE represents the most probable exciton number at equi
librium which depends on the single particle state density g of the 
composite system. 
Before applying the model the rates X^'(n) = (X+(n),X (n),X_(n)) for 
internal transitions and the particle nemission rates°W|» (n,E ,e 6) hav 
to be specified. 

Two different approaches are used for the calculations of the 
internal transition rates. The first one relies on first order per
turbation theory (Fermi'.s golden rule): 

XAn ( p' h' E ) = TT l M| 2 w
A n

( p' h' E ) ' (5.9.) 
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where |M | is an average squared matrix element for residual inter
actions and a) (p,h,E) is the number of final states accessible by c 

two body interaction. The first formulae for u> (p,h,E) were derivec 

by Williams /86/. The problem was reinvestigated by Oblozinsky et a] 
/87/. An error in Willams' derivation was corrected and the Pauli 
principle was accounted for. 
Most of the codes in table 2 employ for ou _(p,h,E) the formulas of 

v A" 
Oblozinsky et al. /87/ or the somewhat simpler expressions by Cline 
/88/. Both results assume equidistant single particle states. A 
very elegant method to calculate the density of final states acces
sible by a two body interaction for arbitrary single particle states 
was proposed by Dobes" et al. /89/, /90/. 

By analysis of appropriate experimental data Kalbach /91/ founc 
the following relation for the dependence of the average squared 
matrix element on mass number A and excitation energy E of the com
posite system 

|M|2(E) = K A - 3 E~1 , (5.10.) 

where K is a constant which depends on the expression used for the 
particle emission rates; for g = A/13 and the particle emission 
rates proposed in ref. /92/: K = 400 MeV3. 

A quite different approach to calculate the internal transition 
rates has been used by Gadioli et al. /93/. As the Milano group 
employs the closed form expressions (5.7.) and (5.8.) for the pre-
equilibrium cross sections only the rates x+(p,h,E) are considered. 
Gadioli et al. relate these rates to the average particle and hole 
collision probabilities vPo in nuclear matter, where v is the nucleon 
velocity, p the nuclear density and o the average nucleon-nucleon 
cross section in nuclear environment. The resulting rates (see 
fig. 3a) are independent of the mass number. They are tabulated in 
ref. /94/. Their absolute values were adjusted to fit appropriate 
experimental data. Nowadays the Milano group particle hole creation 
rates are supported by the reproduction of a large amount of experi
mental data (see refs. /95/, /96/ and further references therein). 

However, the nucleon mean free path x = 1/po corresponding to these 
rates is considerably larger (by a factor of about four) than that 
deduced from the Fermi gas model and the free nucleon cross section. 
This problem is discussed in refs. /97/, /98/. 

In order to reproduce Gadioli's /94/ particle hole creation rates 
Kalbach /99/ proposed a new energy and exciton number dependence for 
the average squared matrix element |M|2 to be used in the golden rule 
expressions equ.(5.9.) instead of equ. (5.10.). Her new rate ex
pression are used in the codes PRECO-B/D, GNASH and HAUSER-5. Fig. 3a 
shows a comparison of Gadioli's rates /94/ with the result of equ. 
(5.10.) and those of ref. /99/. Though the difference between the two 
rates used in connection with the golden rule expression is con
siderable for larger exciton numbers the effect on the cross sections 
is relatively small (see fig. 3b) . 
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The simplest way to calculate the particle emission rates is to 
use detailed balance /80/. For the emission rates of particle B con
sisting of IT protons and v neutrons with channel energy e one ob
tains 8 8 8 

2 SR + 1 inv u(.p-p ,h,U) 

We(p,h,E,EB) , — j p - V p g^v ( e g ) R p ( p ) a ( p ^ E ) , (5>11>) 

where S , y , p and ô  are spin, reduced mass, nucleon number 
8 8 3 3 

(p = TT + v ) and inverse cross section respectively. The quantities 
3 3 3 

u)(p,h,E) and w(p-p ,h,U) are state densities for specified numbers of 
3 

particles and holes; they refer to the composite system at excitation 
energy E and to the residual nucleus at excitation energy U. The 
inverse cross section a n (E D) is replaced by the optical model ab-

8 8 
sorption cross section though there is no sound theoretical basis for 
doing so. 

The factor Ra(p) represents the probability that p emitted 
8 8 

nucleons have the right combination of protons and neutrons. In principle 
the equilibration process should be treated under consideration of 
proton-neutron distinguishability. Though two component master 
equations were proposed /85/, /100/ the commonly used approximation 
is to apply one component equations as (5.1.) or (5.5.) and to 
calculate separately the quantity R (p) which depends on the pro-
jectile. The method proposed by Kalbach-Cline /80/, /92/ is used by 
the codes PRECO-A/B/D, GNASH, HAUSER-5 and AMALTHEE while the correc
tion developed by the Milano group /101/ is employed in their un
named code described in ref. /94/ and in STAPRE. For nucleons in en*-
trance and exit channel both methods give similar results. A special 
treatment of the neutron proton distinguishability is incorparated 
in Fu's code TNG1. 

Most codes listed in table 2 use for the particle hole state 
density the formula of Williams /102/ which is based on equidistant 
single particle states with density g, or formulas of smilar structure 
which are, however, corrected for finite well depth /103/, /90/ and for 
long range deviations from the equidistant spacing model (q(e)^/e) 
/104/, /105/. The Milano group calculates the particle hole state 
densities for single particle states of a Fermi gas (with Fermi-energy 
e„ = 20 MeV) by means of recursion formulas /93/ which account for 
r 

finite well depth but not for the Pauli principle. Calculations of 
particle hole state densities for realistic shell model single 
particle levels have been reported by Williams et al /106/, Albrecht 
et al. /107/ and Grimes et al. /108/ but their results are, so far I 
know, not used in routine calculations. Applications of the exciton 
model often face the problem, how to correct the particle hole state 
densities for pairing /109/, /92/, /110/, /111/- Theoretical in
vestigations on the calculation pf particle hole state densities in 
the frame of the BCS formalism have been reported by Ignatyuk et al. 
/112/ and by Moretto /113/. 



Application of detailed balance for the calculation of the 
particle emission rates requires that all states of a given particle 
hole configuration are populated with equal probability. As the 
origin of such a quasi-equilibrium is not evident /114/ the following 
more general expression for the emission rates should be used /96/: 

W6(p,h,E,Eg) = Pph(E,e6 + BB) A^ (e0> . (5.12.) 

For a given particle hole configuration P , (E,e. + B ) represents the 

number of particles of type B times the probability density to find 
such a particle at energy e. + B„ within the nucleus , where e and B 

D P P 
are the channel energy and the separation energy respectively. The 
second factor X (eD) is the rate for the escape into continuum of 

P 

those particles and is calculated in terms of the inverse cross section 

a0 (E 0) as proposed by Harp et al. /115/: 
P p . 

? c f c , _ ° n V ( e B ) V c ( e B ) 1 2 SB + 1 inv. , ,.,, , 
W " g(ee+ B0)V

 = g( £ g + Bfl) ^ 3 V B ° B U B ) ' ( 5' 1 3* ) 

Here Vg is the velocity in the continuum and g(eg + Bg) and w (eg) 

respectively represent the density of states of particle B inside the 

nucleus and in the normalisation volume V which represents the con
tinuum. 

By calculating the quantity P n(E,eft
 + B

R) for nucleons on the 

basis of the nucleon-nucleon scattering Blann et al. /116/ showed 
that the rates resulting from equs. (5.12.) and (5.13.) esentially 
agree with those from equ. (5.11.). Thus the application of detailed 
balance for the nucleon emission rates is supported by the properties 
of the nucleon-nucleon cross section. This, however, is not true for 
the emission rates of composite particles. In fact while equ. (5.11.) 
reproduces quite well experimental data concerning nucleons the de
tailed balance rates considerably underpredict the emission spectra 
of clusters /92/ (see fig. 4). 

Several methods to treat preeauilibrium emission of clusters 
have been proposed. A substantial improvement of the description of 
(p,ct) and (n,a) reactions was achieved by the model of preformed alpha 
particles by Milazzo-Colli et al. /117/. This model assumes that the 
projectile by interaction with preformed alpha particles excites 
[1 pN 1po,1ha]-states in addition to [2pN,1hN]-states, where N stands 
for nucleon. Emission rates for nucleons and alpha-particles are 
calculated under the assumptions of equal population of all the states 
of the configurations [(m+1)pN, mhN] and [mpN 1pa, (m-1)hN 1 ha]. 
These rates additionally depend on the probability to excite a 
[1pN 1pa, 1 ha]state which is a free parameter. This model is in
corporated in the codes STAPRE and TNG 1. Recently the model of pre
formed alpha-particles has been refined by Ferrero et al. /118/ by 

including into the exciton model the ideas of the quasi-free scattering 
model of Blann and coworkers /119/, /120/. The free alpha-nucleon 
cross section was used to derive the quantity P ,(E,e + B ) in equ. 

(5.12.). By this improvement (p,a) spectra in a wide mass region and 
for incident energies much higher than with the original model could 
be described with few unique parameters; see also refs. /95/ and /96/ 
for further information. This improved model was also successfully 
applied to the calculation of angular distributions /96/ and to proton 
induced activation cross sections for ^iSO-pi for incident energies 
up to 85 MeV /I 21/. 

A different approach to deal with cluster emission has been pro
posed by Kalbach /92/. In addition to a preequilibrium component cal
culated by means of the detailed balance emission rates equ. (5.11.) 
she considers contributions from direct reaction processes as pickup, 
stripping and in case of alpha-particles also knock out. These direct 
reaction contributions are not calculated in detail but by means of a 
simple statistical semi-empirical approach which is mainly based on 
phase space arguments and on consideration of the Coulomb barrier. 
Fig. 4 shows a comparison of the calculation with experimental data 
for 5l*Fe+p at 29 and 62 MeV. The main contribution to the spectra 
of d, t, ^He and alphas is provided by the pickup process. These 
semi-empirical direct reaction contributions are incorporated into 
the codes PRECO-B/D as well as into GNASH and HAUSER-5. The formulae 
for the direct reaction contributions given in the original paper 
have been improved in the mean time /122/. 

Several efforts in the last years were devoted to the calculation 
of angular distributions. Mantzouranis et al. /84/ proposed the 
following generalization of the exciton model. The states of the 
equilibrating system are characterized in addition to the number of 
excited particles and holes by the direction ft of the "fast particle" 
with respect to the incident direction. The fast particle is the 
carrier of the memory of the incident direction which is gradually 
lost by intranuclear collisions. The generalized master equation 
for the population probability q(n,fi,t) reads 

n+2 n+2 
dq(rwfl,t) = ^ J dn'Amn(m;n'-*fi)q(m,n',t)-q(n,n,t) (£ Xnm(n)-L(n,E)), 

m=n-2 m=n-2 
Am=2 4m=2 

(5.14.) 

In order to simplify the solution of these equations it is assumed 
that the rates X ^ (m,n'-»-fi) can be factorized into the usual internal 

transition rates A (m) and an angle dependent part which is propor

tional to the free nucleon-nucleon cross section •|£-r(a-*fi ') 
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The direction of the emitted particle is supposed to coincide with the 
direction of the fast particle. The double differential cross section is 
given by 

j2°aB _ c 
dz ndn, 

a / dt q(n,fi ,t)w (n,E,e ). (5.16.) 

The calculation of angular distributions in the code PREANG is based 
on this model. Algebraic solutions of equ. (5.14.) were discussed 
by Akkermans /123/. A closed form expression for the coefficients 
of a Legendre polynomial expansion of the double differential cross 
section was derived by Akkermans et al. /124/- This paper also contains 
a comparison with (n,n') data at 14.6 MeV and is discussed further in 
Dr. Strohmaiers lectures. 

There exist several other theoretical approaches to deal with 
angular distributions. Besides the multistep direct reaction models 
discussed in other lectures of this course I should mention the work 
of Madler et al. /125/ who introduced the total linear momentum as 
additional variable into the exciton model. 

A phenomenological way to calculate angular distributions has 
been developed by Kalbach and Mann /126/. This work uses the concept 
of statistical multi-step direct (MSD) and statistical multi-step 
compound (MSC) reactions proposed by Feshbach et al. /11/, which is 
extensively discussed in Dr. Koonins lectures. Kalbach and Mann re
present the double differential cross section in terms of Legendre 
polynomials and assume that to the odd order coefficients only MSD 
processes contribute. By analysis of experimental data surprisingly 
simple relations for the reduced Legendre coefficients were found. 
The code PRECO-D utilizes these results for the calculation of angular 
distributions. The extensions of the exciton model required to 
distinguish between MSD and MSC processes are described by Kalbach 
in ref. /127/. 

5.1.2. The hybrid model 

This model which was proposed in 1971 by M. Blann was the first 
simple preequilibrium model able to predict absolute cross sections. 

The hybrid model is mainly concerned with nucleon emission and 
only this case will be considered in the following. The angle 
integrated emission spectra are given by the following expression 

A°(e J d a a 

de 
.6 

c = a a 

n 
c V 
a L 

n=; 
n 

I D: 
n=nQ 

u y D P fc(E,e0 + Bfl) — j — - 2— 
anin n Ph e 6 A+(£ft)+A

C(eR) 
O P P 

c Pc g(
eQ + BQ)u)(p-1 ,h,U) X (e ) 

(P' h' E ) . A+(e„)+A
C(£D) 

(5.17.) 
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Here, D is the depletion factor defined in equ. (5.8.). In the second 

step the quantity P^v,(E'eo + B e) defined below equ. (5.12.) is eva-pn p p 
luated under the assumption of equal population probability; with p 

3 
being the number of nucleons of type g the ratio p„/p just accounts 

c P 
for.proton-neutron distinguishability. While A (e.) is the emission 

p 
rate for a nucleon of energy e + BQ inside the nucleus (see equ. + 
(5.13.)} the quantity A (e ) represents for such a nucleon the rate to 
create a further particle hole pair. This rate was related to the mean 

nucleon free path A in nuclear matter by A (e ) = v/A (eD), where v 
P P 

is the velocity, or in later refinements of the model /129/ to the 
imaginary part of the optical potential W by A (efl) = 2W/K. 

p 

Though equ. (5.17.) superficially looks like the corresponding ex
pression (5.7.) of the exciton model there is a substantial and much 
debated difference in bookkeeping between the two models as in the 
hybrid model the rates A+(e.) refer to a nucleon at energy e + B„ in-

p P P 

side the nucleus and not to the average decay rate of the states of 
a given exciton configuration /97/, /98/, /130/. Successful repro
ductions of (a,p) spectra were reported by Blann et al. /131/ and 
Chevarier et al. /132/. In order to improve the description of the 
high energy portion of (p,p') and (p,n) spectra the geometry-dependent 
hybrid model was developed by Blann /133/, /129/. This model accounts 
for nuclear geometry in a local density approximation. For each 
partial wave of the projectile the mean free path or the imaginary 
part of the optical model as well as the Fermi energy are averaged 
over the trajectory. Many applications of this model regarding (p,p') 
and (p,n) spectra /114/, /134/ as well as (n,n') spectra /135/ were 
reported. 

Mantzouranis /136/ adapted the hybrid model for the calculation 
of angular distributions using the above described concept of the 
fast particle /84/. 

The hybrid model and its geometry-dependent version are incorpo
rated in Blann's widely used code ALICE. 

A generalization of the hybrid model represents the quasi-free 
scattering model which was developed by Blann and coworkers and applied 
to (a ,a' ) , (nucleon, a) and (a,nucleon) reactions /119/, /120/. 
In this model the quantity P h(eR + B ) in equ. (5.32.) for alphas and 
nucleons is evaluated on basis of the free nucleon-alpha and nucleon-
nucleon elastic scattering cross section corrected for the Pauli prin
ciple. 
Pertinent codes are MIE00I, NALFA and QFS /137/. 

5.1.3. Further developments 

Recently Chiang and Hiifner proposed a new treatment of pre
equilibrium decay. Their "One, two, infinity approach" /138/ claims 



that for nucleon induced reactions with nucleons in the exit 
channels the cross can be written as a sum of three terms 

32a 92a(D 32
a(2) 320CN 

= + + , ( 5 . 1 8 . ) 
3e 3ft 3e 3ft 3e 3ft 3e 3ft 

where the first two correspond to single and double scattering, 
respectively, while the third represents the compound nucleus 
contribution. The single and double scattering cross sections are 
expressed in terms of the nucleon mean free path and the kinematics 
of projectile Fermi gas scattering by attractively simple formulas. 
Good overall reproduction of experimental data covering a wide range 
in mass numbers and excitation energies was achieved by use of a 
nucleon mean free path of the order of 3 to 5 fm, a value consistent 
with estimates based on the free nucleon-nucleon cross section. An 
extension of this model to the case of deuterons in the exit channel 
is reported in ref. /139/. 

Most studies of preequilibrium decay refer to reactions with 
particles in the exit channels. Extensions of the precompound model 
to gamma-ray emission were reported by Plyuko et al. /140/ and by 
Betak et al. /141/. A successful application of the model of 
Be"tak et al. was recently reported by Basarragtscha et al. /142/. 

These two improvements of the description of preequilibrium 
decay certainly should be considered in future developments of 
nuclear model codes for evaluation work. 

5.2. Computer codes 

Table 2 represents a compilation of widely used and generally 
available computer codes which account for preequilibrium and 
equilibrium decay as well. 

Column 1 contains a superficial specification of the code and 
the information how to get the program. Most of these codes are 
distributed by the N.E.A. Data Bank Program Library. Others may be 
obtained by sending a blank tape to the author. 

A short description of the underlying model assumptions in 
terms of the considerations of sections 4.1. and 5.1. is given in 
column 2. Codes which perform m.s. HF calculations require much more 
computation time than those relying on the m.s.W.E. approach. On 
the other hand angular momentum and parity conservation are essen
tial for the calculation of cross sections near threshold where 
only a few levels with specific spin and parity contribute. Quanti
ties as isomeric state populations or gamma-ray production spectra 
can be predicted only if a gamma-ray cascade model is used in 
connection with the m.s. HF formalism. Apart from Fu's TNG1 all 
programs employ a preequilibrium model which does not consider angu
lar momentum and parity. The HF codes among them assume for the 
preequilibrium contribution the same spin parity distribution in 
the residual nucleus as for the equilibrium portion; this certainly 
is not an undisputed approximation. All codes which consider 
fission assume that preequilibrium decay preceeds fission without 
competition.Some codes accept direct reaction contributions as input 

and use them for the calculation of particle and gamma-ray production 
spectra. 

Column 3 informs on the considered decay modes and on the 
complexity of the decay sequences which can be handled in one run. 
A further entry indicates whether the code has a built-in optical 
model part or whether externally calculated transmission coefficients 
are required as input. 

The various types of cross sections whiGh can be calculated 
are listed in the remaining columns. 

Table 2 allows an easy comparison of the discussed codes. Some 
further information on each of them is presented in the following. 

ALICE 80 is the most recent version of the ALICE codes and super
sedes OVERLAID ALICE. This code is designed for incident energies 
up to 200 MeV and allows for very complicated decay sequences. Though 
the m.s. WE formalism is used an approximate treatment of angular 
momentum effects is provided for by means of the "s-wave approxi
mation" /143/ which assumes the spin distribution of the compound 
nucleus to hold for all residual nuclei, too. The rotational 
energies at equilibrium and at saddle point deformation may be cal
culated from the rotating liquid drop model of Cohen et al. /144/. 

In addition I would like to mention Blann's m.s. HF code 
MB-II /145/ which does similar calculations as ALICE-80 but without 
consideration of preequilibrium decay. A new version of this code 
/146/ is dubbed SUPERALERT and is designed mainly for heavy ion 
induced reactions; it includes many features specially important 
for high angular momenta. 
AMALTHEE, in contrast to most of the other codes, considers second 
chance preequilibrium emission in the frame of the exciton model 
with master equations integrated from t=0 to t=«*>. It is, however, 
assumed that the particle hole states of the residual nucleus do 
not undergo internal transitions but promptly decay by particle 
emission under consideration of gamma-ray competition. AMALTHEE 
allows a variety of different choices for particle-hole state densi
ties and the various decay rates. 
GNASH is the m.s. HF code developed by the Los Alamos group. In a 
single run this code handles decay sequences involving up to ten 
different nuclei each of which decays by emission of gamma rays, up 
to five different particles and eventually by fission. An example of 
such a decay sequence used for the calculation of neutron cross 
sections for energies up to 50 MeV is shown in fig. 5. A great 
flexibility in choosing the decay sequences is provided for. Among 
the m.s. HF codes discussed here GNASH handles the most complicated 
problems in one single calculation. Therefore the memory require
ments of this code are considerable. The need of large core memory 
(LCM) depends on the considered case and can be reduced to 80 k words 
for a problem of reasonable size. Being designed mainly for high 
incident energies GNASH does not include the width fluctuation 
correction. 

For lower incident energies the LASL group employs the COMNUC 
code mentioned in section 4. The treatment of fission in GNASH is 
based on a single humped barrier. E. Arthur plans to include a 
double humped barrier and to use the complete damping limit /75/.17 



HAUSER-5 is extensively used at the Hanford Engineering Development 
Laboratory. The first approximation of the HTRW-approach is employed 
for the equilibrium contribution. For the calculation of cross sections 
of tertiary reactions the branching ratios for the formation of the 
final nucleus by decay of the respective first residual nucleus 
have to be supplied as input. Up to 7 final nuclei may be populated 
by tertiary reactions. 
PREANG is based on the codes PREQ by Betak /147/ and PREQ-ECN by 
Luider /81/ and is mainly used at the ECN, Petten. Recently Akker-
mans and Guppelaar /83/ reported on a code system PRANG which in
corporates PREANG (actually a slightly modified version PREANG2). 
PRANG is designed to calculate multiple preequilibrium emission on 
the basis of the master equations without the approximation used 
in Bersillion's code AMALTHEE. The new code system requires a field 
length of 57 k words on a CDC-CYBER 175. 
PRECO-D is the most recent version of the PRECO codes developed by 
C. Kalbach. Many experimental data were analysed by use of these 
codes. PRECO-B is incorporated into the m.s. HF codes GNASH and 
HAUSER-5. PRECO-D, in particular, has the capability to distinguish 
between MSD- and MSC contributions and to calculate angular distri
butions /126/. This code employs a closed from expression to describe 
equilibration while the two predecessors PRECO-A and PRECO.B rely on 
the master equation. 
STAPRE is mainly used at the IRK,Vienna and at the Lawrence Livermore 
Laboratory. This code provides a flexible treatment of fission and 
allows for sequential emission of up to six particles and for 
gamma-ray cascades. However, in a single calculation STAPRE follows 
only one reaction path specified by a given sequence of emitted 
particles.So, for higher incident energies, when many paths contri
bute to production spectra and activation cross section computation 
time is wasted. Therefore we are developing in colaboratioh with 
D.G. Gardner from the Lawrence Livermore Laboratory a new code 
MAURINA which overcomes these deficiencies. For the considered end-
products arbitrary regions in the Z,N plane can be selected. All 
paths which populate those nuclei are accounted for in a single run. 
Provision is made for a convenient combination of statistical equili
brium and preequilibrium contributions with the results of direct 
reaction codes. MAURINA can be operated under consideration of 
isospin. Though ispspin effects are important only for projectiles 
with a proton excess analysis of such reactions often provides valu
able information on model parameters for neutron reactions on in
stable target nuclei. 
TNG1 is the most recent version of Fu's TNG code and was discussed 
in great detail at the 1980 Trieste Winter Course by the author 
/148/. The treatment of preequilibrium decay differs in several 
respects from that employed in the other codes discussed so far. 

i) The master equation and proton neutron distinguishability are 
formulated in such a way that the compound nucleus evaporation 
formula results after equilibrium has been reached. C.Y. Fu 
plans to calculate in future the particle hole state densities 
on basis of BCS-formalism /149/. 

ii) Conservation of angular momentum is introduced in a similar way 
18 as proposed by Oblozinsky et al. /150/ and by Plyuko /151/. 

The decomposition of detailed balance based emission rates into 
orbital angular momentum dependent contributions and the 
assumption that all spin states of the composite system are 
populated with equal probability lead to a cross section 
formula which represents a generalization of the Hauser-
Feshbach formula. 

iii) This analogy is used to calculate the angular distributions 
in terms of Legendre polynomials. Odd order coefficients 
which give rise to forward peaking result from averages of 
bilinear S-matrix terms of the type of equ. (4.5.) which 
are zero for the equilibrated system. Non vanishing averages 
are supposed to result from correlations in simple particle 
hole configurations and are evaluated in terms of an empi
rically determined weight factor which decreases with in
creasing hole number. A similar approach was proposed by 
Plyuko /146/. 

Note that this description refers to the most recent version of the 
TNG-code which, as far as I know, is not yet available at the N.E.A. 
Program Library. 

Table 2 does not represent a complete list of codes dealing 
with preequilibrium and equilibrium reactions. An important (un
named) code which has been applied in numerous works of the Milano 
group is described in a paper by Gadioli et al. /94/. For the eva
poration stage the m.s. WE formalism is applied by means of a Monte 
Carlo technique developed by Dostrovsky et al. /152/. For the pre
equilibrium contribution a closed form exciton model expression with 
consideration of 2nd chance emission is used. 

Recently a very sophisticated m.s. HF code named PENELOPE has 
been developed at the C.N.E.N., Bologna by Reffo et al. /111/, 
/153/. The calculation of the preequilibrium contribution considers 
the conservation of angular momentum and the effect of pairing on 
the particle hole state densities. 

6. Code intercomparisons 

A powerful tool to test the proper working of codes consists in 
comparing the results of different programs /154/. As an example 
fig. 6 shows an intercomparison between the results of COMNUC (the 
Livermore version) and of STAPRE which was reported by Gardner at 
the 1980 Brookhaven Symposium /155/. The calculations do not include 
preequilibrium decay. As both codes use distinct integration tech-
and treat cascades differently the agreement is gratifying; however 
it took some time until such an agreement was achieved. 

An intercomparison of several mainly U.S. based m.s. HF codes 
was organized by A. Prince (BNL) and carried out by the Nuclear 
Model Codes Subcommitee of the Cross Section Evaluation Group (USA). 
These efforts proved to be very useful for the participating codes. 

At present an international intercomparison of nuclear reaction 
model codes is being organized by E. Sartori from the N.E.A. Data 
Bank Program Library. After exercises referring to the optical and 
the statistical compound nucleus model a test case for preequi
librium model*calculations is being worked out. I would like to 
recommend the participation at such code intercomparisons because in 



this way the confidence in nuclear model calculations can be in
creased substantially. 

I thank Dr. E.D. Arthur, Dr. 0. Bersillon, Prof. M. Blann, Dr. 
C.Y. Fu and Prof. P.A. Moldauer for providing me with the most re
cent information-on their codes and results. Further I would like to 
acknowledge Dr. E. Sartori for all his help regarding the codes 
available at the N.E.A. Data Bank Program Library. 
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Table 1; Sate nuclear model codes based on the optical model and the equilibrium compound nucleus model 
(All these codes are available at the N.E.A. Nuclear Data Bank program library) 

Oode 
Author 
Spec i f i ca t ions 

CERBERO 
F.Fabbri e t a l . t i l 
Fortran IV, 240k bytes 

OOMJUC/CASCADE 
C. Dunford [2 1 
Fortran IV 

CRAPCNE 
F.Fabbri e t a l . [ 3 ] 
Fortran IV 

EWJOC-4 
P.D.Kunz (unpubl.) 
Fortran IV, 15k words 

ELIESE-3 
S .Igaras i [ 4 ] 

^Fortran IV, 332k bytes 

EPJMJI 
F.Fabbri e t a l . [ 5 ] 
Fortran IV, 240 k bytes 

juprroR-1 
T.Tamura [6] 
Fortran IV, < 32k words 

PELINSCA 
C.A. Engelbrecht e t a l . 

[7] 
Fortran IV, 208k bytes 

Optical model 

spherical OP; l o c a l , non-local and l o c a l 
equivalent of non-local p o t e n t i a l . 

spherical OP. 

spherical OP; l o c a l , non-local and l o c a l 
equivalent o f non-local p o t e n t i a l , 
automatic search on t o t a l , d i f f e r e n t i a l 
e l a s t i c - and absorption cross sec t ions as 
wel l as on s - and p-wave strength functions 
and sca t t er ing radius . 

DWBA-method.. 
transfer react ions and i n e l a s t i c scat ter ing , 
op t iona l ly deformed OP for i n e l a s t i c 
s ca t ter ing . 

spherical OP; l oca l and non loca l potent ia l 
c a l c u l a t e s po lar i sa t ions for spin =• 1/2 and 
1 p a r t i c l e s automatic search on d i f f e r e n t i a l 
e l a s t i c . c r o s s s ec t ions and p o l a r i s a t i o n s . 

spherical OP; l o c a l , non-local and l o c a l 
equivalent of non-local p o t e n t i a l . 

Equilibrium compound-nucleus model 

binary reac t ions ; emission of n,p,a>Y> width f luc tuat ion 
correct ion for oontinuum channels, 
improvments of Gilbert-Cameron l e v e l dens i ty a t low 
e x c i t a t i o n energ ie s . 

c a l c u l a t e s cross sec t ions for: (n ,y ) , (n,n')» (n , Y n) , 
(n ,2n) , (n , f ) and ( n . n ' f ) . 
gamna-ray cascades. 
s i n g l e humped f i s s i o n barr ier . 

binary reac t ions ; a l l type of cross sec t ions involv ing 
absorption and emission of n,p,d and a .. 

binary and t e r t i a r y react ions: ( x , a ) , (x,ab) and (x ,abc) , 
where x can be n,p or o ; (a,b) can be n ,p ,a or Y . 
and c can be n or y. 

deformed OP; 
coupled channels method 
a var ie ty of d i f f e r e n t coupling schemes for 
v ibrat ional and rotat ional nuc le i i s provided 
f o - . 

spherical OP; 
c a l c u l a t e s po lar i sa t ions for spin 1/2 
p a r t i c l e s , automatic search on t o t a l - , 
d i f f e r e n t i a l e l a s t i c - and react ion c r o s s 
s ec t ion as we l l a s on p o l a r i s a t i o n . 

react ions of the type (a,b) and (a ,by) , d l f ferent i^d 
and integrated cross s ec t ions for up t o 33 l e v e l s of 
each res idual nucleus, decay gamma angular c o r r e l a t i o n s . 

References for Table 1 

[1] F.Fabbri, G.Fratamico and G.Reffo, Rapt. RT/FH74) 36 (1974) and Rept. RT/HH77) 6 (1977) 
[2] C.L.Dunford, Rept. AI-AEC-12931 (1970) 
[3] F.Fabbri, G.Fratamico and G.Reffo, Rept. RT/FI(77) 3 (1977) 
[4] S . Igaras i , Rept. JAERI 1224 (1972) 
(5] F.Fabbri and G.Reffo, Rept. RT/FK77) 4 (1977) 
[6] T.Tamura, Rept. ORNL-4152 (1967) 
[7] C.A.Engelbrecht, H.Fiedeldey and J.W.Tepel, Rept. PFX-202 (Oct. 1974) 
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Table 2: Nuclear model cedes for preequilibrium and equilibrium emission. 

Code 
Author 
Specifications 
Distribution 

ALICE 80 
M. Blarm Cl 3 
Fortran, 180 k bytes 
distr.by Author C2] 

AMALTHEE 
0. Bersillon et al. [3 
Fortran IV, 55k words 
distr. by N.E.A. Data 
Bank 

(HASH 
P.G. Young et al. [4] 
Fortran IV, CDC-7600, 
49k words SCM and 
260k words LCM. 
distr. by N.E.A. Data 
Bank 

HAUSER-5 
F.M. Mann [5] 
Fortran IV, 336k bytes 
distr. by N.E.A. Data 
Bank 

PFEANG 
J.M. Akkermans et al. 

Fortran 
distr. by N.E.A. Data 
Bank. 

PRECO-D 
C. Kalbach [8] 
Fortran 

STAPRE 
M. Uhl et al. C91 
Fortran IV, 45k words 
distr. by N.E.A. Data 
Bank 

TNG 7 
C.Y. Fu d o ] 
Fortran IV, 300k bytes 
distr. by N.E.A. Data 
3ank 

Models 1) 

«rt 
HM and GEHM for 1 chance nucleon enviss.. 
m.s. WE, approx. treatment of ang. mom.. 
single lumped ang. mom. dependent fission 
barrier. 

EM, time integrated master equs. give 
] preequ. - and equ. contr. approx. treat
ment of 2nd chance preequ. decay, 
no angular momentum effects. 

EM for 1st chance particle emission + 
s.emp. DR, same ang. mom. distribution as 
equ. contr.. 
m.s. HF, no WFC, f-ray cascades. 
single humped fission barrier. 
accepts DR input. 

EM for 1st chance particle emission + s. 
emp. DR, same ang. mom. distribution as 

. equ. oontr.. 
m.s. HF. 
double humped fission barrier, 
complete damping, 
accepts DR input. 

EM generalized for ang. distributions by 
Mantzouranis et al.C?], time integrated 
master equations give preequ.- and equ. 
contribution. 
no angular momentum effects. 

EM + s.emp. DR, MSC and MSD contribution. 
WE. 
single humped fission barrier. 
phenomon. angular distributions [11 ]. 
no angular momentum effects. 

EM for 1st chance particle emiss., same ang 
mom. distr. as equ. oontr.. 
m.s. HF, r~ray cascades. 
double humped fission barrier, partial or 
complete damping. 

EM for 1st chance particle emiss., 
considers ang. mom. conservation and 
accounts for angul. distrib. (see text). 
m.s. HF, r~raV cascades. 
accepts DR input. 

Restrictions 
decay modes 
successive decays 
npHcal mndpl 

n,p,d,*,f. 
Evaporation residues: 
Grid of 11 mass units wide 
and by 9 atomic numbers deep. 

n,p,d,t.,3He,ei.l(f) . 
binary and tertiary reactions. 
inv.cross.sections are input. 

10 decaying nuclei (see text). 
transm. coeff. are input. 

6 reaction pairs, f and f 
included. 
binary and tertiary reactions. 

n,p,d,t,3He,«C 
binary reactions only, 
(see text for recent extensions) 
Inverse cross sections are in
put. 

n,p,*,f + one arbitrary 
particle. 
binary reactions only. 
inverse cross sections 
are input. 

. n,p,d,«.,f,f. 
up to 6 emitted particles 
but one reaction path 
only. 
transm. coeff. are input. 

n,p,*,f. 
up to 3 emitted particles. 

Calculated quantities 

JB? 

X 

X 

X 

X 

X 

X 

X 

X 

(ft* 

X 

X 

X 

X 

X 

X 

X 

* " 

X 

X 

X 

X 

X 

<f*«J 

X 

X 

X 

«r 
X 

X 

X 

X 

X 
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1) a b b r e v i a t i o n s : 
HM . . . hybrid model, GEHM . . . geometry dependent hybrid model, EM . . . exc i ton model. 
WE . . . Weisskopf-Ewing c a l c u l a t i o n , m.s.WE . . . m u l t i - s t e p WE. 
m . s . HF . . . m u l t i - s t e p H a u s e r F e s h b a c h c a l c u l a t i o n , WFC . . . w i d t h f l u c t u a t i o n c o r r e c t i o n . 
DR . . . d i r e c t r e a c t i o n , s . emp. DR . . . semi-empir ical DR c o n t r i b u t i o n s (C. Kalbach, Z.Phys. &2fil (1977) 401) . 

2) p a r t i c l e product ion spec t ra , 3) gamma-ray s p e c t r a , 4) double d i f f e r e n t i a l c r o s s s e c t i o n fo r p a r t i c l e s , 
5) a c t i v a t i o n o r product ion c ross l e c t i o n , 6) isomeric s t a t e product ion c r o s s s e c t i o n , 7) f i s s i o n c ro s s s e c t i o n . 

References for t a b l e 2 

[ I ] M.Blann, Rept. GOO-3494-29 (1975), Rept.UR-NSFL-181 (1978) and p r i v a t e communication 
[2] M.Blann, L405, Lawrence Livermore Nat ional Laboratory , P.O.Box 808, Livermore, Ca. 94550 
[3] O .Bers l l lon and L.Fangere, Rept. NEANDC(E) 191 "L" (1977) 
[4] P.G. Young and E.D. Arthur , Rept. IA-6947 (1977) 
[5] F.M.Mann, Rept. HEDL-̂ WE 78-83 (1978) 
[6] J.M.Akkermans and H.Gruppelaar, Rept. ECN-60 (1979) 
[7] G.Mantzouranis, H.A.Weidenmlller and D.Agassi, Z.Phys. A276 (1976) 145 
[8] C.Kalbach, "Preco-D" informal TUNL repor t a v a i l a b l e from au tho r ; T r i ang l e U n i v e r s i t i e s Nucl . Laboratory, 

Duke S t a t i o n , Durham, North Carol ina 27706, U.S.A. ' 
[9) M.Uhl and B.Strohmaier, Rept. IRK-76/01 and addenda 
[10] C.Y.Fu, Rept. ORNL/TM-7042. 
[ I I ] C.Kalbach and F.Mann, Phys.Rev. C23 (1981) 112 
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Calculated Cr(n,p) cross sections and experimental data. The cal
culations can be used to fill the gap between 9 and 12 MeV in this 
excitation function. 
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Calculated ' Rb(n,y) cross sections (solid curves) and experimen
tal data (points). Both cross sections are reproduced with the same 
E1-strength function (left hand insert). 
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APPLICATION OF NUCLEAR MODEL COMPUTER CODES 
TO NUCLEAR DATA CALCULATIONS 

B. STROHMAIER 
Institut fur Radiumforschung und Kernphysik, 
University of Vienna, 
Vienna, Austria 

Abstract 

This paper has been prepared in close correlation with the 
preceding one (M. Uhl: Recent advances in nuclear model computer 
code developments) and is intended to describe more practical 
aspects of nuclear model calculations, namely the dependence 
of their results on the choice of the input parameters as well 
as on the way of treating certain physical aspects. The topics 
are restricted mostly to the precompound and compound model 
description of nucleon or light complex particle induced re
actions at incident energies of a few to tens of MeV. The work 
is based on recent publications in the field and, as far as 
existing, own experience. In particular, it treats attempts 
of including angular momentum conservation to preequilibrium 
calculations and describes various models for calculating pre
equilibrium angular distributions. The influence of optical 
potentials and of level densities on statistical model calcu
lations is discussed. Further, the applicability of appro
ximations, particularly in connection with width fluctuation 
and angular momentum conservation, is investigated. Finally, 
some more general examples of neutron nuclear data evaluation 
are presented. 

Application of nuclear model computer codes to nuclear data 
calculations 

B. Strohmaier 
Institut fiir Radiumforschung und Kernphysik, Vienna, Austria 

I. Introduction 

Contents: practical aspects of nuclear model calculations: 
. dependence on input parameters 
. dependence on treatment of certain physical aspects 

Reactions: nucleon or light complex particle induced, incident energy 
to tens of MeV 

Models: preequilibrium (PE) and compound nucleus model (cf. 
ref. 1) 

II. Angular momentum dependence of PE calculations 

Relevance: spin distribution of the population of a nucleus by PE 
particle emission is important 
. itself, e.g. for isomeric cross section ratios 
. as starting condition for particle emission from this 
nucleus 

Ways of treating angular momentum in PE calculations: 
a) if PE formalism does not consider angular momentum: 

additional assumptions necessary, e.g.: 
. same spin distribution of PE component as of Hauser-
Feshbach (HF) component (used in STAPRE /2/) 

. orbital angular momentum vectors of incident and out
going particle parallel, impact parameter equal in in
coming and outgoing channel (used by Scobel /3/) . 
Example,: fig. 1 

b) spin~dependent PE formalism: 
use of transmission coefficients and level densities 
under full consideration of angular momentum instead of 
orbital angular momentum independent inverse cross 
sections and spin independent state densities (Fu /4/). 
Example^ fig. 2 of ref. 4. 

III. Calculation of PE angular distributions 

a) Generalized master equation for the time dependence of the 
occupation of excited states (Mantzouranis /5,6/). 

. "concept of the fast particle" 

. factorization of internal transition rates in angle and ex-
citon number dependent part 
Matrix method for solution of generalized master equation 
(Akkermans, Gruppelaar, Luider /7-12/). Comparison to experi
mental data and parameter studies. .Examples: figs. 5, 6 and 
7 of ref. 9. 

b) Consideration of forward peaking in PE stage by admitting odd 
Legendre coefficients with a weighting function that decreases 
with increasing number of collisions and thus describes the loss 
of correlation to the incident direction (Fu /4, 13/). 
Examples,: fig. 2 of ref. .13. 

c) Calculation of full dynamics (Gadioli /14/). Only emission from 
first configuration. Examplesi figs. 8 and 9 of ref. 14. 

d) Empirical formulae for coefficients of Legendre expansion of 
angular distributions (Kalbach, Mann /15, 16/). Examples! figs. 
7, 8 and 9 of ref. 16 (part 1). Use of this approach and com
parison to measurements: 
- 8 9Y, 90Zr, 92.9t.95.96M0(n/0)/ (n,p), at 15 MeV /17/, bad agree-
- 93Nb(n,a) at 14.1 MeV /18/, fig. 2 ' ment 
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IV. Dependence of statistical model results on optical potentials 
and level densities 

Parameter compilations contain individually determined values as 
well as prescriptions how to obtain the values from mass number 
globally. Individually adjusted parameters preferable, especially 
in the case of optical potentials in some mass regions, particularly 
when strength function maxima occur. 
Examgles: 
- Calculation of neutron cross sections for 52Cr, 55Mn, 56Fe, 

58i60Ni (strohmaier, Uhl /19/). Use of o-particle optical poten
tial by Huizenga /20/ required for reproduction of experimental 
(n,a) cross sections level density parameters which are in
consistent w;Lth resonance data. McFadden potential /21/ repro
duces experimental (n,a) data (fig. 3) with level densities which are 
compatible with the resonance data. Also fair reproduction of 
a-spectra and (a,n) cross sections (figs. 4 f5). 

- Huizenga potential /20/ superior to the one by Bock /22/ in re
producing 64*,66,68Zn(p,a) data at 15 MeV /23/ (fig. 3 of ref. 23). 
On the other hand, Bock potential /22/ had been obtained and 
verified by analysis of elastic a-particle scattering data beyond 
16 MeV only. 

- Importance of strength function maxima: 
T,(e) 

Strength function: 0. = lim S,(e) = lim p . .-

(e...energy, T,...transmission coefficient, P,...penetration 
factor) x x 

shows maxima for certain 1-values in certain mass regions. 
Correspondingly, S,(e) strongly varies with e in such mass 
regions. 

a) Transmission coefficients have to be generated by optical 
model calculations to sufficiently low energies, whereas they 
may be obtained by extrapolation in mass regions off strength 
function extrema. (Such an extrapolation is provided for in 
STAPRE /2/.) 
Example^ 31P(n,p) activation cross section (Strohmaier /24/) 
calculated with two sets of neutron T. : generated by the opti
cal model for all energies, and extrapolated according to 
T1U) = P ^ e ) ^ (e = 1 MeV) (fig. 6 ) . With the latter set, the 

T1 are too small, not considering the p-wave strength function 

maximum at A = 30, and therefore the (n,p) cross section is 
overpredicted by underestimating the low-energy neutron com
petition. 

b) Population cross sections for excited states may not be 
described properly if population occurs mainly by a partial 
wave whose strength function maximum is not accounted for by 
the used optical potential. 
Examples^ 
. Vladuca et al. /25/ failed to reproduce experimental neutron 
inelastic scattering cross section in the A ~ 90 region with 
global potentials which did not consider the peaking in the 
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p-wave strength function but succeeded with a potential 
(Finckh /26/) which reproduced experimentally determined T.. 

. Total and nonelastic cross sections for 93Nb+n are repro
duced worse by global potentials than by such fitted to ex
perimental cross section and resonance data in the A = 90 
region (figs. 1 and 2 of ref. 27) and therefore such an 
individual potential (Delaroche, Lagrange /28/) was used 
for a cross section calculation for the 93Nb(n,n')93mNb 
reaction (Strohmaier et al. /29/). 

c) For neutron cross section calculations individually adjusted 
potentials are preferred to global ones. 
Examgles^ 

. Cross section calculations for Y and Zr isotopes /30/: 
excellent reproduction of experimental data (figs. 7 and 9 
of ref. 30) by means of Lagrange potential /28, 40/. 

. Cross section calculations for 93Nb+n /27/: 
successful application (figs. 3 and 8 of ref. 27) of the 
same potential /28/. 

Influence of level densities 
Example^ 

Effect of a variation of the level density parameters "a" 
entering into statistical model calculations /31/ of 
62Cu(n,2n)62Cu (table 1). The variation was done for each 
nuclide separately and amounted to Aa = + 0.5 MeV*"1 (6-8%) . 

V. Applicability of approximations 

Approximations are often desirable for the sake of computational 
time 

Yilt -Width_fluctuation_correction_iWFC). 

WFC accounts for statistical distribution of partial widths 

Full consideration of WFC: Moldauer 

. M-cancellation approach /32/, see ref. 1 

. superseded approach /33/ with channel independent degree of 
freedom parameters even for overlapping resonances 

Approximative consideration of WFC: 2 versions by Tepel et al /34/, 
see ref. 1 

Comparison of the various WFC formalisms by Vladuca et al. /25/ 
showed that the treatment of the WFC due to Tepel et al. /34/ 
is well suited for the description of neutron inelastic 
scattering cross sections (figs. 1 and 3 of ref. 25). 

Complete consideration of angular momentum and parity in 
statistical model calculations: Hauser-Feshbach (HF) formula 

Neglect of angular momentum and parity: Weisskopf-Ewing (WE) formula 
Examgle^ Cross section evaluation for several constituents of 

stainless steel /19/: use of the WE formalism for prelimi
nary calculations (in order to find out which contri
butions to particle emission spectra and to production 



cross sections of transmutation products are small, as 
well as for studying the dependence of the calculated cross 
sections on the model parameters) and for final calcu
lation of small contributions. Comparison of HF and WE 
results in fig. 7 ; discrepancies mostly near thresholds. 

Vi3i-Multip>le_char2ed_garticle_emission_ 

Helium and hydrogen production cross sections can approximately be 
calculated under neglect of multiple charged particle emission. 
Applicability of this approximation depends on target nucleus and 
incident energy. 
Examglej, Cross sections for H and He production from 58Ni+n and 

5 6Fe+n /19/, obtained under consideration of particle 
sequences with only one and up to two charged particles 
are compared in fig.8 . 

VI. General examples for recent neutron nuclear data calculations 

a) neutron induced cross section (XS) evaluation on 5 M 5 6 F e t o 40 
MeV: Arthur, Young /35/ 
9.Eti2§i_E2te.ntials 
. Neutrons 

search for optical potential on the basis of the following 
data: 
total XS , 2-40 MeV 
s- and p-wave strength functions 
differential elastic XS, 6-14 MeV 
reaction XS , 5-30 MeV 

. Protons: Perey /36/, adjusted 

. a-particles: Lemos /37/, adjusted 

Jf§Y.fii_^££§il:ie.s. 
convent!onal~shifted Fermi gas (Gilbert & Cameron) 
parameters Cook /38/ 

PE_model_garameters 
Kalbach7~k~=~T60~MeV (k... constant determining the two-body 

interaction matrix element) 
•^-ray>_stren2th_f unctions 
E?T. .~Brink-Axel, ""normalized 

Codes 
COMNUC at low incident neutron energies (WFC) 
GNASH at higher incident neutron energies (PE) 
DKUCK (DWBA for (n,n')) 

Examples: figs. 5, 7 and 8 of ref. 35. 

b) neutron induced XS evaluation on 5 9Co to 50 MeV: 
Arthur, Young, Matthes /39/ 

Ogtical potentials 
7 Neutrons 

optical potential determiend so as to reproduce: 
s- and p-wave strength function 

potential scattering radius 
total XS , 0.5 - 30 MeV, supplemented at higher energies by 

estimates based on Fe total xs to 50 MeV 
differential elastic xs: 8., 11., 14., 15. MeV 
reaction XS (estimate around 40 MeV based on data from 5 6Fe+n) 

. Protons: Perey /36/, modified 

. a-particles: Lemos /37/, modified 

2£]2e.£_E2£aSe.£§E§_§D£..£23e.2 
as~for Fe~evaluation 

Examples^ fig. 5 of ref. 39. 

c) neutron induced XS evaluation on Y and Zr isotopes to 20 MeV: 
Arthur /30/ 

Ogt ica l_p.ot en t ia 1 s 
. Neutrons 
89v , 
9 0Zr Lag range et al. /40/, modified 

. Protons: Johnson /41/, modified 

. a-particles: Park et al. /42/ 
PE model parameters 
k"""T3lTMeV~-~ • 

other_garameters_and_codes 
as above ~ 

d) neutron induced XS evaluation on 182' 183 •18**' 1 8 6 W to 20 MeV: 
Arthur, Young, Smith, Philis /43/ 
calculations combined with experimental data 

Ue.y£E2n._2Ei:i£a.i_E2J:e.n.£i5l 
Delaroche 7287~inodifled 

Examples:, figs. 9 - 1 1 

e) model calculations of compound nucleus contributions to in
elastic scattering on actinide nuclei: Arthur /44/ 

f) model calculations of the 237Np(n,xnf) cross section to 20 MeV: 
Bak, Uhl, Strohmaier /45/ 

Example.: fig. 12 
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Table I. Relative variation (%) of calculated $3 Cu(n,2n) activation 
cross section due to variation of level density parameter "a" of 
various nuclides (Aa = + 0.5 MeV ) 

Incident energy 
(MeV) 

Nuclide witnV 
varied a-paramX 

63Cu 
6 3 N i 

60Co 

62CU 

62 N i 

59Co 

11.8 

+ 11.4 

- 6.3 

- 4.6 

0 

- 0.2 

0 

+ 

-

-

+ 

-

12.8 

11.7 

7.6 

5.4 

0.2 

0.6 

0 

+ 

-

-

+ 

-

13.8 

12.4 

8.9 

6.1 

0.7 

0.8 

0 

+ 

-

-

+ 

-

14.8 

13.3 

10.3 

6.7 

1.2 

1.0 

0 

+ 

-

-

+ 

-

15.8 

14.3 

11.5 

7.3 

1.5 

1.3 

0 
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Fig. 1. Spin populations in 63Cu following 14.8 MeV (n,n') 
reaction for two outgoing energies, E'=6.5 MeV and E'=10.5 MeV. 
Solid curve: Hauser-Feshbach component plus PE component with 
spin distribution according to Scobel /3/, dashed curve: pure 
Hauser-Feshbach calculation. 
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Fig. 2. Angular distributions of a-particles emitted from 
93Nb + n at 14.1 MeV. Full circles: experimental data /18/, 
solid lines: 4th order Legendre fit to the experimental data, 
dashed lines: calculation according to systematics of refs.15, 
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Fig. 3 . Experimental 55Mn(n,a) activation cross sections com
pared to two calcuations which differ in the a-paritcle optical 
potentialas well as in the level density parameters of 52V which 
were taken according to the "best fit parameter set" deter
mined for each of the two potentials. Thin solid line: McFadden 
and Satchler type potential /21/, for 52 V: a=6.10 MeV-1, 
A=-1.40 MeV, dashed line: Huizenga and Igo potential /20/, 
for 52V: a=6.16 MeV-1 ,A=-1.46 MeV. 
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Fig. 6. Two calculations of the 31 P(n,p) activation cross section. 
Solid line: neutron transmission coefficients created from optical 
model calculations at all neutron energies, dashed line: neutron 

. 5. Experimental and calculated 59Co(ct,n) cross sections. transmission coefficients obtained by.'extrapolation for neutron ener
gies below 1 MeV. 
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Fig. 7. Calculated activation cross sections for the (n,n')» (n,2n), (n,p) and (n,pn) reaction on 
56 Fe. Solid lines: complete consideration of angular momentum and parity, dashed lines: Weisskopf-
Ewing calculations. ,„., 
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Fig. 8. Gas production from 58Ni + n and 56Fe + n. Calculations: solid lines: up to 2 charged particles 
considered, dashed lines: only one charged particle considered. For Fe the two curves coincide. 
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Fig.12. Comparison of the present calculation of the Np-237 fission cross-section with 
experiments. 
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Abstract 

It is shown that the desired predictive capability most of the 

commonly used precompound formalism to calculate nuclear 

reaction cross-sections is seriously reduced by too much 

arbitrariness of the choice of parameters. The origin of 

this arbitrariness is analysed in detail and improvements 

or alternatives are discussed. 

Introduction 

In recent years many measured data for secondary energy and 

angular dependent nuclear reaction cross-sections could be 

understood as representing events which occur during the 

equilibration process on the way until the compound nuclear 

states are reached. The formal developments presenting this 

understanding seemed also to provide the necessary tools 

to calculate the considered cross-sections. But apparently 

it is overlooked quite often that there are important 

quantities occuring in most of the considered formalism which have 

to be treated as parameters because they are too difficult 

to calculate and what is obtained is more a fit rather than 

a genuine predictive calculation. It is the purpose of this 

paper to show this in details in order to obtain a help for 

a step on the way towards a more complete theory. 

Sketch of the formalism 

It is usually assumed that the nuclear reaction cross-sections 

split into a pre-equilibrium and an equilibrium component 

according to 

da (e . , £ . ) / d a ( e . , e -M / d a ( e i » e j ) 

(1 ) 
i l ' iL /da (yCjA 
• V de. / p r e q . de. \ de. /preq. ^ de. / eq' 

where e. is the energy of the incident and e. the energy of the 

emitted particle. This additive splitting according to eq.(1) uses 

to be verified by means of the solutions of the following set 

of the so called master equations 

dP(n,t) n-2,n n+2,n 
(2) = P(nT2,t)X + P(n+2,t)A_ 

- P<n,t)(An'n+2 + x"'n~2 + L(ri,E)) 

describing the evolution in time t of the probability P(n,t) 

that a certain total number n of particles and holes 

(3) n = p + h 

of the nuclear Fermi sea is excited. Cline and Blann /1/ 

have constructed this set of master equations as a set of 

genuine balance equations describing the balance between the gains 

and the losses of probability for excitation of the n so called 

excitons. These gains and losses are caused by transition pro

babilities per unit time \^'n± {ZY for creation or destruction 

of one particle-hole pair and by the total emission probability 

per unit time L(n,E) of a particle from an n-exciton state. 

Both A+(E) and L(n,E) depend on the excitation energy E. 

If we now consider t=0 as the time at which the reaction has 

started then the time T(n,E) spent by the composite nucleus in 

the n-exciton state obviously is 

oo 

(4) T(n,E) = / P(n,t)dt «« 



Moreover we write as W.(n,E,e .) the probability per unit time 

for a particle of type j to be emitted with energy e. from 

an n-exciton state of excitation energy E. Thus 

E-B 
(5) L(n,E) = I \ 3 W.(nfE,e.)de. 

where B. is the binding energy of the particle of type j. 

With the quantities T(n,E) and W.(n,E,e.) of (4) and (5) we 

obtain as the total cross section for emission of a particle 

of type j with energy between e. and e . + de. by an impact 

of a particle of type i of energy e. 

/fi\ da(e. ,e .) 
K J i •*- = a . ( E . ) I W.(n,E,e.) T(n,E). 

, ci x' L l l 
de . n=n J J 

D o 

a i(e.) in (6) is the cross section for the formation of the 

composite system by the incoming particle i of energy e.. The 

summation is taken over all exciton states until the equilibrium 

is reached where n is the initial exciton number corresponding to 

the initial condition 

(7) P(n,o) = 6 
nn. 
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According to Cline and Blann/1/, Ribansky, Oblozinsky and Betak 

/2/,Wu and Chang /3/ and Dobes and Betak /4/ the solution of (2) 

can very well be approximated by an analytic closed-form expression 

A corresponding approximate closed-form expression can consequently 

also be obtained for T(n,E) of eq.(4) which according to Dobes 

and B^tak /4/ can be written: 

(8) 

where 

(8a) 

T(n,E) = T (n,E) + au 

T°(n,E) = T(n,E) 
n-2 n,n+2 — 
It X+ (E) x(i,E) + 5 n n 

i=no o 

An=2 

with 

I n,: ,n+2 n,n-2 
(8b) x(n,E) = U (E) H (E) + L(n,E) 

-1 

and 

(Be) a = 
(1 - yT°(n,E)L(n,E)) 

n 
^L(n,E)wn 

n 
n,n±2 

The quantities \ and L(n,E) in (8)-(8c) are those of 

(2) and (5). T°(n,E) in (8) is that part of the time integral 

(4) which goes from O until the equilibrium distribution of 

the exciton states at the equilibrium time t is reached . 
^ eq 

For t > t this equilibrium distribution of the exciton eq ^ 
states of course does not change anymore. It has to be taken 

proportional to the exciton state densities w according 

to the postulate of equal a priori probability as has been 

pointed out by Cline and Blann/1/, Ribansky', Oblozinsky' and 

Betak /2/ and Dobe"s and Betak /4/. This has been used in the 

second term of (8). 

In all of the recent work to is expressed by the Ericson 

formula corrected by Williams /10/ to account for the Pauli 

principle. Thus 
n-1 

( g E " A D n> (9) (o = g H ^ 
n p!h!(n-1)! 

with the correction term A due to the Pauli principle. 
p,n ^ * 

A was correctly presented by Williams /10/ only for the 
case p=h. To get an entirely correct expression for A , several 

* • p,h 

papers have been published (/5/, /6/, /I/ and /8/) . 

But none of them has presented the correct expression also for 

p^h.The Williams-expression is /5/ : 

(9a) Ap^h = \(p2 + h2 + p - 3h) 



The correct expression has rercently been found by Anzaldo / 9 / as: 

(9b) Ap/h = ph - \ [p(p+1) + h(h+lf| 

On the other hand it could be shown / 6/ that neglect of 

A would not matter very much especially for the case where 

only one nucleon is incident or emitted and provided the excitation 

energy is not too small according to 
A 

(10) E >> P ' " 
9 

But for more than one incident or emitted nucleon such as also for 

the case of a-particles or heavy ions the contribution of A could 
•JP'-P 

become important. Note that (S) is based on the constant sxngie-

particle level density g taken at Fermi energy. 

The exciton state density u>n of (9) is of course also a factor 

in the expression W.(n,E,e.) of (5) and (6) for the particle emission 

probability per unit time. From the principle of detailed balance 

Cline and Blann /'1/, /10/ have obtained the expression 

2s^ + 1 u
n - 1 ( U ) 

(11) W (n,E,e.) = --J- 3 y.e.c .Q. (p) 

VE) 

where s. and u. are spin and mass of the emitted particle, 

U the excitation energy of the residual nucleus which for 

nucleons incident and emitted is 

(12) U = e± - Ej 

and Q. (p) is a combinatorial factor by which the proton-neutron 

distinguishability and more general the emitted particle type 

weighting is taken into account to make it possible to use the 

one-Fermion type density of exciton states. By inserting (8),(9) 

and (11) into eq.(6) we obtain the additive splitting of eq.(1) 

where in the equilibrium term the denominator of (11) i s cancelled 

by the u> of the second term of (8) and the remaining level density 

factor of the equilibrium term becomes 

exp{2/iT2gU/6} 

(13) UJ(U) = I u> , (U) = : = 

n n 1 /48U 

The last expression of (13) has been obtaines by Williams /5/ 

showing that the contributions from the Pauli principle correction 

term A , in (9) cancel in the summation of (13). Thus with (13) 
p,h 

the one-Fermion type level density expression of Bethe for 

the free Fermi gas has been obtained in the equilibrium term 

of (1). 

Transition rate problem 

The most crucial quantities of the above sketched formalism 

are the transition rates X ' introduced with the master 

equation (2). After the first rough estimates of Griffin /1a/ 

and Blann /1b/ the following Golden Rule expression was stated 

by Williams /11/ 

(14) A"'n+2 = ^ |M|2a>;'n±2 

+ "n ' • + 

where the square of the matrix element M is averaged over 

the indicated transitions. Correspondingly w^'n are exciton 

state densities taken for these transitions. The w ' have 

first been calculated by Williams /11/ from the Ericson 

formula without and by Cline /6 / and by Oblozinsky', Ribansky 

and Betak /12/ from the Ericson formula with the Pauli correction 

term of Williams, / 5 / (see. eq. (9) and the following text) . 

In addition the proton-neutron distinguishabil,i,ty has been taken 

into account by the above mentioned authors /12/.. It amounts 
1 

to a factor -x with which the expressions of the previous authors J] 



/1V»/ 6/ have to be multiplied. The expressions thus obtained 

are /l0/,/13/: 

2 

(1 5a) cj, ' = 9, 
?ct? ~ E P a u l i ( P + l ' h + 1 > ] 

+ 3 c 2(n+1) 

(15b) o ) n ' n " 2 = g„ P h ( r 2 ) X 
'c 

[1- (n-1)(p-1)(p-2) + (h-1)(h-2) J 
(n-2)8gc (_E-Epaul± (p,h)J J 

In (15a,b) the single-particle level density of the compound 

system is denoted by g . 

But by the way of the same considerations which have 

been applied in connection with equations (9) and (10) 

we can find that the Pauli correction terms in (15a,b) 

can be neglected as in eq.(9) for excitation energies and 

particle-hole numbers for which the above formalism is mostly 

discussed here. Thus we do not present here E p , . of (15 a,b) 

in detail and refer to the papers /10/ and /13/ which present 

wrong results corresponding to the differences between (9a) 

and (9b). 

Now in order to obtain a complete theory it would be 

necessary to calculate |M| . But up to now nobody ever has 

calculated |M j in a direct way from a'microscopic nuclear 

model. As an alternative Kalbach /14/ has attempted to find 

an empirical law for |M |. As such a law Kalbach /14/ made 

the following proposal 

(16) |MJ2 = K - A " 3 • E"1 

hoping that only one universal constant K would be necessary 

to reproduce the particle emission cross-sections for a wide 

range of nuclei and excitation energies E. 
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The above mentioned formalism with relation (16) has been 

used by the following groups: 

Kalbach /10/, Holub, Pocanic, Caplar and Cindro /13/, Fu /15// 

Akkermans, Gruppelaar and Reffo /16/ and Gruppelaar, Costa, 

Nierop and Akkermans /17/. The STAPRE-code formalism of 

Strohmaier and Uhl /18/ works with a precompound- and compound 

description separated from the beginning which is not explicitely 

derived from a common master equation as shown by equations 

(2)-(9). But the relation (16) is explicitly used in the pre

compound description. Unfortunately no K-values have been re

ported by Strohmaier and Uhl. But they do report that K has 

been used by them as an adjustable parameter. 

The intercomparison between /10/, /13/ and /15/-/17/ 

is quite problematic because either pairing energy corrections 

or emitted particle type weighting' or both have been taken into 

account in very different ways. Unfortunately these ways are 

not always characterized very thoroughly and clearly in the 

quoted papers so that important details are difficult to 

recognize. On the other hand Fu /15/ has demonstrated the 

enormous influence of the way to take into account the level-

density pairing-energy correction. This influence can be so strong 

that one should conclude that this is another source of arbitra

riness in addition to the K-problem of (16). Thus we only can 

intercompare the results respective within each of the papers 

./10/, /13/ and /15/ - /17/. 

In the papers /13 / and /15/-/17/ the theory is compared 

with measured cross-sections for 14,6 MeV incident neutrons. 

Only in the paper /10/ measured charged-particle cross-sections 

are discussed for incident proton and a-particle energies from 

14,6 - 62 MeV within ascertain range of the periodic table. 

As a result of these papers the relation (16) has been roughly 

confirmed for incident energies from 14,6 - 6 2 MeV over a 

range from A = 75 - 200. But because of the different handling 

of the incorporation of pairing-energy correction and emitted 

particle type weighting we obtain different K-values for the 



different papers, namely: 

Table 1 

p a p e r 

/ 1 0 / 

/ 1 3 / 

/ 1 5 / 

/ 1 6 / 

/ 1 7 / 

/ 3 6 / 

K 

(MeV3) 

4 0 0 

7 0 0 

7 0 0 

1 9 0 

5 0 0 

4 0 0 

g 
(MeV)"1 

A 
13 

( ^ > a G C 

<^> a GC 

g c = T3 ; g r = ( 

{A)a»s 
A 
13 

BS 

Qj(p ) 
of e q . (11) 

s e e / l 0 / , / 1 3 / 

s e e / 1 0 / , / 1 3 / 

i n i n i t i a l cond 

1 

s e e / 1 0 / / / 1 3 / 

1 

GC = Gilbert + Cameron/19/, BS = Back-Shifted Fermi-gas 

r = residual Nucleus / c = compound nucleus 

Thus from the above considerations we can conclude that 

the relation (16) is confirmed for incident energies from 

14,6 up to 62 MeV but with the different values of K which 

are written above. The preceding formulations with (6)-

(16) have been incorporated by F.M. Mann into his computer 

code HAUSER*5 /20/ where the level density treatment is most 

similar to /13/. The same is true for the mtiltireaction code 

GNASH of Young and Arthur /21/. 

Ambiguities from unsolved level density problems 

The differences of the values of K.,as shown in Tab.1 for 

the different publications /10/,/13/ and /15/-/17/are as 

already mentioned partly related to a different handling of 

the pairing-energy corrections of the compound as well as 

preccmpound level densities (exciton state level densities). 

Thus in the publication /10/ the level density expression 

(13) was used by C.Kalbach but with U replaced by U1 = U -6 

where <5 is the pairing energy correction taken from Gilbert 

and Cameron /19/. A corresponding pairing energy correction 

was introduced in the exciton state densities (see (6),(8), 

(8a)-(8c),(9) and (11)). But the way this has been done is not 
A 

shown very explicitely in publication /10/. In /10/ g = j^ w a s 

chosen as in /16/, (see Tab.1). 

Contrary to /10/ the Gilbert-Cameron formula /19/ was 

used instead of (13) in the work of Holub, Pocanic, Caplar 

and Cindro /13/. In this work /13/ no pairing-energy corrections 

were introduced into the exciton state densities of the pre-

compound part because odd-odd compound nuclei or compound 

nuclei with odd number of the incident nucleon type were in

vestigated. Moreover g = —r a was used througout in /13/for values 

taken from Gilbert and Cameron /19/ (see Tab.1) with the 

corresponding shell effects. But shell effects were also found 

in /13/ for the K-values of nuclei near closed shells. Here K 
•3 

very much exceeds the average value K = 700 MeV (see Tab.1) 
"3 ?r»Q "3 89 

such as K = 7000 MeV for Bi and K = 1400 MeV for Y. 
197 But for other nuclei discussed in /13/ such as' Au with 

K = 3500 MeV3 and 1 0 3Rh with K = 175 MeV3 these K-departures 

from K = 700 MeV cannot so easily be explained as shell effects. 

Now Fu /15/ very much stressed that a certain amount of 

pairing energy always must be expended if a particle-hole pair 

excitation is accompanied by a pair breaking. Thus pairing-

energy corrections must always be taken into account in the 

exciton state density expressions. But no rigorous derivation 

of this influence was given by Fu /15/ and consequently no 

unique results could be obtained. Yet by way of an estimate 

Fu /15/ could show the strength of this influence. Thus by 

taking into account this estimate of Fu /15/ the K-value had 

to be changed from K = 400 (MeV)3 to K = 700 (MeV)3. This 

shows that a rigorous treatment of pairing in the level density 43 



expressions of the precompound and compound part with unique 

results is badly needed in order to give the above formalism 

a predictive capability with K being not only a fit parameter 

but a universal constant. This consideration of Fu shows the 

importance of considering the level densities not only isolated 

but also in the framework of a consistent nuclear equilibration 

formalism connected with certain nuclear reaction processes. 

In all previous-mentioned work equidistant one-particle 

levels were assumed. The influence of non-equidistance was in

vestigated by Blann and Albrecht /20/ and by Kalbach /21/. 

Transition rates from nucleon-nucleon scattering in nuclear-

matter 

Blann /24/ and Braga-Marcazzah, Gadioli-Erba, Milazzo-Colli 

and Sona /25/ went ahead to remove the adjustable parameter 

K in (14) and (16) by calculating the transition rates 
,n±2 . ._. _ 
A ± in eq.(2) from nucleon-nucleon scattering in nuclear 
matter according to 

(17) A]'3 = vp<a> 

where v is the particle velocity in nuclear matter 

2(E+Ep) ' 

p is the nuclear matter density and <o> the effective cross-section 

for an excited nucleon to interact with nucleons having a Fermi 

gas momentum distribution. The average < > is taken over the free 

nucleon-nucleon scattering cross section with a method due to 

Goldberger/26/and Hayakawa, Kawai and Kikuchi /27/ with the 

Pauli principle taken into account. The general transition 

rates X ' then were calculated by Gadioli, Gadioli-Erba, 

and Sona, /28/ using a recursion " procedure derived from the 

44 expressions(14) and (9). The transition rates thus calculated ̂  

„ =./ 

were then used by Gadioli, Gadioli-Erba, Sona, Sajo-Bohus, 

Tagliaferri and Hogan /2 9/ and /30/ in an extended effort to repro

duce absolute values of excitation cross-sections for a wide 

range of mass numbers (89 < A < 169) and excitation energies 

(10 MeV < E < 100 MeV). But the mentioned authors found they 

had to multiply the calculated transition rates bv factors of 

the order of 0.1 to 0.25 in order to obtain satisfactory agreement 

between the calculated and measured cross-sections. 

Nevertheless C. Kalbach /33/ has attempted to integrate the more 

detailed physical knowledge resulting from /29/ and /30/ into 

an empirical formulation of type (14)—(16) with the result 

9 v , 1/2 1/2 
(19) | M.p=4p ( £ ) ( e — ) e<2 MeV 

A e 7 MeV 2 M e V 

1/2 
) 2 MeV< e < 7 MeV 

A3e 7 MeV 

A3e 
7 MeV< e < 15 MeV 

15 MeV, 1 / 2 _ M„,. _. . E 

„ (_^_^} 15MeV< e; e = £ 
A e 

With (19) and the choice K' = 135 C.Kalbach /31/ was able to 

reproduce the measured secondary-energy-dependent (p,p') cross-

sections of Bertrand and Peelle /32/ for 54Fe and 1 9 7Au with 

incident energies of 29 and 62 MeV in the intermediate secondary 

energy range. But the high secondary-energy tail came out much 

too low compared to the measured results of /32/. Nevertheless 

(14), (15) and (19) have been incorporated by C.Kalbach into her 

code PRECO-B /33/. Quite good reproductions of experimental 

results by means of calculations on the basis of (14),(15) and 

(19) have on the other hand been obtained for (n,2n) and (n,3n) 

excitation cross-sections by Jhingan, Anand, Gupta and Mehta /34/ 



for incident energies up to 28MeV in the mass range 89 to 238. But 

these cross-sections are not very sensitive to|M |. Gudima, Osokov 

and Tonev /35/ did not need to reduce A . These authors replaced 

E+E„ in <a> and v by the relative kinetic energy 

(20> Tn = I EF + I 

of the colliding particles in nuclear matter with n excitons and 

excitation energy E. Eq.(20) results from the so-called right-

angle approximation.T is the sum of the mean kinetic energy of 

an excited particle (p) 

(20a) (p) _ + £ ' 
Tn - EF + n 

and the kinetic energy of an intranuclear nucleon (N) averaged 

over the Fermi spectrum, 

(20b) T< N ) = | E... 
n 5 F 

Gudima, Osokov and Tonev /35/ achieved a good reproduction of the 

absolute values of the secondary-energy-dependent cross sections 

for the reactions Ta(n,n') at 14.6 MeV, Cu (ct,p) Zn at 43 MeV and 

Ta(p,n) at 18. MeV incident energy. Absolute pre-equilibrium 

(n,n') cross sections at 14 MeV were calculated in the same way by 

Hermsdorf , Meister, Seeliger, Sassonov and Seidel/36/ in good agreement 

with experimental results in the mass range 30 < A< 200. 

The absorption cross section a in Eqs.(6)-(8) was obtained from 

the optical model. No additional fit parameters were needed but 

a A -term was added to the master equation with 

(20c) A^'n = - ^ I M T V E -3^p. 

and treated as A+ in (17)/ (18), (20) - (20b). 

Tests for more incident energies below as well as above 14 Me\7 and 

additional secondary-energy-dependent cross sections for a wide 

range of mass numbers should be performed before the predictive 

power of the method can be judged conclusively. This seems necessary 

in particular because the approximations (17)-(20b) were originally 

derived for kinetic energies of the colliding particles above 

about 100 MeV, which means for incident neutron energies above 

about 55'MeVif we consider E+E„ as a measure for the relative 

energy of the colliding particles. The applications just mentioned, 

on the other hand, were made for incident neutron energies well 

below 55 MeV. 

Hybrid and geometrie-dependent hybrid model 

Blann /24/, /37/,/38/ found out that no fit parameters other 

than those from the optical model were needed if the excitation 

energy E in (17) and (18) was replaced by the energy e of the 

emitted nucleon, and the Fermi energy E by the optical potential 

depth V. The A produced this way is then taken the same for 

each n and is thus independent of n. According to Kikuchi and 

Kawai/27/,/38/ A, can be expressed as: 

- 2 W J ( £ j ) 
X21) A j + ( £ j ) 

where W. is taken from the imaginary part of the optical potential 

fitted in the elastic channel of the emitted nucleon. The hybrid 

model was then obtained by Blann /24/ by inserting (21) into the 

closed form expression which arises by combining (6)-(8c') after 

replacing A^,n+ by (21) and L(n,E) by the factor before Q.(p) 

in the expression (11) for W.(n,E,e.) divided by the one nucleon 

level density g. of a nucleon of type j. This factor is called 

A.(e.) according to 

2s.+ 1 V-;E-;.0.* 
(22) X <e ) « — J - L^L_ 

3 J * % * 9j 

where g. has to be taken as 

(22a) gn = (A-Z)/14; g = Z/14 (MeV)"1 

Moreover x^'n is omitted and L(n,E) in all the expressions 

of (6)-(8c) is replaced by A.(e.) of eq.(22). 45 



Finally Q. (p) in (11) is replaced by 

pii 
(23) f. . = -±J-

iJ P 

where p is the total number of particles, p.. the number of 

particles of type j and f. . the corresponding"fraction, given an 

incident particle of type i. Following Blann /37/ p.. should be 

calculated according to 

(P-Da , 
(24) p.. =6.. + = ii-

*i3 13 Ea . ., 
j, iD* 

where a.. are the free nucleon-nucleon scattering cross-sections 

used in a representation which is given in /38/. After the changes 

introduced with (21)-(24) into (6)-(8c) the question arises whether 

(6)-(8c) then still can be considered as an approximation of the 

master equation (2). Blann outlined /37/,/38/ that these changes 

were suggested to him by considering the formalism of Harp, 

Miller and Berne /39/, /40/. Because of this composition from 

two different formalisms Blann calls the resulting formulation 

the "hybrid model". The resulting expression of the 

hybrid model for precompound reactions thus becomes after intro

ducing (21)-(24) into (6)-(8c) 

da(e.,e.) n w 1 (U)g. A.(e.) 

<25> - T S T •°e%<c0 I A"= 2 tij-^TET- 3- x.(e.) + X ,e.) Dn 
J n = n J J J J 

n 
= a . (e .) 7An=2 P , . . (e •) c i -j L_ n ' n i 

w i t h 

- - 3 r 

o 

n E-B . 
Hi < 2 6 > D n = n (1 - I (J D P n (e ) d e , ) ) 

n n +2<n '<n i , j o n 13 D D 
o 46 

where pnti-:(c.) is the expression behind the summation sign of (25) 

and. where fi is the average exciton number at equilibrium obtained 

from 

n,n+2 n,n-2 
(27) X+ = A_ 

according t o ( 1 5 a , b ) . The r e s u l t wi thout P a u l i c o r r e c t i o n i s 

(28) n 

From (25)-(28) quite satisfactory results were obtained /41/ for 

parameter free prediction of secondary energy dependent (a,p) cross-
51 197 sections for nuclides from to Au at 55 MeV incident energy. 

Only the optical-model parameters from the elastic a- and p-channel 

"7" 
fits were used and no | M| -type parameter such as that occuring in (14) 

and (16) was needed. 

Much less successful, on the other hand, were attempts to repro

duce the measured angle-integrated secondary-energy-dependent 
197 

Au(p,p') cross-section by means of hybrid calculations /42/. In 
particular the very flat secondary energy dependence of the measured 
197 

Au(p^p') cross-section could not be reproduced by results obtained 

from calculations on the basis of (25)-(28). These calculated results 

show a much too steep descent with increasing secondary energy if 
n
Q = 3 is chosen. Improvements could be obtained by choosing n = 2 
instead of n = 3 as the smallest exciton number n . But the choice o o 
n Q = 2 appears quite unphysical unless we assume that at the nuclear 

surface one of the three initial excitons (a hole) is suppressed. 

Such an assumption can be understood in the framework of the Thomas-

Fermi model, if the Fermi energy, as in the atomic case, is taken 

as decreasing with the nuclear density d(r) towards the surface 

according to 
(29) Ep(r) =l£ (|7T2d(r))2/3 2m 



where the density follows the Fermi (or Woods-Saxon) distribution 

(30) d(r) = d ( elr-c"z + 1 ) " 1 

s v • ' 

with the nuclear half-density radius 

(30a) c = c A1/3 , c = 1.07 fin , 
o ' o . 

the surface thickness 

(30b) z = 0.55 fm 

and the saturation density 

(30e) ds - { £ c^ )"< . 

A reasonable way to account for the influence of the nuclear sur

face diffuseness can be obtained according to Blann /37/ by 

averaging along the particle trajectory taking the impact parameter 

(31) R^ = U 

as the lower limit and the upper limit as 

(32) R = c + 5z 

s 

o u t s i d e the nucleus where t h e d e n s i t y i s p r a c t i c a l l y ze ro . The 
q u a n t i t i e s I and * in (31) a re t he o r b i t a l angular momentum quantum 
number and t he de Brog l i e wave l e n g t h , 

(33) * = —-£— . 
/2me o 

The averaged density is then defined by 

R 
_ 1 s 

(34) d(R„) = ' / d(r)dr . 
s R£ R£ 

Inserting this into the Fermi energy expression (29) one gets the 

geometry-dependent Fermi energy or potential depth 

(35) E_(R.) = E •( -3-A- ) 2 / 3 

d s 

where 

is the usual Fermi energy. 

From the good results obtained without surface diffuseness 

for (a,p) reactions by Mignerey and Blann /38/ and Chevarier et al. 

/41/ with n Q = 4 or 5 and from the failure with n_ = 3 in the case 

of 197Au(p,p') Blann /43/ concluded that only for n Q = 3 (incident 

nucleons) must the surface diffuseness be taken into account because 

only then can an exciton acquire enough energy "to sense the bottom 

of the potential well. In this way Blann /43/ found 

(37) "iplh-^VV' U>EF(R£); 

•W2P1h = 1 g 2VR £><2E-E F(R A)}, E > E F( R j l). 

The Ericson or Williams formula (9) is used in all other cases. 

In addition there is an influence of the surface diffuseness 
on the third factor in each sum term of Eq. (25) : g in the expres
sion (22) for A.(e.) has to be taken as 

3 3 

e+B+E (R ) . 
(38) gj(Rf) - (_ 1X_JL)V2 g, 

instead of (22a). Finally also the absorption and excitation rate 

A.+(e) in the third factor of Eq. (25) can be affected by the sur

face diffuseness. This is the case if X..(e.) is calculated from 
3+ 3 47 
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the imaginary part W.(r) of the optical potential for nucleon 

scattering according to 

U ) 2W..(S ) _ 1 *s 
(39) Aj*>(e> =_JL_L. w i t h W j < V = _ l _ J Wj(r)dr . 

In (39) R is given by R = r A1//3+5a with r = 1.32fm and 
s J s o o 

a = 0.51+0.7(N-Z)/A which is somewhat different from (32). 

One can now calculate the pre-equilibrium component of the 

inelastic-scattering neutron cross section, integrated over 

emission angles but dependent on the secondary energy, by means 

of the Eq.(22) - (39). These equations represent the hydrid 

model with surface diffuseness which was called by Blann the 

geometry-dependent hybrid model. Apart from general nuclear para

meters such as nucleon numbers (N, Z, A ) , nuclear radius and sur

face thickness the model contains only the optical-model quantities 

W and a(e). In particular there are no additional fit parameters. 

Moreover, the geometry-dependent hybrid model is the only existing 

model that takes the diffuseness of the nuclear surface into account. 
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On this basis 14.6 MeV (n,n') cross-sections for Cr, Mn, 

C /- C O Q *D 

Fe, Ni and Nb were calculated by Broeders, Broeders and Jahn 

/44/ (secohdary-energy-dependent and angle integrated) which are 

in rather good agreement with the measured results of the groups 

in Dresden/45/ and Livermore /46/. Also 62 and 39 MeV (p,p') cross-
56 209 

sections of the same kind on Fe and i U Bi were calculated in 

the same way by Blann /38/ who could obtain satisfactory agreement 

with the measured results of Bertrand and Peelle /32/, and Scobel, 

Bissem, Friese, Krause, Langatike, Langkau, Plischke, Scherwinski 

and Wien /47/ compared their identically calculated 27 MeV-(p,p')_ 

results with their own measured results on ' ' ' ' Ni and 
C O C C 

' Cu where also good agreement was obtained. 

A computer code was developed by Blann /48/ on the basis of 

this model the first version of which was called ALICE /48/. 

In this code, as in Refs. /37/ and /43/, the expression 

(40) g(R„) = - ^ — 
2W 

was used instead of (38). This led to unrealistic results as 

described in Ref. /49/. The calculations of Hansen, Grimes, 

Howerton and Anderson (see Ref. /50/) were apparently based on 

Eq.(40) and therefore give too small pre-equilibrium components 

of the secondary-energy-dependent inelastic neutron-scattering 
5 6 

cross section. Also our own first (n,n') calculations on Fe 
2 38 and U with the hybrid-model code /48/were only successful 

after re-introduction of a fit parameter /51/. 

This deficiency of ALICE was corrected in the version OVERLAID 

ALICE /52/ which was successfully applied to (P/P') reactions 
4 

by Blann (see Ref. /39/)and to d-, He- and He-induced reactions 

by Bisplinghoff, Ernst, Machner, Mayer-Kuckuk and Jahn, Probst, 

Djaloeis, Davidson and Mayer-Boricke (see Ref. /38/). 

Critical summary of the exciton-master equation-approach 

Two groups of precompound descriptions and their applications 

are reviewed in this report. The first group is based on the 

master-equation (2) with its two different ways of determining 

the internal transition rates A ' - . One way consists of re

ducing A"' to a universal empirical law with a universal constant 

K by using the Golden Rule expressions (14) — (16) . But the still 

too small range and number of examples of incident energies 

as well as the lack of mathematical transparency of the different 

versions of calculations does not allow a unique conclusion about 

the universal law and its constant (see Tab.1 and equations (14)-(16)) 

One source for this nonuniqueness is the nonexistence of a unique 

prescription or at least convention for the incorporation of pairing-

energy corrections into the exciton state densities (see the ex

planations around Tab. 1 and in the following paragraph). 



For reasons of consistency ambiguities are introduced in this 

way also into the equilibrium state densities. Moreover all the 

work based on the attempt of the universal X -law (14)-(16) 

is based on equidistant single-nucleon levels. Thus 

because of all the nonuniquenees mentioned above we have 

the situation that the question of a univeral X -law is still 

in a stage of being explored by fitting measured cross-sections 

rather than of being used to predict them. 

The adherents of the master-equation exciton model approach 

appear to be very much attracted by its quality of being based on 

the unique master-equation system, eq.(2), which can be derived 

directly from the microscopic statistical random matrix model of the 

nuclear Hamiltonian according to Agassi, Weidenmiiller and Mantzourahis 

/53/. To maintain therefore this exciton master-equation approach 

the second of the two above-mentioned ways of determining 
xn.,n+2 

was taken by Gadioli et al. /29/, /30/ who went ahead to fully, 

calculate the A 'n- -transition rates from nucleon-nucleon-

scattering in nuclear matter. But the transition rates resulting 

from these calculations had to be reduced by 0,1 to 0,25 in order 

to get full reproduction of the measured (p,x,n)-excitation cross-

sections for mass numbers 89 < A < 169 and excitation energies 

10 MeV < E< 100 MeV. In other words: The calculated cross-sections 

are too small by factors of 0,1 to 0,5. 

As a way out C.Kalbach proposed the still more complicated 

universal law of eg.(19) trying to reproduce the numerioal results 

of Gadioli et al. /29/, /30/ with the new universal fit-constant 

K'. But until now this more complicated universal law could be 

tested with only few examples and not even very successfully as 

remarked after eq.(19). 

We therefore are inclined to take the result serious that 

the cross-sections calculated as mentioned above come out too small 

by 0,1 to 0,5. We think this should be interpreted as an indication 

that the exciton-master-equation approach does not take into account 

the full reaction processes.It only takes into account those 

reactions which are related to the equilibration process. But there 

should be the direct reaction processes in addition which are not 

taken fully into account by the exciton-master-equation approach. 

This is shown very clearly by the formalism of Agassi, Weiden-

miiller and Mantzouranis /53/ and is also pointed out by Bunakov 

/54/. 

As another strong evidence for the importance of these 

extra direct reaction contributions it should be considered that 

the A -dependence of |M | according to equation (16) appears 

to be empirically rather well established, u in (14) is 
3 predominatly A -dependent as shown if the g~ A behaviour of 

Tab. 1 is introduced into (15a). This means approximate A-inde-

pendence of X if the validity of the A -dependence of -
— T + 3 
| M2| is assumed according to (16). In other words: The A -

— 3 
dependence introduced by (15a) is cancelled by the A -dependence 

of (16). This rises doubts about the Golden Rule treatment of 

X as well as about the predominance of the exciton-master-

equation contribution at any range of the secondary-energy dependency 

of the angle-integrated cross-sections. An A-independence of 

X gives the results of a slow A-dependence of the angle-integrated 

secondary energy dependent cross-section according to (6), (8a) 

and (8b) as about A1'3 if integrated over the secondary energy. 

But just this type of behaviour is shown by the cross-sections 

of the direct processes as pointed out by Cohen in the panel of the 

Albany Conference on Statistical Properties;of Nuclei, August 23 - 27, 

1971 /73/ who used the following figure: 

t b 
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This figure shows how the very strong exponential A-dependent 

behaviour of the compound-contributions of the (P/P')-emission 

cross-section at low emission energies goes over to the weakly 

A**dependent behaviour of the direct' contributions at the high-energy 

tail. Thus this slow A-dependence can be obtained from the 

direct contributions without the artificial introduction and 
3 

recancellation of the A -behaviour shown by the Golden Rule-
method to calculate A of the exciton-master-equation approach. 

Angular distributions of the exciton-master-eguation approach 

Further strong indications that no direct reaction processes 

contribute to the results of the pure exciton-master-equation 

approach can also be read off from the angular distributions 

resulting from the angular dependent exciton-master-equation 

approach developed by MantzouraniS/ Weidenmuller and Agassi /55/. 

These angular distributions show at the high secondary energy 

tail too small contributions to the forward and backward directions 

as compared to the measured values /56/, /57/ and /16/. 

This can be seen from the results of Mantzouranis /56/ for 45 MeV-

(p,p')-reactions on 48Ca, 90Zr, 1 2 0Sn and 2 0 8Pb, of the author 
56 

/57/ for 14,6 MeV-(n,n*)-reactions on Fe and of Akkermans, 

Gruppelaar and Reffo /16/ for 14,6 MeV-(n,n')-reactions on 33 

isotopes form Be til Bi. 

The last mentioned results are presented as averaged over 

secondary energy intervals 2-11 MeV and 6-11 MeV which rises 

the question whether this means much information in view of the 

much better resolved secondary-energy spectra measured by the 

Dresden group /45/ with secondary-energy- bins 

ranging from 0,5 MeV to 0,05 MeV. Moreover the wide energy-

averaging intervals of Akkermans et al. /16/ prevent the pretended 

possibility of applying their results in the field of fusion 

reactor design calculations where at least about seven secondary 

energy groups are needed. 
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We thus consider the foregoing stated deviations between 

the calculated and the measured angular distributions as a further 

limitation indicating that the direct reaction processes are not taken 
into account by the exciton-master-equation approach. 

Model with explicit account of the direct reaction processes 

As a way out it therefore seems to be adequate at first 

sight to resort to those approaches which take into account the 

direct processes explicitely in addition to the precompound 

or compound contributions. 

There are several approaches of this type which can be 

grouped according to the names of the following authors: 

1. Austern with his book on direct reaction theories /58/. 

2. Blokhin, Ignatyuk, Lunev and Pronaev /59/. 

3. Tamura, Udagawa and Lenske /60/. 

4. Feshbach, Kerman and Koonin /61/. 

Approach 1 was developed to treat those direct reaction processes 

by which single low lying resolved levels of nuclei can be 

reached. For our context it was used to calculate the high energy 

tail of the secondary-energy-dependent (p,p')_ and (n,n')-cross-

sections respectively. 
56 

This was done by Fu /62/ for Fe on the basis of two DWBA-(p,p') 

analyses of Peterson /63/ and Mani /64/ of measured cross-sections 

for 17,5 and 45,35 MeV incident energies. From these (p,p')-analyses 

in particular of the angular distributions the DWBA-parameter of 

the first 30 levels were obtained and used by Fu /62/ to calculate 

the corresponding 14,6 MeV-(n,n')-cross-sections by means of the 

computer program SALLY/63/. In this way a secondary-energy-distributed 

14,6 MeV-(n,n')-cross-section was obtained by Fu /62/ with rather 
56 sharp lines around each of the first 25 levels of Fe. This DWBA 

cross-section-distribution obtained for the first 25 discrete 

levels of Fe was then averaged by the author /66/ over the 



intervals 10-11, 11-12 MeV etc. of the secondary neutron energy 

and a step-curve was obtained /66/ which agreed quite well with the 

experimental step-curves of the Livermore /46/ and Dresden /45/ 

groups. 

On the other hand we already mentioned that the smooth curve cal

culated from the geometry-dependent hybrid model as explained 

after eq.(38) and presented in /44/ agreed also quite well with 

the measured Dresden /45/ and Livermore /46/ results. This is 

in accord with Blanns repeated statements that he considers the 

n = 3-component of the geometry-dependent hybrid model as the 

direct component /37/ as demonstrated also by its surface de

pendence shown by eqs.(29)-(39). This is the only surface de

pendence shown by any precompound model. 

Finally there is the close relationship of the geometry-

dependent hybrid model to the Harp-Miller-Berne equations as 

pointed out by Blann (see the remarks concerning eq.(24)). Now 

Bunakov /54/ gave a derivation of improved Harp-Miller-Berne 

equations and showed that the direct contributions are included 

in them in contrast to the exciton-master-equation approach. 

The residual interactions of Bunakovs new HMB-equations were 

completely expressed by the parameters of the optical model 

/54/. Thus Bunakov.'ff new equations depend of no fit parameters 

other than those of . the optical model although they even include 

the direct contributions. These properties are the same as shown 

by the hybrid and geometry-dependent hybrid models. Therefore it 

should be possible to derive those or similar models rigorously 

from Bunakov.' s new equations. In case of success we would consider 

the obtained approach as most preferable against all the other 

models discussed in this report because the direct contributions 

would be included and no fit-parameters other than those from 

the optical model would be needed. But, as already mentioned, 

this approach 1. till now was only tested for the case of 

low lying resolved levels. 

We therefore have to discuss approaches 2.-4.developed to 

calculate the excitation of the unresolved region of levels, 

the so called continuum part of the spectrum. This was carried 

out by approach 2. in the random-phase approximation of a phonon 

model with a self-consistent choice of the effective residual 

interaction. Two phonon excitations were taken into account. 

Satisfactory reproductions of the measured results were presented 

for the angular distribution of 20 MeV protons emitted following 

the impact of 62 MeV protons on Fe as well as for the secondary 
54 energy dependent cross-section of 3 9 MeV protons incident on Fe. 

Only rough agreement with the measured results was achieved for 

the secondary energy dependent cross-sections of 62 MeV protons 

on 54Fe and on 2 0 8Pb. 

Approach 3. has much similarity with approach 2. The only 

difference is that particle-hole excitations are introduced 

instead of phonon excitations. Measured angular distributions 
27 209 of 62 MeV incident protons on Al and Bi are rather well 

reproduced for secondary proton-energy intervals of 42-52, 

32-42 and 22-32 MeV. But Tsai and Bertsch /67/ noted that the 

energy-weighted sum rule comes out too large with the ph-

approximated deformation parameters. Thus Tamura et al. switched 

to RPA-states and finally to microscopic ph-states and two-

step-ph-contributions had to be added /60/. Also Arndt and 

Reif attempted a similar approach /68/. 

Tamura et al. have shown /60/ that approach 4. can be 

obtained from approach 3. if some simplifications are intro

duced into the multi-step (predominantly two-step) contributions. 

So far the one-step contribution of 4. is the same as that of 3. 

with the difference that the excited level densities are given 

by RPA response functions in 2. and 3. but by the Ericson ph-

function in 4. The latter rises the same level density problems 

as in the forementioned precompound contributions of the exciton 

master-equation approach which will become important in particular 

below 20 MeV excitation energy. Pairing energy corrections are 

taken into account only in approach 2. The effective interaction 

of approach 4. has to be adjusted. Good agreement between cal- M 



culated and measured angular distributions could be obtained 

by Bonetti et al. /69/ with the same effective interaction force 

constant V Q = (27,9 + 3,5)MeV for angular distributions of 

20-40 MeV neutrons emitted from 25-45 MeV protons incident 
40 90 120 208 

on Ca, ^ Zr, Sn and Pb. For the lower incident energies 

as 25 MeV the statistical multi-step compound contributions of 

approach 4. become significant, see Bonetti et al. /70/. 

The appearence of the so called statistical multistep compound 

contributions in addition to the statistical multi-step direct 

contributions is a typical aspect of approach 4. which was 

derived from Feshbachs general framework of nuclear reaction 

theories /71/ with itsP and Q projection-operators onto the 

open and closed channel spaces leading to both, statistical 

multi-step direct and statistical multi-step compound contributions. 

The latter have some similarity with the precompound- and 

compound contributions of the exciton master-equation approach. 

Contributions of this type have not been taken into account 

by approach 3. for the high-energy examples considered there. 

A Hauser-Feshbach-contribution has been successfully added 

only for the examples of low-energy a-emission cross-sections 

(< 25 MeV) from 62 MeV protons incident on Fe. h'similar 

evaporation contribution has also been taken into account by 

approach 2. 

Whereas in approaches 2. and 3. the effective residual 

interactions are fixed by self-consistency requirements or sum 

rules, free fit-parameters are left in approach 4. for the 

residual interactions. Even two strengths of residual interactions 

were needed in approach 4.; one for the multistep-direct 

contributions with V = (27+ 3,5) MeV according to Bonetti 

et al. /69/ and one for the multi-step-compound contributions 

with VQ = 0,70 MeV /70/. But different functions were chosen 

for the two cases: A Yukawa function for the multi-step direct 

residual interaction, and a 6-function for the multi-step 

compound residual interaction. This must be taken into account 

52 in comparison of both interaction strengths. But nevertheless 

they appear to be extremely different, and the question must 

remain open whether and how this difference can be explained. 

Moreover this independent adjustability of the two residual 

interactions of approach 4. can be another source of ambiguity. 

This has been pointed out by Tamura et al. /60/ by means of 

the fact that reproductions of measured' (p,a)-angular-distri

butions could be achieved with the same success by a one- step 

direct plus Hauser-Feshbach approach (see Dragun et al. /72/) . 

as well as by a two-step direct approach (see Tamura et al. /60/) 

In spite of different incident proton energies in these two 

cases (44,3 and 34,6 MeV in case of Dragun et al. and 62 MeV 

in case of Tamura et al.) we consider these two successes with 

the two different approaches as a hint at the above-mentioned 

ambiguity which should be investigated somewhat more 

but which eventually could perhaps be removed by self-consistency 

requirements or sum rules as in the cases of the approaches 2. 

and 3. 

In any case approaches 1 . - 4 . demonstrate the occurence of 

the direct reaction processes and by selecting the advantages 

it might be possible to obtain a unified and simpler procedure. 

Conclusions 

The approaches 1. - 3. to take into account the direct reaction 

processes are substantially able to predict cross-sections 

whereas approach 4. is a fitting procedure with possible ambi

guities. But until now they have been tested only by a few 

examples. This might have to do with the necessary extensive 

numerical expense. Simpler is the exciton-master-equation approach. 

But apparently it does not take into account the direat reaction 

processes and thus cannot fully describe the forward peaked 

angular distributions. Moreover it is more a fitting procedure 

rather than a predictive theory which latter is badly needed to test 

measured results and to close gaps where measuring is too 



d i f f i c u l t o r e v e n i m p o s s i b l e . But a s a u n i q u e f i t t i n g p r o c e d u r e 

t h e e x c i t o n m a s t e r - e q u a t i o n a p p r o a c h c o u l d s t i l l be u s e f u l . 

R i g h t now i t c a n n o t b e o b t a i n e d t h i s way b e c a u s e of t h e u n 

n e c e s s a r y d i f f e r e n t w r i t i n g v e r s i o n s of t h e same s o l u t i o n 

of t h e e x c i t o n m a s t e r - e q u a t i o n a p p r o a c h which i s one r e a s o n f o r 

t h e d i f f e r e n t v a l u e s o f t h e K - c o n s t a n t i n T a b . 1 . A n o t h e r r e a s o n 

i s t h e l a c k of a u n i q u e p r o a e d u r e t o t a k e i n t o a c c o u n t t h e 

p a i r i n g - e n e r g y and s h e l l c o r r e c t i o n s i n t o t h e a n a l y t i c e x -

c i t o n - s t a t e and n u c l e a r l e v e l d e n s i t y e x p r e s s i o n s . A l s o 

t h e P a u l i - c o r r e c t i o n t e r m u s e d u n t i l now i s p a r t i a l l y w r o n g . 

The same nuclear l eve l densi ty problems occur also if the hybrid or the 

geometry-dependent hybrid model are used. However, these models have more 

pred ic t ive capab i l i t y than the exiton master equation approach, specia l ly for 

the cases of (n,n*) and ( p f p
r ) react ions , but for the two nucleon and composite 

p a r t i c l e emission hybrid and geometry-dependent hybrid vers ions have not yet 

been developed. Thus more consolidation and unif ica t ion of the very many 

h i the r to ex i s t ing approaches seem to be necessary ra ther than s t i l l more 

d ive r s i f i c a t i on and blowing up. 
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Abstract 

The nuclear level density problem has been treated using modern 

methods of analytical number theory. In particular the asymptotical 

calculation of the partition function leads to more rigorous and 

more general results than the usual Bethe-formula. The partition 

function is expressed with the help of a Dirichlet series. The 

parameters of this series determine the obtained level density. 

For the case of constant single particle level density the resulting 

parameters yield the usual Bethe-formula. In general the parameters 

lead to another energy and nucleon number dependence of the level 

densities. They correspond to more general single particle level 

densities which include the shell structure. Also the BCS type 

of pairing has been taken into account. 

Introduction 

As it is well known'' '* ' '3J,the relations actually in use to compute 

nuclear level densities are not able to reproduce quantitatively 

the experimental results over a wide energy range. Moreover the 

mathematical methods normally used make very restrictive physical 

assumptions in order to obtain simple analytical expressions. 

*DAAD-Stipendiat. On leave from the UNAM 

(Universidad Nacional Aut6noma de Mexico) 

At the very beginning of the investigations on nuclear level 

densities ' a'it was clear that for large excitation energies, 

there was a strong relation between the methods of number theory 

(computation of the so called "partitions of integer numbers") and 

those needed to calculate the level densities. Thus for 

example, for the simple case of a constant single particle 

level density it was found that the number of partitions 

p(N,E) of an integer number E (i.e. the excitation energy 

given in units of the spacing between particle levels) in 

parts not exceeding N(the number of particles) is equal to 

the level density p(N,E) of a one component fermi gas with N 
i 

particles and total energy e = E + •=• N(N+1) . Moreover, for an 

infinitely degenerated system we have an exact representation 

given by the convergent asymptotic expansion: 

1/2—f 
sin {rr( T(x- -~A) ) } 

p(E) = — — I Ak(E)/k .̂ 
11/2 k=1 k L d X (x-1/24)1/2 x = E 

where A, (E) are certain functions, the first being A1(E)=1. 

The first term of this asymptotic expansion gives the well 

known result of Bethe, whereas the other terms correct this 

first estimation to lead to the exact result. 

After these very early investigations till now there has been 

little progress in this sense, although the mathematical methods 

of number theory have experienced several important advances 

In this paper the recent methods of modern number theory will be 

applied to obtain an asymptotical expression for the partition 

function which leads to a more rigorous and more general result 

than the usual level density formulae. 

Derivation of the new level density formula 

We start from the usual relation for the nuclear level density 

including pairing effects and obtained with help of the saddle El 



7 ) point method . The nuclear level density reads: 

e < W e ) = 3/2P/ — i ( 1 ) 

(2TT) Vdet|32yiyjS| 

where e is the total energy, N is the number of neutrons 
n , p 

(protons), y are the Lagrange parameters for neutrons 

(protons), to be determined, S is the entropy and det|32y.y.S| 

is a certain determinant. 

The entropy is given by: 

S = lnZ(yn,yp,13) + Be - ynNn - ypNp ,12) 

where Z(y ,y ,B) is the partition function given by: 

InZ = -B£(ek-A-Ek)-6 ^+ 2£ln 1+exp(-6Ek) J (3) 

The quasiparticle energies E, are given in terms of the single 

cle energies, e, , the c 

A by: 

particle energies, e , the chemical potential X and the energy gap 

Ek = " ^ e
k -

x > 2 + A* <4> 

G is the related to A by the equation: 
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The saddle point equations are; 

3 InZ = N ,3 InZ = N , -3„lnZ = e (6) 
yn n n yp P p S 

if InZ = InZ + InZ , from which is possible to obtain: 
n p 

S^ = 2 1-B3 Yln(l+exp(-BE, )) (7a) 
n' P L 6 k kJ-n,p 

n,p 

N 

= K I 1 - ^ ^ i ^Ek7[ " £ * (7b) 
k k L Ek 2 k-^n,p Gn,p 

= J Ti- !lCi tgh (IBEJ] (70 
k L k Jn,p 

n,p 

where the subscripts n,p denote neutrons and protons 

respectively and S = S + S ,e = e + e . 
c J n p' n p 

To compute these expressions asymptotically it is useful 

to define the "quasiparticle partition function" Z(8): 

£(6) = n(1+exp (-BE, ) ) (8) 
k K 

and rewrite: 

S = 2 f 1-B3fl 1 lnZ*(B) (9) 

.A 

The estimation of Z(6) goes as follows: 

First | e,—X | = e, are substituted by integral multiples 

of some energy unit 1/g: 

e, = e, /g, for e, positive integers (10) 

thus: 

InZ = la lnj" 1+exp(-BV(n/g) 2 + A 2 ) ! (11) 

n 

where 

a = degeneracy of e, , if n=e, for some e, 

and 
a = 0 otherwise n 

8) We apply now the Mellin transformation 
1 1 

" Z A ,21**'* 
1 ̂  1 c+i« 

(n/g)2+A2)|= 27J- / <*z ( "| /TT *Bm 
c-i°° 

• z , 
:<F(f)K (Aflm) 

1.1 

(12) 

2Z"'2 



where K (t) is a modified Bessel function of the second kind. 

We define the Dirichlet series: 

a 
D(t) = I -£ (13) 

which will be assumed to be analytic except for simple 

poles at the points a>a > ........>a, >0 with the residues 

A ,A1, etc. Thus Z(S) will be given by: 

lz-1 2 2 
c+i°° 

ins - ^ / _ azgzD(z) lr,|)J(|A, C-l°° 

(_)m+1 (14) 

~m~ K
 1 (ABm) 

2z+2 

Using the r e p r e s e n t a t i o n : 

/ 1 x 
OO ( m. — \1 1 

tVK ( t ) = 2 v r ( v + 1 ) e - t J 2 m V 2 t > 
m=0 ( | + v ) m + 1 

where L denotes the Laguerre polynomials, 

InZ = - . / d Z g Z D ( z ) { 6 " Z r ( z ) ( 1 - 2 ~ Z ) C ( 1 + z ) + 0 ( B ~ Z + 1 ) } 
C-l°° 

= ^A. (1 -2 l ) C ( a . + 1 ) r ( a i ) (B/g) + D(0) lnZ + 
i 

+ 0 ( B ~ a N + 1 ) 

(15) 

(16) 

where £(x) d e n o t e s t h e Riemann £ - f u n c t i o n . 

And f o r t h e e n t r o p y a t t h e s a d d l e - p o i n t : 

- a . 
S = 2 D ( 0 ) l n 2 + £ ( 1 - 2 X ) Y ( o u + 1 ) ? ( 1 + a ± ) 2 A ± ( B / g ) X 

( 1 + J ) + 0 ( B _ a N + 1 ) ( 1 7 ) 

i 

which leads after some algebra to: 

m. (a.) 
S = I Mj(ai,Ai)E

 D x , nij > mj + 1 (18) 

This is a descending series of the excitation energy 

E = e - e - 5P(e is the ground state energy and SP is 

a correction for pairing and shell effects). The coefficients 

M.(a.,A.) and the exponents m.(a.) are given by Lagrange 

equations for e and N. The leading term is of the form: 
_J a_o_ 

__1 _a 1+aQ 1+aQ 
2 "1+a (1+ ^-){(1-2 °)Cd+a0)r(1+a0)Ao}

 E (19) 

o 

With equation (18) we have thus arrived at an explicit analytic 

expression for the entropy which shows how the relevant characte

ristics of the discrete single particle spectrum determines the 

nuclear level density for large excitation energies. 

For the simple case of a constant single particle level density 

without pairing forces, it is easy to see that: 

D(s) = ^U(s,x) + £(s,1-x)}, 0<x< 1/2 (20) 

(where c(s,x) denotes the generalized Riemann ^-function) and 

to find D(0) = 0 , A = 1, a = 1 which leads to: 

1/2
 CV4 y r ^ 

p ( E ) = g ( ~ L ) 6"~ Si _ _ (21) 
g n g p iZ ( g E ) D / 4 

1) 

which is the'iwell known ' Bethe-formula for the nuclear level 

density with g =g +g . In this case m(a) should be 1/2 and 

M(a,A) should be IT/ ~ g. It is also of interest to note that the Jj(| 



shell structure effects obtained for periodic single particle 

schemes in reference can be easily reproduced. The single particle 

energies are given by: 

e k l = k + n(Df k=0,1 ; 1=1,2 

with 
g 
I n(l) = o 

1=1 

where g is the number of the levels in each shell and n(l) represent 

the derivation of the 1-th level from the "center of gravity" of 

the shell. For this case the Dirichlet series has again only one 

pole at a = 1 and the level density is given by the usual formula: 

i—„-{Tyf"^> 
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p(E) = — exp 
Y4S E 

and for the effective excitation energy we obtain 

n 9 
E = e _ e o + T2 g ' ! g

(*-:b ) 2 +^(i>+i l n2(1) 
1=1 1=1 

where n is the number of particles in the last shell. This relations 

are in agreement with those of reference . 

It is also possible to compute analytic expressions for other 

single particle spectra. For example for an harmonic oscillator 

with energies e^ = (k+3/2)fuo we obtain: 

Dosc (S) = — „'U(s-2,1/2) + (-̂  2 - h (22) 
o s c* (-ttw)s (-trio) 

C(s, 1/2)} 

and for the partition function Z : 

InZ = *'- I -iL. - i I + 111 + o(6) (23) 
(•hu)) 180(nuiB; 

The Shell correction method 

The mathematical treatment applied in the preceding section 

provides also a method to study the closely related Strutinsky 
9) calculations for ground state shell corrections '. 

The effect of the shell structure on the potential energy surface 

is expressed usually in the form 

<5U = U - 0 (24) 

where U is the total single particle energy sum given by: 

X X 
U = /deeg(e), N = Jde g(e) (25) 

— 00 —00 

with 
i°° 

g(e> = 2lx J dfl efie Z (B) (26) 
-j_00 

using the partition function: 

-Be. 
Z0(B) = le K (27) 

k 

The smoothed energy 0 is given by the system: 

X X 
U = jdeeg(e), N = Jdeg(e) (28) 

—OO —00 

~ 10) 
where g(e) is the smoothed level density function : 

defined by the energy-smoothing parameter y and by the 

smearing functions £M(x): 

CM(x) = PM(x)a)(x) (30) 

where PM(x) is a so-called curvature correction polynomial 

of Mth degree and u)(x) is a weight function. 



To compute g(e) we proceed first with an asymptotical computation 

of Z (6) using the Mellin transformation 

-Be 1 c+i00 

e = 2~± j ds(Be) r(s), ReSe > 0, c > 0 (31) 
c-i°° 

to find 
n -A . -An+1 

Z (6) = I B T(A )B 3 + D (0)+0(6 ) (32) 
° j=1 J J ° 

where 

D0(s) = I - ^ - , e k / e m for k / m (33) 
k ek 

fc>k is the degeneracy of the level e, and we assume that D (s) 

has only simple poles a t s = A . > A . + 1 > 0 with residues B.. 

We obtain in this way: 

A. 
g(e) = JB e J + DQ(0)6(e) (34) 

J 

without the introduction of any parameters in addition to 

those defining the single particle spectrum. 

As a simple example it is easy to find for the single particle 

level density of a cubic box potential of side L, the smoothed 

expression: 

~, . _ 1 , 2mL2 3 / 2 j - 3 , 2mL , 1 / 2 1 1.. . ,,_. 

4TT2 « 2 8Tr 4l2 /£ 8 

11) which agrees with the result of reference obtained using a 

semiclassical procedure. 

Another example very easy to compute is the isotropic harmonic 

oscillator with a constant spin-orbit interaction with hamiltonian: 

2 
H = g J L y2 + 1 M a ) 2 r 2 _ k t f w l . a ( 3 6 ) 

l e a d i n g t o 

Zir\ - C l - k 2 ) e 2 k 3 e . 10k 1 > -9k 2 -3 
g.(C) - 2 ~ 2 + i. 

3(Hu) 3(1-k2) (-hoJ)
2(1-k2) 12Ha)(1-k2) 

(37) 

+ 5k3-2k56(e) 

12(1-k2) 

which is also in agreement with the semiclassical calculation of 
1 2) the same quantity 

Conclusions 

It is easy to see that the obtained asymptotic expression for 

the entropy (eq.(18)) will lead to more general relations than 

for the case of only one pole. But even for only one pole we 

obtain a more general expression than the usual Bethe-formula. 

It must be stressed that the analytic properties of the Dirichlet 

series D(t) depend only on the structure of the quasiparticle 

spectra and that the knowledge of this would determine entirely 

the nuclear level density through the parameters appearing in 

eq. (18) . 

The usual assumptions of a continuous single particle level 

density were not required, representing thus another advantage 

of this method. Of special interest is the possibility to study 

through the analytic behaviour of D(t) very important contri

butions like those arising from the shell structure of the spectra 

and their expected disappearance for very high excitation energies 

The so-called a-parameter defined by 

a = S2/4E (38) 

can also be calculated in term of the general characteristics 

of the single particle spectrum. Preliminary calculations using 

deformed single particle potentials of the Nilsson type re

produce qualitatively the energy dependence of the a-parameter 

ts 
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reported in reference ;/ ;and . Figure 1 shows the results 



13) 

of reference computed numerically for a single-component 

system having particle numbers 40 and 50 with a Nilsson spectrum. 

Figure 2 shows the parametrized energy dependence of the a-para-
1 A\ 91n 9T9 

Figure 3 shows the energy 

an(MeV!) 

14) 210 232 meter of reference for Po and U 

dependence of the a-parameter of the neutron channel (a ) derived 
206 

from an analysis of cross-section for the reaction Pb (a,f) 
1 5) from ref. '. It is clear that the observed energy dependence 

can be well reproduced by the expansion given by equation (19). 

Additional calculations as well as a study of the effect of 

deformation on the level densities are actually in progress. 

i(MeV^ 

5 TO 15~HMeV) 

a(MeV"1) 

FIG.1 

Energy dependence of the a-parameter for a 
single component system. 
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DEUTERON EXCHANGE MECHANISM FOR 6Li(n, a) 
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Abstract: 

In this Lecture the analysis of the Low energy ^Li<n,°t) cross section 
in a modeL which combines resonance amplitudes with a direct deuteron 
exchange mechanism, is presented. Advantages and shortcomings of the 
present ana Lysis are discussed, and directions of a future improvement 
of the model are indicated. 

The model. 

The Li(n,oc) reaction is of great practical importance: Its cross 
section is one of the most frequently used standards for neutron cross 
section measurements, and the reaction plays an essential role for 
tritium breeding in fusion reactors. 

A complete mu11i-channe I R-matrix ana Lysis of the 'Li system has 
been given by Hale /1/. ALthough this analysis describes the neutron 
cross sections of ^Li very well, it has the disadvantage of needing 
an ad hoc assumption: One of the characteristic features of the 
*Li<n,oc) reaction is its large 1/v cross section with a thermal value 
of 945 barn. This large 1/v cross section is usually interpreted as 
being due to a positive parity bound state or a far away resonance 
of positive parity. However, no such state has ever been positively 
i dent i f i ed. 

Mahaux and Robaye /2/ have analysed the *Li<n,«>c) cross section 
and its angular distribution within S-matrix theory, including the 
large 250 keV 5/2- resonance and a constant s-wave background amplitude 
which, however, is pureLy phenomenoLogicaL in nature. 

It has been proposed by Ueiqmann and Manakos /3/ that the major part 
of the 1/v cross section of 6Li may be explained as being due to a 
direct deuteron exchange mechanism. This proposal is based on the 
observation that the cLi ground state has pronounced d+d cLuster 
properties. In ref./3/ the deuteron exchange contribution to the 

*Li(n,a.) reaction amplitude is described by a simple pole graph, using 
the method of Shapiro /4/. It is shown to reproduce the channel spin 
1/2 component of the thermal cross section which according to the 
experimental data of G L a 11 L i et.aU/5/ constitutes 80% of the total 
thermal cross section. The channel spin 3/2 component remains 
unexplained atthisstage. 

The *Li(n,<x) cross section and anguLar distribution at higher 
energies <up to 400 keV) are described within the frame of S-matrix 
theory. The description of the resonance amplitude folLows cLosely the. 
formulation of iiahaux and Robaye /2/, with two resonances (5/2- at 
250 keV neutron energy and 3/2+ at 3.5 MeV) being considered. The 
constant background amplitude of ref./2/ is replaced by the deuteron 
exchange amplitude which exhibits a characteristic contribution to 
the angular distribution. For the details the reader is referred 
to ref./3/. 

In fig.1 experimental and calculated values for the ratio Bi /B0 

of Legendre polynomial coefficients are shown. The experimental 
points are from a recent measurement of Knitter et.al./6/. For 
comparison, fig.2 shows the same experimental data together with 
caLcuLated B,, /B0 values which resuLt when the deuteron exchange 
amplitude is rep Laced by a constant background amplitude. In both 
cases, the parameters of the model, i.e. the parameters of the two 
resonances taken into account and the ratio of the channel spin 3/2 
and channel spin 1/2 components of the 1/v cross section, have been 
adjusted to reproduce the experimental data as closely as possible. 
The channel spin 3/2 contribution to the thermal cross section 
required in both cases, is indicated in the figures; it is to be 
compared to the experimental value 

6-(s=3/2)/6-tot = 0.20 + 0.023 

from the polarization experiment of GLattLi et.al./5/. 

Discussion. 

According to the discussion in ref./3/ the following observations 
can be made : 

At low neutron energies (E^ < 0.5 MeV) the angular distribution is 
mainLy determined by the interference of the 5/2- resonance with the 
3/2+ background amplitude. A minor contribution to the anguLar 
distribution originates from the channel spin 1/2 deuteron exchange 
amplitude. Thus, the presence of a 3/2+ background is required not 
onLy by the poLarisation experiment of GLattLi et.al./5/, but also 
in order to reproduce the 6Li<n,ot> angular distribution at low neutron 
energies. Its magnitude has to be in agreement with the data of ref./5/ 
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At higher neutron energies the deuteron exchange Mechanism wilt 
have a stronger influence on the angular distribution. The analysis 
is hampered, however, by the lack of accurate experimental angular 
distribution data, and due to the fact that the parameters of the 
higher energy resonances are not well known. 

More in general, it can be stated that the R-matrix fit of Hale /1/ 
reproduces the fiLi(n,cc) cross sections slightly better than the present 
model. This is not surprising, however, since the R-matrix fit of 
ref./1/ is much more complete with respect to the resonance 
contributions to the cross sections. The present model is justified by 
the fact that the proposed deuteron exchange mechanism is physically 
realistic and that it avoids the artificial introduction of a strong 
1/2+ state which experimentally is not observed, rather than by the 
quality of the fit obtained with the present version of the model. 

Future improvement of the model. 

A number of shortcomings of the analysis in its present state can 
be identified, and suggestions for future- improvements can be made : 

The treatment of the resonance contribution is incomplete. As an 
obvious extension, more higher energy resonances should be included 
in the ana Lysis. In order to determine their parameters, also more 
experimental work, especially on the ̂ Li<n,oc) angular distribution at 
higher energies, is necessary. 

The simpLe deuteron exchange graph is a rather crude approximation 
equivalent to a PWBA. The effect of higher order graphs corresponding 
to distorted waves should be investigated. 

The origin of the channel spin 3/2 background amplitude, which 
constitutes 20% of the thermal cross section and predominantly 
determines the angular distribution at Low neutron energies, should 
be investigated. A deuteron exchange with spin f'Lip or, more probably, 
the sequential exchange of a proton and a neutron one after the other, 
are candidate processes. 

