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FOREWORD

The International Centre for Theoretical Physics, since its inception, has striven to 
maintain an interdisciplinary character in its research and training programme as far as 
different branches of theoretical physics are concerned. In pursuance of this aim the Centre 
has followed a policy of organizing extended research seminars with a comprehensive and 
synoptic coverage on varying disciplines. The first of these — lasting over a month — was 
held in 19 64  on fluids of ionized particles and plasma physics; the second, lasting for two 
months, was concerned with physics of elementary particles and high-energy physics; the 
third, of three months’ duration, October — December 1 9 6 6 , covered nuclear theory; the 
fourth, bringing the series through a complete cycle, was a course on condensed matter 
held from 3 October to 16  December 1967.

The present volume records the proceedings of this research seminar. The long 
duration of these seminars combines the completeness of presentation characteristic of a 
conference with the relaxed atmosphere necessary for discussion and review. The programme 
of lectures and seminars was organized by Professors J . Ziman (United Kingdom), F. Bas- 
sani (Italy) and G. Caglioti (Italy). They were assisted by Prof. F. Garcia-Moliner (Spain) 
who acted as Monitor for nearly the whole duration of the Course.

It is a pleasure to thank the United Nations Educational, Scientific and Cultural 
Organization and the Italian National Committee for Nuclear Energy for their financial 
support.

Abdus Sal am
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torial staff to the extent considered n ecessary for the reader's assistance. 
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responsibility o f the named authors or participants.
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ON THE BAND STRUCTURE PROBLEM

J. ZIMAN
H.H. WILLS PHYSICS LABORATORY, 
BRISTOL UNIVERSITY,
UNITED KINGDOM

Abstract

1. Introduction. 2. Pseudo-atoms. 3. Model potentials. 4. The APW method. 5. Green 
function method. 6. Transition metals.

1. INTRODUCTION

The following notes do not constitute a self-contained account of this 
basic topic, but are intended to supplement Chapter 3 of Principles of 
the Theory of Solids [1], .where such topics as the nearly free electron 
model, the LCAO method, the OPW method, etc., are dealt with at an 
elementary level. Since this chapter was written in the spring of 1963, 
there has been considerable development in our understanding of the 
basic mathematics of the problem, along lines that will be sketched out 
here. Unfortunately this material has been published only in primary 
papers, so that no general reference can yet be given to it. 2

2. PSEUDO-ATOMS

The problem of calculating electronic band structures really falls 
into two parts: we must first set up a periodic one-electron potential in 
the crystal and then solve the Schrödinger equation for Bloch states in 
that potential. These procedures cannot, of course, be independent of 
one another; the form of the Bloch functions must, in its turn, determine 
the electrostatic field within the crystal and hence the potential of which 
these functions are eigenstates. In other words, we must allow for the 
electron-electron interaction within the valence electron states.

In principle, this ought to be soluble by a self-consistent iterative 
procedure of the Hartree, Hartree-Slater or Hartree-Fock type; but such 
a computation is extremely laborious and nobody seems to have carried 
it through to a convergent answer. It is necessary, in practice, to make 
a number of approximations in the definition of 'У(г) that we use in the 
Bloch problem.

A relatively simple procedure is used within the framework of the 
pseudopotential method. First, let us take the potential of an array of 
bare ions, and transform it to a pseudopotential in reciprocal space,
e . g . ,

Г—I —► -►
ГЬЙ -  Wb(!)=  ^ i ) - ^ - # t)<eik-r, bt> <ei (k  -g ) t . bt > ( 1 )

3
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Now this is a relatively weak potential and may therefore be treated as 
a small perturbing potential acting on the electron gas. As shown, for 
example, in Chapter 5 of the Principles of the Theory of Solids [1], the 
effect is to screen the bare potential by an amount governed by the 
dielectric function e(q) of the electron gas. The matrix elements to be 
used in the NFE equations must be of the form

E»-»
8 g'

W h ( g - g ' )
e ( g - f ' )

(2)

To use this formula, we need a theory of the dielectric function, which is 
not necessarily very easy to define, but since, in practice, we only use
values of Г-*-» at a relatively few values of g - g ' ,  it is generally held to 

88 '

be adequate to use the simple free electron formula for e(q) which is not 
very far from unity anyway, except near q = 0 .

The above argument is the basis of the procedures discussed at length 
by Harrison in his book on the pseudopotential method (1966) [2]. It is 
instructive, however, to go a little further. Suppose we construct our 
periodic "bare" potential by the superposition of bare ion potentials, i. e . ,

r b( r ) = y , (3)

Then by elementary algebra ([1], section 2. 7) the Fourier transform 
must be of the form

*<«>■ /

' ( s  I  e‘e’ ?)  vb>5)

= F(g)vb(g) (4)

where

vb(g)=N J  elg‘ rvb(r )d3r (5)

In other words, each Fourier component of the potential can be repre
sented as the product of a structure factor, F(g) and an atomic form 
factor v„(g), just as in the theory of X-ray or neutron diffraction. For 
the valence electrons, however, the full bare potential (5) is much too 
strong; the correct atomic form factor must be something like the 
pseudopotential for a single atom, which we might call wb(g). Thus, our 
expression (1) must also be a product like (4);

Wb(g) = F (g )w b(g) (6)
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Now when this is screened, according to the formula (2), we get for 
our screened pseudopotential

Г-*->Sg' = F(g-g ' ) wb(g- g1)
e ( I - I ' )

= F (g -g ')w scr (g-g>) (7)

where we introduce a screened pseudopotential for a single atom by simply 
dividing the bare pseudopotential by the appropriate dielectric function.

Eq.(7) is, in fact, the form used by Harrison. But to understand it 
physically, let us go back into real space. The Fourier analysis of (3) 
and (4) may be inverted, so that we may write, in place of (7),

Г(г) = wscr (r - £) (8)

In other words, the effective periodic potential acting on an electron may 
be constructed by superposing the corresponding screened pseudopotentials 
of the separate ions of the crystal.

What is the function wscr (r) like? At large distances we recall that the 
bare ion potential must be of the form

vb(?) - Z e2 (9)

whose Fourier transform, near q = 0 is given by

vb (q )
-4 7T N Z -----~2

2e
( 10 )

The pseudopotential transformation acts only within the range of the atomic 
core states, so we may assume the same behaviour for wb(q). Using the 
standard theory of the dielectric function ([1], section 5.3) we get, as 
q-> 0

-  3 Ef
Wscr(q)- 1 + чй/ла Ul)

which is the Fourier transform of

w (r) scr' '
- Z e exp ( - Лr) as r ( 1 2 )

Thus, each ion carries a screened Coulomb potential, just as it might if 
it were treated as a simple point charge immersed in the electron gas.
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On the other hand, for large values of q, the dielectric function is 
not very different from 1 , so the screened pseudopotential is much the 
same as the pseudopotential of the bare ion, and depends sensitively on 
the "chemistry" of the element in question. In practice, the smallest 
reciprocal lattice vector g is already in this region, so that for band 
structure calculations the screening procedure is not very important. We 
find (see F ig.l), for example, that the pseudopotential is often just 
changing sign, from the large negative value - f  efF at q = 0, to some 
small positive value, in the neighbourhood of the first reciprocal lattice 
vector, so that the magnitude and sign of the NFE matrix element may 
depend very sensitively on details of the atomic potential or on the 
procedure used for defining the pseudopotential. This is one of the 
reasons why it is so difficult to calculate band structures and Fermi 
surfaces very accurately from first principles — a difficulty that is only 
indirectly related to the electron-electron interaction.

In the band structure problem the real space representation of wscr(r) 
is not of much importance, but it has great conceptual power when we 
come to deal with thermally disturbed crystals or even with disordered 
systems such as liquid metals. Within the approximation of linear 
screening, as defined by any formula such as (2), we may imagine that 
each ion carries about with it a screening cloud which changes its external 
field from (9) to (12), and which contains, indeed, exactly enough charge 
to neutralize the positive valence charge Z |e | of the ion when seen from 
a large distance. In moderation, these charges may be superposed (for 
they must, eventually, add up to the total charge of the gas of valence 
electrons) and treated as if independent of one another; we say that the 
metal behaves like an assembly of " neutral pseudo-atoms". The appli
cations of this concept to the electrical and dynamical properties of solid 
and liquid metals are reviewed at length elsewhere (Ziman [3]).

3. MODEL POTENTIALS

Nevertheless, in spite of its power as a conceptual tool, the pseudo
potential method has serious limitations. For example, the linear 
screening procedure that we have used is quite unjustified by any rigorous 
argument; it is surely much too naive to replace the deep potential of the 
ion core, where linear dielectric screening would certainly not be valid, 
by a "weak" pseudopotential, and then treat the latter as if it were an 
ordinary small potential. We know indeed that the pseudopotential is "non
local", and that it is energy and momentum dependent, so that great care 
is needed in any application of perturbation theory involving matrix ele
ments between states of different energy. Even in the calculation of the
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pseudopotential according to the standard Phillips-Kleinman prescription 
we often have great difficulty in estimating the energy difference S - S t 
between the state being studied and a core state, so that band structure 
computations by different authors differ by quite large amounts depending 
upon the core shifts that they have assumed as the separate atoms are 
brought together into a crystal (Lin and Phillips [4]).

But the most serious limitation of the pseudopotential method is its 
arbitrarities. As we have already seen, is not unique. The spectrum 
of the original Schrödinger equation is reproduced by any pseudopotential 
operator of the form

where the functions Ft (r) are completely arbitrary functions of r. Thus, 
innumerable different pseudopotentials could be constructed at will.

This may seem surprising, but there is nothing mysterious about it. 
Think of the analogous problem of scattering by a spherical potential. 
Having chosen the energy of our electron, all we have to do is to find a 
potential that will reproduce the correct wave function outside some 
particular radius rc . It is obvious that this can be done in any number of 
ways: we can modify (Fig. 2) our pseudopotential w(r) endlessly, without 
altering the equivalence of ф(r) and ^(r) outside the core.

The reason why the pseudopotential is usually dependent on energy and 
angular momentum is obvious from this figure. A potential that reproduces 
the correct phase shift for a given angular momentum will not necessarily 
do the same job for another angular momentum, where the equation for the 
radial part of the wave function contains a different value of the centri
fugal term i ( i  + l ) / r 2. Again, a pseudopotential that works at one energy 
will not be able to produce a wave function to match the true solution at 
another energy. What we have gained by making w(r) relatively "weak" we 
lose in its applicability to a very limited range of circumstances. These 
limitations are fundamental. Although the pseudopotential is arbitrary, 
it can never be defined so as to be completely independent of energy and 
momentum. All that we can do is to try to find the "best possible" repre
sentation in some approximate sense.

At the heart of our difficulties is the lack of a formal mathematical 
prescription for "the" pseudopotential. What does it all mean? This is 
a subtle question, recently answered by Rubio and Garcia-Moliner [5].

