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FOREWORD 

This third international Symposium on the Physics and Chemistry of 
Fission, held in Rochester, N. Y., from 13 to 17 August 1973, was a worthy 
successor to the important symposia held in Salzburg (1965) and in Vienna 
(1969). Although there may not have been in Rochester quite the excite
ment that prevailed in Vienna (where the beautiful verification of the struc
tured fission barrier provided by the Strutinsky calculations was presented), 
the present meeting reaped the benefits of this revolutionary discovery. 
The first direct experimental verifications of the deformed fission isomers 
have also only recently been achieved. 

The present Symposium, somewhat more than previous ones, concen
trated on theoretical concepts and calculations concerning the fission pro
cess itself, and only on those new experimental results most pertinent to 
the theoretical development. Contained in these two volumes are the full 
texts and discussions of the 62 papers presented at the Symposium, and 
abstracts of those contributions that, because of time limitations, could 
not be presented. 

These Proceedings of course do not represent the last word on this 
obviously complex topic. It is apparent that even the liquid drop features 
of the fission process have not yet been fully, or even adequately, worked 
out, the most obvious deficiency still being a reliable treatment of the 
dynamics, where a better knowledge of the 'viscosity' is obviously needed. 
The importance of quantum mechanical, single particle effects in the 
fission process is emphasized in these Proceedings, and a number of 
advances in microscopic calculations are included. 

It is clear, in view of the large participation and the quality of the work 
presented, that scientists throughout the world find these meetings a 
valuable international forum for the exchange of information and welcome 
the Agency's initiative in promoting this continuing series of symposia. 



EDITORIAL NOTE 

The papers and discussions incorporated in the proceedings published 
by the International Atomic Energy Agency are edited by the Agency's edi
torial staff to the extent considered necessary for the reader's assistance. 
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responsibility of the named authors or participants. 

For the sake of speed of publication the present Proceedings have been 
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EXPERIMENTAL FISSION BARRIERS 
FOR ACTINIDE NUCLEI* 

B.B. BACK, Ole HANSEN 
Los Alamos Scientific Laboratory, University of California, USA 
H.C. BRITT 
Los Alamos Scientific Laboratory, University of California, and 
Nuclear Structure Research Laboratory, University of Rochester, USA 

J.D. GARRETT 
Los Alamos Scientific Laboratory, University of California, and 
Brookhaven National Laboratory, USA 

B. LEROUX 
Los Alamos Scientific Laboratory, University of California, USA, and 
University of Bordeaux, France 

Abstract 

EXPERIMENTAL FISSION BARRIERS FOR ACTINIDE NUCLEI. 
Fission probability distributions are measured for a number of isotopes of Th, Pa, U, Np, Pu, Am, Cm 

and Bk using (d,pf), (t,pf), ('He.df), (p.p'f), (3He,af) and (t,af) reactions. The results, together with 
previous data available from (d,pf) and (n,f) studies, are analysed with a statistical model and estimates are 
obtained for the heights, Ед and Ев, and curvatures, ленд and licuß, of the two peaks of the fission barrier for 
a wide range of actinide nuclei. The statistical model used for the analysis of odd A and odd-odd nuclei 
includes competition between fission, neutron emission and gamma-ray de-excitation in the decay of the 
compound nucleus. The results suggest that fission widths which are greater by about a factor of 4 than those 
calculated are necessary to reproduce the magnitude of the measured fission probabilities. The results show 
that Ед is roughly constant throughout this region and Eg decreases with increasing Z. An exception to the 
approximate constancy of Ед is in Cm where Ед drops by 1.0 MeV from248 Cm to2 5 0Cm. In some cases an 
odd-even fluctuation of 0.30-0.50 MeV is observed in the experimental Ед values. 

1. INTRODUCTION 
At the last IAEA conference on the Physics and Chemistry 

of Pissionfl] in 1969 many of the exciting new developments 
were related to the investigation of the qualitative 
implications of the effects of deformed nuclear shells on the 
potential energy surfaces associated with the fission 
process and the wide variety of experiments that had recently 
confirmed the major predictions of this new theory. At 
that conference experimental results were presented on the 
existence of fission isomers in a wide range of actinide 
nuclei, intermediate structure resonances in subbarrier 

Work supported by the US Atomic Energy Commission. 
Permanent addresses of the authors are: B.B. Back, Niels Bohr Institute, Denmark (supported by Staten 
naturvidenskabelige forskningsrad, Denmark); Ole Hansen, Niels Bohr Institute, Denmark; H.C. Britt, 
Los Alamos Scientific Laboratory, USA; J.D. Garrett, Brookhaven National Laboratory, USA; B. Leroux, 
University of Bordeaux, France. The present address of H.C. Britt is: Nuclear Structure Research Laboratory, 
University of Rochester, USA. 

3 



4 BACK et al. 

neutron fission, and gross structure resonances in (n,f) 
and (d,pf) studies. All of these experimental phenomena 
were found to be consistent with the concept of a two-peaked 
fission barrier that resulted theoretically from fluctuations 
in the shell corrections to the single-peaked fission 
barrier predicted by the liquid drop model. 

Since the last conference there has been considerable 
activity both theoretically and experimentally directed 
toward trying to quantitatively determine the characteristics 
of the potential energy surface involved in fission and to 
try to understand how these complex potential energy surfaces 
affect some aspects of the fission process. In other 
papers at this symposium both the current status of 
potential energy calculations and recent theoretical efforts 
to qualitatively understand the more difficult problems of 
fission dynamics will be reviewed12,3]_ j n o u r paper we will 
present a review of current efforts to try to experimentally 
determine fission barrier characteristics for actinide 
elements with particular emphasis on recent direct reaction 
fission results from Los Alamos. In general, the fission 
barrier properties that can be most readily compared with 
theoretical calculations are the energies of the two saddle 
points and the secondary minimum relative to the ground 

NOTATION 

DIRECT REACTION FISSION 

Pf = \T« + T„+T ) 
Г П у 

Tf = ( ' ( Е А , 1 ш д , Е в , 1 ш в ) 

FISSION ISOMER E * FUNCTIONS 

-PROMPT FISSION 

^ISOMER 
^PROMPT 

f(T Т П Т ' ТП) П 1 В ' 'и' 'В- у ' 
Ч'Тд.Тд'.Т,,1 ,^) 

« f ' ( E B , E B , E ' n ) . e 
PROMPT FISSION 
-ISOMERIC FISSION 

FIG Д. Schematic illustration of the major features of the direct reaction fission and fission isomer population 
processes. 
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state. We will concentrate on these properties although 
in some cases the experiments also yield information on 
barrier curvatures. 

Figure 1 illustrates schematically the two types of 
experiment which have been used to obtain most of the 
current information on fission barrier heights. In a 
direct reaction fission experiment a direct reaction (or 
neutron capture reaction) is used to produce a residual 
nucleus at a particular excitation energy and the branching 
ratio for decay by fission relative to neutron or gamma 
deexcitation (or the fission cross-section) is measured. 
This type of experiment gives information primarily on the 
height and curvature of the highest peak in the fission 
barrier. However, in some cases resonances are observed 
which can be associated with vibrations near the top of the 
second well and a detailed analysis of the experimental 
results gives information on both peaks. The results and 
analysis for even-even fissioning nuclei where these 
resonance structures are observed will be presented in 
another paper [4]. Figure 1 also illustrates schematically 
the population of a shape isomeric state in the second well 
following the evaporation of a neutron. In most cases of 
experimental interest the isomeric states are populated 
following the subsequent evaporation of two or three neutrons 
but qualitatively the data analysis is the samet5^. In 
practice, fission isomer excitation functions have been 
analyzed using Ед values from other sources and the experi
mental data is used to determine Eg and EJJ. Thus, in the 
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heavy actinides where Ед > Eg,the direct-reaction fission 
and the fission isomer excitation function measurements are 
complementary. In addition, intermediate structure 
resonances from subbarrier neutron fission experiments can in 
some cases be used to estimate Е л ^ / б ] ^ Finally, the 
halflives for fission decay from the ground and isomeric 
states give information on the curvatures and/or average 
mass parameters and these aspects will be discussed in 
other contributions at this conference. 

The actinide nuclei which have been studied either by 
direct-reaction fission or fission isomer techniques are 
indicated in Figure 2. It is seen that the current direct-
reaction fission results plus earlier (d,pf)[?] and (n,f) t8J 
results provide a rather extensive survey of the actinide 
region. For several plutonium, americium and curium 
isotopes complementary information is available from both 
types of experiment. 

In the current direct-reaction fission studies a 
variety of reactions including (d,p), (t,p), (3He,d), (p,p'), 
(3He,cc) and (t,ct) have been used so that a large number of 
fissioning nuclei could be investigated starting from the 
limited number of available target species. Of particular 
interest is the (3He,df) reaction which allows the investi
gation of many odd-Z nuclei starting from the relatively 
plentiful even Z targets. In general, it was found 
that cross-sections for exciting nuclei to energies near the 
top of the fission barrier were quite adequate for (d,p) , 
(t,p) and (3He,d) reactions but the other reactions tried 
were of limited usefulness. 

In the remainder of this paper we will present: 
1) some of the general features of the experimental setup 
and results, 2) a discussion of techniques used to analyze 
the data for odd-A and odd-odd residual nuclei and 3) a 
survey of the experimental information currently available 
on the barrier heights E A and E B for actinide elements. A 
discussion of resonance phenomena and the analysis of data 
from even-even fissioning nuclei will be given in 
Paper IAEA-SM-174/27 (see Ref. [4] . 

2. EXPERIMENTAL RESULTS 
The setup used in the direct-reaction fission studies 

is illustrated schematically in Fig. 3. The outgoing 

ANNULAR FISSION DETECTOR (af « 8 % ) ADJUSTABLE 
SLJTS ff ^TARGET 
I BEAM 

FARADAY 
CUP 

INSULATED -
SHIELD 

[ ,SLIT(fl~0.2%> 
1 = ^ А Е DETECTOR 

-E DETECTOR 

FIG. 3. Schematic diagram of the experimental setup for the direct reaction fission experiments. 



IAEA-SM-174/201 7 

^г^ 

^Uft.pf)23^ \ 

А 
V*. •у*... 

_| , I , 1_ 

г 
ю£ 

"с 

° I 0 ' 

10 

10' 

10* 

10' 

кг 

«"Wtpf)8*^ 

/V 

/ л л. 

10' 

10' 

кг-

^PutnpfJ^'Pu 

10 
10' 

ю; 

10' 

: *»*ч ю ' 

E^Pu^He .a f ) 2 3 ^ 

237Np(3He.df) 
238 Pu 

л ~ - * ^ 

10' 

Ю' 

Ю* 

-J . 1 . 1 -Ю ,-| 

» ^ 

fj+uem*-

IU i 1 I 1 _ I0V 

MOPU»4rf)M2Pü 
ю3г 

10' 

/*v 
_ i . i _ 

10' 

\0K 

MO 

f ^ P u f t . p f ) 2 4 ^ 

. -'• A • 

40 50 60 70 40 5.0 6.0 7.0 4.0 5.0 6.0 7.0 
Excitation Energy (MeV) 

FIG.4. Measured coincidence (circles) and singles (triangles) spectra for a variety of reactions. Solid 
lines indicate interpolated singles cross-sections for the target element. Singles spectra have been normalized 
to the level of the accidental contributions in the coincidence spectrum. 



8 BACK et al. 

reaction particle is identified and its energy measured 
with a resolution of 40-100 keV in a standard ДЕ-Е counter 
telescope placed at an angle near 90°. For each event the 
excitation energy of the residual nucleus can be determined 
from the kinetic energy of the outgoing reaction particle. 
In the experiment the spectrum of reaction particles are 
measured both in a configuration where a coincidence is 
required with a large annular fission detector (coincidence 
spectrum) and in a configuration where no coincidence is 
required (singles spectrum). Using a measured solid angle 
for the fission detector and assuming that the coincident 
fission fragments are isotropically distributed, the ratio 
of coincidence to singles spectra can be transformed to a 
distribution of fission probability as a function of ex
citation energy in the residual nucleus. The absolute 
energy scales are determined from known Q values ̂  and a 
calibration of the counter telescope with known energy 
linesf10] from appropriate reactions on lead targets. 
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FIG. 5. Measured coincidence (circles) and singles (triangles) spectra for a variety of reactions. Solid lines 
indicate interpolated singles cross-sections for the target element. Singles spectra have been normalized to 
the level of the accidental contributions in the coincidence spectrum. In some cases the accidental contributions 
have been multiplied by factors of 10 or 100. 
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Absolute excitation energies determined in this manner are 
believed to be accurate to ±50 keV. Systematic errors 
in the absolute fission probabilities are believed to be 
less than ±20% for (3He,df) cases, <±30% for (t,pf) cases, 
and <±40% for (t,af), (3He,af) and (p,p'f) cases. For 
(d,pf) reactions to excitation energies above the neutron 
binding energy, systematic uncertainties in the fission 
probabilities are estimated to be less than ±30% with part 
of this estimate being due to uncertainties in the 
corrections for protons coming from deuteron breakup re
actions . The targets used in this experiment were all oxides 
vacuum-evaporated on carbon backings. This experimental 
setup is similar to previous experiments I?Д1] and will be 
described in detail in a more comprehensive report on these 
results t12J. 

Typical coincidence and singles spectra are shown in 
Figs 4 and 5. In the (t,pf) reactions the peaks come from 
reactions on carbon and oxygen in the target and the solid 
lines represent extrapolated estimates of the singles 
counting rate from the actinide element. For 3He reactions 
the Q values and kinematics are such that light element 
contaminants do not appear in this excitation energy range 
at 90°. The absence of light element contamination in the 
singles spectrum for (3He,d) reactions allows a more reliable 
determination of the fission probability distribution for 
these cases. The singles spectra have been normalized to 
show the magnitude of the accidental corrections in the 
coincidence measurements. It is seen that in most cases 
the accidental corrections are negligible. For (t,pf) and 
(d,pf) reactions the angle of the proton detector was varied 
in the range 70°-100° in order to minimize the accidental 
contributions in the threshold region. 

The results for typical even-even nuclei (Fig.4) show 
pronounced resonance structure characteristic of the sub-
barrier resonant penetration of the two peaks of the fission 
barrier. These resonances come from the enhanced fission 
penetrability when the excitation energy overlaps the energy 
of a vibrational state in the second well. The general 
characteristics of these resonances will be discussed in 
Paper IAEA-SM-1 74/27 [4]. In contrast the odd A and odd-odd nuclei 
(Fig.5) do not show subbarrier resonant structure, which we 
interpret as being due to increased mixing (or damping) of 
the vibrational states in the second well with other types 
of compound excitations. The damping for the odd nuclei is 
expected to be greater than for even-even nuclei because of 
the increased density of compound levels in well II at the 
top of the barrier. 

Previous comparisons[13] 0f (t,pf), (d,pf) and (n,f) 
reactions for the same residual nuclei have shown that for 
excitation energies above the neutron binding energy a 
significant fraction of the singles protons from (d,p) 
reactions come from breakup of the deuteron without the 
corresponding excitation of the residual nucleus. This 
effect leads to low estimates for the fission probabilities 
from (d,pf) reactions for energies above the neutron binding 
energy. In the current analysis of experimental data we 
have corrected all (d,pf) fission probabilities by multiply
ing by a function of (E* - Bn) taken from Britt and Cramer^13 
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3. STATISTICAL MODEL FOR ANALYSIS OF EXPERIMENTAL RESULTS 

From the experimental results it is seen that there 
are significant differences in the requirements for a 
statistical model which will reproduce the results from 
direct reaction fission experiments involving even-even 
residual nuclei and those involving odd-A or odd-odd nuclei. 
In particular the even-even nuclei show resonant penetration 
of the two barriers, but to help in simplifying the problem 
only a few vibrational and rotational excitations are 
involved in the fission penetrability near threshold. The 
excitation energies of these vibrations can be estimated 
from previous angular correlation measurements t1-1-J . In 
addition, the fission thresholds for even-even actinide 
nuclei are usually well below the neutron binding energy so 
that in the region of most interest only fission and gamma 
ray deexcitation can compete. 

For the odd nuclei, since in most cases resonances are 
not observed in the fission probability distributions, the 
complete damping approximation which considers the pene
tration of the two barriers separately can be used. However, 
for odd nuclei the competition from neutron emission as 
well as gamma decay must be included and estimates of the 

FISSION PROBABILITY IN COMPLETE DAMPING LIMIT 

FIG.6. A schematic illustration of the statistical model used to fit the experimental fission probability 
distribution of odd residual nuclei. Wn is the width of the levels in the second well and Du is the average 
level spacing in the second well. 
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fission penetrabilities involve summations over distributions 
of transition states about which there is no experimental 
information. 

The different requirements of the two cases have led 
us to develop two rather different statistical models. The 
model used to fit the even-even nuclei will be discussed in 
Paper IAEA-SM-174/27 [4]. The model used to describe the 
fission of odd-A and odd-odd residual nuclei is detailed 
below in general terms and will be described in quantitative 
detail in a subsequent more comprehensive paper[14] # 

The statistical model we have used to describe the 
fission of odd residual nuclei is shown diagramatically in 
Fig. 6. The transmission coefficients Tf are calculated 
in the complete damping limit where the transmission through 
the two peaks are treated separately. In this limit: 

where f is a correction factor that takes into account the 
finite width of the compound levels in the second minimum 
through which the fission is coupled. If the levels in 
the second well are assumed to be equispaced then it can be 
shownt12J that the fission probability is given by 

Pf = (1 + a2 + 2a coth(t/2))~1/2 

where 
a = (Ty + Tn)-(TA + TB)/(TA-TB) 

and 
t = 4^WII/DIi = T A + T B 

In the limit where t>>l(i.e. levels in second well strongly 
overlap) this expression reduces to the more usual expression: 

pf 
where 

Tf 
T f + T n + Ty 

Tf = TA-TB/(TA + TB) 

The calculation of the fission probability now reduces 
to a calculation of the transmission coefficients T A, TB, T n, 
and Ту. The calculation of these transmission coefficients 
involves estimating the distribution of residual levels 
available for neutron and gamma deexcitation and the distri
bution of saddle point transition states for T A and TB. At 
the deformation of the first well, (Tn and Ту calculations) 
the residual levels were assumed to be discrete for excitation 
energies less than 1 MeV and a continuous level density was 
.used for excitation energies greater than 1 MeV. For odd-odd 
nuclei a continuous level density was used at all energies. 
The continuous level density was obtained from calculated 
single particle levels as described previously^], por odd-
A nuclei the discrete levels were taken as rotational bands 
built on the one quasi-particle states obtained from calcu
lated single particle levels 15,15,16] with the appropriate 
shifts due to pairing. For even-even nuclei the discrete 
levels were obtained from a composite spectrum based on 
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experimental measurements in the uranium-curium region. 
Then Ty and T n were estimated from expressions given 
previously 15] except that optical model transmission co
efficients were used in the T n calculations. The Ty values 
were normalized so that calculated values of TY reproduce 
measured values at the neutron binding energy for odd Pu 
isotopes. 

The level spectra used in the Тд and Tg calculations 
were obtained in a similar manner except that single particle 
levels appropriate to the first saddle and second asymmetric 
saddle were used. The transmission coefficients were 
calculated as a sum of penetrabilities through parabolic 
barriers with curvatures-Лид and*n<oB. 

The level spectra used in these calculations are shown 
in Fig. 7 where solid lines indicate energy regions where 
continuous level densities were used and the triangles 
represent the average total density of the discrete levels 
for a given case. At the first saddle, discrete levels from 
Bosterli et alt15] and Tsangt16! are compared and it is seen 
that the average densities are similar. Figure 8 shows that 
below 1 MeV the continuous level density calculation 
seriously underestimates the total number of levels. This 
discrepancy is due to the inadequacy at low excitation 
energies of the saddle point approximationt5l used in 
estimating the continuous level density. 

ел 4 

~ 2 

-i 1 ' b 
FIRST SADDLE 

- — b -
h FIRST fi 

•240 Pu 

J _ 

- h 

-- 242 

4 >-

Am 

0 I 2 0 I 2 0 I 2 
EXCITATION ENERGY (MeV) 

FIG.7. Calculations of the total level density as a function of excitation energy. Solid and dashed 
lines show results obtained using the saddle point integration method. Open and closed triangles show estimates 
of the total density of discrete levels from the single particle spectra of Bolsterli et al. [15] and Tsang [16], 
respectively. 
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'Pu 
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л CALCULATED LEVELS 
A MEASURED LEVELS 235U[17] 

J _ 
I.O 2.0 

EXCITATION ENERGY (MeV) 
3.0 

FIG. 8. Calculations of the total level density using the saddle point integration method (solid line) 
compared with calculated discrete levels from Bolsterli et al. [15] and the experimentally observed levels 
of Rickey et al. [17]. 

Figure 8 compares the density of calculated one-
guasiparticle states with the continuous level density for 
^^Pu. The continuous level density is normalized to the 
measured value for 1/2+ states at the neutron binding energy. 
Also shown in fig. 8 are the density of measured levelsЧ?! 
for 2 3 5U and it is seen that the calculated density of 
one-quasiparticle states is in reasonable agreement with 
measurements. 

4. FITS TO EXPERIMENTAL RESULTS 
Using the statistical model described in the previous 

section, experimental fission probability distributions for 
odd-A and odd-odd nuclei were fit in order to systematically 
determine properties of the fission barrier for actinide 
nuclei. In these fits different procedures were used for 
nuclei in the region Pu-Bk and for the Pa-Np region. 

As we pointed out in the introduction, for many isotopes 
of Pu, Am and Cm there is considerable data available from 
fission isomer studies which can be used to estimate Е ц , Ев 
and-nuig. Therefore, in fitting the direct reaction fission 
data in this region we have fixed E B and -пшв to the values 
determined from fission isomer studies or in cases where 
no data is available to values that were extrapolated from 
nearby nuclei. The experimental data were then fit by 
varying Ед, *и, and a normalization factor to get the correct 
plateau value tor the fission probability. For the odd Pu 
and Cm isotopes and the odd-odd Am isotopes this normalization 
factor was an adjustable constant (Gn) multiplying the 
function Tn/Tf. For the odd Am isotopes where the fission 
threshold is below the neutron binding energy the adjustable 
constant (Gy) multiplied Ty/Tf. In addition to the results 
obtained in the present experiment, data from previous 
(d,pf) [7]and (n,f) [6/18] studies were also fit to obtain a 
consistent set of barriers. The published (n,f) cross-
sections were converted to fission probabilities as described 
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FIG. 9. Fission probabilities for Am and Bk nuclei. Solid curves indicate best fits with the statistical model 
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FIG. 10. Fission probabilities for Pu and Cm nuclei. Solid curves indicate best fits with the statistical model 
described in the text. Data for239Pu were taken from Back et al. [7] and (n,f) data were taken from 
Auchampaugh et al. [6] and Moore and Keyworth [18]. 
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FIG.11. Fission probabilities for Pa and Np isotopes. Solid curves indicate best fits with the statistical 
model described in the text. 
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TABLE I. ESTIMATED BARRIERS FOR ODD A AND ODD-ODD NUCLEI 
Values given in pa ren theses were es t imated as descr ibed in text and held 
fixed during fitting of data. For P a , U, and Np nuclei, values for Gn and 
Gr not in pa ren theses were obtained from fitting the magnitude of Pf but 
the values a r e not unique and depend also on values of some of the other 
p a r a m e t e r s that were held fixed. The values of EA ) E B , ftuA ftuB a r e 
given in MeV. 

Nucleus 

231Pa 
232Pa 
2 3 3Pa 
2 3 5U 
237и 
2 3 9U 
234.. Np 
235Np 
2 3 6Np 
237.. Np 
2 3 8Np 
2 3 9 N P 

239Pu 
241Pu 
243Pu 
245_ Pu 
240, Am 
2 4 1Am 
242, Am 
243Am 
244, Am 
245Am 
247Am 
245cm 
2 4 7Cm 
249cm 
2 4 9 B k 

EA 

5.75±0.30 
5.75±0.30 
5.85+0.30 

6.10±0.30 
6.35±0.30 
6.55±0.30 

5.35±0.30 
5.60±0.30 
5.70±0.30 
5.70+0.30 
6.00±0.30 
5.85±0.30 

6.43+0.20 
6.25±0.20 
6.05±0.20 
5.72±0.20 

6.35±0.20 
6.00±0.20 
6.38±0.20 
5.98±0.20 
6.18±0.20 
5.88±0.20 
5.60±0.20 

6.38±0.20 
6.20+0.20 
5.80±0.20 

6.05±0.20 

5 
6 
6 
5 
5 
6 
5 
5. 
5 
5 
6 
5, 

EB 

.85+0.30 

.10+0.30 

.00+0.30 

.65+0.30 

.95+0.30 

.30+0.30 

.00+0.30 

.20+0.30 

.20±0.30 

.50±0.30 

.00±0.30 

.50+0.30 

(5.50) 
(5.50) 
(5.60) 
(5.45) 

(4.80) 
(4.80) 
(4.80) 
(4.80) 
(4.80) 
(4.80) 
(4.80) 

(4.20) 
(4.20) 
(4.20) 

(4.20) 

A 

(0.8) 
(0.6) 
(0.8) 

(0.85) 
(0.85) 
(0.90) 

(0.6) 
(0.8) 
(0.6) 
(0.8) 
(0.6) 
(0.8) 

1.00±0.10 
1.10±0.10 
0.80±0.10 
0.90±0.10 

0.60+0.10 
0.80±0.10 
0.50+0.10 
0.75±0.10 
0.50±0.10 
0.85±0.10 
0.90+0.10 

0.65+0.10 
0.70±0.10 
0.75+0.10 

0.80±0.10 

-hcoB 

(0.45) 
(0.45) 
(0.40) 

(0.50) 
(0.55) 
(0.65) 

(0.42) 
(0.55) 
(0.42) 
(0.55) 
(0.42) 
(0.55) 

(0.55) 
(0.55) 
(0.55) 
(0.55) 

(0.42) 
(0.55) 
(0.42) 
(0.55) 
(0.42) 
(0.55) 
(0.55) 

(0.55) 
(0.55) 
(0.55) 

(0.55) 

G n 

(0.3) 
0.45 
(0.3) 

(0.3) 
0.12 
0.05 

(0.3) 
(0.3) 
(0.3) 
(0.3) 
.04 

(0.3) 

0.30+0. 
0.30±0. 
0.15+0. 
0.40±0. 

.15 
15 
08 
15 

0.70+.20 
(0.3) 

0.08+.05 
(0.3) 

0.15+.07 
(0.3) 
(0.3) 

0.20+0. 
0.20+0. 
0.15+0. 

(0.3) 

13 
10 
08 

G 
У 

3.6 
(3.6) 
1.8 
(2.5) 
(2.5) 
(2.5) 
2.6 
3.6 
2.5 
2.8 
(1.8) 
1.8 

0.77±0 
1.15±0 
(1.2) 
(1.2) 

(1.2) 
1.8±0. 
(1.2) 
1.8±0. 
(1.2) 
1.8±1. 
1.8±4 

(0.4) 
(0.4) 

0.38±0. 

.12 

.40 

.9 

.9 

.0 
,8 

.12 
1.8±.65 
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previouslyLl3J. The fits obtained to the experimental data 
are shown in Figures 9 and 10. It is seen that using the 
three adjustable parameters the shapes of the distributions 
can be reasonably well reproduced near threshold but at 
energies above the peak Pf value the calculations from 
odd-A nuclei decrease sharply whereas the data show a plateau. 
This result indicates that the functional form for VQ/T^ 
obtained from the present statistical model is not adequate. 
This point will be discussed in more detail in the next 
section. 

For the Pa and Np nuclei there is no independent 
information available (e.g. from fission isomers) so that 
the parameters Е д, -пыд, Е в, •Ьшв, and the normalization 
factors Gn, or Gy are all unknown. In general, fits to the 
experimental fission probability distributions were not 
capable of uniquely determining all of these parameters. 
Therefore, the experimental results were fit by fixing •ftuj 
and -ftcüg to average values determined from the heavier nuclei 
and then varying Ед, Ев, and Gn or Gy . In most cases Gn 
values were held fixed to average values determined from the 
Pu-Bk results. In addition to the Pa and Np results, fission 
probabilities obtained ИЗ] from (n,f) cross-sections for 
2 3 50^ 237y ancj 239y were also analyzed. Due to the lack of 
independent information on Ев and •пшв and because ЕдйЕ В г 
the uncertainties on the barrier parameters determined 
for the Pa-Np region are greater than for the Pu-Bk nuclei. 
The results of these fits are shown in Figure 11. For 
231Pa and 232Pa there appears to be some resonant structure 
which cannot be reproduced in the complete damping approxi
mation used in our statistical model. This resonant 
structure may be analogous to the more pronounced structure 
observed in 231Th. 

The barrier parameters obtained from analysis of all 
the odd nuclei are given in Table I. Results for even-even 
nuclei are tabulated in Paper IAEA-SM-1 74/27I4] . 

5. EXPERIMENTAL vs CALCULATED DECAY WIDTHS 
Within the context of the statistical model described 

in Section 3, the widths for neutron and fission decay are 
calculated on an absolute basis and the adjustable normali
zation in the gamma decay width was fixed by normalizing to 
experimental data. Therefore, it was initially expected 
that the normalization factors Gn and Gy should each be 
equal to 1 except for fluctuations due to systematic un
certainties in the absolute experimental fission probabilities. 
The results from the fits indicate that this is not the case, 
as is shown in Fig. 12. 

Except for 2I*9Cm the values of Gy are generally 
consistent with 1 although the Am and Bk nuclei are better 
fit with a value of ~2 and the Pa and Np isotopes (Table I) 
show a preference for values of 3-4. In contrast, the Gn 
values are definitely not consistent with 1 and a value of 
Gn = 0.2-0.3 gives the best average representation of all 
the results. Futhermore, the underestimates of the fission 
probabilities at high energies with the current statistical 
model suggests that the value of G_ is even less at energies 
of 1-2 MeV above the fission threshold. 
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FIG. 12. Factors Gn and Gy obtained from fits to the fission probabilities for Pu-Bk nuclei. 

The rn and Tf calculations involve only an estimate of 
the spectrum of states available for de-excitation in the 
first well (rn) and across the two saddle points (Tf). For 
nuclei in the region Pu-Bk the transmission across the 
first saddle point is of major importance in estimating Tf. 
Since average properties of the level spectra involved in 
the rn calculation can be checked against experiment at 
low energy and the continuous level densities are normalized 
to experimental values at high energies it seems most 
reasonable to connect the low values of Gn with an under
estimate of Tf. By using a single normalization factor for 
all the high energy level densities and treating the discrete 
levels in similar ways at the first minimum and the saddle 
points we have effectively assumed that the enhancement of 
the level densities due to coupling with low-lying collective 
excitations is the same at the minima and the saddle points. 
The low and possibly energy-dependent value we obtain for 
Gn may indicate that the level densities at the saddle points 
are enhanced by coupling to additional low-lying collective 
excitations. The theoretical justification for such an 
effect will be discussed in detail in other contributions 
to this conferencet1^f2°] . 

This connection of low Gn values with an underestimate 
of the 1 evel density at the saddle point is r however/ not 
consistent with the higher values obtained for GY. If the 
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Гп and Гу calculations are correct and the main difficulty-
is in calculating Г£ then Gn and Gy should be roughly equal 
and this is not the case. Therefore, it appears that there 
are still unsolved problems in the attempts to calculate 
relative values of Tf, Гп, Ту. 

6. EXPERIMENTAL FISSION BARRIERS 
The barrier heights Ед and Eg extracted from the 

experimental data for Pu-Bk isotopes are shown in Fig. 13. 
Figure 13 includes results from the analysis of odd-A and 
odd-odd nuclei as described earlier in this paper, results 
from the analysis of data from even-even nuclei described 
in Paper IAEA-SM-174/27H] and estimates of Ев from the 
analysis of fission isomer excitation functions[5]. For 
the two cases where there is overlap, 238Pu and 2l,0Pu, the 
Eß values estimated from the analysis of fission isomer data 
agree well with values obtained from these direct reaction 
fission experiments. 

In the discussion below we will concentrate on some 
of the general trends for the barrier heights in actiniae 
nuclei and in another paper 12] in these Proceedings, these 
barrier heights will be compared with various theoretical 
predictions. 

The outstanding characteristics of the fission barriers 
for nuclei in the Pu-Bk region are: 

1. The values for Ед show a decrease with increasing 
neutron number but do not seem to vary significantly 
with proton number. This trend is contrary to 

236 240 244 236 240 244 248 240 244 248 
MASS NUMBER 

250 

FIG,13. Heights of the fission barriers for Pu-Bk nuclei obtained from fits to experimental fission probabilities. 
Solid triangles show values obtained from the previous analysis of fission isomer data [ 5]. 
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most theoretical calculations which show Ед 
increasing with proton number. 

2. The values of E B do not seem to show a consistent 
trend with neutron number but decrease strongly 
with increasing proton number. These trends are 
qualitatively similar to theoretical predictions. 

3. The E A values for Pu and Am isotopes and possibly 
the Ев values for Am isotopes show an apparent 
odd-even fluctuation with Ед being 0.3-0.5 MeV 
higher for odd-neutron than for even-neutron nuclei. 
This result would be consistent with a larger 
pairing gap at the saddle point and can be compared 
to an average value Asaddle-Aground state * 0. 23 MeV 
obtained from recent theoretical calculations [15] 
which assume that the pairing strength is 
independent of deformation. The apparent 
experimental odd-even fluctuations should be viewed 
with some caution, however, because the even-N 
nuclei involve competition between fission and 
gamma emission near threshold whereas the odd~N 
nuclei have fission thresholds above the neutron 
binding energy. Therefore, systematic errors in 
the estimates of rY relative to Гп could lead to 
spurious odd-even effects. At present we believe 
that the ±0.2 MeV uncertainties in Ед for these 
nuclei are realistic but as noted in the previous 
section the normalizations of the various decay 
widths are not completely understood. 

4. The Ед values for Cm isotopes show a decrease 
of~1.0 MeV in going from 248Ст(Ы=152) t o 250Cm(N=154). This decrease seems to be signifi
cantly greater than the additional binding of ~ 0.6 
Mevt21/22] attributed to the N = 152 shell for 
the equilibrium shape of 24SCm and is not apparent 

lr 

230 234 232 232 236 240 236 240 
MASS NUMBER 

FIG.14. Heights of the fission barriers for Th-Np nuclei obtained from fits to experimental fission probabilities. 
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in the Eg estimates. The results suggest that 
there is an additional increase of~0.4 MeV in the 
binding at the first saddle point between 2i*8Cm 
and 25"Cm when measured relative to a liquid drop 
mass surface. 

The experimental barrier parameters for Th-Np nuclei 
are shown in Fig. 14. The barrier parameters for 231Th are 
taken from reference 23. The uncertainties in the estimated 
barrier heights for odd-A and odd-odd nuclei are somewhat 
greater than in the Pu-Bk region because of the lack of 
fission isomer results to tie down the Eg and -пшв values. 
The results again show Ед relatively constant and Ев de
creasing with increasing proton number. The dependence 
on neutron number and possible odd-even effects do not seem 
as prominant as for the Pu-Bk region but details are obscured 
by the larger uncertainties on the estimated barrier heights. 

7. CONCLUSION 
In this paper we have presented a summary of the new 

data from direct reaction fission experiments which when 
coupled with previous (d,pf) and (n,f) data and analyzed 
with a realistic statistical model lead to a self-con
sistent set of fission barriers for a large number of 
actinide nuclei from Th(Z=90) through Bk(Z=97). These 
results along with systematic results from fission isomer 
studies form a set of experimental barriers which can be 
used to test current theoretical estimates of fission barrier 
properties. How well the theories stand the test of 
experiment will be shown in the theoretical chapter of this 
story in Paper IAEA-SM-174/202 [2]. 
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Abstract 

FISSION BARRIERS FOR DOUBLY EVEN ACTINIDE NUCLEI FROM(t.pf), (3He,df), (p.p'f) AND(t.af) STUDIES. 
Fission probability distributions have been measured for 230'232' 234Th, ш>23s-«Miorj, гзг.г«, гмРи a n d 

ш>248'250cm using (t,pf), (3He,df), (p, p'f) and (t.ocf) reactions. In general, resonance structures are observed 
in the fission probability distributions near threshold. The results are analyzed with a statistical model which 
incorporates resonant penetration through the two-peaked fission barrier and damping in the second well. From 
the analysis, estimates are obtained for the heights and curvatures of the two peaks of the fission barrier 
(Ед, й&д, Eg, fiwg). The results give a value ~6 MeV for the height Ед of the first peak for most nuclei, 
whereas the height of the second peak Eg decreases from ~ 6 MeV to ~ 4 MeV in going from Th to Cm isotopes. 
A major exception to the apparent constancy of Ед occurs between N=152 and N=154 where for 248Cm, 
Ед =6.2 MeV, while for 260Cm, Ед = 5.1 MeV. Comparison with ground state mass systematics suggests that 
only about one half of the change in Ед between MICm and 25°Cm is due to the N=152 shell at the equilibrium 
deformation. 

1. INTRODUCTION 
Since the last IAEA conference in Vienna in 1969) (1) 

there has been an intensive interest in shell effects on 
the nuclear deformation potential. Probably the most spec
tacular result of this type of investigation is the predic
tion of super-heavy elements in the region of Z г 114 and 
N % 184 (2), but at the same time it has cast light on many 
other observations related to nuclear fission/ like the mass 
asymmetry in the actiniae region (3), the systematic occur
rence of fission isomers (4), gross structures in (n,f) com
pound resonances (5) and vibrational resonances observed in 
direct reaction fission experiments (6). Qualitatively the 
Strutinsky prescription (7) for calculating the potential 
energy surface has been very successful in explaining these 
observations. 

* Work supported by the US Atomic Energy Commission. 
+ Presently on leave at the Nuclear Structure Research Laboratory, University of Rochester, USA; 

Present address: Brookhaven National Laboratory, Upton, N.Y., USA. 
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In this work we present measurements of some proper
ties of the potential energy surface, especially saddle point 
energies and curvatures, for 15 doubly even actinide nuclei, 
ranging from 23°Th to 250Cm,which can be used for a more 
quantitative test of the theoretical calculations in this 
region. We shall mainly discuss the results of direct reac
tion induced experiments interpreted within a double-humped 
fission barrier model. 

This work is an integral part of the extensive program 
reported by Dr. Britt in the previous paper (8), but the re
sults for the doubly even nuclei are analyzed with a diffe
rent model due to the existence of subbarrier fission reso
nances in the experimental fission probability distributions. 
The experimental procedure is fairly standard and has been 
reported in the previous paper (8). 

In the remainder of this paper we shall discuss: 1) the 
main features of the statistical model used in the analysis 
of the results for doubly even nuclei, 2) the agreement be
tween calculated and experimental fission probability distri
butions and 3) the systematics of the extracted fission bar
rier parameters. 

2. MAIN FEATURES OF THE STATISTICAL MODEL 
In this section we discuss some of the main assumptions 

underlying the statistical model used in the analysis of the 
experimental data. First, it is assumed that the direct re
action induced fission process proceeds in two steps, namely 
the formation of a compound nucleus through the direct reac
tion and the subsequent decay of the compound states through 
various channels (fission, Y-radiation and neutron emission). 
In the doubly even nuclei studied here, the fission threshold 
Ef is lower than the neutron binding energy B n and we can 
therefore study the fission decay in competition with y-deex-
citation only, which allows a simpler derivation of the fis
sion barrier from the experimental results. 

A. Formation 
Since we measure the fission probability Pf (E), it is not 

of primary interest to calculate the absolute magnitude of the 
formation cross-section, but only its relative spin-parity 
composition. We calculate the relative cross-sections using 
the formula (9) 

J + I0 ad11) a (J*) =N 0p(J*) I ° T+T Ь T 1+1 
0 J=IJ-I

0I ° | J _ I o | + 1 
(1) 

where N. i's a normalization constant determined by 

I «(J*) = 1 (2) 
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J denotes the spin and parity of the final state reached in 
the direct reaction from the target state of spin I«. 
j is the transferred spin and parity and 

9 

pCT11) = %(2J+1) exp{- Üt|) } (3) 
2a 

is the statistical spin density (10). The factor h stems 
from the assumption of equal density of positive and nega
tive parity states. The single particle transfer cross-
sections a(jv) are obtained from DWBA calculations using 
the computer code DWUCK (11). 

We estimate that the approximation of an energy-in
dependent relative spin parity distribution a(JT) is ful
filled for all the reactions studied here, except possibly 
the (d,pf) reaction. This limitation of the present model 
is not considered serious, because the (d,pf) reaction is 
analyzed in only one case. 

B. Decay 

As mentioned earlier, we need only to consider decay 
by 'fission and yemission below the neutron binding energy 
B n for the doubly even nuclei. The partial width for у~^а-
diation is calculated from a statistical expression taking 
only electric dipole radiation into account (12) . The re
sulting partial width for Y~clecay is nearly independent of 
the spin of the compound state and varies slowly with exci
tation energy. A normalization constant in the expression 
ensures that the observed value of Г "v 30-40 meV at the 
neutron binding energy is reproduced. 

For the calculation of the fission width, we employ 
the formula (13) 

Г, = ° I T (4) 

Here D is the average energy spacing of compound states of 
the appropriate spin and parity, and Tv is the penetrability 
factor for the fission channel v. The characteristics of 
the fission barrier enter into the calculation through this 
penetrability factor. The central assumption of a two-humped 
fission barrier will produce resonances in the penetrability 
function Tf(E) corresponding to quasistationary ß-vibratio-
nal (i.e. stretching-type) states in the second well. These 
resonances also appear in the fission probability 

rf(J
u) 

Pf = I {a(J*) < — > } (5) 
± Ju rf(J

ir)+rY(J
Tr) 

as it is observed experimentally. 

The shape of the fission barrier is approximated by 
three smoothly joined parabolic sections, Fig.l, defined by 
six parameters, namely three heights Ед, E M j N and Eg and 
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FIG. 1. The fission barrier approximated by three smoothly joined parabolic sections parametrized by the heights 
Ед, EJYJIN, ^B anc* ^ e curvatures tiw^ t fiwjj andtiWß. The positions of the first maximum, the second minimum 
and the second maximum are denoted ед, ед and eg, respectively. e^AX denotes the position where the poten
tial drops down to the ground state energy. W is the strength of the imaginary potential. 

three curvatures -пшд, "пшц and -ЪШ-Q. At the position of the 
second well we have also included an imaginary part of the 
potential which simulates the damping of the vibrational 
strength into the underlying "continuum", in the same manner 
as described in ref.(14). The tunneling probability through 
this potential is calculated analytically using parabolic 
cylinder functions (15). 

The effect of statistical fluctuations of Tf on the 
mean value of the branching ratio is taken into account 
through a fluctuation factor, again following the prescrip
tion in ref.(14). As pointed out by E.Lynn (16), the exist
ence of the second well also influences the statistical dis
tribution of rf. We have not included this effect in the 
calculations because it is estimated to be small in the cases 
of doubly even nuclei, where the damping in the second well 
is moderate. 

It should be kept in mind that the parameters Е д, 1Ю)Д, 
E B and "ftujg that can be extracted from a comparison to experi
mental fission probability distributions have a meaning only 
to the extent that the fission motion can be regarded as one-
dimensional and that the shape of the fission barrier can be 
approximated by three smoothly joined parabolic sections as 
we have done. Failures to fit the experimental data could 
stem from deviations from these assumptions. Furthermore we 
have for simplicity assumed that the shape of the fission bar
rier is the same for all fission channels. This is equivalent 
to assuming that the excitation energy for a specific internal 
mode is independent of deformation. Theoretical calculations 
have shown that for most actinides the system preferentially 
assumes an octupole type shape at the second maximum (3) which 
reduces the internal energy of the K" = 0" band, and for the 
heavier actinides the nucleus has an instability towards non-
axial symmetric shapes at the first maximum (17) which tends 
to lower the Кж = 2 band. In the present analysis these ef
fects are not taken into account. 
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Even in the case where the fission barrier is inadequate
ly described by the adopted potential, the parameters extracted 
would still on the average describe the shape close to the bar
rier tops, but maybe not further down the potential. 

3. FITS TO EXPERIMENTAL DATA 
The experimentally measured fission probabilities and 

the fits obtained are shown in Fig.2 for Th and U isotopes 
and in Fig.3 for Pu and Cm isotopes. 

The 230Th results are poor in detailed structure due to 
the very small cross-section for the (t,a) reaction, but they 
suffice to determine the height of the fission barrier. The 232Th data have indications of a resonance at E = 5.0 MeV, but 
it is not significant statistically. We have therefore chosen 
to fit the data without a resonance at this point. The 23ZTh 
data are fundamentally different from the 2 3 Th results which 
show a strong resonance structure in the region E = 5.5-5.8 
MeV. This difference manifests itself as a significant dis
continuity in the extracted barrier parameters, see Fig.4. Se
veral trial runs aimed at removing this discontinuity have been 
unsuccessful. 

The 232U results obtained from a (3He,d) reaction show 
weak indications of a resonance at E = 5.1 MeV. In the fit 
we have assumed such a resonance to be present and obtained 
good agreement. The 23ци data are taken from the (d,pf) study 
described in ref.(14). It shows a resonance at E = 5.0 MeV 
which is reproduced in the fit, but just above this energy 
there is some discrepancy. For this reason we assign a larger 
uncertainty to the barrier parameters in this case. The 2 3 *U 
fission probability is somewhat steeper than for the other U 
isotopes. This manifests itself through smaller 'hw-values. 
The calculated curve follows the overall trend and reproduces 
the resonance structure at E = 5.15 MeV. The 23SU results 
show resonance structures at E = 5.15 MeV and E = 5.80 MeV. 
Both are reproduced by the calculation. A fission resonance 
is apparent at E = 5.4 MeV in the 2I,0U data and is also repro
duced by the calculated curve. Just below this resonance 
there is s«me discrepancy. Experimentally the fission proba
bility increases very slowly, but with the present model this 
behaviour is not reproduced. 

The fission probability of 238Pu, shown in Fig.3, in
creases fairly gently in the threshold region and there is an 
indication of a resonance at E = 5.10 MeV which is reproduced 
by the calculation. The measurement of the second barrier de
pends strongly on the existence of the resonance at E = 5.1 
MeV, and we therefore assign a larger uncertainty to Ев in 
this case. The 2,(0Pu data were taken from ref.(18) and show 
the classical resonance at E = 5.0 MeV. The theoretical curve 
gives an acceptable fit in the whole threshold region. A reso
nance is also observed at E = 4.65 MeV in 2I>2Pu and the calcula
ted curve gives good agreement up to E = 5.3 MeV. Above this 
energy there are some deviations. The theoretical model fails 
to give a detailed fit to the experimental data of 2'f'tPu, but 
follows the general trend. It is reasonable to connect the 
difficulties in reproducing the results of 2Ц2Ри and "''Pu 
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7.0 40 50 60 70 
Excitation Energy (MeV) 

FIG.2. Experimental fission probabilities vs. excitation energy for гзо, 232, г м Т п a n ( j 232,234,236,238,240 и ( p 0 i n t s 

with error bars) and fitted craves extracted from model calculations. Bn indicates the neutron binding energy. 
The 234U data are taken from Ref. [ 14]. 
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with the instability towards non-axial symmetric shapes at the 
inner barrier, which is predicted to be especially strong for 
these nuclei. This is probably also the reason why attempts 
to reproduce previously measured angular distributions of fis
sion fragments (18) with the present model have been successful 
for U-isotopes, but problematic for Pu-isotopes. 

The fission probability of 2Ц1*Ст rises very gently with
out any resonance structure above noise level in the threshold 
region, and it is described by a theoretical curve without any 
assumed resonance structure. The 21t8Cm data are very similar 
to the 2!,1,Cm data with the exception of a possible structure at 
E = 4.6 MeV, which is reproduced in the theoretical curve. As 
mentioned earlier, the fission threshold of 250Cm is shifted to 
lower energy by approximately 1.0 MeV, and we observe a shoul
der at E = 4.0 MeV which is reproduced by the calculation. 
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FIG.4. The height of the first maximum EA (filled circles connected with full drawn lines), the height of the 
second maximum Eg (open circles connected with dotted lines), the isomer energy EJJ (filled triangles), the 
curvature of the first barrier Ишд (open squares) and the curvature of the second barrier 1tog (open triangles) 
are displayed in the upper part of the figure. In the lower part of the figure the deformations of the first 
maximum ед, the second minimum £JJ, the second maximum eR, and 'MAX ( s e e t e x t ) ai& plotted in arbitrary 
units. (The mass parameter is assumed to be constant in this calculation.) 
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BARRIER PARAMETERS 

The barrier parameters used to reproduce the experi
mental results are shown in Fig. 4. Albeit determined with vary
ing accuracy, these parameters show that the experimental data 
are in agreement with fairly smooth systematic trends (and also 
with parameters determined from other sources). 

The most accurate information is obtained in the cases 
where fission resonances are observed (23,*Th, 2 3 2U, 23I*U, 2 3 6U, 
2 3 8U, 2*°U, 2 3 8Pu, 2*°Pu, 2*2Pu, 2 5 0Cm). Here the parameters 
EA, "пмд, Ев and 'hug. are well-determined. In the other cases 
(230Th, 232Th, 2Ц*Ри, 2Ц*Ст, 2"8cm) the height and curvature of 
the least transparent barrier is well determined and one can set 
upper limits for the other barrier (see Table I). The height 
and curvature of the secondary minimum are less uniquely deter
mined and are therefore omitted from Table I*. Systematic in
vestigations have shown that equally good fits can be obtained 
with parameters differing in some cases by as much as 200 keV 
for the heights Е д and E ß and 100 keV for the curvatures "hio. 
and 1шв. We therefore generally assign uncertainties of this 
magnitude to the resulting parameters. The observed deviations 
from smooth trends are significant since attempts aimed at eli
minating these deviations resulted in unacceptable fits to the 
experimental data. The results of the present analysis can 
therefore be summarized in Table I. 

'•" Generally we have assumed values for Ец and йштг that agree with values obtained from other 
sources (19) and follow smooth systematic trends. 
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The height of the inner barrier shows relatively small 
variations from 230Th to 21f,,Pu around a mean value of E. ъ 
5.8 MeV 
to "V5.1 MeV for 

For 2Ц,,Ст and 2Ц8Ст, Е д is as high as ^6.2 MeV^dropping 250Cm. With constant shell corrections the 
liquid drop properties would lead to a steady decrease of the 
fission barrier in going from Th to Cm. The shell structure has 
the effect of keeping the first barrier constant or even in
creasing it/ as in 2 Cm and 21,8Cm. Since the barrier height 
is measured relative to the ground state energy, shell effects 
acting at the ground state shape and at the shape of the first 
barrier may both contribute to the variations. Careful analysis 
of the results indicates that both effects play a role. The 
well-known N = 152 shell gives rise to a discontinuity in the 
ground state mass occurring between N = 152 and N = 154 (20), 
while the positive shell correction at barrier A appears to have 
a pronounced peak also for N = 152 (see Fig. 5). The two effects 
enhance each other and contribute equally to the resulting 
drop of 1.0 MeV in the first barrier in going from 21,8Cm to 
250Cm. 

Although the first peak (Ед) is fairly constant from Th 
to Pu there are still significant fluctuations; especially in 
the U isotopes where we have high barriers for N = 142 and 146 
and low barriers for N = 140, 144 and 148. This trend seems 
to be paralleled by the second maximum. 

244 246 248 250 
MASS NUMBER 

FIG.5. The height of the first maximum relative to the ground state energy EA-Er (open circles), the height 
of the first maximum relative to the spherical liquid drop energy E A -£Q (black dots) and the ground state energy 
relative to the spherical liquid drop energy ET-EQ (open squares) are displayed for ш С т , 248Cm and 2s0Cm. 
The spherical liquid drop energies £ 0 are taken from Ref. [20]. 
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In general, the second maximum follows a trend that would 
be expected from the liquid drop model, namely that it de
creases steadily from Eg v 6 .4 MeV in Th to Eg *v 3.9 MeV in 
250Cm. This explains the gradual shift in the relative height 
of the two peaks in the sense that in the Th isotopes the 
second maximum is the higher and therefore dominating fission 
in the threshold region, in the U isotopes the two peaks are of 
comparable height, in the Pu isotopes the inner barrier is 
higher for the light isotopes and of almost equal height for 
the heavier isotopes. Finally, the second maximum drops 1-2 
MeV below the first one in the Cm isotopes. 

Assumptions about the depth of the secondary minimum are 
rather uncritical in reproducing the measurements. It is never
theless nice to see that this depth follows a very regular de
creasing pattern going from Th to Cm. 

The curvatures -fiwA and "Roug of the two barriers are fairly 
constant through the region investigated with *пшд ̂  0.90±0.10 
MeV and Ьшв л, 0.62±0.10 MeV. 

In Fig. 4 is also plotted the deformation of four points 
of the fission barrier relative to the ground state deformation 
namely the position of the first maximum ед, second minimum £ ц / 
second maximum eB and the intersection between the potential and 
ground state energy Емдх (see FiS- *)• Theoretically one would 
expect the position ot the secondary minimum £jj to be constant, 
since the shell structure causing it occurs at a very definite 
prolate deformation, namely where the ratio between the two 
axes is 2:1. We see that, with our parameters, this expectation 
is fulfilled within ±10 per cent. Also the positions of the two 
maxima are constant within ±10% limits, whereas £мдх fluctuates 
more, especially for U isotopes. It has a decreasing trend going 
from Th to Cm as could be expected from theoretical considera
tions. 

5. CONCLUSION 

The two-peaked fission barrier model appears adequate for 
the analysis of direct reaction induced fission in the region 
from 230Th to 250Cm. In general, the resulting barrier para
meters show smooth trends throughout the region with the except
ion of the 1.0-1.2 MeV drop in the height of the first barrier 
occuring from 21,8Cm to 2S0Cm. Half of this is due to the N = 
152 shell at the equilibrium deformation and the other half of 
it is due to an antishell at the first maximum occuring for N = 
150-152. 
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DISCUSSION 

Papers IAEA-SM-174/201 and IAEA-SM-174/27 

J. B. WILHEL.MY: How well do you know the outer barr iers when no 
resonances are seen (i. e. in the case of Cm isotopes, for which you say 
the outer barrier is ~ 1 MeV below the inner barrier)? 

В. В. BACK: In cases where no resonances are observed we can 
measure only the higher of the two barr iers . In the case of 244Cm and248Cm, 
where no prominent resonance structure is observed, we have extrapolated 
from values of EB extracted from the fission isomer excitation functions 
obtained by Mr. Britt and his colleagues. In the case of 250Cm we do 
measure Ев due to the resonance structure at E = 4. 0 MeV. 

L. WILETS: How did you obtain the deformations quoted? Did you 
assume a constant mass parameter? 

В. В. BACK: The deformations are given in arbitrary units relative to 
the equilibrium deformation, and the mass parameter is assumed to be 
independent of Z, N, and deformation. Under these assumptions the deforma
tions derive directly from the adopted parametrization of the fission barr ier 
and the quoted barr ier parameters. 

S. BJ^RNHOLM: H. С Pauli and co-workers have discussed theoreti
cally the occurrence of an anti-shell for N = 152 at the barrier . Could 
Mr. Pauli teil us how this fits with Mr. Back's observation? 

H. C. PAULI: There is a shell at N = 152. The detailed results for the 
barr iers , however, depend on the shell effect at the ground state and at the 
barr ier . 
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Abstract 

THE STRUCTURE OF THE FISSION TRANSITION NUCLEUS 227Ra. 
From experimental data for the ^ R a (n, f) reaction, the height of the fission barrier and the character of 

the low-lying single particle level scheme for the fission transition nucleus 227Ra have been deduced. The analysis 
involved simultaneously fitting the energy variation of the fission cross-section and angular distributions in the 
neutron energy range 3.6 S E „ ^ 9 . 0 MeV using a Hauser-Feshbach formalism. The free parameters determined 
in fitting the data were the number, position, and (К, я) of the low-lying single particle states at the fission 
barrier and the density and Kf value of the higher-lying states. Neutron emission widths for the calculation were 
taken from experimental data. Fission widths were calculated assuming, as suggested by theoretical calculations, 
a single-humped shape for the fission barrier and a Hill-Wheeler barrier penetrability expression. The best fit to 
the experimental data gave a fission barrier height of 3.7 MeV (relative to the neutron binding energy) and a 
single particle state sequence at the barrier of 3/2-, 1/2+, 5/2±, l /2± for the odd-A transition nucleus 22?Ra. 
The level densities at higher energies were characterized by К$ values of 8-10 for 4 ^ En s 7 MeV and a, values 
that increased with decreasing excitation energy. Evidence for a value of the gap parameter, 2Af, of 2.7 MeV 
for the 22,Ra transition nucleus is presented. Comparison with theoretical predictions is made. 

I . Introduction 

Recently there has been a great deal of interest in and success in c a l 
culating various features of the fission barrier structure in heavy nuclei 
using the Strutinsky shell-correction method [1 ] . Recent calculat ions 
involving the use of P3 and P5 nuclear deformations have suggested that 
the fission mass distributions may be determined by asymmetric distortions 
at the fission saddle point [2] . While these fission barrier calculat ions 
appear to describe reasonably well the experimental data on spontaneously 
fissioning isomeric s t a t e s , they have not , in general , been rigorously 
tes ted a s to how well they predict the low energy single particle level 
spacings at the saddle point, and few if any tes t s have been made concern
ing predictions of fission barrier structure in nuclei with Z < 90. 

The fission transit ion nucleus 2 2 7 R 9 ( f o r m e d in the reaction 226^ a + n ) 
is a fascinating place to check out many of these poin ts . Firstly, ca lcu
lations [ 2 , 3 ,4 ,5 , 6 , 7 J predict tha t , for a l l intents and purposes , the f i s 
sion barrier is effectively single-humped for this sys tem. (For example, 
the height of the inner barrier for 2 2 8 Ra ha's been estimated to be 2.4 MeV 
compared to an outer barrier height of 8.2 MeV [6] .) Thus, deduction of 
the parameters describing the barrier shape is much eas ier and more mean
ingful than similar attempts for heavier nuclei with double-humped fission 
barr iers . Secondly, the fission of nuclei in the Ra region has shown many 

On leave from Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela. 
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unusual features, particularly with regard to the occurrence of t r iple-
humped mass distributions and sharp changes in the mass distribution with 
small changes in excitation energy [ 8 , 9 , 1 0 ] . 

Recently Babenko and co-workers [ 1 1 , 1 2 , 1 3 ] have reported some 
very unusual data concerning the 2 2 7 Ra transition nuc leus . Their pub
lished data on the energy variation of the fission cross-sect ion and angular 
distributions is shown in Figures 1, 2 and 3 . Note the sharp changes in 
the fission fragment angular distribution during the first smooth 
rise in the fission cross-sect ion from 3.5 to 4 .1 MeV neutron bombarding 
energy. Also of interest is the plateau in the fission cross-sect ion be 
tween 4 .0 and 4.7 MeV,while there appears to be a violent change in the 
fragment antsotropy in this region. An additional interesting feature is 
the further r ise in the fission cross-section beyond 4.7 MeV. Since the 
neutron binding energy in 2 2 7 Ra i s ~ 4 . 5 MeV and the fission barrier is 
~ 8 - 9 MeV high, we can safely deduce that none of the low energy s t ruc
ture is due to second-chance fission effects . 

We have performed calculations using a Hauser-Feshbach formalism to 
fit the energy variation of the fission cross-sect ion and fragment angular 
distributions for the 2 2 6 R 9 (n,f) reaction in the energy range 3 , 6 ä En s 
9.0 MeV. Parameters in the calculation such as the number of single part i 
cle s ta tes in the transition nucleus and the values of K, IT , E 0 and •hw 

4 6 8 /О 12 14 
NEUTRON ENERGY (MeV) 

FIG.l . Fission cross-section versus neutron bombaiding energy for the a26Ra (n,f) reaction. Data taken from 
Refs [ 11-13], Solid line shows our "best fit" calculation using discrete single particle levels in the transition 
nucleus while the dashed line represents a. statistical description of the transition nucleus. 
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FIG.2. Fission fragment angular distributions for the z26Ra (n, f) reactions for incident neutron energies of 3.6, 
3.8, 3.9, 4.1, 4.7 and 5.4 MeV. Data from Refs [11-13]. For neutron energies of 3.6, 3.8, and 3.9 MeV, 
the solid curves represent our " best fit" to all of the angular distributions using a symmetric saddle point shape 
and the dashed curves show the best fit using an asymmetric saddle point shape. Dot-dash curve for the 3.8 MeV 
data represents the best fit omitting 5/2 states from the single particle spectrum. For the higher neutron energies, 
the solid curves represent our best fit using a statistical description of the transition nucleus. 
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FIG.3. Fission fragment angular distributions for the ^ a (n, f) reaction for incident neutron energies of 6.2, 6.7, 
7.1, 7.9, 8.9, 9.0, and 9.7 MeV. Data from Refs [11-13]. The solid curves represent our "best fit" calculations. 
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which characterize these s ta tes or the level density parameter af and the 
K0 value were determined by choosing the values of these parameters 
which gave the best fit to the experimental data of Babenko and co-workers 
[ 1 1 , 1 2 , 1 3 ] shown in Figures 1, 2 and 3 . 

II . Theoretical Framework of Calculations 

The general theoretical formalism used in the calculations was the 
same as that outlined by Hutzenga et a l . [14] . The cross-sect ion for 
neutron-induced fission of an even-even nucleus through a specific s tate 
of the transition nucleus of given (K, J, if) is 

(2J+1) 2T_(K,J , IT) 
0 f ( K , J , 7 T ) = i f X g — T Ä J ( E n ) E 2 T / R ^ ^ J + T ( E f J f 1 T ) + S Z T . , T 1 ( E ' ) 

where En is the incident neutron energy, К the reduced wavelength of the 
neutron, Tfi Ty i and Tx J are the transmission coefficients for f ission, 
y-ray emission and neutrons of orbital angular momentum I populating a 
state of total angular momentum J, respect ively . The factor of 2 multiplies 
Tf because of the double degeneracy of all КФО s t a t e s . The total fission 
cross-sect ion, CTftotal, is then given as 

a t o t a l = z a ( K f J / 1 T ) 

K , J , T T 

The fragment angular distributions were given then by the expression 

WK(9) = E a f ( J , K , T r ) W ^ ( 0 ) 
J , I \ , ТГ 

where the fragment angular distribution associa ted with fission through a 
given transition s t a t e , w J K M ( 0 ) , has been described previously [14] . 

For En £ 3.9 MeV, the fission transmission coefficients , Tf, were 
calculated from the Hill-Wheeler expression for the penetrability of an 
inverted parabolic fission barrier as 

T f ( J , K , I T , E ) = {1+ехр[2тт(Е£ ( J ,K ,TT) -E n ) /ua ) ]} _ : L , 

where Ef (J,K,ir) is the fission barrier height (relative to the neutron bind
ing energy) associated with the s ta te (J,K,n) of the transition nucleus , and 
•fito Is the barrier curvature. The barrier height Ef (J,K,ir) was calculated 
using the expression 

E f ( J , K , T T ) = E 0 + ( h 2 / 2 ^ ) [ J ( J + l ) - a ( - l ) J + J i ( J + ä 3 ) 6 K ] 
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where Eo is a constant corresponding to the base of the rotational band,-*?, 
is the effective moment of inertia about an axis of rotation perpendicular to 
the nuclear symmetry a x i s , a is the familiar decoupling constant for the 
К = h band, and 6K , is the Kronecker 6. The values of K, ff chosen for 
each s tate of the transition nucleus govern the allowed values of J in the 
rotational band and the allowed values of 4 , the orbital angular momentum, 
to reach a given J. "We wish to emphasize that this choice of an inverted 
parabolic shape for the fission barrier is a special assumption made for 
the 227j^a n u C i e u s based upon theoret ical est imates of an extremely small 
inner barrier and this choice would not , in general , be expected to be valid 
for heavier nucle i . 

As recently pointed out by Vandenbosch [15], the choice of the values 
of (J , ir) in the rotational band associa ted with a given К state is some
what ambiguous. If the transition nucleus has a reflection symmetric 
shape , then one would expect the usual form of the allowed values of 
(J , TT) for a rotational band, i . e . , 0+, 2+, 4+, 6+ . . . or 3 / 2 - , 5 / 2 - , 
7 / 2 - , e t c . However,if, a s predicted by calculat ions [ 2 , 6 ] , the t rans i 
tion nucleus 227да n a s a n asymmetric shape , then the number of levels in 
the rotational bands are doubled. For example, asymmetric e -e nucleus 
rotational bands have the form 0+, 1-, 2+, 3 - , 4+, 5-, etc . while odd-A 
nucleus rotational bands have the form 3/2±, 5/2±, 7/2±, e t c . In the odd-
A c a s e , levels of both parity are degenerate due to the lack of reflection 
symmetry in the nuc leus . Thus, each (K,J) level is four-fold degenerate , 
i . e . , ± parity and ±K va lue . Although some theoretical predictions favor 
an asymmetric shape for the 227^ a transit ion nuc leus , we do not feel that 
we can a priori rule out the symmetric transition nuc leus . We have there
fore carried out calculat ions using both assumptions for En - 3.9 MeV. 

For En ^ 4 .1 MeV, insufficient experimental data is available to 
allow a s ta t is t ical ly significant specification of the single particle s ta tes 
of the transition nuc leus . For these energ ies , a s ta t i s t i ca l description of 
the level density of the transit ion nucleus was used . Specifically, one 
calculated Tf a s 

U-B f 

/ p „ (E ,K,J , i r ) T ' (E)dE 
T f ( K , J , i r , E ) = о r r 

I max 
I e x p [ - K 2 / 2 K 2] 

K=-I ° 
max 

where p£-(E,K,J) is the densi ty of levels with quantum numbers K, J and ff 
at energy E. The compound nucleus excitation energy is U and the fission 
barrier height is Bf. Tf" (E) represents a Hill-Wheeler penetrability factor. 
The level density was parameterized in Fermi gas form as 

n № к -П - x (2J+1) ( J + l / 2 ) z K2 

p f ( E , K , J ) - 247? 1/4 F 5 / 4 , e x p ( 2 / a ¥ - T o « IT 
a.p Ü о с 
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where a j , the level density parameter, and KQ are varied as free parame
ters to give the best fit simultaneously to the energy variation of the f i s 
sion cross-sect ion and angular distribution. The total level density 
Pf(E,K,J) was assumed to consis t of equal numbers of positive and nega
tive parity l eve l s . 

In specifying the parameters to be used in the above equations -no) 
was assumed to be 0.4 MeV, while the spin cutoff parameter, a , was c a l 
culated from the expression 

a* 4? n 

where ^ was taken from the est imates of Brack et a l . [6] (-5-7- - 2 keV) 
The nuclear temperature, T, was calculated using the expressioA 

The y - r a y transmission coefficients, Ту (E,J , i r ) , for y - r a y decay of 
the compound nuclear s ta te with total angular momentum J, parity ffand 
excitation energy, U, were calculated using the formalism outlined pre
viously by others [16 ,14] . 

The procedure which we decided to follow in order to account for the 
residual nucleus is to treat these residual levels in a nondiscrete , s t a t i s 
t ical manner, accounting for every J77value individually. The overall 
effect of this assumption is that outgoing neutron transmission coefficients 
are now replaced by "compound transmission coefficients" . The neutron 
channel summation in the denominator of the Hauser-Feshbach expression 
would then be replaced in the following way 

E' Л j J JIT £ ' j ' 0 J 

where p (En-E^) is the level density at an excitation energy equal to the 
incident neutron kinetic energy minus that of the outgoing neutron. 

No attempt was made in the calculations to account for level width 
fluctuation effects [16] because to do so would be inconsistent with use 
of neutron transmission coefficients based on optical model search codes 
not incorporating the Moldauer theory. Individual neutron transmission 
coefficients were taken from the compilation by Meldner and Lindner [17] 
corresponding to A = 232, the only tabulated value in this region. A check 
upon the appropriateness of these transmission coefficients was made by 
using them to calculate the energy var ia t ion of the total react ion c r o s s -sect ion 
fo r 2 3 2 Th + n. Quite good agreement was obtained between the calculat ions 
and the experimental data of Batchelor et a l . [18] . Level densi t ies for 
the residual nucleus were calculated using the Gilbert and Cameron level 
density expressions [19] with some notable changes . The Gilbert and 
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2 3 4 5 6 7 
EXCITATION ENERGY (MeV) 

FIG.4. Level density of the residual nucleus !26Ra as a function of excitation energy. Solid line represents our 
best fit to the experimental data (circles) forгзг Th, the dashed line represents the Gilbert and Cameron [ 19] 
prediction. 

Cameron cons tan t s , EQ and T, In the constant temperature portion of the 
level density expression and the level densi ty parameter, a , in the Fermi 
gas portion of the level density expression were determined in a fit to the 
experimental data [18 ,20 ] on level densi t ies for Th. Furthermore, 
the transit ion between the constant temperature and Fermi gas forms of the 
level density was assumed to take place at 3 .0 MeV excitation energy. A 
spin dependence was added to the level density expression below 3.0 MeV. 
The fit of the modified Gilbert and Cameron formula to the experimental 
level density data is shown in Figure 4 and was found to be quite good. 
The level density parameter a n was found to vary strongly with energy as 
shown in Figure 5. The best values for the other constants were deter 
mined to be T = 0.422 MeV and E 0 = -0 .397 MeV. The calculated values 
of the (n ,y) c ross - sec t ion agreed well with experimental values of this 
c ross - sec t ion [21] in the energy range t e s t ed , 3.6 ä E n s 6.4 MeV. 

III . Results of the Calculations 

We have attempted to fit the energy variation of the total fission cross-
section and fragment angular distributions in the energy region from En = 
3.6 MeV to En = 11.6 MeV. Using the theory described above and after an 
extensive search of the possible number of access ib le s ta tes of the t ran
sit ion nucleus and the possible values of the free parameters, K, ir, Efj 
and-йш for each s t a t e , we have concluded that the experimental data in 
the energy region from En = 3.6 MeV to En = 3.9 MeV can be fitted by 
assuming the 2 2 7 Ra transit ion nucleus single particle spectrum shown in 
Figure 6 and Table I . The best fits to the data in this region are shown in 
Figures 1 and 2 . 
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1 2 3 
EXCITATION 

4 5 6 
ENERGY (MeV) 

FIG.5. Level density parameters, af and an, for the transition nucleus Ra and the residual nucleus Ra, 
respectively,versus excitation energy. Excitation energies for 2!7Ra are measured relative to the fission barrier 
of 3.7 MeV while the excitation energy for Z26Ra is given asE*-2A0, where the gap parameter 2Д0 = 1.7 MeV. 
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TABLE I. PARAMETERS DESCRIBING THE LOW-LYING SINGLE PARTICLE 
STATES IN THE 22?Ra TRANSITION NUCLEUS 

Symmetric Saddle Point Deformation 

(К,тт) 

3 / 2 -

1/2+ 

5/2± 

l / 2 ± 

E 0 (MeV) 

3 .65 

3 .68 

3 .8 

3 .88 

bu (MeV) 

0 .4 

0 .75 

0 .4 

^ 0 . 1 5 

Asymmetric Saddle Point Deformation 

S t a t e Mo. К ' E Q (MeV) fro (MeV) 

1 3/2 3 .7 6 0 .6 

2 5/2 3 .83 0 . 5 

3 1/2 3 .92 1.0 

To guide us in a quantitative evaluation of the agreement between 
theory and experiment, we used the x criterion to reject unsatisfactory 
hypotheses . Each hypothesis tested consisted of two par t s , the ca lcu la -
t ional framework described above and a particular choice of the free param
eters K, E Q , ЪШ, and 1T. Unsatisfactory hypotheses were rejected at the 
0.05 level of s ignif icance. Although we reached reasonable choices of K, 
Eg, "fiw i and 7r,we made only a limited search of different forms of the c a l -
culat ional framework. In particular, we found that a ±10% variation in l^ , and 
a factoE of two change in the decoupling constant a and in the rota t ional con
stant -%j had a negligible effect upon the calculated transition s tate s p e c 
trum. Therefore, we are saying that using the theoretical approximations 
described above as a bas i s for calcula t ion, we can reject al l unsat is fac
tory values of the free parameters with only one chance in twenty of being 
in error. 

In making our search for acceptable hypotheses to describe the da ta , 
we have assumed that we should use the minimum number of access ib le 
s ta tes of the transit ion nucleus at any given energy. This assumption, 
made for simplicity and precision in the determination of the free parame
t e r s , means that there may be many hypotheses involving weakly excited 
s ta tes ( i . e . , high spin s tates) which will fit the da t a . We simply cannot 
say anything about them. 
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Examining the data in Figures 1 and 2 , we can see qualitatively the 
3.6 MeV angular distribution shows the characterist ic pattern of fission 
through а К = 1/2 band. The parity of the К = 1/2 state was found to be + 
rather than - because the required К = 3/2 and К = 5/2 strength needed to 
fit the 3.8 MeV data would not be achieved if a very strongly excited 
К = 1/2- s ta te were present . The 3 .8 MeV angular distribution shows an 
intermediate angle peaking characteris t ic of К > 1/2 s t a t e s . The peak at 
~ 4 5 ° in the angular distribution requires more than а К = 3/2 s tate to 
reproduce i t . Significant К = 5/2 strength must be present to cause peak
ing at such angles as shown in Figure 2 . The parity of the К = 3/2 s tate 
was chosen to be - to allow the necessary strength for this fission channel 
to fit the angular distribution and cross-sect ion da ta . It was found that 
both К = 5 /2 - and К = 5/2+ s ta tes would allow sta t is t ical ly significant fits 
to the da ta ,so the parity of the К = 5/2 s ta te has not been determined. The 
3.9 MeV angular distribution data show the signature of а К = 1/2 s tate 
whose parity could not be determined in a s ta t is t ical ly significant manner. 
For En a 4 .1 MeV, the quantity and quality of the data is not sufficient to 
susta in s ta t is t ical ly significant further analys is in terms of the single par
t icle levels of the 227j>a nuc leus . 

Many detailed searches for best fits to the data have indicated that 
the positions of the single particle s ta tes given in Table I should be r e 
garded as uncertain to < ± 0 . 1 MeV for the symmetric case and < ± 0 . 0 5 MeV 
for the asymmetrically deformed c a s e . The values of the barrier curvature 
•fio) should be regarded as uncertain to ± 0 . 2 MeV. Assuming a neutron 
binding energy of 4 .5 MeV for 7 Ra, this calculation places an upper 
limit on the fission barrier of ~ 8 . 2 MeV. 

The analysis of the higher energy data was carried out using the s t a 
t i s t ica l description of the transition s tate nucleus described ear l ier . The 
fission level density parameter, a j , and K0^ parameter were determined for 
each energy by determining the best fit to the available cross-sect ion and 
angular distribution da ta . Once again , a x criterion was used to judge 
the s ta t i s t ica l significance of the resul ts and to ass ign uncertainties to 
the K0 v a l u e s . The best fits to the cross-sect ion and angular distribution 
data are shown in Figures 1, 2 and 3 . The values of af determined in the 
fitting are shown in Figure 5, while the values of KQ2 are shown in Figure 7. 
Some checks were made of the sensit ivity of the calculated values of af 
and K0 to changes in the barrier curvatures , -nw,and the spin cutoff pa
r a m e t e r , ст. Theeffectof a 0.2 MeV change inuw was to produce a 0.5% change 
in af, while a 50% change in <J2 produced in an ~ 1 3 % change in af and no 
change in K0 . Since second-chance fission should become energetically 
possible for E =» 9 MeV, the af and K0 resul ts for energies of this magni
tude and higher should be considered with this in mind. In fact , the r ise 
K0 at 9 MeV can be taken as secondary evidence for the correctness of the 
assignment of the fission barrier height of ~ 3 . 7 MeV for 2 2 7 R 9 > 

IV. Discussion of Results 

The available data on fission barrier heights for the lighter fissioning 
elements is summarized in Table II along with many calculat ions of these 
quant i t i es . The fission barrier height of 8.2 ± 0 . 1 MeV deduced for the 
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TABLE II. CALCULATED AND EXPERIMENTAL VALUES OF FISSION 
BARRIER HEIGHTS (in MeV) FOR THE LIGHTER FISSIONING ELEMENTS 

O u t e r O u t e r 
I n n e r B a r r i e r B a r r i e r 

Nuc l eus B a r r i e r (Symmetric) (Asymmetric) E x p t ' 1 R e f e r e n c e 

2 2 6 R a - - - 8 . 5 ± 0 . 5 Zhagrov 
e t a l . [22] 

M . 5 ^10 ^10 - Adeev e t 

a l . [4] 

4 . 2 1 0 . 5 9 .0 - M o l l e r [2] 

3 .7 1 0 . 7 -. - Mosel & 

S c h m i t t [23] 

1 0 . 2 1 0 . 2 - P a u l i [7] 

2 2 7 R a - - - 8 . 2 ± 0 . 1 T h i s work 

2 2 8 R a 2 . 4 - 8 .2 Brack e t 

a l . [6] 

4 .2 1 1 . 3 8.7 - M o l l e r [2] 

2 3 0 T h - - - 6 . 1 i n n e r James e t 

6 .5 o u t e r a l . [24] 

4 .0 6 .9 9 .4 - M o l l e r [2] 

2 3 2 T h - - - 5 .9 i n n e r Bjornholm 
6 . 1 o u t e r [7] 

3 .9 - 6 .8 - Brack e t 

a l . [6] 

4 .6 1 0 . 1 6 .7 - M o l l e r [2] 

3 .4 - 6 .6 - P a u l i [7] 

2 2 7 Ra transit ion nucleus agrees well with the value of 8.5 ± 0.5 MeV 
found by Zhagrov et a l . [22] for 2 2 6 Ra in photofission s tud ie s . (Through
out this d i scuss ion , we shall assume that odd-even effects , i . e . , " s p e 
cial izat ion energ ies" , are small for these nuclei and will thus compare 
e -e and odd-A nucle i . ) The value of 8.2 ± 0 .1 MeV for the 2 2 7 Ra fission 
barrier height is ~ l - 2 MeV lower than most calculat ions of fission barrier 
heights in this region (with the exception of the calculat ions of Brack 
et a l . [6] who predict a fission barrier height of 8.2 MeV for 2 2 8 R a ) . In 
comparing the agreement between theory and experiment for Ra and Th i s o 
t o p e s , one may be seeing systematic theoretical overestimation of fission 
barriers a s the (Z,A) of the fissioning system d e c r e a s e s , i . e . as the 
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transition s tate nucleus becomes more deformed. One may speculate that 
this difference between theory and experiment is due to the fact that 
ground state shell corrections in this region may be positive (as indicated 
by neutron level density data d iscussed later) while the calculations indi
ca te negative ground state shel l correct ions. 

Figure 6 shows the spectrum of single particle s ta tes found for the 
2 2?Ra transition nucleus along with various theoretical predictions of the 
expected neutron single particle state ordering in 2 2 ?Ra . ^ n e "predictions" 
represent our best deductions based upon the single particle level schemes 
shown in References [ 2 , 5 , 2 5 ] . The best agreement between the deduced 
single particle levels and those predicted by various authors appears to 
occur with the single particle level scheme of Bolsterll et a l . [25] , 
although some similarities can be found between prediction and experiment 
in a l l the level schemes . In the calculations by Bolsterli et a l . , the aver
age positions and relative orderings of the levels appear to be well-repro
duced although the level spacings are not well-reproduced. 

Figure 7 shows the values of K0
2 deduced in this work compared 

with the calculated values of K0 based upon single particle level schemes 
and the ag reemen t between theory and exper iment s e e m s to be good. The 
rise in the theoretically calculated value of K0

2 at an excitation energy 
relative to the fission barrier of ~ 3.3 MeV is due to the formation of the 
three quasi-par t ic le s t a t e . From this r ise in K 0

2 , which seems to be ver i 
fied by the da ta , one can infer a value of the energy gap parameter for the 

Ra transition nucleus , 2 Ä f , o f ~ 2 . 7 MeV as compared to the equi l ib
rium va lue , 2 Д , 1.5 MeV. 

Figure 5 shows the values of the level density parameters , a n and af, 
for the residual 2 2 6 Ra nucleus and the transition nucleus 2 2 7 R a , r e s p e c 
t ive ly , as a function of excitation energy, along with the a f / a n ra t io . The 
increase of af and a n at the lowest excitation energies can be attributed to 
positive shel l corrections for both the transition nucleus and the residual 
nucleus [27] . Such positive shell corrections are associa ted with 
a greater than average single particle level density near the Fermi energy. 

80 
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FIG.7. Deduced values of Kg versus excitation energy above the fission barrier (Bf=3.7 MeV) for 227Ra. Solid 
curve represents calculation of Ippolitov and co-workers [26] . 
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As the excitat ion energy inc rease s , single particle s ta tes further away 
from the Fermi energy begin to play a greater role and the values of aj 
and a n dec rease . The magnitude of the a^/a ratio is not as large a s that 
observed for other fissioning systems because of the apparent positive 
shel l correction for the residual nucleus 2 2 6 R 9 g r o u n d state deformation. 
Usually the residual nucleus ground s ta te deformation has a negative shell 
correction, a lower than average single particle level density and a d e 
crease in a n at the lowest excitation energ ies . It is interesting (and quite 
speculative) to note that the apparent leveling off of the а^/а п ratio occurs 
at an excitation energy above the fission barrier corresponding to the t h r e e -
quasi -par t ic le excitation threshold. The plateau in the cross-sect ion b e 
tween 4 .1 and 4.7 MeV is apparently due to a momentary constancy in 
IjAjj in this region, which is made possible by the fact that af and a n 
both increase at low excitation energ ies . 

The data of Nobles and Leachman [10] show that in the energy region 
4 s E n s 10 MeV the fragment mass distribution (as inferred from their 
fragment kinetic energy spectra) for 226да (n,f) changes from one of pre
dominantly asymmetric character , to equal amounts of symmetric and asym
metric fission,to a distribution in which symmetric fission dominates . In 
our analysis of the structure of the 22 '7Ra transit ion nucleus in this energy 
region, we see no apparent unusual changes in the structure of the t rans i 
tion nuc l eus . 
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DISCUSSION 

J.R. NIX: Although most calculations do not reproduce both symmetric 
and asymmetric saddle points for nuclei in this region, the potential energy 
surface for 227Ra probably contains both types of saddle points. Would the 
simultaneous introduction of symmetric and asymmetric saddle points 
complicate your analysis? 

W. LOVELAND: No, it certainly would be possible to include 
simultaneous symmetric and asymmetric saddle point deformations in our 
analysis. I do not think, however, that our results would be significantly 
different in that case, since we obtain similar results for the single particle 
spacings and spins using the two forms of the rotational bands of the transition 
nucleus. 



IAEA-SM-174/81 53 

J.R. HUI2ENGA: In making your comparison between the experimental 
and theoretical single particle levels at the saddle, have you taken into 
account the effects of the Coriolis interaction? These forces will perturb 
considerably the experimental spectrum. 

W. LOVELAND: Except for the usual effects of the К = •§• bands, we 
have neglected the effect of Coriolis coupling in our analysis. The effect of 
such coupling (between states of ЛК = 0, ±1) might shift the overall positions 
of the single particle states by a small amount but should not affect, to any 
great extent, our general conclusions concerning the fission barrier height 
and transition-nucleus single particle level ordering. 

H. C. BRITT: Since the experimental barriers for Th isotopes indicate 
equal-height barriers as compared to theoretical calculations, which predict 
the second barrier to be much higher, it seems possible that a similar effect 
might be present in radium. Would this seriously affect your calculations? 

W. LOVELAND: Yes, our analysis is predicated on the premise that 
the outer barrier is so much higher than the inner barrier that the inner 
barrier can be neglected in the calculations. However, if the barriers were 
of similar height, this would imply a very serious failure of the theoretical 
calculations inasmuch as Brack and co-workers, for example, predict an 
inner-barrier height of 2. 8 MeV compared to an outer-barrier height of 
8. 2 MeV for nuclei in this region. 

H. J. SPECHT: What is the explanation for the apparent plateau in the 
fission cross-section between 4.1 and 4.7 MeV? 

W. LOVELAND : This plateau is apparently due to a momentary 
constancy in r f / Г п in this region, which is made possible by the fact that af 
and an both increase at low excitation energies. 

H.J. SPECHT: Would you then expect it to be influenced by the .angular 
momentum distribution of the reaction? As reported1 in Paper IAEA-SM-174/20, 
we have studied the Ra (d, pf) reaction leading to the same fissioning 
compound nucleus and we do not observe this structure at all. 

W. LOVELAND: I am frankly surprised that you do not see this 
plateau in the 226Ra (d, pf) reaction. I would not have expected the difference 
in reaction mechanism between the (d, pf) and (n, f) reactions to cause the . 
disappearance of the plateau. As far as the impact of such a finding upon our 
analysis goes, the absence of a plateau in this region would merely decrease 
slightly the values of af in this energy region. 

1 KONECNY, E., SPECHT, H.J . . WEBER, J., Paper IAEA-SM-174/20, these Proceedings, Vol.2. 
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Abstract 

SUBBARRIER PHOTOFISSION OF 238 U. 
Experimental yield curves for symmetric and asymmetric photofission of 238U in the subbarrier energy 

region are analysed in the framework of a double-hump fission model, where the potential energy is described 
by three parabolas. In the model, the outer fission barrier is assumed to depend on the type of deformation of 
the nucleus, thus leading to a coupling between symmetric and asymmetric fission. It is shown that the model 
reproduces well the experimental data in an energy region where the fission cross-section varies by 5 orders of 
magnitude. The asymmetric yield can be described by one dominant 1", 0 channel with a resonance at 4.6 MeV 
and one 2+, 0 channel. The information about the symmetric fission is however very limited, except that a 
strong resonance at about 5.8 MeV is clearly observed. The maximum at 6 MeV in the valley-to-peak ratio is 
interpreted as an effect of this resonance in the symmetric yield and not as an effect of neutron competition. 

INTRODUCTION 

During the past seven years great advances in our understanding 
of the physics connected with the fission process have been made. These 
advances have been triggered by new theoretical means of calculating the 
potential energy of a nucleus as a function of its shape and particle 
number. According to Strutinski £lj , the potential energy for deformation 
of a nucleus in the actinide region is given by a "double-hump" barrier, 
i.e. there exists a secondary minimum with a deformation greater than that 
of the ground state. Approximate one-dimensional calculations with this 
model explain the occurrence of long-lived fission isomers, as well as 
certain types of resonances in the fission cross-section. Because of this, 
the Strutinski theory has been widely accepted in the interpretation of 
experimental fission data. More detailed calculations with the Strutinski 
theory, in which account is taken of several deformation coordinates, 
have yielded three-dimensional surfaces [2] (see fig 1). In these 
calculations, the deformation coordinates have been divided into two 
groups, symmetric and asymmetric. This leads to the result that the outer 
deformation barrier is considerably higher for symmetric fission than for 
asymmetric. It has also been demonstrated that the inner barrier is 
common to asvmmetric and symmetric fission. 

The purpose of this paper is to see to what extent it is possible to 
find agreement between low-energy fission yield curves for asymmetric and 
symmetric photofission of 236U and model calculations performed with a 
somewhat refined model based on these recent theoretical advances. 

EXPERIMENTAL PROCEDURE AND RESULTS 

The experiment [З] was performed with bremsstrahlung photons produced 
in a 6.5-MeV microtron. The irradiations took place in the vacuum tank of 
the microtron. The average current was 20-50 uA and, as target, samples of 
natural uranium were used. The fission yields have been determined by 
ß-counting of chemically separated isotopes characterizing symmetric and 
asymmetric fission yields. The activities of n s , U 7 C d giving symmetric 

55 
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О CD 
FIG. 1. Schematic plot of a deformation energy surface showing the paths for asymmetric and symmetric 
fission. A indicates the common inner fission barrier, Вд and Bs are the outer fission barrier for asymmetric 
and symmetric fission respectively. 

fission yield were measured for incident electron energies between 5.0 MeV 
and 6.5 MeV and the activity of 139Ba giving the asymmetric fission yield 
was measured between 4.6 MeV and 6.5 MeV. The yield curves are shown in 
figures 2 and 3. 

PH0T0FISSI0N AT LOW ENERGIES 
The photofission process at low energies is assumed to be a two-step 

process. The nucleus absorbs a photon and the compound nucleus thus 
created decays by fission or by gamma deexcitation or neutron emission 
Photo-absorption 

It was pointed out by Bohr L̂tJ that the low-energy fission channels 
for an even-even nucleus should be describable in terms of collective 
excitations similar to the known collective bands of an actinide nucleus 
in its ground state deformation. Thus, for 2 3 8U we assume that the fission 
process takes place mainly through 1 and 2 + fission channels. 

A great drawback when analysing photofission data is the absence of 
direct, reliable data on the cross-sections for dipole and quadrupole 
absorption. One has in general to rely mainly on the electrodynamical 
estimate (R/*)2»l/50 for the ratio aZ*. /0|аь ' wnere 2lT * is tne 
wavelength of the photon and R is the nuclear radius. For the energy 
dpendence, the best one can do in the absence of direct data is to 
extrapolate absorption cross-sections from data at higher energies, 
keeping the ratio constant. We have simply assumed the approximately 
exponential energy-dependence given by Khan and Knowles [53 and used the 
formula 

2 + ,FU2 Г 
yabs 4*y yabs 
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FIG.2. The calculated asymmetric yield curve (solid line) with its channel decomposition compared with the 
experimental data. 

The explicit formula is 

a|abs " 1-65-Ю'3 exp (.72 Ey) 

Competing decay channels 

The possible decay modes of the compound nucleus apart from fission 
are gamma deexcitation and neutron emission. 



58 ALM et al. 

Ш 4 

10"6 

Ю 8 

Ю 10 

-

-

1 1 1 1 1 1 -

TOTAL 

/ 
П _- • - 2 + , 0 

№ 

/ 

v 
i / i , i i i 

Eymax <MeV) 

FIG.3. The calculated symmetiic yield (solid line) curve with its channel decomposition compared with the 
experimental data. 

T 
The gamma radiation width Г is taken from Huizenga and Britt [6J. 

For the neutron emission width 

Г = — T T n 2тг ciÄj Äj 

is used,where Dr is the average distance between levels in the compound 
nucleus w i th spin and pa r i t y 1 ^ and T^: is the transmission coe f f i c i en t for 
emission of a neutron w i th angular momentum £ and channel spin j . The 
summation is performed over a l l combinations of j , SL and a l l ava i lab le 
levels a in the 237U nucleus provided that t o t a l angular momentum and pa r i t y 
a re conserved. The t r a n s m i s s i o n coef f ic ients a re taken f r o m E m m e r i c h [ 7] 
At low neutron energies the energy dependence of the transmission 
coe f f i c i en t is given by 

2A+1 

4 j WV E a> 

Here Sn is the neutron binding energy, E is the excitation energy of the 
2 3 7U nucleus and Кл; is a constant. 
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The fission model 

The model is developed on the assumption that the fission process is 
governed only by barrier transmission. The two-step fission cross-section 
formula is given by 

o,(E ) = E a . f y' - Yabs 

к 

к 
Tir Tir ттт 
f Y n 

where I = 1, 2, IT is the parity and the symbols If , Г-J and Г^ denote, 
respectively, the widths for fission, Y'deexcitat ion and neutron emission, 
the only decay modes possible. 

K-mixing is not included in our analysis since our experimental yields 
can be described mainly by К = 0 channels. 

According to Bohr-Wheeler [8] the average fission width of a channel 

where D is the average distance between compound levels with the same 
spin and pl is the barrier penetration. 

The expression for barrier penetration Г311 is 

P P 

where 

COS2x coshy+sinhy PA + P B + sin2x sinhy+coshy —A-r—E 

Рд and Pg are the penetrat ion of the inner and outer f i s s i on bar r ie rs 
respect ive ly and are, according to H i l l - W h e e l e r \JQ~], fo r a parabol ic 
ba r r ie r given by 

V V - l™><&(yeA))]-
whe re E. is the barrier height and tiwA is the barrier transparency with 

where С is the curvature and В is the mass parameter. In the analysis, 
a double-hump fission barrier in the form of three conjugate parabolas has 
been used. PfiPg/'t is known as P m j n , the penetration in the absence of 
resonances. The factor f in the P(EY)-expression is due to the fact that 
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in the double-hump description one expects resonances. If there was no 
coupling between fission and other degrees of freedom, one would, 
according to the V/KB-approximat ion, have f = {sin^x + cos2x} , where 

x(E ) = Ref(E ) 
Y Y 

with 

f (E ) z _ L _ (E - E„ + iW^) 

Here, E n is the energy above the ground state of the secondary minimum 
and 'nŵ -,. is the curvature of the parabola describing the secondary 
minimum. 

We get resonances for the values 

x(E ) = ir(n+|) n = 0, 1, 2, ... 

However energy can "leak" from fission to other degrees of freedom and 
this is taken care of by the complex part 

У(Е ) = lmf(E ) Y ' Y 
in the potential, which results in damping and broadening of the 
resonances. 

The fission cross-section is further split into two parts, one 
asymmetric 0f(E^.) and one symmetric a|(E ) , and we get the final 
expressions 

a * ( s ) ( E ) = i : a 1 , - (к = o) 
f у Tir vabs ттт ттг ттг ттг ' 

1 т\ a +r* s
+r x

 +r r 
f f n у 

In the model, it is assumed that the inner barrier is common to the 
symmetric and the asymmetric channels with the same spin and parity and 
that the fission path is split at the passage of the outer barrier, as 
indicated in figure 1, in agreement with the calculations of Möller [_2~\. 

The asymmetric (symmetric) cross-section can be written 

a (s)„ . - r X -J± 
„ I a(s) r I ir P. «F 

Ю = к <*; f Y iv Yabs ттг Tir ,ir Tir 
Pt a+Pt S+Pi +P1 

f f n Y 
тТГ 

where F is the level density fluctuation factor, which is assumed to 
be equal to 1. 

METHOD OF ANALYSIS 

Taking into consideration the fact that the Y"s°urce is a bremsstrahlung 
beam, the fission yield 'I'(EYmax) as a function of maximum bremsstrahlung 
.energy EYmax is 9'ven by 
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, Eymax 
Y(E ) = С / а,(Е )п(Е ,Е ) dE,, Ymax о f у у Ymax у 

where а.(Е ) is the fission cross-section. n(E ,E ) is the bremsstrah lung f у Y Ymax 3 

spectrum giving the number of photons of energy EY for incident electron 
energy E and С is a constant. 3' ymax 

Comparison of the experimental results and the theoretical calcula
tions can be based on either the fission cross-sections or the fission 
yield curves. We have chosen to make use of the latter approach by 
performing a theoretical model calculation for Of(EY), folding in the 
bremsstrahlung spectrum to obtain the fission yield for comparison with 
experimental yields. With this method, we can avoid ambiguous solutions 
when the fission cross-sections are evaluated from the integral equation 
by a photo-difference method. 

For the bremsstrahl ung spectrum, the thin target form of Schiff [11] 
has been used becauseanaccurate thick target spectrum describing a 
particular experimental set-up is difficult to calculate. Although we in 
our experiment have definitely had a thick target bremsstrahlung spectrum 
which should be somewhat softer than the Schiff spectrum, no serious 
changes in the form of calculated yield curves in the subbarrier energy 
region were obtained by changing the form of the bremsstrahlung spectrum 
in order to represent better a thick target spectrum. This effect reflects 
the very rapid rise of the fission cross-section with excitation energy, 
thus limiting the useful region of the bremsstrahlung spectrum to a 
very narrow part at the upper end. 

Since our experimental data are insufficient to enable us to make 
seifconsistent calculations with the model described, it is necessary 
to make some simplifying assumptions, and to make extensive use of other 
experimental and theoretical information in order to reduce the number 
of parameters in the model. We have therefore restricted ourselves to 
considering only the lowest channels in symmetric and asymmetric fission. 

In the case of symmetric fission we have limited ourselves to 
discussing different possibilities of explaining the fission yield. 

Information about the second well is contained only in the resonant 
part of the yield curve. The location of the resonances on the energy 
scale is determined by the depth and curvature of the second well. 
However, it is not possible,from experimental data, to determine the 
sequential number of a resonance counted from the bottom of the well, 
since only resonances not too far from the barrier are observed. Therefore, 
very little is known of the parameters describing the second well. 
Furthermore, different types of vibrations might have different well 
parameters. Therefore we have used a theoretical well depth [2] and 
chosen a curvature that reproduces our resonant effects, assuming that 
only two resonances are present in the well. 

Asymmetric fission yield 

According to theory Г2], the outer barrier for 238U is asymmetric in 
shape and is about 6 MeV high. At this deformation the 0" and 0+ bands are 
degenerate in energy Q2J . Recent theoretical calculations including 
non-axial deformations p3] give a value of 5.6 MeV for the inner ground 
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State barrier. The lowest 2+,0 state is expected to be a few hundred keV 
below the lowest-lying 1~,0 state [6]. 

Measurements of the angular distributions and total fission yields in 
bremsstrahlung-induced photofission of 2 3 8U [Й] indicate that the 
asymmetric fission goes predominantly through a 1 ,0 channel in the energy 
region from 5.5 MeV to 6.0 MeV. As a consequence of the above-mentioned 
facts we expect the fission process in the subbarrier energy region to be 
described mainly by К = 0 channels. With these assumptions our experi
mental yield curve for asymmetric photofission is analyzed. 

Symmetric fission yield 
Very little is known about the character of the symmetric fission 

barrier. There exists no experimental evidence as to which spin and 
parity values characterize the exit channels. This lack of knowledge 
leads to considerable ambiguities in the calculations. It is therefore 
necessary to limit our discussions to different analysis possibilities 
and to find the minimum number of channels necessary to reproduce the 
experimental yield curves. 

Some facts can be stated: 
1. The theory gives an outer symmetric fission barrier of about 

9 MeV height, which is unstable against ej and eg distortions f_2]. 
This greatly diminishes the possibility of a symmetric 1 channel 
in the static description. 

2. Some experiments indicate resonance structures in the total 
fission cross-section of 2 3 8U at 5.2 MeV and 5-8 MeV. 

3. Since the inner barrier is common to asymmetric and symmetric 
fission, the symmetric yield must be analyzed jointly with the 
asymmetric yield. 

In order to obtain agreement between calculations with a high symmetric 
barrier,and experimental data, the swift rise of the experimental yield 
must be reproduced by a strong resonant effect. This is so, since the 
nonresonant penetrability. 

P . ~ exp min r — (E -E ) 
."% Y - exp — (E -E ) 

influences the magnitude of the valley-to-peak ratio to a large extent. 
The higher the barrier, the greater the curvature parameter. The inverse 
curvature (ticog) influences the energy dependence of P mj n and a high barrier 
E B will give a weak energy dependence. The steep rise in the yield curve 
must then be due to a strong resonance. The strength has to be so great 
that the resonance necessarily must be subbarrier, and can therefore 
hardly be of 2+,0 type, since the inner 2+,0 barrier is expected to be less 
than 5.7 MeV ОЗЛ- The strength has to be greater, the higher the barrier. 
In this connection it may be worth pointing out that it is possible to 
reproduce the low energy part of the symmetric fission yield curve by pure 
barrier penetration, but it is then necessary to choose an outer barrier 
height of 5-8 MeV and a curvature of 0.5 MeV. These parameter values are 
however in violent disagreement with theory. We have therefore in our 
calculations assumed a high symmetric barrier. The calculations show that 
it is impossible to explain the symmetric fission yield curve by making 
use of only one symmetric channel. In this case, only one resonance is 
possible between 5.3 and 5-8 MeV, and the form of the yield curve 
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demands a resonance too broad and too strong to be consistent with our 
calculations. The inclusion of a second resonance channel greatly improves 
the agreement between the model calculations and the experimental data. 

RESULTS OF MODEL CALCULATIONS 

The fit of the asymmetric yield was made with the assumption of a 
dominant 1",0 channel. The best fit was obtained with Ед+Eg = 12.15 MeV. 
The curve was found to be rather insensitive to small changes in the 
relative magnitude of the barrier heights. We have used the values 
Ед = 6.1 MeV and Eo = 6.05 MeV, as reported also by [l4j". In order to 
reproduce the yield curve in the deep subbarrier region, it was found 
necessary to include a resonance at 4.6 MeV with a damping of about 
0.05, in agreement with [143. 

The effective curvature (Tiw _,) = (1/titü +1/tiüB) appeared to have 
a strong influence on the asymmetric yield curve, and we found the 
value 0.47 MeV to represent our data best. For simplicity, the curvatures 
of the single barriers were put equal. The influence of resonances between 
5 MeV and 6 MeV is expected to be small, due to considerable damping 
found in other experiments. 

Since the outer 1 ,0 and 2 ,0 barriers are expected to be degenerate 
in energy in the asymmetric case, the outer 2+,0 barrier height was 
found immediately. The inner 2+,0 barrier was assumed to be about 5.6 MeV 
in agreement with recent theoretical calculations D3J. The curvature was 
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assumed to be about equal to that of the 1 ,0 channel, with the same 
simplifying assumption of equality between inner and outer barriers 
(i.e. titüß = ficon). The quadrupole channel thus determined influenced the 
yield only below 5-5 MeV. 

The results of the calculations and a comparison with the experimental 
yield curve are shown in fig 2. In fig 4 the cross-section for asymmetric 
fission is shown. 

As mentioned above, information about the character of the 
symmetric barrier is scarce and the calculations are restricted to some 
typical cases. The outer barrier is known to be about 9 MeV high and 
the inner barrier is the same as that of the asymmetric case. Starting 
from this, the symmetric yield was calculated, using one or two channels. 

In the one channel approximation, we considered pure quadrupole and 
pure dipole fission. According to the calculations by Möller СЯЗ, the 
symmetric barrier is unstable against e, and en deformations, which makes 
it hard to understand the existence of a symmetric 1",0 channel. The 
symmetric quadrupole case however is not restricted in that way. The inner 
barrier height of 5-6 MeV makes it difficult to obtain resonances strong 
enough to reach agreement between model calculations and experimental 
data. Our calculations show that a barrier height of at least 6.0 MeV is 
needed to produce such resonances. Therefore, the question of the 
character of the symmetric fission exit channel seems to remain open. 
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TABLE I. BARRIER PARAMETERS FOR THE TWO-HUMPED BARRIER3 

\channel 

parameter 
(MeV)\ 

\ 
EA 

*ЫА 

EB 

-htoB 

En 
ши 
wxx 

Asym. 

6.10 

1.0 

6.05 

0.9 

2.90 

3.20 

-0.05 

Г.о 

1 

6.10 

1.0 

8.15 

1.5 

2.25 

2.40 

-0.06 

2 

6.10 

1.0 

9-2 

2.0 

2.25 

2.40 

-0.01 

Sym. 
3 4 

6.10 

1.0 

8.15 

1.5 

2.25 

2.40 

-0.06 

Asym. 

5.7 

0.9 

6.05 

0.9 

2+ ,0 

1 
Sym. 

2 3 

6.0 

0.9 

7.5 

1.5 

2.8 

2.0 

-0.05 

4 

5.7 

0.9 

7-9 

1.5 

2.25 

2.20 

-0.07 

a F o r the different cases considered in the text, where a detailed definition of the quantit ies may a lso be found. In 
the symmet r i c analys is , the cases 1 and 2 refer to the pure dipole, 3 r e fe r s to a pure quadrupole and 4 to the 
combined dipole-quadrupole. 
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T 1 1 Г 
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FIG.6. The calculated valley-to-peak ratio for the fission yield curve compared with the experimental data. 

In the calculations, a dipole barrier of 9.2 MeV height and curvature of 
2.0 MeV gave a reasonable fit to experimental data, using a resonance 
damping of -0.01. An equally good fit was however obtained with a lower 
barrier, 8.2 MeV a smaller curvature, 1.5 MeV and larger damping, -0.05-
To obtain agreement between symmetric quadrupole fission in the one channel 
approximation and the valley-to-peak ratio, we had to to use an inner 
barrier not less than 6 MeV and an outer barrier of about 7-5 MeV with a 
curvature of 1.5 MeV. These parameters gave as good an agreement as the 
dipole case. 

However, for the one channel approximation, it was difficult to 
reproduce properly the behaviour of the symmetric yield between 5.3 MeV 
and 5-8 MeV. The influence of only one resonance gives too steep an 
ascent to the curve. Therefore we joined two channels with resonances 
separated about 0.25 MeV. We have arbitrarily used one 1",0 and one 2+,0 
channel, which gave a much better agreement between model and experiment. 
It thus seems probable that the symmetric fission process is at least a 
two channel process, strong resonant effects being associated with it. 
The results of the calculations and a comparison with the experimental 
data is shown in fig 3. Fig 5 shows the cross-section of symmetric 
fission. In table I we give the parameter values giving the best fits 
to experimental yield curves. 

Neutron emission does not seem to compete to any significant degree 
with the resonant effects, and the maximum at 6 MeV, observed in the valley-
to-peak ratio as shown in fig 6, seems to originate from the resonant 
effects of the fission yield together with a local saturation of the fission 
channel due to the passage of the inner fission barrier. 

CONCLUSIONS 

On the basis of what has been said, we can draw the following 
conclusions: 

1) In the subbarrier region the symmetric and asymmetric yields can 
be interpreted in terms of penetration of double-hump barriers. 
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2) In order to obtain agreement between the theoretically predicted 
high symmetric barrier and our experimental data, it is necessary 
to introduce strong resonances between 5 MeV and 6 MeV. The most 
significant resonance is the one located at about S.8 MeV. The 
maximum at 6 MeV observed in the valley-to-peak ratio is 
reproduced cleary by the effects of this resonance. 

3) Neutron competition appears to be unimportant in our model, 
compared to barrier- and resonance effects.When the neutron 
threshold is below the fission threshold, the importance of 
neutron competition is increased. However, in the "penetration" 
model with a high symmetric barrier, neutron competition can not 
possibly reproduce the maximum at 6 MeV in the valley-to-peak 
ratio of 238U. 
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D I S C U S S I O N 

J . R . NIX: Did you find a difference in the m a s s distribution at a 
resonance in the c ros s - sec t ion compared to the average m a s s distribution? 

J . R . HUIZENGA (Chairman): Pe rhaps I could respond to that question. 
Some 15 yea r s ago Schmitt and Duffield measu red the va l ley- to-peak ra t io 
for photofission of 238U with low-energy b remss t r ah lung . This exper iment 
showed a peak in this rat io at E m a x s 6 MeV, indicating that the m a s s 
distr ibution may change at a resonance . 

J . R . NIX: The data of Duffield and Schmitt you mention can be i n t e r 
pre ted to give the re la t ive penetrabi l i t ies of the second a s y m m e t r i c peak and 
the f i rs t (symmetric) peak in the b a r r i e r . This is done by using the WKB 
express ion for the penetrabi l i ty through a two-peaked b a r r i e r . The resu l t 
i s that the second a symmet r i c peak is more penetrable than the f i rs t peak. 

T . GOZANI: I would like to make an observation which per ta ins both 
to Mr. Back ' s p a p e r 1 and Mr. Aim's p a p e r 2 . When one compares the 
available photofission c ro s s - s ec t i ons for 232Th and 238U with the fission c ro s s -
sect ion of the equivalent res idua l nuclei from charged par t ic le interact ion 
(e. g. 2 3 0Th(t, pf)232Th and 236U(t, pf)238U), one observes the following: the 
s t ruc tu re in the 232Th c ross - sec t ion appears in both data at about the same 
excitation energy, namely 5. 6 to 5. 8 MeV. It s eems however that the 
s t ruc tu re is more pronounced in the photofission data. On the other hand, 
the s t ruc tu re in 23 U, especial ly above about 5. 3 MeV, which appears c lear ly 
in the charged par t ic le data (see Fig. 2, paper IAEA-SM-174/27), hardly 
appears in the photofission data. Since the exper imenta l uncer ta in t ies 
(mostly energy resolution problems) in the l a t t e r a r e prac t ica l ly the same 
for both isotopes, I wonder if the difference between the charged par t ic le 
data and the photofission data ref lects the possible excitation of many more 
angular momentum s ta tes in the fo rmer a s compared to a r a the r l imited 
number of s ta tes (i. e. one or two) which can be excited in this energy range 
in the photofission p r o c e s s . 

B. S. BHANDARI: Mr. Aim, do you take into account any coupling 
between s ta tes in the second well and those in the p r i m a r y well at c o r r e s 
ponding excitation energies? 

A. ALM: No. Since our calculations a r e ve ry phenomenological, we 
have not deal t with any considerat ions of that kind. 

B. S. BHANDARI: Could this 5. 8-MeV resonance be explained in t e r m s 
of a doorway s ta te? 

A. ALM: It possibly could. 
H. C. BRITT: I would just point out that there is a s t rong resonance at 

5.8 MeV from 236U(t, pf)238U. This is p resumably a resonance in the second 
well which could be considered a "doorway s t a t e" . 

C. D. BOWMAN: Essent ia l ly a l l photofission measu remen t s have been 
c a r r i e d out at energies above 5 MeV and much significant information has 
been obtained from these m e a s u r e m e n t s . However, I would like to point 
out that m e a s u r e m e n t s at much lower energ ies a r e possible and that in teres t ing 
r e su l t s on b a r r i e r p a r a m e t e r s can be obtained. 

1 BACK, B.B., HANSEN. O., BRITT, H.C. , GARRETT, J .D. , Paper IAEA-SM-174/27, these Proceedings, 
Vol .1 . 
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•PRESENT MEASUREMENTS 
-RABOTNOV et al. 

BEST SENSITIVITY 

3 4 
Er (MeV) 

FIG. A. Comparison of subbariler U photofission measurements and calculations. 

As the energy of the gamma ray exciting the nucleus decreases, the 
gamma-ray decay in the second well competes successfully with fission 
through the outer barr ier . As Гуц becomes greater than ГЯ1 , the photo-
fission cross-section is dominated by isomeric fission. In this region the 
photofission cross-section is dependent only on penetration of the inner 
barr ier . The cross-section, therefore, drops less rapidly with energy in 
this region, and a shelf appears on the photofission cross-section. The 
cross-section can be analysed for пид and йив, radiation and fission widths 
in the second well and other parameters of interest. 

Dr. I. Schroder, C. Dick and myself have carried out measurements 
on 238U down to 2. 8-MeV gamma-ray energy and the results are shown in 
Fig. A. The solid lines represent calculations of the fission cross-section 
using a method which is an extension of Lynn's very weak coupling formation. 
The height for both barr iers is taken to be 6 MeV and the outer barrier 
curvature is taken to be пив = 1.0 MeV. The various curves are calculated 
for different values of fiuA. The dashed line above 4. 5 MeV shows the 
photofission results of Rabotnov and co-workers. We have measured the 
cross-section at 3. 8, 3. 3 and 2. 8 MeV using the bremsstrahlung from the 
4-MeV electron Van de Graaff accelerator at the National Bureau of Standards. 
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The dot-dashed line through the points is a straight line fit by eye to our data. 
The statistical uncertainty in the points is less than ±20%. Systematic errors 
could be as large as a factor of two. A shelf in the cross-section is clearly 
visible. 

2 
We believe that these results confirm our prediction that measurements 

in this region are feasible and that such measurements can probably be a 
useful source of information on fission barrier parameters. 

M.S. MOORE: Mr. Bowman, are you suggesting that the dramatic 
change in valley-to-peak ratio reported by Mr. Aim is related to the change 
from prompt to isomeric fission as the bremsstrahlung energy is reduced? 

CD. BOWMAN: No. The two effects are entirely unrelated. Aim has 
shown that low-energy photofission is dominated by asymmetric fission. 
Since we do not distinguish between symmetric and asymmetric fission, 
essentially all the fission cross-section and effects we see are concerned 
with asymmetric fission. 

2 BOWMAN, C D . , et a l . , in Photonuclear Reactions and Applications, (Proc. Int. Conf. Asilomar, 
Cal. , 1973); Lawrence Livermore Laboratory, University of California, Livermore (1973). 
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ETUDE DE LA REACTION 2 3 1Pa(n, f) 
INDUITE PAR NEUTRONS RAPIDES* 

A. SICRE, G. BARREAU, R. CHASTEL, 
T.P. DOAN, B. LEROUX, J .C . SAGEAUX 
Centre d 'etudes nucleaires de Bordeaux-Gradignan, 
Universitg de Bordeaux I, 
Le Haut-Vigneau, Gradignan, France 

Abstract-Resume 

STUDY OF THE231Pa(n,f) REACTION INDUCED BY FAST NEUTRONS. 
The excitation function of the 231Pa(n, f) reaction has been measured from 100 keV to 1.3 MeV 

with 10-15 keV energy resolution. The neutrons were produced by the7Li(p,n) reaction, and the fission 
fragments were detected in 2эт geometry by polycarbonate resin detectors. The cross-sections are calibrated by 
comparison with235U(n, f) and238U(n,f) cross-sections. The excitation function shows two resolved resonance 
structures around 200 keV and 330 ke V, and other structures at higher energy. Fission barrier parameters are obtained 
from the analysis of this excitation function with a statistical model which takes into account the competition between 
the different decay channels and assumes a complete damping in the two wells. Fission fragment angular 
distributions have been measured in the vicinity of the resonances and structures. Using a statistical model 
including resonance penetration through the double humped barrier, it has not been possible to interpret 
the 200 keV and 330 keV resonances as. pure vibrational resonances. 

ETUDE DE LA REACTION 2SJPa(n, f) INDUITE PAR NEUTRONS RAPIDES. 
La fonction d'excitation de la reaction231Pa(n,f) a ete mesuree de 100 keV a 1,3 MeV avec une 

resolution en energie de 10 ä lökeV. Les neutrons sont produits par la reaction 1ll(p,n), et les fragments 
de fission sont detectes dans une geometrie 2ir ä l'aide de detecteurs visuels plastiques. Les sections efficaces 
sont nor malisees par compa'raison avec les sections efficaces des reactions 23sU(n, f) et 238U(n, f> La fonction 
d'excitation präsente deux resonances bien rfisolues autour de 200 keV et de 330 keV, ainsi que plusieurs 
structures ä plus haute energie. La forme de la barriere de fission est obtenue par 1 'analyse de cette 
fonction d'excitation a l'aide d'un modele statistique qui rend compte de la competition entre les differentes 
voies de sortie et suppose un amortissement(«dampmg») complet dans les deux puits. La distribution 
angulaire des fragments de fission a ete mesuree au voisinage des resonances et des structures. En utilisant 
un modele statistique incluant la penetration resonnante ä travers la barriere 5 deux maximums il n'a pas 
ete possible d'interpreter les resonances ä 200 keV et 330 keV en tant que resonances de vibration pures. 

1 . I n t r o d u c t i o n 

R e c e m m e n t e n c o r e , l e s s t r u c t u r e s o b s e r v e e s d a n s l e s f o n c t i o n s 

d ' e x c i t a t i o n d e s r e a c t i o n s ( n , f ) e t d a n s l e s p r o b a b i l i t e s d e f i s s i o n m e s u r e e s 

e n r e a c t i o n s d i r e c t e s e t a i e n t a t t r i b u e e s a l a c o m p e t i t i o n e n t r e l e s d i f f e 

r e n t e s v o i e s d e s o r t i e p o s s i b l e s I ' l l ; l ' o u v e r t u r e s u c c e s s i v e d e v o i e s 

d e f i s s i o n e t d e v o i e s d e n e u t r o n p e r m e t t r a i t e n e f f e t d ' e x p l i q u e r 1 ' e x i s -

t e n c e d e s p l a t e a u x o b s e r v e s . P a r c o n t r e c e r t a i n e s r e s o n a n c e s t r e s m a r 

q u e e s o b s e r v e e s s o u s l e s e u i l d e f i s s i o n , p a r e x e m p l e l a r e s o n a n c e o b s e r 

v e d ä 7 2 0 k e V d a n s l a r e a c t i o n ^ З О т ь ^ п , f ) , n e p o u v a i e n t g u e r e e t r e e x p l i -
q u e e s p a r c e t t e c o m p e t i t i o n . 

L a n o t i o n d e b a r r i e r e d e f i s s i o n ä d e u x m a x i m a q u i r e s u l t e d e l ' i n -

t r o d u c t i o n d e s e f f e t s d e c o u c h e d a n s l e c a l c u l d e l ' e n e r g i e p o t e n t i e l l e d u 

n o y a u Г 2 ] a p e r m i s d ' a t t r i b u e r c e s r e s o n a n c e s ä l ' e x i s t e n c e d ' e t a t s d e 

v i b r a t i o n ß q u a s i s t a t i o n n a i r e s d a n s l e s e c o n d p u i t s d e p o t e n t i e l Г з , 4~\ . 

* Travail partiellement effectue sous contrat CEA. 
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De t e l l e s r e s o n a n c e s de v i b r a t i o n ont e t e o b s e r v e e s e t e t u d i e e s 
d a n s de n o m b r e u x n o y a u x p a i r s - p a i r s Г Б ] . a i n s i que d a n s p l u s i e u r s 
n o y a u x de m a s s e i m p a i r e Г б ] ; le n o y a u " ^ 3 2 p a e s t l ' u n d e s s e u l s n o y a u x 
i m p a i r - i m p a i r p o u r l e s q u e l s on a p u o b s e r v e r d e s r e s o n a n c e s de c e t y p e 
£ 7 , 8 ] . N o u s a v o n s done e t u d i e la r e a c t i o n P a ( n , f) p o u r t e n t e r de d e t e r 
m i n e r l e s c a r a c t e r i s t i q u e s d e c e s r e s o n a n c e s . 

2. D e s c r i p t i o n de l a m e t h o d e e x p e r i m e n t a l 

L a func t ion d ' e x c i t a t i o n , a i n s i q u e l e s d i s t r i b u t i o n s a n g u l a i r e s d e s 
f r a g m e n t s d e f i s s i o n on t e t e m e s u r e e s a u p r e s de l ' a c c e l e r a t e u r Van de 
Graa f f de 4 M e V du C . E . N . B . G. ä B o r d e a u x . L e s n e u t r o n s i n c i d e n t s son t 
p r o d u i t s ä l ' a i d e de l a r e a c t i o n Li (p , n) s u r une c i b l e de l i t h i u m n a t u r e l 
o b t e n u e p a r e v a p o r a t i o n s o u s v i d e s u r un s u p p o r t d ' o r de 0, 5 m m d ' e p a i s -
s e u r . L e f a i s c e a u de p r o t o n s e s t d e f o c a l i s e e t d i a p h r a g m e de t e l l e s o r t e 
que son i m p a c t s u r l a c i b l e f o r m e une t a c h e u n i f o r m e d ' e n v i r o n 2 5 m m ' ; 
de p l u s l e s u p p o r t de la c i b l e e s t r e f r o i d i p a r u n e c i r c u l a t i o n d ' e a u , af in 
d ' a b s o r b e r l ' e n e r g i e d i s s i p e e p a r le f a i s c e a u don t l ' i n t e n s i t e e t a i t v o i s i n e 
de 15 pA. 

Un d e t e c t e u r de n e u t r o n s ( c o m p t e u r B F 3 e n t o u r e de p a r a f f i n e ) p l a c e 
a 1 m e t r e de la c i b l e de l i t h i u m , d a n s l a d i r e c t i o n d e s p r o t o n s i n c i d e n t s , 
s e r t d e m o n i t e u r p o u r c o n t r 6 1 e r le flux de n e u t r o n s . 

L a c a l i b r a t i o n en e n e r g i e du f a i s c e a u de p r o t o n s e s t o b t e n u e p a r l a 
m e s u r e du s e u i l de la r e a c t i o n ' L i ( p , n ) , qu i a e t e p r i s e g a l ä 1,881 MeV, 
et v e r i f i e e g r a c e ä l a r e s o n a n c e 1 3 c ( p , у ) а 1,747 M e V . 

L ' e p a i s s e u r d e s c i b l e s de l i t h i u m e s t m e s u r e e a v a n t et a p r e s u t i l i 
s a t i o n , ä p a r t i r de l a c o u r b e de p r o d u c t i o n de n e u t r o n s , au v o i s i n a g e du 
s e u i l d e l a r e a c t i o n ' L i ( p , n ) . 

2 . 1 M e s u r e de l a fonc t ion d ' e x c i t a t i o n de la r e a c t i o n P a ( n , f) 

P o u r m e s u r e r l a fonc t ion d ' e x c i t a t i o n de l a r e a c t i o n P a ( n , f), n o u s 
a v o n s u t i l i s e l e d i s p o s i t i f r e p r e s e n t e s c h e m a t i q u e m e n t s u r la f i g u r e 1. 