Other reaction channels than the (n,oO channel have not been 
considered in the present analysis, and it is not cLear how the 
additional direct deuteron exchange amplitude influences these other 
channeLs. This is an expression of the fact that the model in its 
present version which simply uses the sum of the deuteron exchange 
and a resonance amplitude, is not in Line with the requirement of 
a unitary S-matrix. Thus the model shouLd be improved in the sense 
that both, the resonance and direct exchange processes should be 
incorporated in a complete unitary S-matrix theory, and other channels 
besides the (n,«0 channel shouLd be incLuded in the anaLysis. 
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Finally, the same kind of analysis can be 'applied to other 
reactions between light nuclei. The most important candidate reactions 
are D(d,n)3He and T(d,n)4He. In the Latter case two exchange processes 
may contribute significantly: The transfer of a proton from the 
incoming deuteron to the triton, and the transfer of a deuteron from 
the triton to the incoming deuteron. 

B1^0 

0.8 

0.6 -

O.k • 

0.2 -

d-exchange 

er(s=3/2)/fftot = o.17 

Fig.1: Experimental /6/ and Calculated ratios of Legendre polynomial 

coefficients. Calculation with deuteron exchange model. 
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F i g . 2 : Experimental / 6 / and calcula ted r a t i o s of Legendre polynomial 

c o e f f i c i e n t s . Calculat ion with constant background. 
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Abstract 

A number of dynamical theories of nuclear fission 

are described. Their state of development, scope and com

plexity are very different. Special attention is devoted 

to viscosity and dissipation. One of the theories, the 

collective transport theory for nuclei also called the 

linear response theory, is of special interest. It is 

a general, theory containing all necessary ingredients and 

the numerical results compare favorably with available 

experimental data. 

Introduction 

The dynamical theories claimed applicable to nuclear fission are 

numerous." They differ both in their potentialities for describing various 

aspects of the fission process and in the complexity of their structure and 

practical applications. As a consequence many of them have never been applied 

to fission. Some have been used only in single test cases, in rather schematic 

situations or the first stage of a full calculation. Only one theory has been 

extensively applied to fission. Unfortunately, it is not solidly related to 

any microscopic theory of the nucleus and it is only able to describe average 

quantities and not their fluctuations. On the other hand some of the theories 

have shown very encouraging preliminary results both numerically and in capa

bility. 

We want to focus especially on viscosity and dissipation. It is therefore 

essential from the beginning to make clear what we mean by these words. The 

system we study is the nucleus. It is an isolated system. Thus viscosity has 

nothing to do with the nucleus moving in a medium. The many interacting nucleons 

moving around in the nucleus, constituting the nucleus, can be viewed as a 

liquid of a certain viscosity. This perhaps quite natural definition is again 

not what is meant by viscosity in the present context. 

The nucleus has many degrees of freedom. Let us chose a particular one 

viz. one of the so-called collective coordinates f.ex. the quadrupole defor

mation parameter. Let us follow its time development, resulting from a given 

set of initial conditions , over.a time period. If it shows a decaying behaviour 

towards an equilibrium value, the motion is damped, energy is irreversibly 

dissipated into the other degrees of freedom and the coordinate behaves like 

a particle in one dimension under the influence of a friction force. This 

behaviour is not something unavoidable. It depends on the intrinsic structure 

of the nucleus, and the time interval we follow the motion. Thus a necessary, 

but not sufficient, condition for irreversible dissipation and viscosity is 

that we consider only a part of the total number of degrees of freedom. The 

interaction with the remaining part may then act as a friction force. 

In most of the theories? it is necessary to chose a priori a set of 

collective coordinates q , perhaps given as operators. To do so we must have 

sufficient knowledge of the process under investigation in order to make an 

educated guess about the most important degrees of freedom in the dynamical de

scription of the process. This choice is very essential for the outcome. On 

the other hand, the physical interpretation is simpler, and the practical 

work required often considerably reduced. As soon as the collective parameters 

are selected, we have specified a subset of the complete set of degrees of 

freedom and viscosity and dissipation are possible features of the behaviour 

of collective coordinates. 
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The theories can be divided into three groups (i) time dependent 

Hartree Fock and its approximations and extensions, (ii) influence functionals 

and (iii) collective transport theory for nuclei. There are, of course, relation

ships and links between these groups, but they are not necessarily well under

stood, perhaps because too little effort has been devoted to clarify such con

nections. The collective transport theory uses the technique of linear response 

theory. It is in our opinion the most promising theory on the market. It has a 

much broader application range than just fission. It contains all the necessary 

ingredients, it can be applied in practical calculations and the results 

compare very favourably with available experimental evidence. 

These lecture notes have been written for the occasion. They are there

fore only notes and not a thoroughly digested, corrected and tested piece of a 

textbook. The material covered is enormous. Almost each theory would need several 

hours for a reasonable description. It is then clear that the notes must pass 

quickly over many points. The selection is presumably not always logically 

founded but rather a result of coincidence and the authors previous interests. 

Thus the notes appear perhaps rather inhomogenous, but they do on the other 

hand reflect the situation they pretend to review, i.e. the dynamical theories 

of nuclear fission. 

The notes are divided into three main sections according to the division 

of the theories. The equations are numbered consecutively within each main 

section and only in case of cross referencing is the section number used. 

I. THE TIME-DEPENDENT HARTREE-FOCK, ITS APPROXIMATIONS AND 

EXTENSIONS 

The discussion falls in two parts, where the first contains a descrip

tion of the methods and their formal relations and the second describes the 

results obtained in actual applications to nuclear fission. 

1. Formal development and connections 

A. time dependent Hartree Fock (TDHF) 

We are interested in studying a system consisting of Z protons and N 
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neutrons (N+Z=A nucleons) in mutual interaction. We assume that the assembly 

can be described by the Hamiltonian 

r *•*>,• 

V:l2 V, 
The "bare" nucleons masses are represented by m. and the "bare" interaction be

tween two nucleons j and k by the potential V. . These parameters are to be 
1) 

taken from measurements on the free nucleon systems. The potential V., shows 
r jk 

a complicated dependence on everything that characterizes the nucleons and their 

relative motions, i.e. their relative separation r., =r.-r, their relative 
-jk ~j ~k 

momentum p. =p.-p, , their spins (T . and 0* as well as their charge quantum 
numbers q. and q, . 

J k 

One can take nowadays this "bare"- potential between two nucleons from 

the meson theory of nuclear forces . The potential is mostly due to exchange 

of pions (the lightest of hadrons), though dominated by various pion resonances. 

A very schematic summary of the present understanding is shown in fig.l. 

(\MOJHM «. if»J 

fit* r»i-) 

Co; J ^i'»w 

* '. r F-» 

0\ 0 

r, 1 

r, o 

The figure pretends to reproduce the main features of the interaction 

in a low relative angular momentum state of the two nucleons. The spin J, 
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parity It and isospin T of the resonances are indicated. The upshot of all 

this is that these potentials in the decisive NN-channels are rather singular, 

with a strong short-range repulsive core at about r= 0.4 Fin, and an attractive 

medium range potential due to two pion exchange, fairly well represented by a 

O" -resonance. The single pion exchange provides the tail of the potential at 

about 2 Fm, and is also responsible for most of the very important tensor force 

in the effective potential. The existence of the repulsive core is essential 

for the stability of nuclear matter and for its saturation properties. As a 

consequence of this, it is fairly obvious that there must be short range cor

relations between two nucleons inside the nucleus: as they approach each other, 

strong repulsions become operative which prevents them coming closer to each 

other than about 0.4 Fm. It is this very essential fact about short range cor

relations that has been in the past one of the main sources of our troubles. 

When attempting to use Hartree-Fock methods (so successful in atomic and mole

cular physics) to nuclei, one finds immediately that these methods cannot 

handle the situation referred to above. The remedy was found many years ago by 
2) Brueckner, and later perfectioned by Bethe and his collaborators . The 

Brueckner-Bethe theory shows how to reduce this violent, instantaneous inter

action to a pseudopotential that is well-behaved, soft and non-singular. Un

fortunately it is also energy-dependent, that is, it contains a built-in time-

delay. This again is a source of much trouble in applications of the. Brueckner-
2) 

Bethe theory. 

Let us return to (1). Choose a (hermitean) potential 

and write 
H= ( T * U ) + ( V - U ) 

14 0 f W (2a) 

i. 
\ * o - r if * v;(.-> 

l*|' 

I J4k ^ / (2b) 

The auxiliary potential U is to be chosen so that it helps improving 

the convergence of the many-body perturbation theory based upon H . Brueckners 

theory gives a definite prescription about how best to pick up H and W in 

order to completely and efficiently solve the hard-core problem mentioned pre-
2) 

viously . However, as also mentioned, the practical problems for nuclear appli
cations are considerable. 

We shall not follow the Brueckner theory here, but go to work in a much 

more phenomenological way. That is, we consider H to be the kinetic energy, 

and W as some suitably chosen interaction (not necessarily two-body). We now 
3) believe that a good candidate for this is the Skyrme interaction . To a fair 

extent, it seems to reproduce some of the main features of the Brueckner-Bethes 

effective interaction. But with the Skyrme interaction we can again use 
3) Hartree-Fock methods . The price to be paid is of course that the relationship 

to the bare nuclear forces is at best very remote. 

Let us;now recapitulate the main ideas behind the Hartree-Fock method (or 
4 

the self-consistent field method) . 

It is one of a rather large family of variational methods. 

Suppose we are looking for the equilibrium states of our N-nucleon 

system. Choose a suitably parametrized many-body wavefunction \f(1,2,...,N) 

and compute . _ 

J Y (u,-t») H ?Ct,g>...»/)jf l>.-iM 
£ - - : ~ • :— (3) 

\ 
Determine now the parameters of JJ in such a way that small variations 

£ -* $ + hi [4, *,:..,* ) 

$* -> i* + Svf* (1,2,...,/s/) 
imply 

to the first order of small quantitites SF and Sf . 
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Alternatively, the normalization condition on the wave-function may be 

considered as a constraint. Then consider 

E-. <£ IH l i > 
and extremize- i-t subject to the constraint 

<f I J >= 1 
To achieve this, use the method of Lagrange multipliers. Define 

E'- it - A < £ • £ > (4a) 

where X is a Lagrange multiplier. Carry now the unconstrained variation on E' 

St'.o (4b) 

If there are no further a priori conditions on *£ and its variations then 

one gets simply the Schrodinger equation 

H $ ( « . ? . . . N ) * * £ < V - . . A / ) (5) 

where X appears now as the energy eigenvalue. The Hartree-Fock approximation 

consists in picking up a particular trial wavefunction ^ , a priori restricted 

to be in the class of Slater determinants (or a product of Slater determinants, 

if the protons and neutrons are treated as distinguishable) 

J7J» ^. ( i ) (f^<» 

t,M - - IV^ 

(6) 

This wavefunction is automatically normalized if 

The <̂  's are single-particle wavefunctions, to be determined. They are i 

fact 2-spinors 

with complex components Cv fa ) fa-. ^ zl . We are going to choose them 

such a way that 

£ r < <J | H I <J > 

BE'-- 8 ( E - J , Al/ jcpv f^^^)r f (0 )'~ ° 

is extremized, subject to the conditions (7 ) . We i n s i s t then that 

(8) 

The E' i s thus a functional of the (p and (P . We have 

1 Vote. J 

t- i 2 y ^(1> |j(t> <?VV <p*fc> ^ ( , ' z ) [ ^ ° ' **'*' -

From (8) and (9) we get the equations 

— - o 

bqj^ 
=. O 

(10a) 

(10b) 



This leads to the Hartree—Fock equations 

- ^foyo]:>vcfv(i) (11) 
In all of these equations, the notation 2, means that the sum must be 

VBIC 

carried out over the single particle states represented in the Slater determi

nant (6) . 

The system of highly non-linear equations (11) must now be solved. 

Note that the trial wavefunction (6) contains no build-in dynamical 

correlations. It does contain, however, and exactly, the statistical corre

lations demanded by the Pauli principle for Fermions. 

The idealized result of completely solving (eq.ll) is schematized in fig. 2. 

|MV> 

Fig. 2 

In this figure | A ) , | B ^ , | C } . . . , are true physical states of our nuclear 

system, all having definite symmetries. Ideally, we should get approximations 

to at least some of these states, if H and W were correctly chosen, and if we 
o 

could solve (11) and find all the solutions. Notice that the Hartree-Fock 

approximation, being based on a variational principle, approaches the lowest 

state of a given symmetry from above. 

In practice, unfortunately, we are far from achieving anything like this. 

There are considerable problems (even if we knew how to pick up H and W correct

ly) connected with the non-linearity of (11). Some iterative methods must be used. 

Convergence is not guaranteed. As a consequence, unless some further assumptions are 

made, we cannot be sure of reaching the stationary state that we want to approximate. 

The above method provides only static solutions, of course. It is in 

particular well-suited for studying ground states. In fission problems (and 

problems connected with deep inelastic nuclear scattering) we are also 

interested in time-dependent (non-stationary) states, ideally solutions of the 

time-dependent Schrodinger equation 

a l l , H?- (12, 

It can be shown that this equation (like (5)), results from a variational 

principle that generalizes (8). Consider the action 

(13) 

(14) 

The solutions M̂  (and Ŝ  ) of eq.(12) are the functions that extremize the 

action (13), i.e. they make 

Sv --o V (15) 

for small (arbitrary) variations around *r (t) and Jr (t). 

Our approximation consists in assuming that y (t) (and its conjugate) 

are a priori restricted to the class of (time-dependent) Slater determinants. 

The time-dependence is carried by the single-particle wavefunctions 
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Thus the.variation principle results in the time-dependent Hartree-Fock equations 

il'\'q* IV)= #o(0 t ( U l + (16) 

These equations must now be solved subject to appropriate initial conditions. 

B. The Time-Dependent Hartree-Fock-Bogoliubov Approximation (TDHFBA) . 

Let us consider again the H.F. approximation to the ground-state, i.e. 

the solution of the system of equations (11) that corresponds to the absolute 

minimum of the energy. This leads to the approximate ground state energy 

"«c of. 
(17) 

where now the (Pv CP are supposed to be solutions of the system (11) corre

sponding to the absolute minimum of the energy. However, whether this is 

in fact a minimum'depends on the dynamics: it may happen that the actual re

sidual forces in nuclei are such that a solution that is supposed to be the 

absolute minimum not only is not the absolute minimum, but is not stable at 

all. This is in fact the case for nuclei, as is well known. The so-called 

pairing residual forces tend to destabilize the Hartree-Fock solution. We shall 

define here a "pairing force" to be any attractive residual force between two 

identical nucleons occupying two orbitals that are time-reversed of each other. 

As a result of such forces, bound states of two identical nucleons are formed. 

These t;..r:e-reversed orbitals are assumed of course to be degenerate (Coriolis 

forces in rotating deformed nuclei do tend to lift this degeneracy, and there

by they oppose the effects of the pairing forces). The energies of the orbitals 

involved in this phenomenon lie rather close to the Fermi energy of the nucleus, 

In practice, this means that pairing forces act mostly among the orbitals of 

the last major shell that is being filled up. Therefore the energy spread of 

the contributing orbitals is significantly less than say the spacing between 

two consecutive major shells. Typical orders of magnitude of these parameters 
5) 

are 

Pairing force — » A ^ ~7=- ^ V (18) 

Major shell spacing — * -^ ̂  ^ .—_. \^t \/ 

This means that this pairing effect is in fact only a perturbation upon 

the basal shell structure of nuclei. That it nevertheless takes such an enermous 

importance in the physics of nuclei is a reflection of the circumstance that 

it is operative (as we mentioned) in a narrow energy band around the Fermi 

energy, which is precisely the area that controls most of the low energy 

nuclear phenomenology. We could mention here that the_Skyrme force referred to 

above is not really designed to account for pairing forces - it therefore is 

usually supplemented by further components that do have the specific pairing 
6) 

character mentioned above 

The formal treatment of pairing in nuclei is most conveniently carried 

out in the second quantized formalism. Let us therefore begin by reformulating 

the above in this formalism. 

Consider the Hamiltonian 

» *• *4^ d9) 

consisting for simplicity of at most two-body terms - there is no real 

reduction of generality. Furthermore, we continue considering only one kind of 

fermions, again with no loss of generality. We can express H in a second quan-

• ., * 5)-tized form 

u_ Z o i io^<*V+ ; l r v j q„V*,*« (20) 



where a (a . ) are single-fermion creation (and annihilation) operators, 

that respectively creates (destroys) a fermion in the (for the moment unspecified) 

single particle state fu") ( |N> ). The amplitudes V ^ » are the antisymme-

trized matrix elements of the two-body part of H: 

(21) 

' t J i 

Let us go over to the Heisenberg picture: 

/Ht .rue 
a ; ( t h e . <v e (22) 

The stationary states of H are denoted by /n\ ! 

The ground state in particular is_fo^ with energy E . 

The Heisenberg equations of motion for these quasiparticle operators 

are obtaiend from (22): 

d t (23a) 

I <; a j t o. ^ ^i.) ^ a v ^ ^ ({),,,wVM (23b) 

Consider now the so-called density matrix: 

(24) 

By using (23a) and £23b) we get the equation of motion for Q. (t) 

(25) 

These equations are of course exact. They constitute the first link of a 

a rather long chain of coupled equations. The remaining links can be obtained 

by considering next the equation of motion of the higher density matrices 

<ol cCfl/<U«c~lo> (26) 

Solving this huge chain of equations is of course tantamount to solving the 

Schrodinger equation (12) itself. 

Here we can begin our series of approximations. The leading approximation 

boils down to the TDHF. We assume that we can approximate (0^ by a Slater determi

nant, symbolized in the following figure 

for /O^f /«= J» 

If**'* 

low,jt M 

(hltk, Jt*t 

W 

/ft = N r w t 

Fig. 3 

The Hartree-Fock ground state | 0 ^ satisfies the condition 

< ' ^ * (27) 
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Next assume the following; 

or 

where ^ Pl**^ » £ M ^ V are (for the moment) unknown amplitudes. With these as 

sumptions, it is an easy matter to verify that 

This is the approximation: it allows us to break the chain at an early stage. 

Inserting (29) into the equations (25) we get 

- f?J u ^ e-fe 
Defining 

*<,Ws fr *W ?« (30> 

we ge t 

or in matrix form 

(31b) '? = [Mpi^u)] 
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where 

Xjpj r ̂  4- v^pJ (32) 

is the Hartree-Fock Hamiltonian. The reader can easily verify that 

within our approximation the matrix V behaves like a projection operator 

Vf (33) 

(eq(31b) is the time-dependent Hartree-Fock equation. Result (31b) is easily 

shown to be equivalent to our previous results. 

Let us now examine what we have done. We have chosen a "vacuum state" 

(i.e. the ground state) to have the following properties: 

Fig. 4 

JiMfU b*rU'de < w ] < " 

The Fermi level A„ is determined by the conditions 
r 

The first N states under X„ are occupied with probability l,and the levels 
r bove A are empty with probabil i ty 1. Define these p robab i l i t i e s respect ively 

* l • » . 

V . and Uw, : * *- o i. . 

1 
as Y- and Uu, : 

1 fe=kl>f 

UVL ^U 

V* 1 
(34) 

o w ^ y > > A f 



Define the amplitudes 

V^ = + J^f (35) 

to be r e a l . Then conditions (34) can be summarized thus: 

C ^ , j D > = ° ^ * - (36) 

i f 

The notation k means "the time-reversed state of k": 

10= 1^> 

(37) 

(38) 

where T is the time-reversal operator as defined in ref. 5. In the. context 

of the present Hartree-Fock theory, there is no motivation for introducing 

these conventions. We do it for future convenience. 

The Hartree-Fock approximation is thus characterized by these sharp 

probability distributions for occupancies of the self-consistent set of single^ 

particle states (at least for the case of zero temperature that we are consi

dering now). The existence of pairing forces among time-reversed single-particle 

states leads to the conclusion that the above cannot be a description of the 

ground state of our system. The correct approximation, as is well-known, consists 

in choosing a new trial state for / 0 \ (the BCS-state), and new quasiparticles 

satisfying the property 

J \o\-o oM k 
^ xyj' - (39a) 

with 

^W = Hie «V + V. Qz 
(39b) 

The amplitudes u, and v, can be chosen to be real, and such that 

However, in contrast to u and v. the new probabilities are no longer step

like distributions over the quasiparticle states. They turn out to have in 

general the form sketched in the following figure 

^ iVt^XL ^IAAHJXME'J* <*f7 

The essential- point is, there is no longer any Fermi surface, and hence no 

natural distinction between p-type and h-type quasiparticle states, as is the 

case with the Hartree-Fock approximation. The exact form of v, can be determined 

from the variation principle - the result is that they are found by solving 

the Hartree-Fock-Bogoliubov equations, to which we now turn \ 

Consider again the linear transformation (28), and write 

c\* = r < î/> o// 

We shall now allow a more general linear transformation, the so-called 

generalized Bogoliubov-Valatin canonical transformation, designed to take into 

account the basic features of the pairing correlations 

Q + = r [ ^ i p »?+ + <vi/> «* ] 
(41) 

With this more general transformation, the result (29) must be corrected, 

We now get, as the reader can verify 

- C £>!<** ftv|o)61fiJ « j l©^ 4 (42) 
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With these assumptions, it should be clear that we no longer are de

scribing a system with fixed number of fermions, as hitherto we have been 

doing. This is the price we must pay for the simplest possible extension of 

the self-consistent field method that allows for pairing. We can thus restore 

particle number conservation only in the mean. We introduce therefore a con

straint, that on the average the particle number is to be fixed at N, i.e. 

l0\ hi io>s M (A3) 

This constraint must be taken into account in the usual way through Lagrange 

multipliers, before we proceed to the variational calculations. Then define 

|V= K -Aw 
2 ?v <V*o- A & . v j O I**?***. + 

(44) 

H ' 5 ?,vv ^ °^**v + i ^ . VVvVv ft"NX*, (45) 

with 

^,vfc * 0 , i t - > U l O (46) 

The approximation (42) shows that we must now consider other types of densities, 

besides the Hartree-Fock density (24) - the pair densities: 

(3,*. r ^o\QJm Q, l o ^ (47a) 

%* - £o\ ar** '°> (47b) 
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Equations of motion for all these densities (generalizing 31b) can be easily 

found by considering the so-called Nambu representation 

( ^ 

V «f J 

(48) 

Consider then the generalized density matrix (including pair densities) 

The equations of motion for its elements, now using the approximation (42), 

are 

+ r NA<, < * v
f O" ~ ^ W W 4 C « i > + (50a) 

V 

v 

and 

.. 2 w , v <«**«,• > + J \A/V 1 <£ V *L
4 > -

^ 2 * £ ^ ' ^ " ̂ * ^ V O •* ^ - (50b) 

and i t s complex con juga t e . We have de f ined 

**f. ~- ^ V-«.(l^. « 0 (51) 

£>«t " i ^ . V*f**.* <ttv«0 (52) 



By means of def.(49) , eqs. (50a) and (50b), we can neatly summarize all 

these equations: 

Jt ̂  = L '^M J <? ] (") 

as the self-consistent equation extending the Hartree-Fock equation (31). 

The matrix 

w l-VT-S C \T^ *& / (54) 

is the Hartree-Fock-Bogoliubov matrix. The sub-matrices ̂  have matrix elements 

given by (52). The^suhmatrix H is the single-particle energy matrix, already 

encountered in the Hartree-Fock approximation (cf.(32)) 

H,„ - U ' t w y (55) 

These equations are still- too complicated for the extensive numerical work 

demanded by fission theory. People proceed therefore to further approximations, 

that might be good enough for a first orientation. As an example of an useful 

approximation, that actually has been applied in studies of nuclear fission, 

consider the following case, discussed by Blocki and Flocard.Assume: 

a) That the canonical transformation (41) is of the simple type 

V \ (56) 

wi th 

b) That the pairing matrix elements contributing to the "gap equation" 

(52b) are of the type 

N V r ' ~ V SA- Q (57) 
where G is a constant. This is the case that has been very popular in 

studies of static pairing (nuclear spectroscopy). 

The amplitudes u~ and v in (56) need not be real; however, all that 

matters is their relative phase. We shall therefore assume that u^. is real, 

but that v may be complex. 

r 
With these assumptions, we get from (52) 

with 

and 

<(<• - - a<A A* 

A r Q 2 i< 
v 

V > 0 

(58a) 

(58b) 

K ^ r U v Vv (58c) 

The notation £ (-••) means that the time-reversed state of V must not be in-

eluded in the summation, as it has already been accounted for. 

Eq(50b) gives 

y\<v - [ K ^ 4 Hvv) KV +• 4 0 fy - i ) (59a) 

where we have defined 

^ - W v l - ? 7 (59b) 

From (46), 51a) and (55) we have 

K v 0 - ^ u ! i o - > ^ W | V > = £ o v - \ * W „ v (60a) 
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with 

W w * ^ ^ . ^ <°»vt «^"> (60b) 

Hence 

with 

Inserting these results into (59a) we get 

Eq.(50a) gives 

(60c) 

(60d) 

(61) 

(62) 

Eq.(61) and (62) are the so-called dynamical pairing equations. They must be 

solved self-consistently, together with (43) and (58b). A simple two-pairing 

levels model has been thoroughly discussed by Blocki and Flocard, as an illu

stration. 

At this point, these authors introduce further assumptions designed 

to facilitate the actual determination of the "single particle energies" e v . 

They show for example that one can determine e v by defining them to be 

j j* r <k+<:.Ovi (?) q>„ £ , * ) 
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(63) 

where Q (r,t) are single particle wavefunctions satisfying the TDHF-equations 

*•£/ Or>-0«. 
H( p) is a one-particle Hartree-Fock Hamiltonian. It could be derived for 

instance 

density. 

3) instance from aSkyrme-type effective interaction, Q is the single particle 

Further discussions of this model, as well as other examples of plau-

siile approximations, inspired by studies of static pairing (nuclear spectro

scopy), can be found in the paper by Blocki and Flocard. 

C. The Adiabatic Time-Dependent Hartree-Fock Theory (ATDHF). 

The self-consistent theories outlined in the previous sections are the 

starting point of much contemporary theoretical work relevant to the fission pro

blem. Much of this work attempts to simplify, or to extend, the above-formula-
. 9 ,10 , 11 , 38 ,39) . , , . , . . , . 

tion . All the basic problems one encounters in this connec

tion appear already at the level of the TDHF theory. We shall therefore in 

this section restrict ourselves to this theory in order to avoid unnecessary 

complications. The following discussion could, however, with little effort, 

be extended to the TDHFBtheory. 

The selection of the approximation method is to a large extent guided 

by physical considerations, i.e. by the understanding one has achieved of the physics 

of the problems that have to be solved. In the case of nuclear fission, understanding 

of some of the basic features of this process has been achieved through the 

intelligent use of the nuclear collective model, the earliest version of which 

came to be known as the Liquid Drop Model. It provided the first successful 

theory of fission. The collective model has furthermore had tremendous success 

in the field of nuclear spectroscopy, as is well-known. Nonetheless, its rela

tionships to the basic effective forces among nucleons in nuclei are very obscure. 

Practitioners of the TDHF theory claim that this theory can provide a 

microscopic basis for the collective model. This connection is the object of 

study of much of the above-mentioned work. If established, it would obviously 

reduce much of the apparent arbitrariness that characterizes the collective 

model, thus enhancing its predictive power. 



The adiabatic approximations to the TDHF theory is one of the main 

approach roads to this desirable goal. Recall that adiabacity is also one of 

the basic assumptions of the collective model. Adiabacity means here essentially 

that the collective motion has velocities that are in some sense small com

pared to intrinsic particle velocities in nuclei. As a consequence, the nu-

cleonic motion adjusts itself practically instantaneously to the changes in 

the collective coordinates with time. 

Consider a single coordinate q = q(t), say the yj-deformation para

meter of a fissioning nucleus. In the context of the collective model, as 

applied to the quadrupole mode, this corresponds to ignoring the ^-coordinate and 

the 3 Euler angles defining the orientation in space of the deformed nucleus. 

Within the adiabatic approximation, the Hamiltonian for this coordinate can 

be put in the form 

f U - hC*)}1 + W O (65) 

where M<(q) is a mass parameter characterixing the q-motion, and V(q) a given 

potential energy. Recall that the Bohr Hamiltonian for the quadrupole mode , 

for example, is determined partly by adiabacity requirements (which allow one 

to retain no more than quadratic terms in the collective velocity, linear terms 

being ruled out by time-reversal invariance), and partly by general symmetry 

requirements. This alone does not of course fix the form of the functions M and 

V in the Hamiltonian. Notice also that the Hamiltonian (65) is entirely clas

sical. Quantization can of course be carried out in a straightforward manner, 

even if somewhat complicated by the fact that in general the collective coor

dinates are curvilinear. 

One of the main goals of the ATDHF theory is to obtain the Hamiltonian 

in the form (65). If this is achieved, then that would be progress, as both 

the mass parameter of the motion and the potential energy surface V should then in 

principle be determined by the effective nuclear forces. 

The ATDHF theory uses two basic features of the TDHF: 

a) If the density matrix P(t) obeys the property 

r . ( 6 6 ) 

at time t, and also obeys the TDHF equation, then the property (66) is preserved 

for all times. 

That is, if at time t = t , the solution of the TDHF equation is a Slater 

determinant, then the TDHF equation can only transform it into another Slater 

determinant. 

b) The function — *j-

where \Mt) is a Slater determinant obeying the HF equation, is independent 

of time : 

i! 
H ' 0 (67) 

E can therefore be interpreted as the total energy of the system, E (see eq.(17))-

it is conserved. Recall that 

The Hartree-Fock Hamiltonian (32) is in this notation 

| ( f K L l O + TVV( i f 2 ) j fO (69) 
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Properties a) and b) can easily be proved: both are vital for the following 
• -• 9) approximations. . 

We now search for a way (hopefully unique!) to put (68) in the "phenome-

'nolbgical" form (65). 

One of our tasks will then be to identify what q(t) and q(t) are. Expres

sions (68) and (69) contain only microscopically defined coordinates (the nu-

cleonic positions, spins and charge quantum numbers). There is no obvious pre

scription as how to define something like q or q. It is true that in the so-

called RPA-approximation to the TDHF equation (31b), these collective coordi

nates and velocities (or rather, momenta) arise naturally as a consequence of 

the equations themselves, but the RPA is a small amplitude approximation, i.e. 

valid only for small deviations from the (stable) equilibrium solution Pa. , 

i.e. the solution satisfying 

*•!£-• [Mh i -M 
We are however not interested in this small amplitude approximation, 

as it is a meaningless approximation in the context of fission. 

Whichever way we choose to define q and q, we shall have to satisfy a 

basic property that distingushes one from the other in the classical formula

tion: q(t) is even under time-reversal (a,t least in the absence of external 

magnetic forces), whereas q(t) is odd. With this in mind, we shall restrict 

ourselves here to even-N systems; for odd-N, the properties under time-re

versal will be more complicated. 

One of the possible ways of introducing these collective coordinates 

in the theory would be through a constrained Hartree-Fock approximation. For 

example, choose a set of time-even, one-par tide opearators q. (i=l ,2, .. .K) , 

such as the zero components of even multipole operators 

Then insist that the Hartree-Fock state | lf(t)^ satifies the constraints 

<^(fc) | \ . | $(fr)^ r %,U) (70) 

This can be achieved through the usual Lagrange multipliers. The Hamiltonian 

H is to be modified to 

K 
(71) W -- U- T /V v 

The X's are to be determined by the conditions (70). Thus the Hartree-Fock 

determinants 

^ (*. * , . . . ? * ; 1 , q» — %K ) 

become parametrized by these K time-dependent parameters. We have 

A 

(72) 

The constraint operator q is usually time-even; if q(t) is to be time-even, 

then P(t) must be time-even. That is to say, if T is the time-reversal ope

rator then 

^T " ̂ P T~' (73) 

is required to be equal to O . It can be shown that, except for static 
. 9) 

Hartree-Fock solutions, this is not in general the case 
.9) . 

The solution to this problem proposed by Baranger and Veneroni :.:is 

the following: 

Introduce two new hermitean, time-even matrices % and P , and the similarity 

transformation 

p U ) s e Pot*-) € 
\ \ (74) 

As a consequence of (66), one can immediately see that 

\ * (75) 



That is, o is also a Slater determinant, now time-even by definition. How 

can such a time-even Slater determinant be obtained in practice? That is easy. 

Take, for example, a time-even potential such as a Nilsson potential,' and 

fill up the first N levels (recall that N is even) at a given deformation. The 

resulting Slater determinant would be an example of a O . 

Let us now make use of the idea of adiabacity. If the collective motion 

is assumed to be slow, then ty(t) is almost in static equilibrium at t. 

Hence, the matrix 

o T - e p j t ) *e (76) 

that represents the time-reversed motion, must be almost the same as Q . 

This implies that the (dimensionless) j£(t) must be small relative to unity: 

it is our adiabacity parameter. We expand everything in powers of X and retain 

only the leading powers - at least as many as are required to produce an 

Hamiltonian of the form (65). 

Before doing that, however, let us note that transformation (74) by 

itself does not define uniquely the matrices *J£ and O , of course. 

Baranger and Venerpni have shown that it is possible to impose further con

ditions on % and P so that they become uniquely defined. 

Consider 

^ * i - ?* 
(77) 

The additional.conditions could be 

^o ypo =• ^oX& 0 = o (78) 

The first condition states that f has no particle-particle and no hole-hole 

matrix elements in a representation that diagonalizes 0 . In this case, we can 

write 

(79) 

These conditions makes the restricted J£ after the adiabacity assumption 

is applied, to behave like a canonical momentum conjugate to the generalized 

coordinate 0 , and hence a natural adiabacity paramter-

Write then 

^ U ) - ?.£(•> + (>,<*) + f v ' O +••• 

Qi - <L*, p.] 
with 

(80) 

(81) 

and the Hartree-Fock potential 

C - T, vP, 
lM* TrVf,. 

The even terms in these expansions correspond to time-even parts 

and the odd terms to time-odd parts. 

Inserting these expressions in the Hartree-Fock equation one gets, 

separating time-even from the time-odd parts 

(82) 

The result is that the energy E can be expressed in the form 

F - T f v 
C- ° ' (83a) 81 



where T is the kinetic energy of the collective motion 

•»-- T- i" Pi (83b) 

and the potential energy 

V-.v(fv). V t . p . 4 i-TrtOT.lv) j.(OvhO ^'-»83e) 

is just the expectation value of the many-body Hamiltonian H for the Slater 

determinant P . It represents that which in the collective model parlance 

would be called the "energy surface", or "deformation energy". 

If we choose to parametrize O in terms of generalized coordinates 

q.(t) as mentioned above, then the potential energy V would become simply a 

function of the q's: 

V - v Ui, <n v. , O w 

Using now the formula 
•C 

V i ci d ^ .• 

2k 
v 

the kinetic energy (83b) can be put in the form 

(85) 

(86) 

Explicit expressions for the mass tensor m..(q) are discussed by Baranger and 
.9) " 1J 

Venerom. . 

Note that adiabacity is a vital ingredient of the theory sketeched 

above. Terms in the Hamiltonian corresponding to viscous forces, and 

traceable to the splitting of coordinates into collective and internal coupled 

together, do not arize. Thus the theory outlined above cannot be applied to 
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fission, without introducing some modifications or further refinements and ex

tensions. In view of the successful solution that it provides for the problem 

of how to establish contact between the microscopic self-consistent field 

methods and the phenomenology of the collective model, the task of improving 

the ATDHF theory outlined above appears to be well worth-while. 

D. Restricted TDHF 

The time dependent Hartree-Fock method has the defect that an enormous 

number of (mostly) unphysical dynamical variables are needed to describe a 

large system, since all orbitals in the determinantal wave function are treated 

similarly. A method to avoid this difficulty is available. A large part of 

the TDHF determinant, the "core" is described by a few collective parameters. 

The basic assumption is that this core is inert, apart from changes associated 

with the motion of the collective parameters. The remainder of the determinant, 

the "particles", is treated microscopically in the standard way. This separation 

results in a dynamics in which the core is polarized by the particles which in 

turn evolve in the core's one-body potential. The usual self-consistent particle-

particle interactions and the collective and potential energies of the core 

are also included. In addition to offering the possibility of significant com

putational advantage, our particles-core separation is the natural dynamical 

generalization of the microscopic-macroscopic methods used for calculating 

potential energy surfaces. 

.. . . 12) 

We employ a variational formulation of the many-body Schrodmger equation 

The result is a coupled set of time dependent equations of motion for the ex

pansion coefficients describing the core particles and the collective coordi

nates describing the core. 
In the extreme limit where the system is allowed to vary only through 

the core, i.e. the collective coordinates, the equations of motion are much 
13) 

simpler . For one coordinate q they can be reduced to one second order dif
ferential equation r _ 

2K + T D ^ f ^K I ̂ K ^ ~ a* J (87) + 3«v W K U K 7̂  3* J 
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where E is the"energy of the system and B and K are given in terms of the 

nuclear density O and a function Q by 

11 S - t JQ '4 J" 
(89) 

Here Q is related to the velocity potential describing the current arising 

from variations of q. It satisfies the continuity equation 

where p (the collective momentum or velocity) is proportional to q with an 

arbitrary proportionality constant. 

These expression can easily be generalized to more than one-collective 

coordinate. The equations of motion contain only quantities expressed by the 

nuclear density and the velocity functions Q. Thus although the starting point 

was Hartree-Fock, i.e. one Slater determinant, the result appears to be 

more general, since the parametrization of the nuclear density now can be made 

directly. 

When the process is understood well enough to allow an educated guess 

of the essential degrees of freedom (parametrization) the method gives fast 

and accurate average quantities, which are simple approximations to those 

obtained by the enormously more complicated time-dependent Hartree-Fock pro

cedure. For such processes the method is well suited for exploratory calculations 

of average properties. The results, i.e. the collective coordinates as 

function of time, are easily interpreted in simple physical terms. 

The variations of theisystem is only through the collective coordinates 

and consequently it is impossible to transfer energy to the intrinsic degrees 

of freedom. As it stands, this formulation therefore excludes the descrip

tion of dissipative phenomena. An extension in this direction would be very 

interesting and useful. 

E. Generator coordinate method 

The limitation in TDHF to a single Slater determinant can be removed 

by allowing linear combinations of Slater determinants. Let us assume a con-

tinous one-parameter family of Slater determinants ^ labeled by an index o< . 

We can think of the set arising in a constrained Hartree-Fock calculation. 

The wave function <t> (x.) depending on the particle coordinates can then be 

written 

<f>K)c U« CM ^ K - , * ) (9i) 

where c(oO is a function of JC to be determined later. 

The integral in eq.(91) is now approximated by a discrete sum of N 

contributions. They have to be selected carefully, close enough that no in

formation is lost and far enough apart to avoid degenerate Slater determinants 

(basis states). One state <p , labeled by an index k is then given by 

4> fx,)r 2 CfM
fc> >f f*-,*0 (92) 

The given Hamiltonian H, which should be given in terms of two, three 

or higher-body interactions, is now diagonalized in the non-orthogonal basis 

set ^ ( x . ,x ) . 

14 4v -- M „ (vt--i,2.....*0 (93) 

k k k 
The result is N set of energies and coefficients E, , (c,, c„,....c„). The 

k 1 2 N 

time dependence of these solutions <§ , is then trivially given by 

<t>k£tf|p£-t'bfc.fr/fc J . Thus any linear combination (^» of the 4* i. 

develop in time as • ,- . / 

where the expansion coefficients a define the state <p at time t = 0. 
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Let us now imagine that the collective coordinate ^ is a one-

dimensional path leading from the nuclear ground state over the fission 

barrier to two completely separated fragments. The N solutions <p, 
k . 

described by c , i = 1,...,N then contain at least one solution where the 

non-vanishing c-coefficients are concentrated around the a-value corresponding 

to the nuclear ground state. The lowest of these is the new and improved ground 

state. There would also be at least one solution where all non-vanishing 

c-coefficients corresponds to completely separated fragments. 

We want to study the time evolution of the fission process. The expan

sion coefficients a in eq.(94) are chosen such that y for t = 0 reproduces 

[L (x., Ot ) where 0< means the collective coordinate slightly beyond the 
I i nJJ nB 

barrier. The time dependence of d» , trivially given by eq.(94), is then readily 

obtained. The information gained is thereby limited to the time evolution along 

the preselected path described by *( . 

By choosing two degrees of freedom e( and ft , which could be a symmetric 

and a particular asymmetric division of the nucleus, we can learn several 

things. The procedure is in principle the same as for the one parameter case, 

since the elements of a finite two-dimensional matrix can be ordered into a 

vector. If the initial condition again is chosen to be slightly outside the 

barrier, we obtain besides the time evolution also the probability for sym

metric and asymmetric'fission. 

The obvious most general countinuation of this line of thought is to 

choose as many degrees of freedom as we have possible mass and charge divisions 

of the nucleus. In principle we can then obtain the dynamic evolution of the 

fission process ending up with definite probabilities for each mass and charge 

division. This is of course absurd, since the number of collective coordinates 

in this type of approach must be very small, i.e. at the most about 5. Thus 

only a few points on the mass distribution curve can reasonably be expected 

to be calculated this way. 

Does this procedure include any damping mechanism? To investigate this 

we consider again the initial condition of <p = iWx. , °* R) and study its time 

evolution. At a given time t>0 we have a distribution of OC-values around 

the most probable ^ of them. Instead of viewing the wave function this 
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way we may expand the individual vL"(x., oi ) in the distribution on the com-
' l n 

plete set of wave functions for ot of non-vanishing intrinsic excitation 
m 

energy. Thus the distribution of oi -values is equivalent to an intrinsic 

excitation energy distribution for given C*< = P̂  .In other words energy has 

been transferred from the collective motion to the intrinsic degrees of freedom. 

Therefore damping is included and can be recognized as a broadening of the 

distribution in the collective coordinates space. 

F. TDHF with collision terms 

We shall now consider yet another line of development that tries to 

push the TDHF theory in a direction that seems most needed in studies of 

low energy, large amplitude, nuclear dynamics (specially fission and deep 

inelastic nuclear scattering). 

Recall that the time-dependent Hartree-Fock wavefunction (a Slater 

determinant) does not contain any dynamical correlations among quasiparticles, 

but does describe exactly the statistical correlations resulting from the 

exclusion principle. Thus the HF-quasiparticles are sharply defined states, 

with infinite lifetimes, a situation that clearly is unphysical. The optical 

model of the nucleus indeed implies that a quasiparticle in a nucleus does have 

a finite lifetime. These finite lifetimes may, in certain contexts (fission, 

deep inelastic scattering) play a vital role in the development of the actual 

dynamics, and therefore they must somehow be included in the formalism. We shall 

return to this question in the last chapter (linear response theory) of these 

notes. 

The simplest way to do this seems to be the following 

We return once again to our starting point, the TDHF-equation (11) . 

Let 0> (r,t) be a single particle time-dependent wavefunction, solution of 

the TDHF equation 

<^*lt<k(l) a Hot*) + U*F CO]q\>M (95) 

where 

(96) 



The HF quasiparticle energies are 

with 

1 ( 0 st.ir) * Vw0) 

(97) 

HF " ' (98) 

By using the known Hartree-Fock occupation probabilities n r Vv (fig.4), we 

can drop the restriction on the summations in (96). Thus 

(99) 

The point with which we are concerned now is that these occupation probabili

ties n must be stationary in the Hartree-Fock approximation 

— - zo (100) 
<it 

For zero temperature, they have the step-like form shown in fig.4; for 

higher temperatures, they would become the Fermi-like distributions charac

terizing an ideal Fermi-gas. 

One can perhaps in a qualitative way see how. an improvement upon this 

situation could be achieved. 

Assume that there are residual interactions among the Hartree-Fock 

quasiparticles (for the moment, we shall ignore pairing forces). For the 

sake of argumentation, let us imagine the residual forces to be two-body forces 

This is no real restriction. These interactions would then introduce dynamical 

correlations that would invalidate (100). This means that the total rate of 

change of the population in quasiparticle state 1 would be 

o_J2* = Rate of creation of 1 - Rate of annihilation of 1 (lol) 

<lfc 

For two free fermions in the initial states (with energy E.) a and b, the rate 

final states 

Ct + i -* c + ^ 

of the transition to the final states c and d with the energy E- = E. 

E,-,Sf.£ 

W (c* ; .0=^ Ut*iT4Mt(OM>r (lo2) 

The matrix element on the right hand side is the antisymmetrized matrix 

element of the collision operator T defined by 

S ~ i - 2ir?fe,--£f)T (103) 

S being the S-matrix. The collision is of course assumed to be energy 

conserving. 

If the particles are quasiparticles in a medium, then the probability 

of collision should depend on the probabilities of occupancy of the relevant 

quasiparticle states, according to the Pauli Principle. Thus, the amplitude 

for creation of quasiparticle in state 1 is given by the sum (indicated by 

the blob) of all possible amplitudes of the type 

A - E= Wd,**,. 

Fig. 7 

There the £ 's are HF quasiparticle energies. It is zero,unless the 

states 3 and 4 have some probability of being occupied, and of course, unless 

states 1 and 2 have some probability of being vacant. Thus 
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W» ot eta*. .4 1 - r 2 f Uunft)l»«l *d-t.-V«0- (lo4) 

T(E) is the collision operator in the medium, at collision energy E = €-, + fc-

£_ + t . The symbol 3<V means that these should be no double counting 

of the contributions from states 3 and 4. The quasiparticle energies are 

given by (97). By the same token, the amplitude for annihilation of a 

quasiparticle in state 1 is 

%: mk £z €'^ fj<-

Fig. 8 

with the ra te 

I f 

Then 

Rate of destruction of 1 

•»**»i ( i - ^ ) ( i - ***) 

-^b-i) (<-«.)] (106) 
jith 

W ( « M » v ) ^ U«lT(f)|H^|*' (io7) 
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The idea is the following: we shall assume that eq.(95) still holds, but 

with a modified Hartree-Fock mean field given by 

- [lM [l V <&«+f*> *i». V , ~ 3 < M ° (108) 

and 

*t £•£*)« [(.('> + ^,Hr(l)Jvkfl) (109) 

The probabilities n .(t) are now solutions of the equation (106). Thus, the 

Hartree-Fock equation (109) accounts for the effects of the time-varying mean 

field, whereas the effects of collisions are given by (106). Eq.(106) and (109) 

must of course be solved self-consistently. As an output, we expect among other 

things that this extension of the HF-thoery will show that the quasiparticles 

have finite lifetimes and at the same time, we will get the desired widths for 

the quasiparticles. Needless to say that the exact solution of (106) and (109) 

is quite beyond our capabilities. 

Further approximations must then be made. The next main approximation 

consists in a simplification of the full collision matrix T(E) . If the resi

dual interactions among quasiparticles are in some sense "perturbative", then 

we could say that it should be sufficient to restrict ourselves to the leading 

approximation to T(E), i.e. to an energy-independent potential V 

T (C ) ^ V + • (no) 

Then we get 

w («*; J » ) = -IT | < U I V U < O ) 
* ' - - • " ' ( U 1 ) 

which is none other than the Fermi Golden Rule. The rate equation (106) 

simplifies 



The system (109) and (112) is still formidable. An attempt to solve this 

system under various simplifying assumptions have been made by C.Y.Wong and 

his collaborators. They have shown that the leading approximation to the 

n v 's indeed has an exponential form 

n v l t ) = «,(»> e * <U3) 

where the width \̂  is related to the quasiparticle liftetime 

P - _ (114) 

When evaluating the collision matrix, the single particle energies (97) 

must then be replaced by the complex energies 

^ - L - ^ - (115) 

whereas the time-dependent probabilities VI (t) are "frozen" to their 

Hartree-Fock values. Wong et al. have shown that when this is done the 

function in (112) must be smeared out to a Lorenzian form factor 

' u?y 

2r fc^vivft (Hi 
Ut,+ «x-*rO^]>Ccl+£x-veO=r-

L16) 

with the definition 

Other approximations are also discussed by Wong et al. but which is both the 

best approximation scheme and the most practical one, is still an open subject 

Other ways of finding practical methods of going beyond TDHF with explicit inclu 

sion of collision terms have recently been attempted by Weidenmuller et al. 

G. Macroscopic nuclear dynamics 

The theory is completely classical although individual quantities may 

be calculated using models that are partially quantal. It gives a prescription 

to calculate average quantities. Dissipation is included from the beginning 

but the corresponding diffusion can not be treated in this framework. This is 

a serious drawback, since fission is believed to be a diffusion process. 

Gl. Equations of motion 

The first step is to choose a set I qt, q = q1 q of N generalized 

coordinates that specify those degrees of freedom of the system we want to 

study. They shall be called collective coordinates/The remaining coordinates 

needed for a complete specification of the state of the system shall be called 

internal coordinates. In case of fission the natural collective coordinates 

are the shape parameters of the nucleus. 

In terms of these time dependent collective coordinates and their 

first derivatives we then calculate the kinetic energy T, the potential 

energy V and the rate of dissipation of collective energy 2F into internal 

excitation energy. The equations of motion are the generalized Lagrange equa-
. 14) 

tions 

(118) 

where the Lagrange function L for the system is given by 

L k i ) « T ( * , * ) - *(%) (H9) 
Thus when T, V and F are known functions of q and q, the equations of 

notion are well defined, and the time evolution of q can be found for a 

given set of initial conditions. 

As discussed in the following subsections T and V may in principle 

be obtained in the framework of Hartree-Fock theory. This has usually 

not been the case in practice where the purely macroscopic concepts are 

much simpler to apply. This only reflects the present state of the theory 

which obviously must have a microscopic origin in order to be fully under

stood. The function F is more difficult to interpret in the framework of 

Hartree-Fock theory, although there clearly must be a connection. 
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G2. The potential energy. 

If the degree of freedom described by each of the collective coordinate 

corresponds to a known operator, the potential energy surface can in prin

ciple be calculated from an effective nuclear interaction by means of the 

constrained Hartree-Fock method . This results in a selfconsistently 

determined potential energy as a function of the expectation values of the 

operators corresponding to the collective coordinates. 

One proceeds assuming that the lowest single configurations are oc

cupied. Thus the intrinsic excitation energy is then zero, contrary to 

the realistic case where transfer of energy to the intrinsic degrees of free

dom takes place. In order to overcome this problem one can perform temperature 
1 /c \ 

dependent constrained Hartree-Fock calculations . The average intrinsic 

excitation energy is then uniquely determined from the temperature, which 

therefore must change according to the amount of transferred energy. 

An evaluation of the potential energy as outlined above has never been 

carried out for a sufficient number of degrees of freedom to be usable in the 

present context. We have in any case the pairing force, which in principle re

quires Hartree-Fock-Bogoliubov calculations . Such investigations are of 

interest in themselves, but on account of the fact that other parts of the 

Lagrangian are treated in a very crude fashion they are for the time being much 

too sophisticated for macroscopic nuclear dynamical studies. 

17) 
Instead, the liquid drop (or droplet) energy expression is used as 

the first approximation. If required it can then be improved by adding shell 
. . 18) 

and pairing corrections calculated by the Strutinsky method . The potential 

energy can thereby be shown to approximate the constrained Hartree-Fock-

Bogoliubov energy. Both liquid drop parameters ̂ «nd Strutinsky shell cor-
20) 

rections may be obtained as functions of temperature. 

G3. The kinetic energy. 

The kinetic energy could presumably most accurately, but also at the 

expense of an enormous amount of work, be obtained from the mass parameters 

of adiabatic time-dependent Hartree-Fock calculations . In the present 

context this has so far not been attempted. Simpler expressions for the kinetic 

energy are available, viz. one due to the cranking model (an approximation 

to adiabatic time-dependent Hartree-Fock) and another corresponding to irro-

tational flow of an incompressible fluid. 

G3a. Cranking mass. 

The cranking model assumes that the lowest lying state of the Hamilto-

nian H for each q is occupied with probability unity. Since q is a function 

of time the energy of this state changes in time and the total energy con

servation is assured through a compensating change of kinetic energy. Such 
l ^ leads 7 f\h 

a calculation ' leads to 

where the inertia tensor is given by ,-N 

v\>o t M - C 0 

(120) 

(121) 

where | n^ is the many-body state of energy E corresponding to H and 

In = 0> is the ground state. The only crucial assumption made is that of 

adiabaticity(i.e. only the lowest state is occupied) which is equivalent to 

assuming a small collective velocity (q). 

It is easy to generalize eq.(121) to finite temperature (1/fl ). The 
24/ . . . . . 

result which is intuitively obvious is 

^ > 

JS-. U).=2* ^ W „ H* 1*4— (122) 

where W is the occupation probability of the state I m ) given in terms of 

the partition function Z by 

W^ = *C / "Z (123) 

The zero temperature cranking mass is a rapidly varying function of deforma

tion . At finite temperature the fluctuations are expected to be even 

more pronounced due to the smallness (or vanishing) of many more possible 

energy denominators. Such a behaviour is in contradiction to the basic assump

tion of adiabaticity. The problem can be traced back to crossing of single 



particle levels and the equivalent degeneracy of the many-body state. We should 

perhaps mention at this point that expression (122) does not diverge at these 

level crossing, althoug a superficial inspection seems to show this. 

G3b Irrotational, incompressible mass 

The cranking mass is rather good for nuclei at zero temperature (excita-
22) 

tion energy) at their ground state deformation. It has been argued that 

the irrotational value should be better at larger deformation (collective 

coordinate) and for higher internal excitation of the nucleus. The arguments 

are based on the cranking model formula eq.(121) which in itself is a very 

dubious expression at high temperature. Furthermore for finite viscosity the 

hydrodynamical flow deviates from irrotational flow due to the non-

conservative friction force. As the kinetic 
23) 

energy for irrotational flow is a minimum , the inertia calculated under 

this assumption is bound to be too small. At the moment the only good reason 

for using the irrotational mass therefore seems to be that it is the easiest 

to calculate in practice. For this reason, and because it is this inertia 

tensor the one actually used in numerical applications to the fission process, 

we shall consider the resulting kinetic energy. 

For irrotational flow of a fluid in a container, the velocity field 

_V(r) can be found from a potential *(r) by 

If the fluid furthermore is incompressible, the continuity equation is 

T Y ^ ° (125) 
and therefore the Laplacian operator acting on ̂ vanishes, i.e. 

A if- r O (126) 
This equation and the boundary condition that the fluid and the container must 

have identical velocities perpendicular to the surface of the container de

termines the velocity potential uniquely. Since the container surface velocity 

is a linear combination of q. also V comes out as linear in q.. The total 
ni ni 

kinetic energy is 

where 

T4e Ir^- (127) 

(128) 

is the nuclear mass density and the integration is over the container. T can 

be written in the form of eq.(120). 

Eq.(126) is difficult to solve in general and approximations often have 

to be made. A popular, but not a particularly accurate method, is that of 

Werner and Wheeler described in ref.21. The inertia tensor obtained by this 

method for axially symmetric shapes around the z-axis is 

" * 7" * * 3-^i- » ' * < \ ̂ . -
(129) 

& " : 
> . 

where P = p(z,q) is the value of P^vXtj^on the surface of the container, 

z . and z are respectively the smallest and largest z-values, A. is the 
m m max . i 
derivative of A with respect to z and A. is given by 

(130) 

for z to the right of the container's midplane and for z to the left of this 

midplane 

An exact result may be obtained when the usual multipole expansion 

coefficients are used as collective coordinates, i.e. 

^ *£. (1+ 2 *„ ?„ fC*9)) (132) 

where P are Legendre polynomials and R the radius of the spherical shape. 
n ° . .21) 

The diagonal mass parameter for irrotational incompressible flow then is 
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^ ' ' " , _ ? H-*' (U3, 

21) 
This can be compared with the approximation in eq.(l23) which gives 

_ v\ + h + G ~ •>* 
<$ C • 1* (134) 

4 (w + »y 
Numerically the approximation is then within about 30% for the lowest 

multipples and with increasing deviations for larger n. 

G4. The dissipated energy 

The mechanism for transfering energy from the collective degrees of 

freedom into internal excitation energy depends strongly on the mean 

free path \ of the particles (nucleons) making the system (nucleus) . If X is 

small compared to the spatial dimension R, the dissipation is expected to 

proceed via two-body collisions. Due to the Pauli exclusion principle this con-
27) v j> 

dition is not satisfied . The extreme of A ^ K is expected to lead to 

the one-body dissipation mechanism of nucleons colliding with the wall of 

the moving average potential. Since the motion of the nucleons themselves 

is the ultimate source of the time dependence of the mean field there is a 

connection between nucleon-wall collisions and nucleon-nucleon collisions. Thus 

the main mechanism would be one-body dissipation which in turn is related to 

two-body collisions. 
The rate of dissipated energy (2F) is expressed by the Rayleigh dissi-

23) 
pation function F, which consequently should be calculated for the type of 

dissipation under investigation. 

G4a. Two body dissipation 

For an incompressible fluid with a constant two-body viscosity, coeffi-
21, 23) 

cient u. , the Rayleigh dissipation function is given by 

where 

(135) 

(136) 

f r 7 X ^ (137) 
and V is the velocity field for the fluid. Since V is linear in q^see sect 

G3b) we obtain F in the form 

i r 
where *j. is called the viscosity tensor. 

(138) 

For the shape parametrization, eq.(132), and the collective parameters 

0/ we get the exact result of the diagonal viscosity tensor 

\ z <8* J 2 J - e0 .p, d39) 

Usually one has to make approximations to calculate F. The method used 
21) 

to obtain the inertia tensor, i.e. the Werner-Wheeler method , leads to the 

general expression for the viscosity tensor in terms of the quantities 

defined in sect.G3b 

M = Kt V (lA'fy t j ? A,- Aj. )k (14o) 

where double primes denote second derivatives with respect to z. Using the 

parametrization of eq.(132) this leads to 

> " AS- (*+•) ' * 
(141) 

Numerically the approximation, eq.(141), is within 25% and increasing with n. 

G4b. One body dissipation 

The collisions of the nucleons with the moving walls of the nuclear po

tential results under certain conditions in an irreversible flow of energy 

from collective to internal degrees of freedom. When the shape of the poten

tial has no neck the so-called wall-formula for the dissipated energy arises, 

and for two potential pockets connected by a fairly narrow neck (the window) 

the window-formula arises for the dissipated energy. 

The wall-formula is derived in ref.30. The essential assumption is / 

that (i) The mean free parth of the nucleons is large compared to nuclear di

mensions, (ii) at each instant of time the surface elements are bombarded by 



nucleons as if these originated from the bulk of a gas with no macroscopic 

motion. (The randomization hypothesis). 

- . J. . 

The rate of dissipation for a surface element do- is P ^ "̂  *'w 

where ^ is the nuclear density, V = — Vp is the mean velocity of the 

nucleons expressed by the Fermi velocity and n is the normal velocity of the 

surface element. The total dissipated energy then is 

i £ ^ ^V jf Y?Av- (142) 

If the nuclear surfaee is very regular, e.g. spherical, the second assumption 

is not fulfilled, since the nucleons then can remember where they came from. 

Their motion when hitting the surface is not random. 

The window-formula is derived in ref. 30 and contains the same basic 

assumptions as that of the wall-formula. The rate of dissipation is 

i&>,l pV.^r. (u* + x»r ) (U3) 

where ^\$- is the area of the window and t*y and \jlt are the relative radial 

and tangential velocity components of the two potential pockets. 

For the set of collective coordinates specifying the shape in eq.(132) 

agonal 

eq.(l42) is' 

the diagonal terms of the viscosity tensor resulting from the wall formula 
,28) 

(144) % 3 - V f V r 2hf1 

where V is the Fermi velocity of the nucleons. If the viscosity tensor is 
i 

assumed proportional to a viscosity coefficient as in the case of 

two-body dissipation we obtain from eqs.(139) and (144) ' 

i ^ p - v - 7 ^ — ; (145) 

Z —• r\ • r-r ~ — —- T 

The onê -body dissipation expression for the change of dissipated 

energy per time unit, i.e. the wall formula, results in dissipation for trans-

lational motion. This is clearly incorrect. In an attempt to improve the 

expression, the authors of ref.23 argue that the normal velocity should be 

replaced by the relative normal velocity v between wall and nuclear matter, 

which is expanded in a Taylor series. This leads to 

i f * ' o * x* £ (V- g* ) Js 

where X is a length parameter of the same .order as the range of the inter-

nucleon force. This expression has properties very different from that of the 

original wall-formula, f.ex. the viscosity tensor (diagonal terms) for the 

coordinates in eq. (132) (see ref.28) 

* - S r t * * fit)W (147; 

Thus it increases with n contrary to «f 'which decreases. In ref.29 

some very harsh comments are made about this modified expression. The proper cor

rections when the gas of nucleons has a macroscopic motion is in ref30 derived 

(argued) to be ~ i 

-S£ = 5 f ef j i " - j - > j « ^ (148) 

where V is the translational velcity, -£** t n e angular velocity, R radius 

vector from origin to the surface element. The vectors V and R_ satisfy the 

equations. 

(t (* -$) £ • ĉS r O 
(150a) 
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<̂> ( « * r ") C i i - a ) J s = (150b) 

It is now possible to give a generalization of the wall and window 

formulae, i.e. 

jig.* l „r, 
J* 

where the drifts D and D given by eq.(169) belong to the motion of the 

two pockets. 

The wall and window formulae were derived under the complete randomi

zation hypothesis. If this is not fulfilled the wall formula should be 

generalized to include a non-local part ^1) 

where the symmetric dissipation kernel can be written 

r U . O - ^(«^) -^KH-U^ 

(152) 

(153) 

The physics behind eq.(152) is that the long mean free path of the nucleons 

may connect the event at one surface point to that at another point. If the 

surface is very regular, e.g. spherical or ellipsoidal, the nucleons can 

remember their origin. The way they hit the" surface is related to the way 

they hit the surface at another point. 

32 ) 
The expression in eq.(152) also results from a classical limit of 

the linear response theory discussed in sect.m. 

H. Time dependent Thomas-Fermi approximation, Fluid dynamics, Hydrodynamics 

The basic quantities are the time and space dependent density and current 

of nuclear matter. This approach has by chance (see the introduction) not been 
40-46). 

reviewed. We can therefore only give the reader a few key references 
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2. Fission Applications and Numerical Results 

Only the time dependent Hartree-Fock method and the method we have here 

called macroscopic nuclear dynamics, or a mixture of these (microscopic non-

selfconsistent calculations) have been applied to the fission process. 

A. Time dependent Hartree-Fock 

TDHF calculations for finite nuclei applied to the fission process 
33) 

have only been published in one case . The results are adequately described 
34) 

in the review of Flocard . We shall therefore here only draw attention to 

the main points. In the first column of fig. 9 (taken from ref.33) is shown 
236 

the time evolution of the nuclear density of the U nucleus. The starting 

point of the calculation is 1 MeV below the top of the barrier. The time to 
-21 • • 

reach scission is 3.5x10 sec. The translational kinetic energy at scission 

is 12 MeV and the resulting fragment kinetic energy is 142 MeV (the cor

responding experimental number is 168 MeV for an excitation energy of about 

60 MeV). There are several problems in this calculation, but the most serious 

is related to the choice of the pairing gap A in the BCS wave function. 

I, 

MICROSCOPIC 
CALCULATION 

D>< v, 
•X :i} 6' O JO JO :<J 0 ' O Jo 

MACROSCOPIC CALCULATION 
TWO-BODY MOO ONtPOOY ONf BOD" 
VISCOSITY OISS'PATION C'5SIPATiON 
, . • 0 0 1 TV » ' - 3 2 l m ' FtRUI-CK MODEL 

V 

?0 -O 0 O ?0 

!•'/(!. 9 . Comparison of time evolution of densities calculated in a self-consistent model with 
those of several classical calculations. 



For fa = 0 , the system can not fission at all, due to the strictly mathematical 

crossings of the single particle levels. For A = 2 MeV the already quoted num-
A -21 

bers are obtained. For tJ = 6 MeV the scission time is 5.0 x 10 sec. and the 

fragment kinetic energy is 166 MeV. Thus ̂ = 6 MeV seems to be the experimentally 

preferred value in contradiction to the original interpretation of A as a 

pairing gap. Instead A could represent an effective coupling between single 

particle levels, but then why should it result in the BCS type of wave fucntions 

used in the calculation? 

Recently there appeared a one-dimensional time dependent Hartree-Fock 

study of the fission process. The system is infinite in (xy)-direction and 

finite in the z-direction. The time evolution of this slab of charged nuclear 

matter is investigated under various initial conditions. Fission occurs at high 
-21 

excitation energies after typical times of (1-3) x 10 sec. The snatching of 
-21 

the neck is characterized by a rapid rise ( £• 0.3 x 10 sec.) of a potential 

barrier between the two fragments. 

B. Macroscopic nuclear dynamics 

Bl. Two body viscosity 
8 ) 

Two body viscosity is used in the calculation of the most probable 
80 2 78 

fission-fragment kinetic energies for nuclei from Sr to 110. The results 

are shown in fig.10. (taken from ref.8 ) and compared with experimental values 

obtained at moderately high excitation energies where symmetric fission is most 

probable. Then single particle effects on the nuclear potential should be 

small • The liquid drop model energy is used for the potential and the 

irrotational flow value of an incompressible fluid for the kinetic energy 

tensor. 

Two-body viscosity slows down the dynamical descent from saddle to scis

sion and hinders the formation of a neck, which leads to a more elongated 

scission configuration. For both reasons the calculated kinetic energy decreases 

with increasing two-body viscosity. The best agreement with experiments is 

obtained for h= 0.015 M//* • If the neck rupture is fast and scission actually 

takes palce at a finite neck of 2 fm, a viscosity coefficent of 

M- = 0.03 " /fu» is i° better agreement with experiments. The dissipated 

O 0£ 

energy for U appearing as excitation energy in the two fragments is then 
-21 

about 12 MeV and the time to reach scission around 3 x 10 sec. The nuclear 

shape evolution can be seen in the third column of fig. 9. 

FIG. 1 0 . Comparison of experimental most probable 
fission-fragment kinetic energies with resul t s calcu
lated for different values of the viscosity coefficient M 
(solid curves) . The calculations include the effect of the 
finite range of the nuclear force on the nuclear m a c r o 
scopic energy. The experimental data a r e for the fis
sion of nuclei nt high excitation energies , 'where the 
most probable mass division is into two equal fragments. 
The open symbols represent values for ccjual mass divi
sions ouly, and the solid symbols represen t values a v e r 
aged over all mass divisions. Open c i rc les a r c used for 
data obtained In lief, 00, and open sijuarcs a r c used for 
data obtained in Kefs, 01-01 and reported in lief. 00. 
Open downward-pointing t r iangles refer to Kef. 05, open 
upward-pointing tr iangles to Hof. (i(i, open diamonds to 
Ret. 07, and open hexagons to Hef. OH. Solid c i rc les 
a r e used for data obtained in Hef. 09 and correc ted in 
Hef. 70. The solid square re fe rs to Hof. 71 and the 
solid downward-pointing tr iangle to Hef. 72. The dashed 
curves give the calculated translat ional kinetic energies 

acquired prior to scission (see references 
from paper [ 8 ] ) . 

Since we now have an estimate 

of the two-body viscosity coefficient, 

it is possible to compare with the 

corresponding value for one-body vis

cosity where the size is given by the 

theory and not by a fit to experiments, 

From eq.(145 ) for n = 2 we obtain 

for a medium heavy nucleus. For n = 4 

they are of the same order and for 

larger n the two-body viscosity coef

ficient is larger. 
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B2. One body viscosity 
One-body viscosity, described by the wall formula, is used to 

calculate the most probable fission-fragment kinetic energies for the same 
nuclei as in fig.10. The potential and kinetic energies are also the same as 
those used in the calculation of fig.10. The results are shown in fig.11 taken 
from ref.35. They are in remarkable agreement with experiments, considering the 

fact that no parameter to adjust the size of the damping has been used. 

It is clear that the wall formula should be replaced by the wall-plus-
window formula at some point after the necked in shapes have appeared. Calcula
tions where such a switch is made have also been performed . The results 
are shown in fig.12 taken from ref.36. Clearly the slight discrepancy in fig.11 
can on average be removed by chosing an appropriate switching point. 

The dissipated energy for U is about 18 MeV and the time to reach 
-21 scission is around 13'10 sec. The nuclear shape evolution can be seen in 

the last column of fig.9. The fission time is large compared to the 
two-body viscosity calculation. The motion, is very slow due to the fairly large 
viscosity. This behaviour can also be reproduced with a large two-body viscosi
ty but then the fragment kinetic energies come out systematically larger than 
the experimental values (see fig.ll), 

C. Microscopic non-selfconsistent calculation 
37) The Hamiltonian is of the form 

ц . T €,-со <**«,• - Gl*-) ? ofqï *с*ъ 

The time dependent equations of motion for 0,'.' : <<¡}, 4,'̂  and Vf|V'в ч^»'^)0 
are derived. The excitation energy is approximated by the total energy minus 
the usual (now time dependent) BCS energy expression. The steps in the calcu
lation are described by the authors of ref.37 as: 
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" We consider the fission of a 230U nucleus that ini
tially is set in motion from its macroscopic saddle 
point with 1 MeV of kinetic energy in the fission 
mode. The reflection-symmetric and axially sym
metric system is studied during its descent to the 
scission configuration. The total calculation is 
divided into five steps: (1) We first perform a 
classical macroscopic hydrodynamieal calculation 
with a given value of the nuclear viscosity coeffi
cient in order to determine a sequence of shapes 
for the fissioning system. (2) From the shapes as 
a function of time we determine the instantaneous 
single-particle potential L'(l) and the s ingle-par t i -

300 

cle eigenvalues «,(/). (3) We obtain the pairing 
strength G'(/) that is required to yield a constant 
average pairing gap A. (4) We integrate the t ime-
dependent pairing Eqs. (8) for initial conditions at 
the saddle point corresponding to the BCS ground 
state. Then from Eq. (16) we find the energy E'(l) 
dissipated microscopically along the fission path. 
(5) We compare £*(/) with the energy lid(t) d i ss i 
pated in the macroscopic hydrodynamical calcula
tion. By varying the viscosity coefficient in the 
macroscopic hydrodynamics! calculations until the 
two energies are equal we hope to determine the 
viscosity coefficient. 

250 -

200 

150 

—i—i—i—|—;—i—i—i—|—i—i—i—i—]—r 

Fission-fragment kinetic energies 

Yukawa - plus- exponential 
Nuclear energy 

Wall-plus-window one-body 
Dissipation 

Transition neck radius (fm) «= 

A$t Cylindrical 
J$r Neck 

/. 

/ 

No / 
Dissipation ^ / 

/ 

/Prescission 
/ Contribution 

Cylindrical neck - — _ _ ^ 2.5 -JTJT~~-

• J . — . — - g - - • —I — +-->.—I — I— - 4 - - C — I— T- -T 

0 5&0 1000 1500 2000 

Z2 /A , / 3 

Fig. 1 2 . This is like Fit;. 1 1 but in the dynamical calculations a switch was made 

from the Wall Formula in the V.'.il 1-P1 us-U'lndow formula when the neck radius had 

reached the value indicated hv the labels nn the solid curves. "Cylindrical 

N'cck" means the switch was made at the instant of first appearance of a 

constriction. The lower part of the figure shows the kinetic cnersy of the 

frafiir.i?nts at the instant of scission. Note the very larr.u kinetic energies 

at scission when there is no dissipation, the very small values when the 

•>'all Formula is used all the way to scission, and the moderate values when the 

switch is made before scission. 

n o c. 

For U this leads to a dissipated energy of 34 MeV in contrast to 

the 18 MeV from the macroscopic calculation. The viscosity coefficient 
3 

then is U, = (0.04-0.08) tf/fm which is substantially larger than that of the 

macroscopic calculation. 

The most likely reasons (in my opinion) for this significant discrepancy 

are (i) The excitation energy calculated as described here deviates appreciably 

from the dissipated energy, (ii ) The nuclear inertia is significantly larger 

than the nearly irrotational value used in the macroscopic calculation (iii) the 

viscosity tensor is of one-body nature and not two-body as used in the macrosco

pic calculation. 

D. Summary 

The time it takes to move from saddle to scission for a fissioning 
236 —21 —20 

U-nucleus is of the order 10 sec- 10 sec. The dissipated energy 

appearing as excitation energy in the two fragments is around 15 MeV. (The 

34 MeV obtained in the non-selfconsistent microscopic calculation is presumably 

not reliable). The fragment kinetic energies can on average be reprocuded for 
80 278 

nuclei between Sr and 110 with both one and two-body viscosity. Contrary 
to one-body viscosity there is a free adjustable parameter in the two-body 

viscosity formulation. 

The macroscopic calculations employ the irrotational and incompresible 

fluid value for the kinetic energy. This is small compared to the value 

obtained in the cranking model. The experimental results used in the comparison 

are all taken at moderately high excitation energies. It is conceivable that 

quite different results would be obtained if a low excitation energy comparison 

could be made. 

The viscosity coefficient seems to lie in the range between 0.02 and 
3 

0.25 K/fm . This is presumable true for fairly high excitation energies perhaps 

with the upper bound extended by a factor of about two. For smaller excitation 

energies a better mass tensor could probably influence the necessary size of 

the viscosity tensor. 
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H. INFLUENCE FUNCTIONALS 

1. The Feynman Influence Functional: definition and general properties 

The problem we shall be dealing with in this section can be stated as 

follows. Assume that we have a system that can be described in terms of two 

sets of generalized time-dependent coordinates (in the Lagrangian sense) 

jqa(t), qb(t), qc(t), ... J 

and 

I T (t), lu), t (t), ... (• 

we shall call them for short | q (t)f and j | (tV, respectively. We assume that all 

these coordinates are dynamically coupled together. One is often interested in mea

suring observables that can be more or less directly expressed in terms of one 

http://Phys.Rep._64_
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set of coordinates alone, say Jq(t)j . No attempt is made to predict, or to 

measure, anything related to the other set. We shall refer to the set selected 

for analysis as "the system", whereas the other set is defined as "the medium". 

The roles of system and medium can of course be interchanged. Our problem is to 

formulate our theory so that it deals exclusively with the coordinates and velo

cities describing the system, after suitably averaging over the medium. Let us 

exemplify this with the case we have in mind - nuclear fission. As shown in 

previous sections, we have a good starting point for the analysis of nuclear 

dynamics (including fission processes) if we begin by splitting the enormous num

ber of coupled degrees of freedom of a nucleus into two sets: a set consisting 

of a few, suitably selected "collective" coordinates - such as for instance the 

geometrical shape parameters characterizing the equipotentials of the binding 

field, or the gap parameters connected with the superfluidity of the nucleus 

or yet the isoscalar and isovector nuclear densities - and another set of 

coordinates, which sometimes are referred to as "internal" coordinates, that 

describes say the positions, spins and isospins of the constituent quasiparticles 

confined by the mean field. We would like to concentrate on the dynamics of 

"the system" (= collective coordinates) and consider the internal quasiparticle 

coordinates as the (essentially unanalysed) medium, in which the system "moves". 

Let us begin then by following the dynamical evolution of the entire as

sembly (system + medium), between an initial instant t and a final instant "t_. 

We assume that there is a mechanical action S associated with the as-

sembly, given by the sum of actions associated respectively with the system 

alone S * i q I , with the medium alone S { \j and with both S Sq}£j : 

W /„] „(*> 
" (1) W - > W O - SMj».i* 

The various pieces of action are supposed to be Junctionals of the genera

lized coordinates J q(t){ and JTCOi • 

In problems of common interest, actions can be defined as being loca

lized in time. They can then be expressed as time integrals of Lagrangians 

(actions per unit time): 

(2) v - 1 ; L, (V,,\-,OJI 

Suppose now that our assembly develops from an initial state at time t. 

to a final state at time t„ 

lUy v o > s lK^ 

in obvious notation. 

For a large class of actions, the transition amplitude 

can be expressed as the Feynman path integral *• 

(3) 

(4) 

where we assume 

(5) 

The subscripts Sfc4 in (3) and (4) are to remind the reader that the 

transition is assumed to occur under some specific action O . 

The sums (or rather, functional integrals) in def.(4) are integrations 

over all paths or histories connecting the initial configuration \ F, ,q, j 

at time t, to the final configuration •{!,,,q2| at time t , each path being 

weighed with the amplitude 
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t ,4 (V > ) 

t. 

~ *l 

*.t, *1> *A 
f j l 

The symbol j/̂ i/̂  in def.(4) denotes the appropriate integration measure in path 

space (fig.l). The probability for this particular transition to occur is then 

?(̂ ;Y,0= I \^;t.*,)\' (6) 

Suppose now that we cannot, or wish not, measure anything about the medium. We 

must then, as usual, 

a) sum over all values of the coordinates f in the initial state |i ̂  

of the medium at time t., and average over all initial states | i >; 

b) sum over all possible values of the final coordinates T , and sum over 

all possible final states | f ̂  . 

Thus we are asking for the inclusive probability for the transition 

K) \ ^»J + anything (7) 

Define the inital wavefunction 

% ^ ) - <!, I- > 

and the final wavefunction 

associated respectively with the stationary states \ i ) and j f.> of the 

medium. Thus the probability amplitude for going from a definite f i^ to a 

definite/f I for all values of S and J is 
. 0 

A,-., = KJj r , tf ft.) [ JJ&$% e r j f,(x) 
and therefore the desired inclusive probability is 

^UU -+M+ «V^) = J £ j>,- lA f̂ 1*. 

where q = q(t), etc. The probability that the medium is in the initial state 

) i^ is denoted by p.. It is supposed to be normalized, so that 

Imagine, for example, that the fissioning nucleus is gone past the saddle-point, 

starting its descent towards scission. Initially, the quasiparticles ("the medium") 

may exist in very many states with some definite probability p. that they 

actually are in state | i\ . This probability could conceivably be a factor pro

portional to the Boltzmann factor 

t*\> (~pe<) 

where E. is the energy of the state f i) and A is inversely proportional to 

the nuclear temperature. From (8a) we thus get the result 

1 Gvt*K\t*,'««s)*5J>*3,<e* . ''Wui.ivf) 



We have defined 

F (HI, W\) s f * |v fir. jjf Jn . ' J J i ; ^ ) f t (>,<j. 

This can be put into a more lucid form 

(9b) 

where 

rith the definition 

and 

F (̂ j *̂j[|defined by (9), is called the influence functional (IF). It clearly 

summarizes in a compact form all the influences that the unobserved medium 

has on the quantum transition (7). These influences depend of course on the 

couplings between the medium and the system. 

The meaning of (9c) is obvious: it is just the total amplitude that 

the medium, starting off with the initial wavefunction (0 .(J ) at time t1 , 

propagates to the final wavefunctions (P. (J ) at time t„ under an effective 

action given by (9e). This effective action consists of two parts: the "free" 

action, described by the first term in (9e) giving the "free" propagation between 

t1 and t„, and a "driving" action, described by the second term of (9e) giving 

the influence of a "source" q(t) - i.e. our "system" - on the propagation of 

the medium. By using now the assumed completeness and orthonormality of the me

dium wavefunctions <D. and CD it is easy to show that if q(t) = q'(t) then 

F (i ini} ft' (t I E vo}) = f K- V̂ Am*) K ft***) 

a result that shall be useful later. 

(10) 

An important aspect of (9) should be noted at this point. The (micro

scopic) details of the medium do not enter into the picture. When computing the 

IF (9b) the coordinates q(t) (or q'(t)) must be given functions of time . Thus,, 

insofar the set {q} is the relevant set, two different media that some

how produce the same IF are fully equivalent media. For instance., 

a set of harmonic oscillators in computing IF. We may then consider the medium 

just as a set of harmonic oscillators suitable coupled to the system, even if 

the real medium has nothing to do with harmonic oscillators. Specific examples 
- 1) are given in ref. 

The IF can be cast in the following form: 

FChi,H'0=Fk e * ^ h ' v > 
(11) 

For the time being, the reader may regard this just as a defini

tion of a generally complex functional W ^CNq'f • Inserting (11) into (9) 

get 

(12a) (i ' 

* VM'W 
where 

TO. 

We have introduced the effective action 

(12b) 

d3) gg 



The main job is to compute the functional (11) as well as one can, or at 

least extract as much information as possible out of it. 

The functional F (^j(^'^)has some general properties that are not 

only useful in practical work but also must be satisfied if we are to identify 

any proposed F as an influcence functional. These properties have been spelled 
1,2) 

out by Feynman and his collaborators ' . We reproduce some relevant ones here 

for completeness sake: the reader could try to prove them for himself using 

the above definitions. 

Some rules for the IF: 

Rulel. The complex conjugate of ^ l^'i^fjmust obey the following condidition: 

F*(UuvO= F ( * * ' U I O (14) 

(15) 

Rule 2. If for-times t > a one has 

then F is independent of q(t) for t ̂  a. 

Rule 3. Let the medium interacting with the system be composed of two parts, 

A and B, which not only do not interact directly with each other but 

also have no correlations in the initial state. Let F, and F„ be the 
A B 

influcence functionals associated respectively with A alone and B alone 

Then 

F = fA • Ffi (16) 

2. The saddle-point approximation to the IF 

The main problem for the present approach is the evaluation of the 

functional (11). When this is done, we can insert the result into (12) and 

obtain the desired inclusive probability. In practice this can be done only 

through more or less drastic approximations that depend of course on the nature 

of the problem at hand. We shall consider here a semiclassical approximation 
4) 

that may have interest in a nuclear context. 

The main point of the approximation is the following: assume that the 

integral (12) is strongly dominated by the stationary points of the effective 
. 1) 

action (13). In this case, we may try the usual saddle-point approximation to P. 

The leading term will then give the classical probability for the transition, 

whereas the higher order terms will lead to various quantum corrections. This 

approximation method will therefore be of use if the quantum corrections to the 

"classical" result are small. 

We consider then a pair q = q (t) and q' = qjl/t) that makes the S, 

stationary, i.e. 
o fiWf 

^ j U . i ' i - s^K. fc ' i - - s-£ff +$?y + 

with the condition 

I? , (r 11$ svi) + hat h'Ki]!** o 
T J L 54(c) SY(t) J " 

(17) 

for arbitrary (small) o q and oq1. This leads to the equations of motion 

(18a) 

We have dropped for ease the subscript (t..t„l£) in the above expressions for 

the action. Write 

W ^ . V l - R ̂ . V ) 4-i* l ^ , i ' l (19) 

where R and I are real functionals of q, and q'. Then eqs.(18), and defs.(13) 

(19) give 

llmM l*W,%\ 
+ r-T7~ to 

(20b) 

b^'Ut S%'U) 



« . * ( 2 0 c ) 

These equations must be solved subject to the boundary conditions 

%(<<)- Vfi»>=*. < M U = V l O = ̂  (20e) 

In writing eq.(20b) we have used a property of these functionals that can 

easily be derived. Using rule 1 (sect.l) we get 

(21a) 

(21b) 

Define 

7(0= %lt)-l'(\) (22a) 

Q\k)-. i C *U) + V'«») (22b) 

and express q(t) and q'(t) as functions of the antisymmetric (symmetric) 

functions h(t) (Q(t)). Then results (21) mean that 

The real part of W)l,Vf must be an odd function of II (t) (23) 

The imaginary part of ^1^,1 7 must be an even function of M(t) (24) 

Using the def. 

s«".d»f- ^ L , V i , 0 ' ^ 

we have from (20a) 

1 ; +- r O (25) 

and similarly from (20b). The special case corresponding to the solution of 

eqs.(20) satisfying 

%h)* < U ) (26) 

merits some attention. If (26) is satisfied, then condition (10) 

leads to the conclusion that 

R | \ . , ? : | = iis0,s:h*o 
(27) 

which implies > ^01 ^a ••«l = 0. On the other hand, we may conclude from the 

condition (26) that the equations of motion (20c, d) are identically satisfied 

for solutions of the type (26). Eq.(20a) and (20b) are then completely equiva

lent to the equation 

=. o (28) 

> • 
Again, eqs.(25) (or (28)) must satisfy the boundary conditions (20e), and not 

initial conditions, in contrast to what normally would be the case for classical 

equations of motion. This reflects the quantal origin of eqs.(25) and (28). The' 

importance of this remark in the context of the theory of deep inelastic nu

clear reactions is emphasized in ref. 4. 

Eqs. like (25) (or (28)) are reminiscent of classical equations of mo-

tion, with the term •- •• playing the role of dissipative forces. Instead 

of embarking upon a general analysis of these equations (which could be done 

on the basis of the above-mentioned rules), we will rather examine special 

cases where the connections may be easier to see. 

Let us restrict ourselves to a single generalized coordinate q(t) 

specifying our system: 
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This entails of course no real loss of generality. Next, we shall assume that 

the functional W ^ % S * ̂  is at most quadratic in q(t) and q'(t). Specifically, 

we shall be considering solutions of the type q(t) = q'(t), corresponding to 

V\ = 0. The rest of this section boils down to a discussion of an expansion in 

u around h= 0, keeping the leading terms only. It turns out that in many in-

eresting applications of the IF method, we are led precisely to an IF of the 

type we are going to consider in general terms. 

We have then, using (23) and (24) 

*l *• J\ *• ' (29) 

as the most general expression obeying our conditions. The functions 

a, b, c, d, are of course assumed to be real functions of their arguments. Does 

this lead to an IF? As we mentioned earlier, certain conditions must be fulfilled 

first. We have already used rule 1. We will now use rule 2 in order to see 

whether there are further restrictions on the coefficients in (29). To that 

purpose, it is convenient to rewrite these integrals using the identity, 

ii I, 

Z'ltk ^^\^rj[9^ji)b(^a,) + ^ ^ r , ) h ^ ^ (30) 

where v (x) is the usual step function 

e i*u-{ i *>0 
(31) 

0 X < 0 
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Let us consider the quadratic part of W: 

WM.t'l - j J i T, |ST, [ A t*i,\ ) % IT, / * (TX ) + 

where A,..., can be expressed in terms of b, c, d, using def.(22). Expression 

(32) can be rewritten thus, by using (30) 

W \\*\'\* ){ JT, J J^ ̂ A (^tTx )e£ f-rj *>(T% ) + 

Now consider the first two integrals of (33) together: take an arbitrary time 

a between t.. and t„ (clearly X,)Q-and Z±C»- ) and consider a piece of these 

integrals viz. 

T ' l l 
.1 (34) 

Ml 

Put 

<V'(T« )= %<-*,) ( T ' > f l ) 

Then, rule 2 tells us that the integral (34) must be independent of %ft\). 

Therefore 

Jut a is arbitrary. Therefore 

(35) 
/V'(T. O = -5 V-r,rJ (T,>rt) 



The same argument applied to the last two terms of (33) leads to the con

clusion that 

Cl fr,*J - - y ^ - o fr,>-0 (36) 

From the above, we may conclude that 

i K ^ K o fo>0 (37) 

Putting these results together we deduce that rule 1 and rule 2 demand that 

W ^ . S ' J . \y> h «,,T> ( j w - I'M) + 

+ Jj|JT, f « K (̂  IT,) - * 'fr,>) (Vfr.n> * * i / + 

where 

WlM'l'j^JT^ ft,) [**.) + j^r^^O W ^ 

Therefore 

The equation of motion determining the path is then using (28): 

The equation is of the type of generalized Langevin equation ' ' # 

Recall that the Langevin equation is often introduced in connection with 

the theory of Brownian motion, a subject to which we shall return presently. 

Note,that the last two terms of eq.(40) are a kind of generalized force 

acting on the degree of freedom q(t) from the medium. The last term of eq.(40) 

depends on the entire past history of q(t), in accordance with the classical 

ideas of causality. This same last term contains dissipative effects. This can 

easily be seen by extracting from it any conservative parts by a partial 

integration: we get 

f J r * (t j .r)q(i)rrft .)^(i /- | *Jt S(«#T) 4 - ( T ) (AD 

apart from an unimportant integration constant. The functions r(t) and 

s(t,t) are of course related to W(t, T ). 

This gives then 

ft . 
(?) (42) 

In this equation, the first term on the r.h.s. represents the conservative 

part of the generalized force acting on the degree of freedom q(t), resulting 

from its interaction with the medium, together eventually with external forces; 

^ ( , , k ) - - ^ • r l t ) %M 4 «e t ) (43) 

The last term of (42) suggests that the medium is also influencing the motion 

of the system through viscous forces, which tend to damp its motion. Again, 

eq.(42) shows that this force is in general dependent on the past history of the 

system - it "remembers" its entire past. 

It turns out that in particular applications of the IF method the damping 

function represented by s(t,T) in (42) depends only on the difference between 

its arguments, i.e. 

S ( { , * ) = * ( < - X ) (44) 

suggesting that the average properties of the medium do not depend on the abso

lute time. 
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Let us now assume that the systems "memory" is represented by a time 1^, 

and that s has the general form shown in fig. 2, say an exponential 

.S^ 

T ^ 

Fig. 2 

This fucntiqn acts then as a damping factor on the velocity q of the system, 

causing it to decay, say within a typical time *JT - the relaxation time. If 

the memory time T*, is much less than the relaxation time ?J , we can make the 

following approximation to the integral on the r.h.s. of (42): 

J t1 

and then eq.(42) becomes 

4 ^ = ? ( l , ( l - ./.iff) (46) 

This is an example of a so-called Markovian approximation: all "memory" effects 

have been suppressed in approximating the non-Markovian eq.(42) with the 

Markovian eq.(46). 

3. Applications to special models 

The above considerations are rather formal, therefore independent of 

detailed assumptions and models. The basic assumption however was that the func

tional W \ % i ̂  j could be expanded around the "point" *9(t) = 0, and that 

at most quadratic terms in v\ were to be retained. This we may call the Gaussian 

approximation. We saw how this led to a generalized Langevin equation. Upon cer

tain conditions, this non-Markovian equation could be approximated by a Markovian 

one. 

We shall now illustrate the above discussion with a couple of examples, 

which may perhaps give some feeling about possible structures that may lie 

behind the characteristic features of Gaussian approximation. More detailed dis

cussions can be found in ref. 1 and 2. 

We shall continue assuming that our system is represented by a single 

generalized coordinate. 

Let us return to our original definition of the IF (9) and consider the 

matrix element 

where f ^ ^T *.\, 

%k) 

and (±) . « 

Assume now that 

and 

(47b) 

I 

L represents the Lagrangian of the medium and V is the interaction between 

the medium and the system, moving along a given path q(t). We assume of course 

that both L and V are hermitean. 



An important special case occurs when this interaction is linear in the 

system coordinate q(t), i.e. 

Associated with the Lagrangian 

(481 

L - to i\t,*) 4 v/*,o 

there is an Hamiltonian H, obtained the usual way through a Legendre transfor

mation, 

(49) 

The s t a t e s | i ) , |f^ are assumed to be eigenstates of H : 

. - * H (50) 

We shall consider two cases first, where perturbation theory will be 

used. In one case, we shall assume that the coupling term V is small compared 

to L (weak coupling); in the next case, we drop this assumption, but instead 

assume that q(t) changes slowly with time in comparison with an intrinsic time 

scale that characterizes the motions of the medium (the adiabatic approximation) 

In both cases, we shall eventually be led to Gaussian functionals of the type 

discussed in the previous section. 

A) The weak coupling approximation 

Assume that V is small relative to L ; expand in powers of V, then retain 

the leading terms only. Consider then 

5 2 H, ^ 
,n) ' • (51) 

Httt 

The leading contributions are: r'*';-/ 

etc 

Therefore: 

Nl'MM^ VO^ir.^o.)--^ (52) 

Then r f i ) . : 

(53) 
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and finally 

• ^ П , > СР. fff) (54) 

We now have " (Г ' •» "4, ' J4J*j.e * </J V(p, /̂r,))»»•>. 

f.V* /Л 
t ' (55) 

and of course 

fh.Vi- 2" К F,-U«'J (56) 

Inserting the results (52), (53), (54) in (55) we get to zeroth order 

Г*Ы*ЯЛ'Ы (57a) 
^ (57b) 

To first order: 
. , i (*> F/'U^ffJi* [v,,C )̂-Vv (,«„)] (58a) 

f'h.S'if-- £ J*-j t 7 ^ - [V,V/»II)).4.,.(V«>)] (58b) 

and to second order 

* W ( f ) r j ^ T | JjTx [yH. f,fTl,)-vM, fV'^O] 
Г -''К,,- f?-T) 'Ч.-Гт.-ти (59а) 

and 

We have defined 

^ ly l ï^H iOe ' T % 4,fvfT>)e (60) 

with 

£ои , s C^-^/t 

We have also assumed that the phasing of the states |i^, In^ etc. is chosen in 
such a way that the matrix elements are real. 

Collecting results we have then 

FU.vV- 2 5..' f.KVi 
with of course 

(61a) 

(61b) 

We can put this in the form , . „ 

F;̂ ,*V- 6 (62a) 
. *4s,vt and . y^ 

fh,s'l- e * (62b) 

(54) 



These forms must be equivalent of course to (61a) (or (61h)) to the order 

to which the-perturbation expansion has been carried out. With this in mind we 

get the result 

(63a) 

and o£ course L ^ VNl. (% f^ >) - "C V„,( l'fr, l)j 

If we are interested in looking at solutions in the neighbourhood of M(t) = 0, 

we can proceed by Taylor-expanding these expressions. We have, using the defini

tions (22) 

V k ,%'(•*>) -. v fi,<?ft)) - -1 v*) ^ ~ < • -

neglecting second (and higher) order derivatives of V. Inserting these expansions 

in (63a) we get 

with the definitions 

and 

C(T' '"° \ l <M & 1 '^ V , ' f e , ° ^K(V°<-> 
The expression (65) has been put in the form arrived at the last section (def.38) 

Note the two different types of constributions to f(t). The first term is just 

the average force (in a medium in state (i^) between the system and the medium. 

The second term arises partly from the contributions from virtual (or real) 

transitions rrccurring among the medium states, caused by the coupling be

tween medium and system: it contains the origin of frictional forces. 

4t dt ^ 

(66c) 

The equation of motion according to (28) is 

.fin 

By doing an integration by part on f(t) we get 

where the "coefficient of friction" is defined by 

• C*9 CO„,- M - T ) (66d) 

There is no singularity coming from terms n = i, as these terms do not con

tribute anayway to f(t) (see 66a). Notice the connection between J and C. 

We shall return to it presently. 

B) The adiabatic approximation 

There is a vast class of problems in nuclear physics where the weak 

coupling approximation discussed above is just not good enough. The fission 

problem certainly falls into this class. Fortunately, it is possible to use 

an alternative approximation scheme based on the so-called adiabacity of the 

107 



collective motion. This boils down to assuming that our systems generalized 

velocity q(t) in some sense (to be specified below) is small relative to the 

characteristic speeds of the constituents of the medium. In the theory of 

collective nuclear motion this is expressed by stating that the collective 

frequencies of interest are much smaller than typical single particle frequen

cies. We shall now use this assumed adiabacity to find an alternative solution 

to the IF. 

We want to compute the amplitude Mf. J ̂,(t )^j : 

NvHM- fr^tf^uH^VM (6y) 

The Hamiltonian corresponding to (49) is represented by 

H(*Mffr))* MoU) + W(5,^)) (68) 

where W is the coupling between the system q and the medium -s]f ̂  . There is 

an implicit time dependence of this coupling through the time dependence of q. 

For a fixed t, that is to say, for a fixed q(t), we diagonalize this Hamil

tonian: 

obtaining the orthonormal set of stationary states Ĉ „ i £ $. U) '.' 

^cpjfn'frO <&.(n">)J** S^H (70) 

with the energies E (q(t)) = E (t) . 

° n n n 

This procedure defines the moving basis CD . A general (non-stationary) 

wavefunction obeys the Schrodinger equation 

put - i J* t„fr)Jt 

((72) 

The subscript i means that we are going to use the initial conditions 

C - Us*« )- Ks 4= ^,(H'^)=f/M/^)(73) 

The desired amplitude Mf. «j qt is then 

* y M = C<t. (<$- %<*0 (74) 

Inserting (72) into (71), and using (69) and (73) we get 

W. t t(t)=^(^t))^ ^ V<> - '» (76) 

7 ^ • * " » * > / ~ | * * ( T > > 

where 

with. 

These results can he simply obtained from (69) . At the same time we get 

^i'°i 5^^) %S ^*" , ) J t
 (77) 

~ H'fc\ 
We have assumed that the eigenfunctions go are real. We can then separate the 
real and the complex parts of w : define 

mn . , . 

ML(V»>)« K.„ (*fc>) « ' (78) 



with the real matrix elements 

fcte tha t V t J W V l ) ) ' ^ ' U.4, 

(79) 

Note that V t J W > U > ) °VU ^ 

^J, (\M)-~ - w „ (%i*)) (80) 

We shall now state what is it that we consider to be the "small parameter" 

in the present approximation. Let T^f be some typical time scale characterizing 

the internal motion of the medium: then we assume 

•CM IV.. 1 «i (si) 

We claim then that the approximation (using (75)) 

IV (m)*\ - J* Jr v̂ . (%<r)) + (82) 

should be good enough. • 

We can now proceed as in the last subsection, and deduce that 

to the order to which we carried out the expansion the result is equi

valent to 

(83) G W.Vi* ' e * 

- [w(. (%*.>) - ^ . f V K ) ) ] * "V Cvft-O) | (8 

This can again be put into the standard form (def. 38) by making a further 
4) 

approximation on (78) compatible with our adiabacity hypothesis . We shall 

leave this as an exercise to the reader; give also an expression for the 

coefficient of friction in this approximation. 

4. The Weidenmuller model 

The above formulation of dynamical and statistical laws plays an important 

role in a theory due to H.Weidenmuller, D.Brink et al., a theory that hitherto 

has been applied chiefly to deep inelastic nuclear scattering processes. It could 

though equally well be applied to nuclear fission. We shall give here a short 

account of the basic ideas of this theory, following a simplified version due to 

D.Brink: .3) 

In previous sections we were led to consider non-Markovian equations of 

motion for our system (still represented by a single generalized coordinate 

q(t)) of form 

Possible linear terms in q have been absorbed into -—- . We derived this 

from an IF of form 

F^.Vf- ^ 
where t . 

(86a) 

W(VV * J J*><'>{*>+5 J r ' V * (86b) 

and 

$): al*)+ £ J* * fi,'> <?lT> '<«., 

Both f(t) and C( T. T ) are assumed to be real functions of their argu

ments. The weak coupling approximation suggests that f(t) - i.e., the function 

appearing in the real part of W 1 ̂ ,^'|j - is the average force exerted by the 1 



medium on the system. It includes visoosous forces. The function C("^,,Tr ) that 

appears in the pure imaginary part of W ^,^'f will be referred to as the 

"correlation function" for reasons that will be clear soon - although the very 

form of the double integral in (86b) suggests the appropriateness of this 

designation. In the case of weak coupling, it is given by formula (66b). A 

comparison with the coefficient of friction (66d) suggests a relationship. 

We shall return to this presently. 

As already mentioned, eq.(85) happens to be of the type of a generalize 

Langevin equation. The original Langevin equation is quoted in connection 

with the theory of Brownian motion. Consider a particle of mass m suspended 

in a fluid. Assume that the whole assembly is in thermal equillibrium. 

Fig. 3 

Let q be the projection of the particle path, onto some fixed axis, and 

consider its motion between t, and t_ (Fig. 3). Let q = i3r be the component 

along this axis of the particle velocity. The Langevin equation tells us that 

+ rL(0 YV\0 H - W o i (87) 

where F(t) is a random fluctuating force. It results from the chaotic mole^ 

cular bombardement to.which, the particle is subject as it wanders through, the 

fluid. This random Langevin force is assumed to have a Gaussian probability 

distribution with zero mean value 

<fL M V ° (88) 

and a correlation function 

<f j t> fL '(',>>= i X ^ ^ - O (89) 

When this random force has its origins in the thermal fluctuations of 

the molecules of the fluid, the coefficients of friction Ok and the parameter 

are related to each other through Einstein's relation 

/V- *T. •<. (9Q) 

where T is the temperature and k the Boltzmann constant. 

The "Langevin equation is of a simple Markovian type, as already mentioned, 

It can be generalized, and then it reads 

r * ° j j = - \ fu.ioafrJjf + h J * ' <9i> 

in a typical non-Markovian fashion. The generalized Einstein relation (again, 

in case of thermal origin of the random forces) is 

<FJf) FJ r )V *-T- * Ot-vO (92) 

This problem is indeed an ideal one for a treatment with IF methods. Feynman 

and his collaborators have done.just that. Consider the Lagrangian 

LFH.i,0= i^4) + <^'V<> (93) 

TT Generalized non-Markovian equations of type (̂ l) are not convenient for prac
tical applications. This is due to the random nature of the coupling F (t). 
Instead of trying to compute many trajectories (solutions of eq.(j£L)) for 
various distributions FL(t), one can first rewrite eq.(9l) as an equation of 
motion for the normalized probability distribution P (q,p,t) for finding 
the representative point in phase space at time t with the generalized 
coordinate q(t) and the generalized momentum p(t) . One then tries to solve 
this equation with given inital conditions. One thus arrives^) (with suitable 
approximations) to equations of Fokker-Planck type for P (q,p,t). 



The IF corresponding to this is 

f\s^'\, e (94) 

Now suppose that the force F(t) is of a stochastic character, i.e. that it can 

be split up into an average part 

< F U)N> * f U ) (95) 

and a random part F (t) such that 

4 Fult)^ -O (96a) 

<f tu>FLu';>- cc«,c) (96b) 

Then it can easily be shown that the IF can be written thus 

R^iS'J-^Hj i N f ^ f ' ^ - V [jlJj\ar,Tĵ Vr,?97) 

time taken for the compound nucleus from formation to complete scission into two 

(or more) fragments. 

Let us partition this time interval into much shorter intervals 

AT ^t^ do2) 

though larger than the correlation time 

T - • (103) 

We then argue that during these short intervals A t the IF could be computed 

by perturbation theory (weak coupling) to second order in «0(t), the way that 

we did previously. Then invoking our rule 3, the entire IF would be the product 

of all these partial IF's defined in each time interval 4 7 . The result would 

of course again be our standard Gaussian IF. 

What does "weak coupling" mean in this context? The interaction V 

causes the states of the entire assembly (system & medium) to spread over 

many states of the medium, say over a range OE of these states. Weak coupling 

means 

$E « A (104) 

(105) 

We are then justified in using the results discussed previously under the 

heading "weak coupling". 

That is the main argument. The rest is straightforward. 

Define the function 

with « 

The average force f(t) and the correlation function C(Tfri)» respectively 

(66a) and (66b) can be obtained from (105) by differentiating with respect to 

Q, then Q', putting Q = Q' and finally taking the real and imaginary parts, 

which is precisely our standard form for the IF. ' De'f. (96b) thus justifies the 

name "correlation function" for C(T, Tt). 

This is the IF interpretation of Langevin equation. Let us now turn 

to the Weidenmuller model. This model can be used to describe the physics of 

"warm" nuclei, formed during a deep inelastic collision, or during fission 

processes following a compound nucleus formation. In all cases, we shall assume 

that the energy pumped into the nucleus is high enough that the patterns of 

excited states (the medium states) is so complex that random features result. 

We shall try to represent this with the following assumptions. 

We split the Hamiltonian in the same way we have hitherto been doing in 

this chapter: 

Hr U , i O + "**) + v<i.$) (98) 
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The intrinsic states (medium states) are eigenstates of H„: 

\-\ C* ) )*> * G - ̂  (99) 

with energies E . The coupling V is defined through its matrix.elements 

<vu. W (<\,\ ) »»>- V** I O (loo) 

We shall assume that these matrix elements are Gaussian random variables, 

satisfying the following conditions: 

a) < ^ v , 1%)^= ° (101a) 

b) <V<^lO Hnh')> * C ^ w ^ + LW?H.) 
W M (lolb) 

with Q and <0 having the usual meaning (cf.eq.22). Q/€.)is the level density 

at energy £ . The function W(Q) is an interaction strength. The factor ^* is 

a correlation length CfcJ.ffv") a n d _/\ [ J^ 3 r1< V ) a correlation energy. 

With these assumptions, and account taken of our previous discussions, 

it is relatively straightforward to write down the IF of this problem. 

A point is that our previous discussion was based on expansions around 

• 0 = 0 , keeping only the leading terms. This was justified in the weak coupling 

approximation and also in the adiabatic approximation, where the coupling need 

not be weak. But with the problem at hand, one has to be more careful, as there 

is no a priori reason to suppose that U is particularly small. However, we 

could argue as follows. Consider the time interval that we are interested in, 

viz. t£ - t j - in the case of deep inelastic scattering, that would naturally 

be the reaction time; in the case of fission, that could for example be the 

Using the assumptions a) and b) above, the function C can be 

calculated, with the result 

/<? + <?' v x. l-^ ) 

In order to get this convenient result, one has made the "nuclear temperature" 

approximation, i.e. assume 

The "memory" time in weak coupling 

(107) 

T„ - -r £ l° "*£i d08) •u» 4 
is very short, and therefore the Markovian approximation probably is good 

enough. From the result (106) one can then conclude that 

/V.i r <KV FL'^J*' (109) 

^ TT W O - ^ 

One further approximation was necessary to get this simple result: that the speed 

Q is small (ie. Q (. \£- )• This allows one also to obtain the coefficeint bt : 

<~ f X (110) 

in agreement with Einstein's formula. If Q is not small (in the above sense) 

then this last result would not hold. Note that for Q small we could try the 

adiabatic approximation instead of the weak coupling approximation - we would 

then no longer need to assume that V is small in the above-mentioned sense. 
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HE. COLLECTIVE TRANSPORT THEORY FOR NUCLEI 

This chapter of the lecture notes consists of a part of a preliminary 

draft of a review article on "Collective transport theory for nuclei". 

Instead of including it here we refer the reader to ref. 1. 
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STATIC THEORIES OF THE FISSION BARRIER 

M. BRACK 
University of Regensburg, Regensburg, 
Federal Republic of Germany 

Contents of Lectures: 

!2_§yn¥§z_2!_i^2£i£§_2i_iJ]£_§£3£i£_ii§§l2D_!23rrl§i 

Liquid drop modeL 

- deformed sheLL modeL 

- sheLL-cor>ection method 

- nucLear shapes relevant to fission 

scission: exit region 

?2_Ml£roscocj2c_theory 

- Hartree-Fock with effective Skyrme forces 

justification of shelL-correction method 

treatment of pairing effects 

3)._SeniT_ĉ ass2câ ._t heo£^ 

extended Thomas-Fermi medel (ETF) 

reLation of ETF model to Strutinsky averaging 

- variational energy density calculations 

- justification and limitations of droplet model 

All the material presented in these lectures has been previously published 

or is shortly being published (sect. 3). The main references are: 

to 1): see previous Courses on Nuclear Theory for Applications (IAEA-ICTP) 
1978: M. Brack, IAEA-SMR-43, pp. 327-352 
1980: H.C. Pauli, IAEA-SMR-68/I, pp. 41-90 

to 2): P. Quentin, H. Flocard, Ann. Rev. Nucl. Sci. Part .28 (1978) 523 
M. Brack, P. Quentin, Nucl. Phys. A 361 (1981) 35 

to 3): B.K. Jennings, R.K. Bhaduri, M. Brack, Nucl. Phys. A 253 (1975) 29 
M. Brack, et al., Proc. 4th Int. Conf. on Nuclei far from stability, 
Helsingdr 1981 (CERN 81-09) p. 65 
C. Guet, H.-B. Hakansson, M. Brack, Phys. Lett. 97 B (1980) 7 
C. Guet, M. Brack, Z. fur Physik A 297 (1980) 247 
J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Hakansson, 
Nucl. Phys. A, A 386 (1932) 79 
C. Guet, H.-B. Hakansson, M. Brack, to be published in Nucl. Phys. A 
(1983) 
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MASS, CHARGE AND 
KINETIC ENERGY DISTRIBUTION 
OF FISSION FRAGMENTS 

H. NIFENECKER 
Departement Recherche fondamentale, 
CEA, Centre d'etudes nucleaires de Grenoble, 
Grenoble, France 

Abstract 

The material of these lectures is fully covered in the following references 

- Low Energy Nuclear Fission - H. NIFENECKER -
From Nuclear Structures, Edited by K. Abrahams, K. Allart and A.E.L. Dieperink, 
Plenum Publishing Corporation 1981, p. 309. 

- A Combinatorial Analysis of Pair Breaking in Fission - H. NIFENECKER, 
G. MARI0L0P0UL0S, J.P. BOCQUET, R. BRISSOT, C. HAMELIN, J. CRANCON, C. RISTORI, 
In Dynamics of Nuclear Fission and Related Collective Phenomena, 
Edited by P. David, T.. Mayer-Kuckuk and A. van der Woude, 
p. 47, Notes in Physics 158, Springer-Verlag. 

In the following we therefore only give a summary of the lectures. 

MASS, CHARGE and KINETIC ENERGY DISTRIBUTION OF FISSION FRAGMENTS 

The liquid drop theory of fission predicts symmetric fission fragments mass 

energy distributions. Experimental results for low energy fission strongly disa

gree with these predictions. The asymmetry of the mass distributions has been 

known almost since the discovery of the fission phenomenon. It has also been 

shown that asymmetric mass splits produce fragments with more total kinetic ener

gy than the symmetric ones, again at variance with the liquid drop predictions. 

Shell effects clearly influence strongly the fragments mass and energy distribu

tions. On the other hand pairing effects may provide an explanation for the often 

observed enhanced production of fragments with even charge as compared to frag

ments with odd charge. In order to explain the influence of shell effects upon 

the characteristics of fission fragments one has to resort to the general theory 

of shells in nuclei as it was first introduced by W. Strutinsky. The renormaliza-

tion procedure introduced by W. Strutinsky is described shortly since it 

is, now a classic in fission physics. More time is spent on the geometrical ori

gin of shells in deformed nuclei and its relationship to classical closed orbits. 

The first consequence of the Strutinsky procedure is the prediction of a 

double-humped fission barrier. A short review of the experimental confirmations 

of this prediction is given. Models which predict asymmetric fragments mass dis

tributions are described. These models include shell effects in very deformed 

nuclei. Deformed shell with N = 86 and N = 64 with an approximate 2 to 1 ratio 

of the length of the principal axis of the relevant fragment seem to have a deci

sive role in explaining the asymmetric mass distribution. The spherical shells 

with N = 82, Z = 50 or N = 50 play a role in determining the fission kinetic ener

gies. Both Saddle point and Scission point models seem to be able to account semi 

quantitatively for the observed mass distributions. This fact suggests that mass 

distributions may not be a good probe of the fission dynamics. On the contrary 

charge distributions which show striking even-odd effects both on the charge 

yields and the fragments total kinetic energies may very well be a unique tool 

for studying large amplitude nuclear motion dynamics at low temperature. We review 

the experimental data and present a model relating the observed even-odd effects 

to pair breaking. It is shown that existing data are compatible with two pair 

breaking mechanisms. The first takes place at the saddle point where a statistical 

quasi equilibrium is realised, the second close to the scission point at the moment 

of the sudden separation of the fragments. 117 





NUCLEAR DATA FOR FISSION REACTOR 
CORE DESIGN AND SAFETY ANALYSIS: 
REQUIREMENTS AND 
STATUS OF ACCURACY OF NUCLEAR DATA 

J.L. ROWLANDS 
Reactor Physics Division, 
Atomic Energy Establishment, 
Winfrith, Dorchester, 
United Kingdom 

ABSTRACT 

The types of nuclear data required for fission reactor design and safety 
analysis, and the ways in which the data are represented and approximated for 
use in reactor calculations,are summarised first. 

The relative importance of different items of nuclear data in the prediction 
of reactor parameters is described and ways of investigating the accuracy of 
these data by evaluating related integral measurements is discussed. The use 
of sensitivity analysis, together with estimates of the uncertainties in 
nuclear data and relevant integral measurements, in assessing the accuracy of 
prediction of reactor parameters is described. The inverse procedure for 
deciding nuclear data requirements from the target accuracies for prediction of 
reactor parameters follows on from this. The need for assessments of the 
uncertainties in nuclear data evaluations and the form of the uncertainty information 
is discussed. 

The status of the accuracies of predictions and nuclear data requirements are then 
summarised. The reactor parameters considered include: 

(a) Criticality conditions, conversion and burn-up effects. 

(b) Energy production and deposition, decay heating, irradiation 
damage, dosimetry and induced radioactivity. 

(c) Kinetics characteristics and control, including temperature, 
power and coolant density coefficients, delayed neutrons and 
control absorbers. 

Section 1 - Neutron physics data used in fission reactor calculations 

].1 Introduction 

Reactor neutron physics (or neutronics) involves the calculation of the 

neutron energy spectrum and spatial distribution and also relative reaction 

rates in this spectrum. The spectrum varies with position in the reactor. 

In a thermal reactor the spectrum is different in the moderator and the fuel. 

It also varies through the reflector and shielding. The reactor neutron energy 

spectrum is determined by the energy spectrum of the neutrons produced in 

fission and the scattering and absorption cross sections of the reactor components 

as a function of energy. The upper energy of interest is about 15 MeV and, for 

a thermal reactor, the spectrum is calculated down to an energy of about 0.001 eV. 

In this section the parameters, conventions and notation of reactor neutronics 

calculations are introduced, neutronics characteristics of reactors are outlined 

and the approximations made in using nuclear data in reactor calculations summarised. 

1.2 Neutron density, neutron flux and the neutron-nucleus interaction rate 

Some definitions 

The neutron flux is the flow of neutrons per unit area. The directional neutron 

flux is denoted by N (E,x,^) where 

N(E,x,fi)dEd£2 = neutron flux in the solid angle dft about--the direction R, having 

energies in the range E to E + dE (j) 

The scalar neutron flux is the integral of the directional flux over all 

angles: 

<(>(E,x) = / N(E,x,£) dQ (2) 

The scalar neutron flux is often called, simply, the neutron flux. It 

is related to the neutron density, n(E,x), via the speed v, of neutrons 

of energy E, 

<KE,x) = v.n(E.x) , (3) 

where n(E,x)dEdV is the number of neutrons in a volume element dV at x and in the 

energy range E to E + dE. 

In the calculation of the neutron flux distribution in a reactor the angular 

distribution of the flux must be taken into account. In the diffusion theory 

approximation a simple angular dependence is assumed for the flux: 

N(E,x,n) =^(<KE,x) +3fi.J (E,x) 

where J_(E,x) is the net neutron current. 
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The reaction rate for reaction r in isotope I depends on the number 

density of isotope I, N (x) ,in volume element dV and the cross-section for the 
I 

reaction, a (E), at energy E. 

^(x) = N].(x)/ o*(E) 4>(E,x)dE (5) 

This can also be written in terms of the neutron density n(E,x) and 

velocity v: 

R*(x) = N (x) / v n(E,x) o*(E)dE (6) 

The nuclear cross section a (E) is called the microscopic cross section 
. . . . r . . . I 

to distinguish it from the macroscopic cross-section for the material, E (E,x): 

E*(E,x) = NjU), o*(E) (7) 

When there is a neutron source density, S(E), in an infinite medium with no 

leakage the rate at which neutrons are removed from energy interval dE by all 

removal reactions must equal the source 

<KE) £rem(E) = S(E) (8) 

where S(E) is the neutron source due to fission and scattering. The flux equals 

•(E) = S(E)/Z (E) . (9) 
rem 

In an operating reactor the source of neutrons of energy E comprises neutrons 

from fission reactions, elastic and inelastic scattering and reactions such as 

(n,2n) and (n,3n). Charged particle reactions (for example (a,n) reactions) and 

photon induced reactions such as (y»n) and (y»f) reactions are not a significant 

source of neutrons in reactors at power but they can be significant in the shut

down reactor and in fuel in transport and reprocessing. Spontaneous fission is 

also of importance in these cases. 

Neutrons are removed from an energy interval by absorption reactions such 

as radiative capture, (n,p) and (n,a) reactions and by leakage. Scattering 

reactions, which change the energy of the neutron, also remove neutrons from the 

energy interval. Elastic scattering in some isotopes at high energies has a 

component which is strongly forward peaked and, in this case,the change in energy 

for this component can be neglected. This is particularly the case for heavy 

elements at high energies. Thus instead of the removal cross-section being set 

equal to the total cross section it can be approximated. 

The collision density is defined as: 

C(E) = <KE).I <E) (10) 

where E (E) is the total macroscopic cross-section. C(E) is equal to the source 

S(E) when leakage is absent and when all scattering is included in the source. 

The slowing down density, q(E),is the number of neutrons per unit volume 

per second which are moderated from above energy E to lower energies: 

Eu E 
q(E) = / / I (E' -vE") <KE') dE'dE" (11) 

where I (E' -+E") is the cross-section for scattering from energy E' to 

energy E" and E and E are the upper and lower energy ranges of scattering 

about energy E. 

The change in slowing down source with energy is equal to the difference 

between the loss of neutrons by absorption and leakage and the production of 

neutrons by fission: 

^| = I (E).*(E) + L(E) - F(E) (12) 
dE a 

where L(E) is the leakage per unit energy and F(E) is the fission source per 

unit energy. Z (E) is the macroscopic absorption cross-section. 

In the absence of absorption and leakage we have 

q(E) = /">(E')dE' (13) 

Instead of expressing quantities in terms of energy a related variable 

called the lethargy, u, is often used: 

u = - l n ( ioiiv ) <'«> 

and the difference in lethargy between two energies, Ejfand EL is: 

-In/ El \ (15) 13 



The mean lethargy gain in elastic scattering, 5, is dependent on the mass 

of the nucleus and the anisotropy of scattering. For elastic scattering which is 

isotropic in cm. co-ordinates E, is independent of energy (or lethargy) and 

equal to 

- _ aW . . 
5o ~ l + (T-^O 0 6 ) 

A-l 2 
where a = (̂ -p) (17) 

and A = ratio of the mass of the nucleus to the mass of the neutron. 

When the slowing down density is constant in energy and the moderation cross 

section is constant then the flux per unit lethargy, <fi(u), is constant in 

lethargy. In this case the flux per unit energy is proportional to (1/E), and 

(Ku) = q/(lls) 

and <J>(E) = <Ku)/E = q/(i^s E) 

1.3 Approximate form of the neutron spectrum in thermal reactors 

In a thermal reactor q varies fairly slowly over the energy range from 

leV to 100 KeV and moderator cross-sections are approximately constant. The 

collision density per unit lethargy can be assumed to be constant over this 

energy range for some purposes and so C(E) = 1/E. It is acceptable to assume 

<KE) = 1/E leV < E < 100 KeV (19) 

in this energy range, for the purposes of spectrum averaging some cross-sections. 