(13)

F IG .2 .  M o d if ic a t io n  o f  the pseudo p o te n t ia l w(r)

Г
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Basically it is a question of the convergence of the Born series (i. e . , 
perturbation series) for the T-matrix ( i . e. ,  scattering amplitude) of the 
potential v(r). This is a subject discussed in detail by certain authors, 
in particular by Weinberg [6], The critical question is the existence of 
bound states in the potential; roughly speaking, the Born series only con
verges when the energy of the scattered electron is greater, in magnitude, 
than the distance in energy down to the lowest bound state of the potential 
well. Since our atomic potential v(r) has many bound states (i.e . , the core 
states) at energies of tens or hundred of volts below the bottom of the 
valence bond, an electron at the Fermi level, perhaps only 5 volts up, 
certainly does not satisfy these conditions. It is essential to transform 
to a perturbation series in a pseudopotential, w(r), to achieve the neces
sary convergence. Using Weinberg's method, Rubio and Garcia-Moliner 
have been able to show that the best convergence (within the general 
framework of pseudopotentials constructed from core functions in the 
manner of Phillips and Kleinman), is achieved by putting

Ft = -У'(г) b t(r) (14)

in (13). This is the so-called Austin pseudopotential, with repulsive part

= ' Z < b t ’ r ^ b f  (15)
t

i. e . , giving rise to matrix elements between pseudo-wave functions of 
the form

<Ф, [Г  + У\)ф> =<Ф, Г-ф> I <bt, Т ф У  I 2 (16)

In other words, we subtract from the true potential 9 (̂r) as much as can 
be expanded as a sum of core functions, as if

<r+r^ = r ( ? ) - ^ < b t ,r -> b t(?) (17)
t *

This function, originally suggested as the "smoothest" pseudopotential, is 
actually the best in this special sense.

Experience has shown, however, that even the best pseudopotential 
that one can calculate directly from the atomic potential does not usually 
reproduce the experimental band structure with any great accuracy.
Heine and Abarenkov [7] suggested one might do just as well with a 
model potential — i . e . ,  one that has been simplified in analytical form 
but which reproduces the scattering properties of the metallic ion. For 
example, consider the function

V r>= r
Z ez r > r

( 1 8 )

r < r. .
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It is easy to find the bound states of energy S and angular momentum SL, 
in such a potential and to adjust the value of the parameter A £(«?) so as to 
reproduce the atomic terms of the observed optical spectrum of the atom 
or ion. Now we can screen the outer coulombic field, as in the metal, 
and calculate the corresponding atomic form factors for a band structure 
calculation.

This method is obviously very similar in spirit to the quantum 
defect method of Kuhn and van Vleck, which is a rather elaborate mathe * 19
matical device for deriving values of the radial derivative of the wave 
function, on, say, the Wigner-Seitz sphere, from the atomic term values, 
without having actually to construct a full atomic potential. In principle, it 
is very attractive to try to link two quite different "experimental" quanti
ties — atomic spectral levels and the shape of the Fermi surface — without 
the intermediary of an unobservable potential; but there are assumptions 
about screening and about the superposition of potentials which are probably 
not valid and which considerably reduce the reliability of the argument in 
both these methods.

4. THE APW METHOD

This is independent of the OPW and pseudopotential methods, being 
essentially a development of the cellular method. The basic problem of 
matching wave functions is greatly simplified by choosing spherical sur
faces rather than complicated polyhedral unit cells. There is some error 
introduced in defining a muffin-tin potential of atomic spheres in empty 
space, but this does not seem to be serious except perhaps, in a diamond 
lattice.

We divide the wave function into two parts, each separately satis
fying a wave equation in the two regions. Thus, in each unit cell

where Ä [(r, S) is a solution of the ordinary radial equation of angular 
momentum i  inside the potential well of radius Rs . This solution is at 
the energy S  of the state being studied; note that the exterior solution is not 
chosen to be a wave of the same energy, but only to satisfy the Bloch 
condition; we shall eventually use a combination of such augmented plane 
waves in our Bloch function.

The two parts of ф£(г) can be matched in amplitude by the proper 
choice of the coefficients agm. We may use the standard expansion in 
spherical harmonics Y£ra and spherical Bessel functions j £

e r >RS
(19)

elk' r = 4 * £  i V k r )  Y lm (ef . Ф т ^ Ъ . Ф е ) (20)
fimfim

V  fl ÄV *  ^(which we write = > i j (kr)Y (r) Y  (k ) for short)
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Thus if a ( 21 )

Then r) is continuous at r = Rs.
Now suppose the Bloch function is just a sum of these:

( 22)

g

We can substitute this into Schrödinger equation to find the correct values 
of the coefficients and the corresponding energy eigenvalue $  as
a function of the chosen value of k.

Unfortunately, this is not quite simple. Slater's original procedure 
was to use (22) as variational trial function (and hence to get linear 
equations for aiT-g") for the expectation value of the Hamiltonian. The 
algebra is rather messy, but one can see the sort of thing that happens 
by looking at the diagonal element

P 2 3 -*• 2 V 1 2/ ф!» (-V  +У') ф-td r = k w +<^) aL + surface term. (23)

The first term is just the energy of the plane wave part outside the atomic 
sphere, in the fraction и of the unit cell. The second term, again, comes 
from the fact that the radial functions exactly satisfy the Schrödinger 
equation inside the sphere. But the surface term, where фg has a dis
continuity of slope, is by no means negligible. From Green's theorem 
this gives rise to an expression containing the derivative of S ) at
Rs : with a little juggling we find the condition

for the expectation value of the energy of a single APW.
The expression for cross products between APW's of different wave 

vectors are more complicated, but again all the properties of the atomic 
potentials are expressed via the derivatives of the radial functions. Thus, 
eventually, we get a rather elaborate set of equations for the coefficients 

, similar in form to the standard NFE/OPW equations, but with 
matrix elements of the form

к к
L

(24)

Г
gg'

[ ( к - g ' ) - ( k - g ) - * ]  lRs>

(25)
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These are fairly easily computed by machine, and the secular determi
nant can be solved for the function g(k) .  The method obviously exploits 
to the full the spherical symmetry of the atomic potential and the trans-- 
lational symmetry of the crystal lattice. Unlike the OPW and pseudo
potential methods, it can deal perfectly well with d-bands in transition 
metals, etc.

Nevertheless, in this formulation, the technique is very laborious 
for a very simple reason. Let us try the empty lattice test. The best 
way to do this is to suppose that all the scattering phase shifts of the 
muffin-tin wells are zero. By the standard theory of phase shifts — i. e . , 
by matching each radial solution to the corresponding free-space waves 
outside R$ — we have the following relation:

^ ’ (Rs • * )

« tlR ,. * )

j£ (кг) - tan r)jt (e)n'£ (кг) 
j£ (кг) - tan 17 £ ( е ) п£(кг) (26)

r = Rs

where k 2 = <g. Putting each r)£ ( ^ )  = 0 does not make all the coefficients 
Г-̂ -j = 0 — nor do we find, for example, in (24), that the free-electron
solution is the limiting case of a single APW. Thus, to reproduce the 
simple solution g  - к2 requires detailed computation, involving, in 
principle, all values of £ and of g and g '. In the end, of course, the 
correct result is obtained, but only by virtue of some complicated hidden 
identities within the algebraic formalism. It is not surprising, there
fore, that the relative simplicity of the band structure of metals such 
as Na or Al, which are very close to free-electron systems, was not 
obvious to those who calculated by the APW method.

It is interesting to note (Lloyd [8]) that the APW matrix elements 
can be generated from a model potential, with matrix elements (in real 
space, for given angular momenta L, L')

< L , Г L' ' >  = «L1
_2 2 6 {Г - Г1)- H(RS - r)(- V£ - к )

f
- 6 (RS - r) л

Эг ^ £(RS)
6 (r - r 1) (27)

where H is a step function, etc. This is obviously a rather complicated 
operator, and not what one would have chosen in the first instance as an 
expression capable of representing the scattering action of our given 
atomic potential. 5

5. GREEN FUNCTION METHOD

The most subtle, but also most enlightening, method of calculating 
band structure is the procedure of Korringa and of Kohn and Rostoker —
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the KKR method. The basic idea is as follows: - The Schrödinger 
equation may be rewritten as an integral equation

(Mr) =J ’&Q( r - r ' )  V (г')ф (г 1 )d3r' (28)

where

9 0( r - r ' )  = - ^

is the free-particle propagator, or Green function, for the energy S - к2 .
In a muffin-tin potential, we may express the integral as the sum of 

contributions from the separate cells, i . e . ,

exp ix I r - г 1 I 
|r - r ’ I (29)

(Mr) ^ o(r r ') v(r' - i  ') ф (r1) d r' (30)

where v(r) = 0 for r > Rs. Since the spheres do not overlap, this is really 
a sum of separate integrals, as may be shown by introducing a variable 
p such that r = t+ p in the üth cell of the crystal. Thus

ф(1 + p) =
0 *

- p 1 +1 - Ъ ) v( p1) Ф (!' + p' )d3p' (31)

Now recall that ф is a Bloch function, so that

- »  -*  i k - r  ^
Ф М ' + Р ' )  = е ф->(р') (32)

k k

Substituting into (31), we get the following integral equation: -

ф(р)~ G (p, p1) vipM’/'.lP1) d3p', (33)
k J  k,  к K

where

—> —*  \  1 —► —* —*■ —> i k  -  £ ’ )
G^> к (р , p ' )  = ^ ^ 0( p - p ' + £ - £ ' )  e (34)

t

This function — which depends on the momentum k and the energy к of 
the state being studied, as well as the matrix labels p, p' — we call the 
complete Greenian of the lattice. It measures the effect of the lattice as
a whole in transforming the wave function into itself — not merely the
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effect of the atom in the central cell as in ordinary scattering problems, 
but the effects of waves re-radiated from all other spheres. It is obvious, 
from the translational symmetry of the lattice, that (34) is in fact inde
pendent of the choice of 1 .

The fact that i//(p) satisfies the Schrödinger equation within the 
potential v(p), which vanishes for p>Rs, allows us to transform the 
integral Eq.(33) into a simple surface condition. Applying Green's 
theorem we get

Ф(Р) = f  G(p , p ') v(p 'Ж р  ') d p'

= /  G(p,p' ){  V2+ к2} i//(p') d3p'

6 ( р - р ' Жр' )  d P'

> S [ dS'

(35)

because of the singularity in G at the origin p = p '. Only the surface 
integral survives as a condition

/ G(p.p' ) э Ф(е»
Эр' dQ(p') =0

P’ =Rs
(36)

involving integration over all directions of p', on the surface of a sphere 
"just within" Rs . This condition must hold for all values of p<Rs - 2e.