L a c i b l e de " l p a e s t c o n s t i t u t e p a r un d e p o t d ' o x y d e de p r o t a c t i n i u m 
de 2 m g / c m d ' e p a i s s e u r , et de 2 c m de d i a m e t r e S u p p o r t e p a r un d i s q u e 
d ' a l u m i n i u m de 0, 0 2 4 m m d ' e p a i s s e u r ; la c i b l e c o n t i e n t 9 3 , 5% d e " ' P a , 
e t 6 , 5 % de d e s c e n d a n t s du 2 ^ l p a . 

Depot de Li Detecteurs Mqkrofol 300 pm 

Detecteur de 
nevrtrons 

FIG.l. Dispositif experimental utilise pour la mesure de la fonction d'excitation de Pa(n.f) au moyen 
de detecteurs plastiques visuels. 
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Les fragments de fission i s sus de la cible de Pa sont detectes a 
l 'aide d'un detecteur visuel plastique constitue par un disque de Makrofol 
de 300 vi d 'epa isseur , ayant le m i m e d iamet re que le support de cible 
(2, 54 cm). Le detecteur es t maintenu face au depot de Pa, ä une dis tan
ce de 1 m m . 

Pour p e r m e t t r e la normal isa t ion de la fonction d'excitation, une cible 
de "E>u ( o u 2 3 8 J J ) e t son detecteur assoc ie sont places contre les e lements 
p recedents . Le sandwich ainsi forme est place perpendicula i rement au fa i s -
ceau de neutrons , ä une distance de 8, 5 cm de la cible de lithium. 

La resolution en energie des neut rons incidents depend de p lus ieurs 
facteurs : 
- la resolut ion en energie du faisceau de protons ( = 1 keV) 
- l ' epa i sseur du depot de lithium ( ^ 10 keV pour une cible de lithium de 

60 jjg/cm2) 
- l 'angle d 'ouver ture du faisceau de neutrons atteignant les cibles (cette d i s 

pers ion en energie , due ä la cinematique, introduit une dispers ion en 
energie c ro i ssan t de 2 keV ä 9 keV lorsque l ' energie des neutrons pas se 
de 85 keV ä 2, 3 MeV). 
Au cours de nos exper iences , la resolution en energie globale etai t 

compr ise entre 10 et 15 keV. 
Apres i r radia t ion , les de tec teurs plast iques sont soumis ä Paction 

d'un bain de NaOH 6N ä 50°C pendant 100 minutes . Le comptage des t r a c e s 
se fait a lo r s au mic roscope optique en lumie re t r a n s m i s e ; pour evi ter les 
effets de bord, seule la zone centrale du detecteur es t depouillee sur une 
surface de 144 mm . 

2. 2 Mesu re des dis tr ibut ions angulaires des f ragments de fission 

Le dispositif exper imenta l ut i l ise pour la m e s u r e des dis tr ibut ions 
angula i res es t r ep resen te sur la figure 2 ; il es t constitue d'une chambre 
a vide formee de 2 c6nes accoles par leur base , permet tan t de r e a l i s e r 
eventuellement 2 m e s u r e s s imul tanees . Le depot de " l p a occupe le cen
t r e de la base commune des 2 c6nes, et son centre est fixe a 8,5 cm de la 
cible de lithium. Une feuille de Makrofol de 10 v d ' epa isseur es t fixee sur 
la face in terne de la chambre . L'axe commun des 2 cSnes es t incline a. 
45° par rappor t ä la direct ion des neutrons incidents pour p e r m e t t r e la de
tection des f ragments de fission de 0 a 90°. 

Apres i r radia t ion , la feuille de Makrofol est soumise ä Paction d'un 
bain de NaOH 6N a 70° С pendant 2 0 minutes . 

En ra ison de la grande surface du detecteur (190 cm^) nous avons u t i 
l ise pour v i sua l i se r les t r a c e s la methode developpee par Repnow (9 ) pour 
la m i s e en evidence des i s o m e r e s de fission. La feuille de Makrofol est 
placee entre une plaque de cuivre et une feuille de plastique aluminisee dont 
la couche d 'aluminium es t por tee ä la haute tension ; les claquages qui se 
produisent ä t r a v e r s les t r a c e s det ruisent la couche d 'a luminium, p e r m e t 
tant ainsi de v i sua l i se r une image des t r a c e s sur la feuille aluminisee sous 
la forme de pet i ts c e r c l e s t r anspa ren t s . La surface depouillee es t divisee 
rad ia lement et angulai rement en zones e l ementa i re s d 'environ 1 cm2 dans 
chacune desquel les on m e s u r e le nombre de t r a c e s . Seule es t exploitee la 
region du detecteur dans laquelle les t r a c e s proviennent de fragments de 
fission dont la direction d 'emiss ion fait un angle > 30° par rappor t ä la s u r 
face de la cible. 
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jSttcteur ptostique 

FIG. 2. Dispositif experimental utilise pour la mesure des distributions angulaires des fragments de fission. 

C o m p t e t e rm de l a d i m e n s i o n r e l a t i v e m e n t i m p o r t a n t e de l a c i b l e de 
" * Р а p a r r a p p o r t ä la d i s t a n c e e n t r e l a c i b l e e t le d e t e c t e u r , l a d i s t r i b u 
t ion a n g u l a i r e e s t o b t e n u e s o u s la f o r m e : 

W(9) = ia2nP2n(c°se> n=0 
ou les coefficients a . sont obtenus ä pa r t i r d'un calcul de moindres c a r r e s 

2n 
entre la repar t i t ion des t r a ce s m e s u r e e s sur le detecteur plastique et les 
repar t i t ions calculees pour chacune des composantes P 2 (cos9) a l 'aide d'un 
calcul de simulation dans lequel la surface d ' impact des protons sur la cible 
de lithium et la surface de la cible de 2 3 1 p a sont divisees chacune en 100 
zones e l emen ta i r e s . 

La precis ion sur les coefficients a 2n e s * °btenue en supposant que le 
nombre de t r ace s m e s u r e e s dans chacune des zones e l ementa i re s du de tec
teur plast ique suit une loi de distribution de Poisson. 

Afin de ver i f ier la validate de cette methode, nous avons i r r a d i e un 
detecteur plastique ä l 'a ide d'une source de " 2 c f a y a n t la mSme dimen
sion que la cible de ^31р а > e t n 0 u s avons bien obtenu une distr ibution 
angulaire i so t rope . 

3. Resul ta ts experimentaux 

La fonction d'excitation que nous avons obtenue pour la react ion 
" l P a ( n , f) est r ep re sen t ee sur la figure 3 ; les b a r r e s d ' e r r e u r co r respon
dent uniquement aux fluctuations s ta t is t iques sur le nombre de t r a c e s de-
tec tees , et ne tiennent pas compte d ' e r r e u r s systemat iques eventuel les . 

La valeur absolue de la section efficace est obtenue par comparaison 
avec une cible 235TJ j U S qu ' ä 1, 2 MeV et avec une cible 2 ^ U de 0, 9 ä 
1,2 MeV. 
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FIG.3. Fonction d'excitation de la reaction 2slPa(n,f) et interpretation au moyen du modele avec « damping» 
complet dans les deux puits. 

1.0 

231D , 232D 

Pa ( n.f ) Pa 

0,5 

\цЧ wttfk 'i1 

• «b.i* Ь 

o; 0.4 06 Ю ^ . ш 1 - 4 

FIG. 4. Section efficace de 231Pa(n,f) comparee aux resultats de Williams [11], de Dubrovina et Shigin [7] 
et ä quelques points caracteristiques de Muir et Veeser L 8 ] . 
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FIG. 5a. Distributions angulaires des fragments de fission de231 Pa(n,0 de 180 keV ä 512 keV. 

L e s v a l e u r s d e s s e c t i o n s e f f i c a c e s d e s r e a c t i o n s 235ц-(п, f) e t 
" ° U ( n , f) on t e t e e x t r a i t e s de l a c o m p i l a t i o n de D a v e y Q . 0 } . 

C o m m e le m o n t r e l a f i g u r e 4 , n o u s r e t r o u v o n s ä 200 k e V la r e s o n a n 
c e o b s e r v e e ä 160 k e V p a r V e e s e r e t M u i r [ 8 ] , n o u s r e t r o u v o n s ä 330 keV 
l a r e s o n a n c e o b s e r v e e p o u r la p r e m i e r e f o i s p a r D u b r o v i n a e t Sh ig in Г7 ] ; 
n o u s t r o u v o n s e n s u i t e un g r o u p e de s t r u c t u r e s a u v o i s i n a g e de 600 k e V , 
u n e s t r u c t u r e v e r s 700 k e V et une a u t r e s t r u c t u r e a u v o i s i n a g e de 880 k e V . 

De 400 keV ä 1 M e V , l a s e c t i o n e f f i cace c r o f t en 2 l a r g e s m a r c h e s 
s e p a r e e s d ' e n v i r o n 310 k e V . L a p o s i t i o n d e c e s m a r c h e s , qu i e s t en bon 
a c c o r d a v e c l e s r e s u l t a t s de W i l l i a m s Q . l j e t l e s r e s u l t a t s o b t e n u s p a r 
B r i t t [ l 2 " ! e n (d, pf), e s t l e g e r e m e n t d e c a l e e p a r r a p p o r t a u x r e s u l t a t s de 
D u b r o v i n a e t Sh ig in f"7]et de V e e s e r e t M u i r . 

E n c e qu i c o n c e r n e l a v a l e u r a b s o l u e de l a s e c t i o n e f f i c a c e , t o u s l e s 
r e s u l t a t s c o n c o r d e n t v e r s 1, 3 M e V , m a i s n o s s e c t i o n s e f f i c a c e s , qui son t 
c o m p a t i b l e s a v e c Ce l les de W i l l i a m s , s o n t n e t t e m e n t p l u s f a i b l e s que c e l l e s 
de D u b r o v i n a e t Shig in a u x f a i b l e s e n e r g i e s . 

L e s r e s o n a n c e s a 200 e t 330 k e V p r e s e n t e n t r e s p e c t i v e m e n t d e s l a r -
g e u r s ä m i - h a u t e u r de 50 k e V e t 60 k e V ; a v e c la r e s o l u t i o n en e n e r g i e u t i l i -
s e e , e l l e s n e p r e s e n t e n t p a s de s o u s - s t r u c t u r e . 
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FIG. 5b. Distributions angulaires des fragments de fission de 231Pa(n, f) de 525 keV a 854 keV. 

L a f o r m e d e s d i s t r i b u t i o n s a n g u l a i r e s , n o r m a l i s e e s a I a 9 0 ° , e s t p r e 
s e n t e e s u r la f i g u r e 5 ; l ' a n i s o t r o p i e de c e s d i s t r i b u t i o n s a n g u l a i r e s e s t c o m -
p a r e e s u r la f i g u r e 6 a v e c l e s r e s u l t a t s o b t e n u s p a r V o r o t n i k o v e t s e s c o l 
l a b o r a t e s s Г13 ~J . 

4 . I n t e r p r e t a t i o n d e s r e s u l t a t s e x p e r i m e n t a u x . 

4 . 1 A n a l y s e d e l ' a l l u r e g e n e r a l e de l a fonc t ion d ' e x c i t a t i o n 

L ' u n de n o s o b j e c t i f s c o n s i s t a n t ä o b t e n i r d e s i n f o r m a t i o n s s u r l a f o r 
m e de l a b a r r i e r e d e f i s s i o n , n o u s a v o n s t o u t d ' a b o r d t e n t e d ' i n t e r p r e t e r l a 
fonc t ion d ' e x c i t a t i o n ä l ' ä i d e du m o d e l e s t a t i s t i q u e p r e s e n t e a u c o u r s de c e 
s y m p o s i u m p a r B R I T T [ l 2 ] . 
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FIG. 6. VariationdeW(0°)/W(90°)en fonction de l'energie des neutrons comparee aux resultats de 
Vototnikov et coll. [13]. 

R a p p e l o n s que c e m o d e l e r e p o s e e s s e n t i e l l e m e n t s u r l e s deux 
h y p o t h e s e s s u i v a n t e s : 

1) L a r e a c t i o n p e u t e t r e d e c r i t e ä l ' a i d e d ' u n m e c a n i s m e en deux e t a -
p e s s u c c e s s i v e s : f o r m a t i o n d ' un n o y a u c o m p o s e f a i b l e m e n t d e f o r m e , 
p u i s d e s e x c i t a t i o n de е е n o y a u c o m p o s e s u i v a n t l ' un d e s d i f f e r e n t s m o d e s 
de d e s e x c i t a t i o n p o s s i b l e s ( e m i s s i o n d ' u n r a y o n n e m e n t g a m m a , e m i s s i o n 
d ' un n e u t r o n , ou f i s s i o n du n o y a u ) . 

2) И у a un a m o r t i s s e m e n t c o m p l e t ( c o m p l e t e d a m p i n g ) d e s m o u v e m e n t s 
c o l l e c t i f s a s s o c i e s ä la v o i e de f i s s i o n d a n s l e p r e m i e r e t d a n s le s e c o n d 
p u i t s ; de t e l l e s o r t e que la t r a n s m i s s i o n ä t r a v e r s c h a c u n e d e s deux 
b a r r i e r e s p e u t § t r e t r a i t e e i n d e p e n d a m m e n t . 

L a s e c t i o n e f f i c a c e o b t e n u e d a n s le c a d r e de c e m o d e l e p e u t 
s ' e c r i r e s o u s la f o r m e : 

o f(E) I a (J , 7Г , E) с 

1 
2 ~ 1 

(1 + а + 2 а co th (t /2)) 

(T + T ) ( T . + T . 
et T A + T B 

ou T , T e t TY s o n t r e s p e c t i v e m e n t l e s c o e f f i c i e n t s de t r a n s m i s 
s i on a s s o c i e s ä l a t r a v e r s e e de l a p r e m i e r e b a r r i e r e , ä l a t r a v e r s e e d e 
l a d e u x i e m e b a r r i e r e , ä l ' e m i s s i o n d ' u n n e u t r o n , e t ä l ' e m i s s i o n d ' un 
r a y o n n e m e n t g a m m a ( s e u l e s l e s t r a n s i t i o n s E , ' ont e t e c o n s i d e r e e s ) . C h a -
cun de c e s c o e f f i c i e n t s de t r a n s m i s s i o n e s t c a l c u l e p o u r c h a q u e v a l e u r de 



IAEA-SM-174/40 79 

J et тг en fonction de l ' energ ie E par sommation sur les differentes t r an 
sit ions poss ib les , ce qui implique l 'ut i l isat ion des densi tes de niveaux des 
noyaux 231 p a et 2 3 2 p a dans le p r e m i e r pui ts , et 1'utilisation des densi tes 
des e ta ts de t ransi t ion du " 2 p a a u n i v e a u d e s deux b a r r i e r e s ; nous avons 
ut i l ise les densi tes p roposees pa r BRITT et NIX Г141 no rma l i s ee s 
sur la valeur exper imentale de la densite de niveaux m e s u r e e dans le p r e 
m i e r puits du " 2 p a ä l ' energie de l iaison du neutron Г15П : 

p (E* = 5, 652 MeV , Jjr = l " e t 2 - ) = (1, 0^ 0, 2) 106 MeV _ 1 

La section efficace de formation du noyau compose oc(J> 7Г , E) et les 
coefficients T n ( j , ж , E) ont ete^ calcules en ut i l isant les coefficients de t r ans 
miss ion de neutrons T^ ± ! ' 2 obtenus par P e r e y et BückQ63a 1'aide d'un poten-
t iel optique non local. 

Les coefficients T sont no rma l i s e s de tel le sor te que 1'on re t rouve 
la valeur de la la rgeur par t ie l le d 'emiss ion gamma m e s u r e e pour le 2 3 2 p a 

ä l ' energie de l iaison du neutron Г15J : 

Г (E* = 5, 652 MeV , Zit = Г et 2") = 51 t 5 meV. 

Les 4 p a r a m e t r e s qui seuls devraient in terveni r dans ce modele sont 
les hauteurs des 2 b a r r i e r e s : Е д et E g , et les courbures de ces b a r r i e r e s : 
| ( и д et ^u ; nous avons fait v a r i e r sys temat iquement "j&u, д entre 0,5 et 
0,9 MeV et Ĵ w-g entre 0,3 et 0,7 MeV, les va leu r s de Е д et E-g etant 
a lo r s de te rminees par un calcul de moindres c a r r e s sur la fonction 
d 'excitat ion exper imenta le . 

Nature l lement , ce modele ne p e r m e t pas d ' i n t e rp re t e r les r esonan
ces et les s t ruc tu res obse rvees dans la fonction d'excitation m e s u r e e ; 
de plus , comme dans le cas de la react ion 231p a( c j j p)232pa j"i z\ nous 
avons pu obse rver que la fonction d'excitation theorique c ro i s sa i t t rop 
lentement ; cette c ro i s sance t rop lente peut gtre cor r igee si l'on augmente 
d'un facteur voisin de 2 la densite des etats de t ransi t ion u t i l i ses au n i 
veau de la seconde b a r r i e r e ; cette augmentation pour ra i t e t r e associee 
au fait que la seconde b a r r i e r e preVue par les calculs les plus r ecen t s , 
es t a symet r ique . 

La figure 3 r ep re sen t e la fonction d'excitation theorique obtenue 
pour differentes va leurs du facteur XB par lequel nous avons multiplie 
la densi te des etats de t ransi t ion assoc ies ä la seconde b a r r i e r e . 

Les m e i l l e u r s r e su l t a t s sont obtenus avec une p r e m i e r e b a r r i e r e 
e t roi te (}i w д = 0,8 - 0,9 MeV) et une seconde b a r r i e r e large 
(Kuß ~ 0>3 - 0 , 4 MeV) ; la hauteur de la seconde b a r r i e r e s ' e s t averee 
peu sensible ä la var ia t ion des au t res p a r a m e t r e s (Eg= 6,0 - 0,15 MeV); 
la hauteur obtenue pour la p r e m i e r e b a r r i e r e es t beaucoup plus sensible 
aux differents p a r a m e t r e s car son influence sur le resu l ta t es t moins 
impor tante (Ед = 5,81 0,3MeV). Ces r e su l t a t s sont en bon accord avec 
les r e su l t a t s obtenus en (d, pf). 

4 .2 Analyse des resonances 

Si l 'on admet l es hypotheses suivantes : 

- la reaction (n, f) peut g t re decr i te ä l 'a ide d'un mecan i sme 
comportant deux etapes success ives et independantes, comme dans le 
modele precedent , 
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- la projection К du moment angulaire total J du noyau com
pose sur l'axe de deformation du noyau est un bon nombre quantique au 
cours du processus de fission, 

- les fragments de fission sont emis le long de l'axe de defor
mation du noyau, 

la section efficace differ en tielle de la reaction (n, f) peut s'ecrire 
sous la forme : 

J KJTT 

£ я
 T f (E) 

da, (6, E ) = £ £ a (j.jr.M, E) 
K=0 F 

}_ T
f (E) + T^ (E) + T, (Е) 

K=0 
•> •> 

2J+1 ,1 ,J (1^к(е)1 + ldM-K(e)l ) s i n e d e 

Dans cette expression, a c est la section efficace de formation du 
noyau compose, T,, T et T sont les coefficients de transmission asso-
cies aux differents modes de desexcitation du noyau compose,Fest un fac-
teur de fluctuations, generalement voisin de 1, et les fonctions di!,K(9) 
sont les fonctions d'onde de la toupie symetrique Г 17J . 

Pour chaque etat de transition (К, J, тг ), nous avons calcule le coeffi
cient de transmission T en considerant une barriere de fission ä une seule 
dimension constituee par trois paraboles jointives, avec une partie ima-
ginaire dans le second puits pour rendre compte d'un "damping" eventuel 
dans le second puits [5, 18, 19J • 

Ce coefficient de transmission T, presente des resonances lorsque 
l'energie disponible dans la voie de fission cofncide avec l'energie des 
etats de vibration ß dans le second puits. 

A l'aide de ce modele, nous avons essaye de voir si les resonances 
ä 200 keV et 330 keV pouvaient gtre interpretees comme etant des resonan
ces de vibration pures, analogues ä la resonance de 720 keV observee dans 
la reaction Th(n, f), et attribuee ä un etat de vibration couple ä la bände 
de rotation construite sur 1'etat intrinseque K=l/^ Г 6 1 ; si tel etait le cas, 
la forme de ces resonances et la forme des distributions angulaires au voi-
sinage de ces energies devraient Stre caracteristiques des nombres quan-
tiques К et л definies par la structure interne des etats de vibration du 
second puits responsables de ces resonances. Notons que, selon les calculs 
de Nilsson j"20] , l'etat intrinseque de plus faible energie du " ^ P a devrait 
Stre, pour une deformation correspondant au second puits, un etat K;r=2~ 
provenant du couplage du niveau de proton [6331 7/2 avec le niveau de 
neutron [512] 3/2" . 

La seule comparaison entre la forme des distributions angulaires 
experimentales au voisinage de 200 keV et 330 keV, et les formes calcu-
lees pour differentes valeurs de К, J et ж , et presentees sur la figure 7 
(la forme de ces distributions angulaires theoriques varie peu avec l'ener
gie des neutrons incidents) montre qu'aucune de ces deux resonances ne 
peut gtre consideree comme une resonance de vibration pure. 



IAEA-SM-174/40 81 

s1 
* 
s? 
* 

1 " 1 

Д151 

- \ K:0+ . 

i i " • 

K=0" . 
>^я 

\ ^'\ 
^5)1 
. M l \ 

.U) V ^ « . 

J!X^^ 
• i 

•„л 
• ~"">v 

• v\ 
4 L — — ^ = ^ 
(1) 10) 

1 1 

31 60 90 30 60 90 
е м 

30 60. 90 30 60 90 0 30 60 90 30 60 
э n ei°> 

1 • J ' 
K = 4 + 

- A-- 1 > 
•JA-

К =4" 

• 

• , / • 7 

' 

'""ч. 

<s\ 

-
> 
• 

s 1 -
Ш -
г 

—i r 
K=5+ 

30 60 90 30 60 90 0 30 
e n 

T r 
K=5" 

в(°1 
30 80 

FIG. 7. Distributions angulaires theoriques. 

C e r e s u l t a t e s t en a c c o r d a v e c un t r a v a i l e f fec tue p a r H o l m b e r g [ 2 1 "1, 
d a n s l e q u e l la f o r m e d e s r e s o n a n c e s ä 200 k e V e t 330 k e V , m e s u r e e s a v e c 
u n e t r e s b o n n e r e s o l u t i o n en e n e r g i e , s e m b l e c o m p o r t e r u n e s o u s - s t r u c 
t u r e . 

E n u t i l i s a n t d e s p a r a m e t r e s r a i s o n n a b l e s p o u r d e c r i r e l a f o r m e 
de l a b a r r i e r e de f i s s i o n : Е д e t E g v 6 MeV , #<-^Ati °> 9 MeV e t 
J ^ B — °> 5 MeV . Кыы~ °> ̂  MeV et Е д ^ 3, 1 MeV et en considerant que 
chacune de ces 2 resonances peut Stre attribuee ä la superposition des 
contributions de 2 a 3 bandes, il semble possible de retrouver la forme 
de la section efficace differentielle jusqu'a 400 keV. 

5. Conclusion 

Au cours de ее travail, nous avons precise la forme de la fonction 
d'excitation, et mesure la forme des distributions angulaires au voisinage 
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d e s r e s o n a n c e s e t d e s s t r u c t u r e s o b s e r v e e s . L ' a n a l y s e d e l a f u n c t i o n 

d ' e x c i t a t i o n n o u s a p e r m i s d ' e x t r a i r e l a f o r m e d e s d e u x b a r r i e r e s d e 

f i s s i o n . 

L e s d e u x r e s o n a n c e s o b s e r v e e s ä 2 0 0 k e V e t ä 3 3 0 k e V n e s o n t p a s 

d e s r e s o n a n c e s d e v i b r a t i o n p u r e . 
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S . B j o r n h o l m , H . C . B r i t t , K . D i e t r i c h , J . D . G a r r e t t e t J . R . N i x d e 
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D I S C U S S I O N 

R.W. HASSE: As I unders tand your analysis of the widths of the r e s o 
nances in the excitat ion function, you assumed complete damping in the 
f irs t minimum. However, as Back and co -worke r s (Nucl. Phys . A165 
(1970) 449) showed, the assumption of incomplete damping is more compa
tible with exper imenta l data which they could not explain by complete 
damping . Can you comment on this d i sagreement? 

B. LEROUX: In both B a c k ' s analysis and our own, complete damping 
is assumed in the first well . Back also assumed some damping in the 
second well, in o r d e r to account for the width of the resonances in his 
data. In our case we do not need any damping in the second well and the 
r eason is that the excitation energy of the nucleus in the vicinity of the 
resonances is about the same as the height of the first b a r r i e r , which 
is relat ively thin and lower than the broad second b a r r i e r ; as a resul t , 
the coupling width of the second-well vibrat ional s ta tes through the first 
b a r r i e r is large enough to account for the width of our r e sonances . 

BACK, В. Б. , et a l . , "Analysis of resonances observed in (d,pf)-reactions", Physics and Chemistry 
of Fission (Proc. Symp. Vienna, 1969), IAEA, Vienna (1969) 351. 
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Abstract 

DETERMINATION OF SPINS OF INTERMEDIATE STRUCTURE RESONANCES IN SUBTHRESHOLD FISSION. 
The appearance of prominent intermediate structure in subthreshold fission is currently ascribed to 

coupling between the normal (Class I) compound nuclear states and Class II states belonging to the second 
minimum in a double-humped fission barrier. This explanation requires that only Class I resonances of a 
single spin state be enhanced through coupling to a Class II state of the same spin. To verify this explanation, 
the fission (Of) and total (ot) cross-sections of Np for resonance energy neutrons have been measured with a 
polarized neutron beam and polarized target, using time-of-flight methods. Neutrons from the Oak Ridge 
£2ectron Linear Accelerator were polarized by transmission through a dynamically pumped proton sample. The 
z3,Np was polarized in a ferromagnetic medium cooled by a 3He-4He dilution refrigerator. The individual fine-
structure resonances comprising the Class II structure at 40-eV incident neutron energy were determined to have 
the same spin, J17 = 3+ . Spins of 14 other Class II structures below 1 keV were also determined, although the 
fine structure is unresolved. Comparison of these results with earlier data on the angular distribution of fission 
fragments from aligned ^Np reveals an apparent admixing of transition states, as evidenced by nonintegral 
values of the projection quantum number, K. 

1. INTRODUCTION 

In order to proceed to a detailed understanding of fission systematics, 
it is necessary to measure the spins of resonances in fissionable nuclei. 
In particular, the properties of the transition states in fissioning nuclei 
remain somewhat obscure without determination of the channel spin. 

Previous attempts to determine spins of compound nuclear levels in 
fissionable nuclei have primarily involved indirect methods, such as observing 
deexcitation capture gamma rays, relative gamma-ray multiplicities, and 
combination of total and partial cross-sections. The more direct method 
utilizing a polarized neutron beam and polarized target has previously been 
limited to low neutron energies, < 10 eV, where polarizing the neutron beam 
is a relatively simple matter. Because of the inconsistencies in those 
published spin assignments for fissionable nuclei, it was decided in 1968 
at the Los Alamos Scientific Laboratory to undertake an experimental program 
to develop the equipment and techniques to polarize a wide range of fissionable 
targets and a neutron beam over a wide energy range. 

* Work performed under the auspices of the US Atomic Energy Commission. 
Now at the International Atomic Energy Agency, Vienna. 

85 
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The determination of narrow intermediate structure in the fission cross-
section of 237Np was first reported by Paya et al.[2] Although the total cross-
section is characteristic of other odd-odd heavy elements, with an s-wave 
level spacing of ^0.7 eV, the fission cross-section is composed of numerous 
structures whose mean spacing is "v< 60 eV. The explanation of this intermediate 
structure in terms of a double-humped fission barrier [3] requires that the 
individual resonances in each group or structure have the same spin, that of 
the "parent" state in the second well. Thus, the choice of 237Np as a target 
nucleus was an obvious one to demonstrate this technique of spin determination 
and to verify the presence of intermediate structure resulting from coupling 
of states in the second well, Class II, to the normal, Class I, compound 
nuclear states. 

The 237Np nucleus has ground state spin and parity 5/2+, and the compound 
system 23 Np resulting from absorption of s-wave neutrons has J^ = 3 + states 
for the target and neutron polarization parallel and 2 + for the antiparallel 
case. The ratio of observed cross-sections is approximated by 

a 1 + f _f f.T 
„ = Par = I n N (1) 

anti I n N 

where fjj is the target polarization, fn the neutron polarization, and 
fl = I/I+l for J = 1+1/2 and fi = -1 for J = 1-1/2. Thus, in 2 3 8Np, the ratio 
R > 1 for J17 = 3 + resonances and R < 1 for those with J11 = 2+. 

2. EXPERIMENTAL 

The technique of neutron polarization used in this experiment was first 
reported by Shapiro [4] in 1965. This method utilizes the strong spin 
dependence of the neutron-proton interaction where the cross-section for 
scattering through the singlet state of the system is *v 20 times larger than 
that for the triplet state. Thus an unpolarized neutron beam becomes 
polarized when filtered through a sample of polarized protons. Since the 
cross-sections for singlet and triplet scattering vary little over the range 
10 eV to 50 keV, the polarization of the transmitted beam is essentially 
constant over this range. 

The method of dynamic nuclear polarization [5] is used to polarize the 
protons in the water of hydration of single crystals of La2Mg3(NO3)i2*2^H20 
(LMN). A series of LMN crystals are placed in a microwave cavity at a 
temperature of 1.15°K located in a homogeneous magnetic field of ^ 20 kOe in 
a superconducting coil. The system of free electrons and protons in the 
paramagnetic LMN is then "pumped" by microwaves, whereby simultaneous electron 
and proton spin flips are induced. Owing to their long relaxation times, the 
protons remain flipped, resulting in a net bulk proton polarization. In this 
experiment, a neutron polarization of 'v» 55% with a transmission through the 
LMN of 18% was realized. The difficulty of this technique arises primarily 
from the fact that the "pumped" transition is forbidden and, hence, narrow. 
High stabilization of the microwave source and high homogeneity of the magnetic 
field are required over long periods of time. In addition, the large size of 
the cryogenic and vacuum equipment, coupled with a fast nuclear magnetic 
resonance system to monitor the polarization, makes the equipment complex. 

The method used to polarize the fissionable target involves thermal 
equilibrium techniques. The simplest of the thermal equilibrium techniques 
is the brute-force method, whereby the interaction between an externally 
applied magnetic field with the nuclear magnetic moment at low temperature 
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results in a net polarization. With currently available magnetic fields and 
attainable temperatures, polarization of < 1% are achieved by this method. 
However, by choosing a suitable ferromagnetic system containing the desired 
target, the large hyperfine fields may result in high polarization. 

In this experiment, a target of NpA&2 w a s fabricated and attached to a 
'Не-^Не dilution refrigerator. This dilution refrigerator, which utilizes 
the fact that the dissolving of 3He in **He is a heat-absorbing process, is 
capable of maintaining a temperature of < 0.01°K, with no external heat input. 
The natural radioactivity of the 2.5 g of 237Np used here resulted in an 
operating temperature of 0.135°K, however. This target was also placed in a 
superconducting coil whose field was parallel to the LMN magnetic field. In 
order to reduce eddy-current heating in the sample, the entire cryogenic 
apparatus was suspended from a 2300-kG marble slab supported by pneumatic 
pistons. 

The fission neutrons were detected in 12 liquid scintillator cells, each 
5 in. x 5 in. Pulse shape discrimination techniques were used to reduce the 
gamma-ray background. 

The Oak Ridge Electron Linear Accelerator (ORELA) was used as a pulsed 
source of neutrons. 

3. EXPERIMENTAL RESULTS 

The relative fission cross-section has been measured from 1-1000 eV by 
detecting fission neutrons at 0° and 90° relative to the incident beam. In 
addition, the transmission has been measured from 1-102 eV. The target was 
located 13.4 meters from the source and the transmission detector was positioned 
at 15.2 meters. The ORELA was operated at a repetition rate of 1000 pps with 
a pulse length of 30 ns, resulting in an average power of 50 kW. With these 
parameters, the useful energy range of the fission data was determined by the 
signal-to-background ratio, whereas the transmission data were limited by 
resolution. 

The data are composed of four pairs of runs, each run of approximately 
24-h duration. Each pair is composed of one run with the beam and target 
polarization parallel and another with the direction of polarization anti-
parallel. The polarization of the neutron beam only was reversed; this was 
achieved by pumping transitions of electron-proton pairs which are parallel 
rather than those which are antiparallel. This reversal only required a change 
in magnetic field or, equivalently, in microwave pumping frequency, of *v 0.2%. 
Thus, no substantial change in operating conditions resulted from neutron 
polarization reversal. 

In processing the data, each pair of runs was treated identically in 
order to preserve the normalization. An average background was subtracted 
from both runs in each pair, rather than a separate one for each run. After 
initial processing, the data were integrated over each resonance and the ratio, 
R, of the integrals for the parallel and antiparallel geometries was determined. 
This resulted in four independent measurements of J for each resonance. 

The resonances observed in fission are listed in Table I. The quantities 
Ry = (R) are the mean ratios determined from the four pairs of runs. The two 
columns of errors represent the standard deviations from the mean and the 
statistical errors. The J values indicated are determined from the Ry. 
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TABLE I. FISSION MEASUREMENTS 

(eV) 

26.6 
30 .4 
3 7 . 1 
38 .9 
39 .2 
39 .9 
41 .3 
46 .0 
50.4 

119 

188 
195 

201 
207 

229 
234 

253 

283 

370 
373 

427 

476 

668 

718 

808 

873 

884 

V V a n t i / 
1.259 
1.086 
1.163 
1.091 
1.134 
1.169 
1.201 
1.160 
1.409 

1.207 

0.467 
0.818 

1.160 
1.393 

0 .721 
0.839 

1.316 

0.946 

0.804 
0.745 

1.514 

0.819 

1.459 

1.918 

1.984 

0.810 

1.182 

% 
+ .060 

.074 

.064 

.031 

.036 

.023 

.041 

.035 

.084 

.046 

.153 

.080 

.036 

.176 

.218 

.133 

.091 

.140 

.143 

.151 

.284 

.160 

.616 

.409 

.306 

.209 

.078 

S t a t i s t i c a l Er ro r 

0 . 1 3 1 
0 . 0 4 2 
0 . 0 6 0 
0 . 0 3 4 
0 . 0 4 7 
0 . 0 1 7 
0 . 0 3 6 
0 . 0 6 6 
0. 154 

0. 042 

0 . 2 4 3 
0. 079 

0. 035 
0 . 2 9 2 

0 . 1 5 0 
0 . 0 8 0 

0 . 0 9 8 

0 . 0 7 3 

0 . 1 1 9 
0 . 0 8 4 

0 . 1 5 8 

0 . 1 3 2 

0 . 4 3 7 

0 . 4 4 9 

0 . 2 4 0 

0 . 1 1 6 

0 . 1 4 6 

J 

3 
3 
3 
3 
3 
3 
3 
3 
3 

3 

2 
2 

3 
3 

2 
2 

3 

(2) 

2 
2 

3 

2 

3 

3 

3 

2 

3 

The single uncertainty in extracting J values from such data is knowledge 
of the target polarization relative to the applied magnetic field. Either the 
magnetic moment of the target nucleus may be negative or the hyperfine field 
may be opposite to the impressed field. In the data presented here, the 
evidence appears to be conclusive that the target polarization is parallel to 
the applied field and, hence, that for Ry > 1, J = 3. The strongest evidence 
arises from the factor fj in Eq.(1) . This predicts a greater deviation from 
unity of Ry for a resonance with J = I - 1/2 = 2 than for one with J = I + 1/2 
= 3. Knowing the neutron beam polarization, fn, Eq. (1) may be solved for Гц. 
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TABLE II. J ASSIGNMENTS FROM TRANSMISSION 
Eo 

(eV) 

1.47 

1.96 

3.07 

3.85 

4.26 

4.86 

5.76 

6.36 

6.65 

7.18 

7.42 

8.29 

8.96 

9.28 

10.2 

10.7 

10.8 

11.1 

12.2 

12.6 

13.1 

15.8 

16.1 

16.8 

17.6 

18.9 

19.1 

19.9 

20.4 

21.1 

22.0 

J 

2 

3 

(3) 

3 

2 

2 

3 

3 

2 

(2) 

3 

3 

3 

2 

2 

3 

3 

2 

(3) 

2 

(3) 

(3) 

2 

2 

3 

2 

, 3 

(3) 

2 

3 

2 

E0 
(eV) 

22.9 

23.7 

24.0 

25.0 

26.2 

26.6 

28.5 

28.9 

29.5 

30.4 

31.3 

33.4 

33.9 

34.7 

35.2 

36.4 

37.1 

38.2 

38.9 

39.2 

39.9 

41.3 

43.6 

45.7 

46.0 

46.3 

47.3 

48.8 

49.8 

50.4 

52.2 

J 

3 

3 

2 

3 

3 

3 

2 

(2) 

(2) 

3 

3 

3 

2 

3 

2 

3 

3 

3 

3 

3 

3 

3 

2 

2 

3 

3 

2 

2 

3 

3 

2 

Eo 
(eV) 

52.6 

53.9 

55.0 

56.1 

58.4 

59.5 

60.0 

61.0 

61.7 

62.5 

62.9 

65.0 

65.7 

66.7 

67.5 

68.0 

68.7 

70.3 

71.1 

74.4 

78.4 

79.2 

80.7 

82.2 

86.5 

87.7 

90.9 

93.4 

97.9 

98.6 

100.3 

101.1 

J 

2 

2 

3 

(2) 

3 

2 

3 

3 

3 

3 

3 

(3) 

3 

3 

3 

2 

3 

3 

3 

(2) 

3 

2 

3 

3 

3 

2 

3 

2 

2 

2 

3 

2 
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FIG. 1. Fission data in the region of the group at 40 eV. The upper curve, representing the difference 
between the cross-sections measured with beam and target polarization parallel and antiparallel, is consistently 
greater than unity over each of the nine individual resonances, indicating J = 3 in each case. 
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FIG.2. A sample of the transmission data. The upper curve dips below zero for resonances with J = 3 and 
protrudes above zero for those with J = 2. 
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From Table I, the average Ry for resonances with J = 3 indicated in the table 
is 1.17 + 0.02 and 0.79 + 0.04. From Eq. (1), one arrives at fjj = 0.20 from 
the J = 3 resonances and f^ = 0.21 from the J = 2 resonances. If, however, 
the assumption is made that the polarization is antiparallel to the applied 
field, then one determines fjf = 0.30 for the J = 3 states and f^ = 0.14 for 
those with J = 2. Clearly, the former assumption appears more valid. As 
supporting evidence, calculations [6] of hyperfine fields in actinide compounds 
based on systematic interpretation of Mössbauer effect data indicate that, for 
a hyperfine field of the magnitude of that observed in NpA£2» the sign must be 
positive. Further evidence relies upon the assumption that the level density, 
where no nonstatistical mechanism is present, should vary according to 2J + 1. 
In Table II, the resonances observed in transmission are listed with the spins 
determined in this experiment. Of these 94 resonances, 57 are assigned J = 3 
and 37 are assigned J = 2. Although the error is large on this sampling, the 
2J + 1 dependence is supported with these assignments and strongly violated 
for the opposite spin assignments. 

The fission data in the region of the 40-eV structure are shown in Fig. 1. 
The enhancement of the compound nuclear levels is distributed over nine 
individual resonances. The curve labeled 0"par-aanti

 i s consistently greater 
than unity over each individual fine structure resonance, indicating that each 
resonance has the same spin, J = 3. A sample of the transmission data is 
shown in Fig. 2, over the range 4-18 eV. Here the plot of Tpar-Tanti demonstrates 
the clear distinction between resonances of different spin. 

4. DISCUSSION 

The inherent difficulty in determining spins by methods less direct than 
that employed in this experiment are well-known. Preliminary results of an 
experiment on Z35U using the equipment and techniques reported here are given 
in Table III. Comparison of spin assignments determined here and those 
assignments resulting from indirect methods are quite poor. Although some 
individual measurements are consistent, no single technique involving indirect 
methods appears to be at all reliable. For example, the results of Corvi 
et al. [7] are in excellent agreement, whereas the results of Weigmann et al., 
[8] using a similar technique, are in agreement on only 44% of the resonances 
studied. Although far less effort has been expended on the system Np+n, 
comparison of J assignments from the data presented here and from a measure
ment [9] of the total, scattering, and capture cross-sections further demon
strates the ambiguity of indirect spin determination. As shown in Table IV, 
the two sets of spin assignments are in no better than random agreement. Not 
only do the assignments for the resonances belonging to the group at 40 eV 
differ, but those below 26 eV are in agreement in only four out of nine cases. 

Reference 9 also indicates a possible spin dependence of the mean capture 
width for resonances in each spin state. In that work, <Гу) = 47 meV for 
those resonances assigned J = 3 and (Гу) = 57 meV for those assigned J = 2. 
However, as Table V demonstrates, when the spin assignments from the experi
ment described here are applied to the capture widths of Ref. 9, the mean 
width is the same for both spin states. Similarly, examining a total of 62 
resonances whose reduced neutron widths are compiled in Ref.16 and whose J 
values are determined here, no spin dependence is observed, within the sizeable 
errors. The average values, (Г0,), for each J value are also given in Table V. 

However, interpretation of the results of Kuiken, Pattenden, and Postma 
[1] with the J values assigned here is somewhat enlightening. In that 
experiment, the angular distribution of fission fragments from an aligned 
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TABLE III. 2J6U J-ASSIGNMENTS 
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(eV) 
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23.6 3 _ - _ _ _ _ _ 4 
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27.8 4 - - 4 - - 3 - 4 

29.7 4 - - . ~ 
30.6 3 - - - - . -
30.9 4 - - 3 4 - - - 4 
32.0 4 - 3 4 - - 4 4 4 
33.5 4 - - 4 - - 4 4 4 
34.4 4 - - 3 - - 4 4 3 
3 4 . 9 3 - - - - - - - 4 
35.2 4 - - 4 - - 4 4 -
35.3 3 - - - - - - - -
38.4 4 - - - - - - - 3 
39.4 4 - - 4 - - 4 3 3 
40.5 4 - - . - - - . - - 4 
41.9 3 - - - 3 - - 3 4 
44.0 4 - - - - - _ _ 4 
44.6 4 - - - - - - - 3 
45.9 4 - - _ _ - - - 4 
48.0 4 - - - - - - - 4 
48.3 3 - - - - - - - -

48.8 3 - - - - - - - 4 
49.5 4 - - - - - - - 3 
51.3 4 - - - - - - 4 4 
55.1 4 - - - _ - - 4 -
56.6 4 - - - - - - 3 4 
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TABLE IV. COMPARISON OF J ASSIGNMENTS 

(eV) 

5.76 

10 .8 

1 1 . 1 

12.6 

1 6 . 1 

20.4 

22 .0 

23.7 

25 .0 

26.6 

30.4 

46.0 

47 .3 

50.4 

P r e s e n t 
J 

3 

3 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

2 

3 

Work Poortmans e t a l . [ 9 ] 
J 

43% Agreement 

3 

3 

2 

3 

2 

3 

3 

3 

2 

2 

2 

(3) 

(3) 

2 

TABLE V. J DEPENDENCE - AVERAGE WIDTHS 

<$> 

Ф 

J = 2 

= 51.7 + 3.2 meV 

= 0.019 + 0.007 meV 

& 

< < > 

= 

J = 3 

52 .3 + 1.7 meV 

0.018 + 0.006 meV 
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Np target was studied. For the experimental conditions realized in the 
alignment experiment, the angular distribution of fission fragments may be 
expressed as 

10(6) = 1 + A2f2P2(cos 9) (2) 

where f, is the alignment parameter and A- is given by 

7ЩТ _ 1| (3) 

The intent of the experiment was to glean information about the K-quantum 
number, the projection of J on the nuclear symmetry axis. However, this task 
is made difficult by the lack of knowledge of the J values for each resonance 
studied. 

The nature of the deformation barriers and the possible effects upon the 
observed К values is discussed by Kuiken et al. Current evidence in the form 
of a broad low peak under the 40 eV group, observed by Paya et al., [2] and 
the lack of lines in the gamma-ray spectrum corresponding to transitions 
between intermediate levels in the second well, indicate very weak coupling 
between the compound nuclear levels and the intermediate levels. This 
corresponds to a situation where the second barrier, at higher deformation, 
is lower than the first barrier. In this case, there may be some admixing 
of higher transition states, although Kuiken et al. assume this admixing to 
be small. 

In Table VI, a list of those resonance groups observed in both the present 
work and by Kuiken et al. is given, along with the J assignments, the measured 
A2 values, and the theoretical A2 values. Poor resolution averages several of 
the A2 values over more than a single fine structure resonance, in the 40-eV 
group, or over more than a single group, at higher energies. Using the assign
ment from Ref. 9 of J = 2 for the resonances in the group at 40 eV, Kuiken et al. 
concluded that the evidence was consistent with an integral К value, К = 2, 
for those resonances. However, the present assignment of J = 3 to this group 
makes this interpretation less tenable and implies an admixture of К = 3 and 
К = 2 components. For most of the resonances in the 40-eV group, the К = 3 
component seems predominant, although alone insufficient to explain many of 
the measured A2 values. Interpretation of the alignment results becomes more 
ambiguous at higher energies, owing to larger statistical errors. The structure 
at 119 eV has a measured A2 value in between that expected for a resonance with 
(J:K) = (3:3) and one with (3:2). Similarly, the A2 values for the three 
structures at 231, 283, and 370 eV, all of which are assigned J = 2, are most 
consistent with a mixture of К = 2 and К = 1 components. The pairs of structures 
near 200 and 870 eV were unresolved in the alignment data and, since the members 
of these pairs are of opposite spin, are difficult to interpret. The remaining 
structures appear to be consistent with integral К assignments of (J:K) = (3:2). 

Some conclusions may be deduced from the mean A2 values for each spin state, 
shown in Table VI. In both cases, К = 0 transition states appear to be unavail
able. The observed (A2) values are consistent with the explanation that the 
К = 2 channel is generally preferred with (J:K) = (2:1) and (3:3) partially 
open. The mean A2 value for the J = 3 resonances would imply that the К = 3 
channel is preferred for resonances of this spin, but this is primarily a result 
of the small errors on the individual resonances in the 40-eV structure. 
These resonances in the 40-eV group appear to preferentially decay through 
К = 3 transition states, whereas the remaining J = 3 structures prefer К = 2 
channels. 

15̂  
4 

I 
1+1 
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TABLE VI. J v s . A2 PARAMETERS 

(eV) A 2 [ l ] 

26.6 
30.4 
37.1 
38.9 
39.2 
39.9 
41.3 
46.0 
50.7 

119 

193 

203 

231 

253 

283 

371 

427 

873 

884 

3 
3 
3 
3 j 
3 I 
3 
3 
3 
3 

3 

2 I 
1 

3 1 
2 

3 

(2) 

2 

3 

2 

J 3 

2.98 
3.50 
0.62 

*1.82 

2.73 
2.36 
1.57 
3.25 

2.56 

*-0.13 

1.84 

-0.02 

0.57 

1.47 

-0.37 

*1.86 

+ 1.21 
+ 0.47 
+ 0.97 

+ 0.45 

+ 0.26 
+ 0.46 
+ 1.00 
+ 1.06 

+ 0.21 

+ 0.57 

+ 1.45 

+ 1.30 

+ 1.72 

+ 1.34 

+ 1.87 

+ 1.74 

THEORETICAL A2 VALUES 

(J:K) A2 
(2 :0 ) - 2 . 6 7 9 
(2 :1) - 1 . 3 3 9 
(2:2) +2.679 

(J:K) 
(3 :0) 
(3 :1) 
(3 :2) 
(3 :3) 

A2 

- 2 . 6 7 9 
-2 .009 

0 
+3.348 

MEAN OBSERVED A2 VALUES 

J = 2 

/ A A •» 1.38 + 0.35 

J = 3 

/ A A = 2 .42 + 0.24 

40-eV group / A A = 2 . 5 6 + 0 . 2 4 

Other g r o u p s / A A = 0 . 7 6 + 0 . 5 0 

*Unresolved. 
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5. CONCLUSION 

From the experimental results described here, several conclusions may be 
deduced. The Strutinsky theory of a double-humped fission barrier is substan
tiated as the mechanism by which intermediate structure in subthreshold fission 
is explained. The coupling of the Class II states in the second potential 
minimum to the compound nucleus states in the first minimum selects resonances 
of a single-spin state, that of the "parent" Class II state. From correlation 
of existing data on the angular distribution of fission fragments from aligned 
237Np with the data presented here, it is concluded that, at least in the 
odd-odd system 237Np+n, there is a substantial admixing of transition states, 
evidenced by nonintegral values of the projection quantum number, K. Although 
all values of К from zero to J are allowed, the value К = 2 appears to be 
predominant for resonances of both J = 2 and J = 3, with contribution from 
К = 3, J = 3 and К = 1, J = 2 states. 

In contrast to the fission results, the total cross-section shows no 
intermediate structure with a 2J+1 distribution of level densities. Similarly, 
no nonstatistical spin dependence is observed in the capture or neutron widths. 

[10 

[11 

[12 
[13 
[14 

[15 

[16 
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DISCUSSION 

R. C. BLOCK: Raymond Reed at the Rensselaer Polytechnic Institute 
has just compared his prompt v results for 235U with your spin assignments. 
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TABLE A. 2 3 5U SPIN VALUES AND TERNARY TO BINARY (T/B) FISSION 
RATIOS 

Spin preference as given by Spin values of Keyworth et al . T/B-classification 
Milton in summing-up in full agreement with Cotvi et al . Wagemans and Detuyttet 

' of the 1969 Vienna Symp. and Reddingius et al. [Nucl. Phys. A194 (1972) 657] a 

32.05 

30.841 

30.6 J 

21.1 

19.3 

18.05 

16.67 

16.10 

15.45 

14.53 

14.0 

13.7 

12.39 

11.67 

8.79 

7.08 

6.39 

6.17 

3 

4 

3 

3 

3 

3 

4 

4 

3 

3 

4 

4 

4 -| r f = 18 ± 5 meV 

3 J r f = 70 ± 20 meV 

4 

4 

3 

4 

4 

4 

3 

3 

3 

3 

4 

4 (30% : 3 Reddingius) 

4 

;} 

H : 4 

(L) : (3 ) b 

H : 4 

H : 4 

H : 4 wrong 

(H) : (4) 

U 

H : 4 

L : 3 

L : 3 

L : 3 

L : 3 

(H) : (4) 

L : 3 wrong 

H : 4 

( D : (3) d 

a H stands for high, L for low and U for uncertain T/B values. Brackets indicate that the statistical error 
is too large to be conclusive. 

° The largest contribution to Of comes from the 3" resonance, so our assignment is justified. 
c The measurements of Reddingius and co-workers clearly indicate the presence of a doublet for the 

8.79-eV resonance. They claim it might be a doublet, of which one component with about 30<5b of the 
total suength has spin 3 " . 

" The assignment L : 3 for this resonance is strongly influenced by the underlying cross-section of the 
6.17-eV resonance of spin 3. 

The v r e su l t s do va ry from resonance to resonance and they seem to c lus te r 
into two groups. However, the re appears to be no cor re la t ion between F 
and the J ass ignments from your exper iment . 

G. A. KEYWORTH: We have a lso examined this question with both the 
R e n s s e l a e r Ins t i tu te ' s and other ¥ data and a r r i v e d at the same conclusion. 
P e r h a p s the paper by Frehau t and Shackleton1 may shed some light on a 
poss ible cor re la t ion of V with some quantity other than spin. 

A. J. DERUYTTER: The ve ry r emarkab l e and excellent measu remen t s 
of Keyworth and co -worke r s show the danger of indirect measu remen t s of 
spin values , even if t he re a r e many such exper iments avai lable . In his 

1 FREHAUT, J., SHACKLETON, D., Paper IAEA-SM-174/47, these Proceedings, Vol.2. 
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summing-up of the 1969 IAEA fission symposium, J. C D . Milton used six 
such experiments and arrived at completely different values, as shown in 
Table A. Our T/B measurements for 235U are shown in the last column. 
The really disturbing value here is the 8. 79-eV resonance, because it makes 
a large contribution to the low-energy fission integral and should have been 
one of the best cases for comparison. 

However, assuming the Keyworth values to be correct, we made only 
two incorrect assignments out of 18. Only the discrepancy at the 18. 05-eV 
resonance seems to have no explanation. We do not however consider this 
proof that a perfect correlation between spin and T/B exists. 
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Abstract 

CALCULATION OF FISSION BARRIERS. 
Recent advances in the calculation of the nuclear potential energy of deformation, including both 

self-consistent microscopic methods and the macroscopic-microscopic method are reviewed. Particular 
attention is paid to the steps that are involved in calculating the potential energy according to the latter 
method. These steps include specifying the nuclear shape, calculating the macroscopic (liquid-drop) 
energy, generating the single-particle potential, solving the Schrödinger equation, and calculating the 
microscopic (shell and pairing) corrections. 

In the second part of the paper the results of the new calculations that have been performed recently 
at Los Alamos are presented and compared. In the first calculation, the nuclear shapes are specified in 
terms of smoothly joined portions of three quadratic surfaces of revolution, which permits the calculation 
of the potential energy all the way to the scission point. The extrema in the potential-energy surfaces are 
determined by varying independently three of the coordinates in this parametrization; the ground-state energy 
is determined also by use of an alternative parametrization. The macroscopic energy is calculated from the 
droplet model of Myers and Swiatecki, which includes higher-order terms in A"1/3 and in [(N-Z)/A32 than are 
retained in the liquid-drop model. The microscopic shell and pairing corrections are calculated by means 
of Strutinsky's method from the single-particle levels of a diffuse-surface folded Yukawa single-particle 
potential. A new set of potential parameters is used, which was obtained from adjustments to experimental 
single-particle levels in heavy deformed nuclei and from statistical calculations. The second new calculation is 
performed with the modified oscillator potential and is similar to a previous calculation with this potential 
except that the droplet model is used in place of the liquid-drop model. 

These and earlier calculations provide an understanding and unification of many varied phenomena 
associated with nuclear shape changes: nuclear ground-state masses and deformations, second minima in the 
fission barriers of actinide nuclei, fission-barrier heights, and fission-fragment mass distributions. For the 
lighter actinide nuclei, the asymmetric second saddle point is split into two individual saddle points separated 
by an asymmettic third minimum, which possibly resolves the thorium anomaly. The calculated energies 
of the local minima and saddle points in the potential-energy surfaces reproduce the experimental values 
to within an accuracy of about 1 MeV, although larger systematic errors are still present in some cases. 
The calculated properties of the saddle points also reproduce qualitatively the main features of experimental 
fission-fragment mass distributions. 

1. INTRODUCTION 

You probably have followed the renaissance that has taken place in our 
understanding of fission since the first IAEA fission symposium in Salzburg 
eight years ago. At that symposium we still thought that the fission bar
rier of a nucleus was a monotonically increasing function of deformation 
until it reached its maximum value and then a monotonically decreasing func
tion of deformation. But it soon became clear that instead of this smooth 
behavior the fission barrier contains large fluctuations as a function of 

This work was supported by the US Atomic Energy Commission and the Swedish Atomic Research Council. 
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. 5 L _ i i i i I i i i _ i I i i i _ i — I — i i i i L_ 
0.75 1.00 1.25 1.50 1.75 

Distance Between Mass Centers r (Units of R0) 

FIG.l. Effect of axial asymmetcy and mass asymmetry on the fission barrier of 240Pu. The dashed curve 
(which sometimes coincides with the solid curve) gives the potential energy for symmetric deformations 
as a function of the distance r between the centers of mass of the two nascent fragments. The solid curve 
gives the potential energy along a path that leads over the axially asymmetric first saddle point and over 
the mass-asymmetric second saddle point. The lower portion of the figure shows the nuclear shapes 
corresponding to selected points along this path, namely the sphere, four equilibrium points, and the point 
of emergence from the barrier in spontaneous fission. The results for axially symmetric shapes are calculated 
with the folded Yukawa potential and the droplet model by use of methods to be described later. The 
reduction in energy at the first saddle point is taken from Ref. LI]. 

both nuclear shape and particle numbers. For some nuclei, these fluctua
tions lead to a fission barrier that contains two peaks separated by a 
second minimum, as illustrated in Fig. 1 for 21,0Pu. 

By the time of the second IAEA fission symposium in Vienna four years 
ago, we were able to calculate such a barrier for symmetric deformations in 
terms of nonuniformities in the single-particle levels near the Fermi sur
face. We could also understand three new experimental discoveries—sponta
neously fissioning isomers, broad resonances in fission cross-sections, and 
narrow intermediate structure in fission cross-sections—in terms of this 
second minimum. 

But three major puzzles remained. First, for most actinide nuclei the 
calculated height of either the first peak or the second peak was several 
MeV higher than the experimental value. Second, the calculated fission bar
riers were all stable with respect to mass-asymmetric deformations, which 
violated the well-established preference of heavy nuclei to divide asymmet
rically at low excitation energy. And third, the calculated heights of the 
first peak and second minimum for isotopes of thorium were substantially 
lower than the experimental values. 

Since Vienna two of these puzzles have largely disappeared. We now 
know that in most actinide nuclei the second peak is unstable with respect 
to mass asymmetry and that in the heavier actinide nuclei the first peak is 
unstable with respect to axial asymmetry (gamma deformations). Instabili
ties of this type lower the calculated barrier heights and also provide a 
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mechanism for an asymmetric mass division. These instabilities arise be
cause of single-particle effects similar to those responsible for a deformed 
ground-state minimum and second minimum in the fission barrier. The third 
puzzle is not definitely solved, but we suggest later a possible resolution 
in terms of single-particle effects near the asymmetric second saddle point. 

Our plan is first to review the various approaches that are taken in 
the calculation of fission barriers and second to present some new results 
that we have obtained at Los Alamos. We do not have space here to review 
everyone's contributions hut instead concentrate on recent results that best 
illustrate the physical principles involved. Exhaustive references to other 
work, as well as to the mathematical details, can he found in four recent 
review articles 12-5]. We then compare the calculated energies of the local 
minima and saddle points in the barriers with experimental results, some of 
which are described in this symposium by Britt, Vandenbosch, and others 
16,7]. We also discuss the extent to which experimental fission-fragment 
mass distributions can be understood in terms of the calculated properties 
of the saddle-point shapes. We conclude with an assessment of our present 
ability to calculate fission barriers. 

2. SFXFCONSISTENT MICROSCOPIC METHODS 

There are two general approaches for calculating the nuclear'potential 
energy of deformation—selfconsistent microscopic methods and the 
macroscopic-microscopic method. In the microscopic methods, one usually 
starts with a given nucleon-nucleon potential and solves the many-body 
Schrodinger equation by means of the Hartree-Fock approximation. This can 
be done either with a realistic potential that is adjusted to reproduce 
fundamental data such as two-nucleon scattering data, or with an effective 
interaction that is adjusted to reproduce gross nuclear properties. 

The realistic potentials of course lead to equations that are more dif
ficult to solve. If the potential has a hard core, then the infinities 
associated with it must be removed by means of the approximations introduced 
by Brueckner. The resulting Brueckner-Hartree-Fock equations are so compli
cated that they have been solved so far only for spherical nuclei [8,9]. 

The equations are simpler for a soft-core potential, where the ordinary 
Hartree-Fock method can be applied. At deformations away from a local mini
mum the potential energy is calculated by applying an external field and 
solving the resulting constrained Hartree-Fock equations. In this way the 
potential energy has now been computed as a function of the quadrupole 
moment for some medium-weight nuclei such as Ru [10]. However, computa
tional difficulties have prevented the extension of these calculations to 
heavy nuclei. For heavy spherical nuclei the calculated total binding ener
gies are substantially smaller than the experimental'values [11]. Although 
the agreement would be improved somewhat by including the second-order cor
rection to the Hartree-Fock energy [12], this correction has not yet been 
calculated for deformed nuclei. 

A major difficulty associated with the use of realistic potentials is 
the necessity to calculate the exchange terms in the Hartree-Fock equations. 
This difficulty can be eliminated by choosing an effective interaction for 
which the exchange terms are easy to calculate. Or alternatively, the ex
change effects can be absorbed into the effective interaction [13,14]. With 
either approach the higher-order corrections to the first-order energy are 
absorbed into the interaction through a readjustment of its parameters. 
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Although several effective interactions have been proposed, the only 
one that is used in practice for the calculation of fission barriers is 
Skyrme's interaction [15] as simplified by Vautherin and Brink [16]. This 
interaction is easy to use because most of its terms contain delta functions 
and because saturation is achieved by means of a three-body term. The six 
adjustable parameters of the interaction are related loosely to the coeffi
cients of the five dominant terms in the semiempirical nuclear mass formula 
(corresponding to the volume, surface, Coulomb, volume-asymmetry, and 
surface-asymmetry energies) and to the spin-orbit interaction strength. 

The Skyrme interaction has now been used by Flocard, Quentin, Kerman, 
and Vautherin to compute the potential energy as a function of the quadrupole 
moment for several isotopes of cerium [17] and more recently for Pu [18]; 
we will learn about such calculations later in this session from Quentin 
[19]. The calculated height of the second peak in the barrier for Pu is 
19 MeV, which is substantially higher than the experimental value of 5.35 
MeV [20]. This large discrepancy probably arises from a combination of 
three factors: (1) The results have not converged as a function of the basis 
size. (2) The parameters of the Skyrme interaction yield a surface energy 
that is too large compared to the Coulomb energy. (3) Mass-asymmetric de
formations are not included. When these three points are taken care of we 
can expect such calculations to reproduce experimental fission barriers with 
satisfactory accuracy. This is the most promising of the microscopic ap
proaches, and perhaps four years from now at the fourth IAEA fission sympo
sium a substantial fraction of the fission barriers discussed will be com
puted selfconsistently in terms of such an effective interaction. 

3. MACROSCOPIC-MICROSCOPIC METHOD 

But at present nearly all fission barriers are calculated by means of 
the second approach—the macroscopic-microscopic method. This method syn
thesizes the best features of two complementary approaches: The smooth 
trends of the potential energy (with respect to particle numbers and deforma
tion) are taken from a macroscopic model, and the local fluctuations are 
taken from a microscopic model. The method in its present form was developed 
in 1966 by Strutinsky [21] and has since revolutionized the calculation of 
fission barriers. The idea of a macroscopic-microscopic method had been in
troduced earlier by Swiatecki [22] and others. 

In this method, which is suitable for treating nuclear systems that 
contain a large number of particles, the total nuclear potential energy of 
deformation is written as the sum of two terms, 

macroscopic microscopic 

The first term is a smoothly varying macroscopic energy that reproduces the 
broad trends of the potential energy. In a heavy nucleus it accounts for 
about 99.5% of the 2000 MeV total binding energy and for about 95% of the 
200 MeV variation in energy during fission. The second term contains os
cillating microscopic corrections that arise because of the discreteness of 
the individual particles. The most important of these purely microscopic 
contributions are the shell and pairing corrections. For a tightly bound 
nucleus in its ground state the total microscopic correction is over 10 MeV 
in magnitude, but in other situations it is usually somewhat less. 
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The nuclear potential energy of deformation is calculated by means of 
the macroscopic-microscopic method in five steps: (1) The overall geomet
rical shape of the nucleus is first specified, and (2) the macroscopic part 
of the energy is calculated for this shape. (3) The single-particle poten
tial felt by a neutron or proton is generated, and (4) the Schrödinger 
equation is solved for the single-particle energies. (5) These energies 
are then used to calculate the microscopic (shell and pairing) corrections. 
The total potential energy is given finally Ъу the sum of the macroscopic 
energy calculated in step 2 and the microscopic corrections calculated in 
step 5. These steps have received considerable study, and several methods 
have evolved for handling each of them. 

3.1. Nuclear shapes 
In fission, as well as in the related areas of heavy-ion reactions and 

nuclear ground-state masses and deformations, at least four collective coor
dinates are required to describe the most important shapes that arise. These 
are (1) a separation coordinate, which specifies the overall separation of 
the mass centers of the two nascent or separated fragments or colliding ions, 
(2) a mass-asymmetry coordinate, which specifies the amount of mass in one 
fragment relative to the other, (3) a fragment elongation coordinate, which 
specifies the overall elongation of the fragments, or alternatively the 
radius of the neck between them, and (4) an axial-asymmetry (gamma) coordi
nate, which specifies the flattening of the shape about its symmetry axis. 
Because of computational difficulties the latter coordinate is not included 
in most studies in fission. Our discussion is therefore sometimes restricted 
to axial symmetry, but the generalization to axially asymmetric shapes is 
straightforward. 

The methods for describing such shapes fall into two major classes. The 
first class is an expansion about some basic shape, such as a sphere, a 
spheroid, or a Cassinian oval. For example, shapes close to a sphere are 
described conveniently by expanding the radius vector to the nuclear surface 
in a series of spherical harmonics. If the shape is elongated it is better 
to absorb some of the deformation into the basic shape and expand about a 
spheroid (ellipsoid of revolution). This can be done either by means of the 
coordinates E^ used by Nilsson and others [1, 2, 23-29], or by writing p2 

as a polynomial in z, which is the method used by Lawrence, Hasse, 
Strutinsky, Pauli and others [3, 5, 30-35]. If the shape has already devel
oped an appreciable neck it is sometimes advantageous to expand about a 
Cassinian oval, which can absorb some of the necking as well as elongation 
into the basic shape; this method is used by Cherdantsev and co-workers [36] 
and by Pashkevich [37]. 

The second class of methods describes the shape in terms of two bodies 
rather than a single body. In these two-center parametrizations each end of 
the nucleus is usually represented by a portion of a spheroid. In the most 
simple version the two spheroids intersect in an undesirable cusp [38], but 
this cusp may be removed by connecting portions of the two end spheroids 
smoothly with a third function that describes the neck region. In the 
method used by Greiner, Mosel, and their co-workers [39-43], precisely one-
half of each end spheroid is used In forming the shape, which unfortunately 
prevents the description of diamond-like nuclear ground-state deformations 
and some important shapes that arise in heavy-ion reactions. In another 
method [44-52], arbitrary portions of the two end spheroids are connected 
smoothly by a quadratic neck function. 

Because an expansion method is usually better for describing nuclear 
ground-state deformations and the early stages of fission, whereas a two-
center method is usually required for describing the later stages of fission 
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and heavy-ion reactions, it is desirable to define the collective coordinates 
in some parametrization-independent way that permits a connection to be made 
between the various methods. Of course the ideal choice would be to define 
the coordinates so that the resulting inertia matrix is everywhere diagonal 
and constant. This is in general impossible to accomplish, and the best 
that we can achieve at present is to define the coordinates in terms of 
physically measurable quantities. 

For symmetric shapes a good choice involves the use of successive 
central moments of one-half of the mass distribution [53]. Then the separa
tion coordinate is simply the distance between the centers of mass of the two 
nascent or separated fragments, and the fragment elongation coordinate is the 
root-mean-square extension of a fragment about its center of mass. As Sierk 
will discuss later in the symposium, this choice has already proved useful 
for displaying dynamical paths in fission and heavy-ion reactions [51]. The 
mass-asymmetry coordinate may be defined conveniently (and unambiguously) as 
the difference between the masses to either side of the point midway between 
the ends of the shape [3, 5, 33]. For shapes with a well-defined neck a more 
pleasant choice would involve the masses to either side of the neck, but in 
practice the two definitions are approximately equivalent because in such 
cases the volume in the neck region is small. 

3.2. Macroscopic energy 

Once the nuclear shape is specified, the macroscopic energy must be 
calculated for this shape. This usually is done by expanding the nuclear 
energy in powers of A and [(N-Z)/A]2. Truncating the expansion at 
the A2 I(N-ZVA]Z term leads to the liquid-drop model, where the two 
shape-dependent terms are the cohesive surface energy and the disruptive 
Coulomb energy. 

The inclusion of higher-order terms in the expansion leads to the drop
let model, which takes into account effects that are associated with the 
finite size of nuclei, such as nuclear compressibility [54-56]. Myers and 
Swiatecki have now determined a preliminary set of constants for the droplet 
model [56] from adjustments to nuclear ground-state masses and fission-
barrier heights and from statistical calculations. The resulting curvature-
energy constant is zero. The effective surface-asymmetry constant, which 
regulates how rapidly fission barriers are lowered with the addition of 
neutrons, is significantly larger for heavy nuclei than the value in their 
earlier liquid-drop model [57]. As Howard will describe in the next paper 
[50], this makes it unlikely that superheavy nuclei can be formed by multi
ple neutron capture. 

The condition that must be satisfied in order for the nuclear energy 
to be expanded in this way is that the surface diffuseness be small compared 
to the extension of the neighboring volume region. This condition breaks 
down for light nuclei and for shapes with small necks, for example near the 
scission point in fission and near the point of first contact in heavy-ion 
reactions. When calculating the energy of such shapes it is necessary to 
take into account the finite range of the nuclear force. 

This could be done by treating an effective nucleon-nucleon interaction 
in some statistical approximation such as the Thomas-Fermi method 154, 58, 
59]. However, in practice such calculations have been limited either to 
small deformations 160] or to two light spherical nuclei specified by a 
single separation coordinate [61, 62]. 

A simpler method has been developed recently for including finite-range 
effects. In this method the nuclear macroscopic energy is calculated in 
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terms of a double volume integral over a Yukawa function. As Krappe will 
discuss later in this session [63], this leads to several important conse
quences, such as a reduction in the stiffness of light nuclei with respect to 
deformation. This lowers the fission barriers of nuclei near silver by about 
10 MeV relative to those calculated with the liquid-drop model and shifts the 
critical Businaro-Gallone point (where stability against mass asymmetry is 
lost) to Z /A = 23, in approximate agreement with recent experimental evi
dence. The reduced stiffness also leads to a secondary minimum in the poten
tial energy of Ca and certain other light nuclei, which provides a natural 
interpretation of the rotational states observed in these nuclei. In addi
tion, experimental interaction-barrier heights for systems ranging from 
""Ca + " 0 and 208Pb + '»He to 238U + 8*Kr are reproduced to within 5% 
accuracy. This method also provides a way to calculate the nuclear macro
scopic energy corresponding to the inner surface of a bubble nucleus [64]. 

3.3. Single-particle potential 

Once the nuclear shape is specified and the macroscopic energy is cal
culated, the next step is to generate the single-particle potential for this 
shape. We know of course that the true potential is nonlocal and that it 
would require a selfconsistent calculation for its determination. But the 
great virtue of the macroscopic-microscopic method is that single-particle 
effects can be extracted approximately from a local static potential that is 
not generated selfconsistently. 

Figure 2 illustrates our qualitative expectations concerning the spin-
independent part of the nuclear potential. Because the single-particle po
tential arises from the interaction of a nucleon with its close neighbors, 

FIG. 2. Nuclear shapes described by the fission coordinate y, and the corresponding spin-independent 
nuclear single-particle potentials for a diffuse-surface folded Yukawa potential [45, 47, 49] . The equipoten-
tial curves are shown for 10, 30, 50, 70 and 90°/o of the well depth. 
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it is roughly constant in the nuclear interior and rises to zero within a 
surface region whose thickness is approximately independent of nuclear size 
and position on the surface. For separated nuclei the potential has similar 
features concentrated in each of the individual nuclei. This means that near 
the scission point in fission, or near the point of first touching in heavy-
ion reactions, the potential is roughly constant in the interior of each 
nucleus and is elevated somewhat in the neck region. The overall geometrical 
shape of the potential follows closely that of the nucleus. 

The potentials that have been developed for approximating this behavior 
fall into two general classes: modified oscillator potentials that rise to 
infinity at large distances, and diffuse-surface potentials that go to zero 
at large distances. Modified oscillator potentials are usually obtained by 
starting with a potential that rises parabolically to infinity from either^ 
one or two centers. An angular-momentum correction term proportional to l 
is then added, which in effect makes the potential rise more slowly near the 
center and faster near the nuclear surface. In an ordinary (one-center) po
tential, which has been studied extensively by Nilsson and others II, 2, 21, 
23-29, 32, 65, 66], the minimum of the original oscillator potential always 
occurs at the nuclear center. However, for sufficiently large deformations 
it is possible that the j£2 correction term leads to a potential that in ef
fect has two centers [67]. In the potential commonly referred to as a two-
center potential, which has been used by Cherdantsev, Greiner, Mosel, and 
others 136, 39-43, 52], two separate minima occur in the original oscillator 
potential itself. At first sight this may seem clearly preferable. However, 
when the fragment centers separate, the two-center potential rises several 
times as rapidly in the neck region as would be expected from fundamental 
considerations. This leads to the possibility that some of the conclusions 
based on this potential are associated with, this spurious feature. 

There are also two major types of diffuse-surface potentials. The first 
type is obtained by generalizing a spherical Woods-Saxon potential to de
formed shapes. In the generalization used by Pashkevich, Strutinsky, Pauli, 
and others [3, 5, 32-35, 37, 68], the potential's normal diffuseness is to 
first order constant over the surface. The resulting generalized Woods-Saxon 
potential is satisfactory for most shapes, but contains unphysical features 
when the neck radius is smaller than the diffuseness parameter. It therefore 
cannot be used to describe shapes near the scission point in fission or near 
the point of first touching in heavy-ion reactions. 

The second type of diffuse-surface potential is generated by folding a 
Yukawa function over a uniform sharp-surface generating potential whose shape 
corresponds to the given nuclear shape [45-50]. In other words, a finite 
square-well potential of the appropriate depth and geometrical shape is con
verted into a diffuse-surface potential by folding a Yukawa function over it; 
the range of this function is chosen to reproduce the desired surface diffuse
ness. For small deformations the resulting potential is very close to a 
generalized Woods-Saxon potential. The major advantage of this folding pro
cedure is that it can be used to generate easily a potential for any con
ceivable shape, including the transition for shapes with small necks to a 
potential concentrated in each of two individual nuclei, or vice versa. The 
potentials shown in Fig. 2 were generated in this way. 

Besides the spin-independent part of the potential, there is an addi
tional potential arising from the interaction between the nucleon spin and 
orbital angular momentum. Finally, protons feel a Coulomb potential, which 
is calculated easily by assuming that the nuclear charge is distributed uni
formly within the nuclear surface or within the nuclear generating potential. 
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However, in studies with oscillator potentials the Coulomb potential usually 
is not included explicitly, but its effects are absorbed by readjusting the 
parameters of the nuclear part of the potential. 

Irrespective of how it is generated, the final potential usually con
tains about six parameters that effectively describe the depth, radius, dif-
fuseness, and spin-orbit strength of the potentials for neutrons and protons. 
In studies with oscillator potentials these parameters are usually determined 
from adjustments to experimental single-particle levels in heavy deformed 
nuclei. For diffuse-surface potentials some of the parameters can be ob
tained from statistical calculations [69]; the remainder are usually deter
mined from adjustments to experimental single-particle levels in either 
heavy spherical or heavy deformed nuclei. 

3.4. Solution of Schrödinger equation 

Once the potential appropriate to a given shape is generated, the next 
step is to solve the Schrödinger equation for the single-particle energies. 
There are two general methods for doing this: expansion in basis functions 
and finite-difference methods. The expansion methods are usually several 
times as fast as the finite-difference methods for calculating single-particle 
energies with comparable accuracy [46, 47]. For most applications in fission 
the preferred choice is to expand the wave function in a set of deformed 
harmonic-oscillator basis functions. 

3.5. Microscopic corrections 

Once the single-particle energy levels are solved for, the microscopic 
corrections to the potential energy must be extracted from them. The two 
most important of these corrections are the shell correction and the pairing 
correction, 

microscopxc shell pairing 

They arise because of fluctuations in the actual distribution of levels rela
tive to a smooth distribution. 

These fluctuations are especially dramatic for a pure harmonic-oscillator 
potential, as shown in Fig. 3. For a shape of high symmetry, such as a sphere 
or a spheroid whose major axis to minor axis is in the ratio of two small 
integers, the levels group into highly degenerate shells [70]. For such a 
shape, the energy of the system is relatively lower for particle numbers that 
complete a shell than for intermediate particle numbers. At other deforma
tions, the levels are distributed more uniformly. In an actual nucleus simi
lar fluctuations in the single-particle levels give rise to microscopic cor
rections that oscillate with deformation and particle numbers. These are the 
oscillations that are responsible for deformed ground states, second minima 
in fission barriers, and asymmetric saddle-point shapes. 

The primary theoretical justification for extracting the shell correc
tion from single-particle energies is provided by the stationary property of 
the Hartree-Fock solution: To first order in the deviation of the actual 
nuclear density from a smooth density, the total Hartree-Fock energy is equal 
to the sum of single-particle energies 

N 

n=l 
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FIG. 3. Energy levels of a harmonic-oscillator potential for prolate spheroidal deformations [49] . The 
particle numbers of the closed shells are indicated for a sphere and for a spheroid whose major axis is twice 
its minor axis. 

calculated from a smooth single-particle potential, plus a smoothly varying 
term 13, 5, 9, 10, 65, 71, 72]. Therefore, to first order in nuclear density 
deviations, the fluctuations that we want to isolate are contained in this 
sum of single-particle energies. As Brack will discuss later in this ses
sion [71], second-order effects in the shell correction [72] are expected in 
general to be about 1 MeV in magnitude, but could be somewhat larger for spher
ical nuclei. These second-order effects are probably responsible for some of 
the remaining discrepancies between calculated and experimental results. 

The extraction of the shell correction from the single-particle energies 
has a simple geometric interpretation, as illustrated in Fig. 4. First plot 
the energies e at a given deformation vs the single-particle number n. 
For a macroscopic system without single-particle effects all the energies 
would lie on a smooth curve, but the discreteness of the single particles 
causes some fluctuations about a monotonically increasing function of n. 
The discrete energies e can be regarded as a staircase function formed by 
horizontal and vertical lines through the points. Next remove the local 
fluctuations of the staircase function while retaining its long-range be
havior by passing a smooth curve ЁГ(п) through it. Then the shell correction 
for a specified number of particles N is given simply by the difference be
tween the areas under the staircase curve and the smooth curve up to N; that 
is, 

N N 
AV shell = E •K e(n) dn 
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A variety of methods have been proposed for determining the smooth 
curve s(n). Unfortunately, most of these methods work only for certain 
simple potentials and cannot be used, for example, with potentials that con
tain a spin-orbit term. For realistic potentials of arbitrary shape, the 
most satisfactory way at present to determine e(n) is by use of Strutinsky's 
method [21], which was described to us at the second IAEA fission symposium 
by Strutinsky himself [32]. We need not repeat the technical details of his 
method here. 

An alternative method has been studied for calculating the shell cor
rection from the high-temperature dependence of the entropy of the single-
particle system on excitation energy [73-77]. For heavy nuclei the results 
obtained by use of this method agree with those obtained by use of Strutinsky's 
method to within about 0.5 MeV. Perhaps this method will be discussed during 
the session on thermodynamic properties of nuclei. 

The second type of single-particle correction—the pairing correction— 
arises from the short-range interaction of correlated pairs of nucleons moving 
in time-reversed orbits. This is the most important and easily treated of the 
many residual interactions felt by a nucleon. Relative to the energy without 
pairing, this interaction always lowers the energy. But relative to the pair
ing energy of a smooth distribution of levels representing an average nucleus, 
the pairing correction can have either sign. The lowering in energy is larger 
when more pairs of nucleons are able to interact, which occurs when the level 
density near the Fermi surface is high. This is opposite to the behavior of 
the shell correction, and this leads to a partial cancellation of the two cor
rections. Because the shell correction is larger, it determines the main 
trends of the total single-particle correction. 
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The essential features of the pairing correction can be described in 
terms of a constant pairing interaction between a given number of pairs of 
particles. Then a standard pairing calculation in the BCS approximation 
gives the lowering in energy for the actual levels. A similar calculation 
for the same number of particles distributed smoothly according to 'e(n), or 
in practice distributed uniformly, gives the lowering for an average nucleus. 
The difference between the lowering for the actual levels and the lowering 
for the smooth levels is the pairing correction. 

Once the fluctuating shell and pairing corrections are calculated, the 
final step is to add them to the smooth macroscopic energy calculated in 
step 2 to obtain the total potential energy. 

These methods have now been used by several groups to calculate the fis
sion barriers for dozens of nuclei [1-5, 24-28, 32-37, 41-43, 47-50, 52, 65, 
66, 68]. In most instances the results obtained by the different groups are 
qualitatively similar, although some differences exist. Rather than trying 
to review all of this work, we would like to describe instead some new re
sults that we have obtained recently at Los Alamos. 

4. NEW CALCULATIONS 
We have performed two separate new calculations: one with the folded 

Yukawa potential and the other with the modified oscillator potential. Both 
of these calculations are limited to even nuclei. In the former calculation, 
there are three main differences compared to previous studies with this 
potential. First, we now use the droplet model in place of the liquid-drop 
model for calculating the macroscopic energy. The constants of the droplet 
model are a preliminary set determined by Myers and Swiatecki in January 1973 
[56]. We may therefore regard the present results as one step in the complex 
iteration that is required for a final determination of these constants. 

Second, we now investigate a larger part of the deformation space when 
determining the extrema of the potential-energy surfaces. Our exact procedure 
is described in the appendix, but the idea is that in the region that includes 
the first and second saddle points and the second minimum we minimize the po
tential energy calculated in the three-quadratic-surface parametrization with 
respect to a necking coordinate. During this minimization the eccentricities 
of the two ends of the nucleus and the distance between the centers of mass 
of the two nascent fragments are held fixed at the values corresponding to the 
у family of shapes [45, 47]. In the region of the ground state a somewhat 
different constraint on the three-quadratic-surface parametrization is used. 
The ground-state energy is also calculated by use of the two coordinates e 
and ец in Nilsson's perturbed-spherold parametrization [1, 2, 23-29], which 
for most deformed nuclei yields a lower energy. In the region somewhat beyond 
the second saddle point down to scission the potential energy is no longer 
minimized (because the nucleus Is on the side of a steep hill), but is cal
culated instead for shapes along the most probable idealized liquid-drop-model 
dynamical path for fissillty parameter x = 0.8 [44, 51] and for asymmetric 
perturbations about these shapes. The fissility parameter is defined as the 
ratio of the Coulomb energy of a spherical sharp-surface drop to twice the 
spherical surface energy. 

In all regions the final potential energy is displayed in terms of a 
fission coordinate r, defined as the distance between the mass centers of 
the two halves of the dividing nucleus, and a mass-asymmetry coordinate 
(M - M )/M , defined as the difference between the masses to either side of 
the point mxdway between the ends of the shape. For computational convenience 
the fission coordinate for an asymmetric shape is chosen equal to the fission 
coordinate for the corresponding symmetric shape. 
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The third difference is that we are now using a new set of parameters 
for the single-particle potential. Our original set of parameters was de
termined from statistical calculations and from adjustments to experimental 
single-particle levels in the heavy spherical nucleus 208Pb [47]. In the 
new set, which has been determined in collaboration with Nilsson, we have re
determined the range of the Yukawa folding function (which regulates the 
surface diffuseness of the potential) and the spin-orbit interaction strengths 
for neutrons and protons from adjustments to experimental single-particle 
levels in heavy deformed nuclei. The resulting values of these constants are 

a = 0.8 fa 

X = 36 
n 

and 
X = 34 
P 

the well depths for neutrons and protons and the radius of the spherical 
generating potential remain unchanged [47]. The potential's surface is now 
11% thinner than previously, and the spin-orbit interactions for neutrons and 
protons are now stronger by 12% and 6%, respectively. These differences arise 
mainly from requiring the calculated single-particle levels to reproduce 
the observed gap at N = 152 in the experimental neutron levels. With these 
new parameters, the experimental levels in 208Pb are reproduced slightly less 
accurately than before. It appears extremely difficult to find a single set 
of parameters that reproduces satisfactorily the experimental levels in both 
spherical and deformed nuclei. 

In the new calculation with the modified oscillator potential, the only 
difference compared to a previous study with this potential [28] is the re
placement of the liquid-drop model by the droplet model; we therefore omit 
the intermediate results calculated with this potential and present only the 
final comparison with experimental data. 

We show in Fig. 5 the barriers that are calculated with the folded Yukawa 
potential for a group of actinide nuclei. The dashed curves give the poten
tial energy for symmetric deformations and illustrate what we believed about 
fission barriers four years ago in Vienna. At that time we thought that a 
second minimum existed between two peaks in the barrier and that it was re
sponsible for shape isomers and intermediate structure in fission cross-sec
tions . 

This second minimum occurs because of special degeneracies in the single-
particle energies for shapes of high symmetry. In particular, when the nu
cleus is approximately twice as long as it is wide, the energy is lowered 
substantially for particle numbers that correspond to actinide nuclei. Be
cause of this—and because the macroscopic contribution to the energy is 
close to its saddle point and hence relatively flat at this deformation— 
the resulting fission barriers of most actinide nuclei contain a second 
minimum. 

But in Vienna we still could not understand why the calculated barrier 
heights reproduced the experimental values so poorly, or why actinide nuclei 
usually divide asymmetrically. Shortly thereafter several calculations [2-5, 
26-28, 33-37, 42, 47, 49] indicated that the second saddle point in the fis
sion barriers of the lighter actinide nuclei is lowered by several MeV when 
mass-asymmetric deformations are introduced, as indicated in Fig. 5 
by the solid curves. For the heavier actinide nuclei the energy of the 
second saddle point is reduced much less by mass-asymmetric deformations. 
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FIG. 5 Fission barriers for actinide nuclei, calculated with the folded Yukawa potential and the droplet 
model. The dashed curves (which sometimes coincide with the solid curves) give the potential energy for 
symmetric deformations as a function of the distance r between the centers of mass of the two nascent fragments. 
The solid curves give the potential energy along a path that leads over the mass-asymmetric second saddle point. 
This path is usually determined by minimizing the potential energy with respect to mass asymmetry for 
fixed values of r. However, when such a path jumps discontinuously from one valley to another without passing 
over the asymmetric saddle point, the path in this region is determined by the method of steepest descent. 
This explains why the solid curves sometimes lie above the dashed curves. The potential energy for each 
nucleus is calculated with single-particle levels for 250Cf. 

The first peak is found to be stable with respect to mass asymmetry. 
However, studies by Larsson, Pashkevich, Pauli, and others [1, 66, 68] have 
demonstrated that for the heavier actinide nuclei the first peak is unstable 
with respect to axial asymmetry (gamma deformations); this lowers the energy 
by over 2 MeV in some cases. 

The variation of the calculated heights of the equilibrium points with 
neutron number arises primarily from single-particle effects. However, the 
variation of the heights with proton number is associated also with large 
changes in the macroscopic energy. Increasing the proton number Z pulls in 
the maximum of the macroscopic energy to make the first peak higher than the 
second. Conversely, decreasing Z pushes out the macroscopic maximum to make 
the second peak higher than the first. 

We come finally to a new observation that is apparent in Fig. 5: For 
small neutron numbers (below about 146 in these calculations), the asymmetric 
second saddle point is actually split into two individual saddle points 
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separated by a third minimum! Such a splitting is possibly responsible for 
the broad resonance observed in the fission cross-sections of the compound 
nuclei 231Th, 232Th, and 231fTh [78, 79]. These data have always been inter
preted as implying that the first saddle point and second minimum in the bar
rier are substantially higher than the calculated values. But it now appears 
likely that these experimental values refer instead to the middle saddle point 
and third minimum in the barrier, which offers a simple resolution of the 
thorium anomaly. These third minima are associated with a shift in the loca
tion of the asymmetric second saddle point from a large distortion r to a 
smaller distortion as the neutron number increases. Similar third minima are 
also present in some previous calculations for thorium isotopes with both the 
generalized Woods-Saxon potential [37] and the modified oscillator potential 
[28], but the possible significance of these minima was not realized until 
now. It is conceivable that such third minima are a spurious feature of 
limited shape parametrizations, but this can be checked through further work. 
The possibility of this additional complexity in the vicinity of the asym
metric second saddle point means that great care should be taken when deter
mining barrier heights from fission cross-sections [6], when calculating 
spontaneous-fission halflives [35, 80, 81], and when correlating the proper
ties of fission isomers [7]. 

Some of these points are appreciated better in a contour map where the 
mass-asymmetry coordinate is included explicitly. Two such maps are shown 
in Fig. 6: one for 2 3 6U, where the experimental most probable mass division 
is asymmetric at low excitation energy, and the other for 258Fm, where the 
most probable mass division is symmetric. We may think of the ground states 
of these nuclei as lakes that are separated from the regions to the right by 
mountain ranges. Each range contains one or more peaks, additional lakes, 
and passes (saddle points), although in other respects they are different in 
character. For example, the 258Fm range is significantly narrower than the 
236U range; this arises because of the larger Coulomb force in 25eFm. 

For each nucleus the first lake, first pass, and second lake occur for 
symmetric shapes. (Axially asymmetric distortions, which are not considered 
here, would lower the first pass by about 0.3 MeV for 236U and by about 2 MeV 

A C Q t. * 9 4 fi 

for Fm [1].) Because of its high elevation the symmetric peak for U is 
snow-capped. However, it is not necessary to go over this forbidding peak in 
order to fission: the asymmetric route around this mountain is 3.7 MeV lower. 
In addition, the asymmetric lake that separates the two asymmetric passes 
provides a convenient resting place. Beyond this lake, the asymmetric route 
for U divides. One branch leads over an asymmetric pass down into another 
small lake in the symmetric valley. The second branch leads over a slightly 
higher and more asymmetric pass into an asymmetric valley. These two valleys 
are separated by an asymmetric snow-capped peak. We have not yet investigated 
these valleys in detail, but if a similar topology occurs for nuclei near 
radium it could possibly be responsible for the experimentally observed three-
peaked mass distributions for these nuclei. In contrast, the symmetric peak 
for 2 Fm is relatively low in elevation, and only 1.2 MeV is gained by tak
ing the asymmetric route around this mountain. 

Apart from the equilibrium points, such potential-energy surfaces are 
not invariant under a change of coordinates. It is well-known that valleys 
can be transformed into ridges, and vice versa, by coordinate transformations 
[82]. We therefore do not attach a great deal of significance to the appar
ent valleys or ridges on the steep hillside between the saddle and scission 
regions. The answer to the motion in this region must await a proper dynam
ical calculation; some aspects of dynamics will be discussed later in the 
symposium by Pauli, Sierk, and others [35, 51]. 
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FIG. 6. Potential energy of 236U and 258Fm, calculated with the folded Yukawa potential and the droplet model. For each nucleus, contours of constant potential 
energy are plotted as functions of the distance between mass centres г and the mass-asymmetry coordinate (M, - Мг)/М0. The contours are labelled by the energy 
(in MeV) relative to the spherical droplet-model energy. The solid curves are spaced at intervals of 2 MeV; dashed curves are used for intermediate values. The 
distortions included vary from a sphere (at r= 0.75 R<|) all the way to scission, which is indicated by the slightly curved dot-dashed line. The potential energy for 
each nucleus is calculated with single-particle levels for 250Cf. 
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FIG. 7. Potential energy of 23eU, calculated by Mustafa, Mosel, and Schmitt with a modified two-center 
oscillator potential [42]. Contours of constant potential energy are plotted as functionsof the neck radius D 
and the masses of the two nascent fragments. The contours are spaced at intervals of 1 MeV and are labelled 
by the energy (in MeV) relative to the ground-state minimum potential energy; an additional contour is 
included near each saddle point. The dashed lines represent interpolated or extrapolated values. 
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We do note, however, that beyond the last saddle point the apparent 
stability shifts between symmetric and asymmetric shapes. Such shifts arise 
from oscillations in the single-particle corrections. From fundamental con
siderations one expects these oscillations to continue well past the saddle-
point region provided that the nucleus continues to elongate as it does along 
the path chosen in Fig. 6 . 

However, the opposite result was obtained recently by Mustafa, Mosel, 
and Schmitt in some calculations with the modified two-center oscillator 
potential [41-43]. Figure 7 shows their calculated potential-energy surface 
for 2 3 6U, which is obtained by minimizing the potential energy with respect 
to overall elongation and with respect to the difference in the transverse 
semlaxes of the nascent fragments. Note the apparent valley that extends 
from the scission region all the way back to the second saddle point. 

Part of the difference between these two results for 236U stems from the 
use of different single-particle potentials, as illustrated in Fig. 8. Where
as the folded Yukawa potential is practically constant along the symmetry ax
is, the two-center oscillator potential is 5 MeV higher in the middle than in 
the center of either nascent fragment, even though this particular two-center 
saddle-point shape does not contain an indented neck! This early rise of the 
two-center potential in the neck region contributes somewhat to an early 
formation of shell structure associated with the fragments. 

T 1 1 r-

Second saddle point for U 

Folded Yukawa potential 
(for neutrons) 

Two - center 
harmonic -oscillator 
potential 

-20 10 20 -20 -10 

Symmetry Axis z (fm) 

FIG. S. Comparison of the folded Yukawa potential with the two-center oscillator potential at the asymmetric 
second saddle point for 236U. The upper portion of the figure shows the saddle-point shapes, and the lower 
portion shows the corresponding potentials along the symmetry axis. The folded Yukawa potential is 0.19 MeV 
higher in the neck than in the center of the larger nascent fragment and is 0. 04 MeV higher in the neck than 
in the center of the smaller nascent fragment. The two-center oscillator potential [42] is 5 MeV higher in 
the middle than in the center of either nascent fragment. 
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But the main difference arises because different shapes are considered. 
In our calculations the distance between the fragment mass centers increases 
continuously, whereas Mustafa, Mosel, and Schmitt minimize the potential 
energy with respect to this coordinate. This makes it possible for the nu
cleus to adjust its length as its neck radius is decreased in order to remain 
in a local asymmetric valley. Similar local valleys are evident in the 
potential-energy surfaces calculated by Pauli with a generalized Woods-Saxon 
potential and the liquid-drop model [5]. These valleys are aligned approx
imately along fixed values of the distance between mass centers r. With in
creasing r the nucleus passes from one valley into another, which is the 
situation in Fig. 6. When the nucleus adjusts its length to remain in an 
asymmetric valley, it arrives at the scission region with a more compact 
shape; this partially explains why the scission energy is higher in Fig. 7 
than in Fig. 6. 

5. ENERGIES OF THE LOCAL MINIMA AND SADDLE POINTS 

We turn now to a comparison between calculated and experimental energies 
of the equilibrium points in the potential-energy surfaces. 

5.1. Folded Yukawa potential 

Figure 9 compares the calculated and experimental ground-state masses 
of heavy even nuclei; both spherical nuclei near 20 Pb and deformed actinide 
nuclei are included. The calculations reproduce the general trends of the 
experimental results, but some systematic discrepancies remain, as shown in 
the lower portion of the figure. Similar discrepancies have been observed 
previously [2-5, 24, 28, 29, 57]. When viewed over a broad region of nuclei, 
the discrepancy in the ground-state masses oscillates with particle number. 
The maximum error occurs for 222Th, where it is 2.6 MeV in magnitude. For 
the isotopes of a given actinide element, the minimum in the calculated 
ground-state single-particle correction is always at neutron number N = 152. 
This is because the parameters of the single-particle potential are adjusted 
to reproduce the gap at N = 152 in the experimental single-particle levels 
of ground-state nuclei. However, this minimum in the ground-state single-
particle correction is observed experimentally only for the heavier actinide 
nuclei (Z > 100). For the isotopes of a given actinide element, the dif
ference between the experimental and calculated masses is an increasing func
tion of neutron number. 

Provided that it does not affect the potential energy at larger deforma
tions in the same way, such an error in the calculated ground-state mass can 
propagate into the calculated heights of the saddle points and remaining 
minima in the potential-energy surface. This is illustrated in Fig. 10 for 
even actinide nuclei between thorium and fermium. The solid curves give the 
appropriate theoretical height relative to the calculated ground-state energy, 
and the dashed curves give the corresponding height relative to the experi
mental ground-state energy. The difference between the solid and dashed 
curves is therefore simply the error in the calculated ground-state energy. 
On the other hand, an error in a term that is independent of deformation, 
such as the volume energy [28], would not affect the calculated heights of 
the remaining extrema. 

The first column of Fig. 10 compares the theoretical and experimental 
heights for the first saddle point. The theoretical results do not include 
the effects of axially asymmetric deformations, which would lower somewhat 
the calculated heights for the heavier nuclei [1]. When allowance is made 
for this lowering, the theoretical heights (relative to either the calculated 
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FIG. 9. Comparison of experimental ground-state single-particle corrections for even nuclei with values 
calculated by use of the folded Yukawa potential and the droplet model. The ground-state single-particle 
correction is the nuclear ground-state mass relative to the spherical macroscopic energy, which is calculated 
herefromfhel973dropletmodelofMyersandSwiatecki [50, 55, 56]. The experimental masses are taken 
from Ref. 183]. The calculated masses are obtained by minimizing the potential energy with respect to a 
separation coordinate and a necking coordinate in two different shape parametrizations, as discussed in the 
appendix. Single-particle levels for 208Pb, 224Ra, and 250Cf are used to calculate the potential energy for 
each nucleus in the left-hand, middle, and right-hand regions, respectively; these regions are indicated by the 
dashed vertical lines. A constant ground-state zero-point energy of 0. 5 MeV is included for each nucleus. 
The lower portion of the figure gives the discrepancy between the experimental and calculated masses. 

or experimental ground-state energies) are slightly lower than the experi
mental heights. The second column is a similar comparison for the height of 
the second minimum. Apart from the results for thorium, the theoretical and 
experimental values are in approximate agreement, although both the solid and 
dashed theoretical curves show a stronger dependence on neutron number than 
is observed experimentally. 

For isotopes of thorium the calculated second minima are about 3 MeV 
lower than the experimental values commonly attributed to this minimum. This 
large discrepancy—together with a similar discrepancy at the first saddle 
point—constitutes the thorium anomaly [34, 78, 79]. We suggest that a 
possible resolution of this anomaly is the third asymmetric minimum in the 
barrier, whose calculated heights agree with the experimental values to with
in 0.5 MeV. The discrepancies for thorium that are evident in the first 
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FIG. 10. Heights of the first saddle point, second minimum, and asymmetric second saddle point, as functions 
of neutron number N. The solid curves give the heights calculated with the folded Yukawa potential and the 
droplet model relative to the calculated ground-state energy, and the dashed curves give the corresponding 
height relative to the experimental ground-state energy. The lightweight dot-dashed lines in the first column 
give the height of the lower of the two asymmetric saddle points that surround the asymmetric third minimum 
(relative to the calculated ground-state energy). To the left of the wavy vertical line the lower saddle point 
occurs before the minimum, and to the right it occurs after the minimum. The height of this third minimum 
is given in the second column by the lightweight dot-dashed lines. A constant zero-point energy of 0. 5 MeV 
is included for each nucleus at its ground state, second minimum, and third minimum. The potential energy 
for each nucleus is calculated with single-particle levels for 250Cf. The calculations are performed for even nuclei 
only, but odd-neutron nuclei are also included in the experimental data, which are given by solid circles [20], 
open circles [84], solid squares [79] , open squares [78] , solid upward-pointing triangles [6 ] , and a solid 
downward-pointing triangle [ 85]. 
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column are reduced somewhat when the experimental heights that are commonly 
attributed to the first saddle point are compared instead with the calculated 
heights for the lower of the two asymmetric saddle points that surround the 
asymmetric third minimum. But these calculated heights are still lower than 
the experimental ones by about 2 MeV. 

For plutonium the experimental heights of the second minimum are system
atically lower by about 0.2 MeV for odd-neutron isotopes than for even iso
topes. As pointed out by Nilsson [67], this implies that the pairing gap is 
smaller by this amount at the second minimum than at the ground state. This 
arises because the single-particle levels have a larger shell at the second 
minimum—where the shape has a ratio of axes of approximately 2/1—than at 
the ground state. Such odd-particle fluctuations in the height of the second 
minimum are evident in the calculations of Ref. [20]. 

The third column of Fig. 10 compares the theoretical and experimental 
heights of the second saddle point. For thorium and uranium both the solid 
and dashed theoretical curves are somewhat lower than the experimental values 
and show a more rapid variation with neutron number. For plutonium and curium 
the dashed curves are in approximate agreement with the experimental values, 
but the solid curves vary too rapidly with neutron number. 

In some calculations of fission-barrier heights [34, 80, 86], the values 
of two constants in the liquid-drop model are adjusted in order to reproduce 
optimally the experimental heights of the second saddle point. Because the 
calculated heights are affected to an unknown extent by the poorly understood 
systematic error in the calculated ground-state energies, great care must be 
exercised when attempting to determine liquid-drop-model constants in this way. 
As an extreme example, had experimental rather than calculated ground-state 
energies been used in the previous studies [34, 80, 86], the resulting values 
of the surface-asymmetry constant К would have been substantially lower. 

At present we are calculating the fission barriers for a broad region of 
lighter nuclei. The calculated barrier height for 210Po is 23.3 MeV relative 
to the calculated ground-state energy, and is 22.0 MeV relative to the experi
mental ground-state energy. These theoretical heights are to be compared with 
21.4 and 20.5 MeV obtained in two different experiments [87], and with the 
value of 24.7 MeV calculated by Mosel with the modified two-center oscillator 
potential and the liquid-drop model [41]. 

5.2. Modified oscillator potential 

In the next three figures we present some analogous results obtained 
with the modified oscillator potential. In Fig. 11 we see the effect of 
axially asymmetric (gamma) distortions at the first saddle point; this will be 
discussed in greater detail later in this session by Larsson [1]. We note the 
excellent agreement with experimental results that is achieved for the heavier 
nuclei by including axially asymmetric distortions. However, there are some 
significant deviations between the calculated and experimental results for the 
lighter isotopes of thorium and uranium. 

The results shown in Figs. 12 and 13 for the second minimum and the 
second saddle point, respectively, are calculated in the same way as those of 
Ref. [28] with two exceptions: We now use the droplet model for the macro
scopic energy and include a zero-point energy of 0.5 MeV at the ground state 
and second minimum. The strength of the pairing interaction is taken to be 
independent of deformation. In Fig. 12 we see that although the experimental 
and calculated heights of the second minimum are in approximate agreement, the 
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FIG. 11. Reduction in the height of the first saddle point due to axially asymmetric deformations, as a function 
of mass number A. The open circles connected by the dashed lines give the heights calculated with a modified 
oscillator potential and the liquid-drop model for shapes that are restricted to axial symmetry 128]; the open 
circles connected by the solid lines give the corresponding heights calculated by Larsson and Leander for 
axially asymmetric shapes [1 ] . The strength of the pairing interaction is assumed to be proportional to the 
surface area; the liquid-drop-model constants are taken from Ref. [57] . No zero-point energy is included 
at the ground state. The calculations are performed for even nuclei only, but odd-neutron nuclei are also 
included in the experimental data, which are given by the solid squares [84] . 

calculated values depend more strongly on neutron number than do the experi
mental values. In particular, the calculated values contain a minimum at 
N = 144 and a maximum at N = 152, whereas the experimental values are approxi
mately independent of neutron number (apart from the odd-particle fluctuations 
discussed earlier). 

As seen in Fig. 13, the calculated heights of the second saddle point for 
uranium and plutonium are fairly constant as functions of neutron number and 
are in excellent agreement with the experimental results. The agreement is 
also very good for curium, whereas for thorium the calculated values are about 
1 MeV higher than the experimental values and vary somewhat too rapidly with 
neutron number. 

For the heavier actinlde nuclei there are no experimental measurements on 
the height of the second saddle point. However, the spontaneous-fission half-
life for Fm is unexpectedly short compared to that of the neighboring 
nucleus 2 Fm. In particular, the halflife of 380 ys for 25eFm is only 
4 x М Г 8 times that for 256Fm [88, 89]. This may indicate that for 25*Fm the 
second saddle point is lower than the ground state [80]. This could also be 
true for 2Ц1*Рт, which has a short spontaneous-fission half life of 3.3 ms 
[90]. This indirect evidence therefore suggests that the heights of the 
second saddle points for Fm and Fm are about zero. This is reproduced 
approximately by the calculations shown in Fig. 13. 
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FIG. 12. Height of the second minimum, as a function of neutron number N. The curves are calculated with 
the modified oscillator potential and the droplet model for even nuclei. The experimental data are given 
by circles [20 ] and a triangle L85]. Solid symbols are used for even nuclei, and open symbols are used for 
odd-neutron nuclei. 

5.3. Comparison of folded Yukawa and modified oscillator potentials 

For both the folded Yukawa potential and the modified oscillator poten
tial, the present calculations agree better with experimental results than 
previous calculations with these potentials [20, 28, 47, 49]. Of particular 
importance, the rapid variation of the height of the second saddle point with 
neutron number that was predicted by the old calculations but is not observed 
experimentally is reduced substantially. For the modified oscillator poten
tial this improved agreement stems from the use of the droplet model for the 
macroscopic energy. For the folded Yukawa potential the introduction of addi
tional shape coordinates and the use of different parameters for the single-
particle potential also contribute. Unfortunately we are not able to answer 
the delicate question of whether the improved agreement arises because of the 
higher-order terms in the droplet model or simply because of a better set of 
constants for the leading terms. 

In carrying out this study we have come to appreciate the remarkable 
similarity in the results calculated for actinide nuclei by use of potentials 
that at first sight seem radically different. Similarities near the ground 
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FIG. 13. Height of the asymmetric second saddle point, as a function of neutron number N. The curves 
are calculated with the modified oscillator potential and the droplet model for even nuclei. A constant 
ground-state zero-point energy of 0.5 MeV is included for each nucleus. The experimental data are given 
by squares [84] , circles 120], and triangles [ 6 ] . Solid symbols are used for even nuclei, and open symbols 
are used for odd-neutron nuclei. 

state are understood easily because we adjust the parameters of each potential 
to reproduce the same experimental single-particle levels in heavy deformed 
nuclei. But in addition the two calculations yield similar results at the 
second saddle point for detailed questions: For example, for which isotope 
does the maximum decrease in energy due to asymmetric distortions occur? And, 
for which isotope does the location of the asymmetric second saddle point 
shift from a large distortion r to a smaller distortion? The two 
calculations answer both these questions in the same way to within an accuracy 
of ±2 neutrons for all even nuclei between thorium and fermium. This suggests 
that the dependence of single-particle effects on deformation arises primarily 
from the overall geometrical shape of the potential rather than from fine de
tails associated with it. This agrees with the conclusions obtained by Balian 
and Bloch on the basis of closed stationary paths in potentials [91]. 

But of course there are some differences in the results calculated with 
the two potentials. For example, compare the rapid increase in the height of 
the second saddle point with increasing neutron number just below 152 in the 
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folded Yukawa calculations with the relatively constant behavior in the modi
fied oscillator calculations. This difference comes about from effects both 
at the ground state and at the second saddle point. As an example, for plu-
tonium the ground-state energy calculated with the folded Yukawa potential 
decreases by 1.1 MeV between Я = 144 and N = 152 and the saddle-point energy 
increases by 1.0 MeV, which increases the height of the second saddle point 
by 2.1 MeV. In the modified oscillator calculations the corresponding values 
are 0.19 MeV and 0.02 MeV, which increases the height by only 0.21 MeV. At 
the ground state the differences arise because the single-particle level den
sity near neutron number N = 144 is slightly higher for the folded Yukawa 
potential than for the modified oscillator potential (even though both poten
tials are meant to reproduce the same experimental levels). 

We find that the levels at the second saddle point are much less sensi
tive to changes in the parameters of the single-particle potential than are 
those near the ground state. The major differences at the second saddle 
point seem to arise because in the folded Yukawa calculations we vary the 
necking coordinate O" independently of the separation and asymmetry coordi
nates, whereas in the modified oscillator calculations the necking coordinate 
ê  has a prescribed dependence on the other coordinates. 

Another difference is that the heights of the second saddle point do not 
decrease as rapidly with increasing proton number in the folded Yukawa cal
culations as in the modified oscillator calculations. This arises primarily 
because the second saddle point for heavy nuclei near 25ZFm, for example, oc
curs near the macroscopic saddle point with the folded Yukawa potential, 
whereas with the modified oscillator potential it occurs at a somewhat larger 
deformation, where the macroscopic contribution is about 2 MeV lower. The 
main reason that the second saddle occurs at a smaller deformation with the 
folded Yukawa potential is that the single-particle levels cross earlier. 

In order to permit a better choice between the available single-particle 
potentials, and in order to determine the constants of these potentials more 
precisely, we need more direct experimental information at large deformations. 
This includes the determination of the nuclear shape and the identification 
of the single-particle states at the second minimum, for which some notable 
first steps have been taken [92-94]. 

We again stress that, despite these minor differences, the two poten
tials yield remarkably similar results for the fission barriers of actinide 
nuclei. It is therefore disconcerting to note the relatively large differ
ences in the predictions for superheavy nuclei based on the two potentials 
[24, 25, 47-49]. In particular, the modified oscillator potential predicts 
that the eastern side of the island of superheavy nuclei (i.e., the side with 
neutron number greater than 184) is more stable than the western side, whereas 
the folded Yukawa potential (as well as the Woods-Saxon potential) predicts 
that the western side is more stable. 

We had originally thought that part of this difference was caused by 
having used experimental single-particle levels in Z08Pb to determine the 
parameters of the folded Yukawa potential and single-particle levels in heavy 
deformed nuclei to determine the parameters of the modified oscillator poten
tial. But now that we use levels in heavy deformed nuclei for both potentials 
the differences are even greater [50]! This comes about because the surface-
diffuseness parameter for the folded Yukawa potential is now smaller, which 
makes this potential more like a square-well potential. We conclude that al
though satisfactory agreement with experimental results may be achieved for a 
limited region of nuclei through the adjustment of parameters in the single-
particle potential, great care must be exercised when extrapolating the poten
tial to new regions of nuclei. 
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6. FISSION-FRAGMENT MASS DISTRIBUTIONS 

We come finally to the puzzle that has intrigued physicists ever since 
the discovery of fission: the preference of most actinide nuclei at low ex
citation energy to divide asymmetrically. We now understand this preference— 
as well as the preference in other situations for nuclei to divide symmetri
cally—in terms of single-particle effects superimposed on a smooth macro
scopic background. 

6.1. Origin of asymmetric instabilities 

Let us examine these two contributions individually. As illustrated in 
Fig. 14, the saddle-point shapes for the macroscopic portion of the energy are 
stable against mass-asymmetric deformations for nuclei heavier than about sil
ver and are unstable for lighter nuclei. Because the quantity plotted is 
equal to the stiffness against mass asymmetry divided by the corresponding 
inertia, the effective macroscopic stiffness against mass asymmetry increases 
sharply for heavier nuclei. In order for an asymmetric mass division to oc
cur, a possible single-particle preference for asymmetry must be sufficiently 
strong to overcome this macroscopic preference for stability. Because the 

> 
to 

E 

FIG. 14. Square of the frequency of mass-asymmetric oscillations of an idealized liquid drop about its 
saddle-point shape, as a function of fissility parameter x. The results are shown for nuclei along the valley 
of beta stability [44] . The critical Businaro-Gallone point [95] is denoted by the arrow. To the right of this 
point the liquid-drop-model saddle-point shape is stable against mass asymmetry, and to the left it is unstable. 
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FIG. 15. Single-neutron levels near the second saddle point of an actinide nucleus, as functions of the 
mass-asymmetry coordinate e35 . The levels are calculated with the modified oscillator potential for 
asymmetric distortions defined by e3 = e , and e5 = — 0.45 e L27]. The levels are labelled by the 
asymptotic quantum numbers [Nn Л0] and by the parity for the corresponding symmetric shape. 

magnitude of single-particle effects remains approximately constant with in
creasing mass number, this increase in the stiffness of the macroscopic con
tribution suggests that sufficiently heavy nuclei will always prefer to divide 
symmetrically. Some recent calculations with the modified two-center os
cillator potential support this observation [43]. 

We have already seen that the addition of single-particle effects to the 
macroscopic energy can lead to a high and sharp peak in the total potential 
energy as a function of the symmetric fission coordinate. This peak is 
caused by an unusually high single-particle level density near the Fermi sur
face for this particular shape. Any type of deformation that reduces this 
high level density leads to a decrease in the single-particle correction. 
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Whereas the single-particle levels depend linearly upon symmetric deforma
tions, they are to first order independent of asymmetric deformations. For 
large asymmetric deformations many levels remain practically constant, whereas 
some specific levels vary strongly [27]. When these specific levels are near 
the Fermi surface, asymmetric deformations can reduce the single-particle cor
rection. Then, provided that the macroscopic energy does not increase too 
rapidly, the total potential energy should have an asymmetric path of lower 
energy leading around the symmetric peak [27, 96]. 

Two near-lying levels are affected strongly by an asymmetric perturbation 
when the matrix element of the perturbation between them is large. The matrix 
element of a mass-asymmetric perturbation is large between two states of op
posite parity that have similar transverse and azimuthal wave functions and 
that have 0 and 1 node, respectively, in their wave functions along the sym
metry axis z. This is illustrated in Fig. 15, where the neutron levels near 
the second saddle point of an actinide nucleus are shown as functions of mass 
asymmetry. These results are calculated with the modified oscillator poten
tial. In terms of the asymptotic quantum numbers [Nn^Aß], the levels that are 
affected most by mass asymmetry are [40ЛЯ] and [51АЙ]. Four orbitale of 
each type occur between neutron number 130 and 170 at the second saddle point; 
it is the presence of these eight mass-asymmetry-favoring orbitale near the 
Fermi surface that leads to mass-asymmetric second saddle points in actinide 
nuclei. These same orbitals are also responsible for mass asymmetric saddle 
points in calculations with the folded Yukawa potential and with the general
ized Woods-Saxon potential [5]. 

As the nucleus continues to deform past the saddle point, the development 
of the neck and ultimately the rise of the potential in the neck cause all 
levels to group into nearly degenerate pairs of levels of opposite parity. 
This occurs because the squeezing at the neck raises the energy of a state 
without a node at z = 0 more than it raises the energy of a state with a 
node. As stressed by Andersen [97], these pairs of levels finally become the 
levels in the two individual fragments after scission. In this limit every 
level is affected by a change in mass asymmetry. However, because of the dif
ficulty of mass transfer near scission, the mass split must be decided some
what before this point. But in this way we see the connection between the ef
fects of shell structure in the fragments and at the saddle point. 

At the first symmetric saddle point of actinide nuclei the single-particle 
level density near the Fermi surface is also high, but such shapes are stable 
against mass asymmetry because the mass-asymmetry-favoring orbitals are not as 
close to each other there. On the other hand, axial-asymmetry-favoring orbi
tals are present near the Fermi surface at the first saddle point of the 
heavier actinide nuclei, which leads to axially asymmetric first saddle points 
in these nuclei. 

6.2. Saddle-point properties 

Although a few mysteries still remain, the main features of experimental 
fission-fragment mass distributions are now understood in terms of the cal
culated properties of the saddle points. At low excitation energy, most heavy 
nuclei (Z > 90) divide primarily into one large fragment and one small frag
ment. For these nuclei, the second saddle point is calculated to be 
reflection-asymmetric in shape. Figure 16 shows for actinide nuclei the cor
relation that exists between the experimental most probable mass asymmetries 
and the values calculated at the second saddle point with the folded Yukawa 
potential. 
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FIG. 16. Correlation of experimentally most probable fission-fragment mass asymmetries with values calculated 
at the asymmetric second saddle point by use of the folded Yukawa potential and the droplet model, for even 
actinide compound nuclei. The experimental data are given by circles [98] , triangles [99], and squares [100]. 
Solid symbols are used for spontaneous fission, and open symbols are used for neutron-induced fission. 

If the mass distribution is determined at the second saddle point, then 
the experimental peak-to-valley ratio should be related exponentially to the 
difference between the energies of the second symmetric saddle point and the 
second asymmetric saddle point [101]. Such a correlation is presented in Fig. 
17 for actinide nuclei; the folded Yukawa potential is used to calculate the 
differences in the energies of the saddle points. 

What happens to the nucleus after it passes over the asymmetric second 
saddle point? It has two main choices: It can adjust its overall length in 
order to remain in an asymmetric valley of low potential energy created by 
the single-particle effects [5, 42, 43]. Or alternatively, it can increase 
its overall length in accordance with the preference of the macroscopic part 
of the energy. If this occurs, it moves out of the asymmetric valley of low 
potential energy onto another part of the multidimensional deformation 
space [5]. These two possible alternatives are illustrated by the potential-
energy maps in Figs. 7 and 6, respectively. Perhaps some information on 
which alternative a nucleus chooses could be obtained from a careful examina
tion of experimental fission-fragment kinetic energies. But it is more likely 
that we will have to wait for a proper dynamical calculation to provide the 
answer to this important question. 
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FIG. 17. Correlation of the peak-to-valley ratio in experimental fission-fragment mass distributions with 
the difference between the energies of the symmetric and asymmetric second saddle points, for even actinide 
compound nuclei. The energy differences are calculated with the folded Yukawa potential and the droplet model. 
The experimental data are given by circles [98] and trianglesf. [ 99]. Solid symbols are used for spontaneous 
fission , and open symbols are used for neutron-induced fission. 

Experimental fission-fragment mass distributions for nuclei in the 
vicinity of radium (84 < Z < 90) have three peaks; one corresponds to 
division into equal fragments and the others correspond to division into un
equal fragments. Still lighter nuclei (Z < 84) divide primarily into two 
equal fragments at all excitation energies for which the mass distributions 
are known. More recent experiments show that the mass asymmetry also de
creases strongly for very heavy nuclei [102, 103]. In particular, the most 
probable mass split in the thermal-neutron-induced fission of Fm (Z = 100) 
is symmetric [103]. 

MeV 
In our new calculations with the folded Yukawa potential, the saddle 

point for 226Ra is slightly asymmetric [(Mj - M2)/M0 = 0.075] and is 2.3 
lower in energy than the corresponding symmetric saddle point; this agrees 
qualitatively with most of the other calculations for radium isotopes [5, 28, 
33, 47, 49]. We have not yet investigated the potential-energy surface for 
2 Ra for large distortions beyond the saddle point or for large mass asym
metry, but it is possible that an asymmetric valley similar to the one shown 
in Fig. 6 for 236U will appear. If so, the presence of such an additional 
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valley may be responsible for the three-peaked mass distributions observed 
experimentally for nuclei near radium. On the other hand, odd-particle ef
fects may be partially responsible, because the experimental mass distribu-

5 5 7 9 9 8 

tions are for compound nuclei such as Ac and Ac, which contain one or 
more odd particles [104, 105]. 

For 270Po we find in our new calculations with the folded Yukawa poten
tial that the potential energy is extremely flat near the saddle point. Al
though the small differences in potential energy in this region are comparable 
to the numerical accuracy of the calculations, the results taken at face value 
yield an asymmetric saddle point [at (Mj - M2)/M0 = 0.092] that is 0.25 MeV 
lower than the symmetric saddle point. The peak that separates them is only 
0.25 MeV higher than the symmetric saddle point. Although the total potential 
energy is flat near the saddle point, the single-particle levels themselves 
vary strongly with deformation. Because the single-particle levels at the 
saddle point influence such quantities as fission-fragment angular distribu
tions, the proper measurement and analysis of these quantities provide val
uable information concerning the saddle-point shape [106]. 

For heavier actinide nuclei, the second saddle point decreases in height 
relative to the first, and these nuclei begin their descent with a shape cor
responding to the first saddle point, which is reflection symmetric. In ad
dition, the asymmetric second saddle point is only slightly lower than the 
corresponding symmetric one and occurs at a relatively small mass asymmetry 
(for 8Fm these values are 1.2 MeV and 0.050, respectively, in our folded 
Yukawa calculations). This is at least partially responsible for the transi
tion to symmetric divisions in the thermal-neutron-induced fission of Fm. 

As the excitation energy increases, the probability for division into 
two equal fragments increases, until at high energies the experimental mass 
distribution for all nuclei is peaked about a division into two equal frag
ments. This transition is probably associated with the decrease in relative 
importance of single-particle effects at high excitation energies, where the 
nucleons are distributed randomly over a large number of single-particle 
levels. This effectively destroys the influence of the shells, and—in a 
loose manner of speaking—the system divides in accordance with the smooth 
macroscopic contribution to the energy, which prefers an equal-mass split. 
This will be discussed later in the symposium by Jensen [107]. 