In fact, the flux has a detailed energy structure through resonances but 

the effect of this structure averages out approximately for cross-sections in 

non-resonant materials, or materials present in small proportions. At higher 

energies the slowing down density can be approximated by the integral of the 

fission spectrum, x(E) (neglecting leakage and absorption): 

q(u) = q(E) = /" x(E')dE' (20) 
E 

and the flux can be approximated as 

<j>(u) - q(u) 

<J>(E) * i /VE'JdE1 E > 100 KeV (21) 
E ' E 

(assuming constant scattering cross-sections). 

At thermal energies, in the absence of absorption and leakage,the flux is in 

thermal equilibrium with the medium and 

• (E) = E exp ( ~ ) E< 1 eV (22) 

where T is the absolute temperature of the medium. These three energy ranges 

are called the fast ( > 100 KeV), intermediate (leV - 100 KeV) and thermal 

( < leV) ranges. 

1.4 Neutron producing reactions in power reactors 

In an operating reactor the source S(E') of neutrons of energy E' results 

from the following reactions: 

Fission reactions - a ,.(E) 
n,f 

The energy spectrum of fission neutrons is denoted by x(E'). This 

depends on the fissioning nucleus and, to a small extent, on the incident 

neutron energy. 

The mean number of neutrons emitted in fission, v(E), also depends on the 

fissioning nucleus and the incident neutron energy, increasing approximately 

linearly with energy. The angular distribution of fission neutrons is 

isotropic to a good approximation. 

Elastic scattering - a (E,E',9 ) 
n,n 

The cross-section is a function of the angle of scattering, 6. The 

cross-section can be expressed either in laboratory co-ordinates or 

centre-of-mass co-ordinates. A useful characteristic of the angular 

distribution is the mean cosine of the scattering angle, \1. The secondary 

energy distribution is defined by the angular distribution. For isotropic 

scattering in cm. co-ordinates it is uniform in energy. 
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Inelastic scattering to discrete levels & - a ,(E,E',9) 
n,n 

The secondary energy distribution is determined by the Q value for the 

level and the angular distribution. In many cases this can be taken 

to be isotropic in c m . co-ordinates. Inelastic scattering occurs both 

when nuclear levels are excited and, at thermal neutron energies, when 

molecular or crystalline level transitions occur. For these thermal 

energy interactions the transition energy can be positive or negative. 

Excitation of nuclear levels occurs at KeV and MeV energies. 

Inelastic scattering to the continuum a ,(E,E',9) 

At energies where the individual levels are not resolved the total inelastic 

cross-section and the secondary energy distribution and angular distribution 

are determined as a function of incident neutron energy. In most practical 

cases the angular distribution can be taken to be isotropic. 

(n,2n) reactions 0 „ (E.E'G) 
n, zn 

Thresholds for (n,2n) reactions are at MeV energies. For most isotopes 

they are above 6 MeV, the average binding energy for neutrons in the nucleus. 

Consequently this reaction does not have a major effect on either the reactor 

neutron spectrum or the neutron balance of a reactor. The reaction is mainly 

of interest when it results in a radioactive reaction product which presents 

a handling or waste management problem. The reaction is usually treated as 

isotropic and the secondary energy distributions as a function of incident 

neutron energy are required. The total cross-section is of more interest 

than an accurate knowledge of the secondary energy distribution because it 

is the contribution to the neutron economy of the net neutron production 

and the reaction products which are of more interest than the small effect 

on the neutron spectrum. The thresholds for (n,3n) reactions are at even 

higher energies and they make a negligibly small contribution to the 

neutron economy and spectra of fission reactors. 

1.5 Neutron production in shut-down reactors and irradiated fuel 

Spontaneous fission neutrons and (a,n) reaction neutrons resulting from 

the alpha decay of transactinium isotopes and (a,n) reactions in light nuclei, 

such as oxygen, carbon and fluorine, are significant components of the activity 

of irradiated fuel. Data are required on spontaneous fission and alpha decay half-

lives, spontaneous fission v values and neutron spectra, alpha particle energies 

and (a,n) reaction data. For irradiated fuel the (ct,n) reaction data can be 

represented by thick sample yields', that is, the yield of neutrons for ct-particles 

emitted in a compound, such as uranium oxide. The yield is a function of a-particle 

energy,as is the energy spectrum of the emitted neutrons. For more general 

compositions, such as reprocessing plant solutions,the a-particle spectrum must 

be calculated, taking into account moderation and absorption processes and the 

(a,n) reaction rate in this spectrum is calculated from the (a,n) reaction cross-

sections of the light isotopes present. Fluorine can be important in this case 

because of its high (a,n) cross-section. 

Immediately after shut-down the delayed fission neutrons form the main 

neutron source. The longest half-life of delayed neutron precursors is 55.6 sees 

(Br 87). At times longer than this, neutrons from (y»n) and (y,f) reactions 

(resulting fromy rays emitted by short lived fission products) can make a 

contribution. This source is significant when heavy water is the moderator,from 

the (y,n) reaction in deuterium. At longer times spontaneous fission and (a,n) 

neutrons form the main sources and this source is approximately independent of 

shut-down time for times of a few days. 

Following shut-down of a reactor there is a time dependent change in the 

balance between fission and absorption reactions associated with radioactive decay 

of fission product isotopes and transactinium isotopes. 

1.6 Neutron absorption reactions 

The two dominant neutron absorption reactions in a fission reactor are 

fission, (n,f), and radiative capture»(n,Y). In the fissile isotopes, fission 

occurs at all neutron energies. The principal fissile isotopes in reactors using 

uranium as the primary fuel source are U235, Pu239 and Pu241. In the thorium 

fuel cycle U233 is the principal fissile isotope. Fission occurs in other 

transactinium isotopes mainly above a threshold energy (which is typically at about 

1 MeV), although the smaller sub-threshold fission is not negligible in some 

isotopes. The threshold for fission in U238 is at about 1 MeV and sub-threshold 

fission is negligible, although measurable. 

Most radiative capture occurs in the principal fertile isotope, which 

is U238 in reactors using uranium fuel and Th232 in reactors using thorium fuel. 



As irradiation proceeds the composition changes. Fission reactions result 

in the production of neutrons and fission product nuclei. Radiative capture 

in some fission products is very large, Xel35 and Sml49 being two examples. The 

half-lives of some fission products are significant parameters because they 

affect the reactor absorption. 

Control rods or control poisons must be introduced into reactors to compensate 

for the variation in fuel composition with burn-up and for reactor shut-down and 

safety purposes. The (n, a) reaction in BIO is one which is suitable for control 

purposes. This (n, a) reaction occurs at all neutron energies. In heavier substances 

the (n,p) and (n,a) reaction cross-sections have effective thresholds at MeV 

energies. These reactions do not have a large effect on the neutron economy of 

reactors although the (n,p) reactions are comparable with the (n,y) reactions in 

some structural materials. The (n,p) and (n,a) reactions in some structural material 

isotopes are of significance because of the activity of the reaction products and 

the effect of the hydrogen and helium produced on material properties. For example 

helium embrittlement can occur after long irradiations because of (n,a) reactions, 

and swelling can occur as a result of atomic displacements caused by scattering 

reactions,with helium atoms acting as nucleation sites. 

1.7 Neutron leakage, the effective mean free path and the diffusion coefficient 

Neutron leakage depends on the effective mean free path of neutrons. For 

scattering which is isotropic in laboratory co-ordinates the mean free path, X , 

would be inversely proportional to the total macroscopic cross-section. To allow 

for the anisotropy of scattering the transport cross-section can be defined: 

E » E - 5 I (23) 
tr t s 

and X .= 1/Etr 

where E is the total macroscopic cross-section 

E is the scattering macroscopic cross-section 

and \i is the mean cosine of the scattering angle. 

For elastic scattering which is isotropic in c m . co-ordinates u = 2/3A 

where A is the ratio of the nuclear mass to the neutron mass. 

The diffusion coefficient, D, can be defined in terms of the ratio of the net 

neutron current, J, to the gradient of the scalar neutron flux, grad <J>, that is: 

J = -D . |i (24) 
X X OX 

for direction x. In the diffusion theory approximation: 

D = 1/3E 
tr 

1.8 The structure of cross-sections 

Resonance Structure 

The resonance structure of the cross-sections of materials present in 

reactors in significant proportions must be taken into account in reactor 

calculations because this structure results in a reciprocal structure in the 

reactor neutron flux spectrum: 

• (E) = S(E)/ET(E) (26) 

(neglecting leakage effects). 

When the source of neutrons (from fission and scattering) varies slowly 

through the resonance the flux dips at the positions of the cross-section peaks. 

The flux averaged value of a cross-section is reduced relative to the infinite dilution 

value. This effect is called resonance shielding. Resonance shielding is significant 

in transactinum isotopes from thermal energies up to about 100 KeV. In structural 

materials such as Fe, Cr and Ni it is significant at KeV energies (1 KeV to 

1 MeV). In light isotopes ,like 0 and C,resonances occur only above about 100 KeV. 

Because of resolution broadening in the measurement of cross-sections the 

measured shapes of resonances are broadened and, at high energies, resonances are 

not resolved. We speak of the resolved and unresolved resonance regions. Even 

in the unresolved resonance region the structure must be taken into account in 

reactor calculations for many substances. To derive the cross-sections in the 

resolved resonance region from the measurements a resonance parameter analysis 

is made to determine the resonance energy, E , the neutron orbital angular momentum, 1, 

(s,p,d,f wave), compound nucleus spin, J, and the resonance partial widths,r_ , the 

total width being: 

r = r + r + r. etc (27) 
n Y r 

that is,the sum of the neutron, radiative capture, and fission and any other 

reaction widths, such as inelastic scattering. 
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A set of parameters must be found which will reproduce the measurements of 

the different cross-sections taking into account the different resolution 

broadening in each reaction. The appropriate choice of resonance structure 

formula must be considered. For some applications the simple single level 

Breit-Wigner formula is an acceptable approximation for the shapes of cross-

sections through resonances in the absence of temperature broadening. For a 

reaction, r, other than elastic scattering: 

, r r 
a ( n , r ) = 4TTX g — (28) 

r2 + 4 (E-E ) 2 

r 

and for e las t ic scattering of s-wave neutrons (1 = 0) : 
? r 2 r (E-E ) 

o(n ,n) = 4TT* g -= =• + 16ir* Rg -=£ =• + 4irR (29) 
r + 4(E-E ) r + 4(E-E ) 

r r 
where g is the statistical spin factor g = (2J+I)/2(2l +1) 

I is the spin of the target nucleus 

and R is the potential scattering radius. 

The asymmetrical term in the expression for the s-wave elastic scattering cross-

section is important because it produces a minimum in the total cross-section below 

resonance. These minima are important because the neutron transmission through 

shielding can be high at .these energies. 

In general, the single level Breit-Wigner formula is not sufficiently accurate 

to reproduce the shapes of cross-sections and one of the more accurate formulae 

must be used. These include the R matrix representation and the Reich-Moore 

and Multi-level Breit-Wigner formulations. 

Doppler broadening of cross-sections can be treated in one of the following 

ways: 

(i) Cross-sections at temperature T can be obtained from Doppler 

broadened resonance functions. 

(ii) Cross-sections can be obtained by numerical integration over 

a cross-section tabulated at a lower temperature times the 

appropriate broadening kernel, 

(iii) Doppler broadened shielded cross-sections can be derived 

directly using approximate formulae. 

Tests can be applied to investigate the consistency of the angular momentum 

and spin characterisation of resonances and to test for missing resonances (using 

the known statistics of level spacing distributions). 

In the unresolved resonance region a statistical approach must be adopted. 

Average resonance parameters are derived consistently with the broad resolution 

cross-section measurements and the average parameters determined for the resolved 

resonance region. 

The temperature of the material affects the shapes of resonances (in the 

laboratory co-ordinate system) because of the thermal motion of the nucleus. 

An increase in temperature broadens the resonances and reduces the resonance 

shielding. This is called the Doppler effect. It is mainly of importance 

for resonance shielding in the principal transactinium isotopes, although the 

small effect in iron and other structural materials is not negligible. 

Crystalline binding effects can also influence the thermal motion of 

nuclei and hence the Doppler effect. At thermal neutron energies diffraction 

effects in crystalline structures can introduce a pronounced energy structure 

into the scattering cross-section. This is particularly marked for graphite which 

is used as the moderating material in some thermal reactors. 

Anisotropy pf elastic scattering 

The angular distribution of scattered neutrons is usually represented either 

by an expansion in Legendre polynomials or as a point tabulation of the cross-

section versus the cosine of the scattering angle. Up to 20 Legendre polynomial 

coefficients can be required to represent the distribution, although it is unusual 

to use more than 5 in reactor calculations. In fact, in most reactor core 

calculations just the Po and PI components are taken into account, with more 

being used in shielding calculations. The anisotropy of scattering can vary 

through resonances,this being particularly significant for the broad oxygen resonance 

at 450 KeV. A variation in the anisotropy of scattering occurs through the resonances 

in iron. An investigation of the effect of this on neutron attenuation through 

iron suggests that it is not an important effect(l). At high energies elastic 

scattering in transactinide isotopes has a strong forward peaking and this has an 

effect on the mean free path of neutrons. The transport approximation can be 

used to allow for scattering anisotropy in this case. The scattering is treated 

as isotropic, but with a smaller cross-section equal to 

Zel,tr - Eel ( 1 " *> ( 3 0 ) 



The forward scattering component is subtracted from tne total scattering, 

the remainder being treated as isotropic. This approximation is acceptable in 

many cases when the anisotropy is not a strong forward peaking. However,the 

approximation can lead to difficulties for light isotopes and, in particular, 

for hydrogen for which the scattering is isotropic in cm. co-ordinates over 

most of the energy range of significance in reactor calculations. The PI 

scattering component is large in laboratory co-ordinates resulting in a value 

of p=2/3. 

Inelastic scattering 

The secondary energy and angular distribution for inelastic scattering is 

potentially a much more complex representational problem. For inelastic 

scattering to discrete levels the representation is simpler, the required data 

being the cross-section to the level and the angular distribution as a function 

of incident neutron energy. For many cases the inelastic scattering can be 

approximated as isotropic in cm. co-ordinates in calculating the secondary 

energy distribution and also as isotropic in laboratory co-ordinates when 

calculating the angular distribution of the emitted neutrons. There are some 

important exceptions, when direct interations are a major component of the 

scattering. An example is scattering to the first level in U238 at 45 KeV. 

Because the treatment of inelastic scattering to discrete levels with isotropic 

secondary energy distributions is comparatively simple, (with the secondary 

energy distribution being uniform over a range defined by the Q value of the level 

and the mass of the nucleus) it is advantageous to try to represent inleastic 

scattering to the continuum in terms of 'pseudo discrete' levels, and procedures 

for doing this have been proposed (2). 

Fission neutrons 

A small fraction of fission neutrons are not emitted during the fission 

process but following the decay of certain short lived fission products. These 

are called the delayed neutrons, while the prompt neutrons are emitted at the 

time of fission. Simple few parameter functions are used to characterise the 

energy spectrum of prompt neutrons. The Maxwellian is one commonly used form: 

X M(E) = K, /E expf-f) (3!) 

where T is the temperature, K a normalisation constant, and the mean energy, E = 

3T/2. Another representation which is used is the Watt form: 

X W(E) = Kj exp(-|^ . sinh (2 / U T E / T ) (32) 

and the mean energy is E = 3T/2 + U. 

In more elaborate representations a sum of two or three of these forms 

has been used. 

The parameters in these functional representations depend on the fissioning 

nucleus and can also be dependent on the energy of the incident neutron, although 

this dependence is usually neglected. 

The delayed neutron fraction also depends on the fissioning nucleus, the 

fraction being 1.6% for U238 and0.22% for Pu239. There is also a dependence 

on incident neutron energy although this is sometimes neglected. The variation is 

small and not well measured up to the energy of the (n,n'f) threshold (at 

about 6 MeV). There are many fission product precursors producing delayed neutrons. 

At present it is not customary to make summation calculations over these precursors 

to obtain the time dependence of the delayed neutron emission but to fit the measured 

total emission by the sum of six exponentials, or delayed neutron groups: 

y(t) = Z a • exp (-X.O ''33) 
i A 1 

the values of a^andX. being determined for each fissioning isotope. 

Delayed neutron spectra have been measured for individual precursors and 

show a very complex energy structure. It is usual to simplify this structure and 

produce a spectrum for each of the six delayed neutron groups. 

1.9 Evaluated nuclear data libraries and applications orientated data sets 

Several stages are involved in. obtaining the nuclear data sets used in 

reactor calculations: 

(a) Nuclear data measurements are made. 

(b) The raw measurements are analysed to correct for resolution 

broadening and other limitations of the experimental techniques. 

(c) The measured data are compiled at one of the Four Data Centres and 

transmitted to the other three (Brookhaven, Obninsk, Saclay and Vienna). 

(d) An evaluation is made of all the measured data for a substance to produce 

a single 'best' set of data. This involves examination of all the 

measured data for consistency and statistical averaging. Nuclear 

models are used to fit the measurements and,extend their range. ^ 



(e) The evaluated data are compiled in a computer format such as the 

ENDF/B-V format and collected into a library of evaluations for different 

substances or reaction types. Examples of such libraries are the 

ENDF/B-V Standards Library. This contains neutron interaction data for 

substances with cross-sections which are used as standards relative to 

which other cross-sections are measured. Data in this library are 

stored (not surprisingly) in ENDF/B-V format. However, other libraries 

also use this format. The Japanese JENDL2 library uses the ENDF/B-IV 

format. 

(f) Nuclear data libraries are produced for specific applications. 

(i) Monte Carlo calculations can use very detailed representations but 

some processing of the basic evaluated nuclear data libraries is 

usual to reduce the amount of data to be stored and provide it in 

a more convenient form. However,Monte Carlo calculations of all 

reactor properties of interest would be too costly when run for the 

computer times necessary to give the required accuracy. 

(ii) The standard methods employed for reactor calculations use nuclear 

data averaged over a few energy groups. The derivation of these 

group averaged cross-sections can involve a number of stages 

starting with either a detailed flux spectrum calculation for a 

simplified geometrical representation of each region of the reactor 

or a parametrisation derived from calculations or formulae for the 

spectra in simple geometries. 

1.10 Energy group averaged cross sections 

The energy group averaged cross-section is defined as: 

I 
Jr,G ol r = fEG $(E1) a 1 (E') dE' / f an, $(£') dE' (34) f G ^(E') a* (E') dE' / /*EG 

where E and E are the lower and upper energies of the group G. Cross-

sections for scattering of neutrons from one energy group to another take the form 

/ \ ' J 
E, 

L 

's.G-^G1 = / " dE» j u dE" <KE») 08
i(E,-»E") / / " •(E')dE' 

E E 
G G 

(35) • 

As well as neutron flux spectrum averaging some other methods have been tried and 

found to have advantages in some applications. These include bilinear weighting with 

the neutron flux times the neutron importance spectrum, where the neutron importance 

* . . . . 
<J> (E,x) is the probability of a neutron of energy E at position x 

contributing to the asymptotic fissionneutron source distribution. 

A neutron importance relating to other reactor properties can also be calculated 

and used in this way. 

Overlapping energy groups have also been used in some applications. 

VJhen deriving group averaged cross-sections the aim is to produce a 

parameterised set suitable for calculations for a region of a particular reactor 

type (such as the core region of a PWR) over its whole range of operation: that 

is for all fuel irradiations , coolant conditions, control absorber insertion 

and for the full temperature range which must be considered. The group cross-

sections can be tabulated (or parameterised) for a range of fuel burnup levels 

and fuel enrichment and a range of temperatures. These variations affect the resonance 

shielding in transactinium isotopes and also, to a small extent, the variation of 

the neutron source, S(E), or collision density <J>(E) £ (E), through the energy group. 

This has an effeet ,in particular ,on the elastic moderation cross-sections. The 

cross-section of the principal moderator isotope is the most important but also, 

usually,the least sensitive to changes in spectrum shape. The group averaged 

scattering cross-sections of H and D are not significantly sensitive to the 

weighting spectrum. A 100 group cross-section set is found to be satisfactory for 

a wide range of thermal reactor applications although a different set is required 

for fast reactor calculations. In such a thermal reactor set about 40 of the 

energy groups are at energies below 1 eV and the remainder are spaced at approximately 

uniform lethargy intervals up to about 15 MeV. 

The methods used to treat resonance shielding include tabulations of the 

shielding factor for each isotope and energy group as a function of the effective 



removal cross-section for a typical resonance in the isotope. This effective 

removal cross-section makes allowance for the fraction of neutrons which are 

scattered within the energy width of the resonance. This fraction is a function 

of the scattering material and the resonant material and varies with energy 

group. The shielding factor is also a function of the temperature of the 

resonant material. When calculating the resonance shielding using this formulation 

allowance must be made for the geometry and size of the resonant material and the 

surrounding material. This is done in terms of an equivalent scattering cross-

section. 

Other ways of treating resonance structure include the sub-group and 

probability table method. In this method the distribution of cross-section 

values within an energy group is represented in histogram form. This is 

illustrated in Fig.1.1. Each element of the histogram is called a sub-group. These 

are different for each resonant substance and the sub-group parameters 

are chosen to reproduce the results of more detailed calculations. When 

calculating the neutron flux in each sub-group for each resonant material a 

constant effective removal cross-section is assumed for the other constituent materials. 

Overlap effects between resonances of different materials are treated only in an 

average way and the resonance structure must be examined to see if there are 

prominent resonances which are overlapping. Geometrical effects can be treated 

directly by calculating the flux in each sub-group for a model representing the 

geometry, (usually a simplified geometrical representation). 

1.11 Methods used to treat the effects of the thermal motion of nuclei and 

chemical binding. The thermal energy region 

When the absorption and leakage of neutrons is very small compared with 

the scattering, the energy distribution of the neutrons in the medium is a 

Maxwell-Boltzman distribution: 

M<E) " 7 7 ^ - • * • • • » ( - h) 
(for a medium at uniform temperature, T). 

The neutrons are in thermal equilibrium with the medium and their energy 

distribution is independent of the detailed energy structure of the scattering 

cross-sections. 

The neutron flux spectrum has the form: 

•M(E) = v M(E) , (37) 

where v is the velocity of a neutron of energy E. The peak of the neutron 

flux per unit energy occurs at 

E T = KT 

For a medium at a temperature of 293 K the peak energy is E = 0.025 eV 

and the corresponding neutron velocity is 2200 m/sec. The spectrum averaged 

value of a cross-section having a (1/v) energy dependence is the value for an 

energy of (4 E /IT) or 

0(1/v) = . *£ . aQ ~ (38) 

where a is the 2200 ra/sec value, 
o 

It is common to quote both 2200 m/sec cross-sections and thermaj. 

Maxwellian averaged cross-sections. Cross-sections having a (1/v) form can be 

related using this equation. The mean energy of the spectrum is E = 2KT = 

2E = 0.05 eV. o 

In a thermal reactor a neutron spectrum differs from the Maxwell-Boltzman form 

because absorption and leakage effects are not negligibly small compared with 

scattering effects. However, for approximate calculations, and for treating 

reactions for which a high accuracy is not required, a Maxwell-Boltzman form with 

an effective temperature Teff, is sometimes assumed for the thermal region. The 

value of Teff is derived from the thermal spectrum averaged value of a (1/v) 

form cross-section. Absorption cross-sections can then be obtained approximately 

using a formula of the form: 

o(Teff) = / f . / T o ) .g(Teff) a (39) 
4 \T7ff/ ° 

where the factor g is a tabulated correction calculated to allow for the 

departure of the cross-section from (1/v) form. 

To calculate reactor neutron spectra at thermal energies the detailed 

energy structure of absorption and scattering cross-sections must be allowed for. 

At energies below about 4 eV it is necessary to take into account the thermal 

motion of nuclei in calculating the secondary energy distributions of scattered 

neutrons. In the WIMS cross-section library 42 energy groups are used to 

describe the cross-sections below 4eV and the scattering matrices are dependent 

on the temperatures of the materials (3). The chemical forces binding nuclei 

in molecules and crystals affect the dynamics of the interactions of neutrons 

with nuclei. Transitions between different vibrational and rotational levels 127 



can occur in a scattering interaction. The population of levels depends on the 

temperature and transitions to both higher and lower energy levels can occur 

with associated losses or gains in kinetic energy in this inelastic scattering 

reaction. Neutron diffraction effects can also modify the scattering cross-section. 

It is usual to approximate the treatment of thermal scattering for all 

nuclei excepting the principal moderators (hydrogen, deuterium and carbon) 

by the monatomic gas model. The temperature dependence of capture and fission 

cross-sections at thermal energies ( *. A eV) is usually neglected. Cross-sections 

which have a (1/v) form in centre of mass co-ordinates are the same in laboratory 

co-ordinates, being unchanged by the thermal motion of the nucleus. Cross-sections 

of primary interest in thermal reactors either have a form close to (1/v) or have 

a broad resonance in the higher energy region of the thermal spectrum, tailing off to 

a (1/v) form at lower energies. 

The differential scattering cross-section is usually expressed in terms 

of the quantity S( a, 3) which is called the scattering law for the material. 

This is stored in tabular form in nuclear data libraries, such as ENDF/B (4). Scattering 

matrices for different moments of scattering (Po and PI) in the required group 

structure are then obtained by integration of the cross-section for scattering 

from energy E1 to energy E and through the angle 6 (u = cos 6 ) 

where ct = (E' + E - 2 /"¥*"£" u)/KT 

and 3 = (E*-E)/KT 

This form satisfies the required condition for detailed balance. 

The form of S(a, 3) for a free monatomic gas is 
2 2 

S(a 3) = — ] — j exp ("iH-lLl) (41) 
2(ira) 

The derivation of the scattering law usually involves simplifying approximations. 

It is not usually obtained directly from differential scattering measurements 

but by fitting a function which represents the incoherent component of the 

scattering or a smoothed cross section to related measurements and then by 

making any required adjustments for coherent scattering, or diffraction effects. 

The measurements fitted include partial range differential scattering 

measurements and specific heats. Neutron diffraction studies also provide 

information on the thermal motion of the nuclei. 

In one procedure for generating thermal scattering cross-sections the 

incoherent component, or smoothed form of the scattering law,is calculated from the 

function p(3) or p(w) where w = 3KT/n. For a solid p(w) is the phonon frequency 

distribution. The functional dependence of S(ct,3) on a,3and p(w) is an 

approximation and the validity of the functional form must be tested, along with 

the function p(w>. The scattering law is then defined in terms of the width 

function, w(t) 

where 

oo 

S(a,3) = f exp J-oiw(t) - i g t J . dt 
- CO 

r°° P(g') r ft. -j 
w(t) = / - . cosh (-|) - cos (3't) . d3* 

J 3 sinh (3'/2)L l J 

(42) 

(43) 

For a regular lattice a two parameter phonon frequency distribution can 

be adopted, p (w,l) , where 1 = cos A and A is the angle between the incident 

neutron and a lattice axis. 

For hydrogen in water there is no coherent scattering and for deuterium 

in heavy water the coherent scattering is significant only at low energies and 

is usually neglected in reactor calculations. For carbon in graphite a correction 

must be made for the coherent scattering component. This results in a detailed 

structure being imposed on the total scattering cross-section. The structure 

corresponds to neutron wave-lengths equal to dimensions of the crystal lattice, 

or multiples of these dimensions. The coherent scattering cross-section 

falls sharply at energies below these characteristic wave lengths. At energies 

below the longest characteristic wave length the coherent scattering cross-section 

is zero. This cut off (the Bragg cut-off) is represented in the total scattering 

cross-sections of a number of nuclei for which a full treatment of crystalline 

binding effects in the secondary energy distribution is not considered necessary. 

This is because the total scattering cross-section affects neutron diffusion 

while the effect on the secondary energy distribution is small. 

Thermal scattering data are tested by comparing calculated total cross 

sections, and characteristics of calculated neutron spectra, such as diffusion 

coefficients and reaction rates sensitive to the spectrum shape, with measured 

values. 

1.12 Resonance integrals 

As described in Section 1.3 the neutron flux spectrum in the intermediate energy 

range, 1 eV to 100 KeV, can be approximated in the form <f> (E) a 1/Efor some thermal 



reactor applications. The energy dependent shapes of the cross-sections can then 

be replaced by the resonance integrals: 
I 

(RI>: = f u "r (E) ' f- (41) I rE o 
i = I u r r J 

h 
where (RI) denotes the resonance integral for reaction r in isotope I 

and E and E are the lower and upper energies of the resonance integral range. 

The resonance integral of a radiative capture cross-section is (in many 

cases), not very sensitive to the upper energy, E , nor to the departure of <f> (E) 

from 1/E form at higher energies (above ~- 1 KeV). However, the value is 

sensitive to the lower energy, E . This is often taken as 0.5 eV because this is 

the effective cut-off energy for reaction rates measured in a sample shielded 

by cadmium. This is the lower energy cut-off used, for example, for the resonance 

integrals tabulated in BNL 325 Third Edition, Volume 1 (5). 

Resonance integrals are usually measured in a pure moderator, such as a 

block of graphite, adjacent to a reactor. The intermediate flux spectrum is then 

very close to <(>(E) = 1/E. Resonance integral measurements provide a useful check 

on differential cross-section measurements. They can also be used together 

with 2200 m/sec cross-section values, suitably scaled to correct for the effective 

thermal Maxwellian temperature, the departure from 1/v form at thermal energies 

and the ratio of intermediate energy range flux to thermal energy range flux, 

to calculate reaction rates for substances of secondary importance. This method is 

used in inventory calculations for minor fission products and transactinium isotopes. 

Useful data of this simple form have been obtained by measuring the compositions 

of. irradiated fuels and pure samples of materials. 

1.13 Fission spectrum averages 

The reactor neutron flux spectrum above about 3 MeV is approximately proportional 

to the fission neutron spectrum. For reactions with an effective threshold energy 

above about 3 MeV the reactor spectrum averaged value of the cross-section can be 

related approximately to the fission spectrum averaged value by applying a scaling 

factor which is appropriate for the reactor region. Many (n,p), (n,a ) and 

(n,2n) reactions have effective thresholds above about 3 MeV and so approximate 

values of the reaction rates can be obtained in this way. Many of these reactions 

are of interest because they result in radioactive products (which present handling 

and disposal problems) and the (n, a ) reactions contribute to radiation damage 

effects. 

Measurements of fission spectrum averaged cross-sections and cross-section 

ratios also provide a useful test of the differential cross-sections. 

1.14 Nuclear data uncertainty information 

The assessment of the uncertainties in the prediction of reactor properties 

is an important requirement, both for economic and safety reasons. Allowances 

must be made in the design and operation of reactors to cover uncertainties by 

introducing suitable margins. A very high level of confidence in the safety 

aspects of reactors must be achieved. Uncertainties in nuclear data contribute 

to the overall uncertainty. Consequently the uncertainties in the data and the 

sensitivity of calculated reactor parameters to these uncertainties must be 

estimated. 

The estimation and representation of uncertainties in evaluated differential 

cross-sections is a complex problem. However, since the required information is the 

uncertainty in reactor neutron spectrum averaged values of cross-sections,or in 

ratios of such averages, the required information can take a simpler form in 

many cases. For example, when the cross-section does not influence the spectrum 

the requirement is for the uncertainty in the average value of the cross-section in 

a specified spectrum and its correlation with the uncertainty in other averaged 

cross-sections entering into the calculations. In other cases, for example, when 

resonance shielding effects are important, the effect of the uncertainties on the 

spectrum must also be taken into account. Reactor measurements can help to provide 

a normalisation which reduces the uncertainty in predictions and improve confidence 

in predictions. 

1.15 Integral measurements 

This is the name given to nuclear data related measurements made in reactor 

spectra. The information obtained is usually of the form of reactor spectrum 

averaged reaction rate ratio measurements or reactivity measurements. Reactor 

spectrum measurements have also been made. There have been extensive programs 

of measurements made in zero power critical facilities, and neutron source driven 

assemblies, which have been designed to provide a test of nuclear data . 

Integral measurements have also been used to adjust differential cross-

sections, taking into account the uncertainties in the two types of measurement, 

and to select between inconsistent differential cross-section measurements. 10Q 



An example of this latter approach is in the choice between different measurements 

of the fission cross-section of Am241. 

When integral measurements are taken into account the uncertainties in the 

nuclear data used in reactor calculations and, consequently, in the accuracy of 

predictions can be reduced. 

Section 2 - Nuclear data characteristics of core neutronics parameters 

2.1 Core parameter predictions for which nuclear data are required 

Effective multiplication, K 

When a fission reactor is operating in a steady state (in the absence of 

external or radioactive sources) there is a balance between the rate of production 

of neutrons from fission and the rate of loss by absorption and leakage. The 

effective multiplication of the reactor, K, is then equal to unity: 

K = Rate of production of neutrons by fission 

Rate of loss of neutrons by absorption and leakage (42) 

= 1 for a critical reactor. 

It is customary (in the definition of K) to include neutrons produced 

by reactions other than fission,such as (n,2n) and (n,3n) reactions, as negative 

absorption terms. The effective multiplication can also be defined in terms of the 

number of neutrons in successive generations of fission neutrons (when asymptotic 

conditions have been achieved). 

K = Number of neutrons in fission neutron generation (g+1) 
. . . (43) 

Number of neutrons in fission neutron generation g 

(in the limit as g -> °°) 

The total number of neutrons has a time dependence equal to 
n = n exp {(~t)} (44) 

where 1 is the mean neutron lifetime between production in fission and 

absorption or leakage. When there is a neutron source present in the reactor 

(other than neutron induced fission and other reactions related to the neutron 

flux level) then, for a value of K < 1 a steady state condition is reached in 

which the fission source is equal to 

F = S <j)*/(l-K) (45) 

where <j>* is the importance of the source neutrons. Such a source might be 

spontaneous fission, ( a ,n) reactions or an artifical source (such as an antimony, 

berylium source). A reactor is never completely free from such sources and so in 

a reactor operating in steady state K is always slightly less than unity, although 

the difference is often negligibly small. The departure of the reactor from the 

critical state is usually expressed in terms of the reactivity, p, where 

P = 1 -(1/K) (46) 

The reactivity of a reactor can change when the temperature of the fuel 

or the moderator changes or when the coolant density changes. The reactivity of 

the fuel changes with irradiation as the fissile material is burnt up, and fission 

product absorption builds up. These variations must be compensated for by moving 

control elements or by varying the amount of control poison in the coolant. Burnable 

poisons which compensate for fuel burnup effects are also used in some designs. The 

neutron flux and coolant temperature are monitored and the control varied to maintain 

the required power output. In most reactors reactivity decreases when the temperature 

of the fuel and moderator increases and so it is necessary to add reactivity, 

usually by withdrawing control absorber rods, to raise the reactor power. 

Variation of Composition with fuel burnup 

The number of atoms of each transactinium isotope in the fuel changes with burnup. 

Absorption reactions in isotope I, reduces the number of atoms. These reactions 

are characterised by the absorption cross-section. 

I l l 
a = a _ + a 
a f c 

(together with (n,2n) and other reactions). 

Radioactive decay also reduces the number. Alpha and beta decay result in 

the formation of other transactinium isotopes. The number of atoms of isotope I 

can increase as a consequence of such decay processes and also as a result of 

radiative capture reactions, (n, y)» in isotope (1-1) 

™(I> = (_N(i) aI + Nd-D a^-'^ _ XjN(I) • (47) 

-+• (radioactive decay processes leading to isotope I) 

Variation of reactivity with burnup 

Burnup is defined either in terms of the percentage of the initial fuel 

loading of transactinium isotopes which undergo fission (ie percentage burnup) 

or the heat generated in the fuel in units of Megawatt days per tonne (MWd/te). 



As burnup proceeds the reactivity of the fuel varies. The loss of fissile material 

a consequence of fission reactions and the build up of fission product atoms (which 

absorb neutrons) results in a reduction in reactivity. Burnable poisons can be 

introduced into thermal reactor fuel assemblies to compensate for this loss of 

reactivity. In other designs moveable absorbing control rods are withdrawn 

from the reactor to compensate for the reduction in fuel reactivity. The total 

burnup control requirement depends upon the maximum burnup of fuel elements and 

the refuelling strategy. When the whole of the core is replaced at each refuelling 

the maximum burnup control is required. When small fractions of the core 

are replaced at each refuelling then the reactivity variation overall 

is much smaller. 

Transient effects 

Allowance must be made for reactivity transients associated with the decay 

of short lived transactinium isotopes formed by capture reactions and with the 

decay of fission products. This variation of reactivity can be important 

following the shut-down of a reactor for refuelling or maintenance and start-up 

following a shut-down period. The decay of Np239 (2.35 days) results in an 

increase in reactivity. The fission products Xel35 (9.17 hr) and Sml49 (stable) 

both have very large thermal capture cross-sections and are formed both directly 

in fission and by the decay of fission product precursors, 1135 (6.59 hr) and 

Pml49 (53.1 hr). These fission product transient effects are only important in 

thermal reactors. 

Conversion and breeding 

In a uranium fuelled reactor the U235 fraction in the fuel is reduced by 

fission and capture reactions. This loss of fissile material is partly compensated 

for by the production of Pu239 as a result of radiative capture in U238: 

U238 + n = U239 >Np239 > Pu239 (48) 

(23.5 rain) (2.35 days) 

The conversion ratio is defined as 

PR = Rate of production of fissile atoms ,,*) 
Rate of loss of fissile atoms 

Conversion is important both because it increases the fraction of uranium 

resources which can be converted into energy and because it reduces the rate 

of loss of fuel element reactivity with burnup. By recycling fissile material, 

reprocessed from irradiated fuel,back into reactors uranium utilisation can be 

further enhanced. 

The conversion potential of a reactor depends on the fissile material used in 

the fuel and the reactor neutron spectrum. It is related to the excess neutrons 

produced per absorption in the fissile isotope. The number of neutrons produced 

per absorption is the eta value: 

n - v/(l+a) (50) 

where a = a /ar c f 

The energy dependence of n for the principal fissile isotopes is shown in 

Fig. 2.1. When the eta value exceeds 2 the fuel has the potential to breed more 

fissile material than is consumed. Some neutrons are absorbed in control 

absorber material, fission products, structural materials, coolant and moderator. 

However, fission reactions in the fertile isotopes (like U238) enhance the neutron 

economy. Fast reactors fuelled with Pu239 have the highest breeding potential. 

Temperature and power coefficients of reactivity 

To determine the control reactivity required to operate the reactor at 

different power levels and to shut it down for refuelling and maintenance the 

variation of reactivity with temperature and power is required. The total isothermal 

temperature coefficient can be separated into the fuel, coolant and moderator 

temperature coefficients. These respond differently to a change in power; the fuel 

temperature increases most. The temperature distributions are non-uniform and 

this can complicate the calculation of Doppler effects. The coolant density 

oefficient depends on pressure as well as temperature and this dependence is also 

required. 

The temperature and power coefficients, and the coolant density coefficient 

are also required for safety studies. 

Control absorbers 

Control absorbers are used to compensate for the variation of fuel reactivity 

with burnup, to compensate for the variation of reactivity with reactor operating 

power, to provide a shut-down margin and for safety purposes. They are also used 

to alter the power distribution in the core and to compensate for local burnup 

effects. 

In thermal reactors burnable poisons are used to partly compensate for the 

variation of fuel reactivity with burnup. A suitable burnable poison is one which 

loses reactivity more rapidly than the fuel and is converted into an isotope 

having negligible burnup before the end of the fuel irradiation. In a BWR .̂. 

gadolinium loaded fuel pins are used in the initial reactor fuel charge until 



an equilibrium fuel cycle is achieved. In PWR s borosilicate glass tubes are 

used. 

In light water reactors boric acid can be dissolved in the coolant to 

provide control. Such soluble poisons have the advantage that they are distributed 

more uniformly through the core than are control rods and consequently they do 

not perturb localised power distributions. They also avoid the need to have 

mechanisms operating in the core environment. 

In the design of moveable control elements the aim is to have an 

absorber which will have a long lifetime. The rate of loss of absorption should 

be small and the element should be capable of withstanding a long irradiation 

without swelling and distorting. In BWRs a cruciform shaped blade which moves 

between fuel assemblies isused, while in a PWR a cluster of widely spaced absorber 

pins moves between the fuel pins of a fuel assembly. The cruciform rods use boron 

dispersed in stainless steel. In PWRs an Ag-In-Cd alloy is used as the absorber. 

In fast reactors boron carbide (B.C) is the most commonly used control absorber. 

The boron is sometimes enriched in the BIO isotope in which the predominant 

absorption, (n,a), occurs. For this reaction helium formation and the resultant 

swelling can limit the lifetime of the rod. Other absorber materials which have 

been used,or are being investigated,include tantalum, europium oxide and 

europium boride. The induced radioactivity and decay heating can present a problem 

with these 

Power distributions 

The power output of a reactor can be limited by the temperature of the 

hottest fuel pin. An important aim is therefore to minimise power peaking and 

the peak to average power distribution. This can be influenced by the reflector 

effectiveness, the distribution of fuel assemblies having different levels of burnup 

and the differential insertion of control elements. The designer and operator require 

to be able to predict the power distribution for different fuel loadings and control 

element dispositions. This depends on the ability to predict power output as a 

function of fuel burnup, and the flux distribution corresponding to the loading 

pattern of fuel assemblies and control elements. 

2.2 Components of the effective multiplication in a thermal reactor 

A simplified representation of the main neutronics processes in a uranium 

fuelled thermal reactor is illustrated in Fig. 2.2. 

Fast fission factor, e 

Fission neutrons resulting from thermal neutron induced fission are 

produced in the fuel elements with a fission neutron spectrum energy distribution. 

That is, the neutrons have a mean energy of about 2 MeV and a spread in energy 

from about 10 KeV to 15 MeV. There is a probability of these neutrons causing 

a fission before leaving the fuel and entering the moderator. The enhanced 

neutron emission from the fuel (per thermal neutron induced fission neutron) 

is denoted by e, the fast fission factor. Fission in U238 is the main source of 

this enhancement. The fast fission factor depends on the energy shape of 

the fission spectrum, the U238 fission cross-section, the probability of fission 

neutrons being moderated to energies below the U238 fission threshold (by inelastic 

scattering in U238 and elastic scattering in oxygen) and the probability of neutrons 

escaping from the fuel (which depends on the transport cross-section of the 

fuel material). This factor is generally less than 1.1, 

Measurements which provide a test of these nuclear cross-sections are the 

U238 fission cross-section averaged over a U235 fission spectrum and the ratio of 

13238 to U235 fission rates measured in different reactor lattices. 

Epithermal fissions in the fissile isotopes can also be included in this factor. 

Fast leakage (l-RFi 

When the high energy neutrons leave the fuel elements the predominant nuclear 

interaction they undergo in scattering. The neutrons are thus moderated in energy 

and migrate about the reactor. A fraction of the neutrons leak from the core 

before reacting at thermal neutron energies. The non-leakage probability in 

the slowing down energy range is denoted by R^. It depends, primarily, on the 

relationship of the mean free path to the moderating strength of the moderator (or 

the relationship of the transport cross-section,! , to the moderating strength, 

Z £ ) . A measure of the migration of neutrons is provided by the so-called 'age', 

T . _ Neutrons which are emitted at a point with energy E will have migrated a mean 

2 ° 
> when they have been moderated to energy E 

2 
square distance <r > when they have been moderated to energy E . The age is 

defined as 

T ( W • i <ri2> (51) 

and T can be calculated from the approximate equation: 

E 
T = / °(D(E)/£ (E) C(E))dE (52) 

h\ S 



For fission neutrons moderated to thermal energies (taken to be 1 eV) the age 

is denoted by Ttn. The non-leakage probability R can be written 

Rp = exp (-B2 Tfch) (53) 

2 
where B is the geometrical buckling, which depends on the size of the core: 

B2 = \ + % (54) 
H Rz 

where H is the extrapolated core height 

R is the extrapolated core radius 

and a = 2.405 (first root of J (r)) 
o o 

These extrapolated values are larger than the actual core dimensions by an 

amount which depends on the effectiveness of the reflector, called the reflector 

savings. 

Measurements of the spatial distribution of neutrons moderated from a 

localised fission source to a low energy in uniform moderator material provide 

a valuable nuclear data check. The low energy usually taken is the age to the 

indium resonance at 1.457 eV. The In (n, y ) In activation reaction provides 

a convenient method of measuring the distribution of neutrons having energies of 

about 1 eV. 

Resonance escape probability, p 

As neutrons are moderated in energy the probability of absorption increases. 

This is because radiative capture cross-sections increase towards low energies 

whereas the elastic scattering cross-sections of the principal moderators are 

approximately constant from 1 eV to about 1 MeV. The predominant absorption in 

this energy range in a uranium fuelled thermal reactor is radiative capture in 

U238. Resonance shielding is very strong, the average shielding factor in the 

3 lowest energy resonances being, typically, 0.05. The ability to calculate U238 

resonance shielding is an important requirement. Resonance absorption in U238 is the 

main neutron loss mechanism in the slowing down energy range and so the probability 

of a neutron reaching thermal energies from the fast energy region (where loss 

by leakage predominates over absorption) is called the resonance escape probability. 

Measurements of U238 resonance absorption have been made in reactor lattices 

having different dimensions and using different moderators. These measurements 

are used to test the differential cross-sections (both the resonance parameters 

and the resonance formalism). The temperature dependence of this reaction is 

important because it is a major component of the fuel temperature coefficient. 

This reaction and its temperature dependence are also of prime importance in 

a fast reactor. The Doppler effect in U238 capture is the main component of the 

reactor power coefficient. The ratio of U238 capture to fission in either U235 

or Pu239 has been measured in different compositions and spectra. Doppler effect 

measurements have also been made. 

The thermal utilisation factor, f 

This factor is the fraction of thermal neutron absorption which occurs 

in the fuel. Absorptions in the moderator, coolant and control absorbers are the 

competing reactions. The absorption cross-sections of the standard moderators and 

coolants are well known and so the uncertainties in predicting the relative 

reaction rates are associated with the energy spectrum and the spatial distribution 

of neutrons at thermal energies. The flux distribution in the moderator depends 

on the transport mean free path for thermal neutrons, \t^ in the moderator. 

It is usual to measure reaction rate distributions and reaction rate ratios 

for the geometry of the reactor lattice and to test the calculation methods 

and nuclear data against these measurements. Not all of the reaction rates of 

interest can be measured in lattice experiments, however, but only those which result 

in detectable radioactive products or for which mass-spectrometric measurements 

can be made. Some information can also be deduced from the reactivity perturbation 

caused by introducing a sample into a critical assembly. Measurements cannot be 

made in all conditions of reactor operation, (for example, high temperatures 

and high levels of burnup), although related information can be obtained from 

operating reactors. 

The thermal eta value for the fuel, n 
F 

This is the net production of fission neutrons from thermal neutron induced 

fission per neutron absorbed in the fuel. It depends on the n values of the 

fissile isotopes and the competing absorption reactions in the fertile isotopes, 

fission products and other diluents (such as oxygen in oxide fuel). The cross-

sections do not all have a (1/v) form, resonances being present in the cross-sections 

of fissile isotopes at thermal energies. Consequently, the fuel.eta value depends 

on the thermal neutron spectrum in the fuel. 

Relative measurements of fission and capture reaction rates for the 

transactinium and fission product isotopes are used to test and complement the 

differential cross-sections. Reactivity perturbation and reactivity balance 

measurements give information on n values for fissile isotopes. Such measurements 

133 
have been made in well defined thermal neutron spectra and in the spectra of ""' 



lattices representative of power reactors. The intercomparison of differential 

cross-sections and v values measured at 2200 m/sec with 293 K thermal Maxwellian 

spectrum averaged values has been the subject of detailed study (6). 

In the interpretation of lattice reaction rate measurements it is helpful 

to separate the reactions occurring at thermal energies and at epithermal energies. 

This is done by making measurements using foils both with and without a cadmium 

cover. Cadmium has a very high thermal cross-section and so this cover effectively 

eliminates reactions in the foil at thermal energies. 

The ratio of epithermal to thermal fissions in the fissile isotopes is 

typically about 0.1. In some conventions the epithermal component of fission is 

included in the fast fission factor, the alternative being to include it in the 

thermal eta value. 

Reaction rate ratios measured in thermal reactor lattice experiments include: 

28 = ratio of epithermal to thermal U238 capture 

25 = ratio of epithermal to thermal U235 fission 

28. = ratio of U238 fission to U235 fission 
o 
* 
C = ratio of U238 capture to U235 fission (the modified conversion ratio) 

The effective thermal cut-off energy is 0.625 eV. The value of K for 
2 

the applied buckling, B , is also obtained. 

Thermal leakage (1-RT) 

The fraction of thermal neutrons which leak from the reactor core is denoted 

here by (1-R ). The leakage fraction depends on the thermal diffusion length, L. 
2 The thermal migration area M ^ is related to L and the mean square distance 

2 
travelled by thermal neutrons <r th> by; 

M2th = L2 - J <r2th> (55) 

and L2 = D/E - \ J31 (56) 
a th a 
2 . . . . 

Values of L for pure moderators can be obtained by fitting reaction rate 
distribution measurements around a neutron source. 

2 
The total migration area, M , is equal to 

M2 = Tth + L2 = - <r 2> (57) 
6 a 

th ^ m ' 
0.63 

2.5 

2.5 

t h A ™ 
26 

130 

365 

8 

30,000 

3,500 

J l'l VI 

34 

30,000 

3,365 

2 
where <r > is the mean square distance travelled by a neutron between birth 

in fission and absorption at thermal energies. 

2 2 
Approximate values of Atjj Tth L and M for the principal moderators 

are as follows: 

Moderator 

H20 

D20 

Graphite 

The migration in water is much less than that in the same volume of graphite. 

The migration area for reactor core material is strongly influenced by 

absorption in the fuel. The core leakage fraction in commercial sized thermal 

reactors is generally less than 5% and the core thermal leakage fraction in water 

moderated reactors is less than about 1%. Typical values for a PWR are xt^ = 

53.4 cm2, L2 = 5.32 cm2, B2(fast) = 7.1 m"2 and B (thermal) = 4.1 m~ . 

The infinite medium multiplication factor, K 

In an infinite array of lattice cells the leakage is zero. The multiplication 

factor in this case is the infinite medium multiplication factor: 

K = e.p.f. n (58) 
F 

This is called the four factor formula. The effective multiplication of an 

actual reactor is smaller than this because of leakage: 

K = K . Rp.l^ = e.P-f. v V * T (59) 

K is close to unity in a thermal reactor being, typically, 1.04 in a PWR. 

K can also be written in the form: 

// vLf (E,x) <|i(E,x) dE dx 
K •= £ : (60) 

SI Z (E,x) <f>(E,x) dEdx 

that is, the ratio of the rate of production of neutrons in fission to the 

rate of absorption. 

The effective multiplication can be written as 

K = K^ /(l + B2M2) (6I) 

2 2 where B M is the leakage fraction. 



The fast fission factor e , and the leakage fractions are not significantly 

sensitive to temperature and burn-up effects. 

The fuel temperature mainly affects the U238 component of the resonance 

escape probability, p. The thermal neutron spectrum in the fuel is sensitive 

to the coolant density in water cooled reactors. This depends on the pressure 

and temperature. In a graphite moderated gas cooled reactor the temperature of 

the moderator affects the thermal neutron spectrum in the fuel. These effects 

on the fuel spectrum alter the n value. 
F 

Burn-up mainly affects the value of n , although there are compensating 
F 

changes in the control absorber which affect f. The change in resonance absorption 
must also be taken into account. 

Components of neutron balance in a typical thermal reactor 

Components of the neutron balance in a typical thermal reactor are shown 

in Table 2.1 

Thermal reactor spectra 

The overall shape of the spectrum in a PWR fuel element is shown in 

Fig. 2.3 and the shape through the U238 resonance region is shown in more 

detail in Fig. 2.4. 

2.3 Fast reactor neutronics 

In a fast reactor the mean energy for the fission reactions in fissile 

isotopes is about 200 KeV and for capture reactions it is about 20 KeV. 

Reactions below about 100 eV are generally negligibly small. The main component 

of the power coefficient of reactivity is the Doppler effect and this comes 

predominantly from the energy range 100 eV to 10 KeV. The core leakage fraction 

is much larger than in a thermal reactor being typically about 30%. Neutron transport 

cross-sections therefore have a greater effect on K. 

The designs of fast reactors which are under active development are uranium-

plutonium oxide fuelled, and sodium cooled and use steels for fuel pellet canning 

and fuel subassembly cases (or wrappers). The volume fractions of fuel, coolant 

and structure are roughly equal (1/3, 1/3, 1/3). The core is surrounded both 

axially and radially by a breeder region which contains (initially) uranium oxide 

pins. The axial breeder pins are usually an extension of the core pins while the 

radial breeder pins can be of a larger diameter because of the smaller power 

rating in the breeder region. Most of the neutrons which leak from the core are 

Fission neutron production 

U235 

U238 

Pu239 

Pu241 

TOTAL 

Neutron absorption 

U235 

U238 

Pu239 

Pu240 

Pu241 

Pu242 

Fission products 

Structural materials 

Moderator/coolant 

Control absorbers 

Leakage 

TOTAL 

Start of 
Life 

95 

5 

-
- ' 

100 

48 

32 

-

-
-

-
8 

6 

2 

4 

100 
• 

Equilibrium 

56 

5 

35 

4 

100 

28 

24 

19 

3 

2 

2 

5 

7 

5 

1 

4 

100 

TABLE 2.1 - Neutron balance in a typical thermal reactor 

absorbed in U238 in the breeder regions and produce Pu239. Conversion of U238 

to Pu239 in the core region is also significant. The net reactor breeding ratio 

is greater than unity but the core conversion is less than unity. Fuel 

reactivity falls with burn-up. The maximum percentage heavy atom burn-up achieved 

at the end of life in fuel subassemblies is typically 10%. Consequently, the average 

percentage of fission products in the fuel is higher than in a thermal reactor. 135 



A'typical maximum burnup for a PWR is 4%. 

Reactor spectrum averaged cross-sections are not as high in a fast reactor 

as in a thermal reactor and there is less variation between fission product 

isotopes. Radioactive decay and burnup of fission products has only a small 

effect (^5%) on fission product absorption and it is usual to neglect this 

variation. An average called the "pseudo fission product" is used. 

U238 fission makes an important contribution to the neutron economy. 

Consequently the data affecting the U238 fission fraction are important. These 

include the fission cross-section,the spectrum of neutrons from fission in Pu239 

(and other fissioning isotopes) and the scattering processes which moderate 

neutrons to below the U238 fission threshold. These include inelastic scattering 

in U238, steel and sodium and elastic scattering in oxygen. 

The overall reactor spectrum shape is important because the Doppler 

effect occurs in the low energy tail and the ratio of capture reactions to fission 

reactions in the fissile isotopes, ex , increases towards low energies and is 

sensitive to the spectrum shape. 

The ratio of U238 capture to Pu239 fission is an important parameter both 

for the calculation of K and the breeding performance. 

The effect of a reduction in sodium coolant density, or loss of sodium, 

is to reduce the core moderation and increase the core leakage The effect of 

the reduced moderation predominates,the effect being to increase the proportion 

of U238 fissions and reduce the ratio of absorption to fission overall, thus increasing 

reactivity. This must be taken into account in safety studies. 

A fast reactor neutron spectrum is shown in Fig. 2.5 and a fast reactor 

neutron balance is given in Table 2.2. 

2.4 Integral measurements relating to nuclear data for reactors 

Types of integral measurements can be classified as follows: 

1 Reaction rate ratios (relative to a standard cross-section such as U235 

fission) in a defined spectrum. This spectrum can be meqsured or shown 

to be calculable sufficiently accurately. Many reaction rates of 

interest have been measured in this way. They include power-reactor 

irradiation experiments. 

2 The composition of a test zone having K^ = 1, and reaction rate 

ratios measured in this test zone (which give components of the neutron 

balance). 

A number of simple test zones of this form have been studied. Examples 

are: 

(i) Enriched uranium (e = 5.56%) 

(ii) Enriched uranium oxide (e = 7.49%) 

(iii) Enriched uranium plus graphite 

(iv) Natural uranium plus plutonium plus graphite. 

By varying the proportion of graphite the spectrum can be varied. 

Measurements of the ratio of U238 capture to Pu239 fission give information 

about the energy variation of these cross-sections. The requirement 

for neutron balance gives a relationship between Pu239 alpha and values 

of v(which are relatively well known)to within the uncertainties in the 

measurements of other components of the neutron balance (the reaction rate 

ratio measurements of U238 fission/Pu239 fission and U2.38 capture/Pu239 

fission). 

By introducing a diluent material, such as iron or sodium, the 

absorption in this diluent can be deduced. 

3 Simple geometry reactors comprising a large core and reflector with 

a simple core composition. When combined with K <» = 1 test zones 

the leakage characteristics of the materials can be deduced. By 

measuring the reaction rate distributions over a central region 

(in which the spectrum is unperturbed by the reflector) the 
2 

geometrical buckling, B , of this region can be obtained and hence 
2 

the migration area, M , deduced from 

K„/.<1 + B2M2) = 1 <62> 

with KOD extrapolated from the Ka> =1 test zone measurements. 

4 Measurements for compositions with K,,, <̂ 1 driven by an external 

source. These are similar to the previous class of measurements. The 

geometrical buckling is measured over a region of constant spectrum. 

Measurements of this kind have been made for blocks of natural uranium 

(the Sne11 experiment). 



5 Spectrum measurements. These give information about the relative values 

of moderation to absorption plus leakage and also show the detailed 

structure caused by resonances and cross-section minima. 

6 Neutron transmission through thick samples and large blocks. The 

transmission is sensitive to the total cross-sections, and, in particular, 

minima in the cross-sections, together with the moderation by scattering. 

Measurements of this type have been performed on blocks of iron, sodium 

and mixtures. The objective is primarily to test the nuclear data used 

for shielding applications. 

7 Temperature dependent thick sample transmission and self-indication 

measurements. In the self-indication measurement capture of neutrons 

in a foil of the material is measured in a beam of neutrons which have 

been transmitted through a thick sample of the material. This gives 

a broad resolution measurement of resonance shielding effects and the 

temperature dependence. 

8 Small sample reactivity perturbation measurements made at the centre 

of a reactor. These give information about the net production or 

absorption of neutrons weighted by the energy dependence of the importance 

of the neutrons to the fission process, <(>* (E). 

Integral measurements provide a test of nuclear data and can also be 

taken into account when deriving the data sets used for reactor applications. 

The data set is then chosen to give a best fit to both the differential 

cross-section measurements and the integral measurements. 

Integral measurements which test the transport and moderating characteristics 

of moderators have been mentioned in sub-section 2.2. These include 

measurements of age to the indiumresonance using different neutron sources 

(in particular a fission source), thermal neutron spectra and the spatial 

distribution of neutrons at thermal energies. 

Components of the neutron balance 

CORE REGION 

Isotope Neutron Production Fission Capture 

U235 

U238 

Pu239 

Pu240 

Pu241 

Pu242 

Steel 

Sodium 

Fission products 

Control 

Other components 

CORE TOTAL 

Core Leakage 

AXIAL BREEDER REGION 

U235 

U238 

Pu239 

Other components 

RADIAL BREEDER REGION 

U235 

U238 

Pu239 

Other components 

REACTOR TOTAL 

Reactor Leakage 

9 

76 

718 

43 

47 

I 

894 

274 

3 

6 

7 

6 

24 

60 

1000 

100 

3 

28 

243 

14 

16 

0.3 

304 

2 

9 

20 

340 

1 

154 

71 

20 

3 

0.3 

32 

2 

12 

11 

10 

316 

1 

50 

1 

20 

1 

112 

9 

50 

560 

Table 2.2 - Neutron balance in a typcial sodium cooled fast reactor 137 



0 01 0 1 100 10J 10* 10s 10* 10' 

FIG. 2.1 ENERGY DEPENDENCE OF J) FOR THE PRINCIPAL FISSILE NUCLIDES 

138 

_> 1 Neutron from thermal neutron induced fission 

^ I 

Fast fission factor, e 

NV Fast leakage fraction 
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Fig. 2.2 Principal components of the neutron balance in a thermal reactor 
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Fig. 2.3A Low energy spectrum in PWR fuel (smoothed over energy groups) 
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SECTION 3 - ESTIMATION OF THE UNCERTAINTIES IN PREDICTIONS OF REACTOR 
PARAMETERS AND NUCLEAR DATA ACCURACY REQUIREMENTS 

3.1 Introduction 

Uncertainties in predictions of reactor parameters arise from nuclear 

data uncertainties, deficiencies in calculation methods, uncertainties in 

reactor operating strategies and tolerances in component dimensions and 

compositions. For predictions of many reactor parameters uncertainties in the 

nuclear data used predominate over other sources of uncertainty at the 

present time. 

Sensitivity studies and uncertainty estimation 

To estimate this component of the uncertainty the sensitivities of reactor 

parameters to changes in nuclear data together with the uncertainties in the nuclear 

data entering into the calculations are required. If we represent the nuclear 

data as a set of discrete parameters, o. ̂ (instead of a continuous energy variable) 

then the sensitivities for reactor parameter, P , are defined as: 

P • /3P \ a. m 

m 

These discrete nuclear data parameters could be energy proup cross-sections or 

resonance parameters, or any convenient parametrisation of the data. Using 

nuclear model parameters can simplify the uncertainty representation. 

The required cross-section uncertainty information is the fractional variance 

in a., V.., and the fractional covariance between the uncertainties in a. and 
a 
J' 

Vx°. = <e..e.> (64) 

the expectation values of the fractional deviations in the nuclear data parameters. 

When integral measurements, I , are taken into account in the prediction of 

reactor properties then the sensitivity of these to nuclear data variations , 

together with the fractional covariances in the integral measurements, V„., are 

required. The sensitivities are 

„I ,-m °e 
and V R 1 = <tR.t1> (66) 

the expectation values in the fractional deviations in the integral measurements. 

The diagonal components of the covariance matrix, V , are the fractional 

variances in the integral measurements I . 

The expression for the resulting uncertainty in reactor parameters P is 
m 

derived in sub-section 3.3 

When integral measurements are not taken into account the components of the 

fractional variances in the predicted values of the reactor parameters arising 
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from nuclear data uncertainties are 

Vmm = S S X i . S * V,.) (67) 
m,m *̂r* "•' m,i m,j IJ 

the fractional uncertainty f is given by 
m 

2 P f™ " V L <68> 
m mm 

. . . . P I 
The sensitivities, S .and S . , can be derived by repeating calculations of 

the properties and changing each item of nuclear data in turn. However, perturbation 

theory methods can reduce the amount of calculation involved. Such methods are 

described, for example, in reference (7). Nevertheless, the amount of calculation 

involved is considerable and simplifications, for example by restricting the 

sensitivities to the most important items of nuclear data and using approximate 

calculation models, are acceptable. This is because estimation of uncertainties 

and confidence levels can only be approximate. 

An example of a sensitivity study is the work by Becker and Harris (8). They 

calculated the sensitivity of fuel cycle costs to uncertainties in nuclear data 

for BWR's, PWRs and CANDU type reactors. The nuclear data were changed in 3 broad 

energy ranges; thermal, epithermal and fast. The economic implications of current 

uncertainties in thermal cross-section valuesfare also estimated. 

Estimation of uncertainties in nuclear data and integral measurements is a 

necessary but difficult task. Improved estimates of the uncertainties can be 

more important than improved measurements. Reliable estimates of the margins in 

design and operation required to meet safety conditions have a higher priority than 

a repeat measurement (or an evaluation) which is not accompanied by an assessment 

of uncertainties (unless it leads to the resolution of a discrepancy). 

Fortunately ,in many important cases the uncertainties in the predictions of 

the reactor parameters are closely related to the uncertainties in corresponding 

integral measurements. When this is the case it is only necessary to estimate 

the uncertainties in these integral measurements reliably. However, it is 

preferable for both the integral and differential cross-section measurements to 

provide the required accuracy in prediction and provide an independent confirmation 

of predictions. 

The closeness to which current nuclear data libraries predict some 

important reactor properties is summarised in sub-section 3.4 

Mathematical methods for determining nuclear data requirements 

The problem of deciding nuclear data measurement (and evaluation) requirements 

is a complex one in general. For a few specific items the requirement is clear. 

This is when the reactor parameter of interest depends on a single item of nuclear 

data. The requirement can then be simply formulated. This can be the case for 

induced radioactivity when the measurements of the cross-section leading to the 

activity are incomplete or inaccurate and nuclear model calculations cannot provide 

the required data. 

When the required reactor parameters are sensitive to a number of items of nuclear 

data the accuracy required in cross-section measurements can, in principle, be 

defined by a cost minimisation. The cost implications of different levels of 

uncertainty in the reactor parameters and the cost of measuring different items 

of nuclear data to different accuracies must be assessed and the optimum reactor 

parameter uncertainty and programme of nuclear data measurements calculated. 

Usachev and Bokkoy (9) have proposed an approach to the solution of this problem. 

Firstly, the target fractional accuracies for reactor parameters, t , are decided 

upon and then the nuclear data accuracy requirements are derived by assuming that the 

cost,or difficulty, of making a measurement to a fractional accuracy e. is equal 
2 1 . . 

to X./e. . The required nuclear data accuracies are obtained from the condition 
that: 

E(SP .e.)2 ^ (t ) 2 for each m 1 

m,i i' V m I 

and * | (69) 

M = J^(X./e.) is a minimum J 
i 

The relative values of A. can be based on the accuracies already achieved in 

this type of measurement. If a measurement of one item of nuclear data is made to 

an accuracy higher than the value required by these conditions then the accuracies 

required for other items can be relaxed. The above expressions neglect the effects 

of correlations in the uncertainties in nuclear data measurements, caused, for 

example by using the same standards or techniques for measuring different items. 

This formulation only applies to a set of nuclear data parameters for which the 

uncertainties are uncorrelated. 

The formulation has been extended by Bobkov, Pyatnitskaya and Usachev to 

include integral measurements (10). This extension is discussed in subsection 3.4. 



Formulation of national nuclear data requirements 

Nuclear data requirements and status have been considered in detail at 

a number of Advisory Group , Consultants and Specialists Meetings and Conferences. 

Some of these meetings and conferences are listed in Table 3.1. 

The IAEA International Nuclear Data Committee (INDC) and the Nuclear Energy 

Agency Nuclear Data Committee (NEANDC) collaborate on reviewing the status of 

nuclear data for standards and for important reactions which are discrepant. These 

committees produce status reports on Standards (11) and Discrepancies (12). 

National Nuclear Data Committees formulate nuclear data measurement requirements 

and produce their national request lists. These take account of the conclusions 

of specialist meetings and status reports. They are collected by the Four Data 

Centres and are combined into the World Request List for Nuclear Data, WRENDA. 

This is published by the IAEA, the latest version being WRENDA 81/82,edited by N Day 

Day (13). Requests are assigned a Priority, either 1, 2 or 3. The list provides 

a basis for international collaboration to try to meet the nuclear data requirements. 

There are arrangements for providing samples to laboratories wishing to make a 

measurement to meet a request in WRENDA. The IAEA Nuclear Data Section are 

sponsoring Co-ordinated Research Programmes to review and progress the measurement 

and evaluation of selected important items of nuclear data. 

3.2 Target accuracy requirements for reactor parameters 

Instead of finding the nuclear data requirements by minimising the sum of the 

consequences of reactor parameter uncertainties caused by nuclear data uncertainties 

and the costs of making the associated nuclear data measurements it is more usual 

to decide upon a set of target accuracies for reactor parameters. The targets 

are based on assessments of the economic consequences of uncertainties and the 

possibilities of achieving the targets. Having decided upon the targets the 

nuclear data sensitivities are used to select the nuclear data requirements. 

Assumptions must be made^about likely correlations in measurement uncertainties 

and a method for partitioning the total variance between the component nuclear 

data parameters decided upon. 

Uncertainties in the prediction of reactor properties result in: 

(i) The provision of design margins to ensure a guaranteed power output, 

(ii) Design margins to provide adequate control of the reactor, 

(iii) Provision of funds to cover the cost of possible corrective actions, 

(iv) Higher "guaranteed generation costs" which cover the uncertainties. 

To ensure a guaranteed power output it might be necessary to build a larger 

reactor core (and associated shielding and containment). Provision of control 

margins to cover uncertainties in the variation of reactivity with power and 

burn-up might require extra control elements and, in consequence, a larger 

core and associated structure. Uncertainties in the required feed fuel enrichment 

to ensure criticality at the end of the burnup cycle, with control absorbers 

removed from the core might be catered for by accepting a possible lower burn-up 

of the fuel or insertionof extra control absorbers in the first few fuel cycles, 

and then adjusting the enrichment to the value found to be necessary. This results 

in higher fuel costs for the first few cycles. 

A 1000 MW(e)* nuclear power station costs about a billion US dollars and the 

electrical output is worth about 100 million dollars per year. A saving of 1% 

in the cost of one station or an increase in output by 1% for a few years is very 

valuable. However, there are many other sources of uncertainty than nuclear 

data, and other reasons for building in margins and allowing for contingencies. 

Flexibility in fast-reactor design is required to allow for use of plutonium from 

different sources (thermal and fast reactor) having differing isotopic compositions. 

There are uncertainties in the composition and dimensions of materials and 

uncertainties in calculation methods. These set lower limits to the useful 

target accuracies in the prediction of reactor properties. 

During the past twenty years a broad consensus on required target accuracies 

has been arrived at based on judgements about the accuracies which would be worth

while and seem achievable. They should be regarded as a guide to the relative 

importance of different parameters. Reactors operate successfully without these 

targets having been reached. There is also, now, a large amount of data from 

operating reactors. Consequently, the emphasis on requirements (or relative 

priorities) has tended to change from those for design to those for efficient 

operation and for the management of irradiated fuel elements and other components. 

Efficient operation requires the monitoring of irradiation effects and, for this 

purpose, dosimetry, (the measurement of flux doses on components) is important. 

The radioactivity induced in fuel and other materials, and also in the coolant, 

is also important. Measures aimed at reducing the irradiation exposure dose 

to reactor operators, maintenance staff and those involved in the handling, re

processing and disposal of irradiated components are given a high priority. 

* MW (e) denotes Mega-watts of electrical power output 147 



What we might regard as the traditional target accuracies are summarised 

below: 

The fissile enrichment of fuel elements 

The fissile enrichments of fuel elements to be loaded into a core are 

chosen so that the reactor is critical at the end of an irradiation period, before 

refuelling, with the operational control at a minimum level. However, there must 

be margins in the control at this stage to allow for differences in the reactor 

conditions at the end of different irradiation periods, to allow, for example, 

for the build-up of plutonium in breeder elements in a fast reactor, for different 

groups of fuel elements reaching the target burn-up and for the burn-up of control 

absorber material. 

An uncertainty in the prediction of the required fuel enrichment must be 

allowed for by providing extra control, by interchanging fuel of different enrichments 

in a core with two enrichment zones or by changing the size of the core (interchanging 

core and breeder elements in a fast reactor). Alternatively, the fuel can be 

removed at a lower burn-up, when fuel reactivity has reached the limiting value, 

if the feed enrichment is too low, or when the operating control is above the 

minimum, if too high. These different alternatives result either in a loss of 

power or an increase in fuel costs (more fuel elements used for a given power 

output), or both,at least during the first few irradiation periods until the correct 

feed enirchment can be manufactured and supplied. Additional control absorber 

mechanisms,introduced to cover uncertainties, would remain. 

Typically, an accuracy of +_ 0.5% in the K of fresh fuel and 0.5% to 1.0% 

for irradiated fuel has been judged to be the appropriate target. This leads to 

high accuracy requirements for the principal fissile and fertile isotopes. The 

cost of the extra enrichment of the fuel of an LWR required to allow for a 1% un

certainty in K is about $2M. 

The variation of reactivity with burnup during an irradiation period 

This is required for determining the operational control requirements and also 

the fuel feed enrichment. A typical target accuracy is +_ 10%. It implies a 

corresponding accuracy in the prediction of internal breeding or conversion ratio 

and the reactivity effect of fission product build up. 

Power coefficients of reactivity 

The changes in reactivity on going from the shutdown condition to operating 

power, caused by changes in temperature and the associated thermal expansion, 

bowing, relative movements of components (for example, of core and control 

elements) and Doppler effects are factors which determine the shutdown control 

requirements. Shutdown control margins are also required to provide a level of 

reactivity shutdown covering all possible misloadings (including removal of one 

or more control elements) and changes in core configuration. 

The accuracy needed for the estimation of the shutdown control reactivity 

depends On the way the control element functions are defined. For example, if 

the shutdown control is separate from the operational control,rather than inter

changeable, there is a separate requirement of +_ 5% in the prediction of shutdown 

control reactivity. 

Breeding or conversion ratio 

A knowledge of the total breeding ratio, conversion ratio or breeding gain is 

required for predicting fuel cycle costs and ore requirements, and for planning 

reactor programmes. A target of _+ 2% in fast reactor breeding ratio or +_ 0.03 

in breeding gain is commonly adopted. The breeding gain is the net production 

of equivalent fissile material. That is, the net loss and gain of transactinum 

isotopes are weighted by their relative reactivity worths. 

Control requirements 

In a fast reactor, a typical ratio of control elements to fuel elements is 

1 to 10. An uncertainty of + 5% in control rod reactivity worth could require a 

contingency of +_ 10% (or 2 standard deviations) and possibly a change in the pattern 

of rods from 1 in 10 to 1 in 9 lattice positions. This would result in an increase 

in core size, to maintain power output, as well as the increase in the number of 

control elements. An alternative is to change the control absorber material. For 

example, the reactor could be designed to use natural boron rods but initially could 

use enriched boron to provide a margin to cover uncertainties. The composition of 

later rods would then be changed to meet the measured requirements. However, lu 

enriched boron might still be required and this is expensive. A target accuracy 

of _+ 5% in control rod worth has been proposed. 

Reactivity scales 

Temperature and power coefficients can be measured on critical assemblies 

and power reactors, as can control rod reactivity worths and the reactivity 

effects of fissile materials and fission product isotopes. It requires care 

to make all the different types of reactivity measurement on a consistent reactivity 

scale. The effective delayed neutron fraction provides a measurement of reactivity. 



However this varies with reactor design and composition (depending on the relative 

contributions of fission in different isotopes). Different types of kinetics 

or reactivity balance measurement depend in different ways on the time dependence 

of delayed-neutron emission. In a large fast reactor, the U238 delayed-neutron 

source is the largest component, whereas, in smaller fast reactors, Pu239 predominates. 

Accurate delayed-neutron data (the total yield, the time dependence of the emission 

and the energy dependence of the delayed neutron spectra) are required to enable 

the reactor period - reactivity relationship to be determined to +_ 3%. (The 

reactor period is the time constant in the exponential time dependence of the flux 

in a non-critical reactor). 

Power distribution 

The maximum power output is limited in some reactor designs by the temperature 

of the hottest element. Design and operation aims to minimise the peak to average 

power so as to maximise the power output, or minimise the number of elements 

operating at high temperatures. Accurate predictions of power distributions are 

required and these depend on the ability to calculate the relative reactivities of 

elements having different fissile material feed enrichments and different irradiation 

histories. A typical target accuracy for the peak to average power distribution 

is +_ 1%. 

The temperature of coolant leaving individual elements must be as nearly 

uniform as possible so as to provide maximum efficiency. Thermal gradients can 

cause bowing of elements and these effects must be predicted. 

Gamma-rays migrating from fissile fuel elements make a significant contribution 

to the heating of control elements and reflector or breeder elements and this 

leads to requirements for data on gamma energy yields,gamma spectra and gamma 

interaction cross sections. 

Radiation damage effects 

There is a need to predict radiation damage doses and dose gradients for 

the estimation of swelling, bowing and distortion of elements. Atomic displacement 

rates, helium-formation rates and material temperatures must be predicted. 

When graphite is used as moderator its irradiation stability must be ensured. 

There is also a requirement to monitor the flux and flux spectrum so that the 

observed changes in material properties can be correlated with the irradiation 

and temperature history. This leads to the dosimetry requirements. Typical 

requirements are for the prediction of fluence and radiation damage dose 

to _+ 5% and dose and temperature gradients to +_ 10%. There is also the requirement 

to determine fuel burnup to ^ 1%. 

Heat generation and activity of irradiated materials 

Estimation of the decay heat of fuel elements is needed for the design of 

shutdown and emergency-cooling systems and of fuel-transfer systems. Target 

accuracies in the range 2% to 5% have been proposed for decay times longer than 

about 10 seconds. 

Various aspects of the activity of irradiated fuel and structural materials' 

are important. The buildup of curium isotopes and the variation with irradiation 

of the neutron source due to spontaneous fission and (a ,n) reactions is important 

for monitoring the shutdown reactivity of a reactor during refuelling. This leads 

to requirements for data on cross-sections leading to the formation and loss (by 

capture and fission) of the curium isotopes and for ( a,n) cross-section data for 

light isotopes, such as carbon, oxygen and fluorine (a possible trace contaminant). 

Similar data are also required for the design of shielding for transport flasks 

and reprocessing plants. The activity of structural materials must be estimated 

for the design of handling, storage and disposal systems. Trace quantities of elements 

from various components in the coolant circuit can be dissolved into the coolant, 

carried around the circuit, activated in the core and then deposited elsewhere in the 

circuit. Both the activity of the coolant and the activity plated out on components 

can present operational difficulties. A typical target accuracy for activity 

predictions is +_ 10%. 

Temperature, density and power coefficients 

Reactors must be designed to have safety margins which cover a wide range 

of modes of operation and fuel compositions. Consequently, these target accuracy 

requirements are not so stringent, being typically +_ 10% to +_ 15%. 

3.3 Methods for taking into account integral measurements and more general 
reactor measurements 

We can distinguish between two categories of measurements which depend on 

nuclear data averaged over a broad energy spectrum. In the first category the 

uncertainties in the calculated values of these parameters arise predominantly 

from uncertainties in nuclear data and are not significantly affected by approximations 

in calculation methods or other sources of uncertainty. We call these integral 

measurements. In the second category the measurements are closely related to 
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reactor parameters of interest and the predicted values can be significantly affected 

by approximations in calculation methods. The second category includes measurements 

made in operating reactors and in mock-up assemblies of reactors. We call these 

"reactor parameter reference measurements" (RPRM). Some types of measurement can 

be considered to be in both categories; in particular,reaction rate ratio 

measurements made in a well characterised reactor spectrum. The two categories 

are distinguished in the way that they are used. The integral measurements can 

be used to adjust nuclear data. The RPRM can be used to apply bias factors to 

calculated values of reactor parameters or to adjust the methods used to calculate 

the parameters. 

Adjustment of cross-sections to fit integral measurements 

To illustrate the procedure for adjusting cross-sections to fit integral 

measurements we consider the idealised case when a set of discrete nuclear 

data parameters, °., which have uncorrelated fractional variances, V0.., can be used 
* x 11 

to represent the basic evaluations of differential nuclear data measurements and 

associated nuclear model calculations (that is, we assume that the energy dependent 

cross-sections can be represented by a set of discrete parameters, we neglect 

the covariances, V.., and also the covariances between different integral 
I 1J. measurements, VV1 in this outline procedure) 

The fractional discrepancy between the measured value, E , and calculated value 

C^ of integral property K is denoted by D^, where 

DK = <EK -<V / CK (70) 

The fractional discrepancy which will remain using the adjusted cross-sections 

is denoted by d , where 

d K = ( E K - C ^ C K ( 7 , ) 

The assumption is made that the difference between C , the value calculated 

using adjusted cross-sections, and C can be approximated as linearly dependent 

on the fractional adjustments to the nuclear data parameters, X. 

4 • * 
and hence 

dR = D 

K(l
+ pK,i *i) (72) 

k - £ s
K!i xi (73) 
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The values of X. are found by a least squares fit to the integral 

and differential measurements (or by a condition of maximum likelihood): 

is a minimum (74) 

KK 

The condition for M to be a minimum is obtained by expressing d in terms 

of D and X., differentiating with respect to X. and setting the derivative 

equal to zero: 

K K,K j ' Vi,i 

This equation has the form 

2Xi". -E$£) 
j K KK 

(76) 

(77) 
Vi i K ^ VKK 

By inverting the matrix W. . the values of X. can be calculated from 

' K > i ' 
KK 

(78) 

The inverted matrix W. . has another importance. It is the covariance matrix of 

the adjusted cross-sections 

V.A. = W.~! (79) 

Consequently the fractional accuracy of reactor parameters calculated using 
CF- A 

adjusted cross-sections is given by eqn. (67) but with V. . replaced by V. . : 
1 » J *-»J f2 = y r y ^ <s p . . s p . v . \ ) <8o 

n l—jL-*i n,i* n,j- i,j 



The value of the sum of squares of relative deviations, M, which corresponds 

to the linimum of eqn. (74), should be equal to the number of degrees of freedom, 

which, in this case, is the number of integral measurements included in the fit, N . 

The deviation of M/N from unity gives an indication of the consistency of the 

deviations between the measured and calculated values of the integral measurements 

with the assumed uncertainties in the nuclear data parameters and integral 

measurements. That is it provides a"X test. 

The adjustment study also tests the consistency of the different integral 
2 2 

measurements. Values of d and X. which are much larger than the assumed 

variances imply discrepancies which should be studied. Efforts should be made 

to resolve them if they are significant in relation to reactor predictions. 

In a more general formulation the effects of correlations must be taken into 

account. Such a formulation is given in reference (14). The quantity minimised 

is 

M = LZdKd3- ^ K I + ?? XiXj &*h\] <8» 
K. 1 1 J 

Improvements in the accuracy of prediction obtained by taking account of 
integral measurements 

A typical procedure for adjusting cross-sections is to calculate the 

sensitivities for changes of cross-sections in 10 energy groups and the covariance 

matrices for this group structure. Adjustment factors for these 10 energy groups 

are then calculated but the adjustments are applied to the differential cross-

sections by calculating a smooth fit to the ten group factors (such as a cubic 

spline fit). Having derived adjusted differential cross-sections the usual 

procedures for calculating integral properties are followed, including derivation 

of multigroup cross-sections. The accuracies of the calculations of integral properties 

are re-examined to test the assumptions. These are that adjustments can be 

made in 10 energy groups and the assumptions of a linear dependence on cross-

section changes . We look for any bias or residual discrepancies significantly 

larger than those in the predicted integral parameters obtained using the adjustment 

factors, X., and the linearised equations. It might be necessary to repeat 

the adjustment exercise to allow for non-linearities,starting with the adjusted 

cross-sections but now taking into account the biases which have been inttoduced 

into these by the first cycle of adjustments. 

An alternative to making adjustments in a few energy groups is to adjust 

the parameters of nuclear models used to fit the differential cross-section 

measurements and extrapolate the range of them. This approach is used for fission 

product capture cross-sections and cross-sections of higher transactinium isotopes 

(14), (15). 

Examples of the improvements in accuracies of fast reactor predictions obtained 

by taking account of integral measurements have been given by Rowlands et al 

(16) and Marable (17). The results are similar in the two studies. 

Accuracy of predictions of fast reactor parameters 

Parameter Unadjusted Adjusted 

Nuclear Data Nuclear Data 

K _+ 3% _+ 0.5% 

Breeding ratio _+ .04 _+ .02 

These accuracies relate to a core using fresh fuel and at 300 K. The uncertainties 

associated with temperature and burnup effects, and also those introduced by 

calculation methods approximations, must be combined with these. 

It can be seen that integral measurements make an important contribution 

to improving the accuracy of prediction of reactor properties. However, accurate 

differential nuclear data are required to provide the necessary understanding 

of the nuclear physics underlying reactor neutronics processes, to provide an 

independent confirmation of predictions of key parameters and to enable 

extrapolations to be made from the reference integral measurements to the 

conditions applying in reactors at various stages in their operation. 

Use of integral measurements to choose between different sets of differential 
cross-section measurements 

Instead of carrying out an adjustment of cross sections to obtain a 

simultaneous best fit to both the integral and differential cross-sections, the 

integral measurements can be used to guide the choice of differential cross-section 

measurements to be included in an evaluation. The approach is valuable when there 

are sets of discrepant measurements and it is evident that one or another set contains 

an error larger than the estimated uncertainties. This approach has been adopted , 

for example, in evaluations for Am241 and Am243 to choose between different 

measurements of the fission cross-sections. 

Benchmark testing has also been applied in the development of the Evaluated 

Nuclear Data Files in the ENDF/B series. 151 



Adjustment of calculational packages to compensate for biases in predictions 

One approach to improving the predictions of a calculational package is to 

make semi-empirical adjustments to the package as a whole, rather than attempting 

to modify separately the nuclear data and calculational methods for separate 

sources of error. Uotinen et al (18) describe the success of this approach in 

predicting properties of light water reactors. The largest discrepancy in the 

prediction of K for initial PWR core loadings is 0.3%. The decrease in reactivity 

with burnup is about 10% in the first cycle and this variation is well predicted 

(to within about 2% of the measured decrease). The discrepancies in the predictions 

of the reactivity worths of different groups of control rods increase with 

increasing temperature, being about +_ 1% at 250 F and 400 F but up to 8% at 532 F. 

This reflects the fact that the control rod model used is based on zero power 

critical experiments made at a low temperature (70 F ) . Relative assembly powers 

are predicted to within 5%. Nuclear data requirements emphasised in the paper by 

Uotinen et al are those relating to burnup effects and the fuel cycle; that is, 

data for secondary transactinium isotopes (Pu241, Pu242, Np237, Am241, Am243, Cm242 

and Cm244) and fission products (cross-sections, yields and decay data). The 

importance of an accurate knowledge of the shapes of cross-sections of the principal 

fuel isotopes at thermal energies is also emphasised. 

3.4 Required information on cross-section uncertainties 

Information about the fine structure of cross-sections is only required when 

this affects neutron spectra, which, in fast reactor spectra, is for materials 

present in significant proportions, such as C, 0, Na, Cr, Fe, Ni, U238, Pu239 and 

Pu240. For other substances, such as individual fission products, higher actinides and 

many activation reactions, the uncertainties in broad spectrum averaged values, and 

in the energy gradients of the cross-sections over broad energy intervals, are 

sufficient for fast reactor applications. In thermal reactor spectra shielding 

in individual low energy resonances can be significant for substances present in 

small proportions. 

Uncertainties in the average energy gradients over,broad energy ranges 

(perhaps a decade in energy) are required to estimate uncertainties in the differences 

between reaction rates in different spectra, and to permit adjustments to be made 

to fit measurements made in different spectra. Effects such as coolant density 

reactivity coefficients depend on the differences between relative reaction rates 

averaged in the normal and perturbed reactor spectra. It is also necessary to 

specify uncertainties in cross-section shapes to ensure that adjustments to fit 

integral measurements are consistent with nuclear theory and the differential 

cross-section measurements. For reactions with a threshold we need to know 

the uncertainties in the threshold energy and in the average gradient up to the 

plateau. 

Neutron transmission through shields is sensitive to cross-section values 

in minima and so uncertainty information is required for these. The uncertainty in 

the transmission depends on uncertainties in the average values of quantities like 

(1/ a 2 ) . 

We can separate the types of cross-section structure for which there are 

uncertainty requirements into the following categories: 

(a) Individual resonances and cross-section minima. These can be 

characterised by the uncertainties in the resonance parameters 

and the correlations (both between the parameters of each 

resonance and between resonances). Alternatively, the uncertainty 

in the infinite dilute and shielded cross-sections for a reference 

background cross-section can be used. 

(b) Average resonance structure in an interval. This might be characterised 

by uncertainties in average resonance parameters and their distributions. 

Alternatively the uncertainties in some other parameters representing 

the distribution of cross-section values might be sufficient (parameters 

in shielding factors being one possibility). A simple parameterisation 

should be sufficient to represent uncertainties. 

(c) Intermediate structure. This could be represented by components of 

the uncertainties in the average resonance properties, or average cross-

sections, which are uncorrelated between the energy intervals in which 

the resonance parameters are averaged. 

(d) Threshold regions. The uncertainties in the effective threshold energy, 

the average energy gradient up to the plateau and values on the plateau 

are required." For reactions with thresholds above about 3 MeV the 

uncertainties in the fission spectrum averaged values might be 

sufficient. 

(e) Smooth cross-sections and the shapes of cross-sections averaged 

over the resonance structure and intermediate structure. The requirements 

are for the uncertainties in the average values and the average energy 

gradients over broad energy ranges. Possible averages for which the 



uncertainties could be given are: 

(i) Thermal Maxwellian averaged cross-sections, or ratios. 

(ii) Variation of the thermal Maxwellian average with temperature 

(the factor g in eqri.(39)). 

(iii) Resonance integral. 

(iv) Resonance integrals for lattices (resonance structure), including 

temperature dependence. 

(v) Energy averages over intervals of about i lethargy, E to 2E or 

decade intervals, depending on the importance of the cross-section. 

Correlations between the uncertainties in the averages in different 

intervals are also required. 

(vi) Average energy gradients over intervals and the correlations between 

intervals. 

(vii) Fission spectrum averaged cross-sections, or ratios. 

(viii) Defined fast reactor spectrum (for less important reactions). 

Several of these requirements could be met by representing the uncertainties 

by a energy dependent factor to be applied to the cross-section. For example, 

the factor could be a polynomial function of energy, (I + a +bE), or higher order, 

and the uncertainties in 'a' and 'b' would be specified. This polynomial can be 

simpler than the polynomial required to represent the shape of the cross-section. 

This would be a possible form for the cross-sections of hydrogen, BIO (below 1 MeV), 

carbon (below 1 MeV, with resonance parameters above), Cr, Fe, Ni (below about 

100 eV with resonance parameters above, and average parameters above about 100 KeV). 

For cross-section curves which are averages over the resonance structure a similar 

parametrisation over selected energy ranges might be a suitable way to represent 

uncertainties. 

Representing the uncertainties in terms of a few parameters (such as the 

thermal value and the energy gradient, or the values at.a few energy points, with the 

shapes between these points being derived from a defined polynomial fit to the point 

values) enables the covariances between cross-section values at different energies 

to be calculated as continuously varying functions of energy. However, such a 

representation could require new processing codes to generate energy group 

covariances, or to transfrom the sensitivities to relate to these parameters. 

In summary, the requirements are for the uncertainties in cross-section values 

averaged over broad energy intervals and in the fluctuations about the averages 

(including resonances and minima) and the energy gradients over broad energy 

intervals, to be calculated from the covariance data. 

3.5 Some studies of the current status of nuclear data 

Data for fissile isotopes at thermal energies 

Evaluations of the cross-sections and v values measured at 2200 m/sec 

and in 20 C Maxwellian neutron spectra were reviewed at the 1975 Washington 

Conference by Lemmel (19) and Leonard (20). The methodology of the least squares 

fitting procedure, and the importance of the evaluation of correlations in the 

measurement uncertainties, is described more fully in the earlier study reported 

in 1969 (21). Both absolute and ratio measurements have been made for some items of 

data and so it is possible to test the internal consistency of the 2200 m/sec 

measurements and also of the thermal Maxwellian measurements. The consistency 

between the 2200 m/sec and the thermal Maxwellian values can also be examined. 

The measured values depend on other items of data. For example, the assumed 

half-lives. The Pu239 half-life has been revised in the past few years and this 

affects the Pu239 thermal cross-section values because foil masses are determined 

by a-decay assaying. The shape of the Cf252 spontaneous fission spectrum also 

has an influence because v values are measured relative to Cf 252 and the fission 

spectrum shape affects the detection efficiency. 

The fits to the 2200 m/sec and thermal Maxwellian measurements reported 

in Lemmel's paper are given in Table 3.2 

°ff 
U233 

U235 

U233/U235 

Pu239/U235 

1 + a 

U233 

U235 

U233 

U235 

Fit to 2200 m/sec 
measurements 

532.6 +_ 3.0 

587.7 +1.9. 

0.906 + 0.005 

1.269 _+ 0.007 

1.080 + 0.006 

1.157 +_ 0.006 

2.469 + 0.008 

2.403 +. 0.006 

Fit to thermal 
Maxwellian data 

528.6 +_ 3.6 

578.7 _+ 4.0 

0.913 +_ 0.003 

1.288 _+ 0.006 

1.090 +_ 0.001 

1.172 +_ 0.001 

2.503 +_ 0.021 

2.451 +_ 0.019 

Difference 

4.0 

9.0 

0.007 

0.019 

0.010 

0.015 

0.034 

0.048 

Table 3.2 Fits to 2200 m/sec and thermal Maxwellian measurements 



The 2200 m/sec and thermal Maxwellian data are separately consistent but 

there are some significant differences between them, particularly for the uranium 

isotopes. These differences could be due to errors in the shapes of cross-

sections at thermal energies or in the shapes of the thermal spectra. 

There are other indications of possible discrepancies in the shapes of cross-

sections at thermal energies. Changes in reactivity resulting from changes in the 

thermal spectrum, caused by changes in moderator temperature (or coolant density) 

are not well predicted. In order to improve predictions the shapes of cross-

sections have been changed. Tellier (22) has reported that an adjustment to the 

shape of the U238 capture cross-section at thermal energies results in improved 

predictions. An alternative approach is to change the shape of the eta 

curve for U235. 

High accuracy measurements ( ̂  0.3%) of the shapes of the U238 capture cross-

section and eta values for fissile isotopes through the thermal energy range 

are considered to be important requirements. 

U238 resonance integrals in reactor lattices 

There has been a long-standing discrepancy in the prediction of U238 resonance 

integrals in reactor lattices, with calculation giving higher values than are 

measured. In recent years the values of the measured capture widths of the lowest 

energy resonances have been significantly lower than earlier measured values. 

Tellier (23) has made calculations using a recent evaluation of the resonance 

parameters together with the Reich-Moore resonance formalism. He concludes that the 

data are now in satisfactory agreement with the lattice measurements. He also 

shows that use of the single-level Breit-Wigner resonance formalism is not sufficiently 

accurate. 

U238 capture in fast reactor critical experiments 

Analyses of fast reactor critical experiments using ENDF/B-V show an over

estimate of U238 capture/U235 fission rate measurements of about 8% and so this 

long-standing discrepancy remains. 

Prediction of some thermal reactor lattice parameters 

A comparison of ENDF/B-IV and ENDF/B-V predictions of parameters measured 

in the TRX 1 and 2 thermal reactor lattices is reported in ref (24). These 

benchmarks are H_0 moderated, 1.3% enriched uranium fuelled lattices, with 

water/fuel volume ratios of 2.35 and 4.02 respectively. The measured and calculated 

values are compared in Table 3.3 It will be seen that the values of K, U238/U235 

fission ratio and conversion ratio C are accurately predicted. However the ratio 

of epithermal to thermal U238 capture is not well predicted. 

3.6 Nuclear Data Requirements 

Procedure for determining differential nuclear data requirements taking 
into account integral measurements 

Bobkov, Pyatnitskaya and Usachev (10) have proposed a procedure for determining 

cross-section accuracy requirements to meet a set of reactor parameter target 

accuracy requirements when the accuracies achieved,or achievable,in a set of 

relevant integral measurements is known. 

It is assumed that a set of discrete nuclear data parameters, for which the 

measurement uncertainties are uncorrelated, can be identified and that the relative 
2 

measurement costs equal A./e. (and the factors, X., can be estimated). 

The accuracy requirements must be derived from the conditions: 

2 
M = Z (X./e.) is a minimum 

i x :L 

subject to the conditions 

v v S P. S P. V.A. / (t ) 2 V (82) 
L L m,i • m,j • i,j ^ , m , v , 
i J 

and 
2 2 

0 < e. / e. / 
l * 10 x 

where e. is the currently achieved uncertainty. 
10 J J 

A 
The variance V. ., is a complex function of the values of e. and the 

integral measurement sensitivities and uncertainties. A procedure is described 

for solving this problem which involves the penalty function method. Bobkov et al 

also give examples of the resulting cross-section accuracy requirements for 

predicting K and the breeding ratio of a fast reactor. 

At present the task of calculating sensitivities for all the reactor 

parameters of interest and then carrying out the above procedure is such an 

enormous undertaking that it is probably not justified. It is probably sufficient 

to take the results obtained by Bobkov et al as giving an indication of the 

changes in requirements consequent upon using integral data and use some simpler 



considerations to decide on the differential nuclear data requirements. We must 

also consider whether it is satisfactory for the integral and differential 

measurements to be complementary or whether we require the extra confidence that 

is obtained if they both are sufficiently accurate to predict the reactor 

properties to the required accuracy. A high level of confidence is required for 

the prediction of key safety parameters. 

Choice of accuracy requirements 

How, then, should the accuracy requirements be decided? Sensitivity studies 

are a necessary preliminary. These show the important parameters and the order 

of accuracies which are useful. Discussions between reactor physicists and nuclear 

data measurers about potential worthwhile improvements in the accuracies of 

prediction (and gaps in knowledge) and the possibilities of achieving them provide 

one way of deciding requirements. This is the way requirements are chosen at 

Consultants and Specialists Meetings. New measurements can be required to resolve 

inmportant discrepancies between different measurements (both integral and 

differential). These different assessments of the requirements are considered 

by National Nuclear Data Committees who then decide on the measurement 

programmes to be supported. 

IAEA Advisory Group Meetings 

1st Fission Product Nuclear Data. Bologna 1973 IAEA-169 

2nd Fission Product Nuclear Data. Petten 1977 IAEA-213 

1st Transactinium Isotope Nuclear Data Karlsruhe (1975) IAEA-186 

2nd Transactinium Isotope Nuclear Data Cadarache (1979) IAEA-TEC DOC-232 

IAEA Consultants Meetings 

Prompt Fission Neutron Spectra (1971) 

Integral Cross-Section Measurements in Standard Neutron Fields for 

Reactor Dosimetry (1976) 

Delayed Neutron Properties (1979) 

U/Pu Resonance Parameters (1981) 

Brookhaven National Laboratory Specialists Meetings 

Seminar on U238 Resonance Capture (1975) BNL-NCS-50451. 

Nuclear Data for Plutonium and Americium Isotopes for Reactor Applications 

(1978) BNL-50991 

NEA Specialists Meetings 

Neutron Capture in the KeV Energy Range in Structural Materials for Fast Reactors 

Karlsruhe (1973) NEANDC-U-98 

Fast Neutron Fission Cross-sections - Argonne (1976) ANL-76-90 

Neutron Cross Sections of Fission Product Nuclei - Bologna (1979) NEANDC(E)-209L 

Nuclear Data and Benchmarks for Reactor Shielding - Paris (1980) 

Conferences 

Europe. Neutron Physics and Nuclear Data - Harwell (1978) 

USA Knoxville Conference (1979) USSR 5th Kiev Conference (1980) 
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Table 3.1 - Examples of Recent S p e c i a l i s t Meetings and Conferences on 

Nuclear Data for F i s s i o n Reactor Appl ica t ions 

TRX 1 

k. 

keff 

M2 

B2(m-2) 

P28 

625 

628 

CR 

Measured 

-

1.0000 

-

57.00 

1.32 

+ 0.021 

0.0987 

+ 0.0010 

0.0946 

+ 0.0041 

0.797 

+ 0.008 

ENDF/B-

1.1612 

0.9888 

30.58 

-

1.415 

0.1018 

0.0952 

0.815 

TABLE 3. 3 
MEASURED AND CALCULATED 

TRX LATTICE 

IV ENDF/BV 

1.1726 

0.9972 

30.84 

-

1.400 

0.1013 

0.0984 

0.812 

PARAMETERS 

TRX 2 Measured 

-

1.0000 

-

54.69 

0.837 

+ 0.016 

0.0614 

i 0.0008 

0.0693 

+ 0.0035 

0.647 

+ 0.006 

ENDF/B-IV 

1.15062 

0.9909 

29.46 

-

0.881 

0.0623 

0.0681 

0.653 

ENDF/BV 

1.1608 

0.9981 

29.79 

-

0.870 

0.0621 

0.0707 

0.651 

Measured la t t ice parameters are defined as follows: 

The cut-off between epithermal and thermal region is 0.625 eV. 

p28; the ratio of epithermal-to-thermal U-238 captures 

625; the ratio of epithermal-to-thermal U-235 fissions 

the ratio of U-238 fission to U-235 fissions <28 

CR: conversion ra t io , the rat io of U-238 captures to U-235 fissions. 
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Section 4 - Energy production, radiation emission, induced radioactivity and 
irradiation damage 

4.1 Introduction 

Important products of neutron-nuclear interactions are the energy release, 

the radiation emissions, the reaction products (some of which are radioactive) 

and the irradiation damage of materials. The major sources of energy are fission 

reactions but the contributions from other reactions are also significant. The 

majority of the energy released in fission is in the form of fission product 

recoil energy and this is deposited close to the point of fission (within about 10 

microns). The kinetic energy of the fission neutrons and the energy of the Y ~rays 

can be deposited over a wide region (1 m ) . Not all of the fission energy is 

emitted promptly; a significant proportion is emitted as 6 and Y energy resulting 

from the radioactive decay of fission products (predominantly by $ decay). This 

is called fission product decay heating. This component of heating is important 

in connection with emergency core cooling, heat removal in the shut-down reactor 

and the design of fuel transfer and transport flasks. A knowledge of the energy 

transferred to materials by neutron scattering and Y ray interactions is required 

in the design of cooling for moderators, control elements,reflector regions, fast 

reactor breeder regions and experimental rigs in reactors. Shielding must be 

provided for biological protection from neutrons and Y~rays an<* also to protect 

components from irradiation damage. Damage mechanisms include atomic displacements 

resulting from nuclear recoils in scattering reactions and in Y-emission,and helium 

production in (n,a ) reactions. Shielding is also required when handling 

radioactive materials. 

Dosimetry is the measurement of the time (and energy spectrum) integrated 

flux, or neutron dose. The dose is sometimes considered in terms of the damage 

flux or flux above 100 KeV. Dosimetry monitoring reactions are those which result 

in a suitable radioactive product, the suitability depending on the half-life, 

detectability and the energy spectrum to which they are senistive. Threshold 

reactions and reactions with prominant resonances have the advantage that they 

give a measure of the integral flux above the threshold energy or the flux at the 

resonance energy. By using a set of dosimetry reactions both the total flux and 

the energy spectrum can be derived, and hence the damage effects predicted. 

Dosimetry is used to monitor the doses that irradiated components have experienced. 

This is required both when correlating the measured material damage with the dose 

and also when checking the dose to which structures have been exposed. 



The radioactive decay of transactinium isotopes makes a contribution to 

the decay heat following reactor shut-down and in fuel transport. Spontaneous 

fission and ( a ,n) reactions provide a source in a shut-down reactor which can be 

used when monitoring the reactivity of the core. If the source is known and the 

flux is measured then the reactivity can be derived and the approach to critical 

monitored. The radioactive decay must also be allowed for in the design of 

transport flasks and reprocessing plant studies. The decay of the curium isotopes, 

Cm242 and Cm244, are important in fuel which has undergone a long irradiation. 

The routes leading to the product of these curium isotopes are shown in Figure 4.1. 

4.2 Heating 

Values for the components of the energy released in fission (based on the data 

of Sher (25)) are given in Table 4.1. The prompt components comprise the fission 

fragment kinetic energy, the prompt neutron kinetic energy and the prompt gamma 

energy. The delayed components are the beta particle energy and the delayed gamma 

energy resulting from fission product decay. (The small delayed neutron component 

has been neglected.) 

Table 4.1 - Energy released in fission (in MeV) 

U235 Pu239 U238 

Fragment kinetic energy 169.1+0.5 175.8+0.1 166.6+0.5 

Prompt gamma 7.0+0.5 7.8+0.2 6.5+0.5 

Neutron kinetic energy 4.8+0.1 5.9+0.1 5.5+0.1 

Delayed gammas 6.33+0.05 5.17+0.06 8.02+0.07 

Beta 6.50+0.05 5.31+0.06 8.25+0.08 

TOTAL (minus antineutrinos) 193.7+0.7 199.9+0.4 194.8+0.8 

The accuracy of the total energy releasedin fission is higher than +0.5% and 

the accuracy of the gamma component is higher than +_10%. Although the accuracies 

assessed for the delayed gamma and beta components are high (^1%) the time 

dependence of the decay heating is not so accurately known, this accuracy being, 

typically, +_5%. 

In addition to the total gamma energies the gamma spectra are required. 

This is because the gamma energies determine the migration distances and also 

the probabilities for (y ,n) and (y ,f) reactions. Gamma spectra are stored in 

nuclear data libraries and converted into group form for reactor calculations. 

Coupled neutron-gamma cross-section sets are produced and used in coupled neutron-

gamma flux and energy deposition calculations. 

Fission product decay heating 

Heat generated by fission product decay is calculated by summing the 

contributions from individual fission products. Summation codes, such as ORIGEN 

(26), FISPIN (27) and FISP (28) are used for these calculations. The data libraries 

they require contain fission product yields,and decay data (the half-lives, beta 

and gamma total energy yields and gamma energy spectra). Examples of such data 

libraries are given in references (29) and (30). Fission product capture reactions 

can have a significant effect on decay heating in some reactors and the above 

codes are capable of treating these effects in a simple way, using few group 

cross-sections and fluxes. These reactions tend to increase the total decay 

heat by a few percent. For applications where fission product capture effects 

can be neglected the decay heatinp can be represented by a sum of exponentials. 

About 20 exponentials are required to give an accuracy of 1% over the time 

range of interest in reactor operations. 

The decay power at a time t sec following a single fission is denoted by 

m(t) and the decay power per fission at time t sec following an infinitely long 

irradiation is denoted by M(t). The decay power t seconds after an irradiation of 

1 fission per second lasting for I seconds is 

M(I,t) = I+tf m(t')dt' = M(I) - M(I+t) (83) 

The accuracy of fission product decay heating data has been assessed in two 

ways. The sensitivity of the summation calculations to changes in yield and 

decay data have been calculated and combined with estimates of the uncertainties 

in these(31). The uncertainties estimated for M(t), the decay heat following 

a long irradiation,are about +3% for U235 and Pu239. The uncertainties in 

m(t), the decay heat following a single fission, are larger, particularly at short 

times following the fission. They are then in the range +5% to j+10% for times 

less than 100 sees. There are larger uncertainties for these short decay times 

because of the uncertainties in the beta and gamma energy yields of short lived 

fission products. Nuclear theory is used to provide some of these data, an example 

being the work of Yoshida (31). The accuracies of the data are also assessed 

by comparing with measurements of total heating as a function of time and also 

of the separate beta and gamma heating components. The techniques used are 

calorimetry, and $ and Y ray detection. The agreement between these measurements Kl 



and the calculations is not as good as the summation calculation sensitivity 

studies suggest . The summation calculations tend to be about 5% to 10% lower 

than the total heat measurements for Pu239, but there are also discrepancies between 

the different total heat measurements. Work is in progress in several countries 

to try to resolve these discrepancies. 

The difference between fission product decay heat for fission in thermal 

snd fast reactors is calculated to be small (< 2%). The differences in 

fission product yields between thermal and fast reactor spectra are small but 

not well known. However, this source of uncertainty is not considered to be 

important and it is not unusual to use thermal neutron fission yields in fast 

reactor decay heating calculations. 

At times of the order of 10 sees (116 days), when fast reactor fuel might 

be transported for reprocessing Just a few fission products contribute to the 

total decay heat. The percentage contributions are given in Table 4.2. 

Actinide decay heating 

At short times the actinide decay heating following the shut-down of a power 

reactor arises predominantly from the decay of U239 (1,410 sees) and Np239 

(2 x 10 sees). This component varies with fuel burn-up because of the variation 

of the number of U238 captures per fission. Relative values of actinide decay 

heat and fission product decay heat at short times following shut-down in a 

PWR are illustrated in Table 4.3. 

Components of the decay heating in fast reactor fuel are shown in Fig.4.4 

Alpha decay of Cm242 (1.41 x 10 sees) makes a significant contribution at longer 

decay times. This arises from neutron capfurein Am241 produced by the decay 

of Pu241 (14.6 year). The fraction of Am241 in the fuel depends on the length 

of time for which it was stored between the abstraction of plutonium from irradiated 

fuel and the loading of the plutonium in the reactor. The sensitivity of actinide 

decay heating in fast reactor fuel to nuclear data uncertainties has been studied 

by Patrick and Sowerby (32). They conclude that improved data are required for 

the Am241 (n,y ) cross-section (an accuracy of +8%). 

Table 4.2 - Fission products contributing to decay heating at 10 sees 

Fission product 

Rhl06 + Ru'06 

Zr95 + Nb95 

Cel44 + Prl44 

Rul03 

Y91 

Sr89 

Remainder 

chain Percentage of total fission 
product decay power 

30 

30 

24 

5 

4 

1 

6 

Table 4.3 - Decay heat in a PWR as a percentage of full power output 

Time after 
shutdown (sees) 

0 

10 

100 

1000 

10000 

Low burn up fuel 

Fission . . ., . Actinides Products 

6.1 0.22 

4.3 0.22 

2.7 0.22 

1.5 0.17 

0.6 0.09 

High burn up fuel 

Fission . . . , . Actinides Products 

5.6 0.34 

4.1 0.34 

2.7 0.33 

1.6 0.27 

0.8 0.16 

Structural material decay heating 

Heat is generated in the steels of the fuel pin cladding and the subassembly 

wrapper of a fast reactor fuel subassembly by the decay of radioactive products. 

This component of the decay heating does not exceed 10% of the total decay 

heating at any time. Integral measurements have been made of the activity induced 

in structural materials and these enable this component to be predicted to an 

accuracy of about +J0%. 



TABLE 4.4 

Spectrum Averaged Energy Yield Cross Sections 

(MeV x barns) 

Substance 

BIO 

Bll 

C 

0 

Na 

Fe 

Eu 

Ta 

U238 

Pu239 

Point Energy Deposition 

Elastic 
Scattering 

0.163 

0.182 

0.166 

0.137 

0.156 

0.030 

0.020 

0.013 

0.013 

0.011 

Inelastic 
Scattering 

0.002 

0.002 

0.001 

0.012 

0.007 

0.009 

0.010 

0.006 

0.004 

Capture 

6.059 

-0.002 

Fission 

9.657 

320.04 

TOTAL 

6.224 

0.184 

0.167 

0.135 

0.168 

0.037 

0.029 

0.023 

9.657 

320.05 

Gamma Energy Yield 

Inelastic 
Scattering 

0.007 

0.007 

0.006 

0.002 

0.078 

0.163 

0.440 

0.622 

0.554 

0026 

Capture 

1.063 

0.013 

0.085 

15.034 

5.594 

1.590 

2.928 

Fission 

0.870 

24.57 

TOTAL 

1.070 

0.007 

0.006 

0.002 

0.091 

0.248 

15.474 

6.216 

3.014 

27.759 

4.3 Energy yields and energy deposition 

Energy yield cross-sections averaged over a fast reactor core spectrum 

are given in Table 4.4 The point energy deposition is the kinetic energy of 

fission product nuclei, nuclear recoil following neutron scattering and the 

energies of a and 3 emissions. The gamma energy yield arises from inelastic 

scattering, (n, Y ) reactions, other capture reactions (in association with other 

emissions such as a -particles) and from fission. The main sources of energy 

are fission and capture in the fuel isotopes. The energy produced by capture 

in the fissile isotopes is about 1% of the energy produced in fission and the 

energy produced by capture in the principal fertile isotope (U238) is about 

2% of the total energy. Thus capture reactions contribute only about 6 MeV 

in a total of about 200 MeV per fission. A high accuracy is therefore not required 

for this capture component when calculating the total heating. 

The gamma energy is of more importance in calculations of energy deposition 

distributions;for example, for calculating the temperatures of samples in an 

experimental rig in a reactor. Such a rig might contain samples of structural 

materials which are undergoing irradiation endurance testing. Irradiation effects 

are dependent on material temperatures. The main source of heating in many 

cases is the prompt and delayed y-rays from fission (the two components being of 

about equal importance). To calculate this heating the gamma spectra must be 

known because this determines both the gamma migration distance and the energy 

deposition. The data in cross-section libraries cannot always be relied upon to 

represent the gamma energy yields and spectra accurately and they should be 

examined before being applied. K 
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Table 4.5 gives values for the gamma energy deposition in the different materials 

of a fast reactor. 

Table 4.5 - Gamma energy deposition rates in a fast reactor 
flux of 1015/cm^sec 

Material Watts/gm Watts/ml 

Sodium 4.6 3.9 

Steel 4.8 38.4 

Pu-U02 Fuel 11.5 127.1 

B.C 4.5 11.3 
4 

The relative energy deposition rates in the materials of a fast reactor 

core subassembly are given in Table 4.6 

Table 4.6 - Energy deposition in the materials of a fast reactor subassembly 

(watts per ml of subassembly volume) 

Point Energy 

Sodium 2 

Steel 1 

Pu-U02 689 

TOTAL 692 

Only about 3% of the energy is deposited outside the fuel and about a half 

of this is deposited in the fuel cladding. 

4.4 The radioactivity of irradiated fuel 

Kusters (33) has reviewed the status and requirements for nuclear data 

relating to the radioactivity of irradiated fuel. He focuses attention on routes 

for the production of Pu238, Cm242 and Cm244 because of their strong Y activity 

and neutron sources from spontaneous fission and (a ,n) reactions. In a 

thermal reactor production of Pu238 is mainly by the route U236 (n,Y ) Np237 

(n, Y ) Pu238. In the fast reactors studied by Kusters a-decay of Cm242 and the 

route U238 (n,2n) Np237 (n, Y ) Pu238 are more important sources of Pu238. For 

the production of Cm242 the capture cross-sections of Am241 leading to the 

ground and isomeric states of Am242 are required and the Pu242 (n, Y ) an<^ 

Am243 (n,Y) cross-sections are required for the calculation of the production 

of Cm244. The (n,2n) cross-sections of both U238 and Pu239 are required for fast 

reactor inventory calculations. 

1a Energy 

3 

16 

64 

83 ; 

Total 

5 

.17 

753 

775 

(Gamma 
Yield) 

(1) 

(7) 

(75) , 

(83) 

Measurements of the compositions of irradiated fuel elements provide a check 

on the nuclear data and can also be analysed to provide spectrum averaged data 

suitable for fuel inventory calculations. By adjusting cross-sections the 

discrepancies in predictions for an LWR have been reduced to a few percent in a 

French study (34) . However Kusters concludes that more analyses are needed to 

assess the uncertainty margins in predictions and there is a need to improve 

some current nuclear data libraries. Spent fuel analysis is also of high 

importance in nuclear safeguards investigations. A method called the isotopic 

correlation technique, which correlates measured isotopic ratios with fuel burn-up 

and plutonium content is being evaluated as a potential way of monitoring plutonium 

production. 

Neutron output from irradiated fuel 

In their assessment of the accuracy requirements for higher actinide 

nuclear data to predict the heating and neutron output of irradiated fast reactor 

fuel Patrick and Sowerby (32) point out that although any study is dependent 

on a number of factors (such as the reactor type, the fuel cycle strategy and the 

ground rules leading to the required accuracies in the fuel parameters), the 

results provide a useful starting point for discussions on other aspects of 

requirements. Their study relates to a particular fuel composition, storage time 

before loading into the reactor and required accuracies as a function of cooling 

time. One requirement is to predict the neutron source in the shut-down reactor 

so that flux measurements can be used to monitor reactivity. The other requirement 

is for design of shielding for spent fuel transport and reprocessing. The main 

neutron sources are Cm242 decay at shorter times and Cm244 decay at longer times. 

The nuclear data parameters leading to the production and loss of these isotopes are 

the ones in need of improvement. 

To improve predictions at shorter times more accurate data are needed for 

Am241 (n, Y ) Am242g, Cm242 (n,f) and the spontaneous fission branching ratio. 

Since the fission cross section of Cm242 cannot be measured (because of the 

high background activity) improved nuclear theory methods are required. To improve 

the accuracy of predictions at longer times more accurate values of the Pu242 

(n, Y ) and Am243 (n, Y ) cross-sections are needed. 

4.4 Simple methods for calculating reaction rates in thermal reactors 

When a high accuracy is not required in the estimation of reaction rates 

in a thermal reactor a simple few parameter representation of the neutron spectrum 



is acceptable. This can be used, for example, for calculatinp the arisings of 

higher transactinium isotopes, reactions in fission product isotopes and the 

activation of coolant and structural materials. The spectrum is represented by 

three components, the thermal f lux, (J) th, the epithermal flux , 4>e t and the fast 

flux, <J> . The effective temperature of the thermal flux, Teff, must also be 

specified,and in some more refined treatments, the departure of the epithermal 

flux from a (1/E) dE form is taken into account. The exponent of E is taken to 

be -(1 + a ) , instead of -1. 

The cross-sections are characterised differently depending upon whether they 

occur at thermal energies or only above a high energy threshold. For a reaction 

which occurs at thermal energies the 2200 m/sec cross-section, Co , the g factor 

as a function of Teff, the resonance integral, Io, and a factor which depends 

on the exponent a , f(a), are required. The calculation of g(Teff) and f(a ) 

requires a knowledge of the shape of the cross-section through the thermal energy 

region and the resonance region. However, when these have been calculated the 

values of c°and I can be adjusted by fitting to a range of integral measurements. 

For threshold reactions the fast flux averaged value can be related to a U235 fission 

spectrum averaged value of the cross-section or a standard spectrum averaged 

value. The ratio of the average in the standard spectrum to the average in the 

reactor fast spectrum is assumed constant for all threshold reactions. 

4.6 Activation of structural and coolant materials 

The build-up of strong gamma emitters within the coolant circuit and on 

reactor components causes maintenance problems. The predominant gamma activity 

in the coolant circuits of light water reactors arises from the decay of Co58 

and Co60. These are reaction products which result from trace quantities of 

cobalt and nickel which are dissolved into the coolant from components in the 

primary coolant circuit, activated in the core and then plated out in various 

parts of the circuit, such as the pumps and heat exchangers. 

Integral measurements of reactions which lead to such strongly radioactive 

products can be readily measured in low power facilities, as well as in experiments 

made in power reactors (or samples taken from the reactor). Integral measurements 

made in zero power critical facilities have an accuracy, typically, of +5% and they can 

be used to predict the reaction rates in power reactors to an accuracy of +̂ 10%,which 

is considered to be a satisfactory accuracy. However, measurements should also be 

made in power reactors to check on the importance of competing reactions in the 

isotopes and the burnup of the radioactive products. Two-stage reactions, and 

reactions less easily measured in zero power facilities (such as (n,n'p) which 

only occurs at high neutron energies) can also be found in this way. 