What we now have to do is to find a wave function tp(p) satisfying the 
Schrödinger equation in the potential well and also satisfying this boundary 
condition. For a given value of Tt, this can only be done for certain values 
of к; hence we discover the function <̂ (k) in each band. It is natural to 
expand in solutions of the radial equation inside the well

Wp) = ^ i a L« L( p , ^ ) Y L(p), (37)
L

with coefficients ai  to be determined.
But then we need an expansion of G(p, 7?') in spherical harmonics — 

a rather more complicated problem. Thus for p< p'

&Лр - p') = к )  j.(Kp) n Лк P1) - ij Лк p') YL(p)YL(p'), (38)
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by a standard theorem for the expansion of exp(i«r)/r. This takes care 
of the term with £ = S> in (34). For the remainder we suppose that we 
can write the incomplete Greenian in the form

G'(P ~ p' )  = G(p,  p ' ) - ^ o ( P - P ' )

■ II T '

Л Л
i £ i jU  P) p' )  Y l (P ) Y l, (p M, (39)

and try to construct formulae for the coefficients . This is where the 
real work lies in the papers of Kohn and Rostoker and their successors. 
For example, we find the following formulae

^ L L ’ = 4 7 r X  C L " L L '^ L " <  <4 ° )
L"

where

^ L "L L ' YL(r)Y L,(r)Y L.,(r)df2(r) (41)

is essentially a "Clebsch-Gordan" coefficient, whilst

ik-1 nL(Ki) - ijL((ci)
i фа

JL0 (42)

requires an actual summation over the real crystal lattice. But this is 
only one of many different alternative expressions, containing sums over 
the reciprocal lattice, or mixed sums over both real and reciprocal space 
with Ewald convergence factors, etc. I have only quoted these formulae 
to show that they are explicit and that they involve only the lattice structure, 
not the atomic potentials.

Now put all those equations -  (37)-(42) — into the surface condition 
(36); we get, after an obvious integration,

Y j  - i K 6 LP ) Ü £» ^ r l  +(« [n £u ^ r ] 6LL’ } 0,L' = ° (4 3 >
L'

where

[j
£

9 ^ ,  ( p) Эз£(кр)
V Kp) —

p=Rs
(44)
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Just as in the APW method (cf.(25)) only the radial derivative of 
finally appears as a witness to the behaviour of the atomic potential. 
In terms of phase shifts — i . e . ,  as in (26), we have

cot rit
[rj ]

(45)

The condition, therefore, for the self-consistency of the linear Eqs.(43) 
for the unknown coefficients aL becomes simply

det I |^LL, (к, к ) + к {cot (к) - i} 6LL. || = 0. (46)

The band structure calculation proceeds as follows. Construct tables of 
the coefficients SSLV (£, <) for our given crystal structure, as functions
of the wave vector £ and energy к2 . Then calculate radial derivatives 
( i . e. ,  phase shifts) for solutions of the radial equation in our chosen 
potential v(r) as functions of energy. Put these into the determinant, 
and find values of К for a given к making the determinant vanish.

The KKR method works all right and has been used to get band 
structures for the noble metals and for Al. It is valid under the same 
circumstances as the APW method and exploits the same symmetry 
properties of the potentials. In its original formulation by Kohn and 
Rostoker, Eqs (43) for the coefficients in (37) were derived from a 
variational expression constructed to generate the integral Eq.(33), but 
this is not essential to the argument; it merely demonstrates that the 
choice of a finite number of these coefficients as variational parameters 
produces a "best" fit in some analytic sense.

Although the above argument is exact only for a perfect lattice, the 
method can be made the basis for an approximate procedure for calcu
lating the band structure of a disordered system such as a liquid metal 
(Phariseau and Ziman [9], Ziman [10]). We merely assume that the 
"Bloch condition" (32) is still valid for the translation from a point in an 
atomic sphere to an equivalent point in another sphere of the assembly. 
We find then that 1c has to be made complex, to allow for scattering and 
dissipation of the electron wave as it progresses through the medium. 
But the structure factors , defined in (42) retain exactly the same 
form, i . e . ,

Nk( 2.C + 1)2 (4 7Г)* / {n£( k x ) -  ij £( k x ) } j £(kx)g(x) x dx (47)

where g(x) is the radial distribution function of the atoms of the liquid.
Nevertheless, for actual calculation, the KKR method has the grave 

disadvantage of requiring very heavy computing. To understand this, let 
us apply, as usual, the empty lattice test. We see at once that in the 
limit as pt -0  the term containing cot г]й becomes infinite. In order to 
make the determinant vanish, we have to find a corresponding singularity
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in the coefficients & uj', in the neighbourhood of the free-electron system 
the determinant is very unstable mathematically and great care is 
required in locating the roots.

That these roots do indeed correspond to NFE solutions for small 
values of can be checked by looking at another formula for the set of 
coefficients Зё\х . A sa  sum in reciprocal space this reads

= -(.4 7Г p  N
^  j£(|k-g|Rs)jc.(|k-i|R ) YL( k - g ) Y L.(k-g)

j ( «cR Jj fUR, ) |k- g|

-  К
Ч к\ ) (48)

This is singular if [ к - g | for some value of g, so if all p£=0 we get 
the free-electron solutions.

What is immediately evident is that the whole theory is upside down; 
it would be much happier if the determinant could be made to vanish trivi
ally in the empty lattice case. The following abstract algebraic analysis 
(Ziman [11]) shows how this can be done.

First let us give a new label to the coefficients . As we see from 
(39) these should be called, G 'll’ since they are matrix elements of the 
incomplete Greenian, G' in an angular momentum representations. On 
the other hand, the factor derived from the atomic potential in (46) is also 
quite familiar; we may write

к (cot r7£- i) = sin nl exp irj£
-l

= - T -1 (49)

since we recognize the usual contribution of the ith phase shift to the 
scattering amplitude in the standard partial-wave formula. In the formal 
language of scattering theory, this is just the corresponding diagonal 
element of the so-called T-matrix of the atomic sphere; because v(r) is 
spherically symmetric, the T-matrix is diagonal in this angular momentum 
representation. Thus, our KKR determinant is abstractly of the form

det 11 [ G' - T '1] LL, ||=0. (50)

No wonder the vanishing of the T-matrix, in the empty lattice case, picks 
out the singularities of G '.

What we must do is construct a matrix with T in it, rather than T"1 . 
But notice a very simple result. The complete Greenian can be expanded 
in plane waves as follows

—> —> -*  
i ( k - g ) - ( p - p ')

G ( p ,p ' )  = X 6

S
|k-i|2-^

(51)
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as may readily be shown from the familiar Fourier transform of the 
ordinary free-space propagator (29), i. e . ,

9?0(r) = eiK‘ r d3K~ 
K2 -<f (52)

In other words the matrix G is diagonal in a "reciprocal lattice repre
sentation", and may therefore be inverted at once

,53>

which looks very familiar. So now we write 

T '1- G' =T ' 1 + ^ 0 -G

= N"1G { NG"1 - N(T_1 + S?Q) 1 } (T'1 + ^ 0) (54)

and provided that neither ||g || nor ||t "1 + ^ 0 || vanishes our condition (50) 
requires the vanishing of the determinant (in any representation) of the 
matrix NG"1 - Г where

r  = N(T-l+ S?Q)-1 (55)

From (53) we want this in a "reciprocal lattice representation", so that 
our determinant reads

det|| {| k - g |2 - + Г _  || = 0 (56)
g g' 8 g'

That is to say, the operator Г defined by (55) plays the role of a pseudo
potential in a typical NFE type of expression. The reduction of Г to this 
representation is not quite trivial, nor unambiguous, but the following 
formula may be derived:

r>_
gg'

(2i  + 1 ) tan 
i

j ( I к - i i  r  )j ( I к - )
£ S £ s _  ,------------------------------------ P4(cos

[ j / K R s) l2 g g'
(57)

where

cot n1£ cot V kRs)
v j / ^ l

(58)

defines a modified phase shift 171 , and where 6-+-? is just the angle between 
the vectors к - g and к - g ' .

The above derivation of (57) is rather abstract, and some steps have 
only been sketched. It is possible to arrive at the same result by more
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direct algebraic manipulations of the KKR determinant, using the formula 
(48) for the coefficients ЗВщ as a series in g. But this does not demon
strate the inwardness of the theorem, which goes to the very heart of the 
band structure problem.

We see at once, from (57) and (58), that the empty lattice test is satis
fied automatically; all Г ^ .  go to zero with the phase shifts rij. It is also 
obvious that in situations where the electrons are nearly free — i . e . , where 
the phase shifts are small — the matrix elements also are small, and the 
determinantal equations converge rapidly. In such circumstances, this 
representation of the KKR method is much better for computation than 
either the original angular momentum representation or the APW method.

It is interesting to note (Lloyd 1965) that this form of Г-»-> can be 
deduced from the model potential, in real space, gg

<L, г I Г IL' , -* v 6 (r - rM
r '  > ~  ̂LL’̂ l 5 (r  - R , ) ~7, 2 (59)

— i. e . , a delta function of strength At ( for the üth partial wave) on the 
surface of the sphere R s. This will match the true scattering of the 
actual atomic potential if

Ä ' j tR , .* )  jjOcR.)
A{= Ä jlR ,.* ) ' *  jjOcR,)

= - к tan (60)

Putting the potential into the Schrödinger equation instead of. v(r) gives 
exactly the NFE equations with matrix elements (57).

It can also be derived from the APW method (Morgan 1966). Let us 
express ^  as a sum of APW's, as in (19)-(22), and substitute in the 
surface matching condition (36). Then we get exactly the Eqs.(56) and (57) 
as conditions for the existence of the coefficients -». In fact, one can 
prove the following algebraic relation -g

r APVV = c KKR + i ; 0^

gg gg gg
(61)

where r-^W are the APW matrix elements (25), f S 01 are the matrix SS 0 gg
elements (57), whilst Г-»-», are the values of the APW matrix elements
in the empty lattice case, as discussed in connection with (26). This
shows explicitly that the KKR matrix elements automatically vanish in
this limiting case. It may seem strange that there should apparently
exist two quite distinct expansions of the exact wave function in APW's,
with quite different sets of coefficients ak-g The reason is that we
only have to produce a suitable wave function outside the atomic spheres, 
and are therefore looking for a Fourier series representation of a periodic 
function that is defined only over part of the range within each unit cell. 
Such a series is not unique, for we may give the function any arbitrary
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form in the remaining range of its variables and look for the special 
series that defines this complete function; but changing the arbitrary 
function will change the series.

The connection of (57) with the conventional types of pseudopotential 
formulae is not so direct, although one can go some way by noticing that 
for small rn the matrix elements П*-» approximate to the ordinary

g g
scattering amplitudes for plane waves

Г - .-—  (2ü + l)n P (cos 0). (62)
ЯЯ'  К i t

In other words, the pseudopotential is very much the same thing as the 
atomic form factor of each atomic potential (or muffin-tin well) as we 
might attempt to calculate it by direct phase shift analysis, and would be 
a suitable choice for the matrix element in a Born approximation calcu
lation of this quantity.