The phenomena that we are able to understand qualitatively in terms of 
the calculated saddle-point symmetry properties are thus the mass asymmetry 
in the low-energy fission of most actinide nuclei, and the transitions to 
symmetric divisions for both lighter and heavier nuclei and at high excitation 
energy. The calculated saddle-point properties do not reproduce the exact 
locations of the transitions to symmetric divisions and do not reproduce the 
expected symmetric and asymmetric saddle points for nuclei such as radium in 
the transition region. A more quantitative study of fission-fragment mass 
distributions would require a dynamical calculation to determine the motion 
beyond the second saddle point. 

7. CONCLUDING COMMENTS 

We have discussed recent advances in the calculation of the nuclear po
tential energy of deformation, with primary emphasis on the macroscopic-
microscopic method. As specific examples of this method we have presented 
some new results obtained recently at Los Alamos with the folded Yukawa and 
modified oscillator single-particle potentials; the macroscopic energy is cal
culated by use of the droplet model. 
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A variety of phenomena associated with nuclear shape changes can be . 
understood on the basis of this two-part approach. The macroscopic part gives 
the smooth trends, and the microscopic part gives the fluctuations that arise 
from single-particle effects. In this way such varied phenomena as nuclear 
ground-state masses and deformations, second minima in the fission barriers of 
actinide nuclei, fission-barrier heights, and fission-fragment mass distribu
tions are seen to have a common origin. 

From comparisons with experimental results we have seen that the present 
accuracy with which we are able to calculate the nuclear potential energy of 
deformation is about 1 MeV, although larger systematic errors are still present 
in some cases. Some of these errors are associated with imperfect determina
tions of the constants of both the macroscopic energy and the single-particle 
potential. Numerical inaccuracies arise from calculating shell and pairing 
corrections for a region of nuclei from single-particle levels for one central 
nucleus; numerical inaccuracies are also present in the extraction of the 
shell correction from a given set of single-particle levels. Some of the er
rors could arise from an inadequate treatment of zero-point energies. Per
haps we are using the wrong functional form for either the macroscopic energy 
or the single-particle potential. But probably the major errors stem from an 
inherent limitation of the macroscopic-microscopic method itself, such as 
the neglect of terms that are second order in the deviation of the actual nu
clear density from a smooth density. These second-order effects will be dis
cussed later in this session by Brack [71]. 

When these same general methods are applied to superheavy nuclei, we 
find the result shown in Fig. 18: An island of nuclei in the vicinity of 
114 protons and 184 neutrons is expected to be relatively stable against spon
taneous fission, alpha decay, and beta decay. As is true for any island, 
there are two general ways by which the island of superheavy nuclei may con
ceivably be reached—by sea and by air. In the next talk Howard will discuss 
the approach by sea, where one would reach the southeastern, or neutron-rich 
shore of the island through the multiple capture of neutrons [50]. 

APPENDIX. SHAPE CONSTRAINTS 

The ground-state energy is determined by minimizing the potential energy 
with respect to an elongation coordinate and a necking coordinate in two dif
ferent shape parametrizations. We use first a constrained version of the 
three-quadratic-surface parametrization, which contains the six deformation 
coordinates a , а , 0"3, (Xj, a2, and a3 [44-51]. The first three coordinates 
describe symmetric deformations, and the last three describe asymmetric de
formations. For specifying ground-state deformations, we eliminate one of the 
three symmetric coordinates by relating the eccentricity of the middle sphe
roid to that of the two end spheroids. This is done by requiring that the 
relative quadrupole moment of the middle spheroid be equal in magnitude but of 
opposite sign to the relative quadrupole moment of either end spheroid. The 
two remaining symmetric coordinates are chosen to be the quadrupole moment 
Q2 and hexadecapole moment Q,, of the shape [50]. We find that this parame
trization describes very poorly the shapes of nuclei with large positive hexa
decapole moments (light isotopes of thorium, uranium, and plutonium). In 
particular, the generated shapes have a large curvature near z = 0 , which 
results in an unphysically large surface energy. For this reason we also 
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FIG. 18. Location of the predicted island of superheavy nuclei relative to the peninsula of observed nuclei. 
The nuclei included in the island have calculated total half-lives longer than about 5 min [483. 
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study the potential energy near the ground state as a function of the coordi
nates s and e4 in Nilsson's perturbed-spheroid parametrization [1, 2, 
23-29]. For most nuclei the use of this parametrization results in a lower 
ground-state energy (by up to 1.2 MeV for 2 Th). However, for several nuclei 
with neutron number N close to 152 the energy calculated in the constrained 
version of the three-quadratic-surface parametrization is lower (by up to 
0.4 MeV for Cf). For each nucleus we use the lower ground-state energy 
calculated with these two parametrizations. 

The remaining fission barrier extrema are determined by use of the three-
quadratic-surface parametrization only. (For comparison we are currently re
determining them by use of Nilsson's perturbed-spheroid parametrization.) In 
this determination three coordinates are varied independently: the distance 
between mass centers r, the necking coordinate 02 , and the asymmetry coordi
nate a2. The coordinate a3 is always set equal to 0, and a1 is used to 
keep the center of mass fixed at the origin. When 02 is varied, the coordi
nate 01 which specifies the separation of the end-spheroid centers is 
determined so that the distance r between the actual nascent-fragment mass 
centers remains fixed. The fragment-eccentricity coordinate a is taken 
equal to its value for the y-family shape [45, 47] that has the same value of 
r. For asymmetric shapes (a ^ 0), r is chosen to be the same as for the 
corresponding symmetric shape. Because a large change in a, sometimes leads 
to a small change in the actual shape, we define the mass-asymmetry coordinate 
as (M - M )/(M + M2) = (Mx - M2)/M0. Here M2 is the mass on one side of 
the point midway between the ends of the shape, and M is the mass on the 
other side. 

The asymmetric saddle points are determined in the following way: We 
consider seven values of r in the vicinity of the second saddle point. With 
r fixed we vary a and the mass-asymmetry coordinate independently; we use 
five values for each of the last two coordinates, which makes a total of 25 
grid points. For each mass asymmetry we minimize the energy with respect to 
cr . In this way we obtain for each value of r the energy as a function of 
mass asymmetry; these energies are then used to construct contour maps as 
functions of r and mass asymmetry. From these contour maps the asymmetric 
saddle points are then determined. In our contour maps all distortion coor
dinates (ffj, o2, o"3, alt a2, a3) are continuous functions of r and mass 
asymmetry, thus insuring that we do not "tunnel through" a mountain ridge 
when minimizing with respect to 02 and consequently obtain a spurious 
saddle point of lower energy. 

When determining the first saddle point and second minimum, only r and 
0"2 are varied because in this region the potential energy is stable against 
mass-asymmetric distortions (or in a few cases only slightly unstable). 
Therefore, in the two contour diagrams displayed in Fig. 6 the potential 
energy for asymmetric shapes is minimized with respect to o"2 only in the 
vicinity of the second saddle point. In other regions asymmetric distortions 
are generated from the corresponding symmetric shape by making а ф 0. In 
the region preceding the second saddle point these symmetric shapes are those 
for the ground state, first saddle point, and second minimum for the 
particular nucleus under consideration. Beyond the second saddle point the 
symmetric shapes correspond to those along the most probable idealized 
liquid-drop-model dynamical path from saddle to scission [44,51] for fis-
sility parameter x = 0.8. 
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D I S C U S S I O N 

M.G. MUSTAFA: Have you ca r r i ed out your calculation all the way 
to sc iss ion and did you have any problems? 

J . R . NIX: Our calculations were ca r r i ed out all the way to sc iss ion; 
the slightly curved dot-dashed line near the r ight-hand edge of F ig . 6 
indicates sc i s s ion . Our shape paramet r iza t ion pe rmi t s a smooth t rans i t ion 
from p r e - s c i s s i o n to pos t - sc i s s ion shapes and no problems were encountered 
in this region. 

M. G. MUSTAFA: I would like to add to your s ta tement about two 
possible paths to sc i s s ion . We, too, have seen two possible paths in our 
two-cent re model calcula t ions . I think that in the Pb region and in the heavy 
actinides one of the paths dominates, but in Ra the two paths a re perhaps 
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equally possible. Thus the mass distribution in the Pb region and in the 
actinides would show a double hump, but in Ra it would be expected to have 
a triple hump. 

S.S. KAPOOR: Does one have to carry out calculations of shell 
correction energy as a function of smoothing parameters p and у for each 
shape for which calculations are carried out, in order to ensure the constancy 
of the shell correction with respect to these parameters, or is it sufficient to 
determine p and у for a few shapes and use this for all the shapes? 

J .R. NIX: It is sufficient to determine best values for the order p and 
the smoothing range у of the shell correction for several selected shapes 
and then use those values for all shapes. 

S.S. KAPOOR: With regard to the different mass distributions occurring 
with spontaneous fission of 256Fm and thermal neutron fission of 257Fm, is it 
not possible that asymmetric mass distribution can occur in the second case, 
because the excitation energy tends to wipe out shell effects? 

J .R. NIX: The thermal-neutron-induced fission of 255Fm has now been 
studied by R. C. Ragaini, E.K. Hulet and R. W. Lougheed1 . According to 
their results, the most probable mass division for the fission of an excited 
256Fm nucleus is slightly asymmetric (whereas it is symmetric for2 5 8Fm). 

U. MOSEL: I would like to support Nix's statement that the difference, 
between the potential-energy surface for 236U, as calculated in his method, 
and the one calculated by Mustafa, Schmitt and myself is indeed due to the 
different choice of shape parameters. It is highly probable that one misses 
the essential parts of the potential energy surface entirely when following a 
liquid drop model dynamic path, as was done in Nix's calculations. After 
all, the shell corrections amount to several MeV and may change this path 
quite a bit. In our case the shell corrections at scission favour shorter, 
less deformed shapes than in Nix's calculations. A final answer to this 
problem can, of course, be obtained only in dynamic calculations. 

There is also another reason why the asymmetric valley should actually 
run from the saddle to scission. As was pointed out by Nix, the asymmetry 
at the barr ier is due to the presence of two types of specific levels at the 
Fermi surface. These levels are there because of the final fragment 
structure. Therefore this grouping has to become stronger with decreasing 
neck radius, thus favouring a continuous valley out to scission. 

J .R. NIX: Near the second saddle point only levels of the type 
[ NnzAf2] = [40ЛГ2] and [51ЛГ2] are affected strongly by asymmetric pertur
bations. As the nucleus deforms towards scission, other levels begin to be 
affected. Beyond scission, all levels are affected. But of course the mass 
division must already be decided somewhat before scission because of the 
difficulty of transferring mass through shapes with small necks. 

H. C. PAULI: You report a local minimum for thorium in the 
symmetric-asymmetric plane. We have observed a similar behaviour 
in some nuclei, but, if we include the second symmetric degree (like h), 
the minimum is unstable. Minimizing with respect to some one deformation 
may also lead to spurious results. 

J .R. NIX: We have indicated that the third minimum in the potential-
energy surface may be a spurious feature of limited shape parametrizations. 
Similar minima have appeared in two independent calculations. We have 

1 Paper IAEA-SM-174/72, these Proceedings, Vol.2. 
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minimized the potential energy in this region with respect to a necking 
co-ordinate, but need to make further minimizations to check that this 
minimum does not disappear. 

H.C. PAULI: The interpretation of the thorium anomaly as being due 
to a third minimum interests me and I wonder if any of our experimentalists . 
could tell us whether such a shallow minimum could produce such a sharp 
resonance as that observed? 

H. С BRITT: The analysis of the 231Th resonance by Lynn indicates 
a shallow minimum which is qualitatively in agreement with the concept of 
a third minimum. However, both our and Lynn's analyses of the data 
indicate -fiwA and "huB values that are similar to those found in heavier actinide 
nuclei. I wonder whether the normal second peak in Th nuclei could break 
up into two peaks which are as broad as that. 

H.C. PAULI: Next, I should like to ask the authors whether the 
instability due to axially asymmetric deformation is calculated for a spheroid 
or at the real fstatic) barrier? 

P. MÖLLER: In the calculations, which are discussed by S. E. Larsson2 , 
who performed them,both spheroidal (e) and hexadecapole (necking or P4) 
distortions were taken into account simultaneously. 

H.C. PAULI: I do not understand why the peak-to-valley ratio in the 
fragment mass distribution should be correlated at all with the lowering 
of the outer barr ier due to asymmetry. 

J .R. NIX: The reason for the correlation of the peak-to-valley ratio 
of the fission-fragment mass distribution with the difference in energy 
between the second symmetric and asymmetric saddle points has been given 
by C.F. Tsang and J . B . Wilhelmy (Nucl. Phys. A184 (1972) 417). Basically, 
the reason is that in spontaneous fission the penetrabilities through the 
symmetric and asymmetric portions of the barrier depend exponentially 
upon the barrier heights and curvatures. In induced fission, the probabilities 
for proceeding over the symmetric and asymmetric saddle points depend 
exponentially upon the barrier heights and the nuclear temperature. 

R. VANDENBOSCH: It has been suggested that the relative prominence 
of the two valleys from near saddle to scission is dependent on whether one 
minimizes the energy with respect to mass asymmetry for liquid-drop-like 
elongations, as was done by Möller and Nix, or whether one also minimizes 
with respect to necking-in as in the case of Mustafa, Mosel and Schmitt. 
I believe there is experimental evidence that can help us distinguish which 
valley is being followed. The origin of the shell effects resulting in the 
asymmetric valley to scission is the single-particle degeneracies of the final 
fragments. These are particularly strong for the double-magic spherical 
A = 132 fragment. We know that the fragment neutron yield and hence the 
excitation energy and scission deformation for fragments with А и 132 is 
very small. I believe this observation is inconsistent with following the 
Möller-Nix valley which is associated with larger elongations near scission. 

I would also like to comment on the more general question regarding 
the relation between the stability of the saddle point with respect to asym
metric distortions and the experimental mass distributions. It has been 
suggested that the qualitative features of the dependence of mass asymmetry 
on mass number can be understood from the saddle properties. I would 
remind you, however, that there are now a number of calculations 

2 LARSSON, S. E. , LEANDER, G. , Paper IAEA-SM-174/06, these Proceedings, Vol. 1. 
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(Pashkevich; Mustafa, Mosel and Schmitt; Möller and Nix) which show that 
the asymmetric saddle is from 0.25 to 2 MeV lower than the symmetric 
saddle for nuclei in the lead region, whereas the experimental mass yield 
distributions are symmetric. I believe we should not be over-eager to try 
to relate all observations to static properties such as saddle shapes. One of 
the characteristic features of nuclear fission, as contrasted with other 
nuclear reactions, is the large shape change which occurs. I believe that 
a complete understanding of fission will require a consideration of the 
dynamics of nuclear distortions. 
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Abstract 

CALCULATION OF FISSION BARRIERS FOR HEAVY NEUTRON-RICH NUCLEI. 
A study is made of the possible production of superheavy nuclei by the multiple capture of neutrons 

in the astrophysical r-process, the conventional thermonuclear explosion, and the multi-step explosions 
proposed by Meldner. This is done by calculating the fission barriers and neutron separation energies for 
the appropriate region of heavy neutron-rich nuclei. An improved version of the macroscopic-microscopic 
method is used. The macroscopic energy is calculated according to the droplet model of Myers and 
Swiatecki, with constants they determined in January 1973 by adjustments to experimental nuclear ground 
state masses and fission-barrier heights and by statistical calculations. The microscopic corrections to the 
energy are calculated from a diffuse-surface single particle potential of the folded Yukawa type. The 
potential radius is taken from the statistical calculations of Myers; the potential well depths and diffuseness 
and the spin-orbit interaction strengths are adjusted to reproduce experimental single particle levels in 
heavy nuclei. 

The calculated fission barriers are displayed as functions of the distance between the centers of mass 
of the two nascent fragments. The actual shapes considered are the sequence of idealized liquid-drop-model 
saddle point shapes (the so-called у family of shapes) for distortions up to the vicinity of the saddle point. 
For larger distortions the most probable idealized liquid-drop-model dynamical path is used. The neutron 
separation energies are calculated from ground state masses that are determined by minimizing the potential 
energy with respect to the nuclear quadrupole moment Q2 and hexadecapole moment Q4 . 

For a broad region of heavy neutron-rich nuclei the calculated fission barriers are less than the 
calculated neutron separation energies. This stems primarily from the predicted rap,id decrease in the 
effective surface tension of a nucleus with increasing neutron excess. Therefore, the capture of a neutron 
should excite the nucleus above the top of the fission barrier and consequently terminate the neutron-capture 
process before any superheavy nuclei are produced. 

1. INTRODUCTION 

The prediction of the possible existence of superheavy nuclei has led 
to attempts to produce them in the laboratory and to searches for them in 
nature. Calculations of the nuclear properties of such nuclei by Myers and 
Swiatecki [1], Nilsson and his coworkers [2], and more recently by other 
workers [3,4] have predicted half-lives as long as 10^ yr. Thus, if these 
nuclei are produced in astrophysical environments, they should be detect
able on the earth and in the cosmic rays impinging on the earth. Thus far, 
efforts to produce superheavy nuclei in the laboratory or to find them in 
nature have failed. 

In this paper, we study the effectiveness of the mechanism that nature 
would use to produce them as well as the mechanism that man might use if he 
employed nuclear explosions. In particular, we study the astrophysical r-
process, the conventional thermonuclear explosion, and the multistep process 

Work performed under the auspices of the US Atomic Energy Commission. 
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FIG. 1. Plot of known and predicted nuclei as a function of neutron number N and proton number Z. The 
three possible ways to reach the island of superheavy nuclei by the multiple capture of neutrons are illustrated. 

proposed by Meldner [ 5 ] . Neut ron- induced f i s s i o n p l a y s t h e c r i t i c a l r o l e i n 
t e r m i n a t i n g t h e s e p r o c e s s e s ; we t h e r e f o r e c a l c u l a t e t h e f i s s i o n b a r r i e r s and 
neu t ron s e p a r a t i o n e n e r g i e s f o r a broad r eg ion of heavy n e u t r o n - r i c h n u c l e i . 

F igure 1 i s a p l o t of known and p r e d i c t e d n u c l e i as a f u n c t i o n of t h e 
neu t ron number N and p ro ton number Z. The h e a v i e s t p o i n t s r e p r e s e n t s t a b l e 
n u c l e i , t he medium-size p o i n t s n u c l e i w i th h a l f - l i v e s g r e a t e r t h a n one y e a r , 
and t h e l i g h t e s t p o i n t s n u c l e i with h a l f - l i v e s l e s s than one y e a r . Nucle i 
wi th p r e d i c t e d h a l f - l i v e s g r e a t e r than about f i v e minutes a r e i nc luded i n 
t h e i s l a n d of superheavy n u c l e i [ 4 ] . The dashed l i n e s o u t l i n e t h e r e g i o n 
of n u c l e i where we c a l c u l a t e f i s s i o n b a r r i e r s and n u c l e a r g r o u n d - s t a t e 
masses . Our f i s s i o n - b a r r i e r c a l c u l a t i o n s a r e l i m i t e d t o even n u c l e i . The 
s o l i d l i n e s i n d i c a t e t he approximate r eg ions of heavy n e u t r o n - r i c h n u c l e i 
through which t h e v a r i o u s p r o c e s s e s occur . 

In Sec . 2 we d i s c u s s t h e method of c a l c u l a t i o n , in Sec . 3 our r e s u l t s , 
i n Sec . 4 t h e s i g n i f i c a n c e of our r e s u l t s t o t h e s e v a r i o u s n e u t r o n - c a p t u r e 
p r o c e s s e s , and i n Sec . 5 our c o n c l u s i o n s . 

2 . METHOD OF CALCULATION 

The p o t e n t i a l energy s u r f a c e s f o r t h e s e heavy n e u t r o n - r i c h n u c l e i a r e 
c a l c u l a t e d by use of t h e macroscop ic -mic roscop ic method as d e s c r i b e d i n t h e 
p rev ious review paper on t h e c a l c u l a t i o n of f i s s i o n b a r r i e r s [ 6 ] . The mac
r o s c o p i c energy i s c a l c u l a t e d according t o t h e d r o p l e t model of Myers and 
Swia teck i [ 7 , 8 ] , w i t h c o n s t a n t s they determined i n J anua ry 1973 by a d j u s t 
ments to exper imenta l n u c l e a r g r o u n d - s t a t e masses and f i s s i o n - b a r r i e r 
h e i g h t s and from s t a t i s t i c a l c a l c u l a t i o n s . The d r o p l e t model t a k e s i n t o a c 
count terms of o rde r A 1 ' 3 i n t h e n u c l e a r energy as we l l as a more p r e c i s e 
dependence of t h e e f f e c t i v e s u r f a c e energy on t h e neu t ron e x c e s s . The mi
c roscop ic c o r r e c t i o n s t o t h e energy a r e c a l c u l a t e d from a d i f f u s e - s u r f a c e 
s i n g l e - p a r t i c l e p o t e n t i a l of t h e folded Yukawa t y p e . The p o t e n t i a l r a d i u s 
i s taken from t h e s t a t i s t i c a l c a l c u l a t i o n s of Myers [ 9 ] ; t h e p o t e n t i a l w e l l 

П Г I 1 I I I I I j I 1 I I j I I I I ] I F I Г 

MULTIPLE NEUTRON CAPTURE 

Multistep process J f f _ _ j \ Nuclear 
explosion 
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depths are adjusted to reproduce experimental single-particle levels in 
heavy spherical nuclei and the diffuseness and spin-orbit interaction 
strengths in heavy deformed nuclei [6]. This macroscopic-microscopic method 
is consistent with experimental fission barriers and ground-state masses in 
the actinide region as well as with information from conventional nuclear 
explosions in the neutron-rich region. 

The neutron separation energies are calculated from ground-state masses 
that are determined by minimizing the potential energy with respect to the 
nuclear quadrupole moment Q and the hexadecapole moment Q^. The nuclear 
shapes are described in terms of smoothJy joined portions of three quadratic 
surfaces of revolution 110,11]. One of the three symmetric coordinates that 
define such shapes is eliminated by requiring that the relative quadrupole 
moment of the middle spheroid be equal in magnitude but of opposite sign to 
the relative quadrupole moment of either end spheroid. The two remaining 
coordinates are chosen to be the quadrupole moment Q2 and hexadecapole moment 
Q^ of the shape. 

For the droplet-model mass excess we use the following form [7,8], 
where it is understood that all energies and masses are in MeV and that all 
lengths are in fm: 

M(Z,A; shape) = 8.07169 (A-Z) + 7.28922 Z 

+ С- аг + J62 - hü2 + -кб4) A 

2 

Q CD 
+ (a2 + » ^ A2/3B 

where 

+ a3A1/3Bk + C1Z2A 1 / 3B C - C2Z2A1/3Br 

- C ^ V " 1 - 2~1/3C4Z - C5Z2BW 

+ 3 0 | l | + " $ . + • & . 

(l+UlA-V\) 4LQ 

1 = (- 2a2A'1/3Bs + L6"2 + C1Z2A"4/3BC)/K (4) 

3 e2 

C2 = IS8Cif + Ь <« 
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5 H 2 
C3 = jCiC—) (7) 

c4 - ! Ф2 /Зс1 (8) 

C l 2 

J 5 64Q 

Hi 
IS: 

odd nuclei 
odd-pärticle nuclei (10) 
even nuclei 

odd nuclei with A = 2Z , . . , 
otherwise 

The six r e l a t i ve energies B^ are functions only of the nuclear shape 
and are defined so as to have the value unity for a sphere. The quant i t ies 
Bs and Bc are the re la t ive surface and coulomb energies of the liquid-drop 
model, B]< i s the r e l a t ive curvature energy, Br is the r e l a t ive coulomb re 
d is t r ibu t ion energy in the nuclear volume, and Bv and Bw are two types of 
r e l a t ive coulomb red is t r ibu t ion energy in the nuclear surface. The reader 
i s referred to Ref. [7] for the relevant equations to calculate these shape-
dependent terms. From a combination of s t a t i s t i c a l calculat ions and adjust
ments to nuclear ground-state masses and f i ss ion-bar r ie r heights , values for 
the constants that appear are determined to be [8] : a i = 15.986, a2 = 
20.760, a3 = 0, J = 36.5, Q = 17, r 0 = 1.175, К = 240, L = 100, M = 0, and 
H = 0.99. Notice that the coefficient of the curvature term i s iden t ica l ly 
zero. The difference in Eq. (1) r e l a t i ve to what appears in Ref. [7] for the 
coulomb term multiplying C4 ar ises because the subst i tu t ion A = 2Z has been 
made. 

There i s much in t e res t in the value of the surface-asymmetry constant 
ic in liquid-drop-model mass formulas because i t has an important bearing on 
the f i s s i l i t y of neutron-rich nuclei . In the droplet-model the shape de
pendence of the potent ia l energy is more complicated than in the l iquid-
drop model, and the constant к no longer en ters . However, by neglecting 
the re la t ive ly small influence of the four new shape-dependent energies , 
the more complicated dependence of the droplet model on the surface and 
coulomb energies can be described approximately in terms of an effective 
value of к which would yield the same saddle point as the liquid-drop 
model [12]. The r e su l t i s 

K e £ f = _ ^ _ Q ( 1 2 ) 

a. (i +
 9J§* V 

2 \ • 4 Q A " 

where Bs i s the r e l a t ive surface energy of the saddle-point shape. Thus, 
unlike in the liquid-drop model, th is effective value of к depends on the 
mass number and the saddle-point shape. For the neutron-rich nucleus. 
2 8 0Pu, where the macroscopic saddle-point shape is close t o y = 0.10, we 
obtain Keff = 2.8. This i s s ignif icant ly higher than the frequently used 
value of к = 1.7826 in the liquid-drop model [13]. Thus, in the droplet 
model the effect ive surface tension decreases much more rapidly with neu
tron excess than in the liquid-drop model of Myers and Swiatecki. 
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The fission ba r r i e r s are calculated for the sequence of idealized l i q 
uid-drop-model saddle-point shapes (the so-called у family of shapes) for 
d is tor t ions up to the v ic in i ty of the saddle point . For larger d is tor t ions 
we use the most probable idealized liquid-drop-model dynamical path [10,11]. 
The b a r r i e r heights tha t we calculate should be considered upper l imits 
since we have not included mass-asymmetric or axia l ly asymmetric CY) d i s to r 
t ions . As shown in the previous paper 16] inclusion of these effects could 
lower our calculated ba r r i e r s by 1 or 2 MeV. 

3. RESULTS OF CALCULATION 

Figure 2 i s a comparison of the experimental ground-state s ingle-par
t i c l e correction for nuclei in the lead, r a re -ea r th , and actinide regions 
with our calculated values. The discrepancies o sc i l l a t e with p a r t i c l e num
ber and are as large as 4 MeV for nuclei close to 226Th. Part of the error 
for these nuclei a r i ses because the constrained version of the three-qua
drat ic-surface parametrization that we are using does not describe ade
quately shapes with large posi t ive hexadecapole moments: the generated 
shapes have a large curvature near the equator, which increases subs tan t ia l 
ly the surface energy. The error for these nuclei can be reduced (by up to 
1.2 MeV for 22eTh) by use [6] of the coordinates e and e,, in Nilsson's per-
turbed-spheroid parametrization [2]. However, for several nuclei with neu
tron number N close to 152, the energy calculated by use of the coordinates 

" l lO 120 130 140 150 160 
Neutron Number N 

FIG.2. Comparison of experimental and calculated ground state single-particle corrections. The difference 
between the experimental and calculated values is given in the lower portion of the figure. The ground 
state single-particle correction is the nuclear mass excess relative to the spherical droplet-model energy. 
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Q and Q^ is lower (by up to 0.4 MeV for 2 5 2Cf). Comparing this figure 
with the results of Ref. [6], different conventions are adopted here con
cerning two separate points. First, our calculated values do not include 
any zero-point energy. Second, they are relative to the pairing convention 
of Myers and Swiatecki [8,13], in which an odd-particle nucleus rather than 
an even nucleus has zero pairing energy. The combined effects of these two 
differences increase our calculated values by 0.2 to 0.3 MeV relative to 
those in Ref. [6]. 

Figures 3, 4, and 5 show some of our calculated barriers as functions 
of the distance between the centers of mass of the two nascent fragments. 
We note that the droplet-model contribution to the potential energy is 
greatly reduced for an increased neutron excess; this is because the 
effective surface-asymmetry constant for these nuclei is relatively large 
(Kef£ « 2.8). The barriers are also greatly reduced with increasing proton 
number due to the strong dependence of the fissility on the disruptive cou
lomb force. The large second peaks on the barriers of 21*8U, 2 5 2U, and 
256U should be reduced by at least 1 or 2 MeV when mass-asymmetric distor
tions are taken into account. 

Our calculated barriers for superheavy nuclei are displayed in Fig. 5; 
they are very similar to those calculated by Bolsterli et al. [3]. There are 
three differences in these two calculations: (1) we employ the full droplet 
model for the macroscopic energy instead of the liquid-drop model, (2) we 
adjust the surface diffuseness and the spin-orbit interaction strengths to 

FIG.3. Fission barriers for nuclei as functions of the distance between the mass centers of the nascent 
fragments. The dashed curves give the droplet-model contributions and the solid curves the total potential 
energies. These barriers are calculated by use of the у family of shapes out to the distortion у = 0.2 and 
the most probable liquid-drop-model dynamical path for fissility parameter x = 0.8 for larger distortions. 
The microscopic contributions to the barriers are calculated with the single-particle levels for 2HFm. 
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180 184 I 192 

1.50 0.75 1.50 0.75 1.50 0.75 1.50 0.75 1.50 2.00 
Distance Between Mass Centers r (Units of RQ) 

FIG.4. These barriers are calculated by use of the у family of shapes out to the distortion у = 0.1 and the 
most probable liquid-drop-model dynamical path for fissility parameter x = 0.9 for larger distortions. The 
microscopic contributions to the barriers are calculated with the single-particle levels for z84Fm. Dashed 
and solid curves have the same meaning as in Fig.3. 

Neutron Number N 
180 184 

1.50 0.75 1.50 0.75 150 0.75 1.50 0.75 150 200 
Distance Between Mass Centers r ( Units of R 0 ) 

FIG. 5. These barriers are calculated by use of the most probable liquid-drop-model dynamical path for 
fissility parameter x = 1.0. The microscopic contributions to the barriers are calculated with the single-
particle levels for m 1 1 4 . Dashed and solid curves have the same meaning as in Fig. 3. 
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reproduce experimental s ing le -par t i c le levels in the rare-ear th and actinide 
nuclei instead of in 2 0 8Pb, and (3) beyond the v ic in i ty of the saddle point 
we use the liquid-drop-model dynamical path instead of the y-family sequence 
of shapes. 

The ba r r i e r s for 2 9 4 l 8 , 2 9 8118, 3 0 2118, 2 9 1 U 4 , 2 9 4 l 4 , and 298114 
are a l l over 10 MeV high. The ba r r i e r for 298114 i s s l igh t ly lower than in 
the previous calculation [3 ,4 ] ; however, in our calculation the har r ie r s for 
2 3 *U4 and 298118 Cat N = 18Q) are larger than the ba r r i e r s for 2 9 8114 and 
302118 (at N = 184]. As in the previous ca lcula t ions , when neutrons are 
added beyond N = 184, the bar r ie r height decreases dramat ica l ly . We predict 
the superheavy island to be somewhat more stable in the neutron-deficient 
direct ion than has been predicted by previous calcula t ions . This is due to 
the increased spin-orbi t in teract ion strengths and the decreased surface-dif-
fuseness parameter [6] that we use. This change has the effect of decreasing 
the neutron level density below N = 180, which increases the binding of nuclei 
with neutron numbers near N = 180. 

Figure 6 i s a contour plot of the calculated f i s s ion-bar r ie r height for 
even nucle i . We include a zero-point energy of 0.5 MeV for motion in the f i s 
sion d i rec t ion . Figure 7 i s a contour p lo t of the calculated neutron separa
t ion energy for even nucle i , and Fig. 8 i s a contour plot of the difference 
between the calculated f i ss ion-barr ie r height and the calculated neutron sepa
ra t ion energy for even nuclei . We wil l employ these three figures in evaluat
ing where neutron-induced f ission wil l terminate the various multiple-neutron-
capture processes. We have not performed any spontaneous-fission h a l f - l i f e 
calcula t ions . 

4. APPLICATION OF RESULTS TO MULTIPLE-NEUTRON-CAPTURE PROCESSES 

4.1 Astrophysical r-process 

The astrophysical r-process [14] i s the multiple capture of neutrons on 
heavy nuclei on a time scale that i s much shorter than beta-decay ha l f - l ives 
for heavy neutron-rich nuclei . In some catastrophic supernova events the 
high-density matter is thermalized to an energy of order 200 keV, so that neu
tron capture i s impeded by neutron photodisintegration at a low neutron sepa
ra t ion energy. The neutron-capture flow thus proceeds far t o the neutron-rich 
side of the valley of beta s t a b i l i t y . Neutron separation energies decrease 
dramatically immediately af ter a closed shel l of neutrons, which tends to ha l t 
temporarily the capture flow. When beta decays increase the proton number suf
f i c i en t ly , neutron separation energies again become large enough to allow the 
capture flow to continue. Figure 1 shows a typical r-process capture path. 
Since the nuclei along the path are in s t a t i s t i c a l equilibrium with respect to 
the exchange of photons and neutrons, the r-process path i s determined by the 
neutron separation energies of the neutron-rich nuclei and, in fac t , follows 
a path of essen t ia l ly constant neutron separation energy. 

There has been much in te res t as t o whether superheavy nuclei can be pro
duced in the r -process , which i s known to produce many of the natura l ly occur
r ing neutron-rich nuclei between germanium and bismuth and a l l of the natural ly ! 
occurring nuclei heavier than bismuth. Two groups [15,16] have studied in some 
de ta i l the f ission propert ies of heavy neutron-rich nuclei in regard to the 
production of superheavy nuclei by use of the macroscopic-microscopic approach. ; 
Boleu et a l . [15] have calculated the nuclear potential-energy surface with the < 
modified harmonic-oscillator potent ia l and the liquid-drop model of Myers and 
Swiatecki [13]. They conclude that even with a low surface asymmetry constant 
(к =1.7826) superheavy nuclei cannot be produced by the conventional r-process. 
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FIG. 6. Contour plot of the calculated fission barrier height as a function of neutron number N and proton 
number Z for even nuclei. 

They find that the r-process would be terminated by neutron-induced f iss ion a t 
approximately Z = 98 and N = 186. However, these calculations are performed 
with a pai r ing strength proportional to the surface area, which reduces the 
ba r r i e r with increasing d i s to r t i on . According to Ref. [4] , the l igh tes t super
heavy nucleus with an astrophysically s ignif icant h a l f - l i f e i s A = 291 (Z = 
110, N = 181). 

Schramm and Fiset [16] also use the Myers and Swiatecki [13] l iquid-
drop model for the macroscopic contribution to t he i r ba r r i e r s and the dif
fuse-surface s ing le -pa r t i c l e po ten t ia l of the folded Yukawa type [3] for 
the microscopic tcorrections to the energy. In addi t ion, they studied the 
dependence of the r e su l t s on the value of the surface-asymmetry constant к. 
The neutron separation energies were calculated from the 1966 mass formula 
of Myers and Swiatecki [1] , which included an empirical microscopic-energy 
correction. However, t h e i r neutron separa t ion energies are similar to those 
that we calcula te . They predic t the neutron-induced-fission cutoff to be 
near Z = 100 and N = 190 (for к = 1.7826). Since the Myers-Swiatecki mass 



1 5 4 HOWARD and NIX 

Neutron Number N 

FIG.7. Contour plot of the calculated neutton separation enetgy as a function of neutron number N and 
proton number Z for even nuclei. 

formula predicts a broad r-process path, material below the neutron-induced-
fission cutoff but with higher mass number A survives . By carefully follow
ing the decay back to the superheavy island they find that s ignif icant 
amounts of nuclei with A = 290, 291, 292, and 293 survive, depending on 
what i s included for the zero-point energy. 

For a given determination of the neutron separation energy for neutron-
rich nuc le i , the r-process path can be determined approximately without car
rying out a ful l r-process calculat ion. When calculating neutron-induced 
fission on the approach to the superheavy is land, i t i s important to know 
where the r-process path wil l occur in th is region. 

There exist two peaks in the solar system abundance d is t r ibu t ion of r -
process nucle i , at A = 130 and A = 195. These peaks are due to an accumula
t ion of material along the r-process path at the neutron closed shel ls N = 
82 and N = 126. The second peak extends through the region 185 - A 5 200; 
the r-process path must therefore pass through the same mass region at N = 
126. The neutron separation energies in the region where the path enters 
and leaves the neutron closed shell at N = 126 therefore determine the 
values of the neutron separation energy that the r-process path follows. 

We calcula te the neutron separation energies in th i s region to be 
Bn = 3 ± 1 MeV. We therefore find from a study of Figs. 7 and 8 that the 
neutron-induced-fission cutoff is Z = 96 and N = 186; th i s i s somewhat lower 
than the estimates by Boleu et a l . [15] and Schramm and Fiset [16]. 

Thus, we predict tha t nuclei with mass number A = 281 wil l be the l a s t 
to survive in the r-process before neutron-induced f ission terminates the 
path. According to the resu l t s of Ref. [ 4 ] , n u c l e i with mass number 281 
would spontaneously f ission with ha l f - l ives of the order of 1 sec af ter a 
few beta decays. In order for superheavy nuclei to be observed in cosmic 
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rays, their half-lives would need to be at least 10° yr. This would require 
the production of nuclei with mass number A ~ 291, which is 10 mass units 
higher than the heaviest yield that we predict. This lower neutron-induced-
"fission cutoff is due primarily to the rapid decrease predicted by the drop
let model of the surface energy with the addition of neutrons. 

Schramm and Fiset [16] suggest that a small fraction of the material 
at the neutron-closed shell N = 184 could climb along this closed shell dur
ing the freeze-out of the r-process neutron flux and reach the superheavy 
island. However, as seen in Fig. 8, such nuclei would reach Cape Farewell 
[17] somewhere between Z = 98 and 102 and suffer neutron-induced fission be
fore reaching the superheavy island. 

4.2 Conventional nuclear explosions 

Conventional nuclear explosions yield neutron exposures similar to 
those in the astrophysical r-process; however, the time duration is so short 
(At ~ 10"° sec) that there is no time for beta decays during the neutron-
capture process. The thermal photon temperature is much less than that in 
the r-process. The neutron captures therefore proceed to a lower neutron 
separation energy, which extends into a more neutron-rich region. In nuclear 
explosions to date, targets of various actinide nuclei have been irradiated 
with intense neutron sources. Independent of the target used or the inten
sity of the neutron irradiation, the heaviest nucleus recovered from the de
bris has been 257Fm [18]. 

We can understand this failure to produce heavier nuclei in terms of 
our results. From Fig. 8 we see that neutron-induced fission terminates the 
neutron-capture chain on the U isotopes at mass number A = 256. Actually, 
neutron-induced fission should occur somewhat before this because we over
estimate the barrier for U isotopes in this region by 1 or 2 MeV by not in
cluding mass-asymmetric distortions. Thus, we conclude that conventional 
nuclear explosions have even less hope for producing superheavy nuclei than 
the r-process. 

From Fig. 8 we see that if a lighter target (such as 227Ac, 226Ra, or 
222Rn) were used, the neutron capture could proceed well beyond A = 256. 
The results of Fig. 6 show that subsequent beta-decay products would have 
barriers lower than 4.5 MeV and would therefore spontaneously fission with 
short half-lives. We have not performed spontaneous-fission half-life cal
culations for these nuclei, but perhaps some odd-mass chains could survive 
spontaneous fission and produce nuclei that live long enough (̂ 6 h) to be 
detected in the debris. Neutron exposure experiments on targets of Ac, Ra, 
or Rn could yield valuable information about the spontaneous-fission half-
lives in this region of nuclei. This broad region of nuclei with fission 
barriers lower than 4.5 MeV (here referred to as the "Fission Bay") is 
also found in the calculations of Boleu et al. [15]. 

4.3 Multistep process 

The fa i lure of conventional nuclear explosions to produce superheavy 
nuclei has led Meldner [5] to propose a multistep explosive process that 
would allow beta decays between subsequent explosions. However, h i s process 
seems fraught with the same d i f f i c u l t i e s encountered in the r-process and in 
conventional nuclear explosions. Certainly odd-mass capture chains would 
have to be u t i l i zed as well as a target l ighter than Th to avoid i n i t i a l 
termination of the process by neutron-induced f i ss ion . I t would then be r e -
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FIG.8. Contour plot of the difference between the fission barrier height and the neutron separation energy 
for even nuclei. When this difference is less than about 1 MeV, the capture of a neutron leads to 
immediate fission. 

q u i r e d t h a t b e t a decay l e a d t o a r e g i o n of s t a b i l i t y a g a i n s t n e u t r o n - i n d u c e d 
f i s s i o n b e f o r e t h e n e x t neu t ron b u r s t . 

Meldner would l i k e t o t a k e advantage of n e u t r o n c a p t u r e along odd-pro 
t o n cha ins where t h e f i s s i o n b a r r i e r cou ld be enhanced r e l a t i v e t o t h e b a r 
r i e r h e i g h t s of even n u c l e i . In t h e a c t i n i d e r eg i o n t h e s p o n t a n e o u s - f i s s i o n 
h a l f - l i v e s of o d d - p a r t i c l e n u c l e i a r e s y s t e m a t i c a l l y about 10^ t imes as long 
as t h o s e of ne ighbo r ing even n u c l e i [ 1 9 ] . These h i n d r a n c e s a r i s e from an 
i n c r e a s e e i t h e r i n t h e h e i g h t of t he b a r r i e r or i n t h e i n e r t i a Cor i n b o t h ) . 
I f t h i s h ind rance f a c t o r i s assumed t o a r i s e on ly from an i n c r e a s e i n t h e 
b a r r i e r h e i g h t , t h e n t h e b a r r i e r s f o r o d d - p a r t i c l e n u c l e i a r e r a i s e d by about 
0 .5 MeV r e l a t i v e t o t h o s e fo r even n u c l e i [ 1 ] . 

An examinat ion of F i g . 8 r e v e a l s t h a t a f t e r an i n i t i a l n e u t r o n b u r s t 
and subsequent b e t a decay i n t o t h e F i s s i o n B a y , t h e n u c l e i would be i n a 
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region where a second neutron burst would initiate neutron-induced fission. 
This conclusion also applies for odd-proton capture chains. We conclude 
therefore that the multistep process has little chance of reaching the super
heavy island. 

5. CONCLUSIONS 

We have used an improved version of the macroscopic-microscopic method 
to calculate fission barriers and neutron separation energies for a broad 
region of heavy neutron-rich nuclei. On the basis of these calculations we 
conclude that neutron-induced fission terminates the three possible multiple-
neutron-capture processes well before the superheavy island is reached. How
ever, it is possible that the use of somewhat lighter targets in conventional 
nuclear explosions could lead to the production of slightly heavier nuclei 
than are obtained at present. 
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D I S C U S S I O N 

C. F . TSANG: Can you give a quantitative indication as to how sensi t ive 
your r e su l t s a re to the effective surface symmet ry coefficient? What would 
its value have to bo for your Fiss ion Bay to d isappear? 

W. M. HOWARD: If you a re willing to accept a ch i - square value for 
the fit to the ground state m a s s e s and fission b a r r i e r heights that is 10% 
l a r g e r than i ts minimum value, then the effective value for the sur face 
symmet ry coefficient can vary from 2. 6 to 3. 3. For the value 2. 6, the 
fission b a r r i e r s in the F iss ion Bay can be r a i s ed by about 1 MeV. The 
b a r r i e r s near the neutron closed shell N = 184 remain unaffected. However, 
one mus t r e m e m b e r that this inc rease in the b a r r i e r height affects the 
second b a r r i e r peak and therefore one should also take into account m a s s -
a symmet ry dis tor t ions which could lower that second peak by 1 or 2 MeV. 
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Abstract 

MODIFIED DEFINITION OF THE SURFACE ENERGY IN THE LIQUID DROP FORMULA. 
When calculated in the liquid drop model, the deformation energy of strongly necked in fission or 

fusion configurations shows a spuriously strong dependence on the details of the shape in the neck region. 
This is a consequence of the assumed sharp surface in the liquid drop model. This model can be improved 
by replacing the surface-energy term by the self-energy of a drop caused by a short-range two-particle 
interaction. For a Yukawa function the self-energy integral can be evaluated analytically for a few important 
special configurations, and it can be transformed into a three-dimensional integral for arbitrary axially 
symmetric shapes. A numerical calculation is therefore only slightly more complicated than the usual 
treatment of the Coulomb energy. 

In addition to the parameters in the conventional liquid drop model, the new definition of the nuclear 
part of the deformation energy contains a parameter to specify the range of the Yukawa function. Parameters 
for the new definition are determined from fission barrier heights and interaction barrier heights throughout 
the periodic table. 

The influence of the proposed change in the liquid drop formula on the stiffness of spherical nuclei, 
the ground state deformation and the existence of shape isomeric states in light nuclei is discussed. Fission 
barrier heights and saddle point shapes are determined for nuclei along the line of beta stability, and the 
static interaction potential between heavy ions is calculated. 

1. INTRODUCTION 

Cons iderab le p r o g r e s s has Ъееп made i n c a l c u l a t i n g t h e n u c l e a r 
p o t e n t i a l energy of deformat ion as a func t ion of t h e n u c l e a r shape and t h e 
mass and charge numbers Ъу s p l i t t i n g i t i n t o a s lowly v a r y i n g func t ion of 
t h e s e q u a n t i t i e s and a r a p i d l y f l u c t u a t i n g p a r t . The l a t t e r i s u s u a l l y 
c a l c u l a t e d accord ing t o a p r e s c r i p t i o n given by S t r u t i n s k y [ l ] . Here we w i l l 
d e a l only wi th t h e smooth p a r t . I t i s u s u a l l y expressed i n terms of a 
Bethe-Weizsäcker t ype of expansion i n powers of A _ 1 / 3 and I 2 , for example[2-4] 

•» •<,**c. ̂  w * f -4% | w - f -г 4ш - °-0\ w 
roA ro A z 
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where 

С = а (1 - к I 2 ) 
V V V 

С = а (1 - К I 2 ) s s s ' 

and 

= (N - Z)/A 

The quantity d is the surface-thickness parameter in a Fermi function that 
specifies the charge distribution. The shape-dependent function Bg(£v) is 
the ratio of the surface area of the deformed nucleus to that of the spherical 
nucleus, and Bc(£v) is the ratio of the Coulomb energy of the deformed 
equivalent sharp-surface nucleus to that of the spherical nucleus. Such a 
leptodermous expansion [2] is valid only if all geometrical dimensions of the 
drop are large compared to the surface thickness. This condition is not 
satisfied for strongly necked-in configurations with neck radii smaller than 
about 2 fm, for example around the scission region in fission or the point 
of first contact in heavy-ion reactions. 

One could overcome this difficulty by going back to a constrained 
self-consistent microscopic calculation for such configurations. But that 
would be a rather involved program from a numerical point of view. Therefore, 
it is desirable to construct a generalization of the liquid-drop formula -
still on a purely phenomenological basis - which satisfies the following 
conditions: 

(1) For spherical configurations it should give practically the same 
result as the old liquid-drop formula (except for very light nuclei). 

(2) In contrast to the usual surface energy it should not be sensi
tive to high-multipole wiggles on the surface of the drop. The liquid-drop 
formula yields a spurious and undesirable sensitivity of calculated fission 
barriers on unphysical fine details of the shape in the neck region. 

(3) Between two separated fragments there should be an attractive 
nuclear interaction energy besides the Coulomb repulsion. The range of that 
force should extend beyond the equivalent sharp radius by roughly the range 
of the nucleon-nucleon interaction. 

{h) It should be possible to calculate the new expression for general 
shapes with reasonable computational effort. 

We will show that one can satisfy these conditions by replacing the 
surface energy term C„ A2'^ В (£ ,) by 

Ь S V 

Е = -~з /*3rd3r- V-H (2) 

Uira r - r * 

w i t h t h e two phenomenological pa ramete r s Vn and a i n s t e a d of t h e s i n g l e 
l i q u i d - d r o p pa ramete r C s and a l lowing for a r e n o r m a l i z a t i o n of t h e volume-

The s i x - f o l d i n t e g r a l i s t o be t a k e n over t h e volume 
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of t h e e q u i v a l e n t s h a r p - s u r f a c e nuc l eus whose shape can Ъе p a r a m e t r i z e d by 
any s u i t a b l e s e t of deformat ion p a r a m e t e r s ; t h i s volume i s s p e c i f i e d Ъу t h e 
n u c l e a r - r a d i u s pa ramete r TQ. 

2 . SPECIAL CONFIGURATIONS 

We w i l l d i s c u s s t h e r e s u l t s of t h i s replacement fo r a sequence of 
shapes of i n c r e a s i n g complexi ty and show t h a t t h e s e four c o n d i t i o n s a r e 
f u l f i l l e d . 

2 . 1 . S p h e r i c a l shape 

A s t r a i g h t f o r w a r d c a l c u l a t i o n of t h e i n t e g r a l (2) i n s p h e r i c a l 
c o o r d i n a t e s y i e l d s 

E = v o Г T" Bo + 2lTaRo ~ 2 lra3 + 27ra(Ro + a ) 2 e 

where BQ = Z*QA '-* i s t h e e q u i v a l e n t sha rp r a d i u s . For a/Eg « 1 t h e l a s t two 
terms a r e n e g l i g i b l e . The second term y i e l d s t h e s u r f a c e energy i f t h e i n t e r 
a c t i o n s t r e n g t h VQ i s r e l a t e d t o t h e s e m i - e m p i r i c a l s u r f a c e - e n e r g y c o n s t a n t 
Cs by 

. 0 . - IC sI2) = 27lV0 

The first term gives a contribution to the volume energy and has to be compen
sated for by a renormalization of Cv. This way we meet the first of the four 
requirements on E. The limit a •* 0 yields the usual liquid-drop model. 

2.2. Bubble nucleus 

For a bubble nucleus with inner radius R. and outer radius R_ one gets 
from (2) 

• - - @y o. [i &>- § © - m - a - - е м - -rf-v.. 

- (— + l) exp(-2R2/a)J 

Recent ly t h e bubb le -nuc leus model has been d i s c u s s e d fo r Rj Ä a [ 5 ] . I n t h i s 
case t h e a p p l i c a t i o n of t h e u s u a l l i q u i d - d r o p formula ( l ) i s doub t fu l and should 
be r e p l a c e d by t h i s formula . 

2 . 3 . Small d i s t o r t i o n s about a s p h e r i c a l shape 

I f t h e shape i s pa rame t r i zed by the normal c o o r d i n a t e s fo r harmonic 
v i b r a t i o n s around t h e s p h e r i c a l s h a p e , 

I 
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R = RQ (l + 
Z ß*m **» (ß> + ßcorr 
Jt£2 

(3) 

where 

*№ 2 -J 
£>2 

'Am1 

the deformation energy to second order in g„ is given by 

£>2 

where 

("О 

Here Ij,+i/2 and К£+д/2 a1-6 modified Bessel and Hankel functions, respectively [6] 

The simplest way to derive this formula is to use the expansion 

R(ß) 

f a n / r2 f ( | r - r ' | ) dr = J dfi / r f ( | r - r ' I ) dr 

+ R3 f(!?-?•I) 

£,m 

3„ Y. (П) + 3 I ( 5 ) 
&m S,m corrj 

£,m 
'to Y*m ( ß ) 

for the integration with respect to r and a similar one for the integration 
with respect to r ' . Integrals of the type 

л. 

f to V x) 
exp (- j УГ12 + Г22 - 2rlr2*) 

a l l 
2 2 

+ r2 - 2rxr2x 

are evaluated by use of the addition theorem for modified Bessel functions [6] 
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exp - — */rn + r „ - 2 r n r „ x ) _ ,rn X ,roN \ Л\2 12j =£ <2^ v«) T = Wr>w(r) 
j ф^+г^-гт^^ Ä=O V r i 2 

-1/3 An expansion of Eq. (1*) in powers of A yields for the stiffness 
constant for multipole vibrations of order £ the result 

С о / , С , „ , „ , 2 

(6) 

w А
2 /3 СА = gf {lÄa+l)_2]A2/3 - J (JUllÄ a+1) (Ä+2) (Ä J J 

+ Cr(^A~2/3\ + (Г lexp C-2R0/al] 

The fürst term i s the well-known contribution of the surface energy in the 
l iquid-drop formula. There i s no term proportional to which means 
physically tha t the contribution to the energy from the curvature of the 
nuclear surface is ident ica l ly zero. This A 1 ' 3 term i s absent also for more 
general shapes IT] , provided tha t the smallest curvature radius i s large 
compared to the range a. The term of order A^ reduces the s t i f fness for 
f i n i t e values of the range a; t h i s reduction becomes r e l a t ive ly more 
important for l i gh t nucle i . The l a s t two terms are negl igible for low 
multipole orders £, provided that the nuclear radius Eg i s large compared t o 
a. For higher multipoles., the expression (k) for the s t i f fness constant 
becomes independent of multipole order, because for large v 

I v (z ) K / z ) — > ^ 

This is to be contrasted to the quadratic increase with multipole order for 
the stiffness constant calculated with the usual liquid-drop model. It shows 
the insensitivity of the modified liquid-drop formula to unphysical fine 
wiggles of the surface. Therefore also the second of the four requirements on 
E is satisfied by (2). 

. The fissility parameter x is defined as the ratio of the Coulomb energy 
E ^ of a spherical sharp-surface drop to twice the spherical surface energy 

Es(°) = Cs • A
2/3. The value of the critical fissility x c r ^ for which the 

sphere loses stability against fission corresponds to the point where the 
restoring force for P2 vibrations vanishes. Addition of the Coulomb con
tribution to the deformation energy (k) yields for 1=2, m=0 the result 

5E = V 4 [2 - 2x - 9 ~2 + С (e-2Va)] 
0 

This leads to 

x crit 1-1 (^)2
+ О te-^o/a) (?) 

instead of the usual value 1. 
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Z.h. Two non-overlapping spheres 

The nuclear in teract ion energy of two non-overlapping spheres of r ad i i 
E^ and R2 and center-of-mass distance D > R-̂  + R~ follows from straightforward 
integrat ion of (2) : 

В., , ,R„ R. R-\ -D/a 
E = - k I—) С I— cosh — - sinh —) I— cosh — - sinh —) ^7-7— m t \ r n / s\a a a / \ a a a ' D/a 

For Rj /a and B^/a » 1 this reduces to 

(8) 

R,R„ 
lnt 

С 
where 1 is the distance between the two sharp surfaces and у = • 2 is the 
surface tension. 0 

This formula is a special case of a general theorem [8] which states 
that to order -a the interaction energy between two arbitrarily shaped objects 
interacting via a short range force (short compared to all curvature radii) 
can always be expressed in the form 

00 

ElntQ> = — J b = f e(?) dC+ОГф ln t J T F Ji R 

The f i r s t factor i s purely geometrical and in the case of two spheres i s equal 
t o 2irR3_R2/(E^+Eo). The quantity e(£) is the in teract ion energy per unit area 
of two pa ra l l e l i n f in i t e surfaces at distance £. Obviously e(0) = - 2y . A 
Thomas-Fermi calculat ion [8] of the function e(5) yields a r e su l t tha t can be 
approximated roughly by an exponential function of range a = X.h fm, that i s , 

2 .5 . Non-overlapping spherical nucleus and s l igh t ly deformed nucleus 

The generalization of Eq. (8) to the in terac t ion energy between a 
spherical nucleus with radius R]_ and a deformed nucleus with radius 

R = R„ [1 + 6 + Y\ g„ Y. (ü)\ i s given to second order in f$_ by 
2 L corr jf-Jj Zm Am J Ы 

E. -ES P^ = - 2C (A-) (-± cosh - i - sinh -1 ) Ш m t m t s \r / \a a a / \a ' 

( 
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Here 8 and ф are the angular coordinates of the vector joining the centers of 
mass of the two nuclei in a coordinate system whose origin is at the center of 
the deformed nucleus. The deformation parameters f3j,m refer to the same system 
of reference. The other quantities are given by 

л = J2Ä+1 a rg) к Д 
AX. l i t i— -Ч+lMa / V l / 2 Y 

VR2D 

СА,Г,Г,ш,Ш. = [ ( 2 & и Ж ) ' + 1 ) | 1 / 2 (ГтЧ"т-т'|*т)(ГоГо|*0) ^ ^ ( ^ ) 
2 2 

"00 д/üir В 

and E^nt i s * п е e x p r e s s i o n (8) f o r t h e s p h e r i c a l c a s e . This formula i s 
ob t a ined e a s i l y by use of t h e expansions (5) and ( 6 ) . 

3 . DETERMINATION OF PARAMETERS 

The shape-dependent terms of t h e n u c l e a r macroscopic energy c a l c u l a t e d 
acco rd ing t o Eq. ( l ) c o n t a i n a t o t a l of four p a r a m e t e r s : t h e e q u i v a l e n t 
s h a r p - s u r f a c e n u c l e a r - r a d i u s pa ramete r r Q , t h e range a of t h e Yukawa 
f u n c t i o n , t h e s u r f a c e - e n e r g y cons t an t a s fo r equa l numbers of neu t rons and 
p r o t o n s , and t h e surface-asymmetry c o n s t a n t Ks. The e q u i v a l e n t s h a r p - s u r f a c e 
n u c l e a r - r a d i u s pa ramete r r 0 i s known a c c u r a t e l y from a n a l y s e s of e l e c t r o n -
s c a t t e r i n g d a t a ; i t s va lue i s t h e r e f o r e no t a d j u s t e d bu t i s t a k e n i n s t e a d t o 
be 1.16 fm from t h e s e s t u d i e s [ 9 ] . 

I n t e r a c t i o n - b a r r i e r h e i g h t s depend mainly on r Q and t h e range a and 
more weakly on a s and к . T h e r e f o r e , once TQ i s f i x e d , t h e range a i s 
determined by a d j u s t i n g t o expe r imen ta l i n t e r a c t i o n - b a r r i e r h e i g h t s [ 1 0 - 2 5 ] . 
The r e s u l t i n g v a l u e of 1.1* fm i s t h e same as t h e range de te rmined from t h e 
above-mentioned Thomas-Fermi c a l c u l a t i o n s [ 8 ] . 

Once b o t h r o and a a r e known, t h e f i n a l two pa ramete r s a s and KS a r e 
de te rmined by a d j u s t i n g t o expe r imen ta l f i s s i o n - b a r r i e r h e i g h t s [ 2 6 - 2 8 ] . 
Because t h e s e two pa ramete r s a r e h i g h l y c o r r e l a t e d , t h e i r i n d i v i d u a l v a l u e s 
a r e de termined p o o r l y . For example, t h e va lue of 1*.0 determined for Kg i s 
u n c e r t a i n by a t l e a s t ± 1.0. 

The r e s u l t i n g v a l u e of 2l*.7 MeV fo r a s i s s i g n i f i c a n t l y h i g h e r than 
t h e va lue of about 18 MeV o b t a i n e d i n t h e u s u a l l i q u i d - d r o p model by a d j u s t i n g 
t o f i s s i o n b a r r i e r h e i g h t s [ 2 , 3 ] . I t i s on t h e o t h e r hand only s l i g h t l y 
l a r g e r than va lue s o b t a i n e d by a d j u s t i n g t o n u c l e a r g r o u n d - s t a t e masses 
a lone [1*]. The d i f f e r e n c e between our v a l u e and t h e v a l u e s of R e f s . [ 2 , 3 ] 
a r i s e s because t h e f i n i t e range of t h e n u c l e a r f o r c e r educes t h e e f f e c t i v e 
s t i f f n e s s w i t h r e s p e c t t o de fo rma t ions . I t i s t h e r e f o r e p o s s i b l e t h a t t h e 
s u r f a c e - e n e r g y c o n s t a n t i s indeed l a r g e r t h a n p r e v i o u s l y b e l i e v e d . 
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To summarize, the preliminary values chosen for the four parameters 

rQ = 1.16 fm 

a = 1 Л fm 

as = 2t.7 MeV 

к = lt.0 s 

(10) 

Mo attempt has been made so far to redetermine the parameters in the shape-
independent terms of Eq. (l) after replacing the surface term "by the integral 
(2). 

U. INTERACTION BARRIERS 

The combined action of the Coulomb and the nuclear forces usually yields 
a maximum in the interaction-energy as a function of the distance between two 
ions. For symmetric configurations this interaction barrier disappears for 
a critical fissility of the combined system of x = 6/5, at which point the 

Mass Number A, 
100 200 250 

40 60 
Proton Number Z| 

FIG. 1. Contour diagram of the effective nuclear radius parameter reff as a function of the charge numbers 
of the colliding ions for nuclei along the valley of beta stability (defined by Green's formula 
N-Z = 0.4 A2/(A + 200); see Ref. [29]). 
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Coulomb r e p u l s i o n can no l o n g e r be c o u n t e r - b a l a n c e d by t h e n u c l e a r fo rce even 
f o r two touch ing s p h e r e s . Below t h i s c r i t i c a l va lue of x t h e h e i g h t of t h e 
b a r r i e r i s o f t en r e p r e s e n t e d i n t h e form 

_max 
n i t 

№ 
r ( A l / 3 + A 1 / 3 ) r e f f K A 1 2 > 

(11) 

Figure 1 shows r f f as a function of the charges Zi and Z2 of the two colliding 
ions for nuclei along Green's approximation to the line of beta-stability [29]. 
Equation (11) can be rewritten in the form 

Emax 
int 

w 
R + R2 + a + a 

(12) 

where d is the distance between the two nuclear surfaces at which the total 
interaction energy has its maximum. The value of d is determined easily by 
iteration from the equations 

, /e Z Z \| 
^(-F+Eint^)|=° 
D = г0(А^/3 + А^/3) + d 

where Е±п^(и) is inserted from Eq. (8). A contour plot of ä{Z1,Z2) for nuclei 
along the line of beta-stability is given in Fig. 2. 

Mass Number A, 

100 150 200 

Proton Number Z, 

FIG.2. Contour diagram of the distance d between the equivalent sharp surfaces of two spherical nuclei 
of charges ZL and Zs at the peak of the interaction potential. The results are for nuclei along the valley of 
beta stability. Beyond the line defined by d = 0 the interaction barrier has no maximum. 
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350 

> 300 

.? 250 

200 

Z 150 

100 

r0=l.l6fm 
a = l.4 fm 
as= 24.7 MeV 
к = 4.0 

50 100 150 200 250 300 350 
Calculated I nteraction-Borrier Height (MeV) 

FIG.3. Comparison of experimental and calculated interaction-barrier heights. The solid points are 
experimental values derived from excitation functions (solid circle [10], solid square [11], solid diamond [12], 
solid upward-pointing triangle [ 13,14], solid downward-pointing triangle [ 13,15], solid hexagon [ 16], 
solid plus sign [17], and solid star [ 18]); the open points are experimental values derived from elastic 
scattering data (open circle [ 19], open square [20], open diamond [20,21] , open upward-pointing triangle 
[20 ,22] , open downward-pointing triangle [20,23], open hexagon [20,24] , open plus sign [ 24] , and 
open star [25]) . 

In Fig. 3 experimental Coulomb barriers from reaction cross-section 
measurements [10-18] and from elastic scattering experiments are compared with 
the predictions of this theory. The deviations from the calculated values are 
smaller than + 5.4$ or 9 MeV in absolute units. The data used in Fig. 3 
include the deformed nuclei 238rj [13-15,19], 232Th [ ю ] , and i^Dy [12]. For 
these deformed nuclei Eq. (9) is used with @20 = 0-277, 0.248, and 0.319, 
respectively [30]. The orientation angles 9 and ф are taken equal to zero, 
which gives the minimum interaction barrier. We have not taken into account 
any shell effects on interaction barriers because the influence of one poten
tial well on the level density around the Fermi surface in the other well 
is supposed to he very small at the point of geometrical contact or even 
farther out. 

The distance between the two centers of mass is the only degree of 
freedom that we have considered in calculating interaction barriers. We 
are thus disregarding the coupling of the relative motion to the neck-formation 
or any intrinsic degrees of freedom of the two ions. Elastic-scattering data 
on the other hand are usually analyzed in terms of optical potentials. Only 
the tail regions of these potentials are determined unambiguously, which often 
excludes the maximum. Moreover the optical potential reflects the coupling 
of intrinsic degrees of freedom to the relative motion in an average way, 
whereas these effects are completely neglected in our model. 

Information on interaction barriers is also extracted from fusion 
reaction cross-sections. They are mostly analyzed in terms of transmission 
coefficients calculated by assuming transmission of a real parabolic potential 
barrier. This amounts to assuming an ingoing-wave boundary condition inside 
the potential barrier. It has been shown [31] that optical-model potentials 
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are not necessari ly ident ica l with po ten t ia l s t o Ъе used with an ingoing-wave 
boundary condition, especial ly when the imaginary part i s neglected or not 
determined in the l a t t e r method. 

To overcome the problems connected with the ambiguity in po ten t ia l 
f i t s i t i s advisable to determine the c r i t i c a l angular momentum Л(Е) as a 
function of energy from a phase-shift analysis of e l a s t i c or reaction 
scat ter ing data 132]. Using the re la t ion 

Л(Л+1> = (MRr)2 
( - ^ ) 

for several energies, one can extract the pair of values V(Rr) and Rr, i.e. 
the interaction potential at the reaction radius E r, independent of where 
the maximum of that potential might be. Of course, the assumption has been 
made that the interaction can be described by an energy—independent, local 
potential and that the process is purely diftractive. 

5. GENERAL SHAPES 

The integral (2) can be reduced to the double surface integral 

E 
,~y ->, 1 V a /* /* Pi-5--*-.! 1-»•-»•. 1 - r-r 1 

-fa J J df • (?-?') dS> • (?-?') -l^ll + (2 + -btlL) e ̂ -L- 2J (13) 
x \l-P\-k 

by using the iden t i ty 

I r - r ' I -1 
V<~'> Vr,-(?-?') [ ^ + (2 + i^-) e" a -2J (&£±) 

and applying Gauss's theorem with respect to r and r'. For systems with 
cylindrical symmetry (13) reduces to the three-dimensional integral in 
cylindrical coordinates 

V„ ^ у /-21T 
E = -

2 a 

о г г /*2ir 

— / d z / d z ' / dip R(.z) [R(Z) - R(z') cos ^ - M E . ( Z . Z ' ) ] R ( Z I ) 

x [R(z') - R(z) cos Ц. - i S k l ( 2 . - z ) ] td и- (2 + d)e~a - 2] 
dz' -Л 

^ ~ d - oi (1"0 
d" 
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where 

a = 7-lE2Cz) + R2(.z') - 2R(.z) R(z'l COS ф + z 2 + z<2 -. 2zz' ] 1 / 2 

The function R(z) gives the shape in cylindrical coordinates. The z integrations 
are taken between the zeros of R(z). The three-fold integral (lU) in general mu£ 
he evaluated numerically, but this is only slightly more complicated than the 
evaluation of the integral for the Coulomb energy. 

6. FISSION BARRIERS 

Figure к shows the maximum and minimum radii of saddle-point shapes 
as functions of the fissility parameter x for various values of the range a. 
The remaining constants are held fixed at the values determined in Ref. [3] 
on the basis of the liquid-drop model, that is, for zero range. The saddle 
points are calculated by use of the methods of Ref. [33], with the surface 
energy replaced by Eq. ilk). The class of shapes investigated is that of 
two spheroids connected smoothly by a quadratic surface of revolution [33]. There 
is a clear tendency to more compact saddle-point shapes with increasing a 
for fixed values of the other constants. The shift of xcrit to values 
smaller than 1 as given by (7) to second order in %— is also clearly seen. 

0 The critical Businaro-Gallone point (where stability against mass asymmetry is 
lost) [3h] first moves to slightly larger values of the fissility x with 

uu0.0 0.5 1.0 
Rssility Parameter x 

FIG.4. Saddle point shapes as functions of the fissility parameter x = E^ty[2E№] for liquid-drop-model 
parameters from Ref. [3] and a/r0 = 0.0(0.2)1.2. (a) gives the largest radius of the saddle point shape 
in units of the radius of the sphere with equal volume; (b) gives the smallest radius. The solid points give 
the location of the Businaro-Gallone point. 
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FIG. 5. Fission-barrier height in our model as a function of the fissility parameter x and the range a/r0 

for liquid-drop-model parameters from Ref.[3]. The solid points mark the Businaro-Gallone point. 

0.05 г 

0.00, 
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1.16 fm 

0.50 
i i I I i_ J_ 

0.70 0.55 0.60 0.65 
Fissility Parameter x 

FIG. 6. Comparison of theoretical fission-barrier heights (solid line) calculated with the parameters (10) 
and experimental barrier heights corrected for single particle effects. The circles [26] and squares [27] 
are reduced fission-barrier heights for actinide nuclei, and the triangles [ 28] are shell-corrected fission 
barrier heights for lighter nuclei. 
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FIG.7. Comparison of macroscopic barrier heights calculated in out model with the parameters (10) and 
in the liquid drop model with parameters from Ref. [ 3] for nuclei along the line of beta stability. The 
solid points indicate the Businaro-Gallone point. The arrows show the mass numbers at which the system 
would lose stability against fission if shell corrections were not present. 

i n c r e a s i n g range a. I t r eaches a maximum a t a / r g ** 0 .7 and t h e n i t moves 
back t o s m a l l e r va lue s of x . F i g u r e 5 g ive s t h e f i s s i o n - b a r r i e r h e i g h t as a 
func t ion of t h e f i s s i l i t y parameter x f o r v a r i o u s v a l u e s of t h e range a , 
aga in fo r f i x e d va lue s of t h e o t h e r c o n s t a n t s . The b a r r i e r h e i g h t s a r e seen 
t o dec rease d r a s t i c a l l y w i t h i n c r e a s i n g r a n g e . 

F igu re 6 compares t h e c a l c u l a t e d macroscopic c o n t r i b u t i o n t o t h e 
f i s s i o n - b a r r i e r h e i g h t w i t h exper imenta l v a l u e s . The curve i s c a l c u l a t e d 
w i t h t h e pa ramete r s of Eq. ( 1 0 ) , and t h e exper imenta l d a t a r e p r e s e n t b o t h 
reduced f i s s i o n - b a r r i e r h e i g h t s fo r a c t i n i d e n u c l e i [26 ,27] and s h e l l - c o r r e c t e d 
f i s s i o n - b a r r i e r h e i g h t s for l i g h t e r n u c l e i [ 2 8 ] . In t h e r e g i o n of f i s s i l i t y 
parameter x between 0.50 and 0.55 t h e expe r imen ta l v a l u e s a r e s y s t e m a t i c a l l y 
somewhat h i g h e r t h a n t h e c a l c u l a t e d cu rve . I t would be very d e s i r a b l e t o 
have expe r imen ta l d a t a fo r s t i l l l i g h t e r n u c l e i w i t h f i s s i l i t y pa ramete r 
s m a l l e r t h a n 0 . 5 . 

F igu re 7 shows t h e d i f f e r e n c e between t h e p r e d i c t e d b a r r i e r h e i g h t i n 
t h e l i q u i d - d r o p model w i th t h e pa ramete r s e t from Ref. [3] and i n our model 
w i th t h e pa ramete r s (10) a long t h e l i n e of b e t a - s t a b i l i t y . The f i n i t e range 
of t h e n u c l e a r fo rce lowers t h e f i s s i o n b a r r i e r s of n u c l e i nea r s i l v e r by 
about 10 MeV r e l a t i v e t o t h o s e c a l c u l a t e d wi th t h e l i q u i d - d r o p model and s h i f t s 
t h e c r i t i c a l Bus inaro-Gal lone p o i n t t o Z2/A = 2 3 , i n approximate agreement 
wi th r e c e n t expe r imen ta l evidence [35] -

7. POTEMTIAL-EHEBGY SURFACES OF LIGHT NUCLEI 

The g e n e r a l t r e n d t o dec rease t he s t i f f n e s s of n u c l e i w i t h i n c r e a s i n g 
range of t h e i n t e r a c t i o n a shows up e s p e c i a l l y for l i g h t n u c l e i where t h e 
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FIG. 8. Deformation energy of 4CCa. The dashed lines show the macroscopic contribution to the deformation 
energy in our model and in the conventional liquid-drop model. The solid curves give the total deformation 
energy including single particle corrections; these corrections are calculated by use of the methods and 
parameters of Ref. [ 36] . 
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FIG. 9. Analogous diagram to Fig. 8 for 102Zr; the single particle corrections are calculated by use of 
the methods and parameters of Ref. [ 39] . 
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radius is no longer an order of magnitude larger than a. A calculation of 
the deformation energy of as a function of the quadrupole deformation 
shows that the shell correction is more effective in producing a second 
minimum with our expression for the macroscopic part of the energy than with 
the conventional liquid-drop model, as seen in Fig. 8. This provides a 
natural interpretation of the rotational states observed in this nucleus and 
certain other light nuclei [37]. A similar study for 102Zr shows that its 
calculated ground-state quadrupole moment is shifted towards slightly larger 
values Ъу the finite-range model. Within the experimental uncertainty this 
agrees with the most recent measurement of the quadrupole moment [38]. This 
result is shown in Fig. 9. 

8. SUMMARY 

We have redefined the surface term in the liquid-drop formula so that 
it can be used for configurations in which the size of a curvature radius of 
the nuclear surface "becomes comparable to the surface thickness. We have 
shown that the new version of the liquid-drop formula yields a weaker depen
dence of the deformation energy on surface wiggles of high multipole order 
than the old model and generally results in a smaller nuclear stiffness. As 
a consequence the shell correction produces a larger ground-state deformation 
especially of some light nuclei)and there seems to appear a second minimum 
in the deformation-energy curve of ̂ 0Ca. 

Saddle-point shapes have been calculated, and they are less necked-in 
than in the usual liquid-drop model. The dependence of the Businaro-Gallone 
point on the range parameter of our model has been studied. We have derived 
an explicit expression for the nuclear interaction energy between two non-
overlapping ions and have calculated interaction-barrier heights. For very 
heavy systems the maximum in the interaction energy transforms into a point 
of inflection and the interaction energy increases monotonically with 
decreasing distance between the ions. 

We determined the parameters of our model so that the reduced fission 
barrier heights for fissility values larger than 0.5 and experimental inter
action-barrier heights are reproduced on the average. The fission barriers 
for nuclei with a smaller fissility parameter are predicted to be lower than 
they are in the old version of the liquid-drop formula with parameters from 
Ref. [3]. 
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DISCUSSION 

P. QUENTIN: You commence with the direct part of the interaction 
energy. Have you made an estimate of the exchange part of this interaction 
energy in some approximation (e. g. of the Slater type), especially for the 
case where there are two nascent fragments? 

H. J. KRAPPE: I would like to stress that the use of a Yukawa potential 
in the six-dimensional integral does not imply that it represents the total 
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potential energy of the nucleus calculated microscopically with an effective 
two-body interaction. The integral has rather to account for the finite 
range of the nuclear forces as well as for the surface diffuseness on a 
purely phenomenological basis. 

S. BJ0RNHOLM: Have you tried to fit ground state masses with your 
approach? 

H. J. KRAPPE: So far only deformation energies have been investigated. 
Therefore we have not yet tried to fit ground state masses. As the six-
dimensional integral contributes to the volume-energy term, a considerable 
renormalization of the volume-energy constant is to be expected when the 
surface-energy term is replaced by the integral. 

R. W. HASSE: Unfortunately, you did not show a slide with the potential 
energy (Coulomb plus Krappe surface energies) plotted versus the distance 
between the surfaces of the two nuclei, say i. Since the long-range Coulomb 
energy behaves like l/(Ri + R2 + &) and the short-range nuclear interaction 
energy like -e"*/a , where a is some constant and R-j, R2 are the radii of 
the nuclei, the potential energy at scission should exhibit a minimum or, 
at any rate, should be very flat. Is this behaviour of the potential energy 
supported by your results as it is by the results of microscopic calculations, 
e. g. with a molecular potential1 or with the two-nucleus shell model2? 

H. J. KRAPPE: Except for very heavy nuclei, the interaction energy 
between two ions reaches a maximum at a distance d between the two sharp 
surfaces. For i values smaller than d the interaction potential decreases 
with decreasing distance between the nuclei, until the two nuclei touch. The 
interaction potential is still decreasing at this point. Where it finally 
reaches its minimum for centre-of-mass distances D< Rj + R2 depends on 
detailed assumptions about the compressibility and the coupling to other 
degrees of freedom, as for instance the "neck-healing". This is beyond 
the scope of the present investigation. 

1 Nbrenberg, W., Z. Phys. _197 (1966) 246. 
2 Hasse, R. W., Abstract IAEA-SM-174/1, these Proceedings, Vol. 2. 
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Abstract 

FISSION BARRIERS FOR HEAVY ELEMENTS WITH QUADRUPOLE, HEXADECAPOLE AND AXIALLY ASYMMETRIC 
DISTORTIONS TAKEN INTO ACCOUNT SIMULTANEOUSLY. 

Nuclear potential energy surfaces have been calculated on the basis of the modified oscillator model by 
means of the Strutinsky shell correction method. The deformation energies of nuclei in the actinide region 
have been investigated. The nuclear shapes of the studied nuclei have been described in terms of quadrupole 
(£2). hexadecapole (e4) and axially asymmetric (y) deformations. The effect of the у degree of freedom on 
the fission barriers has been studied in detail. Special emphasis has been put on the calculations of the 
simultaneous effect of y-deformations and hexadecapole deformations on saddle-point deformations for the inner 
barrier of the two peak barriers. The height of the inner barrier for heavy actinide elements is found to be 
reduced by up to 2.3 MeV. As a consequence, the lifetimes will also be reduced by inclusion of they degreeof 
freedom. Lighter elements such as Th and those lighter than Th seem, however, to be unaffected by axially 
asymmetric distortions. Furthermore both the ground state and the isomeric state for the studied nuclei are 
stable with respect to axially asymmetric deformations. 

A large part of the emphasis of the present study is on an accurate evaluation of the Coulomb energy with 
e4 and у simultaneously taken into account, which has not been done up to now. 

In the general case with axially asymmetric nuclear shapes, the Coulomb energy can be expressed as a 
six-dimensional integral. However, this six-dimensional volume integral can be reduced to a four-dimensional 
integral over the surface by the use of Gauss' divergence theorem. The four-dimensional integral has been 
evaluated by numerical methods. 

1. INTRODUCTION 

Recently, the effect of reflection asymmetric degrees of freedom along 
the fission barr ier has been studied by e. g, Möller and Nilsson [ 1, 2], using 
the modified oscillator model and the Strutinsky shell correction method. 
It turns out that degrees of freedom of this type, introduced in terms of 
P3+P5 -multipoles in the nuclear potential, are very important in the actinide 
region, because they lower the second peak in the barrier by several MeV, 

In this paper we discuss another type of asymmetry, namely axial 
asymmetry or y-deformation, together with quadrupole and hexadecapole 
deformations. The effect of the 7-degree of freedom on the fission barrier 
was first studied by Pashkevich [ 3] and later by Schultheiss and co-workers 
[4, 5], Larsson and co-workers [ 6, 7] and Götz and co-workers [ 8-10]. 
We will now extend the calculations to include у -deformations simultaneously 
with e and e4 , which has not been studied before. Special care has been taken 
to calculate the Coulomb energy accurately in the entire (e, e4 ,y)-space 
relevant to the fission barrier problem. The entire dynamical problem 
including the character of the static energy surface in terms of the coordinates 
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ß and у was formulated in the early papers of Bohr [11] and Bohr and 
Mottelson [12]. In the rare-earth region very extensive dynamical cal
culations including axially asymmetric shapes have been performed by Kumar 
and Baranger on the basis of a pairing-plus-quadrupole model of nuclear 
interactions (Refs [13-15]). These latter calculations are, however, limited 
to the vicinity of the ground state minimum. For the fission problem, the 
inclusion of reflection asymmetric (Refs [ 1, 2]) and axially asymmetric 
degrees of freedom leads to a considerable lowering of both the first and the 
second saddle points (see Fig. 1). This improves considerably the agreement 
with experimental barrier data, which are now available for several actinide 
nuclei. The calculations (see below) bear out that the barrier heights for 
neutron-rich actinide elements are reduced by 2 MeV or more when axial 
asymmetry is included. 

2. THE NUCLEAR ONE-BODY POTENTIAL 

As a starting point we use the modified oscillator model (Refs [ 16-18]) 
and represent the effective nucleon-nucleon interaction by the deformed 
single particle potential 

V = V + V 
ose corr 

where 

V 
о 

and 

¥\- p2[1 
•CY +Y ) 

22 r 2 - 2 J 

K.^.[2tt.t^U2
t-<l2

t»] 

Octupote 
deformation 
{reflection 
asymmetry) 

DEFORMATION 

FIG. 1. Sketch showing the effect on the fission batciet of the two types of asymmetry coordinates, the reflection 
asymmetry (P3+P5) and the axial asymmetry (y). The first saddle point is stable with respect to reflection 
asymmetry. The solid curve corresponds to symmetric fission. 
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TABLE I. VALUES OF к AND ц USED IN THE CALCULATION OF SINGLE 
PARTICLE LEVELS 

Kp 

0.0577 

Protons 

"p 

0.650 

Kn 

0.0635 

Neutrons 

"n 

0.325 

The t e r m Vcot r contains the famil iar sp in-orb i t t e r m and an i 2 - t e r m . The 
SL - t e r m makes the osc i l la tor potential more square -wel l - l ike . The potential 
p a r a m e t e r s к and ц have been determined to opt imally reproduce the expe r i 
mental level o rde r of single pa r t i c l e s t a tes in the actinide region (Refs [19, 20]) . 
The (к, ц) -values employed a r e given in Table I. 

Thus the nuclear shapes studied he re can be generated in t e r m s of 
th ree coordinates , which a r e 

(1) e , r epresen t ing nuclear elongation 
(2) e 4 , r ep resen t ing wais t - l ine development (or i ts opposite) 
(3) у , r ep resen t ing axial a s y m m e t r y 

We r e s t r i c t our discussion he re p r i m a r i l y to these three coordinates . They 
a r e the most important a t the f i r s t b a r r i e r of the two-peak b a r r i e r , s ince it 
i s borne out by Ref. [ 2] that the inner b a r r i e r is in a lmos t all cases un
affected by the reflection a s y m m e t r y coordinates ( represented by P 3 + P 5 -
deformations) . 

All quanti t ies a r e expressed in t r iaxia l ly s t re tched coordinates 

1/2 
5 = x . 

п = у 

? = z . 

ГМш 1 
X 

У 

z 

1/2 

1/2 

We introduce p as the radius vector length in the s t re tched coordinates , i. e. 

2 2 
P = € 

2 2 
n + ? 

The frequencies a r e defined by 

x о 
(e.E , Y ) - [ 1 - -^E-COS(Y+ y ) ] 

шу = w o ( e ' e 4 ' Y > D " ^E-OOSCY- у ) ] 

( E , E ,Y> [1 - ?£-COSY ] 
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The triaxially stretched coordinates have the advantage of transforming 
away coupling terms of P2Y20 and p2(Y22+Y2_2) between oscillator shells N 
and N ± 2 (Refs [7, 16]). The matrix elements of the multipole operators 
occurring in the potential are easily obtained in terms of Clebsch-Gordan 
coefficients. The presence of the term proportional to p2(Y22+ Y2_2) gives 
rise to a coupling between states Q-> Г2 ± 2. 

3. CONDITION OF VOLUME CONSERVATION 

To simulate approximately the saturation properties of nuclear matter 
reflecting the short-range character of nuclear forces, we have to impose 
the condition of conservation of the nuclear volume under any deformation. 
Thus we conserve the nuclear volume enclosed by an equipotential, which 
at least for equilibrium shapes is also equivalent to the shape of the nuclear 
density distribution. The condition of volume conservation can be simply 
fulfilled by a scaling of u0 for the main part of the potential. 

И 2_ 
4TT 

1 

n 2тг 

/ / -

\J [1 - |E .cos(y+ f ^ l - D - §£-COS(Y- | Ч - [ 1 - §e- cosy] 

sine de аф 

[1 - |£.cosY.P2(e) • 2£4P4(e) • | е ^ А . ( у 2 2 + У 2 _ 2 ) ] 3/2 

In this formulation (see Ref. [ 18]) we have ignored the spin- and angular-
momentum-dependent terms in the nuclear potential. In the special case 
C4 = 0, the integral can be evaluated analytically, giving the result 

KJ [1 • = - E - C O S ( Y + •—-)'] • [1 - ^ £ - C O S ( Y ~ -5—)] • [ l " Ö-E-COSY ] 

If e4 f 0 the integral has to be evaluated numerically. 
Furthermore we have assumed 

<««.>;• 5 й | = № ] 
where the isospin dependence on I = (N - Z)/A is such as to ensure that the 
proton and neutron distributions have equal radii. 

SINGLE PARTICLE STATES 

The single particle states are obtained by solving the Schrbdinger 
equation. This has been done by expanding the wave functions in the basis of 



IAEA-SM-174/06 181 

eigenstates of the isotropic harmonic oscillator. As is easily seen, the 
projection f2 (or K) of the single particle total angular momentum on the 
z-axis is not a constant of the motion, while obviously parity is conserved. 
The conservation of parity ensures that the single particle states of even 
and odd parity can be calculated separately. The inclusion of the complete 
couplings between states |N'f2'>and |Nf2>, with the coupling rules Я' = Q ± 2, 
N' = N, N ±2, . . . , would give rise to very large matrices, actually as large 
as 308 x 308 for the odd parity case with Nmax =13. In this work, however, 
we have ignored the coupling between different oscillator shells (apart from 
what is absorbed by the use of the stretched representation, in which there 
are no matrix elements for N1 = N ± 2) on account of computer storage limi
tations. The neglected coupling between energy shells N1 and N is expected 
to change the single particle level spacings only very slightly. 

5. PAIRING EFFECTS 

The most important of the residual interactions is the pairing interaction 
(Refs [21, 22]). The correction to the ground state energy, due to the short-
range interaction of correlated pairs of nucleons moving in time-reversed 
orbits, is treated in the BCS formalism (Ref. [23]). The simple summation 
of single particle energies is replaced by the standard BCS expression 

En r c = Y 2e v2 - G( У u v ) 2 - G £ v4 * G £'1 BCS ^ v v -̂  v v *-• v 

where e.v are the single particle energies and uv and v„ are the usual pairing 
factors. The last term, G j ' l , with summation over occupied states only, 
represents the subtraction of the diagonal pairing energy so that only the 
strict correlation energy remains. 

The pairing matrix element, or the pairing strength, G, is taken to be 
isospin dependent as 

(GxA) p = e + e — 1Ьхл ; п g 0 - g 1 A 

with 
g = 19.2 MeV 
g. = 7.4 MeV 

where the plus sign holds for protons and the minus sign for neutrons. 
Furthermore the pairing matrix element is assumed to grow proportionally 
to the nuclear surface area S (Ref. [18], cf. Ref. [24]). 

To reproduce the phenomenological A"1^2-dependence of even-odd mass 
differences, the number of levels included in the BCS calculation are taken 
a.s~J 15N levels for neutrons above and below the Fermi level and^ 15Z levels 
for protons (Ref. [18]). 
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6. COULOMB AND SURFACE ENERGIES 

The additional Coulomb potential acting between protons is not included 
explicitly in the nuclear potential, but its effects are absorbed by the re
adjustment of the potential parameters of the nuclear single particle potential. 
In the calculations of the total energy, the Coulomb and surface energies 
represent the macroscopic part, or the smooth background part. 

The quantum mechanical expression for the Coulomb energy is 

2 
Ecoul = \ },. <*^yh ?Z ] |f-7 I*(?1'?2 \ ] > 

where \ф (г2, ?2 , . . . , rz)> is the Slater determinant built from single particle 
states in the nuclear single particle potential given above, and ry = | r i - r j | . 
The exchange term, as derived by Bethe and Bacher [25], can be seen to 
represent essentially a volume energy and is consequently independent of the 
shape. Thus, if we neglect the antisymmetrization condition and replace 
\ф> by a simple unsymmetrized product of single particle wave functions, 
we get 

E , = I V / / p.(r.) — p.(r,] d3 
coul 2 /_j J j *i l r. . j j 

i *j J 

where Pj denotes the single particle density 

Pi • I * / 
As a further simplification in the spirit of the liquid-drop model, we assume 
the total charge Ze to be homogeneously distributed over a nuclear volume 
with a sharp surface, S, defined by 

г = г(е,ф;£,е4,у) 

The validity of the sharpness assumption has been demonstrated by Swiatecki 
[ 26, 27] by means of an expansion of the Coulomb energy in increasing powers 
of the ratio of a small surface "thickness" to the radius. The first term of 
the expansion is identical with the energy obtained with a sharp surface and 
the second term, which provides the first-order correction due to surface 
diffuseness, turns out to be exactly independent of shape. Thus we have 

- 3 ? , d3? : 

w i mw4dV3 - 2 •>• ^ 

. r2 
v, v2 « 

where the radius vectors r^ and r2 vary independently over the volume of the 
nucleus. For clarity of notation the indices 1 and 2 will be used to distinguish 
between r^- and ?2_space. 

When the nuclear shape is axially symmetric, this six-dimensional inte
gral presents no difficulty, being easily reduced to a two-dimensional integral 
in terms of complete elliptic integrals (Refs [28,29]). Also, Lawrence [30] 
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has derived a th ree-d imens iona l integral , which has the advantage of a 
s imple integrand. F o r the t r iaxia l ly el l ipsoidal shapes generated by our 
(e, -y)-parametrization, the f i rs t t r iple in tegral was evaluated by Dir ichlet [31] 
(for a modern re ference see Kef. [32]) and the second one is e lementary . 

The resul t ing express ion for an ell ipsoid with semiaxes a < b < с may be 
wri t ten in the s imple form (Ref. [33]) 

~coul (Zer 
\Л^2- • F(M) 

where F(k, <f>) is an elliptic integral of the f i rs t kind and 

,2 b -a 
2 2 с -а 

sin<j> = vV^2 

An equivalent formula is obtained in Ref. [ 8 ] . 
F o r the case of a r b i t r a r y nuclear shapes and in pa r t i cu la r those including 

hexadecapole deformations (£4 f 0), we will now derive a four-dimensional 
in tegra l with a ve ry s imple integrand. The surface of V is denoted by S and 
its unit no rmal by ft. Start ing from the s ix-dimensional express ion above, 
Gauss ' divergence theorem is applied success ive ly in ~r%- and r^ -space . Use 
of the obvious identi t ies 

1 

and 

1 
2 

- > • 

r 1 

l?1 

->-
_1> 

ЛI 

Ъ 

* 

-v 
A 
"2 " 

Г 1 г 1 

[i 

r r 2 ! 

1~Г2 2_Г1 2 

l?r?
2l 

leads to the des i red form 

P _ 1_ 2 
coul 12 p 

1 

[ ( ? 1 - r 2 )»n 1 ] [{r2-r^.n2) 

| г Г г 2 | 
dS1 dS2 

One may note in pass ing that if Si and S 2 enclose two different, spat ial ly 
disconnected bodies, this formula may be used to evaluate the i r interact ion 
energy. 

F o r a sphere of unit rad ius the integration is eas i ly performed, giving 

coul 
1Б*2 2 

P 
15 

In p rac t i ce it was sufficient to use a nine-point Gaussian quadra ture three 
t imes in each of the four dimensions to evaluate the Coulomb energy for the 
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saddle-point deformations to a relat ive accuracy of the o rder of 10"6 (1 keV). 
F o r cer ta in deformations, e. g. the diamond shapes of negative e 4 , the 
Coulomb energy is highly sensi t ive even to smal l dis tor t ions and a finer 
lat t ice is neces sa ry . 

The surface energy, being proport ional to the surface a r ea of the nucleus, 
is given by a two-dimensional integral which, for el l ipsoidal shapes , may be 
expressed in t e r m s of two elliptic functions. 

In summary , the shape-dependent pa r t of the l iquid-drop contribution to 
the total energy is 

E L D = C B C - 1 ) ' a c 7 7 3 + tBs"1]-as « " V l 2 ) A 2 / 3 

where the functions Be and Bg a re the re la t ive Coulomb and surface energ ies . 
F u r t h e r m o r e , the isospin-dependent t e rm, containing I = (N - Z)/A to 

second o rder , accounts for the dec rease in surface energy with increas ing 
neutron excess (Ref. [2 7]) . The values used for a c , as and the surface 
s y m m e t r y coefficient /cs a r e equal to those given by Myers and Swiatecki in 
1967 [ 3 4 ] . 

a = 0.70531 (or г = 1.2249 fm) 
ь о 

a = 17.9439 s 

к = 1.7826 s 

T h e d r o p l e t - m o d e l m a s s f o r m u l a of M y e r s a n d S w i a t e c k i [ 34, 35] a l s o i n c l u d e s 
s h a p e - d e p e n d e n t t e r m s s t e m m i n g f r o m the u n e q u a l d i s t r i b u t i o n of n e u t r o n s 
a n d p r o t o n s in the n u c l e u s and c u r v a t u r e e f f e c t s . T h e c o n t r i b u t i o n of t h e s e 
t e r m s to o u r a x i a l l y a s y m m e t r i c s a d d l e - p o i n t s h a p e s i s now b e i n g i n v e s t i g a t e d . 

Contour line separation 1.0 MeV 

FIG.2. Potential-energy surface in (<s, e4)-space for the nucleus ^U. The set of e and e4 values, defined by 
the solid arrow, defines roughly a fission coordinate £24 for actinide nuclei. (Figure taken from Ref. [ 1]). 



IAEA-SM-174/06 185 

7. POTENTIAL-ENERGY SURFACES AND CALCULATIONAL RESULTS 

To calculate the to ta l -energy surface we have employed the Strut insky 
method of renormal iza t ion of the average behaviour of the total energy to 
that of the l iquid-drop model (Refs [23, 36, 37]) . The total energy is givenby 

& . 4. = (6E . , , ) + (<5E . ) + E, n 

t o t shel l p+n pa i r p+n LD 

where the l iquid-drop contribution, E L D , has been d iscussed above. Shell 
and pai r ing cor rec t ions for protons and neutrons a r e calculated separa te ly as 

6 Eshel l + 6Epair = I 2 V v " G ( I Vv )2 " G ( * vv " $ ' 1 ) " E C ^ 

where 
E(g) = J2e-gie)de 

based on the smoothed level density 

g ( e ) = 7 ^ ? f c 

e-e -, 
Ts 

Text continues on page 197. 

Qß 07 
Prolate 

FIG.3. Sketch showing the structure of the potential energy surfaces obtained in the calculations. Note that the 
ground state and the isomeric state are both stable with respect to axial asymmetry, while the first saddle point 
is moved out into the y-plane. 
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TOTAL ENERGY 
236 
90 

Scale: 0.2'MeV 

Prolate 035 0.45 0.55 
£24 

0.65 

FIG.4a. Total-energy surface in the le24> y)-space for the nucleus 9oTh, calculated with G = S, KS = 1 . 7 8 . 
Scale = 0.2 MeV, which means that between each line on the diagram there is an 0.2-MeV energy separation. 
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FIG.4c. Same as Fig.4a for 2 gpu . 
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FIG.4d. Same as Fig.4a for 2 Ц с т . 
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TOTAL ENERGY 

98 
Scale: 0.2 MeV 

FIG.4e. Same as Fig.4a for fgCf. 
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Scale: 0.2 MeV 

FIG. 4f. Same as Fig. 4a foe \ft Fm. 
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TOTAL ENERGY 

102" 

Scale: 0.2 MeV 

FIG.4g. Same as Fig.4a for j «No . 

TOTAL ENERGY 

Scale: 0.2 MeV 

FIG.4h. Same as Fig.4a for f^Ku/Rf. 
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TABLE II. FISSION BARRIER PARAMETERS AT THE FIRST SADDLE 
AND CORRESPONDING DISTORTIONS CALCULATED WITH G ~ . S , 
KS = 1. 78 

Nucleus 

Z 

90 

92 

94 

96 

98 

A 

230 
232 
234 
236 
232 
234 
236 
238 
240 
232 
234 
236 
238 
240 
242 
244 
246 
238 
240 
242 
244 
246 
248 
250 
252 
242 
244 
246 
248 
250 
252 
254 

e 

0.42 

0.43 

0.45 

0.47 

0.42 

0.45 

0.47 

0.48 

0.49 

0.43 

0.43 

0.46 

0.48 

0.49 

0.50 

0.50 

0.51 

0.48 

0.49 

0.50 

0.51 

0.51 

0.51 

0.51 

0.48 

0.50 

0.50 

0.50 

0.50 

0.50 

0.48 

0.46 

У О 
0 
0 
9 
10 
0 
7 
10 
11 
12 
0 
0 
9 
12 
12 
13 
14 
14 
13 
14 
15 
15 
15 
16 
17 
19 
18 
18 
18 
18 
19 
20 
21 

First saddle 

E A -Ej 
(MeV) 

4.0 
4.3 
5.2 
5.3 
4.3 
5.0 
5.3 
5.6 
5.7 
3.4 
4.3 
5.0 
5.4 
5.6 
5.8 
5.9 
5.8 
4.9 
5.2 
5.6 
5.8 
5.9 
5.8 
5.5 
5.2 
5.1 
5.4 
5.5 
5.8 
5.8 
5.6 
5.4 

ДЕу = E A - E A 
(MeV) 

0.0 
0.0 
0.2 
0.5 
0.0 
0.1 
0.3 
0.5 
0.8 
0.0 
0.0 
0.1 
0.4 
0.7 
0.9 
1.2 
1.4 
0.3 
0.7 
1.0 
1.3 
1.6 
1.8 
1.9 
1.9 
0.9 
1.3 
1.6 
1.9 
2.1 
2.1 
2.0 
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TABLE И. (cont.) 

Nucleus 

Z 

100 

A 

248 

250 

252 

254 

256 

6 

0.50 

0.49 

0.48 

0.47 

0.45 

У 
С) 

21 

21 

21 

22 

23 

First saddle 

E A - % 
(MeV) 

5.7 

5.9 

5.7 

5.7 

5.5 

ДЕу = EA - EA 

(MeV) 

1.7 

2.0 

2 .3 

2.2 

2 .1 

T — i — i — [ — i — i — i — ] — i — i — i — [ — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — ] — i — i — г 

FIRST BARRIER 

Theory (axiqlly symmetric: G-S, «s=1.78) 

Theory (axiolly asymmetric; G-S, « s = 1.76) 

• Exp. 

1 - о Calculated points 

0 L_ j • • I . • • 1 L i • I l l i I l l 1 1 1 l 1 1 1 1 l I 1 1 1— 
226 230 23« 238 242 246 250 254 258 

MASS NUMBER A 

FIG.6. Calculated battier heights for the first barrier peak in terms of symmetric (e and e4) (solid lines) and 
asymmetric deformations (e, e4 and y) (dashed lines), compared with the experimental battier heights. The 
errors in the experimental data are estimated to be ± 0.3 MeV. Note the good agreement between theory and 
experiment except for Th. 

F u r t h e r m o r e we have used the smea r ing p a r a m e t e r ys = 1. 2fiu0 and a s ixth-
o rde r co r rec t ive polynomial a s suggested in Ref. [ 18 ] . 

In the following calculations we have l imited ourse lves to doubly even 
nuclei . Special emphasis has been put on saddle-point deformations for the 
f i rs t b a r r i e r peak. The f i rs t saddle point and a path to fission in the 
( e , e 4 ) - s p a c e was determined ea r l i e r , for example by Möller [2] , see a lso 
F ig . 2. A se t of (e, e4 ) -values defining a coordinate €24 in the fission direct ion 
is determined by calculating for each e the e4 -value which minimizes the 
energy. The resul t ing fission path is roughly independent of Z and N. 
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1 — i 1 1 1 1 1 г 

NEUTRONS. Actinides 
x „ = 0.0635. ßn-. 0.325. 4N=>. 

FIG.7. Single-neutron orbitals relevant to the actinide region. The plot represents a cut in the (e24, y)-plane 
along the path u indicated in Fig. 3 . Orbitals are labelled by their asymptotic quantum numbers [ NnzAß ] . Full 
lines correspond to even parity and dashed lines to odd parity. 

A typical example of the potential-energy surface obtained with the 
7 degree of freedom included is shown in Fig. 3, where one axis corresponds 
to the fission coordinate path €24 described above in terms of e and e4, while 
the 7 coordinate is represented in terms of an angle 0° s 7 £ 60°. 

The results of the calculations of the total energy for a number of nuclei 
in the vicinity of the first barrier peak are presented in Figs 4a-h. 
Apparently, the first saddle point is moved out into the 7-plane, simultaneously 
reducing the barr ier height relative to the ground state. For heavy actinide 
nuclei, the saddle points show an asymmetry of up to 7 - 20°. Probable 
fission paths are shown in Figs 4a-h. The dashed curves in Figs 5a-f display 
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the energy along these paths, plotted as a function of e. The solid curves in 
Figs 5a-f represent the fission barr iers calculated in Ref. [18] taking only 
P 2 - and P4 -distortions into account. At the second peak the dotted line shows 
the resulting barrier when reflection asymmetric P3 - and P5 -distortions are 
included in the calculations [2] . The fission barrier parameters for the first 
saddle are given in Table II. 

As seen from Fig. 6, the theoretical barrier heights relative to the ground 
state are in excellent agreement with experimental results (Ref. [38]), except 
for Th. 

£.(£0 = 0.55 
f = 30° 

£(£4) = 0.42 

NEUTRON SHELL ENERGY Z £ „ - l £ „ 
Contour line separation 0.25'MeV " ( a ) 

7'°° 124 140 144 148 
Neutron number 

NEUTRON SHELL PLUS PAIRING ENERGY (G-S, x s = l.78) 
Contour line separation 0.25 MeV 

E(£4) = 0.55 

7-™° I 4_V 

£(£<> = 
7 = 140 144 148 

Neutron number 

FIG.8. Shell correction energy (a) and shell correction plus pairing energy (b) for neutrons, calculated from the 
level diagram in Fig. 7, as a function of neutron number and the distortions defined by the path u in Fig. 3. Note 
the strong preference for axially asymmetric nuclear shapes at neutron numbers around N = 152. 
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FIG.9. The energy reduction due to axial asymmetry at the first saddle point as a function of the neutron number. 
Note that the maximal energy reduction for heavy actinides occurs around N = 152, This reflects the large 
decrease, with increasing y, of the level density at the Fermi surface(as seen in Fig.7) for these neutron numbers. 

To understand the single particle effects on the nuclear potential-energy 
surface, the single particle levels have been plotted along a dotted path u, 
as indicated in Fig. 3. The level scheme along this path is exhibited in Fig. 7. 
The high level density around neutron number N = 152 at e = 0. 42, e4 = 0. 03, 
corresponding to the saddle point under the restriction у = 0°, is changed over 
into a low level density at e = 0. 50, e4 = 0. 0 and у - 20°. The degree of 
bunching and thinning-out of single particle levels near the Fermi surface is 
highly decisive for the shell energy. In Figs 8a, b the neutron shell and the 
shell plus pairing energies have been plotted as functions of the asymmetric 
deformation path u (in Fig. 7) and the neutron number. The gain in the shell 
plus pairing energy, due to the 7-instability, is seen to be at most 2. 3 MeV 
for neutron number N = 152. Obviously, the instability of the potential 
energy is due almost entirely to the neutron shell correction energy. The 
barrier reduction due to the instability towards у distortions is shown 
in Fig. 9 for a number of nuclei. From this picture it turns out that the 
greatest barrier reduction is associated with the neutron number N = 152. 

8. SUMMARY AND CONCLUSION 

For those transuranium elements that we have studied we find that nuclei 
with N > 144 are axially asymmetric at the first barrier peak. The asymmetry 
reaches its maximum value near the neutron number N = 152, where the first 
barrier is lowered by several MeV because of axial asymmetry. The agree
ment between theoretical results and experimental data on the fission barr iers 
is very much improved when axial asymmetry and hexadecapole deformations 
are simultaneously included in the calculations of the Coulomb energy. 

A further investigation of the influence of axial asymmetry on the fission 
barrier in the region of superheavy elements is presently in progress. 
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DISCUSSION 

M. G. MUSTAFA: Is there a physical reason why there is a preference 
for axial asymmetry at the first barrier but not at the second minimum? 

S. E. LARSSON: The strong preference for axial asymmetry in heavy 
actinide nuclei is mainly a neutron single-particle effect. The axial 
asymmetry at the first barrier is almost entirely due to a development of a 
"N = 152-shell", when the у degree of freedom is taken into account. 

S. BJ0RNHOLM: When are we going to see a study of the у stability 
of the pear shapes characteristic of the outer barrier? 

S. E. LARSSON: In principle, this is a straightforward calculation, 
except for one thing, namely the solving of the Schrödinger equation to obtain 
the single-particle energies. The complicated coupling rules would give rise 
to energy matrices of the order of 6 80 x 680. Because of computer storage 
limitations this cannot be done in Lund at present. However, the outer 
barrier is stable to у deformations when e3 (and €5) are neglected. 
This is probably also the case when €3 (and 65) are taken into account, 
because the liquid-drop energy will kill all other effects. 
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PARAMETERS ARE REFITTED TO REPRODUCE 
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Abstract 

ON THE TREATMENT OF SHELL AND PAIRING ENERGIES WHEN THE LIQUID DROP PARAMETERS ARE 
REFITTED TO REPRODUCE THE EXPERIMENTAL BARRIER HEIGHTS. 

Some less satisfactory aspects of the microscopic-macroscopic nuclear model are discussed and 
alternative ways for treating some details in the model are suggested. The dominating procedure for 
calculating shell energies, i. e. the Stmtinsky procedure, but also the recently developed temperature-
entropy method, both require that a great number of excited states are known. Many of these only appear 
in the theoretical model but do not exist as bound states in real nuclei, and are thus not relevant. An 
alternative method is presented here which exploits a smoothing of the occupied levels only, over a large 
number of deformations. The result of this procedure is a set of "smooth" single particle levels for each 
of the considered deformations. The shell energy, which for each deformation is calculated as the sum of 
the energies of the occupied original levels minus the sum of the "smooth" levels, does not, according to 
preliminary calculations, deviate much from the Strutinsky shell energy, A similar procedure is applied 
to the pairing energy, prescribing that from the pairing energy a "smoothed" deformation-dependent mean 
value of the pairing energy should be subtracted. The most frequently used assumptions about the pairing 
strength, namely G = const, and G ~ nuclear surface, give a smooth pairing energy, which is either constant 
or has the form of a surface energy. The advantage of subtracting a smooth pairing energy is that the 
macroscopic (liquid drop) energy becomes the same, independent of the assumption about the pairing strength, 
a desired effect which cannot be obtained otherwise. The Tightness of introducing a smooth pairing energy 
is discussed by means of refitted liquid drop parameters. 

1. INTRODUCTION 

The study of different modifications of the deformed modified harmonic 
oscillator potential, involving models which contain deformation-dependent 
spin-orbit and i 2 - terms such as the one proposed by Bohr and Mottelson[l], 
has led to a point where a major interest is concentrated on pure single 
particle properties, such as the deformation dependence of the single 
particle levels, which is drastically revealed in the sum of single particle 
energies (Fig. 1). 

Two variants of the modified harmonic oscillator potential are considered 
in this report. They can both be written in the general form 

U s i n g 

V = 4 И " P 2C1- | e P_ + 21 e P } «• V ( 1 . 1) 
l о 3 2 ., v v согг 

V c o r r = " 2 ^ S o l i t ' ~ B + h ^ t ^ t V ( 1 " 2 > 
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FIG. 1. Sum of single particle energies (protons + neutrons) for 24zPu. Solid line is used for the modified 
harmonic oscillator, Eq. (1. 2), and dashed line for the scaled modified harmonic oscillator , Eq. (1. 3). 
The small diagrams show a comparison with the Strutinsky shell energy (solid lines). The curves have been 
adjusted to coincide at zero deformation. 

gives the potential descr ibed in Ref. [2] while 

о Г N/UJ. U Z V = -2 KMW •{ -согг о о i • s + / ^ - 1) * • s t v to v С С 

2 u о 2 t u z c t п ± п 2 

(1.3) 

gives the modification proposed by Bohr and Mottelson [1 ,3 ] . 
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FIG.2. Part of a Nilsson diagram. 
This figure illustrates, together with 
Figs 3 and 4, how the smooth 
levels eyte) are fitted. 
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FIG.3. A modification of the 
Nilsson diagram in Fig.2. The 
smooth levels eB(<) in Eq.(2.6) are 
fitted to reproduce the kind of 
levels shown in this diagram. One 
of the smooth levels (number 8) is 
drawn for illustration. 

As it is essential to have a quantitative description of the deformation 
dependence of the single particle levels, a set of smoothly varying levels 
are fitted to the actual Nilsson levels as is shown in Figs 2-4. It turns 
out that the smooth levels can be described by a small number of para
meters, which in fact can be interpreted to describe a redefined volume 
conservation condition which, in contrast to the previously used volume 
conservation (Ref. [2]), also accounts for the influence of the spin-orbit 
and Ü -terms. 



206 BENGTSSON 

_ i i i i 1_ 

-1.0 -0.5 0 0.5 1.0 
С 

FIG. 4. The final version of the fitted smooth levels. To get this level scheme a smoothing has been done 
also over v (cf. Eq. (3.11)). 

The smooth set of single par t ic le levels , e^,can be used to define a 
shell cor rec t ion energy 

E . , . = Ее - Ее ,. .< 
she l l v v (1.4) 

where e^ is the original set of Nilsson levels (Fig. 2). Using the redefined 
volume conservat ion condition mentioned above for redefining the value 
of •hio, the shell energy can be wri t ten in the m o r e compact form 

E s h e l l = E ev ~ C O n s t - (1.5) 

since with the redefined value of fiu, £e"„ does not depend on deformation. 
As the fitting procedure gives a complete set of smooth single par t ic le 

leve ls , these can be used not only to de termine a value of the shell energy 
but a lso to de te rmine an average value of the pair ing energy Ep a i t , which 
consequently is defined a s the value of the pair ing energy that a BCS 
calculation gives when applied to the set of smooth single par t ic le levels . 
The pai r ing energy E p a i t , which might be dependent on N, Z and deformation, 
should replace the usual ly used constant value -2 . 3 MeV (Refs [2, 4]). 

In accordance with the above idea, the total microscopic energy can 
be wri t ten 

E m i c r = S e
v " Z ev + E p a i r " E p a i r (1.6) 

As it turns out, th is way of calculating E m I c r has two advantages over 
previously used p resc r ip t ions (Refs [2 ,4-8] ) , which a r e : 

(a) The shel l cor rec t ion energy can be calculated without using any 
levels above the F e r m i energy. 

(b) The definition of E p a i t ensures that the macroscop ic (liquid drop) 
energy becomes independent of the choice of pa i r ing s t rength. 
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2. FITTING OF A SET OF SMOOTH SINGLE PARTICLE LEVELS 

The bas i s of the calculations is the derivat ion of a set of smooth single 
pa r t i c le levels from a usua l Nilsson d iagram (Fig. 2). The d iagram is 
f i r s t redefined in such a way that the levels a r e not connected according 
to the quantum numbers but only according to the number index v, d e t e r 
mined by numbering the levels from the lowest energy (v =1) to the highest 
one. This gives F ig . 3, which is nothing but a Nilsson diagram drawn 
under the assumption that the re is a coupling between all s ta tes (the ma t r ix 
elements , however, vanishing i n m o s t cases ) . Then to each level e„ (e) i s 
fitted a smooth level e"j,(e), which together build up a smooth single par t ic le 
scheme (Fig. 4), which is assumed to have the genera l form 

i (e) = A • f (е)И а (2. 1) 
V V V О ч ' 

where A„ a r e the smooth levels for a spher ica l nucleus and fv(e) is a 
factor which contains the deformation dependence. This might be different 
for different l eve l s , therefore the index v is used. 

An approximate es t imate of e~v(e) can be made from a T h o m a s - F e r m i 
model . Putt ing Vcorr = 0 in the potential (1. 1) gives 

/ ( 
sine • de 

P3 о (1 - | E P , • 2 г г P ) 3 / 2
 c 3 

Н-Л 3 2 v V V - EN (2 .2 ) 
ЗИ3

 Ш 3 ( 1 + | ) И - § £ ) 1 / 2 з и з , з 

where the las t equality comes from the volume conservat ion condition (Ref. [2]) 

1 
CO sine de 

CJ°)3 = 1 ; 2 — - (2.3) 
g (1 • | K 1 - % V 2 о (1 - | e P , * 21 E P ) 3 / 2 

о 3 3 3 2 v v v 
InEq.(2.2) N is the number of pa r t i c l e s with energy l e s s than or equal to E N . 

In the case of pure quadrupole deformations Eq . (2. 3) t r ans fo rms to 

Sn (1 * -frei - 4) 
о j 3 

leading to a simplification of Eq. (2. 2), which becomes 

3/ 3 
E

N " V 3 N - \ h - I Е 2 - § 7 e 3 • И и 0 ( 2 .5 ) 

Since in the following calculat ions only P2 -deformations a r e considered, it 
i s assumed that the smooth levels can be wri t ten a s a general izat ion of 
Eq . (2. 5): 
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where the coefficients a„ 
f„(e) as 

depend on v. This equation defines Av and 

A = 
(2.7) 

f (e) v + a v 1 £ + a -,£ v2 + a _e v3 + a v4 £ (2.8) 

Notice that v = N/2 because of the doubly degenerate levels, and therefore 
â o is about 6. The addition of the e and e4 terms is essential to get a good 
fit. 

The fitting of the coefficients is done by fitting a fourth degree poly
nomial to reproduce the cubed original level, ejj(e). However, this gives 
coefficients which depend quite a lot on v, at least for the lowest levels 
(y s 25), while Eq. (2. 5) indicates that there is no ^-dependence, or if there 
really is such a dependence for the complete potential (Eqs (1. 2) or (1. 3)) 
it should be very weak. In fact the reason for the fluctuations is found in 
the very strong shell effects for the spherical nuclei, cf. Fig. 5 showing 
a0/2, which should be 3 according to Eq. (2. 5). The magic numbers 8, 20, 
28, 50, 82 and 126 are clearly seen. This effect can of course be more 
or less washed out by considering an even greater number of deformations 
than in Figs 2-4, but the same effect can more easily be reached by just 
neglecting deformations with |e| £ 0. 1 in the fitting. This is preferable 
since deformations greater than |e | £ 1. 0 are seldom of interest. However, 
some shell-structure-like fluctuations can still be found in the fitted 
coefficients. How this disadvantage can be avoided is discussed in the 
next section. 

90 100 

The thin curve is for FIG. 5. The parameter a /2 as a function of the number of the energy level, 
the case where all deformations |e | s 1.0 are used for the fit. Notice that the shell structure of the spherical 
nucleus is clearly seen. The thick curve is for the case where deformations with |e | s 0.1 have been omitted. 
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3. CALCULATION OF THE SHELL CORRECTION ENERGY AND A 
REDEFINED VOLUME CONSERVATION CONDITION 

There exists a number of possible methods for calculating shell energies. 
Some of the more relevant are discussed by Bohr and Mottelson [1]. The 
most successful one is the widely used Strutinsky procedure [9]. However, 
recent calculations by several authors (Refs [10-12]) have shown that another 
method, which exploits the statistical behaviour of nuclei at high temper
atures, can be used to calculate shell energies with the same precision as 
the Strutinsky method. A third method involves a smoothing procedure 
over large deformations. Such a smoothing has in fact been done in 
Section 2, and it seems reasonable to define the shell energy as 

N/2 N/2 
E , , . = 2 Z e - 2 Z в (3.1) 

s h e 1 1 v-1 v=1 v 

This corresponds to the Strutinsky formula except that the continuous level 
density used by Strutinsky is replaced by the discrete levels ё~„. However, 
the methods of fitting the smooth density and levels respectively are quite 
different. Strutihsky's method, as well as the statistical method, uses 
the levels for one deformation and smoothes over v, using levels high above 
the Fermi surface, which is a complication when using e. g. a Woods-
Saxon potential, which gives a limited number of bound excited states. In 
the present model the smoothing is done over different deformations. As 
will be shown later, smoothing also over v improves the results somewhat, 
but only levels below the Fermi surface have to be used. Since only 
physically relevant levels and deformations are used, the method can be 
applied to any potential without complications. 

T 1 1 1 1 1 1 г 1 1 г 

FIG. 6. Neutron shell correction energy for 238Pu. The solid curve is calculated with the Strutinsky procedure. 
The dashed curve is calculated using the direct fitted levels of Eq. (2. 6), while the dot-dashed curve is 
obtained after a smoothing also over v (cf. Eq. 3.11). 



2 1 0 BENGTSSON 

-0.4 -

0 50 100 150 200 
N 

FIG.7. The parameters A N i appearing in Eqs (3.5) and (3.7) as functions of the neutron (or proton) number N. 
The solid curves give the appropriate parameters for the potential (1.2) and the dashed curves give the 
parameters for the potential (1.3). Separate curves for protons (thin lines, (p)) are given only when they 
deviate by more than 0. 0025 from the corresponding neutron curves. The parameter Ajsji has been omitted 
since it would not have been separable from zero in the scale of this diagram. Dot-dashed lines show the 
values obtained from Eq. (2.5). 

Although the smooth energies are differently fitted in the two procedures 
the resulting shell energies are very much alike as is seen from Fig. 6. 

The calculation of the shell energy can be carried out in a somewhat 
different way. In Eq. (2. 1) f„(e) takes different values for every value of v. 
The variation however is small, and Eq. (2.1) might be rewritten as 

£ ' ( e ) = A • F . , ( E ) • Mu 
v v N о (3 .2) 
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if FN (e) is chosen in a suitable way. F o r example, if the shel l energy is 
not to change, the following re la t ion must hold 

N/2 
Z A f (E ) 

F . . ( e ) = ^ (3.3) 
П XA 

v 

Thus FN(e) is a mean value of fu(e), v s N / 2 , and for a given nucleus 
FN(e) has the same value for a l l levels independent of the value of v. F o r 
heav ie r nuclei f„(e) and FN(e) come ve ry close to each other, and the 
corresponding single par t ic le level schemes (Eqs (2.1) and (3.2)) differ 
significantly only for the lowest 20 o r 30 leve ls . 

Using the function FN(e), the shell energy can be wri t ten 

N/2 N/2 
E . , , = 2 T. e - 2Йш F . . (E) £ A she l l - v о N , v v=1 v=1 

(3.4) 

where 3• 
FIMU) = V ' T " N 1 " T "N2*- ~ " N 3 " T " N 4 ' ( 3 . 5 ) 
F N U ) = Ь + A N 1 e + V Е 2 + ^,J + Л -

The average behaviour of the coefficients ANi is given in F ig . 7 for neutrons 
in the potential (1.2). If the Eqs (3. 2) and (2. 5) a r e compared it is evident 
that (FN (e))3 d i rec t ly cor responds to the volume conservat ion condition 
(2. 4), which might be redefined a s 

о 
0 1 

(3.6) Fje) о ' N 
This quantity is slightly different for different nuclei because of the N 
dependence of FN(e). The p r ime is used to distinguish toj, from the c o r r e 
sponding value in Eq. (2 .4) . 

Introducing AN0 = a„0/2 (v = N/2) the modified volume conservat ion 
gives _ 

E 
N N = " ^~ГГ = c o n s t > (3. 7) 

for al l deformations in correspondence to Eq. (2. 2). Here EN = ey is the 
energy of par t ic le N. It a lso follows that 

N/2 N/2 N/2 
E , , , = 2 Z e - 2« 8 £ A = 2 E e - const. (3.8) she l l . v о „ v „ v ' v=1 v=1 v=1 

Equations (3. 6) and (2. 4) explain the behaviour of the curves in F ig . 1. 
As the \ o n pa r t of the potential (1 . 1) leads to different values of FN(e) 
for the two a l te rna t ives of Vcorr given by Eqs (1. 2) and (1. 3) respect ive ly , 
the use of Eq. (2. 4) gives the summed energy Lev a smooth t rend, which 



SHELL CORRECTION ENERGY VOL. CONS. PROCEDURE 
MOD. HARM. OSC. 