Some of the more important reactions in fast reactor structural materials 

are listed in Table 4.7, together with the cross-sections for the reactions in 

a fast reactor core spectrum. 

Table 4.7 - Structural material activation cross-section in a fast reactor 
spectrum 

Isotope 

Cr50 
Mn55 
Mn55 
Fe54 
Fe54 
Fe58 
Co59 
Ni58 
Ni60 

Percentage 
Abundance 

4.35 
100 
100 
5.8 
5.8 
0.31 

100 
67.76 
26.42 

Reaction 

(n.y) 
(n.Y) 
(n,2n) 
(n,p) 
(n,a) 
(n,y) 
(n.y) 
(n»P> 
(n,p) 

Reaction 
Product 

Cr51 
Mn56 
Mn54 
Mn54 
Cr51 
Fe59 
Co60 
Co58 
Co60 

The activity induced in the sodium coolant of a fast reactor is also of 

concern. The reactions Na23 (n,y ) Na24 (15hr) and Na23 (n,2n) Na22 (2.6 years) 

are important, as is the activity induced in trace contaminants in the coolant, 

such as K4l(n,p) Ar41 (1.8 hr). 

For the prediction of activation reactions in a thermal reactor a simple 

representation of the flux spectrum can be sufficient because a high accuracy 

is not required. 

4.7 Irradiation damage effects and dosimetry 

Atomic displacement damage in structural materials is a function of the 

nuclear recoil energy, Er, the temperature and the presence of nucleation 

sites for void formation, such as helium (resulting from (n,a) reactions). The 

recoil energy must exceed a threshold energy, E , for the atom to be displaced. 

For recoil energies higher than E the number of displacements is approximately 

equal to E_/E but is less than this number by a factor which increases with 
K T 

increasing recoil energy. There are different models for calculating the number 

of displacements, one such model being called the NRT Model (Norgett,Robinson 

and Torrens (35)). This has been adopted for international reference use. Having 

chosen a model the displacement cross-section can be calculated. It is equal to 

lf-Life 

27.7 days 
2.58 hrs 
312 days 
312 days 
27.7 days 
45.1 days 
5.27 yrs 
70.8 days 
5.27 yrs 

Cross-Section 
(mbarns) 

31 
70 
0.03 
10.5 
0.08 
9.8 
54 
14.5 
0.25 



the sum of the cross-sections for each reaction times the number of displacements 

for the corresponding recoil energy. For example, the elastic scattering component 

of the displacement cross-section is: 

oJ(E) = / a ^ E + E ' ) N^(Er(E/E',A))dE' (84) 

The recoil energy, E (E,E',A), is a function of the incident and emergent 

neutron energies and the mass of the nucleus. The number of atomic displacements 

depends on the element , I, and also on the particular alloy. However, this dependence 

on the alloy is usually neglected and a displacement cross-section for iron is 

calculated which is used for iron in all different types of steel. The variation 

of E with alloy is not so great as to be significant compared with other sources 

of variability in the effects of atomic displacements. 

The (n,y) reaction contributes to the atomic displacement cross-section 

because of the nuclear recoil which occurs when the Y rays are emitted. Other 

reactions also contribute. In particular, inleastic scattering, (n,p) and 

(n, a) reactions. Atomic displacement cross-sections have been calculated for a 

number of structural material elements by Doran and Graves (36) and the data 

are available in a fine energy group form (the SAND II 640 proup structure). 

Helium embrittlement is another structural material damage mechanism. 

Helium is produced in (n,a) reactions. Trace quantities of boron and nitrogen 

in structural materials can make a major contribution to the helium production. 

Consideration must also be given to (n,a) reactions in isotopes which are formed 

as a consequence of irradiation; for example 

Ni58 (n,Y ) Ni59 (n,a ) 

Integral measurements of (n,ot) reactions in structural materials have 

been made by irradiating samples in power reactors and measuring the helium 

produced. Trace quantities of elements such as boron and nitrogen can introduce 

uncertainties into the results. Uncertainties in the shapes of reactor neutron 

spectra at high energies can also result in uncertainties in derived data. It 

is usual to derive equivalent U235 fission spectrum averaged values from these 

measurements by applying a calculated factor. These are the results quoted,for 

example, by Gryntakis (37). For Fe the values differ by +30 from the mean value 

and this uncertainty is larger than the required accuracy of ^+^15%. 

Irradiation has an effect on a graphite moderator. Neutron and gamma 

irradiation can enhance reactions between the graphite and carbon dioxide coolant 

resulting in a loss of structural strength of the graphite. At low temperatures 

energy can be stored in the graphite and an increase in temperature can result in 

the release of this Wigner energy which leads to a further increase in temperature. 

Graphite irradiation damage results in stress problems, with swelling or shrinkage 

depending on the conditions. 

Dosimetry 

Irradiation exposure can be monitored by dosimetry reactions. Foils or 

detectors are positioned at the point where the dose is to be measured and they 

are removed following the irradiation and the induced activity is measured. This 

induced activity depends on the cross-section for the reaction, the time history 

of the flux, the rate of decay of the activity and the rate of burnup of the primary 

isotope and the activation product. The activity must be sufficiently strong to 

be accurately measurable, sufficiently long lived to measure the dose over the 

time period of interest and the absorption cross-sections of the isotope and the 

activation product must be sufficiently small for burnup to be negligible or to be 

a correction which can be accurately made. Dosimetry reactions suitable for 

different applications have been subject to review and international meetings are 

held periodically. These include the ASTM and EWGRD (Euratom Working Group on 

Reactor Dosimetry) series of meetings. 

The chosen dosimetry reactions are compiled in an IAEA recommended 

International Dosimetry File, which is an extended version of the ENDF/B-V 

Dosimetry File. Standardisation is important because the measured information 

on irradiated damage effects is often correlated with dosimetry reaction dose 

measurements. The derived damage cross-sections are less accurate than the correlated 

data because of uncertainties in the dosimetry cross-sections used to deduce the 

flux and flux spectrum of the irradiation. By standardising the dosimetry cross-

sections and measuring doses using the same dosimetry reactions the materials 

damage can be deduced more accurately. 

Integral measurements of the dosimetry reactions in standard neutron spectra 

(or benchmark fields) are used to evaluate the differential cross-sections and, 

if appropriate, to adjust them, and also adjust the reference benchmark fields. 

These benchmark fields include the Cf252 spontaneous fission neutron spectrum, 

the thermal neutron induced U235 fission neutron spectrum and a number of well 

characterised spectra (38). 

The types of dosimetry reaction can be divided into fission and non-fission, 

threshold and non-threshold. The choice of the set of reactions to be used for a 



particular application depends on the intensity of the flux, the duration of 

irradiation, the type of reactor spectrum (thermal reactor, fast reactor, core, 

shielding, vessel) and the neutron energy range of importance. In the case of 

fission reactions used for dosimetry in a power reactor the fraction of 

particular fission products present in the foil can be used to measure the 

number of fissions. The burn-up of fuel can also be measured in this way. Such 

measurements can be made either by mass spectrometry or by radiation detection. 

When the radioactive decay of an activation product is measured the half-life, and 

gamma spectrum (or gamma energy line and branching fraction) must be known accurately, 

as well as cross-section. 

D L Smith (39) has reviewed the status of the non-fissile threshold reactions 

in the ENDF/B-V Dosimetry File, and the agreement between integral measurements 

and calculated values. For a number of these reactions the integral measurements 

in a Cf252 fission spectrum and the calculated values have an accuracy of better than 

+_ 3%,and they are consistent. The decay data are also satisfactory for these 

reactions. For some reactions improved measurements are required. Zijp (38) has 

reviewed the nuclear data requirements for dosimetry on behalf of the EWGRD. 
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Important requirements are considered to be measurements of the cross-sections for 

the reactions Nb93 (n,n')m, and Np237 (n,f) and the averages in a U235 

fission spectrum of the reactions A127 (n, a ) , Ni58 (n,p), In155 (n,n')m and the 

ratio U238 (n,f)/U235 (n,f). 

Measurements of the spatial distribution of gamma energy deposition are 

made in experimental critical assemblies using thermoluminescent dosimeters. 

These are also sensitive to 3-particles and to the neutron flux. The assumption 

that $-particle energy is deposited at the point of production cannot be made 

in the interpretation of these measurements. The migration of g-particles is 

usually calculated using a Monte-Carlo tracking method. The interactions of gamma 

rays with matter are more accurately known than the gamma energy sources and 

spectra. Consequently these measurements provide a check on the gamma source data 

and the methods used for calculating the gamma flux from the source. Gamma inter

actions are strongly anisotropic and Monte-Carlo tracking calculations are made 

when accurate predictions are required. More approximate methods, including 

equivalent diffusion theory methods, which involve the derivation of effective 

gamma diffusion coefficients, are used in simplified design methods. 
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Fig. 4.2 - Decay power of a fast reactor subassembly 

Section 5 - Kinetics characteristics of reactors and reactor control 

5.1 Introduction 

Reactor power output is proportional to the fission rate, which is 

approximately proportional to the total neutron flux. The shape of the neutron 

flux spectrum changes as the power changes (because of the associated temperature 

and density changes) and this affects the relationship between fission rate and 

total neutron flux to a certain extent. The relationship between reactor power 

and fission rate can also change slightly if the proportion of fissions in 

different isotopes changes with the change in spectrum and also if the neutron 

|D4 capture contribution changes. 

When the power increases the temperatures of the fuel, coolant and moderator 

increase. These changes result in a reduction in the reactivity of the core. To 

raise power it is necessary to add reactivity and this is usually done by reducing 

the amount of control absorber in the core, either by withdrawing absorbing control 

elements or by reducing the amount of soluble poison in the coolant (or chemical 

shim). Chemical shim is usually used only to compensate for the slow changes 

in the reactivity of the fuel associated with burn-up. Control elements can be 

inserted rapidly to shut a reactor down from power. 

The temperature coefficient of reactivity for component i is defined as 

CT = i i*. (85) 

i K 3T. 
I 

T T T 
The coefficients for the fuel, C.., the moderator, C , and the coolant, C , 

f to c 

must be considered separately because of the differences in the rates at which 

the temperatures of the fuel, moderator and coolant change in response to a change 

in power. Also of importance is the coolant pressure coefficient and the effect 

of coolant voiding. The power coefficient of reactivity is the change in 

reactivity with power as a fraction of full power: 

cP = £ B ) 
i K 3P . associated with compoment i (86) 

The delayed neutrons influence the rate of change of power with change in 

reactivity. The "effective delayed neutron fraction" is defined to allow for 

the fact that delayed neutrons have a different probability of causing a fission 

than have prompt neutrons. This is because of the lower mean energy of delayed 

neutrons,which is below the threshold for fission in U238. They thus do not 

contribute to the fast fission factor (as distinct from the fast plus 

epithermal factor, which is, sometimes, also called the fast fission factor). The 

effectiveness of a neutron in continuing the fission chain reaction is expressed 

in terms of the neutron importance, or adjoint neutron flux, <|>*(E,x). This 

is the probability of a neutron contributing to the asymptotic fission source 

distribution. Calculation of the neutron importance involves solving equations 

which are a transposition of the equations for calculating the neutron flux. 

Perturbation theory methods of calculating the change in reactivity resulting 

from a change in cross section involve the flux and the neutron importance. For 



example, the change in reactivity resulting from an increase in a macroscopic 

absorption cross-section, 6Ea(E,x), is, to first order: 

6 p = " y* 6Z <E>X> *(E,x) <l>*(E,x) dE dx (87) 

where N = fff vZ (E,x) x(E',x) <])(E,x) <{»*(E',x) dE dE' dx 

(88) 

The expressions for scattering cross-sections and fission cross sections, V,Ef 

and X » involve the change in neutron importance associated with the change in 

scattering, and the difference between the importance of the neutrons causing 

fission and those produced in fission. 

For example, for moderation: 

— j//6Es(E -»• E',x) <|>(E,x; (.v̂ c ,x; -y^js,x;;anais-cix (39) <5p = I ///6E8(E •*• E'.x) 4»(E,x) (•*(£',x) -<J>*(E,x))dEdE'dx 

Changing a scattering cross-section also changes the leakage probability 

and this introduces an additional term. 

An addition of reactivity to a critical reactor which exceeds the effective 

delayed neutron fraction causes the power to increase very rapidly, with an 

exponential time constant of milliseconds, until the fast acting power coefficients 

of reactivity reduce the excess reactivity to below the effective delayed neutron 

fraction. When the excess reactivity is greater than the effective delayed neutron 

fraction the reactor is prompt critical. That is,the prompt neutrons alone are 

sufficient to sustain a chain reaction and the rate of increase of the fission 

neutron population depends on the prompt neutron lifetime, 1,and the superprompt 

critical reactivity ( p - Beff ) : 

dn _ (p - Beff) n (90) 
dt 1 

A typical value of 1 for a thermal reactor is 10 sees and for a fast 

reactor it is 10 sees. 

For reactivity additions which are less than the delayed neutron fraction 

(or when the power coefficients have reduced the net excess reactivity to within 

this range) then the time constants of the delayed neutrons influence the time 

response of the reactor flux, and power, to the reactivity change. The longest 

delayed neutron precursor half-life is 55.6 sees (Br87). In reactors containing 

D O ( Y>n) reactions in deuterium produce a small fraction of delayed neutrons 

having a much longer half-life. 

In normal operation of reactors the shut-down can be very rapid but 

startup and changes of power level can be sufficiently slow for the reactor to be 

treated as in static equilibrium, with the power level corresponding, approximately, 

to the control reactivity insertion and the reactivity of the steady temperature 

power coefficients corresponding to the instantaneous power level. For accident 

studies the time constants of the different components of the power coefficients 

must be known and the equations involving the delayed neutron responses taken 

into account. 

In addition to the changes of reactivity with temperature and coolant 

pressure following a change in reactor power the changes in fuel composition must 

also be taken into account. The main effects are the changes in concentration 

of Xel35 and Sml49. An equilibrium concentration is reached in which the rate 

of formation by radioactive decay of the precursors is equal to the rate of burn-up, 

No (J> (plus decay in the case of Xel35). When the power changes there is a 

reactivity transient until the concentrations reach their equilibrium values. 

The time constants involved are several hours and so chemical shim can be used to 

compensate for these transients in a water cooled reactor. 

In selecting control absorbers materials and designing control elements several 

items of nuclear data are required. 

(i) The capture cross-sections of the primary isotopes and of the reaction 

products. The latter influence the variation of reactivity with 

burn-up. 

(ii) The radioactivity induced in the materials (such as tritium from 

the BIO (n,t 2a) reaction, and the radioactive products produced 

in the irradiation of tantalum and europium which are possible fast 

reactor control absorber materials). 

(iii) The heat deposited in the elements, both from the reactions in the 

absorber and from y r ay s migrating from neighbouring fuel elements. 

5.2 Delayed neutron data 

An IAEA Nuclear Data Section Consultants Meeting on Delayed Neutron 

Properties was held in March (1979) (41). The requirements and the status of the 

data were reviewed. More recently the status has been reviewed by Reeder (42). 165 



Delayed neutron data are required for the assessment of the kinetics response 

of a reactor to changes and in safety analyses. In experimental reactor physics 

studies reactivity effects are measured in terms of the kinetic response of the 

reactor. Because different reactivity effects have been measured in different 

experimental reactors, and there is a need to extrapolate the results to 

commercial power reactors, accurate delayed neutron data are required. The 

measurements usually involve the time dependence of the flux response to a 

reactivity change and so the requirements are for the total delayed neutron 

yield of the fissioning isotope, the time dependence of the neutron emission 

and the time dependent energy spectra of the neutrons. The spectra are required 

for the calculation of the effective delayed neutron yield (by weighting with the 

neutron importance intergrated over the spectra). 

At the Consultants Meeting Hammer proposed a target accuracy of +3% for $eff. 

He interpreted this as a requirement for +J.5% on the yields for U235, U238 

and Pu239 and _+ 7% for Pu240 and Pu241. The target accuracy proposed for the 

energy spectra is +20%. At present these accuracies have not been achieved. The 

accuracies estimated for the total yields in thermal and fast reactor spectra by 

Tuttle are given in Table 5.1. 

Table 5.1 - Accuracies of total delayed neutron yield data (percent) 

Thermal Fast 14 MeV 

U235 3.1 2.1 3.1 

U238 2.3 2.9 

Pu239 6.0 2.5 3.7 

Pu240 7.9 7.5 

Pu241 7.3 7.3 8.4 

The accuracies achieved for the total yields in a fast reactor spectrum 

are close to the target requirements. However, the uncertainties in the time 

dependence and in the reactor period-reactivity relationship could be larger. 

The time dependence of delayed neutron emission is usually represented by 

the sum of 6 exponentials with half-lives of about: 

0.23, 0.61, 2.3, 6.22, 22.7, 55.7 (sees) 

These are called the 6 delayed neutron groups. However, the data for 

individual fission product precursor half-lives and neutron emission probabilities 

are now approaching an accuracy which could result in summation calculations 

providing data of comparable accuracy to the integral measurements. In the future 

this approach could provide more accurate time dependence data. 

The uncertainties in the energy spectra are much larger than the target accuracy 

requirements. Delayed neutron precursors with half-lives in the range 0.05 to 55.6 

sees have been identified. Spectral information has been obtained for almost all 

of the precursors contributing to the 4 longest half-life groups and about 50% 

of shorter half-life groups. However, spectrum measurements made in different 

laboratories are discrepant. There is an international collaboration attempting 

to resolve these discrepancies (including measurements for standard spectra). 

5.3 Reactivity coefficients 

Fuel temperature coefficient 

The main contribution to the fuel temperature coefficient arises from 

the resonance shielding Doppler effect in the U238 capture cross-section (in 

uranium and uranium-plutonium fuelled reactors). The temperature dependence 

of resonance shielding is different for low energy resonances and high energy 

resonances. This is because of the change in the ratio of the Doppler broadening 

width to the resonance width with increasing energy . In a thermal reactor 

spectrum the effect has the form: 

C* = - d/T* (91) 

while in a fast reactor spectrum 

cj a '- D/T (92) 

D is called the Doppler constant. 

The Doppler effect decreases more rapidly with increasing temperature in a 

fast reactor than in a thermal reactor. 

A source of uncertainty in the extrapolation of Doppler effect measurements 

made in experimental facilities operating over a low temperature range to the 

temperature range of fuel in a power reactor (and of possible concern in 

accident studies) is the effect of crystalline binding on Doppler broadening. 

Different models have been used to represent the crystalline binding. In one 

method the velocity distribution of the target nucleus is taken to be that of 



a free atom but at an effective temperature T* which is a function of the 

actual temperature T and an effective Debye temperature, 9 

~ = j - f0 xJ coth ( II ) dx (93) 

T* is larger than T by a factor which decreases with increasing values of T. 

When T = 8 ,T* is about 5% higher than T. For lower temperatures T* can be 

substantially higher than T. 

In another model, both an effective Debye temperature and an effective 

nuclear mass, A*, are used to reproduce the neutron-nucleus interaction kinetics. 

Other studies recommended the use of a two oscillator model, rather than a 

Debye temperature model* 

On the basis of neutron diffraction and thermal scattering studies Butland 

(43) and Willis (44) found crystalline binding effects for U in U0„ to be small. 

Butland concluded that an effective Debye temperature of about 250 K would 

reproduce the velocity distribution for uranium nuclei in a UO lattice at 

293.6 K. For oxygen the derived effective Debye temperature is 749 K, the value 

for the lattice as a whole being 630 K. For a value of 9 as low as 250°K the 

difference between T* and T is very small for values of T above 300 K. 

Golinelli et al (45) have made measurements of the temperature dependence 

of the U238 resonance integral for a U0_ rod in a thermal reactor lattice. They 

conclude that a Debye temperature of 620 K gives a best fit to the observed 

temperature dependence. Brugger and co-workers (46) have made broad resolution 

measurements for different uranium compounds at several energies in the KeV range. 

They derive both an effective Debye temperature and an effective mass from the 

observed temperature dependence. The effective Debye temperature which they obtain 

for U in U0„ is typically, about 600 K and the effective mass, A*,is about 600. 

The measurements also indicate a possible discontinuity in the Doppler effect 

at the melting point of the uranium compound. Meister et al (47) have measured 

the differences in the shapes of the U238 resonances in different compounds at 

different temperatures. They observe asymmetrical effects in the changes on the 

two sides of a resonance. They use a two oscillator model to represent the 

crystalline effects and find significant effects for some compounds, including 

UO . The effects for uranium metal are very small. 

The energy breakdown of the U238 Doppler effect in fast and thermal 

reactors is given approximately in Table 5. 

Table 5.2 Energy regions contributing to the U238 Doppler effect 

(in percent) 

Energy range Thermal reactor Fast reactor 

Above 1 KeV 30 50 

300 eV - 1 KeV 40 40 

100 eV - 300 eV 15 10 

Below 100 eV 15 

About 70% of the Doppler effect in this thermal reactor spectrum is 

contributed by resonances above 300 eV. The energy range 100 eV to 2 KeV 

contributes most of thw U238 Doppler effect in both thermal and fast reactors. 

The smaller contributions to the Doppler effect in a fast reactor from Pu239 

and Pu240 also come from this energy range. 

In a fast reactor the net Pu239 Doppler effect is only about 5% of the total 

effect. This is because the positive component resulting from the increase in the 

shielded fission cross-section (about 20% of the total) is largely cancelled by the 

capture component (about 15% of the total). 

The small contribution to the Doppler temperature coefficient of a fast 

reactor arising from structural materials is mainly from the 1.15 KeV resonance 

in Fe. 

The Doppler effect changes with burn-up because of the resulting changes 

in the reactor neutron spectrum. In a sodium cooled fast reactor, the Doppler 

effect in an accident in which the coolant is lost (for example, by vapourisation) 

is only about half the value in the normal core. Accurate values of the 

coefficients in the voided core are required for accident studies. 

Apart from the requirement to predict Doppler effects accurate data on the 

resonance structure of the cross-sections of fuel isotopes is required for the 

prediction of resonance shielding factors. A high accuracy is required in the 

calculation of resonance shielding effects. One reason is so that differences in 

the shielding in experimental assemblies and power reactors can be corrected for. 



Moderator and coolant temperature coefficients 

In a graphite moderated reactor an increase in moderator temperature causes 

the mean energy of the thermal neutron spectrum to increase. The resulting 

change in reactivity is associated with the energy dependence of the ri values 

of the fissile isotopes and the ratio of absorption in fissile isotopes to 

absorption in competing reactions, such as U238 capture. In order to reproduce 

the measured variations of reactivity with moderator temperature (or thermal spectrum 

effective temperature) the shapes of the principal cross-sections at thermal 

energies have been adjusted (or selected) to fit these measurements. For example, 

Tellier (22) describes how the shape of the U238 capture cross-section below 1 eV 

has been changed from a (1/v) form to reproduce temperature coefficient measurements 

more accurately. Relative to the value at 0.0253eV (which is fixed) the value 

at 0.001 eV is increased by about 50%. The approach adopted by Chawla (48), 

and studied by others, has been to choose a shape for the energy dependence of 

the thermal U235 r] or a curve to reproduce the integral measurements. More 

accurate measurements of the energy dependence of cross-sections, or cross-section 

ratios, through the thermal energy range, are high priority requirements. 

A typical accuracy requested for the shape measurements is +_ 0.3%. 

In a water cooled reactor changes in coolant density affect both the 

resonance escape probability and the thermal spectrum. The resonance escape 

probability changes because the resonance shielding increases with a reduction in 

coolant density and the moderation through the resonance region is reduced. When 

the coolant contains soluble poison a reduction in coolant density also results 

in a reduction in absorption by this control poison. 

In a sodium cooled fast reactor a reduction in coolant density results in an 

increase in the mean energy of the neutron spectrum,(consequent upon the reduction 

in moderation) and an increase in the leakage fraction. The reduced moderation 

results in an increase in the U238 fission rate, a reduction in the spectrum 

averaged value of a in the fissile isotopes and a reduction in the ratio of capture 

in U238 to fission in Pu239. (In a U235 fuelled fast reactor the ratio of U238 

capture to U235 fission changes in the opposite direction). The net effect in 

a large uranium-plutonium fuelled fast reactor of a reduction in sodium density 

is an increase in reactivity. 

Coolant voiding effects 

Because the sodium voiding effect is a balance between a positive moderation 

effect and a negative leakage effect the net reactivity effect depends on the 

region of the fast reactor which is voided. When the core is voided there is 

a large reactivity addition, in the range 5 to 18$ (where 1$ is the effective 

delayed neutron fraction, geff). Accidents which produce fuel melting could 

result in a rapid vapourisation of coolant and a large and rapid reactivity 

addition. This could result in a Core Disassembly Accident. Some fast reactor 

designs, (called heterogeneous cores) aim to reduce the maximum positive reactivity 

addition which could result from coolant voiding. Accurate data are then 

required to optimise the design. 

The void coefficient of a water cooled thermal reactor depends on the fuel 

burn-up and the density of soluble poison. The coefficient is negative and 

increases in magnitude as the void fraction increases. 

Effect of hydrocarbon additions in a fast reactor 

One investigation which is made as part of the safety assessment of a 

fast reactor is the effect of a small quantity of hydrocarbon entering the core. This 

might be oil leaking from a pump, for example. Additions of hydrogeneous materials 

have a strongly non-linear effect. The effect depends upon the quantity and the 

spatial distribution. The neutron spectrum in the region of the addition is 

'softened' and can include a significant number of reactions at thermal neutron 

energies. The net reactivity effect depends on the localised change in the 

neutron spectrum and the variation of vE (E)/£ (E) with energy. 

5.4 Control ansorbers 

To compensate for the variation of fuel reactivity with burnup, to change 

reactor power and to provide a shutdown and safety margin it is usual to use a 

substance which strongly absorbs neutrons. Other methods of control have also 

been used. For example, in the experimental fast reactor at Dounreay control 

was obtained by moving reflecting elements at the core boundary. The most 

widely used absorber is B10 (either in natural boron, which contains 20% B10, or boron 

enriched in B10). The B10 (n,a ) cross section, which is responsible for almost 

all of the capture, is accurately known up to several hundred KeV and is, in 

fact, used as a measurement standard. For some other control absorbers (or 

potential control absorbers) such as europium, tantalum and hafnium (and their 

reaction products) the (n, y) cross-sections,in which the absorption occurs, 

are not sufficiently accurately known. In addition, resonance shielding effects 

are important and so a detailed knowledge of the resonance structure is required. 



For calculating the heating (and cooling requirements) energy yields and gamma 

spectra must be known both for the primary reactions and the decay of radioactive 

products. The activity of these products determines the shielding and cooling 

requirements for post-irradiation handling. 

When the absorbers have significant resonance shielding the effectiveness 

can be enhanced by using mixtures of substances, because the resonance shielding 

of cross-sections of each component is then reduced. A disadvantage of BIO 

is that its reaction products are not absorbing and so,in a high flux, the 

burn-up can significantly reduce the effectiveness of a boron carbide element. 

This is not so for europium (Eul51 and Eul53) because the reaction products, 

Eul52 and Eul54, are also strongly absorbing. One design of control rod which 

is being evaluated uses europium boride, which combines the advantages of the two 

substances. 

The endurance of a boron carbide control rod can be limited by helium 

formation (by the (n,a) reaction) and the resulting swelling. Swelling beyond 

a certain level might cause the containing cans to burst or expand and block the 

cooling channels. 

5.5 Reactor nucleonic instrumentation 

In addition to thermocouples and flow-meters the power output of a reactor 

is correlated with neutron flux measurements. Counters are usually placed at several 

points around the core so that any flux tilting across the reactor can be detected. 

In large thermal reactors the spatial flux distribution is sensitive to localized 

reactivity perturbations. This is because K is so close to unity. Spatial 

harmonics in the flux distribution can be induced and these must be detected 

and controlled. It is usual to have a second set of neutron flux detectors, 

which are more sensitive, for monitoring flux when the reactor is shutdown. These 

are only introduced following shutdown. A neutron source might also be introduced 

then, if the radioactive sources in the fuel are insufficient. One problem in 

the design of such detectors and their environment is to ensure that they can 

detect neutrons without being swamped by the gamma background. Fission chambers 

and boron counters are used to detect the neutron flux. It might be necessary to 

surround the chamber position by a gamma shield, such as a region of graphite 

or steel. Gamma activity in the coolant can be a complicating factor. 

Introducing a region of graphite can moderate neutrons and so increase the 

sensitivity of the chamber. 

The detection of leaking fuel elements involves samples being taken from 

the coolant. Both total coolant flow and individual channels can be monitored, 

essentially on a continuous basis. One method is to try to detect delayed 

neutron precursors. 

All instruments and their associated cables must be designed to withstand 

high temperatures and irradiation effects and must be capable of covering a wide 

flux range. Different techniques have been evolved for providing a wide 

sensitivity range. 

Section 6 - Some general remarks about nuclear data for reactor core design 
and safety analysis 

6.1 Effective cross-sections 

In Section 1 some of the ways in which nuclear data are simplified for 

reactor calculations were described. Simplifications are made not only because 

of the detailed structure of cross-sections, and secondary energy and angular 

distributions, but also because of the complexity of the detailed geometries of 

core fuel assemblies and other core components. Effective cross-sections, which 

represent an average over these detailed structures, through which the flux 

can vary quite strongly, are used in whole reactor calculations. Effective 

cross-sections can be derived for a single material, such as fuel rod, or for a 

whole reactor cell comprising a cluster of fuel pins and associated moderator 

and coolant. This latter procedure is called cell homogenisation. Effective 

cross-sections are defined to reproduce average (or cell integrated) reaction 

rates and leakage probabilities correctly. These cell-averaged cross-sections are 

then used in whole reactor calculations. 

Effective cross-sections for the isotopes in a fuel rod can be energy averages 

over the resonance structure. These are dependent on the diameter of the rod and 

the density of the isotope. Approximate methods have been developed for calculating 

the flux in the rod through the energies of the resonances, and carrying out the 

energy group averaging. Care must be taken over the effect of the overlapping of 

resonances between different isotopes. An alternative approach is the sub-group 

method in which the total variation of the cross-section within an energy range 

is approximated by a simplified representative variation. 1Cft 



In thermal reactor calculations it is usual to solve the neutron transport 

equation in a representative cell with simplified boundary conditions and then 

derive equivalent cell averaged cross-sections for use in a diffusion theory whole 

reactor calculation: 

V D V <f> + E <J> = S 
g Tg rem,g Tg g 

where S is the source in energy group g resulting from fission reactions 

and scattering of neutrons from other energy groups. 

S = X E VE. , <j> , + E E8'^ g 4> , 
g g fg g s V 

g' g' 

The scattering is treated as isotropic and the angular distribution of 

the cell averaged fluxes,or cell boundary fluxes, are assumed to have a simple 

form. 

Fuel management and reload planning calculations are often made in 2 

energy groups using cross-sections which have been tabulated as a function of 

burn-up and initial fuel enrichment. 

6.2 Status and requirements 

We see that iri many applications gross simplifications are made in the 

nuclear data used. There is also extensive correlation of these simplified 

data with integral measurements, such as thermal Maxwellian averaged lattice resonance 

integrals. Effective resonance integrals have been measured as a function of 

fuel rod diameter, moderator to fuel ratio and temperature. These measurements can 

be used directly in some reactor calcualtions. 

However, it is necessary to extrapolate beyond the range of integral 

measurements, particularly in safety assessments, and so it is necessary that the 

simpler calculations should be related to accurate calculations using accurate 

nuclear data, particularly for selected key references cases. 
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AND THEIR UNCERTAINTIES 

J.S. STORY 
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Abstract 

Some topics studied within the Winfrith Nuclear Data Group in 
recent years, and still of current importance, are briefly reviewed. 
Moderator cross-sections; criteria to be met for reactor applications 
are listed; thermal neutron scattering theory is summarized, with the 
approximations used to facilitate comutation; neutron age data test 
stringently the accuracy of epithermal cross-sections; a modification 
of the CFS effective range treatment for S-wave scatter by H is presented, 
and new calculations with up-to-date slow neutron scattering data are 
advocated. 

Use of multilivel resonance formalisms; the top bound resonance 
should be included explicitly in calculations; additive statistical 
terms are given to allow for "distant" negative and positive resonances, 
in both MLBW and R-M formalisms; formulae are presented for estimating 
R-M level shifts for 1^0 resonances. 

Resonance mean , spacings; the Syson-Mehta optimum estimator 
is utilised in a method which up-dates the staircase plot- Resonances of 
Fe have been resolved to/"\J 800keV, over which range the level density 

for given J"7T should increase 2-fold; this variation is allowed for in 
the mean spacing calculations. 

Fission-product decay power; present status of integral data and 
summation calculations for U and ̂ ^'Pu fissions is summarized, 
with a variety of intercomparisons including 239pu/^J->y ratios. 

Data uncertainties are considered, but the sequence of data on \~. 
for the 27.8keV resonance of -'"Fe provided a cautionary example. 

1 INTRODUCTION 

Data evaluation is the art of putting together experimental data, theory and 
guesswork so as to make something more useful and attractive out of 
indifferent beginnings. I do not feel that I can offer you any general 
theory for evaluation, and to try and write down those parts of nuclear theory 
which are relevant to particular fields - neutron resonance cross-sections for 
example - would only lead to tedious repetitions of what has been done so well 

by others in earlier years here at Trieste - on applied neutron resonance 
theory", for example, you' will find the review paper by Fritz Frohner (1978) 
remarkably informative. 

It may be more useful, it seems to me, if I try to illustrate the theme by 
discussion of some of the evaluation work which has interested me during 
the last 10 years or so. 

For nuclear data, the professional evaluator should be aware of the latest 
evaluation of the fundamental physical constants, by Cohen and Taylor (1973). 
In nuclear physics the standard reference energy in the thermal region is that 
of a neutron whose velocity is V0 = 2200 m/sec 

e0= («/2)mTvv<^{< + (3/u)Cve/c)a + . . .> / ( . loooF) *V (i.i) 

in which the neutron mass i s given in amU, c i s the veloci ty of l i g h t , and 
Faraday's constant F i s in C •/ (g mole); the factor 1000 appears because, 
in SI u n i t s , the kg mole i s the log ica l e n t i t y . Using the 1973 physical 
constants 

EQ = 0.02529907 eV + 2.8 ppm; (1.2) 

the r e l a t i v i s t i c correct ion term i s n e g l i g i b l e . 

Another numerical factor much used in neutron cross-sect ion theory i s that 
for conversion between neutron energy E and i t s radiom wavelength ?v» or 
wavenumber k. Writing 

X2E = E/fc.2 = <V *****> eV- ( 1 3 ) 

The constant q i s given by 

which may be wri t ten 

^ = (io*»/2Tr')(t,/2-m€)( V 2 O ( ™ * / » * 0 / ( - " V m c ) 
= ^07111*2 x J O s ± 3 - 1 t»t»->~; (1 4 ) 

the uncer ta inty a r i s e s almost exclusively from the two f ac to r s containing h. 
Special tools for nuclear data evaluation have been g rea t ly developed during 
the l a s t decade. The CINDA reference index is now f a i r l y well-known - the 
Computer Index of Neutron Data; th i s i s published by the IAEA and i s maintained 
by the four nuclear data cent res a t Brookhaven, Obninsk, Saclay and Vienna, 

Frohner F H (July 1978) KfK-2669, presented a t the 1978 Winter course on 
nuclear physics and r e a c t o r s , par t 1, nuclear theory for appl ica t ions 

Cohen E R and Taylor B N (197 3) J Phys Chem Reference Data 2_ 663; see also 
Cohen's paper in "Atomic Masses and Fundamental Constants 6" (Plenum 
Press 1980) ~ „ 



with help from a network of voluntary readers . Most of the measured neutron 
cross-sect ion data are now avai lable too from the four data cen t r e s , on 
magnetic tape or in tabular l i s t i n g s , and there i s a greater awareness among the 
measurers of the necess i ty for the ava i l ab i l i t y of new measurements. There 
has been good coverage too, by prac t i s ing evaluators , in the proceedings of the 
winter courses here a t Tr ies te in 1978 and 1980, of many aspects of the 
nuclear theories and of computer codes needed for the prosecution of 
thei r a r t s * . 

I was asked to d iscuss p r inc ipa l ly the nuclear data for thermal reactor 
systems. Hitherto primary i n t e r e s t has been given to the neutron c ross -
section data for the main f i s s i l e and f e r t i l e ma te r i a l s , because of thei r 
importance for reactor core ca lcu la t ions and fuel economy. However, although 
there s t i l l remain discrepancies amongst these data, and inconsis tencies 
with in tegra l experience, reactor technologists have long been accustomed to 
methods of adjustment for improving the accuracy and r e l i a b i l i t y of integral 
parameters calculated from these data; these adjustment procedures are 
a l l based in one way or another on careful comparisons of ca lcu la t ions with 
well-chosen in teg ra l "benchmark" experiments on comparable systems. Because 
of th is long-established use of adjustment processes r e l a t i n g to the 
pr incipal nuclear da ta , Rowlands (1981) has suggested to me tha t more 
a t t en t ion should be given by evaluators to other c lasses of nuclear data, and 
in what follows I have concentrated predominantly on the following topics . 

Moderator c r o s s - s e c t i o n s , a t thermal and epithermal energies . 

Some problems in the resonance cross-sect ions of iron (relevant to the other 
s t ruc tura l m a t e r i a l s ) . 

Fission product decay heat ing. 

and in t h i s sec t ion have added a few remarks on the thermal neutron 
cross-sect ion da ta for the pr inc ipa l f i s s i l e nuc l ides , and on the slow 
neutron capture c ross - sec t ion of the reference standard 197Au. 

1.1 Thermal Cross-Sections of the Principal F i s s i l e Nuclides 

A few comments on the s t a tus of the thermal c ross - sec t ions of the main f i s 
s i l e nuclides may be of i n t e r e s t . Conclusions from the l a t e s t leas t 
squares evaluat ion commissioned by the IAEA were reported by Lemmel (1975), 
and the subsequent paper by Lemmel (1977) gives an i n t e r e s t i n g commentary 
on the r e s idua l systematic discrepancies encountered in tha t evaluation. 
Already in 1973 Lemmel had set out s igni f icant evidence that the value of 
24380 + 50 yr then in use for the 239Pu h a l f - l i f e was probably too high; 
subsequent measurements lead to a preferred value of about 24100 + (24) yr . 
In a l l d i r e c t measurements of the 239Pu f i s s ion c ross -sec t ion the 239Pu 
f i ss ion f o i l s were assayed by alpha counting, and consequently the 
239Pu f i s s ion c ross - sec t ions derived from these measurements are inversely 
proportional to the h a l f - l i f e . 

Rowlands J L (1981) Pr iva te Communication 

The value of nu-bar^neutron yield per f iss ion^for spontaneous fission of 
252Cf has long been the primary reference standard for the nu-bar data 
for the pr inc ipa l f i s s i l e materials. At the time of the previous IAEA 
review, by Hanna et a l (1969), the experimental data on nu-bar for 
252Cf formed two d i s t inc t groups d i f fer ing by about 2.5%, and consequently 
had very l i t t l e weight in the f i t t i ng procedure in comparison with the 
more precise data on eta and alpha for 233U, 235U and 239Pu. By 1975 
however, in consequence of revisions and new measurements, the discrepancies 
between the nu-bar data for 252Cf had been much reduced, and yielded a 
r e l a t i v e l y low weighted mean value of about 3.737 + 0.008 which was in 
conf l i c t with the eta and alpha measurements mentioned. Thus the 
outcome of the 1975 review was very unsa t i s fac to ry ; while one important 
discrepancy had apparently been resolved, the reso lu t ion raised new doubts 
a-bout a number of other classes of da ta . 

A more recent review of the data on nu-bar for 252Cf has been carried out 
by Smith (1979); after correction of a number of small er rors in ea r l i e r 
work, the revised value of Vfc = 3.753 + 0.008 i s obtained, or 3.766 + 0.007 
if a preliminary new measurement by Spencer (1977) i s taken into account. A 
leas t - squares f i t to the thermal neutron parameters of the f i s s i l e 
nuc l ides , by Holden and Stehn, i s presented by Leonard (1979) in the 
same r epo r t . 

Leonard e t a l (1975, 1976) have reported the conclusions of extensive work 
on the simultaneous mult i- level resonance ana lys i s of neutron data for 235U 
in the thermal region (below 1.0 eV) . This i s a very in te res t ing study, 
but i t i s based on four resonances only, from -0.916 eV to 1.135 eV. Since 
the mean resonance spacing of 235U i s only 0.41 + 0.04 eV we should 
expect as many as 6 resonances over t h i s i n t e r v a l , probably 3 of each of the 
two s-wave spin s t a t e s . This consideration warns us , for 235U at the l e a s t , 
to t r e a t with reserve the use of mul t i - l eve l parameterisations as a means 
of analysing the shape and consistency of the various slow neutron c ross -
sect ion da t a . 

Lemmel H D (1975) Washington Conf on Nuclear Cross-Sections and Technology; 
NBS special Pub!425, Vol 1, 286. 

Lemmel H D (1977) NBS special Publ 493, 170. 

Hanna G C, Westcott C H, Lemmel H D, Leonard B R, Story J S and Attree P M 
(1969) Atomic Energy Review 7, No 4. 

Smith J R (197 9) EPRI NP-1098, Section 5. 

Spencer R R (1977) pr ivate communication to the 252Cf nu-bar workshop 

Leonard B R (1979) EPRI NP-1098, Section 1 

Leonard B R, Kottwitz D A, Jenquin U P, Stewart K B and Heeb C M (1975) EPRI-221 . 

Leonard B R, Kottwitz D A and Thompson J K (1976) EPRI-NP167. 



1 .2 197Au; The Parameters of the 4.9 eV Resonance, and the Thermal Neutron 
Capture Cross-Section 

197Au. provides the principal activation cross-section reference standard both 
for thermal neutron cross-section measurements and for resonance integrals. 
Both the thermal capture cross-section and resonance integral of 197Au arise 
predominantly from the 4.9 eV resonance, and there are only two significant 
sets of experimental data on the parameters of this resonance, those reported 
by Wood (1956) and those of Tellier and Michel (1969), which are listed 
in Table 1.I below, in which 

<yr = A * * - 2 (.» •*• W M ) * <&r^/r (i.5) 

using the usual well-established notation. 

TABLE 1.1 

Resonance parameters of 197Au, as reported 
Wood (1956) Tellier and Michel (1969) 

E*. 4.906+0.010 eV 4.900+0.005eV 
OV-T2 725+15 b eV2 

Crvr 5180+130 b eV 
OV 37000+500 b 36200+600 b 
P 150+3 meV* 137.5+2.0 meV 
g 5/8" 
O"t»ot 11 .1+0.8 b 
IV 15.6+0.4 meV* 15.00+0.20 meV 
Ty 124+3 meV* 122.5+2.5 meV* 

*Derived values 

It is easily confirmed that, in both data sets, the reported values of Ty^ 
are inconsistent with those of C^V except if we suppose that the factor 
(1+m/M)2 = 1.0102682 was ignored (taken as unity). If this interpretation 
is correct, the effect would have been, most nearly, that the reported 
values for 1%^ should be taken as representing !%v (1 + m/M) 2. Revised 
parameter values would then be as given in Table 1.2 below: the uncertainties 
quoted by Wood for V , t"Vx. and Vf appear to be too larger; I retain 
them however because perhaps they contain systematic components of 
uncertainty. 

Wood R E (1956) Phys Rev JJ)4_ 1425; Wood R E, Land on H H and Sailor V L (1955) 
Phys Rev 98_ 639 

Tellier H and Michel A (1969) CEA-N-1230 

Dilg W, Mannhart W, Steichele E and Arnold P (1973) Zeits Phys 264, 427 

TABLE 1.2 
Revised values for the resonance parameters of 197Au 

Wood (1956) Tellier & Michel (1969) Preferred Value 
Er eV 4.906+0.010 4.900+0.005 4.9012+0.0045 
J 2+ " 2+ 
Oj,or-k 11.1+0.8 11.1+0.8 
T meV 140.0+3 137.5+2.0 138.26+1.66 
P*. meV 15.45+0.4 14.85+0.198 14.967+0.177 
To meV 124.5+3 122.65+2.01 123.29+1.67 

The most accurate and reliable determinations of the slow neutron capture cross 
sectim of 197Au are those derived from transmission measurements at energies 
below the Bragg limit at 3.7 meV, where the scattering contributions are 
relatively very small; from these measurements the capture cross-section 
is derived absolutely. The most recent and most precise measurements, 
by this method, are those of Dilg et al (1973), who also summarise 
the majority of the earlier measurements; for a more complete summary 
see Holden (1981). 

In considering extrapolation to 2200m/s of the low energy capture cross-
section it has usually been overlooked that only about 91.79% of the 
measured capture cross-section stems from the 4.9 eV resonance, and it is 
only this part which increases slowly above the 1/v form with increase 
of neutron energy in the thermal regitm; the remaining 8.91% stems from 
more distant resonances at negative and positive resonance energies 
(mostly from the former) and therefore follows the 1/v - law more closely 
or falls slightly below it. Consequently the capture cross-section 
measured by Dilg et al just below the Bragg cut-off, in the wavelength 
range 4.8 to 7.5A, has to be increased by only 0.841 barns above the 
1/v-form, and their measurement at long wavelengths by 0.923 barns. 
As weighted mean from these two measurements I obtain 

Cy[l97Au j =98.614 + 0.105 barns 

at 0.02529907 eV. 

* From J^Z^y-^ /C«r] and J" [ CT^ X\ 0^1 we should obtain 

r = 139.98 + 1.73 meV, T ^ = 15.454 + 0.194 meV and 
Ty = 124.53 + I.66 meV 

(from page 4) 

Holden N E (1981) BNL-NCS-51388, Section 2 175 



2 NEUTRON SCATTERING BY MODERATORS 

To be of use for thermal reactor calculations neutron scattering data for 
moderators must satisfy the following conditions. 

(i) They must give realistic values for the thermal neutron diffusion 
coefficient D(T), or for the related diffusion constant D0(T) and 
diffusion length L(T), for a range of moderator temperatures up to 
the highest likely to be required for examination of accident 
conditions. 

(ii) There should be an adequate representation of slow neutron inelastic 
scattering, so that the variation of neutron spectra in the 
neighbourhood of boundaries and temperature discontinuity can be 
calculated with reasonable accuracy. 

(iii) The slow neutron inelastic scattering must satisfy the condition of 
detailed balance, so that the scattering terms do not act as neutron 
sources or sinks in a reactor calculation. 

(iv) The cross-section data for epithermal and fast neutrons must give 
realistic values for the slowing down age of the neutrons evolved in 
fission. 

2. 1 The Thermal Neutron Diffusion Parameters 

No exact relationship between the diffusion coefficient, or the diffusion 
length, and the differential cross-sections has been rigorously 
established, but the following formulae are thought to be reasonably 
accurate. 

D(T) s V C S ^ t r i " 1 " ) ] (diffusion coefficient) (2.1) 

(diffusion constant) 
(2.2) 

i-CT)* A A [ D ( T ) / X ] ^ ( T ) (diffusion length) (2.3) 

in which 

ZÎ CE)̂  ^.J^E) denote the macroscopic absorpt ion and sca t te r ing 
cross -sec t ions for neutrons of energy E. 

SACTO = Jo~**<y> E> 2 A ( F ) de (2.4) 

is the average of 2/\(.ET) over the Maxwellian neutron 
flux distribution at temperature T, 

M(T, E) <iE * ( A B I T * E e*>) (-Er/ftBT) <*E: (2.5) 

Askew J R, Fayers F J and Kemshell P B (1966) J B r i t i s h Nuclear Energy 
Society 5 ,4 . 

which i s normalised so that 

7 ° ° M(T, E) JET = {. (2.6) 

The spectrum averaged t ransport cross-sect ion in (2.1) may be defined, 
following Askew et a l (1966), 

2"^ IT) = SA(T) + V C m T ' EH2s(EH^PCO}]-' dLE (2.7) 

in which the mean scat ter ing cosine, pLlE) , i s 

h^s JTJLl •<*£-> E'J K ) K ^ ^ 7 ° S ( E ) . (2.8) 
Note that C^CE) and 0\E-—*- E.J y/\ may each have some temperature 
dependence. 

Finally V ( \ ) is the most probable neutron velocity in the Maxwellian 
spectrum, 

V ( T ) ~ / U ^ B 1 " / ™ - ^ = m - 3 < n 7 / T TW/S ±.(16 M»*.) (2.9) 

in which TK £ is Boltzmann's constant and IIL is the neutron mass. 

Experimental data on the diffusion constants for H2O and D2O have been 
compiled by Butland and Chudley (1974), and for graphite by Butland (1973). 
The measurements extend only to 295°C for H2O to 250°C for D20, and to 
600°C for graphite. For the two liquid moderators it is convenient to remove 
the density dependence of the data, by considering the functions 

/>m.T>(T), />(T).D0i-n, /sen. LIT) 
as these allow more reliable extrapolation of the measured data to 
higher temperatures. The densities p(~T} of H2O and D2O have been 
tabulated in the paper of Butland and Chudley referred to above. Reactor 
grade graphites may contain impurities which contribute appreciably 
to the absorption cross^-section. They are usually very porous, with 
densities •̂ -'1.6 g/cm-* as compared with the theoretical maximum of 
2.25 g/cm^; supposing that the pores are filled with air at ambient 
temperature and pressure, the nitrogen content adds appreciably to the 
absorption especially at low temperature. Neutron diffusion measurements 
in graphite may also be affected by the presence of water. These 
various impurity effects must be eliminated, so far as is practicable, when 
comparing measured and calculated values of the neutron diffusion parameters 
of graphite. 

Butland A T D and Chudley C T (1974) J British Nuclear Energy Society J_3_ (1) 99. 

Butland A T D (1973) AEEW R 882 



2.2 Slow-Neutron Scat ter ing Cross-Sections 

For an adequate treatment of slow neutron scat ter ing by moderators we must 
turn to the complex and troublesome theory of the thermal neutron 
"Scattering Law"*. In simplest form 

d?(j/<LQdUa= <*(&-*•&.') - (0*k/Mi)(fc7fe)S(Q, *) (2.10) 
in which <3*£ i s the bound atom scattering c ross -sec t ion , 

CJfc 3 M * "^ -K/M)" 1 (T^^ (2.11) 

where M i s the atomic mass of the scattering atom and 0 r r f t ^ i s the slow 
neutron sca t t e r ing cross-sec t ion of a stat ionary free-atom. I t i s very 
commonly assumed, in discussions of slow neutron scat ter ing that CTu 
and Of-ree. a r e constants a t low neutron energies ( j$ 4 eV); th i s i s 
ce r t a in ly a va l id approximation for the common moderators and coolants , 
but i t i s not t rue in general because of the effects of nearby resonances 
and i s not a very good approximation for 235JJQ for example. 

In (2.10) k i s the wave-vector of the incident neutron and k' i s that 
of the scat tered neutron, with k = I k_ J e tc ; 

Q = k-k ' i s the sca t t e r ing vector 

03= * (k2 - k , 2 ) /2m n 

so that liC} is the momentum, and 

fi ui is the energy,, transferred from 
the neutron £o_ the scattering medium. 

So far as the discussion of slow neutron scattering is concerned, all 
the usual moderators can be considered as isotropic, in the sense that 
whatever their orientation with respect to the incident neutron beam the 
scattering probabilities are unchanged. In reality reactor grade graphite 
often shows a small orientation effect related to the direction of extrusion 
(see for example Egelstaff, 1957), but the effect on the inelastic neutron 
scattering is quite small. 

Because of the isotropy we are interested only in the average of 
(2.10) over all directions of k, the shape and dimensions of the 
wave-vector triangle depicted above being conserved. It is easily 
seen from (2.10) that this is equivalent to averaging S(£,oS) over 
all directions of (}, so that instead of (2.10) may be written 

*See for instance Marshall W and Livesey S W "Theory of Thermal Neutron 
Scattering (0UP, 1971); Egelstaff P A and Poole M J "Experimental Neutron 
Thermalisation" (Pergamon, 1969); Williams M M R "The Slowing-Down and 
Thermalisation of Neutrons" (North-Holland; 1966); Parkes D E, Nelkin M S, 
Beyster J R and Wikner N F "Slow Neutron Scattering and Thermalisation" 
(Benjamin, 1970). 

(2.12) 

(2.13) 

Egelstaff P A (1957) J Nucl Energy 5, 203. 

dV/(d+x <lu>) = c<rk/^)(feyR)S(Q, oi) (2.i4) 
in which |u*. is the cosine of the angle of scattering, 

S(Q, O ) - (1/U7T)/S(Q, L» dLfL (2-15) 
where 

_£ = Q ££ (2.16) 

The detailed balance condition may be expressed by 

M(T, r ) aCE-^e; K ) = m(r, e') cr(E'—r, ^) (2.i7) 

in which M(T,E) is the Maxwellian neutron flux distribution function 
(2.5). Provided that O*^ is sensibly independent of the neutron 
energy in the energy range of interest (Ej£ 4 eV), this implies that 

SCO, ca) = e x K k i V A B T ) S(-Q, -ca) (2.18) 

Introducing the modified sca t te r ing function S(Q,iC^ by 

SCO, «o)= e*KW2fc£T) S(Q, vS), (2.19) 

(2.14) is rewritten as 

.<PO/[&IA do) * L<rb/z)(.h'/h) «*)>(* *V2&BO 5(Q, tS) (2.20) 
From (2.18) 

S(Q, tS) * SC-Q, - ^ ) . (2.20 

S(Q',u) is an even function of its arguments, and under this 
constraint (2.20) satisfies the detailed balance condition 
automatically. 

In practical applications it has been found convenient to introduce 
the dimensionless variables 

« * . ( E ' + E - 2 | * / F E ) / A * B T , /2= ( E - E ' ) / M (2.22) 

With 

$(<*, /8) * ( V 1"/*) § (<*> «*) (2-23) 

equation (2.20) may be expressed as 

daa/(diK dE') = (Gb/zk^Dj&'/E.) e*K£/a) S(«*,/a) (2.24) 
The scattering law S(©£, /9) expresses the laws of conservation 
of momentum and energy in the context of the kinetics of the 
scattering system, be it monatomic gas, molecular gas, liquid, 
polycrystalline or amorphous solid. It has other functions, which 



account for the complexity of its construction: for a polycrystalline 
scatterer, for example, the effective mass of the scatterer for very slow 
neutrons is that of a typical crystallite (effectively infinite), and 
the mean scattering cosine "CL in the laboratory frame is zero. 
For neutrons of "Ji I eV however the scattering atoms are effectively 
free, so that the mass ratio is A and p- = 2/(3A). It is the 
function of the scattering law to describe this transition with energy. 

The scattering law for a monatomic perfect gas is simply 

§(<*> ft) s (1/2,yrc5£) e*^{- (oc1-*/^)//^} (2.25) 

The notation is self-explanatory in the main; by is the bound atom 
coherent scattering amplitude for the atoms indexed by V • The mass 
ratios A y o / to be used in defining «£vv' f°r interference terms 
arising between atoms of different mass may be set at 1 or may be assigned 
differently as the user prefers. The chief difficulty in using this 
general form (2.35) is that of providing the various scattering laws 
which are needed, unless simplifying approximations can be made. For 
H2O for example various alternative models are available for O&^ot, /&} 
for the self-scattering by the hydrogen atoms, a monatomic gas model 
is customarily used for £ $ (*(.- yft) for the oxygen atoms 
(whose contribution to the scattering cross-section is small), and 
interference effects (which are weak) are neglected altogether. 

Even for materials such as DoO and graphite, for which the coherent 
scattering cross-section is not small, the incoherent approximation 
obtained by ignoring the interference terms has proven adequate, or 
nearly adequate for reactor physics calculations, so that the various 
models used for calculation of the incoherent scattering laws 
must claim principal interest. The interference terms are most 
important for small values of o£ and of /$* they fluctuate about 
zero and fall in amplitude as oL and A ' increase, becoming zero for 
large values of these arguments. The interference effect is seen at its 
most striking in the Bragg structure of the elastic scattering by polycrystalline 
materials such as graphite. Butland (1973) used the incoherent 
approximation for generating sets of multigroup thermal neutron cross-
sections for graphite: however the elastic terms obtained in this way were 
revised using detailed coherent elastic cross-sections calculated from 
the known crystal structure of graphite; notice that this alteration 
does not upset the detailed-balance test (2.17), but that it 
reproduces the total scattering cross-section and mean scattering cosine 
rather accurately so that some confidence could be placed on the derived 
values for the diffusion coefficient. 

Similar calculations for D20 were reported by Butland and Oliver (1974) 
using the incoherent approximation exclusively; this reproduces the 
total cross-section reasonably well down to 0.005 eV, and adequately 
down to 0.0018 eV. A more complete treatment for D2O, including 
interference effects, was developed by Butler (1962, 1963) but only very 
restricted calculations have been reported. 

Butland A T D and Oliver S M (1974) AEEW R 950. 

Butler D (1962) Eng Elec Co W/AT 849; (1963) Proc Phys Soc 81, 267,294. 

Before going on to a brief ̂ iscussion of models used for the "self" or 
incoherent scattering law $$C°*> >S) it is worth while to set down 
Placzek's (1952) energy moment theorems with first the moment of.zero 
order: 

„CO £» 

-CISsC*̂ )̂ **/ ^ K J S J ^ W ^ " * < 2 - 3 6 > "-00 » * >r* r- jfc 
»°° _ . .00 M ( 2 . 3 7 ) 

Is* fZ3**** &?<*& = 2/<T **&> ^Z3 ***W*> *fi = * (238) 

JZ*d<!*>Mfi <&**]?&«> A fit^M**^** (2.39) 

= «*?- +*</&*<•* (2.40) 

No equivalent formula is available for J_ S«i(c<._, y3) /** ^P• 
Notice from (2.38) and (2.39) that the mean energy transfer depends 
only on the momentum transfer and the mass of the scattering atom, but not 
at all on the chemical bonding of the scattering system. In (2.40) K is the 
mean kinetic energy of the scattering atoms in kgT units. Wick (1954) gave 
the following expression for the total scattering cross-section, valid 
for large incident energies (above the energy of the highest bound state 
of the scattering system) 

<T(E) = <J; r e e (1 + |< (kBT/3AE + . . .) (2.41) 

This formula describes how the scattering cross section approaches the 
free-atom value; it is not rigorously valid for scattering by hydrogenous 
media. 

2.3 The Gaussian Approximation for Ss(o<, 8) 
«*» 

The major contribution to the incoherent or "self" scattering law S^e*., B) 
is given by the so-called "Gaussian component" for which 

$s (*,£)= 0/2"rc)J[*w»k[-c<urCt)-i^t]dLt. (2.42) 

The integrand is Gaussian in the momentum transfer, since oC*^ Q , 
and depends only on the "width function" w(t). In (2.42) t is a 
dimensionless variable, being the time in units of fi/kgT; w(t) is an even 
function of t, "because S s (ot, /3} is even in /3 , 

**{*•/2.) ~ ° (2.43) 

on account of (2.36) and 

ur(i/z) - -t (2.44) 

on account of (2.38), where w(t) = , "ciw(t)/Bt. 

Placzek G (1952) Phys Rev 8_6_ 377. 

Wick G C (1954) Phys Rev 94, 1228 



For a monatomic perfect gas, from (2.25)* 

ur(t) ~ t*+ V*+ . <2-45> 

To represent the d i f fus ive motion of molecules in a l iquid another very 
simple model has been proposed by Egelstaff and Schcfield (1962), 
en t i t l ed the "ef fec t ive width model", with only a single adjustable 
parameter q, 

uHt) = ( 4 / ^ ) [ / { < ^ C t * + l/i*) + 1> - O . (2.46) 

It is readily confirmed that this form satisfies the conditions (2.43) 
and (2.44); moreover the scattering law derived from (2.46) can be 

)}/Z), (2.47) 

represented analytically 

3«(<*. /9) = <*£?(»* JjgZ±3£ K,wi«e+<»^+^ 

in which c = 4/q , and Kj (x) is the modified Bessel function of second 
kind. 

More generally w(t) may be expressed in the form 

u-(t) = / a > / 3 1/3){teakCft/l) - co*(fit)}/i/3 ^ (^ (yS /a )} dyS (2.48) 

J**/0^) dyS = f. (2.49) 

in which, on account of (2.44) 

.CO 

'o 

For a harmonic crystal /5 (lO) may be identified with the frequency 
distribution of normal modes, and in the context of thermal neutron 
scattering is rather more generally referred to as "the phonon frequency 
function". Frequency distributions derived from differential cross-
section measurements for a number of moderators and for UC>2 have been 
presented in tabular and graphical forms by Page and Haywood (1968). 

*This is easily established with the help of the definite integral 

J£ e*M-a.x? + bx.) Â c =/(K/a) ̂ ( k > a ) . 
Egelstaff P A and Schofield (1962) Nucl Science and Eng 12, 260 

Page D I and Haywood B C (1968) AERE - R 5772 
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The form of the width function w(t) is illustrated schematically in 
Figure 2.1 for various simple models, and in Figure 2.2 are depicted 
representative forms for the frequency function ̂ (/G ) . For a 
crystal the distinguishing features are that w(t) remains bounded at t 
increases, and ^(0) is zero. 

For polycrystalline materials the relationship between the specific 
heat add the phonon frequency function is given by 

C V/3K »/o*/><y3) /S
2/{*!*£</3/2)}* dfi3 (2.50) 

in which R is the gas constant 

R = 8.31441 J/g-mole °K + 3! ppm 

Butland (1973) made use of the relationship (2.50) in developing, 
from the single frequency function given for graphite (at 1800°K) by 
Page and Haywood, a whole set of frequency functions spanning 
smoothly the temperature range from 293K to 3273K; the specific 
heat data for graphite were taken from the review by Butland and 
Maddison (1972), who present a smooth functional representation. 

As has been mentioned already, in these scattering models for 
graphite were included the interference effects arising in the 
coherent elastic cross-section. For these calculations the Debye-
Waller coefficient 7^ (T) was required at each temperature; this too 
was calculated from the corresponding phonon frequency function using 

MT)= J™/*(/*)£-' C^M/i/2) <*/3. (2.51) 

For completeness may be remarked that the mean kinetic energy of the 
scattering atoms, T in kgT units, can be obtained from (2.41) 
but is calculated more directly from 

* s frMJCV^ /* ccrt* W*> d A (252) 

For a proper represen ta t ion of sca t te r ing by molecular f lu ids i t may 
prove convenient to decompose the width function w(t) in to a 
component represen t ing diffusive motion and a component which i s 
bounded for la rge t 

*(£) - vJctCt) + ^ f e C t ) . (2.53) 

Then 

on using the convolution theorem for Fourier transforms. 

Butland A I D and Maddison R J (1972) AEEW R 8J_5 

Butland A T D (1969) AEEW M 954; (1972) AEEW M 1136; (1973) 
180 AEEW M 1200 and AEEW M 1201 

(2.54) 

In practical applications it has usually been necessary to set limits 
on the complexity of the treatment because of computational constraints, 
and on the nature and number of tests applied to a set of multigroup thermal 
scattering cross-sections once they have been computed. Butland (1969, 
1972, 1973) has described some of the computer codes available for thermal 
neutron scattering calculations, and some comparative tests between 
different codes; it appears from his remarks that the code SLAB, evolved 
by Hutchinson and Schofield (1967) for computing Sjjptffi^ from 
photon frequency functions, could be developed both in speed and 
precision by the introduction of Fast Fourier Transform techniques; 
it might then have clear advantages over alternative codes such as LEAP. 
The mesh of (o£ ,/Q)-values at which the scattering law is to be calculated 
must be carefully chosen and the number-of mesh points is necessarily 
restricted. When it comes to the calculation of multigroup cross-sections 
from a tabulation of S(o£ ,/S) values, computational accuracy might be 
improved by careful consideration of the formulae to be used in 
interpolating S(ot,^3) between mesh points. 

The effective width model described at (46) and (47) above is one 
useful and very simple model that has been used for calculating thermal 
scattering cross-sections for H2O and D2O, the values of the single 
parameter q being chosen so that the derived cross-sections are 
consistent with measured values for the neutron diffusion coefficient. 
Nelkin (1960) devised another very simplified description of the 
frequency function p (£• ) for H in H2O, using 4 delta functions 
as shown in Figure 2.4. 

Butland and Chudley (1972) present comparisons of measured and calculated 
values for a number of representative integral parameters for four H^O 
moderated reactor cores; several different thermal neutron scattering 
models were used in the calculations. With the exception of the simple 
free gas model, the calculations using the other models appear to be in 
surprisingly good agreement with one another and with the experimental 
values. It is interesting to consider what other and perhaps more stringent 
tests might usefully have been applied. 

Nelkin's model for H in H?0 

function 

translational 
notational 
bending modes 
stretching " 

eV Weight 

0.0 1/18 
0.06 1/2-32 
0.205 1/5.84 
0.481 1/2.92 

/>ce> 

Figure 2.4 
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Hutchinson P and Schofield P (1967) AERE R 5536 

Nelkin M S (1960) Phys ev 119, 741 

Butland A T D and Chudley C T (1972) AEEW 



2.4 Moderator Cross-Sections for Epithermal and Fast Neutrons 

As was noted at the beginning of Section 2, the differential cross-sections 
for epithermal and fast neutron interactions with a moderator must give 
realistic values for the slowing-down age of the neutrons evolved in 
fission. 

Neutron Age Goldstein et al (1961) say that neutron age is a measure of 
the spatial dispersion of slowing-down neutrons about their source, and 
that it is best defined in terms of some functional F of the neutron 
angular flux density 0(r,IL,E). Examples given are the neutron flux 
density 

H ^ E ) * 0(X E) * /0(r,n,E) cAQ (2.55) 

or the slowing-down dens i ty , or the current: the functional F must at 
leas t be a function of pos i t ion . Given F and the material the age i s a 
function of the energy spectrum of the neutron source, symbolised by S, 
and of the f ina l energy parameter E. The age i s then defined in terms 
of the neutron d i s t r i b u t i o n about an isotropic point source in an 
in f in i t e medium by 

-t(F, s, E) = JL 7o0°»r(^S>E;r) T*<LT 

6 / * F(0, S, £, r) dr 
To reduce t h i s to more p r ac t i c a l terms, the neutron age i s usual ly 
measured by using In ac t iva t ion de tec to r s , shielded with Cd to 
eliminate v i r t u a l l y a l l the neutrons of ^ 0.5 eV. Natural In 
contains 95.72Z 115In, and rad ia t ive capture of slowing-down neutrons, 
predominantly in the strong resonance a t 1.457 eV, produces the metastable 
s t a te a c t i v i t y of 116ln with a convenient 54 minute h a l f - l i f e . 

In prac t ice therefore the functional F should be represented by 

F ( S > r > * /o.SaV ^CY"» ^ °" C e ) ^ ( 2 5 7 ) 

where 6(E) is the neutron cross-section of In for production of 54 min. 
In 116m, or one might elaborate this to represent also the effect of the Cd 
shielding of the In foils. In principle the integral should extend far 
enough to include the source neutron energies, and in practice it should 
certainly embrace the whole of the 1.46 eV resonance. 

Formally, age theory is based on the concept of replacing the life 
histories of individual neutrons by an average history in which the 
neutrons are assumed to lose energy continuously in such a manner that 
to any given neutron age there corresponds a definite value of the 
energy. 

Goldstein H, Sullivan J G, Coveyou R R, Kinney W E and Bate R R (1961) 
ORNL 2639 

Figure 2.5 
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A consequence of this model is the additivity property 

loo 

(2.58) 

Without going into the derivation, which belongs to the theory of 
reactor physics, see Wigner and Weinberg (1958), the neutron 
age may be estimated from the neutron cross'-sections by means of 

3 «/e 

lo tf (E) dLE 

in which 

£CE) 

3 JEt 5(E) [1 ~ FlO] E 

i s the sca t t e r ing mean-free-path 

- 1 0 ^ ^/[NA/>(T^(E)] CTO., 

is the average logarithmic energy loss in a 
scattering collision 

= i _ CM-™)7" l^ M+™. 
2 M m . M - " I n 

constant , if the sca t t e r ing i s i so t ropic in the 
centre-of-mass frame of re ference ,* 

i s the average cosine of the sca t te r ing angle in the 
laboratory frame, 

= 2m/3M 

(2.59) 

(2.60) 

(2.61) 

if the scattering is isotropic in the centre-of-mass 
frame. 

Weinberg A M and Wigner E P "The Physical Theory of Neutron Chain Reactions" 
(U Chicago Press, 1958) 



These expressions for $̂ and JJU relate to a monoisotopic medium*. 

One should not expect exact agreement between the formal age based on 
differential cross-sections, which can be calculated from (2.59), 
and the practical age based on the spatial distribution of In-resonance 
neutrons, which can be calculated from (2.56) using a multigroup or 
Monte Carlo neutron transport calculation. Nevertheless (2.59) should 
serve very well for estimating the change in the practical age which 
would result from small changes in the scattering cross-section dJrv.(E) . 

A variety of neutron sources have been used for experimental measurements 
of the neutron age, including l4MeV neuts from the TD reaction and 252 Cf 
spontaneous fission neutrons, but for fission reactor applications the 
measurements made with 235U neutron induced fission neutrons are of most 
interest, and the values listed in the upper part of Table 2.1 are 
believed to be the most reliable. 

TABLE 2.1 
AGE OF 235U FISSION NEUTRONS TO IN RESONANCE AT 1.46 eV 

Moderator HTO D^O Graph i t e 
D e n s i t y g/cm3 0 .9972 1.1046 1.600 

Expe r imen ta l Values 
P a s c h a l l (1964-6) 26 .61+0.32 
Spencer & Wil l iamson (1967) 26 .24+0 .33 
O l c o t t (1956)] E x t r a p o l a t e d 112+2 
Wade (1958) > t o 100% 110+3 
Graves (1962)J P u r i t y 112+2 
Campbell & P a s c h a l l (1964) ; 307.-8+2.0 
C a l c u l a t e d Values Data F i l e 
Spanton (1973) DFN-67X 26.08+0.08 
Spanton (1973) DFN-68D 302.5 
Kemshell (1969) DFN-218/- 108.8 
Kemshell (1969) DFN-256 115.9 
Dunford & A l t e r MAT-1001?* 26 .22+0 .13 
Dunford & A l t e r (1970) MAT-1003?* ~ 117.9 
Dunford & A l t e r (1970) MAT-1011 295.7+0.5 

XDFN-33 for oxygen /-DFN-37 for oxygen > MAT-1013 fo r oxygen 

*More g e n e r a l l y , fo r a m i x t u r e 

i n which S ^ C ^ O i s t h e macroscopic s c a t t e r i n g c r o s s - s e c t i o n of t he 
medium for t h e i - t h n u c l i d e ; 

ic where ji (E> p.̂  o-f*. is the elastic angular distribution of the i-th 
nuclide, and 

All the calculated age values in the lower part of the table have been 
revised to agree with the material densities quoted at the head of 
the table, and to a fission spectrum with a mean energy of 1.98 MeV. 
The uncertainty of Olcott's result has been increased to allow for 
variations of the D2O purity during the course of the experiments. 

The measured values of the neutron ages appear to be good to 1 or 2 
per cent, and it is easily seen from (2.59) above that + 1/2 per cent 
accuracy is needed overall in the moderator scattering cross-section 
to give + 1 per cent in the calculated age. The calculated ages listed 
in the table were derived using rather elderly data files, and it 
would be valuable to have revised calculations for the most up-to-date 
data files and 235U fission spectrum (Adams and Johansson 1979). 
The required revisions could be calculated quite easily by difference, 
using (2.59) and the tables of T(E) given by Goldstein et al (1961). 

In order to match the accuracy of slowing-down age measurements the 
moderator scattering cross-sections need about + 1/2 per cent accuracy over 
a good part of the energy range from I eV to about 2 or 3 MeV. For 
graphite^ several sets of good quality measurements of the total cross-section 
have been reported during the last 10 or 20 years and, apart from the 
narrow d-wave resonance at about 2.08 MeV, the cross-section can be well 
represented from a few eV to nearly 3 MeV by means of a simple 
polynomial in the neutron energy, or by a more elaborate resonance 
formulation. 

The radiative capture cross-sections of the moderators are small at 
thermal energies and decrease like 1/VE with increasing neutron energy, 
so that the epithermal scattering cross-sections are almost identical 
with the total cross-sections, and these have been measured with fairly 
good accuracy. However the slow neutron scattering parameters have been 
determined with particular care, by measurements at thermal energies and 
in the eV region. In consequence, for H and D particularly, the energy 
dependence of the scattering cross-sections can be identified somewhat more 
precisely with the help of the "effective range" theory. 

Paschall R K (1966) Nucl Sci Eng _26 73; ibid (1964) 20, 436. 

Spencer J D & Williamson T G (1967) Nucl Sci Eng 27_, 568. 

Olcott R N (1956) Nucl Sci Eng J_, 327. 

Wade J W (1958) Nucl Sci Eng 4_, 12. 

Graves W E (1962), Nucl Sci Eng \2_, 439. 

Campbell R W, Paschall R K and Swanson V A (1964) Nucl Sci Eng ££, 445. 

Spanton J H (1973) AEEW 1172. 

Kemshell P B (1969) Private Communication. 

Dunford C L and Alter H (1970) AI-AEC-Memo-12915 

Adams J M and Johansson P (1979) AERER8728. The mean energy of the 235U 
fission neutron spectrum is given as 2.016 + 0.044 MeV 



Scattering by ljj i s predominantly i so t ropic , in the centre-of-mass frame 
of reference, to quite high energies; even at 20 MeV for example the 
higher p a r t i a l waves contr ibute only about 7 mb to a t o t a l scattering 
cross-sec t ion of about 500 mb. This p a r t i a l cross-sect ion f or •£> 0 
can be infer red , with sufficient accuracy, from one or another of the 
extensive phase-shif t analyses which have been carr ied out on the many 
and var ious nH and pH interact ion data a t energies up to about 500 MeV, 
see Figure 2 .6 , and can be subtracted from the neutron t o t a l scattering 
cross-sec t ion data so that the s-wave component i s well determined from 
the da ta . 

The represen ta t ion of the s-wave scat tering data by means of effective 
range expansions 

Ki.2 ft cctS^ = - 0 / ^ ) + iXi/2) & - VLrJ few +.... ., (2.62) 

for i = I , 3 denoting the singlet and t r i p l e t s t a t e s , was reviewed 
c r i t i c a l l y by Noyes (1963), who showed that the standard form of 
th i s expansion has to be modified to take account of, and to exploi t , the 
predic t ions of the One Pion Exchange theory of the long range nucleon-
nucleon i n t e r a c t i o n , and that for th is purpose the approximation due to 
Cini e t a l (1959) should be reasonably adequate for neutron energies up 
to about 10 MeV. The s-wave phase sh i f t s £x. derived from th is theory 
do not change sign, as they should, a t about 310 MeV; but th i s fault can be 
r e c t i f i e d by a simple modification (due to Pope and Story, (1972) to the 
expansion proposed by Cini et a l , and thereby the range and r e l i a b i l i t y 
of the method are enhanced, up to 20 MeV a t l e a s t . 

According to the theory of Cini et a l , the s-wave effective range formula 

V u i c o t ^ = Oi(ui) i * d , 3 ^ (2.63) 

in which 

M*V (2.64) 

1\> - K A ^ T t O * »* U*27o j-m. (2.65) 

k i s the neutron wave number in the centre of mass frame 

E i s the energy of the incident neutron in the laboratory frame 

Trijjis the average pion mass, 

has to sa t i s fy the condit ions 

Q i (~ ^ o ) * 2 / 3 + l / U / u . ) (2.67) 

Noyes H P (1963) Phys Rev 130, 2025; see also Noyes (1972) Annual 
Rev Nucl Sci 22, 465. 

Cini M, Fubini S and Stanghellini A (1959) Phys Rev 114, 1633. 
Pope A L and Story J S (1972) Unpublished. 
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when 

u* = - 0 0 = - i / 2 (2.68) 

with 

P - **M/3rt2 (2-69) 

in which 3TT^" ^S t* ie p i ° n - n u c leon compling constant and M i s the 
r a t i o of the average nucleon to the average pion mass; 

0 ^ * = I I+-28 ± 0 1 8 (2.70) 

according to Bugg et a l (1980), 

M = 6.76948. (2.71) 

From the binding energy of the deuteron, 

EB c£ 2.224564 + 0.000017 MeV (2.72) 

according to Greenwood and Chrien (1980), may be derived, in the 
t r i p l e t s t a t e 

Q3^Gi3> = -f**i (2.73) 

when k = -iaC, that i s to say when 

t i = - < O E = - ( o t r 0 ) 2 <=s> - O I 0 8 6 o 3 , (2.74) 

with 

^ = { 2 M n ^ p / ( M n + M l > ) K B / ^ ** 0'OS*lhO<) }>*Z% (2.75) 

Because the singlet and triplet s-wave phase shifts change sign at 
about 280 and 340 MeV respectively, we require further that 

Qj^tO) —*- CO (2.76) 

as E approaches this energy region from below. The modified form of the 
Cini et al effective range representation is now written as 

Q i M = A i + o ( B i + Ciio)/[(H + l>iu>)0- H;.ca)] (2.77) 

The Ĥ  were zero in the or ig inal formulation of Cini e t a l , but are 
chosen so tha t (2.76) i s sa t i s f i ed , which requ i res 

H ] ^ 0.1464, H3 «s 0.1205 (2.78) 

From (2.66) and (2.67) it may now be shown that 

D i - Z - [ A / ( 2 + Hi) - B j J / O ' H -V Hi/2) - A;.'] (2.79) 

Bugg D V, Edington J A, Gibson W R and others Phys Rev C21, 1004 

Greenwood R C and Chrien R E (1980) Phys Rev C21, 498 

and 

in which 

/ 3 ' = /6-*-V(V8) = 2 - 2 * 0 3 . (2.82) 

For the t r i p l e t state from (2.73) 

B ^ = CjO^j + C A ^ + y u i ^ d - D s ^ C I + H j O ^ / u i j (2.83) 

Comparison of (2.77) with the standard form of effect ive range 
expansion, (2.62), gives 

fti • - r o / Q i ( 0 ) * - T o / A i (2.84) 

relating A- to the zero energy scattering lengths a^, 

Ti - *r 0 Q/(0} » 2r0Si (2.85) 

expressing the low energy effective ranges r^ in terms of B^, and 

*i = [Bil^- Hi) - Cj K / r i ^ (2.86) 

for the low energy shape parameters P^ , 

The A^ are determined a t once, by (2.84), from the zero energy 
scat ter ing lengths a^, which may be derived from the measured values 
of the bound coherent sca t te r ing amplitude 

b C o k = " ^ U O C j - t O O O W $•*». (2.87) 

(Koester and Nis t le r , 1975), and from the low energy free-atom sca t te r ing 
cross-sect ion 

fffree. = Q L O - 1 + 7 3 ± 0 0 3 U k^T-TYS (2.88) 

which is the weighted mean of measurements by Neill et al (1968), 
Hoxik (1971) and Dilg (1975), noting that 

°-coK•- l * i + ^o -O/ l* ( 2 8 9 ) 

( T j r c e s Tt Ca^ + 3 OL^) (2.90) 

with 

*cok = bcpK/C^-*- H ^ / M H ) = Q-U<yyi<lH^ *><«&. (290 

Koester L and Nistler W (1975) Zeits Phys A272, 189 

Neill J M, Russell J L and Brown J R (1968) Nucl Sci Eng 33_, 265 

Houk T L (1971) Phys Rev C3_, 1886 

Dilg W (1975) Phys Rev Cll, 103 



Fina l ly , i t should be noted that a t low energies, for neutron 
energies from about 0.5 eV to 1 KeV, the scat ter ing cross-section 
for H in H20 has the form 

tfs(E) = ^ r c e D + K y ^ A E ) - t»E] , (2-92) 
in which A. i s the r a t i o of the mass of the hydrogen atom to that of 
the neutron (A = 0.99916735), and K may be considered as representing 
the mean k ine t ic energy of the hydrogen atoms in H^O; by analysing thei r 
measured data above 0.6 eV on the to t a l cross-section of HoO, Neil l et a l 
(1968) obtained the value 

K - (0-18SC) -± 0 - 0 0 7 ) t V ( 2 9 3 ) 

for water at about 20°C. For the final term in (2.92), from the effective 
range formalism 

t> * r{^ . 3 (a , -^ )+3a^(a 3 - r a )} / (a l
a +3a . i a ) ]W a iO '^ (2.94) 

-» 0 . 0 0 0 0 0 6 S S t V " 1 

An analysis using the modified effect ive range formalism (2.77) was 
carr ied out by Pope and Story (1972) for the epithermal sca t te r ing in the 
current f i l e (DFN-923) for H in H2O in the UK Nuclear Data Library. 
With r j = 2.640 fm to f i t to the s-wave scat ter ing cross-sect ion data , 
pa r t i cu l a r l y in the range 0.4 to 50 MeV there was found to be a lso 
excel lent agreement with the s-wave phase s h i f t s . Revision would now 
be worth while using the most up-to-date phase shift data and other 
nuclear data as l i s t ed above. 

In t h i s appl ica t ion to nH sca t te r ing the effective range formalism 
has played a dual r o l e 

( i ) as a smooth f i t t i n g function 

( i i ) conforming to the known physical and theoret ica l cons t ra in ts* 

Similar ro les are served in applying a sui tably modified ef fect ive range 
theory to the epithermal c ross -sec t ion data for deuterium", i t was by t h i s 
means that the shape of the t o t a l cross-sect ion below about 500 KeV 
was f i r s t i den t i f i ed , and the discrepancy with the in tegra l measurements 
of neutron age in D2O was el iminated. The analys is has not been revised 
however since the t o t a l cross-sect ion data of Stoler e t a l (1972) 
became ava i l ab le , spanning the energy range from 2 keV to 1 MeV. 

For s-wave neutron in te rac t ions with deuterium, an effect ive range 
expansion of standard form (2.62) appears adequate for the 
dominant quar te t s t a t e (J = 3 /2) , but for the doublet s t a t e an anomalous 
form such as 

K 2 S fecotrSx* (-</<Xi)+LTx/l
y)k*-?hX*/{l+J>1?)+... (2.95) 

Pope A L and Story J S (197 2) unpublished work; but see Figure 2 .7 . 

Stoler P, Kaushal N N, Green F, Harms E and Laroze L (197 2) Phys Rev 
Let ters 29, 1745. 

i s requi red . The underlying theory of t h i s pa r t i cu l a r 3-body s ta te 
seems not yet very c l e a r l y es tab l i shed , but for tunate ly the doublet 
cont r ibut ion to the sca t te r ing cross-sec t ion i s small. 
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For d e u t e r i u m the h i g h e r p a r t i a l waves (Z. ^ 0) c o n t r i b u t e much 
more s t r o n g l y t o the c r o s s - s e c t i o n s below 20 MeV than for 'H, and in 
consequence the a n a l y s i s of t he d e u t e r i u m c r o s s - s e c t i o n s depends q u i t e 
s t r o n g l y on the p h a s e - s h i f t i n f o r m a t i o n a v a i l a b l e . Above the (n ,2n ) 
b reak-up t h r e s h o l d a t 3.34 MeV the p h a s e - s h i f t s a r e complex, which 
l e a d s t o some c o m p l i c a t i o n of t h e f o r m u l a e . 

At low e n e r g i e s , above the energy of the lowest v i b r a t i o n a l s t a t e of 
the D2O molecu le a t abou t 0 .35 eV, the c r o s s - s e c t i o n for D in D~0 should 
have the form ( 2 . 9 2 ) . The t o t a l c r o s s - s e c t i o n da t a for D2O a r e s p a r s e 
near t h i s ene rgy , however a v a l u e of K = 0.168 + 0.039 eV i s i n d i c a t e d for 
D in D2O, from F igure 2 . 8 . Al though t h i s e s t i m a t e i s not very r e l i a b l e , 
i t i s n o t i n c o n s i s t e n t w i t h v a l u e s of 0.114 eV and 0.23.0 eV d e r i v e d by 
Butland (1973) u s i n g r e s p e c t i v e l y the phonon f requency f u n c t i o n s of 
Page and Haywood (1973) and of Honeck (1962) . 

ON EVALUATING THE RESONANCE CROSS-SECTIONS OF THE STRUCTURAL MATERIALS 

3.1 Leve l Spacing S t u d i e s for Resonances of I r on 

Can the observed r e s o n a n c e s of t he i r o n i s o t o p e s be r a t i o n a l l y a s s i g n e d 
as t o s p i n and p a r i t y , so as t o command some deg ree of c redence? The 
narrow p - and d - wave r e s o n a n c e s of i r o n make a c o n t r i b u t i o n t o t h e 
Doppler t e m p e r a t u r e c o e f f i c i e n t i n a f a s t r e a c t o r so we a r e concerned w i t h 
something more than s imple a v e r a g e c r o s s - s e c t i o n s . 

For many of t he f i s s i o n - p r o d u c t s t h e d i f f e r e n t i a l n e u t r o n c r o s s - s e c t i o n 
d a t a a r e r e s t r i c t e d t o the low energy r a n g e , or a r e n o n - e x i s t e n t , and 
r e c o u r s e must be made to s t a t i s t i c a l t h e o r i e s and to s y s t e m a t i c s . 
This has been one of t he m o t i v a t i o n s for t he c o n s i d e r a b l e e f f o r t s which 
have been g i v e n r e c e n t l y t o development of codes for e s t i m a t i n g r e s o n a n c e 
s t a t i s t i c a l p a r a m e t e r s from s e t s of e x p e r i m e n t a l r e s o n a n c e pa rame te r d a t a . 
F rohner , f o r example, i n h i s r emarkab le paper t o t h e c o u r s e he ld h e r e a t 
T r i e s t e i n J a n / F e b 1978, has d e s c r i b e d a q u i t e s o p h i s t i c a t e d code for 
e s t i m a t i o n of s t r e n g t h f u n c t i o n s and ave rage l e v e l s p a c i n g s . The main emphasis 
behind t h i s , and behind s i m i l a r codes evolved e l s e w h e r e , has been on t h e 
impor tance of examining the d i s t r i b u t i o n of t h e observed v a l u e s of t he 
reduced n e u t r o n w i d t h s r ^ * ^ i n o r d e r t o a s s e s s the numbers of missed 
r e s o n a n c e s . I t i s r e a s o n a b l y w e l l e s t a b l i s h e d t h a t t h e f ami ly of r educed 
n e u t r o n w i d t h s of a s e t of r e s o n a n c e s of p a r t i c u l a r s p i n and p a r i t y J IT 
w i l l have the Por te r -Thomas d i s t r i b u t i o n 

|> ( * , / > > * . ) * [ O ^ / H / ) ) ] X . ^ " ' e K f ( - OOC) d * ( 3 . 1 ) 

Rainwater L J , Havens W W, Dunning J R and Wu C S (1948) Phys Rev 7J3, 733 

But land A T D (197 3) P r i v a t e Communication 

Page D I and Haywood B C (1968) AERE - R 5778 

Honeck H C (1962) Trans American Nucl Soc 5 (1) 47 

196 Fr'dhner F H (1978) IAEA-SMR-43; 59; KFK-2669 

in which r * ( / ° ) i s the gamma f u n c t i o n , and x has been used to deno te the 
reduced n e u t r o n wid th Vy£ ) ', 

H 

Mi 

and V s d/5 is the number 
of channel spin states involved 
( = 1 or 2). 
This i s . a very.skew d i s t r i bu t ion , 
especia l ly if V = 1 as i s 
ce r ta in ly true for s-wave 
resonances. I t t e l l s us that 
the resonances with smallest 
values for the reduced neutron 
widths, those which are most l ike ly to be missed, are the most probable. 
By assuming that a l l resonances below some bias level x0 have been 
missed, the d i s t r ibu t ion of observed widths greater than xQ can be 
f i t ted with a truncated Porter-Thomas d i s t r i bu t ion and the number 
and mean reduced width of the missed resonances can be assessed. 

V~! (3.2) 

Benchmark testing has shown that, used with care, these codes can be 
fairly reliable, especially if the resonance sample is fairly numerous 
However I believe that the older method, based on careful examination on 
the "staircase plot" of the number of resonances N(E) up to energy E, 
still has a role to play. 

FrWiner has illustrated his theme by analysing the s-wave resonances of 
some of the iron isotopes, and his values for the mean spacings 
indicate that several resonances have been missed in each. However 
the neutron widths of the s-wave resonances of iron are quite broad, 
typically of the order of 1 keV, and should, in the main, be easily 
detectable with modern neutron spectrometers. In measurements of the 
total cross-section the s-wave resonances are easily distinguished by 
the characteristic interference dip a little below the energy of the 
resonance peak. If the resonance is relatively narrow, so too is the 
interference dip, and occasionally a narrow s-wave resonance may have 
been wrongly assigned to the non s-wave set because its interference dip 
is obscured, by the presence of a p-wave resonance for example; however 
it seems doubtful that chance coincidences of this kind can be often 
invoked to account for many missed resonances. 

There is another factor affecting the mean spacing of resonances of the 
isotopes in this mass region. Resonances of 56Fe have been observed and 
analysed up to about 800 keV, and over such a wide energy interval the 
ordinary theory of level density predicts that the mean spacing should fall 
by a factor of about 2. The level spacing statistics of Dyson and Mehta 
(1963) are based on the assumption that the mean spacing D does not vary 
with the neutron energy. In order to use their theory for analysing the 
resonance spacings of materials such as 56Fe we set up a (1,1) 
correspondence between the resonance energies Er and a set of energies 
Yr in a modified energy scale, with the requirements 

Dyson F J and Mehta M L (1963) J Mathematical Phys 4_, 701 



( i ) The mean spac ing of the Yr does 
no t v a r y w i t h Y and has the 
v a l u e D o 

( i i ) The mean spac ing of the E r v a r i e s 
w i t h E i n accordance wi th a s u i t a b l e 
F e r m i - g a s model of l e v e l d e n s i t i e s , 
O (U) , i n t h e same compound 
n u c l e u s 

D(ET)= D 0 />(U0)/ />(U) 

so that DQ = D(EQ), the mean spacing corresponding to some 
specified energy EQ. In this formula U, U0 are the excitation 
energies of the compound nucleus for incident neutron energies 
E, E Q, with appropriate modifications for pairing energy etc 
according to the prescriptions of the level density formalism 
adopted, e.g. 

U = S^+& + E/(4 +-m/M), (3.4) 

in which S is the neutron separation energy from the compound 
nucleus, and £± = back shift - pairing energy for example. 
In practice it proves convenient to set E 0 = 0, so that 1/DQ 
is the mean level density of the compound nucleus at the separation 
energy; ^(U 0) in contrast is merely an approximate estimate of 
this level density. 

TABLE 3.1 Gd-152; MEAN RESONANCE SPACINGS (eV UNITS) 

Res No ERES DBAR +-ERR0R E SPACE 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

( - 1 . 2 ) 
3.31 
8 

12.35 
21 .2 
36.86 
39 .3 
42.7 
7 4 . 3 
85 .1 
92.4 

100 
124 
140 
185.2 
202 
223 
231 
238 
252 
293 

4.4627 
4.5587 
4.4880 
5.5576 
7.7034 
7.1145 
6.6922 
9.5627 
9.9508 
9.8907 
9.7977 

10.800 
11.297 
13.726 
14.219 
14.822 
14.710 
14.515 
14.508 
15.526 

1.745 
1 .240 
0.937 
0.940 
1.112 
0.917 
0.767 
0.937 
0.899 
0.827 
0.759 
0.754 
0.737 
0.830 
0.821 
0.812 
0.775 
0.735 
0.696 
0.690 

4 .51 
4 .69 
4 .35 
8 .85 

15.66 
2.44 
3 .4 

31 .6 
10.8 
7 . 3 
7 .6 

24 
16 
45 .2 
16.8 
21 
8 
7 

14 
41 

(3.3) 

(iii) The expected number of resonances in the interval (Y0, Y), with 
YQ = E0> is equal to the expected number in the corresponding 
interval (EQ,E), namely 

lV-70>AossXECVT>CE,)l **' (3-5) 
so t h a t , u s i n g (3) 

V S *0 + L V / n U o ) ] / " />(U') dU'. (3.6) 
0 

The r e q u i r e m e n t s ( i ) t o ( i i i ) and formulae ( 3 . 3 ) t o ( 3 . 6 ) a r e in tended to 
a p p l y t o t h e r e s o n a n c e s of a s i n g l e or m u l t i p l e f ami ly ; t o a l l the 
r e s o n a n c e s of d e f i n i t e sp in and p a r i t y J1X , fo r example , or t o a l l 
p-wave r e s o n a n c e s ( i f t h e s e can be i d e n t i f i e d ) . With t h i s unders tand ing 
t h e Dyson-Mehta t h e o r i e s can be a p p l i e d t o t h e s e t of e n e r g i e s Y . 
However t h e t h e o r i e s a r e v a l i d on ly i f t he s e t i s comple te w i t h i n an 
i n t e r v a l ; t h e r e should be no missed r e s o n a n c e s and no i n t r u d e r s from a 
d i f f e r e n t f ami ly or from an i s o t o p i c c o n t a m i n a n t . 

TABLE 3.2 

Fe-58; MEAN SPACINGS OF S-WAVE RESONANCES (keV UNITS) 

Res No 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

ERES 

-10 
10.339 
43 .55 
67 .18 
93 .9 

121.67 
179.5 
241.2 
266 
309 .9 
321 
348.105 

D 0 

19.858 
27.077 
26.465 
26.904 
27.518 
33 .449 
39.417 
39 .189 
40.916 
39 .312 
38.817 

± 

7.721 
7.402 
5.581 
4 .593 
3.947 
4 .113 
4 .310 
3.905 
3 .673 
3 .295 
2.974 

E Spac 

20.339 
32.211 
23.63 
26.72 
27.77 
57.83 
61.7 
24.8 
43.9 
11.1 
27.105 

First 3 values of D are based on inadequate statistical sample; next 4 
values of D are all consistent with D ^s 6.5 or 6.6. For k ^. 9 the D values 
increase fairly steadily because resonances have been missed experimentally. 
If D really is 'v 7 eV the energy interval of 31.6 eV between the 8th 
and 9th resonances is improbably large. 

The Do values show a jump increase between 6th and 7th resonances, 
suggesting that one has been missed at about 150 or 210 keV 

In this table E-Space denotes the spacing between corresponding values 
of Yr (see text) 187 



The Dyson-Mehta optimum statistic is used for estimating the mean spacing 
DQ + A D Q from the energies of the first k resonances of the set; 
with k = 2,3,4... N in turn; this represents a modernisation of the 
tradiational "staircase plot" of the number of resonances N(E) up to 
energy E. The formulae for calculating DQ are set out in Appendix A. 

For small values of k it is to be expected that statistical fluctuations 
between successive values of D0 will be quite large, and their estimated 
uncertainties are unreliable because in principle the theory is valid 
only for large k, terms 0(1/k) having been ignored; with k ~ 10 the 
fluctuations should be much smaller and mostly within the calculated 
uncertainties. At the higher energies, if resonances have been missed 
for example because of loss of resolution, successive values of DQ 

may show a fairly steady increase with increase of k. Table 3.1 
of DEAR values for the resonances of 152Gd illustrates these trends; 
Table 3.2 for 58Fe is another example. From this kind of tabulation a 
tentative assessment of the completeness of the set of resonances 
(up to what value K of k is the set complete?) and of the best value 
of DQ may be made. Sometimes the inclusion of 1 or 2 more resonances 
artificially into the set, where adjacent resonances are rather far 
apart, will considerably extend the range up to which the set appears to 
be complete and may allow an improved assessment of D0. 

Table 3.3 of DBAR=D0 values for the s-wave resonances of 56Fe (which 
span the range from -3.5 to 785 keV) shows exceptional uniformity 
in the different estimates of D0, and good consistency therefore with 
the hypothesis that D(E) has the energy dependence specified by (3.3). 

Dyson and Mehta have emphasised the long-range order, "the essentially 
crystalline character" of a single level series. In effect this means 
that, for a single level series (for a set of resonances of the same J H ) , 
there should be a (1,1) correspondence between the energies of the set 
and the energies of a ladder of evenly spaced energy rungs 

L r ; i / p + ^ o r a ^ ^ . . . K (3.7) 
suppos ing t h a t DQ has been w e l l - c h o s e n and Ly Y,. 
t h a t the s e t of r e s o n a n c e s i s comple te and - _ 
c o n t a i n s no i m p u r i t i e s . - — 
By choos ing - ~~ 

K - _ 
} o a * >V - l K - M ) D 0 / 2 - _ (3.8) 

the mean square of the fractional deviations - "~* 
(Yr-Lr)/DQ of the {Y r) from their - ~~ 
corresponding { Lj-} is minimised. -
Tabulating the two sets of energies alongside -
each other, along with the fractional deviations, provides a further 
opportunity of looking at the completeness and purity of the set of 
resonances. The comparison gives some indication of the approximate 
location in energy of vacancies due to missed resonances, or of possible 
intruders from other JTl states or from isotropic contaminants. 

TABLE 3.3 

Ee-56; MEAN SPACING OF S-WAVE RESONANCES (KeV UNITS) 

Res No 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

ERES 
-3 .4756 

27.66 
73.98 
83 .65 

129.8 
140.4 
169.2 
187.6 
220.5 
245 
276.6 
317 
331.2 
356.9 
362 
380.9 
403.5 
437 
469.2 
500.2 
535.67 
560.82 
575.87 
603.16 
609.77 
613.67 
665.7/2 
693.18 
716 .8 
742 
752 .97 
769.7 
785 

DEAR 

31.363 
39.483 
31.052 
34.286 
30.769 
30.316 
29.097 
29.526 
29.410 
29.921 
31.262 
30 .705 
30.727 
29.792 
29.268 
28.995 
29.304 
29.766 
30.255 
30.989 
31.306 
31.192 
31.435 
31.067 
30.618 
31.239 
31.558 
31.764 
32.006 
31.859 
31 .790 
31 .683 

+-ERR0R 

12.324 
10.787 
6 .710 
5 .790 
4 .492 
3.748 
3.180 
2.829 
2.549 
2.349 
2.238 
2.072 
1.928 
1 .790 
1.643 
1.521 
1.428 
1.366 
1.316 
1.280 
1.241 
1 .197 
1.154 
1.114 
1.075 
1.019 
0.992 
0.966 
0.941 
0.917 
0.890 
0 .863 

E SPACE 

31.136 
46.32 
9.67 
46 .15 
10.6 
28.8 
18.4 
32 .9 
24 .5 
31 .6 
40 .4 
14.2 
25.7 
5.1 
18.9 
22 .6 
33 .5 
32 .2 
31 
35.47 
25 .15 
15.05 
27 .29 
6.61 
3 .9 
52 .05 
27.46 
23.62 
25 .2 
10.97 
16.73 
15.3 

Th i s compar i son must be used w i t h c a u t i o n however, because t h e p i c t u r e 
may change i f a d i f f e r e n t v a l u e of K or of D i s adopted for i n p u t t o 
the l a d d e r c a l c u l a t i o n s . Th i s warning i s a l l t h e more n e c e s s a r y 
because t h e compar i sons a r e ve ry p e r s u a s i v e a s may be seen from 

Table 3.4 for 152Gd and Table 3 .5 for 56Fe. I t should be remarked t h a t 
t h e r e s o n a n c e s of 152Gd extend on ly t o 293 eV, and over so narrow an 
energy r a n g e no a l lowance i s needed, nor was any made, for energy dependence 
of t h e DEAR v a l u e s ; fo r t h i s s e t of d a t a t h e r e f o r e YT must be r e p l a c e d by 
E r i n ( 3 . 8 ) . For 56Fe w i t h r e sonances spanning s e v e r a l hundred keV, 
the l adde r c a l c u l a t i o n s were c a r r i e d out a s s p e c i f i e d in ( 3 . 7 ) and (3 .8 ) 
above , but c o n v e r s i o n was made from the Y-sca le back i n t o the E - s c a l e ( see ( 3 . 6 ) ) , 
fo r t he u s e r ' s conven ience , be fo re p r i n t i n g . 



TABLE 3 

Gd-I52; 

4 

RESONANCE ENERGIES 

E-Ladder 

-15 .98 
- 9 . 3 8 
- 2.78 

3 .82 
10.42 
17.02 
23.62 
30.22 
36.82 
43 .42 
50 .02 
56 .62 
63.22 

ERES 

- 1 5 . 8 6 
- 9 .12 
- 1.2 

3 .31 
8 . 0 

12.35 
21 .2 
36 .86 
3 9 . 3 
42 .7 
7 4 . 3 
8 5 . 1 
92 .4 

* 

** 

* 

COMPARED WITH THE RUNGS OF 

(ER-EL)/D 

0.240 
-0 .0766 
-0 .366 
-0 .707 
- 0 . 3 6 6 

1.007 
0.376 

-0 .108 
3.679 
4.316 
4.422 

E-Ladder 

69.82 
76.42 
83 .02 
89 .62 / 
96.22 / , 

102.82 ' f 
109.42 ft 
116.02 / / 
122.62 / / 
129.22 / 
135.82 / 
142.42 • 
149.02 

THE ENERGY 

ERES 

/ 100 
/ • 124 

/ / , 140 
/ / 185.2 
/ / 202 
/ 223 
' 231 

238 
252 
293 

LADDER (eV UNITS) 

(ER-EL/D) 

4.573 
7.210 
8.634 

14.48 
16.03 
18.21 
18.42 
18.48 
19.60 
24.82 

*ha.s been introduced whenever the absolute value of the fractional difference 
exceeds 0.5. 

The comparison suggests that, if the value of D (6.6 eV) used in setting up 
the ladder was correct, about 4 resonances have been missed above 43 eV 
and many more at the higher energies. 

TABLE 3 .5 

Fe-56 ; RESONANCE ENERGIES 

E-Ladder 

- 65.52 
- 34 .33 
- 3 .723 

26 .33 
55 .85 
8 4 . 8 4 

113.34 
141.36 
168.91 
196.01 
222.68 
248.93 
274.77 
400.21 
325.27 
349.96 
374 .30 
398.28 
421.93 

ERES 

( - 63 .30 ) 
( - 3 2 . 4 0 ) 
- 3 .4756 

27.66 
73 .98 
8 3 . 6 5 

129.8 
140.4 
169.2 
187.6 
220 .5 
245 .0 
276 .6 
317 .0 
331 .2 
356 .9 
362 .0 
380 .9 
4 0 3 . 5 

* 

* 

* 

* 
* 
* 

COMPARED WITH 

(ER-EL)/D 

0.00815 
0.0447 
0.624 

- 0 . 0 4 1 5 
0 .585 

- 0 . 0 3 4 5 
0.0106 

- 0 . 3 1 2 
- 0 . 0 8 2 3 
- 0 . 1 5 1 

0 .0716 
0.668 
0 .239 
0 .284 

- 0 . 5 0 7 
- 0 . 7 2 6 
- 0 . 7 8 0 

THE:RUNGS OF 

\ E-Ladder 

445.24 
468.24 
490.92 
513.30 
535.39 
557.20 
578.72 
599.97 
620.96 
641 .69 
662.17 
682.41 
702.40 
722.16 
741.70 
761.01 
780.10 
798.99 
817.66 

THE ENERGY LADDER (KeV UNITS) 

ERES 

437.6 
469.2 
500.2 
535 .67** 
560.82** 
575 .87* 
603.16** 
609.77 
613.67 

665.72 
693 .18* 
7 1 6 . 8 * 
742 .0 ** 
752 .97* 
769.7 
785 .0 

(ER-EL)/D 

- 0 . 3 5 5 
0.0423 
0.413 
1.013 
1.167 
0.867 
1.151 
0.465 

- 0 . 3 4 9 

0.174 
0.537 
0.727 
1.015 
0.582 
0.455 
0.258 

*has been introduced whenever the absolute value of the fractional difference 
(ER-EL)/D exceeds 0.5. 

Note that the resonance energies ER^-665.72 have all been shifted one rung 
downwards, to give a better fit to the ladder. In fact the ladder 
comparison suggests that a resonance may have been missed at about 518 or 
640 keV, and perhaps another at about 679 keV. 

Ideally we should expect that 

*>0 />(U0) = 1-0 (3.9) 

in (3.3), and the adopted value of DQ can be used for revision of the 
parameter values in the level-density formula so that (3.9) is 
satisfied; the revised values ca.n be used in the input for any subsequent 
re-run. The level-density parameter values currently available, from the 
tables of Gilbert and Cameron (1965) for example, were mostly obtained in 
just this way from earlier consideration of mean spacings of resonances, 
or from systematic comparisons with data for neighbouring nuclides; 
consequently the proposed revision is fully justifiable. 

The level density formula can also be used to estimate, from the D^-value 
adopted for the s-wave resonances, the mean spacings for other spin/parity 
states JTT of the same compound nucleus. 

For several of the isotopes of materials such as iron, numbers of non s-wave 
resonances have been reported. Some of these can be assigned as p-wave 
resonances because they are too strong for d-wave assignments (c = 2) . 
With the help of the estimated mean spacings it has been found possible to 
make plausible JTT assignments for all the non s-wave resonances of the 
even isotopes of iron. The measured capture areas q T^ H J / T are also 
useful in this partitioning process; a large value may indicate that the 
spin statistical factor g is large, suggesting an -v-=2. , J = 5/2 assignment, 
for example. 

Admittedly much guesswork has been involved in these examples of 
"evaluator's art', what benefits are gained? 

(i) The resonance structure has been reasonably interpreted within 
the framework of current theoretical models. 

(ii) Though later experimental work may well show that some of the JJT 
assignments are wrong, at least a basis for argument has been provided. 

(iii) The partitioning has helped in estimating mean Py values and in 
reducing their dispersion, and this has helped in the attribution of 
partial widths Vy^ and Py for the non s-wave resonances. These 
narrow resonances of iron contribute to the Doppler temperature 
coefficient in fast reactors. 

Gilbert A and Cameron A G W (1965) Canadian J Phys 43, 1446 189 



If the mean spacing of resonances varies with energy as has been proposed, 
if the neutron strength functions 

$4-<r\v€€>>/D(jn,E) (3.io) 
do n o t , a s i s u s u a l l y supposed, t h e mean r educed neu t ron width 
must i t s e l f v a r y wi th energy because of ( 3 . 1 0 ) . Then i t should 
be expec ted t h a t the neu t ron s t r e n g t h s of the i n d i v i d u a l 
r e s o n a n c e s , def ined by 

©r = r n ^ / L u n , Er) (3.1D 
should have a Porter-Thomas distribution, rather than the reduced 
neutron widths. 

It is interesting to compare the two different assessments made of the 
mean spacings of s-wave (£. = 0) resonances of iron isotopes by 
Frohner (1978-79) using the STARA code, and by Smith and Story (1981) 
using DEEBAR: it will be recalled that STARA estimates the number of 
missed resonances from the distribution of the reduced neutron widths. 
The compaxisons are presented in Table 3.6 following: 

TABLE 3.6 

Fe ISOTOPES: ESTIMATES OF THE MEAN RESONANCE SPACINGS 

I s o t o p e 

Fe54 
Fe-56 
Fe-57 
Fe-58 

Frohner (1978-
STARA Code 

20.4 ± 2.7 
21.4 + 1.9 

6.5 + 0.8 
21 .6 + 5 .6 

-9) Smith and S tory (1981) 
DEEBAR Code 

2 3 . 9 + 0.8 
2 7 . 0 + 1.2 

( 9.15+ 0 .5 ) 
29.1 + 2 .0 

STARA makes no allowance for energy dependence of the mean spacings. For 
comparison therefore the values quoted from the DEEBAR code have been 
adjusted to relate to the mid-points of the energy ranges studied with STARA. 

The STARA calculations suggest that about 20% of the s-wave resonances 
have been missed experimentally, even in the energy range below 400 keV. 
We are skeptical about this, for reasons given earlier; however it must be 
stated that the DEEBAR calculations cannot disprove the hypothesis, 
because it is always possible to put the observed resonance energies 
into (1,1) correspondence with a subset of the rungs of an energy ladder 
constructed with a smaller value of Drt. 

Fr'dhner F H (1979) NEANDC Topical Discussion (revised values) 

Smith R W and Story J S (1981) DIDWG(81)P256 

TABLE 3.7 

Fe-56; COMPARISON OF 

E rkeV 

27.8 
73 .95 
83 .6 

129.8 
140.3 

MEASURED Vy ' 

Pandey e t 
(1975) 

1500 

1300 
600 

2800 

VALUES 

a l 

FOR SOME S-WAVE 

Al len e t a l 
(1976) 

1.43 + 0.07 
0.73 * 
1.28 * 
0.79 * 
2.19 * 

RESONANCES 

Frohner 
(1977) 

1.25 + 0.2 
0 .65 + 0 .15 
0 .58 + 0.22 
1.30 + 0 .40 
1.48 + 0.31 

*statistical uncertainties 10% 

Fe-54; COMPARISON OF MEASURED T y VALUES FOR SOME S-WAVE RESONANCES 

E rkeV 

52 .62 
71 .75 
98.61 

130.1 
147.8 
174.0 

Pandey e t a l 
(1975) 

1950 
1540 
550 

3340 
3380 
3680 

Allen et: al 
(1977) 

.4 

.32 

.65 
,22 
,31 
5 

Beer and Spencer 
(1975) 

1.8 
0.8 
3.2 
3.0 
3.0 
2.4 
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TABLE 3.8 

Fe-56; EXPERIMENTAL VALUES FOR T ^ AND T y FOR THE 27.8 KeV RESONANCE 

Refe rence 

Bi lpuch e t a l (1961) 

Macklin e t a l (1964) 

Moxon (1965) 

Hockenbury e t a l (1969) 

E r n s t e t a l (1970) 

Garg e t a l (1971) 

Pandey e t a l (1975) 
A l l e n e t a l (1977) 1.6 + 0 .3 
r e - e v a l u a t i o n of 1.43 + 0.07 eV 
r e p o r t e d by A l l e n (1976) 

Frb'hner (1977) 1400 + 200 1.25 + 0 .2 

Brusegan (1979) 0.80 + 0 .20 
( p r o v i s i o n a l only> 

A l l e n e t a l (1980) 1520 0.82 + 0.11 

Wisshak & K a p p e l l e r (1981) 1.011 
+1.3% s t a t 
+ **5% s y s t 

Moxon (1979,1981) 1450 + 50 0.85 + 0.09 

T^eV 

1670 + 

1600 + 

-

(1600+ 

1520 + 

1500 + 

200 

100 

100) 

40 

50 

r > j eV 

1.5 + 0 .3 

^ 1.3 

1.44 + 0.14 

1.4 + 0 .3 

TABLE 3 .9 

Fe-56 ; PARAMETER VALUES FOR THE 1.15 keV AND 27 .8 KeV RESONANCES, FROM VARIOUS 

EVALUATIONS 

1.15 KeV Resonance 27 .8 KeV Resonance. 

ErkeV T-neV fy eV ErKcV rn«V TytV 
ENDF/B4 

ENDF/B5 

UKNDL 

KEDAK 3 

JENDL1 

1.15 

1.149 

1.154 

1.148 

1.15 

0.086 

0 .06 

0 .0592 

0.068 

0 .068 

0 .600 

0 .600 

0.581 

0 .600 

0 .600 

2 7 . 9 

27.67 

27.7 

27.81 

27.66 

1670 

1520 

1400 

1430 

1600 

1.44 

1.4 

1.39 

1.00 

1.45 

Recent 1.1519 0.0575 0 .598 27.821 1450 0.9 
e s t i m a t e +0.001 +0.011 +50 ±0'l 
by Moxon 

Accuracy of the Capture Data What of t he a c c u r a c y of a v a i l a b l e c a p t u r e 
d a t a for i r o n i s o t o p e s ? Some i d e a of t h e d i f f i c u l t i e s of accuracy 
a s se s smen t i s given by the t h r e e t a b l e s t h a t f o l l o w , Tab le s 3 . 7 , 3.8 
and 3 . 9 . The f i r s t of t h e s e , Table 3 . 7 , compares , for a few of the s-wave 
r e s o n a n c e s of 56Fe and of 54Fe, t h e r a d i a t i o n w id th s f"y r e p o r t e d by A l l e n e t a 
(1976, 1977), from measurements a t t h e Oak Ridge e l e c t r o n l i n e a r a c c e l e r a t o r 
(ORELA), and by Frohner (1977) a t Gee l , and by Beer and Spencer (1975) a t 
K a r l s r u h e . At some r e s o n a n c e s t h e two measurements d i f f e r by a f a c t o r 2, and 
even t h e compara t i ve ly good agreement between the two measurements a t the 
27.8 keV resonance of 56p e £ s s e e n to be i l l u s o r y when we tu rn to Table 3 . 8 , 
which shows t h a t the most r e c e n t measurements have r e s u l t e d in smal le r 
v a l u e s f o r bo th the n e u t r o n and r a d i a t i o n w id th s of t h i s r e s o n a n c e . These 
r e c e n t changes in the pa r ame te r s of t he most prominent resonance of Fe 
make i t d i f f i c u l t t o have much c o n f i d e n c e in any s o r t of average of t he 
measured v a l u e s of t he r a d i a t i o n w id th s a t any o t h e r s-wave r e s o n a n c e : 
how would you a s s e s s the u n c e r t a i n t i e s ? 

I t should be added i n c o n c l u s i o n t h a t t h e v a r i a t i o n s of T y from one 
s-wave r e s o n a n c e t o ano the r has been exp la ined in terms of the s o - c a l l e d 
v a l e n c e model; see for example A l l e n (1976, 1977) and Beer e t a l (1979) . 
However Moxon has emphasised t h a t a t t h e s e r e s o n a n c e s T"v* i s v e r y much 
l a r g e r than T-y and t h a t , i n consequence , a p o s i t i v e c o r r e l a t i o n between 
the measured v a l u e s of r*i>. and f - y may occur , a t l e a s t i n p a r t , 
because of i n a d e q u a t e s u p p r e s s i o n of t he r e s p o n s e of t h e c a p t u r e gamma 
d e t e c t o r t o the much l a r g e r f l u x of s c a t t e r e d n e u t r o n s . 



3.2 Some Remarks Relating to the Use of Multi-Level Resonance Formalisms 

3.2.1 Negative Energy Resonances 

It is my personal opinion that, as a general principle, an 
evaluation of resonance parameters in the resolved range should 
always include an assessment of the parameters of the top s-wave 
negative energy resonance, or of the two top negative energy 
resonances, one for each spin state, if the target nucleus has odd 
mass number. Terms should also be included to allow for the effects 
of more distant resonances, both at negative and positive energies, 
as will be discussed in the next section. 

For some nuclides the large value and energy dependence of the 
low energy scattering cross-section may determine the resonance 
energy and reduced neutron width of the principal negative 
energy resonance. This is exemplified by the low energy scattering 
data for 56Fe (see for example Moore et al 1963), and likewise for 58NI. 
For many nuclides however, perhaps even for the majority, the 
significance of the top negative energy resonance is less obvious^ 
for a start therefore one might suppose the resonance energy is about 
1 mean spacing D below the first positive energy s-wave resonance 
(or below the first positive s-wave resonance of the same spin), subject 
to the condition that Er is to be negative, and that the reduced neutron 
width IV and radiation width I"y have their expectation values, 
(and the fission width T^- also, if the material is fissile). 

T ^ - S - n M * , r Y = < r v > (3.12) 

in which S-j\ is the s-wave neutron strength function. 

Next should be considered whether these values for the parameters 
result in too small or too large a contribution to the thermal 
neutron capture cross-section, when the contributions of all 
the known positive energy resonances have been taken into account. 

Macklin R L, Pasma P J and Gibbons J H (1964) Phys Rev B136, 695. 

Moxon M C (1965) EANDC Antwerp Conf on Study of Nuclear Structure with 
Neutrons 88. 

Moxon M C (197 9) Private Communication cited by Wisshak and *&ppeler F (1981), 
below; see also Moxon M C (1981) NEANDC(E) 222̂  Vol 8, 24. 

Pandey M S, Garg J B, Harvey J A and Good W M 1975 Washington Conf on 
Nuclear Cross-Sections and Technology 2, 748. 

Wisshak K and Kappeler F (1981) Nucl Sci Eng 77, 58. 

Moore J A, Palevsky H and Chrien R E (1963) Phys Rev 132, 801 

The contribution of this negative energy resonance is 

AcMEy- ^/V^o)9^rv/[(ET-E0)a^(r>?^E0^rY)7i,] (3.i3) 
in which oC = 2.603939 x 106 (1 + ny^/M)2 b a r n s eV. U s u a l l y 
(3 .13) may be approximated by 

showing t h a t a smal l change in Cy» has the same e f f e c t on 

as a l a r g e r f r a c t i o n a l change in Tyj* . 

Usua l ly t h e r e q u i r e d c o n t r i b u t i o n A CTy v ^ o ) t o t * i e the rmal 
neu t ron c a p t u r e c r o s s - s e c t i o n , be i t l a r g e or s m a l l , can be 
ob ta ined wi thou t the need for extreme v a l u e s for t h e p a r a m e t e r s ; 
a s a rough gu ide , i t would be a m a t t e r for comment and fo r 
f u r t h e r i n v e s t i g a t i o n i f the resonance energy has t o be s h i f t e d 
by more than D/2 from i t s expected v a l u e ( t he expec ted v a l u e i s no t 
n e c e s s a r i l y v e r y easy t o i d e n t i f y , s i n c e the f i r s t p o s i t i v e s-wave 
r e sonance may be below or above i t s ' e x p e c t e d ' e n e r g y ) , or i f t h e 
reduced n e u t r o n wid th l i e s o u t s i d e t h e r ange ( 0 . 3 \f~yfy f 

1.5 ^ 1 % ^ ) ) , I f extreme v a l u e s a r e needed for t h e p a r a m e t e r s 
of t h e top n e g a t i v e energy r e sonance the p a r t i a l w i d t h s of one or two 
of t he low energy p o s i t i v e energy r e s o n a n c e s may need r e c o n s i d e r a t i o n . 