We can also connect the KKR method with the Wigner-Seitz method. 
Let us look at the equations near 5=0,  and assume that only one plane 
wave is needed — so that only the term with g = g' = 0 appears in the 
determinant. Let us also assume that only s-wave scattering is im
portant. Then we have

S «  k2 4ttN
К tan rj'0 (63)

i . e . ,  ( - 4ttN /k) tan q0 (64)

since p0 and r/(J are approximately equal.
It is well known in scattering theory that for small energies the s-wave 
shift is proportional to к , i . e . ,

tan Г70(к) “  -ка (65)

where a is a quantity called the scattering length of the potential well. 
Thus, if we introduce the radius of the Wigner-Seitz cell, so that 
(4tt/ 3) r$3 = 1/N, we have

<^o-—3 (66)
r.

Now, on the other hand, the wave function outside the atomic sphere 
Rs is of the form

Mr)
r = u(r) = jQ(Kr) - tan Г70 (к)п0(кг) (67)

because it is shifted in phase by rjQ (к) relative to a free-wave solution. 
The Wigner-Seitz condition is that the derivative of this function should 
vanish on the boundary of the Wigner-Seitz sphere, when r = r$ , i . e . ,

tan п0 (к) = j^(Krs)/n'0 (K.rs ) ( 6 8 )



2 0 ZIMAN

Using the asymptotic form of the spherical Bessel functions for small 
values of tcrs and also using (65), we get again the same condition (66) 
for the value of S'q = к2 at which (68) is satisfied.

For an attractive potential, the scattering length a, by convention, 
is negative, so Sq lies below zero; this means that we have really used 
an analytic continuation of scattering theory into the region of imaginary 
к , but this is perfectly proper. Thus, the bottom of the band lies a 
little below the assumed zero of our scattering problem — below the 
assumed zero of the empty space between muffin-tin wells. In other 
words, the effect of making a lattice of such wells is to allow a certain 
amount of tunnelling of electrons between neighbouring wells, even in 
the "free-electron" band, hence lowering the energy.

The crude result of perturbation theory would be

— the average potential in the lattice, or in a unit cell. This would be 
negative, but much larger in magnitude than (66). Here is another 
obvious case of the failure of the Born approximation; at such low ener
gies we may not use (69), say, to calculate the scattering length and 
phase shifts. On the other hand, it is worth remarking that if we put the 
Phillips-Kleinman pseudopotential for ‘/'(r) in (69) we get a formula which 
is equivalent to a variational estimate of the scattering length of a po
tential containing bound states, i . e . ,

quoted, for example, by Mott and Massey ([12], p. 128).
It is worth noting further that the value of <S0 depends only on the 

atomic volume, not on the crystal lattice or reciprocal lattice. Thus, 
it is essentially independent of structure and holds equally well for 
liquid metals. Since this is one of the most important factors in fixing 
the position of the band on the energy scale and hence determines the 
cohesive energy of the metal, this is a valuable argument in support 
of the general principle that metallic binding is a volume effect and not 
very sensitive to the detailed arrangement of the ions. 6

6. TRANSITION METALS

An interesting feature of the KKR formula in its reciprocal lattice 
representation (57) is that the matrix elements are real (i .e.  hermitian), 
and contain tan p'g instead of sin pe exp ipj which occurs in the t-matrix. 
What is the significance of this? It seems to be connected with the so- 
called reaction matrix or K-matrix of the scattering centre which is de
fined by

(69)

CO

(70)
0

K 1 -  iicT (71)
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with diagonal angular momentum representation

= '  к tan ^  (72)

This signifies that we are interested, in our band structure problem, in 
states which are, so to speak, stationary and self-consistently diffracted 
by the lattice, and not with waves that appear from one.direction, are 
scattered and then disappear again into the distance. It is, in fact, 
possible to set up the band-structure problem in ordered and disordered 
systems solely in terms of the К-matrices of the scattering spheres 
(de Dycker and Pharisea [13].

But if were to go through тг/2, then tan would become infinite. 
According to the conventional theory of the K-matrix, this must occur 
when there is a resonance, or virtual level, of the muffin-tin potential. 
Consider, for example, the construction of such potentials for a metal 
such as Cu. The ordinary s and p levels disappear by the overlapping 
of neighbouring potentials, and hence give rise to a NFE band. But the 
radial equation for the d-level contains a centrifugal term

Vj(r) 1 (1 + 1 ) 
r 2 (73)

which looks like a potential barrier. Even when the position of the origi
nal bound state is above the "muffin-tin zero", this barrier prevents free 
exit of the electron from the core; it must tunnel slowly through the 
barrier, and hence still preserves some characteristic properties of 
the original bound state from which it was derived.

In general, the phase shift in the neighbourhood of such a resonance 
behaves like

tan ne fw (74)

where З г is the energy of the resonance and W is its width (in fact, the 
reciprocal of the typical decay lifetime of the state). Such behaviour of 
the phase shifts in (57) (it is easy to show that tan behaves in a 
parallel manner) has a profound effect on the band structure. Consider 
the sort of simple expression used in (64), i . e . ,  a single plane wave 
affected by only the d-wave phase shift. We have

k2 ^ 3  + 27rN
к (75)

for the wave vector of the state of energy 3 .
Since k must be real — and not infinite — we find that the free electron 

curve is split, just as if it were crossed by a very narrow d-band with 
which it could "hybridize". This is only schematic, and ignores the
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crystal structure, etc . , but in fact the band structure of Cu is rather like 
this, with much more detail (Fig.3).

Note an important elementary point (Ziman [14]). The position of the 
d-band relative to the s-p band depends essentially on the position of 
<%t relative to Sq . But, as we have seen, Sq must lie a certain distance 
(defined, for example, by the Wigner-Seitz method) below the zero as
sumed for the muffin-tin potentials, which depends in its turn, on the 
details of the overlap of the external parts of the atomic potentials, and 
more especially on the approximation used to deal with electron-electron 
screening effects. On the other hand, <#r depends upon the potential deep 
in the core of the ion where such screening effects are not very important. 
Thus, the distance <St - < 8 which determines the position of the whole 
d-band relative to the conduction band — a most important parameter in, 
say, the optical properties of the metal — is not naturally a stable 
quantity independent of the type of atomic potential used in the calculation; 
various authors have reported quite different calculated values of this 
feature of the band structure, without apparently having realized its 
origin.

FIG.3. Band structure o f  Cu

The resonance scattering approach can be connected algebraically with 
the tight-binding and pseudopotential theories in a paper by Heine [15] to 
which reference should be made for the details. One finds that the secular 
determinant can be transformed into a mixed representation of the 
following form:

M '
&s-

t*
Gm

D
Gm' mm’

where M1-»-» is a NFE matrix in a finite set of reciprocal lattice vectors 
GG' r

G, G' (e.g. ,  4X4).
Dmm. is a tight binding matrix involving mixing and overlap of various 

d-orbitals with various magnetic quantum numbers m (so this is 5X5 
matrix).

7 'Gm > etc., is a matrix of hybridization coefficients mixing the d- 
states with the NFE type states.

This sort of expression was originally suggested as a parametrized 
model for the band structure of transition metals — but Heine's analysis 
gives it a solid basis as yet another algebraic representation of the 
"Greenian" formalism. But work is proceeding on such formulae and 
we have not yet had the latest word on the subject.
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Abstract

1. Introduction. 2. Elementary excitations or quasiparticles. 3. The modern theory o f electrons 
in metals: the Landau theory o f  the Fermi liquid. 4. The many-body wave function and operators in 
second quantization. 5. Some useful results from general quantum mechanics. 6. How ’’Green" is my 
valley. 7. Some examples o f  Green's functions and their use. 8. Perturbation series expansions. The 
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1. INTRODUCTION

Solid state physics is a branch of science dealing with the properties 
of systems containing an enormous number of elementary particles 
organized in a coherent whole. In this way it is one of the fundamental 
branches of physics. The many-body aspects of the material world 
pose problems which are quite different in kind from those of, e .g ., 
elementary particle physics. It may very well turn out to be the case 
that progress in the understanding of many-body systems will be of 
even greater significance to our knowledge of the world than further 
progress in elementary particle physics.

Obviously the complete solution of the many-body problem in the 
sense that the motion of all the particles in the system is determined 
is completely out of question. Fortunately, the observable macroscopic 
characteristics of a solid ar’e determined by certain average properties 
of the system. Forming such averages implies that practically all of 
the enormous number of co-ordinates are eliminated from the de
scription of the system. The physical properties related to observations 
thus depend on a small number of co-ordinates, and the primary task 
of any many-body theory is to find exact or approximate ways of reducing 
the full many-body problem to a problem of manageable size.

The main cause of the difficulties is that the many-particle 
Schrödinger equation is, from the mathematical standpoint, non- 
separable and extremely complicated. This, in turn, is a reflection 
of the physical situation: the particles in the systems interact all the 
time and single-particle properties like wave function, energy etc. for 
an individual particle have no simple meaning; indeed only the states of 
the system as a whole have a precise meaning.

It must be clear from what has been said that the many-body 
problem can only be solved approximately. A number of approximate 
methods have been developed since the early days of quantum theory, 
such as the Thomas-Fermi method, the Hartree and Hartree-Fock 
approximation, the valence-band and molecular orbital approach for
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molecules etc. The key method used during the first few decades of 
quantum mechanics was the independent-particle approximation. This 
approximation implies the reduction of the N-body problem to N one- 
body problems. Each particle is considered as moving in the average 
field created by the other particles. This average field is of course 
itself determined by the motion of the particles, i .e . by the solution 
of the equations and therefore there is usually a self-consistency 
condition involved. Depending on the choice of self-consistent potential one 
obtains the Hartree theory, the Hartree-Fock theory or some more 
refined single-particle theory.

It should be remarked that the independent particle model has been 
and still is an enormously successful tool in describing many key 
properties of atoms, molecules, metals, semiconductors, insulators 
and even nuclei. In fact, most of our present understanding of electronic 
properties of solids has been almost exclusively based upon the one- 
electron approximation. Indeed, e .g ., for metals, it has been working 
almost too well and one of the important achievements of many-body 
theory of more recent date has been to explain why the one-electron 
theory works so well.

From the quantitative point of view the success of the older methods 
has been less tangible. This has been particularly true of the con
ventional perturbation methods. Such methods have been very unwieldy. 
One has run into severe technical difficulties, the region of applicability 
of the approximation has been difficult or impossible to assess and one 
has even run into divergence problems making the perturbation theory 
approach seemingly rather meaningless. Indeed, perturbations methods 
usually give divergent results unless infinite-order perturbation theory 
is used.

The remarkable progress in many-body theory over the past 
decade has been strongly dependent on the developments in field theory 
and particularly quantum electrodynamics in the late forties and early 
fifties. Relativistic quantum field theory was from the beginning facing 
severe convergence difficulties. Because of the extremely strong 
challenge to understand the fundamental properties of radiation and 
matter it is not surprising that the breakthrough in handling infinite- 
order perturbation theory problems occurred in the field of elementary 
particles, notable through work by Dyson, Feynman, Schwinger, 
Tomonaga and others. The methods they developed are very general 
and their usefulness in the study of many-body problems was soon 
recognized. The first applications to solid state theory appeared by 
the middle of the fifties. (To my knowledge the very first one was a 
paper on the theory of superconductivity published in 1953 by the Director 
of this Institute, Professor A. Salam.)