FIG. 8. Shell correction energy for neutrons as a function of deformation and neutron number, calculated as t&v - Z£v where e"v has been determined after a smoothing 
also over v. The regions marked with blue and green colours have negative shell energies, while the red and violet colours stand for positive shell energies. In the 
yellow region, -1.0 MeV < Esnen < 1.0 MeV. Each colour extends over 2.0 MeV. 
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FIG. 9. Same as Fig. 8, but E^ „ is calculated with the Strutinsky procedure. 
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i s determined by the quotient ÜQ/UL Although this quotient is close to one 
it affects the sum £e„ by some hundred MeV, because the sum itself is 
of the o rde r of 10 000 MeV in the actinide region. However, the a l te rnat ive 
use of Ug m Eq. (3. 4) does not change E she l l by m o r e than a tenth of an 
MeV or l e s s , which is negligible. Notice that , with the vers ion (1. 3) of 
the potential , the sum £e„ reproduces the shell energy comparat ively well 
a l so without redefining ion. This is in fact quite natural , since the volume 
conservat ion condition is determined from the Ig -deformation, and for 
the potential (1. 3) this deformation has been considered a lso in Vcorr , which 
might imply that u'0 for this potential should be much c loser to u. than it 
is for the potential (1. 2). This is confirmed by F ig . 7, which shows the 
coefficients appearing in the express ion for uj, (Eqs. (3. 5) and (3. 6)) and 
for w0 (Eqs (2. 4) or (2. 5)). Note that the A =242 values of the p a r a m e t e r s 
к and n (see Refs [2,3]) appearing in Eqs (1.2) and (1.3) have been used 
in all the calculat ions. Considerat ion a l so of the var ia t ions with m a s s 
number in к and ß might change the curves in F ig . 7 somewhat. 

The method of calculat ing shell energies by rede te rmin ing the volume 
conservat ion condition has been studied by Hillman [13] who p r e s u m e s 
that Ee„ should a lso contain the surface energy a s given by Myers and 
Swiatecki [14]. This gives of course a different value of u0. 

Of grea t i n t e res t a r e a lso the a t tempts to de termine the shel l energy 
by smoothing Ee„ over the nucleon number A (protons or neutrons) assuming 
that 

Zev= С A + С .А 2 / Э + С , А 1 / 3 + . . . + E . 1П (3.9) 
ö l 2 s h e l l 

Here CQA is identified a s a volume t e r m , C A 2 / 3 a s a surface t e r m and 
CgA1'3 as a curva ture t e r m . Higher t e r m s might be included. By letting 
A become ve ry la rge (of the o rder of severa l thousand) it is possible to 
de te rmine the constants . A p re l iminary calculation has been done in Lund 
by T h e g e r s t r ö m [l€], who finds that C0 = 44. 03 MeV for a spher ica l 
nucleus. The other constants a r e difficult to fit, but Siemens and Sobiczewski [ 16] 
seem to have succeeded well. F o r a pure harmonic osci l la tor it can be 
shown analytically that C0 = (34/3/4) X 41.0 MeV, C2 = 0. 0 MeV, and 
C3 = (32 / 3 /8)X 41.0 MeV. The surface t e rm is thus zero . In fact, C0 can 
be derived from Eq. (2. 6). If it is assumed that au0 = cons t . , one finds 

я a n 1 / 3 

Co= — . ( j ^ ) . 4 1 . 0 MeV (3.10) 

which for a„0 = 5. 90 gives C0 = 44. 10, in good agreement with T h e g e r s t r ö m . 
It is then assumed 1 that fiu0 = 41. 0 A"1''3 MeV. As is seen from F ig . 5, au 0 
depends on v (and thus a lso on N). If this dependence could be determined 
it might be possible to es t imate also Cj and C2. However, a„0 contains 
some fluctuations caused by the remaining smal l shell effects. The same 

1 This is really not correct since A in this case stands for the proton (or neutron) number. In a more 
serious calculation a more proper value must be used. 
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is the case for A№ (i = 1, . . . 4). In an attempt to improve the calculations, 
the smooth curves shown in Fig. 7 were fitted to ANi. The v dependence 
is, however, very weak and the magnitude of the fluctuations decreases 
rapidly to zero for higher v-values. Thus, except for very light nuclei, 
nothing is gained by considering levels above the Fermi surface, so the 
conclusions drawn in the beginning of Section 3 still hold. The shell energies 
calculated after such a smoothing remain somewhat more about the 
Strutinsky shell energies, as is seen from Fig. 6. Figure 8 also shows 
shell energies calculated after smoothing over v (v s N/2), which should 
be compared with the Strutinsky shell energies in Fig. 9. 

It must be emphasized that the above method for calculating shell 
energies is not developed to the same degree of precision as the Strutinsky 
procedure. Consequently no recommendations can be made, for example, 
about how many deformations one has to include. At any rate, -1.0<e<1.0 
is insufficient to smooth out the shell effects completely, as is seen from 
Fig. 5. If on the other hand the smooth quantities resulting from the 
Strutinsky procedure are studied as functions of the deformation they 
behave very smoothly. For example, the Fermi energy follows Eq. (2. 6) 
within 0. 02% with coefficients which agree well with those found in the 
fitting of e~y. 

Considerations of this kind lead to a more general approach to the 
calculation of shell energies. Any quantity such as e„, Zev etc. is a function 
of a number of independent variables, e.g. ev = e„(N, (Z), v, e, e3, e4, . . . ) . 
The same is true for the corresponding smooth quantities ê ,, Ee~u etc. It 
must be required that the smooth quantities really behave smoothly in all 
the variables. To determine if this is the case it is necessary to compare 
the results of smoothing prescriptions exploiting different variables, some 
examples being given in this section. A more general investigation of this 
kind ought to give a good evaluation of the reliability and accuracy of 
different prescriptions for calculating shell energies. 

Note that the smooth energy levels of Fig. 4 are calculated when f„(e) 
is replaced with fn(e), where 

F -F n -
f n + 1 ( £ ) = FN+2 + - Ä — v«1 V (3.11) 

n+1 

and FN(e) is the smooth version of FN(e) and n = N/2. It is preferable 
to do the smoothing in FN(e) since this function fluctuates less than f„(e). 

4. THE PAIRING ENERGY 

One of the more uncertain factors in the calculation of the pairing 
energy is whether the pairing force 

1 N-Z 

A L go - g1 A ' 

(plus sign is for protons) is constant or dependent on the nuclear surface 
area, i. e. g0 and g : should be deformation dependent. The later assumption 
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FIG. 10. The difference in the pairing energy between the cases G~S and G=const. (dotted curve), compared 
with the difference between the corresponding smooth pairing energies calculated from Eq. (4.3) (solid curve). 

is based on the fact that it is only the orbitale located near the surface 
which contribute to the pairing energy, and G is simply postulated to be 
proportional to the nuclear surface. 

It is also known (Refs [4, 7,17]) that the different assumptions about 
G necessitate different parameter values in the liquid-drop energy formula. 
While the case G~S agrees with the Myers-Swiatecki formula 
(Ref. [14]), a revised formula has to be used in the case G = const, if the 
fission barr iers are to be correctly reproduced. For example, one could 
change the surface asymmetry constant from the value 1. 7826 given by 
Myers and Swiatecki to 2. 53 (Ref. [4]). This means that the pairing energy 
contains a certain smooth "liquid-drop-like" part. In this section this 
part will be determined. 

Denoting the smooth part of the pairing energy by <Epa i r>, the quantity 
<E.air>G„,s- <E air %=const can be determined as the difference between the 
liquid-drop energies for the two cases, since the liquid-drop formula was 
changed just to compensate for the average change in pairing energy. 

To get the best possible value of <Epa i r>G_s-<E air>G_const the liquid-
drop energies are refitted according to Pauli and Ledergerber [18]. For 
the modified harmonic oscillator one gets (see also Fig. 10) 

< E p a i r > G ~ S 
<E p a i r G=const 

= E 
l i q . d r o p ' G = c o n s t E l i q . d r o p ' G ~ S < A E p a i r > 

where 

(4.2) 
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<ДЕ . > = -аЛ1-а 12)А2/3 
pair 1 2 

а 1 = 0 .490 MeV 

В Се) - В (е ) s s o . 

а 2 = 1.3£ 

ео = ° ' 2 5 

I = N - z 

(4.3) 

А 

Bs is the re la t ive surface a r e a . 

The constants a re determined at the second saddle point using the 
calculat ions by Möller [4], and the formula is re levant only for the l ighter 
act inides and to the extent that it is assumed that the difference in pai r ing 
energy can be approximated with a surface energy. F o r the detai ls of the 
fitting see Ref. [19]. Th i s calculation does not give any values of <E p a i r > G ^ s 
or <E„a;r >c=const • However, <E p a i t >G=const can be es t imated to be about 
-2 . 3 MeV (Ref. [2]). 

However, the use of the smooth levels of e i ther Eq. (3. 2) or Eq. (3. 11) 
m a k e s it possible to calculate < E p a i r > . If it is assumed that the levels 
just above the F e r m i surface a l so a r e descr ibed e i ther by Eq. (3. 2) or 
Eq. (3. 11) it is s imple to calculate what pai r ing energy the smooth levels 
give. It is na tura l to identify this energy a s <Ep a i r>. This energy has been 
calculated both for G = const, and G ~ S . The r e su l t s confirm within a 
qua r t e r of an MeV those given by Eq. (4. 3). Th i s is a lso i l lus t ra ted in 
F ig . 11. To give an idea of the numer ica l r e s u l t s , it can be mentioned 
that <Ep a i r>G 

=const for the potential (1 . 2) is about -2'. 35 MeV for m a s s numbers 
around 175 and d e c r e a s e s slightly with A to about -2 . 50 MeV for A ~ 2 5 0 . 
Th i s d e c r e a s e is dependent on the dec rea se of &v0. Since ш0/Ц, i nc r ea se s 
with deformation, <Epaii >G=const becomes dependent on deformation and, for 
e = 0. 95, is about - 1 . 95 MeV for A - 1 7 5 and -2 .05 MeV for A - 2 5 0 . F o r 
the potential (1. 3) <Ep a l r>G = c o n s t is about -2 . 20 MeV for A ~ 1 7 5 and about 
-2 . 35 MeV for A ~ 2 5 0 . The var ia t ion with the deformation is negligible 
in this case . F o r comparison, Jensen and Damgaard [20] obtained 
fluctuating values in the in terval - 1 . 4 to - 1 . 9 MeV for a Woods-Saxon 
potential using a continuous level density g(e) a s determined by the Strutinsky 
p rocedure . 

At any r a t e , the introduction of a consistently determined smooth 
pa i r ing energy m a k e s it possible to separa te that pa r t of the total energy 

Tot shell.dep. shell.indep. (4.4) 

which depends on shel l effects, namely 

N/2 N/2 . 
E . ,, , = 2( Z. e - J, e ) + E . -<E • > (4.5) shell.dep v = 1 v v=1 v pair pair ' 
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FIG. 11. Total pairing energy (protons + neutrons) for 238Pu. The solid curve is for the case G= const, and the 
dashed curve is for the case G~S. The corresponding smooth energies, <E„air>G =const.= "2- 3 M e V a n d 

c-pair'c^s^ calculated from Eq. (4. 3), arealsoshown (dot-dashed curves). The apparent bad agreement 
is because the smooth curves are the result of a fit using many nuclei. For some other nuclei the smooth 
curves lie almost entirely below the real curves. The dotted curves show the smooth pairing energy (for 
G=const, andG~S respectively) calculated from the smooth set of energy levels ev. 

This is in fact the microscopic energy given in Eq. (1. 6). However, the 
name shell-dependent energy is preferred, because Eshell dep_ indicates 
how much the energy of a real nucleus deviates from the energy of a 
corresponding nucleus without any shell structure. The remaining part 
of the total energy is then independent of the shell structure and equal to 
the total energy of the shell-structureless nucleus. 

The shell-dependent part of the energy fluctuates around zero. (See 
e. g. the figures in Ref. [21]). Different prescriptions for the pairing strength 
essentially cause a change of the magnitude of the fluctuations. 

Since Eqs (4.) and (4, 5) ensure that all smooth energy contributions 
must be contained in the shell-independent energy, Eshell indep>, this becomes 
independent of the specific choice of the pairing strength, which in fact 
is the content of Eq. (4. 2). It is evident that EsheU indep. must be equal to 
the Myers-Swiatecki liquid drop energy (or any equivalent energy) plus 
the smooth surface-dependent pairing energy if it is assumed that G~S. 
Recent calculations by Sobiczewski and co-workers [22] give some support 
to this assumption. If on the other hand it is assumed that G = const. , 
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Esheii indep. m u s t stiU have the same numerical value. This is true since 
Eshell indep should reproduce the smooth trend of a number of experimental 
data, and insofar as no particular single particle model has been used to 
optimize the parameters (which in fact Pauli and Ledergerber do), EshelI indep_ 
is determined only by the experimental data. However, the macroscopic 
and microscopic theories must agree in the sense that if in the microscopic 
theory a surface-dependent pairing force is used, this must also be the 
case in the macroscopic theory, etc. However, different macroscopic 
models might reproduce the experimental data more or less well. For 
example, the surface-dependent pairing energy behaves very much like a 
surface energy due to deformation but not due to mass number. Thus the 
equivalence between the pairing and surface energy stated in Eq. (4. 2) 
might be used successfully for the description of the fission barriers, but 
not for calculating nuclear masses. In this latter case the Myers-Swiatecki 
mass formula combined with a surface-dependent pairing energy reproduces 
the experimental masses. The revised liquid drop formula (with ks = 2. 53), 
which reproduces the barriers in connection with a constant pairing energy, 
fails to reproduce the masses. However, it must be required that any 
reliable macroscopic mass formula reproduces the experimental masses 
at least as well as the one given by Myers and Swiatecki [14]. Thus, in a 
theory using a constant pairing force, Eshell i ndep- must contain some correction 
terms in addition to the terms of the type given by Myers arid Swiatecki, 
in order to bring the masses back to the experimental values, which do not 
allow for much variation; i. e. the value of EsheI1 indep_ must not change 
although it is described by different formulas. 

The simple expression for the surface energy (with ks = 2. 53) used 
previously (Refs[2,4]) in connection with a constant pairing force is in fact 
not even good for describing the fission barriers. The difference in the 
calculated barriers (of the order 1 MeV) between the two cases of pairing 

FIG. 12. Resulting total energy change caused by the change of the pairing strength from G = const, to G~ S. 
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force mainly reflects the fact that the liquid drop formulas used do not 
fulfil Eq. (4. 2). If Eq. (4. 2) is fulfilled, the remaining difference between 
the two cases of pairing is the one illustrated in Fig, 12, which means that 
the choice of pairing strength is not so important as has been thought 
(Refs [2, 4, 8,17]). The difference is in fact less than 0. 5 MeV at the second 
barrier . 

5. SUMMARY 

A convenient tool for calculating the shell correction energy has been 
obtained by introducing the smooth single particle levels. By separating 
the shell correction energy (which includes the shell-dependent part of 
the pairing energy) from the smooth energy, a more well-defined value of 
the smooth energy is obtained which hopefully could be used as a guide in 
the attempts to determine an improved liquid drop formula. However, 
more work has to be done to bring down the er rors in the numerical 
calculations. It is also necessary to include more general deformations. 
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Abstract 

HARTREE-FOCK CALCULATIONS OF THE FISSION BARRIERS OF PLUTONIUM ISOTOPES. 
Complete self-consistent calculations with a constraint on the quadrupole moment have been performed 

to obtain the deformation energy curve of M0Pu beyond the second barrier. Preliminary calculations of the 
excitation energy of the isomeric state and the first barrier height of 238Pu and 244Pu are also presented. 

These calculations were done using a phenomenological effective interaction introduced by Skyrme 
and used extensively in Hartree-Fock calculations by Vautherin and Brink. This force has been supplemented 
with the standard pairing interaction. Within the framework of this parametrization of the effective force, 
an improved set of parameters has been determined which gives total nuclear binding energies within an 
accuracy of less than 8 MeV for the whole chart of nuclides and reproduces within ± 3°S> the quadrupole moments 
of permanently deformed nuclei. 

The solution of the Hartree-Fock equations is obtained by expanding the Hartree-Fock states into deformed 
harmonic oscillator eigenstates. A deformation-dependent prescription for the truncation of the oscillator basis 
is used. Particular attention has been paid to insure the independence of our results with respect to basis para
meters. However, for very large deformations such as those occurring near the second fission barrier of heavy 
nuclei like M0Pu, the basis used here (which would correspond in the spherical case to 13 major shells) appears 
to be nearly sufficient. Owing to the complexity of numerical calculations, axial symmetry and left-right 
reflection symmetry have been assumed so far. 

Two different prescriptions have been used to introduce pairing correlations. The first consists in 
keeping a gap constant as a function of deformation for both protons and neutrons. The second introduces 
a pairing force proportional to the surface. 

For the height of the first barrier Ед as well as for the excitation energy ET of the isomeric states a 
reasonable agreement with experiments (EA = 9.0 MeV, E, =* 3.0 MeV in M0Pu) is obtained. However, this 
is no longer the case for the second fission barrier (Eg - 13.0 MeV in ^ 'Pu) . This may be due to the force 
but there are also errors due to the imposed symmetries and to the lack of numerical convergence at large 
deformations. 

1. INTRODUCTION 

One of the mos t s t r ik ing s u c c e s s e s of the phenomenological calculations 
using the Strut insky p resc r ip t ion [ 1] has been the predict ion of doubly humped 
fission b a r r i e r s for some actinide [2-6] nuclei . On the other hand, m i c r o 
scopic calculat ions using the Skyrme effective interact ion [ 7, 8] have a l ready 
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been shown to give the experimental deformation properties for light and 
medium nuclei [8-12] and to be very close to phenomenological predictions 
in these regions of the mass table. It is then interesting to see if a self-
consistent calculation of the fission energy curve of heavy elements using 
a nucleon-nucleon effective interaction leads to the same kind of agreement 
with experimental data. We present here a calculation performed at Orsay 
for atypical nucleus of the actinide region, 240Pu, and some preliminary 
results concerning two neighbouring nuclei, 238Pu and 244Pu. 

2. METHOD OF CALCULATION 

We have used the Skyrme effective interaction, which consists of a 
two-body short-range potential and a three-body zero-range interaction, 
to simulate a linear dependence on density with the set of parameters SIII 
displayed in Table I. This set of parameters has been fitted to the nuclear 
binding energies over the whole mass table [ 11]. 

In Pig. 1 the error in the total binding energies is shown for more than 
100 nuclei covering the periodic table. The calculations are made within 
a spherical self-consistent formalism including an approximate treatment 
of pairing. Center-of-mass motion has also been taken into account in an 
approximate way. For nuclei which do not belong to deformed regions one 
sees that the mean error in the total binding energy is less than 5 MeV. 
In the rare-earth region, where the decrease of total energy due to defor
mation is known to be very important, we have done deformed self-consistent 
calculations [12]. Once the deformation correction is properly taken into 
account, it appears that the deviation from experimental masses is again 
less than 5 MeV. We have particularly insisted upon a precise reproduction 
of nuclear masses, because numerous works [ 13-14] have shown that the 
liquid drop parameters, which are determined by a broad fit to the masses, 
are strongly correlated with good prediction of fission barriers heights. 

TABLE I. PARAMETERS OF THE SKYRME INTERACTION SIII USED IN 
THESE CALCULATIONS 
Notation is that of Ref. [7], i . e . the two-body matrix elements in 
momentum space are given by 

<S|v |k '> = y i + x ^ J + i t j C P + k ' V t . j k - k' +iW0(a1 + a 2 ) . (kXk') 

and the three-body force is chosen to be t36(r1 - r2)6(r2 - r3) 

to 

(MeV • fm3) 

-1128.75 

ti 

(MeV. fm5) 

395.0 

t2 

(MeV - fm5) 

-95.0 

ts 

(MeV • fm6) 

14000.0 

*o 

0.45 

W0 

(MeV • fm5) 

120.0 
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FIG.l. Error in total binding energies using the SIII interaction, as a function of the mass number A. 
Calculations are made in the spherical formalism (Ref. [7] ) . The results must be corrected by deformation 
energies in the rare earth and actinide regions. The path in the chart of the nuclides is defined as follows. 
Black dots correspond to calculations of nuclei with the addition of one or two neutrons with respect to the 
neighboring lighter calculated nucleus. Black stars correspond to the addition of two protons, and black 
squares to the simultaneous addition of one proton and one neutron. 

The solution of se l f -cons is ten t field equations with the Skyrme in te r 
action i s equivalent to the minimizat ion of a functional gf' depending on 
the density p and the kinetic density т [ 8] defined as 

•I »?!*• and • I * 
where the Ф; r e p r e s e n t the individual single par t ic le s t a t e s , and the pair ing 
effects a re contained in the usual B . C . S . quantit ies u; and v j . The functional 
l 8, 9] gf' is given in t e r m s of the hamiltonian [7] g? by 

^ - = ^ - f ( u i j V i ) 

In $ the Coulomb exchange contribution i s included within the Sla ter 
approximation. We have used two different forms for the function f 

(A) f f U i . V ; ) = A E U J V J 
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where A r e p r e s e n t s the energy gap; i ts value has been extracted from 
odd-even differences in the exper imental m a s s table and has been kept 
constant along the deformation path [ 9] (constant gap) 

(B) f(ui.Vi) = ! ( Е и т ) 2 

where G is the usual pair ing interact ion s t rength . Its value has been 
adjusted to reproduce exper imenta l quas i -par t i c le energies at the ground 
state deformation. Phenomenological calculations [2] using the s a m e kind 
of pair ing in teract ion have shown that it is neces sa ry to make G propor t ional 
to the liquid drop surface in o rde r to reproduce co r r ec t fission b a r r i e r 
heights . In a microscopic se l f -consis tent calculation, the surface of the 
nucleus is not geometr ica l ly well-defined; therefore we have taken G 
proport ional to the surface of an ell ipsoidal liquid drop with the quadrupole 
moment of the se l f -consis tent solution (surface pair ing) . 

In this paper we p r e sen t calculations of fission curves corresponding 
to both p resc r ip t ions A and B . 

F o r technical r easons we have r e s t r i c t ed ourse lves to axially symmet r i c 
shapes . In addition we have also imposed lef t - r ight ref lect ion s y m m e t r y . 
These two r e s t r i c t i ons a re of g rea t importance for the case of 2 4 0Pu, where 
phenomenological calculations have shown that 7 ~ 10° for the f i rs t b a r r i e r 
[ 15] and that the second b a r r i e r is not lef t - r ight symmet r i c [3 , 16 ] . We 
shall d i scuss the possible implications of these r e s t r i c t ions in Section 3 . 

To descr ibe the fission energy curve it is neces sa ry to constra in the 
nucleus away from i ts min ima . We have adopted a const ra int on the quadru
pole moment (Q). Since the necking phenomenon, which r equ i r e s m o r e 
moments than Q, is expected to occur beyond the second b a r r i e r , it is 
probably reasonable to use a quadrupole constra int (excluding hexadecapole 
o r higher multipole const ra ints) up to the second saddle point. To obtain 
deformation energy curves exhibiting inflection points we have chosen a 
quadrat ic form for the constra int [ 9 ] . We expand the individual single 
par t ic le wave functions in eigenvectors of a deformed osc i l la tor well [ 8, 17] . 
These e igenvectors a r e charac te r ized by four quantum numbers : the axial 
quantum number п& the perpendicular quantum number n x , the project ion 
Л of angular momentum on the symmet ry axis of the nucleus, and the spin 
project ion £ on the same ax i s . The osci l la tor well is defined by the two 
frequencies wz and u ± , or equivalently 

b = •Jmujb with co0 = wz u± and q = — 
z 

At a given deformation we se lec t all the e igenvectors satisfying the condition: 

- n u z ( n z + i ) + -ftwx(n± + 1) S-hw0(N+ 2) 

The number N cha rac t e r i z e s the s ize of the b a s i s . We have made our 
calculations with N = 12, which at the spher ica l point cor responds to 13 
osci l la tor she l l s . We have also checked the convergence of our r e su l t s by 
calculations with N = 14 for the maxima and minima of the fission curve . 
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FIG.2. Calculated deformation energy curves over the fission barrier (with N = 12). Dashed and solid curves 
correspond to constant-gap and surface-pairing calculations, respectively. Energies are expressed in MeV. 
Mass quadrupole moments are given in barns. Three calculated points with a larger basis (N = 14) are also 
shown. Double arrows represent calculated slopes of the tangenb to the deformation energy curve 
(for N = 14) (Ref.[9]). 

Special attention has been devoted to a precise estimation of integrals 
occurring throughout the calculation. Indeed, the high degree of the basis 
polynomial wave functions corresponding to N = 12 or 14 requires a large 
mesh of integration points. Therefore we have used a 16-point Gauss-
Hermite mesh for z integration and a 15-point Gauss-Laguerre mesh for 
the perpendicular space. Finally we have determined and used at each 
deformation the parameters b and q which minimize the energy functional 
as discussed in Ref. [ 9] . 

3. RESULTS 

Deformation energy curves for both constant-gap and surface pairing 
calculations are plotted on Fig. 2. 

The calculated ground state deformations are in good agreement with 
experiment. For example, in the surface pairing calculation we have 
obtained for charge quadrupole (Q) and hexadecapole (h) moments1, 11. 29 
barns and 1. 06 barns to be compared with Coulomb excitation data [ 18] 
(11.58± 0.06 barns and 1.15 ± 0.28 barns2). 

Defined as Q = < 2 r P2> and h = <r4 Yi6>. 
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TABLE II. VARIATION OF VARIOUS CALCULATED QUANTITIES WITH 
DEFORMATION 
For a given m a s s quadrupole moment Q in ba rns , we have evaluated 
ß2 and ß4 p a r a m e t e r s of a sharp-edged liquid drop for both m a s s and 
charge dis t r ibut ions . The Myers and Swiatecki value rn = 1. 2049 fm of 
the radius p a r a m e t e r has been used. The quantity V = \A(z2)> <(p2X in 
a rb i t r a ry units, is also given. The expectation values of Coulomb energy 
(direct plus exchange in the Sla ter approximation) a re given in MeV, and 
those of J 2 in units otfr. 

Q 

-0.08 

19.54 

28.48 

37.53 

49.90 

68.36 

81.84 

95.77 

125.84 

169.72 

202.11 

в? 
.0.001 

0.173 

0.243 

0.319 

0.453 

0.569 

0.660 

0.720 

0.782 

1.010 

1.183 

ß2 

0.001 

0.174 

0.241 

0.313 

0.447 

0.565 

0.650 

0.724 

0.767 

0.997 

1.164 

ß? 

0.015 

0.044 

0.074 

0.069 

-0.032 

0.024 

0.050 

0.116 

0.307 

0.351 

0.398 

я м 

Di 

0.015 

0.044 

0.073 

0.068 

-0.032 

0.026 

0.052 

0.106 

0.307 

0.355 

0.400 

V 

152.9 

151.6 

151.6 

152.3 

153.9 

153.2 

153.7 

154.2 

154.8 

156.2 

160.4 

•^coul* 

979.42 

980.09 

977.64 

972.87 

965.82 

956.85 

948.62 

939.99 

921.52 

895.82 

876.29 

<f> 

366.6 

959.4 

Spherical 
point 

Ground State 

Near first 
barrier top 

Isomeric 
state 

Near second 
barrier top 

Values of the ß2
 a n d $4 p a r a m e t e r s of a sharp-edged liquid drop with 

the se l f -consis tent quadrupole and hexadecapole moments a r e given in 
Table II. Inspection of this table shows that charge and m a s s distr ibutions 

a re ve ry s imi la r : |ßg - ßf \ * 0-03 and | ßf - ß " I ^ 0 . 0 1 . 
A crude es t imat ion of the volume is also given in this table, i . e . a 

quantity V proport ional to v<z2> <p2)>, which itself is proport ional to the 
volume of a pure el l ipsoidal shape .This quantity exhibits a minimum near 
the ground s ta te deformation and local maxima for spher ic i ty and at the top 
of the f irs t b a r r i e r . Variat ions from the spher ica l value a r e l e s s than 1% 
to a point beyond the i somer i c s ta te . P a s t this point, V inc reases rapidly. 
Bear ing in mind the c rudeness of the es t imat ion, this is consistent with a 
rough volume conservat ion ajid s eems to indicate, as expected, that in the 
vicinity of the second b a r r i e r the nuclear shape differs m o r e and more from 
a pure el l ipsoid. A m o r e in teres t ing point concerns the dec rease of V from 
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FIG. 3. Neutron and proton pairing gaps (in MeV) from the surface pairing calculations, as a function of mass 
quadrupole moment in barns. Solid and dashed curves correspond to neutron and proton curves respectively. 

sphericity to the deformation defined by Q ~ 20 barns, which is correlated 
with ah increase of the Coulomb energy. This effect, previously observed 
in a self-consistent calculation [9] of 150Ce, seems to indicate a contraction 
of the nucleus which produces a bump of ~ 3 MeV in the Coulomb energy. 

The secondary minimum is found to correspond to a deformation 
ß ~ 0. 65 or to a ratio of axes for an equivalent ellipsoid q ~ 1. 85, This 
is roughly consistent with theoretical estimates based on the special 
degeneracy of the harmonic oscillator level scheme [ 19] around q ~ 2 
(for a number of neutrons around 146). It is also in agreement with the 
deformation deduced from the measured rotational properties in the second 
well [ 20] . 

In Fig. 3 proton and neutron pairing gaps for surface pairing calculations 
are exhibited. Fluctuations in these curves imply shell effects. Apart from 
an increase of the gap versus deformation, one sees that the ground state 
shell effect is due to both proton and neutron single particle spectra, while 
neutrons alone are responsible for the shell effect at the isomeric state. 

We turn now to the discussion of calculated energies. As expected, 
constant gap calculations give higher fission barriers than surface pairing 
calculations. For the second barrier the difference is found to be 
7.5 MeV. As in previous phenomenological approaches [2] we consider 
energies calculated with surface pairing. Before comparison with experi
ment and in order to put the results in proper perspective we make the 
following points: 

(a) The static character of our calculations. One has to consider the 
possible distortion of the effective deformation energy curve when 
taking into account the effect of the inertial parameters evaluated e.g. 
by some generator coordinate or other method. In particular such a 
method will be necessary for the actual evaluation of fission properties, 
including life-times. 

(b) Self-consistent solutions are only intrinsic and, for even-even nuclei, 
the physical 0+ground state needs to be projected out. Assuming a 
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perfect rotat ional cha rac t e r of the projected spec t r a one can es t imate 
[21 , 22] the corresponding energy gain (using the usual notation) by 

intrinsic - E 0 + < J 2 > 

F r o m exper imenta l moments of iner t ia for ground s ta tes [23] and 
i s o m e r i c s ta tes [20] one calculates a rotat ional zero point energy for 
these two deformat ions . Such an evaluation, in the case of self-
consistent calculat ions, is free from the c r i t i c i sm of Ross and Warke [24] 
which applies only to Strutinsky-type calculat ions. In cont ras t with the 
r e su l t s of Ref. [ 2 2 ] , r a t h e r different cor rec t ions for ground and i somer i c 
s ta tes a re found (2.4 and 3.2 MeV, respect ive ly) . 

(c) Even though the fit of m a s s e s obtained in se l f -cons is tent calculations 
with our effective in teract ion i s ve ry sa t is factory, i t cannot be excluded 
that the liquid drop p a r a m e t e r s deduced from it a r e not yet sufficiently 
good to allow a perfect reproduction of fission b a r r i e r heights . Work 
is in p r o g r e s s to de te rmine e .g . the surface tension p a r a m e t e r by 
var ious approaches . 

(d) Convergence of our calculations have been tes ted by calculations with 
an enlarged bas is (N = 14). Such t es t s indicated that the difference 
between N = 12 and N = 14 calculations i s ~ 1 MeV for the second 
b a r r i e r height. This leads to an es t imate < 2 MeV for the dec rease 
of this quantity due to truncation effects. 

(e) It is expected that lef t - r ight asymmet ry is needed to descr ibe accura te ly 
the second saddle point [ 3 , 1 6 ] . The dec rea se of the corresponding 
b a r r i e r has been evaluated in Refs [3] and [16] to be ~ 3 MeV. A 
s imi l a r discussion could have been made for the f i rs t b a r r i e r , where 
the inclusion of - / -asymmetry is expected to dec rea se the b a r r i e r height 
by ~ 1 MeV [ 1 5 ] . 

Bear ing in mind the previous considerat ions (especially points (d) and 
(e)) one finds a reasonable agreement between calculated values and available 
exper imenta l data, summar ized in Table III. 

P r e l i m i n a r y calculat ions of 2 3 8Pu and 2 4 4Pu have been per formed for 
the height of the f i rs t f ission b a r r i e r EA and the i s o m e r i c excitation energy 
E j . They indicate that E . inc reases by 1. 4 MeV, going from 2 3 8Pu to 2 4 4 Pu. 

TABLE III. EXPERIMENTAL ESTIMATIONS OF HEIGHTS OF FIRST 
(EA) AND SECOND (EB) BARRIERS AND OF ISOMERIC STATE EXCITATION 
ENERGIES (E-L) 

Reference 

Bj^mholm 
and Lynn [25] 

Britt et al. [26] 

Weigmann and 
Theobald [ 27] 

EA 
(MeV) 

6.0 ± 0.2 

6.0 

6.05 

(MeV) 

2.0 ± 0.2 

2.0 

2.35 

EB 
(MeV) 

5.4 ± 0.2 

5.35 
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This trend seems in disagreement with recent experimental analysis [26]. 
Within the accuracy of the estimation, the quantity Ej seems constant for 
these 3 isotopes (4 MeV). 

4. CONCLUSION 

We conclude that the technical problems of self-consistent calculations 
are essentially solved, even for deformations over the fission saddle point 
in heavy nuclei. Bearing in mind the possibility that it may still be necessary 
to modify the effective force when all of the five points discussed above have 
been investigated, it appears that this type of calculation should be considered 
as quite reliable for purposes of extrapolation to new regions of the periodic 
table. It should also be said that proper dynamical calculations will probably 
require some form of self-consistent approach as a basis. Finally we point 
out that we have already quite remarkable agreement with single particle 
spectra, radii, shapes, masses and barriers with only 7 parameters in total. 
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DISCUSSION 

C.F . TSANG: Have you calculated the volume and surface energy 
coefficients for your Hartree-Fock results using the Skyrme force with 
your newly determined parameters and how do they compare with empirical 
values? One way to extract these coefficients is to calculate the smooth 
energy part of the Hartree-Fock result by means of the method described 
by Brack3. 

P . QUENTIN: There are many ways of extracting liquid drop parameters 
corresponding to a given effective interaction from Hartree-Fock results. 
One consists in playing the same game with calculated binding energies as 
liquid drop practitioners do with experimental ones. Another consists in 
calculating E/A and the symmetry-energy coefficient in nuclear matter. 
This gives -15. 87 and 28.15 MeV respectively for the SIII Skyrme inter
action, which is in good agreement with the usual liquid drop parameters. 
To obtain an estimate of the surface tension one could perform a semi-
infinite nuclear matter calculation. Finally, I agree that liquid drop para
meters could be extracted from the analysis of the behaviour of the smooth 
contribution E to the energy using Brack's formalism. All these various 
possibilities are now being pursued. 

3 See BRACK, M. , QUENTIN, P . , Paper 1AEA-SM-174/98, these Proceedings, Vol.1. 



IAEA-SM-174/98 

TEST OF STRUTINSKY'S METHOD 
USING HARTREE-FOCK RESULTS* 

M. BRACK''' 
State University of New York at Stony Brook, 
United States of America 

P. QUENTIN* 
Institut de Physique Nucleaire, 
Division de Physique Theorique, 
Orsay, France 

Abstract 

TEST OF STRUTINSKY'S METHOD USING HARTREE-FOCK RESULTS. 
New results of Hartree-Fock (HF) calculations are used to estimate the validity of Strutinsky's shell-

correction method in a way which is independent of the shell and liquid-drop models usually involved. 
Strutinsky writes the total binding energy E of a nucleus as sum of a classical liquid-drop (LD)-model energy 
Ецз and a shell correction energy SE, which is extracted from a sum of shell model energies ej. Here the 
HF energy is decomposed into three terms: EHF = 1 + oEj + SEj, where E is an average binding energy, &EL is 
a first order shell correction and 6Ej contains all higher order corrections, which usually are neglected in the 
Strutinsky method. By explicitly calculating EH F , E", and 6Ej, these higher order corrections are evaluated and 
the reliability of the shell-correction method from the HF point of view is estimated. The HF results were 
obtained using the effective 6-interaction of Skyrme in a new parametrization (SIH) which was recently 
demonstrated to give excellent fits to experimental ground-state energies, deformations and radii throughout 
the periodic table. A quadratic constraint of the quadrupole moment Q was used to obtain deformation energy 
curves. Pairing effects were included. Having calculated the self-consistent density matrix p, its average 
part p~ is determined by the usual energy averaging procedure. The HF energy can then be decomposed into 
the three terms stated above, of which ¥ i s solely dependent on smooth quantities like JT, 5E2 contains the first-
order and бЕ̂  all higher order terms in &p = p-~p- -As a result of these computations, it is found that the 
quantity ¥ indeed behaves exactly like a LD model energy as a function of deformation. This, in itself, strongly 
confirms Strutinsky's renormalization method. The corrections 6E2 are found to have values of ~ 0 . 5 to 
~ 3 . 0 MeV for nuclei with A ̂  100. Since only their oscillations contribute to the shell corrections, a 
reliability of the Strutinsky-calculated shell corrections to ground-state energies of ~ 1-2 MeV is concluded 
for medium and heavy nuclei. Similarly, the Strutinsky-calculated fission barriers are found to be affected 
by less than ~ 1 MeV. Fission lifetime estimates are expected to be lowered by inclusion of the second order 
correction. 

INTRODUCTION 

The present paper is devoted to an analysis of the shell-correction method 

introduced "by Strutinsky [1,2], in terms of Hartree-Fock (HF) theory. Ever 

since the shell-correction method was used in calculations of nuclear defor

mation energies, the question has been asked to what extent this method is 

consistent with entirely microscopic descriptions of the nucleus using real

istic effective nuclear interactions. Strutinsky pointed out [2] that the 

shell-correction expression for the total nuclear binding energy E = E__+<£E 
ljjj 
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t Present address: Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark. 

w Guest scientist from the Department of Theoretical Physics, CEA, Saclay. 
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can be obtained from a HF solution by defining an average part J of the self-
consistent density matrix § and expanding the HF energy around J . In this 
way, one finds 

EriF ^ Ё+ ёВл +<5E2 * ... > (i) 
where E depends only on smooth quantities like 5 , and the corrections о E. , 
<5*E , etc. are of increasing order in the difference o£> = О - 3 : 

<5"E„ oc CU$9Y2. (2) 

The fluctuations 6b of the density matrix are expected to be relatively small 
[3] and the shell-correction expansion (l) should therefore converge rapidly. 

So far, in all practical applications of the method, the second and higher 
order terms have been neglected. Usually, the smooth part E is replaced by a 
liquid-drop (LD) energy E , and the first order shell correction cTE (often 
also written as <TU) is extracted from the eigenenergies £<• of an average shell 
model potential [2-5]. An explicit expression for the second order shell cor

rection <5E„ has been given in terms of shell model quantities only [3,5]-

Bunatyan et al. [5] calculated £ E using Migdal's theory for a series of 

nuclei in the lead region and found £ E „ to be of the order of 0.5 to 3 MeV. 

Compared to the first order shell correction CTE. which varies in that region 

from +5 to -13 MeV, these numbers are indeed quite small. Knowing that the 

shell effects are largest in spherical nuclei and extrapolating the quoted 

results to deformed nuclei, one would not expect the higher order terms to 

affect the usually calculated fission barriers by more than 10.5 to 1 MeV. 

No consistent test of the shell-correction expansion (l) has so far been 

performed using HF results only. Bassichis et al.[6] proposed a method which 

differs slightly from the one outlined by Strutinsky and which will be dis

cussed in this paper; but no results have been published yet. The same 

authors [7] recently compared HF results to a shell-correction calculation in 

which the parameters of a Nilsson potential and the liquid-drop model were 

fitted to give the least deviations from the HF results. However, they did 

not include the pairing interaction which is known to smooth out the shell 

effects in deformed nuclei. Furthermore, their test is dependent on the 

choice of a LD and a shell model, and therefore their conclusions, quoting a 

30$ unreliability of the first-order shell correction, cannot be considered 

to be very significant. 

Within the last few years, the effectives-interaction of Skyrme [8] has 

been successfully applied in HF calculations of both spherical [9l and defor

med nuclei [10-lU]. Encouraged by their success, we have used these results 

to perform the decomposition of the HF energy into the shell-correction 
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series (l). By explicitly calculating its first two terms E and c^E-pWe can 

determine the sum of all higher order terms and check the convergence of the 

series (l) numerically. In addition, we can see whether the smooth part E 

really behaves like a LD model quantity. This test is thus entirely indepen

dent of any LD or shell model parameters; on the other hand, it only tests 

the Strutinsky method within the HF framework. The only quantity which has to 

be defined ad hoc and exceeds the HF theory is the smooth part g of the den

sity matrix. We define it here consistently by applying Strutinsky's energy-

averaging method [1-5]• 

In the first part of this paper we will present the detailed formalism 

of our calculations and in the second part present some numerical results 

and discuss their consequences. 

T H E M E T H O D 

We first repeat here the main equations of the constraint Hartree-Fock 

(CHF) method using Skyrme's effective interaction, as described in detail in 

earlier publications [9-11]-

The total binding energy of a nucleus with neutron and proton numbers N,Z 

and the total (mass-) quadrupole moment Q is found by minimizing the follow

ing functional: 

£{<T+V2wy> +{(,»,«&) * Е^ЛЛ ч > п^} = 0> (3) 

In eq.(3), V is the Skyrme interaction including spin-orbit term and Coul-
omb interaction [9,10]; 4 ул,<0» is a constraint of the quadrupole moment [11 ] 
and E . (Ал,*!*) is a pairing energy functional [10] depending on the single-
particle occupation numbers Л;4. The index q labels the isospin state of the 
nucleons, i.e. neutrons or protons. The Lagrange parameters^ and A. in (3) 
are used for the constraints 

< a> = a, w 
I n / = 2 , 1Y\? = Kl. (5) 

The expectation values are taken between Slater determinants of orthonormal-
ized single-particle wavefunctions ф. (r) which are expanded in a deformed 
harmonic oscillator basis тЧ£,(Еп: 

<tf*4 " 
(6) 



234 BRACK and QUENTIN 

The expansion coefficients cj* and the occupation numbers rfi define the den
s i ty matrices P \ J 

(7) 
ftp = ?«(г ' ?&(» • 

One of the advantages of the Skyrme interaction is that the expectation 
value of the total Hamiltonian H = T + V„, for an even-even nucleus can 

Sky c he written as integral over an energy density Си") [9]: 

< H > = [d3v 8k) (8) 

Here Ш is a relatively simple algebraic function of the spatial densities 
O r(r), the kinetic energy densities X- (r) and the spin-orbit densities Z3o(£^ 
defined by 

*,(3 (9) 

and 

? t o -- p. to *ftW , x(&U xh t t w x f (&i, 7 ф - 3 v ^ T 3f (£). 

The explicit expression for is [ 9 Д 0 ] 
1.1 

+ V C b ( r ) p p ( r ) 4 - | V C E ( V ) p p t K 
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with the Skyrme parameters t0, Ьл , ta, t3, xe and ¥0. V.,_(r) and V (r) are 

the direct and the exchange part of the Coulomb potential; the former is 

given by 

,1 

ter Ъу 

(lib) 

where the Slater approximation has Ъееп used [15]. 
The quadrupole moment Q of the nucleus can Ъе written in terms of the den-

sities о (<r)and the quadrupole operator q as 

(12) 
0. - < Öp > -«- < Q„ > , 

A variation of the wavefunctions leads to the following 
Schrödinger equation which defines the single-particle energies £?": 

= НПФ;(Г) = E ; $ ; ( E ) . (13) 

The effective masses mT(r), the local HF potentials U,. (r) and the spin-orbit 
form factors W,. (r) are given by 

u^s T^r + J^^^ri+f^-Up,^, M 

(15) 

+ < U V ^ B ( Y ) ) - iK(Y-3(r) ^ . ^ ( r ) ) , 

W^~- I^.(Vpfr)*-Vp(r)). цб) 
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Variation of the occupation numbers n.4 in (3) under the constraints (5) 
leads to a set of "generalized BCS equations" whose explicit form depends on 
the pairing functional chosen [10]. For the functional 

Ep,, - -2 .G 4 {^vo(4-vo) ' f (17) 
-i - - i 

>airing strengths Gn and G , one obtains the familiar BCS 
equations [16] 

1 
Si t ты«)х*^' ' (18) 

(19) 

Vautherin [10] and Flocard et al. [ll-llt] chose in some calculations a dif
ferent pairing functional 

E;uir = - 2 lÄ , (?A -41 -n^ j ' ) , (го) 
in which the gaps A» are kept constant and the пД are again given Ъу eq.(l9). 

As discussed in ref. [ll], a quadratic constraint 

f(/uJ<Q>) = ^c (jx-<qy)2 (2i) 
is suitable to describe the deformation energy curve E„_(Q) in a monotonic 
way with the Lagrange parameter ll. In eq.(2l), с is a constant which can be 
chosen once and for all in a certain region of nuclei [ll]. 

Once a selfconsistent solution of the HF equations (13) is found, the 
total binding energy of the nucleus under consideration is given by (8) and 
(10): 

F = P + t + t~ (22) 
where the kinetic energy E is the integral over the first term in eq.(lO) 
and the potential energy E . is the integral over the sum of all other terms 
in (10). The HF energy can also be expressed in terms of the single-particle 
energies Bf, by means of eq.(l3): 

E,F -- Z.e?r\? - BM + ER - ECowt + EpaiV. (23) 

In eq.(23) E is a rearrangement energy term coming from the density-dependent 
П 

part of the Skyrme interaction and the Coulomb exchange part; E . is a 
constraint energy. In detail 
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«=соМв1 - Q- ~ t f — |V=Q • (25) 
It is the expression (23) from which one has to start [2,3,5] in order to 

obtain the shell-correction expansion (l). For this purpose we must introduce 
a smooth part of the density matrix P. "Smooth" here means slowly varying with 
deformation Q and nucleon numbers H and Z. Strutinsky's energy-averaging pro
cedure [1,2] here immediately suggests itself. With this, the average density 
matrices are given Ъу 

9ч f ". "«J S - (2б) 

where the HF occupations numbers n,1 in eq_.(7) are replaced by some averaged 
occupation numbers nj4 . These are defined using an averaging function fM(x) 
(which includes curvature-corrections of order M) [3-5]: 

The Fermi energies A. are determined by equations analogous to (5). 
Using eqs. (9) ,(12) ,{ lh)-( l6), we now define analogous averaged quantities 

^(r),T^(r), J,,(r), and in turn Q, пц(г), U^(r), and ¥,(r) by replacing g£ 

everywhere by p^.• Inserting the average quantities in the single-particle 

Hamiltonian H. defined by eq. (13), we find a smoothed Hamiltonian Ht[ : 

й* = -v-fi&Z +C»,(r)tw,(rH-iif7xe:^vM^^. (28) 

which may be considered as a "shell model" Hamiltonian [2,3,5]. We shall de
note here its eigenvalues by £{ and its eigenfunctions by ф, (ĵ ) 

H,fe(£) = S?fe(r). (29) 
Now, if the density oscillations OC£ = РЛ-Р^д, are sufficiently small -
which will be checked numerically below - one can treat the difference 
SH , = H. - H. as a small perturbation of H . Then the energies £.* and £.4 

can be related in first order perturbation theory by 

e> * e> +р'г:Ф-^*<Укяф?(гь (so) 
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Mul t ip ly ing eq . (30 ) Ъу n ? and summing over i g i v e s 

Z^fl? = Zf£4" + [d'rfiH^Jr) +СШ°П. (3D 

Expanding the terms E and E in eq.(23) around J^a a n d u s i ng eq.(3l), the 
first order terms in &&\ c a n c e l each other so that 

EHf - Z ^ n ^ - Ё ^ - Ё , - Е ^ + Е ^ + О В Д , (3a) 

where E and E are defined again in terms of the averaged densities. 
Note in eq.(32), E . , E and the n.1 are still the HF quantities. ' const' pair l u 

We now introduce the occupation numbers n* which are defined by eqs.(5) and 
(19), but in terms of the "shell model" energies f^and define the correspon-

Л 
ding pairing energy E . : 

Ep*;«- = ^r*it M,, Y\?) (33) 
With these we can rewrite eq. (32) as 

E№ * Z £ 4 " - Ё к + Ё, - Ёс_, + Epait + cFEpeiy-J^+O&J ш 

where 

6£^t = 2 £ 4 * 0 - « ^ + (Ept,>- Е г , ^ О?) 
and the constraint energy E has been split into a smooth part and a small 
correction term: 

Ее,** = ^'f^A^Ls > (36) 

<*£.«* - Et.„,t - Etortvt - ^ ' I ^ ^ U g . (37) 

Since the occupation numbers n^ and njl are expected to differ only slightly 

(only in the energy region " Л , * Д Ч do they differ at all), the quantity 
5 E . should be very small. Similarly, <SE . (37) is expected to be pair _ const 
small, being the product of & Q = Q - Q ( — 1-2 barns, see ref. [3] ) times 
the slope of a LD-like deformation energy curve [ll] (<1 MeV/barn ). Indeed, 
we will see numerically below that both quantities о E . and <ГЕ . do 

pair const 
not exceed~0.5 MeV in magnitude in a medium-heavy nucleus, and therefore we 
treat them as quantities of second order. 
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Collecting all terms of second and higher order in OK - note the 

slight change of notation from eq.(l) - we define 

SE> = <TE r , r -£E C e v , s t * № * f > 4 (38) 
and obtain from (3k) 

(39) 

The first two terms in (39) correspond exactly to the usual shell model ener
gy sum plus pairing, and contain all first order contributions from G£>. These 
are now extracted as the first order shell correction 

£Е Л = ^L £?f[? " U + Ep f t v f - E .^ ; , • (1*0) 

The uniform quantities 1A and E . are defined as in the usual shell-cor-
pair 

rection theory [2,3,!+] "by 

ü = 2 EA; й-» (UD 
Ep f t l r -- - I 2 . д ч (л ч ) -Д , , (U2) 

- A — 

where the n.H are defined Ъу eq.(27) in terms of the 6, , /Ц are the average 
pairing gaps and § 4 ^ ' a r e tlle unifo-™ level densities defined by 

^(B) '- ^7r{^[~L-) (1,3) 
Collecting all smooth terms occuring in eqs.(39) and (ho), we define the 

LD part of the HF energy by 

E = U * E f a i r - E f . t * ER - E C 4 t t i t . (kh) 
With the definitions (1*0) and (Uit-) we thus have explicit expressions for the 
first two terms of the shell-correction expansion (l). Writing 

6£, ~- Ew - Ё-6-Е, , (U5) 

we can calculate £ E and thereby check the convergence of the series (l). 

E and SE can separately be compared to the corresponding quantities found 

in the L D model and the usual shell-correction calculations. 

A special point of interest is the argument that the smoothed constraint 

present in the definition of the "shell model" Hamiltonian 1Ц (28) should be 
omitted, since we want to check the use of ordinary shell model potentials 
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in which no constraint is present. However, we expect this not to affect the 
results - at least not the smooth and the first order terms, E and cfE . 
The reason can easily Ъе seen using perturbation theory. Switching off the 
constraint in H<, (28), vhich is a small disturbance, the i-th eigenvalue of 
H_ is changed Ъу 

and therefore 
3f 

where Q is the "shell model" quadrupole moment which is close to the HF value 
Q. The change in XL (Ul) is then 

All - Z . A ^ n > « - Q - ^ ^ . - Q ) , (W) 
so that the two contributions to сЕ. in (kO) cancel up to a term comparable 
to £ E . (37). Similarly, the contribution of the constraint to VL is in 

const ' _ 
eq_.(U6) cancelled in first order by the energy E . Thus, all differences 

COtiSX 

made by including or omitting the average constraint on H 4 are expected to be 

of second order only. This will be confirmed by our numerical results below. 

Before presenting the results, we want to compare our method briefly to the 

one proposed by Bassichis et al. [6]. These authors define a smooth density J W 

and a "shell model" Hamiltonian H. in a similar way to ours (not including the 

constraint in H,-). The main difference in their approach lies in their expli

cit use of the "shell model" density matrix o\j : 

the ĉ 1, being the expansion coefficients (cf. eq.. (6) ) of the eigenfunctions 

Ф<:'£} of Ha • Using the fact that the HF energy is stationary as a functional 
E [P3 of the density matrix P , they write 

ЬнД?3 - E ^ *0[ f ic4 , (50) 

where ff&(*] is a term of second order in the changes of the wavefunctions, 
ОС = ĉ 1- - c*1 . The right hand side of eq.(50) can then be transformed -
without using perturbation theory - into a form which is similar to eq..(32), 
but in which one second order term is given explicitly. Thus the advantage of 
this method is that one part of the second order shell corrections can be 
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evaluated exactly. However, another part is still left in the term 0"f<Tcl] in 
eq.(50) which can only he calculated indirectly. The advantage of our method 

A ̂  
is that one only needs to know the eigenvalues £-^"of the average Hamiltonian 
— л . A 

H„ , and therefore one does not have to compute the densities ^ ( r ) , "Ц(;£,); 
etc. The numerical evaluation of the second order terms given by Bassichis et 

al. [6] is planned for future calculations. 

NUMERICAL RESULTS AND CONCLUSIONS 

In our numerical calculations we used the set "Sill" of Skyrme parameters. 

These were recently shown to give excellent fits of the ground-state energies, 

radii and deformations throughout the periodic table [13]. For-completeness 

we give the parameters in Table 1. 

To check the shell-correction expansion in a medium-heavy nucleus, we per

formed a complete CHF-calculation for the rare-earth element Yb. For the 

pairing effects we used the normal BCS treatment, thus choosing the pairing 

functional (17). As in ref. [3], a single parameter was used in the form of a 

uniform gap Д , chosen here to be A =1.0 MeV which corresponds to the pair
ing strengths G = 0.15 MeV and G = 0.19 MeV (at all deformations), 

n p -.go 
Figure 1 shows the deformation energy curve E „(Q) of Yb in a region 

containing the prolate ground-state, an oblate secondary minimum and the as
cent towards the fission barrier. The curve E„ „ was obtained as a zeroth 
order approximation using the shell model wavefunctions found in a Strutinsky 
calculation with a deformed Woods-Saxon potential [3]. As recently described 
[17], these wavefunctions give an excellent approximation to the HF solutions. 
The total binding energy obtained in this approximation is at smaller defor
mations only ~ 7 - 10 MeV higher than the HF energy, as can be seen also in 
Fig, 1. The dashed line in Fig. 1 is the smooth energy E obtained by eq.(M). 
This curve indeed behaves like a LD deformation energy. Within the numerical 
accuracy of our results, here ~ ± 0.5 MeV in the total energies, the curve is 
smooth. This result strongly supports Strutinsky's theory of renormalization 
of the LD energy part. 

TABLE 1. PARAMETERS OF THE SKYRME INTERACTION Sin USED 
IN OUR CALCULATIONS 

*0 

- 1128.75 

*1 

395.0 

\ 
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*3 
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To check our arguments concerning the constraint in the smoothed Hamil-
tonian H-, we did the calculations twice, once with and once without the 
constraint. In both cases, the LD energy E turned out to be exactly the same. 

In Figure 2 we compare the HF energy curve and its LD part to the curves 
obtained in a Strutinsky-type calculation. In the latter, the shell-correction 
5E was found from a deformed Woods-Saxon potential already mentioned above 
(see ref.[3]). The deformation energy E + SE.. was taken along a path going 
through the two minima and approximately following the LD valley at larger 
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without constraint in Я_. Figure ab also shows the quantities SEpair and SE c o n s t contained in 6E2. In 
Fig. 3a, the dashed-dotted curve is the first order shell correction found with the Woods-Saxon potential 
(see Fig. 2). 

deformations. The quadrupole moment was calculated at each point from the 
shell model wavefunctions as in eq..(l2). The position of the Strutinsky curves 
is adjusted so that the values of ET and E at zero deformation are the same. 

LiD 

In E, ¥e have included here a constant of +1.7 MeV in order to take the aver
age contribution of the higher order terms & into account (see below). We 

can see in Fig. 2 that the two models predict the same equilibrium deformat

ions within a few percent. 

The first and higher order shell-corrections extracted from E„_ according 
nr 

to eqs.{Uo) ,(^5) are displayed in Fig. 3. The solid lines show £E. and C5E_ 

obtained with the average constraint included in H~, and the dashed lines 

show them without the constraint in 1Ц. As expected, the two cases give es
sentially the same results. In the upper part of the figure, the small cor
rections C5E . and о Е . are shown, 

const pair 
For the definition of the average densities с£д by eqs.(25) and (26), a 

Gaussian averaging function with a fourth order curvature correction was cho
sen. The smearing range v* was chosen to be V с 1.1 - X.k kS"i. , with tfl being 
the average separation of the main shells in the spectra 8?. No significant 
change of the results shown in Figs. 1 - 3 was observed by varying V within 
the range mentioned. 

In the lower part of Fig. 3, the shell-correction<?E found from the Woods-
Saxon potential [3] is shown with the dashed-dotted curve. Its agreement with 
the HF curve is remarkable, in view of the fact that no adjustment at all has 
been made of the Woods-Saxon potential parameters. 
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The sum of the higher order shell corrections oE is quite small as com

pared to the first order correction oE (note the enlarged scale in the upper 

part of the figure!). They oscillate by ~ ± 1 MeV around an average value of 

~+l.T MeV. Their relative smallness proves the rapid convergence of the shell-

correction expansion (1). In looking closer at Fig. 3, we notice a clear cor

relation of the oscillations in ÄE and 5 E : The maxima of $Ъ„ coincide with 
the extrema of $E . This can he understood by assuming that the terms of sec
ond order in Co are predominant in 0E , as is made evident Ъу the rapid con
vergence of the shell-correction expansion. Then it is clear that the "wave
length" of the oscillations in must be one-half times that of the first 
order oscillations оЕ . This has two consequences for the calculations of 
deformation energies with the traditional shell correction method: 1) The in
clusion of a second order correction affects the relative position of the sta
tionary points of the curve only very little, since the values at the maxima 
of oE vary only little around their average (±~0.6 MeV in the present case). 
2) The regions between the extrema of the deformation energy curve are low
ered with respect to the stationary points, which tends to make the harriers 
thinner. Both effects can be seen in Fig. 2. 

If the pattern of these results is confirmed in calculations for actinide 
nuclei and with different effective interactions - which will be carried out 
in the future - we can therefore conclude that the static fission barriers 
and the equilibrium deformations are sufficiently well described in a Strutin-
sky calculation. For the calculations of fission lifetimes, however, the 
second order corrections might be important, as the lifetimes are well known. 
to be crucially dependent on the thicknesses of the barriers [3,18]. The 
second order effects thus tend to lower the calculated halflives, which is in 
favour of the results of refs. [3,l8]. 

One should of course check these conclusions by applying our test to a 
heavy fissionning nucleus. However, in this region the Skyrme-CHF calculations 
do not yet reproduce the experimentally known fission barriers, the outer 
barrier being more than twice as large as its experimental value [lk] • 
Since our test of the Strutinsky method is meaningless when the CHF results 
are in clear disagreement with experiment, we cannot expect to get conclusive 
results in this region. 

At ground-state deformations and especially for spherical nuclei, however, 
the Skyrme-III interaction is very successful, as mentioned above. We there
fore used these results to calculate the higher order corrections fE„ for a 
series of nuclei in their ground states. The results are shown in Figure k. 
The crosses show the values of E evaluated for the nuclei Ru, Ce, 
lU0Ce, 152Sm, 158Gd, l62Dy, l66Er, l68Yb, 1 T V " 8 H f , l 8 \ , 19°0s, 2°8Pb 
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densities pji). 

and Pu. In these calculations (except for Yb, see above) the pairing 
functional (17) was used and the gaps An chosen to be approximately equal 
to their experimental values. All values of (̂ E lie within *"2.0± 1 MeV, in
cluding the doubly magic Pb. This result again demonstrates the smallness 
of the higher order effects, indicating that the first order shell corrections 
to the ground-state energies can be expected to be correct within~± 1 -2 MeV. 

We want to emphasize that the way in which we have defined the smooth part 
o \ of the density matrix is not the only possible one; other definitions may 
be tried. The Strutinsky averaging method is based on the belief that the most 
important shell effects come from the oscillations of the density of single-
particle states in energy space, especially those in a region around the 
Fermi energy. This assumption might in our calculations be tested by the use 
of other averages for 5Л. The averaging in energy space does not imply that 
the spatial density distributions P4(r) are completely smooth as functions of 
r_. This is illustrated in Figure 5, where the density distributions QAY.) of 
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Local parts Ug(t) and U (r) of the HF and the averaged single-particle potentials, respectively, of 
Pb in the ground state (Skyrme III). 

Pu in the ground state are shown. Although the densities ©.(r) are much 
smoother than the selfconsistent ones, some oscillations still remain. These 
have Ъееп observed before [3,5] and are not believed to be responsible for 
shell effects. (For a detailed discussions of these remaining oscillations, 
see ref. [5].) Similarly, the smoothed single-particle potentials U,j(r) still 
oscillate slightly inside the nucleus, as can be seen in Figure б where they 
are compared to the HF potentials U-(r) for the case of Pb. (The proton 
potentials include the Coulomb potential (lla,b).) Results similar to those 
displayed in Figs. 5 and 6 where obtained for the rare-earth nuclei. The 
smooth potentials tL(r) look in general very similar to Woods-Saxon poten
tials, confirming the use of such potentials in Strutinsky calculations. 

S U M M A R Y 

We have found that the definition of О yields an average part of the 
16fi total HF energy which - at least for a nucleus like Yb - is perfectly 

smooth as a function of deformation. The shell-correction expansion (l) of 
E„_ , found by means of this smoothed density matrix О , has been proved 
numerically to have rapid convergence. Our results for the higher order shell 
corrections are in good agreement with the results obtained previously by 
Bunatyan et al. [5] using a completely different method. 

We conclude that first order shell corrections, calculated from a Woods-
Saxon-type shell model potential, describe the stationary points of defor
mation energy curves sufficiently well: the higher order effects do not 
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affect them Ъу more than~± 0.5 - 1 MeV. The second order effects might be im
portant in calculating fission lifetimes, tending to make harriers narrower 
and thus the lifetimes shorter. In transition regions from spherical to de
formed nuclei, or from oblate to prolate nuclei, where the first order correc
tions are small, the second order effects might also play a decisive role. 

We have seen that the inclusion of a constraint in the average potential 
has only a negligible effect on the single terms obtained in the shell-cor
rection expansion. 

These conclusions are drawn from the HF point of view, and are only rel
evant for the Strutinsky method to the extent to which HF calculations can 
be considered more fundamental than the shell-correction approach. We there
fore plan to repeat this type of calculations using different interactions. 

The extraction of a LD-like average part from the HF energy allows us to 
determine LD parameters, such as surface and symmetry energy coefficients, 
for a given effective interaction. The determination of the average poten
tials IL (r_) should also help to improve the shell model potentials to be used 
in shell-correction calculations. Such investigations are in progress and 
will be published elsewhere. 

A C K N O W L E D G E M E N T S 

The authors are very grateful to Prof. G.E.Brown for helpful discussions 
and for his hospitality at Stony Brook. We would like to thank D.Vautherin 
for letting us use his HF code. We acknowledge stimulating discussions with 
A.K.Kerman, K.Dietrich and H.Flocard. 

R E F E R E N C E S 

[1] STRUTINSKY, V.M., Nucl. Phys. A£5. (1967) **20. 
[2] STRUTINSKY, V.M., Nucl. Phys. A122 (1968) 1. 

[3] BRACK.M., DAMGAARD,J., JENSEN, A.S., PAULI, H.C., STRUTINSKY, V.M., 

WONG, C.Y., Rev. Mod. Phys. kh_ 2 (1972) 320. 

[U] BRACK, M., PAULI, H.C., Nucl". Phys. A207 (1973) U01. 

[5] BUNATYAN, G.G., K0L0MIETZ, V.M., STRUTINSKY, V.M., Nucl. Phys. A188 

(1972) 225. 

[6] BASSICHIS, W.H., KERMAN, A.K., TSANG, C.F., TUERPE, D.R., WILETS, L., 

in "Magic Without Magic: John Archibald Wheeler", Freeman, San Francisco, 

1972. 

[7] BASSICHIS, W.H., TUERPE, D.R., TSANG,C.F., WILETS, L., Phys. Rev. Lett. 

Ш (1973) 29^. 



248 BRACK and QUENTIN 

[8] SKYRME, T.H.R., Phil. Mag. 1 (195б) 1СЙЗ; Nucl. Phys. £ (1959) 615. 
[9] VAUTHERIN, D., BRINK, D.M., Phys. Rev. C5_ (1972) б2б. 
[10] VAUTHERIH, D., Phys. Rev. CI (1973) 296. 
[11] FLOCARD, H., QUENTIN, P., KERMAN, A.K., VAUTHERIN, D., Nucl. Phys. A203 

(1973) 1+33. 
[12] FLOCARD,H., QUENTIN, P., VAUTHERIN, D., Letter to be published. 
[13] BEINER, M., FLOCARD, H., GIAI, N.V., QUENTIN, P., to be published, 
[lit] FLOCARD, H., QUENTIN, P., KERMAN, A.K. , VAUTHERIN, D., 

Paper IAEA-SM-174/38, these Proceedings, Vol. 1. 
[15] NEGELE, J.W., VAUTHERIN,- D. , Phys. Rev. £5 (1972) 11*72. 
[16] LANE, A.M., Nuclear Theory, Benjamin, New York (196H). 

[17] КО, СМ., PAULI, H.C., BRACK, M. , BROWN, G.E., submitted to Phys.Lett. 
[18] LEDERGERBER, Т., PAULI, H.C., Nucl. Phys. A207 (1973) 1. 

D I S C U S S I O N 

К. DIETRICH: If the effective interact ion depends on the density, a 
t e r m l inear in the fluctuation 6p a r i s e s which in general is not zero but 
would r ep resen t a cor rec t ion to the Strutinsky t e r m . You have told me that 
for the Skyrme interaction this t e r m is ze ro . Is that fortuitous or i s the 
Skyrme interact ion so adjusted that this happens? 

M. BRACK: One can easily verify that our method works for any 
density-dependent t e r m of the form pa<x) 6 (r - r r ) in the interact ion with a 
being a r ea l number . F u r t h e r m o r e , it was shown by Bunatyan and co
worke r s (Ref. [ 5] of our paper) that , for any density-dependent effective 
interact ion, if one makes the local density approximation and s tays within 
the HF framework, no t e r m l inear in Sp will appear , a s long as the 
r ea r r angemen t energy i s taken proper ly into account. 

K. DIETRICH: The first two t e r m s of your expansion 

are" not ve ry sensi t ive to the details of the decomposition p = ~p + 6p a s 
long as p" is reasonably smooth. In the phenomenological Strutinsky method, 
the t e r m E[~p] i s rep laced by the phenomenological droplet energy. It is 
very important he re how 6p i s defined. In your method you cannot check 
this aspect of the Strutinsky method. 

M. BRACK: You a r e r ight in that we have not checked the co r r ec tnes s 
of the commonly used l iquid-drop and shell mode l s . Our test was concerned 
with the basic principle of Strut insky 's method, namely the possibil i ty of 
obtaining a she l l - co r rec t ion expansion at a l l . Examining which phenomeno
logical models have to be used to obtain the single t e r m s E and 6'E1 will be 
the next s t ep . 
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Abstract 

FISSION ISOMER SYSTEMATICS. 
The half-lives, decay properties, excitation energies and production cross-sections of spontaneously 

fissioning isomers are reviewed. Rotational, vibrational, and single-particle excitations of the shape-isomeric 
state are discussed. 

1 . INTRODUCTION 

Spontaneous fission isomerism was discovered [1] prior to the first 
IAEA fission symposium in 1965. However it was not until shortly before the 
second symposium in 1969 that sufficient evidence was obtained to firmly 
support their interpretation as shape-isomeric states associated with a 
second minimum in the potential energy surface. This second minimum is a 
consequence of non-uniformities in the single particle spectrum for a defor
mation characterized by a nearly 2:1 ratio of the major to minor nuclear 
axes. For certain actinide nuclei the resulting shell correction is rather 
large in a region of deformation where the liquid drop potential energy sur
face is rather flat. The resulting potential energy function exhibits a 
second minimum lying several MeV above the first minimum. This review will 
concern itself with the properties of nuclear states associated with this 
second minimum. 

The common characteristic of all presently known shape-isomeric states 
in the actinide region is their decay by spontaneous fission. Since the 
last fission symposium a number of new spontaneously fissioning isomers have 
been discovered. The boundaries in N and Z space of the "island" of observ
able isomerism has been fairly well mapped. More importantly, new kinds of 
information about the shape-isomeric states have been obtained. These in
clude results on excitations of the shape-isomeric states as well as their 
decay properties. The moment of inertia and the pairing energy gap have 
been determined for several nuclei. Information about the spins of a few 
isomers has been obtained. The existence of another decay mode, gamma decay 
to the first minimum, has been demonstrated. 

2. ISOMER HALF-LIVES 

The most commonly measured property of a spontaneously fissioning iso
mer is its half-life. If an isomer is sufficiently long-lived to be 
observed, its half-life can usually be determined. The lightest known iso
mer is 2 3 6U, and the heaviest is 2^5Bk. These boundaries are undoubtedly 
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140 142 144 146 148 150 152 
NEUTRON NUMBER 

FIG. 1. Spontaneously fissioning isomer half-lives as a function of neutron number. Circles, triangles, and 
squares represent values for even-even, odd-A, and odd-odd nuclei, respectively. (This convention will 
be employed throughout this paper unless otherwise indicated.) The experimental data is taken from a 
summary in Ref. [ 6] except for more recent data (Refs [5,7]). 

determined in good part by limits imposed by experimental sensitivity, both 
with respect to yields and lifetimes. The isomeric half-lives are plotted 
as a function of neutron number in Fig. 1. This presentation is similar to 
that employed by Polikanov and Sletten [2]. We have omitted from this fig-r 
ure a few even-even isomers believed to correspond to two-quasiparticle 
excitations of the shape isomer. It was suggested at the last symposium [3] 
that there was a significant odd-even effect on the half-lives, and that the 
half-lives of the plutonium isomers exhibited a variation with mass number 
similar to that of the ground state half-Lives. These trends have become 
clearer as more data has become available. The systematics of the plutonium 
isotopes has been extended considerably as a consequence of the very recent 
discovery L>,5] of new, very short-lived, plutonium isomers. These results, 
to be presented later in this session by Metag et al. [5], show that the 
even-even plutonium isomers exhibit a variation with neutron number quite 
similar to that of the even-odd isomers. The regularity of the odd-even 
effects and the dependence of half-life on neutron number exhibited by the 
americium isotopes is also quite striking. 
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FIG. 2. Theoretical isomer excitation energies E,,, outer barrier heights E„, and the differences Eg-E , as 
a function of neutron number for even-even plutonium isotopes. The values shown are an average of the 
calculation results of Möller [ 8 ] , Pauli and Ledergerber [ 9 ] , and Möller and Nix [10] . Reflection-
asymmetric distortions at the outer barrier have been taken into account. 

Some insight as to the origin of the maxima in the dependence of the 
half-life on neutron number can be obtained by examining the results of 
theoretical calculations [8-10]. The inner barrier for most isomers is 
higher than the outer barrier, so that the penetrability of the outer bar
rier should determine the lifetime of most isomers. The effective energy of 
the outer barrier which must be penetrated is given by Eg - EJJ, where Eg 
and EJJ are the outer barrier and isomer energies relative to that of the 
ground state. Theoretical outer barrier heights and isomer excitation ener
gies are shown by the solid lines in Fig. 2. The difference Eg - EJJ is 
seen to exhibit a maximum at about the same neutron number as that corres
ponding to the longest half-lives. The detailed behavior of Eg - EJJ de
pends on the interplay between the dependence of Eg and EJJ on neutron num
ber, but is dominated by the neutron semi-magic number at the deformation 
corresponding to the isomer. The use of average values in Fig. 2 conceals 
some differences in the various theoretical calculations. The neutron num
ber at which the gap in the single particle spectrum for the isomer defor
mation occurs is at N = 14-2 in the calculations of Pauli and Ledergerber 
[9,11], N = 114 in the calculations of Nilsson et al. [12], and N = 148 in 
the calculations of Mosel and Schmitt [13] and of Möller and Nix [10]. (It 
must also be remarked however that the experimental Ejj values, discussed 
in a following section, do not clearly reflect the predicted trends. This 
may reflect errors in the ground state shell correction which cancel for the 
quantity E - E_T). 

The variation in isomer half-lives with neutron number is surprisingly 
similar to that exhibited by the ground state half-lives, although there is 
an upward shift in the neutron number corresponding to the longest half-
lives as one goes from the isomeric states to the ground states. The de
pendence of both the inner and outer theoretical barrier heights (relative 
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FIG. 3. Spontaneously fissioning isomer half-lives as a function of Eg-E... The circles, triangles, and squares 
refer to even-even, odd A, and odd-odd nuclei, respectively. The dashed triangle and circles at the base 
of the arrows represent the observed total half-lives of 2 3 , mNp, г з б т и and 238r"u. The symbols at the top 
of the arrows are the partial fission half-lives after correction for gamma branching. The data points in 
(a) and (b) are identical; the straight lines in (a) and (b) differ as discussed in the text. 

to the ground state) on neutron number exhibit a maximum at N = 152 due to 
a ground state shell effect. Apparently the maximum in the ground state 
half-lives is pulled toward a lower neutron number due to the neutron-
number dependence of the depression of the potential in the region between 
the two barriers. Thus the similarity in the neutron number dependence of 
the ground and isomer half-lives can be traced to shell corrections in the 
region of the second minimum. 

The success in understanding the origin of the neutron number variation 
of the half-lives in terms of the theoretical effective barrier height Eg - EJJ-
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suggests that a universal correlation of all isomer half-lives might be 
possible. In Fig. 3 we plot the half-lives as a function of Eg - EJJ. The 
Eg - EJJ values are an average of the Möller [8] and Pauli-Ledergerber [9] 
predictions. The values for odd-A and odd-odd nuclides were obtained by 
simple interpolation from the reported values for even-even nuclides. The 
observed half-lives tend to fall into distinct groups depending on their nu
clear type. For a parabolic barrier the half-life is given by %\/2 ~ ln 2/np 
where n is the number of barrier assaults per unit time and the penetration 
factor p is given by exp[-2-rr(Eg - Ejj)/nug]. The quantity fiwg, sometimes 
designated the barrier curvature energy, contains the barrier curvature and 
effective mass and is assumed to be the same for all nuclei. This is surely 
an oversimplification. We estimate n on the basis of a vibrational fre
quency corresponding to 1 MeV. In Fig. 3b we have drawn lines cor
responding to the assumption that p = 1 at Eg - Е ц = О for all nuclear 
types. The slope of the lines then gives the dependence of -пшв on nuclear 
type. Figure 3a corresponds to another limiting assumption, namely 
that ficog is independent of nuclear type and that the odd-even effect can all 
be attributed to an energy shift S usually attributed to a "specialization" 
energy. (The S values obtained here will also include any difference be
tween the gap parameter Д at the isomeric state and outer barrier deforma
tions.) The scatter in the data precludes determining a clear preference 
for one or the other of the limiting parameterizations on the basis of the 
comparisons in the two parts of Fig. 3. The unpaired nucleons undoubtedly 
affect both the effective mass (and hence fi(0g) and also the effective bar
rier height. The effect of an odd particle on the mass parameter has been 
estimated theoretically to be roughly 25% [14,15]. This would lead to a 12% 
change in пш in going from even-even to odd-A nuclei. The change in fiu 
deduced from the correlations in Fig. 3b is much larger, suggesting that 
the specialization energy plays a significant and likely dominant role at 
the outer barrier. 

The appropriateness of the parameterization employed in Fig. 3 depends 
on the outer barrier being determinative for the isomeric state half-life. 
For the lighter-mass nuclei the inner barrier decreases relative to the 
outer barrier and decay through the inner barrier is also expected. This 
decay mode has been recently established for 238ц; a s n a g D e e n reported 
byRusso, Pedersenand Vandenbosch[16]. There is also indirect evidence from 
yield data that 236U and Np decay predominantly by gamma emission [17 ,7]. 
The observed half-lives have been increased according to their measured or 
expected branching ratios so as to correspond to the partial fission half-
lives. These corrections are indicated by the vertical arrows of Fig. 3. 
Of particular interest is the odd-even isomer of 237jfp recently discovered 
by Wolf and Unik [7]. This isomer has a spontaneous fission yield more than 
10 times smaller than expected. It is therefore concluded that the gamma-
to-fission decay ratio is of this order of magnitude. Perhaps more sur
prising is the relatively short half-life of this isomer. It appears to 
have a partial gamma-decay half-life (as indicated by the dashed triangle at 
the bottom of the arrow in Fig. 3) comparable to that of the partial gamma-
decay half-life of the even-even nuclei 236u and 238ц (indicated by dashed 
circles). This result may indicate that there is no specialization energy 
for the inner barrier. Such a result would be consistent with the recent 
theoretical findings [18-20] that the inner barrier is unstable with respect 
to deformation destroying the axial symmetry. In such a situation К is no 
longer a good quantum number. Since the specialization energy is largely a 
consequence of the energy cost associated with preserving К at single par
ticle level crossings, the specialization energy may disappear for the inner 
barrier. The lack of axial symmetry would also be expected to have some 
effect on the mass parameter for a nucleus with an unpaired particle. 
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A weakening or absence of specialization energy effects at the inner 
barrier may play a role in determining the remarkably smooth dependence of 
the half-lives of odd-A and odd-odd isotopes on neutron number. An upper 
limit to the observed half-life may be imposed by the partial half-life for 
decay through the inner barrier via the gamma branch. The empirical barrier 
heights and isomer excitation energies [21] together with an йш value for 
the inner barrier deduced [16] from the gamma branch in 238U are consistent 
with such an idea. If indeed the specialization energy was varying suffi
ciently from isomer to isomer that in some cases a gamma branch dominated, 
variations in the yield of delayed fission might be expected. At present 
there is not any definite evidence for such variations. 

3. CROSS-SECTIONS FOR ISOMER FORMATION 

There are two quantities relating to the yield of the isomer which are 
usually measured; the absolute cross-section for isomer production, and the 
ratio of isomer fission to prompt fission. The latter quantity can often be 
measured to better precision than the former. If both the isomer cross-sec
tion and the ground state cross-section are known, the isomer yield ratio 
ai/Og can be obtained. For reactions resulting from the decay of a compound 
nucleus this ratio for a nucleus with mass number A is determined by the 
branching ratio for decay of the nucleus with mass number A + 1. At the 
peak of the excitation function, where the population of the residual nu
cleus is concentrated near the top of the fission barriers, the "golden 
rule" leads us to expect a population ratio proportional to the ratio of the 
density of levels in the two wells. Since the level densities depend ex
ponentially on energy, population of the ground state well is favored by a 
large factor. Let us consider a very simple model,for this. A constant-
temperature level density formula of the form exp^"'^ will be assumed, where 
E* is the excitation energy and T is the nuclear temperature. For levels in 
the first well leading to ground state formation it is usually the height of 
the inner barrier Ед which determines the highest excitation energy at which 
trapping will occur. (The trapping in either well is not really effective 
until about 0.5 MeV below the top of the barrier where gamma decay becomes 
competitive with penetration through the barrier. For the first well neu
tron emission can also be important, but, for the cases considered, Bn ̂  Ед.) 
For levels in the second well it is the height of the lower (outer) barrier 
Eg which determines the excitation energy Eg - EJJ at which trapping occurs. 
Therefore the ratio of level densities at the top of the respective wells, 
and hence the isomer ratio, is expected to be given by 

/ ~ P I I ( E * = E B - E I I } , . -[EA-(EB-EII)]/T 
ai/0g pT(E* = EA) eX? 

In Fig. 4 we compare experimental o$_/o values [6,21,22] with the behavior 
expected from this simple model. The Ед values are taken from (or extra
polated from) tabulations [6,21] of empirical barrier heights. The Eg - E-Q 
values are taken from the theoretical calculations of Pauli and Ledergerber 
[8] rather than empirical analyses [21] as the latter values would in turn 
have been deduced from isomer excitation function data. The nuclear temper
ature determining the slope of the line has been taken equal to the value 
suggested by the comparison in Fig. 5. The comparison suggests that the ab
solute value of Oĵ /ag and maybe even some of the variations may be under
stood from this simple point of view. 

The other quantity which is often measured is the isomer-to-prompt 
fission ratios, â /a-f. This value depends on the number of neutrons emitted 
and on the neutron-fission competition at each step of the evaporation. The 
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FIG. 4. The isomer yield ratio is plotted as a function of Ед-fEg-Ejj). The straight line represents the 
absolute magnitude and slope expected for the simple model described in the text. The symbols denote 
the same as in Fig. 3. 

ratio of the isomer cross-section to the compound nucleus formation cross-
section, Ст£/ас, for a reaction in which two neutrons'are emitted can be 
written as 

a./a 
i с <vvf2 

<Wi+1 * ( WII1 

where Гт = Гп + rf and the subscripts indicate whether the values are appro
priate to the first or second wells. The ratio Of/ac at energies close to 
the peak of the â /crf excitation function is given by 

' Л и < W i + 2 + ( V V i + 2 ( W i + 1 -
This quantity is close to unity in the actinide region so o f s ac and o^/of 
becomes approximately equal to the above expression for a$_/ac. Borggreen 
et al. [23] have deduced 

(Г /Г ) A + 1 
n' T;II (Г /Г ) A + 1 

u n ' f II 
values from the experimental o^/Of ratios [24] and literature_[25] (rn/rf)j 
values. They have plotted these as a function of Ев - Е ц - Sn as shown in 
the lower part of Fig. 5. Sn is an effective neutron binding energy rele
vant to the A + 1 nucleus. Also shown are the empirical values for the 
first well, plotted as a function of (тах{Ед,Ев} - § n). The extraction of 
the nuclear temperature is based on a simple expression for rn/rf, Гп/Г£ « 
exp{(Ebarrier - §n)/T}. The success of the correlation indicates that the 
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qualitative features of o^/Of can be understood from rather simple consider
ations. Much more sophisticated analyses of isomer production excitation 
function data have been performed [24,21]. These analyses incorporate more 
realistic level densities from which the excitation energy dependence of 
rn/rf can be obtained. From these analyses information about Е ц and Eg 
values can be extracted. 

The isomer excitation energy EJJ is obtained from the threshold behav
ior of the excitation function for isomer production [26]. Unfortunately 
considerable extrapolation from the lowest energy at which measurements are 
available to the threshold energy is required. This extrapolation is guided 
by theoretical considerations [27,28,24,22] -which are model-dependent. The 
sensitivity to the model becomes apparent when comparing results from var
ious analyses. Some indication of this sensitivity is apparent in Fig. 6 
where we compare Е ц values extracted from analyses of isomer production 
excitation functions with theoretical predictions. The empirical values ex
hibit significant variations. However there appears to be some real dis
crepancies between the empirical and theoretical E-Q values. Specifically, 
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function data, Ец values for isomers attributed to two-quasiparticle excitations have been excluded. 

the average trend with neutron number for the heavier americium isotopes is 
opposite to that predicted. This may reflect inadequacies in the shell cor
rection at the ground state as well as at the isomer deformation. There 
are indications in at least one theoretical calculation [10] that the devia
tions between the theoretical and experimental ground state shell correc
tions depend in a systematic way on neutron number. 
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4. EXCITATIONS OF THE SHAPE ISOMERS 

Ч-.l Even-even Nuclei 

The barriers stabilizing the shape isomers are several MeV high. This 
is sufficiently high that one can expect to form a variety of excited states 
which retain the purity of the deformation of the shape isomer. We shall 
start our discussion by considering even-even shape isomers. 

Rotational excitations. The lowest excitations to be expected are 
rotational excitations. Last year Specht et al.[30] successfully identified 
a number of transitions between rotational states. Since the moment of 
inertia of the isomer was expected to be appreciably larger than that of the 
ground state, the energy levels were expected to be closer together and the 
low-energy transitions to be highly converted. Therefore they looked for 
the conversion electrons rather than the gamma rays involved in the rota
tional de-excitations. This is a very difficult experiment as the feeding 
of the isomer rotational band is lO4 times smaller than that of the ground 
state band of a nucleus which does not fission. To select the electrons 
associated with population of the isomeric band a delayed coincidence with 
the fission fragments from the subsequent decay of the isomer was performed. 
The level scheme they deduced from the conversion electron spectrum is shown 
in Fig. 7. The value of ü2/2J?they obtained is 3.3 keV, less than half the 

(a) 

(b) 

50 100 
2(J 2 -J + I) 

FIG. 7. Fit of the transition energies to the energy expression E = aJ(J+ l)+bJ2(J+ if (a) for the ground state 
band of the first well (a = 7.156 keV, b = -3.55 eV) and (b) for the isomeric state band of the second well 
(a = 3.33 t 0. 008 keV, b = -0.17 t 0.10 eV). The intercept gives the rotational constant a and the slope 
the non-adiabaticity parameter b. (After Specht and co-workers [30] as adapted by Vandenbosch and 
Huizenga [6]) . 
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value of 7.1 keV exhibited by the ground state rotational band. This is the 
most direct evidence obtained thus far that the shape isomer has a distor
tion qualitatively different from that of the ground state. Several calcu
lations of the dependence of the moment of inertia on deformation have been 
reported [31-33]. The results of Sobiczewski et al. [33] are compared with 
the experimental result in Fig. 8. Theoretically the dependence on defor
mation is rather complicated, largely because of pairing effects which 
depend on the single particle level density near the Fermi surface and hence 
fluctuate as a function of deformation with the same period but out of 
phase with the shell correction. There is also a small uncertainty depend
ing on which variant of the pairing strength is chosen. For a pairing 
strength independent of surface areas, G = const., the observed moment of 
inertia is in excellent argrement with the calculated deformation of the 
second minimum. Such good agreement may be somewhat fortuitous in view of 
the poorer agreement between the calculation and experiment at the ground 
state deformation. The theoretical nuclear shapes at the first and second 
minimum have also been sketched in the figure. 

It can also be seen from the results presented in the previous figure 
(Fig. 7) that the shape isomer is a better rotator than the ground state, 
since the "correction" term in the expression 

E(J) = aJ(J + 1) + bJ2(J + l) 2 

is much smaller for the isomer than for the ground state. This result can 
be qualitatively understood from the point of view that the smaller rota
tional energies for isomers result in a better separation of this degree of 
freedom from other degrees of freedom such as vibrations and breaking of 
nucleon pairs. If one is willing to accept an identification of the second 
term as arising primarily from centrifugal stretching [34,35], further in
formation about the properties of the shape isomer may be deduced. For such 
a model the total energy may be written in lowest order as 

E(J) (1/2)c(e - v2 • Чхш 1) 

where ß is the equilibrium deformation in the absence of rotation and С is 
a measure of the restoring force. [The quantity С may be evaluated in the 
present approximation from theoretical potential energy curves using 
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С = d2V(ß)/dß2 evaluated at ß = ßg]. The minimum in the above expression for 
E(J) for a given J determines the equilibrium deformation fci for tha t J . If 
one assumes tha t the moment of i ne r t i a i s proportional to ß 2 , as expected 
for i r r o t a t i o n a l flow motion, and designates A _ g a s jL > °ne obtains 

WTN _ * 2 J ( J + 1) fiV(J + l ) 2 

From this expression we see that the coefficient of the second term in the 
energy expansion is inversely proportional to the product of the square of 
the deformation times the square of the moment of inertia. The expression 
has been written with both ß§ and J^ appearing explicitly so as to elimi
nate the mass parameter B. The derivation assumes that В varies negligibly 
within a given well but we can expect a significant variation in going from 
the ground state well to the shape-isomeric well. If one assumes that the 
moment of inertia is proportional to ß rather than ß 2, as indicated by the 
empirical data and predicted by the "governor" model [36], the second term 
in the expansion turns out to have the same dependence on ß and^Q, but with 
a different coefficient. The quantity С is also expected to depend on de
formation, and indeed precise measurements of the rotational state spacings 
may provide a means to deduce this interesting quantity. From the above 
relationship the ratio of the b coefficients for the isomeric and ground 
states is given by 

bII CI > I , 2 / l , 2 
I II ^11 DII 

Using the experimental JL values and the theoretical ß values (assuming the 
present deformation parameter ß to be dependent on the Nilsson deformation 
parameter as f Ä e(l + e/3)) one obtains CJ/CJJ = 2.0 ± 1.0. This is in 
agreement with the theoretical results of Tsang and Nilsson [37] who present 
a potential energy function which is approximately twice as stiff at the 
first minimum as at the second minimum. More precise data as well as atten
tion to the higher order terms in the theoretical expression would enable a 
more quantitative test to be performed. 

Vibrational excitations. Our knowledge of vibrations about the equili
brium deformation of the shape isomer is unique in that the location of one 
or two of the higher vibrational states in uranium and plutonium nuclei is 
known whereas the first excited vibrational state has probably not ever been 
identified. These states show up as resonances in the fission cross-section 
excitation functions for neutron, photon, and direct reaction charged par
ticle induced fission. One of the earliest examples of such a resonance was 
found in the 239pu(d5pf) reaction [38,39] where a prominent resonance occurs 
at 4.95 MeV above the ground state. The isomer excitation energy is about 
2.4 MeV [21]. It is not clear whether the 4.95 MeV resonance is a 2, 3, or 
4-phonon state. There appears to be another resonance at about 4.4 MeV, 
although the К value of this resonance is not known. If it is К = 0, then 
it is quite likely that the 4.95 MeV resonance is the n = 3 or n = 4 state. 
It would be very interesting to locate the lower states, as this would 
enable a direct determination of the -ftu value of the second well. This in 
turn contains information about the stiffness of the potential (C) and the 
inertial parameter (B) through the relation w = (C/B)^-'2. 

Two-quasiparticle excitations. It has been thought for some time that 
a number of the observed even-even spontaneously fissioning isomers were not 
the lowest state in the second minimum. The conclusion was primarily based 
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FIG. 9. Excitation functions for the two isomers of 238Pu. From Ref. [4 ] . 
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on unusually high excitation energies, low yields, and long half-lives. 
This interpretation has received important experimental support by the re
cent discovery [4] of a second isomer in the even-even nucleus "°Pu. The 
new shorter-lived 0.5-nsec isomer exhibited a lower threshold and higher 
yield than the 5-nsec isomer. The excitation function data is illustrated 
in Fig. 9. The level diagrams for this new two-quasiparticle state and of 
previously known two-quasiparticle states in the first well are shown in 
Fig. 10. The pairing gap at the two deformations appears to be fairly com
parable. These results again do not allow us to distinguish whether the 
pairing strength G is independent of or more nearly proportional to the sur
face area. In the latter case one would expect the energy gap to be about 
0.3 MeV greater at the second minimum than at the first minimum. It should 
also be remembered that the theoretically expected [40] dependence of the 
pairing strength on deformation is weaker than the often-assumed linear 
proportionality to the surface area. 

p OQ 
The spin of the two-quasiparticle state in Pu or in other suspected 

cases of two-quasiparticle isomerism is not known. If the orbitals involved 
the 238Pu isomer are the same as suggested (see later discussion) for the 

double isomers m even-odd Pu, the spin is likely to be 3 or greater. 
One can hope to gain some qualitative information about the J and К values 
from new projectile-fragment angular correlations now being studied [4-1,42]. 
These results indicate that both 35-nsec Pu and 5-nsec " 8Pu have non
zero spins and that K s I. Even with fairly precise anisotropies, I doubt 
that unique J and К values can be established. In addition to the smearing 
of the alignment by particle and gamma emission prior to fission and 
especially by re-orientation due to environmental interactions, it seems 
likely that some K-mixing will occur during passage through the barrier. An 
alternative method for characterizing the spin of the two quasiparticle 
isomers would be to study the conversion electrons associated with a pos
sible gamma decay branch to the rotational band built on the lowest state of 
the second well. 

4.2 Excitations of odd-A Isomers 

The only known low-lying excitations of shape isomeric odd-A nuclei 
are those implied by the existence of two isomers in "'Pu an(j possibly two 
isomers in -'-Pu. The former pair is more accessible for study by reason of 
the availability of appropriate targets for producing the isomers in (a,2n) 
and (d,2n) reactions involving compound nucleus formation. The two isomers 
are thought to correspond to different single particle configurations for 
the odd nucleon. One of these configurations is presumably the lowest state 
in the second well, while the higher-lying state is a single particle or 
single-hole state. The two isomers presumably differ sufficiently in SI val
ues that the gamma decay of the 'upper isomer could be sufficiently long to 
support the observed half-life. 

237 The relative yields of the two shape isomers in Pu have been studied 
as a function of the angular momentum deposition in the compound nucleus [43]. 
The results illustrated in Fig. 11 show that the ratio of the production 
cross-sections for the short-lived (80 nsec) and long-lived (1100 nsec) iso
mers decreases with increasing angular momentum deposition. This result 
proves that the long-lived isomer has a higher spin than the short-lived 
isomer. Conventional isomer ratio statistical model calculations have been 
performed and more quantitative comparisons with the data indicate as possi
ble spin combinations the values shown in Table I. This information by it
self does not take us very far. If however we now examine the Nilsson 
diagram in the region of the second minimum some suggestive identifications 
are possible. Figure 12 shows the level diagram at the deformation of the 
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TABLE I. SPIN PAIRS CONSISTENT WITH STATISTICAL MODEL 
INTERPRETATION OF 2 3 7 m p u ISOMER RATIOS 
The p a i r s in pa ren theses a r e considered l e s s likely on the bas i s of the 
i s o m e r ra t io calculat ions 

Isomer 

5 
2 

11 
2 

7 
2 

9 
2 

Spin 

7 
2 

11 
2 

Pairs 

9 
2 

11 
2 

82 n s e c 

1120 n s e c 
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second minimum obtained in various theoretical calculations. The first 
column [11] is based on a deformed Woods-Saxon potential employed by the 
Copenhagen-Basel groups. The second column [13] is based on the two-center 
harmonic-oscillator potential employed by the Frankfurt-Oak Ridge groups. 
The last column [10] is based on the folded Yukawa potential of the Los 
Alamos group. 2 37p u has 143 neutrons. In all three level diagrams one ob
serves a high spin 11/2+ level close to the Fermi surface. (An earlier 
diagram [12] based on a one-center harmonic oscillator had a 11/2- level in 
this region.) The most likely Orbitals to be occupied by the 143rd neutron 
in both the Mosel and Möller-Nilsson-Nix diagrams are the 5/2+ and 11/2+ 
orbitals, spin values consistent with the spin pairs given in Table I. It 
should be considered fortuitous if the theoretical calculations were to give 
the exactly correct ordering at the second minimum. In a subsequent experi
ment [29] it has been shown that the long-lived isomer lies 0.3 MeV above 
the shorter-lived isomer. We thus have the tentative decay scheme shown in 
Fig. 13. It is not clear from either the experimental observations or from 
theoretical expectations whether the excited state is a particle or a hole 
state. It is also not possible to conclude whether the apparent fission 
decay of the long-lived isomer is due to direct fission or from fission fol
lowing gamma decay to the short-lived isomer. Thus the 1120-nsec half-life 
is a lower limit to the partial fission half-life of this state. The fact 
that the excited state has a partial fission half-life which is longer than 
that of the lower state should not be considered surprising. The ground 
state spontaneous fission half-lives of odd-A nuclei show large fluctua
tions from nucleus to nucleus, presumably due to the differing specializa
tion energies depending on their spin and parity. 

Although the fact that the long-lived state lies higher in energy makes 
the interpretation of its half-life ambiguous because of a possible gamma 
branch, this circumstance provides a unique opportunity to study the spec
troscopy of an odd-A nucleus in its second well. If a gamma branch exists 
one expects a cascade through the rotational band based on the lower state. 
These transitions could be studied by conversion electron spectroscopy. 
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D I S C U S S I O N 

L. WILETS: Could you say what dependence J^tß) you assumed in 
deducing the С p a r a m e t e r s ? 

R. VANDENBOSCH: Somewhat to our init ial s u r p r i s e , we found that 
it is possible to deduce the ra t io Cj/Сц independently of whether the 
moment of iner t i a j* l s proport ional to j3 or to ß2. This is a consequence 
of the fact that only the numer ica l coefficient and not the functional form 
of the second t e rm in our final express ion for E(J) is determined by the 
dependence of ^ o n ß. This coefficient cancels when one cons iders the 
ra t io CJ/CJJ-, However, one needs to know bothJ^and ß at both deformations, 
in o rder to deduce Ci /C n . 

H. C. PAULI: Does С] / С п ~ 2 imply that the spacing of vibrat ional 
s ta tes is sma l l e r in the f i rs t than in the second well? 

R. VANDENBOSCH: No, the vibrat ional energy depends on both the 
stiffness С and the m a s s p a r a m e t e r B. If we knew "ft и for the second well 
we could deduce information about the m a s s p a r a m e t e r B . 

C . F . TSANG: You made a s ta tement , which was also implied in one 
of the f igures shown by Nix1 in Session II, that the e r r o r in b a r r i e r heights 
is due to defects in ground-s ta te m a s s calculat ions. While there is 
empi r i ca l support for this s ta tement , it i s difficult to imagine a defect in 
the ground-s ta te calculation not propagat ing to the b a r r i e r s . Also it is 
difficult to imagine that one can calculate the b a r r i e r energies more 
accura te ly than ground-s ta te ene rg ies , when one knows much m o r e about 
the ground-s ta te p rope r t i e s . Could you comment on th is? 

R. VANDENBOSCH: I do not think that an inadequacy in calculating 
the ground-s ta te m a s s defect neces sa r i l y propagates into the m a s s defect 
at the b a r r i e r . The point is that the shel l cor rec t ion is mos t sensi t ive 
to the location of the single par t ic le s ta tes c loses t to the F e r m i surface . 
A state which is misplaced close to the F e r m i surface at the equil ibrium 
deformation can have a great effect on the ground-s ta te m a s s defect but 
be too far away from the F e r m i surface at the saddle deformation to affect 
the b a r r i e r m a s s defect. 

V . E . VIOLA: I should like to point out that the ground-s ta te m a s s 
sys temat ics show a dist inct deviation at N ^ 146, which may be associa ted 
with the deviation in the i somer half- l ives at th is neutron number . 

R. VANDENBOSCH: I do not think that the ground-s ta te m a s s defect 
is d i rec t ly re la ted to the i somer half-life dependence on neutron number. 
I had thought that the second min imum shell co r rec t ion might be influencing 
the ground-s ta te spontaneous fission hal f - l ives . Bj^rnholm recent ly 
pointed out to m e that the ground-s ta te m a s s defects maximize at N = 142 
for (Z ~ 92) and at N = 152 at Z ~ 98. These lead to maximum m a s s 
defects in the plutonium region at N и 146, a s you have mentioned. Swiatecki 

1 MÖLLER, P. , NIX, J.R., Paper IAEA-SM-174/202, these Proceedings, Vol.1. 
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has shown that these ground-sta te m a s s defects account nicely for the 
deviations of the observed ground-state half- l ives from the Z 2 /A dependence 
expected from the simple liquid drop model . 

N. VILCOV: I noticed that in your f i rs t slide the re was an empty 
space for 243Bk. We have produced this f ission i s o m e r in Buchares t and 
have measu red its excitation energy in the M 1Am (a, 2n) react ion . Its l i fe
t ime is of the o rde r of a few nanoseconds and it was f i r s t observed by the 
Heidelberg group. 

R. VANDENBOSCH: Thank you for the information. 
CD. BOWMAN: In your summary of the sys temat ic p roper t i e s of f ission 

i s o m e r i s m you omitted any discussion of the p a r a m e t e r •пюд. Would you 
comment on th i s , p lease? 

R. VANDENBOSCH: The only information onftuA which is obtained 
from i somer studies comes from the gamma branch. This is d iscussed 
in P a p e r IAEA-SM-174/96. 

L. G. MORETTO: It may be worth pointing out that your quadrat ic 
form giving the energ ies in the 1st and 2nd well as a function of the defor
mat ion ß a l so includes the dependence of the gap p a r a m e t e r on /3. Thus 
the stiffness constant С in principle contains information about such a 
dependence, as well a s information concerning the shell model energy. 

R. VANDENBOSCH: I agree that in principle pair ing effects may 
affect С I would guess they a r e r a the r sma l l at the second minimum 
because of the la rge energy difference between the rotat ional excitat ions 
and the pair ing gap. 

2 RUSSO, P. , PEDERSEN, J . , VANDENBOSCH, R., Paper IAEA-SM-174/96, these Proceedings, Vol.1. 
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Abstract 

GAMMA BRANCH OF THE 238U SHAPE ISOMER. 
Systematics of the double-humped fission barrier predict a poorly developed inner barrier for the 

lower-Z actinide nuclei. Experimental evidence from delayed fission of even-even actinides suggests 
that the fission branch of the 238U shape isomer decay represents only one-tenth of the total width for shape 
isomer de-excitation. These observations indicate an inner barrier for 238U sufficiently penetrable that the 
greater strength for shape isomer- de-excitation is in the gamma branch. 

The 200-nsec 238U shape isomer was produced by the (d, pn) reaction with 18-MeV deuterons incident 
on natural uranium targets. The deuteron beam from the FN Tandem is pulsed. A Ge(Li) detector was used 
to observe the delayed gamma rays. Time and energy information for each event was stored. 

Most of the large number of delayed gamma lines have been attributed to normal isomers in fission 
fragments by comparison of the energy spectra with other gamma spectra obtained in the same experimental 
configuration using different reactions which are not capable of populating the 238U shape isomer. Of the 
remaining lines, most can be excluded by their half-lives which are inconsistent with the 200-nsec half-life 
of 2 s s U m . 

A line at 2. 514 MeV has been observed which is attributed to the decay of the shape isomer to the 
0. 045-MeV 21" rotational state of 238U. It has a half-life in agreement with that observed for the fission branch 
and is produced with a yield consistent with predictions of a more penetrable inner barrier. A second weaker 
line has been observed at 1.879 MeV corresponding in energy to the transition from the shape isomer to the 
first excited 1" state at 0.680 MeV in 238U. The decay of this line is also consistent with the measured 
half-life of " 8 m U . 

INTRODUCTION 

The interpretation of spontaneously fissioning isomers as shape isomers 
has received considerable support from theoretical calculations Cl] which 
apply deformation-dependent shell corrections to a smooth liquid drop poten
tial. Three-MeV fluctuations in the shell correction energy at approxi
mately twice the normal deformation give rise to a sufficiently deep second 
well from which isomeric fission can occur. The first direct experimental 
evidence connecting fission isomers with this larger deformation has been 
provided by the measurement of Specht et al. [2] who have found that the 
moment of inertia for rotations built upon the isomeric state is approxi
mately twice as large as that measured for the normally deformed ground 
state. 

Compound resonances from sub-barrier neutron-induced fission and vibra
tional resonances from near-barrier direct reaction fission give strong 
support to the hypothesis that the secondary minimum is a general phenomenon 
in actinide nuclei. These results and measurements of delayed fission with 
half-lives and yields consistent with fission from the calculated second 
minimum have contributed to a systematic understanding of single particle 
effects as a function of deformation. 

* Work supported in part by the US Atomic Energy Commission. 
''"' Permanent address: Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark. 
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'. The abundance of fission isomers among the isotopes of plutonium and 
americium leads to some speculation concerning shape isomer population and 
de-excitation processes. The delayed fission results show an abrupt de
crease in the number of observed fission isomers for Z less than 94. Since 
shape isomerism is believed to be a general occurrence among the actinides, 
the systematics should also explain this abrupt change. An alternate mode 
of decay for the de-excitation of shape isomers could account for the ab
sence of delayed fission in the low-Z actinides. Experimental and theoret
ical evidence suggests a sufficiently penetrable inner barrier for a com
petitive gamma branch in the low-Z actinide region. The shape isomer 
tunnels through the more penetrable inner barrier and de-excites by gamma 
ray emission to the ground state in the first minimum. 

The fission barrier calculations of Tsang and Nilsson [3] show that 
the inner barrier is systematically higher than the outer barrier for the 
high-Z actinides. When asymmetric distortions are considered, the domi
nance of the inner barrier begins at about Z = 94. The dominance shifts 
to the outer barrier for actinide nuclei of lower Z. 

Analysis [4] of data from near-barrier direct reaction fission and from 
delayed fission measurements indicates that the outer barrier height, Eg, 
exceeds the inner barrier height, Ед, for nuclei with Z less than 94. This 
is illustrated in Fig. 1 which shows barrier heights for even-even nuclei, 
obtained from such an analysis. 
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FIG. 1. Inner and outer barrier heights, E and E as a function of Z. Bars indicate the limits of Е д and Eg 
averaged for each Z, obtained from fits to (t,pf) data. Error bars represent the range of values of E and EB for 
each Z. 
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Bjsfonholm and Strutinsky [5] have concluded from an interpretation of 
fission fragment angular distributions that the outer barrier is the higher . 
one for Th and Pa isotopes. The anisotropy in fission fragment angular dis
tributions is due to a non-uniformity in the distribution of the K-values at 
the fission barrier saddle point where К is the projection of the total 
angular momentum along the nuclear symmetry axis. The characteristic fea
ture for the lighter elements ( Z s 92) is a very strong energy dependence 
for W(0°)/W(90°) whereas the heavier elements (Z > 92) all show a statisti
cal type anisotropy. If the secondary minimum is deep, there will be large 
damping effects, and the nucleus might "forget" the K-value with which it 
penetrated the first barrier during the time it participates in the class II 
compound motion. If the second barrier is much lower than the first, sev
eral channels with different K-values will be open for fission and the angu
lar distribution will consequently be of statistical nature. If the second 
barrier is larger than the first the nucleus will again obtain a certain K-
value in penetrating the outer barrier. Thus, the conclusion of the authors 
is that a strongly energy-dependent anisotropy indicates that the second 
barrier is the highest one. The data shows that the transition region from 
statistical to strongly energy-dependent anisotropies occurs around uranium. 

The systematics of photofission as interpreted by Vandenbosch [6] lead 
to the same conclusion regarding the systematics of the inner and outer bar
rier heights. The lowest barriers to dipole and quadrupole fission are the 
rotational 2+ and octupole vibrational 1-, К = 0 barriers. At the first 
barrier, these are separated by about 1 MeV with the 1- level lying higher. 
At the deformation of the second barrier, stabilization to asymmetric dis
tortions creates a near-degeneracy in the two barriers. Since the ratio of 
quadrupole to dipole photoabsorption is very small, the presence of a siz
able quadrupole component in the photofission fragment angular distributions 
indicates that the dipole barrier exceeds the quadrupole barrier. This is 
the case when the inner barrier is higher than the outer barrier. Fission 
fragment angular distributions for photofission near the barrier show a 
sizable quadrupole contribution for plutonium nuclei. The quadrupole com
ponent is small at all energies for lower-Z actinides. This suggests the 
dominance of the outer barrier over the inner barrier for Z less than 94. 

Only one fission isomer has been observed in neptunium [7]. The ratio 
of the yield of delayed fission to the ground state yield (fission isomer 
ratio) is three orders of magnitude lower than fission isomer ratios of odd-
A plutonium isomers. The two shape- isomers 236mu ап<з 238imj [g] with half-
lives 100 and 200 nsec respectively have isomer ratios that are an order of 
magnitude smaller than observed for the even-Pu isotopes. The lower yields 
of the even-even uranium fission isomers and the very low yield of the 237j[p 
fission isomer are consistent with the existence of a competitive branch in 
the decay of uranium and neptunium shape isomers. 

An experimental investigation of the gamma branch of U has been 
motivated by the ideas in the preceding discussion. The ground state of the 
secondary minimum in "°U has spin and parity 0+ because of the even-even 
character of this nucleus. Thus a large fraction of its gamma decay is ex
pected to populate the lowest lying 2+ level in the first well. Population 
of the isomer by the (d,pn) reaction with 18 MeV deuterons results in a 
cross-section of ̂ 5 yb for delayed fission. The expected cross-section for 
a gamma decay is therefore 50 to 100 ub. From the general systematics of 
delayed fission thresholds the excitation energy is expected to lie between 
2 and 3 MeV. The first excited 2+ state in the primary minimum lies at 
0.045 MeV. Therefore, a 2 to 3 MeV delayed gamma ray with a half-life of 
195±30 nsec is sought. 
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EXPERIMENTAL METHODS 

U has been produced by the d,pn reaction with an 18 MeV pulsed 
deuteron beam incident on self-supporting natural uranium targets 3.67 
mg/cm2 thick. Delayed gamma rays were observed between beam bursts with a 
25 cn)3 true coaxial Ge(Li) detector. The gamma rays were timed against a 
signal from the beam pulser oscillator. 

Observation of the gamma branch is considerably more difficult than the 
delayed fission measurements because of the low Q-value for the gamma 
branch (̂ 3 MeV) compared to the fission branch (^150 MeV). The very high 
fission fragment kinetic energies result in a delayed region which is essen
tially free of background for fission fragment detection. However, prompt 
fission cross-sections of lb occur with 18 MeV deuterons on 238ц, p o r -i-̂ e 
delayed time region from 10 to 200 nsec after the beam burst, delayed gamma 
activity, primarily due to de-excitation of normal isomers in fission frag
ments, represents approximately 6.5% of the total gamma activity from prompt 
fission [9]. 

Reduction of delayed gamma-ray background has been accomplished by 
optimizing the beam-pulsing system. A 100 usee interval between beam bursts 
was used to prevent buildup of shorter-lived activities. 

Lead lining in the scattering chamber and a 20-foot-long Faraday cup, 
together with the use of lead collimators, beam stops and beam tube shields, 
reduced the background further. Since the major part of the background was 
due to decay from fission fragments, a relatively thin target was used,allow
ing approximately 85% of the fission fragments to leave the target (the 
range of fission fragments in uranium is "\>10 mg/cm 2). About half of these 
travel in the direction of the detector and will be stopped near the 
detector surface. To diminish the solid angle for these fragments a rotat
ing disc (speed 1000 rev/min) was placed in the vacuum chamber in front of 
the detector surface. The diameter of the disc was 25 cm corresponding to a 
velocity of ^1 c m / m s e c for the portion of the disc in front of the detector. 

FIG. 2. Cross-sectional view of the 16-inch hemispherical scattering chamber. 
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For activities long-lived compared to the rotation period,the solid angle 
reduction factor for fragments flying in the direction of the detector is 8. 
Reduction of background from fission fragments escaping in the direction 
opposite the detector was accomplished with a chamber which was hemispheri
cal with a radius of 20 cm. The velocity of an "average" fission fragment 
is ̂ 1 cm/nsec which means that the solid angle for delayed gamma activity 
from the fragments flying in the direction opposite the detector is negli
gible. Figure 2 shows a cross-sectional view of the chamber. Since the 
interest is greatest for gamma rays above 1 MeV, lead was positioned between 
the target and the detector to absorb 75 percent of the 0.5 MeV gamma rays, 
permitting the use of higher beam currents. 

Constant fraction timing with the true-coaxial Ge(Li) detector resulted 
in a resolution of 5 to 8 nsec, full width at one-half maximum, for timing 
against coincident gamma rays from 60Co detected by a plastic scintillator. 
The use of pulse shape discrimination to gate the time spectrum improved the 
time resolution to 3 to 5 nsec. 

The beam pulser oscillator signal was used to start a time-to-amplitude 
converter (T.A.C.) which was stopped by a signal from the Ge(Li) detector. 
The prompt coincidences were included in the 4- us T.A.C.range so that pileup 
events between a prompt and delayed gamma ray were registered as prompt 
events leaving the delayed region free of pileup pulses. The two analog 
signals corresponding to the gamma-ray time and energy were digitized and 
stored in an on-line computer. Event-by-event data recording permitted cor
rection of the energy spectra for fractional percent gain shifts and zero 
shifts which occurred during the typical 5-day data collection periods. 

Several lines in the spectrum were outstanding after one hour of data 
collection. Two of these at 1.279 MeV and 1.313 MeV have been identified 
[10] as normal isomers in the fission fragments 13ЧТе and Xe respectively. 
Several lines below 0.4 MeV come from a 133Ba source which was positioned 
near the Ge(Li) detector during the experiment. A broad line at 0.693 MeV 
results from decay of the first 0+ state of 72Ge excited by n,n' in the ger
manium crystal. These lines together with a pulser were used to monitor the 
gain and zero level of the energy spectrum on an hourly basis. Off-line 
correction of the data for gain and zero shifts restored the resolution to 
approximately 3 keV at 2.5 MeV. 

The corrected data has been analyzed in separate time bins. The time 
spectrum corresponding to a given energy region was used to determine the 
optimum time region for a 200 nsec activity. Typically, the analysis of 2 to 
3 MeV gamma rays began approximately 150 nsec from the beam burst edge. 

For 200 nsec half-lives, the sensitivity of the experiment is 30 to 
50 ub, based on two standard deviations. Subtraction of long-lived back
grounds from the early time periods improved this sensitivity by a factor of two. 

Data was taken in four separate experiments. Two of these used 18 MeV 
deuteron beams and the natural uranium target. More than sixty delayed 
gamma lines between 0.9 and 3.7 MeV were common to the resulting energy 
spectra.' Many of these were eliminated on the basis of half-lives which 
were incompatible with the 195±30 nsec half-life on 2 3 8 mu. Others were known 
to be normal isomers in fission fragments based on data from 252Cf spontane
ous fission [10]. Others were observed in investigations similar to the 
present experiments using 11 MeV deuterons with a 235U target [11]. Two ad
ditional experiments were performed with the same experimental setup to eli
minate those remaining lines which result from processes other than de-exci
tation of the 238U shape isomer. These used the same uranium target and 



276 RUSSOetal. 

beams of 13 MeV deuterons and 13 MeV protons respectively. The duration of 
each experiment was sufficient to obtain approximately the same number of 
prompt fissions obtained in each of the runs with 18 MeV deuterons. This 
required approximately twice the number of beam particles at the lower ener
gies. The 13 MeV proton experiment does not appreciably populate 238u final 
states except by direct processes, and therefore will not lead to signifi
cant population of the 238u shape isomer. The 

238ц 
shape isomer cross sec

tion is at least a factor of 10 lower with 13 MeV deuterons than with 18 MeV 
deuterons on "°U [8]. The experiment is insensitive to cross-sections of 
less than 25 yb for a 200 nsec decay. Since the measured cross-section for 
each gamma line is approximately 100 pb in the 18 MeV deuteron experiment, 
lines appearing in the spectra from the 13 MeV deuteron experiment cannot 
be the result of the gamma branch. 
RESULTS 

Table I summarizes the data from background-subtracted spectra for the 
indicated time intervals using the combined results of the two 18 MeV deu
teron experiments. The lines included in the table are those with half-
lives which are consistent with 195±30 nsec, and which appear in each of the 

Table I. Tabulation of gamma lines appearing in both 18-MeV deuteron ex
periments. Lines with half-lives incompatible with 195±13 nsec have been 
excluded. Number of counts in peak corresponds to integration over the 
time interval from 150 to 750 nsec after the prompt peak, except where indi
cated by asterisk (*) in which cases the time interval was 150 to 4-50 nsec. 

Observed In 
935 E (MeV) No.of Counts in Peak after 13-MeV 13-MeV U+ 

"Background Subtraction Proton Deuteron 11-MeV d 
Exp't. Exp't. Exp't.[14] 

3.532 
2.833 
2.514 
2.247 
2.211 
2.034 
1.879 
1.779 
1.760 
1.719 
1.646 
1.592 
1.492 
1.408 
1.394 
1.362 
1.015 
0.999 
0.976 
0.956 
0.899 

31 
47 

143 
45 

193 
106 
66 
680 
95 
74 

103 
60 
80 

156 
375 
156 
2360 
295 
5720 
340 
785 

± 
+ 
+ 
± 
+ 
± 
± 
+ 
+ 
± 
± 
± 
+ 
± 
± 
± 
± 
± 
± 
± 
+ 

15 
16 
30 
21 
35 
35 
30* 
65 
31 
33 
25 
30* 
45* 
45 
45 
60 
100* 
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90* 
45* 
100* 

X 

X 
X 
X 

X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 

X 

X 

X 

X 

X 

X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
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region from 150 to 750 nsec after the prompt peak. The data in adjacent channels were combined. 

18-MeV deuteron spectra. The lines of interest should not appear in either 
the 13 MeV deuteron data or the 13 MeV proton data. The two high-energy 
lines that fulfill the requirements are at 3.532 MeV and 2.514 MeV. The 
line at 3.532 MeV is too high in energy to be consistent with the recent 
measurement of the 195 nsec 23°U shape isomer excitation energy of 2.2±0.3 
MeV [12]. However, the line at 2.514 MeV is consistent with this measure
ment. The spectrum for the summed 18 MeV deuteron data in the energy region 
near 2.5 MeV is shown in Fig. 3 with the long-lived background subtracted 
and pairs of channels combined to improve the statistics. The cross-section 
calculated for the line at 2.514 MeV based on a 195 nsec half-life is 90±25 
mb. Figure 4 shows the decay curve for the 2.514 MeV line. The half-life 
obtained from a least-squares fit to this data is 191±44 nsec, in good 
agreement with the measured half-life of the 238ц sh ap e isomer. Figure 5 
shows the background-subtracted energy spectrum for the same time interval 
from the 13 MeV deuteron data. The 2.514 MeV line is absent in this spec
trum as expected if this line is attributed to the 238U shape isomer. 

If the line at 2.514 MeV is assumed to result from decay of the iso
meric state to the first excited 2+ state at 0.045 MeV in the first well, 
then the isomer excitation energy is 2.559 MeV. Figure 6 shows a decay 
scheme corresponding to gamma decay from this 0+ level at 2.559 MeV to the 
lowest 1- and 2+ levels in " % . Figure 7 shows the background-subtracted 
energy spectrum for the energy region from 1.4 to 1.9 MeV. Peaks are ob
served at three energies, 1.454, 1.592 and 1.879 MeV, which might correspond 
to primary transitions from the 0+ state at 2.559 MeV. Examination of the 
background spectrum used for subtraction [13] suggests that the structure at 
1.454 MeV is an artifact of this subtraction since a strong, long-lived 
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FIG. 6. Proposed decay scheme for the238U gamma branch based on the assumption that the 2. 514-MeV 
transition is the decay from the shape isomer to the first excited 2+ state at 0.045 MeV in normally 
deformed238U. 

activity occurs just above 1.454 MeV. The line at 1.592 MeV is probably the 
double escape peak from the 2.6145 MeV line corresponding to decay of the 
first excited state of 208pj-,_ The double escape peak for a gamma ray of 
this energy is approximately one-half the intensity of the full energy line. 
Within statistics, the results are consistent with this interpretation. 
The double escape peak for the 2.514 MeV line should be at 1.492 MeV. A 
peak of the right intensity appears at this energy. This peak is not pres
ent in the 13 MeV proton data but a weak line does appear at this energy in 
the 13 MeV deuteron spectrum. Thus there may exist an underlying low-inten
sity fission gamma ray at about this same energy which also contributes in 
the 18 MeV deuteron experiment. 

The remaining line at 1.879 MeV does not appear in either the 13 MeV 
proton data or the 13 MeV deuteron data. The cross-section for this line, 
assuming a 195 nsec half-life is 40±20 ub. The decay curve is shown in Fig. 
8. The statistics are too poor to accurately determine the half-life, but 
the decay is consistent with a half-life of 195 nsec. The energy of this 
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Table II. Experimental cross-sections for gamma rays at 2.514 MeV and 
1.879 MeV for the three reactions. 

a2.514 MeV (дЬ) 

°1.879 MeV(jub) 

18-MeV d 

90 + 25 

40 ± 20 

238U Target 

13-MeV d 

-22 + 15 

-12 ± 14 

' 13-MeV p 

-10 ± 12 

2 ± 15 

line is consistent with a transition from the shape isomer to the lowest 
excited octupole state at 680 keV. A search for further gamma rays gave 
negative or inconclusive results. 

Table II summarizes the results for the three experiments. A more com
plete presentation of the data appears elsewhere [13]. 

DISCUSSION 
238m„ The half-life, energy and yield expectations for the ' U gamma branch 

are satisfied by the two gamma rays listed in Table II. The gamma rays do 
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not appear in two additional experiments with equivalent sensitivity to pro
cesses other than the 238my gamma branch. It is proposed from this evidence 
that the 2.514 MeV gamma ray is the primary transition from the 0+ ground 
state of the 238imj shape isomer to the first excited 2+ state in the normal
ly deformed nucleus. 