The low energy cohe ren t s c a t t e r i n g a m p l i t u d e (or a m p l i t u d e s ) should 
a l s o be c o n s i d e r e d , i f expe r imen ta l d a t a a r e a v a i l a b l e , when t r y i n g 
to a s s e s s the p a r a m e t e r s of the top n e g a t i v e energy r e s o n a n c e s ; 
see f o r example James and S tory (1966) . 

3 . 2 . 2 D i s t a n t Resonances 

The more d i s t a n t s-wave n e g a t i v e ene rgy r e s o n a n c e s a l s o c o n t r i b u t e 
t o t h e the rmal n e u t r o n c a p t u r e c r o s s - s e c t i o n , and t h e y have a l a r g e r 
e f f e c t on the slow n e u t r o n s c a t t e r i n g c r o s s - s e c t i o n . The s c a t t e r i n g 
e f f e c t may be unders tood in a q u a l i t a t i v e sense by c o n s i d e r i n g t h e 
asymmetric shape of a t y p i c a l / \ 
s-wave r e s o n a n c e . The B r e i t - / \ ^Oc 
Wigner s i n g l e l e v e l formula for / N. 
t he t o t a l c r o s s - s e c t i o n i n t h e i ^ ^ b o t / ^>N*-'-— 
neighbourhood of one of t h e s e ""TZ— ~̂ — — r~ — — — 
r e s o n a n c e s may be w r i t t e n ^ J £ 

i n which t h e Bre i t -Wigne r denominator BWD i s 

James M J and S to ry J S (1966) IAEA P a r i s Conf on Nucl Data for R e a c t o r s 2_ 
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BWI> r ^ {€ - E r ^ * r*Vl4- (3.16) 

and 

<T^t = A r t R 2 (3.i7) 

i s the potent ia l sca t ter ing cross-sec t ion . The second term on the 
r i g h t in (3.15) a r i s e s from the interference between the resonance 
and po ten t ia l scat ter ing components and i s the cause of the 
asymmetric shape of the s-wave resonance. Away from the 
resonance peak the Breit-Wigner denominator may be approximated 
by BWD = (E-E r)2, showing that the asymmetric term approaches 
the po ten t i a l scat ter ing background only l ike 

1/(E-Er) , 

much more slowly than the l/j(E-Er) of the resonant term 
alone. Consequently the effect of the asymmetric interference 
component extends over a much greater energy range than the 
symmetric resonance peak. 

All the s-wave resonances to the l e f t of a specified energy E 
tend to r a i s e the background cross-sect ion at E, and a l l those 
to the r i gh t of E tend to depress the background cross-section 
at E. 

So far as the sca t te r ing cross-sect ion i s concerned, the effects 
of the unresolved negative energy 
resonances, and of the d i s t a n t 
pos i t ive energy resonances 
beyond the resolved range are to 
modify the potent ia l sca t te r ing 
as shown in the p ic tu re . 

The formulae for the mul t i - l eve l Breit-Wigner approximation are 
set out in Appendix B. The neutron p a r t i a l cross-sect ions are 
expressed a t (B15) and (B16) with (B18) in terms of the factors 
AjjCE), B(E) and C(E) defined by (B19) to (B21), which sum'over 
a l l resonances of the same (1 , J ) ; only single summations are 
involved, but they run in pr inc ip le over a l l resonances, resolved 
and ' d i s t a n t ' of the specified ( 1 , J ) . We may write 

A x - A->e 4- A x , and likewise for B and C, (3.18) 

where A^' sums over a l l the resolved resonances which are represented 
e x p l i c i t l y in the ca l cu l a t i ons , and A x ' ' sums over a l l the 
' d i s t a n t ' resonances a t negative and pos i t ive energies. Because 
they are d i s t an t we can use the s implif icat ion 

B W P r «r (EV'~ E)*. (3.19) 

Then for example 

C"(E) = o/z) 2 rv r rY/3v/i>r (3.20) 
summing over a l l "d i s t an t " resonances. The expectation value i s 

<C"(£)>~ ( V ^ K r n r l E ) . r r ( E ) > / " I W E - X f 2 d X (3.21) 

According to James and Story (1966) the frequency function F(X) 
may be represented 
suff ic ient ly accurate ly by FO0 \ / K*) 

F(X) = 0 in the i n t e rva l \ I 
(EL , EH) occupied by ETu E|rl 
the "known" resonances j 

^r(EL-X)/D2C,(X-EH)/D2C on the two sloping J* (3.22) 

segments with 0 i E L - X * D t and 0 « 5 X - E n ^ D c 

= 1/D if X <S Eu-Ht or if X ^ EM +]>C 
with 

C = 0.7268. (3.23) 
In general D = D(J,X) i s a slowly varying function of X but 
may be replaced with suf f i c ien t accuracy by 

B L - V(S, EL) *rvdL I>H = T>(J, EWV (3.24) 

In (3.21) 

<J \ , (E) .RE)> ~ ^ ( r v i + ry+r^) (3.25) 

supposing JT>J i s not cor re la ted with r~n. (no valence 
con t r ibu t ion) ; and 

<rnlET)> « (rn(«>) P < ( E ) / M * (3-26) 

in which {TV 1 ) is the mean reduced neutron width and 

K* *A/~E - 2.^795*1^/(1+m^/M)1, JwC1 eV-^1 (3.27) 

The mean reduced neutron width is determined as usual from the 
neutron strength function 

<rn<*>> = S-n ( hD(JTT, E) . (3.28) 

Averaging over the Porter-Thomas d i s t r i b u t i o n of neutron widths 
gives 

< r ^ > = ^TVV 1 (1 + V V ) (3.29) 

in which V is the number of effective neutron channels 



V « 1 if I = O, /or every t 
• £ = 0 , i&c wrvy 1 
J - € + l - H / Z 

i>o, £>o, i^^,^a J*||i-eM6| 
s *Z 6tk«.rwis«.. 

' ((3.30) 

After some algebra one finds that 

Ax"(e) = 2^HW(£J-> E5.-EXftc.CJTT, FO>«( |B i -E | /D i ) (3.31) 

B"(E)= t "w^J;E w - ,E) /3(CE H -E) /T>n) (3.32) 

C"(E) * (V2)£ L H W I W ; E i ; ^)IWltJ- , ExVE) 0+2./V) (3-33) 
^ y ^ T C - Ey> +<|5FCJTC>Ei)>]oCC|E:i-E|/T)0, 13.33) 

in which 

WCW; EL; E) = S^L) Urr, EJL) T>e(E)/Mt 
<S v tJn, E . ) > = < r Y U U , E ^ > / ^ 

with a similar expression for ^Sp^vTlX, E^ ) \ , 

The energy dependent factors oL , /3 are given by 

<AM) = C-' t-»v(1 + c/lu. |) 

/3(|W)3 ^ '{ (<l+|u|)^(C+|u|)- |HHH} 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Replacing the sums over d i s t an t levels by an in tegra l in 
(3.21) i s only val id if 

gj . |-* E 

(3.38) ""jr 
-Ei. ^ DcrL) -i 

: H - E ^ T > C E H ) J 

*;H 

otherwise the uncertainty in the estimate diverges. So there must be 
at least one negative energy resonance represented explicitly amongst 
the resolved resonances, and at least one resonance represented 
explicitly (with the specified (2,J)) above the top of the energy 
range in which the cross-sections are to be calculated. 

It should be mentioned that in the derivation of (3.32) the cancellation 
of two infinities is incurred. These occur as a consequence of the 
excessive simplicity of the model used for the distribution of the 
neutron strength. 

The formulae developed above.can also be used with the multi-level 
Reich-Moore formalism for elastic scattering and radiative capture 
only; only the distant level terms 

are required. 

3.2.3 Use of the Reich-Moore Multi-Level Formalism for Elastic 
Scattering and Radiative Capture Only. A Problem Arising 
from the Level-Shift when £ >» 0 

The multi-level Breit-Wigner (MLBW) formalism for neutron resonance 
cross-sections is less accurate than the Reich-Moore formalism, 
because the unitary condition on the collision matrix is violated. 
Frohner (1980, Figure la,b,c,d) has illustrated some cross-section 
errors incurred by using the MLBW formulae with medium mass and fissile 
nuclides. It is natural that the Reich-Moore formalism has long been 
used for shape analysis of s-wave resonances observed experimentally 
in materials such as iron and nickel, and it must be anticipated that 
it will begin to be applied, using resonance analysis codes such as 
FANAC and REFIT, to the analysis of the non s-wave resonances also. 

With both theiMLBW and Reich-Moore formalisms the resonance energies 
or eigenvalues of the theory are shifted, if <- >~ 0, from the 
observed resonance energies. In MLBW the level shift stems only 
from terms belonging to the particular resonance under consideration; 
the exact amount of this shift is easily calculated, and indeed in 
the formulation presented in Appendix B the shift has been formulated 
as zero at the observable resonance energy. 

With the Reich-Moore formalism, even in the relatively simple form 
taking account of elastic scattering and radiative capture only, 
there are contributions to the level shift from all the other 
resonances; moreover these contributions do not appear explicitly 
in the formulae, but only implicitly. 

If one sets out to generate tabular cross-sections from the 
resonance parameters, it is essential to know the amount of the level 
shift fairly accurately so that an adequate energy mesh can be set-up 
at which the cross-sections are to be calculated and tabulated, a 
fine mesh to define the narrowest of the p- and d-wave resonances 
and a broader mesh in between, so as to avoid an excessive amount of 
calculation and tabulation. 

Frohner F H (1980) BNL Conf on Nuclear Data Evaluation Methods and 
Procedures, INDC (USA) 85, Vol 1, 398-399. 
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One method of deal ing with t h i s problem, which has been used in computing 
the c ross - sec t ions of 5 8 Fe , i s to use the Reich-Moore formalism for 
calcula t ing the cont r ibu t ions of the s-wave resonances, and to switch 
into the mul t i - l eve l Breit-Wigner formalism for the £">0 cont r ibu t ions . 
However James (1982) has r ecen t ly been exploring the problem of 
estimating f a i r l y accurate ly the to t a l level shif t of L. > 0 resonances 
in the Reich-Moore formalism; the method appears i n t e r e s t i ng , but 
has not yet been fu l ly tes ted and would possibly break down for two very 
close resonances of the same (•d , J ) . 

Using the formalism given in the f ina l section of Appendix B, put 

U n u s ^ ^ ( - 2 1 0 ^ ) (3.39) 
so that 

W= i + 1JLQ/H- Lcai-m)] = l + 2iG/[<-t t+J)Q] (3.40) 

Now decompose Q 

Q = Q | + c^ (3 .41) 

in which 

Q,M<A) W [ e r E - u / z ) r v 1 ] (3.42) 

i s the cont r ibut ion from the specific resonance of i n t e r e s t , 
and 

c^^(\/-x)Z^ r^/f^-e-u^v] 0.43) 
is the contribution from all other resonances 

After some manipulation 

w= 1 + j -rwc- '^ 'v i (3.44) 
£ -1 V2)r„,[u+i)/{i - u + % } ] 

in which 

£ = tA - E - U/2.)r^ , (3.45) 

the denominator appearing in (3.42). 

James M F (1982) Unpublished work- I am indebted to Mr James for permission 
to present this preliminary account 

Now look at the denominator of the fractional part of W in (3.44): 
This is: 

in the approximation which treats the small term q as real, 
which can be written 

- ErE-u/iKr^+r^') (3.47) 
with 

£<'= [ 6 , - 0 / 2 ) ^ ^ - ^ % - ^ / ^ - ^ + ̂ ] (3-48) 
as the observable resonance energy, and 

*Vi' ^ rWE^-^f -f ̂ ] (3.49) 

The amount of the level shift in (3.48) depends first on 

>8 = ( S £ - B t ) / 1 ^ (3.50) 

With the conventional boundary condition &D— 0 

S^A -1+/fy(lL-$ + O(p^) (3.51) 
in which A = H ̂  f and 

P£ *> p^** /[{2l-tyA? + 0(/>**+*). (3.52) 
By choosing 3 » — •— •£• 

the shift factor S^_ is much reduced, and so too is the factor i 
appearing in (3.48) as a multiplier of the small term q. This change 
appears sufficient to allow the amount of the level shift in (3.48) 
to be calculated with reasonable accuracy. The numerator of W-l 
in (3.44) still needs further exploration, and further testing is 
needed. 

Some conclusions may be drawn however. In particular an experimenter 
or evaluator fitting non s-wave resonances with the Reich-Moore 
formalism should:-

(1) Quote the boundary conditions used 

(2) Give the complete set of parameters for all resonances used in 
the fit 
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4 FISSION-PRODUCT DECAY HEAT 

When a r e a c t o r i s shut-down, for whatever r e a s o n , t h e e v o l u t i o n of hea t w i l l 
c o n t i n u e in consequence of t h e b e t a decay of t h e accummulated f i s s i o n - p r o d u c t s , 
w i t h some a d d i t i o n from the decay of s h o r t e r - l i v e d a c t i n i d e s such as U, 
239flp and, on a somewhat longer t i m e s c a l e , 24lAm. Immedia te ly a f t e r shut-down 
the f i s s i o n - p r o d u c t decay h e a t ou tpu t i s abou t 6.3% of t h e p receed ing 
o p e r a t i n g power; for a p o w e r - s t a t i o n r e a c t o r o p e r a t i n g a t 3000 MW t h e r m a l , 
the f i s s i o n - p r o d u c t power a t shut down i s t h e r e f o r e a b o u t 190 MW, and for r e a s o n s 
of s a f e t y the s t andby c o o l i n g p r o v i s i o n s must be c a p a b l e of removing t h i s 
h e a t . Design e n g i n e e r s , c o n s c i o u s of the c o s t of t h e s t andby coo l ing 
p l a n t , which t h e y hope w i l l never be needed for emergency, a r e n a t u r a l l y v e r y 
much concerned w i t h the accu racy of decay h e a t e s t i m a t e s . 

In r e a l i t y of c o u r s e for a l i m i t e d p e r i o d , up t o p e r h a p s 100 sees a f t e r 
shut-down^ t h e r e a r e o the r h e a t sou rces which c o n t r i b u t e i m p o r t a n t l y t o the 
u n c e r t a i n t y i n t h e shut-down power; fo r example shut-down i s i n i t s e l f no t 
an i n s t a n t a n e o u s e v e n t , and a f t e r i t has been e f f e c t e d t h e r e w i l l c o n t i n u e 
t o be some f i s s i o n h e a t i n g induced by r e s i d u a l de l ayed n e u t r o n s ; i n consequence 
t h e a c c u r a c y r e q u i r e m e n t on t h e f i s s i o n - p r o d u c t decay power i s most s t r i n g e n t for 
c o o l i n g t imes g r e a t e r than about 50 sees a f t e r shutdown. An approximate 
i n d i c a t i o n of t h e r e d u c t i o n i n f i s s i o n - p r o d u c t decay power a s a f u n c t i o n 
of c o o l i n g t ime t a f t e r a l o n g - c o n t i n u e d p e r i o d (assumed i n f i n i t e ) of s t e a d y 
o p e r a t i o n of a r e a c t o r f u e l l e d wi t h 235u i s g iven i n Tab le 4 . 1 , taken from 
a r e v i e w made i n 1965. Even a f t e r 3 hours c o o l i n g t h e e v o l u t i o n of decay 
h e a t i n a power r e a c t o r i s s t i l l v e r y l a r g e . 

Beta and Gamma 
Power, a s % 

of O p e r a t i n g Power 

6 .35 
4 .77 
3 .09 
1 .82 
0.96 

F i s s i o n - p r o d u c t decay h e a t can be c a l c u l a t e d by summing the c o n t r i b u t i o n s 
of every f i s s i o n - p r o d u c t , u s i n g t a b u l a t i o n s of the average y i e l d pe r f i s s i o n 
of each one, and of the a v e r a g e b e t a and gamma energy evolved in i t s d e c a y . 
The a n t i - n e u t r i n o e s which accompany the be ta p a r t i c l e e m i s s i o n s , and 
which c a r r y off abou t 40% of t h e t o t a l decay ene rgy , may be supposed t o 
e scape i n t o the void w i t h o u t i n t e r a c t i o n . In t a b l e s of r a d i o - a c t i v i t y 
decay d a t a , such a s t h e "Tab le s of I s o t o p e s " (1978) i t i s customary t o g ive 

TABLE 4.1 

Cooling Time 
Seconds 

1 
10 

100 
1000 
104(2.78h) 

the end-point energy of each beta branch, which i s the to ta l k ine t ic energy 
of electron and ant i -neutr inoes together . In se t t ing up tables of decay heat 
data i t i s therefore necessary (A>Z) 
to ca lcula te from the end-point \ N. ^ v ^ V . 
energies the average electron Nv \ / r \ 
energy for each beta branch 
of the decay scheme (the 
t r ans i t ions represented by 
the sloping l ines in t h i s 
schematic diagram). (A, Z + \) 

The average length of beta decay chains in fission-product can be estimated 
quite easily, and the values shown in Table 4.2 are from the reports of 
James (1969). 

JL * 

TABLE 4 .2 
F i s s i l e Nuc l ide Average No of /Q *s 

2.61 
3.02 
3.57 
2 .74 
3.16 

+ 
+ 

0.035 
0.025 

U233 thermal f i s s i o n 
U235 thermal f i s s i o n 
U238 f a s t f i s s i o n 
Pu239 thermal f i s s i o n 
Pu24l thermal f i s s i o n 

However, i n o r d e r t o cover c o m p l e t e l y a l l the f i s s i o n - p r o d u c t s which a r e 
produced in a p p r e c i a b l e y i e l d s in t h e f i s s i o n of 235u, decay h e a t d a t a must 
be provided fo r abou t 6 r a d i o a c t i v e n u c l i d e s in each mass c h a i n , a t l e a s t 
for t h o s e whose masses l i e near t h e peaks of the f i s s i o n y i e l d c u r v e . Taking 
i n t o account t h e f i s s i o n p r o d u c t s from o t h e r f i s s i l e n u c l i d e s of impor tance 
i n c r e a s e s the number of n u c l i d e s f o r which decay d a t a a r e r e q u i r e d . 

The e a r l i e s t e l emen t s (of lowest a tomic No. Z) i n each decay cha in have the 
g r e a t e s t energy r e l e a s e and c o n s e q u e n t l y t h e s h o r t e s t h a l f - l i v e s , b u t b e c a u s e 
of t he s h o r t h a l f - l i v e s d e t a i l e d and a c c u r a t e decay d a t a a r e hard t o measure , 
though a g r e a t d e a l of i n fo rma t ion has been ob t a ined d u r i n g t h e l a s t decade 
th rough the use of o n - l i n e e l e c t r o m a g n e t i c s e p a r a t o r s , such as LOHENGRIN a t t h e 
h igh f l u x r e a c t o r i n Grenob le , and OSIRIS a t Uppsa la , and i s c o n t i n u i n g t o 
come fo rward . 

To i l l u s t r a t e t h e magnitude of t h e t a s k , the f o l l o w i n g s t a t i s t i c s on the 
c o n t e n t s of t he f i s s i o n - p r o d u c t decay d a t a f i l e UKFPDD-2 have been drawn 
from the r e p o r t by Tobias and Davies ( 1 9 8 0 ) . Comparable f i s s i o n - p r o d u c t decay 
l i b r a r i e s have been produced in France and America , a l l i n t he ENDF/B4 or ENDF/B5 
f o r m a t s , and t h e r e has been a good l e v e l of c o - o p e r a t i o n i n t h e s e d e v e l o p m e n t s . 

"Tab les of I s o t o p e s , 7 t h e d i t i o n " e d i t e d by Ledere r C M and S h i r l e y V S 
(Wiley 1978) 

James M F (1969) J Nucl Energy 23_, 517; £5_, 513 

Tobias A and Davies B S L (1980) RD/B/N4942 



Total number of nuclides 855 

Stable nuclides 119 1 
> 855 

Radioactive nuclides 735 f 
Ground state 595 » 
First isomeric state 133 S 735 
Second isomeric state 7 J 

Nuclides with beta/gamma spectra 39O •> 

Nuclides with estimated decay energies 346 J 

Nuclides with estimated half-lives 1 97 

736 

Yoshida and Nakasima (1981) give these statistics on a preliminary version 
of a new fission-product decay data library being produced for the Japanese 
Nuclear Data Committee 

Total number of nuclides 1100 
Nuclides with ^ 5 MeV decay energy: 

I Half-life and decay scheme both known 88 
II Half-life known, but not decay scheme 98 
III Neither half-life nor decay scheme known 298 

Concerning the nuclides with large decay energies, they report further 
that those in category III make only a minor contribution to the total decay 
heat, even at very short cooling times; those in category II contribute 
nearly 15% of the total decay heat at 10 seconds cooling time after an 
instantaneous burst of U235 fissions. However their further studies point 
to the contributions from the nuclides in category I as predominant in the 
cooling time interval up to several hundred seconds, and strongly indicate 
the need for further work on the decay schemes of these nuclides. 

For a radioactive nuclide with a high energy release, the decay scheme 
is likely to be very complex, and unless it can be studied in great detail, 
with/3Y- anQf Y Y*"~ coincidence spectrometry for example, the true structure 
may not be properly identified. For example, the relative intensities of 
the various gamma rays evolved in the decay may have been measured, and if 
these can be assembled into a decay scheme the relative intensities of the beta 
branches to the excited states of the daughter nucleus can be determined, but 
the absolute beta intensity to the ground state of the daughter may be unknown. 

The decay data alone are not sufficient for summation calculations of fission 
product decay power; fission-yield data are required also, and not only the 
chain-yield data which are relatively well-established for the principal fissile 
nuclides, but the independent yield for each separate fission-product, and for 
each fissile nuclide of interest. Crouch (1977) gives a succinct account 
of compilation of experimental data on fission product yields from thermal, 
fast and 14 MeV neutron induced fission for a considerable range of fissile 
nuclei, and of his evaluation of these data. 

Yoshida T and Nakasima R (1981) J Nucl Sci and Technology _^8, 393 

Crouch E A C (1977) Atomic Data and Nuclear Data Tables 19, No 5 

For the principal fissile materials reasonably good data are available 
for the majority of the cumulative chain yields, but the information 
available on the independent yields of the short-lived fission-products is much 
more limited, though more has become available since the Crouch review was 
written, and has been compiled in his computer file of fission yield data. 
For the majority of fission products and fissile nuclides, except perhaps 
for thermal neutron induced fission of 235u, the independent yields must be 
estimated using systematic arguments; the basis and origins of these 
methods are conveniently summarised in Crouch's review. 

A properly evaluated set of fission yields, relating to a particular 
class of neutron induced fissions of the fissile nuclide (Ap, Zp) must 
satisfy (through the use of adjustment procedures if need be) the following 
physical constraints 

A^y(A,Z) = £ y A = Zj (4.1) 

£ A.y(A,Z) = S A.V*. - Ap + 1 - Vp (4.2) 

for conservation in the mean of the number of nucleons, after emission 
of the prompt neutronsj 

E 2<A,z) - £ y(A, z F - Z ) , (4.3) 
A 

the requirement that the yields of complementary elements be equal, 
for conservation of the number of protons; with (4.1) this is equivalent to 

Z^ Z.^(A, Z) = Zp. (4.4) 

In these formulae y(A,Z) is the independent yield for production in fission 
of the nuclide (A,Z) and YA is the chain yield in the chain of mass 
number A; Vj» is the average yield on prompt neutrons. 

These constraints are extremely important and go far to balance out the effects 
of errors in the estimation of independent yields; they ensure for example 
that if the^average length of the chain of mass A is made rather too long, 
the complementary chain (or chains) will be shortened to correspond. 

From what has been stated above it will be clear that summation calculations 
of decay heat involve very large numbers of input data, and that particular 
uncertainties attach to the short-lived fission-products, those which 
contribute most to the decay power shortly after shut-down. How can we assess 
reliability of calculations based on these data? 

Firstly a number of sensitivity studies have been made of the uncertainties 
in the summation method. These studies have been summarised conveniently 
in Section 5 of the review paper by Tobias (1980), and he gives a comparative 
table of the estimated uncertainties in decay heat from the fission-products 
arising from long-continued (12 to 120 day) steady thermal neutron irradiation 
of 235u; results are given for decay times from 1 to 10^ sees (120 days), and 
a selection from Tobias' table is given in Table 4.3 below. It is not clear 

Tobias A (1980) "Decay Heat", Progress in Nuclear Energy 5_, No 1, 1 |97 



TABLE 4.3 

ESTIMATED UNCERTAINTIES OF FISSION-PRODUCT DECAY HEAT FROM SUMMATION CALCULATIONS 

(from Tobias (1980) Prog Nucl Energy 5/1) 1, review paper) 

Irradiation Time (107 sees) 1 .28 1.0 8 3 1-10 

Decay 
Sees 

1.0 

10 

100 

10* 
(2.8h) 

106 

(I-2d) 

108 

(120d) 

Source of 
Uncertainty 

Yields 
Half - l ives 
Decay energies 
TOTAL 

Yields 
Half - l ives 
Decay energies 
TOTAL 

Yields 
Half - l ives 
Decay energies 
TOTAL 

Yields 
Hal f - l ives 
Decay energies 
TOTAL 

Yields 
Hal f - l ives 
Decay energies 
TOTAL 

Yields 
Hal f - l ives 
Decay energies 
TOTAL 

Uncer ta in t ies , 
(a) 

1.22 
-

7.12 
7.30 

0.89 
-

5.26 
5.34 

0.36 
-

2.17 
2.20 

0.17 
-

1.61 
1.61 

-
-
-
-
-
-
-
-

(b) 

0 .9 
0 .2 
6 .5 
6 .9 

0 .8 
0 .3 
4 . 3 
4 .8 

0 .6 
0 .4 
1.4 
2 . 5 

0 .3 
0 .8 
1 .1 
2 .0 

0 .3 
0.7 
0 .6 
1.1 

0 .4 
1.0 
1.6 
2 .0 

(c) 

0.61 
0.31 
1.68 
1.81 

0.51 
0.23 
1.55 
1.65 

0.32 
0.36 
I .18 
1.27 

0.29 
0.18 
0.72 
0.79 

0.37 
0.14 
1.42 
1.48 

0.45 
0.44 
2.72 
2.89 

Per Cent 
(d) 

0.92 
0.46 
2.19 
2.42 

0.89 
0.43 
2.20 
2.41 

0.98 
0.34 
1.76 
2.05 

2.47 
1.01 
0.47 
2.71 

7.84 
0.41 
0.22 
7.85 

5.62 
0.40 
0.34 
5.64 

(e) 

0.95 
0.2 
7.12 
7.19 

0.77 
0 .3 
5.26 
5.32 

0.51 
0.4 
1.79 
2.26 

0.34 
0.8 
1.15 
1.44 

0.44 
0.7 
1.01 
1.39 

0.63 
1.0 
2.16 
2.48 

(a) Trapp et al (1977) OSU-NE-7701 

(b) Schmittroth & Schenter (1977) Nucl Sci Eng 63_, 276 

(c) Devillers (1977) IAEA-213, review paper No 4 

(d) Yamamoto & Sugiyama (1978) Ann Nucl Energy 5_, 621 

(e) Tobias, estimated for UK decay data files 

why Yamamoto and Sugiyama attributed such large values to the uncertainties 
induced by the fission yield data at the longer decay times; on the other 
hand they seem to have been more optimistic than others about the accuracy 
at the longer decay times of the half-life data and decay energy data. 

Sensitivity studies cannot take into account the possible consequences 
of gross experimental errors, such as the wrong assignment in Z or A of some 
short-lived activity, nor can they readily make allowance for unknown systematic 
faults in evaluations of the energetic short-lived fission-products. Since 
questions of reactor safety are involved it is essential to test the 
accuracy and reliability of the very complex summation calculations with 
integral measurements of decay heat. 

The integral measurement methods fall into two classes: 

(i) Measurements of beta and gamma spectra, with subsequent numerical 
integration, or measurements of the beta or gamma power with 
counters which integrate over the whole spectrum. 

(ii) Calorimetric measurements. 

The difficulty in applying the calorimetric method to the gamma heat output 
is that the calorimeter has to be massive enough to absorb the whole gamma 
ray energy, although the gamma spectra extend to 5 MeV at least. But a 
massive calorimeter has a slow response-time in general, so the method has 
not been very useful for measurements down to *» 100 sees decay time. This 
problem was resolved recently by Yarnell and Bendt (1977) at LANL with 
their "cryogenic boil-off claorimeter". Essentially a massive copper calorimeter, 
52kg, was used, but by operating at liquid helium temperature the specific heat is 
reduced very greatly and the calorimeter has a time constant of only 0.85 
sees. 

Decay heat comparisons between summation ca lcula t ions and in tegra l measurements 
were carr ied out by James (1981) and were reported to the NEA Committee on 
Reactor Physics during i t s meeting at Winfrith in September 1981; th i s work 
was subsequently up-dated by James (198 2) for presenta t ion to the UK Nuclear 
Data Forum, and he has generously made h is notes and tables and graphs available 
to me. Most of what follows i s from his work. 

A brief summary of recent in tegra l measurements of f ission-product decay 
heating may be useful and i s given in Table 4 .4: a summary of ea r l i e r work 
may be found in Section 2 of the review by Tobias (1980), and some comparisons 
between summation calcula t ions and those in t eg ra l experiments may be found 
in the same review. 

Yarnell J L and Bendt P J (1971) LA-NUREG-6713; see a lso (1978) LA-7452-MS, 
NUREG/CR-0349. 

James M F (1981) NEACRP-A463; (1982) unpublished work. 



TABLE 4.4 

RECENT INTEGRAL MEASUREMENTS 

CALDRIMETRIC 

L o t t + (1973) U235 ' 
Fiche + (1976) Pu239) 

BETA AND GAMMA SPECTROMETRY METHODS 

CEA 

Yarnell & Bendt (1977/8) 
U235 & Pu239 LANL 

Schrock + U978) U235 
UCB 

Gunst + (1974-7) Th232, 
U233, U235, Pu239 
(cooling time 14 hr) 
BAPL 

BETA + GAMMA 

Dickens + (1977/8) 
U235, Pu239 & Pu241 
ORNL 

Friesenhahn + (1976/7) 
U235 & Pu239 IRT 

BETA 

Dickens + (1977/8) 

Friesenhahn + (197 6/7) 
Alain & Scobie (197 4) 
U235 Scot URRC 

Murphy + (1979) 
U235 & Pu239 AEEW 

Taylor & Murphy (1980) 
U235 & Pu239 (AEEW) 

GAMMA 

Dickens + (1977/8) 

Taylor & Murphy (1981) 
U235 & Pu239 AEEW 

Each measurement can be compared directly with a summation calculation effected 
for the corresponding irradiation time I and decay time t, and the values of 
the ratio of calculation/experiment can be compared by graphical representation 
on a convenient scale. 

Several comparisons of this kind were given in James' paper, Figures 4.1 and 
4.2 probably deserve most study. They show calculation/experiment ratios for 
both 235y and 239Pu total decay heat, using the measurements of Dickens et al 
(1977, 1978) at ORNL and of Yarnell and Bendt (1977/8) at LANL. In each 
graph the curves for the two fissile nuclides are similar in shape, but 
the ratio calculation/experiment is about 7% smaller for 239Pu than for ^3->u. 

Comparisons of calculation/experiment were made also using the measurements 
of Friesenhahn & Lurie (1976, 1977) following a 20,000 sec ( 5.56 hr) 
irradiation of 235u, and it was noted that their data are systematically 
about 2% lower than those of Yarnell & Bendt, who used the same irradiation 
period, for decay times from 20 to 1300 sec; at longer decay times the 
agreement is better, but the scatter in both sets of data inplies an increase 
in the random error to about + 1%. 

Comparisons of calculation/experiment were made using the measurements 
of Friesenhahn & Lurie (1976, 1977) following 1000 sec irradiations 
of 235y anc[ 0f 23 9pu< p o r 235u there is good agreement with the 
measurements of Lott et al (1973) for the same length of irradiation, 
except below about 300 sec decay time where systematic errors in the 
calorimetric measurements by Lott et al may be appreciable. From 1 to 1300 
sees decay time the calculation/experiment ratios for 23^Pu axe about 
2 to 3% below those for 2 3 5U. 

On the other hand comparing the total decay heat measurements of Friesenhahn et al 
(1976, 1977) following 1 day irradiations of 235U and 239Pu, in contrast 
to the information from other measurements, the calculation/experiment ratios 
for 239Pu are about 2 to 3% above those for 235U. Consideration of the beta 
decay heat alone shows, in Figure 4.3, rather good agreement between 
calculation and experiment for 23^U. With the measurements of Murphy et al 
(1979) following a 105 sec (1.16 day) irradiation of 2 3 5U, the calculation/ 
experiment ratios lie in the range 0.98 to 1.02 up to 1900 sees decay time; 
using the data of Friesenhahn et al (1976, 1977) following a 1 day irradiation 
of 235u, the calculation/experiment ratios are about 3 to 6% lower. 

Because of the different irradiation times that have been employed it is a 
more difficult task to compare the different sets of data, and to check the 
consistency of measurements made after different irradiation periods. With 
this problem in mind we introduce two decay functions. 

m(t) the average decay power per fission at t sees after an 
instantaneous burst of fissions 

M(I,t) the average decay power t sees after steady irradiation of the 
fissile material for I sees at I fission/sec. 

From their definitions it is easy to see that 

Md, t ) - / t
t + t r-^(h') a t ' = J^lUt) t'.TAlb'i MUb') (4.5) 

- M(oo} b) - M(oo, I + t ) . (4.6) 

If ( I + t ) i s l a r g e a summation c a l c u l a t i o n v a l u e may be used fo r t h e 
smal l c o r r e c t i o n term on t h e r i g h t , so t h a t t he i n f i n i t e i r r a d i a t i o n 
f u n c t i o n M ( o o , t ) may be d e r i v e d from M ( I , t ) . 

L o t t M, L h i a u b e t G, Dufreche F & de T o u r r a i l R (1973) J Nucl Energy 27_, 597 

F i c h e C, Dufreche F & Monnier A M (1976) CEA - I n t e r n a l Repor t 

Schrock V E, Grossman L M, P r u s s i n S G, Socka l i ngen K C, Nuh F, Fan C-K, 
Cho NZ & Oh S J (1978) EPRI-NP-616 Vol 1; see a l s o Schrock V E (1979) Prog Nucl 
Energy 3_, 125 

Gunst S B, Connor J C & Conway D E (1974) WAPD-TM-1182, -1183 ; (1975) Nucl 
Sci Eng 56_, 241 ; (1977) Nucl Sc i Eng (v4, 904 

Dickens J K, Emery J F , Love T A, McConnell J W, N o r t h c u t t K J , P e e l l e R W 
R Weaver H (1977) 0RNL/NUREG-L4; (1978) ORNL/NUREG-34; NUREG/CR-0171; 
ORNL/NUREG-47_ 

F r i e s e n h a h n S J , Lu r i e N A, Rogers V C & V a g e l a t o s N (1976) EPRI-NP-180; 

F r i e senhahn S J & L u r i e N A (1977) IRT 0304-004 

A l a m B & Scobie J (1974) Ann Nucl Sc i Eng \_, 573 

Murphy M F, Tay lor W H, Sweet D W and March M R (1979) AEEW - R 1212 

Taylor W H & Murphy M'F (1980, 1981) Unpublished 
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The functions m(t), M(I,t) may be applied 
to discussion of the beta decay power, 
to the gamna decay power, or to 
their sum. In principle there is a 
dependence on the neutron flux level 
used in the irradiation, because of 
the effects of neutron capture, but 
these effects are very small except 
at long decay times. To understand 
this it is helpful to consider the 
effect of neutron capture on the 
concentration of a particular fission 
product. The rate of change of the 
concentration during irradiation is 

, t.-m(b) 

k(I+t) 

(A.7) 

The first term on the right denotes the rate of loss through decay, and 
the second term is the rate of loss through neutron capture; the final 
term is the source term, denoting new production by fission. Thus the 
effect of the capture term is to replace A. by A.+-0 O*̂  
do X and <f> (Ty compare? 

How 

0 < T y / X . S $Gy. IO- 7-Z+\ kT l / l , (Rr- '>- '56oo/ t*n.2.) (4.8) 

with 0 in neutrons/cm sec, C3"y in barns, and T | in hours. 
I O C 

Taking Xe by way of example, with the l a rges t measured capture cross-
section, we may set 

and l e t us assume that 0 = 10'2 neutrons/cm^sec. Then 

0CTv/V= 0-11* (4.9) 

If Cy i s only 3000 barns, which i s s t i l l a very large neutron c ross -
section, the h a l f - l i f e must be '"^ • 1 year for the same level of 
competition between capture and decay. For the great majority of 
nuclides the capture cross-sec t ion i s much smaller than t h i s , which 
explains why the effects of capture may be ignored in decay heat 
ca lcu la t ions , except a t very long decay times when only a few long-
lived a c t i v i t i e s remain. Such neutron capture as does occur generates, 
in general , other ac t ive nucl ides , a l i t t l e more neutron r i c h , which 
must be expected to evolve as much decay heat , or s l i g h t l y more, than 
the a c t i v i t i e s destroyed. 

Some genera l i sa t ions of (4.5) and (4.6) may be wr i t ten down: 

M M , t ) * 2 M(I, fcl+t) (4.10) 

which enables data for the longer i r r a d i a t i o n n l to be bu i l t -up , by 
summing data from measurements made with the shorter i r r ad i a t i on I , provided 
tha t the measured values extend to s u f f i c i e n t l y long decay times. Another 

such formula i s 

*~° - M ( I , * H - t ^ (A •«) 
which may be useful if £ 2 ~ 1 "»£/ I . 

If I -*5< t, the approximation 

M ( I , t ) « I . 7 n . ( t -r-I/2.) (4.12) 

may allow the more sensitive "burst-function" m(t) to be generated from 
short irradiation measurements. 

A variety of different methods have been employed for comparing measurements 
taken after differing periods of irradiation. One convenient method is to 
fit the measurements, alternatively, with 

(a) cubic spline functions 
(b) a sum of exponential functions 

and then to derive the burst function m(t) or the infinite irradiation 
function M(00,t) analytically. Burst functions m(t) for the total decay 
power from 

235u 
and from 23 9pu fission products have been derived in this 

way and are illustrated in Figures 4.4 and 4.5; the corresponding summation 
calculations made with the 1981 UK Fission Product Decay Data library are 
included for comparison; the fission-product yields used in the calculations 
are from a revised set compiled by Crouch, and include yields for production 
of isomeric states (this is the set C3I). 
An important new development in these studies is that of comparing calculated 
and measured values of the ratio 

1 * ( l , t ) = [ M ( I , b) f o r P u L - 2 3 9 ] / [ n a , t ) ^ U - 2 3 5 1 (4.13) 

That t h i s i s useful for the summation ca lcu la t ions was pointed out by 
Trapp and Spinrad (1978). Although the f i s s ion yield data are somewhat 
d i f fe ren t for the two f i s s i l e mater ia ls , the f i s s ion product decay da ta 
(ha l f - l ives , energies and branching r a t i o s ) are the same for both; however 
the data for the chains of masses A = 100 to 110 are more important for 
239pu> because of the i r larger y ie lds . 

So far as measurements are concerned, one expects that some of the 
systematic e r ro rs of a pa r t i cu la r experimental method may cancel on taking 
the r a t i o ; for example detector e f f i c i enc ies , and in methods of determining 
the numbers of f i s s i o n s . 

Trapp T J and Spinrad B I (1978) OSU-NE-7801 



By using equation (4.10) the fission-product decay data of Dickens et al 
(1977, 1978), following relatively short irradiations of 235U and 239Pu, 
were combined to provide data corresponding to 20,000 sec irradiations, the 
irradiation period used by Yarnell and Bendt (1977, 1978). The ratios R(I, t) 
of (Pu239 total decay heat)/(U235 total decay heat) were found to be in 
reasonably good agreement between the two sets of measurements, as shown 
in Figure 4.6, at least in the time range t = (20, 3000) sees. The 
corresponding rat ios obtained from summation calculations show a similar 
variation with decay time, to the experimental data, but are 7 to 9% lower. 

Busrst functions derived from the -̂̂ U and 2™Pu fission-product decay 
data measurements of Lott et al (1973) and Fiche et al (1976) at the CEA, 
of Dickens et al (1977, 1978) at ORNL, and of Yarnell and Bendt (1977, 1978) 
at LANL, have also been compared. There is excellent agreement between the 
two sets of calorimetric measurements from the CEA and LANL over the time 
interval t = (60, 105) sees, and with the ORNL measurements over the narrower 
interval t = (200, 6000) sees; outside this interval the ORNL data, fall 
considerably below the calorimetric ratio data. The corresponding ratios 
derived from summation calculations have a broadly similar time dependence, 
especially in comparison with the calorimetric data, but are 8 to 10% lower. 
It is interesting to speculate whether the resolution of this discrepancy 
in the burst function ratio 

T ( t ) = [rrv(t) 4or 1>u_-r$9j/['wv(.t> f x U-1*S] (4 .14) 

would also resolve the discrepancy in the ratio R(20000 sec,t) values which 
was mentioned in the preceding paragraph, but at present further work will 
be needed before the discrepancies between different sets of measurements 
and the faults in the summation data have been positively identified and 
sufficiently reduced. 

In conclusion: 

(1) There are systematic differences between the decay heat measurements 
at different laboratories. Some may arise from errors in estimating 
the numbers of fissions, but as the discrepancies show some variation 
with cooling time, presumably part must be caused by errors in 
estimating detector efficiencies (possibly because of variations 
of beta or gamma spectra). 

(2) For some of the sets of measurements, the discrepancies are appreciably 
reduced if the ratio of Pu239/U235 decay heat is considered, implying that 
some of the systematic errors are independent of the fissile nuclide, 
(or if dependent on fissile nuclide are the same at each laboratory). 

(3) Calculated values for 23->U decay heat fall roughly between the 
different sets of measured values, but for ^3'Pu calculation 

• 239 generally underestimates the decay heat. However, when the ratio of J:7Pu 
to 

235u 
decay heat is considered the calculated values have roughly the 

same variation with cooling time as the measured data, which indicates 
significant faults among the decay data affecting the summation 
calculations for both fissile nuclides. 

(4) Until the discrepancies have been definitively resolved, the following 
uncertainties are proposed for decay heat calculations with the UK 
Fission-Product Decay Data Library: 

(a) For -"U, the uncertainty in the total decay heat following 
an infinite irradiation should be: 

+ 7% for cooling times less than 200 seconds 
+ 5% for longer cooling times , 

both for 1 standard deviation. 

(b) For 39pu, the uncertainty in the total decay heat following 
an infinite irradiation should be + 10%, for 1 standard deviation. 

A basis for these uncertainty recommendations may be found in the following 
table. 

FISSION PROD DECAY HEAT, CALCULATION/EXPERIMENT COMPARISONS 

Experiment 

ORNL 
1=1, 10, 100 sees 

LANL 
1=20,000 sees 

IRT 
1=20,000 sees 

Calc/Expt U235 

1 .00 to 1 .06 Av *= 1 .03 

0.96 to 1.02 Av«0.99 

0.94 to 1 .00 Avs=0.97 

Calc/Expt Pu239 

0.91 to 0.99 Av*=0.93 

0.88 to 0.95 Av«0.92 

For 2-39pu <jecay heat calculations the proposed uncertainty of + 10% 
certainly does not appear excessive, if one looks at the largest 
discrepancies. However it should be borne in mind that in practice the 
decay heat may be allowed slightly to exceed the estimate for a short time, 
provided that thereafter it falls below the estimate. 

Further work, based on the measurements of Dickens et al (1977, 1978), 
suggests that at short cooling times, up to about 300 seconds, the 
beta power is being overestimated in the summation calculations, both 
tor 235u fiss ion-product decay heat and for 239pUj whereas the gamma 
power is being underestimated. The implication is that too much of the total 
decay energy is being assigned to the anti-neutrinoes. Much the same 
conclusions emerge from the calculations of Yoshida and Nakasima (1981) -
reference on page 47 above. They tried the effect of replacing the beta and 
gamma decay energies, which had been inferred from experimental measurements 
of 87 of their category I fission-product nuclides, with values 
calculated using the gross theory of beta decay. This had the effect 
of reducing the beta power and increasing the gamma power in their summation 
calculations, and it was found that for 23->U, 239pu and 24lpu the summation 
calculations were brought into reasonably good agreement with burst 
functions derived from the integral measurements of Dickens et al (1977, 1978), 
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APPENDIX A 

THE DYSON-MEHTA OPTIMUM ESTIMATOR FOR MEAN LEVEL SPACING 

The a u t h o r s s e t up an ene rgy i n t e r v a l of l e n g t h 2L, and 

£ | examine the energies of a 
family of resonances in t h i s 
i n t e rva l : the family i s assumed 
to consist of one fitsot^Vrvce. 0 ITn.«_i-gi«_s 
or more level sequences and i s assumed 
to be complete and uncontaminated within 
the i n t e r v a l . For convenience in 
der iva t ion the zero of energies i s shifted to the mid-point of the in te rva l . 
Then the optimum l inear s t a t i s t i c a l estimator for the mean level spacing 
gives 

T> s *L/ l2 | ;V<-( i r Y./L) x ' } (1 ±VT^T>/TrL) (Ai) 

supposing the family of resonances contains m independent sequences 
(e .g . the s-wave resonances of an odd-mass isotope, with 2 spin s t a t e s ) . 

Note that approximately 2L/D • n, the number of resonances in the 
in t e rva l , so the 

Fract ional Uncertainty •» {2 t/^Z/lx) yn~/r\. «* O • <̂  inn_/tV. 

This i s qui te good already if n = 10 for m = 1 
:n = 20 for m = 2 

In practical application the energy zero is linked to the set of E , not to 
the arbitrary interval 2L. With E = 0 for zero kinetic energy of the 
incident neutron 

2L = £-n.-Et + CX44.X2)-D 
7.L 

El E a 
A 
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The formula (Al) now becomes 

.1>* (TrL 2 /2QHl ± v^Fm. D/Jt L) (A3) 

in which 

Since Q contains D in a f a i r l y complicated way, (A3) i s solved 
approximately by inputting an i n i t i a l guess D = Dj, to which corresponds 
Q = Qi. Then to f i r s t order 

Q » Ql •*- ( T > - ^ ) Q! (A5) 

with Q , ' = C<* <V <*-!>] U = 3)4 (A6) 

With a little algebra, and using (A2) to (A6) 

D = [ B + / ( B l + ACg/A (A7) 

with 

A = %Qi- nt\i + \x)
2 <A8) 

B - U < V D < - Q 0 -*-TT(Xt+V)2 (A9) 

C = rrCE-rv-EO2 (AIO) 

Choice of X j and ^ 2 is a rb i t rary , subject to 

\ \ >• 0, ~\i>- 0 (Al l ) 

and 

X j + X 2 ^ . 1 , (A12) 

since the 2L in te rva l must not be expanded enough to include any 
addi t ional reasonance. As has been stated before, the Dyson-Mehta 
formulae are val id only for large n; however we now choose \ \ % X. 3. 
so that the formula for D i s se l f -cons is tent when n = 2, that i s to 
say we requi re the resu l t 

D = E2 - Ej 

with X1 = X2 = \ for s impl ic i ty , the requirement i s 

( X + 1/2)2. =, iUjn)J\(.\ + \) (A13) 

whence 

\ = 0.64556 ( A U ) 



This v a l u e fo r A, may perhaps enab le the formulae t o g i v e " s e n s i b l e " 
v a l u e s fo r D even when n i s s m a l l . For l a r g e n t h e r e s u l t s should be 
i n s e n s i t i v e , t o t he e x a c t v a l u e s chosen fo r \ \ and X 2 

As f o r t he i n i t i a l guess i n p u t f o r Dj , an improved v a l u e may be inpu t each 
t ime t h e code i s r e - r u n on t h e same problem. 

APPENDIX B 

NEUTRON RESONANCE CROSS-SECTIONS 

B. I P r e l i m i n a r y Remarks 

The t a r g e t n u c l e u s i s c h a r a c t e r i s e d by i t s mass M, spin quantum number I , 
p a r i t y TTo and n e u t r o n i n t e r a c t i o n r a d i u s R. The r e sonan t s t a t e of t h e 
compound n u c l e u s i s c h a r a c t e r i s e d by i t s t o t a l angular momentum (or s p i n ) 
quantum number J and p a r i t y Tl , and can be exc i t ed by p a r t i a l waves w i t h 
any o r b i t a l a n g u l a r momentum quantum number (_ s a t i s f y i n g bo th 

( -0* = TT0TT (BD 

Lj ^ I ^ L2 (B2) 

w i t h 

L, = M L T U ( | J - | I - 1 / Z 1 | , | J - I - ' / 2 | ) (B3) 

In p r a c t i c e i t i s n e a r l y a lways s u f f i c i e n t to a t t r i b u t e the whole 
i n t e r a c t i o n t o the s m a l l e s t i. which s a t i s f i e s (Bl and B2), and t h i s 
approx imat ion has been fo l l owed u n i v e r s a l l y in what f o l l o w s . With 
t h i s app rox ima t ion i t becomes p o s s i b l e t o w r i t e 

5JL(E) = H 0}£(E) i = Tu-a, ny , i\F, TTVT (B5) 

and f u r t h e r 

Oj/lE) - Z9jCrx**(E) (B6) 
j 

i n which the sum over J r u n s t h r o u g h the resonance J - v a l u e s which have 
the s p e c i f i e d C 

J » (K-U-V2II, t + I + </2). <B 7> 

B . I I The M u l t i - L e v e l B r e i t - W i g n e r Formal ism 

For a p a r t i c u l a r t a r g e t i s o t o p e and ( C , J ) v a l u e the e l a s t i c , c a p t u r e 
and f i s s i o n c r o s s - s e c t i o n s may be c a l c u l a t e d by the formulae g iven be low, 
and t he t o t a l c r o s s - s e c t i o n i s t h e n d e r i v e d from t h e i r sum, 

cr-nj CÊ  - o v n IE) + cr̂ y &) + c^F IE) J (BB> 
however i t should be remarked t h a t t h e m u l t i - l e v e l Bre i t -Wigner fo rmal i sm 
i n v o l v e s app rox ima t ions which d e s t r o y t h e u n i t a r i t y of t h e c o l l i s i o n m a t r i x . 

I t i s c o n v e n i e n t t o s t a r t by w r i t i n g for t he Bre i t -Wigner r e s o n a n c e denominator 

BW2>r * (ET* - E) + rr
2/U ; (B9) 

E r ' - E r - r n r O E j ) S^E)/2.VL(\Er\) ( B I O ) 

Er denotes the observed resonance energy, and Er is the shifted 
resonance energy, or eigenvalue, of the formal theory. Setting 

E r = E r + r ^ r ( | E r j ) S e ( | E r | ) / 2 ^ ( I E r | ) (BID 

has the consequence t h a t 

E r ' » E r if E - | E r | (Bi2) 

bu t n o t e , from (BIO), t h a t E r s h i f t s away from E when E does so , 
e x c e p t i f •£. = 0. For -t = 0 the s h i f t f a c t o r S £ (E) = 0 and then 
Eĵ  = Ex* " E^ • 

In (B9) the t o t a l wid th 

rv = r r (E) - nnr(E) + rYr + r ^ , <BI3) 

and 

rnr s r - n r ( ^ = r n r ( | E r | ) P t ( E V ^ | ( | E r l ) ( B , 4 ) 

i n which , of c o u r s e , P £ (E) i s t he p e n e t r a t i o n f a c t o r . 

The c a p t u r e and f i s s i o n c r o s s - s e c t i o n s i n t h e s t a t e ( C , J ) may be 
w r i t t e n 

6y.(Z) = rc\?-rVx(E) *. = Trv̂  «r y^Ft (BIS) 

and the s c a t t e r i n g c r o s s - s e c t i o n 

G^(?) = M T | O L | * (Bi6) 
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(B18) 

in which a denotes the complex forward sca t t e r ing amplitude 

CL» OLCE) = - U V ^ P - « l l P l - ^ ) t < + A ^ <W(ET'-E-ilW*38 (B]7) 
In th i s formula the phase factor has been chosen to conform with 
measurers' p r a c t i c e . Decomposition in to r e a l and imaginary pa r t s gives 

CLCET) = CV^)tO-C)i»^Z^-Bc^20 t + JL(BAl̂ 20t 

In t h i s presenta t ion of the mul t i - leve l Breit-Wigner formulae a l l 
summations a re contained in the factors A(E), B(E) and C(E), with 

AX(E) = Z r^T r^/BWDy. (Bi9) 

B ( F ) = Z r n T . ( E T ' - E ) / B W D T (B20) 
CLE) = 

u rv.t- r r /BWi> r . (B2i) 
Only single summations are involved. 
The formulae for the penetra t ion f ac to r s , sh i f t f ac to r s and phase-shif ts 
are set out below for K. = 0 to 3, with p = kR. 

Penetration Factors 

P 3 = /> 7 / (7*S + US/32 4- ̂ ^ -*-/D*) . 

Shift Factors 

S^ a - (67s +<)cy>* + fy?4*)/ ( ^ a s + u s / > a + 6 / * + y o ' ) . 

Phase Shifts 

0 O = 0 0 j - /> - antKnf 0 X a /> - »r»eJtfcrv[3^/(3-/>a)J 
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B.III The Reich-Moore Multi-Level Formalism, for Elast ic Scattering 
and Radiative Capture Only 

With only a single pa r t i c l e channel the neutron e l a s t i c element of the 
co l l i s i on matrix i s , for specified (-t- ,J) , 

Un.iv = *»+(-2L0 l)(;i-<-2i.(1-JL^)HQ] (B22) 

with 

(B23) 

or more general ly, if the boundary constant B£ i s non-zero, 

« W S t ( E ) - B 1 ] / * P i ( E ) , (B24) 

6? = P e (E). -R 

= (i^zr^t^/Lfr-E-iV/al <B25) 

in which _Eff is the eigenvalue, 

and 

( < - - L ^ H » t / [ * - J L G K 4 - i i ) ] . (B26) 

Then the cross-sec t ions are 

CTV(E) = U-rel^l2" (B27) 

as before, where a i s the complex forward sca t te r ing amplitude 

a s <x(E) » -U/a ) Vd-Un-n). (B28) 

(T-r(E)^ « 2 T I X ? - ( ^ - RCUn-rv) (B29) 
CTY (E) * ' CTT - C ^ 

= 4 T l ^ x I m ( Q ) | ( \ - i ^ ) H | 2 ; (B30) 

The l a t t e r i s preferable for ca lcula t ion of the capture c ross - sec t ion , 
in order to avoid rounding errors caused by the subtract ion of two near ly 
equal numbers. 
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TEMPERATURE DEPENDENCE OF 
NEUTRON CROSS-SECTIONS AND 
RESONANCE INTEGRALS, AND SAFETY PROBLEMS 

W. ROTHENSTEIN 
Technion, 
Haifa, Israel 

ABSTRACT 

The m a t e r i a l covered i n t h e l e c t u r e s c o n s i s t s of t h e fo l l owing t o p i c s : 

I ) A d e s c r i p t i o n i s g iven of the b a s i c n u c l e a r d a t a needed f o r resonance 

a b s o r p t i o n c a l c u l a t i o n s w i t h p a r t i c u l a r r e f e r e n c e t o commonly used 

r e sonance formal i sms and the resonance pa rame te r f i l e s i n the b a s i c 

d a t a l i b r a r i e s . Doppler Broadening t e c h n i q u e s are d i s c u s s e d t o g e t h e r 

wi th t h e c o n s t r u c t i o n o f d e t a i l e d t empera tu re dependent resonance 

c r o s s s e c t i o n t a b u l a t i o n s f o r use i n a c c u r a t e r e sonance a b s o r p t i o n 

c a l c u l a t i o n s . 

I I ) The r e s o n a n c e s h i e l d i n g problem i s t r e a t e d f o r homogeneous mix tu re s 

o f a r e s o n a n c e a b s o r b e r i n i n f i n i t e modera t ing media w i t h hydrogen 

m o d e r a t i o n o n l y , m o d e r a t i o n by a h e a v i e r n u c l i d e , and modera t ion 

by m i x t u r e s o f n u c l i d e s . 

The n a r r o w r e s o n a n c e approx ima t ion (NR), t h e i n f i n i t e mass 

a p p r o x i m a t i o n (IM) , and t h e X p a r a m e t e r of t h e i n t e r m e d i a t e resonance 

a p p r o x i m a t i o n (IR) a r e d e f i n e d . 

The c o n s t r u c t i o n o f group e f f e c t i v e resonance i n t e g r a l o r s h i e l d e d c r o s s 

s e c t i o n t a b u l a t i o n s i s d e s c r i b e d fo r i n d i v i d u a l r e s o n a n c e n u c l i d e s 

mixed homogeneously w i t h modera t ing m a t e r i a l s c h a r a c t e r i z e d by a s i n g l e 

background c r o s s s e c t i o n . 

L a t t i c e h e t e r o g e n e i t y i s t r e a t e d w i t h s p e c i a l r e f e r e n c e t o t h e 

s i m p l i f i c a t i o n s needed t o r e p l a c e a u n i t c e l l by a homogeneous mix tu re wi th 

an e q u i v a l e n t e f f e c t i v e background cross s e c t i o n i n v o l v i n g the Dancoff 

f a c t o r . The l i m i t a t i o n s of u s i n g the Be l l f a c t o r t o p r e s e r v e the one 

t e rm e q u i v a l e n c e r e l a t i o n s between homogeneous mix tu res and i s o l a t e d 

f u e l lumps a re d i s c u s s e d , as w e l l as the e m p i r i c a l dependence of 

t h e B e l l f a c t o r on the Dancoff f a c t o r . 

I l l ) Mu l t i g roup spec t rum c a l c u l a t i o n s a t e p i t h e r m a l e n e r g i e s a r e d i s c u s s e d 

main ly w i t h r e f e r e n c e t o the MUFT and GAM p r o c e d u r e s fo r homogeneous 

m i x t u r e s . 

The d i r e c t a p p l i c a t i o n of t h e Nordheim I n t e g r a l T r a n s p o r t c a l c u l a t i o n 

o f e f f e c t i v e resonance i n t e g r a l s in the MUFT code i s d e s c r i b e d , 

t o g e t h e r wi th i t s a r t i f i c i a l s e p a r a t i o n of t h e s h i e l d i n g c a l c u l a t i o n 

n e a r t h e resonance peaks and the u n s h i e l d e d wing c o r r e c t i o n s , and 

t h e use of smoothly va ry ing c o r r e c t i o n s t o t h e s imple B r e i t Wigner 

r e s o n a n c e s h a p e s . A method i s d e s c r i b e d f o r t he m o d i f i c a t i o n o f the 

approx imate resonance i n t e g r a l s t o c o r r e l a t e t h e r e s u l t i n g e p i t h e r m a l 

t o t h e r m a l a b s o r p t i o n r a t e s fo r r e a c t o r l a t t i c e u n i t c e l l s wi th 

e x p e r i m e n t . 

The use of r e sonance s h i e l d i n g f a c t o r s i n the GAM and WIMS mul t ig roup 

e p i t h e r m a l spec t rum c a l c u l a t i o n s i s d i s c u s s e d . In the former t h e 

s h i e l d i n g f a c t o r s r e f e r t o the group c r o s s s e c t i o n s and group dependent 

l a t t i c e d i s a d v a n t a g e f a c t o r s must be a p p l i e d . The WIMS code uses 

e f f e c t i v e r e sonance i n t e g r a l s which must be t r a n s l a t e d i n t o group c r o s s 

s e c t i o n s w i t h due r e g a r d t o average f l u x d e p r e s s i o n s i n each resonance 

g r o u p . The approx imat ions e n c o u n t e r e d i n d e f i n i n g t h e e f f e c t i v e fue l 

d i s a d v a n t a g e f a c t o r s and f l u x d e p r e s s i o n s a r e emphas i sed . 
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The method used in the LATREP code for handling fuel clusters i s 

treated br ie f ly . 

Detailed resonance reaction rate calculations in lat t ice unit ce l ls 

using Doppler broadened resonance cross section tabulations are 

discussed with full allowance for a l l resonance interference phenomena 

The one dimensional OZMA code which treats this problem by integral 

transport or S transport theory on an ultrafine energy mesh i s 

described with special reference to the rapid calculation of the 

e l a s t i c slowing down sources, as well as P. scattering in the S 

option. 

The methods of studying the effects of such detailed transport calcu

lations in the resolved resonance region on standard multigroup 

reactor analysis are described. 

Results of l a t t i ce analysis studies with accurately calculated reson

ance reaction rates are given for a number of problems. 

Temperature variation of effect ive resonance integrals for isolated 

fuel rods. 

Doppler react ivi ty coefficients of typical BWR and PWR unit ce l l s 

and their variation with fuel depletion. 

. Analysis of some thermal reactor lat t ice benchmarks 

Analysis of some D„0 moderated fuel c lusters . 

Comparison of multigroup cross sect ions, ce l l fluxes and disad

vantage factors calculated for a UO_/H_0 la t t i ce benchmark in the 

resolved resonance region by detailed transport calculations and 

by standard very rapid multigroup methods for identical group 

reaction rates . 

A final discussion follows to indicate how accurate resonance reaction 

rate calculations may be used to validate or correct simple resonance 

shielding algorithms. 

Lecture 1 

Introduction 

Direct u t i l i s a t i o n - o f . b a s i c nuclear data l i b r a r i e s for reactor analysis 

i s r e s t r i c t e d to simple systems or special problems. Among these, Monte Carlo 

calculat ions for Benchmark Analysis, and the val idat ion of nuclear data and 

reactor design codes , may be mentioned. Such calculat ions cannot be applied 

to the study of the behaviour of large reactor cores containing fuel assemblies 

of different types, undergoing burn-up at different r a t e s , and containing also 

a var ie ty of s t ruc tura l and control mate r ia l s . Here core analysis must be 

broken up into several subprograms which lead in the final instance to the 

calculat ion of the detai led flux and power d i s t r ibu t ions in the en t i re reac tor 

throughout the complete fuel cycle. 

The final determination of the flux and power d i s t r ibu t ion is in i t s e l f 

a problem of considerable complexity requiring two- or three-dimensional ca l 

cu la t ions , usually of the diffusion type. L i t t l e emphasis can be placed on the 

neutron energy variable in such analyses; the nuclear cha rac te r i s t i c s which 

vary from location to location throughout the core must be represented by para

meters covering very wide energy bands. Multi-dimensional few group diffusion 

and transport codes usually handle about two to four energy groups. 

One is therefore faced with the problem of collapsing the vast amount of 

information contained in basic nuclear data l i b r a r i e s into very few groups 

without losing i t s essent ia l content. Computer codes which perform th i s task 

must be applied on a routine bas i s and very rapidly , since they have to supply 

the local parameters representing the d i f fe ren t parts of the reactor core . 

They must be updated per iodical ly as the fuel gets depleted. 

Local few group data in the reactor core are averages over regions covered 

by the mesh ce l l s used in the determination of the flux and power maps for the 

en t i r e reactor . They must, in general, e l iminate the in ternal heterogeneity of 

the fuel assemblies, in addition to being few group averages of the basic 

nuclear data. Thus, the preparat ion of the broad group data i s in i t s e l f a 



procedure requir ing space and energy dependent solut ions of the neutron 

t ranspor t equation. 

Even at t h i s l eve l , i . e . , for a local solut ion of the transport equation 

in a r e l a t i v e l y small region, usually with simple geometry, d i rect u t i l i s a t i o n 

of the basic neutron cross section l i b ra r i e s i s impracticable. The purpose of 

the ca lcula t ion i s to obtain a space energy dependent solution for the neutron 

flux which can be used for Jnomogenisation of a fuel assembly, or part of i t , 

and for collapse of the energy dependence into very few groups. The numerous 

few group parameters which must be supplied for the different fuel assemblies 

in the en t i r e reac tor core make i t essent ia l to use a multigroup, rather than 

point cross sec t ion , procedure to solve the transport equation in each assembly 

and subregion within i t . The solutions of the t ransport equation are usually 

obtained in about one hundred to two hundred fine energy groups. The hetero

geneity of the fuel assemblies may be simple or more complicated. The basic 

geometry i s the uni t c e l l consisting of fuel, clad and associated coolant or 

moderator in an i n f i n i t e regular array of s imilar c e l l s , the fuel being in the 

form of rods or p l a t e s . The arrays may also be more complicated, for example, 

in fuel assemblies containing some burnable poison or control rods in addition 

to the fuel rods themselves. In heavy water moderated reac tors , the basic ce l l 

i s a c lu s t e r of fuel rods in the coolant, together with the external moderator 

associated with i t . These types of systems, shown in Fig. 1, have a double 

heterogenei ty, in the f i r s t case for the poison rods interspersed between the 

fuel, in the second for the rods within the c lus te r , and for the array of 

complete c lus t e r s separated by the moderator. 

Heterogeneous analysis of fuel assemblies by multigroup methods for the 

preparat ion of homogenised few group parameters refers in the f i r s t instance 

to regular arrays of fuel rods or p la t e s in an i n f i n i t e l a t t i c e since unit c e l l s 

of these geometries can be handled qui te simply. In the present course such 

arrays wil l be the pr inc ipa l ones discussed, although some a t ten t ion will a lso 

be paid to systems with double heterogeneity. In the unit ce l l codes used, in 

p rac t i ce several tens of fine energy groups cover the thermal energy region 

from about 10" to about 1 eV, and a s imilar number of fine groups span the 

epithermal energy region, in which there i s neutron down-scattering only, from 

about 1 eV to about 10 MeV. 



The preparat ion of few group parameters representing the nuclear charac

t e r i s t i c s of l imited regions in the reactor core consists therefore of two 

s teps: the preparat ion of a l ib ra ry of fine group cross sect ions for the dif

ferent nuclides in the core from the basic nuclear data l ib ra ry , and the solu

tion of the t ranspor t equation in the unit cell or fuel assembly in th is multi-

group scheme for the purpose of obtaining the advantage or disadvantage factors 

for the d i f ferent zones within i t (such as fuel, cladding, moderator or control 

mate r ia l s ) , homogenisation and group collapse to a few broad groups. The 

preparation of the fine group l ib ra ry is reactor independent, the subsequent 

transport ca lcula t ion depends on the fuel assembly under consideration and the 

leakage of neutrons out of i t Cor t n e streaming into i t ) to (or from) neigh

bouring par ts of the core. The leakage i s usually represented by a pos i t ive 

or negative buckling parameter which may be fine group dependent, 

The procedure followed in the two steps is the same: Neutron reaction 

ra tes must be conserved in the def ini t ion of the fine or broad group cross 

sec t ion . This may be i l l u s t r a t e d by the following two equations: 

<r. = I : (i) 
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The first equation refers to the fine group (a ) library preparation of micro

scopic cross section of type / for isotope I , the second to the definition 

of its macroscopic broad group average in a zone Z. of the assembly for which 

the multigroup transport equation has been solved to give the space dependent 

flux <p iS) in group * . For smoothly varying cross sections and narrow 

energy groups there is no problem in defining the weighting flux <£(F) needed 

to prepare the fine group library: a reasonable guess such as the fission 

spectrum at high energies, a 1/E flux in the slowing down region, and a Max-

wellian distribution at thermal energies (or even a unit weighting flux), is 

quite adequate. The smoother the variation of C* (t) in a group a , and 

the finer the group, the less pronounced will be the dependence of ryf . on 

the weighting flux <P(£) . 

Resonance cross sections on the other hand do not fit into this general 

procedure. Even in groups with widths of a quarter lethargy unit only, there 

may be numerous resonances, or in the lower energy groups a single resonance 

causing the cross section to vary over several decades within the group. In 

addition, there is the heterogeneity problem. Consequently, resonance reaction 

rates cannot be treated by the two steps referred to above. The flux is 

depressed considerably at the resonance peaks and the depression is space 

dependent in a heterogeneous" assembly. Figures (2) and (3) illustrate the very 

marked cross section changes and resulting flux depressions in the groups con-
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taining the first two resonance peaks of L in a simple 1.33% enriched U0„ 

lattice with 0.4864 cm radius fuel pins in Aluminium cladding of 0.5753 cm 

outer radius, for a lattice pitch of 1.5578 cm and hexagonal array geometry. 

Space dependence of the resonance shielding and some interference effects 

between the resonances of the two isotopes are noticeable. 

In handling the resonance shielding problem there is no step equivalent 

to that of Eq. (1), since §(£•) must contain the flux depressions which 

depend on the system under consideration, including its heterogeneity. In 

principle, the transport equation should be solved for the space dependent 

flux spectrum cjp^e) throughout the resonance region with good accuracy. 

In terms of this flux the group cross sections of the resonance nuclides are 

cr*. - s 
jdr. j'Ui cr/te; f(*j£) 

<? / j^ " jcuj.i; $(*,*) (3) 
3 -z-

where 2 may be an average over a zone, such as the fuel, or the en t i re unit 

ce l l C . In the l a t t e r case the 2. i s replaced by •— in the denominator, but 

not in the numerator i f the resonance nuclide is present in a single zone, 

such as the fuel , only. 



On the other hand, the multigroup analysis must be completed in order 

to apply Eq. (2) to determine a l l broad group cross sec t ions . I t consists of 

solving the multigroup t ranspor t equation for cp (7) , or i t s ce l l average 

Y in a homogeneous multigroup code. In order to determine these fine 

group fluxes the resonance cross sections of Eq. (5) , or t h e i r equivalent, 

must be used. 

In p r a c t i c e , the resonance treatment represented by Eq. (3) is greatly 

s impl i f ied . In some codes effective or shielded resonance i n t e g r a l s , which are 

r e l a ted to the numerator of Eq. (5) , are calculated by approximate methods for 

the system under consideration, including i t s heterogeneity, i f any. In other 

treatments accurate group values of the effective resonance in tegra l s or cross 

sect ions are ca lcula ted for homogeneous mixtures with hydrogen moderation only 

and di f ferent r a t i o s of the atom densit ies of the resonance nuclide and the 

moderator. The r e su l t s are tabulated and u t i l i s e d , by in te rpo la t ion , for other 

moderators using approximate methods, and for heterogeneous assemblies through 

equivalence theorems, which in turn involve other approximations. These pro

cedures wi l l be reviewed in de ta i l during the present course, and the nature 

of the inev i tab le s impli f icat ions wil l be discussed. 

I t wi l l be seen that there i s a clear incentive to t r e a t the resonance 

problem for heterogeneous assemblies with as few approximations as possible, i . e . , 

the derive the space-energy dependent flux <p (£,£) needed in Eq. (3) with high 

p rec i s ion . The way in which th is is done in the OZMA code wi l l also be described 

qui te ex tens ive ly . Such calculat ions can serve as benchmarks against which 

simpler resonance treatments can be tested for the purpose of defining appro

p r i a t e correct ion fac tors . 

Even i f a sophis t ica ted code is used to calculate q> (i^t) in detai l in 

order to define the group cross sections by Eq. (3) , there is no cer ta inty t ha t 

the fine group react ion ra tes wil l be conserved for a l l resonance nuclides a f t e r 

the & (£) or <h' have been calculated by the multigroup code. This wil l 

be the case only i f 

3 ZL .-. • SI J i Jh • s *>7 (4) 

or i f 
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for the same normalisat ions on both sides of the equations. There is no 

ap r io r i reason why th i s should be so. CpC^j^) i s the resu l t of the solution 

of the fine energy mesh t ranspor t equation for an adequate spa t ia l subdivision 

of the heterogeneous assembly under considerat ion. I t depends on region to 

region transport kernels which are non l inear functions of the strongly varying 

cross sections in the resonance region. On the other hand, <p (*U is the 

r e s u l t of a s ingle transport equation in each group and depends on t ransport 

kernels calculated for group average cross sec t ions . In the case of <p 

ce l l average cross sections are used in a multigroup slowing down code with

out any direct reference to spa t i a l e f f ec t s . In view of these considerat ions, 

the use of accurately calculated resonance events in multigroup codes should 

r igorously conserve the resonance react ion ra t e s by an i t e r a t i ve procedure. 

This may lead to differences between the fine group cross sections and group 

fluxes in the two cases [the sophis t ica ted code, and the multigroup code), 

and the necessi ty , even under these circumstances, for applying correction 

factors to the resonance cross sect ions obtained by Eq. (3) . Results of 

analyses made by such methods wi l l be discussed in a l a t e r lec ture . 

In summary, the j u s t i f i c a t i o n for very detai led t ransport calculat ions in 

the resonance region i s twofold: 

1) Verif icat ion of simple resonance treatments and specifications of 

appropriate correct ion fac tors . 

2) Study of inherent problems in multigroup calculat ions involving 

resonance events, when only some tens of energy groups are used 

in the resonance region. 
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If correction factors to simple resonance treatments are evaluated by suitable 

benchmark calculations which compare the results of such treatments with 

values obtained from solutions of the transport equation on a fine energy mesh, 

they will overcome any problems which might arise from the use of group average 

cross sections in the multigroup transport or the multigroup slowing down code. 

In some of the multigroup codes currently in use the corrections may be quite 

small in most groups. Benchmarking at different temperatures to determine the 

temperature dependence of the correction factors will lead to information about 

the accuracy with which Doppler changes of resonance reaction rates can be ob

tained by multigroup lattice analysis codes. 

Basic Data Libraries and Resonance Parameters 

Basic data libraries provide microscopic cross sections for the different 

reaction types of individual nuclides as tabulated functions of energy. To

gether with specified interpolation procedures they give the values of all 

neutron cross sections needed for reactor analysis at any energy. The Evaluated 

Nuclear Data Files, ENDF^ , issued by the National Nuclear Data Center at 

Brookhaven National Laboratory, are in very general use and will form the basis 

for the material presented here. ENDF/A contains either complete or partial 

data sets, and may also contain several different evaluations of the cross 

sections of a particular nuclide. The most commonly used ENDF/B library, on 

the other hand, consists of only one complete recommended evaluation of the 

cross sections for each material in the library, and each material contains 

cross sections for all significant reactions. 

In the ENDF/B library the energy range from 10 eV to 20 MeV for a 

particular nuclide may be subdivided into several parts. The smooth cross sec

tion range contains cross sections as a function of the neutron energy in 

File 3 of the data. Resonance data are specified in the form of resolved or 

unresolved resonance parameters in File 2, which covers stated energy ranges. 

The library also specifies the resonance formalism to be used, and the cross 

sections as functions of energy at 0°K in the resolved or unresolved resonance 

range of energy are the results of evaluating the relevant resonance formulae 

for the given resonance parameters, augmented by the cross section corrections 

(if any) contained in File 3 of the data with appropriate interpolation laws. 

They correct the cross sections for inadequacies in fitting the experimental 

data with the recommended resonance formalism. Thus, in the resonance region 

the cross sections require the use of two files of the data libraries. 

The resonance formalisms are of varying degrees of sophistication. They 
f 3") • -

are given in the Formats Manualc . For resonance absorption calculations in 

reactor cores the simplest formalisms, the Breit-Wigner formulae, are the most 

important. Together with the smoothly varying corrections referred to above they 

lead to resonance cross sections in good agreement with the measured microscopic 

data, and they can be readily Doppler broadened. In some cases more general 

formalisms are recommended in the ENDF/B data; they can be implemented precisely 

in some cross section preparation codes . 

The Breit-Wigner Single Level Formulism 

The Breit-Wigner Single Level Resonance formalism in the resolved resonance 

region may be derived by the methods given in reference (4). The resulting 

formulae involve the phase factors o. for hard sphere scattering, the shift 

factors -̂  and penetration factors ^ for spherical waves of order •£ , 

into which the neutron plane wave incident on the nucleus, with which it inter

acts, may be subdivided, and the characteristics of the resonance interaction 

as expressed by the logarithmic derivative / of the wave function near the 

nuclear surface at energies close to one of the energy levels E of the com-
(3) 

pound nucleus. In the final form of the Breit-Wigner Single Level formulae 

the energy independent absorption width Q (usually composed of the fission 

and gamma widths fl + F only) replaces the imaginary part of t. , while 

its real part is expressed linearly in terms of ^ - £ a n d tfie shift factor 



5J (e) ; the penetration factor Pf(E) is replaced by the neutron width 

P (e) ; and finally the spin factor <J accounts for the multiplicities in

volved in combining £ with the neutron and target spins 4 and I to give the 

spin of the compound nucleus X . 

A modified and simpler form of the Breit-Wigner Single Level formulae for 

s-wave resonances is frequently used for resonance absorption calculations, and 

accounts for this absorption in thermal reactors to a good degree of accuracy. 

Its form is: 

a ( E ) , < r ^ \ / j r ' 
P V £ / + * 

X 

where Z7 - f7 ( 0̂) is the neutron width near the resonance peak at £
0 • 

In a similar expression for p-wave resolved resonances interference scat

tering is negligible, and the C C£) > apart from its dependence on VE , is 

also proportional (on account of the penetration factor 

where £ ĉ  0.28 MeV for heavy nuclides. The p-wave resonances are therefore 

much weaker in the resolved resonance region than the resonances for Us o • 

The yEc/E term in CT (ii) accounts for the thermal 1/v absorption by a 

superposition of the tails of all possible X states and different < 's, and in each 

of many resonances. Departures from this energy dependence are caused by reson

ances with E0 close to the thermal energy region. 

When -4 and A wave resolved resonance parameters are given in the basic 

data libraries, they can be used as distinct sequences, since these sequences 

correspond to different parities even if the same compound nucleus spin may be 

reached from both. For d wave parameters this is no longer here, but the 

cross sections are still treated as distinct sequences on account of the great 

difference between the penetration factors for -</ and d wave resonances. 

The Breit-Wigner Multilevel Formulae 

An immediate criticism of the single level formalism is that the total 

cross section at each energy for absorption or scattering is the sum of 

individual contributions of the type of Eq. (5) due to all resolved resonances. 

This implies not only that the resonance peaks are well spaced (spacing 

greatly in excess of the total width, or more precisely, the practical width 

for which the resonance and background cross sections are equal), but 

that there is no overlap between the interference scattering terms coming 

from neighbouring resonances. Such overlap did occur at several energies for 
238 

ENDF/B resonance parameters of fertile isotopes, in particular U, for 

versions of the basic data before ENDF/B-V. Not only were the resonance 

dips below the peak energies (negative values of "* in the C T ^ (£) cross 

section of Eq. (5)) too pronounced as compared with experimental data, but 

they led even to negative overall scattering cross sections below some pairs 

of strong resonances. These physically impossible situations should have been 

corrected by means of File 3 corrections for CT , but only in ENDF/B-V was 

this done in a fully consistent manner for all isotopes with pronounced inter

ference between the potential and resonance scattering. (The interference 

is greatest for even-even targets with spin 1 = 0 , since this leads to 

From the point of view of the resonance formalism the single level pro

cedure is clearly incorrect if cross section contributions due to individual 

levels are added as described above. Instead, the summation over levels should 
I ii ] it 

be carried out before the quantities i — \n.\ and| / - *) are evaluated 

for the absorption and scattering cross sections in Eq. (5). Here h is the 

phase factor which perturbs the outgoing spherical wave of. order / in the 

interaction of the neutron and the target. This leads to a resonance-resonance 

interference term which is included in the equation for elastic scattering of 
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/-wave neutrons. The complete cross section then involves a double summation 

over levels belonging to one sequence of resonances characterised by a 

particular / and J (really J and parity), as well as a summation over 

all / and 3". 

The Unresolved Resonance Region 

In the energy range above the resolved resonances, in which the resonance 

structure of the cross sections is still significant for reactor calculations, 

but in which the resonance parameters have to be inferred from the resolved 

resonance region, average resonance parameters are provided in the ENDF/B 

libraries for different possible < and ^ states. The parameters are for 

the single-level Breit Wigner formalism and are average parameters at specified 

energy points. The average refers to a number of resonances near these 

energies. Each width is assumed to be distributed according to a chi squared 

distribution with a specified number of degrees of freedom, v>. 

Appropriate values for hi are generally about 1 for P , 2 or 3 for C , and 

m -> v> for P 

The information provided in the basic data libraries provides a means of 

calculating average cross secitons at the energies where the data are given. 

Integrating over all values o-f .*_ defined in Eq. (5) , replacing VFj£ by 

unity, and dividing by the average resonance spacing £ the cross sections for 

a complete sequence of £ -wave resonances will be 
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where the summations over J" cover the compound nucleus spin values which 

correspond t o ^ . wave neutrons, and the correct dependence of the non-resonance scat 

t e r ing , and the interference sca t te r ing cross sect ions on Og has been 

kept. The subscript X in the reaction cross sect ion refers to capture, f ission 

or other competitive processes such as i n e l a s t i c s ca t t e r ing . The averages, im

pl ied in the < > , are over the s t a t i s t i c a l d i s t r ibu t ions of the widths, and 

Eq- ( 6) gives the unshielded cross sec t ions . 

The unresolved resonance parameters and t h e i r s t a t i s t i c a l d i s t r ibu t ions 

also enable the user to construct resonance ladders in the v ic in i ty of the 

energy points to which the parameters apply. An a l t e rna t ive is to t r e a t the 

cross sections in the unresolved resonance region by probabi l i ty tables . 

Resonance shielding problems can also be handled in terms of the average para

meters, a background cross sect ion, and the s t a t i s t i c a l d i s t r i b u t i o n s . One 

such procedure wi l l be discussed in some d e t a i l . The way in which the para

meters are derived from the available experimental information is not neces

s a r i l y unique in the sense that dif ferent parameter se ts can be defined which 
(7) 

lead to the same p a r t i a l cross sections in the unresolved resonance region 

They might lead t o somewhat different values of resonance shielding 

factors and t h e i r termperature dependence. 

Multi level Resonance Formalisms 

Apart from the multilevel formalism given previously, which is rea l ly 

the more rigorous way of handling the logarithmic der ivat ive of the wave func

t ion at the nuclear surface for a p a r t i c u l a r l eve l , there are 

other multi level formalisms due to Adler-Adler, and Reich-Moore which are derived 

from R-matrix theory. Adler-Adler parameters can be specified in the ENDF/B 

l i b r a r i e s , and processed in s t r i c t accordance with the formulae given in the 

l ibrary Formats Manual 

Doppler Broadening 

The thermal motion of the resonance nuclides i s usual ly accounted for by 

assuming a Maxwell d is t r ibut ion of nuclear ve loc i t i e s at the temperature of the 



medium (or a slightly higher) temperature. This assumption is valid if the 

temperature of the medium exceeds the Debye temperature * *£. . Ik where V.H„.A 

is the maximum vibration frequency of the atoms of the solid. In the Breit 

Wigner resonance formulae the energy is strictly the energy E' of the neutron 

and the target in the center of mass coordinate system, but this may be taken 

to be the same as the energy of the neutrons relative to the target at rest, 

since the reduced mass and the neutron mass are practically equal. 

For velocities t~ and ̂  of neutron and target, with ^ as the component 

of the latter on the direction of the former and distributed according to the 

Maxwell Boltzmann distribution 

(7) 

where m and/I are the neutron and target masses respectively. Consequently, 

for symmetric resonance cross sections of the type of Eq. (5) with peak Cf 

a (a), cr f L />(>*)* i ~- - % ~ J 
e dE' 

/7" 

C8) 

where A - (j>-E £T >* I rt ) ^ (A-£ <i.r/fl) *" . This expression may be regarded 

as the convolution of a natural resonance shape of Eq. ( 5) of width ' , centered 

at £"o } and a Gaussian shape of width A , the Doppler width, centered at the 

energy £T of the neutron. 

At low temperatures, or at any temperature '7 when )t --He I ->-><̂  , the 

Gaussian shape behaves like a S function, and the original natural shape of 

the resonance, Eq.(_5), is obtained. For narrow resonances, high temperatures, 

and neutron energies not too remote from the resonance peak, the natural line 

shape of Eq. ( 5) behaves like a <T function and X- •,ij <•}
 c'jr 

C ( £ ) -- O" 
<W 

C* * A ( 9 ) 

In general, however, 

for a symmetric natural resonance line shape, and similarly 

cr (E), <r, ^^j^^^-y^^^^f-f^^C^) 
Cio) 

*;«<*)'>\&*M *VJ , *M--?krLji^r^ 
en) 

for the asymmetric part of the scattering cross section of Eq. (5 ). Computer 

subroutines are available for the rapid calculation of the Doppler broadened 

line shape functions i/' and )L , in particular one which is based on the use 

of continued fractions for certain ranges of the arguments, and asymptotic 
(8) 

expansions when the arguments make the results of such expansions accurate 

Resonance Cross Section Profile Tabulations 

The development of complete evaluated nuclear data files for all nuclides 

of importance in fission reactors and for the entire energy range from about 

10 eV to 20 MeV, together with the availability of fast computers with large 

storage memories, have led to the possibility of handling resonance absorption 

calculations with much greater precision than previously. The direct use of the 

215 



tabulated resonance parameters in such calculat ions inevitably leads to approx

imations, because s t r i c t adherence to the procedures recommended by the cross 

section evaluators , and r igorous Doppler broadening, are time consuming processes 

which have to be repeated at many energy po in t s . The cross section formulae 

given hy Eqs. C S) f Qol an<3 Cll'J t r e a t the resonances separately, and use l ine 

shape Doppler broadening functions, They are therefore not in complete accord 

with the recommended resonance formalisms, even i f the evaluators specify t h a t 

the single level Breit-Wigner formulae should be used. As s ta ted 

previously, corrections have to be applied, for example, to the interference 

cross section between resonance and po ten t i a l s ca t t e r ing . Such correct ions are 

given in data sections separate from the resonance parameters and, when used, 

wi l l not be Doppler broadened by the l ine shape functions, Also when other 

resonance formalisms, such as the mul t i - level Breit Wigner formulae, are recom

mended, corrections may be needed at ce r ta in energies to improve the agreement 

of 0°K cross sections ca lcula ted from the specified resonance parameters with 

experimental information both in the v i c in i t y of the resonance peaks and a t 

the minima between them. 

Since resonance parameters for recommended resonance formalisms together 

with appropriate correct ions are merely a means for the representat ion of the 

resonance cross sec t ions , i t i s c lea r ly desirable to eliminate these type of 

data from the basic nuclear data l i b r a r i e s and replace them by 0°K cross sec

tions which describe the resonance shapes in full d e t a i l , The tabulat ions wi l l 

c lear ly be lengthy, but i f handled properly, possibly by making use of ex

tended fast core s torage, t h i s presents no insurmountable problem. For 
( q ) ENDF/B data a resonance cross sect ion processing code exis ts which uses the 

recommended resonance formalisms without any approximations and applies the 

specified corrections to produce at 0CK a modified ENDF/B data tape which has 

no resonance parameters but ins tead only very deta i led resonance p ro f i l e t ab

ulat ions which can be l i n e a r l y in te rpo la ted . The procedure for producing these 

tabulations is to ca lcula te the unbroadened cross sect ions from the stated 

formalism and given parameters without any s impl i f i ca t ions , and including 

corrections ( i f any), at a set of nodes which are the energies of the lower 

and upper l imi ts of the resolved resonance region and of a l l cross section 

peaks in th i s energy range. Between any two successive nodes the cross sections 

are s imi lar ly calculated at the mid point energy and the r e su l t s are compared 

with those obtained by l inear in te rpola t ion . Discrepancy in excess of a specified 

accuracy c r i t e r ion makes the mid point energy i t s e l f a node, enabling the pro

cess to be continued by successivley halving the in te rva l between two nodes 

un t i l l inear in terpola t ion of the cross sect ions i s accurate within the chosen 

c r i t e r ion . The final tabulat ions have a very fine energy mesh near the regions 

of large curvature of the cross section curves, and the mesh in te rva l i s large 

when the cross section varies smoothly. Typically the number of mesh points in 

the resolved resonance region of fuel and f iss ion product resonance nuclides i s 

of the order of several thousand to a few tens of thousand for a l inear i n t e r 

polat ion accuracy of 0.5 percent. Some examples of resonance p ro f i l e tabula

t ions wil l be given subsequently. 

Accurate Doppler Broadening 

When cross sections at 0°K are represented by tabula t ions which can be 

in terpolated by l inea r - l inea r in te rpo la t ion , an exact procedure for Doppler 

broadening can be developed. I t was discussed by Hinman, e t . a l . and by 

Cullen and Weisbin , the code SIGMA1 for Doppler broadening was wri t ten 

by Cullen . Since l inear in terpola t ion i s a necessary p r e r e q u i s i t e , a further 
(13) 

code ensures that energy regions outside the one r e l a t ing to the resolved 

resonance p ro f i l e tabulat ions are also extended so that the same in terpola t ion 

procedure holds . 

For neutron and target ve loc i t i e s •')' and V the exact form of Eq. ( 8 ) 

becomes 

*•*(*/)-. f<[ «(<,') PCW, ?<*>*&)*' ' , rif 
(12) 

where T - -v- " is the r e l a t i ve ve loc i ty . After in tegra t ion over a l l angles 

between i~ and ^ 



(13) 

The e x a c t Doppler b r o a d e n i n g r e p r e s e n t e d by Eq. ( 1 3 ) , and a p p l i e d 

i n p r a c t i c e t o c ros s s e c t i o n t a b u l a t i o n s which can be l i n e a r l y 

i n t e r p o l a t e d , ensu res t h a t a '// c ro s s s e c t i o n i s unaf fec ted by t e m p e r a t u r e 

changes . For o t h e r dependence of t h e c r o s s s e c t i o n on t h e neu t ron speed t h e 

shapes become smoother as t h e t e m p e r a t u r e i n c r e a s e s . Consequent ly the t a b u l a 

t i o n s can be t h i n n e d at t h e h i g h e r t e m p e r a t u r e s , i . e . , some of t h e t a b u l a t e d 

v a l u e s can be omi t t ed w i t h o u t changing t h e l i n e a r i n t e r p o l a t i o n accu racy . The 

code r e f e r r e d t o above ^ J per forms such t h i n n i n g of t h e t a b l e s , and some s a v i n g 

of computer s t o r a g e r e q u i r e m e n t s r e s u l t s . 

2 38 2 35 

The c r o s s s e c t i o n curves for t he f i r s t two resonances of U, and t h e U 

a b s o r p t i o n c r o s s s e c t i o n in t h e i r v i c i n i t y , o b t a i n e d from ENDF/B-IV room t e m p e r 

a t u r e t a b u l a t i o n s a re t h e ones shown in F i g s . (2) and (3) . Table (1) shows 

t h e number of energy mesh p o i n t s in t h e t a b l e s for t hese n u c l i d e s a t t h r e e 

d i f f e r e n t t e m p e r a t u r e s f o r t h e same l i n e a r i n t e r p o l a t i o n accuracy c r i t e r i o n , 

0 .5 p e r c e n t . At t h e h i g h e r t e m p e r a t u r e s t h e v a r i a t i o n of C w i t h ." i s l e s s 

pronounced as can be seen from t h e s m a l l e r number of mesh p o i n t s r e q u i r e d . The 
2 •zt 238 

f a c t t h a t U r e q u i r e s a somewhat f i n e r mesh than U i s connec ted w i t h t h e 
c l o s e r s p a c i n g of i t s r e s o n a n c e s . 

Table 1 

Number of Energy mesh points required for cross section tabulations, 
with 0.5% linear interpolation accuracy, in a lethargy interval of 0.25 
near the first two resonance peaks of 238u 

Energy Temp. Mesh Points Energy Temp. Mesh Points 
Interval °K 2 3 8U 2 3 5U Interval °K 2 3 8U 2 3 5U 

6.5-8.3 

300 

600 

1200 

79 

70 

61 

84 

78 

71 

17.6-22.6 

300 

600 

1200 

101 

91 

80 

195 

163 

136 

As example for the reduction of peak cross section values with increasing 

temperature and the increase of their values in the wings some of the 0~ values 
2 38 

of U near 20.9 eV are shown in Table II. 

Table I I 

238 
U Capture Cross s e c t i o n v a l u e s in Resonance P r o f i l e L i b r a r y n e a r 

t h e 20 .9 eV s-wave peak . 

E(eV) 300°K 600°K 1200°K 

22.64 

21.22 

20.96 

20.91 

20.85 

20.69 

20.07 

2.49 

85.6 

4780. 

6360. 

5150. 

315. 

11.3 

2.50 

129. 

4060. 

4700. 

4220. 

717. 

11.5 

2.53 

344. 

3210. 

3460. 

3280. 

1240. 

12.1 

In Table I I I a comple te s e t of e n t r i e s in t h e t a b u l a t i o n s v e r y c l o s e t o 
2 38 

the weak 10.2 eV p-wave r e sonance peak of U i s shown. I t d e m o n s t r a t e s c l e a r l y 

t h a t even weak r e s o n a n c e s a r e w e l l r e p r e s e n t e d in t h e t a b l e s w i t h r e d u c t i o n o f 

t h e peaks a t t h e h i g h e r t e m p e r a t u r e s and reduced number of e n t r i e s . The e n e r g i e s 

of t h e t a b u l a t e d mesh p o i n t s a l s o do not c o i n c i d e e x a c t l y a t t h e d i f f e r e n t t emp

e r a t u r e s because of t h e t h i n n i n g p r o c e s s . 
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Table I I I 

238 
U Capture Cross S e c t i o n e n t r i e s in Resonance P r o f i l e L i b r a r y in 

c lo se v i c i n i t y of t h e 10.2 eV p-wave peak 

E(eV) 300°K E(eV) 600°K E(eV) 1200°K 

10.2426 2 .7387 

10.2392 4 .5343 

10.2290 4.7682 

10.2182 4.8379 

10.2079 4 .7253 

10.1974 4.4451 

10.2347 3.6032 

10.2191 3.6775 

10.2044 3.6071 

10.1888 3.3939 

10.2222 2 .8065 

10.2018 2.7742 

In a d d i t i o n t o i t s a p p l i c a t i o n t o t a b u l a t e d r e s o n a n c e c r o s s s e c t i o n 

v a l u e s a t e p i t h e r m a l e n e r g i e s , exac t Doppler b r o a d e n i n g i s a l s o a p p l i c a b l e i n 

the thermal ene rgy r e g i o n . Absorp t ion c r o s s s e c t i o n s a t some energy peaks 
235 239 135 

n e a r t he t h e r m a l r e sonance peaks of U, Pu, and Xe a r e shown in Table IV 

These r e sonances g ive t h e t he rma l G '' a non / / / c h a r a c t e r which i s s l i g h t l y 

t empera tu re dependen t . 
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Table IV 

Thermal temperature dependent absorption cross sections near resonance 
peaks. 

E(eV) 

0.212 

0.255 

0.308 

0.376 

0.462 

235 

u 300°K 

219.85 

233.89 

224.45 

155.42 

105.57 

1200°K 

220.98 

233.33-

221.88 

155.81 

105.89 

E(eV) 

0.179 

- 0.212 

0.255 

0.308 

0.376 

0.462 

239D Pu 
300°K 

1140.9 

1784.0 

3567.4 

4549.6 

1682.1 

464.4 

1200°K 

1170.7 

1852.5 

3589.6 

4381.2 

1728.1 

478.7 

135Xe(10 

E(eV) 

0.0253 

0.0306 

0.0428 

. 0.0569 

0.0652 

0.0748 

0.0992 

0.152 

300°K 

2.669 

2.652 

2.720 

2.842 

2.882 

2.837 

2.263 

0.816 

b.) 

1200°K 

2.719 

2.700 

2.757 

2.850 

2.855 

2.781 

2.206 

0.828 

These slight thermal temperature effects are additional to the temperature 

dependence of the thermal scattering kernels and cross sections which may be 

obtained from the basic temperature dependent/ scattering IQW data by suitable 
(14) 

processing codes . The variation of CT with temperature for Hydrogen at 

a few energy points is shown in Table V. More detailed information is given 

in Ref. (15). 

Table V 

Some thermal energy values of a for H in ELO. 

cr 

300°K 600°K 300°K 600°K 

.00025 

.00633 

.0253 

215.2 

75.2 

53.6 

361.5 

92.5 

57.1 

.114 

.255 

.703 

32.6 

26.6 

21.7 

33.3 

26.9 

21.9 
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Fig. 2 Lffect of ~" L and * U Resonances 
on Flux Depression in MuFT Group 41 
at the Center and near the Surface 
of a Fuel Rod in Benchmark Nl<-1 . 
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Fig. 5 Effect of ' b and " U Resonances 
on Flux Depression in MLFT Group 45 
at the Center and near the Surface 
of.a Fuel Rod in Benchmark NB-1. 
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Lecture II 

Shielded Resonance Integrals in Homogeneous Mixtures in Inf in i te Media,,Hydrogen 

Moderation Only. 

The space independent.neutron balance equations in homogeneous mixtures can 

be solved r igorously at epithermal energies (down-scattering only) for any energy 

dependence of the absorption cross section and neutron source, when Hydrogen i s 

the only moderator. This exact solution serves as a s t a r t i ng point for resonance 

absorption ca lcula t ions under more general conditions for homogeneous mixtures 

and heterogeneous assemblies, for which approximations cannot be avoided except 

in the case of Monte Carlo s tud ies . The l a t t e r , however, have t he i r d i f f i c u l t i e s 

because of the lengthy computer runs which have to be made, and the inevi table 

s t a t i s t i c a l inaccuracies which may become large when r e s u l t s re la t ing to r e l a 

t ive ly narrow energy bands or t he i r var ia t ion with temperature are required. 

The solut ion of the i n f i n i t e homogeneous medium problem with Hydrogen moder

ation only contains a l l the elements needed for p r ac t i c a l resonance absorption 

ca lcula t ions . Shielded or effect ive resonance in tegra l s appear in a form which 

suggests how corresponding quan t i t i t e s should be defined in other systems, even 

i f the treatment i s then approximate. The ana ly t ica l expression for the flux, 

when Hydrogen i s the only moderator, may be in te rpre ted in such a manner tha t 

resonance shie lding and flux decay due to resonance absorption are separable. 

This s epa rab i l i t y becomes an assumption for the general resonance absorption 

problem, although i t i s usual ly well j u s t i f i e d . 

For these reasons the Hydrogen moderated homogeneous system is of such 

central importance in resonance absorption ca lcu la t ions . The resu l t s are f re 

quently tabulated in the form of temperature dependent shielded group resonance 

in tegra ls which are used in codes handling the epithermal energy region. Al te r 

na t ive ly , temperature dependent fine group shielded resonance cross sections for 

Hydrogen moderation may be tabulated in the group s t ruc tu re of the multigroup 

code. The tabula t ions with t h e i r accurate temperature dependence are then used 

for moderation by other nuc l ides , or mixtures of nuc l ides , and for heterogeneous 

assemblies on the basis of approximate t reatments . As already discussed e a r l i e r , 

one must be aware of e r rors which may a r i se on account of these approximations 

ra ther than any inaccuracies in the tabulated fine group parameters (effect ive 

resonance in tegra ls or shielded cross s ec t ions ) . Studies of temperature coef

f ic ien ts of absorption rates and r eac t iv i ty in p a r t i c u l a r should be benchmarked 

against sophist icated calculat ions which do not depend on the resu l t s for the 

Hydrogen moderated case as an intermediate s t ep . 

The neutron balance equation at epithermal energies for moderation by 

Hydrogen only and in the absence of space dependence i s 

pCO 

(14) 

I t s solution 

Z<*)y&g-- S(e) * -i- f'jfs(e-) **(£') 
Z < C . J 

- ( 
r 

*» ( O .j^f 
Z(<:") rl" 

(15) 

Multiplying the solution by the scattering probability -^ ( r- ) /2i('') at energy 

i~ the scattering rate is seen to be given by a contribution due to the source at 

this energy E multiplied by the scattering probability at the same energy, and 

the sources at higher energies *" multiplied by the scattering probability at 

£•' , the probability '/£"' per unit energy interval of reaching final energy '--

(normalised to the fraction of neutrons 1-/L' scattered below t"), i.e., 

and the non absorption probability between £"' and /- . 

If the source and absorption energies are well separated the integral in 

the exponent has to be evaluated only from E to Ce , the maximum energy at which 
.Co 

absorption occurs. The source S- I 5 (;')«/.•:' is then the total source 

above this energy and Eq. (15) becomes 

tT2.Ce) <?('-) - rC")= Q(«\- •> «?• (16) 

since the slowing down density Cl(u) is the collision density per unit lethargy 

for Hydrogen moderation. 

In Eq. (16) the exponential decrease of the slowing down density, or the 

flux per unit lethargy, due to absorption is evident while the resonance shield

ing appears separately in — ', C'O/O^ : 

http://tT2.Ce


(17) 

where 2^ i s the (constant) sca t te r ing cross section of Hydrogen and A^ the 

atom density of the resonance absorber. 

One may i n t e r p r e t - ^^ (nj as the absorption between U'a and k per s ingle 

absorbing atom and for unit (asymptotic) f lux, per unit lethargy, which is unaf

fected by the absorption i t s e l f . The la t t e r 'mani fes t s i t s e l f as the exponential 

decay of the flux or slowing down density in Eq. (16). 

Shielded Resonance Integrals in Homogeneous Mixtures in Inf in i te Media Moderation 

by Nuclides other than Hydrogen, and Mixtures of Nuclides. 

The above treatment for Hydrogen moderation, Eqs. (16) and (17) may be 

modified somewhat by wri t ing i t in the form 

ciQ(u) =, _ £ M . N^t«)/c«) *« , /<"> - 7 7 ~ T 7 ^ - ' °:" "-" ~/v~- (18) 

Defining QC^)/^ as a flux decay function (£ (_y) , the change in the slowing 

down density i s iden t i ca l with 

d &(<,,) ^ - / V . <JC/«) yt-<)^« (19) 

if the flux per unit lethargy ^ ( u ) is given by 

$(«) - $(«)/(«) (20) 

Thus the flux per unit lethargy is the product of the flux decay function 

which is proportional to the slowing down density, and the shielding function fl"). 

The former satisfies 

Q^ (21) 

in terms of the asymptotic flux (before it decays) y j , at energies for which 

<7M (u) - 0 a nd where the slowing down density is Qm ;-_ -5 > while /'(*<) is 

the weighting function with which the.effective absorption integral is calculated. 

also replacing — — by (f> IQ in Eq. (18) using Eq. (21) one obtains from Eq. (17) 
•2, ~£> / 

<p. 
CI ( w ) = Qc CAP ] ..Nn I («) _=-<•_-j 

(22) 

The separation of the flux in to two functions of lethargy, the one -£CU) 

varying slowly with lethargy, the other f(<<) accounting for the resonance 

shie lding, is assumed to hold for moderation by nuclides other than Hydrogen, 

and for mixtures, together with the other equations given above. wu /$ becomes 

of .course 2] ((f. <^ •) in the absence of absorption, and assuming that Placzek os

c i l l a t i ons produced by the neutron source have already died out before absorption 

becomes appreciable. Similarly 1 .,(<•<) i s replaced by the sum of the effective 

absorption in tegra l s of a l l nuc l ides . 

Consequently, i f the resonance absorption problem for sca t t e r ing by mixtures 

of nucl ides , or a s ingle nuclide other than Hydrogen, i s to be solved by means of 

shielded resonance in t eg ra l s the following assumptions are made: 

1) The resonances are located at energies well below the f iss ion spectrum. 

2) The flux is the product of a slowly varying function which decreases 

with increasing lethargy due to neutron absorption, and a shielding 

function which i s depressed in the v i c in i t y of the resonances, but i s 

unaffected by neutron absorpt ion. 

The second assumption is omitted i f effective resonance in tegra l s are not used 

as an intermediate s tep . 

In any event, the co l l i s ion density per unit energy on the lef t side of Eq.(14)is 

wri t ten as a function of the lethargy var iab le , 'f> ('•>) . For mixtures of nuclides 

the homogeneous par t of Eq. (14) takes the form 

(23) 

where h is an operator , which operates on ds(u') , and i s defined by 

T= _L_/" j*-*^ ) ^ /_W 

or. 
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Eq. (23) is to be solved so that above the energy region where the absorption 

takes place 

<l>t«)—* t M = 
K (~"" (25) 

If applied to the calculation of the shielding function, the energy range in 

the resonance region is split up into narrow intervals, e.g. intervals containing 

a single or a few resonances. For such an interval Eq. (23) is solved subject to 

the asymptotic condition of Eq. (25) and 

/(u)= £" e"" H«)/ZtM (26) 

since the absorption fraction in each interval is negligibly small, i 1S the 
B 

background cross section of all nuclides in the mixture, including the constant 

potential scattering cross section of the resonance absorbers, or part thereof 

according to the approximation employed. 

If, on the other hand, the resonance absorption rates are to be calculated 

directly throughout the entire resonance region, Eq. (23) is solved subject to 

Eq. (25) which is applied only once above the entire region, and not separately 

above every subinterval of the resonance region. In this case 

<f60 •= ^ ^ J-(«)/Zt<«) (27) 

since the gradual decrease of the flux due to absorption is taken into account in 

the calculation of ^•/^<) which is the collision density per unit energy corres

ponding to lethargy u . 

The Narrow Resonance, Infinite Mass, and Intermediate Resonance Approximations. 

The calculation of the resonance shielding function for small energy intervals 

in accordance with the above considerations, is usually applied to individual 

resonances which are treated as though all other resonances are absent, or do not 

interfere at all with the resonance under consideration. The function 

/ (><) - 2
C (u)/(•'") &U/'-. t o b e evaluated by Eq. C23) is then asymptotic to 

Z e 7 f above the resonance, where ? - 2-." t-2"' includes the potential 

scattering cross section of the resonance absorber c and the scattering cross 

section of all other nuclides s' . 

In the Narrow Resonance (NR) approximation the resonance is assumed to be 

so narrow that i t covers anegligible part of the scattering interval in Eq. (24) 

for the resonance absorber <• . In this range 2^. Lu') / ^ . (.**') i s * e s s than the 

asymptotic value 2T /2 , and the same holds for the other nuclides. However, 

since this range is assumed to be neglibible compared with -c*t (>/&_), , a neg

ligible error will be introduced if the asymptotic values are used for the 

scattering probability of the resonance absorber in Eq. (24) and also of all 

other nuclides (generally of smaller mass), throughout their scattering inter

vals. This leads to the N.R. value 2^ r-'/fc f o r /Y,v ' a t a 1 1 lethargies so 

that 

£(«) _- 2LA / ZTC(«) W C28) 

On the other hand, if the resonance of nuclide « is wide compared with the 

scattering interval .4n (//& \ , the alternative extreme assumption can be made 

that this interval tends to zero, or the mass ratio f\. to the neutron mass tends 

to o> . For the other nuclides, the NR approximation is still assumed to hold. 

Carrying out the appropriate limits in Eq. (23) one obtains 

(29) 

In the intermediate resonance approximation the resonance absorber is treated 

according to the NR and IM approximations with fractions A. and (»-A.) respectively. 

The resonance shielding function then becomes 

/ 
(«) ^ -0-QZ?; _ _f J_ +_ \^y (IR) 

(30) 

In these expressions 2 . (u) includes the potential scattering cross section 2E' 

The effective resonance integral for these approximations is simply given by 

in accordance with Eq. (18) where the integral extends over the entire resonance, 

and X represents the reaction type. In Eq. (22) Z' (u) includes the contribu

tions for X-a. , absorption, for all resonance nuclides <• and all resonances 

below lethargy u . 



Application to Unresolved Resonances 

The above formulae are immediately applicable to unresolved resonances. 

If for a particular resonance sequence the average parameters and their s ta t is

tical distributions are given at a specified energy, the shielded resonance in

tegral for the resonance».of this sequence in the vicinity of this energy have 

the expectation value 

< C T rr • > - <~ f -J (»} ? (u\c/« > 

^ eFf x t J V /c l J 

where all cross sections are derived according to the given formalism from the 

average resonance parameters multiplied by the appropriate frequency function for 

the statist ical distribution. 

Tabulated Effective Resonance Integrals or Shielded Cross Sections for Narrow 

Energy Groups 

If resonance absorption calculations are to be performed rapidly in multi-

group lattice analysis codes, tabulated effective group resonance integrals or 

shielded group cross sections provide the most effective means for handling this 

problem which iss in general, very complicated and time consuming. To prepare the 

tabulations, resonance absorption calculations are made with the aid of accurate 

codes for homogeneous mixtures of a heavy resonance absorber and Hydrogen as a 

moderator, for different atom densities of the heavy absorber and Hydrogen, and 

at different temperatures. Such accurate calculations should use resonance 

cross sections prepared in str ict accordance with the recommended resonance for

malism and the specified resonance parameters, and with precise Doppler 

broadening. 

If the mass of the absorbing nuclide was infinite, Eq. (22) would be rigor

ous and give the absorption integral exactly for any fine energy group. In 

general there is a very slight approximation in applying Eq. (22) to such mix

tures as explained above. In addition, there is also a very small approximation 

in accounting for the Hydrogen absorption (unshielded) by 

where ^ («) is the small absorption cross section of Hydrogen. Alternatively, 

Eq. (1) would give the group cross section. 

Eq. (30) suggests that the result should be tabulated as a function of 

5. which'is, in this case, the scattering cross section of Hydrogen. The 

effect of the scattering, including resonance scattering, of the resonance absor

ber is implicitly taken into account by the way the accurate resonance absorp

tion code for the mixture of a heavy resonance absorber and Hydrogen solves the 

slowing down problem for the case in which the absorber has finite mass. One 

can then repeat similar calculations for other moderators instead of Hydrogen, 

and from comparison of the calculated results ( £ff- c, or C7* ) with values 

obtained by interpolation in the tables prepared for Hydrogen moderation, one 

can assign A values to the other moderators with which the resonance absorber 

is mixed. These A values (generally a single number for each nuclide for all 

fine groups in the resonance energy regidn) can then be assumed to be valid also 

for the calculation of the background cross section 2_!' required to determine 

•£>u (° r <3~ ) b>' interpolation between tabulated values for Hydrogen modera-

tion, when £ ; refers in fact to several nuclides <- with which the resonance 

absorber t. is mixed ( ^ - ^ ^\ . <?-. ^ )• 

In a similar manner, mixtures of resonance absorbers can be treated by 

utilising the tabulations separately for each of them. The argument £,' used 

for each resonance absorber includes the A ? values of all the other resonance 

absorbers. The resulting effective group resonance integrals, or shielded group 

cross sections, do not make any allowance for the effect of interference between 

neighbouring resonances of different resonance absorbers on the shielding func

tion. Attempts which are sometimes made to take such interference effects into 

account very approximately, within the framework of the type of tabulations referred 

to above, will be discussed later. 

In utilising the ~Cif „ > or <T , values of the different resonance ab-

sorbers, the question arises, in the case of the former, what <p /C' value 

should be used in Eq. (22) if the non absorption fraction of neutrons is to be 

derived. Should i t be the asymptotic value above the resonance region or the 

value above each group which may be slightly different due to changes of %^± 

of the mixture from group to group? Alternatively, if \(f « is obtained from 
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the tabulations, what group flux integral should be used to convert it into a 

group cross section XJ ? Finally, if <J is obtained from shielded resonance 
b b 

absorption group cross section tabulations for Hydrogen moderation, may the 

values thus obtained for mixtures be assumed to be based on the same group flux 

integral as the one used to prepare the tabulations? These questions are likely 

to be more serious for heterogeneous assemblies, as discussed in connection with 

Eqs. (4) and (4'). 

Latt ice Heterogeneity Equivalence Relations 

If fuel and moderator are separated from one another in a heterogeneous 

assembly, the simplest way of taking th i s heterogeneity into account is to assume 
. - - • y 

that the l a t t i c e may be replaced by a homogeneous assembly with appropriate ^-

This value uniquely determines J , , . or T by interpolat ion in the table 

which refers to Hydrogen moderation in a homogeneous mixture for the appropriate 

fuel temperature. 

The simplest equivalence pr inc ip le i s based on the defini t ion of a geometri

cal cross sect ion £ which replaces the effect of the f in i t e size of the fuel 

lump and the effect of i t s proximity with neighbouring fuel lumps. Then 

2' = Z C-\... *..,; , z 
"'•/-* r & (33) 

CI 7) 
The form of 2" will be discussed in the next section. In the U'IMS code , two 

&• 

different 2 's are used to deal with different aspects of the heterogeneity 

problem, each leading to an T value by interpolation in the tabulations 

relating to a homogeneous mixture of the resonance absorber and Hydrogen as 

moderator; these are then combined with appropriate weights. 

Equivalence principles do not account for the spatial distributions of 

the shielded flux at the energies within the resonance peaks in detail, since 

they rely on one (or perhaps two) parameters only to describe the heterogeneity 

completely. Consequently, the problems referred to in the case of homogeneous 

mixtures of moderating nuclides and different resonance absorbers are now more 

serious. 

We summarise the assumptions and approximations in using tabulations of 

group effective resonance integrals, or shielded cross sections, together with 

those given previously as follows: 

1) The resonance are located at energies well below the fission spectrum. 

2) The flux is the product of a slowly varying function which allows for 

the loss of neutrons by absorptions and a shielding function which 

accounts for the flux depressions in the vicinity of the resonance 

peaks. 

3) Group effective resonance integrals or cross sections may be derived 

from tabulations of such quantities which relate to homogeneous mix

tures of a single resonance absorber and Hydrogen as moderator, since 

these quantities can be defined unambiguously when the absorber has 

infinite mass. 

4) If moderators other than Hydrogen are mixed with the heavy resonance 

absorber, this mass (differing from unity) may be allowed for by 

means of an intermediate resonance parameter A (possibly group 

dependent) irrespective of the fuel composition, or its lump size 

and lattice pitch in a heterogeneous assembly. 

5) Interference effects between resonances of different absorbers are 

negligible. (To correct for them, if they are appreciable, more 

sophisticated methods must be used in principle than those which 

can be formulated on the basis of the tabulations mentioned in 

(3) above, by very rough approximations). 

6) The size of the fuel lumps and the lattice pitch in heterogeneous 

assemblies are accounted for by a geometrical cross section which 

replaces the non-fuel regions. 

7) It is assumed that the energy dependence of the flux used to prepare 

the tabulations in (3) above is the same as the average energy 

dependence of the fuel flux for the heterogeneous assembly with the 

same background cross section. 

Similarly, it is assumed that an approximate group average fuel 

disadvantage factor needed to change fuel average to cell average 

cross sections does not introduce additional errors. 

An Early Rigorous Treatment of the Effect of Lattice Heterogeneity on 

Resonance Absorption. 

A low order solution of the neutron transport equation in the resonance energy 

region, but capable in principle of generalisation to any order, was developed 



by Corngold (18) i n 1957 f o r r e g u l a r two reg ion s l a b l a t t i c e s , 
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Infinite Slabs 

He used an integral transport treatment for the direction dependent flux and 

applied interface continuity and periodicity conditions. The fluxes and slowing 

down sources in the different regions were then expanded in the double Legendre 

series (for space and angle). The lowest order solutions are given by: 
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(34) 

In the forms of Eq. (34) the quantities multiplying the scattering sources 

in fuel and moderator can readily be understood physically to represent the fuel 

single flight collision probability for a uniform isotropic source in the fuel, and 

the corresponding escape probability from the moderator, in the first line, and the 

reverse probabilities in the second. 

Although applicable mainly in its basic form the above treatment relates the 

collision and escape probability approach directly to the solution of the transport 

equation. The generalisation to higher orders is available and has been used by 

Corngold to show that for a few isolated resonances corrections to the basic solution 

are small. 

General Expression for Collision and Escape Probabilities in Regular Two Region 

Lattices. 

The quantities u and u in the expression for^M eJ in Eq. (34) are in fact 

chord lengths in the two regions ( fuel and moderator) for neutron paths inclined 

at an angle Cn~ u with the normal to the slabs. Such chord lengths and integrations 

over A occur in fact quite generally in expressions for collision and escape 
(19) 

probabilitiesv J . For a periodic lattice with fuel lumps of any shape there is an 

additional integration over the surface of the lumps leading to general formulae 

for the escape probabilities ('- £) from the fuel and (<- p. ) from the moderator 

for uniform isotropic sources in the regions from which the neutrons orginate: 

I- t (£) --

F i g . 5 Random Chords i n a p e r i o d i c l a t t i c e 

£*U£) 
i- c^) 

I *.C£) 
, 6 < X \ 4 <*.> 

] > 

where all averages are calculated by integrating over the fuel lump surface S and 

all chord directions •&• with weight C*?-^1) .Chords distributed in this way 

correspond to uniform isotropic sources . The mean chord lengths /, and ^ are 

4V/s and 4-^/s where Ve and Vt are the fuel volume and moderator volume 

associated with a single fuel lump. 

For a slab lattice the form of Eq.(35)is simplified since all moderator chords 

in/ are equal, and/cire all fuel chords in l~". In addition .-/ and e, are 2a and 
Jn-H >'• - ' 

2(1 r e s p e c t i v e l y . Thus Eq. (35) l e a d s t o Eq. ( 3 4 ) . 
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In the resonance shielding problem one is interested in the black limit of the 

fuel escape probability ( when T0(£)~-> c~r. ). From Eq. (35) it is seen immediately 

that 

!-?.(£) tZ(C) 
[ j * (.*) ?°<> ,X - < ' 7 > J 

/ L ^ - 1 ' r v J (36) 

Here T̂  is the moderator transmission probability also called the Dancoff 
(21) ' 

factor v ' . The white limit of Eq. (35) is also readily seen to be unity. 
The Geometrical Cross Section. 

A simple rational expression which has the same limits as Eq. (36) is the 

Wigner rational approximation 

!-P(E) = _^E± , 2 = 

Here 2" is in fact the geometrical cross section which was introduced in Eq. (33) 

to establish the equivalence between heterogeneous and homogeneous assemblies for 

which the resonance reaction rates are to be calculated. 

The expression for *L . is approximate. It has been adjusted to give better 

agreement between effective resonances integrals based on the equivalance theorems 

and those calculated by sophisticated methods, by the introduction of a Bell 

factor v . 

Cr lu ' [_9.3U r tfT^'y-l StC(i-T) (38) 

The dependence of the Bell factor 0- on the lattice pitch, i.e. on the Dar.coff 

factor, is due to Leslie et al *• . The value of a is usually about 1.2. 

Finally Sauer has suggested a simple approximation for the Dancoff factor 

in rod lattices. It is based on assuming an exponential distribution for the 

difference between moderator chord lengths and the closest distance between the rods t i 

and forcing this distribution to yield the proper moderator mean chord length. 