Within the last decade a large number of formulations of the many- 
body problem have been published using a huge arsenal of different 
mathematical formulations: equation of motion methods, (canonical) 
transformation methods, e .g ., to collective co-ordinates, density 
matrix formulations, time-independent and time-dependent perturbation 
methods often systematized by means of diagrammatic methods of which 
the Feynman diagrams, originally devised for quantum electrodynamics, 
are by far the most usual ones. The main role, however, is played by 
the so called Green's functions or propagators. They are essentially
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generalizations of the ordinary Green functions in the elementary treat
ments of differential and integral equations. They form the basic 
element of the field theoretical description and contain considerable 
information about the system, which can be calculated from it in a 
rather straightforward way. There is a variety of Green's functions: 
advanced, retarded, causal, zero-temperature, finite-temperature, 
real-time, imaginary-time: there are Green's functions for 1 particle,
2 p a rtic les ....... , n particles. This enormous assortment will together
match every possible situation and need (but with no promise that you 
can actually solve the equations). The key part in any contemporary 
formulation of many-body theory is the method of second quantization.
This method, which today seems to be the superior method to study 
many-body problems, was developed in the very early days of quantum 
theory, when the conventional configuration space description to many- 
particle problems was still in its infancy. In the method of second 
quantization the concept of a particle is less prominent and is taken 
over by the concept of a complex quantized field ф(х), ф*(х) (the particle 
creation and annihilation operators); the particles themselves appear 
as field quanta. The method is particularly well adapted to discuss the 
probably most important many-body concept -  elementary excitations or 
quasiparticles, which will be introduced in the next section.

I have no intention to try to explain all the different formulations 
currently in use in my lectures. They have, however, a common central 
core of very useful concepts which I shall try to explain in as simple 
terms as I can and show how they work in some applications to solids.
The discussion will be largely intuitive and on an elementary level. They 
are in fact just meant as an appetizer preceding a study of the more 
technical and mathematical aspects of the theory. The mathematics 
of most realistic many-body situations is by and large "experimental", 
which I take as a further excuse for sacrificing mathematical details and 
completeness.

2. ELEMENTARY EXCITATIONS OR QUASI-PARTICLES

Many important aspects of solids can be conveniently discussed in 
terms of particularly simple kinds of motion in which the system behaves 
approximately as a collection of independent, or more or less collectively 
acting entities, -  the quasi-particle or elementary excitations. They 
have a direct experimental significance and can be observed, e .g ., by 
scattering experiments and they are also of great importance in dis
cussing the thermodynamic properties. The language of many-body 
theory is particularly well adapted to investigate the properties of ele
mentary excitations. However, already before going into the many-body 
theory I would like to start with a purely descriptive discussion of ele
mentary excitations in order to introduce the key objects with which the 
theory has currently been concerned.

To be explicit, let us consider the thermodynamic properties of a 
solid. As is familiar, from statistical physics, the thermodynamic 
quantities can be calculated if the energy levels of the system are known, 
by calculating the partition function in e .g ., the canonical distribution
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In the case of an ideal gas the energy of the system is just the sum of 
the energies of the separate particles, and the problem then reduces to 
find the energies of a single particle. In general, however, it is im
possible to determine the energy levels of a system consisting of a 
large number of interacting particles. There are a few exceptions, and 
an important one is the case of low temperatures. In this region only 
the weakly excited states are important, i .e . ,  the states whose energies 
differ only very little from energy of the ground state. The excited 
states in a solid have the form of waves (propagating or standing). They 
have a definite excitation energy which depends on the wavelength of the 
wave. For weakly excited states these waves will interact only little, 
and so the excitation energy will just be the sum of the energies of the 
waves which are excited. This means.that energy levels have the same 
form as for an ideal gas, only with the important difference that the 
energy of the wave may often refer to a motion of a large number of 
particles, i .e . ,  the wave describes a collective type of motion, rather 
than the motion of a simple particle. A sound wave is a good example 
of such a wave motion. These waves of excitations are what we call 
the elementary excitations of the solids and some types deserve the 
popular name quasi-particles. Some people reserve the name quasi
particle for excitations which behave like particles (often so-called 
dressed particles), whereas other people use the term even for excitations 
which are predominantly collective in nature, i .e . ,  motions of macro
scopic groups of particles in the system.

We shall list the common types of elementary excitations below and 
describe their properties. Later on in this lecture we shall discuss how 
the reality of these concepts can be demonstrated directly from experiments.

a) Phonons

Consider for example the well-known case of a one-dimensional 
chain of atoms coupled by nearest-neighbour elastic forces (see, e .g ., 
Kittel [1]). One starts from the coupled equations for the individual 
atoms:

Mün = ß(un + i+un-r 2un> ( 2 . 2)

where ß is the^force constant and M the atomic mass. Then one passes 
from a particle picture to a wave picture by looking for solutions in the 
form of a wave number к and frequency u:

un
i (kna -  wt)= u0e (2.3)

The solution gives the eigenfrequencies as a function of k, that is the 
dispersion relation for the lattice waves

(2.4)
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Introducing boundary conditions one translates the whole description of 
N individual particles into a description involving N independent waves 
each characterized by its energy ш = u(k). Each such wave behaves 
like a harmonic oscillator and its energy levels are given by elementary 
quantum mechanics.

The same arguments apply to a three-dimensional crystal. We 
obtain a system of 3N linear wave oscillators with characteristic 
frequencies and the energy spectrum is given by the formula

where П; are the quantum numbers of the oscillator i and various sets of 
П; correspond to various energy levels of the system. The vibrations 
of the lattice are here described as a superposition of monochromatic 
waves propagating in the crystal. Each wave is characterized by a wave 
vector к and a frequency ш and also by an index s specifying the type 
(polarization) of the wave.

We now recall that light waves can be regarded either as electro
magnetic waves or as consisting of "particles" (quanta), called photons, 
each of them having energy üu. We apply the same type of reasoning 
to the lattice waves: We consider the lattice wave i.

In a state with energy

we can, in analogy with photons, consider it as nj quanta each having 
energy tiUj. These quanta of the lattice waves are the phonons, and we 
say that we have nj phonons of frequency present in the state given 
above.

Thus the elementary excitations of the lattice motion are the phonons. 
We emphasize that the phonons are a good example of a collective motion. 
It follows from the standard treatment of the thermodynamics of lattice 
vibrations that the phonons obey Bose statistics (see, e .g . [1]). In the 
limit of long wave-lengths the phonons correspond to sound waves in an 
anisotropic continuum, i .e . ,  they have a classical counterpart in this 
limit.

Typical phonon energies are of the order kB 0D (kB = Boltzmann's 
constant, 0D = Debye temperature » room temperature for most materials). 
Thus the energies are of the order 0.025 eV and the corresponding 
frequencies are of the order of 10 13 s_1 or less.

b) Magno ns

They are the quanta of spin waves. In a solid with atoms having 
unfilled inner shells the electrons may have a resulting magnetic moment, 
which is approximately localized on the atom. In the ground state of a 
ferromagnetic crystal all the spins are pointing in the same direction.
The lowest excited states correspond to deviating just one spin from the 
preferred direction. However, the spin interacts with the spins on

(2.5)

( 2 . 6 )
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neighbouring atoms and so the deviating spin may jump to a neighbouring 
site. This coupling to the neighbouring spins is the analog to the elastic 
force in lattice vibrations. The coupling between spins means that the 
deviating spin cannot stay localized on the atom, but has a tendency to 
move, and by arguments in complete analogy with lattice vibrations one 
finds that the elementary motions have the form of waves. Thus the 
low-lying excited states of coupled spins are spin waves.

The quanta of the spin waves are called magnons, and they act like 
bosons. Obviously, the spin waves are examples of collective modes 
involving a macroscopic number of atoms. In the long-wave length limit 
the magnons correspond to classical waves of the magnetization in the 
solid.

There are spin waves of similar characteristics also in the itinerant 
electron theory of ferromagnetism as well as in anti-ferromagnets and 
in ferrites. Typically magnons have frequencies in the microwave 
range (~10 10 s "1) and thus their energies are of order of 5X 1СГ5 eV.

c) Plasmons

Let us consider wave-like fluctuations of the electron density of the 
electron gas in a metal (similar to sound waves, but with the positive 
ions not participating). Because of the long-range Coulomb force any 
deviation from charge neutrality gives rise to an unbalanced electric 
field, which gives strong restoring forces and so the frequency of the 
motion will be finite (and high) even for very long wavelengths. These 
oscillations are known as plasma oscillations and the corresponding 
quanta are the plasmons and behave like bosons.

Plasmons were first discussed in the classical case, e .g ., in the 
case of ionized gases. By suitable doping of a pure semiconductor one 
can produce solid-state plasmas within a wide range of densities from 
the low-density limit where the plasma is described by classical 
Boltzmann statistics to the high-density case where the electrons are 
completely or almost completely degenerate. Solid state physics has 
in this way offered the best possibilities of studying under varying 
conditions the many interesting properties of plasmas.

In semiconductors the plasma frequency is in the range from micro- 
waves to infra-red depending on the degree of doping. In good metals 
the plasma frequency is of the order 10 15 - 10 16 s _1, corresponding to 
energies of order of 20 eV. This high energy means that plasmons are 
not excited at ordinary temperatures and therefore play no direct role 
in the thermodynamics of electrons in metals.

d) Electrons (quasi-electrons)

They are the elementary excitations, which behave very much like 
free electrons. However, they also include the interaction with the 
electrons in the neighbourhood as well as with the phonons. An electron 
in an electron gas repels the other electrons and thus surrounds itself 
with a positive screening cloud. The bare electron plus its screening 
cloud constitutes the quasi-electron. The effective interaction between 
two quasi-electrons is a screened interaction which is of much shorter
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range than the bare Coulomb interaction. What are usually treated as the 
quasi-electrons are the weakly excited states of the conduction electrons. 
When electrons are in the ground state (T = O’) they fill the Fermi sea, 
this state is often referred to as the "vacuum". When an electron is 
taken out of the Fermi sea, one speaks of creating a quasi-electron. 
Thermal excitation corresponds to increasing the energies of the electrons 
near the Fermi surface by an amount of order kBT, which is indeed a 
weak excitation relative to the total energy of the electron (Л E/E M 10~2 
at room temperature in good metals).