The total measured cross-section for the U gamma branch based on the 
results in Table II is 130+35 yb. This neglects contributions from decays 
to higher lying states and is, therefore, a lower limit. The delayed fis
sion cross-section for the reaction 2 3 8U(d,pn) 2 3 8 mU is 6 yb with 18 MeV 
deuterons [8]. The fission isomer yield ratio for 238тц is 5xl0 - 5 [8]. 
Therefore, the total isomer yield ratio for a gamma branch cross-section of 
130±35 yb is (10±3)x 10" 4. This compares reasonably well with the fission 
isomer yield ratio for even-even 2 4 0 m P u , variously reported as (8.6±2.4) x 
lCT4 [14] and (3.8±l)x 1СГ 4 [15]. The outer barrier of 2 3 8 U is higher than 
the outer barrier of 2^0pu while the inner barrier heights are approximately 
the same. Therefore, the isomer ratio for " ° m u is expected to be larger 
than for 2t0mPu 

since the deeper well is a more effective "trap". 
The observed ratio of radiation widths, ГЕ2(2.514 MeV)/rE1(l.879 MeV) = 

90+25/40±20 or approximately 2.5±2 is large compared to the single particle 
estimate of 0.01. However, the observed ratio is consistent with extra
polated data from neutron capture in the actinides at higher energies [16] 
and radioactive decay data at lower energies [17]. These results reflect 
the collective enhancement of E2 transitions and the retardation of low-
energy El transitions. 

Some of the gamma branch strength is also expected to go to the higher-030 
lying 1- and 2+ levels in U. Assuming a common reduced width for all 
primary E2 transitions and a different common value for the primary El 
transitions to the 2+ and 1- levels indicated in Fig. 6, the additional 
strength is estimated to be 70±20 yb based on the energy dependence of the 
total gamma width and the cross-sections of the 2.514 MeV E2 and the 1.879 
MeV El transitions. Thus, the 2 3 S m u gamma isomer ratio increases by 50%. 
This is still not unreasonable compared to the measured 240трц fi s si 0n 
isomer ratio. The analysis that follows will assume that the total 238тц 
gamma branch cross-section is 250 yb, including 50 yb as an estimate of the 
decay to unknown 1- and 2+ levels. This leads to a partial fission half-
life of 8300 nsec and a partial gamma half-life of 200 nsec. 

It has been mentioned in the introduction that the observed predomi
nance of gamma decay over fission decay was to be expected on the basis of 
the inner barrier becoming more penetrable than the outer barrier for the 
lighter actinides. In order to understand more quantitatively the results 
obtained for the partial gamma and fission half-lives, the theoretical ex
pectations for the absolute half-lives for these two processes are reviewed. 
The simplest of these is that for fission, 

in 2 _ 4 x 10 

where n is the number of barrier assaults per sec, P„ is the penetrability 
of the outer barrier and t^ ^ is the partial half-life (in sec) for fission 
decay of the isomer. The numerical value of n is based on a vibrational 
frequency for п ш ц - 1 MeV. Implicit in this expression is the expectation 
that once the outer barrier is penetrated the nucleus always fissions. 
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The situation for gamma decay is more complicated. Nix and Walker [18] 
have obtained the expression (valid if there is not an accidental near-
degeneracy of the first and second well levels) 

4,Y = V P A = 10_14/PA 

where ty is the half-life expected for a normal excited state in the first 
minimum with the isomer excitation energy, Рд is the penetrability of the 
inner barrier and t£ Y is the partial half-life (in sec) for the gamma 
branch. Thus, according to this estimate, if the inner and outer barriers 
have equal penetrabilities, fission decay will predominate over gamma decay 
by a factor of approximately 106-5. This enhancement factor may be thought 
of as arising from the difference between the characteristic times for fis
sion (of the order of a nuclear vibrational period) and for gamma decay 
(characterized by the longer lifetimes for the slower electromagnetic decay 
process). Lynn [19] has approached this problem somewhat differently, em
phasizing the mixing of the first-minimum states into the second-minimum 
states. In the limit of complete damping (which Lynn does not necessarily 
expect to be valid) he obtains an expression 

t 4 DT 

t. = -X I 
a,Y PA * U l I 

differing from the previous estimate by the factor 4 D_/fLiüTT. This factor 
is approximately 1/5 for an even-even nucleus with an isomer excitation 
energy of 2.5 MeV. Thus the difference between the two estimates for an 
even-even nucleus is less than the expected fluctuations from nucleus to 
nucleus which arise because of fluctuating matrix elements coupling the 
class I and class II states and because of possible accidental near-degener
acies of the class I and class II states. For our present purposes we take 

t. 
ID"14 4 * IQ"15 

1,Y 2.5 PA PA • 

assuming some but not complete damping. 

A simple expression for the barrier penetrability is obtained for a 
parabolic barrier, 

P = 1/C1 + е2,г(йЕ)/^] 

where ДЕ is the height of the barrier to be penetrated and fuo is the barrier 
curvature energy. Thus for penetration through the inner and outer barrier 
from the isomeric state at excitation energy ET JII' 

and 

-2*<E -ETj.)/toA 

-2,<EB-ElI)/toB 
PB = e 
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938 The value of EJJ for U has been determined in the present experiment to 
be 2.56 MeV. Back et al. [4] have obtained E A and Ев values of 6.12 and 5.90 
MeV, respectively in an analysis of (t,pf) reaction data. From our meas
ured partial half-lives and the above theoretical expressions we can obtain 
values for the barrier curvature energies of -йшд = 1.18 MeV and -пив = 0.63 
MeV. These values are in reasonable agreement with values obtained in 
other analyses [15,4]. Since Ед is slightly larger than Eg, the predomi
nance of gamma decay over fission decay is attributed in the case of 238my 
to the "thinner" inner barrier, reflected by пЧод > -fiug. Analysis of direct 
reaction data for 2 3 8U [4] yields values of -nwA=1.00 MeV and-Кшв=0.62 MeV. 
These values, while confirming the relatively greater penetrability of the 
inner barrier, are somewhat smaller than the above values. This is not sur
prising, since the direct reaction analysis is only sensitive to the curva
ture of the barrier for energies within 1 MeV of the top of the barrier, 
whereas the gamma and fission half-lives are very sensitive to the penetra
bility of the barrier 3-4 MeV below the top of the barrier. 
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Abstract 

FRAGMENT ANISOTROPY IN ISOMERIC FISSION. 
Measurements of fragment angular distributions in fission from isomeric states — aligned by preceding 

nuclear reactions — can in principle provide information about the quantum numbers of the isomeric state, 
if independent information is known about the magnetic substate distribution and the perturbations due to 
extranuclear fields. Using (a, 2n) reactions on targets of 23SU, 236U and 239Pu with metallic Pb stoppers for 
the recoiling atoms (to preserve the alignment ), fragment angular distributions at 90°, 125° and 167° were 
measured. The delayed fragments were detected with Si detectors in coincidence with the pulsed orbeam 
from the Munich Tandem Accelerator. 

Anisotropies W(167°)/W(90°) of 0. 58±0.16, 1.41 ± 0.14, 0.69 ±0.09 and 2.0 ±0.4 have been obtained 
for the 45-ns and 1.1-us isomeric states of !37Pu and the 6-ns !38Pu and 10-ns 241Cm isomers, respectively. 
Spin assignments for the four states are suggested on the basis of a simple Gaussian distribution for the magnetic 
substates, assuming that any perturbations are negligible. 

1 . INTRODUCTION 

Our knowledge about fission isomeric states is, in most 
cases, still restricted to half-lives and excitation energies. 
More detailed spectroscopic information characterising these 
states like quantum numbers, magnetic dipole or electric quadru-
pole moments would be of great interest. The direct measure
ments of spins in odd A nuclei, for example, would allow one to 
identify specific Nilsson single particle states at the deform
ation associated with the second minimum of the potential 
energy surface, providing a crucial test of the parameters 
underlying the potential energy calculations. Such information 
in even nuclei would,moreover, help to clarify the nature and 
the decay mode of the "excited" states in the second well, 
apparently connected with K-isomerism. 

The study of electromagnetic transitions in fission isomers 
from which, in principle, spins can be deduced, is extremely 
tedious. We have instead investigated fragment angular distri
butions in fission from isomeric states, aligned by a preceding 
(a,2n) reaction. As is well-known from the study of gamma 
angular distributions [l ,2] , anisotropies occur because the 
projectile ions bring in large angular momenta (6-8 units of 'h 
on the average at 2 5 MeV), producing compound nuclei with strong 
spatial alignment of their angular momenta in the plane perpen
dicular to the beam direction. Although the subsequent decay 
via neutron and gamma emission towards the isomeric state 
causes a certain spread in the magnetic substate distribution 
as discussed below, some alignment will be left. The fragment 
angular distribution in spontaneous fission from this state is 

285 
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uniquely determined by its spin I and the quantum number К of 
the relevant band at the second barrier associated with this 
decay. 

A principle difficulty (but possibly also a virtue) in 
investigations of this kind is the influence of extranuclear 
fields, i.e. the hyperfine interaction between the magnetic or 
electric moment of the isomeric state and some external field 
like the magnetic field of the highly ionized atom recoiling 
into vacuum or the magnetic field or electric field gradient at 
a lattice site. This interaction causes a perturbation of the 
angular correlation in times as short as 10 11 sec (depending 
on size), reducing (for static interactions) the time-integrated 
anisotropy to the very small "hard core" value[3] or (for time-
dependent interactions) completely destroying it. If, on the 
other hand, the external fields can be controlled, a detailed 
investigation of the perturbation could, at least in principle, 
provide information about the moments of the isomeric state, as 
is, in fact, widely done for spin isomers. 

To circumvent these difficulties in a first step, we have 
used the implantation technique of recoiling the compound nuclei 
into metallic FD. The cubic lattice of Pb is known to preserve 
any alignment of, for example, high spin states in Po or At up 
into the us region[4], although it is not at all clear whether 
this should be expected for Actinide nuclei (with their unfilled 
5 f electronic shell) in Pb as well. So far we have investiga
ted the decay of four isomeric states (in 2 3 ePu, 2Ц1Ст and two 
in 2 3 7 P ) , and have, in fact, found fragment anisotropies in each 
case. A similar study with the recoiling nuclei decaying in 
vacuum has been done independently by the Bucharest-Dubna group [ 5]. 

2. EXPERIMENTAL METHOD 

A pulsed a-beam of 2 5 MeV from the Munich MP tandem accele
rator was used on targets of 2 3 SU, 2 3 6U and 239Pu to populate 
well-known isomeric states via the (a,2n) reaction. Each target 
consisted of a multilayer sandwich, every layer containing 
30 ug/cm2 fissile material alternating with 50 ug/cm2 Pb (both 
vacuum-evaporated as a metal on a carbon backing). The 2 3 5U 
material was enriched to 90% (with 9% 2 3 8 U ) , the 2 3 6U material 
also to 90% (with 9% 235U and 1% 2 3 e U ) . 

The Munich pulsing system (chopper and buncher at the low-
energy end of the machine, high-frequency sweeping system 
beyond the analyzing magnet) provides a beam with a FWHM of < 
1 ns, a pulse separation of >+00 ns and an unusual cleanliness 
between pulses (see below). Delayed fragments were detected 
with a Si annular detector at 180 and two further Si detectors 
at 90° and ъ 125° with respect to the beam direction (fig.l). 
Extreme care was taken to minimize any tails on the prompt 
fission time distribution. The effects of slit scattering of 
the beam were carefully investigated. All detectors were 
covered with appropriate apertures. Constant fraction discri
minators , high-lying slow levels and fast pile-up inspection 
was used throughout. The experiments were performed in an 
"open" hall with the well-shielded beam stop several meters 
away from the target to keep the fission background due to 
scattered neutrons and y-rays to a minimum. During all the 
runs, a 232Th target (showing no isomeric fission) was fre
quently interchanged with the target under investigation to 
monitor the overall quality of the system. During some of the 
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PULSED a-BEAM 

90° 

TARGET-MATERIAL *Pb STOPPER 
' [SANDWICH) 

FIG. 1. Diagram of the detector arrangement. During some of the runs, the 125° detector was used at 90° 
in coincidence with the other 90° detector. 

runs, the 125 detector was used at 90 in coincidence with 
the other 90° detector to check any remaining deficiencies ; 
this precaution turned out to be completely unnecessary. 

3. RESULTS 

We will first discuss the decay curves for the three 
reactions separately, and then turn to the anisotropics. 

a) 232Th(a,f) and 2 3 6U(a,2n) 2 3 8 Pu 

The overall quality of our system is best demons 
prompt fission time distribution of 232Th shown 
the 180° detector). At 108 prompt events, there 
ground at all beyond 15 ns, making the system es 
able for investigation of fission isomers with 1 
data from the 

trated by the 
in fig.2 (for 
is no back-

pecially suit-
ow yields. The 
or the same 
6-ns decay of 
ratio of 

The slower 
the BU(a,n) 
tion from the 
corrected for 

U target also shown in fig.2 (f 
number of prompt events) exhibit the well-known 
the 238Pu isomer [6,7] with the low isomer/prompt 
(3.7 + 0.3)»10 6 appearing far above background 
decay beyond 30 ns is due to contributions from 
2 3 S mPu reaction[6] and the 235U(«,2n)237rePu reac 
2 3 5U target impurity which, of course, have been 
in the data analysis. 

b) 239Pu(a,2n)2,,lmCm 

Consistently for the two_independent detectors, a least squares 
a half-life 
reported 
(table I) 

;sibly be 
data [6] . 
background 

fit to the decay of the 2ltlCm isomer (fig.3) yields 
of 10 + 1 ns_, somewhat lower than the value 15.3 + 1 
previous ly[6J . Since the isomer/prompt ratio at 90° 
also appears to be lower, this discrepancy might poss 
caused by some background contribution to the older 
Fig.3 also demonstrates the complete absence of any 
due to neutrons on a thermal fissionable target. 
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FIG. 2. Time distribution of prompt fission in 232Th (a, f) and of delayed fission from the mPu fission 
isomer produced in the 36U(tt,2n) reaction. Npr = number of prompt events. 

239,-, , ,, v 2Mm„ 
Pu(a.2n) Cm 

FIG.3. Decay curve for the " l m C m fission isomer from the 90° and 180° detectors. The number of 
measured prompt events is given in brackets. 



IAEA-SM-174/19 

l35Ula.2n)'3""Pu 

289 

70 

50 

с 20 
W 
л 
z LU 

ш 7 п 
LL / u 

N
U

M
BE

R
 

z!U 

70 

50 

20 

\ * 
К 

: t 

I 
M i 1 

N t ( t 

{ 

'' IV 

90° DET. 
(Nn..= 80»10'l 

Т и »1120 ns 

-Ш-Лх± yyt-n 
| 

A . 

^ 

' ) 

1 .1 
J 

\ 125° DET 
\ (Nft.. = as»io') 

\ — T„2=C5;10ns 

180° DET 
INp^MxHl'l 

; 

-

j 

-h 

-

: 

40 80 120 160 200 240 280 320 
TIME [nsl • -

FIG. 4. Decay curves for the mPu fission isomer from the 90°, 125° and 180° detectors. The single solid 
point in each of the graphs gives the average intensity over the region 166-326 ns associated with the 1120-ns 
component. The measured data points are open circles. The triangles refer to the measured data points 
after subtraction of the 1120-ns component. The number of measured prompt events is given in brackets. 

c) 235U(a,2n)237mPu 
All three detectors show the composite decay of the two isomeric 
states in 237Pu (fig.4), investigated in detail previously [8-10]. 
The single full point in each of the graphs gives the average 
intensity (over the region 166-326 ns) associated with the long-
lived component of Tv* = 1120 + 80 ns[8] (drawn as a line). As 
a very interesting point, the intensity ratio of the short-lived 
and long-lived component gradually decreases in going from 90 
to 180°. A least-squares fit to the decay of the short-lived 
component for the 90 data yields a value of 45 + 10 ns, defin
itely lower than the 82±8 ns quoted previously [8]. Our intensity ratio 
Oshort /aiong at 90 (0.59 + 0.08) fully agrees with newer data 
(0.58 + 0.09) for 25 MeV[9]~. 

Isomer/prompt ratios and fragment anisotropies for the four 
isomeric states are summarized in table I. The entry "13 " 
corresponds to the average angle 167 of the annular detector. 



TABLE I. ISOMER/PROMPT FISSION RATIOS AND FRAGMENT ANISOTROPIES FOR 
ISOMERIC FISSION FOLLOWING (a,2n) REACTIONS AT E a = 25 MeV 

CO 

О 

Isomer 

2 3 7p u 

2 3 8p u 

2ц1Ст 

Half-life 

1+5 ns 

1.1 ys 

6 ns 

10 ns 

Isomer Prompt 
(this work) 
13° 

2.25+0.6 

9.3 +0.7 

3.7 +0.3 

3.1 +0.3 

90° • 

3.9+0.5 

6.6+0.5 

5.3+0.4 

1.6+0.2 

) x 106 

(other) 
^90° 

4.1+0.43 

7.1+0.83 

4.3+0.5b 

1.9+0.2b 

W(9) / 

13° 

0.58+0.16 

1.41+0.14 

0.69+0.09 

2.0 +0.4 

W(30°) 

55° 

0.67+0.16 

1.17+0.12 

0.78+0.20 

VANDENBOSCH, R., et al. [9] 
b BRITT, H. С , et al. 16] 
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FIG. 5. Fragment anisotropics (relative to 90°) for 2ssPu-, 237Pu- and 241Cm-isomeric fission. 

The Qj/e-p ratios for 237Pu and 238Pu have been multiplied by a 
factor or 1.1 to correct for the target impurities; all ratios 
at 13 have, in addition, been multiplied by a factor of 1.11 
to account for the anisotropy of prompt fission [11] and the 
effects of Center-of-mass motion at 167°. Only the data at 90 
should, of course, be compared to other published values, which 
have always been obtained at approx.90 . In general, the 
agreement is satisfactory. 

The anisotropies (relative to 90 ) at 13 and 55 (=125 ) 
are, in addition, plotted in fig.5. Evidently, all four isomers 
exhibit definite deviations from isotropy. This remarkable 
result even for the long-lived l.l-^s component in 237Pu is 
hardly influenced by any uncertainties in the subtraction proce
dure. Only if, somewhat artificially, all data for 237Pu 
between 26-326 ns are summed up, is isotropy obtained. 

Before drawing any detailed conclusions about the size and 
the sign of the effects observed, however, we should definitely 
point out that in none of the four cases does the deviation from 
complete isotropy exceed more than three standard deviations. 

4. THEORETICAL ANALYSIS 
The time-integrated fragment angular distribution for 

fission from an isomeric state with spin I and projection of 
the spin on the nuclear symmetry axis at the second barrier К 
(the lowest band allowed by angular momentum and parity 
conservation) can be quite generally written as 

w*(e) I Ax G^ P x ( c o s e ) 
Л 

0 , 2 21 

w i t h [12] 

^ i Z ( - 1 ) K _ M f(M) C I I X C I U 
2 „ l ; Х(Л) -MMO C - K K 0 
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In the formulae, the P, are the Legendre polynomials, the С -
Clebsch-Gordan coefficxents, the f(M) the occupation 
number distribution of the magnetic substates M of the spin I 
relative to the quantisation (i.e. beam) axis, and the G. the 
time-integrated attenuation factors[3] due to any per
turbation of the correlation by extranuclear fields. 

All the difficulties of this approach are hidden in the 
functions G, and f(M). If they would be exactly known, a measu
rement of the complete angular distribution W(9) would unique
ly and independently determine I and K. In practice, of course, 
rough approximations have to be made about G, and f(M), and the 
angular distribution has only been measured at three angles. 
We can therefore at most hope to make suggestions, but no 
definite spin assignments. 

For static magnetic interactions in strong axially sym
metric fields, the time-integrated attenuation factors ("hard 
core" values) are given by[3] 

bX " 2Л+1 

The corresponding factors for a static quadrupole interaction 
can also be found in ref.[3]. Evidently, these factors reduce 
the angular correlation to a very great extent, in fact, to 
values (for any reasonable spin I) much smaller than the experi
mental ones. In view of the Pb stopper, we will in the follow
ing assume 

Gx = 1 

The occupation number distribution f(M) of the magnetic sub-
states M for the compound nucleus following a-capture on an 
even target nucleus is given by 

f(M) = 1 for M = 0 
f(M) = 0 for M i 0 

As pointed out already in the introduction, the subsequent 
emission of two neutrons and gamma rays introduces a spread in 
the distribution function. However, since the angular momentum 
taken away in anyone of these steps is small, of the order of 
2[l,13] , and since the angular momentum vectors of the indivi
dual events are distributed in nearly random directions, the 
final alignment of the isomeric state may still be appreciable. 
If one knew the whole "spin history" from the completely align
ed compound nucleus down to the final state, the distribution 
function f(M) could be calculated. Although attempts in this 
direction have been reported[13,14] , the uncertainties involved 
are appreciable. Specifically, the usual assumption of a final 
stretched E2 cascade along the Yrast line is not well-justified 
for the (a,2n) reaction at these low energies because of con
siderable side-feeding, so that the spectroscopic details of 
the final decay will enter. 
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We have therefore taken a more phenomenological approach. 
A simple Gaussian distribution function 

f(M) f57 0», 
has been found[l,2,15] to fit experimentally observed gamma 
angular distributions following (o,xn) reactions reasonably well. 
It has also been theoretically justified [13] for the neutron 
cascade, considered as a one-dimensional random walk in the 
projection M with the width 

„ ' 1 / 2 
0 M = УП 

where n is the number of steps (2 in our case) and у the avera
ge step length (1 for % = 2), yielding a.. = 1.4 for the neu
tron contribution in (a,2n) alone. Experimental values 
of a., (containing the gamma contribution as well) have been 
found for (a,n) reactions on a whole range of nuclei[2,15] to be 
reasonably constant around 1.6, rather independent of I for 
I > 5/2. We therefore estimate the most plausible range of aM 
in our case to lie somewhere around 2 and not larger than 3. 

Using these approximations, we have calculated the aniso
tropics W(0 )/W(90 ) as a function of the Gaussian width öM 
for all combinations of I and К (up to 11/2) which yield 
values in the region of the measured anisotropies. These 
dependences are plotted in fig.6, for even nuclei in the upper 
part, for odd in the lower. For clarity, full lines are used 
in the cases К = 1/2 and I = K, dashed lines for all other 
combinations. The shaded areas signify the experimental aniso
tropies of the four isomers with their statistical errors and 
the uncertainty in the width Gw. 

5. DISCUSSION 
As pointed out above, any conclusions and tentative 

suggestions for spin assignments rely on the assumptions of 
negligible perturbations and values for aM within the shaded 
areas. 
a) Z37Pu 
The simple fact of a difference in the anisotropy (even in sign) 
for the two isomeric states allows the conclusion, that the 
higher-lying[9] 1.1-ys state decays predominantly by fission 
rather than by electromagnetic transitions down to the 45-ns 
state, as has been speculated before[9]. If the two states 
would have the same parity, they would presumably fission through 
the same band К at the second barrier,, the longer half-life of 
the higher state being due to specialization energy effects 
because of a larger spin[8,9]. For the two shaded areas in fig. 
6 connected with 2 3 7Pu, only one common value for К (namely 5/2) 
is possible, leading to an assignment of I = 11/2 for the 1.1-us 
isomer and 1 = 5 / 2 for the 45-ns isomer. It is most remarkable 
that this conclusion exactly coincides with the suggestions made 
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FIG. 6. Calculated anisotropies W(0°)/W(90°) as a function of the Gaussian width ov, of the substate 
occupation number distribution function f(M) for all combinations of I and К (up to 11/2), for even (a) and 
odd (b) nuclei. Solid lines are used in the cases К = 1/2 and I = K, dashed lines for all other combinations. 
The shaded areas represent the experimental anisotropies of the four isomers with their experimental errors 
and the uncertainty in the width o ^ . 

earlier from isomer ratio investigations[8 ,9] . The correspond
ing Milsson orbitals recently proposed by Vandenbosch [9} on the 
basis of three different calculations [16-18] are [615] 11/2 and 
[862]5/2 , which lie close to the Fermi surface and do, in fact, 
have the same parity. Independent information[l9j from induced 
fission of 2 3 SÜ (same neutron number) about the К quantum number 
of the lowest barrier suggests 5/2 or 7/2. 
b) 2"lCm 
The strong forward peaking observed would be consistent with 
I, K = 7/2, 1/2; 9/2, 1/2 or 3/2 and 11/2, 3/2, although the 
errors are large and other combinations might also be possible. 
Since there are only two neutrons added as compared to 2 3 7Pu, 
one might speculate that fission occurs from the same 11/2 
[615] orbital mentioned above (with [73>+] 9/2 as an alternative). 
It is not clear whether this state is really the isomeric ground 
state. 
c) 238Pu 
The bare existence of an anisotropy in this case directly sup
ports the hypothesis[7] of the 6-ns isomeric state not being the 
ground state in the second well, but some excited (K-isomeric) 
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state above the pairing gap. We can furthermore conclude that, 
again, the isomeric state decays by fission rather than by 
electromagnetic transitions down to the 0 level. With the 
extreme assumption of the "true" anisotropy of this state being 
0, the upper limit for the branching ratio between the "downward" 
and the "outward" decay is <. 2. 

Assuming now this ratio to be 0, we can again try to esti
mate the spin. Combinations I, K of 2, 2; 3, 3 and 4, 3 appear 
to be possible. However, the choice 4, 3 would correspond to 
a ratio W(55 )/W(90°) > 1 which is outside the error bars (fig.5), 
but definitely not ruled out. The most plausible spin 3 can be 
created by the coupling of the 5/2 and 11/2 orbitals of Z 3 7Pu, 
leading to an unnatural parity state I, К = 3 , 3 . It is not 
easy to see, however, why the fission half-life of this state 
should then be as long as observed. 
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D I S C U S S I O N 

V. METAG: I wonder whether you have checked your se t -up by 
measur ing the angular distr ibution from an i somer i c s tate with (I, K) = (0, 0). 
That should give you complete isotropy. The case to t ry would be the 3 .8-ns 
i somer of 2 4 0Pu which also has a half-life s i m i l a r to that of the i s o m e r s you 
have studied. 

H . J . SPECHT: We have already been asked this question severa l t imes 
and the answer is that we did not. We are quite confident about our s imple 
procedure for normalizing the delayed intensity relat ive to the prompt, which 
is performed separa te ly at each angle. I fully agree , however, that this 
check on the 2 4 0 m p u i somer should be done. 

G .C . SLETTEN: Did you t ry to use th icker lead abso rbe r s? It appears 
to me that 50 / jg /cm 2 of lead is about the recoi l range and, as a resul t , a fair 
proport ion of the reco i l s would escape . This would tend to s m e a r the d i s t r i 
butions. 

H . J . SPECHT: The target was positioned at an angle of 45° relat ive 
to the beam direct ion; the effective thickness of the Pb layers was therefore 
70 |Ug/cm2, which should be sufficient. 

R. VANDENBOSCH: I would like to propose a simple explanation as to 
why the long-lived 237Pu i somer exhibits an anisotropy charac te r ized by К < I, 
whereas the shor t - l ived 237Pu i somer exhibits an anisotropy with К - I . It has 
been suggested that the odd neutron of the long-lived i somer occupies the [615] 
(11/2, +) orbi ta l which is at, or very near to, the F e r m i surface at 
the deformation of the second minimum. We now want to discuss the 
location of single part ic le s ta tes with (K, IT) = ( П / 2 , +) at the deformation 
of the outer b a r r i e r . Mr . Möller has shown me his level d iagram 
for the outer b a r r i e r including r e f l ec t ion -asymmer t r i c d i s tor t ions . 
The [615] (11/2, +) level, which is an upward-sloping level, has moved up 
to about 6 MeV above the F e r m i surface . There is no other (K, n) = (11/2, +) 
orbi tal from lower shel ls , and the next higher (11/2, +) orbi ta l comes from 
the N = 8 shell and is expected to be ~2 tw or -12 MeV higher . Thus, if К 
were to be p rese rved from the second minimum to the outer b a r r i e r , we 
would have a special izat ion energy of about 6 MeV and an ext remely long 
i s o m e r fission half-life, in contradiction to exper iment . S . A . E . Johansson, 
however, pointed out many y e a r s ago that, even if К is a fairly good quantum 
number, so that at a level c ross ing there is only a smal l (say 10%) probability 
of jumping to a lower energy level with different K, the special izat ion energy 
may be lowered to the extent that the dominant contribution to fission may 
come from exploiting level c ross ings which change K. The half-life, however, 
will be increased owing to the smal l jump probability at such c ro s s ings . 
These effects could account for both the relat ively long half-life (compared to 
the low-spin i somer) and the lowering of К for the fission of an (11/2, +) 
i s o m e r s ta te . 



IAEA-SM-174/15 

DELAYED FISSION FRAGMENT 
ANGULAR DISTRIBUTIONS IN SOME 
ALPHA-PARTICLE-INDUCED REACTIONS 

D. GALERIU. M. MAR1NESCU, D. POENARU. I. VILCOV, 
N. vibCOV 
Institute for Atomic Physics, 
Bucharest, Romania 

Yu.P. GANGRSKY, P .Z . HIEN, N . C . KHAN 
Joint Institute for Nuclear Research, 
Dubna, USSR 

Abstract 

DELAYED FISSION FRAGMENT ANGULAR DISTRIBUTIONS IN SOME ALPHA-PARTICLE-INDUCED REACTIONS. 
This paper describes the measurement of the angular distribution of the fission fragments emitted by 

fission isomers, populated in alpha-particle-induced reactions. Such experimental data gives valuable 
information concerning the fission isomer spin values {there has been little data on the spin values of the 
fissioning isomeric states up to now). Owing to the very small yield of the fission fragments, only the "integral" 
anisotropy factor (a = W(180°)/W(90°)) could be measured, the angular resolution being dependent on the solid 
angle subtended by the detectors, as well as on the fission isomer lifetime. Solid state track detectors have 
been used to register the fission fragments emitted by recoiled nuclei in flight. The experimental arrangement 
consists of three systems of detectors: a mica annular detector looking downstream with respect to the ingoing 
alpha-particle beam (the 180'detector), several lead glass (to lower the overall background) plain detectors 
oriented parallel to the beam (the 90° detectors) and a mica detector facing the target, used for monitoring 
purposes (the prompt fission detector). Delayed fission fragment anisotropy factors for fission isomers, populated 
in ( a , 2n) reactions on г35и, 238U, 2MPu and 241Am targets as well as in (a , 3n) reactions on a 5 U and M2Pu targets, 
have been measured. Anisotropy factors essentially differing from unity were obtained in some of the measured 
fission isomers, particularly in the case of 2 3 s m 'pu (T?11 =30 ns), assumed to represent an excited state in the 
second potential well. An estimate of the spin values of the fission isomers has been made using a statistical 
model approach. The limitations of the above method, including the precision of measuring the experimental 
anisotropy factors as well as the possible perturbation of the angular distributions due to the extranuclear fields, 
are analysed. 

1. INTRODUCTION 

The problem, of measuring the spin value of the fissioning isomeric 
states in transuranic nuclei arose in an earlier stage of fission isomer 
development. The first attempts to explain the unusual stability of such 
states against any transitions (including the gamma decay to the ground state 
of the nucleus) were based on a high spin value of the fissioning isomeric 
states. On the other hand, the experimental evidence of the constancy of 
the isomeric yield ratio in different nuclear reactions, characterized by 
input channel angular momenta from 1 to 15ft and leading to the 14-ms 
fissioning isomer of 2*2Am [1], has been interpreted as a consequence of 
the relatively low value of the fission isomer angular momentum. The 
population of the same fission isomer in a low spin reaction such as neutron 
capture [2] confirmed this conclusion. 

Because of these data, arguments other than the high spin value had to 
be found to explain the strange behaviour of the fissioning isomeric states. 
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And these arguments were found in the framework of the well-known 
Strutinsky two-humped potential barrier hypothesis [3]. The appearance 
of some metastable states at large deformations separated from the ground 
state by a potential barrier could explain almost everything, at least 
qualitatively, concerning the fission isomer properties. As has been pointed 
out [4] the constancy of the isomeric yield ratio, for instance, may be 
explained by taking into account the probabilities of populating the two (ground 
state and isomeric) potential wells rather than by using spin arguments. 
The spin values of the fissioning isomeric states must be deduced from other 
kinds of experiments. 

There are some nuclei for which two fission lifetimes were observed. 
If both fission isomers belong to the same (second) potential well, only one 
of them (the lower) may be considered a true shape isomer. The other 
could be explained by the large difference in the spin values of the two 
isomeric states. By using the experimental dependence of the ratio of the 
cross-sections for populating the two fission isomers on the energy of the 
compound nucleus, spin values for the two isomeric states were assigned [5] . 
It would certainly be useful to get more information concerning the spin 
values of such double fission isomers from other experiments. 

One possible way to obtain the spin value of a fission isomer is based 
on the measurement of the angular distribution of the fission fragments 
emitted by the fission isomer. It is known that the fission fragments are 
emitted along the symmetry axis of the deformed fissioning nucleus. The 
angular distribution (i. e. the angular distribution of the fission fragments) 
of the deformed nucleus is given by the following relationship: 

M 

where &LK(0,cp,X.) represents the eigenfunction of the symmetrical rotator 
of total spin I with projection M and К on the z-axis and on the symmetry 
axis respectively, (0,cp,x) represent the angular coordinates and fM are 
the relative amplitudes of the spin projection M. The amplitudes fM depend 
on the nuclear reaction used to populate the fission isomer. A proper 
choice of the nuclear reaction is thus very important. The angular distribu
tion of the fission fragments is sensitive to the spin value of the fissioning 
state in the case when a few amplitudes fM are significantly different from 
zero otherwise one obtains isotropy. Such "good" reactions are those 
induced by alpha particles on low spin targets because the large orbital 
angular momentum carried by the spinless alpha particles leads to an 
orientation of the angular momentum of the fissioning nucleus almost per
pendicularly to the beam direction (z-axis). 

The purpose of the work described in this paper is to measure the 
delayed fission fragment angular distribution in some (o,2n) and (a,3n) 
reactions to obtain the possible spin values of the fission isomers involved. 
Analogous research has also been recently done [15]. 

2. EXPERIMENTAL ARRANGEMENT 

The schematic diagram of the experimental arrangement used in this 
work is shown in the Fig. 1. A recoil technique based on mica annular 
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FIG. 1. Schematic diagram of the experimental arrangement. See text for description of items 1-8. 

detectors has been used, the arrangement looking similar to that described 
in Ref. [6] except that the 90° detector 3 and the collimators 4 and 5 have 
been introduced. 

The delayed fission fragments emitted in flight by the recoil nuclei 
knocked out of target 1 by the bombarding alpha particles are registered 
by two mica detectors: the 180° ring detector 2 and the 90° circular 
detector 3. The collimators 4 and 5 prevent the registration of fission 
fragments incident at small angles on the detector surface. The small-
step energy variation of the incident beam is achieved by using an aluminium 
absorber 6. There are two ways to monitor the incident beam: (1) the 
measurement of the prompt fission yield by using the mica detector 7 facing 
the target and (2) the integration of the beam current on the Faraday cup 8. 

In the above experimental arrangement only the anisotropy factor a 
defined as: 

W(180°) 
a = —i -

W(90°) 

can be measured. Owing to the very small yield of the delayed fission 
fragments the detectors have to work in a rather poor geometry. To obtain 
the anisotropy factor from the measured ratio of the fission fragments 
registered by detectors 2 and 3, the efficiencies of the detectors have to 
be known. Figure 2 shows the computed probabilities of registering, on the 
180° counter, the delayed fission fragments as a function of the angle of 
emission for lifetimes of interest in the present work. The resulting mean 
value <6> and FWHM Д0 of the distribution as well as the overall efficiencies 
are given in Table I. The overall efficiencies for the 90° mica detector 
are presented in Table II. 

3. RESULTS 

Targets of 235TJ,238 U, 239Pu, M2Pu and MAm with thicknesses 
0. 15-0. 20 mg/cm2 have been used. The energy of the incident alpha-particle 
beam was chosen in the 26-33 MeV range in such a way as to correspond to 
the maximum of the excitation function for the given reaction (Refs [6, 7] ). 
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FIG. 2. Calculated probability of registering the delayed fission fragments on the 180° ring counter as a 
function of the angle of emission. 

TABLE I. COMPUTED EFFICIENCIES FOR THE 
180° RING DETECTOR 

-r-mf 
1/2 
(ns) (deg) 

Ae(FWHM) 
(deg) 

2.0 

3.8 

15.0 

30.0 

40.0 

14.0 

0.006 X 10"2 

0.160X 10-2 

2.250 X 10"2 

3.100 X 10"2 

3.070 X 10 - 2 

1.900 X Ю - 2 

129 
133 
142 
147 
150 
165 

18 
27 
32 
35 
30 
13 

The exper imenta l data obtained a r e l is ted in Table III. The f i rs t two 
columns indicate the react ion used to populate the fission i somer and the 
energy of the incident alpha pa r t i c l e s . By using the ra t io of computed 
efficiencies (Tables I and II), the anisotropy factors l isted in the third column 
were obtained from the exper imenta l data. 

DISCUSSION 

Most of the measu red fission fragment angular distr ibutions a r e i so 
t ropic . This is the case for the 2 3 7 m f p u , a*0mfPu, M 3 m f Cm and, possibly, 
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TABLE II. COMPUTED EFFICIENCIES 
FOR THE 90° DETECTOR 

1/2 
(ns) 

2.0 

3.8 

15.0 

30.0 

40.0 

114.0 

0.23 X 10-2 

2.09 X 10-2 

10.60 X 10-2 

10.20 X 10-2 

9.11 X 10-2 

4.56 x lO"2 

TABLE III. EXPERIMENTAL DATA 

Reaction 

2 3 5 U(a,2n) 2 3 , m f Pu 

2 S 5U(a,3n)2 3 6 m fPu 

238U(a.2n)24°mfpu 

2 3 9Pu(a,2n)2 4 1 m fCm 

"«РиСа.Зп)«3 1"^!!! 

(T^ f
2 = 114 ns) 

( T l / 2 = 3 0 n s ) 

„~n}f л л 
( T 1 / 2 = 3.8 ns) 

(Т™' = 15 ns) 

(T™f
2= 40 ns) 

(MeV) 

26.7 

33.0 

26.7 

26.7 

33.0 

а 

0.90 ± 0.15 

0 . 7 0 i 0.15 

1.50 i 0. 80 

1.87i 0.40 

1.20 ± 0.20 

for the 243mfBij f ission i somer( the last one could not be measu red owing to 
its very short l ifetime). Marked anisot ropies have been found for the 
30-ns 236mfPu as well as for the 15-ns 241mfCm fission i s o m e r s . 

Before proceeding to analyse the above data, we wish to emphasize the 
poss ible ambiguity in obtaining fission i somer spin values from the exper i 
menta l delayed fission fragment angular d is t r ibut ions . 

Basical ly , t he re a r e only two spin va lues , namely 1=0 and I = 1/2, for 
which an isot ropic angular distr ibution has to be expected. Any other spin 
value should lead to a m o r e or l ess marked anisotropy in the angular 
dis t r ibut ion of the fission f ragments . 

On the other hand, as we have pointed out before , the angular distr ibution 
depends not only on the spin value of the fission i somer but a lso on the 
nuclear reac t ion used to populate the fission isomer, through the ampli tudes fM. 
As a resu l t of neutron and g a m m a - r a y emiss ion , the init ial orientat ion 
of the compound nucleus angular momentum is par t ia l ly lost . Consequently, 
the angular dis t r ibut ion becomes m o r e uniform, approaching the isot ropic one. 
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0.75 

0.25 

0.5-

FIG.3. Calculated fission fragment angular distribution for the B 5 U ( a , 3n) ^ P u reaction. 

Figure 3 shows the above effect in the case of the 235U(#, 3n)236Pu react ion . 
The angular dis tr ibut ions were calculated for the compound (solid line) and 
the res idua l (dashed line) nuclei by using the s ta t i s t i ca l model of the nuclear 
reac t ions (Ref. [9]). 

Another factor disturbing the anisotropy is r ep resen ted by the hyperfine 
interact ion between the magnet ic (or e lec t r ic ) moment of the recoi led nucleus 
and the ex t r a -nuc lea r fields. As these fields a re usually randomly distr ibuted 
with respec t to a given direct ion (z-axis) , the init ial orientation of the spin 
may be changed owing to the hyperfine t rans i t ions between different sub-
s ta tes | M)>. The l a r g e r the ra t io between the lifetime of the fission i somer 
and the p recess ion period i s , the m o r e strongly per turbed is the fission 
fragment angular distr ibution. A rough es t imate based on formulas developed 
in the theory of the 7-7 per turbed angular cor re la t ions [10] in the case of a 
ve ry s t rong ex t ranuclear field leads to the following resul t : the anisotropy 
factor calculated for the 23STJ(a, 3n)236Pu react ion , by supposing a spin value 
of the fission i somer equal to I = K = 10, is changed from 0. 3 (see Fig. 3) to 
about 0. 8. This could ser ious ly affect the determinat ion of the spin value. 
Although there a r e some possible ways to avoid this effect [11] we did not 
take any precaut ions on this m a t t e r in the p resen t exper iment . 

240 mf Pu. 

The obtained isotropy should be expected for the even-even 2 4 0 m fPu 
(T'J." = 3. 8 ns) , a ssumed to be on the bottom of the second potential well, 
in an (I,K)= (0,0) s ta te . 

nmf 
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2 3 7 m f p u 243mfQ 

The 114-ns 2 3 7 m fPu, as well as the 40-ns 2 4 3 m fCm, led to isotropic 
angular dis t r ibut ions of the delayed fission f ragments . In both cases one has 
to deal with even-odd isotopes. A 5/2 spin value has been deduced for the 
114-ns 2 3 7 m f p u from the re la t ive population of the double fission i somer in 
2 3 7Pu [5 ] . Nothing is known as yet concerning the spin value of 2 4 3 m fCm. The 
calculated neutron single par t ic le s ta tes in the second potential well for the 
147th unpaired neutron ranges from 1/2 [8] to 9/2" [14] . In addition to the 
above-mentioned effects, some non-conservat ion of the K-value, which is 
very possible in such odd-A nuclei , could contribute to the obtained isotropy. 

236mf p u 

The marked anisotropy found for the even-even 30-ns гоЬт'ри coni^ be 
explained by assuming the fission i somer to correspond to an excited s tate 
in the second potential well (because the ground s ta te in the second potential 
well would correspond to I = К = 0, thus leading to isotropy). The above 
s ta tement s e e m s to be in good agreement with the r ecen t observation of a 
second fission i somer ( T ^ = 0. 05 ns) in 236Pu [12] , whose existence had 
been predicted by the lifetime sys temat i c s [13]. F r o m the measu red 
anisot ropy factor 

a = 0. 70 ± 0. 16 

a spin value I = K = 4 has been obtained. This has to be considered however 
as the lowest l imit of the spin value , if a possible hyperfine interact ion 
effect is taken into account. 

2 4 1 m fCm. 

This case looks ve ry s t range , especial ly if compared with the analogous 
2 4 3 m fCm. To explain the obtained anisotropy factor 

a = 1.87 ± 0.40 

the total angular momentum of the fission i somer has to include a l a rge 
collect ive motion component. 
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D I S C U S S I O N 

S. ВJ0RNHOLM (Chairman): Does Mr. Specht ag ree with Mr . VUcov's 
suggestion of a s t rong gamma branch in the decay of the 5-ns shape i somer 
in 2 3 8Pu? 

H. J. SPKCHT: Mr . Vilcov's suggestion was apparent ly based on the use 
of a r a t h e r smal l effective value for the width aM of the magnetic substate 
dis tr ibut ion, of the order of 1, as compared with our range of 2 -3 . Although 
I would consider such a sma l l value to be ve ry unlikely, one cannot ru le it 
out completely. In fact, one can go to the other ex t reme and a s sume the 
" t r u e " anisotropy for fission from this i somer i c s ta te to be 0, just to obtain 
an upper l imit for the branching ra t io between the gamma decay down to 
the ground s ta te and fission. As indicated in our paper , we then obtain a 
value of 2 for this ra t io . 
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Abstract 

SPONTANEOUS-FISSION DECAY CONSTANT OF 235U. 
The partial spontaneous fission half-lives of odd-A and odd-odd actinides are observed to be orders 

of magnitude longer than for even-even nuclides with the same fissility parameter. For 233U and 235U, 
however, this difference in half-life is reported to be much smaller than for other even-odd actinides. This 
deviation from systematics could be due to inaccuracies in the measurements or to special features of the 
fissioning systems. 

An attempt was made to remeasure the spontaneous fission decay constant for 235U using the spinner 
detector technique. The principle of this detector is based upon producing negative pressure by centrifugal 
forces in a liquid containing the fissionable material. The metastable state created in this way in the solution 
can be destroyed as in normal bubble chambers. Very low background and a 100% efficiency even for gram 
quantities of fissionable material are the main features of this fission counter. 

About 7 g of uranium with an isotopic composition of Э9Л°!огзъ1] were dissolved in ethyl alcohol. Since 
(a, n)-reactions in the alcohol influence the fission rate, spinner vessels with different diameters were used 
to enhance the escape probability for neutrons. In chambers of 8-cm and 4-cm diameter, count rates of 
(2.43 ± 0.05)/h and (0.98 ± 0.03)/h, respectively, were obtained. These count rates are compared with 
those predicted by neutron transport calculations for the contribution of the (a,n,f)-reaction. Since the 
spinner was operated 15 m below rock, the contribution by cosmic interactions is estimated to be negligible. 

After correction for the contribution of the spontaneous fission of 238U, a conservative upper limit for 
the decay constant of 235U of 3.9 x 10"19 yr"1 was obtained. This limit is at least five times lower than the 
values published by others. Therefore, it is concluded that the deviation in fission hindrance of 235U compared 
with other even-odd actinides was at least partly due to an inaccuracy in the measurements. 

1. INTRODUCTION 

The available data on spontaneous fission decay constants (or half-lives) 
can be systemized by a method developed by Swiatecki [ 1 ]. According to 
these systematics a straight line is obtained for even-even nuclides if 
[log T^ + 5 6m] is plotted against the fissility parameter. The fissility para
meter x used in the following has been defined by Myers and Swiatecki [2] . 
The factor 5 is an empirical number and 6m is the difference between the 
experimental ground state mass and a smooth reference surface [2 ] . 

* and Anorganisch-chemisches Institut, Universität Bern, Bern, Switzerland. 
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TABLE I. FISSILITY PARAMETERS AND HINDRANCE FACTORS FOR 
EVEN-ODD, ODD-EVEN AND ODD-ODD ACTINIDES WITH Z S 100 

Fissility Hindrance 
Nucleus parameter factor 

x H.F. 

"HJ 
2 3 S u 
239Pu 

249 c f 

2 5 5Fm 

2 5 7Fm 

2 3 7Np 

2 4 1 Am 

2 4 3 Am 

249Bk 

253Es 

255Es 

242 Am 

254Es 

0.775 

0.773 

0.791 

0.825 

0.840 

0.838 

0.782 

0.800 

0.798 

0.813 

0.831 

0.829 

0.799 

0.830 

1.0 

1.6 

3.1 

4.0 

5.7 

5.6 

> 4 .2 

4.2 

5.0 

3.2 

5.6 

6.6 

1.4 

7.7 

The source material for spontaneous fission half-lives is taken from a recent compilation by Vandenbosch 
and Huizenga [ 3 ] . The hindrance factors have been extracted from a graph of [Tx(even-even) + 5 am] 
versus the fissility parameter [2] drawn on the basis of these data. 

Odd-A and odd-odd actinides show partial spontaneous fission half-lives 
which are orders of magnitude larger than the even-even nuclides with 
similar fissility parameters. A measure of the increased half-life for odd 
nuclei can be obtained by a hindrance factor H. F. for spontaneous fission, 
which can be defined as 

H. F. = [log T^exp.) + 5 6m] - [log T,(syst.) + 5 6m] 

where T^(exp.) and Ti(syst.) represent the experimentally observed 
half-life for spontaneous fission, and the half-life according to the even-even 
systematics for a nucleus with the same fissility parameter x, respectively. 
Hindrance factors for the odd-A, odd-Z and odd-odd actinides with Z ä 100 
are listed in Table I. 

There seems to be no straightforward linear relationship between x 
and H. F. according to these data, but it is however remarkable that apart 
from the odd-odd 242Am, both the odd-A uranium nuclei have low hindrance 
factors for spontaneous fission, if the published values for the half-lives 
are correct [ 4, 5 ] . The origin of the reduced spontaneous fission decay 
constant of odd-A and odd-odd nuclei is at present not fully understood. 
Only qualitative arguments in terms of specialization energy [6] , change 
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of the pairing interaction with deformation [ 7] and variation in the inertial 
parameter [8,9] have been advanced. It is therefore not trivial to predict 
any general trend of the hindrance factors. To express the theory in more 
quantitative terms, however, it is of great importance to supply the most 
reliable and extensive experimental data on the spontaneous fission 
half-lives of odd-A and odd-odd nuclei. 

These circumstances and the present availability of high-purity 
samples of together with a suitable method, motivated a remeasurement 
of the spontaneous fission half-life for this nucleus. 

2. EXPERIMENTAL 

2. 1. The spinner technique 

The spinner technique which has been described in detail elsewhere 
[10-12] was used to measure the fission events. This method has proven 
to be successful in the determination of half-lives of spontaneously 
fissioning nuclides [13]. 

The spinner consist of a glass cylinder with glass arms on its top 
(Fig. 1). This arrangement is filled with a solution containing the sample 

FIG.l . Spinner-detector. The glass container is filled with a liquid containing the fissionable material 
(shaded area). The assembly is rotated around the indicated axis, thus developing negative pressure through 
centrifugal forces. Leftside: metastable state; right side: broken state. 
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of in te res t . The pr inciple of the detector is based upon producing negative 
p r e s s u r e in this liquid by centrifugal forces . The metas tab le s ta te of the 
solution created in this way can be destroyed as in normal bubble chambers . 

The main cha rac t e r i s t i c s of the spinner a r e : 

(a) 47Г geometry, if the radiation source is dissolved inside the spinner 
chamber . 

(b) No absorpt ion cor rec t ions , since the liquid itself works as detector . 
100% counting efficiency, even for severa l hundred g r a m s of dissolved 
subs tance . 

(c) Very low background. 
(d) No pile-up effects for a - or (3-particles. 

The spinner is a low-level counter which is especial ly suitable for 
measur ing r a r e events of spontaneous or induced fission. The operat ing 
cha rac te r i s t i c r i s e s sharply from a threshold to a plateau. This is shown 
in Fig. 2 for the measu remen t of spontaneous fission of 235U. 

To minimize the in terference by cosmic- ray- induced reac t ions , the 
sp inners were operated 15 m below rock. 

1120 
(rev/min) 

FIG.2. Operating characteristics of a spinner containing about 7 g of 99.1%2 3 5ü. Spontaneous fission events 
are counted. The operating point for the determination of the decay constant for spontaneous fission was at 
1150 rev/min. 
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2. 2. Measurements and ma te r i a l s 

The measu remen t of highly enriched uranium samples with the spinner 
technique is difficult, owing to the fact that alpha par t i c les from the decay 
of the uranium may in terac t with the solvent and produce neutrons of 
var ious energies by (a, n ) - reac t ions . P a r t of these neutrons a r e moderated 
in the ethyl alcohol solvent. Hence, the observed fission r a t e will be the 
sum of spontaneous and induced fission events . 

To enhance the escape probabil i ty for neutrons , the measu remen t s 
were performed in spinner chambers with decreas ing d imensions . The 
dimensions, the active volumes and the uranium concentrat ions used a r e 
shown in Table II. 

More than a thousand fission events were r eg i s t e red in each of the two 
sp inne r s . Operating cha rac t e r i s t i c s were measu red for spontaneous fission 
as well as for fission events induced with a neutron sou rce . The working 
point for the measu remen t s was always well in the plateau region of the 
operat ing curve (see Fig. 2). 

Highly enriched 235U was obtained from the USAEC. Its isotopic 
composition was determined independently by two different analyses which 
a r e shown in Table III. The mean value of the two determinat ions was 
used . 

About 7 g of this m a t e r i a l were converted to иОг(КОз)г and dissolved 
in ethyl alcohol (9 5 vol. %, p . A. Merck) . This solution was measured in the 
two sp inne r s . The concentration of the uranium, which was assayed by 
g r av ime t ry of U3Os and by spec t rophotometry of the 8-hydroxyquinoline 
complex, is shown in Table II. 

TABLE II. SUMMARY OF THE SPINNER CHAMBERS AND SOLUTIONS 

Spinner Diameter Height of Active Concentrations 
No. (mm) cylinder volume (mgU/cm3) 

(mm) (cm3) 

1 80 80 432 16.64 

2 40 160 237 28.80 

TABLE III. ISOTOPIC COMPOSITION OF URANIUM 

Isotope 

2MU 
2 3 5U 

2 3 $U 

2MU 

(Wt<?o) 

0.057 

99.76 

0.063 

0.117 

Analyses 

(wtffc) 

0.059 

99.755 

0.064 

0.122 

Mean wtf?» 

0.058 

99.76 

0.064 

0.119 
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2. 3. Calculations of (a, n, ^-contributions 

Since it is impossible to distinguish experimentally between spontaneous 
and induced (a, n)-fission (see Section 2. 2.) the latter contribution was 
estimated using a mathematical method. The calculation of the production 
rate of the neutrons in ethyl alcohol was difficult, owing to the fact that no 
data for this solvent and for a-particles from *U and й 5 и were available. 
Therefore, the production rate had to be deduced from a neutron spectrum 
produced by »-particles of 244Cm in Ст2Оз [14] and from values for 
carbon and oxygen [15]. The values had to be extrapolated for the lower 
a-particle energy of the uranium isotopes and for the carbon and oxygen 
ratios in the ethyl alcohol. 

For neutron energies above 0.41 eV, cross-sections from the 
compilation of Adir and co-workers [16] consisting of 16 energy groups 
were used. This compilation was completed with data from Bondarenko [17] 
for one thermal energy group below 0.41 eV. 

Neutron transport calculations were used to determine the neutron 
distribution and the induced fission rate. Since the neutron production 
rate was not accurately known, only approximate values were obtained for 
the two spinners. One-dimensional calculations were performed for the 
small spinner (40-mm diameter) using the fast integral transport theory [18] 
in a cylindrical geometry. This geometry was justified, since the diameter 
of this spinner chamber was small compared with its height. For the 
large chamber, however, it was necessary to apply a two-dimensional 
discrete ordinate transport calculation in 96 directions [19], since the 
diameter and height were roughly the same. 

3. RESULTS AND DISCUSSION 

The results of the measurements on the spontaneous fission of 235U 
are shown in Table IV. The observed counting rate is the overall rate 
which includes contributions from spontaneous fission of the other uranium 
isotopes in the sample (see Table III) and from (a, n, f)-reactions. If these 
contributions are known, the measured overall rate can be corrected. 

The error given for the counting rate is one standard deviation. No 
correction for the background of the apparatus was applied, since it is 
negligible compared with the observed counting rate. Estimates for the 
magnitude of contributions by cosmic-ray-induced reactions indicate that 

TABLE IV. RESULTS OF MEASUREMENTS ON THE SPONTANEOUS 
FISSION OF 99. 7% ENRICHED 235U 

Spinner 
No. 

1 

2 

Amount of 
U measured 

(g) 

7.19 

6.83 

Number of 
events observed 

2230 

1006 

Counting rate 
(events/h) 

2 . 4 3 i 0.05 

0.98± 0.03 



IAEA-SM- 174/05 311 

TABLE V. DECAY CONSTANTS FOR SPONTANEOUS FISSION OF 2J4U, 
236U AND 23SU 

Isotope 

2 3 4U 

23SU 

238ц 

Decay constant X 
(yr"1) 

(4.3 ± 2.2) x 10"" 

3.5 x 10"" 

(8.46 ± 0.06) x 10"" 

Reference 

[20] 

[21] 

[13] 

this influence is also quite small, since the measurements were performed 
in a shielded cave. Therefore, no correction was made for cosmic 
interactions. 

To correct for the spontaneous fission of 234U, 23eU and 238U the 
constants for this decay mode must be known. The published values for 
these constants are shown in Table V. 

The determinations of the decay constants for spontaneous fission of 
234U [20] and 236U [21 ] date back to the 1940s and are probably not very 
reliable. For the 2 4U measurement an error is given, whereas in the 
measurement of 236U even the indication of the error is missing. The 
decay constant of U, however, was measured recently by several 
authors [13, 22, 23]. From among the values of the different measurements, 
we have chosen our own result which was also determined with the spinner 
technique [13]. 

For a first correction of the measured counting rate we therefore 
use only the decay constant of 238U [ 13 ] and do not apply any correction for 
either the other uranium isotopes or the (a, n, f) -reaction. Thus, with 
the isotopic composition of Table III, conservative limits for the counting 
rates and for the decay constants for 235U are obtained. These limits are 
shown in Table VI. The errors in the decay constant in the table include 
errors for the chemical determination of the uranium content, the isotopic 
composition of the sample and the decay constant of 238U. 

The decrease in the counting rate between spinners No. 1 and No. 2 
(Table VI) is due to a much lower contribution of the (a, n, f)-reaction in the 
smaller counter. The value of this measurement (3.9X10 -19 yr"1) is 
therefore taken as the upper limit for the decay constant of 235U. 

Using the calculated values for the [a, n, f) -reaction, a further 
correction may now be applied. Since the calculation of the production 
rate for the (a, n)-reaction is quite complicated (see Section 2. 3) and 
therefore not very reliable, only the ratio for this reaction in the two 
spinners was taken for this correction. However, if one uses the measured 
counting rates in the two spinner vessels in combination with the calculated 
values for the {a, n, f)-reaction, the source strength can be estimated. 

With this estimate, counting rates cf 2. 0 and 0. 56 dis/h were obtained 
for the contribution of the (a, n, f) -reaction in the large and small spinner, 
respectively. A correction for 234U and 236U is rather uncertain, 
owing to the facts already pointed out. Nevertheless this correction was 
performed using the isotopic composition taken from Table III and the 



TABLE VI. LIMITS FOR COUNTING RATES AND DECAY CONSTANTS OF 235U 

Spinner 
No. 

1 

2 

Overall 
counting rate 
(events/h) 

2.43 ± 0.05 

0.98 ± 0.03 

Overall decay 
constant 

(уг"1) 

(1.16± 0.05)X 10~18 

(4.92 ± 0.25)x 10"" 

Counting rate 
of 238U 

(events/h) 

0.21 

0.20 

Corrected 
counting rate 

of235U 
(events/h) 

2.22 ± 0.05 

0.78 ± 0.03 

Upper limit for decay 
constant 

(yr"1) 

(1.05 ± 0.06) x 10~18 

(3.9 ±0.2) x 10"19 

! 
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TABLE VII. COMPARISON OF DECAY CONSTANTS FOR 
SPONTANEOUS FISSION OF 235U 

Author 

Segre (~ 1946) [4] 

Aleksandrov and 
co-workers (1966) [5] 

This paper 

This paper 

Decay constant X 

3 .8x 10_ l s 

2. Ox 10-18 

< 3.9x 10-19 

~10" i 9 

Remarks 

Measurements with natural U and ~66<?o 
enriched U. Fission counting. 

Enrichment of sample: ~ 2<У<>z 35U. 
Fission tracks in glass, 22 events observed. 

99.7Чогз5и, upper limit for decay constant. 
No correction for (<x,n, f) and 2 3 4 - 2 3 6 r j . 

99.7% 235U. Corrected for (a, n, f) and 
2 3 4 , 2 3 6 , Z 3 8 0 _ E s t i m a t e w i t n i a r g e e r r o r _ 

decay constants of Table V. The cor rec t ions for the sum of 234U and 236U 
amount to 0. 1 d i s / h . Applying these two cor rec t ions , net counting r a t e s 
for 235U spontaneous fission of 0.12 d i s /h r e su l t for the l a rge and the smal l 
sp inner . 

Taking into account the l a rge cor rec t ions and the e r r o r s of exper iments 
and co r rec t ions , the resul t ing decay constant is r a t h e r unre l iab le . 
The re fo re , we can only indicate that it is probably of the o rde r of 10~19 yr - 1 . 

We plan to improve the m e a s u r e m e n t s with a spinner of 20-mm 
d iamete r and also, we hope, with a sample of even m o r e highly enriched 
u ran ium. However, until these improved data a r e available we suggest 
that, for the decay constant of 235U, the upper l imit 

K 3 . 9 X 10"19 y r " 1 

should be used . The only correc t ion made to obtain this l imit was a 
deduction for the well-known contribution of 238U. 

Table VII compares our new decay constants for spontaneous fission 
of 235U with the older values of Segre [4] and Aleksandrov [ 5 ] . It can be 
seen that our l imit is at l eas t a factor of 5 lower than the older de terminat ions , 
whereas the cor rec ted value (~10~19) is about 20 t imes lower than the 
published values . 

Since highly enriched 235U was used in our m e a s u r e m e n t s , we believe 
that our values a r e m o r e re l iable than the older ones . F u r t h e r m o r e , 
be t te r counting s ta t i s t i c s were rea l ized in our exper iments because of the 
l a r g e r quantit ies of uranium involved. 

The hindrance factors for spontaneous fission for a number of odd-A 
and odd-odd nuclides a r e plotted in F ig . 3 as a function of the fissil i ty 
p a r a m e t e r . For 235U the older values o f S e g r e [4] and Aleksandrov and 
co -worke r s [5] a r e shown as points in b racke t s , whereas our new value 
is indicated as a filled c i r c l e . 

It has been observed that the hindrance factors for fission i s o m e r s 
(here defined as the r a t io of half- l ives at a given f issi l i ty pa rame te r ) a r e 
fairly constant. Exper imenta l data for five even-even and four odd-A 
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"I 1 Г 
0.800 0.820 

Fissility parameter, x 

FIG.3. Plot of the fissility parameter x versus hindrance factors H.F. for the nuclides indicated in Table I 
The hindrance factor and the fissility parameter are defined as H.F. = Clog Ti (exp.) + 5 6m] 
+ 5 6m] and x = (c3Z2/A'S)/(2 c2 A3) (Ref. [2]) . For more details see the introduction of this paper, 
The older values for 235U are shown as (•), our new limit for 235U as • , 

[log T.| (syst.) 

plutonium i s o m e r s va ry from 5 X 103 to 8 X 103. F o r five odd-A and five 
odd-odd Am i s o m e r s , the hindrance factors range from 8 X 102 to about 
4X 103 [ 2 4 ] . 

A s imi l a r constancy of hindrance factors is not observed in the case 
of ground s ta te decays, but there s eems to be a t rend towards increas ing 
factors with increas ing x. We have therefore tentatively drawn two s t ra ight 
l ines to fit the even-odd and the odd-even data. At p resen t , however, nuclear 
theory does not provide arguments in favour of the l inear re la t ionship . 

On the basis of the p resen t r e m e a s u r e m e n t of 235U it can be concluded 
that typical hindrance factors for ground s ta te spontaneous fission decay 
a r e about 3 or l a r g e r , and that the few exceptions, i . e. 233U and 242Am, 
a re probably low due to exper imental inaccuracy. 

It would therefore be in teres t ing to r e m e a s u r e these nuclides a lso . 
However, in the case of 233U, the expected contribution from (a, n, f)-
react ions would be too l a rge to allow a meaningful measu remen t with our 
method. The other nuclides of in te res t 242Am and 254Es a r e not available 
in our labora tory in la rge enough quanti t ies . ' 
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DISCUSSION 

R.C. BLOCK: It seems to me that there might be a contribution from 
photofission. If I remember correctly, you cover your equipment with 
cadmium, and this can be a source of photons from neutron capture. Did 
you make corrections for photofission? 

H. R. von GTJNTEN: No, we did not make corrections for photofission. 
J.W. T. DABBS: Your detector obviously has a rather long dead time; 

I assume the rotation is stopped and restarted automatically. What is the 
dead time? 
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H.R. vonGUNTEN: About 1 minute. 
D.G. PERRY: Is your set-up sensitive to events occurring in the arms 

of the spinner and, if not, do you correct for these events? 
H.R. von GUNTEN: The solution in the arms of the spinner is sensitive 

to events up to a certain distance from the axis of rotation. This distance 
is dependent on the speed of rotation. We apply a correction for the volume 
in the arms. 
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Abstract 

HALF-LIFE SYSTEMATICS OF FISSION ISOMERS IN EVEN-EVEN Pu ISOTOPES. 
The recoil-distance method has been improved, allowing for the detection of fission isomers with half-

lives in the psec to nsec region. This improvement is achieved by shortening the distance which the recoil 
nucleus is required to fly before its delayed fission can be distinguished from prompt fission. The recoil length 
of a short-lived isomer is magnified by geometrical projection and appears as a much longer distance on the 
detector. With special targets which are plane within ± lu, the shortest measurable half-life becomes 5 psec 
if the isomers are produced in a-particle-induced reactions. 

With this technique the even-even isotopes of Pu have been studied in (d,pn) and also in (p,2n) and 
(a, 2n) reactions. The assignment of the isomers is based on excitation functions and cross-bombardments. 
The measured half-lives are 23$Pu: 40 i 15 ps, 238Pu: 0.7 ± 0.2 ns, M2Pu: 3.5 ±0. 6 ns. M4PU: 400±100ps. 
The isomers of 2S6Pu. 242Pu and 244Pu have not been observed before. 

It is believed that these isomers represent the lowest state in the second minimum whereas longer-lived 
isomers in the same nuclei should be considered as two-quasi-particle excitations in the second minimum. 
With these data a dependence of fission isomer half-lives on neutron number could be established for even-
even isotopes which is similar to the known behaviour of fission isomers in odd-even and odd-odd nuclei. 
The results are included in a general discussion of systematic trends in fission isomer lifetimes. Special 
attention is paid to the effect the addition of an odd particle has on the half-life of a fission isomer. 

INTRODUCTION 

Previous attempts1'2'3) to establish a systematica of 
fission isomer halflives suffered from the fact that only 
little was known about isomers in even-even nuclei. Until 
recently the only known even-even isomer which was considered 
the lowest state of the second minimum was 2Ц0Ри. Despite 
the many isomers known in odd-even and odd-odd nuclei no re
liable conclusions could be drawn for the isomeric halflives 
of the paired systems because of uncertainties in the nature 
and magnitude of the odd-even effect, although some rough pre
dictions had been made. 

In this paper the detection of 3 new isomers in even Pu 
isotopes is reported with halflives in the ps to ns region. 
This time region has become accessible to observation by a mo
dification of the standard recoil distance technique. 

The observed halflives show a pronounced dependence on 
neutron number suggesting the existence of a magic neutron 
number associated with the shape of the fission isomer. 

* On leave from Max-Planck-Institut für Kernphysik, Heidelberg, Fed. Rep. of Germany. 
•* On leave from the University of Jyväskylä, Jyväskylä, Finland, 
f On leave from Moscow Institute for Nuclear Research, Academy of Science, Moscow, USSR. 
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The clearer understanding of the behaviour of the even-
even isomers suggests new intensive efforts to clarify the 
phenomenon of the odd-even effect. 

EXPERIMENTAL METHOD 
The observation of ps isomers with the recoil distance 

method requires measurements of recoil lengths of only a few 
ym since a halflife of 10 ps corresponds to a recoil length of 
6 цт for typical recoil velocities of approximately 6 • lo cm/s. 
A geometrical magnification of the decay length onto the detec
tor is needed which views the decay of the recoiling isomers at 
backward angles. This detection technique has been introduced 
by Limkilde and Sletten1*) who identified an 0.5 ns isomer in 
2 Pu. The principle of the method is illustrated in fig.l. 
The magnification can be varied stepwise by inserting shadow 
rings of different diameters in the target plane. 

Fission fragments from short-lived isomers can only be 
distinguished from prompt fission events in the target if the 
unevenness of the target is considerably smaller than the decay 
length of the isomer. Targets have been used which are plane 
within ± 1 urn to guarantee a sufficient geometrical separation 
between prompt and delayed fission events. The shortest measur
able halflife becomes 5 ps. Glassplates or Makrofol plastic 
foils have been used as detectors. Details of the experimental 
technique are published elsewhere5'. 

1+2+3 

Prompt fission region 

poth of recoils 

detector foil (Mokrofot) 

(detector coordinate) 

FIG.l. Experimental method: Fission isomers recoil out of the target and decay in flight. Straight lines 
indicate how the edge of the target holder defines a projection of the recoil axis on the detector. Close-
lying points along the recoil axis correspond to wider-spaced points on the detector. The magnification is 
determined by the ratio of the radius R of the cylindrical detector to the radius r of the target holder. Fission 
fragments from short-lived isomers which decay within a short distance from the target are spread over a 
relatively large area on the detector (from Ref. [5] ; see also Ref. [4]). 
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FIG. 2. 
assigned to 236Pu 

Decay curves of the 40 ± 15-ps isomer measured in two reactions with a projection factor 86 and 
The density of fission tracks is plotted as a function of the distance along the detector. 

The track density decreases by more than 5 orders of magnitude over a 2-mm length when the fragments 
from prompt fission events in the target become shaded off by the cylindrical projection edge. The measured 
points of the 40-ps activity are corrected for the long-lived background from the 34-ns isomer in 236Pu produced 
in the same irradiation, xi is the half-length along the recoil axis. 

Proton-, deuteron-, and ct-beams from the Super King Tandem 
accelerator of the Niels Bohr Institute have been used for the 
present studies. One а-irradiation was performed at the Max-
Planck-Institut für Kernphysik in Heidelberg. 

RESULTS 

The results obtained for the various isotopes will be dis
cussed separately. 

2 3 6 p u 

A new fission isomer with a halflife of 40±15 ps is as
signed to 23GPu. As shown in fig.2, the decay of this isomer 
has been observed in the p-bombardment of 2 3 7Np and the a-bom-
bardment of 23I*U. At proton energies of 13 and 14 MeV and an 
а-energy of 24 MeV the 2 neutron evaporation reactions are known 
to dominate. This cross bombardment suggests the assignment of 
this isomer to 236Pu. The assignment is further supported by 
preliminary data for the excitation function of this activity in 
the 23UU + а-irradiation. For the а-induced reaction the decay 
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FIG. 3. Excitation functions for the fission isomers produced in the deuteron bombardment of 
23a, 240, 242, 244^ - j . ^ r a t j 0 Qf £ S o m e r j c t 0 prompt fission is plotted as a function of the bombarding energy. 

The observed half-lives are given in the figure. 

of the isomer extends to a longer distance from the prompt fis
sion edge than in the proton rim since the recoil velocity is 3 
times higher. This allows a more reliable determination of the 
halflife and cross-section. The ratio of delayed to prompt fis
sion is directly given by the intersection of the_decay curve 
with the prompt fission edge. A value of (6±2)10 6 is found. 

An isomer with a halflife of 34 ns6' and an exceptionally 
high excitation energy of 3.5±0.4 MeV is already assigned to 
238Pu. The preliminary excitation function data indicate that 
the newly found fission activity represents the decay of the low
est state in the second minimum whereas the previously known 
isomer probably is an excited state in the second minimum. 

238PU 
Two isomers with halflives of 0.5 ns and 6.5 ns are 

known in 23ври*'. The 0.5 ns isomer has been studied in the 
238Pu(d,pn) reaction. Its excitation function is shown in 
fig.3. A halflife of 0.7±0.2 ns is found in fair agreement 
with the value of 0.5±0.2 ns quoted by Limkilde and Sletten";. 
21,0Pu 

The decay of the known 3.8±0.3 ns isomer in 2" 0Pu 7 ) has 
been used for a calibration of the time-distance conversion. 
The yield of this isomer in the d-bombardment of 2"0Pu exhibits 
the energy dependence typical for a (d,pn) reaction as shown in 
fig.3. 
2"2Pu 

A new fission isomer with a halflife of 3.5±0.6 ns is ob
served in the deuteron bombardment of 2"2Pu. The decay curve 
of this isomer is shown in fig.4. The assignment to 2 2Pu is 
based on the excitation function shown in fig.3 which is typi
cal for a (d,pn) reaction. The only other reaction which could 

' M l ' I T 
2i°Pu+d 

3.8i <Uns 

238Pu+d 
0.7±0.2ns 

' • 

I T • 1 • I ' I 
2"Pu + d 

3.5 i 0.6 ns 
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FIG. 4. The full ( • ) points represent the distribution of delayed fission tracks from the deuteron 
bombardment of мгРи using a projection factor 3. The open circles ( о ) show the decay of the 3.5-ns activity 
corrected for the background which contains several unresolved components of well-known isomers [2 , 6 7 ] . 

show a similar energy dependence is (d,3n). This reaction can, 
however, be excluded since an attempt to produce the same acti
vity by the 21,гРи(р,2п) reaction was unsuccessful. An upper 
limit of 2-10-6 can be set on the isomer to prompt fission ra
tio. 

ported for 
Another fission isomer with a halflife of 30 ns is re-

2"2Pu (ref.2,6). 

"Pu 
The irradiation of гцчРп 

sion isomer with a halflife of 
isomer is shown in fig.5. The 
ably from an 85 ns isomer in 
2 1 , 3Am 9). The activity is assi 
tion function suggests a (d,pn 
action can again be ruled out 
in the 21*',Pu (p,2n) reaction is 
fission cross-section. 

2 1*5 

with 
400± 
lon< 
Pu 

gned 
) rea 
since 
less 

deuterons yields a new fis-
100 ps. The decay of this 
-lived background is presum-
' and the 5.5 JJS isomer in 

'Pu since the excita-to 
ction (fig.3) . A (d,3n) re-
the yield of this activity 
than 4-10-6 of the prompt 

It is interesting to note that for a given bombarding 
energy the cross-section of the (d,pn) reaction decreases from 
2'*',Pu to 239Pu. This can be understood on the basis of the re
action mechanism. A direct (d,p) process leading to the conti
nuum is followed by neutron evaporation which occurs in compe
tition with fission2'10'11'. The Г„/Г- ratio which governs 
this competition is known to decrease, with decreasing neutron 
number. 
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The points for the 400 ±150-ps activity are corrected for the long-lived background presumably from an 
85-ns isomer in M5Pu (open and full points as in Fig. 4). 

DISCUSSION 

A: The magic neutron number 
The experimental data known to date show the existence of 

fission isomers in the even-even isotopes 2 3 6 > 2 3 8 ' 2 * ° ' 2 '*2 ' 2 * ""Pu. 
The halflives of the newly observed isomers are rather close 
to the predictions made earlier in attempts to establish a sy-
stematics of fission isomer halflives1'2/3'. 

The nuclei 2 3 6' 2 3 8Pu and possibly 2,,2Pu exhibit double 
isomerism. The 2 isomers in 2 3 ®Pu have been studied by Lim-
kilde and Sletten1*'. The longer-lived 6.5 ns isomer has been 
interpreted as a K-isomer in the second minimum, the shorter 
0.5 ns isomer as the ground state of the second minimum. A 
similar explanation may hold for the other double isomers in 
236Pu (and 2I,2Pu). The interpretation of the 34-ns isomer in 
236Pu as a two-quasi-particle state in the second well was 
first proposed by Vandenbosch and Wolf12 . 

The shorter-lived isomers follow a smooth trend with neu
tron number as shown in the lower part of fig.6. The longest 
halflives are found for N=146 and N=14 8. The halflives become 
shorter for the neighbouring isotopes suggesting that one of 
these numbers should be regarded as the magic neutron number as
sociated with the deformation of the fission isomer. In the 
framework of the Strutinsky-type calculations13' one expects 
for the magic number the strongest negative shell correction at 
the deformation of the shape isomer, the most pronounced second 
minimum and consequently the longest halflife. A magic neutron 
number N=148 would agree with the predictions of Str.utinsky and 
Pauli11*) and with recent single particle energy calculations15'16' 
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B: The odd-even e f f e c t 

The smooth curve in the lower part of fig.6 is believed 
to reflect the variation of halflife with neutron number in 
the paired system. Now that this dependence is known it is 
possible to ask how the halflife is changed by the addition 
of one or two unpaired nucleons relative to this "zero line". 

It is known from the systematics of halflives for the 
spontaneous fission from the groündstate of the actinide nuclei 
that odd mass and odd-odd isotopes exhibit longer halflives 
than their even neighbours. According to the presently known 
data 1 7), the variation of this retardation is, however, not rea
dily understood. It appears to be of the order of 10 for the U isotopes 
but it is 101 for the Es isotopes. 

In the case of fission isomers, the odd mass and odd-odd 
Am isotopes show an amazingly regular dependence of the half-
lives on neutron number with a retardation of about 103 per 
added odd particle relative to the "zero line" suggesting a 
systematic odd-even effect. 

In contrast, the observed fission isomers in odd-mass Pu 
isotopes exhibit an irregular pattern although some of them 
seem to follow a smooth trend as indicated by the dashed curve 
in fig. 6. This line, however, is arbitrary. 

The two isomers in 237Pu have been studied in detail18). 
The 1.1 us isomer is found to be an excited single particle 
state19) lying above the ground state of the second minimum 
which decays with a halflife of 82 ns by spontaneous fission. 
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It is an open question whether the observed halflife of 1.1 
ys is determined by the fission or y-clecay of the excited 
state. A similar situation may apply to other isomers ob
served so far in the odd mass Pu isotopes. Further experi
ments are needed to find out which of the measured halflives 
are halflives for spontaneous fission in order to decide 
whether the odd-even retardation of halflives really is a 
systematic effect, as is suggested by the presently known 
data for the Am isotopes. 

An answer to this question may shed some light on the 
nature of the odd-even effect. A retardation by a nearly 
constant factor would strongly suggest that the odd-even ef
fect is mainly related to the difference in mass parameter 
and (or) pairing gap. If the effect is due to the specializa
tion energy connected to the conservation of spin and parity 
of the odd particle under deformation, a stronger dependence 
on the actual spin values involved and consequently a more 
irregular pattern might be expected. 

The measurements of the halflives for spontaneous fis
sion from the groundstate of the first minimum of odd mass 
and odd-odd isotopes are difficult because of the possibility 
that rather small even-even impurities in the sample may lead 
to erroneous halflives. A confirmation of the presently avail 
able experimental data may also be helpful in clarifying the 
features of the odd-even effect.* 
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DISCUSSION 

R. VANDENBOSCH: I am very intrigued by your suggestion as to how 
we might possibly distinguish between the specialization energy and the 
effective mass parameter and I should like to refer you to my speculations 
on the subject which are contained in my paper (IAEA-SM-174/203) and 
which lack of time prevented me from discussing in my oral presentation. 

L.G. MORETTO: Even though a system does not possess axial 
symmetry, it still may have an average К quantum, number. At the onset 
of axial distribution the wave function does not have a good К quantum 
number. However, it can be expanded on a set of wave functions character
ized by good К quantum numbers. One of these wave functions must be 
predominant even at small distortions, thus defining a most probable К 
value. 

H. C. BRITT: I would like to point out that the specialization energy S 
referred to by Mr. Vandenbosch may also include some contributions from 
the difference between the pairing gaps at the second saddle point and the 
second minimum. Since the questions of surface-dependent pairing and the 
differences in A's due to shell correction differences are not yet completely 
understood, it is not possible to establish firmly what fraction of the 
quantity S might be due to pairing effects. 
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Abstract 

FISSION PROBABILITIES IN LIGHTER NUCLEI: A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF 
THE SHELL AND PAIRING EFFECTS IN FISSIONING NUCLEI. 

The general features of the fission probabilities are reviewed in the light of modern developments on 
the statistical properties of nuclei. The general thermodynamical aspects of the fission probabilities are first 
discussed without relying on any specific nuclear model. The effects of the shell structure and of the collective 
degrees of freedom on the saddle-point and ground-state phase space volumes are then considered. A general 
method to include the effect of shells and pairing in the fission probability calculation is illustrated. The 
disappearance of the shell and pairing effects with increasing excitation energy and its influence on the fission 
probabilities is exemplified by means of a calculation performed on superheavy elements. The experimental 
data available in nuclei in the Pb region and in lighter nuclei are discussed in detail and an analysis based 
upon the present knowledge of shell and pairing effects is performed. It is found that the experimental 
evidence on shell effects in these data are accounted for satisfactorily by including the Nilsson model and the 
BCS Hamiltonian in the calculation. A reliable set of fission barriers is obtained and the liquid drop model 
predictions are tested. The saddle point single particle level densities which are also obtained in the analysis 
show the expected A dependence, and their magnitude, about 8?» larger than the corresponding ground state 
quantity, seems to be due to an increase in the nuclear surface at the saddle point. 

INTRODUCTION 

Already in 1939, immediately after the discovery of fission, it became 
apparent that the fission decay rate is controlled by a rather impenetrable 
potential energy barr ier [ 1 ] . The existence of this barr ier found its natural 
explanation in the liquid drop model [2] , which was to become the leading 
model in the fission process. 

At the same time the theory of the chemical reaction rates, based upon 
the existence of an activated complex (or transition state), was employed 
to estimate the fission decay rate [ 1 ] . 

An equally good theoretical knowledge of the neutron and radiation 
decay widths [3] , associated with the expected exponential rise of the level 
density with excitation energy, led to a very early theoretical understanding 
of the fission probabilities [ 1, 4 ] . 

The first data on fission probabilities to become available were in the 
actinide region [ 5 ] . In these elements the fission barrier height and the 
neutron binding energy are very close and the resulting fission probability 
at energies above the barrier varies very slowly with energy. 

" Work performed under the auspices of the US Atomic Energy Commission. 
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FIG. 1. Examples of He-induced fission cross-sections of lighter elements. The data are taken from 
Refs [13, 14, 16-18] . 



IAEA-S М-174/204 331 

10" 24 

IÖ 25 

10" 

10" 

10 

26 

27 

28 

^ I 0 " 2 9 

r 
s 
l10"" 

Iю" 
1 1П-32 

10" 

10" 

1-33 

34 

I0" 3 S i— 

10" 36 
20 30 40 
Excitation energy. Ex (MeV) 

50 60 

FIG. 2. Examples of 'H-induced fission cross-sections of lighter elements. The data are taken from Ref. [16]. 



332 MORETTO 

The observations of fission cross-sections rapidly rising with energy 
in lighter elements, for which the fission barrier is much larger than the 
neutron binding energy, prompted a new theoretical and experimental effort 
which on the one hand led to more accurate theoretical expressions for the 
fission probabilities on the basis of the uniform model [5 ,6 ] and on the other 
produced an increasing wealth of experimental data on lighter elements 
[7-18] and at energies very close to the fission barrier [13, 14, 16-18]. 
One should explicitly mention the pioneering work by Huizenga and co-workers 
[ 13], the determination of the fission barrier of 201T1 by Burnett and 
co-workers [14] and the work by the Berkeley group [ 16-18]. The greatest 
part of the available cross-section data which could be included in two 
figures is shown in Figs 1 and 2. 

The analysis of the data on the basis of the early theories successfully 
accounted for the rapidly rising fission cross-sections and produced reliable 
fission bar r ie r s . To a large extent the barrier determinations have been 
and still are the most relevant results obtained in the analysis of fission 
probabilities, because of their contribution to the understanding of the 
potential energy surfaces and of the liquid drop model parameters. Clear 
indications of the shortcomings of the uniform model, and of the necessity 
for more accurate models to be used in the evaluation of the level densities, 
were also apparent [ 16]. The data, for nuclei close to the lead region, could 
be fitted only over a short energy range, and the level density parameters 
extracted from the data fitting showed marked fluctuations attributable to 
the shell structure. 

More recently, refined level densities, generated on the basis of the 
shell model [19-22] and of the pairing Hamiltonian [23-30], have become 
available and have made it possible to account for the shell structure effects 
in a nearly quantitative way. These new level densities have proven to be 
remarkably successful in the analysis of the fission cross-sections of the 
lighter elements [31, 32] as well as in the analysis of the fission and isomer 
formation cross-sections in the actinides [33, 34] . A similar study has 
also been extended to the superheavy nuclei in order to investigate their 
stability towards fission at the compound nucleus stage [ 35-37]. 

In the present paper all of the above developments are presented to 
various extents. In Section 1 the general features of the fission probability 
theory are outlined, and the limiting behavior of the fission probability at 
high energies is derived. Furthermore, the insensitivity of this quantity 
to the fine details of the Hamiltonian is pointed out. In Section 2 the results 
obtained by using the uniform model in the analysis of the lighter element 
data are presented and the shortcomings of such a model are discussed. In 
Section 3 some recent and new aspects of the problem are treated, like the 
relevance of the collective degrees of freedom to the fission decay width, 
and the way in which shell and pairing effects can be included in the calculation 
of the fission probabilities. The latter point is illustrated with the calculation 
of the fission probabilities in superheavy elements. In Section 4 the available 
experimental data for lighter elements are critically analyzed and the 
results of the fitting procedure are discussed. 

As a last comment, the data available for lighter elements and at small 
angular momenta have been given special attention in this paper. Very 
important work has been and is being performed in the actinide region and 
will appear in other contributions to this symposium. 
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1. FISSION AND NEUTRON WIDTHS: STANDARD FORMULAE AND 
LIMITING BEHAVIOR 

In this section an effort is made to derive various limiting forms of the 
fission probability without resorting to any detailed nuclear model. It can 
be shown that the physical features of the system can be summarized in 
terms of simple thermodynamical quantities, like the temperature, which 
are rather independent of the nuclear structure details and vary slowly 
with energy. 

A nucleus, whose excitation energy is equal to or larger than the fission 
barrier, is expected to move randomly in a restricted region of configuration 
space (the compound nucleus region) until, by chance, it finds access to 
the potential energy saddle which leads to a new, almost unrestricted region 
of configuration space (the region of the forming fission fragments). The 
decay probability is equal to the number of systems per unit time over
coming the barrier divided by the number of systems remaining in the 
compound nucleus region. If the access to the barrier is random, the 
population of the compound nucleus region and that of the saddle region can 
be taken to be proportional to the respective phase space volumes. The 
randomness assumption should be met if the total decay width of the 
compound nucleus is small, namely, if its lifetime is long. 

Under these conditions the fission decay width can be written as: 

v 
FF = г^ЁУ f PS (X) P ( E " B F " X ) t e (1) 

Jo 
where p(E) is the level density of the compound nucleus at the excitation 
energy E, BF is the fission barrier height, ps (x) is the saddle point level 
density at the excitation energy x and P(E - BF - x) is the quantum mechanical 
probability of penetrating the barrier. This last quantity, for a parabolic 
barrier takes the form [ 38]: 

2TT(E - BF 

1 + exp - - j ^ -

where -fiw is the phonon energy associated with the parabolic potential, 
called barrier penetrability coefficient. An important feature of the level 
density ps(x) is that it refers to all the collective and intrinsic modes of 
the system with the exclusion of the fission mode. 

The neutron decay width can be evaluated along similar lines and takes 
the form: 

x Ч /_ В и 

h = S p W ^ 2 J ainv PR(x) (E " B M " X)dx (2) 

where mN is the neutron mass, BN is the neutron binding energy, ainv is the 
cross-section associated with the inverse process and p (x) is the level 
density of the residual nucleus. 
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One can take advantage of the s t rong energy dependence of the level 
densi t ies and evaluate both express ions by suitably expanding the integrand 
about the upper limit of integrat ion. The following express ion is obtained 
for the fission width: 

rF " 2ттр(Е) Da
 P S ( E " V (3) 

where the penetrabi l i ty P has been taken equal to one above, and zero below, 
the b a r r i e r and 

Ds = 
d In p (x) 

dx x=E-B„ 

F o r the neutron width one obtains: 

Г„ = a. 4 
2ттр(Е) "inv ^ 2 „ 2 ^ 2 P R

( E " V 
R 

(4) 

where the inve r se c ros s - sec t ion has been assumed to be independent of 
energy and 

D„ 
d In pR(x) 

R dx 
Recall ing that in s ta t i s t i ca l mechanics 

'X = E-BK 

d In p 
dx 

dS 
dE 

1_ 
T 

the quanti t ies 1/DS and 1/DR a s sume the meaning of the saddle point and 
res idual nucleus t e m p e r a t u r e s T s and TN , respec t ive ly . 

The ra t io Г / Г N can then be expressed in the following s imple form: 

Tfft2 T s 

^ i n v ^ T 2 V ^ 

PS(E - Bp) 
(5) 

This approximation i s accura te even at r a t h e r low excitation ene rg i e s . The 
above equation can be further simplified by expanding both level dens i t ies 
about the energy E - B where В i s in termedia te between B F and B N : 

irhc PS(E B) 
ha. 

inv 
PR(E - B) exp (X-X) (6) 

where TR and T5 a r e the effective t empera tu re s in the res idua l nucleus and 
at the saddle at an excitation energy E - B . Such an approximation becomes 
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better the closer BF is to BN and the larger the excitation energy E i s . In 
fact, as the excitation energy increases, the temperatures T s , TR, T's, TR 
tend to become closer and closer. One can also assume that the two level 
densities ps(E - B) and pR(E -B) are equal, which may be a good approximation 
in the absence of shell and pairing effects. Assigning to the inverse cross-
section its geometric value one obtains: 

^ = 5 . 2 5 A"2 '3 

N 
T-1 exp (bjLh) (7) 

Equation (7) and to a large extent Eqs (5) and (6) are remarkable for 
their almost total lack of physical details aside from the neutron binding 
energy and the fission barrier height. One dpes not even need to assume 
any special form for the level densities. This is an aspect of statistical 
theories which has both good and bad features and which, while easily and 
simply interpreting experimental data, yield information very reluctantly 
on the detailed Hamiltonian of the system. By means of Eq. (7) the asymptotic 
behavior of r F / r N c a n be estimated. For (BN-BR) к 0 the function is mono-
tonically decreasing and eventually tends to zero as l / T . For (BN-BF) < 0 
the function has a maximum at T = BF - BN and then it decreases again, 
tending to zero at large temperatures like l / T . The dominance of the 
neutron decay over the fission decay at high energies is a consequence of 
the phase space volumes available to the two modes of decay when energy 
restrictions become irrelevant as in the case of large temperatures. 
Everything being equal, three unbound modes are available for the emission 
of neutrons (the three cartesian coordinates of the free neutron) while only 
one unbound mode is available for fission (the saddle-point fission mode). 
It is also quite interesting to notice that Г р /Гы tends to zero as the mass 
number of the system tends to infinity. The A"2'-3 dependence of F F / r N 
signifies the increasing "surface area" from which neutrons can evaporate. 

The formalism described so far can be generalized to include the 
effect of angular momentum. The presence of angular momentum implies 
that a certain amount of energy is present in the form of rotational energy, and 
it is not available to excite the internal degrees of freedom. Therefore, 
Eq. (5) can be modified as follows: 

(8) 

* 2 I 2 

2J?S 

Г Р _ Л 2 TS P s ( E - B
F - E S } 

ГН kainv "to TE
2 pR(E - BN - E*') 

is the rotational energy at the saddle point; ER = 

С 

-fi2l'2 

2Л 
where E s 

is the rotational energy in the residual nucleus after neutron emission; I is 
the total angular momentum; I = I + JP and i2 is the average angular 
momentum associated with the emitted neutrons. (The approximate way in 
which the angular momentum is handled in r N i s well-justified at moderate 
excitation energies [39]). The two moments of inertia УК and У$ depend in 
general upon both the excitation energy and the angular momentum. A very 
complete study of the equilibrium shapes of liquid drop nuclei in the ground 
state and at the saddle point has been performed by Cohen, Plasil and 
Swiatecki [40, 42] and by Cohen and Swiatecki [41] . For relatively small 
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angular momenta one can a s sume the zero angular momentum shapes for 
the evaluation of the rotat ional ene rg i e s . Rewrit ing Eq . (7) on this bas i s one 
obtains: 

FF -2/3 -1 {ВЫ " BP - ( E R ' " E 4 ) } 

jr- = 5.25 A d ! i T X exp —2- F _ ?• § (9) 

This express ion indicates that the p resence of angular momentum dec reases 
the effective fission b a r r i e r by an amount (ER - Es) which i s always positive 
s ince У5 >-<ZR. At l a r g e r angular momenta the fission b a r r i e r itself is 
decreas ing due to a change in the saddle point deformation, thus increas ing 
even m o r e the fissionability of the nuc leus . 

2. PRELIMINARY DATA ANALYSIS WITH SIMPLE LEVEL-DENSITY 
EXPRESSIONS 

The formal i sm presented in the previous section r e q u i r e s the use of 
specific level density express ions both in r F a n d in Г № It is mainly in these 
quantit ies that all the physical information concerning the nucleus at the 
saddle point and the res idua l nucleus after neutron emiss ion i s contained [ 43] , 

Until very recent ly , the s ta t i s t ica l p roper t i es of nuclei have been 
descr ibed on the bas i s of the uniform model [ 44, 4 5 ] . In th i s model the 
nucleus i s r ep resen ted a s a sys tem of non-interact ing fermions occupying 
equidistant non-degenerate single par t ic le l eve l s . Although th is p ic ture 
contains l i t t le physics beyond the Pauli pr inciple , s t i l l i ts application to 
problems l ike the p resen t one has had a reasonable s u c c e s s . 

The express ion for the uniform model level density i s : 

P ( E ) = 12 a i A Е 5 Л <10> 

where E i s the excitation energy of the sys tem and a is the level density 
p a r a m e t e r , which is r e l a t ed to the single par t ic le level density g by the 
express ion 

2 
TT 

a = — g 

The level density p a r a m e t e r a is expected to vary in proport ion to the m a s s 
number of the nucleus: a = A/K, where К is a constant whose value i s 
es t imated to be around 8 or 9 [ 4 6 ] . Explici t express ions for the quantity 
Г / r N h a v e been given by Huizenga and Vandenbosch [ 6] on the bas i s of the 
uniform model . In t he se calculations only the exponential factor of Eq . (10) 
has been used, namely: 

p ( E ) c c e 2 / i 5 (11) 

Almost al l of the exper imental data available at present have been analyzed 
in t e r m s of the uniform model level density [ 13, 14, 16, 1 7 ] . Here we shall 
r epo r t the overal l conclusions of such an analysis applied to l ighter nuclei, 
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without any cr i t ica l comment on the data themse lves , which will be delayed 
until Section 4. 

The free p a r a m e t e r s typically employed in this data-fi t t ing procedure 
a r e : the fission b a r r i e r B^; the penetrabi l i ty coefficient-fiw, and the Гр and 
IV, level density p a r a m e t e r s aF and aN. The quantities which the fitting 
procedure can most solidly es tabl ish a r e the fission b a r r i e r BF and the 
ra t io aF /aN . 

The exper imenta l r F / r N quantities have been readi ly fitted up to 20 MeV 
above the fission b a r r i e r . In this energy range some of the experimental 
data cover m o r e than six o r d e r s of magnitude. The fission b a r r i e r s have 
proven to be r a the r insensi t ive to sma l l var ia t ions in the other p a r a m e t e r s . 
The individual values of aF and aj,, turn out to be quite uncertain, while the i r 
r a t io tends to remain constant . Two difficulties immedia te ly a r i s e . The 
f i rs t is re la ted to the aF /aN ra t io which appears to be close to unity in nuclei 
far away from the shell region and as high as 1.5 for nuclei close 
to 2 0 8 Pb. The second difficulty i s the inabili ty to fit the data in a l a r g e r 
energy in terval for the l a t t e r kind of nuc le i . Because of the l a rge ra t io of 
aF /aN neces sa ry to fit the low-energy data, the fission probabil i ty i nc r ea se s 
much too rapidly with energy to fit the h igher -energy data. In other words , 
it appea r s that for these kinds of nuclei the effective aF /aN ra t io v a r i e s 
smoothly from a r a t h e r l a rge value close to the fission b a r r i e r to a value 
c lose to unity at higher ene rg i e s . At the s a m e t ime it is found that the 
exper imenta l fission b a r r i e r s can be decomposed in two pa r t s : a smooth 
liquid drop quantity and a ground s ta te shel l effect which m e a s u r e s the 
deviation between the experimental ground s ta te m a s s and i t s liquid drop 
predict ion. This shel l cor rec t ion is at a maximum in the Pb region and has 
the effect of producing a s t rong local i n c r e a s e in the fission b a r r i e r s . The 
mounting evidence indicates that the anomalously high fission b a r r i e r s in the 
Pb region and the corresponding l a rge ra t io of aF /aN a r e two facets of the 
same physical fact, namely the smal l single par t ic le level density at the 
F e r m i surface of the spher ica l nuclei due to the double shell c losure in 2 0 8 Pb. 
At the same t ime the data s t rongly suggest that the effect of the shel ls 
d i s appea r s r a t h e r rapidly with increas ing excitation energy . 

An overa l l view of the s tudies i l lus t ra ted above allows one to reach the 
following conclusions . 

(a) The s ta t i s t i ca l fo rmal i sm is potentially able to fit the exper imenta l 
f ission probabi l i t ies over many o r d e r s of magnitude. 

(b) F i s s ion b a r r i e r heights can be extracted r a the r safely from the analysis 
of low-energy c r o s s - s e c t i o n s . 

(c) The fission b a r r i e r s so obtained can be decomposed into a smooth 
liquid drop component and the ground state shell co r rec t ion . 

(d) The uniform model i s inadequate in justifying the widely varying rat io 
of a F /a N and in reproducing the fission probabi l i t ies over a l a rge energy 
range for nuclei close to the 208Pb she l l . 

3 . MODERN PROBLEMS IN THE EVALUATION OF THE PHASE SPACE 
VOLUMES RELEVANT TO FISSION PROBABILITIES 

The use of the uniform model in the evaluation of the fission probabil i t ies 
does not allow one to in te rpre t the exper imental data sa t i s fac tor i ly . Rather 
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se r ious problems a r e met in the at tempt to evaluate the detailed form of the 
phase space volume associa ted with the fission and neutron decay. Some of 
these problems can be solved, o thers have not yet been considered in depth. 
In the p resen t section some of these problems will be considered. In the 
f i rs t par t , the coupling between the collective and the internal degrees of 
freedom will be studied, especially insofar a s the fission width i s concerned. 
In the second part the s imple r and be t te r -unders tood problem of the inclusion 
of shel l and pair ing effects in the formal ism will be d iscussed . In the third 
par t some examples of calculation of the fission probabil i t ies of superheavy 
nuclei will be shown to i l lus t ra te the d isappearance of the shel l effects with 
excitation energy. 

3 . 1 . Relevance of the collective degrees of freedom in TF 

The pecul iar collective nature of the fission p r o c e s s r a i s e s se r ious 
questions regard ing the contribution of the collect ive deg rees of freedom to 
the shape and volume of the phase space which controls the fission decay 
widths. This i s par t icu la r ly important when one needs to consider the 
fission width as a differential in the var ious saddle point collective | 
coordinates and momenta . To explore to what extent such collective degrees 
of freedom affect the fission widths, let us exp res s them explicitly in \ 
Eq. (1). The introduction of n bound normal modes , bes ides the fission 
mode, leads to the following express ion: 

•^ r r dx. dp. ! 
rF = i¥pW J ieJ n *n

 X p s ( E " B F " £ ~ Щ a i x i 2 + v±2/2mi]) (12> 

where e is the kinetic energy along the fission coordinate; xL and p4 a r e the 
saddle point normal coordinates and momenta; а ; and ni; a r e the st iffnesses 
and the iner t i as associa ted with the same normal modes; the quantity pg 
i s the level density due to the intr insic degrees of freedom; and the integrat ion 
l imi t s in the multiple integral a r e taken in such a way as to conserve energy. 
By profiting again from the strong energy dependence of p ' and by setting 

d In pj1 (x) ^ i 
dx T 

we can rewr i t e Eq.(12) as follows: 

FF = S A U ^ E - V ^ / e ' dc / e 1 1 Пар. f e 2 * 1 Пах. 
J° • / _ < ° J~a> . (13) 

In this express ion the energy is not r igorously conserved: in fact such an 
express ion i s well known in s ta t i s t ica l mechanics as the canonical expansion 
where the t empe ra tu r e , instead of the energy, cha rac t e r i zes the sys t em. 
In th is case , the many in ternal degrees of freedom of the nucleus a re acting 
as a the rmos ta t with which the collective degrees of freedom a r e in 
equi l ibr ium. 
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The integration of Eq. (13) can be easily performed: 

w "V? 
where the quantity in the box represents the contribution of the collective 
degrees of freedom to the phase space volume. This, expression can be 
compared with Eq.(3). The two expressions are identical if one sets, 

PS(E - V = p̂ (E - V ( ^ ) n n ^ / f <15> 

The above discussion leads to interesting observations regarding the validity 
of Eq. (3). An obvious failure of this equation occurs if one or more normal 
modes besides the fission mode are unbound, namely if one or more of the 
a£ are negative. This is predicted to occur by the liquid drop model below 
the Businaro-Gallone point (x = 0.3 96) where the mass asymmetry mode 
becomes unbound [47]. Increasing displacements away from the saddle 
point along this coordinate lead to a rapidly diverging integrand in Eq.(12). 
Under these circumstances the canonical expansion about the saddle point 
cannot be justified. In fact, the main contribution to the integral along the 
mass asymmetry coordinate comes from around the extreme mass 
asymmetries and not from the symmetric region around the saddle point. 
In this region of the fissility parameter, fission loses its identity and merges 
into the evaporation (spallation) reaction; the decay width calculated by 
Eq. (12) refers to the statistical emission of particles as a whole. As a 
consequence, a naive analysis of "fission" cross-sections for elements 
below Ag (x s? 0.4) may indicate fission barr iers smaller than those predicted 
by the liquid drop model. In these kinds of experiments, "fission" and the 
resulting fission barr ier are defined only by the arbitrariness of the 
experimenter, or by the mass cut-off of the detector. 

Besides the above glaring inapplicability of Eqs (3) and (14), more 
delicate points can be raised by the peculiar factorization of the phase 
space in Eqs (14) and (15). It is possible that the collective degrees of 
freedom are sharply defined and nearly uncoupled from the intrinsic degrees 
of freedom, leading to such a simple factorization of the phase space. On 
the other hand, the single particle degrees of freedom may be very pure, 
leading to a much less collective description of the system. 

It is not very clear which of the two alternatives is more realistic, the 
second one being further plagued by the extra complication of having to 
define the number of collective degrees of freedom. These two extreme 
possibilities bring forth the problem of the microscopic nature of collective 
degrees of freedom in a many-body system. The collective states, born 
out of very special combinations of intrinsic states, may be coupled to the 
remaining internal degrees of freedom to a varying extent. In the limit of 
complete uncoupling, the collective states have a physical existence and do 
play an explicit role in the form of the phase space volume at the saddle 
point. This phase space volume should have the form of Eq.(14) in the 
high-temperature limit, and a more complicated form accounting for the 
quantum mechanical effects at lower temperatures [48, 49]. The coupling 

а д а ps(E - V T 
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of the collective states to the intrinsic states has the effect of diluting the 
collective nature of the levels over the neighboring intrinsic levels. The 
collective aspects of the system now appear as strength functions. In 
classical terms, the motion along the collective coordinates becomes 
affected by viscosity, the largest momenta are strongly damped-out and 
the phase space associated with them is distorted and limited. As the 
collective motion becomes damped beyond criticality, the strength function 
loses its structure and the collective state is reabsorbed into the background 
of intrinsic levels. Therefore, depending on whether viscosity is large or 
small, the two extremes of the picture do apply. This uncertainty is not 
very important at high energies or when the integrated form of the decay 
width is considered. Instead, it is of extreme relevance when the differential 
form of the decay width in the coordinates and momenta of some collective 
coordinates is to be used to establish the distribution of the initial conditions 
for the dynamical descent from the saddle to the scission point. Unfortunately 
complication adds to complication since similar considerations apply for 
the neutron width rN as well, although to a somewhat smaller degree. In 
fact, this very modern problem directly involves the overall theory of level 
densities. 

3.2. Shell and pairing effects in level densities 

While, because of its difficulty, the problem of the strength functions 
associated with the collective features of the system has not yet received 
the amount of attention it deserves, other detailed features of the level 
densities have been worked out to a satisfactory degree. The level densities 
at low excitation energies are expected to be greatly influenced by the 
detailed structure of the single particle levels close to the Fermi surface, 
as well as by the two-body residual interaction. Recently a substantial 
success has been achieved in the development of a theoretical formalism 
which allows one to calculate the level density of a nucleus on the basis of a 
given shell model and of the pairing interaction [19 30]. The simplest 
Hamiltonian containing both features is the following: 

H = £ e
k

 a+
k \ - G £ a+

k, * V aj- â  (16) 
±k 

where eK are the shell model single particle energies, ak and ak are the 
creation and annihilation operators respectively, and G is the strength of 
the pairing interaction. The diagonal form of this Hamiltonian can be 
used to evaluate the grand partition function eu [27, 28, 30]: 

n = E S(ek - X - Ek) + £ Ш[1 + exp - ß(Ek - YB^)] 

+ £ ln[l + exp - (5(Efc + Y ^ ) ] - £§-

where mk are the single particle spin projections, X is the chemical 
potentiel, у is the. angular velocity, ß is the reciprocal of the temperature, 
Д is the gap parameter which indicates the extent of the pairing correlation, 
and Ek = ^(e^ - Л)и+Д2 represent the energies of the intrinsic modes of 
excitation of the system (quasi-particles). 
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The boundary conditions a re introduced in the formal ism by means of 
the following equations: 

ЗА" = ° o r £ 2E~ [ t m h 2 B ( Ek " Y \ ) + t a n h \ B ( Ek + ^V] = t 

gap equation (18) 

Э а E X _ ~2Ё l t a n h I ß(Ek " Y \ ) + tanh | B < E
k
 + Y\)[ 

par t ic le equation (19) 

Ü = M = V Г 1 ^_ 1 
у Л "V I l + exp ß(Ek - YH )̂ 1 + exp ß(Ek + f\) J 

angular momentum equation (20) 

- H = E = T. \ [l - ^ {tanh J ß(Ek - n ) + tanh \ ß ( E k + n ) J J - £ 

energy equation (21) 

where a = ßX and м = ßy. This se t of four equations defines the quanti t ies ß, 
у, X, A in t e r m s of E , M, N, G. This set of values i s used to evaluate the 
entropy: 

S = fl+№-ciN-uM (22) 

The level density of the sys tem is then obtained by means of the express ion: 

(2 , r ) n / 2 D 1 / 2 
(23) 

where n i s the number of f i rs t in tegra ls of motion which a r e explicitly 
considered in the problem, and 

D = det 
о 

э а 
Э а.Э а. i 3 

where at i s the set of Lagrange mul t ip l i e r s associa ted with the f irs t 
in tegra ls of motion. Although very s imple , the present fo rmal i sm accounts 
r a t h e r well for the pai r ing effects, the shel l effects, the i r mutual interact ion 
and the i r dependence upon the excitation energy . 

The pai r ing cor re la t ion , in the ground s ta te , depends upon the single 
par t ic le level density at the F e r m i su r face . When the nucleus is in a shel l 
region, the single par t ic le level density at the F e r m i surface is s m a l l and 
the pai r ing effects a r e also sma l l . The opposite occurs in an ant ishel l region 
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FIG. 3. Isometric projection of the neutron gap parameter as a function of temperature and angular momentum 
for the neutron component of гЦвп [30]. The angular momentum refers to the neutron component only. 

where the single particle level density is large and so is the pairing 
correlation. In other words, the pairing effects tend to counteract the shell 
effects: when the latter is large the former is small and vice versa. 

As the excitation energy increases, the gap parameter Д and the pairing 
correlation steadily decrease and eventually vanish because of the blocking 
effect of the quasi-particles. The shell effects also are washed away by the 
increasing excitation energy. This is due to the fact that the fluctuations in 
the single particle level density are averaged out by the Fermi distribution. 
The statistical averaging function is in fact the negative derivative of the 
Fermi function, which becomes broader as the temperature and the excitation 
energy increase. 

The angular momentum of the system is generated by breaking pairs and 
by aligning the spins of the resulting quasi-particle excitations. Each 
qua si-particle blocks a single particle level, making it unavailable for the 



IAEA-SM-174/204 343 

LINES OF CONSTANT LEUEL DENSITY 
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FIG. 4. Lines of constant natural logarithm of the level density in the (energy, angular momentum)-plane for 
the nucleus 2lJjRn [30]. The lowest line going diagonally from lower left to upper right is the yrast line. 
The boundaries of the neutron and proton superfiuid phases are also shown. 

pairing interaction. Therefore, the pairing correlation and the gap para
meter decrease and eventually vanish as the angular momentum increases. 
Some of the features discussed above can be observed in Figs 3 and 4 
where the results of a calculation based on the Nilsson model and on the 
pairing Hamiltonian are shown for the nucleus Rn [30]. In Fig. 3 the 
dependence of the neutron gap parameter upon the temperature T and the 
angular momentum I is presented in the form of an isometric projection. The 
surface Д(Т, I) intersects the (T, I)-plane along a curve which defines the 
boundary between the paired and the unpaired region. In Fig. 4 the level 
density surface is projected on the (energy, angular momentum)-plane. The 
lower near-diagonal line in the figure represents the yrast line, or the locus 
of the states with lowest energy at fixed angular momentum. The boundaries 
between paired and unpaired phases for neutrons and protons are also shown. 
Their peculiar crossing is due to the way in which the angular momentum is 
shared between the neutron and proton components. 

3 .3 . Application of the level density formalism to the calculation of the 
fission probabilities 

To illustrate the effect of shells and pairing on the fission probabilities, 
the above formalism will be applied to superheavy nuclei [ 35, 36] . For 
such nuclei the relevance of shell and pairing effects is overwhelming and a 
calculation applied to them clearly displays the features discussed above. 
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FIG. 6. Level densities as a function of local excitation energy [36] calculated for the ground state and 
saddle point deformation of n ix . 

Firs t the shell structure in the potential energy surface will be discussed. 
In Fig. 5c the potential energy of 116X is shown as a function of the deformation 
parameter e. This calculation has been performed using the Nilsson model 
and the Strutinski normalization procedure. In the same figure the liquid 
drop potential energy is also shown as a function of e. The latter curve 
shows that for this nucleus, whose fissility parameter is close to unity, the 
liquid drop fission barrier is vanishingly small. The former curve shows 
that the shell structure generates a rather deep minimum at sphericity and, 
because of it, the nucleus is stabilized against fission by a barr ier of about 
7.5 MeV. Similar plots for other nuclei are shown in Figs 5a-c. 

To observe how the shell effects disappear with excitation energy, the 
level density at the ground state deformation and at the saddle point 
deformation can be calculated. This calculation is shown in Fig. 6. It can 
be observed that the saddle point level density r ises faster than the ground 
state level density. In fact, the level density value reached at 60 MeV 
excitation energy by the nucleus in the ground state deformation is reached 
at about 7.5 MeV lower local excitation energy by the nucleus at the saddle 
point. Since the potential energy difference between the ground state and 
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the saddle point is in fact 7.5 MeV; and since such a difference is exclusively 
due to the shell effects, it is possible to conclude that, at 60 MeV, the 
nucleus does not retain any relevant trace of shell effects. To better 
appreciate the evolution of the system as the excitation energy increases, it 
is possible to calculate, for each excitation energy, the probability of finding 
the nucleus at the various deformations. Assuming statistical coupling 
between the intrinsic modes and the collective fission mode, one obtains 
[25, 26]: 

p(E)£)de = ^ D"1/2 p(ET)ae ( 2 4 ) 

where E is the compound nucleus excitation energy, ET = E - V(e) is the 
local excitation energy at the deformation e, m is the inertia along the 

j - , _ ' d i n p(x) coordinate e and D = , 
dx _ 

T 
296 

The natural logarithm of the deformation probability of 116X is shown in 
Fig. 7b for various excitation energies. At low excitation energy, the 
deformation probability shows a marked peak at e = 0 and a deep minimum 
at e = 0.225. If the nucleus were stable against fission, the deformation 
probability would be bounded along any deformation coordinate. Since the 
system can undergo fission, the probability goes through a minimum and 
eventually increases indefinitely as the deformation increases. This minimum 
actually controls the flow of probability from the compound nucleus region 
to the region of forming fragments [ 35, 36 ] . As the excitation energy 
increases, the structure of the deformation probability becomes less 
pronounced, the compound nucleus peak becomes broader and the rate-
controlling minimum fills in. At the highest excitation energy, the 
deformation probability becomes almost flat from sphericity to the location 
of the fission barrier , indicating that the oscillations of the potential energy 
are completely irrelevant to the behavior of the excited system. In other 
words, the system behaves as if the fission barrier had vanished. Similar 
comments can be made about the nucleus ноХ whose deformation probability 
is shown in Fig. 7a. Another important point can be made in this discussion. 
The critical stage, or transition state, controlling the fission decay probability 
has been assumed, so far, to be located at the saddle point. The saddle 
point is an extremum in the potential energy surface and does not have any 
direct connection with the phase space region which controls the decay. 
The deformation probability surface includes the overall phase space and 
determines the position of the transition state which is located on a saddle 
point which is unstable in n-1 degrees of freedom and stable along the 
fission mode. The locations of the deformation probability saddle point and 
of the potential energy saddle point in general do not coincide. In particular, 
the disappearance of the shell effects discussed above may be responsible 
for a shift in the location of the transition state [35, 36]. Some evidence 
that this is occurring is available from the fission fragment angular distri
butions in the actinide region. The moment of inertia for the saddle point 
configuration appears in fact to shift from the expected value corresponding 
to the actual potential energy saddle point to the value consistent with the 
liquid drop saddle point [21, 29, 50]. 
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FIG. 7. Logarithms of the deformation probabilities at various excitation energies (in MeV) [36] for the 
nuclei JJSx (a) and jjjx (b). 
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FIG. 8. First-chance fission probabilities for various superheavy nuclei [36] : (a) n§X and Щх- (b) j *X and Щх-

(с) J,1x and fjfx. 

The final product of this formalism is the first-chance fission probability-
shown for various isotopes in Figs 8a-с. То obtain a reference point in the 
interpretation of these quantities one can use Eq.(7) as an approximation 
to the rF / rN expression. For a nucleus with A ~ 300, the temperature 
T = 1 MeV corresponds to an excitation energy between 30 and 40 MeV. 
When BF = BN the fission probability at that temperature is P F ~ 0 .1 . 
Similarly, in order to obtain PF = 0.5, BN- Bp = 2.15 MeV; for Pp = 0. 7, 
Bj^-Bp = 2.88 MeV; for PF = 0.8, BN- BF = 3. 5 MeV; for PF = 0. 9, BN- BF = 
6.35 MeV. In all of these cases, the fission probability should decrease 
slowly with energy. An inspection of the fission probabilities calculated for 
the superheavy nuclei shows that for excitation energies larger than 35 MeV 
they assume very high values, as high as 0.95. Such high values are 
predicted by the Eq. (7) for neutron binding energies 4 to 6 MeV larger than 
the fission bar r ie rs . Since the neutron binding energies are about 4 to 6 
MeV, the effective barrier felt by these superheavy nuclei is practically 
zero. On the other hand, at lower excitation energies the effective barr iers 
are very close to the true bar r ie rs . In particular, the fission probabilities 
are indeed very small for the isotopes of elements 114 and 116, where the 
shell effects are responsible for very large fission barr iers . Furthermore, 
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for nuclei where BF~-BN, the fission probabilities are subjected to peculiar 
fluctuations at low energies mainly related to the different energy dependence 
of the pairing correlation at the saddle point and in the ground state (Fig. 8a). 

4. EXPERIMENTAL FISSION PROBABILITIES IN LIGHTER ELEMENTS 

4 . 1 . Extraction of the total fission probabilities 

The experimental data available for lighter elements at energies 
reasonably close to the barrier are proton- and alpha-induced fission cross-
sections as a function of energy for various targets ranging from the heavy 
rare earths to bismuth. The cross-sections which are going to be analyzed 
here [16-18] are characterized by errors between 10% and 30%, due to 
various causes, such as uncertainties in the beam current reading, in the 
solid angle, in the detection efficiency, in the angular distributions and in 
the beam energy. 

The observed fission events arise from two sources. The first and 
hopefully the main source is from the compound nucleus formed by the 
complete fusion of target and projectile with a subsequent thermalization of 
the kinetic energy. The second source is the compound nucleus formed 
after a direct reaction or a pre-equilibrium decay has taken place. The 
latter source is expected to be of minor importance in the first 20 MeV 
above the barrier, because of the strong energy dependence of the fission 
probability, but it is expected to be substantial in the high bombarding 
energy region. Even if one can disregard the contribution to fission due to 
direct reactions, one should estimate the fraction of the total reaction cross-
section associated with direct reactions. This is important in the calculation 
of the total fission probability, P f T = a F / a c , where CTF and a c are the fission 
cross-section and the compound nucleus cross-section, respectively. 
Recent work in 4He-induced reactions in the Pb region [51] shows that the 
compound nucleus cross-section is very close to the reaction cross-section 
up to 55-MeV bombarding energy, it decreases by perhaps 30% with respect 
to the total cross-section at 70 MeV, and may be a factor of 2 to 5 lower at 
120 MeV. One of the greatest uncertainties is related to the precompound 
emission of neutrons. For these reasons it is very hard to analyze the data 
above 70 MeV. The total fission probabilities up to this energy were 
determined by dividing the total fission cross-section by the reaction cross-
section obtained by an optical model. The use of the optical model may 
produce systematic e r rors as large as 25%. 

4 .2 . The first-chance fission probabilities 

The quantity predicted by the theory is the first-chance fission probability 
P F 1 = Гр/(Гр + Гл). The experimental total fission probability PF T includes 
also the probability that the nucleus undergoes fission after one or more 
neutrons have been emitted. The problem then arises of estimating the 
higher order fission probability in order to transform P p T into P F 1 . In 
principle, if the total fission probability PF T is available for two nuclei with 
the same Z and differing only by one neutron, it should be possible to 
extract P F 1 for the heavier nucleus. Unfortunately, the various uncertainties 
associated with the experimental data, but especially the uncertainty in the 
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compound nucleus cross-section, make this procedure very dubious. The 
only safe conclusion which can be usually drawn is the establishment of an 
upper energy limit below which the contribution of higher order fission 
becomes unimportant. 

One might also consider the possibility of obtaining a theoretical estimate 
of the higher order fission probability. Unfortunately, here the problem is 
even more serious. With a saddle temperature of about 2 MeV, a variation 
of 10% in the saddle single particle level density gF produces a variation in 
rj,/rN of a factor of about 150'. Even a small variation of 1% in gF produces 
a variation of ~ 70% in Гр/Гы'. This means that any attempt to correct for 
higher order fission is likely to fail. Fortunately, the counterpart is more 
pleasant; large variations in the fission probabilities at high energies involve 
only minute changes in the single particle level density parameters. We 
shall make use of this conclusion later on. In practice, the fission cross-
section is divided by the total reaction cross-section and the resulting 
quantity is assumed to be equal to the total fission probability Pp T up to 
25-30 MeV above the barrier, where the contribution of higher order fission 
is small. In the next 10-15 MeV the effect of higher order fission is expected 
to be approximately counterbalanced by the decreasing compound nucleus 
cross-section. For these reasons, it has been assumed that the above-
defined PF T is also equal to PF x or to Гр/Гт up to 70-MeV excitation energy 
in He-induced fission. 

4 .3 . Analysis of the data 

At this point one might be tempted to consider the possibility of comparing 
the experimental data directly with the theoretical fission probabilities 
calculated on the basis of the shell model. This attempt has been made by 
Vandenbosch and Mosel [32]. The results of such an investigation are 
shown in Fig. 9. The agreement between experiment and theory mainly 
depends on the ability of the model to reproduce the fission barrier height. 
The fission probabilities are very sensitive to the height of the fission 
barr ier and to the ratio of the single particle level densities to be used in 
rFand PN. The present models do not predict both quantities accurately 
enough to reproduce in detail the experimental data. Calculations of this 
kind, which do not contain any free parameter, are very useful for testing 
the adequacy of the models to be applied to an experimentally unexplored 
region such as the island of superheavy nuclei. 

An approach which leads to a better result is a hybrid formalism. In 
this formalism the neutron binding energy is taken from the experimental 
masses and the level density to be used in rN is calculated from the Nilsson 
model and from the pairing Hamiltonian. Insofar as the evaluation of r F 
is concerned, the fission barrier height as well as the barr ier penetrability 
are taken to be free parameters; the level density is evaluated on the basis 
of the uniform model and of the pairing Hamiltonian. The single particle 
level density at the saddle and the saddle gap parameter are also free para
meters . The angular momentum is accounted for both in rF and in rN . 