Sauer applied this to rod lattices in water in square and hexagonal geometry and 

empirically adjusted the results to agree with more precise calculations. His 

approximation is given by: 

'L. ---
s " , fc,(£L<"^-' , t [,. .(_J£_)*j 

T,l * , JL . / .- / 
2 v. d • 

(39) 

Multiregion Transfer Probabilities 

The reciprocity relation 2^, fc (>• 'I ) '• •?" \ t'-'') which results from Eq.(51) at 

any energy for a two region system, is of more general validity when a lattice unit cell is 

subdivided into a number of subregions-. The corresponding relation is then W 

z v P - z: '/ P 
4 4 n^.( ~ * " **-« (40) 

•I 

for uniform isotropic sources in the regions where-the neutrons originate. These 

relations, which are a direct consequence of the integral transport equation for the 

scalar flux, are used in codes which treat the unit cell in reactor lattices as multi-

region assemblies with subregions of volume / 

The transfer probabilities from one subregion to another in cylindrical geometry 
(19) 

can be obtained from the escape and collision probabilities relating to a fuel rod 

by adapting the treatment to annular regions ' , and by making use of certain 

:imat: 
,(55) 

(31) approximations, such as the cosine current approximation . Alternatively a more 

precise technique due to Carlvik may also be used 



Lecture III 

Calculation of Resonance Reaction Rates in Lattice Analysis Codes 

The principles discussed previously for the evaluation of effective resonance 

integrals or shielded cross sections are applied in lattice analysis codes in 

different ways because of the alternatives that exist in formulating the inevitable 

approximations, and in accordance with the degree of complexity permitted for the 

resonance reaction rate calculations in the development of the code, and the compu

tation time set aside for this purpose. The analysis codes in the resonance region 

can be essentially homogeneous codes, such as MUFT1- •* and GAM , or they may 
(28) 

allow for lattice heterogeneity at these energies, as is the case in WIMS and 

(29) 

LATREP . In order to provide insight into the direct use of effective reson

ance integrals in multigroup calculations on the one hand, and shielded cross 

sections on the other, an account will be given of the slowing down treatment 

in codes which analyse the neutron spectrum in the homogenised lattice unit cell 

at epithermal energies. The multigroup slowing down calculations are the final 

part of the treatment; the calculation of the resonance shielding with varying 

degrees of sophistication precedes it. If the multigroup slowing down treatment 

refers to the heterogeneous lattice, spatial effects in the unit cell may be handled 

better than in the case when it is simply homogenised by volume weighting the atom 

densities of the constituent nuclides, but the heterogeneous analysis including 

the resonance treatment remains necessarily approximate. 

Effective resonance integrals are directly related to the slowing down 

density, as shown in Eq. (22) , and applied to an energy group, they give the 

difference in the slowing down density at its energy boundaries and therefore the 

fractional absorption in the group. The MUFT code^ * utilizes these fractions in 

its resonance absorption treatment. In addition, it handles the effect of leakage 

from the unit cell by a Fourier Transform method since it deals with the homo

genised assembly; a P-l or B-l approximation is used. Similarly, shielded reson

ance cross sections can be used directly in multigroup codes to calculate the 

resonance reaction rates. The homogeneous consistent P-l or B-l multigroup fast 
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spectrum code GAM ' , which utilises groups of lethargy widths 0.25 throughout 

the entire epithermal energy region, is based on this procedure. It does not refer 

to the slowing down densities for elastic scattering like MUFT but treats the 

elastic scattering by cross sections for transfer from group to group of moments 

zero and one. In both MUFT and GAM inelastic transfers are handled by means of 

a transfer matrix of order zero. 

In the fast spectrum calculations referred to, the basic equation is the 

Fourier transform of the transport equation for the direction dependent flux 

density / and for transform variable (buckling) B is: 

(itur*. ) / , 4" , / - /(. « , V'J . T - * ( ̂  "> '^ (41, 

The transformed flux / and source ^ are expanded in Legendre polynomial series 

which are then substituted back in Eq. (41). In the P-L approximation Legendre 

moments of the resulting equation are taken, leading to a set of coupled equations 

from the moments / . In the B-L approximation the moments are taken after 

dividing the equation by ft ^f '*" 2- ) . They give the moments J. of the 

transformed direction dependent flux directly, the only approximation being that 

the moments of the scattering cross section from one lethargy to another can be 

neglected after order L. When L=l the lowest two moments of f- may be identi

fied with the flux <g and the current^ , and the lowest moments of i with 

the sources s„ and S, , calculated with g> andj at an initial lethargy u', 

multiplied respectively by the zero-th and first moments of the 

scattering cross section from u'to u and integrated over * ' . The resulting 

P-l and B-l equations then take the form: 



(43) 

Here the i results from the fact that for B*<o the first order moments /, 

and S, are ^ and c's# , respectively, in terms of the real current J and 

first order source s, . In the B-l approximation j ~ i t 5 -•- both for 

positive and negative R'' , 

Since the steady state transport equation forms the basis of the above treat

ment, S1" is the eigenvalue which ensures that a non trivial solution is obtained 

for the entire energy spectrum and a fission source. Alternatively, 6 may be 

an input quantity, and the eigenvalue kttf , which leads to a non trivial solution 

when the number of neutrons per fission V is replaced by v / \ff • 

The moment of order zero S„ includes the source due to elastic scattering, 

inelastic scattering, the n-»-2n reaction and fission. The first order moment 

consists mainly of the elastic scattering component, the other phenomena being 

assumed to be practically isotropic. 

The MUFT code does not use a group to group matrix for elastic scattering. 

Instead it expresses this process in terms of the slowing down density and handles 

it separately for scattering by hydrogen (slowing down density tp ) , which can be 

treated exactly, and other nuclides (slowing down density £ ) . For hydrogen the 

scattering source per unit lethargy of moment zero and the slowing down density are 

both given by 

/ 

m 

and the source of moment one i s 

These express ions lead to the following d i f f e r e n t i a l equat ions for the lowest two 

moments >y and J of the slowing down dens i ty by hydrogen: 

* ll , Z"a 

(44) 

For heavier i so topes the s c a t t e r i n g source of moment zero and the slowing down 

dens i ty a re ca l cua l t ed by 

Mf'*') , "'(-J7T-)' 

and 

. £ u - u ' ) • • . 

while the source of moment one is 

,4-1,1 ' - « L * <? J ^ 

These express ions involve the s c a t t e r i n g c ross s e c t i o n ^ (-u ) ' ^(-u ) - 2.^ 

A th ree term Taylor expansion of 2T'(u ') cp (u;) in the s c a t t e r i n g source of o rde r 

zero and a two term expansion in the slowing down dens i ty q lead to the 

Groel ing-Goertzel approximation for.'/.. 

rfu (45) 



while the bas ic approximation ^ (•l't')j(.'-'')-£i,(^)j(u) in the in tegra l for 

the f i r s t moment of the source expresses i t in the form /'v 2./ J , where /'«, - — — 

The q u a n t i t i e s y^ x- and A are in fact s c a t t e r i n g cross sec t ion weighted 

averages over a l l nuc l ides except hydrogen. 

In summary, the MUFT code wr i t e s Sa and S, in Eq. (43) in the form 

\ * J <Lu rtu ^ > - / » 4 c / . •* ^ (46) 

with the a u x i l l i a r y equat ions Eq. (44) and (45) for ft , % and ^ . For the in 

e l a s t i c s c a t t e r i n g source uC a group to group matrix i s used, as in the GAM code^ 

(see below). I t includes the n-+2n reac t ion with a weight fac tor 2, the i n e l a s t i c 

s c a t t e r i n g (with un i t weight) being subracted from the absorption cross sec t ion 

to preserve neutron balance. The quan t i ty /C in Eq. (46) i s the f iss ion spectrum. 

In t eg ra t i on of the f i r s t two equations of Lq. (43) over a fine energy group of 

width A in the multigroup s t r u c t u r e leads to the p o s s i b i l i t y of represent ing 

the resonance absorpt ion r a t e in terms of the neutron slowing down density by 

e l a s t i c s c a t t e r i n g a t the high energy group boundary >\ •*cj, , for hydrogen and 

the o ther nucl ides in the homogenised mixture, mul t ip l ied by the resonance absorp

t ion f r ac t ion « 

(47) 

here ̂ > and J" , as well as the cross sections, are group averages, and y , ̂ ., f 

refer to the low energy group boundary. The group equations are completed by in

tegrating the three auxilliary differential equations, Eqs. (44) and (45), also over 

the group width A . Together with Lq. (47) the five group equations may then be 

solved very readily in any group to yield (/> , J , 'J , %, , ( given % , % , fc 

at the top of the group. In the highest energy group, in which the calculation 

starts, Jg , ̂ _ , £ are clearly zero. Also a & , the inelastic scattering source 

into any group, is clearly dependent only on the inelastic scattering cross section 

group to group matrix and the group fluxes in the groups at higher energies, which 

have been calculated previously; in the highest energy group uJA-<? . 

A further approximation should be noted in the MUFT treatment for the number 

of neutrons absorbed by resonance absorption o/r ^%-*<i_l) • The quantity &,. is 

calculated in the absence of leakage. Its use together with the elastic scattering 

source into the group neglects the effect of leakage o n t n e group resonance 

absorption rate. In addition, this rate usually refers to simplified resonance 

cross sections such as those given in Eq. (5) , or even expressions neglecting the 

term in 0̂,. (z ) in the vicinity of the resonance peak. Part of the re

sonance cross section must then be included in S^ in Eq. (47) and this part is an 

unbroadened group cross section. The artificial separation of the cross section 

into a resonance and a smooth contribution is clearly undesirable and may lead to 

small errors. 

On the other hand, the MIJFT procedure lends itself to the use of calculated 

effective resonance integrals which are related to the group absorption fraction 

ar through Lq. (22) <*t - - *°-/&Cf. where 4t#. neutrons enter group « . Two 

direct methods for the calculation of 3T of the resonance nuclides in the 

lattice unit cell will be discussed.below together with their appi-oximations. 

(27) 
The GAM code does not make use of slowing down densities. It solves the 

first two moments of the transport equation, Eq. (43) in group form for a set of 

68 epithermal energy groups of equal width, 0.25 on the lethargy scale. These 

equations are 

f*3 ' *** 

^ j'*9 1'+9 (48) 

where all quantities without subscripts belong to group Q . Here group to group 

matrices are used for inelastic, and elastic scattering (zero and first moment), 

as well as the n, 2n reaction, so that this procedure is a consistent P-l or B-l 

method to determine the epithermal neutron spectrum. The solution of Eqs. (48) 

proceeds along similar lines as in the MUFT code. 

The GAM method includes the shielded resonance cross sections in 3T , and is 

therefore well suited for the use of shielded cross section tabulations and 

229 



equivalence relations as discussed earlier. Disadvantage factors have to be used 

for the fuel in order to homogenise the unit cell. 

Even in the MUFT code there is some need for a calculation of disadvantage 

factors, not withstanding the fact that the group absorption fraction txp is cal

culated for the entire unit cell. The flux ratios are used to homogenise the 

group cross sections in the various regions of the unit cell. 

Two alternatives for handling the spatial flux dependence in the resonance 

energy region can be applied. The first is a two region treatment of the unit 

cell^° , in which •£ = K * K and the volume K, refers to the fuel. The 

two region equations for the flux at energy £ , Eq. (50), are 

V„2. (£)$ U> - 1(e*)^t£J ^ C'-'l^JO,^) 

iS C'-) i> (*•> cin» hen» i e , - u . M * . H * - « * SCurcel !• n rct\icn% Ot I J ( 9J 

where f0 (r> and Pt(f.) a rc the c o l l i s i o n p r o b a b i l i t i e s in the fuel and non fuel 

reg ions , and S a (e ) and S <£\ the slowing down sources by e l a s t i c s c a t t e r i n g 

per uni t volume ( S,., <•£) of Eq. (34)) i s *u 5« (£ ^ , and s i m i l a r l y in the region 

outs ide the f u e l ) . Using the r e c i p r o c i t y r e l a t i o n of Eq. (35) and the i n t e r 

mediate resonance approximation Eqs. (30) and (33) the disadvantage factor a t 

energy L in the resonance becomes 

0(0- S ( E ) <*'*•> - - , * , = K - 2 'V^. 

(50) 

where ̂  is given by Eq. (38) , Z, is the scattering cross section outside the 

fuel region, the summation in T.' includes all nuclides in the fuel (potential 

scattering only), and resonance scattering is ignored. An approximate group dis

advantage factor D is given by Eq. (50) with 5T„ (c ) replaced by the group average 

2. , and may be applied in the GAM code 

(31) 
In the version of the MUFT code contained in the HAMMER multigroup analysis 

at epithermal energies, an integral transport treatment is applied to homogenise 

the unit cell. It is given by 

where </ is the group flux in subregion n of the unit cell, P„. the in-group 

.scattering source and & , the source into the group from higher energy groups. 

/ , is the transfer matrix element from region »' to n , which will be dis-
"" (31) 

cussed further in connection with the resonance treatment in the HAMMER and 

OZMA J codes. Approximate forms of Pn> and S^, may be derived in a manner con

sistent with the MUFT slowing down procedure for the homogenised unit cell. The 

group integrated forms of Eqs. (44) and (45) 

n 
u-

1 - f 
• 1 - t = -

z 

r K* 
1 f & A #- .«. A - __ /'/••- 1 .- ̂  / * A ' v X *. 4 A •• — 

(52) 

for group width A , and with % , $, referring to the upper group boundary and 

') , <i to the boundary at the low energy of the group, may be combined with a 

simplified version of Eq. (47)111 the resonance region (below the fission spectrum 

and the inelastic scattering region, and without leakage). 

•-/'/I r C% *•*,)«, ~~ 1 '0 *% - e 
(53) 

where c/
r i s tlie group resonance absorpt ion f r a c t i o n . The combined form of Eqs. 

(52) and (53) i s 

c.r ~ > / / ^ A. ,\ + .4. 

(54) 

Thus in analogy with the homogneised ce l l va lues , P , and ~(« may be defined by 

the q u a n t i t i e s given in Eq. (54)applied to subregion n' of the unit c e l l . This 

approximate t reatment requires two i t e r a t i o n s i f resonance absorption f rac t ions a re 

to be determined from simple ca l cu l a t i ons of e f f e c t i v e resonance i n t e g r a l s . In 



the first, &r is determined from Eq. £22) with C0'~ ^ O o * % ) m K referring 

to the entire unit cell at the upper group boundary and Sc„ .- 2JV, £ summed over 

the fuel region only for subregion fluxes î  determined in the absence of reson

ance scattering. The resulting resonance absorption fraction *. is then introduced 

into Lq. £54) in the second iteration to determine the $ in the presence of re

sonance absorption by solving Eq. £51) £In Eq. (54) the resonance absorption 

should be limited to the fuel subregions only by using an increased oy - ̂  *£/*£ 

in them with Vc the cell volume and \/0 the fuel volume. Outside the fuel 

region &'f-0 ). 

Apart from the problems enocuntered in calculating effective resonance integrals 

approximately, or using shielded cross section tabulations together with equivalence 

theorems, Bell and Dancoff factors and intermediate resonance parameters, it is 

seen that there are further approximations in the spatial treatment which must be 

made before a consistent P-l or B-l epithermal spectrum analysis can be made for 

the homogenised unit cell. 

The ( m,r,q) Method for the Calculation of Effective Resonance Integrals 

A very simple approximate method for calculating effective resonance integrals 

is based on storing for each resolved resonance three parameters which are needed 

to obtain the result very rapidly. These parameters are: 

J (55) 

where <V> r 4TTK ^ ^ / P t %e'- ^ / O ^ O , see Eq. (5) These parameters 

can be used to define a shielding factor ft - *'.'/(*'t) for the resonance absorber 

of atom density A/; , where 2'' is given by Eq. (33) for a heterogeneous system, 

and N.% is the peak absorption cross section. Applying the infinite mass approx

imation, Eq. (29) and the B.reit Wigner single level formula *£(•=) - f>~/(/1*K't) 

near the resonance peak (with ^Cj/^' ~ / ) 

for the particular resonance of nuclide i at zero temperature. 

The V .. values for all resonances whose peaks lie in the group under con

sideration are calculated by Eq. (56) ignoring Doppler broadening and combined as 

in fcq. (22) to derive the group resonance absorption fraction «f , when this 

simple resonance treatment is applied in the MUFT code. Corrections to the Breit 

Kigner formula, the effects of resonances not treated explicitly, and the 

tail of the thermal abosrption cross section, which accounts for the \c j C. 

dependence of CT (ei) , have to-be treated as part of the group smooth if value 

in Eq. (47) and may lead to errors in addition to those which are due to the 

neglect of Doppler broadening and resonance scattering. 

L-Factors for Correlation of Calculated Effective Resonance Integrals with 

Experimental Data 

The numerous approximations in the above procedure for the calculation of 

T for individual resonances have been corrected in certain versions of the 
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MUFT program, for example, the one contained in the LEOPARD code , by cor
relations with hellstrand's integral experiments. These experiments determined 
the ratio of epithermal to thermal absorptions in fertile materials for rods of 

»Ji> -r ret./ 258 

d i f fe ren t s i z e s . Strawbridge and Barry expressed the ^ef/e values for U 
in L0_ rods obtained from the h e l l s t r a n d experiments in the form 

(57) 

•rflfj 

where •*.,-.. refers to the entire epithermal energy range, 24/*' is the cross 

section of the fuel rod per atom of U in the absence of resonances, and (i-/-»J 

the single flight escape probability from the rod of cross section 1 , while the 

last term in the expression for * is 2tf/V of Eq. (37) and expresses the lattice 

effect. The Dancoff factor •? , is given by Eq. C 3 9 ) • Applying this quantity in 

Eq. (22) the overall epithermal non-capture probability is 

L ^ K (58) 

and u." .: (/- ?)/p is the ratio of epithermal to thermal captures. 
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On the other hand, the MUFT treatment given previously can be used to calcu-
2 38 

late the epithermal captures in U and the number of neutrons slowing down to 
238 

thermal energies, when absorptions by all nuclides other than U as well as 

leakage are ignored (the latter in accordance with the expression for 7 \ " , 

Eq. (57) which refers to zero buckling). Comparison of the calculated value 

by the MUFT code and the MJ" obtained in accordance with the Hellstrand experiments, 

makes it possible to determine iteratively an L correction factor by which all 

calculated resonance integrals for the ind: 

plied to obtain agreement between the two. 

2 38 
calculated resonance integrals for the individual li resonances must be multi-

In this way the very simple formulation for calculating shielded resonance 

integrals for individual resonances may be correlated with integral experiments. 

The L factor regards those integral experiments as the most reliable source of 

information, rather than the basic nuclear data libraries. It can only be used 

for the few (fertile)^nuclides for which such experimental data are availabe. 

The current trend is to attempt to obtain the best evaluated basic nuclear data 

files which can be influenced only partly by the results of integral experiments. 

The Nordheim Integral Transport Treatment for Resolved Resonances 

A more satisfactory procedure for calculating 1 . values for individual 

resonances is the Nordheim Integral Transport (NIT) treatment which is incor

porated in the IiAMMER^"5 ' version of the MUFT code. 

Basically the NIT treatment calculates the shielding function 

J(«) - £ r'C")/ 2- i«) of Eq. (26) for a two region system consisting of a fuel 

region, denoted by subscript 0 , and an outer non fuel region which may be 

subdivided into a number of subregions n' . The shielding function is calculated 

for the central part of a resolved resonance of a fuel isotope as though this 

resonance is completely isolated. Neutrons collide in the fuel at energies 

near the resonance peak after elastic scattering by fuel nuclides, provided 
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they have not escaped from the fuel, and after elastic scattering by nuclides 

outside the fuel region, provided they are transferred in a single flight to the 

fuel region. The extension of Eq. (49) to this subdivision of the lattice unit 

cell may be written in the-form. 

^k-)-. ' / o ) Z7:* h <? s ^ p . t « ) « c (59) 

where the collision density per unit energy /'(*) has been expressed as a function 

of lethargy, so that the integral operators "/' are again given by Eq. (24) The 

'e., C") are single flight transfer probabilities of neutrons which have reached 

lethargy u by elastic scattering in subregion n ' to the fuel region o where 

they make their next collision. In all the non fuel regions «' the Narrow 

Resonance approximation leads to the slowing down source 2. Jr. per unit vol

ume (per unit asymptotic flux). The advantage factors U . are the ratios of the 

asymptotic fluxes in regions #i' to that in the fuel region. 

In the NIT treatment exact expressions are used for the fuel collision 

probability £(.«) , i.e., the rational approximation is avoided. No approximation 

is made in relating p , (u) to P. (w) . In accordance with Eq. (40) 

Z . l/. P . O) i £«>' ''-. ("i (60) 

which after substitution into Eq. (59) leads to the following integral equation 

for f(u) , and consequently to the central contribution to the resonance in

tegral T calculated over the lethargy region C near the resonance peak 

for which the integral equation is solved: 

oil <: J ' V ' '" 

(61) 



In the asymptotic region, at lethargies below those in region c , all cross 

sections have their background values; in lethargy region c only the particular 

resonance of the nuclide, for which the effective resonance integral is to be 

calculated, is taken into consideration. When the asymptotic flux is flat 

[i- fyc«>_l becomes ]_> - C0C- VJ , i.e., the usual fuel escape probability. 

The solution of the integral equation and the calculation of X in 

k°i- (61) proceeds on the foflotting lines: 

a) Tables of values are prepared for >0 and i-'o as functions of 23 R0 

which is the fuel rod radius in mean free paths; the tables refer to 

arguments from 0 to 20.0 in 1000 equal steps. The actual probabilities 

P,(y) and >-?<,'(*) can then be obtained by interpolation (a four 

point difference technique is used), or by extrapolation for large 

arguments, when 2^ GO R0 has been calculated. Further details of 

the preparation of the probability tables will be given in connection 

with the OZNIA code. Clearly when the asymptotic flux is flat only the 

P0 table needs to be prepared. It is calculated from the formulae 

for the isolated lump escape probabilites, and the Dancoff 

factor^ , Eq. (39}, by 

l - \J ^ 
[•'-A3 (' - 's) 4 - it , J *„ 

This is the relation between the fuel escape probability in the lattice 

and the value for the isolated lump, when the rational approximation 

holds, Eq. (37).However in Eq. (62) this approximation is only used to 

obtain the connection of (\- ? ) for the lattice, and C ' " A ) 
(19) . 

for the isolated lump. For the latter the correct value, 1 S 

used in the construction of the probability tables. 

b) The central portion of the resonance is determined for the resonance 

absorber in terms of the practical width of the resonance on the lethargy 

scale r£\T, /C r ) ' * /c, or the Doppler width A^~ 0 of Eq. (8). In fact, 

the larger of five times the former or twenty times the latter is chosen, 

the resonance peak lethargy being in the center. This lethargy range 

is divided into intervals of width s-c ^ - where * - =><-—- for 
'* '-„ *' 

application in Eq. £61) , ensuring an adequate number of mesh points 

for the Doppler broadened resonance shape. By slight adjustment of 

the ratio of the mass of the resonance absorber to the neutron mass A, 

the lethargy integration interval in Eq. (24) is made to contain an 

even number of mesh intervals £ . The same is attained for the nuclides 

mixed with the resonance absorber in the fuel by a slight adjustment 

of their mass. 

Initial values (back.values) of ^t/£ are stored for each fuel nuclide 

at the lethargy mesh points below the central region C of the resonance 

under consideration, Z^ including potential scattering only. This 

makes a Simpson integration for ~'[ ̂  possible for the first mesh point 

in c for all nuclides <- , so that /Y>«) is immediately obtained from 

Eq. (61) for this lethargy. 2^ C-) y"6<) / ^ ( M J is then added to the 

back value table for each nuclide t' in the fuel, so that the procedure 

can be repeated for the next and succeeding lethargy mesh points in c . 

These Simpson integrations can be carried out very efficiently, since in 

C the lethargy mesh has constant intervals. 

The calculation of -^ff c by Eq. (61) is accomplished readily by 

numerical (trapezium) integration using the same integration mesh. 

In the Nordheim procedure the cross sections for the isolated resonance 

under consideration are obtained from Eq. (5) with the Doppler broad

ened line shape functions of Eqs. (10) and (11) and including the v'f̂ /c 

term of Eq. (5) in the absorption cross section. 

Wing corrections are added to J,,. . of the isolated resonance to 

account for the following three contributions: 

i) The high energy region beyond the upper limit of the central 

part C of the resonance, 

ii) The low energy region outside c and down to the thermal cut 

off f . 

iii) A negative term to remove the >/? tail which this resonance 

contributes to the 2200 m/sec cross section. To this end the 

absorption cross section at c is calculated from Eq. (5) 



for the resonance under consideration, and assuming a ///Z" 

energy dependence, the epithermal (negative) contribution to 

2'.., is determined. 

All three wing corrections are determined for unbroadened Breit Wigner 

single level cross sections, Eq. (5) in a i/£• flux. The neglect 

of Doppler broadening is justified by the width of the central region 

t of the resonance, which ensures asymptotic unbroadened cross sec

tions outside it with good accuracy. The third correction is needed 

since the tail of the //V thermal absorption cross section is included 

in the smooth epithermal group cross section library. The three 

corrections together are given by 

( irM, 3 AAJ:' \ Gc rC (i-39. izllt <- ^Ll^±- LJ±i)Sj£A 

- * ( ? > 
t* - £ . % . £<> - Ec cixlrrui fcrt cf re Sconce. .'" ( ^ < : " ) 

frttZ.fr-^. ^ ^ ^ , . - / , ^ l ^ . ^ ' , « ^ ^ 
f. 

(63) 

They are added to X ., . 

It is clear that the NIT method avoids many of the approximations in the 

(«w,t/x) individual resonance treatment, and in particular the use of equivalence 

principles between heterogeneous and homogeneous systems, and the use of the 

rational approximation for fuel escape probabilities. Doppler broadening of the 

cross sections is taken into account. On the other hand, isolated resonance 

treatments assume full flux recovery to the asymptotic shapes between the resonances, 

and all interference effects between resonances belonging to different fuel nuclides 

are ignored. 

The Nordheim Method in the Unresolved Resonance Region 

In the unresolved resonance region the Narrow Resonance approximation is 

generally valid since the widths of the resonances are small compared with the 

maximum slowing down interval in a single elastic collision, -& C'/x ) > even for 

the heaviest nuclides. Using Eq. (28) for the shielding function, with &-& : ̂  t 

where 2^ is the fuel scattering cross section, without resonances, and 2"c. the 

geometric cross section of Eq. (37) the effective resonance integral for one of 

the multigroups may be expressed in the form 

(64) 

where interference between resonance and potential scattering has been ignored; 
rV() is the atom density of the resonance absorber. The quantity U<~/[> which 

occurs in l(t~)Ji\ is the expected number of resonances in interval <l( for 

mean spacing D of the resonances; the expectation value refers to the Porter 

Thomas distribution of neutron widths. The integration over all values of *. 

implies that the complete resonance integral of each individual resonance is 

included. In fact, Eq. (64) is analogous to Eq.* (56) for resolved resonances, 

but is based on the NR instead of the IM approximation, and includes all reson

ances in a group. 

There are special techniques for calculating 

7L% 

and these can be utilised for the numerical integration of 

(65) 

* -?' _., c. Or rtc)*r 

(66) 

where <a > n 0 are the average resonance parameters specified in the basic 
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data library at energy E . In the HAMMER code shielded resonance integrals 

are calculated by the above expressions for the unresolved resonance sequences 

of the fertile nuclides. Special care is needed in the group integration in 

fcq. (64) for unresolved p-wave resonance sequences, since the energy dependence 

of the average neutron width is that of the penetration factor ratio PI/PQ* 

i.e., £ / C E * ̂ i) where £, is approximately 2.5 x 10 keV; in the keV region 



this energy dependence is roughly like E itself. The additional energy dependence 

of \ (£) on y^ for both s-wave and p-wave neutrons (the reduced neutron width 

being approximately independent of energy) is compensated for by the Vc dependence 

of & in Lq. (66) 

In general, the unresolved resonance integrals have shielding factors 

1.(c/j-„, Detween about 0.9 and 1.0 for thermal reactor lattices so that the rather 

approximate nature of the above shielding treatment produces only minor errors. 

The Use of Tabulated Effective Resonance Integrals. The KIMS Method. 

f 281 
The WIMS code makes use of tabulated effective resonance integrals for 

individual resonance isotopes homogeneously mixed with pure hydrogen as moderator. 
f 341 The tabulations were obtained with the SDR code ' which solves the moderation 

problem for such homogeneous mixtures on a very fine energy mesh in the 13 energy 

groups between 9.118 keV and 4.0 eV, the latter being the cut off of the 42 

thermal groups. The therjiial groups are fine enough to deal adequately with the 
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low lying resonances of the U and the Plutonium isotopes. 

For the calculation of resonance absorption in mixtures intermediate reson

ance A factors are used, which are group independent quantities ranging from 

1.0 for light nuclides, 0.94 for Oxygen to 0.2 for heavy nuclides. A constant 

Bell factor a ^ 1.16 i: 

rational approximation. 

fS4) 
Bell factor a =• i.'6 is employed for the Bell modification of the Wigner 

The equivalence principles relating heterogeneous to homogeneous systems 

are formulated rather differently than in the treatment given previously. In 

particular, the Dancoff factor, representing the lattice effect, is not used 

directly, although it can be identified in terms of quantities used in the WIMS 

procedure. 

Instead of using a Dancoff factor, the WIMS code relates the fuel collision 

probability in a lattice fa , in which collisions in neighbouring fuel lumps are 

also allowed for, to the collision probability in an isolated lump, Y:
0 , through: 

which is applied below to a cylindrical unit cell. (It can also be applied in 

the case of slab geometry). Here /i. is the fuel to boundary escape probabil-

ity and 4i0i the probability that*entering the outer boundary of the unit cell 

of area St (from a uniform distribution outside it) will make its next colli

sion in the fuel, while ^ is the probability that the neutron entering the 

unit cell in this way will reach the outer surface again without collision. 

Clearly /- f0% -. -f-1%
 rf-^^ which are the probabilities of collision in outer 

region (1) and inner region (o) in a two region unit cell. The latter probabil

ities satisfy surface reciprocity theorems of the type: 

^ 'Ks = 2< "s ?** (68) 

which i s the analogy of Eq. (40) and r e f e r s to c o l l i s i o n r a t e s in unit f lux 

2 , v\ on the r i g h t s ide of the equat ion, and the t r ans fe r r a t e across the ou te r 

c e l l surface of area S , i . e . S. , on the l e f t s i d e . Thus, 

(69) 

where ^ is the probability that a neutron born in the outer region makes its 

next collision in the inner region and vice versa. The probabilities vi t'/
l
to 

and p o t apprearing in Eqs. (68) and (69) nay be expressed in terms of <? which 

is the probability that a neutron entering the outer region from within will 

collide there: 

(70)' 

Finally, the collision probability yi in the outer region may be expressed in 

the form 

/ • ' / ' ' °' ' (71) 

where •*• is the collision probability in the outer region if the inner region 

is void. From this, the number of neutrons A is subracted in Eq. (71) and 



since these neutrons would have reentered the outer region if the inner region 

were void, flo must be multiplied by £r in order to collide in the outer region. 

Combining Eqs. rgs) through r-]^\ 

"/• ^ ( ' / ' J s f 6, (72) 

The quantities (x, and /, which relate to the non fuel region can be obtained 

with good accuracy by methods developed by Bonalumi ' and Jonsson , and 

account for the lattice effect as may be seen by writing Eq. (72) in the form 

' &, , "• '*•*» *• 

here in the correction term in the denominator Q-Aa)
 n a s been replaced by 

the Bell modification of the rational approximation S / (S.c * Z ) where 

Z .- u/l, for an isolated fuel lump. In terms of the Dancoff factor t", the 

lattice effect is given "by* 5." - <*('-'''.) /^ , Eq. r^\ so that: 

<*.(!-%) 
(74) 

Comparison with Eq. (73) y i e l d s 

Since in the p repa ra t i on of the group ' , >c t a b l e s pure Hydrogen was used as the 

moderator, the background cross sec t ion of the resonance absorber mul t ip l ied by 

i t s A value should be included in the background cross sec t ion used to determine 

the e f f ec t ive resonance i n t e g r a l from the t a b u l a t i o n . Thus 
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where S i s the surface area of the fuel lump, A/; the atom densi ty of the 

resonance absorber and L'-f.) i s given by Eq. (75) 

The above treatment has been extended to a subdivis ion of the non fuel 

region in to more than one subregion which r e s u l t s in a superpos i t ion of two of 
r 28") 

the tabu la ted JT' . values for d i f f e ren t arguments and with d i f fe ren t weights 

I t has a lso been extended to c l u s t e r s of rods with approximate differences in 

the r e s u l t s for t he inner and outer r i ngs of rods , and bundles of p l a t e s by 

Les l ie and Jonsson . 

The LATKEP Method 

f 29") 

In the LATRLP code^ ' the use of t abu la ted e f f e c t i v e resonance i n t eg ra l s 

i s s p e c i a l l y adapted to c l u s t e r s of fuel rods , as in the case of CANDU r e a c t o r s . 

A good f i t to the measured e f fec t ive resonance i n t e g r a l s i s obtained by 

r _ A f 6 y A (77) 

where M is the mass of the fuel lumps and S their effective surface area. 

The constants fl and o have been obtained from single rod experiments and 

calculations. 

The square root makes it difficult to calculate 7 -. values in each ring 

of rods in the cluster separately, however a linear relation 

r = /)• ? r &'i 
%, (78) 

i s b e t t e r su i t ed for t h i s purpose. <p and </i. are the average flux in the rod 

and the flux at i t s sur face . Eq. (78) may be regarded as a c l u s t e r average of 



for t he ; , th r ing of fuel r o d s , where Sv- and >>• r e fe r to a l l rods in the r ing 

( t o g e t h e r ) , and (ft /<f> i s assumed to be constant throughout the c l u s t e r . The 

average f ^ = (% * ; X
9 o > ) / / V 7 » a n d S : Z ( \ • Equating T^(. , Eq . (78) , 

with JT, f . , Eq. (77) the value of X of Eq. (79) becomes 

0 , v " * ' i ''• '•• cso) 
To determine the effective surface areas of the rods in the clusters for 

use in Eq. (80) } the total surface area 5- of all N rods is divided into an 

outer rubber band surface area 5̂  , stretched around the J\ rods in outer 

ring »v , and an inner surface area .S - 5 - S . Kith d as the 
t. H ,1. , f. ^ 'I 

distance between centers of neighbouring rods in outer ring 

il - * " (81) 

The bas ic approximation i s to regard S as being unaffected by i n t e r 

ac t i on e f f ec t s between neighbouring rods ( the d i f fe ren t c lu s t e r s being very fa r 

a p a r t ) , and t h a t $„•„,„,. * is- diminished by an in t e rna l Dancoff cor rec t ion ca l cu 

l a t e d e f f e c t i v e l y for s lab geometry 

1 -. [ /- i ^(octf ? ) j (82) 

Here 2^ is the coolant cross section, a is a factor similar to the intermediate 

resonance parameter \ , and oi the effective slab thickness or half the mean 

chord length 4 ^ / S, ; Vc is the volume of coolant in a polygon formed by 

joining the centers of the rods in the outer fuel ring and S is the surface 

area of the fuel within this polygon. This leads to 

S - S r Y S 
H fc •'»*'• (83) 

In order to d i f f e r e n t i a t e between the fuel rods in the d i f f e ren t r i n g s , t h e 

second term in Eq. (83) i s m u l t i p l i e d by a fac tor } for the rods in the o u t e r 

most r i n g , given by 

/«-- ( f - O / L * - < £ - < > J 
(84) 

since *>,„„,., refers to all /V rods, and the inward facing surface of the 

rods in the outer ring contribute only an area (s —1 jSnx to £. #% • 

(29) 
Such Dancoff factor corrections have been developed further ' for rings 

of fuel rods in the cluster inside the outermost by dividing their rod surface 

areas into outer parts and inner parts with respect to polygons of the centers 

of the rods in each ring. Similarly the coolant volume between the different 

rings refers to the coolant between these polygons. With these volumes and sur

face areas, slab type Dancoff factors can be formulated as above for the outer 

and inner parts of the fuel rod surfaces in the inner rings. To the inner part 

the A factor of Eq. (34) is also applied. 

Finally streaming corrections are applied to account for the fact that the 

rubber band b should be diminished for the neutron fraction which streams in

wards between the rods. The correction factor is calculated for a cosine dis

tribution of neutrons incident on the surface of the cluster, and also allows 

approximately for the scattering properties of the coolant. Similar streaming 

corrections are applied to the inner rings of rods, decreasing the outer parts 

of their surface areas ( outside the polygon of the rod centers) somewhat and 

increasing the inner parts. 

The LATREP code calculates absorption fractions from an expression similar 

to Eq. (22) P-n which the exponent for a single resonance absorber of atom den

sity V and total fuel volume / is given by 

j /V. v. $ 
e(f i - * " (85) 

J*» Oil tell 

where <]>'/& .. is the ratio of the flux in the absence of resonances in the 

region in which the rods are located to the average cell flux under these 

conditions. 
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Derivation of Fine Group Cross Sections from Shielded Resonance Integrals 

If multigroup codes are used which require group cross sections instead 

of shielded resonance integrals, and the latter are obtained from tabulations by 

interpolation procedures and equivalence theorem techniques, a method must be 

developed to relate the two. Ihis was discussed previously in connection with 

the preparation of group effective resonance integral tabulations for resonance 

absorbers mixed with Hydrogen as moderator, and in connection with the WIMS code. 

f 281 In the description of this code an approximate treatment for the overall 

flux depression in resonance groups is given for resonances which are distri

buted fairly uniformly throughout the group. The resulting expression is 

•eft 

d - •—; 
^PO f < k (86) 

where A is the group width and the other quantities are defined in Eq. (76). 

Again benchmark tests are needed to examine the general validity of this 

relation under different circumstances. 

Lecture IV 

Detailed Reaction Rate Calculations with Full Allowance for all Resonance 

Interference Effects 

The previous discussion of practical methods of handling the resonance 

absorption problem in thermal reactor lattices, including temperature effects, 

has demonstrated the need for benchmarking such calculations with more accurate 

calculations. 
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At present, preprocessing procedures are available to transform basic 

point cross section nuclear data libraries with resonance parameters into 

accurately Doppler broadened files of cross section data which follow the re

solved resonances in detail, contain no resonance parameters, and can be used 

easily with linear interpolation to provide the desired resonance cross sections 

at any energy to a specified interpolation accuracy criterion. They have been 

described in connection with the basic data libraries. 

The detailed point data libraries can be used in Monte Carlo codes which 

are useful for certain types of problems. They have also been used in a trans
om 

port code, OZMA ^specially written for calculating resonance reaction rates. 

This code treats the one dimensional unit cell problem with a spatial sub

division specified by the user on a very fine energy mesh by integral transport 

or discrete ordinate methods. 

The Monte Carlo Method and its Limitations 

Monte Carlo calculations in the resolved resonance region can be performed 

when an exact neutron tracking routine is available for the assembly under con

sideration. Regular reactor lattice unit cells can readily be dealt with, since 

the tracks of neutrons leaving the unit cell can be continued in the same unit 

cell by re-entering it, by a shift of the origin of the coordinate system, at 

a point which corresponds to the point of entry into the neighbouring cell. 

Such a code is the REPC program which deals with regular hexagonal or square 

lattices of cylindrical rods, each subdivided into a number of annular regions. 

The geometry routine has recently been extended so that clusters of fuel rods 

placed in the coolant contained in a pressure tube can also be handled, the 

complete unit cell being a square or hexagonal array of such clusters in a 

moderator. 

The cross sections of the REPC code in the resolved resonance region are 

the pre-processed detailed TJoppler broadened resonance profile tabulations which 

were discussed earlier. Since these tables can be used with linear-linear 

interpolation, cross sections are readily available at any energy point reached 

by the neutron during its history. 



The REPC program is an updated version of the former REPETITIOUS code^ \ 

Neutrons are followed between prespecified energies E,tux and '-,„,„ in which 

al l collisions are taken to be e las t ic and isotropic in the center of mass 

coordinate system. These conditions apply in the resolved resonance region, and 

also approximately in the unresolved energy region. The isotropic neutron in

jection routine introduces each neutron into the lat t ice unit cell with unit 

weight at the f i r s t energy with which i t emerges below ^ after an elast ic 

collision above this energy, assuming that the cell flux is proportional to '/£ 

for e«^"^,BA • This collision occurs with a nuclide randomly chosen from 

the mixture of nuclides contained in the lat t ice region where the neutron com

mences i t s history. The choice is made in accordance with the £.2fs values 

of the different nuclides in the mixture, while the choice of in i t i a l location 

is uniform within each of the l a t t i ce regions and proportional to the overall 

§ ?^ of the regions. In tracking the neutron histories the neutron weight 

i s degraded by the scattering probability 2^ j'Si at each collision, these 

values referring to the mixture contained in the region in which the collision 

occurs. Reaction rates for reaction type A are stored by regions and pre

specified energy groups from appropriate accumulations of V/2^/2. . If £„*.* 

refers to an energy in the unresolved resonance region, and if the resonance 

cross section tabulations referred to above are used, resonance reaction rates 

above the energies where the resonances are resolved are not properly shielded 

since, as previously discussed, the cross sections in the tabulations are then 

inf ini te ly dilute averages for the mean resonance parameters specified in basic 

data l ibrar ies and their s t a t i s t i c a l distributions. However, the procedure can 

be improved by the use of randomly constructed resonance ladders at theKenergies, 

or by the use of probability tables^ . 

While Monte Carlo codes of the above type can produce quite accurate over

al l results for quanti t ies like the resonance escape probabilit ies between ^WiUA 

and ~^til t or i:̂  and -*,„ with -„ as the top of the resolved resonance region, 

fine group results have much greater s ta t is t ical errors. Temperature differ

ences of reaction rates are similarly subject to considerable fluctuations. For 

benchmarking purposes Monte Carlo calculations are therefore of limited value in 

the resonance energy region, except in as much as broad energy group parameters 

are required. 

The Transport Code OZMA 

(21 The OZMA code^ ' solves the point energy neutron transport equation by usinj 

two alternative approaches. In the f i rs t the anisotropic angular flux in the 

multiregion unit cell is obtained by solving the integro-differential transport 

equation. A discrete ordinates treatment is applied, which features a new and 

efficient formulation for the scattering integral, as required to handle re

sonance prof i les . Alternatively, the isotropic flux in the multiregion, unit 

cell is computed by solving the integral transport equation for the collision 

density using col l is ion probability methods. In both alternatives the flux is 

the flux per unit energy, but i t is expressed as a function of lethargy in order 

to fac i l i ta te the calculation of the slowing down sources. The rationale for 

this part icular formulation is that for elast ic scattering from t ' to t the 

cross section i s proportional to ' / £ ' when the scattering is isotropic in the 

center of mass system, which is generally the case in the resolved resonance 

region. Multiplication by the flux in the interval erf£' leads immediately to 

the lethargy increment du' . 

In accordance with these considerations the two basic forms of the neutron 

transport equation which are solved by the OZMA code are: 

a) The Integral Transport mode 

(87) 

For a lattice unit cell subdivided into a number of subregions H , in 

each of which the cross sections and flux arc independent of "T , this 

equation becomes 

v z & oo * X v. r , (.u-) 5 («\ 
TA *~i ~A *—4 n' ''* »» fog-) 

n' J 



b) The Integro-Differential mode 

J / (89) 

For discrete ordinates «̂  , "7 in space and direction, which are at the 

centers of mesh cells with spatial and directional boundaries denoted 

by " , rt-ri and m , m 11 respectively, this euqation becomes 

The spatial subdivision is again made so that the total cross section 

21-60 is regionally constant. The An 's are the surface areas of the 

"space-direction" mesh cells normal to the spatial boundary coordinates 

1 , and the ft. 's are the angular redistributions of the "space-

direction" mesh cells at the directional boundaries denoted by the sub

script n> . The quadrature weights W- and the direction cosines /<_ 

refer to the characteristic directions TH . 

As stated above the fluxes and sources per unit energy in both modes are 

expressed as functions of lethargy u . The fluxes must be multiplied by the 

energy £ to convert them to fluxes per unit lethargy which can then be multi

plied by any desired cross section and integrated over lethargy to obtain group 

reaction rates per unit volume. 

The sources per unit energy S. - (") , expressed as functions of lethargy, 

will be given for the integro differential mode in which scattering anisotropy 

in the laboratory coordinate system can be taken into account. For the integral 

transport mode only the isotropic component in the laboratory system in needed, 

and, as indicated above in Eq. (88), the subregion is denoted merely by n and 

not by n . 

The zeroth and first moments of the slowing down cross section in the lab-

orator)' system from energy t" to unit energy interval near £ in a scattering 

collision with isotope J in subregion " are given by 

2J j ( ' ° Z.-,<0 
<* n «J 

/-ft. 
0 

/ - a • * t- *> 

(91) 

respectively for elastic scattering, isotropic in the center of mass system. 

These are multiplied by the flux and current per unit energy at F. ' in subregion 

« , integrated and summed over all nuclides J in subregion *i to obtain the 

source S. _ (_><) per unit energy at f" which corresponds to u : 

s ^ w , *;w **/.« [s*w-s>,3 
where 

J C H ' *j 

Z _=J t * (A±>) s;o) = 

(93) 

d the integrations in Eq. (93) are from W - £.i ('/«.) to u in every an 

case. 



The calculation of the sources which appear in the transport equation, 

Lq. (88) and Eq. (90) , therefore reduces to the evaluation of the integrals in 

Eq. (93) . in the resolved resonance region great emphasis must be placed on the 

lethargy variable; the fluxes are required in sufficient detail to ensure that 

resonance shielding as a function of lethargy is handled accurately. In addition, 

the spatial variations of resonance absorption and the effect of P-l scattering 

in the laboratory system may be of some importance. The OZMA code enables the 

user to stress any of the coordinates (lethargy, space, direction) as desired, 

subject to overall computer memory storage limitations. 

A constant interval lethargy mesh (.interval £ ) is used in the solution of 

the transport equation, and the equation is solved successively at all mesh points 

starting at the top of the resolved resonance region. The integrals in Eq. (93) 

cover a lethargy range which may contain a large number of mesh points. The 

integrands are stored in memory as "back-values" at lethargies smaller than 

the current value i< . These "back-value" vectors refer separately to all sub-

regions * and isotopes j contained in them, and optionally to the anisotropic 

source components -1-R- (U^ as well as the isotropic component -C- , (u) . It 

is clear that the maximum number of back-values which are to be stored must be 

limited in accordance with the available storage memory. This may be problematic 

specially in the case of light nuclides. In the OZMA formalism this problem is 

handled in the following manner: For each lattice nuclide { two integers "j 

and M- are defined so that I*. M ; £ = *** (.'/*.) . Here M, is the lowest positive 
j o j u J 

integer which ensures that(N *• i) is an odd integer not in excess of the 

largest (input) number of back-values which may be stored for each of the integrals 

in Eq. (93) . Note that hydrogen is excluded from these considerations. It 

is treated separately by an analytic algorithm. Exact equality of Wj Ij I 

as selected in the input, and the slowing down interval In ('/*[]) • maY require 

a slight adjustment of << which is made automatically in the code. It amounts 

effectively to a slight adjustment of the mass ratio n of the nuclide to the 

neutron mass. 

IvTien /// and Mj are known for the J lattice nuclide the back-values for 

any integral in Eq. (93) f referring to nuclide j in any subregion £ in which 

it is present, are stored at every /ll- lethargy mesh point only. The back-

value integrations are performed by Simpson integrations over the range of 

lethargies covered by the stored back-values, with end corrections based on 

trapezium integrations. Suppose an integral H. («) is required for isotope j 

of the type of the integrals in Eq. rg^-\ and that the integrand is denoted by q 

(the subscript S and superscripts o , + or — are dropped for convenience) . 

Let u denote a lethargy mesh point such that the nearest stored back-value 

refers to lethargy u _ L % where k. - 0 i , M--< . Then 

«> ^ L < / J:/ / - , 

<r* 

(94) 

For the end-contribution, which has to be subracted from the Simpson integral, 

l inear interpolation has been used between the last two stored back-values which 

are at lethargies i* -L.i. ..N.IA.t and «- i;f -(*; -')'''•. £ • An a l te r -
j j j o «/ J 

native expression, based on lin-log interpolation, is also availabe for this term 

for the anisotropic scattering source components. It changes the negative con

tribution in Eq. (94) to 

* < - . 

i 

(95) 

and is automatically replaced by the "l inear- l inear" correction in Eq. (94) i f 

either the numerator or the denominator of p is negative. The positive end-

contribution to the Simpson integral , as given in the second line of Eq. (94) , 

is obtained cumulatively as -*• proceeds from 1 a ... to (M. ~i) . 
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All the terms which occur in Eq. (94) involve stored "back-values", except 

for the sum calculated cumulatively in the second line, and <1(n) which appears 

on the second line if •+.></ , and on the first line if 4-^0 • Referring to 

Eq. (93) tj(u) involves the unknown ^ t M ^ or \ («) • Consequently, if 

these quantities are guessed, for example, by taking the values at the previous 

lethargy mesh point, the sources in Eq. (93) are completely determined and the 

transport equation in the form of Eq. (88) or Eq. (90) can be solved by 

standard methods, leading to the next guess of ^,00 and Js (««) . These are 

used to correct the sources in an iterative procedure, until convergence is 

attained. Clearly this convergence is extremely rapid (generally one or two, 

and hardly ever as many as about five iterations) since the "unknown" values of 

<£_(.") and I. (« i contribute only very little to the sources. 

Proceeding to the next lethargy mesh point merely changes -*• to ^j *' 

in Eq. (94) until M. is reached, when V is reset to 0."' If the new *j is 

less than M. the first line of Eq. C94) is unchanged and appropriate additions 

are made to the stored values of the second and third lines. If the new -kj is 

equal to M , it is reset to zero. In this case the second and third lines of 

Eq. (94) are absent and the value of the first line is updated. Its first 

term becomes the "unknown" a(u) and the subsequent terms are all shifted on the 

lethargy scale by H i with interchanged weights 4 and 2. The quantity which 

is now «< (u - ̂ t ) enters the summations with new weight 4, and the last term 

of the new summation with weight 2 becomes the last term of the Simpson sum with 

weight 1. The updating of the first line of Eq. (93) when -£j is therefore 

very rapid, consisting only of an addition and a substraction to existing sums and 

the interchange of integration weights. 

At the beginning of the calculation Wj initial back-values must be stored 

for each lattice nuclide J in the subregions M" in which it is located, to

gether with appropriate back-values in further arrays which deal with the an

isotropic source components when they are taken into account. Such back-values 

refer to mesh points separated by *j fc at lethargies below that corresponding 

to the first point in the resolved resonance region (energy E 0 ) . They are based 

on a flat isotropic flux of magnitude '/£ per unit energy, so that these back-

values are *-%- . /£ for the isotropic (and zero for the anisotropic) source 
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components, with Ez E a*p(£ft;l) , -Czi.2... //; . Here Zt . is the con-

stant scattering cross section above the resolved resonance region. 

For hydrogen there is no need to store back-values since the source inte

grations extend to the top of the fission spectrum. The value Cu for hydrogen 

is taken to be unity, so that the correction terms in Eq. (94) lines (2 and 3) 

are absent. In the Simpson integral [cf Eq. (94) ] the las t term in the f i r s t 

line is also effectively zero. The two summations which precede i t , with weights 

4 and 2, are stored as sums and updated in a similar (but even simpler) manner 

as above, in proceeding from one lethargy mesh point to the next. The inital 

values of these sums are merely the sums of geometric series assuming £ -

to be constant over a sufficient portion of the energy range above the top of 

the resolved resonance region. 

The OZMA code can make use of an arbitrary group structure, e.g. the MUFT 

structure; in each energy group constant cross sections are read into the com

puter memory for a l l la t t ice nuclides. For the nuclides with resonance profile 

tabulations in any of these energy groups the constant cross sections are over

written at every lethargy mesh point by appropriate values obtained from these 

tabulations by linear interpolation. The solution of the transport equation 

then leads to a reliable flux spectrum 4.(.u) in al l subregions M of the 
n 

lattice unit cell. ' 

The output of the OZMA code consists of group reaction rates per unit 

volume in region » 

(96) 

since the flux per unit lethargy is i-W^lM . The integral is calculated by 

trapezium integration by further subdivision of the lethargy interval E . The 

new mesh can be made about as fine as the densest parts of the resonance pro

file tabulations. In Eq. (96) the collision density given in the brackets \. i 



is linearly interpolated in the subintervals of £ , rather than the flux. The 

principal normalization of (**)'}- • is for a flat '/'& flux throughout the 

lattice unit cell at all energies above the resolved resonance region. This 

corresponds to [cf. Eq. (21) ] <\0/<fr where ? = i throughout the enire unit 

cell above the resolved resonance region of the fertile nuclides, The value 

of dt.. is then J 2"A integrated over the cell volume above this energy. 

An option is available to utilize a spatial weighting factor for each of the cell 

subregions in the asymptotic energy region. This weighting factor is then also 

used in the summation over subregions of the P T^ multiplied by the sub-

region volumes. 

The group reaction rates, Eq. (96) , are the quantities directly needed 

in lattice analysis codes; they obviate any reference to effective resonance 

integrals, however, as other computational techniques frequently calculate 

effective resonance integrals, OZMA evaluates and lists them according to the 

following expression 

a? 
(97) 

v * 

where V S * ^ . . is the to ta l number of neutrons entering the unit cell at 

the top of the resolved resonance region (assuming constant scattering cross 

sections for all nuclides above th is region), and &? is this source diminished 

by a l l neutron absorptions in the unit cell before group G is reached. Eq. (97) 

expresses the effective resonance integral in a form in which i t accounts for 

the shielding in the resonances, but is not influenced, except for second order 

effects, by the absorption caused by the resonances themselves in group 4 , 

see Eq. (22). 

In addition to the down scattering source which is calculated according to 

the methods described in connection with Eqs. (93) and (94) an upscattering 
(4 3) correction by hydrogen at low epithermal energies is available . I t is 

based on the free proton gas kernel in which the upscattering part is approxi

mated by a delta function, while the total scattering cross section for hydrogen 

is the appropriate integral of this kernel in an approximate form which applies 

at energies greatly in excess of the effective kT*. 

The Region to Region Transfer Probabilities in the Integral Transport Option 

of the OZMA Code. 

The principal quantities needed to solve the integral transport equation, 

Eq. (88) , apart from the slowing down sources s „ . ( w * » are the probabil i t ies for 

transfer of neutrons from subregion «•«•»' in a single flight P , (j*\ 

These probabil i t ies can be calculated accurately in cylindrical geometry by 

a method developed by Carlvik for unit cells with cylindricised outer bound

ar ies , from which the neutrons can effectively be scattered back in such a 

manner that \.lt1<^ui allows for transfer from subregion *' in one unit 

cell to subregion " in another. The probabili t ies clearly depend on the cross 

sections of al l subregions through which the neutrons might pass, and since the 

calculation is lengthy, i t is not practicable to perform i t at thousands of 

lethargy points in the resonance region, and for a multiregion subdivision of 

the unit ce l l . It is also generally prohibitive to store the matrix YHti, as 

a function of the optical thichnesses of the various subregions in order to de

rive al l required ' (*\ by interpolation in such tabulations. 

A practical way to store probabil i t ies related to %„, is to concentrate* 

on each subregion in isolation from the others. The method is related to the 

procedure used in the Nordheim Integral transport calculation of resolved re-
(42) 

sonance integrals , in which two probabili t ies are stored for the fuel region, 

cf. the discussion following Eq. (61). In the generalisation^for any annular 

subregion two probabili t ies are stored which depend only on the cross section 

and thickness of the region i t se l f , so that they can be tabulated conveniently. 

They are the probabili t ies of escape through the inner and outer surfaces of 

radii u. and 8- respectively, for a uniform isotropic source in the annulus, 

/ 
<*~i . - '£ v/4 JE#W-*«/') 

(98) 



where -i.-0.fi>- , * - 2 ( £ -ex \ ^s t j i e optical thickness of the annulus of 

volume V and &}>J> and 6',*}'' are the polar and azimuth angles which a neutron 

trajectory makes at the outer and inner faces of the annulus (with respect to 

the rod axis and the normal to the surfaces). The Bickley function is defined 

at the end of Eq (98) , The additional term in ?° accounts for the source 

neutrons which move/a direction which does not intersect the inner surface. 

These two probabili t ies are functions of the variables x and -K . The depen

dence on the l a t t e r is only s l ight . Extreme values at k-o and *r * are 

Cr(0/K) , ~L [ ... £ k . j ( x ) j f t SCO *) , -i_ So'
dt l' ' £ \ / * * ' - 0 ] 

(99) 

where *K<*/*) and-S(/j^c) are the escape probabilities from a solid cylinder 
f44) 

and an infinite slab . Kennedy has suggested that the weak 

dependence on -t{ can be utilised to determine by inter

polation between the extreme values given in Eq. (99) » so that P and '' 

follow immediately from Eq. (98) . The latter can then be tabulated as functions 

of the optical thickness •*. of the annulus. Three transmission probabilities 

through the annulus T1-' , T*'', 7""' are related to the basic P° and P* and 

refer to neutrons incident on the inner and outer faces of the annulus with 

distributions proportional to the cosine of the angle of incidence. For neu

trons entering through the outer face there is of course a probability of trans

mission without collision to the inner face and to the outer face. 

Although the two basic probabilities P and P* for cylindrical annuli 

can be tabulated as a function of < - ^-t*r~&) > a nd conveniently interpolated 

when the cross section 1 is known for any energy in the resolved resonance 

region, an approximation is needed to derive the region to region transfer 

probabilities from them. It is the cosine current approximation. As may be 

seen in connection with Eqs. (98) and (99) uniform isotropic sources in an 

annulus give rise to escape probabilities which are connected with transmission 

probabilities for cosine distributions of neutrons entering the annulus. When 

a cylindrical unit cell is subdivided into a number of annular subregions such 
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cosine distr ibutions at the interfaces are not assured when the flux, although 
constant in each subregion, is allowed to vary as a step function at the in ter
faces. Consequently cosine currents at these interfaces become an assumption 
under these conditions. They affect the accuracy of the balance equations, 
given below, in which the probabilities discussed above appear: 

• • ' ' ' , H * 

T"° 1- ? z « v* 'V T 1 " ' . . «... r C c T'"~ >- "• I •• * u- <..':- ( P C - P K 

» - if a, ' " ' ({ " ' " i, ' * "• 
(100) 

For given source strengths these equations make it possible to calculate the 

.inward and outward directed currents at all interfaces of the subregions num

bered from n-i for the innermost cylindrical region to H:W , the annulus 

near the cell boundary. In particular, a unit source in subregion **'' only 

will give a flux in region n which is the transfer kernel /.1(), from region n' 

to region * of Eq. (51) 

r , • - V, S 
tin'- •% n' v. (101) 

This kernel i s related to the region to region transfer probability by 

1 — * » i\ . . 

«n' — ; 

V\ (102) 

p 
The above procedure for calculating the transfer probabilities r

n<0 is also 

used in the Nordheim integral transport method for calculating effective re

sonance integrals, see Eq. (61). 

The Discrete Ordinate Option in the OZMA Code 

The discrete ordinate option in the OZMA code is solved by standard pro

cedures for handling the S equations1- " ^ , for vacuum, reflective, periodic, 

or white boundary conditions at the inner and outer boundaries of the lattice 

unit cell. 

http://-i.-0.fi%3e-


In the S approximation, as used in the OZMA code, there are (N + 1) 

characteris t ic directions in slab and spherical geometry with M values of in

creasing magnitude in the range (-1,1). The f i rs t direction has zero weight; for 

every other negative yU there is a positive f* of the same magnitude and weight \# .̂ 

Also 3 r t / - / ' i \ In cylindrical geometry there are 3,5, . . . , (N+l) characteristic 

directions on N/2 equatorial planes. These directions are numbered 1,2,...,N(N+4)/4 

On each plane the extreme negative /« value has zero weight, the other character

i s t i c directions forming pairs as in the other geometries. The total weight for 

a l l N(N+4)/4 directions is unity. 

The angular redistribution coefficients in Eq. £90) are defined by 

"'*•"' " (103) 

so that /$- A/. and h. I\f. are required for the solution of Eq. (90) 

for the "space,direction"" m̂ sTt point Hfi with spatial boundaries of areas A„ 
anc* "«., > and direction boundaries corresponding to the subscripts *" and»«n . 

Eq. (103) ensures that the redistribution coefficients are defined separately on 

each equatorial plane in cylindrical geometry. 

The solution of Eq. (90) proceeds through al l space points IT for the f i rs t 

direction K , then similarly for the next ** , e tc . When /,- - is calculated at 

the center of a par t icular "space direction" cel l , the mid boundary flux values 

are known at two adjacent faces of this ce l l . If /-,,;, is assumed to be the 

average of the mid boundary flux values both for the space and direction coor

dinates, the method of solution is the diamond scheme; if / - - is assumed to be 

the same as the mid boundary values at the two adjacent faces of the "space di

rection" cel l , where these values are not yet known, the method of solution is 

the step function scheme. In accordance with the specified boundary conditions 

at the spatial boundaries of the unit cel l , and zero angular flux density at the 

direction of zero weight, the solution proceeds from the outer spatial boundary 

of the cell inwards when yu is negative, and from the inner spatial boundary 

of the cell outwards when yu_ is posi t ive. For the vacuum boundary condition 

the inward directed angular flux density is zero (for negative /*(7 at the outer 

cell boundary, and for positive AT at the inner cell boundary); for the re

flective boundary condition i t is the same for any given direction and i t s reflec

tion (equal \pz\ but of opposite sign, except for the direction of zero weight 

which is reflected into the direction of largest f*- ) ; for the periodic boun

dary condition, the angular flux densities for a given /<£ are the same at the 

inner and outer cell boundaries; for the white boundary condition, the inward 

directed flux density at the cell boundary is the outward directed current 

(positive . . . ' s at the outer, negative >u_ ' s at the inner cell boundary) mul-

t ipl ied by the appropriate albedo. The sweep through the "space direction" cells 

passes in this way from cell to cel l , in which always two adjacent boundary 

fluxes are known at the s tar t of the calculation for a part icualr ce l l , the 

central flux and the fluxes at the remaining two adjacent boundaries being 

calculated. 

The S option has several advantages compared with the integral transport 

mode of the OZMA code. Among these the most important is that P-l scattering 

can be taken into account. I t also requires less storage since only the quanti

ties referred to in connection with Eq. (90) ' have to be stored, and not the 

tabulations needed to evaluate the P,|n. matrix of Eq. (102) at each energy point. 

On the other hand, the S option requires rather more computer time, typically up 

to as much as the integral" transport mode. 

Consistent Use of Accurately Calculated Resonance Reaction Rates in Multigroup 

Lattice Analysis Codes 

When accurately calculated reaction rates in the resolved resonance region 

are available, such as those calculated by means of the OZMA code according to 

Eq. (96) for energy groups which correspond to those of a multigroup la t t ice 

analysis code, they can be used in such a code in an indirect manner. 

In the MUFT procedure, for example, one would eliminate the resonance ab

sorption term »,. (i)ti<|. ) from Eq. (47) and use cell averaged absorption cross 

sections for al l resonance absorbers in the la t t ice unit cell as part of ^ . 

This would be done at zero buckling and in the abserfce of ?-it. , u* , and 'JC in 

the resolved resonance region, consistent with the method used in the OZMA code. 

The absorption cross sections of the resonance absorbers in ? , would be estimated 

values in i t i a l ly , but they would be modified i terat ively unt i l , for a l l resonance 

absorbers, the absorption and fission rates in al l groups in the resolved re

sonance region agree with the values predicted by the OZMA code for the same nor

malisation at the top of this region. When convergence has been reached, a further 



calculation could be made at a finite input buckling, and in the presence of any 

(small) 5;H , to, and X values which had been ignored in the resonance groups 

during the iterations. This procedure also eliminates the problem which had 

been mentioned earlier, that the resonance absorption rate &t (% t %t ) does 

not allow for any interaction between resonance absorption and leakage. As 

part of the overall 3Ê  the group resonance absorption cross sections of the 

resonance nuclides are treated together with the leakage in Eq. (47) in a con

sistent manner. 
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This procedure has been implemented in the HAMMER code^ ' and most of the 

results of lattice analysis calculations which will be described subsequently 

have been obtained in this way by a combination of O Z M A ^ and HAMMER^ '. It 

is also possible to treat resonance absorption in a space dependent manner, for 

example, for the different annuli containing fuel rods in cluster geometry, 

provided such annuli are represented by homogeneous mixtures of fuel and coolant. 

The same resonance isotope in different fuel bearing annuli is treated effec

tively as a different material in each of these annuli, so that the OZMA/HAMMER, 

analysis can proceed normally, reaction rates being preserved for the resonance 

nuclides in the interface between the two codes separately foj all the annuli 

containing fuel. Hyperfine heterogeneity corrections within the annuli have to 

be handled by appropriate correction factors. 

(27) 
Similar procedures can be used in the GAM code. If implemented, they 

can serve as a means of testing the adequacy of the use of tabulated group re

sonance cross sections for the different resonance absorbers together with equiv

alence theorems to relate heterogeneous to homogeneous assemblies. 

Temperature Dependence of Neutron Cross Sections and 

Resonance Integrals, and Safety Problems 

Lecture V 

Results of Thermal Reactor Lattice Analysis Studies with Accurately Calculated 

Resonance Reaction Rates 

Thermal reactor lattice calculations with accurate temperature dependent 

resonance absorption treatments have a direct bearing on safety problems. Since 

such calculations are time consuming they can be applied only to a limited range 

of problems. However they can also be used as a means of testing and correcting 

the algorithms for rapid calculations of resonance reaction rates in multigroup 

lattice analysis codes, so that these can be employed with greater confidence 

for problems of practical importance, and in particular in cases where the temp

erature dependence of reactor parameters are required. 

Detailed resonance absorption treatments are also of great value in data 

and methods testing programs. Differences between calculated and experimental 

values of integral parameters can, in general, be attributed to a mixture of 

experimental errors, inadequacy of the basic data, and approximations in the 

calculational procedures. The availability of modern computing facilities pro

vide an incentive to reduce errors due to calculational models as far as pos

sible. Approximations in the solution of the Boltzmann equation are inevitable 

even for problems of simple geometry, except in the case when point energy Monte 

Carlo methods are used for the complete assembly under investigation and the 

entire range of neutron energies. However detailed results in limited spatial 

region and small energy ranges require numerical procedures free from statisti

cal fluctuations. In the resolved resonance region, and subject to appropriate 

generalisation also in the unresolved and thermal energy regions, the detailed 

methods described previously, enable to user to estimate the accuracy of his 

calculational models. This is of great value for the analysis of differences 

between results of calculations and integral experiments. 



In the following sections a number of problems will be discussed by referring 

to results of calculations published in recent years. They deal with effective 

resonance integrals of isolated rods and their temperature variations; Doppler 

reactivity coefficient in B1VR and PWR unit cells and their variation with fuel 

depletion; the analysis of some thermal reactor lattice benchmarks; resonance 

absorption calculations in D O moderated fuel clusters; and the detailed analy

sis of a light water moderated U0_ lattice which throws light on the differences 

between group cross sections cell fluxes and fuel disadvantage factors in de

tailed calculations within a resonance group and in standard multigroup calcu

lations. In the conclusion, a procedure is proposed for the specification of 

temperature and composition dependent correction factors to simple and rapid 

resonance treatments in multigroup lattice analysis codes. 

Temperature Dependence of Effective Resonance Integrals: Interference Between 

Resonance Absorption due to Different Nuclides. 

As discussed previously, the OZMA code provides an accurate means for cal

culating the temperature dependence of resonance absorption in reactor lattices, 

since the point cross sections used are evaluated with rigorous Doppler broaden

ing. In addition, all resonance interference effects are implicit in the treat

ment; the cross sections of mixtures of nuclides are obtained at all discrete 

energy points by summing the partial cross sections of the constituents, before 

the transport and resonance shielding calculations are made. 

In Tables VI and VII resonance integrals of U and U are given for 3% 
(47) 

enriched UO rods of widely differing radii . The OZMA calculations were made 

with the integral transport mode for practically isolated rods, by placing them 

in water in an array with large water to fuel volume ratio. The flux was ini-
23S 

tialised only once to its asymptotic value, above the U resolved resonance 

region. In both tables the values are compared with those resulting from the 

Nordheim Integral Transport treatment^ ' for individual resonances in the ZUT 

code. The U results in Table VI cover its resolved resonance region. In 

the case of U in Table VII the effective resonance integrals are extended by 

adding 2? ('T ) ^ u to cover the entire energy region from 10 MeV to 0.625 eV for 

group cross sections obtained from the ENDF/B-IV data with a fission spectrum 

weighting flux above 67 keV, and a constant weighting flux per unit lethargy be

low this energy, without resonance shielding in the groups belonging to the un

resolved resonance region; a contribution was also added for the epithermal group 

below the resolved resonance region. Table VII also shows the temperature co

efficients of the effective resonance integral when \_l\t-f(.~
r) - i ] is assumed 

to depend linearly on (yr -Vr~) , or for a quadratic dependence. These co

efficients, which refer to the OZMA calculations, are in reasonable agreement 

with the values resulting from the Nordheim treatment, and values given by 

Todosow and Carew . The quantity € is the 1/v capture integral, based on 

0* (2200) = 2.71 barns, in a /// flux above 0.55 eV. 

TABLE VI 

235 
u Absorption Integral for 3 Percent Enriched U0 Rods (0.834-101.3 eV) 

T°K 

293 

450 

600 

800 

1200 

Code 

0ZMA1 
ZUT 

0ZMA1 
ZUT 

OZMAl 
ZUT 

OZMAl 
ZUT 

OZMAl 
ZUT 

0 .125 
( 1 . 2 2 7 ) 

2 7 3 . 0 
2 8 6 . 8 

2 7 3 . 0 
2 8 7 . 5 

2 7 3 . 0 
2 8 7 . 9 

2 7 2 . 8 
2 8 8 . 3 

2 7 2 . 2 
2 8 8 . 8 

R(cm) 

( /S/M cm/; 

0 . 2 5 0 
( 0 . 8 8 6 ) 

2 6 2 . 6 
2 8 0 . 7 

2 6 2 . 8 
2 8 1 . 7 

2 6 3 . 0 
2 8 2 . 4 

2 6 3 . 0 
2 8 3 . 1 

2 6 2 . 7 
2 8 4 . 0 

V2, 
gr ) 

0.500 
(0.632) 

244.3 
270.3 

245.0 
271.8 

245.5 
272.9 

245.9 
273.9 

246.0 
275.4 

1.00 
(0.447) 

216.5 
254.4 

217.4 
256.5 

218.2 
257.9 

218.8 
259.3 

219.4 
261.4 

2.00 
(0.316) 

179.3 
235.3 

180.2 
237.5 

180.8 
239.1 

181.4 
240.7 

182.2 
243.1 



The effect of the detailed space-energy calculations of the flux in the OZMA 
code is apparent when the results in Tables VI and VII are compared with the 
values obtained from the ZUT code individual resonance treatment which uses a 
flat flux in the fuel. As heterogeneity becomes more pronounced the differences 
in the effective absorption integrals increase. 

In addition, there is a marked effect due to nuclide interference in Table 
235 VI which refers to the U resolved resonance region. The difference between 

the Z ,, values with and without intei-action between the resonances of the two 
**t 235 

nuclides increases more considerably with increasing rod radius for U than for 
238 

U. In order to show this effect more clearly a breakdown of the room tem
perature OZMA results for the separate MUTT groups is given in Table VIII and IX . 

There is strong correlation between the decrease in ' and Jclt with 
' 238 

increasing rod size in groups 39, 41 and 45 which contain the large U 
resonance peaks at 36.8, 20.9, and 6.67 eV. The flux depressions due to these 

U resonance effect ~L Z more strongly than the flux depressions caused by 235 the U resonances themselves. In other groups such as 47 and 48, in which 
there are significant contributions to Г>(. , the decrease of the group l<t-f 

with increasing rod size is much less marked and close to the behaviour of the 
overall Iх for all groups as given in Table VI. 

и.» 

2 3 8 U T o t a l 

Т°К 

293 

450 

600 

800 

1200 

<ТМФ-,, 
238 

C a p t u r e I n t e g r a l f o r 

Code 

OZMA1 
ZUT 

OZMA1 
ZUT 

OZMA1 
ZUT 

OZMA1 
ZUT 

OZMA1 
ZUT 

> ; < r - > -

U Doppli 

TABLE VI I 

3 P e r c e n t 

RCcm) 

C/S/M cm/; 

0 . 1 2 5 
CI .227) 

3 9 . 7 5 
3 9 . 8 7 

4 1 . 4 2 
4 1 / 4 6 

4 2 . 8 5 
4 2 . 8 8 

4 4 . 5 9 
4 4 . 6 1 

4 7 . 6 1 
4 7 . 6 4 

J ] [ / < / $ ( / > 

2r C o e f f i c i e n t ; 

L i n e a r F i g 

RCcm) 10 2B 

0. 
0, 
0, 
1 . 
2 . 

.125" • 1.17 

.250 0 . 9 1 

.500 0 . 7 3 
,00 0 . 6 1 
.00 0 . 5 4 

0 . 2 5 0 
( 0 . 8 8 6 ) 

2 9 . 7 3 
3 0 . 3 9 

3 0 . 7 1 
3 1 . 3 3 

3 1 . 5 4 
3 2 . 1 7 

3 2 . 5 4 
3 3 . 1 8 

3 4 . 2 9 
3 4 . 9 8 

/V)o<7> 

E n r i c h e d 

V 2 , g r ) 

0 . 5 0 0 
CO.632) 

2 2 . 3 4 
2 3 . 4 0 

2 2 . 9 4 
2 3 . 9 8 

2 3 . 4 4 
2 4 . 4 9 

2 4 . 0 2 
2 5 . 1 0 

2 5 . 0 4 
2 6 . 1 6 

-r-:rj 

; f o r 3 P e r c e n t Enr: 

UO Rods 

1.00 
CO.447) 

16 .94 
1 8 . 4 3 

17 .34 
1 8 . 8 3 

17 .65 
19 .17 

1 8 . 0 1 
19 .57 

1 8 . 6 3 
20 .24 * с 

Lched U02 

Quadratic Fi t 

io2e 

1.06 
0 . 8 2 
0 . 6 8 
0 . 6 0 
0 . 5 6 

105Y 

6 . 5 
5 . 1 
2 . 6 
0 . 5 

- 1 . 2 

CO.625 eV-10MeV). 

2 .00 
CO.316) 

1 2 . 9 3 
15 .04 

13 .20 
15.34 

1 3 . 4 1 
15 .59 

13 .65 
15 .87 

14 .04 
16 .34 

'•i У 'i t( i •• 

v.- • 
Rods I , , o f e f f 

MUFT 
Group 

35 
36 
37 
38 
39 
40 
4 1 
42 
4 3 
44 
45 
46 
47 
48 
49 
50. 
5 1 
52 
5 3 

T o t a l 

235. , , U f o r 

TABLE V I I I 

A b s o r p t i o n f o r 3% E n r i c h e d , 
Tempera tu re , C a l c u l a t e d by t h e 

0 . 1 2 5 

7 .76 
8 .02 

1 9 . 7 6 
1 2 . 8 0 
2 1 . 6 5 
1 6 . 3 6 
2 1 . 7 4 
1 2 . 6 1 
2 8 . 1 7 
3 3 . 7 3 

6 . 3 6 
1 5 . 0 5 

6 . 0 6 
1 1 . 5 4 

4 . 1 8 
6 . 6 9 
4 . 5 5 

1 3 . 1 9 
2 2 . 8 3 

2 7 3 . 0 4 

0 .25 

7 .68 
7 .87 

19 .41 
12 .54 
20 .71 
16 .06 
19 .75 
12 .41 
26 .90 
3 2 . 1 3 

5 . 7 6 
13 .24 
5 . 9 2 

11 .36 
4 .14 
6 .62 
4 .52 

13 .02 
2 2 . 5 1 

262 .55 

Rod R a d i u s tcm 

0 . 5 0 

7 . 5 1 
7 . 6 1 

1 8 . 6 8 
12 .04 
1 8 . 9 7 
15 .44 
16 .94 
11 .95 
2 4 . 6 3 
2 9 . 2 4 

. 4 . 9 1 
1 0 . 6 2 

5 . 6 2 
1 0 . 9 6 

4 . 0 4 
6 . 4 5 
4 . 4 2 

1 2 . 6 0 
2 1 . 7 3 

2 4 4 . 3 5 

I s o l a t e d UO 
OZMA Code 

• ) 
1.0 

7.14 
7.14 

17.34 
11.15 
16.18 
14.26 
13.38 
11.05 
21.23 
24.91 

3.87 
7.65 
5.04 

10.17 
3.83 
6.09 
4.21 

11.75 
20.10 

216.46 

Rods at Room 

2 .0 

7.46 
6.35 

15.10 
9.72 

12.47 
12.29 
9.56 
9.47 

17.01 
19.62 
2.80 
4.97 
4.10 
8.88 
3.45 
5.49 
3.84 

10.37 
17.33 

179.27 



TABLE IX 
238 

I f£ of u for 3% Enriched Isolated UO. Rods at Room Temperature, Calculated by the 
6 2OZMA Code 

MUFT 
Group 

35 
36 
37 
38 
39 
40 
4 1 
42 
4 3 
44 
45 
46 
47 
48 
49 
50 
51 
52 
5 3 

0 .125 

0 . 8 7 3 
1.760 
0 .035 
0 . 6 9 1 
3 .935 
0 . 1 7 3 
6 . 2 9 8 
0 . 1 1 3 
0 . 0 7 4 
0 . 2 1 8 

1 1 . 1 1 0 
2 . 5 6 8 
0 . 2 7 7 
0 .162 
0 .129 
0 . 1 1 8 
0 . 1 1 7 
0 .115 
0 . 1 4 7 

Rod 

0 . 2 5 

0 . 6 9 7 
1.256 
0 .034 
0 . 6 2 5 
2 . 7 5 0 
0 . 1 7 0 
4 . 3 5 5 
0 . 1 1 1 
0 . 0 7 2 
0 . 2 1 3 
7 . 0 8 8 
2 . 2 7 6 
0 . 2 7 3 
0 . 1 6 0 
0 . 1 2 8 
0 . 1 1 7 
0 . 1 1 6 
0 . 1 1 4 
0 . 1 4 5 

R a d i u s (.cm.) 

0 . 5 0 

0 . 5 3 4 
0 . 9 1 8 
0 . 0 3 3 
0 . 5 3 8 
1 .912 
0 .164 
2 . 9 9 5 
0 . 1 0 7 
0 . 0 7 0 
0 . 2 0 3 
4 . 4 3 7 
1.856 
0 . 2 6 4 
0 . 1 5 5 
0 .125 
0 .114 
0 .114 
0 . 1 1 1 
0 . 1 4 0 

1.0 

0 . 4 1 3 
0 .685 
0 . 0 3 1 
0 . 4 4 1 
1.320 
0 . 1 5 3 

' 2 . 0 4 0 
0 . 1 0 0 
0 . 0 6 5 
0 . 1 8 5 
2 .762 
1.373 
0 .244 
0 .145 
0 .119 
0 . 1 0 8 
0 . 1 0 8 
0 .104 
0 .130 

2 . 0 

0 .322 
0 . 5 1 3 
0 . 0 2 8 
0 . 3 4 3 
0 . 8 9 2 
0 .132 
1.357 
0 .086 
0 . 0 5 7 
0 . 1 5 8 
1.709 
0 . 9 1 5 
0 . 2 0 8 
0 . 1 2 8 
0 . 1 0 7 
0 . 0 9 8 
0 . 0 9 8 
0 . 0 9 4 
0 . 1 1 2 

Total 37.28 27.33 20.00 14.68 10.71 
(2 7-53) 

The WIMS code es t imates the in te r ference e f fec t by the expression 

(104) 

where £" is the potential scattering cross section of the fuel, ^~ /*-0 with 

£ the mean chord length for isolated rods, and 2- the average resonance cross 

section of U in group « . Eq. (104) produces an interference effect which 

tends to reduce I .' compared with the value without interference, i.e. with 

71. ^ =i? . The reason is that the presence of the U average cross section 

in Eq. (104) reduces the multiplying factor much more strongly than the increase 

caused by the larger background cross section, at which \ t (i is evaluated. On 

the other hand the magnitude of the interference effect is predicted poorly in 
' 238 

the groups with the large U peaks, specially when the change of this effect 

for widely differing rod diameters is considered. As the rod diameter increases 

2 becomes smaller, but so does 2.'*1' in the groups with the large resonances. 

Consequently, the change of the interference effect, as given by Eq. (104) , in 

groups 39, 41, 45, and even still in group 46, with increase in rod diameter is 

much smaller than that obtained by the OZMA code, see Table VIII. Even allowing 

~£p and ^r*s ~ to be replaced by effective values in Eq. (104) , for example 

close to those which apply in the case of a resonance absorber of infinite mass, 
235 

cannot reproduce the variation of U resonance integral with rod size in the 
238 

principal U resonance groups, obtained from the detailed resonance absorption 

calculations with an implicit interference treatment. It must be concluded that 

reliance on Eq.(104) can only give a rough estimate of the interference effect. 

For more accurate estimates detailed calculations are needed, or fits to such 

calculations by means of empirical formulae. An alternative is the use of sub-
(49) 

group theory^ , which can give better estimates of the flux depressions caused 

by the principal absorber, and their effects on the less abundant resonance 

absorbers . 

Temperature Dependence of Resonance Absorption in LWR La t t i c e s during Fuel 

Deple t ion . S p a t i a l Sh ie ld ing and Mutual Shie ld ing by Dif ferent Nuclides. 

A study was made r e c e n t l y of the temperature dependences of the reson

ance absorpt ion and of the mu l t i p l i c a t i on f a c t o r in LWR l a t t i c e s when changes 
(2) 

in the fuel composition due to deple t ion are taken i n t o account . The OZMÂ  

and HAMMER*- J codes were used for the multigroup l a t t i c e a n a l y s i s . Changes in 

the fuel composition during burn-up were obtained by CINDER c a l c u l a t i o n s . 

Apart from the c a l c u l a t i o n s performed a t epithermal e n e r g i e s , which were 

descr ibed in connection with the resonance c a l c u l a t i o n s , the HAMMER code d e t e r 

mines the space dependent thermal spectrum in a 30 group s t r u c t u r e below 
(311 0.625 e\'^ . Some information about the thermal l i b r a r y was given an connection 

with the p repa ra t ion of temperature dependent resonance cross sec t ion p r o f i l e 

shapes . The CINDER code*- •* dep le t e s - the fuel for a spec i f i ed power dens i ty , 

generat ing f i s s i o n product nucl ides in a number of f i s s ion product chains, and 

a c t i n i d e s in dep le t ion cha ins . 

249 



f 
Differences in *'„,, and other parameters due mainly to Doppler broadening of 

the resonances were initially calculated for two fuel temperatures and fuel 

compositions in a BWR lattice unit cell. The composition is given in Table X; 

the end of life composition was approximate, no attempt being made in this initial 

study to account for the depletion in detail. Two fission products with pro

nounced resonances, as well as the Uranium and Plutonium isotopes listed, were 

included in the detailed resonance treatment. 

Table X 

BWR Unit Cell Specifications for Initial Study 

Fuel Atom Densities per Barn-Cm Moderator Atom Densities per Barn-Cm 

N u c l i d e 

2 3 5 u 
2 3 8 u 
239_ 

Pu 
240D Pu 
2 4 1 D 

Pu 
2 4 2 P u 
1 4 5 N d 
1 4 7 P m 

26o 

Fue l O u t e r 

BOL 

6 . 2 0 3 ( - 4 ) 

2 . 1 6 7 C - 2 ) 

4 . 2 C-2) 

D i a m e t e r 

EOL 

1 . 9 7 0 ( - 4 ) 

2 .108C-2 ) 

7 .65 

4 . 7 0 

3 . 4 0 

1.72 

2 , 4 6 

4 . 8 9 

4 . 2 

1 .041 

C-5) 

C-5) 

C-5) 

C-5) 

C-5) 

C-5) 

C-2) 

cm 

N u c l i d e 

\ 
1 6 0 

F u e l Tempera 

BOL and EOL 

3 .42C-2) 

1 .71C-2) 

t u r e s 800°K and 

Unit Cell Outer Diameter 1.615 cm Moderator Temperature 1200°K 

238 
In Table XI microscopic U capture rates are shown for four subregions « 

into which the fuel rod was subdivided in the 0ZMA calculations, in the groups 

containg the first three principal resonances. The subregion "~'r is a thin 

layer near the surface of the rod. The capture rates refer to an intialisation 

of $m{"\ to unity above the U resolved resonance region for all subregions 

into which the fuel unit cell is divided. Their average {•*>) over the four fuel 

subregions is shown, as well as the average (a**) which renormalises it to allow 

for neutron absorption in the groups prior to a , i.e. which ensures that the same 

number of neutrons slow down into regions , as into the first group irr the 

resolved resonance region. This latter quantity may be compared with J . in the 

group a which, as discussed in connection with Eq. (22) does not take the ab

sorption in group a into account, and which is therefore slightly in excess of 

the capture integral. 

238 

TABLE XI 

U Microscopic Absorption Rates and I f f Values for BWR Unit Cel l : 

and 
Principal Resonance 

MUFT 
Group 

39 

4 1 

45 

T o t a l 

S u b r e g i o n 
n 

1 
2 
3 
4 

av 
av* 

J e f f 
1 . 

1 
2 
3 
4 

av 
av* 

* e f f 
I« . 

1 
2 
3 
4 

av 
av* 

l e f f 
U 

av 
av* 

l e f f 
I 

800°K 

0 . 7 2 0 
0 . 7 5 8 
0 . 8 6 4 
1.734 
1.189 
1 .476 
1.500 

4 2 . 1 5 

1.045 
1.100 
1 .247 
2 . 5 6 8 
1.745 
2 . 2 9 1 
2 .349 

6 2 . 3 4 

1.016 
1.081 
1.270 
3 . 5 0 4 
2 .129 
3 .114 
3 .224 

127 .39 

13 .279 
1 6 . 7 8 8 
17 .059 

2 7 5 . 0 1 

BOL 
1200°K 

0 .690 
0 .726 
0 . 8 3 1 
1.795 
1.195 
1.499 
1.524 

4 1 . 9 1 

1.011 
1.065 
1 .218 
2 .699 
1.780 
2 . 3 6 3 
2 .425 

6 2 . 3 3 

0 . 9 7 8 
1 .033 
1.204 
3 . 6 0 4 ' 
2 . 1 3 7 
3 .167 
3 . 2 8 1 

126 .56 

13 .740 
1 7 . 4 6 7 
17 .755 

2 7 5 . 0 0 

800°K 

0 . 7 7 2 
0 . 8 1 1 
0 .919 
1.826 
1.259 
1.525 
1.550 

4 2 . 1 5 

1.115 
1 .173 
1.327 
2 . 7 2 2 
1 .853 
2 . 3 5 0 
2 . 4 1 0 

6 2 . 3 4 

1.090 
1.159 
1.362 
3 .754 
2 . 2 82 
3 . 1 7 6 
3 . 2 8 7 

127 .39 

13 .842 
1 7 . 0 3 7 
17 .312 

2 7 5 . 0 1 

EOL 
1200°K 

0 . 7 4 1 
0 . 7 7 8 
0 . 8 8 7 
1.892 
1.266 
1.551 
1.576 

4 1 . 9 1 

1 .081 
1 .138 
1.299 
2 . 8 6 3 
1.892 
2 . 4 2 6 
2 . 4 9 1 

6 2 . 3 3 

1.049 
1.109 
1 .293 
3 .867 
2 . 2 9 4 
3 .232 
3 . 3 4 8 

126 .56 

14 .325 
1 7 . 7 3 1 
18 .024 

2 7 5 . 0 0 

p e a k s and g roup 
b o u n d a r i e s (eV) 

3 6 . 8 0 
C29.0 - 3 7 . 3 ) 

2 0 . 9 0 
( 1 7 . 6 - 2 2 . 6 ) 

6 . 6 7 
( 6 . 4 8 - 8 .32) 



The increased shielding in the rod interior is clearly seen at both tempera

tures and for both fuel compositions. In addition, the Doppler effect changes 

sign in these groups: the microscopic absorption rate increases with increasing 

temperature near the rod surface, but the increased absorption at the higher 

temperature shields the rod interior to some extent causing a decrease in the 

absorption rate near its axis. The average fuel absorption rate as well as ^ef.f 

rises when the temperature is increased. For the EOL composition there is 

slightly less shielding (a slightly increased I,. and ̂ ^.•- ) due to the changed 

238 * ' ' ' 

U atom dens i ty and the presence of the new resonance nuc l ides . The apparent 

changes in the group XM values with temperature are due to the locat ion of the 

group boundaries with respect to the resonance peaks; they disappear in the 
t o t a l I. . 

Table XII gives X . , and S Ifit values (between 800°K and 1200°K) at BOL 

and EOL in some of the import an- groups in the resonance region for the Uranium 

i so topes , and at EOL for some of the o ther i so topes for which the exp l i c i t reson

ance absorpt ion t reatment was used in the mixture of fuel n u c l i d e s . 

235 
The U resonance sh ie ld ing i s c l e a r l y much less pronounced than tha t of 

7 T D 
U due to its small atom density. Its ^'cti/

fcn' amounts to about 0.3 percent 
2 38 

in magnitude compared to 4 percent for U. It is also very noticeable how 
235 

nuclide interference changes the sign of i \.(, of U in group 53, and even in 
240 * 240 

group 41, due to Pu build-up. The large Pu resonance is located in 
group 53. Negative values of ^r,.. are obtained in groups 45 and 46 which 

238 l 

contain the 6.67 eV U peak and low energy tail respectively. As regards the 

fission products similar effects may be noted. In particular the principal 

147 
Pm resonance at 5.36 eV has p o s i t i v e cJ\./f values in groups 46 and 47, but t h e 

two smal ler resonances at 6.57 and 6.92 eV in group 45 are so heavi ly shielded by 
2 38 

the p r i n c i p a l U peak, t h a t t h e i r ox" i s nega t ive . 

TABLE XII 

I -. and 61 .... Values at BOL and EOL for BWR Unit Cell 
eff eff 

MUFT 
Group 

38 
39 
41 
45 
46 
47 
53 
54 

T o t a l 
( 2 7 - 5 4 ) 

238. . 

BOL 
- a b s . 

e f f 

0 . 4 8 
1.50 
2 .35 
3 .22 
1.57 
0 . 2 6 
0 . 1 4 

1 7 . 0 6 

6 l a b
f

S ' 
e f f 

+0 .022 
+0 .025 
+ 0 . 0 7 6 
+ 0 . 0 5 7 
+ 0 . 0 5 3 
+0 .000 

0 . 0 0 0 

+ 0 . 6 9 7 

- a b s . 
e f f 

0 . 4 8 
1.55 
2 . 4 1 
3 .29 
1 .60 
0 . 2 6 
0 . 0 8 

1 7 . 3 1 

EOL 

6lab// 
e f f 

+0 .022 
+0 .026 
+ 0 . 0 8 0 
+ 0 . 0 6 1 
+ 0 . 0 5 1 
+0 .000 
- 0 . 0 0 2 

+ 0 . 7 1 2 

BOL 
- a b s . 
e f f 

1 1 . 6 8 
1 6 . 9 5 
1 4 . 1 6 

4 . 0 4 
7 .99 
5 . 4 5 

2 1 . 3 9 

2 3 0 . 2 9 

235 

6 l a b / / 
e f f 

+0 .055 
+0 .128 
+ 0 . 1 2 8 
- 0 . 1 2 0 
- 0 . 4 0 0 
+ 0 . 0 1 8 
+0 .026 

+0 .804 

u 
EOL 

a b s . 
e f f 

11 .86 
18 .55 
16 .39 
4 . 1 2 
8 .25 
5 . 5 6 

10 .71 

231 .30 

6 l a b / ' 
e f f 

+0 .029 
+0 .032 
- 0 . 0 2 1 
- 0 . 1 3 2 
- 0 . 4 6 6 
- 0 . 0 0 5 
- 0 . 2 8 2 

- 0 . 6 4 8 

I . . and 61 cx. Values of EOL eff eff 

MUFT 
Group 

239 
Pu 
EOL 

.abs. 
eff 

61 
abs. 
eff 

240 
Pu 
EOL 

abs . 
eff 

145 
Nd 
EOL 

61 
abs. 
eff 

.abs. 
eff 

61 
abs. 
eff 

147 
Pm 
EOL 

abs. 
eff 

rabs *Note: The column I / ' refers to (I rJ800°K eff v eff 

61 
abs . 
e f f 

38 
39 
41 
45 
46 
47 
53 
54 

T o t a l 
( 2 7 - 5 4 ) 

1 8 . 0 7 
1.47 

2 1 . 2 2 
3 4 . 2 4 

1.54 
2 . 0 3 
8.29 

3 2 8 . 4 2 

- 0 . 0 3 4 
+ 0 . 0 0 3 
- 0 . 3 7 0 
+ 0 . 1 0 7 
- 0 . 0 1 9 
+0 .000 
- 0 . 1 8 7 

- 0 . 6 5 4 

4 1 . 5 0 
0 . 1 1 
8 .12 
0 . 0 9 
0 . 2 1 
0 . 5 2 

1 8 5 8 . 1 
132 .74 

2 5 0 8 . 5 3 

+0 .156 
- 0 . 0 0 3 
- 1 . 2 4 2 
- 0 . 0 0 2 
- 0 . 0 0 2 
- 0 . 0 0 0 

+ 5 6 . 0 
+ 1 . 0 6 1 

+91.94 

4 0 . 4 0 
0 . 5 5 
0 . 2 8 
0 . 4 0 
1 .01 

1 0 6 . 9 7 
1.04 
1.95 

186.84 

+0 .375 
- 0 . 0 0 6 
- 0 . 0 0 5 
- 0 . 0 0 6 
- 0 . 0 0 4 
+ 0 . 6 5 7 
- 0 . 0 2 5 
- 0 . 0 0 2 

+ 0 . 6 6 6 

5 1 . 4 3 
3.70 

15.89 
6 2 . 2 3 

1164.54 
78.24 

3.89 
7 .28 

1454.89 

+ 0 . 2 34 
- 0 . 1 4 5 
- 0 . 0 5 9 
- 5 . 9 8 
+ 4 . 9 7 
+3 .214 
- 0 . 0 9 4 
- 0 . 0 0 7 

+ 1 .77 

The column il3*1*' r e f e r s t o CI ~)1200°K - (I -J800°K 
e f f e f f e f f 
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In Table XIII / w and i> *tM values are shown for t h i s BWR uni t c e l l . The 

breakdown i s by group Cwith boundaries a t 10 MeV, 0.82 MeV, 5.53 keV, 0.625 eV, 

10 eV) and n u c l i d e , in accordance with 

<'U'£**(X'r)ln- J 
eff 

G-'.G' 

[2«/C - a 6-A , ne 

and i t s f irst differences. 

n..--[?z.^ A' 

- ^ 
6-

* * ' 

1 

bs 
(105) 

TABLE XIII 

Breakdown of k for BWR Unit Cell 

MAT 6k. 
B0L 

6k. 6k 6k. 
EOL 

6k, 6k 

2 3 8 u 
2 3 5 u 
239D Pu 
2 4 0 . 

Pu 
2 4 1 D 

Pu 242D Pu 
145 

Nd 
1 4 7 n 

Pm 
Removal 

O v e r a l l 

- 0 . 0 0 2 7 1 

+0 .00016 

+0 .00073 

- 0 

- 0 

- 0 . 

. 01090 

. 0 0 0 1 8 

00234 

- 0 . 0 1 3 6 1 

- 0 . 0 0 0 0 2 

- 0 . 0 0 1 6 1 

- 0 . 0 1 5 2 

- 0 . 0 0 1 7 2 

- 0 . 0 0 0 1 6 

- 0 . 0 0 0 1 1 

- 0 . 0 0 0 2 5 

- 0 . 0 0 0 1 7 

- 0 . 0 0 0 0 3 

0 

0 

+0 .00069 

- 0 . 0 0 9 5 6 

+ 0 . 0 0 0 0 7 

+0 .00009 

- 0 . 0 0 1 4 4 

+ 0 . 0 0 0 0 7 

- 0 . 0 0 0 1 3 

0 

+ 0 . 0 0 0 0 1 

- 0 . 0 0 3 4 4 

- 0 . 0 1 1 2 8 

- 0 . 0 0 0 0 9 

- 0 . 0 0 0 0 2 

- 0 . 0 0 1 7 0 

- 0 . 0 0 0 1 0 

- 0 . 0 0 0 1 6 

0 

+ 0 . 0 0 0 0 1 

- 0 . 0 0 2 7 5 

- 0 . 0 1 6 1 

Most of the con t r i bu t i ons t o JY are in group 4, the thermal group, and a r e 

due to £ (K)3 in 5 P , and the breakdown of i (<\. ) i by n u c l i d e . U i s t h e 

main con t r ibu to r to the nega t ive £'^> , but a t EOL i t s e f fec t i s somewhat reduced 
240 

with compensation by Pu. Ind iv idua l f i s s ion products with pronounced resonances 

cont r ibu te neg l ig ib ly t o k£ on account of t h e i r low concen t r a t i ons . I t i s 

un l ike ly tha t the neglec t of most f i s s i on p roduc t s , some of which may a l so have 

qui te strong resonances, w i l l g r e a t l y a l t e r t h i s conclus ion. 
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Although e4l>l > the change in the eigenvalue between fuel temperatures of 

800°K and 1200°K, in Table XIII i s somewhat g r ea t e r in magnitude a t EOL than a t 

BOL, t h i s trend i s reversed when the BOL composition i s depleted in s teps in de

t a i l e d burn-up ca l cu l a t i ons made with the CINDER code. The atom d e n s i t i e s a t a 
far 

number of depletion stages are shown in Table XIVV the nuclides taken into account 

explicitly in the resonance absorption treatment. For the CINDER runs the four 

broad group libraries were modified at each of these stages to take the changed 

resonance shielding factors and broad group flux ratios into account. The fis

sion product absorption by nuclides not explicitly taken into account in the de

tailed resonance treatment was allowed for by a lumped fission product method 

recommended in the CINDER code for use with the library containing eleven 

fission product chains. 

Table XIV 

BWR Unit Cell Atom Densities in Fuel (Power Density 215 IVatts/cc) 

Isotope Integrated Power MWd/MTU 

235 

2 3 8 u 

239D Pu 
240 

Pu 
241 

Pu 
2 4 2 D 

Pu 135^. 
Xe 

149„ 
Sm 

1 4 5 N d 

1 4 7 P m 
16o 

BOL 

6 . 2 0 3 ( - 4 ) 

2 . 1 6 7 0 

4 . 4 6 0 ( -

-2) 

2) 

80 

6 . 1 8 1 ( - 4 ) 

2 . 1 6 7 ( - 2 ) 

1 .452 ( -6 ) 

•3.'-29 K - 9 ) 

1 .753C-H) 

1.1000-14) 

6 . 8 6 0 ( - 9 ) 

7 .342C-9) 

7 .5380-8) 

4 .330 0-9) 

4 .460 0-2) 

7000 

4 . 6 6 2 0 - 4 ) 

2 . 1 5 3 ( - 2 ) 

7 . 772C-5 ) 

1 .083C-5) 

4 . 7 5 7 C - 6 ) 

2 . 7 6 8 C - 7 ) 

7 .649C-9 ) 

8 . 288 0-8) 

6 . 1 9 3 C - 6 ) 

2 . 7 4 6 C - 6 ) 

4 . 4 6 0 ( - 2 ) 

14000 

3 . 5 5 8 ( - 4 ) 

2 . 1 3 8 0 - 2 ) 

1 . 2 5 8 ( - 4 ) 

2 . 4 6 1 0 - 5 ) 

1 .688C-5) 

1 . 9 2 2 ( - 6 ) 

8 .9490*9) 

1.135 C-7) 

1 .1730-5) 

4 . 2 4 0 ( - 6 ) 

4 . 4 6 0 0 - 2 ) 

28000 

2 . 1 1 6 ( - 4 ) 

2 . 1 0 5 ( - 2 ) 

1 . 750 ( -4 ) 

4 . 8 4 6 ( - 5 ) 

4 . 2 8 6 ( - 5 ) 

9 .164C-6) 

9 . 6 4 2 ( - 9 ) 

1 .3880-7) 

2 .136C-5) 

5 . 3 3 0 ( - 6 ) 

4 . 4 6 0 ( - 2 ) 

The change in d i,.>, (and also ^^/k.^. ) with burn up is shown in Table XV. 

It will be noted that &£&, is now slightly smaller at the end of life than it is 



a t BOL. This i s due to the fact t h a t f i s s ion product absorption was properly a c 

counted for by nuc l i de s t r e a t e d e x p l i c i t l y in the resonance t reatment and by 

lumped f i s s i o n product absorbers . The l a t t e r had been ignored in the i n i t i a l 

c a l c u l a t i o n s , Tables X - XII I . The r a t i o $-i^ /$&> increases somewhat in magni

tude as the fuel d e p l e t e s . As regards the breakdown by nuc l ides , the p r inc ipa l 

Doppler change, a f f e c t i n g f^, , i s due t o U. I t s effect i s s l i g h t l y reduced 

in magnitude by Plutonium bui ld up, but t h i s i s compensated for by the Doppler 

e f fec t in Pu which becomes qu i t e pronounced (about f i f t een percent of t ha t due 
238 

to U) a t end of l i f e . 

Table XV 

k and (5k Values for BWR Unit Cell 

INT. POWER 
MWd/MTU 

0 
80 

7000 
14000 
28000 

k 
800°K 

1.2084 
1.1692 
1.0629 
0 . 9 9 5 6 
0 . 9 1 3 4 

1200°K 

1.1932 
1 .1546 
1.0489 
0 . 9 8 1 6 
0 . 9 0 0 2 

i k -
- 0 . 0 1 5 2 
- 0 . 0 1 4 6 
- 0 . 0 1 4 0 
- 0 . 0 1 4 0 
- 0 . 0 1 3 2 

6kcc /kco 

- 0 . 0 1 2 6 
- 0 . 0 1 2 5 
- 0 . 0 1 5 2 
- 0 . 0 1 4 1 
- 0 . 0 1 4 4 

Simi lar conclusions were reached^ for a typ ica l PIVR unit c e l l during i t s 

burn-up in a power r e a c t o r . In t h e de t a i l ed study of the temperature dependence 

of the m u l t i p l i c a t i o n fac to r of both LWR l a t t i c e s during fuel dep le t ion , both 
149 135 

Sm and Xe were included in the explicit resonance treatment. The Doppler 

changes of their absorption cross sections near the principal epithermal and 

thermal resonance peaks, respectively, were therefore accounted for. Their 

effect of d t^, was found to be almost negligible (about two percent at the end 

of life). In addition, the explicit treatment of U as a resonance absorber 

reduced the $4^ for the PWR unit cell by about 7 percent in magnitude at EOL. 

Resonance Absorption and Lattice Analysis for D_0 Moderated Fuel Clusters 

The OZMA code can be applied directly to clusters of fuel rods in a moder

ator, if the hyperfine structure or heterogeneity within the annuli in which the 

rods are located is ignored (see Fig. 1), i.e. if all materials in such annuli 

are mixed homogeneously. The code will then take all resonance interference ef

fects and their spatial dependence into account by the use of detailed resonance 

cross section profiles, as it does in the case of simple lattices. The spatial 

treatment produces additional shielding in the inner annuli because of the neutron 

absorption in the fuel contained in the outer annuli. It is possible to estimate 

hyperfine structure effects within the fuel bearing annuli by Monte Carlo methods 

and to apply appropriate corrections to the results of the OZMA calculations be

fore the multigroup analysis for the entire neutron spectrum is completed by the 

HAMMER code. 

The above procedure was applied to the analysis of a CANDU fuel cluster con

taining 19 natural U0_ rods in a D O moderator, with varying pitch between the 
(51) 

axes of the clusters and with D„0 as coolantv . The large dimensions of the 

unit cell result in a spatial flux distribution which is not flat above the re

solved resonance region. This distribution was applied to the calculation of the 

initial slowing down sources into the resolved resonance region in all the sub-

regions into which the unit cell is subdivided: the asymptotic flux per unit 

lethargy above the resolved resonances was assumed to be constant in each sub-

region with unit volume average for the entire unit cell. In practice the 

spatial distribution was taken to be the one calculated by the HAMMER code for 
238 

the MUFT gToup immediately above the resolved resonance region of U. 

The HAMMER code treated the Uranium isotopes in all annuli containing fuel 

as separate nuclides, preserving for each the region dependent group resonance 

reaction rates resulting from the OZMA calculations. The output of the HAMMER 

code was modified so that the reaction rate ratios of nuclides, for which the 

explicit resonance treatment was used, could be obtained separately for each 

annul us. 

The hyperfine structure, effects within the annuli containing fuel rods were 

estimated by Monte Carlo REPC^ ' calculations into which an additional subroutine 

was introduced to handle the lattice unit cells with fuel clusters. This 

geometry routine is somewhat more time consuming than the one dealing with sim

ple lattices or lattices with homogenised fuel annuli. However the most time 

consuming part of the calculation arises from the numerous collisions a neut

ron makes with the D_0 moderator compared with fuel collisions. In the resolved 

resonance region it is difficult to modify the neutron history in such a way 



that the discrete neutron energies in the random walks are concentrated in 

energy intervals near the numerous resonance peaks. Biasing techniques are 

therefore not very fruitful, but even by using the simple weight reduction meth

ods discussed previously in connection with the REPC code, reasonable overall 

estimates of resonance absorption in the fuel clusters can be obtained. 

The UO fuel rods in the cluster studied had UO density of 10.45 gm/cc 

and weight fractions 2 3 5U (0.00627267), 2 3 8U (0.875230) and 1 60 (0.118497). 

The Zirconium clad density was 6.55 gr/cc. The fuel, gap and clad outer radii 

were 0.7105, 0.7155 and 0.7609 cm respectively. Coolant and moderator atom 

densities were for D_0 of 99.67% purity and density 1.1053 gr/cc. The 

Aluminium pressure tube (inner radius 4.1275 cm, outer radius 4.3945 cm), and 

the Aluminium calandria tube (inner radius 5.08 cm, outer radius 5.222 cm), 

with density 2.699 gm/cc were homogenised with the gap between them into a 

single region. Apart from the central fuel rod, six further rods were located 

with their axes on a cylinder of 1.57915 cm radius, and twelve rods on a 

cylinder of 2.1533 cm radius. In the calculations the clusters were arranged 

in infinite arrays with five different pitches of 18, 21, 24, 28, 36 cm. 

In the OZMA runs, in which the fuel bearing annuli and central fuel region 

were represented by a homogeneous mixture of fuel clad and coolant, results for 
238 235 

the U and U resonance integrals were listed in the output between 3355 eV 

and 0.625 eV (MUFT groups 27-54). They are given in Tables XVI and XVII for 

subdivision of each fuel bearing region into two subregions, and for the integral 

transport mode. In the table, region 1 refers to the central rod and region 3 

to the outer fuel annulus. Three subregions were used in the outer moderator 

for the tighter lattices ranging to ten for the largest pitch. 

Table XVI 
238 

U Resonance Integrals for 19 U0_ Rod Cluster in D_0 with D20 
Coolant for MUFT Groups 27 - 54 (3355 - 0.625 eV) . 

Region 1 

Region 2 

Region 3 

OZMA 
REPC (Horn) 
REPC(Het) 

OZMA 
REPC (Horn) 
REPC(Het) 

OZMA 
REPC(Horn) 
REPC(Het) 

18 

8 .37 
9 . 1 + 0 . 6 
9 . 4 1 0 . 6 

9 . 6 4 
9 . 9 + 0 . 2 
8 . 5 1 0 . 2 

1 3 . 6 6 
1 3 . 9 1 0 . 3 
1 1 . 7 + 0 . 3 

21 

8.74 

9 . 4 6 

13 .44 

P i t c h 

24 

8 .69 
8 . 4 1 0 . 4 
8 . 8 1 0 . 5 

9 . 4 3 
9 . 8 1 0 . 2 
8 . 1 1 0 . 2 

1 3 . 3 1 
1 3 . 7 1 0 . 2 
1 1 . 3 + 0 . 2 

28 

8 .86 

9 . 5 9 

1 3 . 3 6 

36 

1 0 . 5 9 
8 . 5 + 0 . 5 
9 . 3 + 0 . 5 

1 1 . 4 0 
8 . 7 + 0 . 3 
8 . 2 + 0 . 3 

1 5 . 5 9 
1 2 . 8 + 0 . 2 
1 1 . 1 1 0 . 2 

Table XVII 
235 

U Resonance Integrals for 19 UO Rod Cluster in D20 with D20 

Coolant for MUFT Groups 27 - 54 (3355 - 0.625 eV) . 

Region 

Reg ion 

Region 

1 

2 

3 

OZMA 
REPC(Horn) 
REPC(Het) 

OZMA 
REPC(Horn) 
REPC(Het) 

OZMA 
REPC(Horn) 
REPC(Het) 

18 

266 
267120 
287124 

276 
277112 
23016 

304 
30817 
26719 

21 

261 

271 

298 

P i t c h 

24 

248 
262114 
248114 

268 
26717 
23019 

295 
30216 
25516 

28 

248 

268 

293 

36 

29 7 
253116 
244117 

308 
266110 
228111 

334 
28317 
256+7 

The table also shows corresponding REPC results for homogenised fuel 

bearing regions and for the case in which the hyperfine heterogeneity effect 

of rods in each annulus is taken into account. 



In the OZMA r e s u l t s t abu la ted for ' - the fuel disadvantage factor was 

taken i n t o account by specifying a spa t i a l flux d i s t r i b u t i o n above the resolved 

resonance r eg ion . The REPC ca lcu la i tons were made before a procedure for 

speci fy ing the s p a t i a l flux d i s t r i b u t i o n above EMAX, the upper energy of the 

runs , had been introduced i n t o the code. The OZMA r e s u l t s c l e a r l y show the 

e f f ec t of t h i s d i s t r i b u t i o n on the source in to the resolved resonance region, 

s ince a t the l a r g e s t p i t c h the e f fec t ive resonance i n t e g r a l s tend to increase . 

Such an increase i s absent .in the Monte Carlo r e s u l t s which based the source in to 

the resolved resonance region on a f l a t asymptotic f lux . As regards the accuracy 

of the Monte Carlo r e s u l t s i t should be noted tha t for overa l l r e s u l t s such as the 

resonance escape p r o b a b i l i t y good prec is ion was a t t a ined (For the t i g h t e s t 

l a t t i c e run with homogenised fuel annuli r e s u l t e d in p = 0.7517 + .0032, 

while the run with hyperf ine s t r u c t u r e led t o p = 0.7835 + .0028; with increasing 

p i t ch the corresponding r e s u l t s were 0.8692 + 0.0019 and 0.9469 + 0.0010 for 

the homogenised fuel annu l i , and 0.8882 + 0.0013, and 0.9526 + 0.0007 for the 

cases wi th he te rogene i ty in the fuel annuli) . On the o ther hand the accuracies 

of the "^jiv values in d i f f e r e n t s p a t i a l regions and a narrower energy i n t e r v a l 

were poore r . Never the less they show the effect of hyperfine heterogenei ty 

wi thin the fuel bea r ing annu l i , and an average r a t i o of the REPC (Het) to the 

REPC (Horn) r e s u l t s may be regarded as a reasonable cor rec t ion to be applied 

to the OZMA r e a c t i o n f rac t ions t o account for the addi t iona l sh ie ld ing within 

the ind iv idua l r o d s . 

The r e s u l t s of applying these co r r ec t ions to the HAMMER ana lys i s with OZMA 

resonance r e a c t i o n r a t e s are shown in Table XVIII which also shows the uncor

r ec t ed r e s u l t s . The values are compared with c a l c u l a t i o n a l r e s u l t s from the 
r 29") 

LATREP codev •" and with experiment. The reaction rate ratios are cluster 

averages. The calculated results for the different annuli containing fuel show 

about the same spatial variation as the experimental values. 

The results for the effective multiplication factor, obtained with the 

experimental buckling show that there is a definite trend for k __ to increase 

with increasing pitch when the fuel bearing annuli are treated as homogeneous 

mixtures. At low values of the pitch the k .Js are low and the ICR values 
r eff 

high. This trend is eliminated when the hyperfine heterogeneity correction, 

obtained from the Monte Carlo estimates, is applied. These estimates have 

rather large probable errors and may exaggerate the corrections to some extent 

as evidenced by the low ICR and high k , f values (compared with experiment) . 
e r r 

However, it appears reasonable to estimate hyperfine heterogeneity correction by 

Monte Carlo methods, provided the statistical fluctuations in the spatially 

dependent output can be reduced. The underestimate of the o values is a 

consequence of the high energy basic data in the ENDF/B lbiraries and has also 

been noticed in other D_0 lattice calculations. 

Table XVIII 

Reaction Rates and k ..,. for 19 Rod Natural U0„ Clusters in Do0 e f f 2 2 

Pi tch 
cm. 

18 

21 

24 

28 

36 

Item 

ICR 

6 2 8 
k e f f 

ICR 

6 2 8 
k e f f 

ICR 

6 2 8 
k e f f 

ICR 

6 2 8 
k e f f 

ICR 

628 
k e f f 

OZMA/HAMMER 

uncorrec ted 

1.0072 

0.0518 

0.9788 

0.8768 

0.0479 

0.9898 

0.8039 

0.0461 

0.9973 

0.7518 

0.0451 

0.9990 

0.7094 

0.0446 

1.0021 

OZMA/HAMMER 

c o r r e c t e d 

0 . 9 4 8 5 

0 . 0 5 0 3 

1.0064 

0 . 8 3 8 6 

0 . 0 4 7 0 

1 .0081 

0 . 7 7 6 4 

0 . 0 4 5 5 

1 .0105 

0 . 7 3 2 0 

0 . 0 4 4 7 

1.0085 

0 . 6 9 5 5 

0 . 0 4 4 3 

1 .0086 

LATREP 

0.9752 

0 .0582 

0 .8610 

0 .0547 

0 .7967 

0 . 0 5 3 1 

0 .7476 

0 .0522 

0 . 7 0 6 1 

0 .0517 

E x p e r i m e n t 

0 . 9 6 6 9 

0 . 0 5 6 4 

1 .0000 

0 . 8 5 7 6 

0 . 0 5 4 3 

1 .0000 

0 . 8 0 5 4 

0 . 0 5 2 8 

1 .0000 

0 . 7 4 8 3 

0 . 0 4 8 1 

1 .0000 

0 . 7 0 8 2 

0 . 0 4 7 5 

1 .0000 

238 235 
Note: ICR = capture in U/absorpt ion in U 

x r . . . 238 , _. . . 235,, 

6_„ = f i s s i o n in u / f i s s i o n in U 

c o r r e c t e d / u n c o r r e c t e d : al lowing for /no t allowing for hyperf ine s t r u c t u r e 

in fuel bear ing annu l i . 



Finally it should be pointed out that the MUFT slowing down treatment for 

Deuterium is less precise than for Hydrogen since it is based, as previously 

discussed, on the Greuling Goertzel approximation. The application of the multi 

group analysis methods with accurate resonance absorption treatements based on 

detailed resonance profile tabulations should therefore be regarded as rather 

preliminary. As far as these resonance absorption calculations are concerned 

there is a clear incentive to develop them further for lattices containing fuel 

clusters, without the necessity for Monte Carlo estimates of hyperfine hetero

geneity effects. 

Benchmark Analysis for Regular Lattices 

(52) 
Thermal reactor benchmark lattices specified in ENDF-202 were analysed 

a few years ago^ ' with the OZMA/HAMMER and REPC/HAMMER code systems. In both 

the resonance reaction rates calculated by the first code were preserved 

during the multigroup lattice analysis made with the HAMMER code by the itera

tive procedure discussed previously. 

The TRX-1 and TRX-2 lattices are H O moderated 1.3% enriched Uranium 

metal benchmarks with rods of 0.4915 cm outer radius in hexagonal arrays. The 

outer radii of the void and the Al clad are 0.5042 and 0.5753 cm, the pitch 

being 1.806 and 2.174 cm for the two lattices respectively. Atom densities 

are 2 3 5U (6.253 x 10~4), 2 3 8U (4.7205 x 10"2), Al (6.025 x 10~ 2), H (0.06676 

x 10" ) and 0 (0.03358). Experimental bucklings were 0.0057 cm" for TRX-1 

and 0.005469 for TRX-2. 

Table XIX shows the results obtained for k ff> and the principal reaction 

rate ratios £ (epithermal to thermal capture by U), ^- (epithermal to 

thermal fission of U), i\s (fissions of U to fissions of U), CR 

(captures by U/fissions of U) . The TRX-1 results show the relatively small 

influence of P-l scattering in the OZMA - S,P, run, as may be seen by comparing 
6 1 

^t with the value obtained for S P.. On the other hand the integral transport 

OZMA-IT results predict a higher fi? which is still below the one resulting 

from the Nordheim integral treatment (NIT) of ^epf of the individual resonances. 
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Thus the accurate treatment of resonance absorption including resonance inter

ference effects tends to reduce the fif values. The fact that for all cases 

is in excess of the experimental value was interpreted as an indication 
'<•& 

238. that the basic ENDF/B-IV resonance data for U tend to overestimate resonance 

absorption. The TRX-2 results show a similar trend. The calculated k ce 

ef f 

values were consistently below unit for the same reason. The experimental 

results were those obtained from a re-analysis of the original experiments 

by Sher and Fiarman^ •* . 