The average energy of conduction electrons in metals is of the order 
of several electron volts. This corresponds to very high velocities of 
the order of 10s cm /s. Quasi-electrons are fermions.

e) Holes

Holes can be characterized as the absence of a quasi-electron in a 
state which is normally occupied by an electron. Thus if we create an 
electron by raising it out of the Fermi sea, we leave behind a hole. 
Electrons and holes are of equal importance when discussing electronic 
excitations, e .g ., in connection with optical properties or thermodynamics 
of the solid.

f) Polaron

is an electron moving through a polar insulating crystal and inter
acting with the ions of the host lattice. This interaction causes a polari
zation around the electron, which is formally described by means of a 
local excitation of phonons. The polaron is thus a bare electron surrounded 
by a cloud of phonons.

g) Exciton

is a bound electron-hole pair which moves as an entity in a wave-like 
manner through the crystal. If the distance between the electron and hole 
is small (so that they are essentially on the same atom) we talk about a 
Frenkel exciton, if it is loosely bound ( = large distance of separation) we 
talk about a Wannier exciton. Excitons behave like bosons.

h) Bogolon or Bogolyubov quasi-particle

is the elementary excitation in a superconductor. It consists of a 
linear combination of one electron in state ( +k, spin up) and another in 
state (-k, spin down).

i) Localized excitations

In a lattice with, imperfections the elementary excitations will be 
scattered by the imperfection. If the interaction is strong enough we 
may have new states appearing in which the motion is essentially localized 
to a finite region of space surrounding the impurity. Such states can 
appear either as strictly bound states falling outside the usual continuous 
band of excitations, or, they can appear as strong resonances or virtual
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states within the band. All the elementary excitations just mentioned 
may, in principle, occur as localized excitations. Localized phonons, 
magnons and excitons are, at present, of much interest both experi
mentally and theoretically, whereas varieties like localized plasmons 
and polarons seem somewhat controversial.

This brief discussion of the most common types of elementary 
excitations shows that it is often possible to perform a transformation 
(here unspecified) from a system of strongly interacting particles to a 
set of approximately non-interacting modes of motion which we call 
elementary excitations or quasi-particles. These elementary excitations 
do not correspond to exact states of the system but do instead represent 
wave packets, i .e . ,  superpositions of eigenstates with a reasonable 
spread in energy. As a result we have a non-vanishing probability for 
transition out of such wave packet states and this leads to an attenuation 
or damping of the elementary excitation. This implies that the description 
in terms of elementary excitations requires the width of the wave packet 
to be small compared with its energy. The spread of the wave packet 
can be considered as the result of interaction processes between the 
quasi-particles during which the laws of energy and momentum conser
vation are satisfied. Such processes can be divided into processes in 
which excitations are scattered by each other and processes in which an 
excitation decays into several others. If we consider low temperatures, 
only low-lying excitations are present and there are few of them. The 
mechanism for damping is then ineffective for scattering as well as decay. 
The interaction between excitations is accordingly weak, so that we can 
regard them as an almost ideal gas of quasi-particles. At higher tempera
tures there are more excitations present, their average interaction will 
be stronger, the width will increase and raising the temperature further 
will imply that the picture of a gas of independent elementary excitations 
will gradually lose its meaning. The concept of elementary excitation is 
indeed a useful one only when we have a reasonably small number of 
elementary excitations present at a time.

The concept of elementary excitation is particularly useful when 
considering the interaction between a solid and external field and their 
quanta. The most striking evidence for the existence of elementary 
excitation is obtained from experiments involving external probes such 
as electromagnetic waves, thermal neutrons, beams of charged particles, 
etc. The experiment can be, e .g ., an inelastic scattering event in which 
an elementary excitation is created or annihilated and the characteristics 
of the elementary excitation are determined from an analysis of the 
energy and momentum of the outgoing external wave or particle.

Neutron scattering and interaction with electromagnetic waves 
(Brillouin and Raman scattering) are of this type. Another type occurs 
when a quantum of the incident radiation is absorbed, such as in the 
infrared absorption of light in polar crystals.

The fundamentals of the interaction between a solid and an external 
field are best understood if we take a specific example such as non
magnetic inelastic neutron scattering. Let q be the wave vector and 
Ui(q) the frequency of a phonon in the branch i. Let k0 be the momentum 
of the incoming neutron and It its momentum after the scattering has 
taken place. In the scattering process involving a single phonon the
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energy is conserved so that

Ь2к I
2m

,2  i 2n к 
2m ± h(Ji(q) (2.7)

(plus if a phonon is emitted and minus if a phonon has been absorbed).
In addition to energy conservation we have a condition imposed on the 
momenta involved. Because of the periodic structure of the medium in 
which the elementary process occurs (which implies periodicity properties 
also in momentum space, e .g ., that u(q) = u(q + T )  ) momentum is con
served only up to an arbitrary reciprocal lattice vector т . Thus, the 
momentum law in a lattice takes the form

ко = к ± q+r

The energy and momentum relations imply that for a given direction 
of the scattering neutrons, they will only appear with discrete energies 
corresponding to the possible values of Wj(q). By varying the direction 
and increasing the energies at which neutrons appear, one obtains a 
mapping of the dispersion relation Uj(q), i .e . ,  one determines the energy 
versus momentum for the phonons. In the simple picture described 
here, one would obtain infinitely sharp lines. In reality the phonons 
are damped and in several good recent experiments one has indeed 
determined the width of the phonon lines and its temperature dependence. 
Many-body theory indicates that even the phonon lines may show some 
interesting structure.

Considerations as those indicated here will also hold for other types 
of elementary excitations. The elementary excitations, thus, are 
objects of good physical significance, and experimental investigations 
of their energies, widths and structure of the lines are most valuable 
for the understanding of the microscopic dynamics in solids.

3. THE MODERN THEORY OF ELECTRONS IN METALS:
THE LANDAU THEORY OF THE FERMI LIQUID

We mentioned in passing that the independent particle model has 
been extremely successful in describing the properties of conduction 
electrons in metals. In the one-electron theory each electron has an 
energy versus wave-number relation e = e(k) (we do not consider the spin 
explicitly in this discussion). In the ground state the single particle 
states are filled with two electrons per level (if no magnetic field is 
present) up to a highest level, the Fermi level eF. The relation eF = e(k) 
defines a surface in k-space -  the Fermi surface. At finite temperature 
the distribution over single-particle states is described by the Fermi 
distribution function and for good metals we are always in the region 
of almost complete degeneracy, i .e . ,  kßT « e F. From this follows a 
number of properties, e .g ., that the specific heat of the conduction 
electrons is proportional to the temperature and that the spin suscepti
bility is to leading order independent of the temperature and that both 
of these properties are related to the density of states at the Fermi level. 
Furthermore, the one-electron theory is used as starting point for non
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equilibrium properties, in particular transport properties. The motion 
in the presence of external fields or thermal forces is described by a 
perturbed distribution function for the electrons, which satisfies a 
Boltzmann transport equation, from which the transport coefficient then 
can be calculated.

From the experimental side most of the qualitative features of the 
one-electron theory are extremely well verified. The existence of a 
sharp Fermi surface in metals has been demonstrated with several 
different experimental methods and the determination of shape and size 
of Fermi surfaces has developed into the noble art of "ferm iology". The 
linear law of the specific heat, the temperature independence of the spin 
susceptibility as well as the gross features of transport phenomena in 
metals are in good accordance with experimental facts. Therefore, 
these key results of one-electron theory are indeed facts of life, and are 
with us to stay.

From a theoretical point of view it is indeed puzzling that the one- 
electron theory works at all for metals. Already Wigner and Seitz in 
their pioneering work on metallic cohesion observed that there must be 
an appreciable correlation in the motion of the electrons because of the 
repulsive Coulomb interaction, Wigner made an approximate calculation 
of the effect, showing that the correlation energy gives a considerable 
contribution to the cohesive energy, that can by no means be neglected.
We would like to comment here that ordinary perturbation theory cannot 
at all be used to calculate the contribution to the energy from the Coulomb 
interaction: The first order perturbation gives a finite result but from 
then on each individual order in perturbation theory simply diverges, 
representing a complete breakdown in the straightforward approach.

In the one-electron picture the conduction electrons are described 
as an ideal gas of fermions. Because of the ever-present interaction this 
picture represents a tremendous oversimplification and one uses the 
term Fermi liquid for such a system, the best known examples being He3 
and metals. Around ten years ago Landau developed, with remarkable 
intuition and insight, the theory of the Fermi liquid. His first papers 
assumed a short-range interaction between the particles, but with 
appropriate modifications the theory is equally valid for conduction 
electrons in metals, including also, e .g ., effects due to electron-phonon 
interaction. In this section we shall present those aspects of the theory, 
which are particularly relevant for these lectures. Landau's theory is 
phenomenological in the sense that the theory contains certain parameters. 
The parameters can only be calculated using the full machinery of many- 
body theory, which also has to provide the formal justification for the 
basic assumptions in the theory.

We shall present the theory in the simplest form, where we assume 
full translational invariance of the system. In a real metal, of course, 
the electrons move in a periodic potential. The main differences between 
the uniform model and a periodic lattice are the following: (a) the plane 
waves describing particles moving in a uniform system have to be re
placed by Bloch wave functions, (b) the energy of a free electron 
e =ii2k2/ 2m has to be replaced by a general dispersion curve e =e(k)or, 
if only effects close to the Fermi surface are being discussed, the mass 
m of a free electron has to be replaced by the band mass mband .
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The discussion is restricted to what we call a normal Fermi system, 
which we shall a bit loosely define as a system that behaves somewhat 
like a system of non-interacting fermions. To be only slightly more 
explicit: Let us imagine that we start from the non-interacting system 
and slowly turn on the interaction. If there is a mapping of the states 
of the non-interacting system onto the states of the interacting system 
so that, e .g .,  the ground state of the non-interacting system is trans
formed into the ground state of the interacting system, then the system 
is said to be normal. We can visualize this process as one in which we 
start from the bare electrons in the. metal and by switching on the inter
action slowly we gradually "dress" the electrons so that finally we have 
fully dressed electrons or quasi-particles of the system.

Next we formulate the key postulates of the Landau theory:
i) The single particle labels for wave number and spin (к, a) = к are 

still good quantum numbers.
ii) There exists a single particle dispersion curve e =e(k).
iii) The state of the system can be characterized by a single particle 

distribution function nk, giving the average occupation of the single 
particle state k.

iv) There are as many quasi-particles as there are bare particles, 
which implies the normalization N nk, N being the total number

к
of electrons in the system.

v) The total energy E of the system is a functional of the distribution 
of quasi-particles, i.e., E =E ({nk}).
It is important to note that the total internal energy E of the liquid 

does not reduce to the sum of the energies of the quasi-particles. In fact 
E represents a general functional as indicated inv). However, for weak 
excitations, the difference in energy when we consider an infinitesimal 
change of the distribution

6 nk=nk-n “ (3.1)

n̂  being the unperturbed distribution, can be written in the form

6 E = ^  e(k) 6nk 
к

(3.2)

This relation defines the quasi-particle energy as the derivative of the 
energy with respect to the distribution function, i .e . ,

e(k )=|^ (3.3)

Thus the quasi-particle energy e(k) is the change in the total energy E 
when we add one quasi-particle with wave number and spin R, a to the 
system. It is important to observe, however, that e(k) is itself a functional 
of the distribution.

e(k) =e(k, { n k.})
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so that e(k) is only known when the distribution of all the quasi-particles 
in the system is given.