As discussed before, the use of the shell model in the evaluation of FN 
does account for the ground state shell effects. One might then consider 
the possibility of accounting for the shell effects at the saddle point in the 
same way. This has been done by Britt and co-workers [33] in the analysis 
of the fission and isomer formation probabilities in the actinide region. In 



IAEA-SM-174/204 355 

10° 

10"' 

I0 2 

10 <-з 

T4 10 

юэ — 

ю6 — 
^ ю7 

\os 

ю-
10 10 

<|| 10 

\&1 

Proton-induced fission 
Compound nuclei 

_L _L _L 
10 2 0 30 40 50 60 

Excitation energy (MeV) 
70 80 

FIG. 10. Least-squares fits to the fission probabilities of some compound nuclei produced with proton 
bombardment [ 31]. 

this work, however, it has been decided not to follow that approach for the 
following reasons. First , in the lead region and below, the shell effects 
in the neighborhood of the saddle point are expected to be small because of 
the large deformation. Furthermore, the saddle point cannot be located 
in a shell region, because it would be a minimum, nor can it be in an anti-
shell region because it would be a maximum. It must be somewhere 
between a shell and an antishell region which means close to the liquid drop 
surface. This situation is quite different from that of the ground state 
which always is in a shell region, namely in a minimum. In other words, 
the saddle masses are expected to be far smoother than the ground state 
masses. This argument does not apply if the shell corrections are strongly 
correlated with deformation and appear in the form of ridges and valleys. 
A superficial glance at some shell model calculations may give the 
impression that the shell fluctuations at the saddle are quite large. This 
impression is somewhat misleading and stems from an inadequate para-
metrization of the nuclear shape. In fact, a shell model calculation with a 
truncated deformation space has a tendency to locate the saddle point in an 
antishell region. When more collective degrees of freedom are introduced, 
the saddle moves toward the liquid drop surface in between a shell and an 
antishell region. Therefore, one may feel justified in using the uniform 
model for the evaluation of VF because of the small shell effects to be 
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expected at the saddle point, and furthermore because of a major lack of 
information about whatever shell structure does exist in the saddle region. 

The formalism used in fitting the data contains five parameters which 
in principle can be considered to be free: in rN one has the oscillator 
quantum -nu0 which specifies the level spacing of the Nilsson model; in rF, 
the barrier penetrability coefficient -ftu; the fission barrier BF; the density 
of the doubly degenerate single particle levels gF; and the gap parameter Д 
assumed to be the same for neutrons and protons. Two different energy 
ranges have been studied. The first includes the data up*to 70 MeV 
excitation energy and the second up to 120 MeV. 

In a preliminary attempt to fit the data, all of the five parameters have 
been considered free. The most interesting result has been the large 
uncertainty with which both-fiw0 and gF are determined. Equivalently good 
fits could be obtained by keeping the product of these two quantities constant 
and by adjusting the fission barrier in a minor way. This effect can be 
predicted on the basis of Eq. (7). 

Because of the above conclusion, -nw0 was assigned the value 41/A1/3 

which contains the proper A dependence and should be reasonably accurate. 
The data were then fitted with the remaining four parameters. The resulting 
fits appear to be quite good and the parameters are essentially identical in 
both energy ranges. Some of the fits are shown in Figs 10 and 11. 

The barrier penetrabilities for those cases where data are available 
very close to the barrier have an average value of 1 MeV. The rather large 
dispersion observed in these quantities depends mainly upon the way in 
which the corrections for TJ or Th contaminants were performed close to the 
barr ier . 
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TABLE I. PARAMETERS OB 
PROBABILITIES'1 [ 31 ] 

Reaction Ref. 
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[16] 

[16] 

. [16] 

[16] 

[16] 

[16] 

[16] 

[16] 

[16] 

[17] 

[17] 

[18] 

[18] 

[18] 

[16] 

[17] 

[17] 

FROM THE ANALYSIS OF FISSION 

(MeV) (MeV ) (MeV) 

17.0 7.67 0.38 

19.5 7.36 O.06 

19.7 7.08 0.81t 

20.5 7.42 0.60 

21Л 7.33 0.17 

23.3 7.55 0.22 

21.9 7.63 0.11 

22.3 7.57 0.39 

20.1» 7.43 0.68 

23.7 7.16 0.05 

22.6 6.84 0.10 

24.2 6.89 0.54 

22.7 6.84 0.83 

23.1t 6.66 0.43 

24.0 6.51 0.60 

26.1 6.53 0.99 

28.0 6.17 0.87 

a The barrier penetrations have been set equal to 1.0 MeV. 
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FIG. 12. (a) Experimental fission barriers corrected for the ground state shell effects as a function of the 
fissility parameter x. The solid line represents the smooth liquid drop prediction [31] . Figure 12b gives the 
ground state shell effects as a function of x. 

In order to obtain a more consistent set of fission bar r ie rs , the barrier 
penetrability coefficients were fixed at 1 MeV. The fits obtained in this 
way are as good as the previous ones and the resulting parameters are 
shown in Table I. The fission barriers quoted in the table should be 
considered to be accurate within 1 MeV. Assuming that no shell effects are 
present at the saddle point, the experimental barr iers from which the ground 
state shell effects are subtracted should follow closely the smooth liquid 
drop prediction. In Fig. 12a the experimental barr iers corrected for the 
ground state shell effects, and expressed in units of 1/600 of the surface 
energy of the corresponding spherical nucleus, are plotted as a function of 
the fissility parameter x. In Fig. 12b the ground state shell effects are 
shown. The solid line represents the smooth liquid drop prediction. The 
experimental fluctuations about the liquid drop value are at most 1 MeV, 
well within the experimental uncertainties. Therefore, one is led to the 
conclusion that the experimental shell effects at the saddle point are, for 
this region of elements, rather small. 
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FIG. 13. Experimental saddle point single particle level densities gf as a function of mass number. The two 
dashed lines correspond to a level density parameter aF equal to A/8 and A/9, respectively [13]. 

The saddle single particle level densities are shown as a function of 
mass number in Fig. 13. The two lines bracketing the data correspond to 
the level density parameters aF = A/9 and aF = A/8 where aF = (тг2/3) gF. 
A reasonable average line passing through the data corresponds to aF= A/8. 5 
The fluctuations about the average are smaller than 5%. When the fits are 
performed with Fermi gas level densities, the ratio aF/aN varies from 
about 1. 0 in the upper rare earths to 1. 5 in the 208Pb- shell region. Thus, 
it appears that the level densities based upon the Nilsson diagram have 
accounted for the major part of the shell effects and for their disappearance 
with energy. A closer examination shows that the deviations are not 
statistical in nature, but correlate quite well with the residual shell effects 
[ 52] not accounted for, or overaccounted for, by the Nilsson model. It is 
interesting to notice the average value of aF, equal to A/8.5, as compared 
with the corresponding average quantity in rN obtained by smoothing the 
shell model spectrum. This last quantity is aN = A/9.2, giving a ratio 
aF/aN = 1. 08. Although it is not possible at this stage to reach any definite 
conclusion regarding this experimental point, an increase in the saddle point 
single particle level density should be expected on the basis of a very simple 
argument. In a Fermi gas the single particle level density at the Fermi 
surface depends upon the particle density. The higher the particle density, 
the lower the single particle level density. The nuclear matter is less 
dense on the surface of the nucleus and the surface is larger in a deformed 
nucleus. Bishop and co-workers [53] have shown that the ratio of the single 
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FIG. 14. Ratio of the single particle level densities for a deformed and a non-deformed Fermi gas nucleus as 
a function of the major to minor axis ratio [ 5 3 ] . 

particle level densities at the Fermi surface for the deformed to the 
undeformed nucleus is given by 

R = § • 4 (Г1 + 2,1/2) 

where f is the ratio of the major to minor axis (Fig. 14). This ratio varies 
from 1.05 at x = 0. 7 to 1.1 at x = 0. 65, in surprising agreement with the 
experimental ratio of 1. 08 obtained in the same fissility range. 

The saddle gap parameters Д shown in Table I are characterized by 
rather large uncertainties. The only safe experimental indication is that 
the gap parameters are rather small. The average value is in fact some
what smaller than the ground state value in the same region. While the large 
uncertainties associated with this quantity do not justify any serious 
speculation, it may be possible that the smallness of the gap parameters may 
be due to some extent to the rather large angular momentum with which the 
compound nuclei are prepared at excitation energies close to the barr ier . 
The gap parameter and the pairing correlation are in fact diminished by the 
presence of angular momentum, as can be seen in Figs 3 and 4. It is 
also possible that this parameter is actually compensating for other quantities 
not included in the formalism, like the saddle point shell effects. In fact, 
pairing effects and shell effects behave much in the same way with excitation 
energy. However, if one assumes the decrease in pairing to be fully due 
to shell effects at the saddle point, such shell corrections would amount to 
1 MeV at most. 

Indications of a rather large gap parameter at the saddle point of 210Po 
were obtained from the fission fragment angular distributions of the 4He-
induced fission of 206Pb and207Pb [54]. These very low-energy angular 
distributions suggested a gap parameter as large as 1.5 MeV. The experiment 
has been recently duplicated by Itkis and co-workers [ 55] with complete 
agreement on the data. While the high-energy data seem to be consistent 
with A~ 1 MeV the lowest-energy data remain unexplained with such a value. 
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Shell model calculations are in progress to estimate the value of Л necessary 
to fit the experimental data. While the fission probabilities are not the 
most sensitive quantities to use in the exploration of the superfluid properties 
of the system, the present analysis seems to indicate a saddle gap para
meter definitely lower than 1. 5 MeV. 

CONCLUSION 

It appears that the most relevant features associated with the fission 
probabilities are now understood in fair to good detail. The shell model, 
in conjunction with the liquid drop model, can provide a nearly quantitative 
description of the potential energies relevant to the problem. At the same 
time the statistical-thermodynamical behavior of the system can be 
predicted in equivalently good detail. In fact, a new picture is emerging 
where the ground state and the saddle point properties are discussed on the 
same basis as the statistical properties of the compound nucleus and of the 
transition state. The same physical structure responsible for the anoma
lously small masses of nuclei in the 208Pb region is seen to be responsible 
for the unusually high fission barriers of the same nuclei and for the very 
rapid increase in their fission probabilities. 

It is to be recognized that the present status of the theory still falls 
short of a completely quantitative understanding. The fission barr iers 
cannot be predicted with accuracies better than a few MeV and similar 
difficulties are encountered in reliably predicting the details of the potential 
energies. The same uncertainties in the shell structure affect the evaluation 
of the level densities and of other related statistical quantities. Further
more, in the actinide region where the fission probabilities can be observed 
at extremely low energies above the barrier , delicate problems arise 
associated with the inapplicability of statistical mechanics and to the onset 
of fluctuations requiring more of a spectroscopical than a statistical inter
pretation. 
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DISCUSSION 

F . PLASIL: It is comforting to learn from your work that if we wish 
to extract fission barr iers from excitation functions, it is possible to do so 
in the simple unified model, and that if we wish to understand the excitation 
functions at high bombarding energies, it is possible to do so with the help 
of the effects on level densities which you describe. This situation is true 
for the 4He-induced results which you presented. In view of the title of 
your paper, I would like, for the sake of completeness, to comment on 
fission probabilities obtained from heavy-ion-induced fission. Most of the 
fission bar r ie rs from heavy-ion reactions have been determined by 
Sikkeland and со-workers. Recently, we have attempted to re-analyse 
Sikkeland's data and to interpret our own recent measurements with a 
calculation that includes angular-momentum-dependent fission barr ie rs . 
We find that it is not possible to extract unambiguous values for fission 
barr iers because of the uncertainty in the fraction of the total reaction cross-
section that results in compound nucleus formation. We feel at this time 
that there may be problems with previously extracted fission barr iers from 
heavy-ion-induced fission and that the published values may not be reliable. 

L.G. MORETTO: The heavy-ion fission cross-sections have not been 
considered here because the Coulomb barr ier prevents us from measuring 
the fission probabilities close to the barr ier . 

U. MOSEL: With regard to your theory that one would not expect shell 
corrections at the saddle except in the presence of shells that exhibit a 
canal-like correlation with deformation, I would like to point out that such 
structures can be expected at the fission barr iers in lighter nuclei. And in 
fact my calculations for these nuclei1 show that the fragment shells do reach 
into the potential energy surface from scission to the saddle which is rather 
constricted in these lighter nuclei and thus closer to the final fragments. 
Care must also be taken in concluding from agreement between experimental 
and theoretical rF /rNvalues that no shells are present at the barr ier . In 
the case of Hg, as calculated by R. Vandenbosch and myself and mentioned 
in your paper, very good agreement is reached in spite of a shell correction 
at the saddle of a - 2 MeV. 

L.G. MORETTO: I agree with what you say. Our fission barr iers are 
uncertain by about 1 MeV. This can accommodate your saddle point shell 
effects. 

1 MOSEL, Ü. , Phys. Rev. C6(1972) 971. 
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Abstract 

ROLE OF SYMMETRY OF THE NUCLEAR SHAPE IN ROTATIONAL CONTRIBUTIONS TO NUCLEAR LEVEL 
DENSITIES. 

In nuclei that have static deformations, the level density is appreciably greater than for spherical nuclei 
because of the contribution of the low-energy rotational levels. The magnitude of this effect depends on the 
symmetry of the nuclear shape, which determines the collective rotational degrees of freedom. A number of 
symmetry types are considered that may be relevant for the shape of nuclei in the ground states as well as at the 
saddle point for fission. The transition between systems with different symmetries can be studied in terms of the 
effect of the collective shape oscillations on the level densities. 

INTRODUCTION 

The exciting developments in the understanding of the fission process 
that have followed the discovery of the fission isomers have brought into 
focus the crucial role of the symmetry of the nuclear shape. The dependence 
of the shell structure on the symmetry is reflected in the potential energy 
surface as well as in the statistical properties connected with the level 
densities for intrinsic excitations.1 The symmetry of the nuclear shape is 
also the decisive element in defining the rotational degrees of freedom, and 
in the present paper we shall consider the contribution of these degrees of 
freedom to the level densities.2 '3 

1. SPHERICAL SHAPE 

We begin by summarizing the conventional analysis of the level 
densities of a spherical nucleus, considered as a function of the angular 

1 For a discussion of the effect of shell structure on level densities, see Ref.[l] . 
2 For a discussion of the role of symmetry in defining the rotational degrees of freedom, and a derivation 

of the resulting rotational band structure, see Ref. [ 2 ] . 
3 The present considerations were stimulated by discussions with E. Lynn and H.C. Britt concerning the 

analysis of experimental data on the competition between fission and neutron emission. 

367 
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momentum, I. The total level density, for a given excitation energy E, can 
be decomposed in the form 

CO 

p(E) = Y P(E,M) = ̂ ( 2 I + l)p(E,I) 
м = - I { 1 ) 

p(E,I) = p (E ,M = I) - p (E ,M = I + l ) 

where M is the projection of I on a fixed axis . When many independent 
degrees of freedom contribute to M, one expects a normal distr ibution, 

p(E,M) = ( 2 7 r ) " i a - l e x p | - ^ 2 J p ( E ) (2) 

where cr is r e f e r r e d to as the spin cut-off factor and can also be thought of in 
t e r m s of a s t a t i s t i ca l moment of iner t ia 

a =• [ ^ 1 ; (3) 

stat 

where T is the nuclear t empe ra tu re . F r o m Eqs (1) and (2), one obtains 

- » „ - a — - J KI + 1) p ( E , I ) = (21 + 1)(8тг) га-*ехр-<;- ^ 2 ' \ p(E) (4) 

2. SHAPES WITH NO ROTATIONAL SYMMETRY 

In a deformed nucleus , each in t r ins ic s ta te gives r i s e to a rota t ional 
band and the total level spec t rum, for a given angular momentum, is t h e r e 
fore obtained by summing over a set of in t r ins ic s ta tes r a the r than by a 
decomposition of the level spec t rum, as for a spher ica l sys tem [3] . 

We first consider a sys tem that p o s s e s s e s the full rotat ional degrees of 
freedom of a th ree -d imens iona l body. Such sys t ems a r e charac te r ized by 
an equil ibrium shape that completely violates ro ta t ional symmet ry , in the 
sense that it is not invariant with r e spec t to any rotat ion of the coordinate 
axes . In this ca se , the rota t ional band, for a given in t r ins ic s t a t e , involves 
(21+1) levels , for each value of the total angular momentum I, as for the 
a s y m m e t r i c ro to r . (Each of these levels is itself (2I + l)-fold degenera te , 
corresponding to the different components M. ) 

If the level density of the in t r ins ic s ta tes is denoted by PiIltt(E) , the total 
level densi ty, as a function of I, can be expressed in the form 

21+1 

P<E,D=£p taIr(E -Ero£(T,I)) 
T-l 

~ P i n t r ( E ) ^ e x p j - - E t o t ( T , I ) f (5) 
T 
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where т labels the different rotational levels in a given band having the same 
value of I. The last expression in Eq. (5) assumes that Erot is small compared 
with the total excitation energy and follows from the definition of the tempera
ture as the inverse of the logarithmic derivative of p in t r(E). For sufficiently-
small values of I, the dependence on Erot in Eq. (5) can be neglected, and one 
obtains 

p{E, lM2I+l)p . n t r (E) 
(6) 

(Erot « T) 

It is seen that the level density (4), for the spherical nucleus in the limit of 
I-* 0, involves an extra factor (S-rr)'1^2 a"3 in comparison with expression (6). 
This factor, depending on the statistical moment of inertia, represents the 
fraction of the total number of levels in the spherical nucleus that have I = 0; 
in the deformed nucleus, each intrinsic state gives rise to a level with 1=0. 

While the density p(E,I) for small values of I is proportional to (21+ 1), 
as a very general feature of the statistical distribution, the expression (5), 
for larger values of I, contains a cut-off resulting from the rotational 
energy. Thus, the total level density of the deformed nucleus depends on the 
moments of inertia for the collective rotation. By summing the expression (5) 
over I, with the weight factor (21+1) as in Eq. (1), we obtain 

p(E) «p.ntt(E) £(21+1) exp{- 1 EIot (r,I)) 

3 

-"fm^)i;ffI^^^B^{-ii-&f} (7) 

P,„JE)(8,r) 

к = 1 

U*? u2 fi2 1 V* 
•*1 -^2 ^ 3 

where j^denote the moments of inertia with respect to the three principal 
intrinsic axes. The approximation of the sum by an integral assumes large 
values of ft-2^ T; the volume element !r"1dlidl2dl3 (which represents the 
element of phase space, in units of (2тт)3 , integrated over the total solid 
angle, 87Г2) ensures that the number of quantum states per unit of I is 
41 = (21+ l)2. In Eq. (7), the factor multiplying Pintr(E) is of the order of the 
total number of states in the rotational spectrum with Erot S, T. Indeed, quite 
generally, the occurrence of a low-frequency collective mode leads to an 
increase in the total level density, by a factor of the order of the total number 
of states in the collective spectrum with energies less than the temperature. 

In the nuclear many-body system, the occurrence of rotational motion 
implies a corresponding reduction in the number of the intrinsic degrees of 
freedom, and the question arises concerning the effect of this constraint on the 
intrinsic level density. The collective rotational motion can be expressed as 
a coherent superposition of single particle excitations, and the energies of 
these excitations are, in a heavy nucleus, typically of the order several MeV. 
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For temperatures small compared with these energies, the removal of the 
"spurious" degrees of freedom is therefore not expected to have a significant 
effect on pintr(E). If the nuclear temperature becomes comparable with these 
particle excitation energies, the fluctuations in the orientation of the nucleus 
associated with the particle motion become so large that one can no longer 
speak of a well-defined deformation or of a separation between rotational and 
intrinsic motion. (The particle excitations involved in the rotational motion 
are those generated by the Coriolis coupling, and the main contribution is 
associated with energies of order ft(w2

_w3)< where u2 and u3 are the charac
teristic frequencies for particle motion in the two directions perpendicular 
to the axis of rotation. This difference can also be expressed in the form 
n(w2-u3) K nu0 6 »40 MeV A-1/36, in terms of the mean oscillator frequency 
w0 and the deformation 6. For the ground state equilibrium shapes in the 
actinide region, 5 x 0.25; for the saddle-point shape, 6 = 0.6. 

3. AXIALLY SYMMETRIC SHAPES 

If the equilibrium shape, though non-spherical, is invariant under a 
subgroup of rotations, the collective rotational degrees of freedom are 
correspondingly reduced. An example, of particular importance for nuclei 
is a shape with axial symmetry and invariance with respect to a rotation 
3? of 180° about an axis perpendicular to the symmetry axis. 

Axial symmetry implies that the intrinsic states can be specified by the 
quantum number K, representing the component of I along the symmetry 
axis, and that there is no collective rotation about this axis. The intrinsic 
states are degenerate with respect to the sign of K, as a result of Si 
invariance, which also requires that the conjugate intrinsic states be 
combined in a definite manner in the total wave function. For К =̂  0, the 
rotational band based on the pair of intrinsic states ± К contains the levels 

I = | K | , | K | + 1, | K | + 2 , . . . (8) 

while, for K= 0, the intrinsic states are eigenfunctions of the rotation i^ 
with eigenvalue r = ± 1, and the states in the rotational band are 

1 = 0 , 2 , 4 . . . r = + 1 -, 
[K = 0 (9) 

I = 1,3,5 . . . r = - 1 J 

The total level density of intrinsic states can be decomposed into partial 
densities with specified К 

p. (E) = У р. r (E,K) (10) 

and the assumption of many independent degrees of freedom leads to a 
normal distribution, as in Eq, (2), 
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-1/2 1 ( К2 ~) 

Pjmr(E.K) = (2*) CK e x p | - - ^ - j p . n t r ( E ) (11) 

The level density for specified I is obtained by summing over intrinsic 
states with | к | SI 

i 

p ( E , I ) = | У p ( E - E (K, I ) ,K) (12) 
Z /_j mtr rot 

K=-I 

where E J K , I ) is the rotational energy. (For convenience, we have expressed 
the densities in Eqs (10) and (12) in terms of sums extending over negative 
as well as positive values of K, despite the fact that the rotational bands are 
labelled by | к | and involve only a single level I, associated with the conju
gate pair of intrinsic states ±K. The relative weights of | к | =f 0 and 
K= 0 bands is correctly given by such sums, since, for a given I, only half 
the К = 0 bands contribute (see Eq. (9)). This can also be seen from the 
fact that an isotropic (statistical) distribution of the direction of the sym
metry axis, for a given I and M, requires, for each value of |K| =^0 
(| КI S I), twice as many bands as for К = 0. 

For values of I such that E^CK.I) is small compared with the tempera
ture, T, and I « o"K, one can neglect the dependence on Erot in Eq. (12) as 
well as the exponential factor in Eq. (11) to obtain 

p(E,I) = (21+1) (8тг)"1/2 cf1 p.nti(E) (13) 

It is seen that the level density (13) exceeds the expression (4) by a factor of 
order a2, but is smaller than Eq. (6) by a factor of order ст"1, corresponding 
to the fact that the axially symmetric nucleus can rotate about two axes 
(perpendicular to the symmetry axis), while the general rotor has three 
rotational axes. 

4. EFFECTS OF DISCRETE SYMMETRY ELEMENTS 

If the equilibrium shape is invariant with respect to a group of finite 
rotations, the number of states in the rotational bands are reduced by a 
factor representing the number of elements in the corresponding point group. 
Thus, for example, the most general quadrupole deformation is invariant 
with respect to rotations 0lK by 180° about each of the three principal axes. 
This invariance group, referred to as D2, has four elements, and the 
resulting level density is one-quarter of that given by Eqs (5), (6), or (7). 

Additional collective degrees of freedom result from deformations that 
violate space reflection, &>, or time reversal 'J. A deformation violating 
either of these symmetries leads to a doubling of the energy levels, and 
hence to an increase of the level density by a factor of 2. 
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5. TRANSITION FROM SYMMETRIC TO NON-SYMMETRIC SHAPE. 
VIBRATIONAL CONTRIBUTIONS TO LEVEL DENSITY 

The treatment of rotational contributions to the level density assumes 
that the symmetry-violating deformation is large compared with the zero-
point fluctuations in the shape. The gradual transition from the symmetric 
to the non-symmetric case can be studied in terms of the vibrational modes 
of shape oscillation. 

The occurrence of a collective vibrational mode superposed on intrinsic 
excitations leads to a level density of the form 

p(E)=£pintr(E-Evib(v)) 

( 1 4 ) 

V 

where the set of quantum numbers v labels the different states in the vibrational 
spectrum. For a one-dimensional harmonic mode of vibration, with 
frequency«, the sum over v yields 

p(E) = Pintr(E)£exP{-^} 
n = 0 

. ^^(^( l - expj -^} )" 1 (15) 

« \ZT-) P- , (E) f o r ft"«T Vfilü/ ,intrv 

corresponding to the well-known expression for the partition function for a 
boson excitation. For a vibrational mode with g-fold degeneracy, the factor 
multiplying Pjn^E) in Eq. (15) becomes (1-exp {-fiw/T}) ~f where g= 2X+1 for 
a shape vibration of multipole order Л in a spherical nucleus and g = 2 for 
7-vibrations in a deformed axially symmetric nucleus. 

The transition from spherical to deformed shape is associated with a 
vibrational mode with low frequency, which becomes anharmonic in such a 
manner that a subset of the vibrational excitations .with especially low energy 
separates from the rest and forms a rotational sequence. This set, in 
Eq. (14), gives the rotational contribution to the level density, as discussed 
above. 

DISCUSSION 

The dependence of the absolute level density on the symmetry of the 
nucleus can be quite appreciable, since the spin cut-off factors, a, are 
about 5 for a heavy nucleus with excitation energies in the region from a 
few to lOMeV. (For independent particle motion, the statistical moment of 
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inertia in Eq. (3) is equal to the moment for rigid rotation, which for A« 240 
is й 2 / ^ « 7 keV; for a review of empirical evidence on spin cut-off factors, 
see Ref. [4].) In the comparison between the level densities of spherical 
and deformed nuclei, one must, however, include the appreciable effects 
of shell structure and variations in the pair correlation. In addition, one 
must take into account the occurrence of low-frequency quadrupole vibrations 
in a large class of spherical nuclei. (For an analysis of absolute level 
densities with* the inclusion of rotational contributions, see Ref. [5]. ) 

The analysis of the fission widths involves an enumeration of the number 
of open channels at the saddle point and is thus sensitive to the symmetry of 
the saddle point shape. Tentative evidence on this symmetry has come 
from recent analyses of the competition between fission and neutron emission. 
The empirical values of Ff /Гп for a number of nuclei at excitations of a few 
MeV above the fission threshold are found to be significantly larger than the 
theoretical estimates [6]. Such an enhancement could result from the 
collective contributions if the saddle point shape has a lower symmetry than 
that of the ground state. In particular, a departure from axial symmetry, 
with preservation of D2 symmetry, implies an increase in the number of 
channels with small values of I by a factor of (n/2)1'2 CTK; an additional 
factor 2 would result from a departure from reflection symmetry. 
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DISCUSSION 

J. R. HUIZENGA: Although I shocked Bj^rnholm on his arrival in 
Rochester by pointing out to him that T. Ericson had considered the question 
of the enhancement in the level density for nuclei with static deformation as 
early as 1958 [3], I now wish to come to his defence. In collaboration with 
Behkami, Britt and Freiesleben, we have obtained evidence (and I understand 
that a group in Copenhagen has also done so) that one needs to add collective 
rotations to the level density in order-to fit the neutron resonance data of 
deformed lanthanide and actinide nuclei. If one attempts to fit the neutron 
resonance data with the standard level density formula, one needs an energy 
shift of about 1. 5 MeV, a quantity which is approximately equal to the total 
condensation energy for an even-even nucleus. Hence, I feel that at an 
excitation energy of about 6 MeV (neutron binding energy) one does need to 
use the level density formula presented by Bj^rnholm which gives an enhance
ment in the level density due to collective rotations. 

K. DIETRICH: Mr. Bj^rnholm, is it possible that your considerations 
imply a larger density of states at the "symmetric saddle" compared to the 
"asymmetric saddle". In their recent experiments Konecny and Specht 
observed a very rapid increase of the ratio between symmetric and asym
metric fission at energies above the symmetric barr ier . This increase would 
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» 
imply that the level density parameter a in a uniform model would have to be 
30% larger for symmetric fission than for asymmetric fission. This is quite 
a lot. 

S. BJ0RNHOLM: Yes, it is a lot. However, the existence of the 
highly asymmetric mass peaks in radium fission together with the symmetric 
peak will require an exceptionally strong shell effect for asymmetric fission, 
compared to symmetric fission. Therefore, in this case a difference of 
30% in the parameter "a" (and hence in the single particle level densities gs) 
is plausible. 

L.G. MORETTO: I should like to make two comments on the paper. 
Firstly, I agree with the enhancement at low energies appearing in Britt 's 
data. I am not convinced about the Fn/r f at ~ 10 MeV being close to unity 
because of collective enhancement. In actinides the barr iers have substantial 
shell effects which may be partially washed out at 10 MeV, thus increasing 
the fission probability. 

Secondly, the collective enhancement of the level densities due to 
collective states cannot be preserved at high energies. At low energies the 
collective features are concentrated in a single quantum mechanical level; 
at high energies one should expect stronger and stronger coupling of the 
collective levels into the intrinsic background, which leads to an absorption 
of the collective phase space into the intrinsic level density. Knowledge of 
the strength functions should provide a smooth connection between the limit 
of uncoupled collective states (sharp quantum states) and the limit of strong 
coupling when all the intrinsic levels contain an approximately equal share 
of the collective strength. 

S. BJ0RNHOLM: Here is a point where there is a real difference of 
opinion. I should like to refer to Mr. Huizenga's comment and to 
Figs 7a and b in your own paper [5] as a basis for assessing the fading away 
of the enhancement factor due to collective rotations. 
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Abstract 

SINGLE PARTICLE EFFECTS ON FISSION BARRIERS AND STATISTICAL INTERPRETATION OF FRAGMENT 
ANISOTROPIES AND MASS DIVISION IN FISSION. 

For nuclei having significant shell effects around fission barrier deformations, the transition state shape 
becomes excitation energy dependent and should be determined by locating minima in the locus of conditional 
maxima of entropy for different nuclear elongations, as has been pointed out earlier. In this paper, impli
cations of this feature on the interpretation of fragment anisotropies and mass division are discussed on the basis 
of entropy maps calculated with single particle level schemes of Nix and co-workers and using the Pauli-
Ledergerber (PL) liquid drop model (LDM) parameters for the smooth part. For a typical case of M2 Pu, it is 
found that, at compound nucleus excitation energies Ex f> 25 MeV, the nucleus goes through a mass symmetric 
shape at the outer barrier, as this shape has maximum entropy with respect to the mass asymmetry coordinate. 
The entropy calculations with the asymmetric level schemes for the outer barrier deformation were used to study 
the excitation energy dependence of fragment mass distributions and the correlation between fragment mass 
asymmetry and anisotropy on the assumptions that (1) these are decided by the characteristics of the 
outer barrier, and (2) the probability that the nucleus will go through a specified mass asymmetric shape is pro
portional to the appropriate level density. These calculations, which do riot involve any free parameters, are 
shown to bring out the essential features of the fragment mass distributions. It is also shown that at Ex p 25 MeV, 
where only mass symmetric shapes are relevant, there is a gradual shift of the transition state towards the LDM 
saddle point, and at E„ ~40 MeV the transition state essentially coincides with the LDM saddle point. The "experi
mental" values of the shape parameter Л/JLff derived from fragment anisotropy data at E ~ 37 MeV are shown 
to be consistent with the above conclusions and with the LDM parameters of Pauli and Ledergerber. It is also 
shown that a microscopic calculation of Kj: should incorporate a normalization procedure, since this quantity is 
dependent on the radius parameter of the level scheme used. 

1. INTRODUCTION 

The last few years have seen intensive theoretical studies of the single 
particle effects on the potential energy of deformation of nuclei, based on 
the now well-known macroscopic-microscopic method [1,2]. Much of 
our current thinking about the fission process has resulted from these 
theoretical calculations which show a double-humped fission barrier for 
nuclei in the actinide region. It is now well known that these theoretical 
developments have provided a simple explanation for many near-threshold 
fission features such as isomeric fission and intermediate structure in 
fission cross-sections. In addition, these calculations for axially symmetric 
reflection-asymmetric nuclear shapes also show that for actinide nuclei 
the second barrier has a lower total energy for mass-asymmetric shapes, 
suggesting that the observed mass-asymmetry in fission might be a result 
of this feature of the deformation potential energy surface [1-6]. However, 
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with the realization of the existence of single particle effects at the fission 
barrier, it has also become necessary to re-examine earlier interpretations 
[7, 8] of the fragment angular distributions and fission excitation functions 
which were based on the identity of fission transition state shape with the 
liquid drop model (LDM) saddle shape. This identity, however, is justified 
only in the absence of shell effects, since then the level density can be 
calculated on the basis of the usual Fermi gas expression S = 2(aEx)1/'2 for 
the entropy S, where Ex is the excitation energy and a is the level density 
parameter assumed to be shape-independent; consequently the transition 
state shape, which by definition is the point of minimum number of open 
channels encountered along the fission path, coincides with the LDM saddle 
shape. If, however, the shell effects are included, the above expression 
is no longer valid and the transition state shape needs to be determined 
directly from the level density considerations as has been pointed out 
earlier [9]. Just as the LDM saddle point is located by finding out the 
maximum in the locus of conditional minima in the deformation energy 
surface, the transition state shapes of excited nuclei should be determined 
by locating minima in the locus of conditional maxima of entropy for 
different nuclear elongations. Interpretation of super-barrier fission data 
is, therefore, closely linked to the calculation of level density as a function 
of nuclear shapes taking into account shell effects. Such calculations have 
been made possible in recent years with the availability of single 
particle levels for different nuclear shapes and the application of numerical 
methods of calculation of nuclear level densities [9, 10]. 

In this paper, numerical calculations of the entropy of fissioning nuclei 
have been carried out for various nuclear shapes starting with the 
appropriate single particle level schemes. The results of these calcula
tions are used to discuss the excitation energy dependence of the probability 
of the fissioning nucleus going through different mass-asymmetric shapes 
at the second barrier in order to correlate these results with the observed 
fragment mass distributions in fission. The entropy calculations have 
also been used to study the excitation energy dependence of the fission 
transition state shape relevant for the interpretation of fission fragment 
angular distributions. 

2. METHOD OP CALCULATION 

Most of the discussion which follows is based on the present calculations 
of entropy S, nuclear level density p and the moment of inertia Уп parallel 
to the nuclear symmetry axis for different excitation energies and nuclear 
shapes encountered in fission. These quantities have been calculated on the 
basis of a microscopic model starting with the appropriate single particle 
level schemes of Nix and co-workers [5] for the folded Yukawa potential. 
An outline of the present calculations is given below. 

The single particle states are characterized by their energies ey and 
by their component K„ of angular momentum along the nuclear symmetry 
axis. Considering the excited nucleus as a system of non-interacting 
fermions, the occupation probability of these states at a temperature T 
is given by 

n " = i + e
( e " ' p ) / T ( 1 ) 
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where the chemical potential ß is de termined by the par t ic le conservat ion 
condition. 

At a given t empera tu re T, the excitation energy E x , entropy S and 
the quantity Ун a re then obtained by a numer ica l calculation from the 
following set of equations [9, 10]. 

Z,N 

E x = £ n„ ev - E e„ (2) 
v-l 

S = - £ п Д п п у + ( 1 - ^ ) ^ ( 1 - ^ ) (3) 

^ „ = ^ S n . d - n J K ^ (4) 

where the sums a r e taken over both neutrons and protons . 

3. EXCITATION ENERGY DEPENDENCE OF THE FRAGMENT 
MASS DISTRIBUTIONS 

Most of the explanations proposed in the pas t for the observed 
a symmet ry in the fragment m a s s dis t r ibut ions at low excitation energ ies 
were based on the assumption that the m a s s distr ibution is determined by 
s ta t i s t i ca l considerat ions nea r the sc iss ion point. The m a s s a symmet ry 
has therefore been general ly at t r ibuted to the shell s t r uc tu re of fragment 
nuclei . However, in a s tochast ic model proposed e a r l i e r [11] the bas ic 
idea was that if the t ime of descent from saddle to sc i ss ion is long enough 
for nucleon t r a n s f e r s between the two sides of the fissioning nucleus, a 
m a s s - a s y m m e t r i c shape would develop due to nuc lear shel l s t ruc tu re . The 
r ecen t calculations [1-5] of deformation potential energy surfaces with the 
inclusion of nuclear shel l effects c lear ly br ing out that a l ready at the 
second b a r r i e r deformation a m a s s - a s y m m e t r i c shape i s energet ica l ly 
favoured. It was f irs t pointed out by Möller and Nilsson [3] that for actinide 
nuclei the second fission b a r r i e r has a lower deformation potential energy 
for m a s s - a s y m m e t r i c shapes as compared to m a s s - s y m m e t r i c shapes . 
Calculations with more genera l shape p a r a m e t e r s [4, 5] for the fissioning 
nucleus ca r r i ed out by other groups have confirmed this resu l t . Recently, 
Tsang and Wilhelmy [6] have ca r r i ed out an analysis to in te rp re t quanti ta
tively the observed r e su l t s on the m a s s a symmet ry in fission in t e r m s 
of the probabi l i t ies of the fissioning nucleus going through different m a s s -
a s y m m e t r i c shapes at the second b a r r i e r . Their calculat ions made u s e of 
the s imple F e r m i gas express ion for nuclear level density which involved 
free level density p a r a m e t e r s and the ro le of dynamics from the second 
b a r r i e r to sc i ss ion was not considered. In the p resen t work, we have 
calculated the probabi l i t ies for the fissioning nucleus to go through different 
m a s s - a s y m m e t r i c shapes at the second b a r r i e r with the use of level densi t ies 
calculated numer ica l ly for the appropr ia te shapes s ta r t ing from the re levant 
single pa r t i c le leve ls . The p resen t calculations thus do not involve 
any free p a r a m e t e r s and therefore a compar ison of the calculated m a s s 
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yields with those observed can bring out the importance of the role of 
dynamics in m a s s division. 

The presen t calculations were ca r r i ed out with the single par t ic le level 
scheme of Nix and co-workers [5] for the folded Yukawa potential, whose 
shape is specified by suitable p a r a m e t e r s including a m a s s - a s y m m e t r y 
coordinate a2. The s tar t ing point of the present calculations is the a s s u m p 
tion that the probabili ty P (a2 ) of the fissioning nucleus going through a 
m a s s - a s y m m e t r i c shape a2 at the second b a r r i e r deformation is proport ional 
to the total number of open channels for that configuration. Res t r ic t ing 
oneself to the study of s u p e r - b a r r i e r fission, where excitation energy of the 
compound nucleus is above both the s y m m e t r i c and a s y m m e t r i c b a r r i e r s , 
one can wri te 

Е Х - Е Ц ) 

P(of2) oc J p(x)dx (5) 
0 

where E(a2) is the deformation potential energy of the a s y m m e t r i c shape 
a2 re la t ive to ground state and E x is the compound nucleus excitation energy. 

Qualitatively, it follows from Eq. (5) that in this case P(ß2 ) is p r o 
port ional to p(E x - E(o2)) owing to the fact that most of the contribution to 
the in tegra l comes from the upper l imit . Also, s ince the predominant energy 
dependence of the level density is governed by the entropy, one can wri te 

•г-,/ \ S(a2) 
P(a 2 ) x e 

where S{a2 ) i s the entropy of the configuration a2 for a given compound 
nucleus excitation energy E x . It then follows that 

Р(«г) _ s(a2) -s(az = 0) 
P(<*2 = 0) ~ e 

Therefore , a plot of S(a2 ) " S(a2
 = 0) ve r sus E x can br ing out the main 

features of the excitation energy dependence of the probabil i ty for the 
nucleus to pass through different m a s s - a s y m m e t r i c shapes . Resul ts of 
present calculations of S(a2) for a typica l case of a 2 4 2Pu fissioning nucleus 
a re shown in Fig. 1. In these calculations the potential deformation energy 
E(a 2 ) was taken from the mic roscop ic -macroscop ic calculations of Nix 
and co -worke r s [5]. The following conclusions can be direct ly drawn from 
the figure: 

(1) At low excitation energies corresponding to nea r - th resho ld fission, the 
entropy i s maximum for a2 = 0. 8, implying that the nucleus predominantly 
pas se s through a m a s s - a s y m m e t r i c shape at the second b a r r i e r . 

(2) At excitation energies exceeding 25 MeV, the entropy is maximum for 
a2 = 0, again implying that at those energies the nucleus predominantly 
passes through a m a s s - s y m m e t r i c shape at the second b a r r i e r . This 
resu l t is a d i rec t consequence of the rapid washing-out, with increas ing 
excitation energy, of shel l effects associa ted with entropy [9]. 

Figure 2 shows the r e su l t s of calculations of the probabil i t ies Р(а2) 
for the same nucleus 242Pu and it can be seen that the points of the above 
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FIG. 1. Plots of the calculated entropy difference (Sa - S0) of the fissioning nucleus M!Pu as a function of the 
compound nucleus excitation energy Ex, where Sa and S0 are the entropies for the mass-asymmetric shape 
specified by the parameter az and for the mass-symmetric shape, respectively, corresponding to the outer 
barrier deformation. 

qualitative discussion are also brought out in this figure. Also shown in 
Fig. 2 is a plot of the calculated variation of the ratio of the probabilities 
for the nucleus to go through asymmetric and symmetric shapes as a function 
of the compound nucleus excitation energy. This plot clearly brings out the 
rapid filling up of the valley in the mass distribution with excitation energy, 
resulting in a symmetric mass division at excitation energies exceeding 
about 30 MeV. It may be pointed out here that the present calculations of 
P(a2) versus excitation energy are based on a set of single particle levels 
corresponding to the second barrier deformation. However, as is pointed 
out in the next section, the fission transition state itself shifts from the 
second barrier towards the LDM saddle point with increasing excitation 
energy. Inclusion of this effect in the present calculations should lead to 
a more rapid filling up of the valley than indicated in Fig. 2. For lower 
values of Ex the plots in Fig. 2 are expected to be quantitatively correct 
since at these values of Ex the transition state coincides with the second 
barrier . The relation between expected fragment mass ratio and the 
asymmetry parameter a<i on the assumption of a "knife-cut" at the middle 
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Plots of the probability Pfc^) of the nucleus going through a mass-asymmetric shape a2 

irmation versus the Darameter a, for different excitation energies. FIG.2(b) shows the ratio 
ratio 

FIG. 2(a). Plots of the probability Hc^) of the nucleus going through a mass-asymmetric shape a2 at the 
outer barrier deformation versus the parameter аг for different excitation energies. FIG.2(b) shows the rat 
Р(я2 = 0.8)/P(a2 = 0) as a function of the excitation energy, showing the variation of the peak-to-valley ra P(ct2 = 0. 8)/P(a2 = 0) as a function 
with excitation energy 

of the nucle ar shape at the outer barrier is also indicated in Fig. 2. It is 
seen that in the range of excitation energies where the mass distributions 
are asymmetric, the calculated most probable mass ratio is surprisingly 
close to the experimental value. However, at the lowest excitation energy 
of 11 MeV for which the present calculations were carried out, the width of 
the calculated mass distribution is only about 5 mass units, which is con
siderably smaller than the experimental value. This comparison therefore 
shows that considerable broadening of the fragment mass distributions 
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takes place during its descent from the second barr ier to scission. It 
therefore appears that the experimental fragment mass distributions can 
not be quantitatively understood on the basis of the properties of the transition 
state of the fissioning nucleus alone, without including the dynamics during 
the descent from the transition state to scission. 

4. STATISTICAL INTERPRETATION OF THE FRAGMENT ANGULAR 
DISTRIBUTIONS 

The presence of shell effects in the deformation potential energy of 
nuclei introduces a new feature which needs to be taken into account in the 
statistical interpretation [7] of the fission fragment angular distributions 
at moderate excitation energies. For nuclei in the actinide region where 
the shell effects result in a pronounced double-humped fission barrier, 
the question arises: to which nuclear shape does the effective moment 
of inertia «/eff {=<#\\,ßJ{<£±-J\\)) derived from the analysis of the fragment 
anisotropies correspond. In near-threshold fission, the anisotropy data 
show that the angular distributions are characteristic of the states on the 
top of the second barrier [12]. It has been pointed out earlier [9] that, 
owing to the washing-out of shell effects with increasing excitation energy, 
the transition state shape of the nucleus will shift from the second barrier 
shape towards the LDM saddle shape, and will finally coincide with the 
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FIG. 3. Results of the numerical calculations of the moment of inertia j?0 /fiz versus the excitation energy for 
a typical case of spherical shape of z42Pu. The dotted line represents the corresponding rigid body value with 
r0 = 1.16 fm for the radius parameter. 
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LDM saddle at an excitation energy at which shell effects have completely-
disappeared. This would imply that j?eff becomes excitation energy 
dependent not only because of the shell and pairing effects on the moments 
of inertia for a given shape but also because the shape itself changes with 
excitation energy. This feature then needs to be included in the interpreta
tion of the parameter K0 (=/ e [ fT/h 2) versus excitation energy, derived 
from the statistical analysis [7] of the fragment anisotropy data. 

A calculation of yeff at a specified excitation energy consequently 
involves (1) determination of the transition state shape relevant for fragment 
angular distributions and (2) calculation of J^ff for that nuclear shape. The 
transition state shapes of the nucleus at a specified excitation energy can 
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FIG.4. Results of calculations ofj^/fiz as a function of deformation for the nucleus 2«pu, The calculations 
have been carried out for (a) the single particle levels of Nix and co-workers [5] and (b) the modified harmonic 
oscillator levels of Seeger and Perisho [14]. The dotted lines represent the corresponding rigid body values 
with r0 = 1.16 fm. Also shown in the figure is the ratio -SH/C^I^RIGID88 а functl0n °f the deformation for both 
the level schemes. 
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be located from the map of entropy calculated for different mass-
asymmetric shapes <*2 for each elongation parameter y, from the criterion 
of minima in the locus of conditional maxima with respect to the coordinate 
a2 for different elongation parameters y. Such calculations are now possible 
with the availability of single particle levels for different nuclear shapes, 
which are required as inputs for the calculation of entropy. Having located 
the transition state shape, microscopic calculation of Ĵ eff can then be 
carried out starting with the single particle levels for the appropriate 
nuclear shape. It is also pointed out in the following discussions that 
these calculations should incorporate a normalization procedure for the 
calculations of the moments of inertia from single particle levels. 

Figure 3 shows the results of numerical calculations of the moment of 
inertia J^ /ft2 versus excitation energy on the basis of Eqs (1-4) for a typical 
case of a spherical shape of 242Pu. It is seen that, after the disappearance 
of shell effects, J?0/ti2 asymptotically reaches a constant value'which 
should be identified with the rigid body value. It is found that this asymptotic 
value in the present calculation corresponds to a radius parameter 
r 0 = 1. 27 fm which is also nearly equal to the sharp surface radius para
meter of the potential used to generate the input single particle levels. This 
value of r0> however, differs from the value 1. 16 fm which is known to 
represent better the spatial properties of nuclei [13]. The above discrepancy 
arising from the non-self-consistent nature of the shell model calculations 
of single particle levels shows that reliable calculations of moments of 
inertia based on shell model level schemes should incorporate a normaliza
tion procedure to ensure that the asymptotic values of J^/ft2 correspond to 
the rigid body values corresponding to the radius parameter r0 = 1. 16 fm. 
However, such a normalization procedure is useful only if the normalization 
constant is independent of nuclear deformation. Figure 4 shows the results 
of calculations of J /b2 as a function of deformation for the same nucleus 
242pu for ^ e sing2e particle levels of Nix and co-workers [5] and also for 
the modified harmonic oscillator levels of Seeger and Perisho [14] along 
with the rigid body values for r 0 = 1. 16 fm. It can be seen that, for both 
the level schemes, the quantity J^,/ft2 exceeds the rigid body estimates and 
these differences can be directly traced to the different <(r2/ of the single 
particle potentials in the two cases. However, it is seen that the normaliza
tion factor С = С^)/^,)rigid is almost independent of the deformation, 
although the magnitude of С is itself different in the two cases. The cal
culated values of Уп /h2 versus the excitation energy Ex for any deformation 
should therefore be divided by the factor С to ensure the correct asymptotic 
value of the quantity J2",, /ft2 . Similar renormalization will also be required 
in the calculations of moments of inertia, j?± /ft2, perpendicular to the 
nuclear symmetry axis. 

For the same reasons as mentioned above, the level density parameter 
a derived from the asymptotic values of the calculated thermodynamic 
quantities needs to be normalized to a value corresponding to the radius 
parameter r0 = 1. 16 fm, which can be done on the basis that a is proportional 
to r2, . Since the parameter K2 characterizing fragment anisotropies is 
given by 

K° " ft2 Т - ~ 2 ~ Ч а У 
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it follows that a microscopic calculation of K2 will be nearly proportional 
to the input radius parameter •(r2^1/2 of the potential used to generate the 
single particle levels, and therefore needs to be normalized to the radius 
parameter r 0 of the actual nucleon density distribution. Without incorporat
ing the above normalization procedure, the microscopic calculations could 
lead to a significant overestimate of K2 , which when compared with 
"experimental" values of K2 might result in misleading conclusions regard
ing the transition state shape. In some earlier work [15, 16] the micro
scopically calculated values of K2 versus the excitation energy for the shape 
corresponding to the second barrier have been found to fit the experimental 
values of K2, up to about 30 MeV barrier excitation energy, but this agree
ment appears to be due to a larger value of <(r2/ of the input level schemes. 
It is shown below that at E x ~ 37 MeV, the transition state shape is expected 
to be quite different from the second barrier shape and coincides very 
nearly with the LDM saddle shape. 

It has been shown in an earlier section that at Ex k, 25 MeV the fission
ing nucleus predominantly goes through mass-symmetric shapes at the 
second barrier . Therefore, at these excitation energies, the transition state 
can be located from the calculated entropy S versus excitation energy Ex 
considering only the symmetric deformation parameter y. The results of 
these calculations for the typical case of the fissioning nucleus 242Pu are 
shown in Fig. 5. For these calculations the deformation potential energy 
as a function of symmetric deformation was obtained with the use of the 
LDM parameters of Pauli and Ledergerber [17] for the smooth part and 
the shell corrections calculated by Nix and co-workers [5]. For this 
nucleus the fissility parameter x = 0. 805 and therefore the LDM saddle 
point is at the deformation y= 1 - x = 0. 195. It can be seen from the figure 
and the insert that with increasing excitation energy the transition state 
point (minimum entropy point) gradually shifts from the second barrier to 
the LDM saddle point and, a t E x ~ 4 0 MeV, the transition state point 
coincides with the LDM saddle point. 

It should be pointed out here that the excitation energy at which the 
transition state shape coincides with the LDM saddle shape depends on the 
shape of the LDM potential energy surface and thereby on the LDM para
meters used. Some recent calculations for the same nucleus by 
Vandenbosch [16] show that the LDM saddle point is reached only at 
Ex ~ 65 MeV, but this appears to be due to the use of LDM parameters which 
are different from the more reliable Pauli-Ledergerber parameters since 
these latter parameters were extracted from fission barrier systematics. 
It is further shown below that the experimental results of fragment aniso
tropics for a wide variety of nuclei in the actinide region at excitation 
energies Ex ~ 37 MeV present convincing evidence that, for these fissioning 
nuclei, the transition state shape coincides very nearly with the LDM saddle 
point shape at these energies. 

The first-chance anisotropy values for a number of actinide nuclei 
have been obtained by Reising and co-workers [18] for the case of 42. 8-MeV 
alpha-induced fission. These anisotropy values were used to determine the 
parameter K2 on the basis of the statistical theory [7, 19], neglecting the 
effect of target spin. From the values of K2 thus obtained for each case, 
the values of Ĵ ff were determined. The values of the temperature T used 
were those corresponding to the excitation energy at the LDM saddle point 
deformation and were obtained from the numerical thermodynamic 
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calculations with single particle level schemes of Nix and co-workers [5] 
after normalization to correspond to r 0 = 1. 16 fm. The pairing effects were 
approximately taken into account by subtracting a condensation energy 
equal to | g Ajj -kAQ from the excitation energy, where k= 0 for even nuclei 
and 1 for odd-mass nuclei, Д0 = ll/\TÄ MeV, and the single particle level 
density g is that corresponding to the level scheme used. The moment of 
inertia Ĵ Q for the spherical shape was also calculated with r0 = 1. 16 fm. 

242Pu 

x = 0.805 

J I I I L. 
30 35 40 45 

Ex (MeV) 

FIG. 5. Plots of calculated entropy S for the nucleus 242Pu as a function of the compound nucleus excitation 
energy Ex for different values of the symmetric deformation parameter y. The insert shows entropy S versus 
deformation parameter y, for specified values of Ex. 

92 
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Assuming that the transition state shape corresponds to the LDM saddle 
point, each value of J^ /i^ff was converted to give the fissility parameter x 
of the nucleus on the basis of the liquid drop model without curvature 
correction. Figure 6 shows the values of the parameter £ = (Z2/A)/x 
derived in this manner versus the isospin parameter I2= (N - Z/A)2 . It can 
be seen from Fig. 6 that the values of ? derived in this manner from 
anisotropy data even bring out the expected isospin dependence of the surface 
energy. It should be pointed out that part of the scatter in the data points 
can be ascribed to the effect of target spin which was not included in the 
above analysis, In fact, the points showing maximum deviation from the 
average trend do correspond to targets with spins of 5/2 and 7/2. The 
curves based on the Pauli and Ledergerber [17] and Myers and Swiatecki 
[20] LDM parameters are also shown in the figure for the sake of compari
son. In spite of appreciable errors on the "experimental" points, it is 
seen that the anisotropy data are in good agreement with the Pauli-Ledergerber 
LDM parameters. It should be pointed out that if in fact, at excitation 
energies of about 37 MeV encountered in these experiments, the transition 
state was either at the second barrier or between the second barrier and 
the LDM saddle point, the above analysis should lead to values of £ 
significantly higher than the LDM predictions, whereas it in fact leads to 
values of £ even smaller than those shown in Fig. 6 if the temperature T is 
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FIG.6. The values of£ = (Z2 /A)/x versus I2 = UN - ZJ/A)2 for a number of nuclei in the actinide 
region derived from the first-chance anisotropy values given by Reising and co-workers [18]. The open points 
refer to nuclei with non-zero target spin. The expected isospin dependence of 5 based on the Pauli and 
Ledergerber (P-L) [17] and Myers and Swiatecki (M-S) [20] liquid drop parameters are also shown in the figure. 
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evaluated at the second barrier deformation. Considering that the experi
mental points are well below the Myers-Swiatecki curve and lie almost 
on the Pauli-Ledergerber curve, it can be concluded that, even at compound 
nucleus excitation energies of about 37 MeV, the fission transition state 
relevant for fragment angular distributions indeed almost coincides with 
the LDM saddle point shape. The same conclusions were reached on the 
basis of results of Fig. 5 where, at E x ~40 MeV, the transition state point 
(minimum entropy point) is found to coincide with the LDM saddle point. 
There is , however, one feature of the results shown in Fig. 5 which is 
somewhat puzzling. It is seen that as the excitation energy is further 
increased, the minimum entropy point further shifts at excitation energy 
of about 90 MeV to a deformation у = 0. 18 which remains the minimum 
entropy point even at higher excitation energies. The reason for this 
small further shift of the minimum entropy point towards a lower deforma
tion (y = 0. 18) at these excitation energies are at present under investiga
tion. One possibility is that this further shift inside the LDM saddle is 
spurious since this can arise due to small e r rors of about 0. 5 MeV in the 
relative values of the shell corrections for the deformations y= 0. 18 and 
0. 20 and uncertainties of this order are known to be present in the shell 
correction values given by the Strutinsky smearing procedure. 

5. CONCLUSIONS 

In general, the transition state of an excited fissioning nucleus is to 
be located by finding the minima in the locus of conditional maxima of 
entropy for different nuclear elongations. For nuclei with significant 
shell corrections at the fission barrier , this introduces an excitation energy 
dependence of the transition state shape. One of the consequences of this 
feature is that fissioning nuclei in the actinide region go predominantly 
through a mass-asymmetric shape at low excitation energies and through a 
mass-symmetric shape at excitation energies exceeding about 25 MeV. 
On the assumption that the probabilities of the nucleus fissioning through 
different mass-asymmetric shapes at the second barrier are proportional 
to the respective level densities, it is shown that the observed systematics 
in the excitation energy dependence of fragment mass distributions can be 
understood on the basis of the present numerical calculations of level 
densities without involving any free parameters. These calculations also 
bring out that considerable broadening of the fragment mass distributions 
take place during the descent from the second barrier to scission, pointing 
out the need for the inclusion of dynamics for a quantitative understanding 
of the mass distributions. The present investigations have also shown that 
with increasing excitation energy the transition state shape of a typical 
nucleus 242Pu gradually shifts from the second barrier towards the LDM 
barr ier and, at excitation energies of about 40 MeV, it almost coincides 
with the LDM saddle point. It is also shown that the fragment anisotropy 
data for nuclei in the actinide region contain strong evidence to this effect. 
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DISCUSSION 

R. W. HASSE: I think the discrepancies mentioned in your paper may 
arise from the fact that your calculations are inconsistent insofar as you 
only take into account the smearing out of shell effects with increasing 
compound nuclear temperature but not the equally important dependence of 
the liquid-drop potential on temperature. Recently, we performed calcula
tions on this subject with a modified Thomas-Fermi model,1 and naturally 
obtained the result that the surface tension and the nuclear equilibrium 
density decreases with increasing temperature (the latter due to the nucleus 
being more easily compressed). Thus, for example, the fission barr ier of 
2S8U at a temperature of 2 MeV is decreased by about 2 MeV and its 
corresponding saddle point shape is less necked-in, giving rise to larger 
Ĵ eff/ĵ o values. 

S. S. KAPOOR: Let me first point out that there is no discrepancy be
tween the results of our analysis of anisotropy data and the LDM predictions, 
if Pauli-Ledergerber LDM coefficients are used. The temperature involved 
here is only about 1 MeV, and probably the effects you pointed out become 
significant only at higher temperatures. In fact, your results showing that 

i HASSE, R.W., STOCKER, W., Phys. Lett. 44B (1973) 26. 
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LDM Ĵ gff values increase with temperature appear to explain some of our 
earlier Berkeley results on fragment anisotropy, where an increase of 
j^ff with temperature in the region of 1 to 2 MeV was indicated. 

M.G. MUSTAFA: I think Mr. Kapoor and Mr. Hasse are going in two 
different directions. I believe the problem could be resolved by including 
temperature effects in the liquid-drop model, if it is important, and then 
by a thorough investigation of the shell correction energy in the statistical 
model and also in the Strutinsky method. 
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Abstract 

FISSION OF 238U, 209Bi AND 197Au WITH INTERMEDIATE-ENERGY 4He IONS. 
The fission of 238U, 209Bi and 197Au induced by 140- and 150-MeV 4He ions has been studied in order 

to investigate the dependence of the effective moment of inertia at the fission saddle point on excitation 
energy. Particular emphasis has been placed on the investigation of the reaction mechanism which produces 
the fissioning species in these systems. From fission fragment angular correlation measurements it is found 
that 49.3 ± 4.4c7o of the fission in 238U results from the formation of a compound nucleus. The non-compound 
nucleus component of the fission cross-section includes a large fraction of high linear momentum transfer 
events, presumably produced in reactions where pre-equilibrium decay is highly probable. The fission of 
197Au and2c9Bi with 140-MeV ^ e ions is found to proceed almost completely via a compound'nucleus 
mechanism. Examination of the forward-backward symmetry of the angular distributions measured in this 
work substantiates the angular correlation results. From the anisotropy in the angular distributions, values 
for ^ eff /h 2ajhave been determined. These calculations have included corrections for the effects of non-
compound nucleus mechanisms on the orbital angular momentum distribution of the fissioning nuclei and for 
neutron evaporation prior to fission. Contrary to eatlier work, we find that y eff /h2a | is constant within the 
uncertainties of the calculation. 

1. INTRODUCTION 

The measurement of fission fragment angular distributions 
at moderate excitation energies provides an important means of 
deducing information concerning the nuclear shape which charac
terizes the fission transition state. By selection of appro
priate projectile-target combinations and projectile energies 
it is possible to study the dependence of saddle point shapes 
upon the fissility parameter Ẑ /A and on excitation energy and 
to compare these results with the predictions of fission 
theory [1-4]. The theoretical treatment of fission fragment 
angular distribution data at moderate excitation energies, 
where statistical considerations should be valid, was originally 
proposed by Halpern and Strutinski [5] and by Griffin [6]. 
Recently, Huizenga, Behkami and Moretto [7] have modified the 
expressions of Refs. [5,6] and show that the fission angular 

* Work supported by US Atomic Energy Commission Contract AT-(40-l)-4028. 
** Present address: Los Alamos Scientific Laboratory, Los Alamos, N.Mex., USA, 
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d i s t r i b u t i o n W(8) for the case of s p i n l e s s p r o j e c t i l e and 
t a r g e t nuc l ides can be expressed as 

°° (21+1) 2TT exp[-(I+3s)2sin29/4K 2 ] J [i (1+Ц) 2s in 29/4K 2 ] 
WO) a I i : ZO o _ ( 1 ) 

1=0 erf [(!+%)/<2к£) 2] 

where 9 is the center-of-mass angle of the fragments. 
Here J is the zero-order Bessel function of imaginary argument 
and er? is the standard error function. The total angular 
momentum of the fissioning nucleus I is equal to the reaction 
orbital angular momentum 1=1 and Tj represents the transmission 
coefficient for each £-state. The projection of I on the 
symmetry axis of the fissioning nucleus is given by the quantum 
number К and KQ represents the variance of the distribution in 
K-states, which is assumed to be Gaussian. The quantity K 0

2 is 
given by 

K o 2 = ̂ eff T/fi2 (2) 

where T is the nuclear temperature and ,/eff is the effective moment of inertia defined by 

jrff - « / К - Л ) (3) 

Here Ĵ n and ,̂ , are the respective moments of inertia about 
axes parallel and perpendicular to the fission axis. 

Reising et al. [3] have shown that the agreement between 
experimental and theoretical J^eff values as a function of Z2/A is generally good, except at high Z2/A values where the 
experimental values are larger than predicted by liquid drop 
model calculations. Vandenbosch [8] has recently attributed 
this effect to the influence of the outer fission barrier on 
fission fragment anisotropies. Although the dependence of 
J?5ff on Z2/A seems consistent with theory, the behavior of 
•-Cff as a function of excitation energy remains poorly under
stood. From Eq. (2) a simple Fermi gas model predicts that 
the measureable quantities, K 0

2 and the excitation energy 
above the fission saddle point, Ef , can be expressed as the 
following ratio 

°* и = -P* (4) 
(E f ) ¥ *2af

h 

where af is the level density parameter appropriate to states 
which undergo fission. The fission excitation energy is 
defined by Ef = (E* - EfB - E R Q T ) where E is the total 
excitation energy, EfB is the fission barrier and ERQT i-s t n e 

rotational energy. Theoretical calculations [9,10] indicate 
that Ĵ eff should be approximately independent of excitation 
energy and hence the ratio K0

2/(Ef*)^ should be constant for a 
given fissioning system. However, the results of Kapoor et al 
[10] have shown that К 2/(Ef*)% increases by a factor of two 
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FIG. 1. Schematic and vector diagrams representing binary fission reactions preceded by (a) compound 
nucleus formation and (b) direct interaction (NCN). In the vector diagram, V is the velocity of the fissioning 
nucleus and v l a l3 and v C - m - are the laboratory and center-of-mass velocities of the fission fragments 
respectively. The laboratory angle % for fragment 2 is fixed in these experiments at 270° and ^l represents 
the correlation angle of the complementary fragment 1. The center-of-mass transformation parameter is 
X2 = (V/v1- •r. 

for 238TJ fission with 4He ions between the energies of 23 and 
115 MeV. Kapoor concluded from his data that either the theore
tical calculations of J^ff must be in error or that the results 
implied a breakdown in the statistical assumptions used in the 
angular distribution theory. Vandenbosch [8] has suggested 
that this behavior may represent a possible transition from 
the second barrier to the liquid drop barrier in higher 
excitation energy fission. 

The purpose of the present research has been to investi
gate the behavior of J*eff on excitation energy by performing 
studies of fission induced in 238U, 209Bi and 197ди by 140-MeV 4не ions. Particular emphasis has been placed on understanding 
the nuclear reaction mechanism which generates the fissioning 
species in order that the best possible values for the trans
mission coefficients, Tj, can be derived for use in Eq. (1). 
The fission fragment angular correlation technique [11,12], 
illustrated in Figure l,has been used for the reaction mechanism 
studies. This technique takes advantage of the dependence of 
the angle between coincident fragments on the linear momentum 
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imparted to the fissioning nucleus by the incident bombarding 
particle. From the angular correlation studies on 238y a 
linear momentum transfer distribution is obtained for the 
fissioning nuclei, which can then be utilized to interpret the 
measured angular distributions for 238ц, 209в1 and 197AU 
fission at these energies. The results are then compared with 
those obtained at lower excitation energies. 

2. EXPERIMENTAL TECHNIQUES 
Three types of experiments were performed in this work: 

(1) fission-fragment angular correlation measurements, which 
provided information concerning the target-projectile reaction 
mechanism, (2) fission fragment angular distribution measure
ments which were analyzed to obtain K Q

2 values, and (3) the total 
fission cross-section for the 238u pi u s 140-MeV % e ion system, 
which was needed to predict the £-wave distribution in the 
reaction from an optical model fit to the data. All measurements 
were carried out in a 75 cm diameter scattering chamber using a 
magnetically analyzed and focused beam of 140-MeV or 150-MeV 
^He ions from the University of Maryland Cyclotron. Isotopically 
enriched 2 3 8U and monoisotopic 209в1 and l^Au targets having 
thicknesses in most cases of 80 to 140 yg/cm2 were prepared by 
vacuum evaporation onto carbon films of 20 to 100 ug/cm2 
thickness. 

The angular correlation experiments were performed using 
a heavy-ion surface-barrier semiconductor detector in coinci
dence with a 50 mm long position-sensitive semiconductor detec
tor, placed at the appropriate correlation angles for binary 
fission from these systems [11]. The heavy-ion detector was 
placed at -90 deg with respect to the beam axis in all cases 
and had an angular acceptance of +0.7 deg. The position 
detector intercepted approximately ±10 deg of the reaction 
plane and was covered by a 15-slit collimator, each slit 
having an angular acceptance of +0.2 deg. Appropriate correc
tions (less than 4.3 percent in all cases) for angular geometry 
were applied to the data derived from this arrangement. 

A schematic diagram of the detector arrangement and the 
associated electronics for this three-parameter experiment is 
shown in Fig. 2. In Fig. 3 a two-dimensional position versus 
energy spectrum and the one-dimensional projection of each 
parameter is shown for a 252cf calibration source incident 
upon a surface-barrier position detector, covered by an eleven-
slit collimator. Angular correlation measurements were performed 
with the longitudinal axis of the position detector in the 
reaction plane formed by the beam and the heavy-ion detector placed at -90 deg 
(planar events) and with the position detector rotated perpen
dicular to this reaction plane (non-planar events). The 
non-planar measurements were necessary to insure that reactions 
which did not involve formation of a compound nucleus (NCN, or 
non-compound nucleus reactions) and which possess linear momen
tum components out of the reaction plane, were properly accounted 
for. In performing the planar measurements, care was taken to 
insure the systematic accuracy of the angular correlation 
obtained for each target nuclide by keeping both detector angles 
fixed during the measurement of each series of targets. 
Targets were alternated by means of a remote-controlled target 
ladder, which kept the target angle fixed at 45° to the beam 
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FIG, 3. Display of 2s2Cf calibiation data with an eleven-slit collimator. In the lower right-hand drawing 
a two-dimensional display of the position versus energy spectrum is shown. At the lower left, the projection 
of this spectrum on the position axis is given, i .e . the position singles spectrum. The upper drawing 
represents the projection of the two-dimensional spectrum on the energy axis, i. e. the gross fission kinetic 
energy spectrum. 

axis. At least two separate angular correlation measurements 
were performed for each target system to eliminate the 
possibility of electronic effects on the data. The results 
agreed to within ±0.1 deg for the most probable fragment 
correlation angle and ±0.2 deg for the full-width-at-half-
maximum (FWHM) of the correlation. For the broader correlation 
observed with the uranium target, measurements were carried out 
at several position detector angles between 75 deg and 90 deg. 
Non-planar measurements were made only at the most probable 
correlation angle for gold and bismuth targets, but for the more 
complex uranium correlation, data were taken at 2-deg intervals 
from 68 deg to 92 deg. Most of the non-planar measurements on 
238y were performed with 150-MeV %е ions, but comparison of 
results from the two energies showed them to be identical within 
the experimental limits of error. 

The three coincident signals from each event—position 
detector energy E^ and position P^ and fixed detector energy E2— 
were fed into three 4096-channel analogue-to-digital converters 
and the data were processed using the IBM 360/44 on-line computer 
at the Maryland Cyclotron. Data were also stored sequentially 
on magnetic tape, providing all possible correlations of the 
three parameters. The results presented here are restricted to 
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the position-energy portion of the data. Data were recorded 
similarly in the single parameter experiments described below. 

Fragment angular distributions for 238^ 209ßi an(j 197ди 
bombarded by 140-MeV ^He ions were determined using two inde
pendent heavy-ion detectors with an angular acceptance of +0.7 
deg. Targets were oriented at a 45° angle to the beam direc
tion. One detector recorded fission fragment spectra at several 
angles in the laboratory system, ¥ and (f + 180 deg), where Y ranged from zero 
to 90 deg with respect to the beam axis. This provided angular 
distribution data from both forward and backward hemispheres, in 
order to test for symmetry about 90 deg in the center of mass 
system, discussed in Section 4. A second detector measured 
spectra at a constant angle of 9 0° and served as a monitor, 
along with the beam current integrator, for use in normalization 
of data taken with the movable detector. The total fission 
cross-section for 2 3 8u bombarded by 140-MeV 4He ions was 
measured using targets of 165, 162 and 498 ug/cm2 respectively. 
Two separate detectors with accurately determined geometries 
were used to record spectra at two different angles for each 
target. From a knowledge of the integrated beam current, 
counting rates, detector geometries, target thicknesses and 
the measured angular distributions, a total fission cross-
section of 

af = 2760 ± 244 mb 

was determined. 

3. REACTION MECHANISM RESULTS 

The comparative results of the fission-fragment angular 
correlation measurements for the three systems studied in 
this work are shown in Fig. 4, which presents the planar 
angular correlation data, and Fig. 5, which is a contour dia
gram showing both the planar and non-planar components of the 
angular correlations. The correlation parameters derived from 
the data are summarized in Table I. The calculated most 
probable correlation angle, 4mp, for reactions in which a 
compound nucleus is formed are indicated by arrows in Fig. 4 
and dots in Fig. 5 for each target. The relative error in the 
correlation angles for the three targets is ±0.1 deg and the 
absolute angles are known to ±0.3 deg. For reactions induced 
in heavy elements by 140-MeV 4He ions, the linear momentum transferred 
to the fissioning nucleus from the incident projectile, pfN, can be expressed 
in terms of the correlation angle ¥ (as defined in Sect. 2) by the approximate 
function 

PfN И <|- *>' 
where 4" = Ущр represents complete momentum transfer and f = u/2 
represents zero momentum transfer. An inherent symmetric 
dispersion in the correlation functions for a given value of 
PfN arises from the kinematic effects of two factors: (1) mass 
asymmetry of the fragments and (2) neutron evaporation from the 
fragments or the fissioning nucleus. 
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Ч\ (DEG) 

FIG.4. Angular correlations for the fission of U, Bi and Au with 140-MeV He ions. Data were taken 
in the reaction plane and represent the coincidence counting rate as a function of correlation angle, Ф1? 

defined in Fig. 1. Arrows indicate the position of the most probable correlation angle calculated from 
kinematics for each system. The solid curves for the !tl9Bi and 197Au targets (data: open circles) are 
empirically fitted functions described in text. The dashed curve for 238U fission is that predicted from 
systematics for fission following compound nucleus formation. The solid curve for238U is calculated from 
the linear momentum distribution shown in Fig. 7. 

From examination of the 209ßi and Au data it is concluded 
that the fission of these nuclides with 140-MeV 4не ions pro
ceeds almost completely via a compound nucleus reaction mechanism. 
The most probable correlation angles for these two systems 
coincide with the value calculated under the assumption of 
compound nucleus formation, within the limits of experimental 
error. Further, the correlation functions y(x) are symmetric about 
the most probable correlation angle, whereas if any appreciable 
amount of fission resulted following incomplete momentum trans
fer, these functions would be skewed toward 90 deg. This 
conclusion does not agree with the conclusions of Bimbot and 
LeBeyec [13] from studies of intermediate energy reactions in 
lead isotopes. The !^7Au and 209Bi results are described well 
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FIG. 5. Contour diagram of angular correlations for U, Bi and Au systems. The planar angle is 
represented by ^and the non-planar angle is given by e. Contours are labelled in terms of the fraction of 
events at a given angle pair with respect to the most probable correlation angle. The most probable 
correlation angle predicted by kinematics is shown as a black dot on each diagram. 

by an empirical function of the form у = Ae~bxn (solid lines in Fig. 4). Here у is the correlation coincidence rate and x is 
the absolute value of the deviation in angle from the most 
probable value, x = |V—f |. These functions have been nor
malized to the data Usingen = 1.94 and 1.87 for gold and 
bismuth, respectively. The shape of the non-planar angular 
correlations (for constant f) for bismuth and gold follow the 
same functional behavior as the planar data within the limits 
of error, although there is some indication that the planar 
correlation is slightly broader. 

From comparison of the angular correlation for uranium 
fission with the gold and bismuth results in Figs. 4 and 5, it 
is evident that reaction mechanisms other than compound nucleus 
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TABLE I. Summary of fission-fragment angular correlation 
parameters derived from data shown in Figs. 4 and 5. The 
relative angular accuracy between the three target systems is 
±0.1 deg and the absolute error in the knowledge of the 
detector angles f is +0.3 deg. Full-width-at-half-maximum 
(FWHM) values for the correlations have an error of +0.2 deg 
in each case. 

197AU 209Bi 2 3 8U 

Most probable correlation angle, ¥. 

Experimental (deg) 

Calculated (deg) 

mp 
74.5 75.5 78.5 

74.2 75.2 76.9 

FWHM 

Planar (deg) 

Non-planar (deg) 

6 . 4 

6 . 2 

6 . 2 

6 . 1 

7 . 9 

6 . 9 

300 

200 

!0 15 20 25 

CHANNEL NUMBER 

30 35 

FIG. 6. Kinetic energy distribution for fission fragments produced in bombardment of 238U with 140-MeV 4He 
ions, (a) 4»j = 77.5° and * г = -90.0° represents high-energy fission; (b) * t = 90.3° and % = -90.0°, is 
characteristic of low-energy fission. 
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formation contribute significantly to the total fission cross-
section for 238u. This fact is demonstrated more directly in 
the fragment kinetic energy distributions shown in Fig. 6. For 
a correlation angle of 4̂  = 77.5 deg a broad single peak is 
observed in the fragment energy spectrum, indicative of high-
energy fission, whereas for 4^= 90.3 deg an asymmetric fragment 
distribution is observed, characteristic of low-energy fission. 
In order to estimate the relative contributions of CN versus NCN 
reactions, we have utilized the systematic behavior of the 
angular correlation functions for fission reactions in which 
compound nucleus formation can be clearly distinguished. The 
gold and bismuth data from the present studies have been used 
to predict a most probable correlation angle of Ч^р = 77.2 deg 
for the data in Figs. 4 and 5 and a FWHM = 6.5 deg for fission 
following compound nucleus formation. These parameters are 
consistent with the results of heavy-ion-induced fission 
studies [11], which show (1) excellent agreement between the 
calculated and experimental values of Ymp and (2) for a given 
projectile and bombarding energy, the FWHM of the angular 
correlation is nearly independent of target nuclide for J-Ŝ Au, 
209ßi and 238y fission. Using these assumptions, a correlation 
function у = Ae~0.0858 x 1.77 ^ s cäerived to account for fission 
following compound nucleus formation in reactions of 140-MeV 
4He ions with 238u. The normalization constant A is determined 
using the kinematic restriction that the lowest angles ¥jof the 
correlation function in Fig. 4 must correspond to complete 
momentum transfer reactions. This function is plotted as the 
dashed curve in Fig. 4. 

By integrating over the entire reaction surface in Fig. 5 
for both total experimental events and predicted compound 
nucleus events, we determine the cross-section for compound 
nucleus formation in 238uf асцг to be 

CT_„ = (0.493 ± 0.044)^ = 1361 ± 121 mb. 
238 Here we assume that because of the high fissionability of U, 

the total reaction cross-section, crR, is equal to the total 
fission cross-section, fff. Error limits are based on a possible 
error of +0.1 deg in Vmp and ±0.5 deg in the FWHM for the 
compound nucleus correlation function. Our result is in major 
disagreement with the value of CTCJJ = 0.91 crR determined by 
Kapoor et al. [10] at 110 MeV. However, reexamination of the 
data in Ref. [10] indicates that their value of Ö C N should have 
been much lower. The implications of this result will be 
discussed in more detail in Sections 4 and 5. 

Comparison of the experimental angular correlation for 
238u with that determined assuming compound nucleus formation 
(Fig. 4) reveals that a considerable fraction of the NCN 
events involve large transfers of linear momentum from the 
projectile to the fissioning nucleus. We interpret this result 
as evidence of a high probability for pre-equilibrium decay in 
the nuclear reaction mechanism. This result is consistent with 
previous workers who have studied spallation product yields in 
reactions of intermediate energy ^He ions with heavy elements 
[13,14] and with the (a,a') studies of Halpern et al [15]. 

By further utilizing the angular correlation systematics 
for 4He-ion-induced fission reactions [10-12], the distribution 
of linear momenta which characterize the fissioning nuclei in 
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ALPHA-PARTICLE ENERGY (MeV) 

1.4 5.6 126224 35050.4 баб 8ä6 113 140 

0.4 0.6 0.8 Ю 

LINEAR MOMENTUM TRANSFER 

FIG. 7. Linear momentum distribution for fissioning nuclei produced in bombardment of2MU with 
140-MeV He ions. The percentage of events is plotted as a function of the ratio of the observed linear 
momentum transfer to that for complete momentum transfer. Histogram was derived from angular 
correlation data for238U and the systematic behavior of angular correlations from other systems. 

23°rj reactions can be derived. This is shown in Fig. 7. This 
analysis reinforces the conclusion that high momentum transfer, 
pre-equilibrium decay events play an important role in these 
reactions. In addition, the bump in the histogram corresponding 
to low momentum transfers presumably reflects the extent to 
which direct surface reactions contribute to the total cross-
section. Thus, it is apparent from our data that any attempt 
to derive information about fission from studies using inter
mediate-energy ^He ions as projectiles must pay careful atten
tion to the details of the nuclear reaction mechanism. Other
wise, one cannot possibly understand the distribution of fission
ing species, excitation energies and angular momenta that 
characterize these reactions. 

4. ANGULAR DISTRIBUTION RESULTS 
The importance of understanding the projectile-target 

reaction mechanism in the interpretation of intermediate energy 
fission data is well-illustrated by the results of fission 
fragment angular distribution studies. The center-of-mass 
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8 (DEG) 
0 Ю 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 

0 Ю 2 0 3 0 4 0 5 0 60 70 80 90 
Ö(DEG) 

FIG. 8. Angular distributions in the center-of-mass for fission of 238U, 209Bi and 19,Au by 140-MeV "He 
ions. The relative differential cross-section, [do(9)/dw3/[do(90 deg)/dw], is plotted as a function of 
center-of-mass angle 9. The transformation parameter, X2, is shown for each set of data. For238U the 
transformation is performed using a value of X2 corresponding to (1) compound nucleus formation (X2 = 0. 0133) 
and (2) the best forward -backward symmetry about 90° (X2 = 0. 0098). 

angular distributions for 140-MeV % e ion-induced fission of 
!9'Au, 209ßi and 238rj are shown in Fig. 8. The 209ßi data were 
taken in both forward and backward reaction planes and trans
formation from the laboratory to the center-of-mass systems 
was accomplished using a value for the transformation parameter, 
X2, equal to the value calculated for compound nucleus forma
tion, x£N. Рог 209;в£ the forward-backward symmetry required 
for binary processes is met with this assumption, thus confirming 
the conclusion based on the angular correlation data that 
209ßi fission proceeds almost entirely via a compound nucleus 
mechanism at these energies. Consequently, the angular distri
bution for the less fissionable gold target was transformed 
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TABLE II. Results of fission-fragment angular distribution 
measurements. 

197, 209„. 238,, 
Au Bl U 

2 
Transformation parameter, X 0.0195 0.0173 0.0133 0.0098 
Anisotropy, W(175)/W(90) 3.04+0.03 2.48±0.03 1.64+0.02 1.59+0.02 

о о о 
assuming X 2 = X 2

C N. The U data were transformed into the 
center-of-mass system under two assumptions. First, X£N was 
used—which does not yield an angular distribution that is 
symmetric about 90 deg, as shown in Fig. 8. However, the value 
for the anisotropy, W(175)/W(90), obtained from this procedure 
does serve as a lower limit for the anisotropy that would be 
observed in the absence of any NCN fission and has been 
treated as such in subsequent calculations. Second, a search 
was made to determine the transformation parameter that would 
yield the best forward-backward symmetry for the angular distri
bution. A value of X2 = 0.0098 = 0.74 X 2

C N was obtained in 
this way, in excellent agreement with the value of X 2 = 0.743 X£N 
determined from the linear momentum distribution shown in Fig. 
7. This again substantiates our conclusions of Sect. 3 concern
ing the reaction mechanism for 2 3 8U. In Table II the values for 
the anisotropy are listed along with the corresponding 
transformation parameters. 

To derive KQ values appropriate to fission reactions which follow 
compound nucleus formation from these systems, it was 
necessary to make appropriate assumptions concerning the 
distribution of orbital angular momenta, I, among the fissioning 
nuclides and also the effects of neutron evaporation prior to 
fission. The problem of calculating the transmission coeffi
cients, Тд, is complicated greatly by the high probability for 
pre-equilibrium decay in these reactions. In the absence of a 
detailed theoretical calculation which predicts the orbital 
angular momentum distribution in a system where direct, pre-
equilibrium and compound nucleus reactions occur simultaneously, 
we have made the following assumptions, illustrated in Fig. 9, 
which should bracket the true situation. Under assumption I 
the orbital angular momentum distribution for the compound 
nuclei formed in these reactions is restricted to the lowest 
possible Л-waves. Thus, all partial cross-sections, cf£, up to 
the point where OQH = 0.493 OR are considered to make up the 
compound nucleus cross-section. All higher Ä-waves are considered 
to produce NCN re.actions. This model minimizes the average 
angular momentum of the fissioning nuclei and is consistent 
with the expectation that complete absorption should be most 
probable for projectiles with the smallest impact parameters. 
The upper limit on the average angular momentum (assumption II) 
is then obtained by assuming that the transmission coefficients 
for compound nucleus reaction products are the same as those 
calculated for the total reaction cross-section, but that only 
49.3 percent of each partial cross-section results in compound 
nucleus formation. Transmission coefficients were calculated 
using the deformed optical model potential of Rasmussen and 
Sugawara-Tanabe [16] with parameters derived from fitting the 
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J 1.00 

6"{(mb) 

FIG. 9. Plot gives (a) transmission coefficients, Tj, and (b) partial cross-sections, og, as a function of orbital 
angular momentum,which were used to derive K?0 values. The curve labelled oR represents an optical model 
fit to the total fission cross-section for 140-MeV4He ion-induced fission of a38U. The quantities oCN(I) and 
Tj(I) represent the low orbital angular momentum extreme for Kjj, whereas 0£N(II) and Tg(II) give the 
upper limit for this quantity. 

TABLE III. Comparison of K0 /(Ef ) ^ = --^ff/af
 2-h values 

obtained in this work compared with the low-energy results from 
[3]. The results in [3] have been corrected to be consistent 
with Eg. 1, based on [7]. 

К^ЛЕ/)3* = ̂ eff/hV 
197 Au 209в. 238и 

This work (assumption I) 
This work (assumption II) 
Reference [3] 

7.7 
6.0 
9 .0 

10.5 
21.9 
13.6 

20.3 
42.2 
25.0 
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experimental excitation function for 238ц fission. The para
meters were: well-depth, VQ = 130 MeV; radius parameter, r0 = 
1.194 fm., and diffuseness, d = 0.35fm. Deformation parameters 
were ß2 = 0.261 and ß 4 = 0.106 for

 238U and zero for gold and 
bismuth. The compound nucleus radius parameter for calculations 
under assumption I above was r0 = 0.843fm. 

The KQ2 values were corrected for pre-fission neutron 
evaporation as follows. For 2 3 8U the Tn/Yf values of Vandenbosch 
and Huizenga [17] were used, whereas average values of Yn/Vf were 

197 209 determined for Au and Bi from the work of Jodai-Koopari 
[18]. In the latter two cases values of (Гп/Гг) = 9 and 55 
were used for 140-MeV 4He-ion-induced reactions in 209ßi and 
197ди respectively. In order to determine the appropriate 
excitation energy above the fission barrier, the barrier heights 
of Ref. [18] were used for gold and bismuth and that for 238ц 
was taken from Ref. [19]. Corrections were also made to the 
fission excitation energy for energy tied up in rotation. 

In Table III the values of K0
2/(Ef )%—which should be a 

constant,independent of excitation energy for each nuclide— 
are compared with the low-energy values determined by Reising 
et al [3]. It is observed that our values bracket the low 
energy value and consequently, there is no experimental basis 
for concluding that the effective moment of inertia is a function 
of excitation energy or that the assumptions of the angular 
distribution theory are inadequate to describe fission at 
intermediate excitation energies. Thus, the results of Ref. 
[10], which led Vandenbosch to suggest the possibility of a 
transition from the second maximum to the liquid drop value for 
the saddle point deformation in 238ц fission, is more an 
artifact of the reaction mechanism than of the fission process. 

5. CONCLUSIONS 
In summary, the present research demonstrates the importance 

of reaction mechanism studies to the interpretation of inter
mediate energy fission data. We find that less than one-half 
of the total reaction cross-section involves formation of a 
compound nucleus at a bombarding energy of 140-Mev and that a 
large fraction of the non-compound nucleus events involve 
linear momentum transfers with 50-90 percent of this value 
expected for compound nucleus formation. Based on these 
results, it is probable that similar effects occur at lower 
energies to an extent much larger than previously thought. 
The large fraction of NCN events complicates the analysis of 
fission data obtained at intermediate energies due to the broad 
spectrum of fissioning nuclei and excitation energies that 
result, as well as the difficulty in calculating the orbital 
angular momentum distribution of the products. Thus, previous 
conclusions drawn from intermediate energy fission data need 
to be re-evaluated if a knowledge of these quantities is involved. 
Our results do show that the fission of nuclides lighter than 
bismuth occurs only via compound nucleus formation reactions, 
which is an important consideration in the study of less fissile 
systems. However, assuming the reaction mechanism differs little 
between uranium and gold nuclei, the compound nucleus cross-
section should be a factor of two lower than has been assumed 
for these reactions. 
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The results of the angular distribution studies carried out 
in this work show no evidence for previous conclusions that the 
quantity J?eff/A

2af^ increases with increasing excitation energy. 
Values of ̂ eff/^

2af have been determined for reaction models 
which maximize and minimize the angular momentum distribution 
of the fissioning nuclides. The low-energy value falls between 
these two extremes, although nearer the low angular momentum 
model. This result implies that most of the NCN reactions 
occur at the expense of the highest Ä-waves in the angular 
momentum distribution. Furthermore, the failure to observe 
fission associated with NCN mechanisms in gold and bismuth 
targets may be evidence that the NCN reactions produce less 
fissile low angular momentum states in the residual reaction 
products. In order to understand these reactions fully, 
a comprehensive calculation which accounts for all features of 
the reaction mechanism needs to be undertaken. Only then can 
one interpret intermediate-energy 4He ion-induced fission data 
with confidence. 
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D I S C U S S I O N 

L. G. MORETTO: Your excitation energy is very large and one would 
therefore expect the cor rec t ion for mul t ip le-chance fission to be substantial . 
These kinds of cor rec t ions a r e ve ry difficult to perform. At high energy a 
var ia t ion of 10% in 9f/0n produces a change of a factor >100 in 1}/Гп. T h e r e 
fore I do not understand how you could determine a re l iable value of Kg. 

V. E. VIOLA: In o rder to make a consistent compar ison of our K|j 
values for U with those obtained by others at lower excitation energ ies , 
we have used the low-energy r f /Г п values tabulated by Huizenga and 
Vandenbosch. F o r gold and bismuth we have extrapolated the f ission c r o s s -
section r e su l t s of Khodai-Joopar i (Ref. [18] of the paper) to 140 MeV and 
then derived average r f / Гп values which matched the r e su l t s . One could 
go through a m o r e sophisticated t r ea tment of JTf /Г п and probably obtain 
somewhat be t te r l imi ts of KQ. However, given the s ta tus of our knowledge 
of the t a rge t -p ro jec t i l e in teract ion mechanism, this hard ly s e e m s wor th 
while. This is the main point we a r e t ry ing to make — if Kg is in e r r o r 
by a factor of two owing to uncer ta in t ies in the knowledge of the t r ansmis s ion 
coefficients, then we cannot expect to l ea rn much about the fission t rans i t ion 
s ta te however sophisticated our t rea tment of Г . / Г . 

J . MILLER: What did you do about the angular -momentum dependence 
of the fission probabil i ty when you calculated the angular distr ibution? 
This dependence would be par t icu la r ly important for gold, where the fission 
probabil i ty is considerably l e s s than unity and thus much of the f ission 
could come disproport ionately from the high-spin s ta tes . 

V. E. VIOLA: We did not attempt to use an angular -momentum-dependent 
value of r f — largely for the same reasons mentioned in the previous 
question. I agree that this could have an effect on resu l t s — especial ly 
for gold fission, a s you mention. If the fission is angu la r -momentum-
dependent, then KQ will indeed be increased . On the other hand, an angular -
momentum-dependent Ff value would se rve to inc rease r f / Гп, which would 
a lso inc rease our value for the average excitation energy of the fissioning 
nuclei. Thus, the value for K0/(Ef")2 might remain approximately constant 
to the f i rs t o r d e r approximation. However, th is is not necessa r i ly the 
case and it is possible to conceive of an angular momentum distr ibution 
for the fissioning gold nuclei that would give J?eff r e su l t s which did not 
bracket the low-energy resu l t for this nucleus. However, for bismuth and 
uranium fission, I do not believe that an angular momentum ff value could 
change the r e su l t s appreciably. 
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Abstract 

STATISTICAL CALCULATION OF THE MASS DISTRIBUTION IN FISSION. 
The mass distribution of the fission fragments is calculated as a function of excitation energy from 

the saddle point properties of the fissioning nucleus. The nuclei investigated are226Ra, 228Th, 240Pu and2ssFm. 
The essential quantities involved are the potential energy surface and the level density as a function of 

deformation, angular momentum and excitation energy. The potential energy surface is obtained by 
addition of the liquid drop energy and the shell correction energy. The single particle spectrum needed is 
calculated in a deformed axially symmetric Woods-Saxon potential. Two symmetric deformation parameters 
and one left-right asymmetry parameter span the deformation space. 

The level density is also calculated directly from the single particle spectrum. For a given nucleus, 
the number of levels as a function of the excitation energy and of the projection of the total angular 
momentum on the intrinsic symmetry axis are first evaluated. This is consistently done with the effects of 
pairing included in the BCS-approximation. The total level density as a function of energy E and angular 
momentum I is then obtained as a sum of the rotational bands built on top of each of these intrinsic level 
densities. 

The probability for finding the nucleus with given E and I at a given deformation is an integral of 
the level density for the deformation considered. 

The mass distribution of the fission fragments is assumed to be determined around the second saddle 
point and given by statistical arguments. It is shown for 240Pu that, as one goes away from the saddle point, 
the correlation between observed and calculated distributions disappears. The results for 258Fm are similar 
to observations for 25$Fm. Both 226Ra and 228Th give in the calculation predominantly symmetric fission. 
A shoulder around a fragment mass of 138 is obtained for low energies. 

1. INTRODUCTION 

We investigate as function of excitation energy the qua
litative agreement between the observed mass distribution in 
fission and the instability around the second saddle point 
against left-right asymmetric distortions. This has been tried 
before when angular momentum effects are ignored [1] , [2] . 

The philosophy behind the approach is that the system 
develops adiabatically with statistical equilibrium between col
lective and internal degrees of freedom, until it reaches the 
exit region. This deformation region [3] is situated outside 
the second barrier. At this point the adiabaticity is broken— 
very quickly the neck of the nucleus develops and scission oc
curs. Thus the mass distribution of the fission fragments is 
determined in the exit region. 

The existence of a well-defined exit was pointed out in 
ref. [3] . It is a very crucial assumption in this work. 

409 
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We try to localize the exit by comparison of the observ
ed mass distributions with calculations done at different de
formations on the outer side of the second saddle point. 

No penetration through barriers is taken into account 
and we are therefore limited to excitation energies well above 
the second barrier. The uncertainties in the energy surface do 
not come in with their full strength because we only need rela
tive energies in the deformation region of interest. The abso
lute heights of the barriers are therefore unimportant. 

In order to cover a reasonable region of nuclei we study 
firstly 240p u, (i n the middle of the asymmetrically fissioning nu
clei) then 258Fm, which presumably fissions symmetrically and 
lastly Ra and Th in the interesting region where three 
peaks in the mass distribution have been observed. 

2. MODEL 

2.1 Probability surface 
The parametrization of the shape of the potential is 

described by the deformation parameters (c,h,o<) [3],Г 4 ] . Left-
right symmetry is preserved for ОС = 0 while non-zero (X-values 
describe asymmetric shapes. The radial form is of the Woods-
Saxon type. 

A crucial quantity in this approach is the level den
sity. It is like the collective potential energy surface 
V(c,h,o<) calculated directly from the single particle spectrum. 

The total level density p as a function of energy E and 
angular momentum I is obtained as a sum of the rotational bands 
built on top of each of the intrinsic levels [5] , i.e. 

K=-I 

where pj.(X,K) is the intrinsic level density as a function of 
the intrinsic excitation energy X and the projection К of I on 
the intrinsic symmetry axis. It is obtained with the effects 
of pairing included in the BCS-approximation [6] . The moment 
of inertia jx around an axis perpendicular to the symmetry axis 
is in principle a function of energy and deformation. 

The relative probability for finding the nucleus at the 
deformation (c,h,of) with given E and I is approximately given 
by (see e.g. refs. [7] and [1] ) 

S(E, I, c, h, a) = Ta3v/2p (ET, I) (2) 

where T a v is an average of the local temperature corresponding 
to the different arguments of pi in eq. (1), and E T is the lo
cal excitation energy above the collective potential energy 

E T = E-V(c,h,a) (3) 
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2.2 Mass distribution 
The assumption is now that the mass distribution can be 

determined by the probability distribution at exit. This is 
the region in deformation space where the motion towards fis
sion changes from adiabatic (i.e. slow enough that statistical 
equilibrium is maintained at each step) to sudden (i.e. so fast 
that scission occurs before any adjustment can take place). 
Thus we assume that up to a certain point statistical arguments 
are applicable and then suddenly the nucleus disappears out of 
our static model. At this point the mass distribution is 
frozen. 

If the exit region is sufficiently narrow, the mass dis
tribution M is determined by a one-dimensional cut in the pro
bability surface. Otherwise an extended region is needed to 
determine M. In this simple case we have 

' M{E,I,o) =S(E,I,c(a),h(a),») (4) 

where с and h are the functions of c< describing where the cut 
is made. 

When M is obtained from eq. (4) we take a distribution 
a(E,I) of angular momenta similar to the one in the actual ex
perimental situation. After normalization of M(E,I,<X) we have 
for the observable mass distribution 

M (E, a) = ) a (E, I) M(E, I, a) (5) 
I 

where now 

Г M(E,I,a)da = 1 (6) 

The cut in deformation space needed in eq. (4) is still 
arbitrary. Several possibilities were tried: (i) (c,h)-values 
fixed at the saddle point value or along the path to fission 
[1] . (ii) A cut through both the symmetric and asymmetric pro
bability saddle point in the direction where the surface is 
steepest or curves parallel with this at larger deformations, 
(iii) Cuts with constant с and the h-value with the highest 
probability for the с and oc considered. 

One could also make cuts with fixed distance between the 
centers of mass of the future fragments [8] . Although it is 
difficult to define what we mean by fragments for deformations 
around the saddle point, this is to first order in с the same 
as (iii). This can be seen by simple estimates [4] . Roughly 
speaking the distance between the centers of mass of the frag
ments is proportional to c. 

In order to compare calculations with observations we 
must find a connection between oi and e.g. the mass A + of the 
heavy fragment. If the nucleus is divided in two by a plane 
in the middle of and perpendicular to the symmetry axis, the 
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ratio between the volume of the heavy fragment and the total 
volume can be interpreted as the ratio between the correspond
ing masses. This leads to (see ref. [4]) 

1 л Л . 3 J A+ =iA(l+>cJ) (7) 

Of course this relation is somewhat arbitrary. It does, how
ever, suggest a linear dependence, which instead could be found 
phenomenologically [1] . 

3. RESULTS 

The parameters used in the Woods-Saxon potential [9]are 
given in table I for 240pu> The single particle levels for 
540pu are, after an Al/3-scaling [3], applied to the other nuclei 
investigated. The liquid drop part of the collective potential 
energy is calculated with parameters from ref.[10]. The rigid 
body value with a radius parameter r0 = 1.2 fm is taken for the 
moment of inertia. This is justified for large deformations 
and high temperatures [3] and applies therefore to our case. 

The energies are all measured from the energy of the 
spherical liquid drop. They are therefore not excitation ener
gies but 2-3 MeV smaller. 

The distribution a(E,I) of angular momenta depends on 
the experimental conditions. Simple classical estimates give 
a maximum spin value of around 20 -й for the energies considered 
here. Calculations of the probability surface according to 
eq. (2) show that the spin dependence for our purpose is com
pletely negligible. The difference in ln(S) between two I-val-
ues fluctuates with deformation by less than 0.1 around the 
average value. Since a statistical treatment like the present 
one is only applicable for ln(S)>> 1 this fluctuation is well 
below errors introduced by other approximations. For conveni
ence we consider therefore in the following only spin zero 
states. 

TABLE I. PARAMETERS FOR THE SINGLE PARTICLE POTENTIAL 
FOR M 0 Pu 
V0 is the depth of the potential; R and a a r e respect ive ly the r ad ius and 
diffuseness of the cent ra l (v) and spin orbit (so) potentials . The s trength 
of the spin orbit potential is к V0 [3] 

Neutrons 
Protons 

-V0 

(MeV) 

47.46 

62.54 

Rv 

(fm) 

7.73 

7.79 

av 
(fm) 

0.66 

0.66 

"so 
(fm) 

7.22 

6.90 

aso 
(fm) 

0.55 

0.55 

KV0 

(MeV) 

12.0 

12.0 
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3.1 240 Pu 
240T The nucleus Pu is in the middle of the actinide re

gion and it is quite well known how the mass distribution de
pends on excitation energy [11] . 

Although we have restricted ourselves to spin zero 
states the probability surfaces are very similar to those of 
ref.tl]. The saddle point c-value is 1.60 and it is practical
ly constant for energies below 30 MeV. 

The mass distributions are obtained as described in sec
tion 2.2. First we consider case (iii), cuts for constant c-
values corresponding to an approximately fixed distance between 
the centers of mass of the fragments. Two of the characteris
tic quantities describing the mass distribution are shown in 
fig. 1 for different energies. 

As we go away from the saddle point the peak position 
moves towards smaller asymmetry, the peak-to-valley ratio in
creases first and then decreases rapidly. Each energy has a 
characteristic c-value beyond which symmetric (0<= 0.0) fission 
is most probable. For с > 1.70 we get symmetric fission at 
much too small energies. Thus in this case the exit must, for 
small energies, occur for с £1.65. 

The results with this restriction (c .£1.65) for dif
ferent cuts (see section 2.2) all come out fairly similar. 
Case (ii), a cut through both symmetric and asymmetric saddle 
point, is typical. With the translation in eg. (7) this leads 
to the mass distributions in fig. 2. The resemblance to the 
measured distributions [11] is striking. 

The characteristics of the distributions in fig. 2 are 
plotted in fig. 3 as functions of energy. In the same figure 
is also shown the experimental numbers for 240pu [Ц] together 
with results extracted from the work of Baba et al.[12] which 
are from proton-induced fission of 238rj. 

ЯМАХ 

0.10 

0.05 -

0.00 

1 

^ \ 

- ^ 

ViO 

(b) 

\ V I 1 
\2 5 1 1 

\зо | 1 

It I \ 1 

xlO 
x15 
x20 
*25 

x30 

x40 

ä-
1.60 1.65 1.70 

С 

FIG. 1. (a) The natural logarithm of the peak-to-valley ratio R and (b) the value of the asymmetry 
parameter a m a x of the peak position as function of the elongation с of the 240Pu nucleus. For a m a x = 0, 
symmetric fission dominates. The lowest c-value on the figure is the saddle point value. The crosses at 
the right-hand side are the results of case (ii) calculations described in Section 2. 2. 
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FIG. 2. Calculated mass distributions for 240Pu fission fragments for the energies in MeV given on the curves 
in the figure. All the peaks are normalized to 10. The arrows indicate the peak position. 
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20 

InR 
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FIG.3. The characteristics of the mass distributions in Figs 2 and 5 as a function of the energy E. 
The quantity A+ is the most probable mass of theheavy fragment. The full width at half maximum is 
denoted by FWHM and In Ris the natural logarithm of the peak-to-valley ratio. The full curves are for24°Pu 
and the dashed are for !58Fm. The open circles are experimental numbers for г40Ри from Ref. [ 11] and the 
closed circles are for 239Np from Ref. [ 12]. A ground state energy for 24°Pu of 2.5 MeV below the spherical 
liquid drop energy was used. The thin line in the In R figure corresponds to R = 2. 
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The p o s i t i o n of the heavy fragment i s about two mass 
u n i t s l a r g e r than the experimental v a l u e s . This d i f f e r ence 
would be reduced by 1 u n i t i f the neutron y i e ld was taken i n t o 
account , i . e . symmetric f i s s i o n corresponding to A+ « 119 . The 
decrease with energy i s reproduced. 

The f u l l width a t ha l f maximum (FWHM) for one peak i n 
c reases f i r s t , reaches a maximum and then decreases s lowly. 
I t con t inues al though i t ceases to e x i s t for one peak. The 
con t inua t ion i s the half width of the f u l l (symmetric peak) . 
The behavior for small energies is not consistent with observa
t i o n s while the 239fjp-cLata i n d i c a t e s t h a t the t rend i s c o r r e c t 
for the in te rmedia te e n e r g i e s . 

The peak - to -va l l ey r a t i o i s too big for small ene rg ies 
but becomes very close to the experimental value for energies >,20 MeV. 
The deviations at small energies would disappear if 2. 5% of the asymmetric 
fission was converted into symmetric. The important point is that, when 
symmetric fission begins to dominate, the energy comes out about right. 

These conclusions for 
from ref. [1] . 

240 Pu are very similar to those 

3.2 258 Fm 
Experimentally, little is known about the energy depen

dence of the mass distribution for the nuclei around "ÖFm. 
Spontaneous fission of 256pm $_s believed to be asymmetric [13] 
with a fairly small peak-to-valley ratio ~12. Also sponta
neous fission of 257Fm is predominantly asymmetric [131 whereas 
neutron-induced fission of 257pm (i.e. 258Fm) is symmetric 
[14] . 

The properties of the probability surface are seen in 
fig. 4. It is the analog of fig. 1, showing results from cuts 
of constant c. The saddle point c-value is 1.53 and it is 
practically constant for energies below 30 MeV. Clearly asym
metry is favored for low energies for all values of с £1.70. 
The figure is not at all like that for 240pu (see fig. i) . At 

(a) 

InR 

1.55 1.60 1.65 
С 

1.70 0.00 1.55 1.60 1.65 
С 

1.70 

FIG.4. The same as Fig. 1 for 258Fm. The lowest c-value on the figure is the saddle point value. 
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FIG. 5. The same as Fig. 2 for 5 Fm. 

с = 1.70, which is the largest elongation considered in this 
case, there is only a very small inclination (if any) towards 
a dominance of Symmetrie fission. 

Of course it would be possible to continue even farther 
out in the hope that at some point one would find symmetric 
fission. Between с = 1.60 and с = 1.70 the energy has, however, 
decreased ft*5 MeV. This drop in energy is larger than the 
corresponding drop for 240pu when the latter gives completely 
unreasonable results (see fig. 1). To be consistent the exit 
should therefore lie for с ** 1.60. 

As in the case of °Pu,the mass distributions are not very dif
ferent when they are determined in the region around the saddle 
point. Thus we prefer again case (ii) in section 2.2. With 
the use of eq. (7) we obtain the mass distributions shown in 
fig. 5. 

Characteristic quantities of these distributions are 
shown with the 240pu results in fig. 3. The absolute value 
of the peak position is larger by about 3 units but decreases 
in the same way as for 24 0pu. Also the FWHM behavior is the 
same for the two nuclei. The slow decrease is only reached 

9 с о -t 
for Fm at a lower energy, reflecting the faster transition 
from asymmetric to symmetric fission. This can be seen more 
clearly in the peak-to-valley ratio which drops below 2 (thin 
line in the figure) already at E = 13 MeV. 

These results are clearly not compatible with the ob
servations of 258Fm [14] . They look much more like they be
long to a nucleus on the asymmetric side of a region, where 
transition from asymmetric to symmetric fission occurs. 
Taking this point of view, the discrepancy between experiments 
and calculations is not very big. 

In other words, the single particle model used does not 
give this transition at exactly the correct place in the peri
odic table. Indications [15] are that the transition will 
take place when a few more nucleons are added. The calcula
tion here should therefore rather look like the experimental 
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findings of 256рт. of course this explanation can be checked 
by investigating more nuclei in this region. Unfortunately 
we have not done that yet. 

3. 3 Ra and Th 

The radium region is interesting in this connection be
cause of the observed three peaks in the mass distribution of 
the Ac-isotopes [16], [17] . We study here theadjacent even-
even nuclei ^ 2^Th and 2 26Ra. Little is known about the mass 
distributions of these. It has been measured [18] for thermally 
induced fission of 2 2 7 T h (i.e. fission of 2 2 8 T h ) . It is clear
ly asymmetric with only two peaks , the heavy fragment at 
A+ = 137, a peak-to-valley ratio of 230 and FWHM of 11.5. 

For both 226Ra and 228i n the energy saddle point comes 
out with a small but non-zero value of the asymmetry parameter 
<p(» 0.05). The surfaces are very similar and there is cer
tainly no jump in saddle point from asymmetry (<X ̂  0) to 
symmetry (<* = 0 ) . In the tf-direction we see only the two peaks 
symmetric around <* = 0. . 

The surfaces differ from those of 2 4 0 P u and 2 5 b F m in the 
very fast shift from asymmetry to symmetry being favored, when 
we move away from the saddle point towards fission. Only a 
change of 0.02 in с is needed. Thus consistency with the point 
of view taken in the discussion of 2 4 0 p u and. 25°Fm requires an 
exit region leading to symmetric fission. 

In this case the peak position and the peak-to-valley 
ratio are of no interest. Thus we are left with only the FWHM. 
It is shown in fig. 6 for 2 2^Ra as a function of energy. Each 
point is obtained from cuts of constant с and each curve re
presents a constant difference 6 c in с from the energy-depen
dent c-value of the probability saddle point. As we go away 

HWHM 

20 

15 

10 

5 

10 20 30 40 £(MeV) 

FIG. 6. The half width at half maximum of the symmetric peak of Ra as a function of energy. 
The numbers give the distance in с from the energy-dependent c-value of the probability saddle point. 
The crosses (гг,Ас) from Ref. [ 16], circles (И7Ac) from Ref. [ 17] and squares (И8Ас) from Ref. [ 17] are 
experimental numbers. A ground state energy 2 MeV below the spherical liquid drop energy was used. 

2 2 6Ra 
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FIG. 7. The same as Fig, 2 for Ra. The cut used has a c-value differing from the saddle point value by 0. 04. 

from the saddle (going from curve to curve with fixed E) the 
FWHM decreases. For small energies the calculated values are 
smaller than the experimental values of the symmetric part of 
the mass distribution of the Ac-isotopes. Higher energies seem 
to favor cuts with 5" с f^ 0.03 - 0.04. We take this for another 
indication that the saddle point region is important for the 
mass distributions. 

Using eq. (7) we obtain the distributions shown in fig. 
7. The cut was made for Sc = 0.04. For the energy 18 MeV 
there is a shoulder around A = 138 showing a tendency towards 
an asymmetric peak at this place. For higher energies the 
shoulder is washed out. 

The origin of it is a large negative shell correction 
for Ы&0.15. The steep increase of liquid drop energy with 0( 
does however not allow this tendency to develop into a real 
реак. 228 226 

The results for Th are very similar to those of Ra 
and far from the observations [18] . Again only symmetric fis
sion is found together with an asymmetric shoulder for small 
energies. 

4. SUMMARY 

The single particle energy spectra are obtained in the three-
dimensional space of the deformation parameters of an axially symmetric 
Woods-Saxon-type average potential. From, these the collective potential 
energy and the level density as a function of energy and angular momentum 
are evaluated. Thenthemass distribution is extracted from the properties 
of the saddle point region. This is done without introducing any new para
meters and without changing any of the old parameters. We have shown 
t h a t for 240pu the c o r r e l a t i o n between observed and c a l c u l a t e d 
d i s t r i b u t i o n s i s s t r onges t c lose to the saddle p o i n t . As we 
go away t h i s c o r r e l a t i o n d i sappea r s . For 258pm the calculations 
are more s imi l a r to the observa t ions for 256pm- j t i s argued 
t h a t t h i s i s because the Woods-Saxon parameters do not give t h e 
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transition from asymmetric to Symmetrie fission at exactly the 
correct place in the periodic table. Also for 226f>a and 228ih 
we are, in our present model, in one of these transition re
gions. For both nuclei we find symmetric fission and a shoul
der in the distribution for a fragment mass of around 138. No 
abrupt switch from asymmetric to symmetric fission between the 
two nuclei is obtained. 
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DISCUSSION 

H.J. KRAPPE: For calculating mass distributions in the dynamical 
model one has to know something about the inertia and viscosity parameters 
besides the potential energy surface. As you do not specify these quantities, 
you have to make certain model assumptions instead. Would you please 
explain the physical content of these assumptions in terms of the liquid 
drop model? 

A. S. JENSEN: In principle, the mass tensor enters into this formalism, 
as can be seen from Ref. [7], but it is here assumed to be independent of 
energy and deformation. Furthermore, we use the following assumptions: 
up to the exit region the viscosity is large, because we assume statistical 
equilibrium between collective and intrinsic degrees of freedom; then on 
the other side of the exit region the viscosity is small, because all the 
energy is assumed to go into the collective degrees of freedom. 

http://Rev.Mod.Phys
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S. S. KAPOOR: How does the width of your calculated mass distributions 
compare with the experimental values? As you may know, our work 
reported at this symposium1 shows that the static model gives mass distribu
tions which are too narrow. 

A. S. JENSEN: For the lowest energies that we considered, the width is 
around a factor of two too small but, as the excitation energy increases, 
the width approaches the experimental value. 

U. MOSEL: Since we have heard in previous papers that the potential 
energy surfaces are accurate only to within s i - 2 MeV, I wonder how 
strongly the width of the mass distributions would be affected by a change 
of this magnitude in the dependence of the potential on the asymmetry co
ordinate. 

A. S. JENSEN: Since we only need relative energies around the second 
saddle point, the uncertainties in the energy surface do not enter fully 
into the calculations. 

1 KAPOOR, S.S. , RAMAMURTHY, V.S. , Paper IAEA-SM-174/10, these Proceedings, Vol.1. 
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Abstract 

POTENTIAL ENERGY SURFACES AND DEPENDENCE OF FISSION MASS ASYMMETRY ON THE INTERNAL 
EXCITATION ENERGY OF THE FISSIONING NUCLEUS. 

A theoretical treatment of medium- and high-excitation fission has been developed within the context 
of the shell-correction method of Strutinsky. The effective potential energy surfaces for U at various 
excitation energies have been calculated by extending our earlier two-centre-model calculations to include 
a distribution of occupation probabilities of the single particle states obtained in the model. It is assumed 
that excitation of a compound fissioning nucleus of any given shape gives rise to a distribution of occupation 
probabilities that may be represented by a Fermi function 

F = [ 1 + e ( £ i - £ F T ^ T ] - ' , where ej, 6pT , and T are the energy of a single particle level, the Fermi 
energy, and the nuclear temperature, respectively. 

For all shapes from the second saddle point to scission, the results of calculations to date show a 
decrease in deformation energy with increasing T for mass ratios near symmetry, and an increase in 
deformation energy with increasing T for asymmetric mass ratios. For U, the absolute potential energy 
minimum shifts from asymmetry (140/96) to symmetry (118/118) at a nuclear temperature in the range 
1.5 to 2 MeV, corresponding to an excitation energy of 60 to 100 MeV. The shell-correction energy is 
found to approach zero asymptotically with increasing temperature; the specific form of this function 
depends on the nuclear shape. 

As a by-product of these potential-energy calculations, the relationship between excitation energy 
Ex and nuclear temperature T can be obtained, for any of the deformed shapes encountered. It appears 
that the relationship is not very sensitive to shape, and may be represented approximately by Ex ю (A/9) T . 

INTRODUCTION 

It has long been known that the relative yield of fission fragment 
masses in the valley of the mass-yield distribution increases as the excita
tion energy of the compound"fissioning nucleus increases. This phenomenon 

* Research sponsored by the US Atomic Energy Commission under contract with the Union Carbide 
Corp. 

+ On leave from the Atomic Energy Centre, Dacca, Bangladesh, and recently supported in part 
by NSF Contract No. GP-34634. 
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has been shown in various compilations of mass yield data, e.g., by Hyde1 

and in other more recent papers. Recently, our experimental group at Oak 
Ridge has published the results of a series of measurements of the system-
atics of this effect for proton-induced fission of the uranium isotopes.2 

Fragment energy correlation methods were used, and the systematics of mass 
distributions, fragment kinetic distributions, and energy-vs-mass cor
relations were obtained. 

An outstanding problem in the field of fission physics has been the 
lack of a theoretical description of fragment mass and energy distributions 
with increasing compound-nucleus excitation energy. It is this problem 
that we discuss in this paper. 

The formulation which we present here, we believe, provides a sound 
basis for the study of this subject. It introduces the concept of "effec
tive potential energy surfaces" for internally excited nuclei. The 
dynamics of the motion within such surfaces is not treated here, nor is the 
transfer of motion from one surface to another. In this sense the formu
lation to follow is analogous to the calculation of potential surfaces with 
the Strutinsky prescription, in which the lowest-energy surface, corre-
ponding to zero excitation energy, is obtained. 

THE MODEL 

We assume that internal excitation in a nucleus gives rise to a 
probability distribution for the occupation of the single-particle levels 
and that this distribution may be represented by a Fermi distribution 
function: 

1/[1 + e 1, 

where e is the energy of a given single-particle level, s F T is the Fermi 
energy, and T is the nuclear temperature.3 Such a function would exist for 
both protons and neutrons. We may then write the sum of single-particle 
energies of the excited nucleus as the sum of two terms, one for protons 
and one for neutrons, of the form 

<» e 
ET = 2 l (E -" )/T ' (1) 
1 n=l , len fcFTJ/ 1 + e 

where e is the energy of a single-particle level for a given nuclear shape; 
these values are obtained from our two-center model calculations J* which, 
in turn, make use of the Strutinsky prescription.5 The Fermi energy £„„ is 
different for protons and neutrons and is determined for each type of 
particle and for each temperature by the conservation of particle number N, 
that is, 

00 

2 ~ S re -e 77т ' ^ ^ n=l , l n eFT;/ 
1 + e 

The smoothly varying part of the total energy (protons or neutrons) 
is given by a formula analogous to that of the usual Strutinsky prescrip
tion5 but incorporating the Fermi function as follows: 

„ <*> eg(e,e ) 
E T = 2 / 1 ^ de, (3) 

n=l Ce-epT)/T 1 + e 
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where £_„ is the Fermi energy of the smooth distribution of levels and is 
determined by proton or neutron conservation: 

N = 0 _iW de_ (4) 

n=l (e-E T)/T 
1 + e 

The function g(e,£ ) is the usual Gaussian smoothing function used in the 
Strutinsky prescription, given by 

1 -^-en)
2/Y2 P „ /C-en) 

>(e,e ) = -i- e " • Z с Н , n r- n m m' / у/тт m=0 \ у / 

where 
m/2 

с = — — , m even, m _m, ... , 2 (m/2): 

= 0 , m odd. 
H (x) are Hermite polynomials; these differ from the usual Hermite function 
in that each H is normalized to unity with a suitable Gaussian weighting 
factor Y- Themsummation over m extends only to p, which defines the order 
of the shell correction. The quantities у and p are not physical quantities 
and must be chosen so that over some range the smooth energy, E_, is in
dependent of them. For T = 0, the values of у = 1.2 X 41MeV/A1/3 and 
p = 6 are nearly optimum choices, *• and we have used these values in the 
calculations to date. 

We may now define the shell correction 6U_ at temperature T as 

6uT = (ET - V p r o t o n s + (ET - i T ) n e u t r o n s - CS) 
For T = 0, Eqs. (1-5) reduce to those of the standard Strutinsky prescrip
tion. 5 

The deformation energy at a given temperature is given by 

EDEF = ELDM + 6V & 

- fLDM f the 
is neglected. 

The internal excitation energy E for a given nuclear shape may be 
obtained from the relation 

Ex(T) = (ET - E T Q ) p r o t o n s • (ET - E T 0 ) n e u t r o n s , (7) 

where E for protons or neutrons is the sum of single-particle energies 
up to the usual (T = 0) Fermi surface. 

In our calculations to date we have neglected the effects of pairing. 
Although these effects are expected to influence the results at excitation 
energies up to several MeV, we do not expect the results presented below 
to be changed significantly for T £ 0.5 MeV. 
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RESULTS AND DISCUSSION 

Calculations based on the above model have been carried out for the 
compound fissioning nucleus 2 3 6U, for a variety of shapes from saddle to 
scission. We have used the same computer program as was used in our 
earlier two-center-model calculations'* to generate the single-particle 
energies for each shape considered. Shapes are characterized by four in
dependent shape variables; however, we minimize the potential energy with 
respect to two of these and will discuss results, as before, in terms of 
the quantity D, the neck radius, and A, the volume ratio of the two por
tions of the nucleus on either side of the neck plane. (The reader is 
referred to the longer paper of Ref. 4 for an explanation of the shape 
parameterization and other details of the calculations.) 

Let us first consider the shell correction energy 6U„. It is ex
pected that, for a given shape, the magnitude of this term ivill decrease 
with increasing temperature and will approach zero asymptotically, cor
responding to the washing out of shell effects as T becomes larger. 
Figure 1 shows 6U„ as a function of temperature for several values of the 
neck radius D, and for several values of the asymmetry A at each D. (The 
reader may wish to refer to Figure 2 of Reference 4; it is seen there 
that, in the region from the saddle point to scission, the direction of 
decreasing D closely approximates the fission direction along the minimum 
potential energy path.) 

In the lower portion of Fig. 1 we see that, at D = 5. 0 fm 
(saddle point), the lowest energies occur for A = 1.8 and that the energies 
generally increase with decreasing A. All of the curves asymptotically 
approach 6U = 0 as T becomes large, as expected. 

In the upper portion of Fig. 1 we see that, at D = 2.5 fm (near 
scission), the lowest energies occur for A = 1.45 for temperatures up to 
ъ 2 MeV, when the curves for Л = 1.45 and 1.7 begin to overlap. Again, 
all curves approach 6UT = 0 as T becomes large. The center portion of 
this figure shows an intermediate point between saddle and scission, at 
D = 3. 5 fm, where the curves for X = 1.45 and X =1.8 almost overlap, 
and again the same washing-out of shell effects with increasing temperature 
is observed. 

Figure 2 shows the total effective potential energy (here labeled 
E — i t is also the effective deformation energy of the nucleus) as a 
function of the asymmetry A, for the same three values of D as above and 
for several temperatures for each D. 