Table XIX 

TRX-1 Benchmark Lattice 

Experiment 

NIT/HAMMER 
OZMA-IT/HAMMER 
OZMA-S6P0/HAMMER 
0ZMA-S6P1/HAMMER 
REPC/HAMMER 

ef f '28 '25 28 
CR 

1.0000 

0.9832 
0.9854 
0.9896 
0.9906 
0.9880 

1.320 
+0.021 
1.408 
1.384 
1.350 
1.343 
1.367 

0.0987 
±0.0010 

0.1052 
0.0997 
0.0984 
0.09S7 
0.0994 

0.0946 
±0.0041 

0.0950 
0.0948 
0.0943 
0.0942 
0.0944 

0.797 
±0.008 

0.809 
0.805 
0.795 
0.792 
0.799 

ef f 

TRX-2 Benchmark La t t i ce 

Poo P ~ 6-28 25 
CR 

Experiment 

NIT/HAMMER 
OZMA-IT/HAMMER 
REPC/HAMMER 

1.0000 

0 . 9 8 8 5 
0 . 9 9 3 0 
0 . 9 9 2 1 

0 .837 
±0 .016 

0 . 8 7 3 
0 .837 
0 .846 

0 . 0 6 1 4 
± 0 . 0 0 0 8 

0 . 6 4 2 
0 . 6 0 1 
0 . 6 1 2 

0 . 0 6 9 3 
± 0 . 0 0 3 5 

0 . 6 6 9 
0 . 6 6 6 
0 . 6 6 6 

0 . 6 4 7 
± 0 . 0 0 6 

0 . 6 4 8 
0 . 6 3 8 
0 . 6 4 0 

The MIT-1, MIT-2, MIT-3 lattices are D„0 moderated natural Uranium arrays. 

In these the rods had 1.283 cm outer radius while the clad radius was 1.354 cm. 

The hexagonal lattice had pitches of 11.43, 12.70 and 14.605 cm respectively, the 

experimental bucklings being 8.48 x 10"4, 8.65 x 10" and 8.15 x 10"4 cm"2 

0 ̂  4 2 ̂ 8 - 7 
respectively. Atom densities were U (3.441 x 10 ) , U(4.745 x 10 ) , 
Al (6.049 x 10" 2), hi (1.850 x 10~4), 2H (6.641 x 10~ 2), 16° (3.321 x 10"2). 



Table XX gives the comparison of ca l cu la t ed and experimental r e s u l t s . 

As regards resonance absorp t ion , the t rends of £ , are s imi la r to those obtained 

i s somewhat under-for the TRX l a t t i c e s . The 
238, r 

U fast fission effect, i 

estimated in the calculations, a trend which is similar as that found in the 

case of the D„0 moderated fuel clusters. 

MIT-1 

MIT-2 

MIT-3 

Table XX 

MIT - 1, 2, 3 Benchmark La t t i ces 

eff '28 25 '28 Cr 

E x p e r i m e n t 

NIT/I1AMMER 
0ZMA-IT/I1AMMER 
REPC/HAMMER 

E x p e r i m e n t 

NIT/HAMMER 
OZMA-IT/HAMMER 
REPC/HAMMER 

E x p e r i m e n t 

NIT/HAMMER 
OZMA-IT/HAMMER 
REPC/HAMMER 

1.0000 

0 .9826 
0 .9924 
0 .9905 

1.0000 

0 . 9 8 3 3 
0 .9909 
0 . 9 8 9 7 

1.0000 

0 .9862 
0 .9918 
0 . 9 9 2 1 

0 .502 
± 0 . 0 1 0 

0 . 5 3 0 
0 . 4 8 7 
0 . 5 0 0 

0 .400 
±0 .004 

0 . 4 3 4 
0 . 4 0 2 
0 . 4 1 1 

0 . 3 1 3 
± 0 . 0 0 5 

0 . 3 3 8 
0 . 3 1 4 
0 . 3 1 6 

0 .0469 
±0 .0019 

0 .0490 
0 . 0 4 5 5 
0 . 0 4 6 2 

0 . 0 3 3 5 
±0 .0030 

0 . 0 4 0 0 
0 .0374 
0 . 0 3 7 6 

0 .0265 
± 0 . 0 0 1 1 

0 . 0 3 0 * 
0 . 0 2 9 1 
0 .0294 

0 . 0 5 8 8 
+0.0030 

0 . 0 5 7 3 
0 . 0 5 6 6 
0 .0579 

0 . 0 5 8 7 
±0.0030 

0 .0556 
0 . 0 5 5 1 
0 . 0 5 6 2 

0 .0575 
±0 .0030 

0 .0540 
0 .0536 
0 .0546 

1.017 
±0 .023 

0.982 
0 .958 
0 .965 

0 .948 
±0.020 

0 .926 
0 .908 
0 . 9 1 3 

0 .859 
±0 .016 

0 .869 
0 .855 
0 .856 

Comparison of Group Fluxes and Resonance Cross Sections from Multigroup and 

Dense Energy Mesh Calculations for Identical Group Resonance Reaction Rates 

The discussions presented here have emphasised the basic difference between 

multigroup calculations for smoothly varying cross sections, and the detailed 

evaluation of resonance reaction rates on a very fine energy mesh allowing for 

the spatial variation of resonance shielding and all resonance interference 

effects between resonances belonging to the same and to different nuclides. 

OZMA calculations are an example of the latter, HAMMER calculations of the form

er, in particular in the groups above the resolved resonance region. Even in 

the resonance region the hAMMER multigroup integral transport calculations at 

epithermal energies can be iterated to reproduce the OZMA group resonance 

reaction rates (absorption anci fission) by changing the appropriate group cross 

sections. 

It has been pointed out that when a lattice is analysed as above, there is 

no a priori reason that group fluxes, group, cross sections and group disadvan

tage factors will be identical in the fine energy mesh and the multigroup calcula

tions in the resonance region. In fact, the opposite is to be expected since the 

order of calculating averages is reversed in the two cases. In the fine energy 

mesh calculations the resonance cross sections at the energy mesh points are used 

to obtain slowing down sources and region to region transfer probabilities 

(which depend non linearly on the cross sections), if integral transport methods 

are used, or to solve the S., equations, if the transport equation is solved by 

discrete ordinate methods. The resulting fluxes and cross sections are then 

group averaged. In multigroup lattice analysis codes group average cross sec

tions are obtained first, usually by approximate methods in the resonance region, 

and for these the group fluxes are found; multiplication by the group average 

resonance cross sections gives the resonance reaction rates. But even if one 

forces the reaction rates to be identical in the two cases by iteratively chang

ing the group resonance cross sections, the problem remains. One compares group 

fluxes obtained from average cross section instead of calculating the group 

average of fluxes obtained at discrete energy points from the point cross 

sections . 

In Table XXI a comparison of this type is made. It refers to a simple 

BAPL 1.33 percent enriched UO lattice with 0.4864 cm radius fuel pins in Al

uminium cladding of radius 0.5753 cm, lattice pitch of 1.5578, and with the fuel 

arranged in a hexagonal array. The atom densities in the respective regions are: 
235 7 "*>R 1 A 9 7 1 

U (0.0003112), " ° U (0.023127), °0 (0.046946); Al (0.04899); H (0.06676), 

0 (0 .03338) . The r e s u l t s given in Table XXI r e f e r t o ENDF/B-V data , unl ike 

the r e s u l t s in t h e previous t a b l e s which were a l l obtained with ENDF/B-IV 

as the bas ic da ta l i b r a r y . 

For i d e n t i c a l group r eac t i on r a t e s the OZMA (f ine energy mesh in tegra l 

t r a n s p o r t ) and HAMMER (multigroup i n t e g r a l t r a n s p o r t ) average c e l l fluxes are 

shown in the resonance energy groups toge the r with fuel disadvantage fac tors 



and the U microscopic group cross sections which reproduce the OZMA re

action rates. There is good overall agreement, but in the principal resonance 

groups such as 45, 41 and 39 containing the 6.7 eV, 20.9 eV, and 36.7 eV 
238 

resonance peaks of U differences of a few percent are apparent. 

Although in these comparisons the HAMMER code was not used with an approxi 

mate resonance treatment such as the Nordheim integral transport method for 

individual resonances, it is clear that comparisons of the above t)7pe can be 

utilised to correct such approximate treatments in addition to allowing for 

intrinsic differences between fine energy mesh and multigroup calculations. 
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Table XXI 

HAMMER and OZMA Average Cell Fluxes, Disadvantage Fac tors , and Group 
28 

Values of in NB-1, for ENDF/B-V Data. (Allows for Fuel Disadvan

tage Factor in the Resolved Resonance Groups.) 

MUFT 
Group 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

4 1 

42 

4 3 

44 

45 

46 

47 

48 

49 

50 

5 1 

52 

53 

54 

TH 

1.3319 

1 .3071 

1.2900 

1 .2703 

1.25 35 

1 .2438 

1 .2177 

1 .2146 

1 .1615 

1.1759 

1.1450 

1 .1793 

1.1577 

1.0297 

1 .1273 

0 . 9 4 8 9 

1.0899 

1.0905 

1.0740 

0 .8566 

0 . 9 3 4 8 

1.0142 

1.0236 

1 .0328 

1 .0351 

1.0416 

1.0407 

1.0437 

1.0614 

*oz 

1.3295 

1.3025 

1.2840 

1.2654 

1.2482 

1.2381 

1.21Q9 

1.2Q77 

1.1450 

1.1869 

1.1410 

1.1707 

1.1367 

1 .0347 

1.1281 

0 . 9 3 8 2 

1.0869 

1.0904 

1.0767 

0 .87015 

0 . 9 1 0 1 

1.0250 

1.0402 

1.0557 

1 .0671 

1.0862 

1.1011 

1.1239 

1.1821 

C* f/*C)H 

0 . 9 9 5 3 

0 .9945 

0 .994 3 

0 . 9 9 2 7 

0 .9919 

0 .9927 

0 .9874 

0 .9912 

0 . 9 6 9 3 

0 .9862 

0 . 9 7 5 7 

0 . 9 9 2 7 

0 . 9 8 7 3 

0 . 9 0 8 3 

0 .9880 

0 .8972 

0 . 9 8 9 6 

0 .9905 

0 . 9 8 6 8 

0 .8924 

0 .9566 

0 .9920 

0 .9932 

0 .9959 

0 . 9 9 5 5 

0 .9960 

0 .9934 

0 .9912 

0 .9920 

c//*c)oz 

0 . 9 9 4 1 

0 . 9 9 0 7 

0 .9886 

0 . 9 869 

0 . 9 8 6 8 

0 . 9 8 8 6 

Q.9795 

0 . 9 8 8 1 
0 . 9 5 6 6 

0 . 9 8 6 4 

0 . 9 6 8 1 

0 . 9 9 0 3 

0 . 9 7 7 7 

0 . 9 3 2 2 

0 .9889 

0 . 8 9 79 

0 . 9 8 8 6 

0 . 9 8 7 2 

0 .9825 

0 .8569 

0 . 9 3 3 8 

0 . 9 8 4 0 

0 . 9 8 5 9 

0 . 9 8 6 9 

0 . 9 8 4 3 

0 . 9 8 1 9 

0 . 9 7 5 4 

0 . 9 6 7 5 

0 . 9 6 0 9 

^ H 

0 . 8 6 6 8 

0 .9816 

0 .9594 

1.2244 

1.3194 

1.1338 

1 .6870 

1 .2297 
3 .8525 

2 .0725 

3 .6239 

0 .1392 

1 .7791 

8.5819 

0 .6807 

1 4 . 0 6 1 1 

0 .4496 

0 . 3 3 9 6 

0 .8542 

2 1 . 1 8 0 1 

7 .6610 

1 .1281 

0 .6174 

0 . 5 0 5 0 

0 . 4 7 3 9 

0 . 4 7 8 7 

0 . 5 0 5 1 

0 . 5 4 5 2 

0 .6169 

t°a>0Z 

0 .8694 

0 .9889 

0 .9694 

1.2 364 

1.3319 

1 .1437 

1 .7100 

1 .2407 
3 . 9 6 0 1 

2 . 0 5 2 8 

3 .6649 

0 . 1 4 0 6 

1 .8298 

8 .3218 

0 . 6 7 9 8 

14 .2106 

0 . 4 5 1 3 

0 . 3 4 0 7 

0 . 8 5 5 7 

21 .7170 

8 .0615 

1.1232 

0 .6120 

0 .49 86 

0 .4649 

0 . 4 6 5 6 

0 . 4 8 4 8 

0.519*1 

0 . 5 7 2 3 

21.980 22.239 



The availabil i ty of fine energy mesh resonance absorption calculations for 

thermal reactor la t t ices is therefore of great value in assessing the adequacy 

of rapid resonance shielding algorithms in the resonance groups, and correcting 

them by means of group dependent correction factors. They will be to some 

extent nuclide and temperature dependent, and will be appropriate to a par t icular 

resonance shielding algorithm used in the multigroup code. 

Conclusion 

Multigroup analysis of reactor lat t ices requires separate procedures to 

handle the problem dependent resonance shielding within the individual energy 

groups. Codes in common use employ approximate methods for the evaluation of 

effective group cross sections, or resonance integrals, in the resonance reigon. 

A number of methods of th is type have been reviewed and the approximations on 

which they are based have been emphasised. 

Temperature effects do not depend only on the effectiveness of the resonance 

shielding calculations, but in part icular also on the accuracy with which the 

temperature changes can be determined. The approximations inherent in the shield

ing algorithms may affect the temperature changes in a different way than the 

shielding factors themselves. For safety problems i t is improtant that these 

questions be examined by sophisticated calculations in the resonance region. 

Codes now exist which can evaluate the resonance reaction rates in thermal 

reactor la t t ices with considerable precision, completely in accordance with the 

recommended resonance formalisms and basic nuclear data, and with accurate 

Doppler broadening. These codes have been used for a number of types of bench

mark problems, the results of which have been presented. 

As regards using these detailed resonance absorption calculations as a 

means of testing the validity of commonly used rapid algorithms for the calcula

tion of resonance shielding factors at different temperatures, and formulating 

appropriate correctiong factors, the following procedure could be used. I t 

refers particularly to codes employing tabulated shielding factors as functions 

of a background cross section and temperature for each resonance nuclide. 

a) The tabulations refer in general to homogeneous mixtures of the reson

ance absorber and different amounts of pure hydrogen as moderator. 

b) The tabulations are used within the framework of a particular multi-

group la t t i ce analysis code, and a part icular form of the equivalence 

relations between homogeneous and heterogeneous assemblies, 

c) The parameters used in the equivalence relations should be identified 

and the methods to be used for this evaluation should be fixed. 

This applies for example to the Bell factor, the Dancoff factor and 

the intermediate resonance A factor. 

d) Appropriate benchmark la t t ice analyses should be made by the procedures 

outlined above, and repeated with the same multigroup la t t ice analysis, 

but with resonance reaction rates obtained from codes which calculate 

these quantit ies as accurately as possible by transport calculations 

using very dense energy grids. The multigroup calculations, which 

are to reproduce the accurately calculated resonance reaction rates, 

require an i te ra t ive procedure in the multigroup analysis code. 

e) The group cross sections for the resonance nuclides for the two methods 

referred to in (c) , above, will differ in general. Correction factors 

to the background cross sections and/or other factors referred to 

in Cc)> above, should be formulated so that the resonance shielding 

formalism used in the multigroup code will produce directly those 

group cross sections which will lead to resonance reaction rates in 

agreement with the ones obtained by sophisticated calculations. 

f) The above correction factors will account for inaccuracies in the 

approximate resonance shielding factor calculations, and for intr insic 

problems in the use of multigroup calculations in the resonance region. 

The correction factors for the individual energy groups may be problem 

dependent to a certain extent, and should be expressed in a suitable 

parametric form. 
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INTRODUCTION TO THE CONTENT OF 
THE MAJOR AVAILABLE EVALUATED 
NUCLEAR DATA LIBRARIES 

M. SALVATORES 
Centre d'etudes nucleaires de Cadarache, 
Saint-Paul-les-Durance, France 

Abstract 

The following notes were intended as complement to the main topic of the 
lectures presented at the Winter collge of Nuclear Physics and Reactors. 
Actually, the topic was covered according to the outline given in Appendix and 
the presentation was based as far as possible on the practical features of the 
basic data files, in particular the ENDF/B files. The present notes are 
subdivided in two parts; part I is a general introduction to the problem of 
the evaluated data files and gives the main references on the topic. Part II 
presents a few specific examples of the use of the evaluated data files in the 
wide application fields of neutron heating a photon production. 

PART I 

GENERAL REMARKS ON EVALUATED DATA FILES 

- M. SALVATORES -

1 - INTRODUCTION 

Many nuclear data evaluations has been published, 

which cover different process and field of application 

such as decay schemes, atomic masses and abundances 

fission product yields and neutron cross sections. 

Neutron data related evaluation has rapidly developed 

due to the their relevance to nuclear power technology. 

It is worthwhile to give a general definition of an 

evaluation of nuclear data. J. J. Schmidt has given /l/ 

the following ; "Evaluation denotes the comparison and 

critical assessment of the compiled experimental data and 

the selection by some appropriate averaging procedure of a 

complete and self-consistent set of preferred values. Much 

more than that, the requirement of completeness, parti

cular for reactor physics purposes, involves the necessity 

of using appropriately parametrized Nuclear theories and 

considerations of nuclear systematics to fill in gaps and 

to help remove inconsistencies in the available experi

mental information". 

As S. Perlstein has pointed out 121, evaluations 

represent an attempt to estimate the true or most probable 

of a nuclear parameter estimates are necessary since the 

number and quality of experiments have seldom been 

sufficient to converge toward results of high accuracy. 

Historically, the nuclear data evaluation compilation 

in their present form (and in particular the neutron data 

compilations) have evolved from early collection of 

nuclear data, such as the General Electric Chart of 

Nuclides, first produced about 1947 and modeled after 

Seaborg tables of isotopes (originally published in the 

Revue of Modern Physics in 1940). The Nuclear Data Tables, 

published originally by the National Bureau of Standard in 

the USA in 1950, provides, with its more recent updating, 

another example of Nuclear Data compilation. However, 

for what concerns neutron data, the "Neutron Cross Section 

publication of the Brookhaven National Laboratory 

(BNL-325), originally published in 1955 by D.M Hughes and 

J. A. Harvey and successively updated /3/ ; is the 

actual ancestor of the present computerized compilations. 



It presents in tabular and graphic form experimental 

neutron cross section data and an eye guide which repre

sents the probable trend of the data. 

It was early recognized that coordinated and coope

rative efforts were a key point in the development of 

large and consistent data base for nuclear power appli

cation purposes. 

Nuclear data centers developed ; the National Neutron 

Cross Section Center at Brockhaven, wich collects data in 

the USA and in Canada ; the NEA Data Bank located in 

Saclay Laboratory near Paris collects data for the 

countries partecipating to the Nuclear Energy Agency ; the 

Nuclear Data Section of the International Atomic Energy 

Agency ; the Nuclear Data Section at the Institute of 

Power and Engineering of Ob nisk (USSR) 

From these and other centers, data files were deve

loped in particular for reactor core and shield design, 

and for nuclear fuel cycle evaluation. 

The advancement of computer technology, coupled to 

the increasing availability of detailed evaluations, made 

possible the processing of evaluated nuclear data into 

computerized data files. Specific formats were developed, 

flexible enough to handle many types of data and mathe

matical models,but sufficiently compact so as to remain 

efficient for computer manipulation. 

An important role was also played by the development 

of sophisticated ways of data and format documentation, 

necessary for the linking of evaluated data files to 

processing codes for the preparation and performance of 

nuclear calculation. 

At least four major data files have developed during 

the last fifteen years : 

- The united Kingdom Nuclear Data Library (UKNDL) 

- The Karlsruhe evaluated nuclear data file (KEDAK) 

- The Evaluated Nuclear Data File in the USA (ENDF) 

- The USSR Evaluated Nuclear Data Library and the 

associated SOKRATOR format HI 

It is worth mentioning that very recently a joint 

effort has been imitated by many of the OECD countries to 

establish a Japanese-Europeen File-, in the framework of the 

NEA Data Bank (JEF). 

2 - THE EVALUATED NUCLEAR DATA FILE CONTENT 

For what concerns the representation of data, in 

general it can be said, according to /2/, that the speci

fication of data must be complete ; a single-valued 

function over the entire range of the independent variable 

must result . Data may be presented in either parametric 

or tabulated form. If tabulated values are given, an 

interpolation scheme must be provided to determine values 

between tabulated point. In some cases a variety of inter

polation schemes are allowed. For common data types, a 

constant, linear, or logarithmic interpolation can be 

used. 

Some flexibility in formats is needed for specifying 

data. As a typical example, angular distributions can be . 

described by Legendre polynomials (light nuclei) or in a 

tabular form (heavy nuclei) , to avoid the use of Legendre or 

polynomials of large order. 



In general, if we speak of neutron data files, the 

following informations should be found in a data file 

useful for many purposes: 

- Cross section tables for smooth cross-sections, or 

the smooth part of the cross section behaviour in energy ; 

charged particle or gas production cross-section (like 

(n,p) , (n,d) , (n,t) , (n,a) etc) 

- Resonance parameters for the resolved and unresolved 

resonance regions 

- Angular distributions 

- Secondary neutron energy distributions 

- Scattering law data 

- Fission parameters (neutron multiplicity, fission, 

fragment yields) 

- Radioactive decaydata (Types of decay, half-lives, 

decay constants, branching ratios, line intensities) 

- Photon production by neutron reactions (photon 

production cross sections, photon angular distributions, 

photon energy spectra, photon energy-angle distributions) 

- Data uncertainties, necessary to construct 

variance-covariance matrices. 

These informations should be provided by isotope and 

for an energy range from approximately 20 MeV to thermal 

neutron energy. In particular, the very high energy data 

are particularly needed for future fusion reactor appli

cations. 

3 - EXEMPLES OF EVALUATED NUCLEAR DATA FILES 

The present notes will not present explicitely the 

basic data formats and procedures, even if they are 

essential to the course. 

The existing literature, already indicated in the 

previous paragraph, is largely accessible and complete. In 

particular the Report ENDF-102, Revision 1979 is the 

necessary basis for discussions related to the widely used 

ENDF/B Format. A summary of the main features of the 

different data files can be found in the paper by 

G. C. PANINI "Some notes about the nuclear data libraries" 

distributed at the present Winter College on Nuclear 

Physics and Reactors. 
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PART II 

THE RELATION BETWEEN DATA FILES AND 

PHYSICS PROBLEMS - SELECTED EXEMPLES 

EXEMPLES OF USE OF THE DATA INCLUDED IN AN EVALUATED DATA 

FILE 

Nuclear heating 

A major part of the neutronics and photonics analyses 

of a nuclear system involves estimating a set of nuclear 

response rates such as nuclear heating, gas production and 

atomic displacement rates. The response rates provide an 

important input to the engineering design and analysis of 

the system. 

These type of responses are calculated from a variety 

of nuclear data, which appropriately illustrate the use of 

an evaluated data file. 

Let us consider the nuclear heating, commonly known 

as KERMA (Kinetic energy released to material) factor. 

The nuclear heatingH (r) at a spatial point f, is the 

sum of the neutron heating H (r), and the gamma heating, 

H (r~) where : 
Y 

Hn If) = Z*. (f) y » n (f, En) Knj (En) dEn
 (1) 

Hy <r> = I N j (f) fK < = ' V Kvj ( V dEv (2) 

and where N. (r) is the number density of nuclide j at r, 

K • (E ) is the response function for nuclear heating 

known as the neutron Kerma factor for nuclide j at energy 

E ; K' . is the gamma ray Kerma factor for nuclide j at 

photon energy E ; <f> (E ) is neutron flux for neutron at 

energy E ; <j> (E ) is obtained by solving the transport 

equation for the photons, starting from a photon pro

duction source : 

Sy (f,Ey) = | N. L (En , f) apj <En, Ey) dE. (3) 

where a . is the photon production cross section in 
Lr J 

nuclide j for neutrons of energy E and photons of energy 
E . 
Y 

The neutron Kerma factor can be written as : 

a . . a • , . 

(E) = a. . (E)' (E + V i: Q. • + X 1 D E, . , . K . tj ^ lj ^ di'j 
nD 1 *tj 1 °tj 

"I — En« mj " ± - SEY,j)^) 
m -a, . tn 

tj J 

where a, is the total cross section, Q.. is the Q value of 

the reaction i with isotope j, defined as the difference in 

mass between the total mass of the reaction products and 

that of the neutrons plus the target nucleus j ; E,., is 

the average decay energy per reaction i ; E , is the 

average secondary neutron energy per reaction m. 

Finallv S^ . is given by : 

S„ . (E ) = la • (E E ) E " dE (5) EV J PD n, y Y Y 



where a (E ,E ) is the previously defined photon 

production cross-section for neutron energy E and photon 

energy E . 
Y 

The expression for gamma Kerma factor can be written as : 

K . (E) = a ..E + a . .E + a . (E - 1.02) (6) 
YD pe,D ca,D PP,D 

where a , a c a and a are the gamma-interaction cross section 

for photoelectric, compton absorption, and pair production 

cross sections, respectively. 

The ENDF/B data files necessary to the calculation are 

indicated in table I. 

For a better understanding of the use of the date 

included in the file, we will develop the explicit form of 

the neutron Kerma for a specific reactions.As we have 

seen, the Kerma for a specific reaction i is give in 

general by : 

K (E) = Z K . (E) (7) n ni 

Kni(E) » °i <E) EH.i <E> <8> 

where we have dropped the index j of isotope dependa.it and 

E is the sum of the Kinetic energies of the recoil 
H . 

nucleus and charged particles produced by the reaction. 

In general : 

E „ . = E + Q . - E , . - E . + E _ . (9) Hi ~i n'l yi Di 

where the different values have already been defined and 

Y is the total energy carried away with the gamma rays 

emitted. 

ENLF/B filesi necessary for KERMA factors calculations, 

TABLE I 

File No 

(MF) 

1 

2 

3 

4 

5 

12 

13 

15 

Type of Data 

General information 

Resonance parameter data 

Neutron cross sections 

Angular distribution of secondary neutrons 

Energy distribution of secondary neutrons 

Multiplicities for photons (from neutron reactions) 

Cross sections for photon production (from neutron 

reactions) 

Energy distribution of photons (from neutron 

reactions) 

The reaction types that have to be treated are listed 

in table II. 

To calculate the neutron Kerma factors one then needs 

the reaction cross sections, the Q-values and the energies 

of the secondary neutrons and photons. 
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TABLE II 

Reaction Types 

(n,n) 

(n,n')y 

(n,n')Y 

(n,mn')acl, a ^ , 

(n) a , , a „, a -, cl c2 c3 

(n,Y) 

(n,2n) 

(n,3n) 

(n,f) 

Reaction Types ENDF/B Reaction No. , MT 

Elastic 

Inelastic level 

Tnelastic continuum 

(n,mn', charged particles), m = 1 or 2 

(n, charged particles) 

Radiative capture 

Direct or level (n,2n) 

(n,3n) 

Fission 

' 2 

| 51-90 

i 91 

j 22-24, 28-30, 32-36, 

i and 51-91 with flag LR 
i 

! 103-109 (700-799) , 
j 111-114 

i 
j 102 

i 
; 16 and (6-9, 46-49) 

! 17 

The pointwise cross sections are processed from file 3 

in ENDF/B and, for resonance nuclides, are calculated in 

the resolved and unresolved resonance regions from 

resonance parameters in file 2. The Q - Values are 

processed from file 3. 

The average kinetic energy of all secondary neutrons 

is calculated from the angular distributions in file 4 for 

elastic and inelastic level scattering and from the energy 

distribution given in file 5 of ENDF/B for other reactions, 

The calculation of the energy of the secondary photons 

is made evaluating S p performing the integration previous 

indicated eq. (5), once the gamma production cross section 

have been processed from files 12, 13 ans 15. 

The equation to calculate explicitely eq (8) are given 

in the following paragraph. 



NEUTRON KERMA FACTORS CALCULATION AND THEIR 

RELATION WITH BASIC DATA 

Elastic Scattering 

For elastic scattering, all terms on the right-hand 

side of Eq. (9) are zero except the incident neutron 

energy and the kinetic energy of the neutron emitted. The 

latter is simply 

A2 + 1 •+ 2Ay 
E " E - (10) 
E , - * 2 

(A + i r 
where A is the ratio of the nuclear mass of the nuclide 

to that of the neutron and y" is the average of the cosine 

of the center-of-mass scattering angle, 

y = cos 9 cm cm 

and (ID 

y = f 1 f 

with f, as the first coefficient of the Legendre poly
nomial expansion of the differential scattering proba
bility distribution (f = 1 ) . 

1 o 

Inelastic-Level scattering 

For inelastic-level scattering (n,n')Y/ Q = 0, and 

E , and EY are derived as follows : n' ' 
1/2 

E I"A2 + 1 - A + 1 . E , +A - A + 1 E) y 1 (l: 

i ) 2 L 2A 2E y A E y l J 
E n (E) = 2AE | A + l _ A + 1 . E, +/ j. _ A + IE.] U_. | (12) 

(A+ 

where 

E, = energy of the excited level 

\i = cos e,— cm cm 

The average of the cosine of the scattering angle in 

the center-mass is evaluated from the secondary neutron 

angular distribution in file 4 of ENDF/B. This angular 

distribution can be given in either 

(1) Legendre coefficients in the center-of-mass (CM) 

system ; 

(2) tabulated normalized probability distribution in 

the CM, P (u,E); cm 

(3) Legendre coefficients in the laboratory (LAB) 

system, and 

(4) tabulated normalized probability distribution in 

the LAB system, P L A B (V'E)* 

For case (1), y is equal to the first coefficient 

(f..) of the Legendre polynomial expansion (f = 1 ) . In 

case (2), 

^cm ( E ) = w Pcm ( w' E ) dv • ( 1 3 ) 

For cases (3) and (4) a transformation from the LAB 

to the CM system is performed and y is calculated. orn 
cm \ /fig 



Another procedure is to replace Eq. (12) with the fol

lowing : 

-.1 2 

E , (E) = E ) yL + 

n' ) 
A+l 

A-l 
l2 -

A+l (A+l) 2 L 

A EA 

A+l E 

,(14) 

where y, is the cosine of the LAB scattering angle. y~7 

can be evaluated as the first coefficient of the Legendre 

polynomial expansion in the LAB system or from PT7._ (p,E) 
^ LAB 

as in Eq. (13). y" can be evaluated as follows : 
L 

2 = i-(l + 2f ) , 
M L 3 ^ 

(15) 

where f„ is the second coefficient of the Legendre 

polynomial expansion in the LAB system. For case (4), 

i y ^ ^ E ) dy. 
(16) 

The gamma energy is calculated directly from the 

ENDF/B gamma production files for Path I. In Path II, it 

is given by 

1 

1 + CT 

EX ' (17) 

C„ = internal conversion factor 
F 

Inelastic Scattering, (n,n')y to the Continuum 

In this case Q = 0. The average kinetic energy for 

the secondary neutron is calculated from the secondary 

neutron energy distribution in file 5 of ENDF/B. 

This energy distribution, P(E -*- E'), can be broken down 

into partial energy distribution, f, (E + E'), where each 

of the partial distributions can be described by a 

different analytic representation : 

NK 

I 
k=l 

P(E + E') = V P k (E)fk(E •* E') , 

and at a particular incident neutron energy E, 

NK 

I Pk (E) = 1 -. 
k=l 

The ENDF format allows several analytic formulations 

for the partial energy distributions, f, (E + E 1 ) . 

An expression for E~, is evaluated as follows : 

/ 

E' max 
E'P-(E * E') dE? 

E' . m m 
E ,(E) = n' 

I 
E' 

max 
P (E •»• E') dE* 

E 
min 

NK E' 
r max 

2J p k ( E ) / E ' f k { E * E ' ) d E ' 
k=l E 

m m 

NK 

I Pk(E)Bn,_ 
k=l 

(is; 



The analytic form of E , , depends on the analytic 

formulation of fk (E -> E 1 ) . 

For the evaporation spectrum 

f (E •> E' ) = Y~ exp -E'/6 (E) [-' 
where I is a normalization constant that depends on 

E' • , E' , and 6. The ENDF ass 
min max' 

Using this assumption, we obtain 

E' • , E' , and 6. The ENDF assumes that E' . = 0, 
min max m m 

n' ,k = 

2 exp(x1) - [ 1 + (1 + xx) 

exp(x1) - {1 + xx) 

(19) 

where 
E' 

Xl = 

For a simple fission spectrum (Maxwellian), 

/E7 

f(E * E') = exp [-E'/8 (E)] , (20) 

I 

and by invoking the assumption that E' . = 0, we obtain 
3 c m m 

n' ,k 
(21) 

2 [(/TT/2) exp(x1) erff/x^) - /x^ 

e = 
A^ + 1 

A(A + 1) 
E -

A + 1 

A 
E , . 

n ' 

A similar expression can be derived for the Watt 

spectrum. For the other allowable representations of 

f (E •* E'), E~ , can be obtained by numerical integration in 

Eq. (18). E~ can be evaluated directly from the gamma 

energy distribution in Path I. In Path II, 

applying the equations for conserving linear momentum .and 

energy balance and assuming that neutrons are emitted 

isotropically in the center-of-mass system, one can 

derive the following expression for the average excita

tion energy, e, of the residual nucleus following the 

emission of the neutron, 

(22) 

E is equal to e unless internal conversion is signi

ficant in which case 

F = "e" (23) 
Y 1 + C F 

(n,2n) Reaction 

The (n,2n) reaction can currently be represented in 

ENDF/B as direct (n,2n) (MT = 16) and/or as a time-se

quential reaction (MT = 6-9; 46-49). In the time-se

quential (n,2n) reaction, A(n,n1) A* (n2) (A - 1)*, the 

first neutron is essentially an inelastic scattering 

event that may leave the nucleus A* in one of several 

excited states. The second neutron is subsequently 

emitted by the decay of the recoiling nucleus A*. The 

kerma factor for the (n, 2n) reaction is obtained by 

summing the contribution from the direct and each se

quence (defined by an excited level of A*) of the time-

sequential reactions. 



For direct- and time-sequential (n,2n), Eq . (9) is 

applicable with the Q-value as the binding energy B, of 

the last neutron in the target nucleus and E , as the 
^ n' 

average of the sum of the kinetic energies of the two 

neutrons. For the direct (n,2n) (HT = 16), E~ , can be 

evaluated from the secondary neutron energy distribution 

given in file 5 of ENDF/B as described under inelastic 

scattering to continuum. For each of the time-sequential 

reaction, the energy of the excited level in A* is known 

and the average kinetic energy of the first neutron is 

calculated from the angular distribution in file 4 of 

ENDF/B according to Eq. (12). The average kinetic energy 

of the second neutron is calculated from the energy 

distribution in file 5 of ENDF/B. 

If the direct gamma-production path is not selected, 

the average energy of the photon emitted [E in Eq. (9)] 

can be calculated from momentum and energy balance. The 

results are different for direct(n, 2n) , assuming iso

tropic emission in the center-of-mass, the excitation 

energy of the residual nucleus is given by [ in the direct 

(n,2n) the time interval between the emission of the two 

neutrons is so short that the intermediate nucleus A* 

does not deposit any of its recoil energy prior to the 

second neutron emission ] 

•A-l = 

2 
A +2 

A ( A + 1 ) 

1 

A - l 

(V-2 
- A 

Hi i t T c\ Hi at 

n ' 1 n '. 
(24) 

v/here E ,, and E ,„ are the average energies of the first n'l n'2 ^ ^ 
ans second neutrons. At present, ENDF/B provides only the 

combined spectrum of the two neutrons ; and therefore 

evaluating Eq. (24) requires invoking the assumption that 

A2 >> 2. 

For a sequence (e.g. MT = 6 and 46) in a time-sequen

tial (n,2n) reaction, it is assumed that the intermediate 

nucleus A* comes to rest prior to emission of the second 

neutron. Thus, the excitation energy of the residual 

nucleus is given by 

e A-l = EX " B " — x
 En2' <25) 

where E, is the eneray of the excited level in A* and E n \ -,J nz 
is the average energy of the second neutron. 

(n,3n) Reaction 

Equation (9) applies here with the Q as the Q-value 

of the (n,3n) reaction and E , as the average of the sum 

of the kinetic energies of the three neutrons. The latter 

is calculated from the secondary neuton energy distri

bution. The energy of the photons emitted is calculated 

in the indirect gamma-production path from the excitation 

energy of the residual nucleus. This can be calculated by 

applying linear momentum and energy balance. For direct 

(n,3n) the time interval between neutron emissions can be 

assumed to be extremely short. Assuming isotropic neutron 

emission in the center-of-mass system, the excitation 

energy of the residual nucleus can be derived as 

A2 + 3 

E + Q . . 
A(A + 1) n 3 n 

~ A 2 - 3 A 2 - 2 A - 1 A - l 

E , + E . + E . 
«-A(A - 1) n i (A - 1) (A - 2) n A - 2 n . 

, (26) 



where Q _ is the Q-Value of the (n,3n) reaction (always 

negative) and E , E ~, and E .. are the average kinetic 

energies of the first, second, and third neutrons. Since 

ENDF/B provides only the combined spectrum for the three 

neutrons, invoking the assumption that A >> 1 is neces

sary for evaluating the above expression. 

Radiative Capture 

In an (n,y) reaction, conservation of linear momentum 

causes the kinetic energy of the residual nucleus to be 

very small ; in general ; only a fraction of 1% of the 

energy of the emitted photons. The energy E of the photons 

emitted can be derived as 

E = M 
Y s fWF E/l - r/_ 

- 1 (27) 

The recoil enerigy of the nucleus, E , is 

E = E + Q - E , 
r Y 

(28) 

where 

Q = the reaction Q-value 

M C = mass of the residual nucleus in energy units 

M C 2 = (A + l)m C 2 - Q r n 

mnC = energy equivalent of the neutron mass (939.512 MeV) 

Charged Particle Reactions 

The reaction discussed here is of the type 

7 X
 Al (n; a„ a^ . . . a ) 7 ^ 2 , 

1 1 2 n 2 

where a ,, a _ ... are charged particles, e.g. (n,a),(n,p), 

(n,aT). The energy deposited, E„ per reaction as defined in 
rl 

Eq. (9), is the sum of the kinetic energies of the recoil 

nucleus and charged particles emitted, i.e. 

E„ = E + E + E + + E = E + Q - E , OQ, H r a . a n a Y (29) cl c2 c n 

where Q is the reaction Q-value (mass difference) and E is 

the average energy emitted with the photons. The residual 

nucleus is frequently left in one of the excited states. If 

we define the cross section for the i-th excited state as a is 

N 
a = Z ai (30) 

i=̂ o 

and the total kerma factor for the reaction is 

• ] • k = c I E + Q - E y + E D | , (31) 

where 

N 
E = ^ P .e . , (32) 

x=o 

ED = I PiEDi ; (33) 
x=o 

:± = energy of the i-th level (e = o) 
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En. = contribution to energy deposition by radioactive decay 

of the i-th level 

P. = probability that the i-th level will be excited given 

that a reaction has occurred (a./a). 

If other processes compete with gamma emission (e.g. internal 

conversio. 

adjusted. 

conversion), the e.'s in the above expressions should be 
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The reaction total cross section and Q-value for (n, 

charged particle) reactions are given in ENDF/B with 

MT = 103-107. The corresponding partial cross sections to 

various excited states are given in the MT = 700-799 series. 

For many materials, however, the 700's series data are not 

given. In such cases (and for MT = 108-114), there is presently 

no method to calculate E in Eq. (32) for the limited informa

tion given in files 1-5. This is the basic disadvantage of 

the indirect gamma-production path. The newly proposed format 

for including the energy distribution of the charged parti

cles can help solve this problem. In pratice, however, data 

on gamma-production and charged-particle energy are both 

either lacking or both are known. 

(n,n') Charged Particles 

This reaction is generally of the form 

X A 1 <n,n') a , a , ... a , Y A 2 

Zl n Z 2 

The energydepositiomper reaction E__ is the sum of the kinetic 
n 

energies of the recoil nucleus and charged particle emitted 

and its calculation from Eq. (9) depends on the type of data 

available. 

In ENDF/B, some of these (n,n') charged particle reac

tions are represented in the format of inelastic level scat

tering, (n,n'x) (MT = 51-90) with an LR flag to define the 

exact type of the reaction. For such type of reaction, two 

Q-values are given ; SQ is the Q-value for the combined (n,n'x) 

reaction and Q' is the energy of the excited level for the 

(n,n') part of the reaction. The energy of the secondary 

neutron can thus be evaluated from Eq. (12) with E = |Q' | 

and the angular distribution of the secondary neutron in 

file 4. Threfore, with this type of format the (n,n') charged 

praticle reaction can be treated as inelastic level scattering 

except for the following differences : (1) the Q-value for 

the reaction is SQ instead of zero ; and (2) the energy 

available to the gamma rays in inelastic level scattering 

are taken by the charged particles and deposited locally. 

The flags LR = 39 and LR = 40 are also used in ENDF/B 

to indicate that the final mode of decay of the residual 

nucleus from an (n,n') reaction is by internal conversion 

(LR = 39) or by electron-positron pair formation (LR = 40). 

These two cases are treated similar to the (n,n') charged 

particle reactions except that 1.02 MeV of energy is carried 

away with photons in the case of the electron-positron for

mation mode and is not available for local energy deposition. 

The (n,n') charged particle reactions can also be given 

in ENDF/B as direct (composite) reactions (e.g. MT = 22, 23, 

etc.). Also, this is always the case for the (n,2n) charged 

particle reactions (e.g. MT = 24). In these cases, the ave

rage energy of the secondary neutron [Eq. (9)] is calculated 

from the energy distribution of file 5. The information in the 

neutronics files (1-5), however, is not sufficient to calcu

late the energy carried away with the emitted gamma rays. 

This difficulty is similar to that discussed earlier for the 

(n, charged particles) reactions. 



A serious ambiguity was found in the processing of 

the ENDF/B data necessary to prepare photon-production 

cross-sections, mainly in the processing of continuous 

energy spectra, which are expressed, as we have seen, in 

ENDF/B as normalized probability distribution g{E< - E.) 

at selected neutron energies E.. 
r 1 

Actually, different methods for interpolating can be 

used to determine the photon spectra at intermediate 

neutron energies. The problem is illustrated in the two 

following figures : 

At the lower energy E., the photon end-point energy 

is E^ ; at the higher neutron energy E. . , the photon 

endpoint energy is E 1 - At the intermediate neutron 

energy E'. are possible interpolation (fig la) is such as 

to givephotonyields (dashed line) for photon energies up 

to E i+l 
Y 

, whereas the second interpolation method (fig lb) 

gives photon yields only up to an energy of E . Because 

the resulting intermediate distributions are normalized, 

the interpolation method of fig la, gives more photons in 

high energy groups, and the method of fig lb gives fewer 

photons in the same energy groups. 

A further source of difficulty withe the normalized 

probability distributions is the use of this format to 

represent discrete photons. The following fig. 2 depicts 

the spectrum for MT = 102 in fluorine. 

{Aden crou> K ° 2 o - t - t fhoton { " " P , ;3 I 

FigCL '".' »P.eprfc:,cntat1ye normalized probability distri
bution functions g(EY--Ei) for fluorine 
(KAT1277, H1102). 



Differences in the approach to interpolation, descri

bed above, can lead to a discrepancy in a group repre

sentation of photon production cross section, of 13% in 

photon production from neutron group 9 to photon group 2 

and 100% from neutron group 9 to photon group 1. These 

discrepancies demonstrate the difficulties that can 

result from the use of file 15 to represent discrete 

photons. 

APPENDIX 

OUTLINE OF THE LECTURES ON THE TOPIC 

"INTRODUCTION INTO THE CONTENTS OF THE MAJOR AVAILABLE 

EVALUATED NUCLEAR DATA LIBRARIES". 

-oOo-

1 - INTRODUCTORY REMARKS 

. Review of the areas of application of nuclear data 

for reactors. 

This review will be mainly devoted to fission reac

tors, (reactor physics problems, shielding, biological 

protection, etc...), and fuel cycle (decay heat, acti

vation , etc...). 

. Review of the main type of reactions, energy ranges 

and isotopes of interest. Graphical examples* 

. The problem of extracting "evaluated data" from 

experimental information to feed a "data bank". 

. Two alternatives : pointwise representation of data 

and parameters to be used in connection with models. 

. Main types of data files : ENDF/B, KEDAK, UKNDL, 

etc... Comparison of main features. 

. A major example : ENDF/B - Structure of files and 

formats. 

. Computer related problems. 

2 - TYPICAL CONTENT OF THE DATA FILES - THE "POINTWISE" 

DATA AND THE RESONANCE REGION DATA. 

. The "pointwise" data representation. Main examples 

total cross-sections, charged particle reactions, etc... 

Interpolation schemes. 

. Resonance region. The resolved resonance region : 

- basic formulae for parametric representation ; 

- what parameters needed ; 

- conservation laws or internal consistency rules ; 

- typical values (examples) ; 

- how they are arranged in a file (ENDF/B format) ; 

- type of problems where these data are needed. 

. Resonance region. The unresolved resonance region. 

The discussion will follow closely the outline for 

the resolved resonance region. 



3 - TYPICAL CONTENT OF THE DATA FILES - ANGULAR AND 

SECONDARY NEUTRON DISTRIBUTIONS 

. Angular distributions of secondary neutrons : 

- basic formulae for elastic scattering ; 

- Legendre polynomial expansion ; 

- transformations, conservation laws and 

consistency ; 

- format for description in a file (ENDF/B format); 

- type of problems where these data are needed. 

. Energy distribution cf secondary neutrons : 

- basic formulae ; 

- secondary energy distribution laws ; 

- format for description in a file (ENDF/B format); 

- type of problems where these data are needed. 

4 - THERMAL SCATTERING LAW DATA AND PHOTON PRODUCTION DATA 

. Thermal scattering law data : 

- thermal neutron scattering formulae ; 

- parameters needed ; 

- temperature dependence ; 

- format for description in a file (ENDF/B format) 

- problems of utilisation. 

Photon production data ; 

- photon production cross-sections ; 

- multiplicities and transition probability arrays ; 

- format for description in a file (ENDF/B format) ; 

- problem of consistency ; 

- an example of verification of internal consistency 

of data ; 

- type problems where photon production data are needed. 

PRESENT STATE OF THE ART IN THE FIELD OF EVALUATED DATA 

FILES 

. Quality of the evaluations and problems of uncertain

ties. 

. Typical examples of the present state of the art for 

some major isotopes in different energy ranges and 

type of reactions. 

. Cooperative efforts. Dissemination and availability 

of data. 

. The problem of the use of the basic data files : in

terfaces with processing codes. 

. Conclusions. 
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PART I. THE DATA IN NUCLEAR FILES AND THEIR MANIPULATION 

1 - INTRODUCTION 

In the theory of nuclear reactors it has been that the neutron 

population is essentially treated as a population of particles and con

sequently the laws which govern such a population are only based on equa

tions of balance as, for example, the diffusion or the transport equa

tions. 

The quantistic nature of the involved particles ant the interactions 

of the neutrons with the matter of which the reactor is built up is 

properly taken into account through the coefficients appearing in the 

balance equations. Such coefficients are in fact calculated by means of 

the microscopic and macroscopic cross sections which contain the full 

information about the nuclear reactions between the neutrons and the 

nuclei of the crossed material. 

The corss sections for a given material are largely dependent upon 

the energy of the exciting neutrons and the neutron spectra are different 

for different type of reactors. Then, we need of a subdivion of the to

tal energy range in a set of groups for which the balance equations can be 

written with the proper coefficients, averaged over prefixed intervals. 

Each of the balance equations, must be connected to the other, through 

some exchange coefficients which give the correct trasmission of neu

trons from one to other groups. 

The starting point for this procedure in order to arrive to the sy

stem of differential equations for a reactor calculus, is a correct know

ledge of the microscopic cross sections versus energy for the different 

reactions of neutrons in each material. 

Clearly, more fine is the subdivision in groups, a greater number of 

groups must be adopted with a better description of the energy dependent 

coefficients but with a larger number of differential equations to be 

solved. The choice of the number of groups is therefore determined with 



an optimization criterium which takes into account the type of reactor 

which has been considered and the accuracy exigencies. 

A number of three-four groups may be enough for a thermal reactor 

while for a fast reactor a number of groups of about twenty to hundred 

might be a good choice for calculations. 

Due to the behaviour of the cross sections when we go up in the 

energy scale, the total energy interval is normally divided in subintervals 

equally spaced in lethargy. It has been seen that the maximum of energy 

for neutrons in a reactor is about 15 MeV. So, the contents of the 

Nuclear Data Files (NDF) generally covers the energy range from nearly 0 

to 15 MeV. 

The coefficients of the balance equations first requires to read from 

NDF's the microscopic cross sections and some other parameters. Then, 

in order to prepare a group library, we must average the mentioned data 

over the flux of the considered reactor. In section 6/1 is given an 

example of what may include a calculated group averaged library. By the 

formulas there given for a generation of a group library, it will be clear 

that we need to pick-up the cross sections from files, in a tabular form. 

Then, the starting point to generate the group cross sections is the read

ing of files of evaluated data. The file structure can be subdivided as 

follows: 

A) RESONANCE REGION, splitted in two part: 

1- Resolved region (RR); 

2- Unresolved region (UR); 

B) THE CONTINUUM REGION. 

For a given isotope, the cross sections depend not only by the energy 

of the exciting neutrons, but also by the temperature of the crossed 

material, because different temperatures corresponds to different thermal 

agitation of nuclei and consequently different relative energies neutron-

target nucleus. 

In a preparation of a group cross section library typical tempera

tures and dilutions are considered (e.g. in the Russian library, briefly 
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called ABBN from the Author's names, are 0, 300, 900, and 2100 Kelvin 

degrees, while the values considered for dilution are 0, 10, 100, 1000, 

10000). 

We want to look here some particular physical aspects of the cross 

section manipulation before discussing of the numerical averaging formulas. 

Some physical questions are very important to understand for a correct 

manipulation of the files. The description of the general theories and 

formalisms can be found in ref. /1-9/. 

2 - THE RESOLVED RESONANCE REGION. 

It has been learned that the description of cross sections in the 

range of resonances may be given in the files in a two different ways: 

through the resonance parameters or through a pointwise representation. 

The representation through the resonance parameters is strongly 

recommended /14/,'expecially when Doppler broadening and self shielding 

factors must be calculated . We shall see the difficulties of the pointwise 

reprentation in part II of the lectures. 

Now, let us share the energy resonance range in two parts:the RESOLVED 

resonance region and the UNRESOLVED resonance region and assume that our 

file contains the resonance parameters. We want to examine some problems 

related to the generation of the tabulated cross sections in the different 

theoretical scheme of representation, i.e. the Single Level (SL), Multi

level (ML) Breit-Wigner formalisms, or the Multilevel Reich-Moore 111 

and Adler-Adler /8/ formalism with more than one fission open channel. 

TABLE 1 gives an axample of the parameters which are needed in the 

resolved region for the SL Breit-Wigner representation. TABLE 2 gives 

the same list in the case of a ML Breit-Wigner representation. The examples 

refers to the structure of ENDF/B file 2. The symbols written over each 

row are those assumed in the file to indicate the quantities. The complete 

list of such symbols can be found in the report of ref. 19/. The index 

which defines the selected formalism is LRF( l=SL,2=ML,3=Reich-Moore,4= 

Adler-Adler). The last one is in practice never used in the files; more-



over it has been recently prepared some good conversion codes (in Karls

ruhe by F.H.Frohner) for Reich-Moore to Kapur-Peierls parameters /5/. 

It must be said that the main advantage of the Adler-Adler represente-

tion is given by the possibility to perform an analytical broadening of 

cross sections when the temperature changes. But now, starting from Reich 

-Moore parameters we can convert them in Kapur-Peierls and broad the 

cross section in analytical way by means of the well known funtions 

î (6,x) and X(6,x) /15/./16/. Both the Adler-Adler and the Kapur-Peierls 

representation of the resonances permit an analytical Doppler broadening, 

nevertheless, it must be noted that the widths are complex and lightly 

energy dependent. The conversion must therefore be performed in more 

than one energy point in order to have at least a good polynomial fit 

of such an energy dependence of widths. 

Let us recall some practical notices about the three most used repre

sentations (LRF=1,2,3). 

The origin of the discovery of the Breit-Wigner representation lies 

in an analogy with the theory of resonance absorption and subsequent 

emission of optical radiation by an atomic system. Breit and Wigner a-

dapted this time-dependent perturbation theory to the treatment of nu

clear reactions giving rise to the formula that bears their name. In 

spite of the fact that electromagnetic interaction is "weak" while nu

clear interactions are "strong", both the phenomena get out a similar 

formula. The reason is because both the reactions proceed through a re

latively "long life" state: it is due to the weakness of the coupling 

in electromagnetic case; in the nuclear case the strength of the nuclear 

forces leads to a sharing of energy among the nucleons with a compound 

nucleus formation and a long life due to the small probability of the 

energy beingconcentrated in a mode that corresponds to disintegration 

by an "open" (i.e. energetically allowed) channel (see introduction of 

ref./5/). 

In order to make easier the interpretation of the Breit-Wigner for

mula in the Single Level (SL) an Multilevel (ML) approximation let us 

look to the formulas as given in ref,/9/ and shown in tables 3, 4. At 

the low energy involved in the resolved resonance region, the only pos

sible reactions are: 

- ELASTIC SCATTERING (potential + resonance) 

- RADIATIVE CAPTURE 

- FISSION (only for fissile nuclei) 

The elastic cross section is formally the most general and includes 

three parts: 

(1) Potential scattering (hard sphere scattering); 

(2) Resonance scattering (compound nucleus elastic reaction) 

(3) Interference between (1) and (2). 

In order to better understand what is an interference among resonan

ces, we may remenber the similar problem arising in a quadratic expres

sion which can be written in a matrix form, e.g.: 

(2x + 3y)2 = 4x2 + 9y2 + 12xy = (x y) 
4 6 

6 9 

Here the interpretation of the central matrix is well known. It intro

duces a metrization of the space (is a "metric" or a fundamental tensor 

of the reference space) where the diagonal elements give the metric sca

le on the axes, while the off-diagonal elements give the interference bet

ween any couple of axis due to their "non-orthogonality". In fact, ortho

gonality means independence among the reference axes. 

For what concerns the resonances, the interference can exist ONLY AMONG 

THE RESONANCES OF THE SAME SPIN AND PARITY. Then, only the resonances with 

the same 1-quantum number and J can interfere. Now, let us consider how 

are taken into account the interferential contributions in the ML Breit-

Wigner formalism. As in the quadratic example above, a matrix formalism 

can be adopted to write down the formulas of table 3 and 4. 

In order to see with a better evidence the interference given by the 

off-diagonal terms in the BW formula for the resonance scattering, we 

note that by introducing the quantities: 

DE. = E - E'. (j=resonance index, ref./9/ for shifted energy E!) 



a. = DE. + i(r./2) ; a": =DE . - i(r./2) (*= complesx conjugate) 
J J J J J J 

(i= imaginary unit) 

z. = l/a. ; z": = l/a*̂  
J J J J 

u. = SQR(g.) x SQR(r .) x SQR(r ) = SQR(gr r )j 
J J nj xj ii x 

c(j,k) = u. u, simmetric matrix n»n (j ,k=l,2,...,n resonances), 

we can write-the resonance part of the single or multilevel BW cross sec

tion in the very synthetic form: 

cross section for x-reaction = TT#2 fzv C ZJ 

where capital Z is the column vector of Z. , Z*" is the row vector of Z*. 
i J 

and the central (n»n) matrix C plays the role of the space metric with ele

ments u. u, . 

The square roots of the widths are called "REDUCED-WIDTH AMPLITUDES". 

In the vector matrix vector product the contibution of the diagonal elements 

give a sum of pure single level Breit-Wigner formulas, while the off-diagonal 

elements give the interference between resonances. 

The energy space is n-dimensioned with an axis for every width x., for the 

reaction x and resonance j , more or less orthogonal one to others, depending 

upon the amount of interference among the resonances. 

The matrix formalism can be extended to the potential scattering (i) by in

troducing fictitiously the "dummy" widthes energy dependent for each 1-quan-

tum number. 

T = -2 E sin and DE" = E cos 
a1 = DE1 = i(T1/2) ; a* = M ^ - i{T±/2) 

Zl = 1^al ' zl = 1/al 

so that, for example, the elastic cross section for a single isolated reso

nance can be written as in TABLE 6. 

The two expressions in TABLE 3,h and in TABLE 5 are perfectly equivalent but 

the matrix form permits immediately to understand where the interferential 

terms between the potential and resonance scattering arise. 

When the interferential effects among the resonances are taken into account, 

the ML formalism is needed, and the matrix form in this case has a central 

square-symmetric matrix C of dimension (n n)- if n resonances are simultane

ously assumed. 

Clearly a coherence must exist between the adopted formalism to generate the 

tabulated cross section and the formalism which was adopted to fit the expert 

mental points of that cross section. The formalisms must be the same. A flag 

number in the file advise us if SL or ML formalism must be used. 

If we look to the multilevel term in TABLE h, we can find the single term of 

summation as generated by the off-diagonal elements in the matrix represents, 

tion given in TABLE 3- For a better understanding we can subdivide the com

plete hermitean expression in submatrices (TABLE $) where the potential scat

tering (submatrix A) and the resonance scattering (submatrix C), have the ma

trices B and Tr (B) as interference. In the single level representation the 

off-diagonal elements of matrix C are normally put =0. So making, if the terms 

of matrix B and Tr (B) are mantained, it happens that in some energy points 

the calculated ELASTIC cross section becomes negative. Such an unphysical result 

derives by the absence of the positive interferential terms in the hermitean 

form, while the negative terms of matrix B are retained. This result shows 

that the common SL formalism could be unadequate and is moreover wrong from 

a theoretical point of view, at least for elastic reaction. 

In the above observations, we have implicity accepted that the products of the 

widths in the off-diagonal elements of matrix C, were "positive". 

It is quite easy to see that positive result of the product of the reduced-

width amplitudes is only true for the elastic reaction. In effect, if we consi

der an interferential term between two resonances of index j and k, the element 

in row j and column k of matrix C must be written: 

u. = SQR(p •) x SQR(r •) with an uncertaint in the algebric sign. 
J nj xj 

For all the terms of the simmetric matrix, we have: 

u.u. =SQR( r ) SQR( p •) SQR(p .) SQR(p, ) and same sign uncertainty. 

In can be observed that the same random attribution of sign can be directly 

attached to u., since on half of the generated sign is positive while the other 

is negative, as shown in TABLE 7-

For elastic reactions, x= n and automatically a positive sign always results 

for the product u. - u . It is normally assumed that there is only one neutron 

channel, since, in the range of neutron nergy under consideration, mainly neu

tron with 1=0 are expected to contribute. 

For the reactions, two distinct cases must be considered, on the ba

sis of the possible open channels of the reactions. They are: 



THE CASE OF RADIATIVE CAPTURE. Such a reaction gives rise to a cascade of 

possible jumps of nucleons to lover energy levels, with gamma ray emission. 

The number of possible channels is very high and consequently, on average, 

the positive and negative interferential effects compensate one each other, 

giving rise to a reaction equivalent to a Single Level mode without inter

ference. 

Then, THE CAPTURE REACTION IS ALWAYS TREATED WITHOUT INTERFERENCE. 

THE CASE OF FISSION. Such a reaction evolves normally through more than one 

channel, at least two and even three-four channels. For the same resonance 

level, each channel corresponds to a mutually exclusive mode of evolution 

of the compound nucleus. Then, there is no interference among channels of 

the same level but may exist among channels of different levels (for the 

same reaction). To be more clear we may look to FIGURE 1 which represents 

the reduced-width.amplitudes as axex of a multidimensional space /10/ and 

are orthogonal if referred to the same resonance level. The experimental 

determination of the channel widths is very difficoult and in the files are 

generally never given more than two fission widths. In TABLE 8 is possible 

to see the data which we can find in a file of resolved region "for a fissi

le material, i.e. Pu-2^1, with a two partial channels for fission and par

tial widths GH1 and GF2 for each resonance. 

The total fission width GF can be calculated by addition 

GF = GF1 + GF2 (two open channels) 

To give the two partial fission widths an alternative mode can be used as 

in TABLE 9 where, together with the "total" fission width GF, the angle 6 is 

given from which the two components can be calculated with the formula of 

conversion from polar to rectilinear coordinates. 

GF1 = GF cos 8 

GF2 = GF sin 6 

When the fission reaction is given for each resonance with the parameter of 

two fission widths, the Reich-Moore formalism is normally requested to gene

rate the cross section. The description of such formalism will not be repea

ted here. It can be found in a paper by Reich and Moore 111. We only note 

that the radiative capture cross section is obtained by subtrancting from 

the total the elastic and the fission cross sections (see TABLE 10). Thus, 

the accuracy of the resulting capture cross section is strictly related to 

that of the multichannel fission reaction. From a practical point of view, 

the file must contain a sequence of algebric signs which arise from the 

products of the reduced widths defined above. We can see in TABLE 11 an 

example of experimental results for U-233 obtained by a fit of experimental 

data using the RM multilevel approximation. The mentioned sequence of signs 

appear under the column head 3>r3>?- In TABLE 8, the sequence of signs ap

pears to be attached to the partial fission widths, but it must be clear 

that they ARE NOT algebric signs of the partial widths, even if they produ

ce in the calculations the correct sequence of positive and negative inter

ferential effects among the resonances. A double sequence of signs is needed 

when two fission channels are assumed. From the mathematical point of view 

the uncertainty is due to the square root extraction on the widths. From a 

physical point of view the sign attribution will derive from a positive or 

negative interferential effect among the resonances. For a fixed set of 

y-signs it can be seen that the interference contribution along the energy 

axis changes from destructive into constructive and viceversa. An example of 

this typical behaviour is shown in the fission cross section curves of FIGURE 

2v4A two-level two-channel formula was used with a positive (curve l) and ne

gative (curve 2) sign of gamma products y y . Both curves are partly above 

and partly below the curve (3) obtained without taking into account the inter

ferential effects (summation of pure BW). 

Within the simple assumption of a two channel reaction, the two level formula 

produces two possible interferential cross section values, due to different 

choice of signs. As far as the numeber of the considered levels is increased, 

the number of possible sign permutations also increases. Any fit of experimen. 

tal data with a multilevel formula becomes more difficult, even if all the o-

ther resonance parameters are fixed. 

The total nomber of possible sequences of signs can be easily deduced.Even 

if a plus or minus sign has to be attached to every f's square root, it can 

be directely attached to u • above defined because one half of the generated 

signs is positive while the other is negative, as shown in TABLE 7-

The random attributions of signs to the elements of the "fundamental ten

sor" does not modify its symmetric character. Then c (j k)=c(k j) and a 

triangular set of elements may be determined in order to obtain the fi

nal result. OB 



If n levels are considered, the indexes run from 1 to n and the to

tal number of different elements to he examined is given by n(n-l}/2. 

The number of order distinguishable sequences of size n(n-l)/2 with repeti

tion of two elements (+ and - ) , is given by 2+[n(n-l)2 /2/ 

It corresponds to the possible sets of non-diagonal terms with different se

quence of signs. 

But it must be observed that, due to the fact that each element c(jk) is ob

tained by a product of two factors of index j and k respectively, the sign 

attribution is not completely free, once the signs of the factors SQR(r ) have 

been assigned. More precisely, the free and bound elements are so distributed: 

total = free + bound 

n(n-l)/2 = (n-1) + (n-2) (n-l)/2 

An example of the case n=3 is shown in TABLE 12, where a maximum number of 

four possible distinct sequences is extractable from the total number of sign 

sequences for the square root of capital gammas. 

Due to the special nature of the elements c(jk), only 2+(n-l) distinguishable 

ordered sequences of signs can be obtained for the non diagonal elements of the 

matrix. In the example of TABLE 12 we can verify the prediction; the same signs 

are obtained from sequences no. 1 or 8, 2 or 7, 3 or 6, h or 5» and our predic

tion about the free elements is so checked. 

The above considerations concerning the dependence of a multilevel cross sec

tion upon the choice of the signs of the reduced width amplitudes regards 

only the resonance reactions via compound nucleus and do not involve the poteii 

tial scattering and the phase shift. 

It is evident that the experimental data of cross sections must be fitted with 

the best sequence (e.g. in the least square sense) of signs for the products 

of the reduced width amplitudes. 

Some important questions arise in connection with the mentioned freedom in 

the sequence of signs. The consequences in the energy by energy calculation 

of cross section are not negligible because they produce different in

terferential effects. Only when a very large number of channels are open, 

the interferential effects tend to elide one another. Moreover, when a 

large number of level must be treated, according to a Bethe's assumption 

/5,P.302^ the average cross section within a finite energy interval can be 

obtained assuming a random sign for the reduced amplitudes. 

Such an assumption does not define the influence of sign distribution on the 

cross section values in each energy. Thus, the following problems were inve

stigated /12/ which are particularly important: 

a) The evaluation of amount of uncertainty in the cross section value, due to 

the random signs of the width amplitudes and its variability as a function 

of excitation energy. 

b) The comparison between the arthmetic mean of all the cross section values at 

a given energy and the value obtained without interference among the reso

nances. The comparison must be made also with regard to a variable number of 

levels. 

c) The search for the frequency density of cross section values in any fixed 

neutron energy. 

d) The investigation of the sensitivity of the calculated cross section to the 

choice of signs. The sensitivity changes at different energies; thus, it can 

be useful to foresee the energy ranges of maximum sensitivity in order to 

pick up energy values where the sequences of y-signs can better be deter

mined by a fit. 

e) The verification of the vanishing in the mean of the interference terms, 

whenever a great number of levels is considered (as it happens for suffi

ciently high energy /21,p.60/, /3,p.3Q6/). 

In FIGURE 3 we can see the uncertainty band of U-233 cross section for the 

fission reaction described with a MLBW formalism and one open channel. A re

duced range of energy is plotted; the parameters of twelve resonances were 

used in calculations, as given in TABLE 11 shown above. 

The figure shows that the amount of uncertainty of the point a) may be very 

large. In the next FIGURE k we can see the relative amplitude of uncertainty 

in the same energy range. The arrows show the position of the levels. The 

maximum spread of cross sections is at the middle between resonances. 

For what concerns the point b) the calculations have shown that the value 

without interference is exactly the arithmetic mean of all the possible in

terferential values. Over a large number of resonances, such a conclusion 

makes valid the hypothesis of point e). 

For problem of point c) the frequency function of all the possible cross sec

tion values due to different choice of the sign sequences appear to be very 

variable with the neutron energy. In FIGURE 5 are plotted the frequency hysto 



grams of cross sect ion values at energies of resonances (upper) and at i n t e r 

mediate values "between the same two resonances (lower). The calcula t ions were 

made by a se t of 15 resonances not corresponding to a rea l case. A t h e o r e t i 

cal study of such d i s t r i bu t ions could contribute to solve the problem of point 

d) for a p r a c t i c a l use in the determination of the multi level cross sect ion 

parameters. 

Let us now summarize the main problems to take mind when we generate a cross 

sect ion from a Nuclear Data F i le in the resolved region, s t a r t i n g from the 

resonance parameters: 

1) The e l a s t i c cross sect ion may become negative in some energy points on the 

l e f t of the resonances when a SL formalism is used and the in terference 

between the resonance and po ten t i a l sca t t e r ing i s added in ca l cu la t ions . 

Negative values qui te eas i ly appear at very low energies , i . e . near the 

thermal value. 

2) The non e l a s t i c cross s ec t ions , at the energies on the l e f t of each l e v e l , 

increase as 1/v. This i s due to the fact that the neutron wavelenght i s 

propor t ional t o 1/SQJR(E) and the neutron width i s proport ional t o SQR(E), 

as i t i s evident for the s-waves vhereT '=TpxSOR(E). The squared wave-

n 

lenghts has a factor 1/E which is compensated in elastic reaction by the 

product of neutron widths T 's, but is only partially compensated in non 

elastic where only one neutron width appear in the numerator whereas e.g. 

the capture width is practical constant with the energy. Then, the files 

start normally from an energy not lower than about 1E-5 eV for tabulated 

cross sections. As a related problem, it happens that, if in the experi

ments some resonances were lost (for example because too narrow), their 

1/v contribution at thermal energy cannot appear in the calculated cross 

section. Consequently, we shall find some discrepancies between the expe_ 

rimental and calculated thermal cross section, the last one being gene

rally underestimated. A 1/v tail must be artificially added in order to 

normalize the calculated to the experimental values at the Maxwellian most 

probable velocity, i.e. 2200 m/sec or 0.0253 eV at room temperature. 

In the files, the correction for the loss of a 1/v contribution is generally 

obtained with the artificial introduction of a bound level at a negative ener

gy. The cre.ation of such a resonance has many degrees of freedom because ener

gy and widths can be freely chosen. The evaluator generally assumes a distance 

from the first level of about one average spacing <D> and the average capture 

width. Then, the neutron and fission widths are usually determined. An alge-

bric equation of second degree must be solved; in TABLE 13 is described the 

procedure which may be adopted. 

The list of code RINEG for such calculation is given in APPENDIX. It is writ

ten in Basic language for a desk calculator (Olivetti P/6066). 

It must be remembered that the 1/v tail also gives a contribution to the re

sonance integral. This calculation will be considered in the next section. 

3 - THE UNRESOLVED RESONANCE REGION 

Going up in the energy scale the resolution power of the instruments for the 

experimental determination of cross sections becomes lower and the resonances 

become wider and tend to overlap one to the others. 

Then, it is impossible to resolve the resonances, and to separate one from the 

others. The calculation of cross sections can be made on the basis of average 

values of widths and the knowledge of strenght functions for s-and p-waves. 

The "statistical model" used in the calculation will" not be repeated here. 

We want only pay attention to some pratical aspects of the calculations. 

The formulas giving the cross sections can be seen il TABLE Ik and 15, ta

ken from ref./9/• 

The calculation of the ratio of widths appearing in the formulas requires the 

determination of average values of widths and of the factors R which 

are known as fluctuation integrals for capture, fission and elastic scatte

ring. These factors arise from the fluctuation of the resonance widths which 

are not costant but have a distribution depending upon the number of open 

channels for the reaction considered, and upon the number of degrees of fre

edom for the decay reaction of the compound nucleus. The distribution takes 

the name of PORTER-THOMAS DISTRIBUTION (FIGURE 6) and as been discussed in 

other lectures. 

Thus, associated with each of these integrals, there is the number of degrees 

of freedom for each of the average widths. 

In the calculation of the cross section with the statistical model, it has 

assumed that, in a given energy interval, there is a number of resonances 

with their average width and a fixed average spacing <D>. This is not actual 

ly correct, because also the spacings fluctuate with a law which takes the 
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name of WIGNER DISTRIBUTION (FIGURE 7). But it has been seen that, in practi

ce, the spacing fluctuations do not influence appreciably the calculation of 

cross sections. Thus we can see that an unweighted average D appears in the 

denominator of the given formulas. 

The average values of widths and of resonance spacing D are normally deduced 

from the resonances in the resolved region. This evaluation is quite criti

cal and must again take into account the statistical distribution of these 

parameters for a correct determination of the average values. In particular, 

the value of <D> largely influences the calculated cross section which is 

inversely proportional to it. Then, some adjusted values of average D are 

often obtained from the experimental information about the cross sections in 

the unresolved region. 

For what concerns the calculation of the fluctuation integrals, it is often 

used in calculation a table of probability over which the neutron and fission 

widths are to be weighted. In fact, one/two degree of freedom (=one/two chan

nels) are assumed for fission width. The capture width on the contrary, is 

assumed without fluctuation, because, as observed above, a very large number 

of channels corresponding to the gamma-rays cascade are open, and the Porter-

Thomas distribution tends to become a Dirac's delta function. We can see on 

FIGURE 6 the Porter-Thomas distribution for different degrees of freedom. It 

is of the chi-square type. 

As a practical example of cross section calculation in the unresolved region 

we give here a list of a code written in basic language for Olivetti P/6066 

computer which permits to follow very well the cross section calculations. 

The weighting probability for one to four degrees of freedom appears in 

the list as an "internal file" of data (see the statements 80-130 of the 

<GRES0> code). 

An example of the structure of a Nuclear Data File in the unresolved region 

can be shown in TABLE 16 where the symbols of the data are those used in the 

rules of ENDF/B file. It can be seen that there is the indication of the num

ber of degrees of freedom used in the neutron width distribution (AMUN =< 2) 

and in the fission width distribution (AMUF=<U). The average fission width 

may be energy dependent and a set of values in prefixed energy points, with 

an interpolating law (parameter INT) must be given. 

286 A faithfull image of the file ENDF/B in unresolved region is shown in TABLE 17. 

h - IMPORTANT DATA: AVERAGE SPACING AND RESONANCE INTEGRALS. 

The statistical theory we have mentioned above,, clearly shews that the exact

ness of cross section in the unresolved region is largely determined by the 

exactness of the average spacing which we have evaluated from the resolved 

region. The greatest difficulties for this determination are given by the 

following items: 

l) The loss of resonances made by experimenters, due to the low resolution 

power of the experimental apparatus (e.g. time of flight method). 

Generally a threshold width exists below whiwh it is impossible to see a 

resonance. The p-wave resonances, whic'h have a narrower neutron width, ve

ry often cannot be seen at low energy. But when a narrow width is measured 

at low energy, it may be difficult to decide if the resonance belongs to 

the s- or p-ware type. 

Some theorical criteria, based on the Bayes theorem of probability calcu

lus , are used for an auxiliary indication of the more uncertain cases /°-3/. 

The "BAYES TEST" for resonances is based on the knowledge of the strength 

functions for L=0 and L=l neutron waves /IT/- Systematic studies of the 

behaviour of the strengths functions for different isotopes, give a supple 

mentary help to these determinations. 

Anyway, the correct determination of the lower threshold is never univocal-

ly determined. The use of statistical methods based on the controll of the Pojr 

ter-Thomas' width distribution, is largely employed for this determina

tion. The most recent methods make use of the maximum likelihood princi_ 

pie to obtain the average neutron width and average spacing <D> /l8/. 

2) The average spacing <D> must be deduced by a "pure" sequence of L=0 re

sonances. It is practically very difficoult to distinguish with a high 

degree of probability if a resonance belongs to the set of the L=0, 1 or 

2 neutron waves, expecially when the width is narrow and the j of the re 

sonance cannot be attributed with certainty. 

3) One of the most used method to evaluate the real number of s-wave reso

nances that there would be in resolved energy range, is the one which takes 

the name of "MISSING LEVEL ESTIMATOR" /19/ which is based on the standard 

hypothesis that all the resonances which belong to the left tail of the 

Porter-Thomas distribution and covering l/U of the total area, are lost. 

This idea permit to evaluate an estimated increased number of resonances 

in our energy range. 



The application of the Missing Level Estimator test may be shown even on 

a desk calculator. 

When all the above conditions have been checked and the best "pure sequence" 

of resonances was obtained, the common way to obtain the average spacing 

<D> is the "linear fit" of the so called "staircase" which plots the num

ber of resonances versus their energy position. If resonances are not lost, 

a straigth line would fit quite well the staircase. See the FIGURES 8, 9 and 10 

to realize the difficulties of a good interpretation of a real case. 

Let us now apply to the other problem of the RESONANCE INTEGRAL calculation. 

In the reactor theory you will see the important role played by the resonance 

integrals (capture and fission). They 'Strictly influence the resonance escape 

probability, i.e. one of the four factors which is responsible of the reactor 

criticality. 

From the discussion of the cross section generation by the resonance parameters 

in the files, it is evident theat the calculation of a resonance integral re

quires a numerical procedure of integration. 

The formulas which generate the cross sections from the resonance parameters, 

weighted over a flux l/E, actually give rise to a not integrable expression. 

This limitation is avoided only if a single level Breit-Wigner formula is used. 

In that case an analytical solution to the resonance integral have been found 

12.2/. In TABLE 18, the formulas (see ref. /23/) are given which solve the pro

blem. In other cases when a ML formalism must be used, it should be needed 

to perform a numerical integration for a correct solution of the problem. 

Neverthless, in many practical computations the ML parameters can be used 

as they be of SL type and the analytical integration may again be perfor

med with a negligible error. This is often true because the numerical in

tegration may be affected by a large error, due to a bad tabulation of cross 

section in the presence of a large number of narrow resonances. 

The problem of a correct integration of a cross section, weighted over a 

given flux, is very critical in the resonance region. It largely depends 

upon the goodness of tabulation and the number of points which can be accep

ted by the capability and the speedness of the used computer. The conver

gence criterium based on the decreasing difference between two successive 

calculations with ticker grid of energy points is not always correct. The 

evaluation of the absolute error may be impossible. We shall see later, in 

Part II, the difficulties of a pointwise representation of the resonances. 

A contribution to the resonance integral comes both from the resonances in 

the resolved region and, in negligible part, from the unresolved region. An 

approximate evaluation of the resonance integral coming from the resonances 

at an energy higher than about 1 eV, has been given by Walker /20/. Another 

approximation of the same Author has been given for the evaluation of the 

contribution of the unresolved part of resonances. Even if more sophistica

ted calculations were made, it is a good rule to check the results with 

those approximations. In TABLE 19 and 20 we give the formulas of the origi

nal report. 

The lower limit of the resonance integral starts normally from 0.5 eV wich 

is the Cadmium cut-off for thermal neutrons? In some exceptional case a light 

smaller limit (e.g. 0.*+7) is taken, .mainly if a resonance has the peak around 

that limit. When the experimental and calculated integrals do not coincide 

and are too much different, a revision of the resonance parameters or of the 

experimental conditions are needed. A wrong attribution of p-waves to the 

s-wave resonances may be responsible of errors. The evaluated files are gene

rally prepared taking into account the comparison of calculated and experimen

tal data. Nevertheless, it may happen that a correction to the calculated cross 

section must be applied, in order to reproduce the resonance integral, the 

thermal cross section or to correct a Single Level set of resonance parameters, 

when a more proper MultiLevel set should indeed be necessary. 

The so called "Ijackground" cross section is then given in the files, for 

some energy ranges where a compensation is needed. The background is always 

given pointwise with ah interpolation law (generally linear) beetween any 

pair of points. The background is temperature independent being essentially 

flat in any interval and must be added to the cross section calculated from 

the parameters. II makes also positive the elastic cross section, when Sin

gle Level formalism may cause negative values for the reasons we have ex

plained above. 

5 - THE CONTINUUM REGION 

It is generally around 10 keV that the cross sections become smooth lines 

without fluctuations. Consequently, the cross sections are given in a poin

twise mode in Nuclear Data Files. The statistical model cannot be applied 

with good results to calculate the cross sections. 287 



The OPTICAL MODEL c a l c u l a t i o n i s g e n e r a l l y adopted fo r t h e o r e t i c a l p r e v i s i o n 

of t h e c r o s s s e c t i o n v a l u e s . The nuc leus i s seen as a t r a n s p a r e n t body c r o s 

sed by t h e n e u t r o n , w i t h a p a r t i t i o n e d p r o b a b i l i t y of t r a n s m i s s i o n , a b s o r p 

t i o n and r e f l e c t i o n , l i k e i n t h e o p t i c a l laws for t h e l i g t h . Thus , an expo

n e n t i a l law w i t h a complex p o t e n t i a l which t a k e s i n t o accoun t t h e a b s o r p 

t i o n , w i l l appea r i n t h e model . 

I t i s not our aim t o d e s c r i b e t h i s model . What i s i m p o r t a n t t o n o t e i s t h e 

f a c t t h a t o t h e r r e a c t i o n c h a n n e l s b e g i n t o be open . I n e l a s t i c c r o s s s e c t i o n 

beg in t o appea r as soon as t h e e x c i t a t i o n energy of t h e n e u t r o n makes p o s s i 

b l e t h e decay of t h e compound n u c l e u s w i t h an emiss ion of one o r more n e u t r o n s . 

Going up i n t h e energy s c a l e , s a y beyond t h e MeV, o t h e r emi s s ion p r o c e s s e s 

a re s u c c e s s i v e l y open , a l s o w i t h t h e emis s ion of charged p a r t i c l e s . 

I t has been e x p l a i n e d i n o t h e r l e c t u r e s t h a t t h e f i l e s must c o n t a i n i n f o r m a 

t i o n on t h e INELASTIC CROSS SECTION fo r t h e compound nuc l eus l e v e l s and i n f o r 

mat ion about t h e a n g u l a r d i s t r i b u t i o n of t h e e m i t t e d secondary n e u t r o n s . We 

s h a l l only r e p e a t h e r e t h a t t h e a n g u l a r d i s t r i b u t i o n may be g iven i n two forces: 

a) t r ough a p o i n t w i s e t a b u l a t i o n of t h e a n g u l a r p r o b a b i l i t y e m i s s i o n o r th rough 

• t h e c o e f f i c i e n t s of t h e Legendre po lynomia l s which f i t such a d i s t r i b u t i o n . 

To have a more c o n c r e t e i d e a of t h e b e h a v i o u r of c r o s s s e c t i o n s i n the t o 

t a l i n t e r v a l of i n t e r e s t f o r r e a c t o r s , we may look t o t h e fo l l owing FIGU

RES 11 t o lk which reproduce t h e e l a s t i c , c a p t u r e , t o t a l and i n e l a s t i c c ross 

s e c t i o n fo r t h e f i s s i o n p roduc t Pd-105-

The e v a l u a t i o n has been performed i n t h e N u c l e a r Da ta Labora to ry i n t h e Bo

l o g n a C e n t e r of ENEA, t h e I t a l i a n Committee f o r Nuc lea r Energy . 

C l e a r l y a p p e a r t h e t h r e e r e g i o n s wi th a 1/v p a r t f o r c a p t u r e (and t o t a l ) , 

t h e r e sonance r e g i o n and t h e cont inuum. The i n e l a s t i c c r o s s s e c t i o n s t a r t s 

a t a t h r e s h o l d energy and i s p o s s i b l e t o d i s t i n g u i s h t h e opening of t h e s u c 

c e s s i v e i n e l a s t i c channe l s fo r h i g h e r e n e r g i e s o f e x c i t a t i o n . 
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6 - GROUP AVERAGING FORMULAS AND SELF-SHIELDING FACTORS 

The process which carries out to the preparation of a group cross sec

tion library, puts in evidence that we always need to average the cross 

sections and other parameters over the proper reactor flux (see figs. 15-18). 

Thus, we shall now look to the formulas for a standard averaging over 

a small number of energy groups, say the ones of the 26-group Russian li

brary by Abagyan et al. (briefly ABBN), whose upper limits are: 10.5, 6.5 

4.5, 2.5, 1.4, 0.8, 0.4, 0.2 MeV, 100, 46.5, 21.5, 10, 4.65, 2.15, 1 keV, 

465, 215, 100, 46.5, 21.5, 10, 4.65, 2.15, 1, 0.465 eV, thermal. 

1. THE LIBRARY QUANTITIES 

The calculated group constant list includes generally: 

a) the microscopic cross sections 

.a , total 

o , elastic 
e 

a , elastic removal 
r . . . 

a , inelastic 
in c- • a , fission 

a , capture 
c 

b) the parameters 
v , the average number of neutrons per fission 
y , the average cosine of the elastic scattering in the lab System 
e . . . 

£ , the average lethargy increment in elastic scattering 
y , the average cosine of the elastic scattering at which a transfer 
d(e) 

into the next lower group occurs 
c) the self-shielding factors, temperature and dilution dependent: 

f , for the total cross section 
t 

f , for the elastic cross section 
f , for the fission cross section 
f , for the capture cross section 
c 

The source of microscopic data for the calculations of the averaged values 

may be a file which gives the cross section in a tabular form, e.g. the 

UK Nuclear Data File (UKNDL). For the self-shielding factors in the unre

solved region, the resonance average parameters are required for the rea

sons which will be later explained. Then, ENDF/B file can be used in such 

a case. 

2. GROUP AVERAGING FORMULAS 

a) The averaging procedure of microscopic cross sections implies the choice 

of weighting functions. For the groups 1 to 25, the same choice as in the 

ABBN library was adopted. More precisely, the weighting fission spectrum 

utilized in the first three groups is the following: 

X(E) = 0.4527 exp(-E/0.965) sinh H.l^Z 

In the groups 4 to 25, the 1/E weighting flux was assumed. It is 

well known that the 1/E flux refers to an infinite dilution of the considered 

isotopes or natural elements in the reactor mixture. 

The basic temperature of the microscopic data in the UK file is 300 

°K for the isotopes and elements listed above, with the exception of B-ll, 

Na-23, Ni, Pu-239 which are given at zero Kelvin degrees. 

The problem of the temperature and dilution dependence will be 

discussed in the next section. 

The average cross section for the x-reaction in the group g is 

calculated by the formula 

J o (E)4>(E)dE 
g = - S - ^ (1) a = 
x 

<J>(E)dE 

where 4>(E) is the weighting function and x stands for total, elastic, 

inelastic, fission and capture reaction. oon 



The removal cross section refers to the elastic process only and is 

calculated summing up the elements of the elastic scattering matrix for the 

transfer to the lower energy groups. 

The inelastic cross section includes the (n,2n) reaction. .Then, we 

have for the mean values in each group g and for the g -*-g' transfer 

c? - a8 . + a* „ 
in n,n n,2n 

„% +g' _ „g -̂ g' + „& +g' 
in n,n' n,2n 

Due to the double particle emission in the (n,2n) reaction, it 

will be observed that 

r r,g +*' - 2«8 

g n,2n n,2n 

The group cross sections as well as the elements of all the scatter

ing matrices were calculated with the GALAXY code /2/. 

Finally, the cross sections here given in the 26th group correspond 

to the values read in the file for the most probable velocity 2200 m/sec, 

0.0253 eV, of the thermal Maxwellian spectrum, at room temperature. 

b) The group average values of v were also weighted over the $(E) 

function. Then, the expression for the group value of v is: 

J v(E)<f>(E)dE 
v* m& : 

• 

• (E)dE 
g 

The quantities y and £ will be obtained weighting both over 

$(E) and the angular distributions for elastic scattering. The last ones 

are given in the center of mass system (CM) in the UKNDF. 

The integrals over the angular distributions are calculated first, 

and the following energy dependent quantities are obtained: 

^L(B) 'vik 
-1 

1+Ay 

A 2Ay +A +1 c 

d0e(E,yc) 
du 

£(E) - 2TT 

a (E) 
e -1 

In 
(l+a) + (l-ct) u 

do (E,u ) 
e c 
dn dy. 

where, 

A » mass number of the target nucleus 

2 2 
a • (A-l) /(A+l) maximum energy loss fraction 

y • cosine of elastic scattering in CM system 

a (E) •» total elastic scattering cross section at energy E 

dae(E,yc) 
differential elastic scattering cross section at energy E and 

dn 
cosine u 

2 J 
The fraction (1+Ay )/(2Ay +A +1)2 is the cosine scattering angle 

c c 
u. in the LS system. 

Finally, the above defined quantities are averaged in the groups. 

Then, we have the formulas: 



h 
8 = 8 

UL(E)4)(E)dE 

$(E)dE 

5(E)^,(E)dE 

,8 = 8_ 

[ <j,(E)dE 

g 

For what concerns the quantity y,, . 

The calculations were carried out through the code MUXIL /3/ that 

is based on the formulas given in the CHAD report /4/. 

, which refers to the slowing 

down (index d) in the next lowest group, the isotopes of Boron, Carbon and 

Oxygen were the only ones considered from the given list. 

Some modifications are required in the above formulas for the Ufi 

calculations. 

The condition that only transfer from group g to group g+1 is 

to be considered, may cause a reduction of the (-1,+1) integration interval 

for the y variable. In other words, the energy dependent cosine for the 

slowing down to the nearest group y , is given by 

WLd ( E ) 

6 f E ) da(E,u ) 

L du C 

a(E) 
6(E) 

«(E) 

do(E,y ) 
— £_ dy 

dfi c 

R(E) 
Q(E) 

where a and 8 are the cosine limit values in the CM system at which a 

transfer to the nearest group is possible. 

For the group division and the target nuclei here involved, the 
a(E) values resulted to be always equal -1 , while the energy dependence 

of 8(E) is given by 

( E > - i i ^ (A +l)
2- (A2-l) 

with 

E.. = the lowest energy boundary of the group g . 

The group averaging procedure must now take into account the fact 

that the weighting function <J> (E) is reduced by a fraction 

8(E) 

P CF} = 

Y } 
a ( E ) 

1 

1 

# ( E , u ) 

dQ d v Jc 

d a ( E , u c ) 

dQ d y c 

Q(E) 
S(E) 

-1 

which represents the probability that a neutron of energy E in the group 

g will be scattered to the group g+1 . 

Then, the final expression for u , . is 
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I* Ld(E) §§T *(E)dE 
d(e) 

g 

f lili 
sm • ( E ) d E 

| | § •(B)dE 

(E) 4>(E)dE 

g 
S(E) 

The MUDE code /5/ was prepared for the calculation of y,, v , 

starting from the differential and total elastic cross sections of the UKNDF. 

3. SELF-SHIELDING FACTORS 

a) General definitions 

It is veil known that in the neighborhood of a cross section reso

nance line the flux is very quickly diminished. 

In other words, each resonance of any nucleus shields the resonances 

of identical nuclei, depending upon two quantities: 

i) the dilution of the considered nuclei in the reactor mixture, here 

assumed to be homogeneous; 

ii) the temperature in the mixture and the consequent Doppler broadening 

of the resonances. 

In the "narrow resonance approximationu(NRA) , such a reduction is 

taken into account assuming as weighting flux in the resonance region 

4>(E) 
h* 

where I is the total macroscopic cross section of the mixture. 

If we define: 

N » the number density of the resonant nuclei 

o ™ the total cross section of the resonant isotope 

£ • the sum of the total macroscopic cross section of the other 

isotopes in the mixture 
m oQ = — the dilution parameter, 

we have, 

• (E) I E N(o\+a )E 
t t o 

Then, the effective cross section a in a group g as a function 

of the dilution parameter a and* temperature T is given by 

a8 (o ,T) 
x o' 

ax(E,T) 

fat(E,T)+aoJ E 
dE 

dE 

fat(E,T)+ao ~]E 

Thus, it can easily be recognized that 

l io *x<vT> - tu K (E'T> " 

being Au the lethargy i n t e r v a l of the group. 



Since the resonance widths are much smaller than the group interval 

and their number within the group is sufficiently large in practical cases, 

the above "infinite dilution" cross section is temperature independent and 

is equal to the group cross section defined in Section 2. 

Finally, the self-shielding factors for the elastic (f ), capture 

(fc) and fission (ff) reactions are the following: 

e o 
° e ( V T ) 

°f(o »T) 
C O g 

of(a ,T) 
ff<o.T) -

 f ° 
f o g 

As explained in the ABBN library, the total self-shielding factor 
f is better defined by 

ftCoo,T) ° ? < V T ) i 

c 8 a8 

t t 

dE 
[at(E,T)+a0J] 

dE 
[c t(E,T)+ao]' 

Briefly, one can say that the reason for the above definition lies 

in the exigency of a correct preservation in the group of the neutron total 

mean free path which is the quantity to be weighted in the averaging process. 

The above expression for a^(a ,T) in the brackets may be better 
t o 

understood by writing 

l!(o„,T) , . 

mixture 

mixture 

being Z* and X8 the macroscopic cross section and total 
mixture mixture 

mean free path in the mixture. 

b) Temperature dependence 

The temperature effects are taken into account by Doppler broadening 

the resonance cross sections. Since the UKNDF gives a tabulated list of the 

cross section values at a fixed temperature, a numerical broadening procedure 

was adopted in the resolved resonances region by means of the TEMPO code /6/. 

A different procedure must be adopted in the unresolved region where 

fluctuating or smoothed average values of cross sections are only given in 

UKNDF. The mean level spacing and widths of resonances and also information 

as to the statistical distribution functions of these quantities are required 

in this procedure. Since such information is not released in UKNDF, ENDF/B 

values were used in the calculations. 

The resonance cross sections, which appear in formula (1) for the 

group cross section definition, were obtained by superposition of single-

-level resonance sequences of different I and J quantum numbers. 

Within every I and J-sequence, the spacing between successive 

resonances and the radiation widths were assumed constant and equal to the 

mean values D. and r 
J Y 

The neutron and fission widths r (£,J) and rr(4,J) were generated 
n t 

instead from the Porter-Thomas distribution function around the assigned mean 

values. As provided in ENDF/B, the degrees of freedom in the distribution 

function were 1 or 2 for r and 1 to 4 for rf . 293 



The interferential term between the potential and resonance elastic 

cross section was taken into account and the Doppler broadening was performed 

by means of the well known f(C,x) and x(5»x) functions 111. 

On this basis, group cross sections and self-shielding factors in the 

unresolved region were calculated by means of the UNREC code, whose descrip

tive report 181 includes details and comments on the formalism. 
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T - ELASTIC AND INELASTIC SCATTERING. AVERAGE COSINE 

The formulas which we have given as an example of what we need in a prepa

ration of a group library, show that some double integrals are to be made 

for the angular dependence of the elastic cross section when the average 

cosine of scattering and the average lethargy increment at each energy E 

must be obtained. 

In particular, the cosine limit value in the CM system at which a transfer 

to the nearest group is possible, must be determined. 

In other words, we must be able, for each neutron which happens to fall in 

a given group, to recognize the starting upper group of provenience. This 

may be a very cumbersome work if we have not a simple set of scattering for_ 

mulas extendend to the more general case of the inelastic reaction when the 

excitation energy Q. of the inelastic reaction enters in the balance of the 

scattering process. 

The present section will therefore be devoted to this problem, with the de

velopment of a very compact formalism for inelastic scattering, from which 

the forward and backward neutron energy, before and after the inelastic col

lision can be predicted. The elastic collision will be a particular case of 

the inelastic one, with the level energy Q.=0. 

THE KINEMATIC LAWS for collision between two particles as neutron-nucleus, 

may be written with reference to the Center of Mass (CM) or Lab. System 

(LS). 

A cross section for ELASTIC SCATTERING reaction is a function of the excita

tion energy E-- of neutron in the lab system and the energy of the emitted 

neutron after collision in the same system is related to the angle or to the 

cosine u of the scattering angle 6, between the two directions of the neutron 

velocity before and after collision. The three quantities E , E and u are thus 

strictly related one to each other, according to the principles of energy and 

momentum conservation for the total system neutron + target nucleus. 

In the case of INELASTIC SCATTERING a supplementary quantity must be taken into 

account which is indicated as Q. in the CM system and corresponds to the j-level 

of the target nucleus exited after collision. 



In order that the supplementary energy Q. will enter in the "balance, it is 

clearly needed that the neutron energy exceeds at least the energy of the 

first excited state of the nucleus. As an indication, in the light nuclei 

the energy of the first level is about 1 MeV, while for the heavy nucley is 

about 0.1 MeV. We can thus regard an energy of about 100 keV as the lower 

limit for a reaction of inelastic scattering. Below this limit the slowing 

down of the neutrons to the thermal energy is mainly obtained by means of 

elastic scattering. 

In the study of the scattering on the basis of the mechanical laws of col

lision it is convenient to assume the Center of Mass (CM) system as a refe_ 

rence, better than the Lab. System (LS). The reasons are the following: 

a) The center of mass is always on the line joining the center of the two 

particles, so that the motion is always directed toward the CM before and 

outward the CM after collision (i.e. change of sign). 

b) The modulus of velocity does not change from before to after collision 

(changes the sign) and is inverse proportional to the masses. 

c) The motion lies on a plane, while it should be in the tridimensional spa. 

ce if the Lab System is used. 

d) In the CM system the elastic scattering at low energy is practically isô  

tropic, i.e. the outgoing neutrons are observed from the CM with a con

stant density on any sphere around it. 

The formulas for the elastic scattering are here given to point out the chan_ 

ge needed in the case of inelastic scattering, when a quantic level is exci

ted with a consequent emission of a gamma ray. 

The energy Q. of the excited level is normally given in the CM system and is 

then equal to the "threshold energy" of the excited level (E ) . in the Lab 

System multiplied the reduced mass m =A/(A+l), where A=mass of the target nu 

cleus and l=neutron mass. 

The conversion from LS to CM system is easily performed taking into account 

the above point b) and depends upon the reduced mass as follows: 

Energy in LS incident mass 1 

Energy in CM reduced mass m 

r 

Q. is normally given in CM system because the formulas for the scattering are 

given in the same system. Thus, a quite similar form is assumed by the formu

las for elastic and inelastic scattering respectively. 

We shall here present in parallel the mentioned formulas in a way which is 

particularly useful for the preparation of a group library. In fact, for the 

calculation of the average cosine of scattering in a group, it is needed a 

prediction of both the final energies after,in the case that energy before 

collision is known and viceversa the prediction of the starting energies 

(i.e. the starting group) when the final energy Ji.e. the ending group) is 

known. 

The obtained formulas have a high level of simmetry for both the cases. In 

the following pages we shall collect all the notations and formulas. 

We start with some general news. 

THE CHANGE OF REFERENCE SYSTEM FOR DIFFERENTIAL CROSS SECTIONS 

Let it be: 

e = subindex for "elastic" 

i = subindex for "inelastic" 

= mass of neutron 

= mass of the target nucleus (neutron mass = l) 

= initial neutron energy before collision (Lab System) 

= final neutron energy after collision (Lab System) 

= cos $(<)) = scattering angle in Center of Mass System) 

L = cos & (6 = scattering angle in Laboratory System) 

ELASTIC 

o 

K = 1 

2Ap + 1 
c 

(A+l): 
(1) 

(2) 

INELASTIC (see /l/) 

E A2K2 + 2AKu +1 

E (A + I ) 2 

- A ^ . A+l 

with E > ^ Q 
°LS A CM 

and Q > 0 
CM 

(1) 

(?) 

The following relations exsist between u and u 
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ELASTIC 

Ap + 1 
c 

(A2+ 2Ap +1)5. 
c 

/ E Ay + 1 
p _ v o c 

±j — 

A + 1 

(3). 

(2)< 

INELASTIC 

AKp + 1 
c 

(A2K2 - 2AKp +1)5 

/ E AKy + 1 
p.\ = • o c 

E A + 1 

In literature is used 

E 

(3)5 

(3): 

AK " Y' E Az - QA(A+1) 

From the above relations, taking into account that it must be 

6 (pc) dyc 6 (pL) dpL 

d SI d nT 

we obtain (calculating dp /dp ), in the elastic case: 

6 (pJ = 
A(A2 - 1 + p 2 ) ! 

A2-l + 2pL(A
2- 1 +p2 )i + 2p2 

6 (PL) 

dpL / dpc 

A similar procedure for inelastic scattering 

where the fraction on the right hand is the mentioned ratio obtained by de

rivation of formula (3)e. 

A similar operation gives us the corresponding formula for the inelastic ca

se. 

For the caluclation of the average cosine of inelastic scattering from an ar 

bitrary group to the next one, let us assume to start from UK Nuclear Data 

Library (UKNDL). 

Then, the following data are given for inelastic ascattering: 

1 - Q., i.e. the energy of the j-excited level in CM system. 

2 - For every Q. there is a tabulated "exitation function" or a a. (E ) 
0 J 

for a set of E, > Q.. 
k J 

3 - The same set of E is given for all the j-level in the common energy 

range. 

k - All the o- (E ) are ISOTROPIC IN THE CM SYSTEM for what concerns the an

gular dependence of scattering: i.e. we may think that inelastic colli

sion dumps so much the exitation energy to reproduce - after collision -

the condition of elastic scattering at low energy. Thus, the maximum loss 

of energy per collision is 

ELASTIC 

A - 1 2 
E > E . = E ^ - ~ 

man o A + 1 

INELASTIC 

AK - l) 
E > E . = E 

min o A + 1 

The cosine p in CM is a function of E , E, i.e. 

(A + l) 2 - (1 + A ) 2 

2A 

| (A + l ) 2 - (1 + A2K2) 

2AK 

GO 

C.5) 

The above formulas make use of K(E ), 
o 

with E = energy BEFORE collision. 

We may also make use of another function K"(E) 

with -E = energy AFTER collision. 

In formula (l) we started from the knowledge of K::(E ), to obtain E, once 
E is known, 
o 

Let now try to make the inverse process, i.e. E is known and we want to ob

tain E as a function of p , the scattering cosine in CM system. 

The maximum and minimum energy transfer in the collision is given for 



p = - 1 / for maximum loss of energy 

P = + 1 ( for minimum loss of energy c l 

These values in formula (l). give the maximum and minimum distance of ener 

gies E - E , or 

For a f i x e d E a f t e r c o l l i s i o n , i n t h e formula 

E A2K2(E ) + 2AK(E )y + 1 
0 0 C we have 

Eo (A + I ! 

E max -> u = - 1 ; 
and b e i n g K(E ) = / l - | A - t - i 

E A 
o 

E min -*• u i= + 1 
0 C 

we have two va lues 

A2K2(E max) + 2AK(E max)+ 1 

E max , . , 
o (A + l ) z 

A2K2(E min) - 2AK(E min) + 1 
E = ° ° 

Eo **" (A + I ) 2 

The above two formulas may be w r i t t e n i n a u n i f i e d e x p r e s s i o n 

( E = E i f - i s t a k e n 
AK(E )±1 2 l o o max 

o 
E = E where A + 1 o 

E = E . i f + i s t a k e n 
o o mm 

Let now have some l i t t l e a l g e b r a : 

AK(E ) + 1 • 
/~E = VE (by square r o o t ! 

A + 1 o 

Av^ K(E ) ± /E = (A + 1) >̂E 
0 0 0 

Av€ / l - S_ ^ - 1 ± v^ ,.= (A + 1) *¥ 

A 2 E , ( i 1 _ A + 1 } = r ( A + 1 ) ^ ; ^ "I 2 
o 'E A L o4 

o _ 
(A+ l ) 2 E .+ 2 (A+l ) /E /E •+ E 

o o 

A2E (1 - - § - ^ ~ - ) ± 2(A+1) ^ - E - (A+1)2E = 0 o E A o o 
o 

AE - A(A + 1 ) Q ± 2 ( A + 1 ) / E / E -E - ( A + l ) 2 E = 0 
0 0 0 

(A 2 -1)E ± 2v/E(A+l)/E" - rA(A+l)Q+(A+l) 2 El =0 
0 O L J 

P u t t i n g = yl t h i s i s a 2 degree eq_. i n y . Then: 

- ±2(A+1)/E ± AE(A+1)2+H(A-1) (A+l ) 2 [AQ+E(A+l)] 

o 2 (A - 1) (A + 1) 

- [±>/E ] ± /E + (A- l ) [AQ + E(A+ll 

JE = 
A - 1 

' ± / E± /E + A2Q - AQ + E (A 2 - l ] 

/£ = 
A - 1 

I n c o n c l u s i o n , we have t h e e x p r e s s i o n 

± JE ± /QA(A - 1) + A2E 

A - 1 

i f Q = 0 ( e l a s t i c c a se ) we-: have 
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± / E ± ^ r ± i± A f(A +,M) 

/E = 'E A - 1 E A - 1 A - 1 

E 0 [±(A + 1)J2 I A + 1 

[A - I)1 /A - 1\2 
(usual relation) 

By similarity with the relation between E and E written using K (E ), 

let us collect A2E under the root in expression (6) above and introduce 

the symmetrical variable 

K (E) = A 7 | i Z i 

With t h i s d e f i n i t i o n t h e e x p r e s s i o n (6) may be w r i t t e n 

± /E ± •£" AK':(E) 
/E from which 

A - 1 

/ A K " ( E ) + l \ 2 E i f + i s . t a k e n 
E = E ( _ _ _ l • 1 

A 1 < ' E . i f - i s t a k e n 
o nun 

t o be compared w i t h 

Aw-,-, ^ , -,\? i E i f + i s t a k e n 
/AK(E )± l\z \ max 

E = E 
o A + 1 

E . i f - i s t a k e n 
mm 

Note the symmetry of formulas with signs reversed and 

/ Q A - 1 
K«(E) = A + — —^ 

EXERCISE: Check for Q = 1 and A = 10 

Given E = 2 -*• find E (take + sign) 
o 

Given E = 0.982089 + find E 
0 

The two calculations must be consistent. 
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8 - NUMERICAL INTEGRATION 

We could realize, from the above sections, that one of the most important 

problems for a generation of a group cross section library, is the numeri

cal integration, over the group energy interval, of the tabulated cross 

sections wheighted with the proper flux. 

The common methods of numerical integration are well known and can be found 

in every publication on the numerical calculus. The methods are generally 

based on a polynomial fit of the discrete points y(x, ) more frequently ge-
J 

nerated for a grid of evenly spaced values xi with constant interval h. The 

3-points Simpson rule, the 5~points Villarceau rule and the 7-points Hardy 

rule are the most used /l/,/2/. 

A recent powerful method which can sometimes conveniently substitute the trji 

ditional ones based on the piecewise approximation of integrand by polyno

mials, is the ROMBERG method. A description of the Romberg method is well 

presented in ref. /3/, where Archimede's process for computing uis recalled 

as the basis for such method. The process was lost untill Romberg applied it 

to numerical quadrature. 



The Romberg's formula can "be written in terms of the trapezoidal rule for 

EQUALLY SPACED ABSCISSAE with constant interval h. To compute the integral 

I, the trapezoidal rule is 

f* 
I =J y(x)ds = h£" y(a + kh) = T(h) (l) 

a 

where h=(b-a)/n and Z" indicates that the boundary values y(a) and y(b) 

are to be taken with weights 1/2. 

The general Romberg quadrature method is represented by a set of nested re

currence formulas. The first of them from which all the following can be ge 

nerated, is given by 

S_(h) = 

km XT(h) - T(2h) 

h™'1-! 

beginning with the "order" m=2. Increasing the order by a unit (m=3) , S may 

substitute T in the formula and so on. Therefore, putting the set 

S =T(h) ; S_ = S..(h); etc., a general formula can be written (k=2,3,i+,. . .) 

22(k-l) 

sk(h) = 
Sk - l ( h ) ~ Sk - l ( 2 h )

 ( 2 ) 

:(k- l)_ ± 

It can be verified /h/ that S is equal to the Simpson rule for equally spa

ced points, while S is equal to the Villarceau rule, i.e. the polynomial iri 

tegration with five equally spaced points. The following formulas (k=i+,5,...) 

do not coincide with any known polynomial integration. 

Since in the problems of integration for group averaging, more often unequally 

spaced points are needed (due to the cross section profile in resonance region) 

the Romberg method has been extended to unequally spaced points /h/ and over 

a large number of cases was tested to be a good improvement to the traditional 

methods. 

Then, we present here without demonstration the final formulas for such a case. 

MATRIX FORM FOR THE GENERAL ROMBERG QUADRATURE. 

Let us indicate by T(h), T(2h), T(ith) ,. . .etc. the trapezoidal areas calcula

ted assuming a scanning of abscissa with 1, 2, it,...etc. intervals at one 

time, extending the same meaning to the case of unequal intervals 

(h2 j* h 2 jt h3 t . . . ) . 

Then all the expressions (2) for the Romberg areas of every order can be 

written in the following matrix form 

T.1 

a a a 
31 32 a33 . . . . 

+T(h) 

-T(2h) 

+T(lih) 

D1S1(h) 

D2S2(h) 

D3S3(h) (3; 

where S (h) E T(h), S_(h) , S (h) ... etc. are the successive Romberg inte

grals of formula (2) and the elements a, . of the constant triangular matrix 

are given by the recursive formula: 

Xkj 
22(k-l] 

ak-l,j + a k - l , j - l if k >_ j 

a. . = 0 
k j 

i f k < j . 

The elements with one or two indexes lower than 1 are attributed the value 0. 

The first element a = 1. 

The coefficients D are given by the following recursive formulas: 
K 

D± = 2° = 1 

D 2 = V 2 2 - l ) 

D3 = D2 (2 -1) 

D, = D, n (22^- 1 ) -
k - 1 

1) 

The triangular matrix is therefore built up exclusively through power of two 

and all the elements of its principal diagonal are equal one. 
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A calculation of the system (3) up to order five, gives 

1 

1+ 

61+ 

1+096 

I0I+8576 

0 

1 

20 

13l+ h 

3I48160 

0 

0 

1 

81+ 

2281+8 

0 

0 

0 

1 

3l+0 

0 

0 

0 

0 

1 

+T(h) 

-T(2h) 

+T(l+h) 

-T(8h) 

+T(l6h) 

S1(h) 

3 S2(h) 

1+5 S3(h) 

2835 S,,(h) 

722925 -S (h) 

An interesting property of the numbers in this system may "be immediately' 

checked out. The summation of the elements with alternating signs of any 

k-row in the matrix, is equal to the corresponding coefficient of the S 

area along the right hand side vector. 

Therefore, each of the Romberg areas S appears to provide a weighted value 
K 

for successive t rapezoidal areas with bases varying according t o a factor 

two. An explanation for such weights i s eas i ly provided. Let u s , for ins tan

ce , a t t r i b u t e a weight 1+096 t o a t rapezoidal area T(h) obtained through a 

subdivision of the in tegra t ion in t e rva l in to 8 sub in te rva ls . By dupl icat ing 

the number of i n t e rva l s (,i .e. 16 ) , the weight of the same t rapezoidal area 

T(h) wi l l increase by a square factor l6xl6=256, i . e . the new weight must 

become 1+096 x 256 = 101+8576. 

The same factor must be applied to the numbers in columns two, t h r e e , e t c . , 

but now the weights must be added to the s t a r t i n g value for the same sub

division in the row above. For example, l+096+( 13^x256) = 3I+8160 where 

1+096 i s the s t a r t i n g value for a subdivision of the t o t a l i n t e rva l in to 8 

subin te rva ls . 

The numbers in the r igh t hand side of (1+) are the sum, with a l t e rna te s igns , 

of the corresponding row of the matrix. 

In appendix the l i s t i s given of the ROMB code, which performs the quadra

tu re by t h i s method. 

I t must be observed tha t the f i n i t e number of d i g i t s which can be manipu

la ted by the computer makes i t impossible to have some of the numbers of the 

t r i angu la r matrix cor rec t ly s tored in the memory. 

A t runcat ion e r ro r cannot be avoided for orders of quadrature too high. 

By t h i s reason, i t has been found convenient in the ROMB code t o stop the 

300 order of the t r i a n g u l a r matrix at number f ive . 
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PART. II. NUCLEAR DATA FILES HANDLING AND CONVERSION 

BY G.C. PANINI (ENEA, BOLOGNA, ITALY) 

presented by M. Motta 

I. DEFINITIONS 

A library is a collection of data evaluations stored in a computer 

redable format that can be used as input into cross section proces

sing programmes. Library data are subdivided into materials. 

A material is defined either an isotope or a collection of isotopes. 

It may be a single nuclide, a natural element containing several i-

sotopes, a molecule containing several elements or a (standard) mix

ture of elements. Each evaludaded set of data for a material is as

signed an identification number which is unique in that library. 

Each material is subdivided into sections which contain* the same 

type of data. 



A type of data defines the data for a certain type of information. 

Integral data and differential data are different types of data. Al

so resonance parameters (if any) are a type of data. Each type is 

assigned an identification number: not all materials have all types 

of data, but the most part of them have. Each type of data is sub

divided into subsections xhich are called reactions. 

A reaction generally refers to a specific neutron-nucleus interaction 

mechanism, but occasionally it indicates that a particular type of iii 

formation is given. Total cross section is a reaction, but also the 

mean number of neutrons per fission is referred to as a reaction. 

General information section (if any) is a reaction too. Each reaction 

is assigned an identification number; a ;reaction may belong to dif

ferent types of data: this is the case of the inelastic process which 

appears as integral cross sections, as secondary neutron angular di

stributions and as secondary neutron energy distributions. 

Within each reaction data can be given in a variety of form, depending 

on the data type and on the reaction itself. Integral neutron cross 

sections are often given in tabular form, i.e. with pairs of cross se£ 

tion vs. energy. Angular differential cross sections can be given 

both in tabular and parametric (Legendre polynomial) form.- Resonan_ 

ce parameters can represent the cross section curves using diffe

rent approaches. 

It is generally agreed that all the numerical quantities are given 

in increasing order of magnitude. Within some subset a library is 

given: 

a) in increasing order of the material identifier; 

b) in increasing order of the data type identifier; 

c) in increasing order of the reaction type identifier; 

d) in increasing order of energy. 

Nuclear Data Libraries are generally contained into magnetic tape 

support, being the size of each library so large as the use of 

other supports may be very expensive. Two basic format exist for the 

libraries: 

a) card image (decimal) data representation which is suitable for the 

immediate understanding of the contents and for easy communication 

among different computers; 

b) binary (machine dependent) representation which speed up the run 

time of processing codes. 

Most part of the existing Libraries has the same Reaction Identifica

tion Number sequence, but has not identical Data Type Identification 

-nurabers: the table listed in the following (which is particular of 

ENDF/B) is here presented as an example. 

A common peculiarity of the Nuclear Data Libraries is that all use 

six field records in the card image format. This is due to some FORTRAN 

features: all Libraries have in fact been designed keeping in mind FOR

TRAN processing and maintenance codes. 

The following standard information are given through numbers: 

DATA TYPE IDENTIFICATION NUMBERS 

1. General Information 

2. Resonance Parameters 

3. Neutron Cross Sections 

h. Angular D i s t r i b u t i o n s of Secondary Neutrons 

5- Energy D i s t r i b u t i o n s of Secondary Neutrons 

6 . E n e r g y - a n g u l a r D i s t i b u t i o n s of Secondary Neutrons 

7- Thermal Neut ron S c a t t e r i n g Law Data 

DESCRIPTION OF CLASS OF REACTIONS 

Range 

1-100 R e a c t i o n t y p e s i n which secondary p a r t i c l e s of t h e same 

t y p e as t h e i n c i d e n t p a r t i c l e s a r e e m i t t e d . 

100-150 R e a c t i o n t y p e s i n which no secondary p a r t i c l e s of t h e 

same t y p e as t h e i n c i d e n t p a r t i c l e s a r e e m i t t e d . 

201-^50 Q u a n t i t i e s d e r i v e d from t h e b a s i c d a t a 

i+51-699 M i s c e l l a n e o u s q u a n t i t i e s 

700-799 E x c i t a t i o n c r o s s - s e c t i o n s for r e a c t i o n s t h a t emit charged 

p a r t i c l e s 
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REACTION IDENTIFICATION NUMBERS 

T o t a l c r o s s s e c t i o n (sum of a l l p a r t i a l c r o s s s e c t i o n s ) 

E l a s t i c s c a t t e r i n g c r o s s s e c t i o n 

N o n - e l a s t i c c r o s s s e c t i o n ( 7 V 1 - 7^2) 

T o t a l i n e l a s t i c c r o s s s e c t i o n (sum of ffi 51 t o # 91) 

(n,2n'J cross section 

(n,3n) cross section 

Total fission cross section (sum o f / / 19, H 20, H 21) 

(n,f) cross section (first chance fission) 

(n,n'f) cross section (second chance fission) 

(n,2nf) cross section (third chance fission) 

(n,n'a) cross section 

{n,n'3a) cross section 

(n,n'p) cross' section 

(n,n') to the first excited level 

(n,n') to the second excited level 

(n,n') to the It 0th excited level 

(n,n') to the continuum 

Neutron disappearance 

(n,y) cross section (radiative capture) 

(n,p) cross section 

(n,a) cross section 

(n,t) cross section 

(n,He-3) cross section 

(n,a) cross section 

Resonance parameters 

L , the average cosine of the scattering angle (laborato

ry system for elastic scattering 

E, ,lithe average logarithmic energy decrement for elastic 

scattering 

Y , the average of the square of the logarithmic energy 

decrement for elastic scattering, divided by twice the 

average logarithmic energy decrement for .elastic scattering 

*+5I. Alphanumerical information (Data type H I only) 

+̂52 u , the average number of neutrons released per fission event 

*t57- Radioactive decay data. 

^59 Fission product yield data. 

Basic references for the description of the main libraries are hereni listed. 

REFERENCES 

UKNDL 

K. P a r k e r : The Aldermaston Nuclear Data L i b r a r y as a t May 1963 . 

AWRE 0 - 7 0 / 6 3 (1963') 

ENDF/B 

R. K insey , r e v . : ENDF 102 - Data Format and P rocedu re s f o r t h e Eva-

l u t e d Nuclear Data F i l e , ENDF. BNL-NCS-50i+96 (ENDF 1 0 2 ) 2 n d 

Ed. UC - 80 (TID-i+500) (1979) 

KEDAK 

D. Woll: Card Image Format of the Karlsruhe Evaluated Nuclear 

Data File. KFK - 880 EANDC (E)-II2"U" EUR Ul60 e (1968) 

See also: 

B. Goel , B. Kr i eg : S t a t u s of t h e Nuclear Data L i b r a r y KEDAK-3 October 1975. 

KFK-2231+ NEANDC (E) I7 I"U" (1975) 

ENDL 

R . J . Howerton, R.E. Dye, S.T. P e r k i n s : Eva lua ted Nuc lea r Data L i b r a r y 

UCRL -50U00 Vol. It Rev. I ( I 9 8 l ) 

SOKRATpR 

V.E. Kp lesov , M.N. Niko laev : Sokra to r Manual. INDC (CCP)-97 /L+Spec ia l . 

T r a n s l a t e d by IAEA (1977) 

2 . MAINTENANCE CODES 

The main tenance of a Nuclear Data L i b r a r y i s one of t h e i m p o r t a n t c h a p t e r 

i n i t s h i s t o r y . As w e l l as each c o l l e c t i o n of i n f o r m a t i o n , a L i b r a r y of 

Nuclear Data should b e : 

- checked 

- updated 

- retrieved 

- displayed 



In addition, due to the nature of the contents, the possibility of a 

point-by-point and integral quantities calculation should be available. 

The checking includes a two step process: 

a) consistency check; 

b) physical check. 

In general the first one is referred to clerical errors which may arise 

from the physical nature of data (e.g. a cross section cannot be nega

tive) or from the Fortran format (e.g. an exponent E+02 not right adjusted 
20 

leads to a 10 quantity). The latter is more strictly concerned with 

the physics of data (e.g. total cross section must be the sum of all 

partial reactions) or with its representation (e.g. a tabular distribution 

should extent from -I to +1 cosine values). A checking code should in ad

dition provide the reading of the data to be; checked also in the case 

when the format of some records is completely altered by manipulation 

errors. 

Updating includes the possibility of: 

- inserting 

- deleting 

- altering 

information. It should be noted that inserting and deleting can modi

fy the numeber of items included in some set or subset; in this case 

the indexes and the tables of contents must be updated. Library upda

ting occurs periodically when a sufficient numeber of modifications 

have been collected. A new release should be issued when completely 

new data from experiment or modell calculations become available. 