In most cases of interest we must go one step further in expanding 
the change in energy because we must know the change in the quasi
particle energy e(k) when we change the distribution of quasi-particles. 
We therefore write

6E=E({nk})-E({n°k} )= ^  6nk

l Z  ( з„ Л )  * W  + ' - '
kk' 7

(3.4)

e0(k)6nk + i  ^  ^  f(k ,k ')6nk6nk, + . . .  
к к к'

This formula defines a new quantity

f(k,k') Э2Е
9 nk9nkW0 (3.5)

with the property

f(k, k1) = f(k', k)

f(k, k1) has obviously the meaning of an interaction energy between 
quasi-particles of wave-number spin k. It is referred to as the quasi- 
particle interaction and plays a fundamental role in the Landau theory.

According to (3.4) e0(k) is the energy of the quasi-particle when 
it is present alone; to be precise, if we have added just one particle to 
the system, all the rest being in the ground state configuration described 
by n°k. If we have other excitations present, i .e . ,  adding more particles 
and considering excited states of the system, we must calculate the 
energy for a quasi-particle imbedded in a gas of other excitations de
scribed by (5nk. According to Eq.(3.4) its energy becomes

e(k) = e0(k )+^  f(k, k ')6nk, 
k'

(3.6)

The quantities e0(k) and f(k, k') are the basic parameters of the Landau 
theory and they are assumed to be known in the phenomenological theory. 
The quantity e0(k) is what we should identify with the dispersion curve 
from an energy band calculation. The quasi-particle interaction is a 
screened short-range interaction that can, at least in principle, be 
calculated by using the methods of many-body theory.
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We shall first discuss the equilibrium distribution of the quasi
particles which can be obtained in a straightforward way. We just recall 
one of the basic assumptions: that there is a one-to-one correspondence 
between the states of the interacting system and the states of the ideal 
Fermi gas. Thus, the classification and enumeration of states are identi
cally the same. Since the entropy depends only on the counting of quantum 
levels (a purely combinatorial problem), it will then have the same form 
as the entropy of an ideal gas of fermions, namely:

The equilibrium distribution is determined from the condition that the 
entropy should be a maximum with the constraints that the number of 
particles and the energy is conserved, i .e . ,  when the following three 
relations hold:

These three relations are identical in form with those for an ideal 
Fermi gas, and so the solution is formally the same:

Пк~ 1W--.H (3.9)e kBT +i

Although of the same form as the Fermi distribution, (3.9) is 
strictly speaking a very complicated implicit relation because the quasi
particle energies themselves depend on the distribution.

Let us consider the case corresponding to complete or almost 
complete degeneracy in the Fermi gas, kBT « p .  Assuming that there 
is no violent dependence on distributions in the single-particle energies 
e(k), we notice that in the limit when T goes to zero, we shall approach 
the step-function distribution as in an ideal Fermi gas.

This defines a Fermi surface SF in momentum space also for the 
interacting system, which is given by the relation e(k) =ц. Since the 
ground state for the N+l particle system is obtained by adding a quasi
particle at the Fermi surface, м will be equal to the chemical potential.
We refer to ц as the Fermi energy also in the interacting case and shall 
often use the alternative symbol eF for it.

Most of the successful applications to metals are concerned with 
the study of quasi-particles close to the Fermi surface. If no magnetic 
field is present the quasi-particle energy will only depend upon momentum 
p and in our isotropic model only on its magnitude |p|. The velocity 
(group velocity) of the quasi-particle is given by

For isotropic systems V and p are collinear and therefore we can write 
on the Fermi surface

where m* is the effective mass of the quasi-particle.

(3.7)
к

6 S = 6E =6N= 0 (3.8)

V  = V-» e (p)

(3.10)
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A considerable simplification is also possible for the quasi-particle 
interaction f(k, k') if we restrict ourselves to the region very near the 
Fermi surface. Both к and k' will then have the absolute magnitude kf 
and for an isotropic system f(k,k') will only be a function of the angle в 
between к and k' so that f(k, k') =f(6).

To summarize the last few paragraphs: For Fermi surface phenomena 
the parameters e0(k) and f(k, k') are replaced by the effective mass m* 
and f(0) -  of the latter, essentially only the first few coefficients in a 
Legendre polynomial expansion will be needed.

As shown by Landau, there is a definite connection between the 
effective mass m* and the quasi-particle interaction f, that follows 
from the Galilean invariance of a uniform system: The momentum of a 
unit volume must be equal to the flow of m ass. The momentum of the 
liquid equals the total momentum of the quasi-particles, i .e . ,
2 \ pn(p). The mass flow, on the other hand, must be determined by

PJthe current of quasi-particles, which is given by

2p

P Г

Galilean invariance requires that

> (p ) Vj*e(p) n(p)

I pn(p) =/L m n(?) (3.11)

Let us now consider an infinitesimal change in the distribution function, 
remembering that the quasi-particle energies change according to

6 e f(p, p') 6 n(p')

P’

From (3.11) we obtain that

X  m 6n(p) V^e(p) 6n(p)+^ ^  v ? « p .  p') 6n(p') n (p)
P P

= ̂  Vp(p) 6n(p) - ^  ^  f(P< P') v^ n<P) 6 n(P')
P P

Y  Vp»e(p) 6 n (p )  -  Y Y  f ( ^ '  ^  V P 6

P P

(3.12)
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Since 6n is arbitrary the result is that

(3.13)

p'

As already mentioned we are mainly interested in quasi-particles at or 
near the Fermi surface and temperatures low compared with the Fermi 
temperature. We then have that

dß ' being the element of solid angle. Multiplying (3.13) by p and 
dividing by p ,̂ we obtain the Landau relation between the mass m, the 
effective mass m* and the interaction function f(6):

In a real metal we do not have Galilean invariance but only the invariance 
under lattice translations. I am not aware of any analogue of (3.1.4) for 
the case of periodic systems.
We wish to give just a few results of the Landau theory to show how 
the theory works. A very thorough discussion is given by Pines and 
Noziferes [2], to which I refer for further study.
Let us first consider the specific heat at constant volume. We 
obtain in a straightforward and rather self-explanatory manner that

and

Passing from summation to integration by using 
we obtain pa

2p'2dp' сШ1
|3

p’

(3.14)

к

к к

к
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to leading order in the temperature dependence. From the last step 
the calculation is identical with that for an ideal gas of fermions and 
we obtain

Cv i k 2 - ^3 K b . 3 (3.15)

Thus, the specific heat has the same form as for the ideal gas but with 
m* replacing the bare mass m. Actually, the specific heat is related 
to the density of states rather than to a dynamical mass and we also 
give the alternative form

Cv =| ?r2k§N(eF)T (3.16)

where N(eF ) is the density of states at the Fermi level.
We next proceed to calculate the compressibility of the system, or, what 
amounts to the same, the velocity of sound. The pressure is defined as

d_
ЭУ

and the compressibility by

1
к = -V ЭР

av

The mass density of the system is p = Nm/V and the square of the sound 
velocity s is

2 _ a_p_ _v f эр
S Эр. Nm ЭV

We prefer not to try to calculate directly the change in total energy when 
we change the volume of the system. Instead we use the Duhem relation 
of thermodynamics, which for dT = 0 gives that Ndp = -Vdp. Now the 
chemical potential ц depends on N and V only through the ratio
— so that

э р _ v  эм_= эр 
aN ' n av " n2 av

and thus
2 _ N Эй 

m 3N

We now have to calculate the change in the chemical potential when we 
change the number of particles. This causes a shift in the Fermi 
momentum and hence in the distribution function, й changes for two
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reasons: (a) the Fermi energy changes when we change the radius of 
the Fermi sphere, (b) the interaction energy changes when we change 
the distribution. Thus

= 6 p F + ^  f ( p > p ' ) 6 n F

The density of quantum states in momentum space relates 6pF and 6N:

о 4!rpj?6pF _ 6N 
(2тгЬ)3 V

Next we calculate the change in interaction energy

^  f(p, p ')6npl =VJ f(p, p')d П-
(2 ?rh)3

f(P. P') dO' 6N 
4тг V

PpUsing - —  = —гг. we find that 9pp nr-

Э m_ (2ttTi)3 1+ W V f(p,p') dO'
47Г9N 8irpFm*V V 

Finally we use the Landau formula (3.14) for m* and multiply by

N 2 47ГР|_ V
m 3 (2?rh)3 m

to obtain the final formula

„2 
2 P F 

S  = ---------ö  +

/  чЗ

3m2 3m \2тгЬ) v j  dfi f(0) (1 - cos 6) (3.17)

The first term gives the result for an ideal gas and the second term 
gives an important contribution from the interaction.

In the case of non-interacting fermions the spin susceptibility is only 
related to the density of states, which is no longer true in an interacting 
system. When we apply a magnetic field we create an unbalanced 
distribution of spins. This is important because the effective interaction 
is spin-dependent. Even if the fundamental interaction between the
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p a r t ic le s  d o e s  not depend on  sp in, the e x c lu s io n  p r in c ip le  w ill g ive  r is e
to  a sp in  depen den ce in the e ffe c t iv e  in te ra ctio n . W e m u st th e r e fo re
w rite

f(pa, p' a') =f0(p, p') + 60o' fe(P.P')

The term fe , which occurs only when the spins are parallel, is the 
effective exchange interaction between quasi-particles. If we apply a 
magnetic field the single particle levels will shift by an amount of ±ßH, 
where ß = eft/2mc (minus or plus for spins parallel or antiparallel to the 
field). The readjustment of the distribution will give an additional shift 
and the total shift of the level p, a is given by

6e(p) =± f(p, p') бп(р')

The shift in the distribution of the electrons is illustrated in Fig. 1.

F IG .l. The distribution o f electrons o f different spins in the presence o f a magnetic field.

The change in the Fermi momentum is of the absolute magnitude

|6p
I *F | V p „ 6e

and in good metals 6pF «  pF even for very high fields. The energy shift, 
because of the interaction with the other electrons, becomes

^  f(p, р')бп(р')

p'

Pf |5pf| ГJ£PK)TVj  dS"2 { f(0, a, t ) - f(0, a, 1 )}
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We can now solve for |бе| and obtain explicit results for 6e and 6pF:

6e =
1 +

Fß H_______
V f  dQ f (0)

(2тгЬ)л

and

6 Pr
ßH

pF 1+ у  /d n  f (e)
(2 itbf

We can then calculate the magnetic momentum of the electrons

M

A 3 l + m*m / dO fJ0)
(2 i r b f  J

-H

From the relation M = X H we get the paramagnetic spin susceptibility 
in the form

X = ß
,2 т *Рр

тг2ъ 3 m*pp
1 + (2тгЬ)'k V TdO fe(0) 

I J

(3.18)

or, introducing the density of states.