Let us first examine the uppermost portion of Fig. 2, for which 
D = 2.5 fm. The curve for T = 0.5 MeV has a minimum at A - 1.45; this 
corresponds to a mass ratio of л, 140/96 and is in agreement with the most 
probable mass ratio observed at low compound-nucleus excitation energies. 
As the temperature is increased two interesting phenomena occur: 

First, the energy corresponding to the minimum in E __.(A) increases, 
while that corresponding to A = 1 decreases. The implication of this 
occurrence is that the peak-to-valley ratio of the fragment mass distri
bution ox, more precisely, the ratio of asymmetric to symmetric yields, 
decreases with increasing temperature. 

Second, the asymmetry at which the minimum in E __(A) occurs decreases 
somewhat with increasing T up to T = 1.7 MeV. The implication here is that 
the peak of the mass distribution shifts toward symmetry with increasing 
temperature in this range. The behavior of these curves is such 
that the mass distribution should become peaked at symmetry for T == 1.8 MeV, 
where the minimum in Enp„(A) shifts to A = 1. 
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FIG. 1. Shell correction energy 6Uf as a function of nuclear temperature T for selected symmetric and 
asymmetric shapes of the fissioning nucleus 92U. (a) shows the results for the shapes at the second saddle 
point, i . e . , neck radius D = 5.0 fm. X, the volume ratio of the portions of the nucleus on either side 
of the neck plane, identifies different curves, (b) and (c) show the results for D = 3. 5 fm and 2.5 fm, 
respectively. These shapes are beyond the second saddle point and are close to scission. The shapes 
included in the calculation are the minimum energy shapes taken from our earlier calculations at 
T = 0(Ref. [4]). 
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FIG. 2. The deformation energy EDEp as a function of volume ratio \ for various temperatures T of the 
nucleus Z

9
3
2
6U. (a) (b) and (c) are for the shapes at D = 2.5 fm, 3. 5 fm, and 5. 0 fm, respectively. 

These are the minimum energy shapes taken from our earlier calculations at T = 0 (Ref,[4]). The figure 
shows a transition from symmetry to asymmetry at T » 1.8 MeV corresponding to an excitation energy of 
about 90 MeV. 
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О 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1!о 1.5 
TEMPERATURE (MeV) 

FIG. 3. Excitation energy Ex of the fissioning nucleus d l l a s a function of nuclear temperature T for 
various shapes identified by D and X. The excitation energies calculated from the empirical relations, 

A A 
E = —T2 -T and E =r;T z -T, are also shown for comparison. 

All of the implications drawn from the observations described depend, 
of course, on the assumption that the characteristics of the mass distribu
tions are controlled primarily by the potential surface and that dynamical 
considerations do not appreciably alter these characteristics. Implicit also 
is the assumption that the potential energy surface near scission is more 
important in this respect than that at or near the saddle point. 

In the lowest portion of Fig. 2, which corresponds to the saddle 
region, we see a generally similar behavior of En_F(A;T), except that the 
minima occur at large values of the asymmetry A. In the center portion 
of the figure, at an intermediate value of D, namely 3. 5 fm, the curves 
already resemble those for D = 2. 5 fm, near scission. 

Figure 3 shows the internal excitation energy E of the 236U nucleus 
as a function of temperature for three values of A and for three values of 
D; all combinations are shown. The excitation energy E x is obtained from 
Eq. (7), for each shape and temperature. The upper thin curves in the 
figure show the Lang-LeCouteur6 formula, E = (A/8)T2 - T, where A is the 
nuclear mass. Since these curves lie generally higher than our calculated 
curves, we also show the equation E = (A/10)T2 - T for comparison. 

The conclusions to be drawn from Fig. 3 are, then, that the internal 
excitation energy E (T) is relatively insensitive to A and D, and that the 
statistical-model formula of Lang and LeCouteur6 is confirmed, within some 
reasonable uncertainty in the coefficient of T2. 

Finally, we wish to point out that the conclusions and implications 
discussed above in connection with Fig. 2 are qualitatively consistent 
with known experimental observations to date. In particular, the relative 
symmetric yield in the mass distribution increases with increasing compound-
nucleus excitation energy.1'2 Further, the careful measurements of 
Ferguson et al.2 showed a slight shift in peak position towards symmetry, 
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as the compound-nucleus excitation energy was increased from about 13 to 
18 MeV. These consistencies, coupled with earlier observations, would seem 
to enhance the credibility of the assumption that the potential surface 
dominates in determinations of the mass distributions and kinetic energies, 
and that the potential surface near scission is particularly important. 
Dynamic effects, however, must be determined in detail;also, viscosity 
effects, which are to be discussed later in this symposium, must be treated 
and may be important even for very low-excitation fission. It is interesting 
to note that if viscosity effects are such that, in the saddle-to-scission 
descent, the system is heated to the same temperature T independent of mass, 
then the effective potential energy near scission will be given by results 
such as those shown in Fig. 2 at D = 2. 5 fm, for temperature T. 

An especially interesting and germane experiment in the future will 
be the measurement of mass distributions at excitation energies corresponding 
to temperatures of 1.5 to 2 MeV, to observe the transition to distributions 
peaked at symmetry. The analysis of such experiments will not be simple 
because of the competition from neutron emission, but as greater sophis
tication in this kind of analysis is achieved the necessary information 
will perhaps become attainable. 
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DISCUSSION 

S. BJ0RNHOLM: Do I take it that your calculation assumes statistical 
equilibrium (i. e. viscosity) all the way from the barrier down to a point 
near scission, where the neck is quite thin? 

M. G. MUSTAFA: Nothing is assumed about the path from saddle to 
scission. We have carried out an investigation of the effect of internal 
excitation energy, or temperature, on the total "effective potential 
energy" surface within the Strutinsky framework. Just how the fission 
process proceeds from saddle to scission, the sequence of shapes and 
temperatures through which the nucleus passes, etc. must be determined 
from other considerations, preferably from the solution of the complete 
Hamiitonian including dynamics. 
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S. S. KAPOOR: I feel that one cannot say much about the agreement 
of the calculations with the experiment, unless one also calculates the 
distributions of the fragment masses and compares their widths with 
the experimental values. 

M. G. MUSTAFA: I agree with you. The comparison between the 
results of potential energy calculations and experimental mass distributions 
should be considered qualitative. 

H. C. PAULI: This comment applies both to your work and to Jensen1 s. 
You have merely calculated the mass distribution whereas, in order to 
have a firmer basis for your theory, you should also calculate the kinetic 
energy distribution and the excitation energy distribution. Only when the 
same model describes all these factors can the model be regarded as 
conclusive. 

M. G. MUSTAFA: I would agree. As I have already indicated, this is 
a parametric study of the effect of internal excitation energy on the total 
"effective potential energy" surface. To some extent we can check the 
kinetic and excitation energy distributions of the fragments from our 
results near scission, but this will be simple and straightforward only 
if the path from saddle to scission turns out (from other considerations) 
to be almost completely viscous. 

Z. FRAENKEL (Chairman): One may add that such calculations must 
also reproduce the experimental prompt neutron emission as a function of 
the fragment masses. 

J. J. GRIFFIN: This question is addressed to all the speakers. But 
let me say first of all that I have no objection to studying mass asymmetry 
via phenomenological analyses. However, I am disturbed that no one has 
underlined the fact that insufficient information is put into these analyses 
to ever achieve a complete solution. I refer to the fact that any deformation 
space is in general a curved space whose properties are well defined only 
when the metric tensor (inertia) is specified. Without the metric tensor, 
one who sets a certain deformation co-ordinate equal to a constant may 
believe that he has selected a plane perpendicular to the scission path — 
but someone else may view his plane as a paraboloid from his alternative 
co-ordinate system. Only the metric tensor can resolve this difference. 
Without it the description is not co-ordinate invariant. It follows that, if 
one is doing phenomenology like this, one should be aware of the fact 
that any bad fit might be considerably improved merely by judiciously 
redefining the co-ordinates. 

L. G. MORETTO: I agree completely with Mr. Griffin. However, 
at high viscosity the system cannot acquire large velocities and thus the 
inertia tensor becomes of secondary importance with respect to the 
viscosity tensor. The dynamics of the system is thus controlled by 
inertia at small viscosity and by the potential energy and viscosity tensor 
at large viscosity. In other words the metric at high viscosity is determined 
by the potential energy and by the viscosity tensor, while at low or zero 
viscosity the metric is determined by the potential energy and by the inertia 
tensor. 

J. J. GRIFFIN: I find it hard to believe that viscosity renders the 
curvature of the space irrelevant. It may be so, but I wish there had been 
a paper presented here to prove that claim. 

M. G. MUSTAFA: It is clear, as I indicated before, that a complete 
dynamical calculation is required. 
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H. С. PAULI: If you have a completely phenomenological approach 
(as practised by Metag and von Brentano for the lifetime systematics 
of isomers), there is nothing much wrong with choosing some effective 
mass. But, if you choose a well-defined deformation, you are bound 
to a particular metric, which you cannot simply ignore. I strongly 
disagree with the statement that it is a point of view; it is a matter of 
principle. 

M. G. MUSTAFA: As I indicated, we need a complete dynamical 
calculation of the path to scission. In those cases where this problem 
is to be approached phenomenologically, the model assumptions should 
be made as realistic as possible and should be'made clear and explicit; 
then such kinds of calculations may have something to contribute to 
our understanding of fission. 



IAEA-SM-174/100 

PROMPT AND DELAYED NEUTRON YIELDS 
FROM LOW-ENERGY PHOTOFISSION OF 
2 3 2Th, 2 3 5U, 238U AND 239Pu 

J .T . CALDWELL, E.J. DOWDY, G.M. WORTH 
Los Alamos Scientific Laboratory, 
University of California, 
Los Alamos, N. Мех., 
United States of America 

Abstract 

PROMPT AND DELAYED NEUTRON YIELDS FROM LOW-ENERGY PHOTOFISSION OF 2MTh, " 5 U, 238U AND239Pu. 
Enriched or monq-isotopic samples of 23!Th, 23SU, 238U and 239Pu were irradiated with bremssttahlung 

from electrons of 8-, 10-, and 12-MeV energy. Neutrons produced as a result of the bremsstrahlung pulses 
were detected in a large 4ir neutron detector with a neutron dieaway time of ~30 us and an efficiency for 
2BCf spontaneous fission neutrons of 5Cffo. Multiplicity sorting was done on the prompt neutrons with a 
Los Alamos Scientific Laboratory (LASL) designed sorter and, after correction for background and overlap, 
events of order г 2 were fitted with an analytic, two-parameter Gaussian expression to determine v„, 
the mean number of prompt neutrons per photofission. Since, at the energies measured, negligible (y, 2n) 
reactions occur for any of the four isotopes, events of order s 2 were used to determine the photofission 
reaction rate and, after correction for the photofission component, the events of order 1 were then used to 
determine the (y, n) reaction rate and thus r n / r d ratios weighted over the btemsstrahlung photon spectrum 
for each electron energy. Absolute 6 (delayed neutron per photofission) fractions were determined from 
counts obtained between beam bursts (but after prompt dieaway) and the photofission reaction rate. 

Thus, Dp. Tn/Tf and S values were determined for low-energy photofission using a single detector 
and in the course of a single experiment. These values are thus free of systematic errors that often arise 
when the results of two or more detectors and/or experiments must be combined. The v values obtained 
are the first measured photofission values reported for three of the four isotopes. 

1. INTRODUCTION 
There have been only a few previous measurements [1-3] of 

Vp, the mean number of prompt neutrons emitted per fission 
event, for photofission of the major fissionable isotopes at 
low energies, and no previous measurement of the dependence of 
vp on photoexcitation energy. We find only one report [4] of 
measurements of the absolute delayed neutron fractions, ß, for 
photofission. A somewhat larger body of information [5-7] is 
available on the determination of the competition between 
neutron emission and fission for photoexcitation, made possible 
through measurements of ^Г п/Г^^ , the average ratio of the 
neutron emission width to the fission width. There have been 
no previous simultaneous measurements of these quantities. 

Values of these parameters are useful in establishing or 
confirming fission systematics for expanding the understanding 
of the fission process and in interpreting the results of 
measurements of dependent quantities such as the partial cross-
sections . 

431 
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In t h i s p a p e r , we r e p o r t on t h e s i m u l t a n e o u s measurement , 
u s i n g a s i n g l e d e t e c t o r , of "vo, ß, and < Гп /Tf > f o r p h o t o -
e x c i t a t i o n of 3 3 3 T h , з з й и , 3 3 i 3 U, й з э Р и u s i n g e l e c t r o n b r e m s -
s t r a h l u n g from 8 - , 1 0 - , 1 0 . 2 - , and 12-MeV e l e c t r o n s . 

2 . EXPERIMENTAL METHOD 

2.1.Irradiation 
Electrons were accelerated to the appropriate energy in 

10-nsec pulses with a repetition rate of 360 pps in the USAEC 
Electron Linear Accelerator in Santa Barbara, Ca., operated by 
EG&G, Inc. Conversion to bremsstrahlung took place in a 10-cm 

FIG. 1. The neutron detector. A 61-cm cube of polythene with four rings of 2.54-cm diameter, 61-cm-long 
sHe proportional counter tubes, and a central sample hole. The hole is 3. 8 cm in radius, and the tubes 
are in rings with radii of 6. 4, 10,8, 14. 6, and 17. 8 cm. Fifty-three 3He tubes were used in the work 
described in this paper. 
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cube of aluminum. The bremsstrahlung in the forward direction 
was collimated to a 2.5 cm diameter beam using a 20 cm thick 
iron collimator. Samples of fissionable material, described 
in Table I, were placed at the center of the detector shown in 
Fig. 1, with the detector axis aligned with the beam. The' 
sample-to-converter distance was approximately 1 meter. The 
electron beam currents were monitored using the converter as a 
Faraday cup. The detector was shielded on all sides with 
borated polythene blocks, and materials with low (y,n) reaction 
thresholds were excluded from the vicinity of the converter. 
Machine-generated backgrounds were determined by irradiating 
an aluminum disk in the sample position. 

CONVERTER 

ELECTRON LINAC 

INJECTOR 
TRIGGER 

SATE AND 
DELAY |— 

GENERATOR 

GATE AND 
DELAY 

SENERATOR 

MULTICHANNEL 
SCALER 

TRIGGER 

ANALOG 
OUT 

MULTIPLICITY 
SORTER 

PULSE 

HEIGHT 

ANALYZER 

FIG. 2. Block diagram of the neutron detection system. 
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2.2. Neutron Detection System 
The detection system has been described in detail else

where [8]. The neutron detector was a polythene cube, 61 cm 
on a side, containing fifty-three 3He proportional counter 
tubes (in four concentric rings), each 2.54 cm diameter and 61 cm 
long, with filling pressures of 6,4, 4, and 3 atmospheres 
for the innermost-to-outermost ring of tubes, respectively. 
Neutrons generated in photoreactions in the samples were moder
ated in the polythene and captured with high probability in the 
3He tubes. The efficiency for detecting the prompt neutrons 
from the spontaneous fission of 2S3Cf was measured to be 52%, 
assuming -\7р = 3.784, and the efficiency as a function of neutron 
energy has been calculated using Monte Carlo techniques. 

The neutron slowing-down process and the increased proba
bility of capture at lower energies produced a broad capture-
time distribution with a distinct "dieaway" time for each ring 
of 3He tubes. This distribution in time permitted the detec
tion of prompt neutrons with high efficiency even though the 
detection system was paralyzed during the gamma flash, and for 
a few )jsec thereafter. 

The pulses from the 3He tubes were processed as indicated 
in Fig. 2. Each ring of tubes had common high voltage and 
amplification modules, and the amplified pulses were presented 
to discriminators, set to fire at voltages just above the noise 
level. The standard slow logic pulses from the discriminators 
were routed to a logic OR module, and the OR output line served 
as the data path. The pulses from the OR module were routed 
to a LASL-designed unit identified as a multiplicity sorter, 
and also to a multichannel scaler and a delayed neutron scaler. 
The multichannel scaler was used to record the time dependence 
of pulses from the neutron detector following a trigger derived 

10s r= 

10° 

;.l I I 1 | I I I I | I I 1 I | I I I I | I I I I | I I I I; 

Sample: Z 3 8 U , 5 8 . 6 g : 
Beam parameters: 

Energy: 10 MeV -
Current: 5 m A 
Pulse width: 10 nsec 
Rep, rate: 360pps 

Run time: 1000 sec -

10 

,,Delayed neutron count gate , | 

Average total counts **^'~ • 
in delayed neutron count gate 

Average sum of background counts = 
in delayed neutron count gate 

i l i I I i i I i I l i l l I l i I i I i I i i I i l I i 
50.0 100.0 150.0 

Channel number 
200.0 250.0 300.0 

FIG.3. Time variation of pulses from the neutron detector during a typical run. 
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from the linac. The delayed neutron scaler was used to scale 
the pulses from the detector following the dieaway of the 
prompt neutrons. The multiplicity sorter, described in detail 
elsewhere [9], is basically a digital-to-analog converter with 
a variable count gate width. Pulses appearing at the input 
following the linac-derived count gate trigger are scaled and 
the output pulse height is uniquely determined by the number 
(up to 9) of pulses arriving during the count gate. The pulse 
height analyzed output of the multiplicity sorter provided the 
measured multiplicity distribution. 

With the linac pulse repetition rate of 360 pps, the time 
between pulses was 2778 Lisec, and the prompt neutron population 
was negligible beyond 1200 |jsec. So, the prompt neutrons were 
detected in a count gate opening a few microseconds after the 
gamma flash and closing at a variable time (usually 500 |asec) 
after that. The delayed neutrons were detected in a time 
window opening at 1200 usee and closing before the next linac 
pulse. The time history of pulses from the neutron detector 
obtained from a typical run is shown in Fig. 3. 

3. DATA REDUCTION 
3.1. \J Determination 

Terrell [10] first demonstrated with an analytical deri
vation and a comparison with a large body of experimental data 
that the emitted prompt fission neutron multiplicity distrib
ution (p } can be described with the expression 

v 

о 

where 

f(x) 

Here vp is the average number of prompt neutrons emitted per 
fission, er is a distribution width parameter, and 

/v + 2\ 
b < o.oi * J _ |f f—£ j (3) 

Thus the {pv} distribution is a function only of the two para
meters "vp and a. 

i + 
" ( • 

v - v + | + b 

(1) 

VirT f dt (2) 
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Consideration of the effects of non-unity detector effi
ciency leads to the following expression for the 
observed multiplicity distribution [P }: 

rf̂ v V v!(n-v)! / 
( 4 ) 

This expression is valid after the observed data has been 
corrected for background, pulse pileup, and deadtime effects. 
Here p is the emitted multiplicity of order n as determined 
from Eq. (1), e is the detector efficiency and N is the maxi
mum order emitted multiplicity, usually taken to be 9. Since 
e varies slightly with neutron energy, a small correction is 
made by using Terrell's approximate expression 

<E> г 0.74 + 0.653 (v + l) 2 (5) 
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The magnitude of the e f f i c i ency c o r r e c t i o n i s about 2% between 
vp = 3.784 and vp = 2 .50 . 

As can be seen from Eq. (4) the shape of the observed 
m u l t i p l i c i t y d i s t r i b u t i o n [Pv3 i s a f a i r l y s e n s i t i v e function 
of \7p and ст. This i s demonstrated in F ig . 4 which shows the 
r a t i o s Рз/Р2 and P4/P2 as a function of "vp for a = 1.15 and 
for a t y p i c a l value of e. For a given isotope and e x c i t a t i o n 
energy, \Jp was a c t u a l l y determined by performing a weighted 
l e a s t s q u a r e s - f i t of the observed m u l t i p l i c i t y data of a l l 
orders a 2 to Eq. (4) as a funct ion of \7p, ст. Since only 
bremsstrahlung energ ies of 12 MeV or l e s s were used, (y ,2n) 
r e a c t i o n s in a l l i so topes were n e g l i g i b l e and thus a l l 
observed net s order 2 events were uniquely a s soc i a t ed with 
a f i s s i o n even t . 

Since a f a i r l y narrow range of e x c i t a t i o n energ ies was 
covered i t was f e l t t h a t the width parameter a for a given 
isotope should be e s s e n t i a l l y cons t an t . This was found to be 
the case wi th in the s t a t i s t i c a l accuracy of the d a t a . Thus, 
an average value of CT for each iso tope (d i f f e ren t for each of 
the four i so topes ) was determined and \Jp a t each e x c i t a t i o n 
energy found from a one parameter l e a s t squares f i t . The 
o v e r a l l s t a t i s t i c a l e r r o r in vp as determined in t h i s fashion 
ranged between 0.07 and 0.14. 

3 .2 . ^ Г / Tf у Determination 

Once vD and er were determined from the m u l t i p l i c i t y shape 
d i s t r i b u t i o n , Eq. (4) was used to determine a f i s s i o n de t ec t i on 
e f f i c i ency for the experimental quan t i ty 

N 

2 

This served to determine the number of fission events occurring 
in a given run. Equation (4) was then also used to calculate 
the number of singles events due to photofission. This enabled 
us to determine, from the total observed singles events and the 
singles background, the number of singles due to (ĵ ,n) reactions 
only and thus to determine the quantity <rn/rf^ . The overall 
experimental error in <rn/Tf) was generally in the range of 
5 to 10 percent. 

3.3. Delayed Neutron Fraction 
The delayed neutron fraction ß was obtained by counting 

between beam bursts but after prompt dieaway. A typical time 
history of this data is shown in Fig. 4. This measurement was 
generally done simultaneously with the neutron multiplicity 
measurements. To improve statistical accuracy some high beam 
intensity delayed neutron runs were also made, notably for the 
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Pu samples. For these runs the number of fission events was 
determined by scaling the prompt part of the dieaway between 
high and low intensity runs. Some data utilizing the "ring 
ratio spectrometer" [11] technique were also taken to determine 
the average energy of photofission delayed neutrons and thus 
a suitable e. The overall experimental error in ß ranged 
between 5 and 10 percent. 

3.4.Further Corrections and Errors 

Where warranted, corrections for the presence of minor 
isotopes have been made. This correction was most notable 
for the case of ß for the 3 3 5u sample and amounted to about 
10 percent. Generally speaking the largest source of error 
in all quantities is the uncertainty generated by the error 
in { a> . This error was approximately ± 0.05 for 3 3 5U, 2 3 8U, 
and 2 3 STh and ± 0.10 for 239Pu and derives from the quality 
of the multiplicity shape distribution fit to the data. 

4. RESULTS 

4.1. vD 

The values of vB determined from this experiment are given 
in Table II. Included in Table II are the expected values of 
Vp as calculated from the expressions contained in the evalu
ations of Davey [12] for neutron induced fission of 3 3 4U, 2 3 7U, 
and 2 3 8Pu and from the equation provided by Tu and Prince [13] 
for neutron-induced fission of 3 "Th. These expressions are: 

^ (E) = 2.352 + 0.1349E 
P 
V (E) = 2.386 + 0.1412E 
P • 
V (E) = 2.914 + 0.1436E 
P 

a n d V
P = 2.13 

'th 

To calculate the \jp values to compare with our measured 
values, the excitation energies in these expressions were 
taken as the difference between the average photoexcitation 
energies and the neutron separation energies for the compound 
nuclei. The average photoexcitation energies were calculated 
as 

J E a -(E) X (E) dE 
r,£ 

f a - (E) X (E) dE 
Jo r' 
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where x (E) is the bremsstrahlung spectrum as given by Sandifer 
[14] and <?v,f (E) are the differential photofission cross-
sections for the appropriate target nuclei [6,15-18]. These 
average photoexcitation energies were very nearly the same for 
all the nuclei studied, being 6.80-, 7.99-, and 9.44-MeV for 
electron energies of 8, 10, and 12 MeV respectively. 

The agreement among the measured values and those calculated 
from the evaluations is exceptionally good. Assuming linear 
dependence of Vp on photoexcitation energy for our data results 
in the following expressions obtained from least squares 
analyses: 

v ( < V } = 1.595 + 0.0449 <E > for -Th with 
a c o r r e l a t i o n c o e f f i c i e n t of 0.557 

v ( < E > ) 
P v Y 

= 1.215 + 0.1819 <E > for 'V with 
a c o r r e l a t i o n c o e f f i c i e n t of 0.967 

vp (<V > 1.619 + 0.1240 < E > for 3 3 8U with 
Y 

a. correlation coefficient of 0.981 

V (<E > ) = 2.248 + 0.1244 < E > for 239Pu with 

a correlation coefficient of 0.826. 

It appears that a linear dependence is consistent with our 
data except for the 232Th values. Previous evaluations [12,19] 
have noted a deviation from a single straight line fit for 
neutron induced fission of 233Th and 2 3 3U at low energies, and 
it is plausible that similar behavior might be found for the 
233Th compound nucleus. 

4.2. 

The ß values determined from this experiment are given in 
Table III, along with the data of Nikotin and Petrzhak [4] and 
the calculated values of Keepin [20]. The agreement between 
the values obtained by Nikotin and Petrzhak for 15-MeV 
electron bremsstrahlung and our weighted average is quite good. 
Keepin's correlation, however, requires higher values than the 
measured ones for all the nuclei except 2 3 U. 

4.3. <Гп/Г£> 

The values of ^ rn/ rf^ obtained in the analysis of our 
experimental data are given in Table IV. We find strong 
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dependence on excitation energy as have other recent investi
gations [6]. Their value for the ratio at the highest excita
tion energy for 3 3 SU is consistent with ours, but their 
reported value of <rn/rf > = 18.5 for 332Th is_ considerably 
different from ours. They assumed values for vp and their 
assumed value for 233Th was higher than our measured value, 
but a re-analysis of their data with our measured vp value 
reduces the value for the ratio to — 12, still much larger 
than our measured value. Our 233Th value gives a qualitatively 
better fit to the Z2/A correlation of Huizenga and 
Vandenbosch [5]. Mafra, et al. [7] also reported some evidence 
of an energy dependence for the ratio<rn/Tf> for 232Th and 
^ 3 SU. Their data were analyzed on the assumption of a constant 
Vp = 2.5 for both nuclei, and_we have made no re-analysis of 
their data with our measured vp values. 

Included in Table IV are the values for the ratio calcu
lated using the empirical fit of Sikkeland, et al. [21]. Again, 
the value for 332Th at the highest excitation energy represents 
a large deviation from the evaluation. 
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D I S C U S S I O N 

T. GOZANI: Since 1968, we at Intelcom (formerly Gulf) Rad Tech 
have been measu r ing some basic integral quantit ies re la ted to low-energy 
photofission phenomenona. The in te res t in this domain s t ems from the 
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application of photoinduced reactions to the non-destructive assay of nuclear 
materials. The most sensitive energy region for the identification of the 
various isotopes is around and below the photofission barrier. The 
systematics of prompt and delayed neutron production was studied in this 
region for 232Th, 235U, 238U and 239Pu, by simultaneous measurement of 
the fission yield and the prompt and delayed neutron yields. The results 
for 232Th and 238U are very interesting, especially below their relatively 
high (y, n) thresholds (6.4 MeV and 6. 1 MeV respectively). In this energy 
range one can investigate the photofission process with no competition from 
neutron channels. The measured delayed and prompt neutron yields, as 
well as the previously measured fission yield in the sub-threshold region 
of 232Th,show clearly the existence of structure in the photofission cross-
section around 5. 7 to 5. 8 MeV. Measurements on the other isotopes, 
namely 235U, 238U and239Pu, made under exactly the same conditions, did 
not indicate such an obvious structure in the energy region above 5. 4 MeV. 
The ratio Yn/Yf (which is related to the number of prompt neutrons emitted 
per photofission, vn, and to much lesser extent to their energy spectrum) 
did not show, as expected, any significant dependence on Ee around the 
threshold energy. However, it did show, unexpectedly, an increase below 
the threshold energy for both 232Th and 238U, which, in the case of 232Th, 
is rather dramatic. Significant increases in the effective delayed neutron 
fraction (Yd/Yn) in the sub-threshold regions were also observed. 

P. L. REEDER: In this connection, I should like to mention that 
E. Chulick at Washington University measured delayed neutrons from 4He 
bombardment of 232Th and at an energy just above the fission threshold and 
found an unusually high yield of delayed neutrons. 

E .J . DOWDY: Our absolute values of Pp for 232Th (which should not 
be directly compared to the relative cumulative neutron yields of Gozani 
and co-workers) show only a deviation from the reasonably expected 
increase with.excitation energy, i .e . there is no statistically significant 
increase of is, over an energy range of more than 2. 5 MeV. Similarly, 
for ß, our absolute fractions should not be compared with relative yields: 
our measured values are statistically invariant over the same energy 
range. The contention that there are variations and structure at these 
lower energies is not substantiated by our measurements. But an increase 
of vp with decreasing excitation energy (sub-barrier) is, as I have said, 
consistent with the behaviour found for neutron-induced fission of 232Th 
and233U. 
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ENERGY DEPENDENCE OF Г£/Гп 
FOR THE NUCLEUS 216Rn* 

H. FREIESLEBEN+, H. C. BRITT++, J. R. HUIZENGA 
Nuclear Structure Research Laboratory, 
University of Rochester, Rochester, N . Y . , 
United States of America 

Abstract 

ENERGY DEPENDENCE OF r f / r n FOR THE NUCLEUS 21sRn. 
The 209Bi + 7Li reaction has been used to determine experimentally Tf/rn for the initial compound 

nucleus n £Rn, Cross-sections for the (7Li, f) reaction were measured at bombarding energies between 24 
and 34 MeV by detecting coincident fission fragments. All the other components of the total reaction 
cross-section are due to (7Li, xn), (7Li, txn) and (7Li, axn) reactions. They were determined by observing 
known-energy alpha particles from the short lifetime decays of various Rn, At and Po isotopes. The 
background due to prompt reaction particles was eliminated by using a pulsed Li-beam and detecting the 
decay particles between beam pulses. Correction for the effects of second-chance fission were obtained 
from measurements of cross-sections for the (6Li, f) and (6Li, xn) reactions at appropriate energies. The 
results give a direct measurement of ГрТ п since both fission and neutron evaporation cross-sections were 
determined. The experimental values of Ff / r n for 216Rn and earlier data for 210Po are analysed with a 
J-dependent statistical model and the effect of incorporating an enhancement of the level density at the 
saddle point due to coupling to collective rotations is investigated. Fission barriers extracted with a variety 
of assumptions about the level densities are compared with theoretical predictions. 

1. INTRODUCTION 
Previous measurements 11-4J 0f fission excitation functions for nuclei in the rare earth and lead region 

have been used to determine fission barrier heights for a 
range of nuclei from 1?fLu through 2i|At. These results, 
which were obtained from reactions with, alpha particle 
and proton beams, have shown[5J that the fission barrier 
decreases rapidly from 23.3 MeV for 2g|Bi to 17.0 MeV for 2^|At. This change in threshold is due primarily to the 
decreasing influence of the strong spherical shell at Z=82, 
N=126 on the ground state mass. Due to a lack of target 
isotopes with reasonable lifetimes, there are no fission 
barrier measurements between 2ЦАЬ, which has a spherical 
equilibrium shape with a barrier of 17.0 MeV and *^Ra , 
which has a deformed equilibrium shape with a barrxer of 
8.1 MeVf6] . 

With the availability of high-energy heavy ion beams, 
it is possible to study the fission barrier of nuclei with 
Z>85 making use of stable Pb and Bi targets. One particularly 

* Work supported in part by the US Atomic Energy Commission and the National Science Foundation. 
+ On leave of absence from Fachbereich Physik, Universität Marburg, Fed. Rep. of Germany. 

+ + Permanent address: Los Alamos Scientific Laboratory, Los Alamos, N. Мех., United States 
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advantageous reaction is 209Bi + 7Li •* 2*|Rn. In this case, 
the residual nuclei formed by multiple neutron evaporation 
are easily observed short-lived alpha particle emitters. By 
measuring both the fission cross-section and the cross-
sections for forming the residual products 2 1 6 - xRn from xn 
reactions, it is possible to obtain a direct measure of rf/rn. 
This method can be contrasted with earlier measurementst1-4] 
where Tf/Vn was determined from a measured fission cross-
section and a calculated total reaction cross-section. 

From the experimental Vf/Vn measurements, the extraction 
of the height of the fission barrier requires a statistical 
model to calculate Vf and rn. Recent calculationsf5,7] have 
shown that it is essential to include shell effects in the 
Гп calculation in order to account for the influence of the 
double shell closure. In this connection, Moretto et al.^1 
have shown that it is possible to reproduce the shapes of 
the experimental excitation functions without specifically 
considering the effects of shells at the saddle point. 
Vandenbosch and Mosel l'l attempted an absolute calculation of 
Tf/Гп incorporating shell effects in both Vf and rn and using 
theoretically calculated heights for the fission barriers. 
However, both these calculations neglected a fundamental 
difference between the level densities for the deformed 
saddle point used in Vf and the spherical ground state 
appropriate for rn. In particular, for a deformed nucleus 
the level densities can be enhanced by coupling to collective 
degrees of freedom. 

In this paper, we report direct experimental measurements 
of Vf/Vn for *:°Rn. The results are analyzed with a statistical 
model that includes an improved microscopic calculation of 
Vf which explicitly contains the effects of collective 
rotations on the level density at the saddle point. In 
addition, Vf/Vn is calculated as a function of J and then 
weighted over the distribution of angular momenta in the 
entrance channel. Calculations from this statistical model 
are compared to the experimental 216Rn data and also to the 
more extensive dataf^j reported previously for the compound 
nucleus 210Po produced by the 20&Pb + a reaction. The data 
are first compared to an absolute prediction, which includes 
both (1) theoretical level densities incorporating realistic 
shell corrections and (2) the corresponding theoretical value for 
the fission barrier height [8J. In an alternate approach the 
height of the fission barrier and a normalization factor are 
deduced empirically from a fit to the experimental data. 

2. EXPERIMENTAL PROCEDURE 
Bismuth targets were bombarded with 6'7Li-projectiles 

from the Emperor tandem Van de Graaff with energies of 25 
to 34 MeV. The fission cross-section was measured using a 
d.c. Li-beam. Fission fragments were detected in coincidence 
in high geometry surface barrier detectors. It was necessary 
to detect fission fragment pairs in order to measure this 
small cross-section in presence of the intense elastic 
scattering. 

If the compound nucleus does not fission, multiple 
neutron emission leads to the residual Rn-nuclei, which 
are shown in fig. 1. Since all of these nuclei are ct-emitters, 



IAEA-SM-174/56 449 

126 127 128 129 130 

Rn212 

(7Li,4n) 

At 211 

Po210 

Bi209 

Rn213 

(7ü,3n) 

At 212 

(7li,tn) 

Po211 

(7Li,an) 

Bi 210 

Rn214 

(7U,2n) 

At 213 

(7M 
Po212 

(7Li,a) 

Bi 211 
(7Li,ap) 

Rn215 

(7M 
Rn216 

CN 

• N 

FIG. 1. Portion of the nuclide chart in the region A = 209 to 216. Listed are the Li-induced reactions 
on 20SBi populating the residual nuclei which were observed by their a-decay properties. 

their formation cross-sections are easily determined by 
measuring their a-activities. The identification of the 
a-groups is unique, based on the known a-energies and half-
lives , which range from about a hundred nanoseconds to minutes. 
Using a pulsed Li-beam to produce the Rn-isotopes, we could 
measure the a-activities between beam pulses with standard 
surface barrier detectors essentially free of background due 
to prompt a-groups. All expected a-groups were found, 
including those following the (7Li,xn) reactions and a 
variety of transfer reactions leading to Po, At and Bi 
isotopes as shown in fig. 1. All reaction channels together 
give a complete measurement of the total reaction cross-
section , which will be discussed elsewhereL*J. 

3. RESULTS 

The excitation function for the compound nucleus 
formation is shown in fig. 2, together with the fission and 
multiple neutron evaporation decay channels. To obtain 
values for Tf/rn as close to the fission barrier as possible, 
the measurements were done mainly below the Coulomb barrier 
of about 33 MeV. Hence the compound nucleus formation cross-
section and the resulting cross-sections of the various exit 
channels are mainly controlled by the Coulomb barrier, and 
it is very difficult to extend the measurements to lower 
incident energies. 

The total fission cross-sections are calculated from 
the differential cross-section at 90°. A measurement of the 
anisotropy at 33 MeV gave W(165°)/W(90°) = 1.19±0.15. Hence, 
isotropy was assumed over the whole energy range. The fission 
excitation -function obtained for 6Li yields a larger cross-
section at a fixed incident energy than 7Li. This is mainly 
due to the Q-value of the 209Bi + 6Li reaction, which is 
6 60 keV larger than that for the 209Bi + 7Li reaction, and 
partially due to the change of the fissility parameter in 
going from 216Rn to 215Rn. 
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FIG. 2. (a) Cross-sections for the dominant decay channels of the compound nucleus Rn as a function 
of projectile energy, (b) Comparison of the decay of Rn and ' 
evaporation as a function of the Li-ion energy incident on 09Bi. 

Rn by fission and multiple neutron 

The 6Li induced fission cross-sections were used to 
correct the 7Li induced fission data for the contribution of 
second-chance fission. An effect of less than 6% was obtained 
at our highest incident 7Li energy of 34 MeV. 

The results for the (7Li,xn) cross-sections show the 
dominance of evaporation of three neutrons in the measured 
range of incident energies, with the 4n threshold at approxi
mately 30 MeV 7Li energy. The cross-section for one neutron 
emission is below our detection system efficiency of 'vlub 
and hence not measured. 
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FIG.3. The ratio Tf/rn for 2lsRn as a function of excitation energy. The curve is calculated using 
Eq. (4) and a fission barrier [8] of 14,8 MeV witho.ut additional free parameters. Single particle levels at 
a symmetric saddle point deformation have been used. 

The experimental ratio Tf/rn as a function of the 
compound nucleus excitation energy is displayed in fig. 3. 
This ratio varies only slowly with excitation energy since 
one is still well above the fission barrier, but nevertheless 
deep in the Coulomb barrier. The theoretical curves included 
in the figure will be discussed later. 

4. THEORY 

The calculation of the fission width has been performed 
using the formula of Bohr and Wheeler 

[10] 
which has been 

generalized to include a J dependence, E-E, 

r£(J) 
D(J) Г рЛЕ-Е.р-е ,J) de (1) 

where Ef is the effective fission barrier, pj the level 
density at the saddle point deformation for a total angular 
momentum J and D(J) the level spacing in the compound 
nucleus at excitation energy E and angular momentum J. 

. On the neutron side, the J-dependent neutron width 
Гп(J) is given by 

E-B 

Г (J) n D(J) 
2П 

L max 
I T 
L=0 

J+L 

S=|J-L| 

S+l/2 
I 
1=|S-1/2 I 

Pn(E-Bn-e,I)de (2) 
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where B n is the neutron binding energy in the compound 
nucleus and pn the level density for total angular momentum 
I in the residual nucleus. The neutron transmission 
coefficients t-4J T L are those describing the formation of 
the compound nucleus at excitation energy E via neutron 
capture by the residual nucleus. These calculations are 
straightforward, if the J-dependent level densities are 
provided, a problem which shall be discussed in greater 
detail. 

Given a set of single particle spectra, a realistic 
state density calculation with the inclusion of nuclear 
pairing can be performed using the partition function 
method!^]. Details on the calculations may be found in 
ref. 13. Single particle levels of Mo'ller and Nix ̂ 8 •'were 
used to obtain state densities <o (E) for the spherical nuclei 
209Po and 215Rn. The level densities p(E,J), -which later are 
used to calculate rn(J) following eq. (2), are obtained from 
the relation 

o(E.J) = -Л+IZL- M(E)-exp(- J<J+1> ) (3) 
2o (E) 

where the spin cut-off factor a2 (E) is also calculated 
microscopically. 

For the fissioning nuclei 210Po and 2 1 6Rn, the state 
densities ш(E) were calculated using Möller and Nix's[8J 
single particle levels at the saddle point deformation. In 
the case of 2 1 0Po, single particle levels for both a symmetric 
and an asymmetric saddle point deformation were used. For 
the deformed saddle point the level density is enhanced by 
coupling to low-lying collective excitations as described by 
Ericson and by Bj^rnholm and co-workers [14]. For an axially symmetric 
shape where only the coupling to collective rotations is 
considered the level density can be written as: 

ш (Е)Ъ +J 2 2 -2 
P (E,J) = * I exp{-2-£ ^ — . [ J C J + D - K ^ ] } (4) 

/̂8w frH T K=-J 2^,T 2<älT 

where шк(Е) is the state density calculated microscopically 
in the К formalism appropriate for a deformed nucleus and 
the analogous cutoff factor oK

2(E) = ^ц T/ti2 is also calculated 
microscopically. In the actual calculations/ a rigid-body 
estimate for the perpendicular moment of inertia, ti2/2 fyx = 
2.5 keV, was used. If it is assumed that с«к№) contains all 
the available states (i.e. no enhancement due to rotations) 
then Sano and Kawai 45] have shown that the level density 
becomes: 

ft2 
pD - <fTf~ -pc (5) 

Previous calculationsf^'^J have essentially used eq.(5) with 
the further approximation that a2 ~ aK

2 -. "R2/^-xT, where a2 is the 
spin cutoff factor for the spherical nucleus'formed in 
neutron emission. In this limit the spin cutoff factors 
cancel and the final Tf/rn expressions are J independent. 
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Since the experimentally determined Vf/V is a weighted 
sum over the distribution of angular momenta xn the entrance 
channel, a final summation is needed. 

J max 
/ r f \ I V ( V r n > j 

max 

Л P' 
where P_ is the probability for forming the compound nucleus 
with angular momentum J. These probability coefficients are 
calculated with transmission coefficients from a parabolic 
approximation of the potential barrier as introduced by 
Thomasl16J . The ratio of (rf/rn)j/(rf/rn)J=Q as a function 
of J for three different excitation energies in the compound 
nucleus 210Po are shown in Fig. 4. One interesting feature 
of these curves is that at the lower excitation energies 
the higher angular momentum values favor neutron emission. 
This is a result of the large difference in the fission 
barrier and neutron threshold and the corresponding difference 
in the appropriate spin cutoff factors. 

FIG. 4. The dependence of I f / r n on angular momentum J for the compound nucleus 210Po at three 
excitation energies. These results are based on Eq. (4) and an asymmetric saddle with a fission barrier 
of 22.1 MeV. 
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5. DISCUSSION 
The statistical model was first used for an absolute 

prediction of Г^/Г for 210Po and 216Rn using the single 
particle levels and theoretical barriers from Möller and 
Nixl^J. These calculations, therefore, contain no adjust
able parameters. The results are compared to experimental 
data in Figs. 3 and 5. The absolute calculations tend to 
reproduce experimental results near threshold but rise too 
steeply and give too large values for Vf/Tn at high excitation 
energies. This comparison may indicate that the present 

Ю"3-

Ь m-5. 

ASYMMETRIC SADDLE 
SYMMETRIC SADDLE 

- T — l — I — i 1 — i — i — r -

22 24 26 28 30 32 
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— i — i — i — i — i — 

34 36 38 

FIG. 5. The ratio ГрТп for Po as a function of excitation energy. The curves with level densities 
based on the single particle spectra for an asymmetric and a symmetric saddle point deformation are 
calculated using Eq. (4) and a fission barrier of 22.1 MeV in both cases without additional free parameters. 
Open circles are taken from Ref. [3] and filled circles from Ref. [ 1 ] . 
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FIG. 6. The ratio Tf/rn for 216Rn as a function of excitation energy. The curves for the different barriers 
are calculated with Eq.C5). The normalization constants used to reproduce the experimental magnitude 
of ГрТп are given in Table I. Single particle levels at a symmetric saddle point deformation have 
been used. 

statistical model yields an incorrect energy dependence for 
rf/rn* Alternately, the theoretically calculated barriers 
and level densities may be incorrect. 

Since comparisons for actinide nuclei have shown 
deviations of up to 2 or 3 MeV in some cases between ex
perimental fission barriers and those calculated theoretically 
by Möller and Nixl^J, it is also interesting to investigate 
an alternative approach where the height of the fission 
barrier, Ef, and a normalization factor, Nf, are extracted 
from a fit to the experimental data. The results of these 
fits are shown in Figs. 6 and 7 and the parameters obtained 
are listed in Table I. In these fits, level densities from 
both eqs.(4) and (5) were used. For 2 1 0Po, single particle 
levels for both symmetric and asymmetric saddle points were 
used. 

In Figs. 6 and 7 it is shown that the shapes of the 
experimental rf/rn functions are well described in all cases. 
However, the parameters Ef and Nf depend both on the single 
particle spectrum and the type of level density formula 
which is used. For 210 Po the use of symmetric or asymmetric 
saddle point single particle levels results in only a small 
difference in the fitted parameters. In contrast the two 
different forms for the level density give Nf values which 
change by a factor of about 400 and fitted values of Ef 
which change by~0.8 MeV. Using the level density including 
collective rotations, Nf values in the range 10 - 2 to 10 3 
are obtained rather than the expected values of ~ 1 . 
Conversely, the approach (eq. 5) which neglects these new 
levels gives a normalization factor of ~1- For the 216Rn 
case the collective level density gives Nf ~l/20, whereas, 
the other approach gives Nf ~20 so that Nf ~1 is between 
the two extremes. 
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FIG. 7. The ratio r f / r n for 21°Po as a function of excitation energy. The curves are calculated with 
Eq. (5), using level densities based on the single particle spectra for an asymmetric and a symmetric saddle 
point deformation. Fission barrier heights of 20.2 MeVand 20.0 MeV, respectively, were used. The 
normalization constants used to reproduce the experimental magnitude of Tf/rn are given in Table 1. 

Operationally the theoretical energy-dependent values 
of rf/rn are compared with the experimental ratios of this 
quantity at several energies. Since the theoretical values 
of rf/rn depend on three different variables, namely the 
fission barrier and the level densities of both the deformed 
saddle nucleus and the spherical nucleus following neutron 
emission, it is not possible to unambiguously determine both 
Nf and Ef. Hence, it is not possible to verify the necessity 
of introducing the deformed nucleus level density given by 
eq. 4 for estimating rf/rn at our excitation energies. If, 
however, the level density incorporating the enhancement due 
to collective rotations at the saddle point is correct then 
these results suggest that rn is significantly underestimated 
at high excitation energies П-'З. Whether this underestimate 
is a function of excitation energy depends on the value 
chosen for Ef. An underestimate of rn could arise in two 
ways 1) through a neglect of possible couplings to collective 
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TABLE I. FISSION BARRIERS AND NORMALIZATION FACTORS BASED 
ON FITS OF THE SHAPE OF Ц/Гп WITH TWO DIFFERENT FORMS OF 
THE LEVEL DENSITY FOR THE DEFORMED SADDLE NUCLEUS 
Theore t ica l b a r r i e r s in the las t column are based on exper imenta l 
ground state m a s s e s 

Values obtained 
with eq. 4 

Values obtained 
with eq. 5 

Theoretical 
barrier 

NUCLEUS E (MeV) Ef(MeV) E (MeV) 

210„ Po 

(asym. 
saddle) 

+ .8 
19.5 

1.9x10 
6.0x10" 
2.0X10" 

+ .8 
20.2 

6.6 
2.2 
0-67 

22.1 

210„ Po 
(sym. 
saddle) 

+ .i 
19.1 

4.5x10 
1.5x10 
0.5x10 

-3 
-3 

+ .8 
20.0 

2.5 
0.75 
0.23 

22.1 

216та 
Rn 

(asym. 
saddle) 

+1.0 
13.1 

-1.0 

20 xio 
4.8x10 
1.1x10" 

-2 +1.0 64 
13.8 16 

-1.0 4.6 
14.8 

Ref. 8. In Figs 3 and 5 the theoretical values of ц /Гп were calculated with these theoretical fission barriers 
and no other adjustable parameters. 

vibrations at higher E* (although this effect is also 
neglected in Tf) or 2) because of an overestimate of the 
shell effect on the level density in this region. This 
second possibility is consistent with the trend that the 
theoretical calculations[8] underestimate the ground state 
mass of 210Po by 1.6 MeV and by 0.3 MeV for 2lgRn and the 
resulting Nf values are ~10 times smaller for 210Po than 
for 2 1 6Rn. 
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DISCUSSION 

W. LOVELAND: In one of your slides you showed calculations of 
Tf/Tn for asymmetric and symmetric saddle point deformations in which 
the calculated values of Ff/Fn were higher for symmetric than for 
asymmetric deformations. Why does this occur, if there is a doubling 
of rotational levels in the transition nucleus for the asymmetric deforma
tion compared to the symmetric deformation? 

H. FREIESLEBEN: The difference in Ff/Fn is due to the fact that 
the single particle levels change, going from a symmetric to an asym
metric saddle deformation. The negative shell correction at the symmetric 
saddle gives rise to a smaller level spacing and hence to an increased 
level density compared with the asymmetric saddle, which has a large 
positive shell correction. 
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S. BJ0RNHOLM: I am in some disagreement with Moretto as to the 
energy at which the collective enhancement disappears. I would say that 
it is at a very low energy. Huizenga remarked that you have studied it 
at 6 MeV - the neutron binding energy - and you seem to imply that the 
enhancement is still there. That is one piece of evidence. I would say 
you would have to go to temperatures of 2 or 3 MeV to see it disappear; 
I would simply point to Moretto's entropy diagram that shows how the 
intrinsic shape probability, which is narrow around equilibrium, broadens 
out to also include all spherical shapes at about 50 MeV. I think that is 
how one can tell when the rotation of the shape disappears as a separate 
degree of freedom, when the shape becomes washed out. 

L.G. MORETTO: I suspect that Mr. BjjÄrnholm' s reference to my 
probability distribution as a means of determining the energy region where 
the collective phase space is absorbed back into the intrinsic states, may 
not be so relevant. We need another factor, like the coupling matrix 
elements, in order to be able to estimate the width of the strength function 
at the various energies. 

J.R. HUIZENGA: The discussion between Moretto and BjjÄrnholm 
about the temperature or energy at which the extra levels due to the 
collective rotations disappear is of a highly speculative nature; and 
what I am about to say is of a similar quality. It is an attempt to over
come the present lack of experimental information on the energy at which 
these extra levels disappear. It is based on the r f / r n analysis in our 
paper. Prior to giving the result, I remind you of the hazards in drawing 
final conclusions on this subject from r f / r n analyses, owing to uncertain
ties in the single particle levels, the fission barr ier , etc. With this 
warning, I wish to state that we found a good absolute fit to the Pf/Pn data 
for 210Po near the barr ier with a saddle point level density which includes 
the collective rotations. However, some 8 to 10 MeV above the barrier 
the theoretical values of rf/rn become too large. This might be interpreted 
to mean that the enhancement in the level density due to collective rota
tions begins to disappear at energies of the order of 8 to 10 MeV. 

S. BJ0RNHOLM: Is your analysis really sufficiently unique to allow 
such considerations ? 

J.R. HUIZENGA: If we allow the fission barrier to vary and then 
fit the If/rn data, we obtain a smaller fission barrier and the enhance
ment in the level density due to collective rotations at the barrier is no 
longer required. In addition, there is another argument for favouring 
the larger barrier for 2i0pO)which is based on a comparison of experi
mental and theoretical values of K?. 

U. MOSEL: I should like to point out another possible uncertainty 
that enters into the calculation of Pf, namely the effect of volume conserva
tion in the single particle model. While this effect, which is deformation-
dependent, does not affect the Strutinsky-type shell corrections, it does 
enter rather directly into the single particle levels and thus into the 
level densities at the saddle point. 

R. VANDENBOSCH: I believe there are two criteria that must be 
satisfied, in order to expect an enhancement of the fission width relative 
to the neutron width discussed by Bjjirnholm. One is that the saddle shape 
should have a lower symmetry than the equilibrium shape, and BjjÄrnholm 
has pointed out that Moretto1 s calculation would indicate that 50 or 60 MeV 
is required to dissolve the shell effects causing such differences in 
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shape. I would like to call attention to the second of the two criteria, 
namely that the energies of the rotational states should be lowered by 
coherent residual interaction effects by an amount that is larger than 
the nuclear temperature. Otherwise these states should be considered as 
being included in the statistical calculation of the level density. I would 
guess that this lowering is of the order of an MeV, which would suggest 
that these effects would dissolve out at a temperature of about 1 MeV, 
or perhaps an excitation energy of about 25 MeV. 
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Abstract 

THE DYNAMICS OF FISSION Ю THE SUBBARRIER REGION OF DEFORMATION. 
A solvable model for the dynamics of fission is formulated. It is argued in which phase the process is 

likely to be adiabatic and in which not. This model is checked by calculating the lifetime for spontaneous 
fission from the ground state and from the shape-isomeric state. Reasonable agreement with experiments is 
found. The discrepancies are understood and can be improved in future calculations, presumably to give 
predictive power to these methods. It is claimed that fission barriers are dynamic (not static) quantities 
and the pre-formation of the nascent fragments arises in the parent nucleus around the outer barrier. 

1. INTRODUCTION 

It is an astonishing fact that 30 years after the strange reports of Hahn 
and Strassmann [1] and their interpretation by Frisch and Meitner [2] 
virtually none of the observables of the fission process are understood. 
What one has is a vast collection of empirical rules to order the data, and a 
variety of specific models which "work" for particular aspects but fail 
badly for others. In addition, quite a number of concepts have been 
developed in the past, as for example that of "deformation" or that of a 
"fission barrier" which were so successful that one has forgotten how model-
dependent they in fact are. 

We agree — of course — that the utter complexity of the nuclear many-
body problem has not left much choice for doing better and that rules are 
desperately needed not to get lost in the flood of data. But because of the 
rapid and sudden progress in the past few years, it might now be worth the 
effort to collect things and put them in their proper places. This means a lot 
of work, but we hope that one day life may be simpler again. 

This presentation is meant to be a modest contribution to an eventual 
unified theory. Although — by reason of simplicity and survey — we shall 
give a rather superficial presentation, we shall try to remain as close as 
possible to a more basic approach. We shall be careful that things remain 
solvable but that the mathematical assumptions do not spoil the physics and 
that the main conclusions are based on actual calculations. 

* Present address: Max-Planck-Institut für Kernphysik, Heidelberg, Federal Republic of Germany. 
* * Work supported in part by "Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen 

Forschung". 
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We proceed by present ing f i rs t the concept of collectivity of nuclei — 
in pa r t i cu la r of fissioning nuclei — and show that it offers room enough to 
include refinements of the theory step by step (Section 2). Thereaf te r , we 
d iscuss in Section 3 the co rne r - s tone of the collective model , the potential 
and the "kinet ic" energies and compare them — as far as poss ible — to the 
exper iments . Without prejudice to fur ther exper iments , we r e s t r i c t our
se lves in Section 4 to the l ifetimes for spontaneous fission. Final ly , 
(Section 5) we tackle ser ious ly the leas t action t ra jec tory and a r r i v e at 
conclusions on the nature of the fission b a r r i e r s and the preformat ion of 
f ragments . 

Without even mentioning it, we r e s t r i c t ourse lves to the even-even 
nuclei and omit with p leasure the complications of an odd nucleus due to the 
conservat ion of axial symmet ry . 

None of the methods presented is rea l ly original and new and the 
presenta t ion may even be (too) s imple-minded. But this may help younger 
people among us to enter this field and to par t ic ipate in the cer ta inly 
possible and exciting future developments , to mention only a few of these : 
v iscos i ty , odd nuclei and inverse fission. 

2. THE CONCEPT OF COLLECTIVITY 

A r igorous dynamic model of the fission p r o c e s s is identical to its 
complete quantum mechanica l descr ipt ion, of course . We shall have solved 
this problem, if we know the state vector of the total nucleus and its develop
ment in t ime, that i s , if we have found the solution of the t ime-dependent 
Schrödinger equation 

тЁШ=€?т (i) 

The state vector is to be normal ized so that 

(*(t), <fr(t» = 1 (2) 

Apart from the difficulty in finding a r igorous solution of the nuclear many-
body problem — we refer to the recent review of Bethe [3] — the complica
tion due to the la rge number of degrees of freedom in a heavy nucleus has 
been a se r ious problem and will continue to be one. Phenomenological 
mode l s , however, a r e usually solvable, but the i r application is bound to the 
field for which they have been developed. Never the less , they a r e useful to 
explore a field and, eventually, pave a way for handy solutions of the full 
problem. 

In the following we shall outline a sequence of approximation and in ter 
preta t ion, which re la tes the m o r e fundamental approach to those pheno
menological concepts we finally work with. 
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2. 1. The formulation of the collective model 1 

Assume the many-body Hamil tonian^Tis known. Rather than being 
in teres ted in the full range of information provided by knowing the s tate 
vec tor ip(t), let us be in teres ted in some par t icu la r feature which we label 
by a c -number q. We assume that q may be a function of t ime 

q = q(t) (3) 

and that we can label the s tate vector by q, too, in such a way that 

*(q(t)) (4) 

is s t i l l a solution of the t ime-dependent Schrödinger equation (1). In addition, 
we as sume the existence of a complete set of or thonormal s ta tes 

(*m(q). <Mq)) = smn (5) 

They a r e to be charac te r ized by the same number q, and sha l lbe e igensta tes of 
the s ta t ionary Schrödinger equation 

^ ( q ) * m ( q ) = e
m ( q ^ m ( q > ( 6 ) 

for al l values of q. The indices m a r e to order the eigenvalues e , i. e. 

e 0 S e ! S ^ • • " (?> 

By vir tue of the completeness and by putting q = q(t) we can expand the t ime-
dependent s tate vector into a s e r i e s of the s ta t ionary solutions 

t 

^=X c
m <4H m (q)ex P { - i /£ia(q(t'))dt'} (8) 

m==0 

at any t ime . By means of Eqs (8) and (2) the coefficients must obey the 
re la t ion 

I с (q) f = 1 (9) 
m 

Inser t ing the expansion, Eq. (8), into the t ime-dependent Schrödinger 
equation (1) and making use of Eq. (5), one obtains a "coupled channel" 
differential equation for the coefficients c m 

6= -q X 4*ты- ^ r ) e x p { 4 fw>-eJWdt'} <10> 

We follow to some extent the formulation of Wilets [4] . 
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which is of course equivalent to the time-dependent Schrödinger equation but 
sometimes easier to solve. Once the cm are known the total energy is 
calculated according to 

E = (<fr(t), # W ) ) = £ | c m | 2 em(q) (11) 
mao 

which by means of Eq. (9) can be rewr i t ten as 

E = e „ ( q ) + ^ | c m ( q , q ) | 2 ( e m ( q ) - eQ(q)) (12) 
mal 

The second term in this equation 

K ( q , q ) = £ | c m ( q ) q ) | 2 ( e m ( q ) - e0(q)) (13) 
ra^l 

depends on the "collective velocities" q and could be called a "collective 
kinetic energy", whereas the first term, 

W(q)=e0(q) (14) 

depends only on the "collective coordinate" q and, consequently, could be 
called a "collective potential energy". It is thus possible to formulate a 
Hamilton function for the collective energy 

HcoU=K(q,q) + W(q) = E (15) 

which forms the basis for the collective model. Under these circumstances 
we can interpret the collective variables q and q as operators, which can be 
quantized according to the prescriptions of Schrödinger and Pauli [5]. We 
should note here that we did not have to assume adiabatic motion to derive 
Eq. (10). 

We have introduced the collective variable q to replace the many degrees 
of freedom of the original many-body problem. This additional parameter 
does not present unsolvable difficulties and can be understood as a kind of 
generator coordinate. A rigorous formulation in terms of the generator 
coordinate [6] will not be gone into here — the more so as the essential 
conclusions are the same — and reference is made to the available litera
ture [7,8] for its treatment. In fission the nucleons are initially concen
trated in a rather well-defined area of space and separate into two or more 
slabs of nuclear matter which are highly correlated in space. If we describe 
this collective process par excellence by the time development of the spatial 
density distribution, we can restrict it to the description of the surface area, 
as the saturating nature of the nuclear forces prevents a large change of the 
central density. Consequently, we are almost forced to identify the collective 
coordinate with the shape of the density distribution. Therefore, the 
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potential energy W(q) is often called the nuclear deformation energy. In the 
following we shal l r e fe r to q as the fission mode and shall specify it l a te r . 

2 . 2 . The adiabatic l imit 

L e t us concentrate now on the adiabatic l imit . By adiabaticity we mean 
that the s ta te of the sys tem is constant in t ime , i. e. that 

cm(t) = 0 (16) 

If at some t ime t the sys tem was in i ts ground s ta te expressed in t e r m s of 
the s ta t ionary solution for the t ime t, it will r ema in in this s ta te , i. e. 

^ ( t ) ~ 0 o ( q ( t ) ) e x p j - - J «о**')«"'] (17) 

and the total energy E , which is conserved, has no contribution from the 
in t r ins ic exci ta t ions . All the excess energy which is provided by the motion 
q = q(t) will t r ans form into kinetic energy of the sys tem as a whole, i. e. 

E = W ( q ( t ) ) + | B q ( q ) q 2 (18) 

In the adiabatic limit we can der ive an express ion for this so-cal led effective 
m a s s В in t e r m s of the s ta t ionary eigenfunctions фт. This approach is 
known as the "cranking model" [9 ] . 

The cranking model is based on two assumpt ions , i. e. (1) that at some 
t ime t0 the sys tem is essent ia l ly in its ground s ta te : 

t = t0: c0 ~ 1, cm - 0 for m в 1 (19) 

and (2) that a l l the quantit ies in the coupled channel Eq. (10) vary sufficiently 
slowly in the smal l t ime in terval 6t = t - t0 that we can r e s t r i c t ourse lves to 
lowest o rder in 6t. This gives 

нл ехр{-£й<стЦ>>-с<А) cm(t) = iftq(t0) c 0 ( t 0 ) ^ m , ^ ) 1 J
 + const (20) 

Assuming no r e a l exci ta t ions, i. e. choosing the equality sign in Eq. (19), the 
integrat ion constant is z e r o . Inser t ing Eq. (20) into Eqs . (12) and (18) one 
a r r i v e s at 

The notation should underl ine the fact that the effective m a s s Bq cor responds 
to v i r tua l excitat ion. In fact, Eq. (20) is no contradict ion to Eq. (16), since 
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we express the wave function at time t= to+St by the wave function at time tg: 
the mass is a measure of the overlap of those two. 

Thus, in this adiabatic limit, one can formulate the collective model 
with considerable ease, provided one can find decent approximations to the 
stationary many-body functions ф . 

2. 3. The three-phase model of fission 

The assumption of adiabaticity simplifies considerably our approach to 
fission. Where is this assumption justified? 

It is meaningful to use the deformation energy W(q) as a guide for the 
qualitative discussion. Since the total energy E is a constant of the motion, 
the quantity W tells us immediately the upper limit of the energy which might 
be shared with the other degrees of freedom of the fissioning nucleus: 
according to Eq. (15) we have 

K(q,q) = E - W(q) (22) 

K(q,q) is just the kinetic energy of the fission mode if the excitations are 
virtual. If some of them are real, the corresponding amount of energy is 
transferred to degrees of freedom other than fission, possibly to other 
collective modes. In this sense, real excitations can be called friction or 
viscosity, even if those terms seem to have a meaning only in classical 
physics. 

DEFORMATION: FISSION MODEq 

FIG. 1. Qualitative behaviour of the deformation energy in the liquid drop model. At the top of the figure, 
the two families of shapes in the fission mode are shown. The family of connected shapes (a) has the deforma
tion energy (a), shown on the lower part; the family of separated shapes (b) has the deformation energy (b), 
which is essentially the energy of the mutual Coulomb repulsion. In a multidimensional plot, both families 
are separated by a ridge ( • — ) , which disappears at larger deformations. 
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DEFORMAHON: FISSION MODE q 

FIG. 2. Qualitative behaviour of the deformation energy in fissioning nuclei. Total deformation energy is 
shown by the thick solid line. In phase I — the subbarrier region — the total energy in the fission mode is 
given by the Q-value. Areas relevant for the lifetimes are hatched. In phase II the energy in the fission mode 
decreases by non-adiabatic processes (shown by the dashed line). In phase III the completely disconnected 
fragments move apart by their mutual Coulomb repulsion. In the barrier region the liquid drop model energy 
is shown separately by the dotted line. The (hypothetical) scission barrier is inserted as well. 

In the past, only exploratory work was done on this problem [4,10]. 
Some promising attempts are presented in later papers in this session. 
Hopefully, this field will be in the centre of future activity. 

Thus, the stages of the fissioning nucleus can be classified according 
to Eq. (22), i. e. according to the deformation energy. We shall now discuss 
this cornerstone of the collective model qualitatively and postpone the 
quantitative discussion to Section 3.2. 

The classical approach to the deformation energy is the liquid drop 
(LD) model [11-13]. But even in this simple model the description of the 
deformation energy is by no means trivial: two families of shapes exist [13] 
which are comparable in energy. This is schematically shown in Fig. 1. 
For larger deformations at and behind the liquid drop barrier , the total LD 
energy of two separated fragments and of the parent nucleus become com
parable. In a multidimensional plot, the two families correspond to valleys 
in the deformation energy which are separated by a ridge. This ridge 
disappears gradually for the larger deformations, which fact may enable an 
unambiguous definition of the scission point which is called the exit [14]. 
The Coulomb energy at exit correlates extremely well with the average 
kinetic energy of the fragments [14]. 

If we add the shell energy [15] to the liquid drop energy (see Section 3.3), 
we may arrive at the situation as shown in Fig. 2, where the above-mentioned 
ridge has been omitted in order not to overload the sketch. We insert in this 
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figure the total energy E (called Q-value) and identify it with the ground state 
energy of the fissioning system. 

At the ground state the collective kinetic energy is zero by definition, 
(Eqs (22) and (14)). In other words there is no "zero-point vibrational 
motion", contrary to many statements in the literature. 

In the subbarrier region of deformation, or according to Fig. 2 in phase I 
of the fission process, the term kinetic energy becomes classically meaning
less, since 

K(q ,q )<0 (23) 

No kinetic energy can be distributed and consequently all excitations have to 
be virtual. Thus, the adiabatic assumption is justified in this region, if 
anywhere at all. 

In phase II, the region behind the barr iers and before scission (see 
Fig. 2), the kinetic energy becomes increasingly large 

K(q ,q )>0 (24) 

Real excitation or viscous effects are possible and may even be dominant; 
the fissioning nucleus is heated up. This process comes to rest if all the 
kinetic energy is consumed or if the interaction between the translational 
fission mode and the intrinsic modes is no longer possible. 

The latter takes place in phase III (see Fig. 2). There, the two (or more) 
fragments move apart by their mutual Coulomb repulsion. This presentation 
differs only minutely from that of Swiatecki and Bjjirnholm [16] . 

Careful experimental investigations [17] reveal a strong correlation 
between the distribution of mass, kinetic and excitational energy of the 
fragments. From this we must conclude that those distributions are 
formed in phase II of the fission process, i. e. shortly before or at scission. 
As indicated in the figure, diabatic effects are important in this region. 
To describe these effects microscopically one should solve the coupled 
channel equation (Eq. (10)) explicitly. In a macroscopic approach one may 
calculate a viscosity coefficient and then solve the corresponding hydro-
mechanical equations. 

A last word about the scission act which is probably even more compli
cated than outlined here. The approximation to replace the leptodermous 
nuclei by equivalent drops eventually breaks down for the fission fragments 
if their density tails overlap a little. The interaction of those tails may 
eventually overcome the repulsive Coulomb energy of the well-separated 
equivalent drops. Such a scission minimum — obtained in the calculations 
of Norenberg [8] — has thus a different origin than the by now familiar two 
or more shell minima [14,15]. 

2.4. The lifetime for spontaneous fission and the fission mode 

The calculations of Nix [18] may tell us that the fissioning nucleus stays 
in phase II in the very short time of about 10"22 s. Thus, even if we restrict 
our following considerations to phase I, the lifetimes can be calculated 
rigorously. Future inclusion of phase II (and III) will have predictive power 
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only for the dis tr ibut ions (of m a s s and kinetic energy); but these we have to 
d i s r ega rd completely in the present work. 

The lifetime т of any s ta te is connected to the width in energy by the 
uncer ta in ty re la t ion 

T"jr (25) 

The width Г is propor t ional to the square of some overlap integral of the 
wave function in the init ial and final s ta te 

Г * | ( < / ^ . ) | 2 . (26) 

For the case of spontaneous fission, the overlap integral can be given in 
WKB approximation [11] , i . e . 

Г = hwf exp \- 2 | \, if S » - h (27) 

In the case of adiabatic motion, the action in tegra l S can be expressed by 
the potential energy W(q) and the effective m a s s В (q) 

% 
E - W ( q ) | 2 B (q)dq (28) 

This equation can a l so be derived by the genera tor coordinate method [ 6 - 8 ] . 
The in tegral extends only over the region 

W ( q ) g J E 

As will become c lear l a t e r , the width Г or the lifetime т is most ly sensi t ive 
to the action in tegra l S. There fore , we confine ourse lves to the r a t h e r crude 
es t imate 

ftuf ~ 1 MeV (29) 

for the cha rac t e r i s t i c energy or frequency and keep in mind that this factor 
is c o r r e c t at mos t within a factor of two. 

So far , we have not yet given a p resc r ip t ion for the "fission mode q". 
The choice of q(t) is essent ia l ly free and each choice, within the framework 
presented above, would lead to another l i fet ime. One way of reducing the 
ambiguity is given in the following. 

Instead of a single coordinate q, we introduce a whole set of coordinates 
or deformation p a r a m e t e r s , i. e. 

[ß}-iß1,ß2,...., ßj (30) 
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For each combination, the deformation energy 

W(ß) = W f ß ^ ß , , , . . . . , j3n) (31) 

and the kinetic energy shall be evaluable 

n 

T 4I Vß)^' (32) 

Thus, instead of a simple effective m a s s , one has now to evaluate all the 
components of a m a s s t enso r . They have the symmet ry proper ty 

B
ß . ß . = Bß.ß. (33) 

In this complicated space one defines now a t ra jec tory , 

q: ( ^ ( q ) , ß2(q) ßn(q» 

i. e. a new coordinate q, embedded in the l a rge r space for which the poten
t ia l energy and the effective m a s s can easily be given in t e r m s of the 
old ones, 

W(q) = W(ß,(q), ß 2 ( q ) , . . . , ßn(q)) (34) 

V 3ß. 9ß. 

^ 1 В
¥ 5 М Р"(Ч))^^ (35) 

i. j 

Finally, one de te rmines the t ra jec tory by the requ i rement of shor tes t l ife
t ime , i. e. by the requi rement of least action 

6S = 0 (36) 

By this p rocedure , one r emoves by definition a good deal of a r b i t r a r i n e s s . 
The la t te r is reduced now to the choice of a l a rge enough space {ßv . . . , ß n } . 
What one has found i s , so to speak, the best one-dimensional sequence of 
shapes — i. e. the fission mode. 

3. THE COLLECTIVE POTENTIAL ENERGY AND THE 
COLLECTIVE INERTIA 

The procedure outlined in Section 2 can be ca r r i ed through if one knows 
the solutions of the s ta t ionary many-body Hamiltonian for each "deformation". 
The r igorous solution of the many-body problem is not yet known but, as 
shown below, one can find reasonable approximations to it. 
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3. 1. A t r i a l wave function for the many-body problem 

According to Eq. (14) the deformation energy is defined by 

W ( q ) = U i f Л < n = €0^» ( 3 7 ) 

Its minimum i s , of cour se , identical to the binding energy 

88 = - min W(q) = - W(q0) (38) 

An upper l imit to this quantity is obtained with any t r i a l wave function ф, i. e. 

Ш f l = W t ( q ) a W ( q ) (39) 

following the var ia t ional pr inciple of Ritz. This t r i a l function is largely 
a r b i t r a r y and therefore we may confine ourse lves to the ground s ta te wave 
function of the BCS approach (we use indices again) [19] 

,(q)s |0> = n(4,+V„C?1,-cJr)|0> (40) 

where U and V a r e the pa r t i c le and hole ampl i tudes , respect ive ly . In 
analogy, the excited s ta tes a r e quas ipar t ic le-quas ihole s t a t e s , i . e . 

*m(q) = |Д">=«Х1°> (41) 

and have an energy 

«m(q) = E(I(q) + E(/(q) + e0(q) (42) 

The opera tors Cv- and Си+ c r ea t e a "pa r t i c l e" in the t ime conjugate s ta te 
\v")> and \v+y, the opera to rs ctv and ß j c rea te the quas ipar t i c les . Both 
a r e connected by the famous uni tary t ransformat ion 

a+ = U C1+ - V C -

ß = U C - - V C + 

In r - s p a c e the s ta tes cpy(r) = | v)> shal l be eigenfunctions of a (so far) a r b i t r a r y 
"s ingle par t ic le Hamiltonian", 
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H ф ( г ) = е ш ( г ) (43) 

with eigenvalues ev. Any of these may depend on "deformation". They a r e 
m e m b e r s of an or thonormal set 

4V = V (44) 

The par t ic le and the hole ampl i tudes , V„ and U^, a r e , as usual , defined by 

U y
2 + V 2 = l (45) 

and 

V„ = .2 V E„ 

1/2 

with the quasipar t ic le energy 

(е„-Х) 2 + Д2 
1/2 

(46) 

The pair ing gap A and F e r m i energy X a r e solutions of the famil iar BCS 
equations: 

! IT 

(4V) 

For the choice of the coupling constant G and the handling of the cut-off — 
marked by the p r i m e s in the summation symbols — we refer to the 
l i t e r a tu re [14 ,20] . 

Fo r a varying deformation, the single par t ic le energies e change, to 
lowest o rder , by 

8e 
(48) 

The BCS equations (Eqs (47)) hold for a l l deformations; their solutions 
depend exclusively on the single par t ic le spec t rum around the F e r m i energy. 
Consequently, the changes of the occupation amplitude V„ and of the quas i 
par t ic le energy Ey , which have to obey the re la t ion 

X Е Г 5 Е „ = о and J\6V"= ° (49) 



IAEA-SM-174/206 

can be calculated from the matrix elements 

475 

"äqf 
<v 

ЭН, sp 
3q v> (50) 

and one can derive expressions for the change of the pairing gap and Fermi 
energy [14,20,21] 

ЭД J 8X — and — oq dq 

Using them, all matrix elements which occur in the coupled channel 
equation (Eq. (10) can be evaluated, provided we know the single particle 
matrix elements 

<M 
3HS1 

sq 
v> 

In particular, one obtains for the matrix elements between the ground state 
and an excited state [14, 20, 21] 

( w _Э_ 
9q 

0> \ 3q 
Д 

<v 
ЭН 
9q 

v>- Ё2. — K-^) 
3q~8q Д 

(51) 

or for ß =fc v 

<^v _Э_ 
3 q 

0> 
U V + U V 

E + E 

ЭН sp 
3q 

v> (52) 

The matrix elements between excited states differ from zero only if the 
quasiparticles are the same, i. e. 

< K X 
3q W> = « x w [ l - « K ^ 

U U +V V 
К 11 K U / 

—~—г—— <м 
9Н. 
9q к> 

+ 6 
Kfl 

1 - 6 , 
U t t + V V . <х sp 

9q 
v> (53) 
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3.2 . The deformation energy 

In none of the last equations does the energy of the ground state occur 
explicitly. The calculations of the la t te r can thus be decoupled, even using 
different methods . 

As a ma t t e r of fact, one can obtain a decent descr ipt ion of nuclear bulk 
p roper t i e s by means of a t r i a l function (see Eqs (37) and (39)) if only one 
finds a p roper choice of the average fields occurr ing in the t r i a l single 
par t ic le Hamiltonian 

HSP = Hsp(l> = i g l + V(?) - I VS(r) X p 

i. e. by a proper choice of the average nuclear potential V(r) — including 
the Coulomb potential — and of the spin-orbi t field S(r). 

Indeed, using a Skyrme force [22] for the many-body Hamiltonian Ж 
and construct ing a t r i a l function with the single par t ic le functions cp [23] , 
the outcome of Eq. (39) differs from the available sel f -consis tent calcu
lations [22] a lmost negligibly [24]. It s e e m s that se l f -consis tency in 
itself is not ve ry important . Details of work on this will be published soon. 

In spite of the conceptual s implici ty , both approaches [22,24] a r e 
cumbersome and t ime-consuming. It is therefore important to have 
s imple approximations which, however, s t i l l a r e co r rec t . They may even 
be phenomenological. Such is the shel l cor rec t ion approach of Strutinsky [14,15], 
p resumably . 

It is cer ta inly co r r ec t to separa te the total energy, Eq. (39), into an 
average energy and a remaining shell energy 

W(q) = [W(q)]average+[W(q)]sheU (54) 

The problem s t a r t s when we in terpre t these quanti t ies . According to 
Strutinsky one does it by 

[W(q)] - E (q) 
average LD 

[W(q)] ,. „ =* (6U+6P) + (6U+6P) „ 1 4 shell neut. prot. 

(55) 

The deformation energy in the liquid drop model , ELD , is sensi t ive essen
tially to the reduced fissil i ty t [26] 

t.£„..ft. ,.£§. ,., 

which rep laces the once un ive r sa l c r i t i ca l value of Z 2 /A for the case where 
the Weizsäcker formula contains a surface symmet ry t e r m [25] . 
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The most important contribution to the shell energy conies from the 
shell correction proper 

•i6U =Y) n e - < 7 > e > (57) 
2 '—' v v N ' - ' v v average 

while corrections due to residual interactions, 6P, are usually small [14]. 

\ 58 у i! i ' 
\ \ \ n i 
\ \ V < ' 

x V £0 

160 170 180 

Mass Number A 

190 200 

FIG.3. Theoretical and experimental masses of even-even nuclei, relative to the values of the liquid drop 
model (spherical), versus the mass number A (taken from Ref.[29]). 
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It may be a disturbing fact that the deformation energy — being such a 
basic quantity — can be evaluated without knowledge of the nuclear inter
action; obviously the nuclear interaction is reduced to the knowledge of 
one single parameter, the fissility x = (Z2/A)/£, and to the shell energy 6U 
which depends only on the single particle energies ev. They can be taken 
from any shell model, as long as it approximately reproduces the correct 
magic numbers for spherical and deformed shapes. 

The shell effects, however, arise from the phase space distributions 
of the nucleons [14], which depend more on the symmetry of the mass density 
distribution and on the size of the mass density distribution compared with 
the de Broglie wavelength, rather than on particular aspects of a nuclear 
force. The qualitative arguments for the validity of the shell correction 
approach have been discussed and reviewed thoroughly [14]. The contribu
tions of Brack and Quentin to this Symposium [26] give quantitative support 
as well. 

Agreement between theory and experiment can never prove the validity 
of a theorem, but one is impressed by the bulk of experience which is 
covered by the Strutinsky approach. These comparisons are the subject of 
reviews [23,27,28]. Therefore, we shall restrict ourselves to only a few 
selected results. They shall demonstrate the power of the method while 
indicating the limitations of the present approximations and the possible 
improvements in the future. 
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FIG.4. Theoretical and experimental ground state deformations Ьг versus mass number A. The data are 
taken from Ref.[29] . 
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In Fig. 3 we present the deformation energies for the ground states of 
the rare earth nuclei and compare them to their "experimental" values, i. e. 
the differences between a fit of the spherical liquid drop binding energies [29] 
and the experimental masses. For the well-deformed nuclei we do not 
observe a serious discrepancy in magnitude or trend, but the shell correc
tions for all spherical nuclei are off considerably. This so-called "lead 
anomaly" has already been discussed in some detail [14]. At present we 
interpret it as being due to the mistake of fitting the parameters of the 
average potential to the spectroscopic single particle states in the lead 
region [14,23], rather than to the binding energies directly. 

This obviously does not affect the ground state deformations which are 
shown in Fig. 4. Possibly, this supports the suspicion that ground state 
deformations are not sensitive at all to the particular assumptions made. 
Nevertheless, it is remarkable that the transition from spherical to deformed, 
and from prolate to oblate shapes seems to be given accurately [29]. 

Finally, we present in Fig. 5 the results of calculations in several 
dimensions, left-right asymmetry included, for the static fission barr iers [30]. 
The latter are defined as the energy of the stationary point of the deformation 
energy and calculated to have a value of 

S = 52.8 (1-2.84 I2) (58) 

Whereas the energy of the outer barrier EB seems to be reproduced quite 
well, we note a serious discrepancy for the inner barrier EA — the curium-
thorium anomaly [30]. A possible explanation for the latter fact is given 
in Section 5 .1 . 

3.3. The collective inertia 

The collective potential energy has central importance, but it is not the 
only piece of information which we need for a dynamic description of the 
fissioning nucleus. According to the action integral, Eq. (28), the mass 

T 1 1 1 1—|—i 1 1 1 1 г 

0 I i i i i l i I i l i i L_ 
U0 H4 148 U0 U4 H8 

N 

FIG. 5. Static fission barriers for U isotopes (#) , Pu isotopes ( • ) and Cm isotopes (A) versus the neutron 
number N. The inner barrier is denoted by E, and the outer by E„. Experimental values are shown by the 
corresponding open symbols. The data are taken from Refs [30, 31] . For the Cm isotopes the experimental 
value of the next heaviest odd isotope is used. 
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p a r a m e t e r s a r e equally important . In the framework of the approximations 
developed in Section 2. 1, we have found those ma t r ix e lements which we 
need for the collective m a s s , according to Eq. (21). If we make use of 
Eqs (51) and (52), we a r r i v e at the express ions 

Bi.(ß) = [ B i j ( ß ) ] 1 + [ B i . ( ß ) ] 2 + [B..(ß)]3 

where the components 

[Vß ) ] i= f t 2 i-I< y 3HS 

[B..(ß)]2 = 2*2 £ <y 
9H„ 

О 
9H„ 
9ßi 

WT 
v><v 

9H. 
sp »Ж -5 

9H„ 
9ß, (E, + E„) 

ЭХ ( е „ - х ) Э Д \ 

xUv 

<У 

ЭН« 
v>-

aß. л aje 

эх (e„-A) эл 

"/ 

9Hsp 

9ß; 
v><v 

9Hsp 

aß, 
v> 

E 

(59) 

(U V + U V) 
y> Lf i_2_—ü-eL (60) 

(61) 

a r e ordered according to their magnitude under normal conditions, i. e. 

f B iA >> [BÜ]2 > [BÜ]3 < 6 2 > 

The leading t e r m is connected to the "diagonal" ma t r ix element 

<v 
ЭН sp *> 

but it should be noted that just this t e r m disappears for a vanishing pair ing 
gap Л . There fore , res idua l interact ions a re especial ly important for the 
collective iner t ia . 

The m a s s p a r a m e t e r s depend strongly on the deformation. This may 
be seen in the example of Fig. 6. The corre la t ion with the undulating shel l 
cor rec t ion energy is ex t remely s t rong, and therefore it may be justified to 
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FIG.6. Mass parameter BCC(=B) and the shell correction energy Е ^ ц for the neutrons of ^ P u versus the 
elongation c. The leading diagonal part of the mass parameter, B1, is shown separately by the dashed line 
(c.f. Eq.(59». 

speak of the shell structure in the mass parameters. This can be under
stood by a simple approximation [14] that is, by considering only the first 
component, [B..^, and replacing the summation by an integration 

geff(E) dE 

Thus 

В = — \<v ЭН 
W 

„ > f i g > d E ^ <—> Wf-
which leads to 

B- < — > 
\ SR / 

eeffw 
(63) 

From this it becomes evident that the shell structure is contained in 
the quantity geff(>), the effective level density at the Fermi energy. 
According to Eq. (63) the mass parameter is proportional to the square of 
the inverse pairing gap, and this proportionality has been checked in actual 
calculations. The mass parameter also has the correct asymptotic beha
viour, (see Fig. 7). For details, we refer to a more extensive presen
tation [21]. The strong energy cut-off, E"5, in the leading term [ B ^ 
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FIG. 1 • Effective mass В of MePu versus the elongation c. Thedistancebetweenthecentresofmassof the two 
forming fragments, 2p, is given in the upper scale. Note that B„„ converges towards its asymptotic value 
Br m , the reduced mass of the separated fragments. 
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FIG. 8. Moment of inertia of 240Pu versus the elongation c. The thicker line represents the moment of inertia 
calculated with the cranking model, the thin line gives the value for a corresponding rigid body. The 
experimental value of the isomeric state is taken from Ref.[32] . 

ensures that only levels close to the Fermi energy contribute at all. It can 
be assumed that this region is described sufficiently well by the phenomen-
ological shell models. Consequently, unlike the case of the deformation 
energy, no renormalization seems necessary. 

Unfortunately, no direct and independent comparison of this piece of 
information with experimental data seems possible at the moment, except 

file:///MevJ


IAEA-SM-174/206 483 

that from our results on the lifetimes one may conclude that the approach 
has at least some validity. 

However, based on the very same approximation, the effective moments 
of inertia can be calculated [14] , i. e. 

I/ I- I м2(иЛ-Ч>У2 

Kfih \vy \ —- — 
1 Ч М и х ' 7 I (Е„ + Е„) 

'"I 
II. v 

If one compares this quantity, taken at the theoretical deformations of the 
ground state and the isomer state, with the respective quantities extracted 
from the important experiments of the Munich group [32], one arrives at an 
agreement which is almost too good, as seen by Fig. 8. 

4. LIFETIMES FOR SPONTANEOUS FISSION 

We restrict ourselves now exclusively to phase I, the sub-barrier region 
of deformation, and calculate the lifetimes for spontaneous fission according 
to the procedure outlined in Section 2. 

4 . 1 . The least action trajectory for ^ P u 

The most important problem is the determination of the least action 
trajectory. The central equation (Eq. (36)) can be solved rigorously by the 
variational calculus of Euler. But within a reasonable accuracy the same 
goal can be achieved more economically and with greater numerical stability 
by searching the trajectory using the following method [21]. One chooses a 
Spline function of degree two or three to pass through a given number of 
points in the space of the deformation coordinates. Along the trajectory one 
calculates the action integral according to Eq. (28). One varies the points — 
the integration limits included — until one has found a trajectory of least 
action. This procedure converges reasonably well to the final value. We 
estimate the final accuracy to one or two units of h corresponding roughly to 
one or two orders of magnitude in the lifetimes. 

The variation of the least action trajectory has been carried out for all 
the nuclei referred to in the following parts of Section 4 for the full space 
of three deformation coordinates (c,h,a). The latter include an elongation (c), 
a neck formation (h), and a left-right asymmetry (a) of the shape; their 
detailed definition may be found elsewhere [23]. 

As an example we select the least action trajectory for the ground state 
fission of 240Pu. In Fig. 9a its projection into the "symmetric" space, i .e . 
c(q) and h(q), is drawn into the contour plot of the deformation energy 
W(c,h, <г=0). In Fig. 9b, its projection into the asymmetric space is shown, 
i. e. c(q) and a(q). The contours in this figure refer to the deformation 
energy W(c,h(q), a). 

It is obvious that the least action trajectory does not pass through the 
saddle points of the deformation energy, but bypasses them at a somewhat 
higher energy. This is not peculiar to this special case and has been 
observed in virtually all of the cases. To some extent it is a consequence of 
the large effective mass at the barr iers , noted in Section 3.4. 
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FIG.9.(a) Deformation energyof г,юРи versus the two symmetric deformations с (elongation) and h (constriction) 
is shown as a contour plot. Equidistance is 1 MeV. The projection of the least action trajectory into the 
symmetric subspace (c,h) is shown by the thick solid line. Note the discrepancy between the static and dynamic 
barriers, (b) Deformation energy w(c, h(q), a) of шРи versus the asymmetry a and the elongation с The least 
action trajectory is shown by the thick line. Note that the projection of the trajectory, i . e . a = 0, coincides 
with the trajectory shown in Fig. 9a. Crosses (x) indicate the line of constant mass estimate, x = 1-43 
(cf. Ed. (68)). 

The same calculations can be performed for the spontaneous fission 
from the isomer state and for the penetration from the second into the first 
well. As it turns out, both these calculations yield virtually the same least 
action trajectory as for fission from the ground state. This may be taken 
as a hint for the physical relevance of the trajectory proper. 
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(MeV) 

fission mode q 

FIG. 10. Qualitative behaviour of the total deformation energy (dashed line) and the liquid drop model energy 
(solid line) versus the fission mode q. The lifetime for ground state spontaneous fission is essentially determined 
by the area below the liquid drop model energy and above the ground state shell correction. In the action 
integral, the shaded areas (almost) cancel. 

4. 2. The role of pairing and of the liquid drop 

According to Section 3.4, the mass parameters depend strongly on 
the pairing gap. Inserting Eq. (63) into Eq. (28), we realize that the action 
integral is roughly proportional to the inverse pairing gap. Changing the 
latter by only 10%, which is a conservative choice of the uncertainty, the 
lifetime changes by roughly five orders of magnitude. Thus, the correct 
choice of the pairing gap is very important. Nevertheless, we have chosen 
the usual parameters [21, 14] corresponding to a pairing coupling constant 
proportional to the surface area. 

Obviously, the action integral is proportional to the area of the deforma
tion energy. As shown in Fig. 10 this area is essentially given by the liquid 
drop energy and the shell correction energy of the ground state. It is evident 
that the other fluctuations, i .e . the areas hatched in the figure, average out 
almost completely. This has been confirmed by an actual check calculation [21] , 
and agrees very well with the early observations of Swiatecki [33] that the 
logarithm of the fission lifetime is proportional to the liquid drop barrier 
plus the ground state shell correction, i .e . 

log T ~ ELD(barrier) + [W(g. s. )]shel l (64) 

Consequently, the lifetime for fission is linked to the true fission barr ier , 
i. e. the one which includes shell corrections and determines the threshold 
behaviour, only indirectly. This is contrary to many statements in the 
literature. 

The lifetime for spontaneous fission is an observable, i .e . model 
independent, while the fission barr iers are not (see discussion in Section 5). 
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FIG. 11. Action integral S along the least action trajectory for 240Pu as a function of the reduced fissility £ . 
S is calculated for the three possible processes: (1) spontaneous fission from the ground state, (2) spontaneous 
fission from the isomer state, and (3) spontaneous decay of the isomer state by penetration through the first 
barrier. "Experimental" values are given on the right side. 

Therefore, one should fit the one relevant liquid drop model parameter, the 
reduced fissility, directly to the lifetime, rather than to the barr iers , as 
done before [30]. In doing so, one assumes tacitly that (a) the calculated 
mass parameters are correct and (b) the shell corrections at the ground 
state are correct. Especially on the latter point some doubt has to be cast: 
There is the 208Pb anomaly [14], which must have consequences on the 
deformed nuclei as well, especially on the behaviour of the shell correc
tions with N and Z. (This anomaly, as observed also in other spherical 
nuclei [23,28,29], has prevented us from calculating lifetimes for super
heavy nuclei. ) In such an approach all these eventual shortcomings will 
show up in the liquid drop parameters and, as we see later, they behave 
rather strangely. 

In Fig. 11 we show how strongly the action integrals for the three 
processes considered depend on the value of ?. We take it as a strong 
argument in favour of the present approach to the dynamics that the life
times of the ground state and of the isomer state both agree with the calcu
lated lifetimes for a single value of £. 

4. 3. Results of the calculations in the actinide region 

First , we determine for each isotope that particular value of ? which 
brings the theoretical and the experimental lifetime for the ground state 
into full agreement. If we plot the obtained values versus I2 , all "experi
mental" values of ? should lie only on a straight line if the present interpreta
tions and calculations are correct. As can be seen from Figs. 12 and 13, 
this holds only within some limits. There is definitely some correlation, 
but a closer look shows that the correlation within one element is by far 
stronger than within one isotope chain. To compensate for the various 
shortcomings of the present calculation (see also Section 5), we choose 
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pre l imina r i ly different values of the reduced f issi l i ty for the different 
e l emen t s . In pa r t i cu la r , these values a r e 

U and P u : 

Cm : 

e lements above Cf 

S = 49 .0 (1 - 1.871 ) 

S = 49 .41 (1 - 2. 12I2) 

? = 50.47 (1 - 2.84I2) 

(65a) 

(65b) 

(65c) 
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FIG. 12. Reduced fissility £ versus I2 = ((N - Z)/A)2. The values of S are obtained by a fit of the 
lifetimes for ground state spontaneous fission to the experimental values. Different parametrizations of the 
reduced fissility ? = E0 ( 1 - K I 2 ) are shown by straight lines. Experimental values are taken from Hyde [34] . 
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Experimental values are taken from Ref.[35]. 
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fission of U-, Pu- and Cm-isotopes plotted versus the neutron number N. The reduced fissility is the same as 
for ground state fission half-lives. The experimental half-lives are compiled in Table I. For Cm, refer to 
Eq.(66). Note the discrepancy between the most recent (larger squares) and the former (smaller squares) 
experimental half-lives of the Pu isotopes. 

The resulting lifetimes are plotted in Figs 14a, b. For elements up to Fm 
the experimental lifetimes — to the extent they were available — have been 
inserted in Fig. 14a. The agreement between the two sets of data is sur
prising, but one should not forget that it was achieved by introducing several 
liquid drop parameters. (Using a single set, one arrives at the results 
shown later in Fig.17. ) Nevertheless, we have used the present parameters, 
given by Eq. (65c), to attempt to make predictions for the heavier actinides 
up to element 110, as shown in Fig. 14b. In this figure we have chosen the 
neutron number as ordinate to show that, while the magic neutron number 
152 is exceedingly strong for the usual actinides [38], it is not a "universal 
constant" but ceases to be magic for just those elements and isotopes above 
and around element 102. (cf. also discussion in Ref. [26] on this point. ) 
As for the quality of the prediction, we refer to the discussion in Section 4.2. 

With the parameters set we have calculated the lifetimes for the sponta
neous fission from the isomer states. They are plotted in Fig. 15 and 
compared with the experimental values which are given in Table I. We 
should like to point out that the order of magnitude is reproduced. Qn the 
other hand, the systematic behaviour shows some discrepancy. It is 
remarkable that the most recent experimental values [38] , which are 
corrected for the de-excitation into the first well, agree much better with 
the present results than the earlier values. Of course, in Cm no isomers 
have so far been observed for the even-even isotopes. To get an order of 
magnitude estimate, we have extrapolated the available even-odd values 
by making use of the systematic odd-even effects in the Pu isotopes, 
according to 

T ( P U . N ) T(Cm,N) = T ( C m , N - l ) . T I 1 L _ ^ T (66) 
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TABLE I. EXPERIMENTAL HALF-LIVES FOR ISOMERIC 
SPONTANEOUS FISSION 

Nucleus 
Z A 

92 236 

238 

94 235 

236 

237 

238 

239 

240 

Half-life 
(nsec) 

110 

2000 

200 

6300 

30 

34 

0.04 

100 

100 

900 

6.5 

0.7 

8000 

3.8 

3.8 

c) 

e) 

b) 

e) 

a) 

c) 

d) 

a) 

b) 

a) 

d) 

b) 

a) 

d) 

Nucleus 
Z A 

94 241 

242 

243 

244 

96 240 

241 

242 

243 

245 

Half-life 
(nsec) 

27 080 b) 

50 c) 

3.5 d) 

60 c) 

0.4 d) 

<2 b) 

15.3 a) 

19 b) 

<2 b) 

38 b) 

23 a) 

Note: The experimental values are taken from the following references: 
a Ref.[31]. 
b Ref.[36]. 
с Ref. [37]. 
d Ref.[38]. 
e Ref. [39] . 
The data of Liukonnen and Metag [39] are corrected for у-branching, estimated from the "missing 

cross-section". 

With regard to the d iscrepancy observed in the U isotopes one may wonder 
whether some correc t ion of the exper imenta l numbers may occur in the 
future as well . 

In Fig. 16 we p resen t our r e su l t s for the de-exci tat ion into the f i rs t 
well . We do not show the absolute l i fet imes but r a t h e r the branching ra t io 
of penetrat ion fac tors . No exper imenta l values a r e available h e r e , so far. 
Whereas the chance of falling back into the f i rs t well is very smal l for the 
Cm isotopes and near ly independent of the neutron number , we predic t this 
branching ra t io to be about 1 for the U isotopes , depending somewhat on 
the neutron number . We predict the same order of magnitude for 236Pu. 
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For increasing neutron number, the branching ratio decreases. The 
uncertainty of the absolute branching ratio is at least two orders of magni
tude, and somewhat less for the systematic behaviour. It is remarkable that 
no effect of the neutron number N= 148, magic for isomeric processes, can 
be observed. In other words, this neutron number should be magic both 
for decay and for isomer fission. 

To conclude this section, and to stress the significance of the fissility 
parameter % for the lifetime, we present in Fig. 17 the fission half-lives for 
the ground state, calculated with 

£ = 50.76 (1-2.64I2) (67) 

being the same for all the actinide nuclei, except Fm and Cf. The dis
crepancy with the experimental numbers is now of course much greater 
than in Fig. 14. Not only the order of magnitude changes, but also the 
peaks within one element are slightly shifted. 

5. IMPLICATIONS OF THE LEAST ACTION TRAJECOTY 

The least action trajectory is a construction which enters the above 
calculations in a decisive way. Does it have physical relevance to aspects 
of the fission process other than the lifetimes? 

In all the work on the fission process the stationary points of the 
deformation energy have been related to the threshold behaviour of induced 
fission cross-sections. This identification deserves a closer inspection for 
two reasons. First of all, as shown in Section 2, the deformation energy is 
the ground state energy of the nucleus at the various deformations. A similar 
construction could be given for the excited states, at least in principle. We 
know that for high excitation the shell effects which are so important for low 
excitation damp out. But, for low excitation around the energies corres
ponding to the fission threshold, these damping effects are small and it 
might be not unreasonable to assume that the deformation energy looks the 
same as for the ground state. This is a working hypothesis subject to later 
correction. Secondly, we have observed in Section 4.1. that the least action 
trajectory for spontaneous fission does not necessarily go through the points 
of stationary deformation energy but bypasses the saddles at energies up to 
2-3 MeV above them. Is it possible that the trajectory is different at higher 
excitations? Some years ago, the question was investigated concerning 
whether the mass parameters depend on the temperature, i. e. on the excita
tion energy. They do. But the change was insignificant for the low excitations 
of 6-10 MeV with which one deals at the threshold and which correspond 
roughly to a temperature of 0.1 MeV. 

5. 1. Dynamic fission barr iers 

If both the deformation energy and the mass parameters are the same 
for ground state and induced fission, their least action trajectory should be 
the same. We repeat: this is a working hypothesis. If so, then the threshold 
energy should be correlated to the local maxima of the deformation energy 
along the least action trajectory and not with the points of stationary 
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deformation energy. Henceforth we refer to these maxima as the dynamic 
bar r ie rs . In Fig. 18 we have plotted them for all those isotopes for which a 
dynamic calculation has been carried out. The liquid drop parameters 
are the same as those used to calculate the lifetimes, cf. Eq. (65). Com
pared with the static values they vary less from one isotope to the other and 
the inner saddle is remarkably constant over the whole region. Compared 
with the values extracted from the experiments, which are inserted into the 
figure as well, they do not have the thorium-curium anomaly as do the 
static ones [30]. Instead, they differ by an almost constant value over the 
whole region. The discrepancy has a different sign for the inner and the 
outer barrier . 

T 1 1 1 1 1—I—i 1 1 1 1 г 
dyn. E B 

J 1 1 1 1 I I I I I L 
140 144 148 140 144 148 

N 

FIG.18. Dynamic fission barriers for U isotopes ( # ) , Pu isotopes ( • ) and Cm isotopes (A) plotted versus 
neutron number N. Experimental values are shown by the corresponding open symbols. The reduced 
fissility £ is the same as for the lifetimes (see (Fig. 14). 

At the moment we do not mind this, rather we stress the point that the 
trend of the theoretical and experimental values is now the same which — 
as so often in physics — might be more important than the absolute value. 
We recall at this point that the shell corrections for the spherical nuclei 
are off as well. All these effects we relate to an inappropriate choice of 
the single particle model, rather than to the use of the Strutinsky method. 

5.2. Dynamic relevance of the self-consistent calculation 

A posteriori we claim that the stationary points of the deformation 
energy have no physical relevance. Most probably the threshold properties 
of induced fission are to be correlated with the deformation energy along the 
least action trajectory, which cannot be obtained without taking the mass 
parameters into account. Consequently, the lowering of the static fission 
barr ier for the heavier actinides due to non-axial degrees of freedom [40] 
are not necessarily dynamically relevant. It must be investigated whether 
the fissioning nucleus proceeds through such shapes. The consequences 
drawn from the static features alone [40,41] may be spurious. 

The above statement implies also that self-consistent calculations may 
give spurious information, as long as they do not explore at least two or 
three dimensions in deformation. They are based on a variational concept 
and if only one shape degree of freedom is included, they drive us by 
definition through the minimal potential energy, i. e. over the static barr ier . 

6 

(MeV) 

2 

n 



494 PAULI and LEDERGERBER 

Consequently, in a dynamical treatment, which of course could be done, 
such calculations should result in lifetimes which are orders of magnitude 
too large, even if the respective barr iers look reasonable. 

5. 3. Pre-formation of fragments 

A more careful inspection of the trajectories shows that the smallest 
among them is found only if, after having passed the asymmetric saddle, 
the trajectory bends back to the line of symmetric shapes (cf. Fig. 9b). 
Does this imply that at sufficiently large deformations the shape again 
becomes symmetric? It is a peculiar and unpleasant feature of our para-
metrization (c,h,a?) that neither the necking h nor the asymmetry a has a 
physical meaning. The latter, a, is related to the mass asymmetry of the 
future fragments only indirectly. To avoid this, the drop was divided 
through its geometrical centre and the mass ratio of the two halves was 
taken as a new measure, which gives [14] 

1+loc3 

This definition is sufficiently simple and unambiguous and goes asymptoti
cally over into the ratio of the fragment masses. For connected shapes, 
X probably has no meaning, but in any case it is a better estimate for the 
mass ratio than anything else, just because it arises from a volume integral. 
As seen from Fig. 9b, the least action trajectory — found independently of 
these considerations — closely follows a line of constant mass ratio 
estimate x. The bending-back of the least action trajectory may now be 
taken as a hint that the mass ratio of the future fragments is more or less 
conserved, after it was built up rather quickly around the second barr ier . 
In other words, we observe a distinct pre-formation of the future fragments 
at shapes which by no means are strongly necked in. Such a pre-formation 
is observed even if the second barr ier is the lower of the two. Therefore, 
the pre-formation is not really a threshold effect as was thought earlier. 
Rather the nucleons may "feel" the shell structure of the future fragments 
already at unconstricted but sufficiently stretched shapes. If nuclei are 
sensitive to those structures already at the second barr ier , one should not 
be surprised if they conserve their composition all the way down to and at 
scission. Some suport for such a speculation is given by the strong corre
lation between the experimental peak-to-peak ratio of the mass distribution 
and our estimate x, which is displayed in Fig. 19. The correlation is linear: 
one may tend to say that x _is the peak-to-peak ratio. 

The pre-formation certainly gives only a mean value of the mass 
distribution, but it should be difficult for the system to override such leading 
order terms, even at high excitation. As an example we present in Fig. 20 
the mass distribution for the spontaneous fission of 257Fm. The mass 
distribution looks rather symmetric, but it could be interpreted as being 
built up by two Gaussian-like distributions, centered at about the vertical bars 
inserted in the figure. The latter are given by our mass ratio estimate 
for 256Fm. 

A full description of the distribution of mass and kinetic energy is 
another problem which cannot be solved just by considering collective 
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FIG. 19. Mass asymmetry estimate x at the dynamic outer saddle plotted versus the experimental mass ratio 
MH/ML of the fission fragments. For г38и and !54Fm two values of x are shown, corresponding to two different 
fission trajectories with almost the same action integral. The figure is taken from Ref.[21]. 

I I i i L_HJ i U i i i i 
70 90 110 130 150 170 190 

FRAGMENT MASS 

FIG. 20. Fragment mass distribution of spontaneous fission of 257Fm, taken from Ref. [42]. The two vertical 
bars represent the estimate x = 1 • 23, as obtained from the calculation for a6Fm (cf also Fig. 19). 

kinetic and potential energies alone. The effects of viscosity, for example in 
phase II of the fission process, are not negligible, as the very existence of 
fragment excitation may show. We should like to stress the point that 
calculations done for phase II of the fission process must result in a simul
taneous description of distributions for the masses and the kinetic energies. 
After 30 years of speculation it seems possible to do this in the framework 
of a unified model. We are looking forward to such developments, the more 
so as another field of activity seems to be so nicely complementary to 
fission, especially to phase II: the scattering of heavy ions. 
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6. SUMMARY AND CONCLUSIONS 

In a series of not very stringent assumptions, a coupled channel equation 
for the state vector of a fissioning nucleus is derived. This approach — 
known as the cranking model — gives a framework for the discussion of 
those quantities which usually appear in the phenomenological collective 
models. In particular, we discuss the collective potential and the collective 
kinetic energy, and leave room for a future inclusion of viscous effects. 

Assuming that the excited states of the system can be understood as 
quasiparticle-quasihole excitations, all terms appearing in the coupled 
channel equation can be calculated with the usual BCS-approach for the 
pairing theory and with the single particle wave functions and eigenvalues. 
For the latter we use the solutions of the Schrodinger equation for a 
deformed average field of Woods-Saxon shape. 

The approach simplifies considerably for adiabatic motion of the quasi-
particles. Formulating a three-phase model of fission, we discuss why the 
adiabatic assumption is reasonable in the subbarrier region of deformation. 
We also discuss why this region determines the lifetime for spontaneous fissioi 

To test this concept, we restrict ourselves to the subbarrier region 
and calculate the lifetime related to barrier penetration in the fission mode. 
The fission mode gives by definition the shortest possible lifetime for a 
given set of deformation parameters. Three types of deformations have 
been included: an elongation, a constriction in the middle and a left-right 
asymmetry. 

After an adjustment of the relevant liquid drop parameters we obtain 
half-lives which agree with the available experimental material to a large 
extent, not only for spontaneous fission from the ground state, but also 
for fission from the isomer state. 

Finally, we discuss whether the so-called static or the dynamic saddle 
should be identified and compared with the experimental threshold energies. 
Last but not least, we observe a pre-formation of the future fission fragments 
within the parent nucleus at and around the second barr ier , which corre
lates extremely well with the empirical peak-to-peak ratio of the fragment 
mass distribution. 

We conclude that the traditional Bohr-Wheeler picture of the fission 
process is valid, if only the proper collective potential and collective 
kinetic energies are used. Both quantities depend significantly on shell 
structure. The results give additional evidence that Strutinsky's shell 
correction method is essentially correct. 

We also conclude that the assumption of adiabatic motion is justified 
for the subbarrier region. This conclusion is not affected by the observa
tion of excitation energy in the fragments, as the distributions of mass, 
kinetic energy and excitation energy will develop at a later stage, behind the 
barr ier region. 

Essentially the same methods can be extended to the post-barrier region 
and the scission region. In the future, the latter deserves more investigation, 
both experimentally and theoretically. 
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DISCUSSION 

J. R. NIX: First of all, I agree that in spontaneous fission the path of 
maximum penetrability will in general not lead over the static saddle point. 
But in induced fission, where the energy lies above the saddle point energy, 
standard statistical arguments tell us that most of the time the nucleus will 
proceed along a path close to the saddle point, where the penetrability is 
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close to unity, rather than along a path where it must penetrate a 2-MeV 
potential barrier.' Secondly, 1 feel that at present we are able to calculate 
the potential energy more accurately than the kinetic energy. It therefore 
seems strange to accept the calculated inertias and adjust the potential 
energy. Do you know of any experimental confirmation of the large fluctua
tions in the inertias that you calculate with the cranking model? 

H. C. PAULI: Any effective mass is meaningful only with respect to a 
particular choice of deformation. As we do not really know which deforma
tions nature likes to use, it is a difficult problem to find experimental 
evidence of a fluctuating effective mass. In addition, let me remind you 
that — as Dietrich and Hofmann once pointed out — any oscillation in a 
mass can be transformed away in a one-dimensional space. The mass just 
tells us how "thick" a barrier is. This brings me to your question. If we 
do not calculate the masses and the potential with the same types of deforma
tion, we lose track of the metric. Even if the cranking model were inaccurate, 
it does keep track of the metric. As mentioned in the paper, renormaliza-
tion does not seem to be necessary, as only few levels around the Fermi 
energy contribute at all. With regard to your first point, in a multi
dimensional approach you must remember that "penetration" is actually 
an overlap of the total wave functions in deformation space. This overlap 
is probably smaller at the static than at the dynamic barrier. The dynamic 
barrier lies on the "classical" trajectory, where the wave function is large 
by definition. 

L. WTLETS: I would like to raise a word of caution in regard to using 
the adiabatic cranking (squeezing)-model mass parameter for barrier pene
tration. That method assumes a classical deformation parameter developing 
in time with a real velocity. This makes sense so long as the collective 
kinetic energy is positive. This is the case for rotations, translations, and 
over-the-barrier quadrupole deformation development. P.K. Haff and I 
have developed a modified generator co-ordinate method which is related to 
cranking above the barrier but is different below. We do not have quantita
tive results at present, but the indications are that the subbarrier mass 
parameter is less. 

H. C. PAULI: I do not think it is a matter of real or imaginary velocity. 
It has been shown by Nörenberg (Ref. [8] of this paper) that the generator 
co-ordinate method gives the cranking model expression without very 
stringent assumptions. Unfortunately, I did not know about your work and 
therefore I am not sure at the moment how to resolve this contradiction. 

J. J. GRIFFIN: The inclination of Nix and Wilets to dichotomize the 
subbarrier fission from the super-barrier fission prompts me to say that 
the empirical evidence on fission does not seem to support any qualitative 
difference between penetrative fission and fission with positive energy above 
the barrier. 

With regard to your correlation between inertia and level density, it 
seemed to me that the correlation was not so strong and I would like to 
suggest that, if the comparison were made against the density of level 
crossings instead of the density of levels, the correlation might be much 
improved, since we know that level crossings dominate the inertial para
meters in simple models. 

H. C. PAULI: The simple formula of the mass parameter holds only 
on the average. As we have shown in detail in a recent paper2, there are 

2 LEDERGERBER, Т . , PAULI, H.C. , Nucl.Phys. A207 (1973) 1. 
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pathological situations where it does not hold at all. Otherwise, I agree 
with you. 

U. MOSEL: I would like to support your reply to Nix that the mass 
parameter may be expected to be as accurate as the potential energy surfaces. 
However, we have learnt from the work of Wilets and co-workers and of 
Brack and Quentin that the latter are accurate only up to 1-2 MeV. Since 
the main point to emerge from your paper was the difference between the 
static and the dynamic path, it is interesting to note that the latter misses 
the saddle points by only 1-2 MeV, i. e. within the limits of uncertainty of the 
method. This inaccuracy is even increased here by the corresponding 
uncertainties in the mass parameter. It should, therefore, serve as a note 
of warning that the strong conclusions you have drawn are based on results 
which are within the range of uncertainty of the method used for their calcu
lation. This would be more evident if we theorists were to adopt the experi
mentalists' method of drawing error bars on the potential energy surfaces 
and mass parameters. 

H. C. PAULI: I am always grateful for warnings,and certainly we are 
not free from er rors . However, it would be hard for me to agree that we 
should be out by 1-2 MeV at the dynamic but not at the static saddles. 
Brack's calculations rather indicate a systematic error . Actually I am glad 
that we have now got a discrepancy in the barrier heights (dynamic), as 
we should have agreement with experiments. I always found it difficult to 
understand why the Strutinsky method applied to the levels of a Woods-
Saxon well produced good results for deformed shapes but not for spherical 
ones (the 2"8Pb anomaly). Now we have the first hint that something might 
be wrong with both. Perhaps if we improve one of them, better results will 
also be obtained for the other. 

J. RANDRUP: It might be of interest in this context to mention some 
results we have recently obtained at Berkeley on the calculation of spontaneous-
fission half-lives in the actinide region. We used the modified oscillator 
model to establish potential energy surfaces, including the effects of axial 
asymmetry in the first-barrier region (by the method reported by Larsson3 

and of reflection asymmetry in the second-barrier region (as described in 
Moller's work). We used the same method as Pauli to readjust the surface-
energy coefficients in the liquid drop model. However, in contrast to 
Pauli, we made the readjustment so as to bring the second barriers into good 
agreement with the available experimental information. Then we calculated 
the fission half-lives by the simple WKB method, using a one-dimensional 
fission path passing through the minima and saddle points in the multi
dimensional distortion space. For the associated inertial-mass function we 
simply took a smooth function resembling the irrotational-flow mass but with 
one adjustable overall scaling parameter. This one and only free parameter 
in the approach was then fixed by a fit to known fission half-lives. The 
corresponding half-lives are shown in Fig. A. 

It turns out that with this simple method it is actually possible to 
reproduce the experimental half-lives to within a factor of 25 on the average 
(i .e. 1.4 in the logarithm), which we consider most encouraging. It should 
also be noted that this method provides some semi-empirical information 
on the inertial-mass function. 

LARSSON. S.E., LEANDER, G., Paper IAEA-SM-174/06, these Proceedings, Vol.1. 
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FIG-A. Spontaneous fission half-lives ti as a function of neutron number N for even-even nuclides in the 
actinide region Z г 92. 

H. C. PAULI: You might have everything correct in your treatment 
but you have lost the metric and that is the essential thing. Even if the 
inertia is wrong here and there, I think the present approach gives us the 
correct metric for the deformation. 

R.W. HASSE: I do not think that your statement about shuffling all 
the information about the masses into the collective co-ordinates is correct. 
To the best of my recollection, according to Hofmann and Dietrich's paper, 
you can only do this with one co-ordinate. 

Secondly, I am strongly in favour of Nix's standpoint and opposed to J. J. 
Griffin's. We have just learnt from Pauli that the mass distributions 
probably only contain information on the potential energy surface between 
saddle and scission and no information about the barrier region. Thus there 
need not be a rapid change in the experimental data going from spontaneous 
to induced fission. 
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Finally a question about the least-action (minimum-time) method. I 
remember Michel Baranger talking about the tunnelling time always being 
zero. Has this discrepancy been resolved yet? In addition, I feel that finding 
the minimum-time path is only half the problem, as you also have to take 
the number of impacts into account. Thus it may be that the number of 
impacts needed to tunnel along your path is much higher than the number of 
impacts in the direction of the saddle, so that although the time required to 
tunnel through the saddle is longer, penetration may still be easier to achieve 
via this path. 

H. C. PAULI: I do not see any contradiction between Baranger's point 
of view and ours. The time needed for penetration is zero — a jump such 
as an electron makes in an atom. To some extent we use the time as a 
generator co-ordinate, entering via q(t), and we finally consider the overlap 
of wave functions to get a probability. 
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Abstract 

VISCOSITY IN THE FISSION PROCESS. 
The fission process is often described in the adiabatie limit. The dynamical path is determined by an 

adiabatic potential energy surface and kinetic energy with mass parameters calculated by the cranking model. 
A model calculation for even-even nuclei is performed to study deviations from adiabaticity. The Hamiltonian 
consists of the sum of (1) a time-dependent Nilsson-type Hamiltonian, the deformation parameter of which is 
either a prescribed linear or oscillating function of time or is determined by energy conservation in the mean, 
(2) a pairing force of the BCS type between time-reversed Nilsson states, and (3) a small residual interaction 
between quasi-particle states, the matrix elements of which have random sign. There is no interaction between 
states of different isospin (n-p). In the calculations, the Hilbert space is limited to the BCS ground state and 
a limited number of two quasi-particle excitations corresponding to the lowest energies of excitation at each 
deformation. Within this space, the time-dependent Schrödinger equation is solved numerically. The difference 
between the expectation value of the Hamiltonian and the cranking model expression for the collective energy 
can be interpreted as viscous heat only as long as this difference is small. Calculations have been performed 
for calcium and uranium. 

1. INTRODUCTION 

A quantitative understanding of the nuclear energy-of-deformat ion 
surface has been made poss ible by the impress ive efforts of Strutinsky and 
co l labora tors [ 1 ] , by other groups using the i r methods [ 1 ] , and by con
s t ra ined H a r t r e e - F o c k calculations [ 2] . This r e p r e s e n t s only half of the 
problem of fission, namely, s t a t i c s . The other part , the dynamical problem, 
has been studied mainly in the adiabatic l imit of the Inglis cranking model 
[ 3 ] . To examine the validity of i t s adiabatic approximation, we have made 
calculations in the framework of this model . 

We a s sume a Hamiltonian H(a(t)) where a is a (quadrupole) deformation 
p a r a m e t e r . We ei ther p r e sc r ibe the t ime dependence of a o r we introduce 
a phenomenological potential V(a) and use conservat ion of energy in the 
mean to de te rmine the t ime dependence of a. The eigenstates фп of the t ime-
independent Schrödinger equation Нфп(г,а) = En(o)^/n do not satisfy the t i m e -
dependent Schrödinger equation. The expectation value of H can be evaluated 
a s < H > = E 0 (a) + l / 2 B(o)ä2+ (higher o r d e r t e r m s in the der ivat ives of a). 
We will not enter into a full discussion of the evaluation of the m a s s pa ra 
me te r В (in genera l a t enso r Вц) h e r e . Although we believe that t he r e a r e 
be t te r ways of calculating В (especially by modified genera tor coordinate 
techniques [ 4 ] ) , we use in this paper the Inglis expression for В to determine 
the collect ive kinetic energy, 1/2 Bu2 . 

The t e r m <*2 i s said to a r i s e from "vi r tua l" exci ta t ions . The distinction 
between "v i r tua l" and " r e a l " excitation in a cranking model is art if icial 

* Supported in part by the US Atomic Energy Commission. 
*' Supported by NATO funds. 
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because energy is not conserved anyway1. Loosely speaking, the second 
o rde r (mass pa ramete r ) effects a r i s e from excitations from and to the ground 
s t a te . Higher o rder p r o c e s s e s can lead to excitations which do not lead 
direct ly back to the ground s t a te . The s imples t example is the two-level 
c ross ing model of Landau-Zener which leads to a "permanent" excitation. 
Level spec t ra in the fission region a re too complex to be modelled in t e r m s 
of pa i r -wi se level c ros s ings . This type of excitation has been descr ibed in 
t e r m s of diffusion of probabili ty [ 5] . The resul t ing m a s t e r equation is 
based upon the incoherence of the excitations because of the l a rge number of 
s ta tes avai lable . This mechanism can be checked by the present calculation. 

In any event, what is of in te res t a r e those higher o rder t e r m s which 
a re not t ime r e v e r s i b l e . The magnitude of the resul t ing excitation (nuclear 
heating) plays an important ro l e in fission and other collective phenomena. 

We f i rs t descr ibe our model, which i s based on a Nilsson-type IPM 
plus pair ing plus res idua l interact ion. Three types of t ime dependence for 
a(t) a r e considered: l inear , osci l la tory and " se l f - cons i s t en t . " P r e l im ina ry 
numer ica l r e su l t s a re presented f o r 4 Ca and U. The model presented is 
highly schemat ic and further calculations a r e in p r o g r e s s . 

F o r an internally consistent calculation, which avoids the problem of 
the infinite energy r e s e r v o i r of the cranking model, we would propose solving 
the equation 

-> —* 
•ф(г,аО = E * ( r , a) 

where H = H (a) has the same meaning a s e lsewhere in th is paper . This 
equation i s second o rder in a r a t h e r than f irst o r d e r in t i m e , and hence 
somewhat m o r e difficult to solve than that descr ibed below. 

2. MODEL 

Our model is defined by the pa i r ing-p lus - res idua l Hamiltonian, 

H = X e " a ^ - f Xa*'a"'a"a*+Vt (i) 

The single par t ic le energies e„ a r e eigenvalues of a Nilsson-type single 
par t ic le opera tor with simplified forms for the spin-orbi t and $2 t e r m s : 

h = t + ^ M (cj2z2 + u | ( x 2 + y 2 ) ) + Cm sm + Dm2 (2) 

ey = e (nz, np , m s , m) = <oz (nz+~j + wx(2np + | m | +1) + Cm s m + Dm2 (3) 

Volume conservation is a s s e r t e d by 

w z w x - u 0 (4) 

As a deformation p a r a m e t e r we define 

H ( r , p ;a) 1 Э 
2 да Bn(a) da £- + V(«) 

a = u 0 /u z 
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The res idua l in teract ion i s defined below. We ei ther p r e s c r i b e a t ime 
dependence for a in analogy to the cranking model o r add a phenomenological 
potential У (a) to the Hamiltonian and de te rmine ä by energy conservation 
in the mean . 