Retrieving is a necessary step when library data are to be processed 

or when portions of the library are to be transmitted outside. In ad

dition, processing codes, in general, include tape scanning while so 

me materialr.is searched, but when more than one material is requested 

and they resides on different tapes, they are to be merged together 

before the processing code read them. Also retrieving some few i terns 

of a library may be useful. 

Displaying a library can be done (mainly) in two ways: 

- in te rpre ted l i s t ; 

- graphical output. 

Interpreted lists can give a key to the library reading and ar;e suit

able for the retrieval of some more often required information such as 

e.g. the resonance parameter. Its disadvantage is that, in general, they 

requires a large amount of paper with subsequent storage problems. 

More compact is the graphical representation which can be useful in stu

dying the shape of some reactions, in a by eye checking of clerical er

rors and in a fast (but approximate comparison among data from different 

sources. 

Other codes allow the calculation of resonance integrals, 2200 m/sec 

cross sections, resonance peaks and other quantities which are often re

quired. 

Finally, when binary data representation is allowed, decimal to binary 

and viceversa conversion programmes exist. 

Many maintenance codes exist which perform some or all of the above listed 

steps; no reference is given for some of them. 

REFERENCES 

0. Oze r , e d . : ENDF-II0 D e s c r i p t i o n of t h e EDNF/B P r o c e s s i n g Codes 

and R e t r i e v o l s u b r a u t i n e s . BNL-50300 (TID-^500) (1971) 

(Most r e c e n t codes no t i n c l u d e d a r e : FIZC0N, RESEND, 

PSYCHE, INTER, INTEND, SUMRIZ, PL0TEF, "LSTFCV) . 

M.R. Bha t : ENDF- 1^8 ENDF/B P r o c e s s i n g Codes f o r t h e Resonance Region. 

BNL 50296 (TID - J+500) (1971) 

S0DRAT0R 

V.E. Kolesov, A.S. Krivtsov, N.A. Solovev: Automation of the Procedure for 

checking Information contained in the Library at Evaluated 

Nuclear Data: P0S0SH0K Programme. INDC (CCP) - 23/G. Transla

ted by IAEA (1972) 
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UKNDL 

LIST A 

C o d e name 

ADDENDUM 

AMEND 

CHECK-I 

CHECK-2 

EDIT • 

AID 

GROD-360 

JOIN 

LCHECK 

MINIGAL 

PANDIT 

SICAR 

Reference 

Unpubl i shed 

AEEW i n t e r n a l 

AEEW-M3U7 

AEEW-M604 & i n t e r n a l 

Unpubl i shed 

Unpubl ished 

AEEW ( i n t e r n a l ) 

Unpubl ished 

AEEW i n t e r n a l 

D e s c r i p t i o n 

Adds a r b i t r a r y energy polynomia l t o any s p e c i f i e d 

r e a c t i o n 

For amending and modifying d a t a f i l e s i n v a r i o u s 

ways 

Checks format and a r i t h m e t i c a l c o n s i s t e n c y of d a t a 

f i l e s 

See CHECK-I 

For merging f i l e s from v a r i o u s t a p e s t o form a d a t a 

l i b r a r y 

See AMEND 

P r e p a r e s t a p e s for g r a p h i c a l r e p r e s e n t a t i o n of d a t a 

d a t a on a CRT 

For j o i n i n g t o g e t h e r two d a t a f i l e s a t a p r e s c r i b e t 

energy 

For pe r fo rming e lementa ry s e q u e n t i a l checks 

For computing i n t e g r a l q u a n t i t i e s from t h e Data F i l e 

For a d j u s t i n g Data F i l e s from c a l c u l a t e d ad jus tmen t 

t o group c r o s s - s e c t i o n s 

C a l c u l a t e s Doppler broadened c r o s s s e c t i o n s from r e 

sonance p a r a m e t e r s u s i n g MLBW (AEEW-M5IT) and TEMPO 

(AEEW-M5I8): has much improved energy p o i n t s e l e c 

t i o n . 



ENDF/B 

Code name 

ADLER 

AVERAGE-U 

CHECKER 

CRECT 

DAMMET 

DICTION 

EDIT 

INTER 

LISTFS 

OVERLAY 

PLOTFB 

PSYCHE 

RAMP-I 

RESEND 

RIGEL 

SIGMA-2 

SUMUP 

Reference 

ENDF-IU8 

ENDF-IU8 

ENDF-IIO 

ENDF-IIO 

ENDF-IIO 

ENDF-IIO 

ENDF-I05 

ENDF-IIO 

ENDF-IIO 

ENDF-I48 

ENDF-IU8 

ENDF-lW 

LIST. B 

D e s c r i p t i o n 

C a l c u l a t e s r e s o n a n c e c r o s s - s e c t i o n s u s i n g A d l e r - A d l e r 

formula 

C a l c u l a t e s i n f i n i t e l t - d i l u t e r e sonance c r o s s - s e c t i o n s 

from u n r e s o l v e d p a r a m e t e r s 

D e t e c t s e r r o r s i n t h e f i l e 

C o r r e c t s Data Tapes 

D e l e t e s , a l t e r s mode and merges t a p e s 

C o n s t r u c t s d i c t i o n a r y f o r a m a t e r i a l 

Reads , w r i t e s and p l o t s d a t a 

For computing v a r i o u s i n t e g r a l q u a n t i t i e s 

Reads and w r i t e s d a t a 

Over lays ENDF/B w i t h any o t h e r d a t a s e t 

See EDIT 

P h y s i c s check ing code f o r n e u t r o n d a t a 

C a l c u l a t e s r e sonance c r o s s - s e c t i o n s for Reich-Moore p a r a 

me te r s 

For p r o d u c i n g a p o i n t w i s e f i l e from r e sonance p a r a m e t e r s 

See DAMMET 

C a l c u l a t e s r e sonance c r o s s - s e c t i o n s from s i n g l e o r m u l t i 

l e v e l B r e i t - W i g n e r 

Performs sums of p a r t i a l c r o s s - s e c t i o n s t o check w i t h to-^ 

t a l 

• / . . 



ENDF/B 

Code name 

FIZCON 

INTEND 

SUMEIZ 

STNRD 

PLOTEF 

LISTFCV 

EVALPLOT 

Reference 

ENDF-IIO 

ENDF-IIO 

ENDF-IIO 

ENDF-IIO 

ENDF-IIO 

ENDF-IIO 

UCRL-50UOO 
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Follows List B-

Description 

Checks data for physics consistency 

General purpose integration Programme 

Create a summary at an ENDF/B material 

Standardize ENDF/B data formats 

Plotting code 

Produces interpreted listings 

Plotting code 



3. THE NEED OF CONVERSION AMONG DIFFERENT FILES 

The need of translating all or part of one Nuclear Data Library from one 
format into another may arise from different requirements, 
a) When an Institute has adopted for its purpose one Nuclear Data Library, 

all maintenance and processing codes are, in general, devoted to that 
Library format. While users are gaining experience in using the various 
codes, their knowledge is going more and more deeply into the format. 
Thus when a new Library becomes available, it seems in general the case 
of translating it into the home format, for comparison and/or improvement 
purposes, rather than using the new Library with its own codes. 

b) Some format is gaining a more general adoption with respect to others, so 
as to be used as transmission format among different Institutes. Conver
sion into thet format shoul then be available. 

c) No data exist in a given Nuclear Data Library for some material, while a 
different one has. 

d) Format conversion sometimes implies only the fact of translating data 
from parametric to pointwise representation. 

Format conversion involves not only a change in the structure of a Library, 
but also in the logic configuration. The striking example for this assessment 
is the precence or absence of resonance parameters, which implies the use of 
different approaches to reactor physics problems. In addition, when a material 
has been translated into a new format, comparison between the results of the 
processing codes of either formats (source and object) may lead to shocking 
results. When this happens, is the difference due to the translating code, to 
the processing codes or are both steps responsible? 
Another problem is the p'resence of some data for which no provision are made 
in the object format or, worst case, the absence of data in the source library 
which are needed in the object. A one-to-one correspondence is in this case 
highly desiderable. 
Codes exist.which perform "good" conversions of data from one source format 
to another, but their results should be handled with care and, in general, 
amended from slight inconsistencies and completed with some kind of data. 
The object of the complete automation could probably be achieved provided 
that data are tested for consistency errors and, mainly, for physical errors. 
Integral quantities, such as averages based on different functions, should in 
addition be calculated from the original as well as the translated data for 
their comparison. Anyway the best approach to conversion is to combine the use 
of a translation code wich a certain amount of evaluation effort. 
A limited number of codes exists which accepts several formats: its phylosophy 
is structuring the data internally in a format which exists only for the time 
the code is in the computer. These programmes eliminate the ambiguity of using 
different algorithms in processing the same data either in the original or in 
the translated version. They seem to be a useful tool during the data evaluation 
process, in checking and comparing data. 
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KEDAK 
List С 

Code name 

KEDABE 

KEMA 

LDEPAC 
NDF 
REFOR 
RESEDI 
REТРАС 
SELPLO 

SELDIF 
SGIPAR 
SIGEDI. 
SIGPLO 
SIGPR 
TSTKED 

Reference 

KFK (internal) 

KFK (internal) 

unpublished 

KFK (internal) 
KFK (internal) 

unpublished 
KFK (internal) 

Description 

Generation of consistent data 
in case of redundant informa
tion for input to KEMA 
Checks, updates and alter 
KEDAK library 
General retrieval routine package 
See LDFPAC 
Generation of input for KEMA 
Printing of resonance information 
See LDEPAC 
Plotting of elastic angular di
stributions 
Printing of partial data 
See SELDIF 
See SELDIF 
Plotting of cross-sections 
See SELDIF 
Testing programme for KEDAK 



Main c o n v e r s i o n codes a r e l i s t e d h e r e : i t shou ld be no ted t h a t most of them a r e 

no l o n g e r u s e d . 

Programme 

BRIGITTE 

MISSIONARY 

TRAKEDAK 

UTOE 

KTOE 

UKTOA 

LTOE 

LRL-UK 

ENDF-LRL 

UK-LRL 

ETOS 

UKE 

CONVERSION CODES 

Trans 

from 

ENDF/B 

ENDF/B 

KEDAK 

UKNDL 

KEDAK 

UKNDL 

ENDL 

ENDL 

ENDF/B 

UKNDL 

l a t i o n 

t o 

KEDAK 

UKNDL 

UKNDL 

ENDF/B 

ENDF/B 

ENDF/A 

ENDF/B 

UKNDL 

ENDL 

ENDL 

Author 

J . C . S c h e p e r s 

J.. Cameron 

A. BEYELER 

G.C.Panin i 

G.C.Panin i 

ENDF/B SPENG 

UKNDL ENDF/B 

L a b o r a t o r y of o r i g i n 

GEN. Mol, Belgium 
GFK, Karlsruhe, Germany 
AWRE, Aldermaston, UK 

CEN, Saclay, France 

CNEN, Bologna, Italy 

CENN, Bologna, Italy 

JAERI, J apan 
Report JAERI - Memo -

LLL, L i v e r m o r e , USA 

LLL, L i v e r m o r e , USA 

LLL, L i v e r m o r e , USA 

LLL, L i v e r m o r e , USA 

AE, Sweden 

R.Q.Wright e t a l . 
ORNL, Oak R i d g e , USA 
Report ORNL-TM-2880 

3162 

Other c o n v e r s i o n c o d e s : 

a) From p a r a m e t r i c t o p a i n t w i s e ENDF/B: 0 . OZER: RESEND. A Programme t o P r e p o -

ces s ENDF/B M a t e r i a l w i t h Resonance F i l e s i n Pon twise form BNL-I7I31* (1976) 

D.E. C u l l e n : RECENT. R e c o u s t r u c t i o n of Energy Dependent Cross S e c t i o n s from 

Resonance Pa ramen te r s i n ENDF/B format . UCRL-50I4OO Vol. 17 P a r t . C (1979) 

b) Change t h e i n t e r p o l a t i o n lows t o l i n e a r l i n e a r i n ENDF/B : 

D.E. C u l l e n : LINEAR. L i n e a r i z e Data i n t h e Eva lua ted Nuc lea r Data F i l e / Ver

s i on B. UCRL-50I1OO Vol. 17 P a r t . A Rev. 2 (1979) 

Mul t ig ranp p r o c e s s i n g codes which a c c e p t more t h a n one fo rma t : 

a) P. V e r t e s : FEDGROUP. A Program System f o r p r o d u c i n g Graup c o u s t a n t s from Evo-

l u a t e d Nuc lea r Data of F i l e s D i s se rmina t ed by IAEA. 

INDC (HUN) - I 3 / 0 + S p . (1976) 

b) G.C. P a n i n i : FOURACES. A Programme f o r P roduc ing Group Averaged c r o s s S e c t i o n s 

from D i f f e r e n t F i l e s . RT/FI (73) l 6 (1973) 

h. PONTWISE REPRESENTATION 

The format adopted i n t h e Nuc lea r Data L i b r a r i e s shou ld be s u f f i c i e n t l y f l e x i b l e 

t o a l low t h e i n c l u s i o n of manu d i f f e r e n t k i n d s of r e a c t i o n d a t a , b o t h i n p o i n t -

b y - p o i n t t a b u l a t i o n s and i n p a r a m e t r i c forms. The f i r s t one may i n c l u d e not only 

t h e s i m p l e s t c r o s s - s e c t i o n v s . energy s a m p l e , bu t a l s o t h r e e d i m e n s i o n a l a r r a y s 

as i s t h e case of a t e m p e r a t u r e dependence. 

P a r a m e t r i c form i s comprehensive of a l a r g e v a r i e t y of ways t o r e p r e s e n t d a t a , 

such as r e sonance fo rmulas , Legendre p o l u n o m i a l s , a n a l y t i c a l e x p r e s s i o n s such 

as Maxwell, Watt and Kle in -Ni sh ima f o r m u l a s . 

Although sometimes one can f r e e l y choose between t h e p o i n t w i s e and p a r a m e t r i c 

forms (as i t i i s t h e c a s e of n e u t r o n a n g u l a r d i s t r i b u t i o n s ) , i n g e n e r a l t h e p a r a 

m e t r i c form may have p h y s i c a l s i g n i f i c a n c e and may used t o c o r r e l a t e t h e r e s u l t s 

of a number of s e p a r a t e e x p e r i m e n t s . Examples a r e : 

a) t h e r e sonance p a r a m e t e r s , which may be d e r i v e d from measurements ; 

b) t h e p a r a m e t e r s of s t a t i s t i c a l d i s t r i b u t i o n s of r e sonance w id th s and spac ings 

which can be used t o convey no t only t h e average c r o s s - s e c t i o n s b u t a l s o t h e i r 

p r o b a b l e f l u c t u a t i o n s . 

Use of p a r a m e t r i c forms can y i e l d a g r e a t s a v i n g of s t o r a g e space i n t h e d a t a 

l i b r a r y . Thus r e p r e s e n t i n g t h e c r o s s s e c t i o n s i n t h e r e s o l v e d r e sonance r e g i o n 

a c c u r a t e l y , r e q u i r e s sometimes s e v e r a l t housands of t a b u l a r p o i n t s f o r each c ros s 

s e c t i o n a t a w e l l de f ined t e m p e r a t u r e , whereas a s e t of some hundreds of pa rame te r s 

would s u f f i c e t o convey a l l t h e i n f o r m a t i o n needed t o g e n e r a t e t h e c r o s s s e c t i o n s 

a t some r e q u i r e d t e m p e r a t u r e . On t h e o t h e r h a n d , problems may a r i s e c o n f l i c t i n g 

w i t h t h e need of r educ ing t h e computer t ime r e q u i r e d f o r t h e g e n e r a t i o n of Dqp_ 

p i e r broadened c r o s s s e c t i o n s from resonance p a r a m e t e r s . 

A c o n s i d e r a b l e s a v i n g of computer t ime can be a c h i e v e d th rough t h e fol lowing 

p r o c e d u r e : u s i n g a Nuclear Data L i b r a r y w i t h r e s o n a n c e p a r a m e t e r s , one may ge 

n e r a t e a c e r t a i n number of l i b r a r i e s of p o i n t w i s e Dopple r broadened c ross s e c 

t i o n s , say a t 300 OK, 900 OK, 1200 OK, f o r use i n p r o c e s s i n g codes wi th t h e 

r e q u e s t e d group scheme. Taking c a r e of g e n e r a t i n g f o r each r e a c t i o n a s u f f i 

c i e n t number of energy p o i n t s so t h a t t h e l i n e a r - l i n e a r i n t e r p o l a t i o n law can 

be u s e d , an a d d i t i o n a l computer t ime s a v i n g i n t h e p r o c e s s i n g code running can 

be o b t a i n e d . 

I n t h e case when resonance d a t a a r e g i v e n , p r o c e s s i n g codes shoul i n genera l 

j o i n t o g e t h e r t h e resonance r e g i o n and t h e cont inuum r e g i o n by adding each o t h e r . 



The pointwise section may have a "background" which should he also added to the 

resonance parameter computed cross section. This background has in general no 

phusical meaning, but its aim is to obtain a correct cross section curve taking 

into account the following: 

a) sometimes the resonance data are originated from different experiments and 

a "correction" should be made in order to homogenize the resulting cross sec

tion; or 

b) single level Breit-Wigner formula is used in the processing codes instead of 

a multi level formula. This is in fact very time consuming and it is conve

nient to calculate once (at the time when the evaluation.'is generated) both 

the MLBW and SLBW cross section curve, to subtract the second from the first 

one and to assign the difference as background in the pointwise section, so 

that a SLBW calculation can be made by processing codes. 

See LINEAR, REGENT, RESEND codes listed in the previans ponograph. See also: 

D.E. CULLEN: SIGMA I. Doppler Broaden Evaluated Cross Sections in the Evaluated 

Nuclear Data File/version B UCRL-50*i00 Vol. 17, Part. B, 

Rev. 2 (1979). 

5. FROM THE NDL TO THE POINTWISE CROSS SECTION 

Processing of Nuclear Data Libraries involves the computation of the following 

basic quantities: 

J acf>dE ; II 0<jdE'dE 

where t h e i n t e g r a l s span ove r same energy r a n g e , o , <$> a r e f u n c t i o n of t h e n e u t r o n 

i n c i d e n t energy and K i s a t r a n s f e r k e r n e l func t ion of E and of t h e o u t g o i n g e n e r 

gy E ' . The second q u a n t i t y i s always very hard t o compute i n te rms of n u m e r i c a l 

accuracy and of computer t i m e . 

The f i r s t one can t a k e advan tage of some simply e x p r e s s i o n s fo r (f> ( e . g . (f>(E) = 

c o n s t a n t or <}> (E)=I /E) i n o r d e r t o per form- ' fas t semi a n a l y t i c a l c o m p u t a t i o n s . When 

o i s given i n p a r a m e t r i c form ( r e s o n a n c e r e g i o n ) a f u l l a n a l y t i c a l compu ta t i on of 

t h e resonance i n t e g r a l i s a l l o w e d . Problems a r i s e when a i s g iven i n p a r a m e t r i c 

form and 4> i s p o i n t - b y - p o i n t o r when a i s p o i n t w i s e and $ assumes some c o m p l i c a 

t e d form. On t h e o t h e r hand t h e b e s t s i t u a t i o n occurs when any p o i n t i n a r e a c t i o n 

can be p r e d i c t e d from t h e a d j a c e n t ones by means of l i n e a r - l i n e a r i n t e r p o l a t i o n ; 

and p o s s i b l y <£ i s a s imply e x p r e s s i o n . This l a t t e r opportuny cannot meet e v e r y 

w h e re , wh i l e i t i s always p o s s i b l e t o t r a n s f o r m c r o s s - s e c t i o n d a t a i n such a way 

t h e y can be i n t e r p o l a t e d on l i n e a r - l i n e a r b a s i s , eventhough t h e s o u r c e of t h e d a 

t a a r e r e sonance p a r a m e t e r s . I t shou ld be h e r e remembered t h a t t h e b e s t r e p r e s e n t a 

t i o n of c r o s s s e c t i o n s i n t h e r e s o l v e d r e sonance r e g i o n i s o b t a i n e d t h r o u g h a l o g -

l o g i n t e r p o l a t i o n ; n e v e r t h e l e s s , by i n t r o d u c i n g s e v e r a l i n t e r m e d i a t e p o i n t s , a 

l i n e a r - l i n e a r i n t e r p o l a t i o n t o a g iven accuracy degree can be u sed . 

Modern p r o c e s s i n g codes work on t h i s b a s i s . 

Care should be t a k e n i n g e n e r a t i n g t h e r e s o l v e d r e sonance r e g i o n energy g r i d t o 

avo id : 

a) t h e curve not be d e s c r i b e d t o a r e q u i r e d accuracy deg ree where t h e shape i s 

awkward t o f o l l o w ; 

b) an e x c e s s i v e number of p o i n t s be g e n e r a t e d where t h e curve i s smooth. 

Algor i thms has been d e s i g n e d i n o r d e r t o fo l low t h e shape of t h e c r o s s s e c t i o n 

w i t h a c e r t a i n d e g r e e of a c c u r a c y , i . e . by i n c r e a s i n g t h e number of energy p o i n t 

i n t h e r eg ions where t h e c r o s s s e c t i o n curves r a p i d l y v a r y and d e c r e a s i n g i t when 

a p r ede t e rmined i n t e r p o l a t i o n law can approximate them. 

The a lgo r i t hms g e n e r a l l y c o n s i s t of t h e fo l l owing s t e p s : 

a) a s e t of i n i t i a l energy "node p o i n t s " i s s e l e c t e d ; node p o i n t s a re s e t a t 

t h e peak of t h e r e sonances and a t some o p t i o n a l e n e r g y ; 

b) t h e c r o s s s e c t i o n i s c a l c u l a t e d a t t h e node p o i n t s : l e t S and S_ be t h e 

computed v a l u e a t any p a i r of c o n s e c u t i v e node p o i n t s E and E (E >ET) ; 

c) and a d d i t i o n a l c r o s s s e c t i o n va lue S i s computed a t t h e midpoint E_, 

E3 = 2 (E I + E 2 ) ; 

d) t h e v a l u e of t h e approximate c r o s s s e c t i o n S ' a t t h e mid -po in t i s ob ta ined 

by a g iven i n t e r p o l a t i o n law and compared w i t h t h e exac t va lue S_ a t t h e 

same p o i n t ; 

e) i f t h e f r a c t i o n a l d i f f e r e n c e a t t h e m i d - p o i n t i s not l a r g e r t han t h e con

ve rgence c r i t e r i o n , i . e . i f : 

i S 3 - S 3 > <e 
S 3 ( I ) 
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occurs, the interval is assumed to have converged and the process is repea

ted "between the next pair of nodes; 

If 
S5 " S5 

<_ e, S is accepted and the range 

[Ei ,E~) is investigated. 
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f) if the fractional difference at the mid-point is larger than the convergence 

criterion, i.e. when (i) does not occur, the mid-point is defined as a new 

node and the process is repeated in the halved intervals. 

Some veru sophisticated codes have, in addition, an algorithm which further on 

reduces the number of data after the generation process which normally produces 

more points than are required for a given interpolation. 

More details con be found in the references existed below the previans paragraph 

6. THE MOST COMMONLY USED GROUP SCHEMES AND WEIGHTING SPECTRA 

Groupwise representation of nuclear data is the commonly used medium to perform 

reactor calculations. Group data span over the entire energy range of interest 

and include in general 3 regions: 

a) thermal (low energy) region 

, \ . ..., . B') resolved 
b; resonance region, split in „„s , & ' ^ B") unresolved 

c) continuum (high energy) region. 

Depending upon the type of calculation, each region may include more energy groups 

than others contain (e.g. a fast reactor calculation does not need an accurate de

scription of the cross sections in the low energy range, while a thermal calculation 

does). All calculations are performed starting from a limited number of groups, sau 

a few tens. On the contrary, schemes exist with a large number of groups (e.g. 600 

or 2000) but those group cross sections are used as a starting Library in order to 

calculate reduced group scheme libraries with a considerable time saving. 

Groups are in general equally spaced in lethargy so as to have a balanced description 

of the phenomena in different energy regions? Care should be taken mainly in desi

gning new large group schemes, in order to pick up some typical energies which are 

of interest from the point of view both of the materials involved and the calcula

tion to be performed. Some examples will explain this point. 

a) The important p-ware resonance of Iron-56 at I.15 keV should be included in its 

integrity into a unique energy group; 

b) the thermal energy range around 0.0253 eV should also be covered by a unique 
group; 

c) thresholds of important reactions such as the inelastic processes, should on 

the contrary coincide with some group boundary; 

d) energies which are typical of some assembly should be regarded too. 

When a group scheme has to be used as subsequent input to processing codes which 

calculate a new (reduced) group scheme or collapse it to a minor number of groups, 

then a large number of groups is used, say more than 50 and up to 2000; 

in this case an equally lethargy spacing is adopted either in the whole range or 

with constant Au in some subranges. On the contrary, working libraries use less 



than 30 energy groups which are in general either equally spaced in lethargy in 

the entire range or with larger groups at the higher energies ^continuum region). 

Also a: variety of functions exists over which the cross sections are weighted. 

Typical measured fluxes of reference assemblies are sometimes used and their 

shapes are not easily predictable (those weighting functions are normally given 

point by point to the processing codes). When a group scheme is to be used in 

subsequent cell'.calculation a "guess" is adopted for simulating the shape of the 

flux. One of the most used functions is so defined: 

a) A maxwellian shape with the maximum near the thermal energy (0.0253 eV) 

F (E) = exp (-E/0)/G2, 

b) <j>(E) <*I/E in the intermediate energy range, 

c) a fission spectrum at higher energies, say some hundred keV. 

F(E) = C . exp(-E/0.965) sinh (^2.29E) 

This describes with sufficient approximation the shape of the neutron flux. It 

should be noted that the I/E function mainly applies in the resolved resonance 

region: this fact allows to speed up the integral quantity calculations by means 

of semi-analytical formulas. 

Basic multigroup libraries are generated at a given temperature and at infinite 

dilution, supposing, i.e., the material uniformly distributed in the medium. 

Problem dependent libraries, also called working libraries, are then generated at 

the effective temperature and with the actual densities of the components by means 

of codes based upon different approaches, the main ones being the Bondarenko me

thod and the Nordheim integral treatment. 

A large number of codes exist xhich produce multigroup library for varians purposes 

A list of selected codes fallows. 

LIST 6 

Code name Reference Description 

UKNDL: 

GALAXY 

DICE (MOULD) 

KEDAK: 

MIGR0S-3 

FIDAS 

GRUMA 

GRUSEEK 

GRUPRINT 

GRUCAL 

AEEW-R379 

AWRE 0 -27 /66 

KFK-2388 

KFK ( i n t e r n a l ) 

KFK ( i n t e r n a l ) 

KFK ( i n t e r n a l ) 

KFK ( i n t e r n a l ) 

DASU KFK ( i n t e r n a l ) 

For c a l c u l a t i n g spec t rum averaged mul
t i g r o u p c r o s s - s e c t i o n s 

P r e p a r a t i o n of n u c l e a r d a t a i n a form 
s u i t a b l e fo r Monte Ca r lo c a l c u l a t i o n s 

ABBN t y p e m i c r o s c o p i c group c o n s t a n t 
c a l c u l a t i o n 

208 h igh energy group c a l c u l a t i o n 

For m a n i p u l a t i n g t h e GRUBA microsco
p i c l i b r a r y 

For r e a d i n g GRUBA l i b r a r y 

For p r i n t i n g GRUBA l i b r a r y 

For p r o d u c t i o n of macroscopic group 
c o s t a n t s from GRUBA 

P r e p a r e s d a t a for Monte Ca r lo c a l c u l a 
t i o n s 

ENDF/B 

AMPX 

BDASS 

0RNL/TM-3706 

DPSTM-500 Vo. 5 

A la rge , code sys tem which w i l l p r e p a r e 
neu t rony photon p r o d u c t i o n , and photon 
i n t e r a c t i o n c r o s s s e c t i o n s fo r use i n 
a v a r i e t y of c o d e s . 

A c o l l e c t i o n of 10 modules t h a t p r o c e s s 
n e u t r o n i n t e r a c t i o n , photon i n t e r a c t i o n , 
photon p r o d u c t i o n , and f i s s i o n p roduc t 
d a t a f i l e s from ENDF t o t h e JOSHUA system 
d a t a b a s e . 

ENDRUN GEAP-I3952 P r e p a r e s n e u t r o n c r o s s s e c t i o n s and s h i e l 
d ing f a c t o r t a b l e s fo r use i n t h e TD0WN 
code. 

ET0E-2/MC - 2 ANL-81I4U P r e p a r e s broad group n e u t r o n c ros s s e c t i o n s 
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Follows List 6 

Code name Reference Description 

ETOG-5 

ETOT-5 

ETOX 

FLANGE II 

MINX 

::SRQUPIE 

WCAP-381*5-I 

WCAP-7363 

BNWL-I002 

DP-I278 

LA-6W6-MS 

UCRL-50i+00 

for fast reactor calculations. Also 
used to prepare fine group neutron crsss 
section libraries for use in the SDX 
code. 

Prepares neutron cross sections for use 
in the MUFT, GAM, ANISN, and LASER codes 

Prepares pointwise or group thermal neu
tron cross sections from Files 2 and 3 
of ENDF/B format data. 

Prepares neutron cross sections and 
shielding factor tables for use in the 
1DX code. 

Prepares thermal neutron cross sections 
from ENDF/B data including S( , ) data 
in file 7- No Adler-Adler capability. 

Prepares neutron cross section and 
shielding factor tables for the SPHINX 
code. 

Computes group averaged cross sections, 
Bondarenko factors and multiband para
meters . 

REFERENCES 

ENDL 

R.J. Doyas, R.E. Dye, R.J. Howerton, S.T. Parkins: CLYDE a code for the Production of 

Calculational Constant from Nuclear Data. UCRL-50U0O Vol. 5, 

Rev, I (1975) 

See also the FEDGROUP and FOURACES codes listed under paragraph 3. 
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A P P E N D I X 

Some lists of codes are here reported which performs the following 

calculations: 

BW: Calculates the ccoss sections in the resolved resonance region, 

starting from Breit-Wigner resonance parameters. 

CRESO: Calculates the cross sections in the unresolved resonance region, 

starting from average parameters and by means of statistical model. 

RINEG: Calculates the unknow parameters of a bound level starting from the 

input arbitrary parameters resonance energy and radiation width. 

ROMB: Performs a numerical quadrature with the Romberg method extended 

to not equally spaced points. 

All the codes are self-guided in their use, being written in the 

interactive BASIC language (for an Olivetti Desk computer P6O66). 

A translation in FORTRAN language of the codes may be easy for an 

expert programmer. 



APPENDIX 

TRIESTE WINTER COLLEGE 1982. LECTURES BY N.MOTTA Page 1 

8010 REH * <BU> CODE FOR CROSS SECTIOM CALCULATION IN RESOLUED REGION * 
8929 REM * SINGLE LEUEL AND MULTILEVEL FORMALISMS, ONE or TWO CHANNELS * 
0030 DCL 38C2*3 
0040 POD Z*,95 
0058 FOR 1=1 TO 3 STEP 1 
0069 PRINT 
0079 NEXT I 
0089 PRINT " * <BU> CODE FOR CROSS SECTION CALCULATION IN RESOLUED REGION *" 
0090 PRINT 
0100 DIN AC63 , BC3,63 , CC3,63 , DC3,63 , EC258,&3 , S C63 , P C63 ,F C33 , G C10, 43 ,R*C2503 
0119 DCL SCEC33 
0129 FILES * ; F I P L O 
0122 DISP " INPUT FILENAME "; 
0124 INPUT F* 
0126 FILE : 1, F* 
0138 DCL ?R* 
8149 : 'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC 
8159 : ##. #####tttt##.#####tttt##.#t##*tttT*#.###t#Tttt##.#f###tttt##. #####ttTT 
0190 DISP " RECALL DATA FROM <ENDFA> FILE" 
0208 RESTORE :1 
0210 LET N3=1 
3220 READ : 1 , A C13 , A C23 , A C33 , A C43 , A C53 , A C63 , R* CN83 
0238 FOR J8=1 TO AC53 STEP 1 
0240 LET N8=N8+1 
32 59 READ : 1 , B CJ0, 13 , B CJ0, 23 , B CJ8, 33 , B CJ8, 43 , B CJ8, 53 , B CJ8, 63 ,R*CN83 
3269 LET E1=BCJ0,13 
3273 LET E2=8CJ8,23 
3288 PRINT "The resolved region is bet ween";E1;" AND";E2;" eU" 
3290 LET N8=N8+1 
3339 READ : 1 , C CJ8, 13 , C CJ8, 23 , C CJ8, 33 , C CJ8, 43 , C CJ8, 53 , C CJ8, 63 , R* CN83 
3319 LET J9=1 
3323 FOR J 1 = 1 TO CCJ0,53 STEP 1 
3333 LET N8=N8+1 
0349 READ : 1 , D U 1 , 13 , D CJ 1 , 23 , D CJ 1 , 33 , D CJ 1 , 43 , D CJ 1 , 53 , D CJ 1 , 63 , R* CN83 
3350 FOR J2=J9 TO J9 + DCJ1 ,63 -1 STEP 1 
3363 LET N3=N8+1 
3379 READ : 1 , E CJ 2 , 13 , E CJ2, 23 , E CJ2 , 33 , E CJ2, 43 , E CJ2, 53 , E CJ2, 63 , R*CN83 
3383 NEXT J2 
3393 LET J9 = J9+DCJ1,63 
3430 NEXT J1. 
94 10 NEXT J0 
9420 PRINT "DATA ON <ENDFA> FILE HAUE BEEN RECALLED FROM DISK" 
3438 PRINT 2* 
3448 DISP " INITIAL ENERGY CeUD = '•; 
9458 INPUT E1 
8468 DISP " FINAL ENERGY CeUT = "; 
9478 INPUT £2 
0498 LET J5=E0=8 
0500 FOR J8=1 TO AC53 STEP 1 
3518 LET J5=J8 
3538 DISP " STEP FOR ENERGY CeU3 = ••; 
3548 INPUT E3 
0550 DISP "8,8»no plot I I,K > plot GCI,K3"; 
3568 INPUT N1,N2 
0578 IF N1*N2=8 THEN 640 
8530 LET U8=2 
8598 SCRATCH :2 
3680 URITE -2, INTCCE2-E13 /E3+13 ,W8,2 ,0 
8619 LET Y1=1E63 
8628 LET Y2=-Y1 
9638 PRINT TABC263;"REQUESTED CROSS SECTION" 
8640 REM * CROSS SECTION CALCULATION * 
9658 REM * * LOOP ON ENERGY ** 
8668 FOR E8=E1 TO E2 STEP E3 
8678 LET J8=J5 
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0630 IF CE3-BCJ8,133 *CE8-BCJ8,233>0 THEN 2388 
0690 FOR J=1 TO 10 STEP 1 
0790 FOR J6=1 TO 4 STEP 1 
0710 LET GCJ,J63=0 
3720 NEXT J6 
8738 NEXT J 
8740 LET J9=1 
0750 REM ** LOOP ON L-STATES ** 
0760 FOR J1 = 1 TO CCJ0,53 STEP 1 
0770 LET K1=FNACDCJ1, 13 ,E83 
0738 LET L1=1^K1 
0730 LET R8=C1 .23*DCJ1 , 1 3 t C 1 ' 3 3 + 8 . 8 3 / 1 8 
3888 LET R1=K1*R8 
0319 LET SC13=S7=0 
0820 LET Q1=1+R1T2 
8838 LET SC23=-1'Q1 
0348 LET Q2=9+3*R1T2+R1t4 
8858 LET SC33=-C18+3*R1t23/Q2 
8868 LET PC13=R1 
8870 LET PC23=R1t3/Q1 
0380 LET PC33=R1T5/Q2 
8898 LET R2=CCJ8,23*K1 
8988 LET FC13=R2 
8918 LET FC23=R2-ATNCR23 
8928 LET FC33=R2-ATNC3*R2/C3-R2t23 3 
8938 LET GC1,13=4*P I *L1*L1*S INCFC133T2 
8940 LET GC1 ,23=12*P I *L1 *L1 *S INCFC233 t2 
0950 LET GC1,33=28*P I *L1*L1*S INCFC333T2 
3960 LET GC1,43=GC1, 13+G C1, 23+G C1, 33 
0973 REM * * LOOP ON RESONANCE * * 
3938 FOR J2=J9 TO J9+DCJ1 ,63 -1 STEP 1 
0988 DISP " E = " ; E 8 ; " E r C " ; J 2 ; " 3 = " ; E C J 2 , 1 3 
1838 LET L = DCJ 1,33+1 
1818 LET K2=FNACDCJ1, 13 ,ECJ2 , 133 
1020 LET L2=1 /K2 
1830 LET R3=K2*R8 
1048 LET Q3=1+R3t2 
1358 LET Q4=9+3*R3t2+R3T4 
1868 LET PC43=R3 
1878 LET PC53=R3T3/Q3 
1388 LET PC63=R3T5/Q4 
1898 LET SC43=8 
1138 LET SC53=-1/Q3 
1118 LET SC63=-C18+3*R3T23/Q4 
1129 IF BCJ8,43=3 THEN 1160 
1133 LET E4=PCL3*ECJ2,43/PCL+33 
1148 LET E5=E4+ECJ2,53+ECJ2,63 
1158 GOTO 1188 
1163 LET E4=PCL3*ECJ2,33/PCL+33 
1178 LET E5=E4+ECJ2,43+ABSCECJ2,533+ABSCECJ2,633 
1180 LET E6=ECJ2, 13+E4*CSCL+33-SCL3 3^C2*PCL-r33 3 
1130 LET U1=2*SINCFCL33*C2*CE8-E63*COSCFCL33-E5*SINCFCL333 
1238 LET G1=C2*ECJ2,23+13/C4*CCJ8, 13+23 
1218 LET S1=E8-E6 
1220 LET S2=E5/2 
1230 LET P8=FNZC8,S1,S2,S1,-S23 
1243 LET U=G1/SQRCP*P+Q*Q3 
1258 REM "iJ = " ; U ; "AJ = " ; E C J 2 , 2 3 ; " L 1 * L 2 " ; L 1 * L 2 ; " E ' = " ; E 6 ; " m r " ; E 4 
1268 LET GC2,L3=U*E4*E4+GC2,L3 
1278 ON BCJ8,43 GOTO 1 6 7 8 , 1 2 8 8 , 1 2 8 8 
1288 IF DCJ1,63=1 THEN 1678 
1298 REM * * INTERFERENTIAL PART FOR SCATTERING AND FISSION *> 
1388 FOR J7=J2+1 TO J 9 + D C J 1 , 6 3 - 1 STEP 1 313 
1318 IF ECJ2,23<>ECJ7,23 THEN 1638 
1315 LET S7=0 
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1320 LET K2 = FNACDCJ1, 13 ,ECJ7, 133 
1338 LET L2=1/K2 
1340 LET R3=K2*R8 
1350 LET G3=1+R3T2 
1380 LET 04=9+3*R3T2 + R31'4 
1378 LET PC43=R3 
1330 LET PC53=R3T3/Q3 
1390 LET PC63=R3T5/Q4 
1480 LET SC43=0 
1410 LET SC53=-1/Q3 
1428 LET SC63=-C18+3*R3r23/Q4 
1438 IF BCJ8,43=3 THEM 1470 
1440 LET E7 = PCL3*ECJ7,43/PCL + 33 
1458 LET £8=E7+ECJ7,53+ECJ7,63 
1468 GOTO 1498 
1478 LET E7 = PCL3*ECJ7,33/PCL + 33 
1488 LET E8=E7+ECJ7,43+ABSCECJ7,53 3+ABSCECJ7,63 3 
1498 LET E9=ECJ7,13+E7*CSCL+33-SCL33/C2*PCL+333 
1538 LET S3=E8-E9 
1518 LET S4=E8/2 
1528 LET U2=CS1*S3 + S2*S43/CS1*S1+S2*S23>'CS3*S3+S4*S43 
1538 LET W2=U2*SQRCE4*E73 
1540 LET GC3,L3=GC3,L3+2*U2*SQRCE4*E73 
1558 IF BCJ8,43<3 THEM 1618 
1560 LET S7=S7+SGM CE CJ2,53 3*SGN CE CJ7,53 3*SQR CABS CE CJ2,53 *ECJ7, 53 3 3 
1578 LET S7=S7+SGM CE CJ2, 53 3 *SGN CE CJ7,63 3*SQR CPBS CE CJ2,53 *E CJ7, 63 3 3 
1588 LET S7=S7+SGNCECJ2,63 3*SGNCECJ7,53 3*SQRCABSCECJ2,63*ECJ7,53 3 3 
1593 LET S7=S7+SGMCEU2,63 3*SGNCECJ7,63 3*SQRCABSCECJ2,63*ECJ7,63 3 3 
1680 GOTO 1628 
1618 LET S7=SGNCECJ2,633*SQRCABSCECJ2,63*ECJ7,6333 
1628 LET GC8,L3=GC8,L3+2*W2*S7 
1638 NEXT J7 
1648 LET GC3,L3=G1*GC3,L3 
1658 LET GC8,L3=G1*GC3,L3 
1668 REM **** THE EMD OF IMTERFEREMTIOL PART **** 
1678 LET GC4,L3=GC4,L3+«*E4*yi 
1638 IF BCJ8,43=3 THEM 1728 
1690 LET GC6,L3=GC6,L3+y*E4*ECJ2,53 
1780 LET GC7,L3=GC7,L3+W*E4*ECJ2,&3 
1718 GOTO 1798 
1720 LET GC6,L3=GC6,L3+U*E4*ECJ2,43 
1738 LET GC7,L3=GC7,L3+y*E4*CABSCECJ2,53 3+ABSCECJ2,63 3 3 
1790 NEXT J2 
1888 LET GC5,L3=GC1,L3+GC2,L3+GC3,L3+GC4,L3 
1318 LET GC9,L3=GC7,L3+GC8,L3 
1320 LET GC18,L3=GC5,L3+GC6,L3+GC9,L3 
1833 REM 4* EMD OF LOOP OM RESONANCES * * 
1848 LET L 3 = L 1 * L 1 * P I 
1358 LET GC2,L3=GC2,L3*L3 
1868 LET GC3.L3=GC3,L3*L3 
1378 LET GC4,L3=GC4,L3*L3 
1388 LET GC6,L3=GC6,L3*L3 
1890 LET GC7,L3=GC7,L3*L3 
1988 LET GC3,L3=GC8,L3*L3 
1918 LET GC5,L3=GC1,L3+GC2,L3+GC3,L3+GC4,L3 
1923 LET GC9,L3=GC7,L3+GC8,L3 
1938 LET J9 = J 9 + D U 1 , & 3 
1948 NEXT J1 
1958 REN * * END OF LOOP ON L-STATES * * 
1968 FOR J=1 TO 4 STEP 1 
1978 LET GC5, J3=GC4,J3+GC3, J3+GC2, J3+GC1, J3 
1988 LET GC18, J3=GC5, J3+GC6,J3+GC3, J3 
1990 NEXT J 
2008 FOR J = 1 TO 10 STEP 1 
2818 LET GCJ,43=GCJ, 13+G CJ , 23+G CJ , 33 
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2020 NEXT J 
2038 IF N1*N2<>8 THEM 2328 
2048 PRINT 
2850 DISP " Output for E = ";E8;" eU" 
2060 PRINT "ENERGY ey","uaue no.","wave length","channel radius" 
2070 PRINT E0,K1,L1,R8 
2080 PRINT "PARAMETERS","1=8","1=1","1=2" 
2098 PRINT " s h i f t f a c t o r s " , S C 1 3 ,SC23 ,SC33 
2188 PRINT " p e n . f a c t o r s " , P C 1 3 , P C 2 3 , P C33 
2118 PRINT "phase s h i f t " , F C 1 3 , F C 2 3 , F C 3 3 
2128 ON BCJ8,43 GOTO 2 1 3 8 , 2 1 5 0 , 2 1 8 8 
2138 PRINT "CROSS S E C T I O N S * b a r n s " ; " C s i n g i e l e u e l B r e i t - U i g n e r ] " , " SUM" 
2148 GOTO 2208 
2158 PRINT "CROSS SECTIONS b a r n s " ; 
2168 PRINT " Cone-channe l m u l t i l e v e l B r e i t - W i g n e r 3 " , " SUM" 
2178 GOTO 2288 
2188 PRINT "CROSS SECTIONS b a r n s " ; 
2198 PRINT " C t u o - c h a n n e l s m u l t i l e v e l B r e i t - U i g n e r 3 " , " SUM" 
2288 PRIMT " p o t . s c a t t e r i n g " , G C 1 , 1 3 , G C 1 , 2 3 , G C 1 , 3 3 , G C 1 , 4 3 
2218 PRINT " r e s . s c a t t e r i n g " , G C 2 , 1 3 , G C 2 , 2 3 , G C 2 , 3 3 , G C 2 , 4 3 
2228 PRINT " r e s * r e s s c a t t . " , G C3, 13 , G C3, 23 , G C3, 33 , G C3, 43 
2238 PRINT " r e s * p o t s c a t t . " , G C 4 , 1 3 , G C 4 , 2 3 . G C 4 , 3 3 , G C 4 , 4 3 
2248 PRINT " t o t a l e l a s t i c " , G C 5 , 1 3 , G C 5 , 2 3 , G C 5 , 3 3 , G C 5 , 4 3 
2258 PRINT " r a d . c a p t u r e " , G C 6 , 1 3 , G C 6 , 2 3 , G C 6 , 3 3 , G C 6 , 4 3 
2268 PRINT " f i s s i o n " , G C 7 , 1 3 , G C 7 , 2 3 , G C 7 , 3 3 , G C 7 , 4 3 
2278 PRINT " f i s s * f i s s " , G C 8 , 1 3 , G C 8 , 2 3 , G C 8 , 3 3 , G C 8 , 4 3 
2238 PRINT " t o t a l f i s s i o n " , G C 9 , 1 3 , G C 9 , 2 3 , G C 9 , 3 3 , G C 9 , 4 3 
2298 PRINT "TOTAL" ,GC18,13,GC18,23,GC18,33,GC18,43 
2388 PRINT Z$ 
2318 IF N1*N2=8 THEN 2388 
2328 WRITE :2,E0,GCN1,N23 
2338 IF GCN1,N23<=Y2 THEM 2358 
2348 LET Y2=GCN1,N23 
2358 IF GCN1,M23>=Y1 THEN 2378 
2368 LET Y1=GCN1,N23 
2373 PRINT E8,GCM1,M23, 
2388 NEXT E8 
2398 REM * * END OF LOOP ON ENERGY ** 
2488 IF N1*N2=0 THEN 2528 
2418 WRITE :2,8,3,8,8 
2428 PRINT 
2438 PRINT "• CROSS SECTION G I", N1; ", "; N2.= "3 STORED FOR PLOT ON FILE <FIPLO> 
2448 PRIMT "ABSCISSA »in=";E1;" »ax=";E2;"II ORDINATE min=";Yl;" max=";Y2 
2458 LET E1=E8 
2468 NEXT J8 
2473 IF J5>8 THEN 2528 
2488 DISP "Energy out range. Chain <CRESO>" 
2498 DELAY 38 
2538 CHAIN "CRESO" 
2518 DEF FMRCA,E83=2. 19&771E-3*SQR CABS CE833 *Cfi>-Cfi+13 3 
2528 DISP " THE END OF CODE <REICH>" 
2538 DELAY 10 
2543 GOTO 2858 
2558 DEF FN2CT,X1,Y1,X2,Y23 
2568 IF T<>8 THEN 2688 
2578 LET P=X1*X2-Y1*Y2 
2588 LET Q=X1*Y2+Y1*X2 
2598 GOTO 2638 
2630 LET P=X1*X2 
2610 LET Q=Y1+Y2 
2620 LET Q=FNCCQ3 
2630 LET FN*=8 
2643 FNEND 
2658 DEF FNCCT3P2 
2668 LET P2=PI*2 
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2670 LET T = T-INT CT/-P23*P2 
2680 IF T>PI THEN 2718 
2638 IF T<=-PI THEN 2710 
2700 GOTO 2720 
2710 LET T=T-T/T*P2 
2720 LET FN*=T 
2730 FNEND 
2740 GOTO 2850 
2750 DEF FNQCT,X,Y3R 
2760 IF T<>8 THEN 2810 
2770 LET R=X*X+Y*Y 
2780 LET P=X/R 
2790 LET Q=-Y/R 
2380 GOTO 2830 
2310 LET P=1/X 
2820 LET Q=-Y 
2330 LET FN*=0 
2340 FNEND 
2350 END 
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8818 REN * CRESO CODE : CHAINED TO <ENDFB> FOR CROSS SECTION CALCULATION * 
3823 FILES *;FIPLO 
8022 DISP "INPUT FILENAME CEOL=STOP>"; 
3824 RKB F* 
0 0 2 6 I F F * = " " THEN 2 2 3 8 
8 8 2 3 F I L E : 1 , F * 
8 8 3 8 FKEY # 1 5 , - 1 : 
8 8 4 8 D I N QC63 , O C 1 5 , 6 3 
8 0 5 0 D I N AC63 , B C 3 , 6 3 , C C 3 , 6 3 , D C 3 , 6 3 , E C25 , 63 , S C63 , P C63 , F C33 , G C10 , 43 , U C 1 8 , 43 
0 0 6 0 D i n B*C33 , C * C 3 3 , D * C 3 3 , E * C 2 5 3 
0 0 7 0 DCL 8 A * , 3 B * C 3 , 8 C * C 3 , 8 D * C 3 , 8 E * C 3 
3 8 8 8 DATA 8 . 8 8 5 2 5 2 , 8 . 8 3 7 1 7 1 , 0 . 1 0 3 1 2 6 , 8 . 2 0 7 8 3 6 , 0 . 3 5 9 8 5 2 , 0 . 5 7 4 2 8 3 / 0 . 8 7 9 3 3 4 
8 0 9 0 DATA 1 . 3 3 4 8 1 , 2 . 1 0 5 2 2 7 , 4 . 3 9 0 8 , 0 . 8 5 1 7 5 5 , 8 . 1 6 3 8 9 5 , 0 . 2 8 8 4 2 1 , 8 . 4 3 1 7 6 6 
8188 DATA .59921,.88856,1.853224,1.39381, 1.91623,3.381643,.112995,.265680 
8118 DATA .404385,.547724,.784848,.882448,1.896835,1.374373,1.786357,2.824533 
0120 DATA .169150,.340788,.488571,.617825,.762381,.922898,1.111387,1.358285 
3138 DflTfi 1.697511,2.546682 
0148 :'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC'CCCCCCCCCCC 
0 150 :##.#####TTtt##.#####tttt*#.#####tttt##.»####tt1't##.#####tttt##.#####tttt 
0168 RESTORE 
8173 FOR 1=1 TO 4 STEP 1 
8138 LET TCI3=8 
8 1 9 8 FOR K = 1 TO 18 STEP 1 
3 1 9 5 LET GCK, 1 3 = 8 
8 2 8 8 READ U C K , 1 3 
8 2 1 8 LET T C I 3 = T C I 3 + U C K , 13 
8228 NEXT K 
3238 NEXT I 
3248 DISP " RECALL DATA FROM <";F*;"> FILE" 
8253 RESTORE : 1 
3268 READ - 1 , A C13 , A C23 , A C33 , A C43 , A C53 , A C63 , A* 
8278 FOR J3=1 TO AC53 STEP 1 
3238 READ : 1, B CJ0, 13 , B CJ8, 23 , B CJ8 , 33 , B CJ8, 43 , B CJ0, 53 , B CJ0, 63 , B* CJ03 
3298 LET E1=8CJ0,13 
3 3 8 8 LET E 2 = B C J 0 , 2 3 
8 3 1 8 READ : 1 , C C J 8 , 13 , C C J 8 , 23 , C CJ8 , 33 , C C J 0 , 43 , C CJ8 , 53 , C C J 8 , 60 , C$ CJ33 
3 3 2 8 ON B C J 8 , 3 3 GOTO 3 2 4 , 3 3 3 
8 3 2 4 D I S P "NOT UNRESOLUED REGION ! " 
3 3 2 5 BEEP 
8 3 2 6 GOTO 2 2 
3 3 3 3 I F A C 4 3 = 3 THEN 3 6 8 
8 3 3 5 FOR J 3 = 1 TO C C J 8 . 6 3 STEP 1 
8 3 4 8 READ : 1 , Q C J 3 3 
8358 NEXT J3 
3368 LET J9=1 
8 3 7 8 FOR J 1 = 1 TO C C J 8 , 5 3 STEP 1 
0 3 8 8 READ : 1 , D CJ 1 , 13 , D CJ 1 , 2 3 , D CJ 1 , 3 3 ,DCJ 1 ,43 , D CJ 1 ,53 , D C J 1 , 6 3 , D*CJ 13 
0 3 9 8 FOR J 2 = J 9 TO J 9 + D C J 1 , 6 3 - 1 STEP 1 
0 4 0 0 READ : 1 , E C J 2 , 13 , E C J 2 , 2 3 , E C J 2 , 3 3 , E C J 2 , 4 3 , E C J 2 , 5 3 , EC J 2 , 63 , E *CJ23 
8 4 1 0 ON B C J 8 , 3 3 GOTO 3 2 4 , 4 2 8 
3 4 2 3 I F A C 4 3 = 8 THEN 4 5 8 
3 4 2 5 FOR J 3 = 1 TO C C J 0 , 6 3 STEP 1 
8 4 3 3 READ : 1 , 0 C J 2 , J 3 3 
8 4 4 3 NEXT J 3 
3 4 5 8 NEXT J 2 
8 4 6 8 LET J 9 = J 9 + D C J 1 , 6 3 
8 4 7 3 NEXT J 1 
8483 PRINT "THE UNRESOLUED REGION IS BETWEEN";E1;" AND";E2 
3498 PRINT "DATA ON ";F*;" FILE HAUE BEEN RECALLED FRON DISK" 
8588 DISP "point by point CM or tabul. C23 "; 
35 18 INPUT S3 
3528 ON S0 GOTO 530,598 
3538 DISP " ENERGY = ? CFKEY#15=STOP3 "; q«r 
0540 INPUT E8 w'3 
0558 LET N1=N2=0 
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8569 IF E0<8 THEM 1650 
0570 LET E1=E2=E3=E0 
05SQ GOTO 800 
0590 DISP " INPUT: C13=#Points; C23=step 
0600 IMPUT Y3 
0610 ON Y3 GOTO 620/680 
0620 DISP "Eaiin, Enax, # of points = "; 
0630 IMPUT E1,E2,N 
0640 IF M>1 THEM 660 
0650 LET M=2 
0660 LET E3=CE2-E13/CN-13 
9670 GOTO 710 
0680 DISP " E»in, Enax, step = "; 
9690 IMPUT E1,E2,E3 
0703 LET N=CE2-E13/-E3+1 
0710 DISP "0,0=no plot • l,K = Plot GCI,K3"; 
0720 IMPUT M1,N2 
0730 IF M1*M2=0 THEN 800 
07.40 SCRATCH :2 
0750 WRITE :2,N,0 
8760 LET Y1=1E63 
0770 LET Y2=-Y1 
0780 REM ************************************************************************ 
0790 REM LOOP OM EMERGY 
8800 FOR E0=E1 TO E2 STEP E3 
0810 LET J9=1 
0328 REM »»*»»»»»»*»»»»»»»»>*»»»*>»»»»»*»*>*»*»»»»»»»»»»»•>»»*•>*»*»»»»»»»>»**»»»» 
0330 REM LOOP OM L-STRTES 
0840 IF CCJ0,53< = 3 THEM 860 
8358 LET CCJ8,53=3 
0368 FOR J1=1 TO CCJ0,53 STEP 1 
8370 LET L = DCJ 1,33 + 1 
3830 REM RESET ALL THE CROSS SECTIONS RELATED TO THE L-STRTE IM PROCESS 
3890 FOR 1=1 TO 7 STEP 1 
3988 LET GCI,L3=0 
0310 NEXT I 
3920 LET K1=FNRCE03 
8930 LET L1=1/K1 
3940 LET R1=K1*C1.23*DCJ1 , 1 3 T C 1 / 3 3 + 0 . 8 3 / 1 8 
8950 LET Q1=1+R1T2 
8960 LET Q2=9+3*R1T2+R1T4 
8970 LET R2=K1*CCJ8,23 
8938 LET SC13=0 
8990 LET SC23=-1/Q1 
1000 LET SC33=-C18 + 3*R1T23/Q2 
1010 LET PC13=R1 
1020 LET PC23=R1T3/Q1 
1038 LET PC33=R1T5/Q2 
1040 LET FC13=R2 
1058 LET FC23=R2-RTNCR23 
1060 LET FC33=R2-ATNC3*R2/-C3-R2?23 3 
1070 LET GC1,L3=GC1,L3 + C2*L-13*SIMCFCL33T2 
1 8 8 8 REtt^^HHH^HHH^^-*-«-<-«-<-«-<•-»-«-<-<-«-«-«-'-IH-«H-<-«-lH-IH-l-l-«-l-<-1-1-t-t-l-i-i-l-«-»M-*-«-t-4-<-«-HH-<-l-l-iH-l-I H-«-l-»-* 
1090 REM LOOP OM AJ-SPIN 
1100 FOR J2=J3 TO J9+DCJ1 ,63 -1 STEP 1 
1110 DISP "E = " ; E 0 ; " L = " ;DCJ1,33 ; " A J = " ; E CJ2,23 
1115 IF RC43=8 THEM 1130 
1120 GOSUB 2108 
1130 LET G3=C2*ECJ2,23+13/C4*CCJ8, 13+23 
1143 REM WEIGHTING GNOU13 , GFOUI23 RMD GTC=U33 OM PORTER-THOMRS DISTRIBUTION 
1150 LET fl=R1=R2=0 
1160 FDR K=1 TO 10 STEP 1 
1170 LET P=UCK,ECJ2,333 
1183 LET W1=ECJ2,43*SQRCE83*FNBCR1,DCJ1,333*ECJ2,3J 
1190 LET U2=U3=8 
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1280 FOR J4=1 TO 18 STEP 1 
1285 IF RC43=0 THEN 1224 
1218 LET W2=U2 + WCJ4,ECJ2,633/CU1*P+ECJ2,53+UCJ4,ECJ2,633*F63 
1228 LET W3=U3+1/Cyi*P+ECJ2,53+WCJ4,ECJ2,633*F63 
1222 GOTO 1230 
1224 LET U2=F6=0 
1226 LET W3=U3+1/CU1*P+ECJ2,533 
1230 NEXT J4 
1240 LET fl=R+yi*U1*P*P*U3/108 
1250 LET R1=R1+W1*P*ECJ2,53*W3/100 
1268 LET A2 = A2 + U1*P*F6*U2-M00 
1270 NEXT K 
1230 LET GC2,L3=GC2,L3+G0/ECJ2, 13 *CA-2*ECJ2 , 43+SIMCFCL33*SINCFCL333 
1290 LET GC5,L3=GC5,LJ+G0/ECJ2, 13*R1 
1380 LET GC6,L3=GC6,L3+G0/ECJ2, 13*R2 
1310 NEXT J2 
1320 REI1^^^^^^^-^-n^^^-l^^^^-l^-'-n^^^^^^^-^-^-n^^^^^-•-^-|-,-'-<-^-^-,•,-|-<^-t-,•t•,•,","t"IH•<",H",",","l"l"t","' 
1340 LET J9 = J9 + DCJ1,63 
1350 LET B=2*PI*PI*L1*L1 
1360 LET-GC1,L3=GC1,L3*4*PI/K1/K1 
1370 LET GC2,L3=GC2,L3*B 
1330 LET GC3,L3=8 
1390 LET GC4,L3=GC1,L3+GC2,L3+GC3,L3 
1408 LET GC5,L3=GC5,L3*B 
1410 LET GC6,L3=GC6,L3*B 
1428 LET GC7,L3=GC4,L3+GC5,L3+GC6,L3 
1430 NEXT J1 
1440 REM»>*>>»»»»>}»*»»}»»>»**»***»*»***>»»>»***»*>»»»»>»**»*>-»****»*>»»»»**»*»* 
1458 FOR 1=1 TO 7 STEP 1 
1460 LET GCI,43=GCI, 13+G CI, 23+G CI, 33 
1470 NEXT I 
1430 IF M1*N2=8 THEM 1568 
1430 WRITE :2,E0,GCN1,N23 
1500 IF GCN1,N23<=Y2 THEM 1528 
1510 LET Y2=GCN1,N23 
1520 IF GCN1,N23>=Y1 THEN 1543 
1530 LET Y1=GCN1,N23 
1548 PRINT E0,GCN1,M23, • 
1550 GOTO 1570 
1560 GOSUB 1900 
1578 NEXT E8 
1583 ON S0 GOTO 530,1590 
1598 REM END OF LOOP ON ENERGY 
1680 IF N1*N2=0 THEN 1658 
1618 PRINT 
1628 PRINT "• CROSS SECTION GC";M1;",";N2;"3 STORED FOR PLOT ON FILE <FIPLO> 1" 
1630 PRINT "RBSCISSR •in=";E1;" max="; E2; "•• ORDINATE •in=";Yl;" n»ax=";Y2 
1640 NEXT J0 
1650 FOR 1=1 TO 10 STEP 1 
I860 PRINT 
1570 NEXT I 
1688 GOTO 2230 
1633 REM* ********************************************************************** 
1780 REM URUE NUMBER CALCULATION 
1710 DEF FNACE03=2. 19685E-3*SQRCE03*DCJ1, 13 /CDCJ1, 13+13 
1720 REM PENETRATION FACTOR CALCULATION 
1730 DEF FNBCR1,L3 
1740 CN L+1 GOTO 1750 ,1770 ,1790 
1750 LET FN*=1 
1760 GOTO 1800 
1770 LET FM*=R1*R1/CR1*R1+13 
1730 GOTO 1800 
1730 LET FN*=R1t4/CR1t4+3*R1t2+93 
1300 FNEND 
1313 REM SQUARE SIN OF FRSE SHIFT CALCULATION 
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1320 
1330 
1340 
1350 
1360 
1870 
1380 
1390 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2180 
2110 
2120 
2 130 
2140 
2153 
2160 
2170. 
2130 
2130 
2200 
2210 
2220 
2230 

•channel radius' 

Statistical model3 SUM" 

DEF FNDCR,L,J3 
ON R GOTO 1840,1848,1840 
LET FN*=1 
GOTO 1890 
LET FN*=1 
GOTO 1890 
LET FN*=1 
FNEND 
PRINT 
DISP "PRINTING OUTPUT FOR ENERGY";E0 
PRINT "ENERGY","wave no.","uave length 
PRINT E0,K1,L1,R1 
PRINT "PARAMETERS","1=0","1=1","1=2" 
PRINT " s h i f t f a c t o r s " , S C 1 3 , S C23,SC33 
PRINT " p e n . f a c t o r s " , P C 1 3 , P C23, P C33 
PRINT "phase s h i f t " , F C 1 3 , F C 2 3 , F C 3 3 
PRINT "CROSS SECTIONS" , "CUnreso lved r e g i o n 
PRINT " p o t . s c a t t e r i n g " , G C 1 , 13 ,GC1,23 ,GC1,33 ,GC1,43 
PRINT " r e s . s c a t t e r i n g " , G C 2 , f 3 , G C 2 , 2 3 , G C 2 , 3 3 , G C 2 , 43 
PRINT " r e s * p o t s c a t t . " , G C 3 , 1 3 , G C 3 , 2 3 , G C 3 , 3 3 , G C 3 , 4 3 
PRINT " t o t a l e l a s t i c " , G C 4 , 13 ,GC4,23 ,GC4,33 ,GC4,43 
PRINT " c a p t u r e " , G C 5 , 1 3 , G C 5 , 2 3 , G C 5 , 3 3 , G C 5 , 4 3 
PRINT " f i s s i o n " , G C 6 , 1 3 , G C & , 2 3 , G C 6 , 3 3 , G C 6 , 4 3 
PRINT " t o t a l " , G C 7 , 13,GC7,23 ,GC7,33 ,GC7,43 
RETURN 
REN SUB. FOR CALCULATION OF FISSION WIDTH AT GIVEN ENERGY AND SPIN STATE 
IF CE0-QC133*CE8-QCCCJ8,6333<8 THEN 2180 
FOR J3=1 TO CCJ8 ,63 -1 STEP 1 
IF CE0>=QCJ333 RND CE0<=Q CJ3+13 3 THEM 2158 
NEXT J 3 
LET F6=0CJ2, J33 + C0CJ2, J 3 + 1 3 - 0 C J 2 , J33 3 / CG U3+13-Q CJ33 3 * CE0-Q CJ33 3 
GOTO 2220 
REN ENERGY OUT OF RANGE 
IF E0<QC13 THEN 2218 
LET F6=OCJ2,CCJ0,633 
GOTO 2220 
LET F6=0CJ2, 13 
RETURN 
END 
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3010 REN <RINEG> PROGRAM FOR Tn AND T* CALCULATION 
3028 REN OF THE BOUND LEUEL 
0030 DCL 50F* 
0040 DEF FNACn,E93=2.296771E-3*SQRCABSCE933*CN/Cn+133 
0050 DEF FNBCR,B,C3=C-B+SQRCB*B-4*A*C3 3 / 2 / A 
8060 DEF FNCCf l ,B,C3=C-B-SQRCB*B-4*A*C33/2/A 
0078 LET F*="'LLLLLLLLLLLLLLLLLLLLLLLLLL=#######. *#####" 
0030 PRINT TABC153;"<RINEG> PROGRAM FOR CALCULATION OF m AND Vf" 
0090 PRINT TABC303;"OF THE BOUND LEUEL" 
0100 PRINT 
0118 PRINT "Eu and Barns units" 
0120 DISP "NUCLEUS MASS CAURI3 ="; 
8130 INPUT tt 
0140 PRINT USING F*, "Nucleus mass C=AURI3",t1 
8150 DISP "THERMAL CAPTURE CROSS SECTION="; 
0168 INPUT S1 
3170 PRINT USING F*,"Thermal capture S1",S1 
0180 DISP "THERMAL FISSION CROSS SECTION="; 
0190 INPUT S2 
0200 PRINT USING F*,"Thermal fission S2",S2 
0218 DISP "NUCLEUS SPIN I="; 
0220 INPUT I 
8230 PRINT USING F*, "I'M 
8248 DISP "RESONANCE SPIN J ="; 
0250 INPUT J 
0260 PRINT USING F*,"J",J 
0270 DISP "RESONANCE ENERGY ="; 
3230 INPUT E 
0298 PRINT USING F*,"Er",E 
9308 DISP "RADIATION UIDTH-r3="; 
8319 INPUT G 
8320 PRINT USING F*,"rg",G 
0338 LET G7=C2*J + 13-'C2*C2*I + 133 
0348 LET L1=1'FNACN,8.82533 
8350 LET L2=1'FNACN,E3 
8360 LET C=PI*L1*L2*G7 
0370 LET D8=8.0253-E 
3330 LET F1=S2*G/S1 
0398 PRINT USING FS.'Tf C=rg*S2'S13",F1 
0408 LET A1=S1 
0410 LET B1=2*S1*CG+F13-4*C*G 
3420 LET C1=S1*C4*D0*D0+CG+F13t23 
3430 LET D=B1*B1-4*A1*C1 
8440 IF D>8 THEN 478 
3450 PRINT "IMAGINARY SOLUTION FOR l~n. CHANGE THE GUE5S" 
0460 GOTO 568 
0470 PRINT "POSSIBLE SOLUTIONS: 
8438 LET G1=FNBCA1,B1,C13 
8490 PRINT "rn =";G1, 
0500 LET G2=FNCCA1,B1,C13 
0510 PRINT T n = " ;G2 
3520 PRINT TABC233;"r8n=";G1/SQRCABSCE3 3 , 
8530 PRINT "r0n=";G2/SQRCBBSCE33 
8540 LET Q1=D0*D0+CG+F1+G13*CG+F1+G13/4 
8550 LET Q2=D0*D0+CG+FH-G23*CG+F1+G23>"4 
3568 LET S1=C*G1*G/Q1 
0570 LET S2=C*G2*G'Q2 
8580 LET S3=C*F1*G1/Q1 
0590 LET S4 = C*F1*G2/-Q2 
0603 PRINT "CHECK CAPTURE S1 =";S1,"S1 =";S2 
8610 IF F1=0 THEN 630 
0623 PRINT "CHECK FISSION S2 =";S3,"S2 =";S4 
8630 END 

317 
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318 

8019 
9020 
0030 
0048 
0050 
0060 
0070 
0030 
0090 
0108 
0110 
0120 
0133 
0140 
0150 
0160 
0170 
0130 
0190 
0200 
0210 
9220 
0233 
0248 
0250 
0260 
0270 
02S0 
0290 
0300 
0310 
0320 
3330 
0348 
0350 
9368 
0378 
3338 
0390 
8480 
8410 
0420 
0430 
0448 
0450 
8468 
8470 
8488 
8498 
8589 
8518 
8528 
3538 
8548 
05 58 
8568 
8578 
0588 
3590 
3600 
3618 
3628 
8630 
8648 
8650 

REM * <RCMB> CODE FOR GENERALIZED ROMBERG INTEGRATION * 
PRINT " * <ROriB> CODE FOR ROMBERG QUADRATURE *" 
FKEY #1,START 290: 
FKEY *2,START 430: 
FKEY #3,START 590: 
FKEY #4,START 740: 
FKEY #5,START 748: 
FKEY #6,START 1430: 
FKEY #16,START 1658: 
GOSUB 128 
GOTO 178 
PRINT 
PRINT 
RETURN 

DISP "KEY OPTIONS. KEY #1=MENU'"; 
STOP 
REN ROMBERG QUADRATURE FOR INPUT PAIRS X,Y 
REM 
DIM CC5,53 , DC53 
DATA 1,8,8,8,8,4,-1,8-8,0,64,-28,1,8,8,4096,-1344,84,-1,0,1848576 
DATA -348168,22843,-340,1,1,3,45,2835,722925 
LET R=8 
RESTORE 
READ CC1, 13 , CC1,23 ,CC1,33 ,CC1,43 , C C1, 53 ,CC2, 13 ,CC2,23 , CC2,33 ,CC2,43 ,CC2,53 
READ CC3, 13 ,CC3,23 , C C3, 33 , C C3, 43 ,CC3,53 ,CC4, 13 ,CC4,23 ,CC4,33 ,CC4,43 
READ CC4,53 , CC5, 13 ,CC5,23 ,CC5,33 ,CC5,43 ,CC5,53 
READ DC13 ,DC23 , D C33 , D C43 , D C53 
GOTO 158 
PRINT 
PRINT TABC93 

"KEY #4 
"KEY #5 
"KEY #6 
"KEY #16:Stop! program exit' 

KEYBOARD INPUT * 

PRINT 
PRINT TABC53 
PRINT 
PRINT TABC53 ; "KEY # 1 
PR INT T A B C 5 3 ; " K E Y # 2 
PR INT T A B C 5 3 ; " K E Y # 3 
PRINT TABC53 
PRINT TABC53 
PRINT TABC53 
PRINT TABC53 
GOTO 1 5 0 
REM 
REM 
REM 
LET R 8 = 8 
D I S P "NUMBER OF X , Y P A I R S = 
INPUT N 
DIM X C 1 8 8 3 , Y C 1 8 8 3 
P R I N T " I " , " X C I 3 " , " Y C I 3 " 
FOR 1 = 1 TO N STEP 1 
D I S P " X C " ; l ; " 3 = " ; 
INPUT XC I3 
D I S P " Y C " ; l ; " 3 = ••; 
INPUT Y C I 3 
PRINT I , X C I 3 , Y C I 3 
NEXT I 
GOTO 1 5 8 
REM 
REM 
REM 
GOSUB 128 
F I L E S F I P L O 
L"ET R8 = 8 
RESTORE : 1 
READ : 1 , N , E 1 

•GENERALIZED ROMBERG QUADRATURE FOR I N P U T P A I R S X , Y " 

•KEY O P T I O N S " 

M e n u " 
Input keyboard" 
input disk file <FIPLO>" 
Integration" 
Order and interval change, same input" 
print of input disk file <FIPLO>" 

INPUT FROM DISK FILE 
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0668 PRINT "NUMBER OF PAIRS FROM DISK = ";N 
8670 FOR 1=1 TO M STEP 1 
3630 IF E1>8 THEN 710 
0698 READ :1,XCI3,YCI3 
8788 GOTO 728 
3718 READ :1,XCI3,YCI3,E 
0720 NEXT I 
8739 REN 
8748 REM * INTEGRAL CALCULATION * 
0750 REM 
8760 LET R=0 
3770 PRINT 
0738 DISP "INDEX LOWER LIMIT="; 
8798 INPUT N1 
3388 DISP "INDEX UPPER LIMIT="; 
0318 INPUT N2 
8328 DISP "INTEGRATION ORDER="; 
8838 INPUT 11 
8348 PRINT "INTEGRATION ORDER ";I1 
3858 IF CI1>53 OR CIK13 THEN 988 
8860 GOTO 918 
0378 REM 
8838 REM 
8898 REM 
8388 LET 11=1 
8918 LET 12=11-1 
8828 LET M1=2TI2 
8930 LET N3=N2-N1 
0940 LET N4=N1 
0958 LET 13=0 
0968 LET R2=8 
8378 ON 11 GOTO 1888,1868,1048,1828,388 
8938 IF N3>16 THEN 1188 
0998 LET 11=11-1 
1888 LET M 1 = 2 T C I 1 - 1 3 
1 8 1 8 GOTO 9 7 8 
1020 IF N3>=8 THEN 1188 
1838 GOTO 998 
1848 IF N3>=4 THEN 1188 
1858 GOTO 998 
1868 IF N3>=2 THEN 1108 
1078 GOTO 998 
1838 IF N3>=1 THEN 1188 
1090 GOTO 1358 
1100 LET N5=N4+M1 
1110 LET N6=N4 
1128 LET M3=2tI3 
1138 LET 13=13+1 
1148 LET N7=N6+M3 
1158 LET R1=8 
1 1 6 8 I F N 7 > N 5 THEN 1 2 2 8 
1 1 7 8 LET T = C X C N 7 3 - X C N 6 3 3 * C C Y C N 6 3 + Y C N 7 3 3 ' 2 3 
1 1 8 9 LET R 1 = R 1 + T 
1 1 9 8 LET N 6 = N 6 + t13 
1 2 0 0 LET N 7 = N 7 + M 3 
1 2 1 0 GOTO 1 1 6 8 
1 2 2 8 LET R 2 = R 2 + R 1 * C C I 1 , 1 3 3 
1230 IF I3>=I1 THEN 1308 
1248 LET 14=13+1 
1258 IF CI4>53 OR CI4<13 THEN 1288 
1268 ON 14 GOTO 1838,1868,1048,1828,988 
1278 GOTO 1388 
1288 LET 14=1 
1 2 9 8 GOTO 1 2 6 8 
1 3 3 8 LET R 2 = R 2 ^ D C I 1 3 
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1310 LET R=R+R2 
1328 LET N4 = N5 
1339 LET N3=N2-N5 
1340 GOTO 958 
1350 LET R8=R8+R 
1360 PRINT "INTEGRAL BETUEJIN X C"; N1 ; "3 ="; X CN13 ; " . e "; "X C" ; N2 : "3 ="; X CN23 ; 
1378 PRINT ": R=";R;" AND CUNULATIUE UALUE = ";R8 
1388 DISP "INTEGRAL = ";R; 
1390 STOP 
1400 STOP 
1410 GOSUB 128 
1420 PRIMT "I","XCI3","YCI3" 
1438 FOR 1=1 TO M STEP 1 
1448 PRINT I,XCI3,YCI3 
1450 NEXT I 
1468 GOTO 158 
1470 REN 
1480 REN * INPUT PRINT TROU DISK FILE * 
1490 REN 
1598 GOSUB 120 
1518 RESTORE : 1 
1520 READ :1,N,E1 
1538 PRINT ТДВС83,"NUMBER OF PAIRS X,Y FROH DISK = ";N 
1540 PRINT 
1550 PRINT •• I " , " X C I 3 " , " Y C I 3 " . " DYCI3" 
1560 FOR 1=1 TO N STEP 1 
1570 IF E1>8 THEN 1618 
1538 READ : 1 , X C I 3 , Y C I 3 
1598 PRINT L X C I 3 ,YCI3 
1688 GOTO 1638 
1618 READ : 1 , X C I 3 , Y C I 3 , E 
1623 PRINT I , X C I 3 , Y C I 3 , E 
1638 NEXT I 
1648 GOTO 158 
1650 GOSUB 120 
1660 PRINT TABC253;"* STOP! <ROMB> CODE EXIT *" 
1678 END 

TABLE 1. Parameters in the resolved region for SL Breit-Wigner 
representation 

TABLE 1. 
FKEY# 6: PRI 

ZAI 
4.61380E+84 

EL 
1.30800E-05 

SPI 
0.08000E+00 

AMR I 
1.36720E+02 

ER 
.52480E+03 
.09100E+04 
.65000E+04 
.02508E+04 
.04000E+04 
.91800E+04 
.38008E+04 
.900в0Е+04 
.40008E+04 

7.38000E+04 
3. 18008E + 04 
8.94000E+04 

AURI 
1.36720E+02 

ER 
4.71406E+03 
7.376O0E+03 
1.48400E+04 
1.37300E+04 
1.99000E+84 
2.34480E+04 
2.43088E+04 
2.29580E+04 
3.26300E+04 
3.54288E+84 
4.37580E+04 
4.38500E+84 
5. 13000E+04 
5.34000E+04 
5.55838E+04 
6. 16888E + 04 
6.55300E+04 
7.29808E+04 
3.35800E+04 

AURI 
1.36720E+02 

ER 
9.35608E+03 
2.62488E+84 
3.13100E+04 
3.23388E+04 
3.33500E+04 
6. 18000E+04 
7.33800E+04 
7.38000E+04 

SINGLE LEUEL BU PPRAÏ1ETERS IN RESOLVED 
NT OF THE RECALLED FILE <BA138> 

ABN Ь LFU 
1.00000E+00 8.80вввЕ+08 0.80000E+00 1. 

EH LRU LRF 
9.88880E+04 1.80880E+00 1.80008E+00 0. 

ДР b b 
6.23350E-01 0.08800E+80 0.00808E+08 3. 

AN L b 
0.00080E+00 0.88000E+88 0.00008E+80 7. 

AJ GT GN 
5.00008E-01 8.63180E+81 8.60008E+01 3. 
5.00888E-01 2.25358E+82 2.25888E+02 3. 
5.00088E-01 2.83188E+81 2.88888E+81 3. 
5.00088E-01 1.50258E+02 1.50888E+82 2. 
5.00000E-01 2.50325E+02 2.58008E+82 3. 
5.00008E-01 7.83688E+81 7.00080E+81 3. 
5.80800E-01 1.00288E+82 1.80088E+82 2. 
5.00088E-01 4.00587E+02 4.08000E+82 5. 
5.00000E-01 1.00245E+02 1.80080E+82 2. 
5.00880E-01 1.50223E+02 1.50000E+02 2. 
5.08080E-81 2.02840E+81 2.08008E+01 2. 

02388E+01 2.08808E+01 2. 
L Ь 

00000E+08 8.800ввЕ+00 1, 

REGION. BARIUM 138. 

5.00088E-81 
ДП 

8.08800E+08 
AJ GT 

5.80088E-01 8.50000E-82 
1.50000E+88 3.84508E+88 
1.58880E+08 
5.00888E-81 
1.58888E+88 

3.03480E+88 
1.84380E+08 
7.55800E+88 

1.58880Е+вв 1.88468E+81 
5.88808E-81 5.84&88E+88 

GN 
,50888E-02 
. 88088Е+вв 
00008E+00 
00008E+08 
, 50080E+80 
00088E+01 
80000E+08 
, 00000E+08 
48808E+01 
80808E+81 
888ввЕ+8в 

1.50000E+00 5.05880E+08 
5.08080E-01 1.48440E+81 
1.58808E+80 1.08418E+01 
1.58088E+08 5.8390вЕ+88 
1.58088E+88 5.87180E+88 5.88800E+00 
5.00088E-01 1.87380E+80 1.08008E+08 
1.50080E+00 1.07380E+81 1.88еввЕ+81 
1.58000E+ee 2.88798Е+81 2.00088Е+81 
1.50088Е+80 2.88768Е+01 2. 
1.50080Е+00 5.89488Е+88 5. 
1.50000Е+08 5.88688Е+80 5. 
1.50800Е+88 5.86880Е+80 5. 

RN L b 
8.30800E+00 2.8в880Е+в8 0.88888Е+08 

AJ GT GN 
2.80000E+08 1.12888E-81 1.20000E-02 
2.08888E+88 1.12800E-81 1.28088E-82 
2.88800E+88 1.24888E-81 2.48888E-82 
2.88880E+80 1.1888вЕ-81 1.88800Е-82 
2.88000E+08 1.20000E-01 2.888ввЕ-82 

1.44088E-81 4.48888E-02 

5. 
4. 
3. 
4. 
5. 
4. 
4, 
5. 
4, 
4. 
3. 
7. 
7. 
7. 
7. 

88888Е+в1 7. 
8вв88Е+вв 9. 
88888E+00 8. 
88888E+88 6. 

88000E+08 
2.00000E+00 
1.50880E+00 3.40008E-81 2.40888E-81 
1.50000E+00 1.07500E+88 1.88808E+80 

NER 
888в8Е+вв 

b 
00808E+00 
NLS 

88080E+80 
6*NRS 
28000E+81 

GG 
10088E-81 
50000E-81 
10008E-81 
58888E-01 
258ввЕ-81 
68800E-81 
88888E-01 
87008E-01 
45800E-01 
23888E-81 
84883E-81 
88888E-81 
6*NRS 
14888E+82 

GG 
08008E-82 
58888E-82 
40080E-02 
30088E-02 
88000E-02 
60080E-02 
68800E-02 
80880E-02 
40888E-82 
18808E-82 
98388E-82 
18888E-82 
3088вЕ-82 
38888E-82 
98888E-82 
60808E-82 
48888E-82 
68080Е-в2 
80008E-82 
6*NRS 
88888E+81 

GG 
88088E-81 
88880E-81 
08088E-81 
80088E-01 
80000E-01 
80008E-81 
00088E-81 
58880E-02 

8.80008E+88 
Ь 

8.88808E+08 
NE 

0.00000E+08 
NRS 

1.28008E+01 
GF 

8.88088E+88 
0.00000E+88 
0.80000E+80 
0.80000E+88 
8.00800E+00 
0.00880E+00 
0.88808E+88 
8.00808E+08 
0.00008E+08 
8.88008E+00 
8.88088E+00 
8.88880E+88 

NRS 
1.90388E+81 

GF 
0.00000E+08 
0.08888E+08 
0.00800E+88 
8.80088E+80 
8.00880E+08 
0.00008E+08 
0.00000E+08 
8.80088E+08 
8.88888E+08 
0.80080E+00 
0.00888E+08 
8.88888E+08 
8.8Э888Е+88 
8.00080E+O8 
0.80808E+88 
0.80080E+88 
8.O8000E+88 
8.80008E+80 
8.88888E+88 

NRS 
8.88000E+88 

GF 
0.00080E+08 
0.88800E+00 
8.80000E+08 
0.000в0Е+08 
8.Э8888Е+88 
0.80вв0Е+08 
8.80800E+08 
3.80888E+80 

1 
2 
3 
4 
5 
6 
7 
8 
9 
18 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
38 
31 

32 
33 
34 
35 
Зо 
37 
33 
39 

319 



TABLE 2. Parameters in the resolved region for ML Breit-Wigner 
representation 

TfiBLE 2. HULTILEUEL I 
FKEY# 6: PRINT 
2 

1 

0 
5 

-1 
2 
1 
1 
2 
2 
2 
2, 
2, 
3, 
3. 
3. 
3. 
3. 
3. 

5. 

:. 1 . 
1. 
5. 
5. 
6. 
1. 
1 . 
2. 
3. 
3. 
3. 

2fll 
.48548E+84 

EL 
.ЗЭ880Е-05 

SPI 
.08088E+00 
auRi 

.34758E+01 
ER 

. 12900Е + Э4 

.29800E+04 

.20108E+05 

.73888E+05 

.43868E+05 

.76088E+85 

.3308ЭЕ+05 

.33408E+05 

.38588E+05 

.00500E+05 

.33308E+05 

.51380E+85 

.55100E+85 

.S8588E+05 

. 93588E+05 
flURI 

34758E+81 
ER 

03008E+04 
44900E+94 
31088E+84 
11988E+84 
49088E+04 
75080E+Q4 
69388E+85 
39380E+85 
35800E+05 
32980E+85 
53780E+85 
37588E+85 

2 

Б 

4 

8 

5, 
5 
5, 
5. 
5. 
5. 
5. 
5. 
5. 
5. 
5. 
5. 
5. 
5. 
5. 

0. 

1. 
5. 
1. 
5. 
1. 
1. 
5. 
5. 
5. 
5. 
5. 
5. 

BU PRRP.METERS 
OF THE RECHLLED FILE • 
RBM 

.36508E-02 
EH 

.42848E+85 
ЙР 

.80008E-81 
ЙМ 

.80000E+08 

.00088E-81 

.00888E-01 

.30880E-01 

.80008E-01 

.00888E-01 

.80008E-01 

.80000E-01 
,00800E-01 
.80000E-01 
.00080E-01 
.00008E-01 
,00000E-01 
.08080E-01 
,08000E-01 
00000E-01 

AM 
00800E+08 

58000E+0O 
00800E-81 
50008E+08 
88000E-81 
50088E+00 
58888Е+вв 
00008E-01 
80000E-81 
00008E-01 
88080E-01 
80000E-81 
00000E-01 

0, 

1, 

0. 

0. 

4, 
5. 
3. 
1, 
1. 
9. 
3. 
9. 
6. 
5. 
1. 
2. 
3. 
5. 
4. 

1. 

6. 
9. 
7. 
1. 
8. 
1. 
5. 
2. 
3. 
8. 
4. 
1. 

Ь 
.00080E+80 

LRU 
. 00800E + 88 

b 
.00880E+08 

L 
.00008E+00 

GT 
. 32500E + 82 
.90280E+82 
.50250E+83 
.90180E+83 
.20248E+83 
.00250E+83 
.80258E+03 
. 50250E+03 
.82508E+82 
.02508E+02 
,00025E+04 
,02840E+82 
,00250E+03 
.02848E+82 
88250E+83 

L 
80080E+00 

GT 
75080E-01 
30808E-01 
38888E-01 
84008E+08 
08888E-81 
21888E+08 
88680E+02 
55600E+82 
80608E+02 
10688E+02 
08688E+82 
84068E+83 

IN RESOLUED I 
<CR54> 

0 

2 

0, 

0, 

4, 
5, 
3, 
1. 
1. 
9. 
3. 
9. 
6. 
5. 
1. 
2. 
3. 
5. 
4. 

0. 

7. 
3. 
1. 
4. 
2. 
6. 
5. 
2. 
3. 
8. 
4. 
1. 

LFW 
.00888E+08 

LRF 
.08000E+88 

ь 
.08800E+00 

ь 
.80800Е+8в 

GM 
.30800E+02 
.98080E+82 
.50008E+83 
.98808E+83 
.20888E+03 
.00088E+83 
.00008E+83 
.50088E+03 
.8в88вЕ+02 
.80080E+02 
.00000E+04 
.00000E+02 
.8Й880Е+83 
.88008E+02 
,80888E+03 

Ь 
. 08888E+80 

GM 
50800E-82 
30000E-81 
38000E-01 
40008E-81 
08808E-01 
18888E-81 
00880E+02 
55080E+02 
00088E+02 
10888E+02 
88880E+02 
04000E+03 

1 

0 

2 

9 

2. 
2 
2. 
1. 
2. 
2, 
2. 
2, 
2, 
2. 
2. 
2. 
2. 
2. 
2. 

7. 

6. 
Б. 
6. 
Б. 
6. 
Б. 
Б. 
Б. 
Б. 
6. 
Б. 
Б. 

REGIOM. CHROMIUM 54. 

MER 
.80000Е+08 ь 
.00800Е+00 

MLS 
.08088Е+80 
6*NRS 

.00008Е+01 
GG 

.50880E+80 

.08008E-01 

.50000E+00 

.00880E+00 

.40880E+08 

.50080E+08 

.50008E+88 

.50080E+08 

.50888E+88 

.50808E+08 

.58080E+08 

.84808E+88 

.58в00Е+8в 

.84888E+88 

.50080E+00 
6*MRS 
, 20888E + 01 

GG 
08888E-81 
.88808E-81 
88888E-01 
80000E-01 
00008E-01 
8888вЕ-81 
88800E-81 
00088E-01 
00008E-81 
88888E-01 
8в888Е-в1 
88888E-81 

8, 

0, 

0, 

1, 

0, 
0, 
8, 
8, 
8, 
8, 
8. 
8. 
8. 
8. 
8. 
8. 
8. 
8. 
8. 

1. 

8. 
8. 
0. 
8. 
8. 
8. 
0. 
8. 
0. 
8. 
8. 
8. 

ь 
.00000E+08 

ь 
.00080E+00 

ME 
.88088E+08 

MRS 
. 58вв8Е + 81 

G F 
.80000E+00 
.00880E+00 
.08080E+00 
.00000E+88 
.88088E+88 
.88808E+00 
.08880E+00 
.00008E+00 
. 88888E+88 
.00000E+00 
, 88000E+00 
.00000E+00 
,88888E+08 
.00808E+00 
,8ввв8Е+08 
MRS 

20808E+81 
GF 

00008E+00 
0ввввЕ+вв 
88вввЕ+в8 
88088E+88 
80888E+88 
88888E>88 
88080E+88 
00088E+08 
00880E+08 
8888ЭЕ+00 
00880E+08 
8в888Е+08 

re f. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

18 
11 
12 
13 
14 
15 

15 
1Б 
17 
18 
19 
28 
21 
22 
23 
24 
25 
26 

TABLE 3. The formulas for the cross section representation with 
the SL Breit-Wigner approximation 

S i n g l e - L e v e l B r e i t - W i g n e r Formula: LHU-1, LRF-1 

The formulae appear ing i n Gregson e t a l - , which o m i t the r e s o n a n c e -

r e s o n a n c e i n t e r f e r e n c e t erms , are a d o p t e d . These f o r m u l a e , w r i t t e n i n t h e 

l a b o r a t o r y s y s t e m f o r a l l l - v a l u e s and w i t h o u t Doppler b r o a d e n i n g , a re ( f o r 

a p a r t i c u l a r i s o t o p e ) 

1 . E l a s t i c S c a t t e r i n g Cross S e c t i o n 

NLS-1 

j (E) - У а 1 ( Е ) , n , n Z—« n , n 

a 1 „(E) - ( 2 t + l ) ^ - s i n 2 Ф. 
П,П .2 I 

E^E 
J Г2 с о 8 2 ф . - 2 Г (Г + Г , ) s i n % „ + 2 ( Е - Е ' ) Г s i n 2 * , 

ПГ t ПГ y r f r l Г ПГ i 
k 2 Z - r ' J ^ - r „_^2 

J r - 1 

2 . R a d i a t i v e CaDture Cross S e c t i o n 

NLS-1 

a (E) - \ a ( E ) , 
n,Y / J n,Y 

1-0 

° n . T k ^ ' j Z f ( E - E ' ) 2 • 1, 

Г Г 
т; 

2 1 /4 Г 

3. Fission Cross Section 

NLS-1 

°n.f(E) - X °n!f(E)' 



O l,(E) - E * E n.f .2 Z-^ ̂  Z_/ (E.E-,2 + x/4 r2 

2J+1 . 
9J " 2(21+1) 

I is the spin of the target nucleus and J is the spin of the compound 

nucleus for the resonance state. 

I ° SPI, as given in File 2 data for each isotope. 

TABLE A. The Multilevel interferential part in the Breit-Wigner 
cross section approximation 

Multilevel Breit-Wiqner Formula: LRU=1, LRF=2 

The equations are exactly the same as above, except that a level-

level interference term is included in the equation for elastic scattering 

NR, r-1 

V Y " V 2rnrrns [<**? <*'*? + 1 / 4 rr rs1 

^ 9j ^ 4 ? [(B-E;)2 + 1/4 ?l] [(E-EV + 1/4 V ] 
JT 
2 

1 J r=2 s 

TABLE 5. Matrix form of the elastic cross section for one resonance 
with Breit-Wigner formula 

o = (2sin<fc„ 
n,n Y£ 

e £.a. 

2£+l 

r . 

nj 

"3 

2sin<f)( 

e Y£.a. 
j ; 

from which, by the identity 

2Esin({> 2Esin<}>. 
2sind>„ = -—.-.-y £ -i<j> 

T i c o s ^ - i C - E s i n t f O j e {Ecos<j>£+i (-Esin<f>£)| 

and i n t r o d u c i n g the f i c t i t i o u s wid th and the energy d i s t a n c e 

T £ = -2Esin<££ AEi = Ecos<fr£ 

which are "energy dependent", we can write down the elastic cross 

section including potential, resonance and interferential res.xpot. 

of one isolated resonance: 

,l = vK2 y g . ( - _ l 
n , n h 6 j -i<J>. i £ * T £ * J e .a„ e . a . 

£ 1 

( -r £ ) 2 (2£+i) - r 0 r„ , 

-r0r. . 
£ n j 

f 1 
V n j 

.r . 
n j n j 

i*£ 
e ' a £ 

1 
i*£ 

e . a . 
J' 

where 

a* ' iE* + * ~i »; - » t - i -f 
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TABLE 6. Matrix form of the ML Breit-Wigner elastic cross section 

with many resonances and one neutron channel 

^2h 

r£(2£+n 

r r 
r n i . 
I n2 

r r -r r 
fn1 l n2 

r «r , r r „ 
n1 n1 n1 n2 

r r „ r r „ 
nl n2 n2 n2 

Interf.potxres 

{ £+1 

Interf.potxres 

Interferences 

(off-diagonal) 

N resonances 

SLBW on diagonal 

£+1 

AE. + ir./2 
J J 

T. = total width of res. j 
J 

* = row vector complex conjugate 
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TABLE 7. The random generation of signs for u. 

<ri>i 

+ 

-

+ 

(rc>j . 

+ 

-

-
+ 

u. 
J 

+ 

+ 

-

% events 

I 50 

J 
I 50 

J. 

TABLE 8. The data in the resolved region for Reich-Moore formalism 

FKEY* 6: PRINT 
2AI 

9.42410E.+ 04 1 
EL 

1.38808E-05 1, 
SPI 

2.58088E+00 S, 
PUR I 

2.33986E+82 0, 
ER 

2.63803E-01 
4.28088E+00 
4.58300E+00 
5.93800E+08 
6.93880E+00 
3.61880E+00 
9.62Q00E+00 
9.9S000E+00 
'.27700E+01 
1.34230E+01 
'.33880E+01 
1.47500E+01 
1 .59600E + 01 
1.SS730E+01 
1.73300E+01 
1.32880E+01 3. 
2.87888E+01 3. 
2.18788E+01 3. 

OF THE RECALLED FILE 
ABM b 

08888E+88 8.88088E+80 
EH LRU 

04080E+02 1.00880E+80 
PIP b 

&0888E-81 8.80888E+00 
AM L 

88008E+08 8.80000E+08 
FIJ GN 

80008E+80 4.37142E-05 
08888E+08 6.19714E-84 
80888E+80 4.50008E-84 
08800E+80 3.35768E-83 
80808E+08 7.89714E-04 
00000E+08 8.70800E-04 
08800E+00 4.73488E-04 
a8888E+88 2.22080E-83 
00800E+08 9.36088E-84 
80000E+00 2.13771E-83 
50880E+08 2.08800E-05 
08880E+08 6.98888E-83 
88838E+00 1.32840E-83 
88388E+08 1.16228E-03 
00880E+08 3.49971E-83 
00900E+88 1.60285E-84 
08800E+80 3.57428E-04 
08888E+00 4.88571E-05 

<PU241> 
LFU 

1.00088E+B8 1, 
LRF 

3.00880E+08 8. 
b 

8.88088E+88 1. 

0.00800E+80 5 
GG 

4.88888E-02 7 
4.80088E-82 2 
4.00000E-82-2 
4.88088E-82-1 
4.88808E-82-8 
4.88080E-02 4 
4.00800E-82 1 
V.80008E-82 3 
4.00888E-82-2 
4.88888E-82 0 
4.88888E-02 5 
4.80888E-82 1. 
4.08080E-82-4. 
4.80888E-82 1. 
1.40008E-82 8. 
4.08880E-82 2. 
4.00088E-82 5. 
4.80000E-82 8. 

NER 
00800E+00 8 

b 
00800E+00 8 
NLS 

88800E+88 0 
6*MRS 
52808E+82 9 
GF1 ^ 

58888E-82 8 
98000E-02 8 
40800E-82 1 
29208E+88 1 
98888E-82 8 
18880E-82 0 
82088E-01 3 
92888E-81 6 
33888E-81 8 
88888E+88 2 
.30088E-02 0. 
00808E-81 1. 
00008E-81 5. 
84888E-81 8. 
00808E+88 0. 
78888E-82 8. 
88880E-02 3. 
88888E+88-3. 

.08808E+08 
b 

.88888E+88 
NE 

.00008E+88 
MRS 

.20000E+81 
GF2 

.00008E+80 

.00088E+88 

.88000E-01 

.68888E-82 

.80000E+00 

.88000E+08 

. 18080E-02 

.18888E-01 

.88888E+88 

.98888E-02 
80000E+00 
70888E-82 
58888E-82 
88880E+08 
00888E+88 
00000E+80 
08800E-83 
38800E-02 

2 
3 
4 
5 
& 
7 
8 
9 
18 
11 
12 
13 
14 
15 
16 
17 
18 

-I I 3 
•j 

9 
8 
3 
9 
1 
1 
1 
1 

54200E+01 
61200E+01 
bS.530E + 81 
75398E+01 
84100E+01 
97888E+01 
30738E+02 
81610E+02 
02330E+82 
03660E+82 

2 
2 
2 
3 
3 
3. 
2. 
3 
2 
3. 

08088E+00 
00080E+08 
80880E+88 
08000E+00 
30880E+00 
00800E+08 
58880E+08 
08080E+80 
88000E+88 
88000E+88 

1 
4 
6 
5 
6 
2 
4 
8 
1 
1 

11128E-
70400E-
58400E-
29714E-
54771E-
42742E-
80088E-
75142E-
82288E-
89971E-

-83 
-84 
-84 
-84 
-83 
-03 
-84 
-84 
-03 
-03 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

80000E-
88888E-
80008E-
00080E-
88888E-
80000E-
00880E-
08888E-
88008E-
00000E-

-82 
-82-
-82 
-82 
-02 
-02 
-82 
-02-
-02 
-8? 

5 
-1 
3 
8 
1 
3 
2 
-4 
8 
8 

98888E-02 
90080E-02-
55888E-81 
88088E+88 
71808E-81-
87888E-81 
32888E-81 
28888E-02-
76888E-81 
00000E+00 

2 
-6 
5 
2 
-1 
7 
0. 
-5 
8 
2 

88888E-81 
98888E-02 
80000E-83 
71888E-01 
88880E-02 
40000E-82 
88303E+00 
00880E-83 
88888E+08 
18880E-02 

83 
84 
85 
86 
87 
88 
89 
90 
91 
92 



TABLE 9. Resonance parameters for Cm-245. Phase angles refer to 

the fission-width-vector orientation in a two-fission-

channel, single-spin-state analysis 

£ . 
(eV) 

21.36 
24.90 
25.84 
-T..83 
27.63 
29.42 
31.71 
32.99 
34.59 
35.31 
36.32 
39.45 
40.44 
42.45 
43.10 
44.57 
45.74 
47.51 
49.20 
50.48 
51.64 
53.63 
54.63 
56.32 
58.54 
59.99 

2*r„» 
(meV) 

0.457 
0.521 
0.007 
0.147 
0.114 
0.638 
0.088 
0.064 
0.039 
1.276 
0.256 
0.104 
0.705 
0.824 
0.264 
0.391 
0.087 
0.516 
0.718 
0.252 
0.087 
1.687 
0.045 
0.186 
1.811 
0.079 

rr 
(meV) 

(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 
(40) 

T/ 
(meV) 

485 
226 
549 
131 
165 
328 
691 

4 
61 

4195 
189 
102 
585 

10 
537 
694 
901 

28 
1399 

751 
207 
896 

1057 
505 
393 
518 

e 
(deg) 

- 1 6 
99 
89 

160 
90 

- 1 7 1 
- 6 9 ' 
- 6 1 
113 

54 
177 

- 1 2 6 * 
128 

56 
- 5 5 
- 6 7 

- 9 
28 
58 
92 

106 
- 1 7 3 

174 
54 

162 
- 3 9 

a B e s t fits were obtained by placing those resonances 
marked with an a in a different spin group. 

TABLE 10. The formulas for Reich-Moore representation of the ML 

two fission channel cross section 

0 . 1 . 3 . Reich-Moore Formulae 

A d e t a i l e d d e r i v a t i o n o f t h e s e formulae i s t o be found i n Reich and 

Moore. Neutron c r o s s s e c t i o n s w i t h an e x i t channel c are g i v e n by* 

0 *" . , A
2 Y ^ g |« - 0

J |2 . I 
nc n / J J' nc nc' 

J 

where X is calculated in the center-of-mass system; and 
n 

n 

where AWRI is the mass of the target nucleus in units of neutron mass. The 

statistical factor 

(2J+1) 
9 J " 2(21+1) ' 

(3) 

where J is the spin of the compound nucleus resonance and I is the target 

nucleus spin. 

In terms of the Reich-Moore approximation one may write 

A nc nc 
(4) 

where (I-K) . - 5 

- 1/2 1/2 
i V"* Xc *Xc* 

cc' "«' 2 2-J E _ E - i r 
X EX E 2 lXy 

(5) 

where the summation in Eq. (5) is over the resonance levels Xi E. is the 

resonance energy; I\ , the corresponding radiation widths; and I", and T, , 

are the widths for the X-th level and channels c and c", respectively. 

If we define 

nc nc a 

of the element (I-K) of the matrix I-K, we obtain 

E 

n / * 
g (l-cos2$ ) + 2g Re <r-J 

n *2 y a \x-vJ |2 . 
n / > 'J ' nn1 

(6) 

(7) 

nAbs nT nn 

: S ' , ( S i . „ i ' ) -

(8) 

(9) 

o - c n-y nAbs nFiss 
(1C) 



TABLE 11. The U-233 experimental parameters for resolved region 

evaluated with the Reich-Moore multilevel approximation 

Level 

M 
1 
2 
3 
4 
5 
6 
1 

3 

) 10 
11 
12 

£x 
(ev) 

0.19S 
1.55 
1.76 
2.31 
3.61 
4.75 
5.82 
6.82 
7.6 
8.7 
9.2 

10.47 

One fission channel 

iJ* 

7/12 
5/12 
7/12 
7/12 
7/12 
5/12 
7/12 
7/12 
7/12 
7/12 
7/12 
7/12 

rx.« 
(io-» 
ev) 

0.00059 
0.165 
0.155 
0.0S6 
0.060 
0.130 
0.047 
0.300 
0.007 
0.010 
0.019 
0.411 

parameters 

TXT 
(io-« 
ev) 

44 
60 
36 
34.6 
62 
80 
80 
55 
48 
40 
50 
85 

I V 
(10"' 
ev) 

60 
562 
182 
48 

174 
718 
316 
146 
125 
300 
180 
270 

Relative 
sign of 
B\\3\* 

+ 
. . . b 

— - i . 

+ . . . b 

— 
+ 
— 
— 
— 
+ 

Ex 
(ev) 

0.150 
1.56 
1.755 
2.305 
3.65 
4.825 

. . . « 
6.82"» 

• • •• 
• • •• 
• • •• 10.47* 

SJ-

7/12 
7/12 
7/12 
7/12 
7/12 
7/12 

7/12 

... 

... 

... 7/12 

Two 

TxS 
(10"» 
ev) 

0.00002 
0.104 
0.162 
0.086 
0.057 
0.105 

0.300 

... 

... 0.411 

fission ch 

TxT 

(io-» 
ev) 

30 
54 
36 
34.6 
53 
80 

55 

... 85 

annel 
Txr 

(io-« 
ev) 

60 
420 
186 
48 

149 
850 

... 
146 

270 

paramctt 
28xf 
(io-» 
cv) 

35 
0 

186 
45.6 

129 
750 

0 

... 

... 0 

:rs 

2BW 
(10"' 
ev) 

25 
420 

0 
2.4 

20 
100 

... 
146 

... 270 

Relative 
signs ot 

Bx\B\t flxi^M 

— 

— 
+ 
+ j . 

... 

+ 
— 
— 
+ 
— 
— 

• Based on considerations presented in the text (discussion). 
'Sign immaterial, since the contribution was calculated using a singje-lerel formula. 
' Not included in the two fission channel analysis. 
'Carried over from the one fission channel analysis. 

TABLE 12. The p o s s i b l e sequence of s i g n s f o r a m a t r i x of o rde r 3 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

Yl 

+ 

+ 

+ 

+ 

-
-
-
-

Y2 

+ 

+ 

-
-
+ 

+ 

-
-

Y 3 

+ 

-
+ 

-
+ 

-
+ 

" 

No. 

1 

4 

6 

7 

7 

6 

4 

1 

a 1 2 

+ 

+ 

-
-
-
-
+ 

+ 

a 1 3 

+ 

-
+ 

-
-
+ 

-
+ 

a 2 3 * 

+ 

-
-
+ 

+ 

-
-
+ 

TABLE 13. The procedure f o r a d e t e r m i n a t i o n of t h e bound l e v e l 
as adopted in t h e code RINEG 

The code calculates the neutron and fission (if f i s s i l e ) widths 
of the negative bound level which better reproduce the thermal capture 
and fission cross-sections at 0.0253 eV. 

The single level Breit-Wigner resonance profile is assumed with 
the following known input parameters 

AWRI a atomic mass unit (neutron » 1) of the isotope 

51 = thermal capture cross section 

52 * thermal fission cross section (if non f i s s i l e put * 0) 

I a spin target nucleus 

J = resonance spin for i=0 bound level 
Er = resonance energy for 2»0 bound level 
r = radiative width 

The calculation immediately provides for computing F- = r *(S2/S1) 
and frora the BW simolified formula for x-reaction 

ax = **h — 
(E-Er)» + -{-

we solve with respect to r or r by the equations 

a i r n + b i r n + c i x ° 

&i = ffc 

bi = 2ac(rY+rf) - 4cr7 

ci = oc (4(E-Er)
2 + (iyrf)

2} 

C - ^ g . 

or 
a2 r

2 + b2 rx + c2 * 0 

a2 = ax 

b: - 2a x( Vr r) - 4CFn 

c2 = ax {4(E-Er)
2 + (rn+rY)

2} 

C - ^ 9 j 

The reaction index x is generally referred to fission reaction. 



TABLE 14. Cross s e c t i o n s i n the Unresolved Region 

a . E l a s t i c S c a t t e r i n g Cross Sect ion 

MLS 

2-0 

NJS. 

° n \ n <E) " ^ f ^ Sj < 2 j t f l ) s i n 2 < 5X 

NJS, 

+ 2ff̂ _ > g 

J Ik »J 

,-„2, A *n\ - 2 f̂  j sin**, 

\ T / \ j 

b. Radiative Captive Cross Section 

NLS 
C n , y (E) 

-t-0 

(E) 

NJS, 

°£,y (E) " 
2r̂  V ^ 

k2 2^i 
I.J 

V\ 
7 

I.J 

c . F i s s i o n Cross Sect ion 

NLS 

^ , , :-: 
-i.-o 

NLS . 

'n,f (E) - 2 an,f CE) 

NJS, 

*n,f <E> " _ i £ 
J D - I , J 

W 
t , j 

TABLE 15. Cross sections in the Unresolved Region (continuation) 

The summation over t, in the above equations, extends up 

co i • 2 or to NLS (where NLS is the number of -l-states for which 

data are given). For each value of t, the summation over J-states 

extends to NJS. (the number of J-states for a particular £-state) . 

NLS and NJS are given in File 2. 

2S\ - ( **,, s*A »*,, 
'-,J rl,J 

where R } j } R ^ J , and 3^. j are fluctuation integrals for captsre, 

fission, and elastic scattering, respectively. Associated with each Of 

these integrals is the number of degrees of freedom for each of the 

average widths. 
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TABLE 16. Parameters for the Unresolved Region. Curium 245 

FKEY# S : P R I N T OF THE RECALLED F I L E < C ! 1 2 4 5 U > 
Z O I ABM b L F U NER b 

9 . S 2 4 5 0 E + 8 4 1 . 0 0 0 0 8 E + B 8 8 . 8 8 8 8 8 E + 8 8 1 . 8 8 8 8 8 E + e 8 1 . 8 8 8 8 8 E + 8 8 8 . 8 0 8 0 0 E + 0 0 
EL EH LRU LRF b b 

& . 1 0 8 0 0 E + 8 1 1 . 8 8 8 8 8 E + 8 4 2 . B 8 8 8 8 E + 0 0 1 . 0 8 8 0 0 E + 8 8 8 . 8 8 8 8 8 E + 8 8 8 . 8 0 0 8 8 E + 0 8 
S P I RP b b NLS ME 

3 . 5 0 8 0 0 E + 0 8 9 . 5 0 0 0 8 E - 0 1 0 . 8 8 8 8 8 E + 8 8 8 . 8 8 8 8 8 E + 8 8 3 . 8 8 8 8 8 E + 8 0 2 . 8 8 8 8 8 E + 0 8 
• ES' = 6 1 1 8 8 8 0 • 

flURI Rtl L b 6 * N J S MJS 
2 . 4 2 9 6 0 E + 8 2 8 . 8 8 8 8 8 E + 8 8 0 . 8 8 8 8 8 E + 8 8 8 . 8 8 8 8 8 E + 8 8 1 . 2 8 8 8 8 E + 8 1 2 . 8 8 0 8 8 E + 8 8 

DJ RJ AMUM < G N 8 > <GG> PtUF 
2 . 3 3 4 3 8 E + 8 8 3 . 0 8 8 8 0 E + 8 8 1 . 8 8 0 8 8 E + 0 0 3 . 3 7 2 8 8 E - 8 4 3 . 6 8 8 8 8 E - 8 2 2 . 0 8 0 0 8 E + 0 0 

• GF = . 3 9 4 . 4 1 9 • 
2 .20444E+08 4 .88008E+88 1 .88888E+88 2 . 6 2 3 2 9 E - 8 4 3 . 4 4 8 8 8 E - 8 2 2 .88800E+90 

• GF = . 4 3 2 . 4 6 5 • 
fiURI AH L b 6 * M J S NJS 

2 . 4 2 9 6 0 E + 8 2 8 . 8 8 8 0 8 E + 8 8 1 . 8 8 8 8 8 0 8 8 8 . 8 8 8 8 8 E + 8 0 2 . 4 8 8 8 0 E + 0 1 4 . 8 8 8 8 8 E + 8 8 
DJ OJ RrHJM < G N 0 > <GG> niJF 

3 . 9 6 3 0 0 E + 8 8 2 . 8 8 8 8 8 E + 8 0 1 . 8 8 8 8 8 E + 8 8 8 . 3 3 2 3 8 E - 0 4 3 . 7 0 8 8 8 E - 8 2 2 . 8 8 8 8 8 E + 0 8 
• GF = . 3 6 . 3 7 8 • 

2.33430E+80 3.88800E+00 2.88888E+88 5.95283E-84 3.68880E-82 2.80000E+08 
• GF = .394 .419 • 

2 . 2 3 4 4 4 E + 0 8 4 . 8 8 8 8 8 E + 8 8 2 . 8 8 8 8 8 E + 8 8 4 . 6 2 9 3 2 E - 0 4 3 . 4 8 8 8 8 E - 8 2 2 . 3 8 8 8 8 E + 0 0 
I GF = . 4 3 2 . 4 6 5 • 

1 . 3 8 3 & 4 E + 8 8 5 . 8 8 8 8 8 E + 8 8 1 . 0 8 0 0 8 E + 8 8 ^3 . 7 8 7 6 4 E - 8 4 3 . 2 8 8 8 8 E - 8 2 2 . 8 0 0 8 8 E + 0 0 
I GF = . 4 6 9 . 5 1 8 I 

OWRI fin L b 6 * N J S NJS 
2 . 4 2 9 6 0 E + 8 2 8 . 8 8 0 8 0 E + 0 8 2 . 8 8 0 0 0 E + 0 8 8 . 8 8 8 8 8 E + 0 8 3 . 6 8 8 8 8 E + 8 1 6 . 8 0 0 0 8 E + 0 8 

DJ flj AMUN <GM8> <GG> nUF 
6 . S 1 3 3 3 E + 8 8 1 . 8 8 8 8 8 E + 8 C 1 . 8 8 8 8 8 E + 8 8 0 . 8 8 8 0 8 E + 8 8 3 . 6 8 8 8 8 E - 8 2 2 . 8 8 8 8 0 E + 0 8 

I GF = . 4 . 4 • 
3 . 9 6 8 0 0 E + 8 8 2 . 8 8 8 8 0 E + 0 8 2 . 8 8 8 8 8 E + 8 8 8 . 8 8 8 8 0 E + 0 8 3 . 6 0 8 8 8 E - 8 2 2 . 8 0 8 8 8 E + 8 8 

I GF = . 4 . 4 • 
2 . 3 3 4 3 8 E + 8 8 3 . 0 0 0 0 0 E + 8 8 2 . 8 8 8 8 8 E + 8 0 8 . 8 8 8 8 8 E + 8 8 3 . 6 8 8 8 8 E - 8 2 2 . 8 8 8 8 8 E + 8 8 

I GF = . 4 . 4 I 
2 . 2 8 4 4 4 E + 8 9 4 . 8 0 8 8 8 E + 8 8 2 . 8 8 8 8 8 E + 8 8 8 . 8 8 8 8 8 E + 8 8 3 . 6 8 8 8 8 E - 8 2 2 . 8 8 8 8 8 E + 8 8 

• GF = . 4 . 4 I 
1 . 3 0 3 6 4 E + 8 8 5 . 8 8 8 8 8 E + 8 8 2 . 8 8 0 8 8 E + 8 8 8 . 8 8 8 8 8 E + 0 8 3 . 6 8 8 8 8 E - 8 2 2 . 8 0 8 8 8 E + 8 8 

I GF = . 4 . 4 • 
1 . 5 2 & 1 6 E + 8 8 6 . 8 8 8 8 8 E + 8 8 1 . 8 8 8 8 8 E + 8 8 8 . 8 8 8 8 8 E + 0 8 3 . 6 8 8 8 8 E - 8 2 2 . 8 8 8 8 8 E + 8 8 

I GF = . 4 . 4 • 

TABLE 17. Pa ramete r s f o r t h e Unreso lved Region i n ENDF/B format . 

Curium 245 

MF2CI»i245 
9.62450+ 
9.62450+ 
1.60080-
3.500BO+ 
2.42960+ 
-1.00000-
6.58688-
1.98000+ 
2.45000+ 

. Fl 
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TABLE 18. The analytical integration for the resonance integral with 

a 1/E weighting flux 

* RESONANCE INTEGRAL CALCULATION 

The integration of a Breit-Wigner cross section, weighted over a 

standard flux 1/E, can be carried through explicitly. Assuming the 

cross section given by 

o(E) = a =£ . r2/4 
r E (E-Er)2 + r

2/4 
with o , E , T constants 

we have, for integration between the limits E and E. 

E, 

KEJ.EJ) = | 
0(E) 

dE = 

'1 

a T2 

r i_ + 2 + u 
4y2E2 /x[" VxJ u/2(u+l) 

2 - u f -1 ^ ( u - l ) _x /2X (u-1) 
+ . tg - tB -

_j /2X2(JJ + 1) _j /SXjdi + l ) 
tanh r—^— - tanh 

y + X, W + X. 

u/207-1) V - X, y - x. 

with the proviso that E is positive and when either of the inverse 

tangents has negative argument it lies in the quadrant IT/2 to IT . 

In the above expression 

V = / 1 + T2/(4E2) Xl = VEr X„ = E0/E 2 2 r 

TABLE 19. Walker s approximation for the reduced resonance integral 
in the resolved region 

th 
For resonance above 1 ev, the contribution of the k 

Breit-Wigner resonance to the reduced resonance absorption integral 

in barns, is given by 

K -
4090 g* 

r 
r r 
Y n 

Here V and T are the partial widths for neutron scattering and 
n y 

radiative capture, respectively, measured in milli-eV, T is the 

total width of the resonance in milli-eV, and for fission product 

nuclei is equal to the sum of r and T ; E is the energy in eV 
n y r 

at which the cross section is a maximum; and g* is a function of 

the spin states J and J of the target and compound nuclei respec

tively (J = J ± 1/2 for 1=0 neutrons) given by 

"2J2 

L2 j , 
+ 1 

+ 1 

For all even-even nuclei (J = 0) g*=1; for the remainder, g* is 

calculated where J is known but otherwise is assumed to take the 
2 

value 1/2. 

Each resonance also contributes to the 2200 m/s cross section 

an amount (a ) barns, given by 
o k 

(a K 
o k 

I r r 
4.09 g* | Y 

J] 
/E* i 



TABLE 20. Walker's approximation for the resonance integral due 

to the unresolved part of resonances 

Using the average cross section given by Sampson and Chernick 

(1958) for 1=0 neutrons (which does not take into account stati

stical fluctuations in the reduced neutron width T° (equals T //E ) ) 
n n r 

and integrating over a 1/E spectrum, the reduced resonance absorption 

integral for the unresolved levels, above energy E , say, is given by 

2 g n 
I' = 4090 ( ) ( a - ln(l+a)) 
unres. -

Dr 
Y 

where a = 

r° /E 
n L 

and are the average reduced neutron and radiative capture widths 
n 

in milli-eV, and D is the average level spacing. D and E are in units 

of electron volts. Since the approximations made concerning the orbital 

angular momentum of the neutrons ( 1 = 0 only) and the statistical varia 

tion of reduced neutron widths introduce errors more or less equal in 

magnitude but opposite in sign, no serious error arise in using this 

expression for I' 

unres . 
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