The BCS-ground state of the opera tor H0 = H-Vr i s denoted by J0>. 
Excitat ion energ ies a r e measu red re la t ive to this ground state energy. With 
the help of quas ipar t ic le creat ion ope ra to r s , a^, excited s ta tes |n> of an 
even-even sys t em descr ibed by H0 can be writ ten as two-quas ipar t ic le 
exci tat ions: 

\n> =alal,\0> (5) 

With v' = ( n l
a , n j , m j

l , m l ) , then V = (n z ,np , -m s , - m ) . We will he r e l imit 
considerat ion to two-quas ipar t ic le exci ta t ions . Because we a re dealing 
with axial symmet r i c deformations, it follows that ms(v) + m s ( ^ ' ) = 0 = 
m(v) + m{v'). The excitation energy is E n= [ (e^-X)2 + Л 2 ] 1 / 2 + 
[ (e„.-X)2 + A2]1 , with X the chemica l potential and Athe gap p a r a m e t e r . 
In our calculat ions, we take a constant value of A for each nucleus and 
readjus t X at each deformation in o rder to keep the mean value of the pa r t i c le 
number constant . 

All calculat ions a r e performed in a Hilbert space spanned by a l imited 
number of two-quas ipar t ic le s t a tes corresponding to the lowest excitation 
ene rg i e s . Within this space we solve the t ime-dependent Schrödinger 
equation 

iip = ttip (6) 

In the expansion 

t 

^ = ^ a n ( t ) e |n> (7) 
n 

the coefficients an, the energ ies En and the s t a t e s |n> depend on t i m e . This 
expansion i n se r t ed into the Schrödinger equation yields a sys tem of l inear , 
f i r s t o r d e r differential equations (with да=д/да). 

i a m = m 
n 

o r in m a t r i x form 

< m Vr n> - i ö < m Э„ n > - 1 ' (En-Em)* ' (8a) 

iä = gä. (8b) 

Because of the p roper ty < m I 3„ I n> = - < n | 3„ I m>"" no s ta tes of the form 
2 | n -n> a r e excited by the opera to r 3 a : the ma t r ix of 3„ i s reducib le . 
Therefore we r e s t r i c t ou r Hilbert space to the symmet r i c combinations 
2_1^2|n + n> if n and n a r e different. These combinations a r e now denoted 
by | n > . In th is space we r e p r e s e n t the res idua l in teract ion Vt by non-
diagonal ma t r ix e lements of constant absolute value and random sign; the re 
a re no ma t r ix e lements between the ground s ta te and any excited s ta te . The 
essent ia l effect of a r e s idua l in teract ion i s to prevent l e v e l - c r o s s i n g s . 
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3. FIRST ORDER PERTURBATION THEORY 

The basic assumption of time-dependent perturbation theory is that there 
is a dominant state (here the ground state) with a0= lj the amplitudes of 
other states are taken small compared with unity. The adiabatic limit is 
obtained by further assuming that the variation of the matrix elements and 
energy eigenvalues is slow; that is, that there is a scale of time which is 
taken long (a, 'djct, etc. go to zero). The following gives the amplitudes to 
order ce, but is also exact (in first order) if the matrix elements and energies 
are constant in time: 

<n|a Jo> 
a „ ~ la • < exp i / (En-E0)dt' + const У (9) 

We here denote by |n> the adiabatic eigenstates of the complete Hamiltonian, 
including Vr . A minimum in < H> obtains in the mean when the constant is 
set equal to zero. The adiabatic cranking model mass parameter is given 
by the identification 

(10) 

< H > 

В = 2 

= Ec 

I 
(or) + J В Ö-2 

I < n | 8 j 0 > | 2 

E n " E 0 

4. SOLUTION OF THE TIME-DEPENDENT SCHRÖDINGER EQUATION 

Numerically, the system of differential equations (8) is solved by 
proceeding by time steps At according to 

a(t + At) = l + i f G(t+f, i - i f S ( t + f ) a(t) (11) 

which is correct through order (At)2. Note that because the transformation 
going from a.(t) to a.(t+At) is unitary, it is unconditionally stable. The 
difference between the exact solution and the numerical solution after a 
time T is smaller than At2-T- M, where the constant M is given by upper 
bounds of the norms of the matrix G and its first and second order time 
derivatives. 

In a cranking model the total energy is not conserved but the expectation 
value is a function of time: 

< H > = ^ E n | a n | 2 + ^ a ; a m < n | V r | m > (12) 

Because of the small size and random sign of the matrix element of Vr, the 
last term in Eq.(12), is omitted. This energy contains both collective energy 
and single particle excitations. 
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5. RESULTS AND DISCUSSION 

Preliminary studies have been made in Ca and U. 
The two-quasiparticle spectrum as a function of a for 40Ca is shown in 

F i g . l . The parameters are given in the caption. Although we studied 
excitation with ä = constant, we found the form a = a0 + ecosvt to be more 
useful. By varying e and v we can vary the amplitude and mean square 
velocity. Therefore, the excitation energy can be studied for fixed a as a 
function of time. Results of such studies are shown in Figs 2 and 3. Only 
neutrons or protons are considered. The excitation energy rises initially 
roughly linearly with time. At late times (when the ground state is depleted), 
one would expect a growth <H> «-JT[5]. 

The viscosity effects which interest us here are necessarily of order 
higher than u2. They involve features of the solution which are non-time-
reversible. The Schrödinger equation is, to be sure, time reversible; the 
irreversibility has to do with the choice of initial conditions. If we begin 
with a state of low excitation, it will, in general, develop with time to a 
state of high excitation. We expect, therefore to find 

d<H> 
dt 

a function which is even in the time derivatives of a 
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PAIR EXCITAT ONS 238U 
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a 

FIG.4. Two-quasiparticle speotium for 23SU. A=0.76MeV. Numbers are identification code used in the 
computer program. 

Since to o r d e r or2 the sys tem is adiabat ic , the lowest o r d e r dependence would 
he it4, ö 2 й, 'ä. In the case of osci l lat ions all t e r m s a r e proport ional to 
v4, which can be rep laced by < &4> = | (ve)4 . We find, for the 40Ca case 
studied, d < H > / d t = D<&4> with D ~ 100, 

The spreading width can be ext rac ted in the following manner . The 
occupation probabil i ty of the dominant (ground) s tate should decay with 
t ime , for ear ly t i m e s , according to 

« e o r Г = - d In | a0 | / dt 



a a a 

FIG. 5. (a) The excitation < H> for 238U sliding down a parabolic barrier V(og) - j c (o-ag)2, with 
С = 300 MeV, Vr = 0.2MeV, В= 200MeVM. 05 = 1.8 corresponds to the deformation of the second barrier. 
The horizontal line is the total energy available. The distance from the parabola to the arrowed path is 
\ B06?. The distance from the path to the horizontal line is <H>. The outgoing trajectory <y(t) is determined 
by energy conservation in the mean. On the return path, o(t) is given by the time reversed history of the 
outgoing o;(t) and there is then no energy conservation. The difference in < H> upon return is to be identified 
with irreversible viscous heat; (b) same as Fig. 5a, with Vr = 0.1 MeV, B0 = 200 MeV"1; (c) same as Fig. 5a, 
with Vr = 0.2 MeV and B0 =100 MeV"1. 
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In the 40Ca example reported here, which is not realistic, we find Г ~ О. 02 
MeV. It would be of interest to study this width as a function of the 
vibrational amplitude e, identifying e with the vibrational quantum state n by 

(2n+l)/Bi/ 

When T>v, the collective nature of a state begins to disappear. 
For the study of a fissioning nucleus, we use a "self-consistent" 

prescription for determining ä(t). Instead of prescribing the function a(t) 
a priori, we add a phenomenological potential V(a) to the Hamiltonian and 
use the conservation of the total energy in the mean: 

E = <H> + V(a) + | B 0 Ö 2 (13) 

where E is (say) the initial value of the right-hand side. In the calculations 
reported here, only neutrons contribute to <H>. B0, here taken as a 
constant, is to be interpreted as the contribution to the mass parameter 
from the protons and the core of neutrons not included in our Hilbert space; 
it is called the partial mass parameter. <H> is the sum of both inertial 
kinetic energy and excitation energy contributions. A separation of these 
contributions is not required for the dynamical calculations. Note that 
double counting has been avoided in Eq.(13). By including protons and 
extending our Hilbert space, we could eliminate Bo completely. It is 
mathematically convenient to utilize B0 to advance the system in time by 
solving 

^Ba&
2\ . = E - < H > | + V(a) I , (14) 

The two quasi-particle spectrum of U for large deformations is 
shown in Fig.4. The excitation energy <H> as a function of a as the nucleus 
slides part way down the second fission barrier is shown in Fig. 5 for various 
values of the residual interaction and partial mass parameters. The 
starting value of the partial kinetic energy \ Boö2 was chosen to be 0. 5 MeV. 
Amplitudes were distributed over excited states according to the first order 
adiabatic solution of the cranking model. The initial decrease in <H> shows 
that even for the initial a, the first order adiabatic solution overestimates 
the excitation. In terms of occupation probabüities, this is also seen in 
Fig. 6, where we find that the total excitation probability first decreases 
and later increases. 

At the deformation a = 2, the system is squeezed back along the same 
time path from which it came. Upon return to the starting point, we obtain 
a difference in <H> between 1.5 and 1.8 MeV. Half of this difference might 
be identified with the viscous heat of the nucleus at a = 2. By allowing for 
necking-in and carrying the calculation to the point of scission or beyond, 
the separation of < H > into inertial kinetic energy and heat could be made 
uniquely, since then the kinetic energy is known exactly. 

Our calculations indicate that, once the system is excited out of the 
BCS ground state, then it behaves more diabatically than adiabatically; 
namely, the jump probability is nearly unity at a level crossing. This can 
be seen by the insensitivity of the excitation energy to Vr (compare Figs 5a 
and 5b). We also find the surprising result that non-reversible effects are 
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FIG. 6. Analogue to Fig.3 for the fissioning nucleus 238U; parameters are the same as for Fig. 5a except 
B0 = 350 MeV" 

smaller for higher & (Fig. 5c, B0 = 100 MeV) than for lower a (Fig. 5a, 
Bo = 200 MeV). This further indicates that we are closer to a sudden, 
rather than adiabatic, limit. 

It is seen in Fig. 6 that the ground state is depleted to a large extent 
during the process; thus one of the basic assumptions of the adiabatic 
solution of the cranking model is violated. Another reason why this solution 
is probably inadequate is the rise of a/& from zero to 0. 8 MeV while the 
nucleus slides down the barrier . We found in this case that the collective 
kinetic energy 1/2 B&2 increases more rapidly with increasing & than does 
<H>. 

6. CONCLUSIONS 

From preliminary calculations performed with the simple model, we can 
already draw several conclusions. 

Calculations on oscillatory deformations for Ca show that nonadiabatic* 
effects can play an important role. Such calculations permit the extraction 
of a viscosity coefficient and a spreading width. 

The fission barr ier calculations point up the failure of the first order 
adiabatic form for the collective kinetic energy, 5 B<?2, where В is the 
INGLIS mass parameter. In particular, we found that this term is greater 
than the calculated <H> even for the moderate energies involved. Thus <H> 
increases more slowly with d than the expected quadratic dependence, even 
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though about 1/3 of <H> is time irreversible: For the limited barrier 
calculations performed, we find the remarkable result that higher order 
processes may speed up the fission dynamics even though viscous heating 
maybe significant. Ultimately, of course, viscosity will reduce late-stage 
velocities. 

Further calculations are planned to include the use of more realistic 
IPM potentials, with appropriate paths through the deformation space 
(especially necking-in of the potential towards scission), and the extraction 
of parameters for comparison with phenomenological models and experiment. 
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DISCUSSION 

K. DIETRICH: Your results are very interesting and I should like to 
know how much the production of viscous heat is increased when you switch 
off pairing. Have you done such a calculation within your model? 

L. WILETS: We have not switched off pairing. A similar situation 
would be to have appreciable excitation above the superconducting ground 
state. In either of those cases it would probably change our conclusion that 
d <H>/dt ~ ö 4 (which is valid for short times, beginning in the BCS ground 
state) to d<H>/dt ~&2. 

H. С PAULI: You mentioned that the cranking model might work 
especially well because of the level spacing of single-particle states. Let 
me recall that down the fission valley (conserved pre-formation, see also 
Mosel's results) the shells are conserved, which means that the level 
spacing is essentially a constant. Thus one might conclude that the cranking 
model would work especially well there. 

L. WILETS: At very late stages, at scission and beyond, the cranking 
model should work well to yield the correct collective kinetic energy. 
Before scission, the first-order adiabatic cranking model, based on the 
deformed ground state, could become suspect — it fails in the vicinity of the 
barr ier . 

S. BJ0RNHOLM: Pauli has raised a very interesting point because, as 
I understand it, in rotation there is no viscous loss and therefore in Mosel"s 
valley there is no change of a single particle and no crossing, which means 
that you run down it without viscous loss. 

L. WILETS: Well, eventually that is right. 
S. BJ0RNHOLM: Yes, but not from the beginning. The valley extends 

all the way from the barrier down to scission but at the end the neck becomes 
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thin; we can believe that things are moving without great viscous losses 
because the neck is thin —but not at the beginning. 

L. WILETS: There are different regions and one has to be very careful. 
There will continue to be viscous heating until it eventually goes over to a 
translation, where the cranking model ought to give the right mass parameter 

U. MOSEL: In the context of Dietrich's question I should like to mention 
that D. Glas and myself have performed calculations at Giessen for the 
"inverse" problem of heavy ion scattering. These calculations are very 
similar both in spirit and in method to those performed by Schütte and Wilets. 
Although no pairing is used, the jump probability to higher non-adiabatic 
channels is found to be very high. Even at fairly small relative energies just 
above the Coulomb barrier the probability that the two ions will emerge from 
the interaction region in their ground state, i . e . in the elastic channel, is 
found to be very small, of the order of Ä 1%. 
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Abstract 

CONSERVATION OF SINGLE PARTICLE QUANTUM NUMBERS IN FISSION. 
It is shown in a calculation of single particle energies for a finite potential well that the total energy 

of the nucleus at scission is smaller for an asymmetric scission configuration than for a symmetric one if 
the single particle quantum numbers are conserved between the saddle point and the scission point. 

A dynamical model is used to investigate the problem of the conservation of these quantum numbers in 
the transition from the saddle point to the scission point as a function of the time scale of this transition. 
The initial shape of the potential is the saddle point shape of the nucleus (A, Z) as predicted by the liquid 
drop model. The shape of the potential is changed continuously as a function of time to that of the 
scission configuration. The time-dependent Schrödinger equation is solved for the transition and in this 
way the nuclear configuration at the scission point is arrived at. 

Based on the present calculation we have indications that the single particle quantum numbers are 
partially conserved in the saddle-to-scission transition. Thus the mass asymmetry at scission may in part 
be the result of dynamical effects of the fission process. 

Another consequence of the partial conservation of the single particle quantum numbers is that the 
saddle-to-scission transition excites single particle degrees of freedom in the nucleus or, in liquid-drop-
model language, the transition causes viscous hearing of the nucleus. 

1. INTRODUCTION 

It was pointed out by Griffin [1] that a rapid collective motion of 
the fissioning nucleus from the saddle point to the scission point may lead 
to potential energy surfaces which favour an asymmetric mass division. This 
conjecture is based on the fact that in such a motion the single particle 
energies do not follow the lowest static solutions of the Schrödinger equa
tion for a nucleus with residual interactions (which would be the case for 
a very slow ("adiabatic") motion) but follow more closely the static solu
tions for a nucleus without residual interactions in which the single 
particle quantum numbers are conserved. This subject has also been dis
cussed by Hill and Wheeler [2]. 

Let us denote by n the number of particles.in the nucleus and by VR 
the sum of the n lowest single particle energies for rapid motion (which 
conserves single particle quantum numbers) and Vs the sum of the n lowest 
single particle energies for slow motion (in which, due to the residual 
interaction, the single particle quantum numbers are not conserved) then 
VR — ̂ S • The difference VR - Vs depends on the shape of the nucleus. 
According to the conjecture of Griffin, (VR - Vs) is quite large for symmetric 
scission shapes whereas there exists a family of nuclear shapes extending 
from the symmetric saddle point configuration to an asymmetric scission con
figuration for which VR = V$ , i.e. VR at each stage in the transition from 
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saddle point to scission follows the lowest potential energy surface. Thus 
rapid motion from saddle point to scission may favor asymmetric fission. 

A similar conjecture has been made by Kelson [3] and Brandt and Kelson 
[4]. They also show that mass asymmetry in fission may be the result of 
conservation of single particle quantum numbers. However, contrary to 
Griffin's conclusion that mass asymmetry is the result of the rapid transi
tion from the saddle point to scission, Brandt and Kelson consider the tran
sition of the nucleus from the ground state to the saddle point to be 
responsible for the mass asymmetry. 

In the present paper we shall be concerned with the transition between 
the saddle point and the scission point, i.e. with the mechanism proposed by 
Griffin. We shall try to answer, at least partially and within the context 
of a very simplified model, two questions: 

(1) What is the dependence on mass asymmetry of the difference 
(VR " ^s) ' whi-cn in the Griffin model determines to a large extent the 
predominance of asymmetric over symmetric fission. 

(2) What must be the time scale of the transition from saddle point 
to scission for the assumption of approximate conservation of single part
icle quantum numbers to hold and how does this time scale compare with the 
transition time obtained by Nix [S] in his calculation which is based on a 
non-viscous liquid drop model. 

Other questions of fundamental nature arise with respect to the 
Griffin conjecture. These will not be discussed here. It is clear, however, 
that the question whether the saddle-to-scission transition is rapid or 
adiabatic, or, in classical language viscous or non-viscous, is of funda
mental importance to our understanding of the fission process and not 
restricted to the Griffin conjecture. 

2. THE MODEL 
2.1. The static model 

In order to answer the first question, namely the dependence of 
(VR - Vg) at scission on the mass asymmetry we must calculate the single 
particle energies of the nucleus. In our model the nucleus is described by 
a finite potential well which is filled with Z "protons" and A-Z 
"neutrons" with no spin-orbit force and no residual interaction (pairing). 
The depth of the potential is equal to the Fermi energy plus the binding 
energy of the last proton (neutron). The boundary of the potential at the 
saddle and scission points is taken to be that of the nucleus as given by 
the liquid drop model [5]. Figure 1 shows this shape for the nucleus zlfyv 
at the saddle point and the scission point for symmetric and asymmetric 
scission configurations. The asymmetric scission shapes were obtained from 
the symmetric one by changing only the volume ratio of the two fragments. 
Since the liquid drop shapes are cylindrically symmetric they may be best 
described by cylindrical coordinates. Denote by PSAD( Z) tne envelope of 
the saddle point shape and by psci(Z) this function for the scission 
shape, then the intermediate shapes between saddle and scission points are 
obtained by the relation 

P 2(6,Z) - P ^ C Z ) • (p^jCz) - p ^ c z ) ) . * (i) 

where В changes continuously from ß = 0 at the saddle point to В = 1 at 
scission. This family of shapes follows closely the liquid drop shapes and 
explicitly conserves the nuclear volume. 
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FIG. 1. The saddle-point and symmetric scission shapes of the 237 Np nucleus (as calculated in Ref. [ 5]) 
and two asymmetric scission shapes with the fragment volume ratio of R = 1.3 and R = 1. 8. 

Since our model does not include a residual interaction between the 
nucleons, the single particle quantum numbers are inherently conserved 
during the change from the saddle-point shape to the scission shape. 
(VR(ß)-Vg(g)) is therefore readily obtained from our model: Vg(ß) is equal 
to the sum of the Z lowest single-particle energies in the proton poten
tial and the (A-Z) lowest energies in the neutron potential for any given 
value of g. VR(S) is obtained by adding up the energies of the same Orbi
tals which are the lowest ones at the saddle point configuration (but not 
necessarily the lowest ones for other values of g). In the present paper 
we are in particular interested in the dependence of (Vf>(g=l)-Vg(g=l)) on 
the mass asymmetry. 

2.2 The dynamic model 

In order to determine to what extent the single-particle quantum 
numbers are conserved in the transition between saddle point and scission 
one must in principle solve the time-dependent Schrödinger equation for this 
transition. The nuclear potential part of the Hamiltonian is changed as a 
function of time from the saddle shape to the scission shape according to 
Eq. 1 except that now g is a function of time. It should be chosen so as 
to reproduce as accurately as possible the time sequence of the nuclear 
deformations in the fission process. Denote by ф^(0) the i-th single-
particle eigenfunction for the saddle point configuration and by ijij the j-th 
function for the scission configuration. Denote by ^(t) the time-depen
dent wave function which evolved from ф^(0) and T the transition time from 
saddle point to scission. Then 

Рц = |<Ф1(Т)|^>|2 С2) 

is the transition probability from level i to level j during this 
process. Fuller [6] has shown that our total wave function is strictly 
antisymmetric or,in other words, the Pauli principle is strictly observed by 
the expressions P^j , i.e. (because of spin degeneracy) 

JP..<2 
i 

For a nuclear model which incorporates a residual interaction, the values of 
the transition probabilities P^; are a measure of the conservation of the 
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single particle quantum numbers. As already mentioned, our model does not 
include a residual interaction and hence the single particle quantum numbers 
are inherently conserved in the transition. Transitions are therefore only 
allowed between orbits with the same single particle quantum numbers, or 
more specifically, with the same parity (for symmetric shapes] and magnetic 
quantum number M . Our model therefore cannot give us directly information 
on the question of the conservation of single particle quantum numbers in 
fission. However as we shall show below, essential information on this 
problem can nevertheless be obtained, from the study of the transition 
probabilities and the single particle energies in our model. 

A more detailed description of our calculation is given elsewhere [7]. 

3. RESULTS 

Table I shows the energy difference (VR - Vg) for the scission shape 
as a function of the mass ratio (more accurately the volume ratio] of the 
fragments. Our calculations were made for the nucleus 2q5Np which is the 
heaviest nucleus for which liquid drop calculations are available [5]. Also 
shown in Table I is the potential energy of the scission configuration as 
predicted by the liquid drop model. The values have been normalized to zero 
for the symmetric scission configuration. The liquid-drop model parameters 
used in the calculation were those of Nix [S]. Finally we show in the last 
column of Table I the sum of the liquid drop model energy and (VR - Vg). It 
is seen from the table that this sum reaches a maximum for the symmetric 
scission shape, and reaches a shallow minimum for the mass ratio R i 1,3 
which is approximately the experimentally most probable value. 

The study of the single-particle energies as a function of the defor
mation parameter ß is crucial for the understanding of the dynamic 
behaviour of the nucleus during the transition from saddle point to scission 
[8]. The closer the energy levels approach each other and the steeper 
their slope as a function of ß , the higher the probability of transitions 
between these levels. Fig. 2 shows the dependence of the lowest M = 1+ 
levels on ß for symmetric fission. Since the levels have the same quantum 
number they do not cross. It is however seen that while levels 1 to 3 are 

TABLE I. LIQUID-DROP MODEL ENERGY VLn , SINGLE-PARTICLE ENERGY DIFFERENCE 
(VR - Vs) AND VR = VLD + (VR - Vs) AT THE SCISSION POINT AS A FUNCTION 
OF THE FRAGMENT VOLUME RATIO R 

VLp has arbitrarily been set to zero for the symmetric scission configura
tion. (VR - Vg) includes a factor of 2 due to the spin degeneracy. 

R 

1.0 

1.2 

1.3 

1.4 

1.8 

VLD (MeV) 

0 

4 .7 

9 .9 

14.4 

22.0 

(VR-VS) (MeV) 

70 .1 

30 .1 

26.9 

32.6 

4 2 . 1 

V R = V L D + ( V R - V S ) (MeV) 

70 .1 

34 .8 

36 .8 

47 .0 

6 4 . 1 
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DEFORMATION PARAMETER p 

FIG. 2. The variation of the lowest five levels with the same quantum number M = 1+ as a function of 
the deformation parameter S. 

well-separated, the higher levels show a much stronger 8-dependence and 
occasionally approach each other to a distance of a fraction of an MeV. It 
follows that for a given time interval T from the saddle point to 
scission, the transition probability between the higher levels will be much 
higher than for the lowest ones. This statement is of general validity and 
not restricted to our model. Fig. 3 shows the dependence on В of levels 
of different single particle quantum numbers. Since in our model these 
quantum numbers are conserved, the levels can cross as evident from Fig. 3. 
The inclusion of a weak residual interaction in the model will not change 
Fig. 3 substantially, except in the region where two levels cross. Instead 
of crossing, the two levels will approach each other up to a distance of 
the order of the strength of the (residual) interaction and then separate 
again. 
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a: 

0.20 0.40 0.60 0.81 

DEFORMATION PARAMETER (3 

FIG. 3. The variation of levels with different quantum numbers (M = 0+ and M = 1+) as a function of the 
deformation parameter S. 

For the dynamical calculations we have chosen the functional depen
dence 8(t) [6] 

B(t) = \ {l + j[3(| - 1) - £ - I)3] C3) 

This function satisfies the boundary condition 8(0) = 0 and 8(2x) = 1 
(i.e. the total transition time from saddle point to scission is T = 2x). 
While this function is probably not a very realistic description of the 
dynamics of nuclear fission, it has the advantage of having a zero slope 
(i3 = 0) not only at t = 0 (which is certainly physical) but also at t = 2т 
(scission) and therefore it is unnecessary to correct for the center-of-mass 
motion of the two fragments at scission. The results obtained for the above 
functional form for 8(t) do not differ substantially from those obtained 
with a function 8(t) which approximately reproduces the dynamic behaviour 
of the liquid drop model [5]. 

Table II shows the transition probability Py between the single 
particle levels shown in Fig. 2 for three values ofт . In view of the 
peculiar time dependence of 8(t) (Eq. 3) it seems appropriate to denote т 
as the effective transition time between saddle point and scission,to be 
compared to the value obtained from the liquid drop model [6]. For the 
nucleus 237Np this time interval is 3-10"2^ sec (the intermediate value in 
Table II). It is seen that levels 1 to 3 exhibit an essentially adiabatic 
behaviour (Pjj 2L *ij) f°r a1^ three values of т , while the transition 
probability to other levels is quite appreciable for the higher levels. This 
behaviour is typical for the whole level spectrum of the nucleus considered: 
The low-lying levels behave adiabatically for the time scale predicted by 
the liquid-drop calculations whereas a few levels near the Fermi surface 
approach each other to within a fraction of an MeV and hence give rise to 
large transition probabilities to other levels. 
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TABLE II. THE TRANSITION PROBABILITY FROM THE LOWEST FIVE M = I+ LEVELS 
FOR THREE VALUES OF THE EFFECTIVE TRANSITION TIME т 

The numbers shown are the transition probability from a given level in 
the first column to all the other levels with the same quantum numbers. 

level number 

1 
2 
3 
4 
5 

T=1.5-10"21(sec) 

0.01 
0.07 
0.07 
0.94 
0.95 

x=3.0-10~21(sec) 

0.00 
0.00 
0.00 
0.82 
0.85 

T=6.0-10_21(sec) 

0.00 
0.00 
0.00 
0.75 
0.76 

4. DISCUSSION 
It is well known that the sum of single particle energies (e.g. VR ) 

is a very poor approximation of the total potential energy of the nucleus. 
A better estimate for the potential energy surface for rapid motion is 
obtained by adding the difference (VR - Vg) to the potential energy of the 
nucleus as obtained from the liquid drop model. The replacement of Vg by 
the liquid drop potential energy V-ц) is based on the results of Brandt and 
Kelson [4]. These authors have shown that the lowest total potential energy 
surface of the single particle model of the nucleus is essential equivalent 
to the liquid drop model potential. Similar considerations underly the 
Strutinsky [9] renormalization procedure. We therefore show in Table I both 
(VR - V$) as obtained by our single particle model and the liquid drop model 
value VLD (normalized for convenience to V^D = 0 for the symmetric 
scission configuration). 

Two features^are evident from Table I. (1) The total potential energy 
for rapid motion VR = (VR - Vg) + VLD has a minimum close to the mass ratio 
R = 1.3 which is approximately the most probable experimental value. 
(2) The value of VR for symmetric fission is higher than the liquid-drop 
model value for the potential energy of the saddle point (̂ 40 MeV higher than 
the liquid-drop model value for symmetric scission). It follows that rapid 
motion as defined in the present context (i.e. strict conservation of single 
particle quantum numbers) cannot lead from the symmetric saddle point to the 
symmetric scission point, since in this case the nucleus would have to gain 
potential energy in its transition from the saddle point to the scission 
point. Table I shows that similar considerations hold for very asymmetric 
fission. 

The results of the dynamic calculation (Table II) show that the lowest 
energy levels, which are separated by approximately 5 MeV, behave almost 
adiabatically for the transition-time scale of the liquid drop model 
(̂ 3-10-21 Sec) whereas some of the higher levels, which approach each other 
to within a fraction of an MeV, have a very high transition probability to 
other levels. Based on these results we may conclude that if the residual 
interaction between the nucleons has a strength less than ^1 MeV the picture 
obtained from our model (which does not include a residual interaction) is 
not substantially changed and the single particle quantum number will be 
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approximately conserved. On the other hand, if the residual interaction is 
much larger than 1 MeV the level structure will be substantially changed by 
it and the assumption of the conservation of the single particle quantum 
numbers is not justified for the time scale predicted by the liquid drop 
model. 
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DISCUSSION 

S. BJ0RNHOLM: The shapes you have chosen tend to miss the shell 
effects associated with N = 82, Z = 50, A = 132, as was emphasized in 
connection with Mr. Nix' s talk. How then do you explain the preference 
for asymmetric fission that you find? 

Y. BONEH: In the present work we did not explain asymmetry on 
the basis of shell effects at the saddle point. We were more interested 
here in the transition from saddle to scission and have shown by direct 
calculations that the assumption of the conservation of single particle 
quantum numbers on the way to scission leads to potential energy 
surfaces which prefer asymmetric fission. 

Z. FRAENKEL: The reason why the asymmetric potential energy 
surface is lower than the symmetric one in this model has already been 
discussed by J.J. Griffin several years ago, namely the greater number 
of "ungerade" orbitale as compared to the "gerade" orbitale. 
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Abstract 

FIRST ESTIMATES OF THE NUCLEAR VISCOSITY CONSTANT FROM THE DAMPING OF THE FISSION 
DYNAMICS AND FROM THE WIDTHS OF 6-VIBRATIONS AND GIANT DIPOLE RESONANCES. 

Using three different approaches the nuclear viscosity constant of heavy nuclei is estimated to be 
П а ю - 2 3 MeV. s • fin"3 o< i o w poise: (i) The dissipation energy -Ediss = EZjj&i&j ( z i j ^re the hydro-
dynamical viscosity coefficients depending on the deformation coordinates a{) is integrated in a dynamic 
fission model for various paths from saddle to scission and equated to an assumed value of 10 MeV obtained 
from experimental data; (ii) the widths of the higher vibrational states in the first minimum are inter
preted as damping resulting from coupling into the second minimum and the fission continuum; (iii) the 
widths of the giant dipole resonances are explained by damping of the hydrodynamical flow. 

1. INTRODUCTION 
During the past years the concept of viscosity has been intro

duced into nuclear physics, especially nuclear fission. For a gene
ral discussion about viscosity we therefore refer to the review ar
ticles of Swiatecki /1/ and Bjdrnholm /2/, to Wilet's book /3/, and 
to textbooks on classical hydrodynamics /4/. Here we just list the 
major evidence for and objections against the necessity of intro
ducing viscosity (or friction or damping) terras into existent 
models. 

(i) During the descent from saddle to scission there is a vari
ety of collective and noncollective levels available to the system. 
Slippages at level crossings or near-crossings are caused by the 
residual interaction and give rise to a loss of energy which appears 
as heat in the energy balance, (ii) Results of dynamic calculations, 
however, show that damping is negligible because the energies at 
scission calculated without viscosity fit the experiments reasona
bly well, (iii) The higher vibrational levels in the first minimum 
become broader through coupling into the second minimum and into 
the fission continuum. But this means strong damping, (iv) The same 
argument holds also for the broad giant resonances. 

In this paper the experimental information is analysed with the help 
of hydrodynamic models. For this purpose existing models have been 
refined by inclusion of damping terms proportional to the relevant 
velocities and the nuclear viscosity constant is extracted. 

* Presently at the Nuclear Chemistry Division, Lawrence Berkeley Laboratory, Berkeley, Calif., 
United States of America. 
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Unexpectedly, all estimates yield about the same value of the 
viscosity constant regardless of the process involved,thus indi
cating that the nuclear viscosity might be a fundamental constant 
characteristic to all nuclei. 

2. DAMPING F R O M SADDLE TO SCISSION 

Liquid drop calculations on binary /5-7/ and ternary fission, 
i.e. fission accompanied by a long-range a-particle /8/, do not giv« 
evidence for damping between saddle and scission. That is to say, 
the balances at the scission point of kinetic and excitation ener
gies of the fragments agree rather well with the experimental ones. 
Dissipation of energy would not fit into the liquid drop picture. 

These dynamic models, however, for computational reasons are 
calculated with a rather limited number of only collective shape 
degrees of freedom, usually three to five. As NSrenberg /9/ points 
out, most of the energy may be associated with these coordinates 
but it is still unclear what fraction it is. The remaining energy 
can either be hidden in other collective coordinates or, more like
ly, in non-collective ones arising from non-collective transitions 
between collective states enhanced by the residual interaction. In 
ref. /9/ it is estimated that the coupling constant G2 in the pro
bability of level slippage P=exp(—irG2) varies between 10~s and 3 
according to the nature of the levels in mind. This exactly means 
damping of the collective motion at least to some extent. In ap
plication to fission it was concluded that there is about 2MeV in 
the fission degree of freedom rather than 20MeV calculated with 
dynamic models. 

Although still very uncertain, in this way one can estimate the 
dissipation energy from saddle to scission to be at least lOMeV. 
In what follows we therefore use this number to establish the con
nection between dissipation energy and viscosity in the dynamic 
model of Hasse /6,7/. 

This model, by inclusion of a semi-phenomenological shell ener
gy, essentially is a modified version of Nix' s studies in the liquid 
drop theory of nuclear fission /5/. Mass distributions, distribu
tions of kinetic energies etc. are obtained by integrating the clas 
sical equations of motion of an ideal fluid from saddle to scission 
The initial conditions near the saddle were determined randomly by 
the Monte Carlo method. 

The classical Hamiltonian of the system consists of the potentia 
energy, i.e. liquid drop and shell energies, and the kinetic energy 
of potential flow of an ideal fluid. For the family of shapes the following 
expression for the sharp nuclear surface in cylindrical coordinates 
p, z was chosen 

p2(z) = X(zba
2)((z-Zl)2+z!) . (1) 

In eq.(1) z0 serves as elongation parameter, zx as asymmetry para
meter and z 2 as constriction or necking-in parameter, and X guaran
tees volume conservation. Thus a sphere is described by z0=R0 , 
Z2-K» and the scission point by za=0, where Ro=r0Al/3 is the radius 
of the equivalent sphere. Reflection asymmetric shapes are given 
by ЙХФО. 
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By using this parameterization the kinetic energy can be written as 

T = | I M±i ziZj. , i,j=0,l,2 , (2) 

1J where the inertias (or effective masses) M.^(z0,z,,za) are calcu
lated according to refs. /6,10/. 

Damping by viscosity can be incorporated into the model by intro
ducing the Rayleigh dissipation function /41 

F » | I Z.. Zizo. , (3) 

where the viscosity (or friction) coefficients Z.. (ze,Zj,z2) are 
calculated similarly to the inertias under the assumption of ideal 
flow. This was recently done by Schirmer et al. /11/. Twice the dis
sipation function then gives the change in time of the energy lost 
because of internal friction 

-*Diss " I hA4 • W 

Eq.(4) is derived from the general expression of the dissipation 
energy for incompressible fluids /4/ 

1 3v. 3v. , 
"EDiss = Ь H v I (а-^+эх? > '<5> 

-*• . . •*• 

where v xs the velocity of flow and x the space vector. For poten
tial flow, the volume integrals in eq.(5) can be converted into 
surface integrals. Thus the equations of motion are modified to 

MMuVzu*j) 'hJ^-i^^^-щ-0' i=0'1'2 (6) 

The Navier-Stokes hydrodynamic equations simplified by irrota-
tional flow of an incompressible fluid and the coordinate-and time-in
dependent viscosity constant n demand Z. . to be proportional to_rj. 
Hence we introduce the dimensionless viscosity coefficients Z..= 
Z../irR0n which now only depend upon the shape of the nucleus J 

rather than on its size or its viscosity. As a result, the total 
dissipation energy from saddle to scission 

-EDiss • *Ron ISlUlir *t z . . ^ . (7) 
is directly proportional to n, and the relative dissipation energy 

"eDiss = "EDiss ^ ; ( 8 ) 

with t0=R0/M0/E0, M0=m0A, E„ = a Ауэ being the natural units of time, 
mass, and energy, respectively 111 (a is the surface energy 
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coefficient: as = l8MeV),is independent of ri and size and thus characte
ristic of the path in deformation space from saddle to scission. 

In the present calculations " е м д з is obtained by first order 
perturbation method, i.e. eq.(7) is integrated along various path 
obtained previously without viscosity. The paths in turn are deter 
mined by the Lagrangian equations (6) with vanishing Z.. and are 
taken from ref./7/ for thermal neutron fission of Z 3 6U. 

The resulting relative dissipation energies of four different 
paths are displayed in fig.l. All curves end at scission about 
at the same value of -6

n- =0.5 thus indicating that in all cases 
about the same amount or energy is dissipated en route from saddle 
to scission regardless of the details in between. 

As discussed above there is good reason for about lOMeV being 
dissipated from saddle to scission during fission of heavy nuclei. 
By inserting R0=6.9J»fm, t0 = i*.37i»'10~22secJ - e

D i s s
 = 0-5» and - E D i s s 

=10MeV into eq.(8), we obtain the result n=0.9-10"23MeV'sec/fm* . 
The fact that lOMeV out of a t o t a l of HOMeV i s assumed t o be 

dissipated indicates the necessity of solving the unapproximated equations 
of motion (6) rather than using the first order perturbation method. Such 
calculations are now being carried out in Munich as well as in Los 
Alamos. 

In looking at the v i s c o s i t y c o e f f i c i e n t s along the 
g a t h s , i n fig.2, one observes that the one associated with elongation 
Zoo, i s smoothly decreasing, while Zu and Z*2»the v i s c o s i t y coef
f i c i e n t s of asymmetry and necking-in, re spec t ive ly , are increasing 

0.6 

"^Diss 

0.5 

0.4 -

0.3 -

0.2 

0.1 -

3 4 
t (lO'" sec) 

FIG. 1. The relative integrated dissipation energies of four paths from saddle to scission of thermal 
neutron fission of U. Note that all curves at scission time end about at the same value of "Cniss = ^' *>• 
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FIG. 2. The relative diagonal viscosity coefficients along path (4) of Fig. 1. Zoo. ZU l Z22 are measures 
for the viscosity in the elongation, asymmetry, and constriction directions, respectively. 

towards scission (the fact that Zu and Z22 vanish at scission is due to a peculiarity of the parameterization, and the same holds for 
ZJI being so large). As is well known, fission in the early stages 
proceeds by a slow elongation and in the later stages by a rapid 
necking-in. In connection with the viscosity coefficients, this ex
plains the overall constant dissipation energy per time interval. 
Hence damping seems to be approximately constant after the saddle 
although distributed in different ways among the different degrees 
of freedom. 

3. DAMPING OF VIBRATIONAL STATES 
The broad resonance structure in the fission cross-section can 

best be explained by the assumption of strongly damped vibrational 
levels in the first minimum, the damping arising from coupling into 
the vibrational levels of the second minimum as well into the 
fission continuum. This is schematically drawn in fig.3. Back et al. 
/12/, using this model, estimate damping widths of Г> 0.8 MeV for the 
vibrational levels near the barrier. 

In this section we use this result to estimate л by a simple 
hydrodynamical model calculation. Suppose the first minimum is sphe
rical, then in the harmonic parameterization 

R(e) = Rotl+jf^P^cose)) (9) 
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Deformation 

F1G.3. Schematic drawing of damping in the first and second minimum (after Back et al. [12] ) . The 
states are vibrational states and hatching indicates their widths. 

and quadratic approximation of the energy, the dissipation, kineti< 
and potential energies are diagonal, i.e. 

•U-1)(JU2) 10x(A-l)> ,r _ J.__ „ 2 _ г. Г fkl-J. ) \X. + d ) 1UXIX.-J.I-1 2 
V = 21С£Л = E°nS2(2JUl) '-(21*1)* >аГ 

(10a! 

(10b! 

(Юс! 

Here, the viscosity coefficients Z%% were calculated in Ref./11/ 
and the inertias M,, and stiffnesses C,„ in refs./10,13/, and x is 
the Bohr-Wheeler fissility. The equations of motion of this system 
of uncoupled but damped harmonic oscillators follow from eq.(6), 

M*.*.V C U V Z*.AV (11) 

Prom the characteristic equation М^ш^-С^^-iio.Z»»=0 follows the 
typical relaxation time 2M,,/Z., for the state with multipolarity x 
The energy is quadratic in the coordinates or velocities but al
ready is down to 1/e of its original value after the time x^K^^/Z.^ 
This decay time is to be compared with the lifetime of the higher 
g-vibrational states in the first minimum which in turn is approxi
mately fi/r via the Heisenberg uncertainty relation. Inserting 1=2 
for quadrupole vibrations gives the viscosity constant 

згм. 
lOirfiRn 

(12) 

which, again, for the 2 3 e U parameters M0=2.22'105MeV/c2, 
/12/ yields about the same value n=0.96-10~23MeV'sec/fm3. 

r=0.8MeV 

http://1UXIX.-J.I-1
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4. DAMPING OF GIANT DIPOLE RESONANCES 
A similar analysis can be done for the broad giant dipole reso

nances. The width is approximately constant r=3MeV over the wide 
range of mass numbers 50<A<150, cf. the collection of data in ref. 
/14/. 

The giant resonance was first investigated theoretically by 
Goldhaber and Teller /15/ and Steinwedel and Jensen /16/ in a hy-
drodynamic model, later on by numerous authors in microscopic mod
els. The widths in the latter models are due to fine structures. 
The connection between both models is not yet found although Wild 
/17/ investigated this question thoroughly. 

Since in general up to now viscosity cannot be reduced to fine 
structures or other microscopic phenomena we follow the idea of 
Steinwedel and Jensen, use their model and carry out the suggested 
inclusion of a damping term. 

In this model local deviations of the proton and neutron densities p , p from their static values p°, p° are described by p n p n 

Pp,n » ep\n ± ̂ f c > • <13> 

The restoring force against the deviations is derived from a gene
ralized volume symmetry energy density 

with E =20MeV, and p0=P +P the nuclear matter density . Using the 
r e l a t i v e ve loc i ty ^ = v

D ~v n j where PD
V

D
+Pn^n

=0> t n e authors suggest a 
damping term -Mxv in the Euler equations. After insert ing the con
t inu i ty equation vv=—y/p° » with р£е(}=РпртУРо i n t o the E u l e r equations, 
the resulting wave equation reads 

Y = U2V2Y - XY • (15) 

Herein, x is related to n and the velocity of sound is given by 
u2=8E p° ,/Mp„. The dipole solution of eq.(15) which satisfies 

VS J7©Cl 
the boundary condition Э y/Э r=0 at r=R0 is 

Y(r,t) = е1й)Ъ+схо1(г/Л)У1о(в,Ф) , (16) 

where Л i s the lowest zero of Rojo(R0/A)=2Лji(R0/A ) , namely Л=Rо/2.08 
and ш i s to be computed from u2-u2 /A2-iwx=0. 

Since Im(u))=x/2, the constant x has the physical meaning of twice 
the reciprocal half-life of the giant dipole state, whose relation 
to viscosity is still to be established. One way of doing this 
i s to compare the above-mentioned damping term -Mxv with the one 
demanded by the Navier-Stokes equations, i . e . Mvv2v, where v i s the 
so -ca l l ed kinematic v i s c o s i t y v=n/po- In t h i s case one i s led to 
the wave equation 

Y = V 2 (U 2 Y+VY) (17) 
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By the very nature of eqs.(15) and (17) these are identical vis 
the relation ~ХУ-Х^Z4Z4 and, hence, v=xA г. In this way one may wrü 
1/Х=Й/Г where Г is the experimental width of the giant dipole stal 
The resulting viscosity constant then is 

n = Л Р ° Г / Й = 2.08П7ГЯГ, > (18-

which, for r=3MeV and A=50.. .150, has the numerical value 
r) = (2 ...5)X 10-23 MeV-sec/fm3. 

The viscosity constant obtained in this way depends strongly or 
the mass number. This is quite understandable because it results 
from the collective flow of the proton fluid against the neutron 
fluid. This kind of flow, however, is governed by the typical dis
tance Л =г«А,/3/2.08. On the other hand, the viscosity constants cal 
culated in the previous sections resulted from collisions of nucle 
ons with the typical distance r0. In following this philosophy and 
in order to have comparable viscosities one should replace Л by r0 
which gives 

* = г»р»г/* - JirT (19) 

and its numerical value is n=0.95*10~23MeV-sec/fm3. 

5. DISCUSSION AND OBJECTIONS 
The three estimates of the viscosity constant are approximately 

equal, namely n~10~i3MeV'sec/fm3, or in more familiar units n-
10l "poise (poise=g/(cm-sec)) which is similar to the viscosity of 
pitch, 10epoise. A macroscopic concept like viscosity, however, car 
be applied to microscopic quantities like nuclei only in a quali
fied sense. Because of this one cannot expect nuclear matter to behave like 
a blob of pitch. 

On the other hand, dimensionless parameters like the Reynolds 
number Re=poR<>v/r), where v is a characteristic velocity, e.g. 
V=R 0/T or Swiatecki's /1/ creep parameter z=n//ffPoRo with the nu
clear surface tension а=18МеУМтгг§ take into account more attribu
tes associated with nuclei and, hence, are more adequate to des
cribe the nuclear situation. Using the constants given above one 
obtains Re=2.5 and z=0.09. A Reynolds number smaller than about 50 
in macroscopic hydrodynamics does not allow for turbulences to be 
formed and thus the assumption of potential flow is sustained. The 
creep parameter is a constant relevant for describing the bulk pro
perties of pieces of matter of finite size and therefore best 
suited to nuclei, and it is independent of the dynamics involved. 
Only recently it was invented for this purpose. Although it has not 
yet been investigated very well, one expects systems with z < 1 to be 
mobile and systems with Z>>1 to be -creepy". The parameter z is 
only slowly varying with the nuclear mass number, in our case 
z=0.2l»A-1/6. For this very reason the estimates given above hope
fully are valid for a large portion of the nuclidic mass table and 
not only for the very heavy nuclei. 

The analyses show that n seems to be independent of deformation. 
To the accuracy of our results (the error might be as large as a 
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factor of 1 0 * 1 ) , however, we are not able to draw a f i n a l conclu
s ion . At l eas t the resu l t i s in agreement with Bjrirnholm's picture 
(cf . footnote of r e f . / 2 / ) in which the damping i s strong from the 
ground s t a t e to about half way down to s c i s s i o n and i s weak in the 
very l a s t stages before s c i s s i o n . The l a t t e r statement is thereby 
confirmed by the r e l a t i v e l y small v i s c o s i t y coe f f i c i ent in the 
elongation d irect ion close to the s c i s s i o n point . 

One major objection to the calculations can be raised because 
of the use of the hydrodynamic model. The viscosity coeffi
c i ents in t h i s paper are calculated similar to the i rrotat iona l 
i n e r t i a s which one knows can be ten times smaller than the iner
t i a s obtained with the cranking model. But, unfortunately, apart 
from the l e v e l sl ippage scheme, hi therto there i s no microscopic 
foundation of the concept of viscosity. This problem is now being 
investigated by Immele /18/ on the basis of radiation theory. 

The temperature dependence of the v i s c o s i t y constant i s another 
open question. In the f i r s t minimum the damping width increases 
with temperature, cf. f i g . 3 . This means that n increases with tem
perature, just the opposite to the usual hydrodynamics of liquids. The 
nuclear temperature also increases en route from saddle to scission and, 
hence, one should not use a temperature independent viscosity. These 
effects, however, are refinements to the above calculations which may 
be treated similarly to the temperature dependence of the liquid-drop 
potential energy /19 / . 
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D I S C U S S I O N 

C.Y. WONG: I would like to comment on the t rea tment of the flow 
pat tern assumed h e r e . We have considered the problem independently 
on the bas is of the vibrat ion of a viscous charged l iquid-drop. It is well 
known that the flow pat tern becomes rotat ional when there is v iscosi ty . 
The re fo re , a t r ea tment of vibration with i r ro ta t iona l m a s s p a r a m e t e r s 
is incor rec t . If one uses the co r rec t t r ea tmen t , in which the flow pat tern 
is assumed to be rotat ional , one a r r i v e s at a l imit of the viscosi ty 
coefficient above which complete damping of the vibrat ional motion 
occu r s . This l imit has the value of n = 1.0 X 10"23 MeV • s/fm3 . The 
coefficient you have obtained is about the same as this l imit and thus , 
if one takes your viscosi ty coefficient at i ts face value, one must con
clude that there is a lmost complete damping of the hydrodynamical 
osci l lat ion, a conclusion which I think is incor rec t . 

R.W. HASSE: We a r e well aware of the fact that the boundary condi
tions for the Navier-Stokes equations demand that the flow be rotat ional 
when one allows for viscosi ty . Our t rea tment of the problem, however, 
is not incor rec t when we assume i r ro ta t iona l flow, but it is an approximate 
t r ea tmen t . Lack of t ime prevented me from going into all the detai ls 
in my paper and I should now therefore like to point out briefly the 
influence of rotat ional flow on the resul t ing viscosi ty constant . Since 
T « M/Z « 1/r) where т is the damping t ime , M the iner t ia l m a s s and 
Z the viscosi ty coefficient, Trot • rjrot «̂  T;rrot • rjirrot- In looking at your paper , 
one finds T r o t /T i t t o t > 1 and, hence, rj r o t < rj i r ro t , which r e su l t s in a 
s m a l l e r viscosi ty constant and less damping, so that an osci l la tory 
motion s t i l l r e m a i n s . 

C.Y. WONG: Your coefficients therefore have to be modified by 
multiplying by a smal l fraction. 

R.W. HASSE: Yes. I think this fraction may be of the o rde r of 0.7. 
H. DIEHL: You mentioned the possibi l i ty of using heavy-ion 

coll is ions as a macroscopic approach to the study of nuclear friction. 
However, I should like to point out that one can also calculate nuclear 
friction by comparing the fission paths of binary and t r u e - t e r n a r y fissions 
with the experimental ly known rat io of the t e r n a r y to binary fission yield. 
Moreover , because these fissioning nuclei have high excitation energy, 
one obtains the friction constant at high t e m p e r a t u r e . Work on this 
subject is in p r o g r e s s . 

Z . FRAENKEL: We have performed a calculation in which we t ry 
to re la te the t ransi t ion t ime between saddle point and sc iss ion to the 
emiss ion of light par t i c les in fission and have t r ied to obtain a m e a s u r e 
of this t ransi t ion t ime from the experimental ly measured probabil i ty 
of l ight -par t ic le emiss ion in fission. 
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Abstract 

COMPRESSIBILITY IN NUCLEAR COLLECTIVE DYNAMICS. 
Because the energy of nuclear matter increases very rapidly with changes in density, the nucleus as 

a fluid is generally assumed to be incompressible. This paper proposes that this assumption is valid only on 
the average. Is is shown that to impose it as a microscopic identity is inconsistent with a realistic description 
of finite nuclei and precludes the consideration of certain phenomena which may play an essential role in 
collective dynamics. 

THE NUCLEAR FLUID 

The nucleus has been analogized to a liquid drop [1] from the earliest 
days 12] of its theoretical consideration. The nuclear liquid has usually 
been assumed to be incompressible because of both empirical [3] and 
theoretical evidence [4] that the energy of bulk nuclear matter increases 
rapidly when its average density deviates from that corresponding to the 
least energy. 

The nuclear fluid has also long been treated as non-viscous, rather 
from the fact that nuclear theorists1 have been, until recently [5], 
[6] unready to treat nuclear viscosity in a realistic detailed manner, 
than from any suspicion that most large scale distortions of the nuclear 
fluid would in fact prove to be uncoupled from the internal degrees of 
freedom analogous to thermal excitation. 
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to the Graduate School, University of Maryland, by К.-К. Kan, in partial fulfilment of the requirements for 
the Ph.D. degree in physics. 
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1 We shall soon be forced by the data from new experimental machines to confront questions which 
only recently would have been very speculative. This could easily lead to a rapid growth in interest in the 
viscous properties of nuclei. 
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The assumption of irrotationality in the flow of nuclear matter 
arrived early from the classical theory of fluids with the strong 
recommendation of simplicity. It was sidetracked by the phenomenological 
success of microscopic methods for calculating rotational and vibrational 
excitations, which methods had their most distinct success in producing 
inertial moments (especially rotational), which deviated from simple 
Irrotational values in such a way as to agree with experiment. These 
microscopic descriptions made no reference to a classical velocity field, 
and so provided no place for such a characteristic as irrotationality. 
As a result classical analogies with fluids fell into disuse. We feel 
that this trend is due for reversal, and that a new attempt to understand 
collective motion in macroscopic terms is a timely and promising line of 
investigation. We hope that this paper can stir interest in this 
approach. 

MICROSCOPIC INCOMPRESSIBILITY 

In the present paper we wish, paradoxically, to omit discussion of 
that assumption (nonviscosity) which seems weakest and most certain to 
fall . Instead we wish to question the assumption of nuclear 
incompressibility and to re-introduce in the process a discussion of 
irrotational velocity fields. We shall of course not argue that this 
assumption is erroneous when applied overall to a nucleus, for it is, to 
a good approximation, an established fact. Instead, we suggest only that it 
is theoretically premature in dynamical analyses, and ought quite 
specifically and consciously to be listed among the characteristics to be 
demonstrated, and not assumed, for the nuclear fluid in collective 
motion. 

A simplistic argument against the assumption of incompressibility 
can be suggested by exhibiting the matter density of a single particle 
in some state of a specific nuclear well. Such a density varies so 
strongly with position that it is almost absurd to think of imposing any 
constant density assumption upon it. But if we cannot impose the 
assumption on this basic component of the nuclear density, then how can 
we be comfortable with an assumption (as opposed to a proof) that it 
applies to the sum of many such single particle contributions? 

This argument is, however, too simple a basis for any strong 
inference against incompressiblity. It merely underlines the obvious fact 
that the single particle densities into which the theory of nuclear matter 
is constructed do not individually exhibit constant density. In 
collective motion, they might still however obey the law of incompressible 
flow which does not exclude a variable density but rather requires that 
any given microscopic volume element of-the fluid as it moves according to 
the prescribed velocity field retains a constant density. Formally, the 
convective derivative of the density, 

Dt at v r 

must vanish in incompressible flow. 

2 Some promise of this on empirical grounds can be found in Ref.[ 6]. 
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On the other hand the continuity condition between the matter current 
and the matter density requires 

V'(PV) + ft=o 
The combination of (2) and (1) implies 

as a simpler form of the incompressibility requirement when continuity 
is satisfied. 

TIME-DEPENDENT SCHROEDINGER THEORY 

To advance the discussion further, we need a structure in which at 
least the collective motion of an independent single particle can be 
described. We assume therefore that a Hamiltonian is given in which an 
externally determined collective parameter, a, occurs, which may vary with 
time in a manner also determined externally. Thus the Hamiltonian is 
implicitly time dependent by means of the time dependence of the 
collective parameter, a(t). Then we seek a solution of the time-dependent 
Schroedinger equation defined by H[a(t)]: 

HV=M££ (4) 

Also, we seek to construct a solution of (4) which reduces to a real 
eigenfunction of H(aQ) in the stationary limit, 0 = a = a = a = • • • •. 

We first assume that the explicit dependence of t upon t occurs via 
an exponential factor 

y**Ye*pl-%J-e(Atf), dir), -)dt\. <5> 

Then (4) becomes 

H Y- ZW + ^{- i /ЬJ l^ ' ig^ <6) 

where, for the deformation coordinate,we use the notation a№ = dka/dtk , 
and where 

e ( « ) ^ ^ « K ) = 6 . + g ; « + ^ + . . . . <7) 

i 
Then multiply (6) by e<x>f>{+(i/t)fTe<H'} to ge t : 

H V - e y + i * ^ « « ' - ^ . (8) 

We now assume that only d is non-zero, i.e. a = a = ••• = 0. Then in 
(6) one needs to consider only the dependence of i(i upon a and not on 
ö, ä, ••••. Then (8) becomes 

H Y = e"t + ̂ «§!- (9) 
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THE IRROTATIOHAL FLUID FORM OF WAVE FUNCTION 

Next we assume that ф has the form3 

f ( a ) = <^(Ä)ejcp{-if-S(a)j (10) 

where ф and S are real. 

When a(t) is an externally imposed function of time and ф and S are 
functions in the configuration space of the problem,which functions are 
parametrized by a, the Irrotational Fluid form is a rather flexible form 
for the wave function. 

Its name is chosen to suggest the fact that the momentum operator 
for the i'h particle operates on У to give a momentum density 

^*ß# = -;^v^-w4>aViS
 (11) 

Thus the momentum density corresponding to S = 0 is augmented locally by 
an addition -m <p*vif where 

гг.=-^5 (12) 

describes an irrotational velocity field completely prescribed by a 
knowledge of S. One thus arrives naturally at the interpretation that 
Y describes a quantum fluid constrained to move collectively in accordance 
with the classical field defined by the velocity potential, S. 

THE OIIANTUM EQUATIONS OF MOTION 

The insertion of (10) into equation (4) reduces that equation to the 
following two simultaneous partial differential equations for the real 
functions ф and S: 
(A) The "Continuity" equation 

T ^ + v S - v ^ f f - аз) 

and (B), the "Modified Schroedinger" equation 

J H(a) - m || + X m VS • VS j Ф = ёф . 
The simplifying assumptions leading to (9) result in straightforward 
simplifications of the time-derivative terms. (In the special cases of 
rotational and Center-of-Mass motion the resulting equations have been 
considered by Gross, 18].) 

The name given (A), equation (13), is meant to emphasize that it 
can be re-written in terms of the density p =. ф2 as follows: 

yOV^+vS-V^I^- (15) 

This form was proposed by D. Hill andJ.H, Wheeler [ 7 ] . 
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This form is identical with the familiar continuity equation (2) for a 
fluid of density p which moves with the classical irrotational velocity, 
v, of equation (12). 

The corresponding label for (B), equation (14), underlines the 
presence of additional "stress potential" terms, 

which arise from the collective motion described by non-constant values of 
velocity potential, S. This name is chosen because the negative gradient 
of the quantity, x> describes in the classical fluid theory the force per 
unit density acting on the fluid element. 

The collective kinetic energy in this formalism is identified with 
the term proportional to 6t/z in the energy expectation value, and its 
coefficient is the collective inertia. In Appendix I we show that this 
calculation results in the expression 

<£>=<^|н|^>= еП<*)+™<*||£ 1Ф> а?) 

where € (ti) is defined so as to be independent of time derivatives of 
a, and S is equal to S + SQ, as discussed in Appendix I. Then the a1 term 
in the expectation value of 3S/3t yields the collective kinetic energy 
and thence the collective inertial parameter. 

We believe that a careful study of (A), equation (13), and (B), 
equation (14), will illuminate many qualitative features of collective 
motion. Here we wish to support this viewpoint first by discussing the 
relationship between continuity and compressibility. The results 
underline the qualitative difference between (A) and (B) and the 
formulation in which Hill and wheeler utilized equation (10). Then we 
consider the special case of rotational motion and exhibit what seems to 
us the intriguing, if not paradoxical, result that the Irrotational Fluid 
form of wave function (10) can describe a system which rotates with a 
rigid moment of inertia. 

CONTINUITY AND COMPRESSIBILITY 

On the basis of the physical argument that in an approximate wave 
function of the form of Eq. (10), the nodes and values of fought to be carried 
along with the classical fluid velocity, Wheeler and Hill [7] assumed the 
relationship 

"I^VS-vf (18) 
Equations (3) and (15) show that this assumption is very closely related 
to the incompressibility of the fluid: If continuity is imposed on a 
wave function ф of the form (5) via (13), then the Wheeler-Hill condition, 
equation (18), implies the incompressibility condition, equation (3), 
and vice versa. Alternatively, in the flow of an incompressible fluid, 
continuity is sufficient to guarantee the Wheeler-Hill assumption, (18). 
Conversely, continuity implies that if the flow is compressible then the 
Wheeler-Hill condition, must be violated. 
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Thus the Continuity Equation (A), (13), emerges as a natural 
generalization of the Wheeler-Hill assumption (18) which frees the 
description from an unstated restriction to incompressibility and allows 
the possibility of compressible flow for individual nucleons. 

COMPRESSIBILITY AND COLLECTIVE INERTIAL PARAMETERS 

Although one might expect from the results in simple cases [9] that 
each single particle density follows a nearly incompressible flow pattern 
so long as the nodal structure evolves without disruption of its 
topology, no such expectation applies in regions of deformation where the 
nodal topology is changing, as is the case, e.g., when the system follows 
adiabatically through a deformation where there occurs a crossing of a 
filled and an unfilled independent particle state, which crossing is split 
by some residual interaction. 

Then one can show that from the general expression for the 
collective kinetic energy that a large, even dominant, contribution to the 
inertia arises from such level crossings, [10] and that a significant 
compressibility is inevitably associated with this situation. We do so 
in Appendix II. 

One result is a natural intuitive basis for interpreting these large 
inertial parameters: If, as the nuclear shape changes, the density is 
compressing and decompressing in different regions of space (even if only 
to a slight fractional degree), then a given velocity of shape change, d, 
may be associated with an energy exhibiting a very large value for the 
coefficient of a2, which describes the large increases in local 
particle velocity which are required for the density changes to conform 
to the continuity condition. Order of magnitude estimates indicate that 
the compressible flow of even a few particles in the last filled orbits 
can dominate the incompressible contributions of the nearly A other 
nucleons. 

ROTATIONAL MOTION: A PHYSICAL PARADOX? 

We turn now to our second illustration of the use of the Irrotational 
Fluid Form of wave function: its application to nuclear rotations. For 
this discussion we note that to leading order the present method gives the 
well-known "cranking model" formula [11] for the moment of inertia, and 
that the approximate velocity field, S, in this description is regular 
everywhere4. It therefore defines everywhere a momentum density of the 
form (11) and an associated irrotational velocity field of the form (12). 

These results seem to us to present a paradox, as follows. It is 
well known 112] that in the case of independent particles moving in an 
oscillator potential deformed to the value which minimizes their 
independent particle model energy, the cranking model formula gives a 
value of the moment of inertia exactly equal to that of a rigid body with 
the same density as that of the nucleus. 

Additionally, theoretical evidence suggests that the rigid body 
moment will be the result of applying the cranking model to any independent 

i In this respect our treatment differs from that of Ref. [ 8]. See discussion in Appendix II. 
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particle system [13]. Thus our result leads to the rigid body 
moment, which would seem most naturally associated with the collective 
velocity field of rigid body rotation 

X/ = c o x T (19) 

But our derivation is based upon the curl-free collective velocity field 
(12), which differs in that qualitative feature from (19), which has 
curl \?£ =oo. 

One thus is impelled to consider the following question: Does there 
exist an ambiguity in the association of a classical velocity field with 
the collective motion of a particle in a specified quantum state, such 
that two (or more) distinct velocity fields might be associated with a 
single wave function, describing a unique physical motion? 

We are not prepared at present to settle this question. We simply 
propose it as a worthwhile example of the kind of question which arises 
naturally in the context of the Irrotational Fluid Form of wave function, 
and the Continuity and Modified Schroedinger equations, (13) and (14), to 
which it leads. 

SUMMARY 

This paper proposes that a re-emphasis on the concepts of classical 
fluid dynamics is a timely shift in the study of nuclear collective 
dynamics. A formalism is presented which provides prominence for such 
concepts. It focuses attention upon the compressibility of the microscopic 
nuclear fluid in a natural way. 

The example of the huge contribution of level crossings to adiabatic 
inertia! parameters is cited as a result of such microscopic compressibil
ity. In turn, compressibility offers a simple intuitive understanding of 
these huge inertia. 

A second application, to the problem of collective nuclear rotation, 
suggests a still unresolved paradox concerning the classical velocity 
fields associated with collective motion of the microscopic quantum fluid; 
namely that a regular irrotational velocity field can be exhibited for a 
rotation characterized by the rigid body value of the moment of inertia. 

APPENDIX I. THE COLLECTIVE KINETIC ENERGY 

At any instant of time, the total energy of our system in collective 
motion is 

< Е > = <^|Н|^>=<УП-ЙЭ/гН:|у> (1-1) 

= 6 +<ф\мг/з*№>+<<МИ^)Ш\Ф>- (I"2) 

By normalization, К.^\^У~ Кф\Ф} = !> ёо that the second term of 
equation (1-2) vanishes. 
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To obtain equation (17) we note that, considered as a velocity 
potential or as a gauge function, S and S describe the same physical 
situation if 

S = S - S0 (i-3) 

where S0 is independent of position (so that ~S7So = 0). Then S0 is 
an arbitrary function of collective coordinates which has no effect upon 
the physical content of ф in equations (5) and (10). We utilize this 
freedom of choice of S0 to arrange that the energy eigenvalue, 's , shall 
be equal to §1"3, and independent of all time derivatives of a. Thus S0 
is defined by the requirement 

e=6fo, + m l ^ (1-4) 
9-fc 

where 6 is the correct eigenvalue if S o=0, and where 6 is indepen
dent of all powers of i, ü, •••. With this convention for S0, equation 
(1-2) reduces to 

which is identical to the result cited earlier (equation (17)). We note 
that the freedom to choose SQ in this way is also evident by inspection 
of the modified Schroedinger equation, (14). 

We next consider some time-dependent eigenfunction, 

"f = X + ivy (1-6) 

obtained by some approximation method, and the corresponding irrotational 
fluid form (10) of the same wave function. By evaluating 

< L > = <Vli*ftIY>=2*<w-||Fji«> (1-7) 

also in terms of ф and S, 

<Vltff?lY>»»"<*llfl*> tt-*) 
we are able to utilize (I<-7) in an alternative expression for the 
collective kinetic energy: 

Tc = 2«<™\wlx>+m?t (i-9) 

In case equation (9) is solved to leading order perturbation theory, 
one finds 

and 

^ = X + iuJ-«i U„+ iVl (1-10) 

€ = €f0>+et2U.-- (1-11) 
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m2$SL — e « ? , (i-i3) 

where 

6 ' i ' , = - ^ < V j / | F / U 0 > . (1-12) 

Also, our conventional choice (specified by eq. (I-A)) of SQ in t h i s 
approximation i s such that 

dS 
d-t 

Thus, S0 can he eliminated from (1-9) to yield 

or , by equating (1-7) and (1-8), 

Тс = - Г « < * | Ц | * > . d-15) 

The r e su l t (1-14) reduces to the well-known "cranking model" formula 
when the perturbation approximation r e su l t 

< ^ £ M j U o > w (I_16) 

is inserted. Likewise the use of equation (II-4) to define S from i|/ 
reduces (1-15) to the same formula. 

APPENDIX II. COMPRESSIBILITY AT LEVEL CROSSINGS 

We consider a Hamiltonian, H = HQ + Маъ, which in the stationary limit 
of adiabatic motion, (a -*• 0, S •+• 0), exhibits a crossing of two single 
particle states, |a> and |b>, when the weak coupling between them, V^, is 
neglected. Vie assume that, if Vai, were identically zero, then for slow 
collective motion the collective velocity field for both the uncoupled 
states would be incompressible and irrotational. i.e., we assume 

V 2 S a = V 2 S b = ° (ii-D 

and 

™WwiO=™/£<:v£jVr (II.2) 

Finally, for simplicity, we assume that the states |a> and |b> are coupled 
only by Vab and not at all by the generator & (d/da) of the collective motion. 

Then one can analyze the problem of the slow collective motion of 
the system through deformations near the level crossing for two distinct 
cases. In one case VaD is neglected and the states |a> and |b> are the 
natural bases for treating the collective motion. In the second case 
H0 + Vab is diagonalized to provide a mixed eigenbasis in which to treat 
the collective motion. 
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The result for the uncoupled problem has been predetermined by the 
assumptions we have made to give incompressible flow with an irrotational 
inertia. 

We then wish to show only that the coupling of the levels via Vaj, 
into eigenstates, |u> and |L>, (denoting upper and lower eigenstates, 
respectively) of H 0 + Vab introduces extranon-zero terms into the expression 
for V S L and for the inertial parameter. The latter includes the crossing 
contributions already analyzed in references 19] and [10], but not then 
recognized as effects so closely associated with compressibility. 

First we outline the procedure for obtaining an approximate 
expression for the velocity potential, S. We assume that a complex 
function, ф = u + iv, is calculated to some approximation. Then by 
equation (10), the corresponding velocity potential S is given by 

= itan"'(tr/w). (И-5) 

One notes here that the approximation of -tan' (гг/и) «s v/u in 
(II-4) is tempting, if ä is small, since v •> 0 as ä ->• 0. But this 
approximation is dangerous if u has any nodes, since in that case the 
resulting S may have singularities whose successful management is difficult 
to guarantee. This is the difficulty referred to in footnote (4). If u 
has no nodes, then the theorem of Wick 114] applies, and his conclusion 
follows: that the inertial parameter is precisely equal to the irrotational 
value (II-2). Such questions will be discussed in more detail elsewhere. 

To contrast the coupled and uncoupled cases we adopt the following 
convenient notation. Stationary eigenstates of HQ are denoted by 
tta, U|j, ••• and the time-dependent eigenstates by фа = u a + iva, •••• 
When a finite coupling, Va, , exists between the two states, the resulting 
stationary eigenstates are labelled u^ = Aua + Bu, and UJJ = Bu^ - Aua. The 
corresponding mixed time-dependent eigenstate is denoted by *L = XL + iwL» 
to emphasize the fact that it will generally contain other terms, in 
addition to those present in ф£°= ^я + В^Ь = иЬ + ^VL-

In particular, to leading order in Q/dt = ä Э/ЭЛ , 

(II-6) 

is the approximate wave function for the lower state. (II-7) exhibits 
a third term over and above the two terms corresponding to фа and ф^. 

The effect of this extra term upon S can most easily be understood 
in contrast to the simplest uncoupled case specified by assumptions 
(II-l) and (II-2), which are realized when the ratios, 
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Va/Ua=Vh/ub=-tan7 <И-8> 

are equal for the crossing states. (This equality is actually realized 
in the quadrupole shape deformation of a simple harmonic oscillator 
system, "[15].) In such a case, one would obtain by considering 
Лп(фа/фа), or Jin (ф^/ф^) the same velocity potential for levels a and b, 

s« «-£*=*;. (II-9) 

The result that the velocity potential is the same for all levels is 
consistent with the assumption (II-l), and the uniqueness of solutions to 
(II-l) for specified boundary conditions. 

Moreover, the same velocity potential would be obtained from any 
linear combination, Афа + Вф^> of фа and tyu and in particular for the 
linear combination given by omitting the third term of (II-7). One 
concludes that, in ths simple case, omission of the third term leads 
again to (II-9). 

We can now inspect the effect of including the third term of (II-7), 

.^<»uiD/at|u<.> e (H_10) 

Prom (II-3), we can see that the new velocity potential is 

L 2:m (Aua+Buj-iCAVo+BvO-iruv (ii-ii) 

~2.i"> {(/\ua+Bub-)-i(^a-i-BVb)}e^p(-iS) 
(11-12) 

~ S --$-8 (Ц-13) 

where 
S = tan-4 Гам 1 

This r e s u l t , plus the observation that 6 i s cer ta inly not a constant 
in space, guarantees t ha t , 

V 2 5 c ^ 0 (11-15) 

by virtue of the fact that \7 2'^ a= О , and by the uniqueness of 
solutions to Laplace's equation with specified boundary conditions. Thus 
we reach our first conclusion: that at a level crossing, the velocity 
potential for ф^ describes compressible flow, even when each of the flow 
patterns of the two uncoupled levels is incompressible. 
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To see the effect of the third term on the collective kinetic energy, 
we evaluate the expression (1-14) with u0 + iv^ replaced by (II-7). Then 
one finds 

where the second terms arises from presence of (11-10) in (II-7). It is 
precisely this term which contributes on the average some 1CP times the 
irrotational inertia for a typical quadrupole distortion of an independent 
particle system, and some 40 times the irrotational value when the 
smoothing effects of pairing are considered 110]. In short, the additional 
term arising from deviations from incompressible flow at crossings provides 
the dominant contribution to the nuclear inertia. This, it seems, supports 
the suspicion that the failure to allow compressibility in a nuclear 
structure theory is a serious deficiency. 

Note Added in Proof: Dr. Charles Critchfield has pointed out to us a 
paper by E. Madelung (Z. Phys. £0 (1926) 322) in which Eqs (13) and (14) 
and their fluid dynamical interpretation are derived and discussed in the 
context of the one-electron problem. 
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DISCUSSION 

L. WILETS: There is an old theorem which states that a nodeless 
wave function leads to irrotational flow. Does your theory exhibit this 
effect? Also, is your velocity field the same as other (hydrodynamic) 
definitions? 

J . J . GRIFFIN: Yes. Wick's theorem for a nodeless wave function 
is consistent with our formalism. However, the rigid body value of the 
rotational moment in the nuclear independent particle system results only 
when the deformation is taken to be equal to the equilibrium value. For 
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a single nucleon in the nodeless wave function, this equilibrium shape is 
spherical and its collective rotation is not well defined. Thus, Wick's 
theorem does not directly confront the paradox posed by the rigid moment 
of inertia. Perhaps Mr. Kan would like to comment on this. 

K.-K. KAN: One should remember that the irrotational velocity field 
exhibited by Wick is a quantity in the rotating frame. It is well known, at 
least classically, that in transforming back to the space-fixed frame, we 
get an additional rotational term 

% = vrot + wXr 

Investigation of this kind of transformation in our "quantal" fluid may help 
to resolve the paradox. 

L.G. MORETTO: In listening to the presentation of this paper, it 
occurred to me that pairing is extremely important in determining the 
inertial masses, especially insofar as the barrier penetrability is con
cerned. In a least-action trajectory calculation of the Pauli type, one should 
include the gap parameter as a collective variable. The resulting pairing 
least-action path (for which I would propose the acronym (LEAP)) may very 
well correspond to a substantially larger gap parameter due to the very large 
gain in superfluidity and to a significant decrease in inertia. 

H.C. PAULI: I agree with you that the pairing gap is a collective 
parameter, like a deformation, and that the variation of the trajectory in 
"pairing space" should be included. Perhaps this will even be easy to 
perform technically. At the moment it is difficult to estimate the changes 
in the action integral. Personally, I believe that the inclusion of this 
dimension would create effects as large as those due to surface pairing. 

J. J. GRIFFIN: Pairing happens to affect the ground state in the low-
lying spectra very much. There may be four or five other such variables 
in the nucleus which are not so obvious to us, meaning that we can calculate 
the ground state without including them. I think this question opens up a 
vast realm of possibilities for hidden coordinates; coordinates not equal to p 
or x or not obvious functions of p or x, which might really play a tremendously 
important role in the end in determining dynamical nuclear structure. 

What seems to me to be most important about understanding the inertial 
parameters is that the single-particle wave functions in the process of being 
rearranged make the dominant contribution to the inertial parameter. 
Pairing reduces that from a factor of 1000 to a factor of 10 but I consider 
the more important underlying conceptual item to be the rearrangement 
of the single-particle wave functions. Therefore I look to the independent-
particle limit to be the more informative one, even though it does not give 
the quantitatively correct results. It is the pure, more pristine, philosophical 
case, if you like. 
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Abstract 

UNIFIED THEORY OF LOW-ENERGY FISSION AND FISSION MODELS. 
An S-Matrix formulation of the induced fission P + T -»С -» f1 + F2 is presented by introducing scattering 

states | c£~,+' > of the target-projectile system, bound states | X > of the compound system С and fissioning states 
\ie\ ' > of pairs of fragments Fi and F 2 . The states | ce£' >, |X> and |feS. ' > are conveniently defined within 
an extended generator coordinate method Ьу|Ф> = E Jdp0 a (p ) | a , p> . Here, in addition to the integral over 

а 
the generator coordinate^) p, a sum over a limited number of adiabatic states a is included. The sum and 
integral is limited to appropriate subspaces {c} , {X} and {f} . Near or below the fission threshold the subspaces 
are defined as follows: {c} includes the adiabatic states | a , p> around the ground state deformation in the first 
valley with a light particle in the continuum, {X} is restricted to bound states in the first and second valley 
and {f} consists of adiabatic states beyond the second saddle point. Within this approach the threshold 
dependence of the fission cross-section is discussed and the model Hamiltonian for the description of gross, 
intermediate and fine-structure resonances in the total fission cross-section is obtained. 

Whereas in low-energy fission the dependence of the total fission cross-section is mainly determined 
by the structure of the compound states, there are many fission phenomena (e .g. mass yields, charge and 
spin distributions between the fragments, total kinetic energies and excitation energies of the fragments) which 
are strongly influenced by the properties of the fissioning states |fej >. Assume that there is a specific 
adiabatic state populated at the (second) saddle point. The fission phenomena are mainly determined by the 
coupling of this specific state to other adiabatic states. This coupling is considered in the level-crossing 
model and found to be strong between collective states and weak between non-collective states. A useful 
hierarchy of the adiabatic states is introduced which leads to the definition of fission bands. In the picture 
of this hierarchy, the static scission point model, the adiabatic model, the diabatic model of Kelson and 
Griffin, the statistical model of Fong and the thermodynamical model or quasi-equilibrium model is discussed. 

1. INTRODUCTION 
Nearly 35 years have passed now since Hahn and Straßmann [ 1 J 

discovered nuclear fission. In the meantime plenty of experimental 

data have been compiled and partly described by models which have 

been developed for specific phenomena. We have reached a point 

where it seems to be useful to study all these specific models in 

the framework of a unified theory. The first step in this 

direction has been done already by Hill and Wheeler С 2 "} several 
years ago. Such a general description of nuclear fission is 
particularly important in order to unify the language not only for 
the fission process but also, more generally, for heavy-ion 
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reactions. The aim of this paper is to pick up the idea of Hill 
and Wheeler and formulate a unified description of fission. 
Thereby, we hope to give a guide for using our knowledge on fissic 
in the collision of very heavy nuclei and vice versa. 

2. UNIFIED THEORY 
Let us study the induced fission process 

P+T •* С + F +F or T(P,f> (2.1) 

where the projectile P is absorbed by the target. The excited 
compound nucleus С fissions into two excited fragments F and F 
of comparable size. We restrict the discussion to two particles 
in the outgoing channels in order to avoid the three-body problem. 

2.1 . S-matrix formulation 

The channels are su i t ab ly defined by the t o t a l angular 
momentum J , M, the t o t a l parity П and the channel ind ices 

с 5 Ap ,Zp ,vp-, A T j Z T , v T ; < V T ) J C L C « . l . i : 

for the p r o j e c t i l e - t a r g e t channels and 

f = A ,Z ,v ; A ,Z ,v ; (J J ) J f L- (2 .1 .2) 
i l l 2 2 ' 2 i 2 * r 

for the fission channels. The stationary scattering solution at 
the energy E is given by Г 3,4 ] 

i j W lim in |cJIIM> (2.1.3) 
' *Л1М,с > " n.*+0 E - H +' i n 

where H is the total Hamiltonian of the system. The wave function 
|CJJIM> is the free spherical wave solution in the incoming channel 
с The S-matrix elements Sf are given by the ratio of the 
outgoing amplitude in the channel f over the incoming amplitude in 
the channel c. The S-matrix elements sS^n contain the complete 
information about the fission process. The various cross-sections 
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can be obtained from these matrix elements in the usual way 

£ 4 , 5 ] . A particularly simple expression is obtained for the total 

cross-section for fission by unpolarized particles, namely 

unpol. = £ s |S Л I» 
t C K^~ jn(2J +1>(2JT+1) JcLcJfLf

 t c U.l.tj 

where К is the wave number in the incoming channel c. 
с ö 

The scattering solution (2.1.3) can be calculated approxi
mately in a truncated Hubert space with projection operator P. 
The following derivation of the S-matrix is closely related to the 
description given by Fano £ 6 ] and Weidenmüller £ 7 "J . We 

approximate the scattering solution (2.1.3) for a given total 

angular momentum and parity by 

|fe( + )> = Г ах' А > + Z/dec?ec' 4»> Iе'' ec'(+>> 

' X OEocf c c (2.1.S) 
CO 

2 / dsfyf(ef)|f ,ef" }> 
f Eof 

where we use a basis of three classes of wave functions: 

(i) The states | A> are bound states of the compound system. 
(ii) The states |c',e > are scattering states with thresholds 

с E ,, containing one light particle in the continuum and the 
o c ( + ) 

target in a bound state. Asymptotically lc',6 . ? consists of 
an incoming and outgoing wave in the channel c' and only outgoing 

1 t waves in all other channels с Ф- с'. 
(iii) The states |f,ef >are scattering states of the fragments 
F.. , F? which are later referred to as fissioning states. 
Asymptotically they consist of outgoing and incoming waves in 
channel f and only incoming waves in all other channels f' Ф f. 

Inserting the expansion (2.1.5) for the scattering solution 
into eq. (2.1.3) written in the form 

(E - PHP + ^)|¥ с
С + )> = in I c,ec

(+)> 
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where I с, JIIM > has been replaced by the corresponding scattering 
state lc,e > , ref. £ 3 J , we obtain a coupled set of equatioi 

for a. , J O , ( E ,) and у^(е^). This set of coupled equations is 
solved by neglecting the continuum-continuum interaction £6,7]] 

i.e. <f,e.p |H|c',e, > = 0 . This is a good approximation 

because the scattering states |c',e t > and the fissioning 

states lf,ef > have rather different shapes. If |c',e , > and 

|f,e.p > are normalized to 6-functions in the energy, the 

resulting S-matrix is given by 

S f c = -2Tri I<fef
(-)|H|X>ax (2.1.6) 

A 

where a, is determined by the set of coupled equations л 

^ / ( E - e X ) 6 X X - - c . ( 3 U ' ( E ) + f L ' ( E > } a X ' = < *|Н|сб<+>> (2.1.7) 

with (j s c ( + ) or f(_>) 

. - <X|H|je.xje.|H|X> G^n,(E) H lim / de. 3 2 JXX' П++0 Eoi J E - e. + in 0] 1 (2.1.8) 

Fxx'(E) +i rxx' D ( E ) 

with F. ? , (E) and Г.^,(Е) real. A particularly simple solution is 
obtained if the energy dependence of the matrix elements 
<X|H| fe f >and <Х|н|с',е , > and the nondiagonal terms of 

i G,^((E) are negligible. Then the S-matrix is given by 

с - ,„• у <fE(")|HlX><X[H|cE(+)> 
l c X E - EJ + ЧТХ (2.1.9) 

c' f with the shifted resonance energies E' = E. + £»1".^ + £F,t 

and the widths Гх= 2тг { S,|<X | H| c'EC + 5> | 2 + E | <X |H| fE^~ } | 2 } . 
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For non-overlapping resonances the unpolar ized c r o s s - s e c t i o n at 
a resonance E ' , i s , according to eq. ( 2 . 1 . 4 ) , 

CT u n p o l . _ 47Г2 2J + 1 r x f r X ° 
fc K2 (2J +1)(2J„+1) (E-E')2 + ir 2 (2.1.10) 

С p 1 А ч А 

with rf r 2iTT Z |<X|H|fE(-)|2 and Г.С = 2тт Z . | <X|H|cE(+}> | 2 . u fb f л Jcbc 

In order to discuss the fine, intermediate and gross structure 
of the resonances, observed in the fission cross-section, one has 
to specify the basis states, particularly the compound states, in 
some detail. 

2. 2. Basis functions 
According to Griffin and Wheeler £ 8 ] we look for wave 

functions of the form 

|Ф> = Е/арФо[(р)|ар> (2.2.1) 

where |ot,p>are some appropriate states depending on a set of 
quantum numbers a and a continuous variable p , the generator 
coordinate. We like to call these states | a ,p > adiabatic states 
which could be constructed from a deformed single-particle 
potential with some residual interaction (e.g. pairing interaction) 
or from deformed Hartree-Fock (HF) calculations or related 
self-consistent methods. The various approximations, i.e. the 
amount of residual interaction taken into account or the ansatz 
for the wave function (HF, HF-Bogolyubov, RPA), lead to different 
adiabatic states reaching from shell-model states (sometimes 
called diabatic states) to collective RPA states. The 'true' 
adiabatic states are defined by exactly solving the Schrödinger 
equation with the total Hamiltonian under the constraint of given 
deformations. Inserting the expansion (2.2.1) into the Schrödinger 
equation one obtains in a given subset of the adiabatic states the 
coupled set of integral equations 

E/dp ка'р'|н| ар> ~е <а*р'|ар>}ф (р) = 0 (2.2.2) 
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which determines the weight functions ф (р) . Eq. (2.2.1) can b< 
transformed approximately, e.g. by a moment expansion £ 9 J or by 
relating the overlap integrals to derivatives of Gaussian-type 

functions [9,10 ] , into a coupled set of differential equations 

of the form 

{Tcoll(p) + V p ) " e Vp) = E C a a « ( p ) V p ) (2.2.3) 

where the collective energy T ..(p) is a second-order differentia 

operator, V (p) is a collective potential and С ,(р) is in 
general a differential coupling operator. 

In dealing with the fission process, the generator coordinate 
is a deformation parameter or more generally a set of 
deformation parameters p = p ,p , ... . The ground state 

1 2 energy V (p) as function of the deformation p has been calculated 
successfully in recent years by Strutinsky's method [ 11-15 J. 
Excited states (aj 0) can be built upon the HF or HFB ground state 
by introducing particle-hole or quasi-particle states. A schemati 
picture of the adiabatic energies ^(p) is shown in Fig. 1. 
According to this picture we can divide the Hilbert space, which is 
already truncated to avoid over-completeness, into four subspaces: 

(i) The subspace {c} consists of all adiabatic states in the 
compound region I (first valley) with a light particle in the 
continuum. 
(ii) The subspace {Xr} consists of all bound adiabatic states in 
the compound region I (first valley). 
(iii) The subspace {XTT} consists of all bound adiabatic states in 
the compound region II (second valley). 
(iv) The subspace {f} consists of all bound adiabatic states in 
the fission region. 

We can now define the basis states |c',e t > , |fsef > •> |AT> 
or |ATT> by eqs. (2.2.1) and (2.2.3) in the subspaces {c} , {f} , 
[\ } and {X_T} , respectively. The boundary conditions between 
the regions, indicated in Fig. 1, couple the solutions in the 
different subspaces. It has been shown Q 9 ~] that this coupling 
can be taken into account approximately by introducing artificially 
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COMPOUND REGION 

I 
FISSION REGION 

FIRST SADDLE SECOND SADDLE 

F1G.1. Schematic picture of adiabatic states. The definition of the adiabatic states, given in the text, 
does not forbid level crossings. Some shell-model (or HF) configurations are indicated by dashed lines. 

the boundary conditions ф (p (boundary)) = 0, (d<j> /dp) (houn<iarv) 
= 0 and at the same time taking an effective Hamiltonian H _ -
which couples the states across the barrier. Let us briefly 
discuss in the following subsection the phenomena connected with 
H f~ and the compound states. 

2.3. Threshold behaviour and resonances 
Let us assume that one of the two barriers is much higher 

than the other and that we are dealing with fission at energies 
near this barrier. If the second barrier is higher we cannot 
distinguish between. XT and X T T states any more. If the first 
barrier is higher we have no X T T states near threshold energies. 
In both cases only one sort of compound states X is left over. 
According to eq. (2.1.10) the mean fission cross-section, averaged 
over an energy interval which is large compared to the distance D 

A 
of the compound states X, is given by 

unpol. f 
<0fc > " < r x * 2TT (2.3.1) 

where Г^ is the mean value of the squared coupling matrix element 
2ir|<fE |H ff|Ä>|

2 and T is the transmission coefficient through 



554 NORENBERG 

the barrier. The energy dependence of this transmission 
coefficient determines the threshold behaviour of the fission 
cross-section. The lowest threshold is due to the adiabatic 
ground state a = 0. For an inverted harmonic oscillator, Hill 
and Wheeler [ 2 J have obtained 

= {l - ехрСги^ 1)} (2.3.2) 

where E is the barrier height and fico the oscillator energy. 

Let us briefly discuss the nature of gross, intermediate and 
fine structure in the fission cross-section. According to our 
treatment in subsection 2.2, the total Hamiltonian is approximated 
by 

H = H + HT + H T T + H_ + H T + HT T T + HTT-. с I II f cl I II Ilf (2.3.3) 

The energy dependence of the fission cross-section below or near 
to both barriers can be studied in analogy to subsection 2.1. The 
Hamiltonian (2.3.3) has been treated in detail several times 
Q 9,16 ~2 . The result can be summarized as follows (Fig. 2): Fine 
structure resonances are due to compound states |XT> in the first 
valley. Intermediate structure resonances are due to compound 
states I^TT5, in the second well. The energy distances between 
intermediate resonances are much larger than between the fine 
structure resonances, because of the lower level density in the 
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FIG.2. Gross structure ( Ig^) , intermediate structure (Г„ц) and fine structure (IJ j) resonances in the 
fission cross-section. 
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shallower second well. The gross structure is due to a doorway 

mechanism for the states: Collective vibrational states carry the 

total coupling across the barriers. If the spreading width of 

these doorway states are smaller than the distance to neighbouring 

doorway states, gross structures due to these doorway states are 

observed in the fission cross-section. 

3. FISSION MODELS 

We have seen in section 2 that the energy dependence of the 

fission cross-section is determined by the structure of the barrier. 

Other information about fission phenomena, like mass and charge 

distribution, kinetic and excitation energies of the formed 

fragments are contained in the fissioning states |fE > intro

duced above. A rigorous calculation of |fE > according to 

eq. (2.2.3) is far beyond our abilities to solve exactly. Therefore quite simple 

models which are feasible numerically have been introduced 

to get a feeling about what is happening in the fission 

process between the saddle and the scission point. In order to 

discuss all these models in a common language, it is necessary 

first to study the adiabatic states |ap> somewhat closer and to 

define a hierarchy of these states. 

3.1. Hierarchy of adiabatic states 

Consider the problem of level crossing, as shown in Fig. 3, 

which has been treated by Landau, Zener and Stueckelberg in a 

time-dependent quasi-classical approximation ^ 17 ] . Suppose that 

FIG. 3. Crossing of the adiabatic levels a = 1 and a = 2. 
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there are only two adiabatic states, a = 1 and 2, which have to be 
taken into account and assume that the coupled eqs. (2.2.3) have 
the following form 

Ъ* iljL + Ce -Уа(Р)]Фа(Р) = v
aat*ai<P> (3.1.1) 

2M dp2 
а 

with а,а' = 1 and 2, and M , V , independent of p. In a moment 
expansion of the integral eq. (2.2.2) one obtains П 9 И 

2И« K ^ 

Vp) = Наа ( р ) / 1«а ( р )' Vaa- = Ha«' ( p ) / I«a' ( p ) (3'1'2) 

where H . and I . a r e the n - th moments i n p - p ' of t h e e n e r g y act aa ы 

and norm o v e r l a p of e q . ( 2 . 2 . 2 ) . I n s e r t i n g t h e ansatz 

)>a(p) = * a ( p ) e x p { - i /K<?)d?} ( 3 . 1 . 3 ) 

w i t h к ( р ) = 1( !Гк 2 (р) + К 2 ( р ) ] and h 2 K 2 (p ) = 2M (E-V ( p ) ) , 
' 2 u 1 2 Cfc O t a 

e l i m i n a t i n g ф ( р ) , we o b t a i n a f o u r t h o r d e r d i f f e r e n t i a l 
2 

e q u a t i o n f o r ф (р) which r e d u c e s t o l 

dx 2 

ф (x) + Г | G | 2 + X 2 + i]i(i (x ) = 0 ( 3 . 1 . 4 ) 

w i t h |G | 2 = 2|V | 2 , x = In M у , , 

fi2K(p.)lYl ^ 2Л2к(р ) CpoJ|Y| v 2n*iap0. 

and Y = K2(p)-K2(p) fi2 for sufficiently large energies, i.e. _j 2 
2(p-p ) M M 

0 1 2 
К >> q and 'п2ак2 >> M M v where q denotes a characteristic wave 
number of ф (х). The same eq. (3.1.4) has been obtained in the 
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time-dependent quasi-classical description [J 2,17 Д . If for 
x + - » we have an incoming wave with |ф |2 = 1 in the adiabatic 
state 1 and nothing in the adiabatic state 2, the result for 
X -f. a, I S 

ll^Cx- »)| 2 = exp(-Tr|G|*) (3.1.5) 

|ф (х- °°)|2 = l-exp(-ir|G|2) 

i.e., the probability that the system remains in the same adiabatic 
state is ехр(-т|G|2 ). 

For I Gl <<1 the system does not feel anything from the 
second adiabatic state and completely stays in the initial one. 
In the opposite case, |G|2 >>1, the system is, after the crossing, 
completely in the other state. If this is true it is useful for 
the following discussion to redefine the adiabatic states by 
diagonalizing the interaction V in the old adiabatic states 
which then transform into new adiabatic states with adiabatic 
energies indicated in Fig. 3 by thick lines. Note that these new 
adiabatic states are usually referred to as 'the' adiabatic states. 
Table I gives some information about the coupling of different 
kinds of states. 

TABLE I. CHARACTERISTIC VALUES FOR THE CROSSING OF DIFFERENT 
ADIABATIC STATES 

Crossing of 

c o l l e c t i v e 
(p ,h) s t a t e s 

non -co l l e c t i ve 
(p ,h) s t a t e s 

Iv 1 
(MeV) 

1 

0 . 1 

У 
(MeV/fm) 

1 

4 

| G | 2 

1/2 

0 . 0 0 1 

exp(- i r |G 

0 .2 

1.0 

2 ) 
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The variable P is taken to be the distance between the centres of 
two interacting fragments. Taking M = M = M to be the reduced 

1 2 
mass of the interacting fragments, we have calculated for 
E-V(P) = 4 MeV the coupling constants (G| for collective and non-
collective particle-hole states. According to the values given 
in the table, we expect in general strong coupling between 
collective states only and a considerably weaker coupling 
between collective and non-collective states. The coupling 
between non-collective states is negligibly small. 

In the light of this discussion it is reasonable to introduce 
the following hierarchy of adiabatic states. Let us denote with К 
a collective excitation for a given deformation p. This collective 
excitation may consist of several individual collective vibrations 
With n we want to denote a non-collective excitation which in 
general also consists of several individual non-collective 
excitations. Then an adiabatic state ct =(n,K) consists of a 
collective and a non-collective excitation. Now we can define a 
hierarchy with respect to a specific adiabatic state a = (n ,K ): 

o o o 
To the first hierarchy belong all adiabatic states (n ,K) which 
differ in the collective excitation к only. The rest of the states 
then belong to the second hierarchy. Because of the axial 
symmetry of the fissioning system and the smallness of the Coriolis 
coupling, the component A of the total angular momentum along the 
symmetry axis is a rather good quantum number and practically 
conserved during the descent from saddle to scission [ 18 ] . 
Therefore, adiabatic states with different Л. are treated as states 
of different non-collective excitations. 

In this instructive picture of hierarchies we can qualita
tively discuss the fission process between saddle and scission. 
Suppose that the compound system starts at the saddle point in a 
definite adiabatic state a = ( n , К ) . During the descent 
towards the scission point, the system strongly couples to all 
other collective states. Let us call all these strongly coupled 
states with the same non-collective excitation n a fission band, 
because they play with respect to fission a role similar to the 
states in a rotational band with respect to electromagnetic 
perturbation (radiation, Coulomb excitation). Because of the 
strong coupling between the adiabatic states of a fission band, 



IAEA-SM-174/24 559 

the motion in the fission direction is strongly damped. A 
considerably weaker coupling is expected between different fission 
bands n t nQ. But it is not clear if this coupling can be 
neglected completely. At the scission point we expect the compound 
system to be in an excited state which mainly consists of 
collective excitations built on the non-collective excitation n . 

о 
We are now at the stage where we can discuss various fission models 
which have been introduced in the literature. 

3.2. Static scission point models 
As stated above the compound system is expected to be in highly 

excited states when reaching the scission point. These highly 
excited states can be understood as collective and non-collective 
states built on the ground state. Certain properties of these 
highly excited states can be expected, at least in the mean over 
such states, to be the same as for the adiabatic ground state. 
This is probably the reason why static calculations for the scission 
point configuration have been successfully applied for describing 
certain fission phenomena. Static scission-point calculations 
have been frequently performed within the framework of the 
liquid-drop model £ 19 J • Shell-model calculations have been 

performed in the Nilsson model without £ 20 ̂| and with £ 21 ~] 

Strutinsky renormalization of the total binding energies. Taking 

also the nuclear interaction between the fragments into account, 

charge distributions £ 22 ~J and moments of inertia Q 2 3 ] have been 

calculated for U. For Pu and Pu level schemes, equili

brium deformations of the fragments, total energies and charge 

distributions have been studied Ц 24 ] . The results have 
supported the existence of a barrier at scission E 25^] • 

3.3. Statistical model of Fong 
If one assumes strong coupling between all adiabatic states, 

i.e. strong coupling also between different fission bands, during 
the descent from saddle to scission, it is reasonable Г 26 ~\ that 
all states available for a given energy are populated with equal 
probability. By this assumption all fission phenomena are 
determined by the level densities of the fragments at the scission 
point. We know today that a complete statistical equilibrium is 
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in contradiction to the observed angular anisotropy of fission 

fragments in low-energy fission Q 18 ̂j . Such statistical 

considerations are probably useful for very high excitation 

energies only. 

3.4. Adiabatic model 

This model is obtained if one restricts the basis |ap> to the 

lowest (adiabatic) state as a function of one or a set p of 

collective variables. In such an approach one completely neglects 

the coupling to non-collective and collective degrees which are 

not taken explicitly into account. For a review see e.g. Nix [2 7] 

A successful study on spontaneous fission half-lives has been 

performed by Ledergerber and Pauli £ 28 ~J within such an adiabatic 

model. Obviously, excitation of collective states are strongly 

suppressed in a tunneling process. Therefore it is in fact 

reasonable to calculate fission half-lives without taking the 

coupling to additional collective degrees into account. This is nc 

longer justified for the motion at positive energies where, as 

discussed above, the coupling to collective states is expected to 

be strong. 

3.5. Diabatic model of Kelson and Griffin 

In contrast to the adiabatic model, Kelson £ 29 ~2 and Griffin 

Q 30 3 assume that the compound system moves not on the lowest 

adiabatic potential surface but rather on potential surfaces 

corresponding to specific shell-model or HF configurations. 

According to our discussion on the coupling between non-collective 

particle-hole or quasi-particle excitations it is reasonable to 

assume that the system stays in the same state also when crossing 

with other states occur. Kelson and Griffin go a step further by 

taking the (diabatic) shell-model or the HF configurations as the 

adiabatic states |ap>, thereby neglecting completely effects from 

pairing. The system is then assumed to stick to a definite 

adiabatic or rather diabatic state. These diabatic states are 

illustrated in Fig. 1 by dashed lines. In a sense these diabatic 

states play the same role as the non-collective excitations n in 

our discussion of hierarchies of adiabatic states a. There are the 

additional collective degrees which in Griffins model correspond 

to the collective variables p in the potential surface. Thus in 
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this diabatic model of Griffin a hierarchy of the degrees of 
freedom has been incorporated which is somewhat analogous to the 
hierarchy of adiabatic states introduced above. The collective 
degrees are allowed to be strongly coupled within a multidimen
sional collective model whereas no coupling is assumed between the 
diabatic states. The only difference to our hierarchy is the fact 
that we assume the (adiabatic) ground state to be a collective 
state (at least with pairing correlations) whereas Griffin assumes 
the ground state to be dissolved into its non-collective components, 
the lowest diabatic states. 

3.6. Thermodynamic or semi-equilibrium model 
According to the discussion about the hierarchies of adiabatic 

states, we expect strong coupling within a fission band. In a 
fission reaction one gets into the interesting region between 
saddle and scission point via a certain state a = (n , К ). The r o o o 
thermodynamic or semi-equilibrium model £9,3lJ is defined by 

assuming 

(i) that the coupling within the fission band n is so strong as to 

achieve at scission a statistical equilibrium among all members of 

the fission band 

(ii) that the coupling to other fission bands n i n0 is negligible. 

The number of collective degrees of freedom is expected to 

be about 10 to 15. Even though this number is rather small, the 

population probability of a given state > in a certain degree of 

freedom f is very well approximated by the Boltzmann factor 

Р Й ' " •*><- ßcoil4v}> СЗ'6Л) 

• ^ is the energy of the level v and К C ^ = 1 / T ( O 1 I ' 
with K„ the Boltzmann constant, is the inverse collective 
temperature characterizing the statistical equilibrium in the 
fission band n. The applicability of eq. (3.6.1) is demonstrated 
in Fig. 4 for only four oscillators of equal energy. In the case 
of f = 10 the differences become smaller than 5%. 

The Boltzmann factor (3.6.1) immediately allows one to calculate 
e.g., the element distribution in fission. We prefer to consider 
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FIG.4. Comparison between exact population probability P(ej) (thick curves) and the Boltzmann factor 
(thin curves) for a model of four equal oscillators of energy tiw for different total energies E = etiw. 

the element distribution PCZ.jZ«) instead of the mass distribution 

PCA.jA-) because the fragment charges are already rather good 

quantum numbers at scission £ 24 "J . Thus , the element distribu

tion in fission is given by 

p ( n 4 > v — p<-*Sie$,> (3.6.2) 

for the fission band n, where г^п1 is the adiabatic energy 
V (p (scission); z-tZo^ a t t h e s ci s si° n point. For a scission barrier 
one has to take a mean value of the valley and the barrier 
energy £ 24 ~2 . For fission near threshold, only the ground-state 

fission band is excited. Therefore, the element distribution is 

completely determined by the adiabatic ground-state energies at 

scission as a function of the fragment sizes, measured by Z. and Z„. 

A fit [ 24 ~\ to the experimental distribution for Pu gives 

KgT ,, = 2.3 MeV which is consistent with fits of the energy 

dependence of symmetric to asymmetric fission yields [ 9,31 ] • 

Let us illustrate the temperature dependence, e.g., for the 

spin distribution of fission fragments. This spin distribution has 
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FIG. 5. Spin distribution of a deformed fragment for different values of the temperature т = кпТ с оц/Ишь-
Typical values are Мшь = 1. 5 MeV, y0 =0.145 (from Ref.[ 32]). 

been ca l cu l a t ed for T „ = 0 in re f . Г 32 ~\ 
c o l l ^ J 

dependent sp in d i s t r i b u t i o n i s given by 

The temperature -

P<0)(1) « l a v ( l ) e x p {- b S l ^ y ( 3 . 6 . 3 ) 

ere, according to ref. L 32 J , a v(D denotes the spin wh 
w - — . V -

distribution for a given bending-mode state v and e, is the 
corresponding energy. The resulting distribution is shown for 
three different temperatures in Fig. 5. Further studies within 
the framework of this thermodynamic or semi-equilibrium model are in 
progress [_ 3 3 J • 

3.7. Friction in the adiabatic model 
It is well known [ 34] how to introduce an imaginary 

potential in the Schrödinger equation for a scattering state 
within the elastic channel. But since in fission we are not only 
interested in the elastic channel but in properties of all 
adiabatic states excited in the fission process, we need more than 
the reduction of flux in the elastic channel. 

In classical mechanics one treats the coupling to other 
degrees of freedom by a friction term which is proportional to the 
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velocity of the particle under consideration. In a straight
forward way, one could think of introducing into the Schrödinger 
equation an analogous friction term proportional to the momentum о 
the collective motion. As in the optical model, it is no problem 
that the Hamiltonian is no longer time-reversal invariant. But 
this procedure is dangerous because of the following reason: As i 
obvious from the coupled set of differential eqs. (2.2.3), the 
friction term should effectively take into account the excitation 
of different adiabatic states. But in this case it is in general 
no longer possible to describe the system by a single wave 
function only. Therefore it is in general self-contradictory to 
introduce such a friction term in the Schrödinger equation. Doing 
so one implies that the system is at any given p in a single 
adiabatic state only. This can be true if and only if there is 
one specific (diabatic) state through which the system runs, as 
assumed by Griffin. But if this is so, it is advantageous to 
think about this diabatic state from the beginning instead of 
starting from the adiabatic model. 

4. CONCLUSION 
It has been demonstrated that the description introduced in 

this paper is useful to interpret fission models on a unified 
basis showing the limitations and advantages of the various 
concepts. Up to now we cannot distinguish between these models 
because we did not succeed in obtaining, from the existing fission 
experiments, sufficient information about the fission mechanism 
between the saddle and the scission point. We hope that 
additional and maybe more clear information about this problem can 
be obtained from the near-future heavy-ion experiments. It is 
expected that the unified description and the given concept of 
hierarchies of adiabatic states will be a useful tool for the under
standing of these heavy-ion experiments and in turn of the fission 
process. 
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DISCUSSION 

H.J. KRAPPE: If you assume statistical equilibrium between the 
collective degrees of freedom all the way down from saddle to scission, 
I wonder what the characteristic time of the collective degrees of freedom 
has to be compared to the time scale of the fission motion. What is the 
relaxation time of the collective degrees of freedom, which you would derive 
from your coupling strength? 

W. NORENBERG: In the semi-equilibrium model we do not assume 
that a statistical equilibrium is obtained all the way down to the scission 
point. The assumption is that, due to the strong coupling between saddle 
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and scission, the members of a fission band are populated with equal proba
bility. The relaxation time was not very well defined in the level crossing 
diagram discussed here, but on the basis of this diagram I expect the 
effective relaxation time for the coupling of collective states to be of the 
order of 10"22 sec. 

M.G. MUSTAFA: In your calculations, what is the exact excitation 
energy of a compound fissioning nucleus (236U or any other actinides) at the 
point where the mass distribution shifts from asymmetry to complete 
symmetry? 

W. NÖRENBERG: According to Refs [9, 31] of the paper, the ratio § of 
symmetric to asymmetric fission yield is given by 

|(E*) ос ехр (кЕ*/(2Д)} 

where E* is the excitation energy above the barrier and Д the pairing gap. 
The constant к turns out to be ^ 0.44. If e.g. 1(0)»; 10"3, then g = 1 is 
obtained for E* « 50 to 60 MeV. 
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Abstract 

THE ASYMMETRIC TWO-CENTRE SHELL MODEL AND MASS DISTRIBUTIONS IN FISSION. 
The two-centre shell model is introduced which can describe nuclear shapes occurring during the fission 

process. The parametrization allows quadrupole as well as mass-asymmetric distortions of the fissioning 
nucleus. Potential energy surfaces are calculated by the macroscopic-microscopic method according to 
Strutinsky. The parameters are then regarded as dynamical collective coordinates and the model is used 
for generating mass parameters in the cranking model approximation. The Schrödinger equation for movement 
in the mass-asymmetric degree of freedom is solved numerically for the zero-point vibrations, which are 
then interpreted as the main component determining the fragment mass yield in spontaneous fission. Calculated 
mass distributions are compared to experiment. 

Semi-empirical shell model calculations employing the shell 

correction method have been quite sucessful in explaining the 

preference of nuclei in the actinide region for asymmetric fis

sion and are even able to reproduce the experimental values of 

the most favourable heavy-to-light fragment ratios [1,2]. 

These ratios were determined either from the location of 

the asymmetrically deformed minima in the potential energy sur

face without any dynamical considerations, or by a minimization 

of the WKB penetration probability. 

However, both of these methods neglect the fact that there 

are dynamical fluctuations around these preferred mass asymme

tries which contribute to the spread of the final mass yield 

curve around the peak. There will be collective vibrations of 

the type illustrated in fig. 1 which correspond to oscillations 

Work supported by the Bundesministerium für Forschung und Technologie and by the Gesellschaft 
flir Schwerionenforschung (GSI). 
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FIG. 1. Type of mass flow which gives rise to mass asymmetry fluctuations in a fissioning nucleus, described 
by the collective coordinate £. 

in the mass asymmetry. We introduce a collective coordinate ? 

to describe this kind of motion by the definition 

? = (A1 - A2)/(A1 + A2) (1) 

where A- and A„ are the masses of the two nascent fragments. 

Evidently it is not possible to define A., and A~ unambiguously 

as long as the fragments are connected and parts of the mass 

located near the neck could be assigned to either fragment. 

However, as the size of the neck decreases, this ambiguity be

comes smaller until all definitions of A., and A, converge at the 

scission point, where A., and A? are completely determined. The 

meaning of £ as a coordinate describing collective motion is 

lost after the scission point, since the masses of the fragments 

cannot change anymore once they have left the nuclear inter

action range. This problem is unimportant for nuclear fission 

where one is interested in the pre-scission behaviour only, but 

for describing heavy-ion reactions with a £-like coordinate it 

may become advantageous to extend the definition of £ to that 

region by introducing a singular mass parameter. 

The behaviour of the 5-vibrations during the fission pro

cess may be understood in the following way: Near the ground 

state deformation %. describes an octupole vibration around a 

symmetric shape with admixtures from all the higher odd multi-

poles. As the nucleus goes along the fission path and through 

the second barrier, however, asymmetric deformation will begin 

according to refs. [1-3] and the vibrational wave function ф{%) 
will have its maximum at a non-zero value of £. For fission 
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well below threshold this will occur during tunneling so that 

motion in the fission degree of freedom is extremely slow com

pared to the ^-vibrations and the adiabatic approximation will 

be valid. After that, the nucleus goes down the Coulomb slope 

very rapidly, but as calculations of Mustafa et al.[3] show 

that there is very little interaction between the £~vibrations 

and the fission mode, the adiabatic approximation will continue 

to hold for some time. Only when the neck between the fragments 

decreases rapidly, motion in £ will be inhibited and, finally, 

frozen at the scission point. So we may expect the probability 

for a certain mass division ? to be correlated to the ampli

tude |iJ)R(5) |
2 of the ^-vibrational wave function at some point 

R on the fission path located in a region of weak dependence 

of ^R(S) on R near the scission point. 

For the practical calculations, an asymmetric two-centre 

shell model as described in ref.'[4] was used. It allows for 

five free parameters explained as follows: 

X : overall length of the nucleus in units of the diameter of 

the corresponding spherical nucleus. X is used as the co

ordinate R describing the fission path. 

ß-,3, : ß-deformations of the fragments. 

e : determines the neck size. 

£ : as defined in eg. 1 with A« and A, determined from the 

fragment volumes. 

The variables £,£.,, and ß 2 were not treated as independent 

coordinates, but rather as functions of Л and £ obtained by 
searching for minimal total energy for fixed values of X and ?. 

It turned out that the behaviour of the fragments with respect 

to ß-deformations is decisive for obtaining asymmetric minima 

in the potential energy surface. So the coupling of ?- and fa-

vibrations will certainly have to be investigated in a more 

complete treatment. 

Restriction to the two coordinates X and £ yields the fol

lowing classical Hamiltonian: 

H = I B x x 1 2 + в х ? Ц + I B ? ? ^ 2 + v a ' c ) <2) 
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where V(X,£) is the potential energy calculated according to 

the Strutinsky prescription and the mass parameters Bx.x. are 

given by the cranking formula 

<o\ 3/3xi|k><k|Ь/дХА|о> 
B X i X j = 2h2 £ _ _ _ (3) 

with pairing included in the BCS-treatment. XJ and x^ corre

spond to either X or £. The Hamiltonian of eq. 2 can be quan

tized in a straightforward manner [5-6] and the corresponding 

Schrödinger equation could be solved at least in principle, 

yielding a wave function that describes the evolution of asym

metry during the fission process. 

Practically, however, even with the simplifications al

ready made,this still is very complicated numerically, since 

the mass parameters and the potential have to be calculated 

numerically and at a large number of points in the (Л,5)-plane. 
So to get a first glance at the results one may expect with the 
model, we assumed extreme adiabaticity, i.e. that the wave func
tion in 5 is confined to the relatively lowest state for each 
value of X. This ground state can be obtained from the Schrö
dinger equation 

t~77iÄ тг A + v ( A ' ? ) ] n ( ? ) = E xV?> (4) 
where B=B_, and X enters only as a parameter. The coupling mass 
B,f could be neglected since B?_<<B.,B-_ was found to hold. This 
assumption should be true at least for sub-threshold fission, 
where little excitation in collective degrees of freedom is ex
pected until tunneling has been completed. The descent down the 
Coulomb slope may of course excite some higher states in £, but 
this has to be neglected here. Calculations by Geilikman et al. 

[7], however, seem to support the validity of this approximation. 
О "Э С О О С 

Calculations were carried out for the systems U and Ra. 
23fi 

For U two values of X were chosen, viz. X=1.65 and 
X=1.8. The shapes yielding lowest energy for these fixed values 
of X are shown in fig.2. 

For X=1.65 the system is close to the point where tunneling 
is completed (less than 0.5 MeV difference in energy to the 
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FIG. 2. Shapes corresponding to minimum energies of a 236U nucleus at elongations of X = 1.65 and 1.8. 

78 98 118 138 158 
-0.34 -0.17 0 0.17 0.34 

Asymmetry (t] 

FIG. 3. Potential energy, mass parameter B,p, and amplitude of the collective wave function as a function 
of | for 236U at an elongation of X = 1.65 and X = 1.8. The wave function has been plotted in such a 
normalization that it can be compared directly to the experimental mass yield indicated by circles. Dashed 
lines correspond to X = 1.65 and full lines to X = 1. 8. 
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ground State). The potential and mass parameters are exhibited 
in fig.3. To facilitate comparison with experimental mass distri
butions, the wave function was multiplied by a normalizing 
factor to convert it into a yield per mass number in percentYfA^ 
calculated as the probability for the mass number of one of 
the fragments to be inside an interval of length one around 
a specified number A. : 

Y(AX) = |фх(? = ?(А.,))|2 • 2/(A1+A2) • |B(X,?)|1/2 (5) 

The wave function itself was obtained from a finite difference 
method for solving the Schrödinger equation (4). The factor 
1 /2 В ' appears because of the different volume element in £-space 

arising through quantization (see e.g. ref. [8]). It was found 

that the wave function itself does not depend on the detailed 

behaviour of the mass parameter and only the yield shows some 

wiggles caused exclusively by the volume element. The wiggles 

are not physical anyway, since the mass parameter was calcu

lated only for values of £ lying 0.05 units apart, so that 

the smooth curve drawn is the result of interpolation. Thus, 

only the overall behaviour of the theoretical mass yield and 

not its fine structure should be considered when comparing 

with experiment. 

Comparing the results for X = 1.65 with those for X = 1.8, 

it is seen that the potential becomes steeper around the minima 

and causes the wave function to become more concentrated at the 

peaks. The experimental data, taken from ref. [9], are some

where in between and apparently even this simple calculation 

is able to give an order-of-magnitude estimate for the spread. 

It should be kept in mind, however, that experiment is for 

neutron-induced fission, whereas the theory at its present stage 

describes only spontaneous fission. 

It is not very difficult to generalize the theory to small 

excitation energies. The higher states of the -^-oscillator can 

be calculated and occupied according to ä temperature distribu

tion. Evidently this will make the peak broader and fill in the 

middle of the distribution, as the higher states have a broader 

spread in 5-space. Such calculations are being done at present. 
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(a) 

(Ь) 

FIG. 4. Shapes corresponding to the two {-values of minimum energy for M8Ra at X : 

to the symmetric minimum and (b) to the asymmetric. 
1.7. (a) corresponds 

-0.36 -0.17 0 0.17 0.3i 
Asymmetry (|) 

FIG. 5. Same as Fig.3 for M6Ra at X • 
was used. 

1.7. Experimental results are not plotted and only one value of X 
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The nuclides in the Radium region provide an interesting 
test for any theory of asymmetric fission because of their 
triple-peaked mass yield. We have calculated a wave function 
for X = 1.7 and find three minima in the potential. The results 
are shown in figs. 4 and 5, showing the shapes at the symmetric 
and asymmetric minima and, as for Uranium, the potential, mass 

П О С 

parameter and wave function. The nuclide treated is Ra. 
Even for ground state fission a third peak is obtained 

near symmetric mass division. It can be expected that this peak 
will become more prominent for higher excitation energies, the 
region where experimental mass yields have been measured. 
We have not included experimental data, since they are obtained 
at too-large excitation energies. 

Drawing a conclusion from these results, it may be said 
that the model is able to explain experimental mass yields 
in their gross behaviour but not yet in better quantitative 
agreement. On the other hand, there is not a single fit para
meter in the calculations and there are some crucial improve
ments that can be made to overcome the crudest approximations. 
One of these is the inclusion of the higher states of the • £-
oscillator to describe induced fission. 

The next generalization could consist in the next-order 

adiabatic approximation including motion in X of the form 

Ф(Х,С) = 2 a
v
( x ) ,V ? ) (6) 

with X t r e a t e d as a t ime-dependent parameter . Such c a l c u l a t i o n s 
should give some knowledge about the development of asymmetry 
during the f i s s i o n p rocess . 

We cannot expect to descr ibe any d e t a i l s of the mass y i e ld 
u n t i l the coupling t o the ß -v ib r a t i ons in the fragments has 

been investigated. But even without that, it would be sufficient to describe 
the gross behavior of the mass yield for a larger number of nuclides and 
the results for uranium certainly seem to encourage us. 
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DISCUSSION 

H.J. KRAPPE: Does the cranking formula yield an infinite mass 
parameter for the asymmetry degree of freedom at the scission point? 

J. MARUHN: The problem of how the asymmetry mass parameter 
behaves near the scission point is being investigated with a view to possible 
application in heavy-ion calculations. Problems occurring in that respect 
are: (a) the coordinate f should become discrete when mass flow between 
the fragments is interrupted; and (b) the adiabatic assumption breaks down, 
since even for very close distances between the fragments the mass exchange 
is extremely slow owing to the need for the nucleons to tunnel through the 
separating potential barrier . Both these arguments make it improbable 
that the simple cranking formula will produce the desired result at and 
beyond the scission point without more serious modifications. The problem 
of infinite mass, however, is more of mathematical interest, since physically 
it is simply caused by the fact that f is no longer a meaningful collective 
coordinate in this region. 

H.J . KRAPPE: All applications of the cranking formula to tunnelling 
processes are connected with a fundamental problem. The cranking model 
yields classical equations of motion for the collective variables considered 
as classical observables. In order to treat the tunnelling process, one has 
to quantize these equations of motion. The assumption that this can be done 
by the usual canonical quantization prescription is by no means trivial, 
especially in the multidimensional case. This ambiguity was the reason for 
the whole discussion after Pauli's paper1 on the applicability of the least-
action trajectory and whether the potential energy to be used in the 
Schrödinger equation for the collective motion should be different from that 
derived from constrained Hartree-Fock caculations. I think this problem 
ought to be investigated in simple models in order to clarify the principles 
involved. 

Z. FRAENKEL: Have you tried to reproduce the mass distribution 
of 209Bi or any other nucleus lighter than 226Ra? 

J. MARUHN: Notyet, but we are considering using such a system for 
future calculations, 

D.C. HOFFMAN: Have you performedthese calculations for the fermium 
isotopes where the trend from asymmetric to symmetric fission has been 
experimentally established for spontaneous fission? 

J. MARUHN: No, we have not done this yet either, but we are quite 
confident because calculations by Mustafa, Mosel and Schmitt, who use 
a very similar shell model, have shown such a trend in the potential energy 
surfaces for the fermium isotopes. According to our experience the 
potential is the main factor determining the mass yield, while the mass 
parameter causes only small deviations, so that the effect should not dis
appear when a full dynamic treatment is performed. 

1 PAULI, H .C . , LEDERGERBER, Т . , Paper IAEA-SM-174/206, these Proceedings, Vol.1. 
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S. BJ0RNHOLM: How do you choose the value of A at which you evaluate 
the m a s s dis t r ibut ions? 

J . MARUHN: X is chosen so that the nucleus i s in the region where 
i ts kinetic energy is posit ive and, on the other hand, it has not acce lera ted 
too much, that is to say, in the region just behind the point where tunnelling 
t e r m i n a t e s . Obviously this is not completely adequate and we hope to do 
coupled-channel calculations following the evolution of m a s s a symmet ry all 
the way down from the b a r r i e r to sc i ss ion . 
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