X =ß2N(eF)
m*PF
(2irbf

1 +

_1___________

v j  dO fe(0)
(3.19)

If we put fe = 0 we retrieve, of course, the result of the one-electron 
theory. The electron-electron interaction gives a very important 
modification of the Fermi gas result. Theoretical estimates from many- 
body theory shows that the correction seems to be in the range 20 - 200%, 
depending on the metal.
We would like to add the remark that our formula for the susceptibility 
says something about the stability of the system. The exchange inter
action is negative so that we have an enhancement of the susceptibility. 
Increasing the strength of the exchange interaction would make the 
susceptibility become infinite and then be negative. An infinite suscepti
bility indicates a dynamical instability of the system, which would then
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make a transition to an ordered magnetic state. Similar conditions for 
the dynamical stability can also be derived for other quantities, for 
example the effective interaction must be such that the sound waves are 
stable excitations and that the effective mass is positive.
We have given a brief account of some important results of the Landau 
theory. It provides the basis for the theory of conduction electrons in 
metals and gives the physical explanation of how the concepts of one- 
electron theory such as the existence of a Fermi surface, the results 
for specific heat, transport properties etc., can be given a proper meaning. 
It also shows, as for the sound velocity and the spin susceptibility, how 
the effect of many-body interactions will modify the results. The effective 
mass m* and the quasi-particle interaction f are parameters of the theory. 
They can (in principle) be calculated from a complete many-body theory, 
however, the difficulties, particularly in calculating the Landau f-function, 
are quite serious and much work still remains to be done.

4. THE MANY-BODY WAVE FUNCTION AND OPERATORS 
IN SECOND QUANTIZATION

We start from the conventional description of an N-body system of 
identical particles in terms of wave functions in configuration space. One 
constructs a set of one-particle wave functions uk(x), к being the quantum 
number, which are assumed to be orthogonal, i .e . ,

From this set of one-particle functions we can first form a product 
wave function

which physically describes the motion of n independent numbered particles. 
However, we have to introduce the proper symmetry. For fermions we 
must work with antisymmetric functions and so we replace the product by

and have the closure property

^  u*(x') uk(x) = 6(x - x1)
к

0=u ki(51 )uk2(32) . . . ukN(?N)

where -  l /s /N j^ (-l)P P (summation over all permutations P, p being
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the order of the permutation). This function is the well-known Slater 
determinant

u k ,  ( * i >  ■ • • V ^ n ) 

u k 2 '  • ' V V

% ( ?l) • ' ' UkN(̂ N)

For bosons we consider instead the symmetrized product

with

V t - k N  = S u k1( x i ) u kI (xa b . .  % ( * n )

S = —  V  P
J nT l,

In this way we build up a set of properly symmetrized functions. 
We normalize them to unity and they are by construction orthogonal. 
They form a complete set for the system of N particles, so that an 
arbitrary state vector can be expanded as follows:

? 2 . . . xN) = Y  \  k>... kN \  кг... kN(*l’ ^  ■
k, k2...kN

The coefficients Ak k k̂  can be interpreted as the wave function
in the "quantum number representation". We wish to make a transition 
to such a representation, but the notation is too cumbersome. What we 
really need is to know the number of fermions in each quantum state. We 
therefore make the following change in enumerating the states:

kjk2 .

where nj is the number of particles in quantum state 1 , etc.
We wish to introduce the occupation numbers np as the dynamical 

variables of the theory. A scattering of a particle from state i to state j 
is then described by decreasing the occupation of state i by one unit and 
increasing that of j by one unit, i .e . ,  п;->п;-1 andnj-*nj + l .  In making 
the transition to the occupation number representation we note that each 
Slater determinant or permanent corresponds to exactly one state in the 
occupation number representation. We introduce the corresponding new 
normalized vectors by giving the mapping from configuration space to 
n-space.

Фпп n £ Л - - - * ц )  ----- » K n2. . .n  >lW  p*
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These vectors form an orthogonal set and give a complete description 
of the N-particle system. However, we wish to do more. We make 
experiments in which we are sending particles in or take particles out, 
so we wish to consider situations in which the total number of particles 
changes.

With our construction we have one complete set of basis vectors 
for N particles, another for N' particles and so on. Let us now consider 
the enormous vector space obtained when combining these for all possible 
volumes of N. A complete set of basis vectors would be the following:

a) The vacuum state with no particle present.
b) All single particle states, describing a system with only one 

particle.
c) All two-particle states describing a system with two particles 

and so on.
The operators on the states |njn2 . . . m,. . . /• change the occupation 

numbers, or in other words, they "create" or "annihilate" particles in 
the various quantum states. Let us first consider the case of fermions 
and define a creation operator aj, which adds a fermion in the state k, 
and its conjugate ak which has the opposite effect, i .e . ,  it destroys one 
particle in state k.

ak|ni n2- • -nk -• ->= a - v t - D ^ 1 |nin2. . .  nk+i . . . >

£ п;
ak|n1 n2. . ,nk. . . >= nk( - l ) 1<k |nan2. . . nk- 1 . . . >

(4.1)

The properties of the a* and ak are fixed by the requirement of 
antisymmetry. The factors in the right-hand side of (4.1) guarantee 
that we have no more than one particle in each quantum state, which 
implies that (a*)2 = (aR)2 = 0. The antisymmetry also implies that

ak'ak I > = - akak’ l>

for arbitrary states k, k', so that

By the same argument we obtain that

akak. +ak. ak = 0

It follows from Eq.(4.1) that

kak! ni n2 - • -nk-• • > = nklnl n2 - ■ -nk- • - >
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and hence we can define the number operator Nk = ajak, which measures 
the number of particles in state k. We can also construct the total 
number operator N

N = I Nk = I ^  (4'2>
к к

By straightforward calculation we find that

<aka'k+akak> |nl • • - nk. . . > = {(n k + l)( l - n k) +nk}|n i .. . nk. . . >

= 1 1 nl ■ • • nk- • • >

and that ak a£. + a|‘. ak = 0 .

We now summarize the important relations for af and ap using the 
notation (A , B} for the anticommutator AB + BA:

{ ak»a k'} = 6k,k- { a k-ak-> = { a k>a k’} =0  <4 -3)

Up to this point we have only constructed a set of basis vectors and 
introduced creation and annihilation operators a* and a, which change 
vectors into new vectors or destroy them. We must now find the proper 
form of operators describing the physics of the system. For each 
operator in the configuration-space language there is a corresponding 
operator in second quantization, which has the same matrix elements 
between any pair of basis vectors in n-space as the "old" operator 
between the corresponding Slater determinants. We use this requirement 
as a guide to find the right form of the operators.

We consider first a very simple situation in which a particle is 
scattered by an ordinary potential V(x) from state к into a state k1, 
illustrated graphically in Fig. 2.

FIG.2. Scattering o f  a particle by a potential.

In configuration space we know the answer. The matrix elements 
are taken between the Slater determinants where the final state differs 
from the initial one only through the replacement k-* k1. This matrix 
element is just <̂ k' |v|k̂ > and furthermore к must be an occupied state and 
the final state must be empty. Thus, the full answer is simply

< k '| v  | k > (l -  n k.)n k ( 4 . 4 )
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In second quantization this is described by first destroying the 
particle in state к and then creating it again in the final state k '. The 
diagram in Fig. 2 illustrates the scattering process as a particle coming 
in with momentum k, interacting with the potential V at the interaction 
point at the centre of the diagram and then going out in state k'. It is 
obvious that the annihilation-creation part of the process must be a* ak 
and that the part representing the potential must be essentially the 
matrix element <(k' | V |k̂ > . Indeed if we choose the following expression 
for the process shown in Fig. 2

<k'|v|k> a *a k (4.5)

and take the matrix elements between the n-states, we immediately 
retrieve the result in (4.4).

In this example we just studied a special case. By summing over 
all possible initial and final states we allow all possible scattering 
processes to happen and this will give us all the possible matrix elements 
in the correct way. In this way we obtain the following correspondence

N

^  V (Xj) ^<k '|v|k>  a£. ak
i = 1 kk'

The same argument holds, of course, for any single-particle operator 
(momentum, angular momentum, kinetic energy, etc.). Thus, if a single
particle operator F has matrix elements <Ck' |F j к  ̂ between the corre
sponding Slater determinants then the operator in n-space will be

k> a*ak (4.6)
kk'

These arguments can easily be extended to two-body operators. Let 
us consider the two-body scattering by an interaction potential vfxj^- x2) 
as pictured in Fig. 3.

FIG.3. A two-body scattering process.

The matrix element between single-particle states is given by

<ki kz lv I k2kl> - J  d3x1 d3x2 u * (x 1) u* (x2) v f^ -x ,,) ukz(32) uki(3a)
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In analogy with the preceding case, the second-quantization form 
corresponding to the diagram shown in Fig. 3 will be

<k'k'|v|k2k1> a* a* a ^

The general form is found by summing over all states and in this way 
we establish the correspondence

1 1  ^ , - V
ij

I  X <kl k2 lVik2ki>  ak-ak- a, a. k, k,
kj k2 kjkj

(4.7)

We can now write down the Hamiltonian, represented in the ordinary 
language by

H =I 2m +I

Using Eqs (6) and (7) we obtain

H = ^  < k ' | H » a *  a k

kk'

+  2 X  <  k i  k 21v 21 k 2 k i  >  a k; a k- a k2 \  ( 4  • 8 )
kjkjkjkg

where

< k' I Hj |k > = J uf.(x)|-^-+V2 (x)|uk(J)d3

<ki k2 lV2 К  kl > = / uk-/? l) Uk) <S2 ) V21Xl’ X2>Uk, :x 2>uk, d' ixi d3x2

and
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If the functions uk(x) are chosen as eigenfunctions of H1( we have that 
<( k' |Hi |k ^ = ek 6kk., and the first term in the Hamiltonian then becomes

Hi = X eKakak =
к к

This discussion has been given for fermions, but the treatment of 
Bose particles follows the same lines with the fundamental difference 
caused by the different symmetry requirements. For bosons we define 
creation and destruction operators as follows:

ak l - - - V - - >  = ^ V I l ••■nk + 1 . . . >  

ak|,.. nk. . .  >=ч^Гк|. .. nk- l  . . .  > (4.9)

and they obey the following commutations relations:

[ak ’ a k ] = V >  - l ak<ak;l - 0  (4 .10 )

The operators a* and a; always refer to a certain chosen basis of 
single-particle states. It is very useful to introduce operators which 
do not depend upon the states but depend rather on the coordinates x

*(x) V * > ak
к

T*(x) (4.11)

Y(x) annihilates a particle at the point x and creates one. These
so-called wave field operators satisfy the following commutation relations

{¥(x), Г ;<(х')} = 6(х-х ’ )
Fermions: -

{'f(x), У(х')}= {¥*(x), ¥*(x')} = 0

’ №(x), T*(x')l = 6(x-x')

. [¥(x), ¥(x')] = [¥*(x). Y*(x')] = 0

(4.12)

Bosons: -
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In terms of the wave field Y(x) the total Hamiltonian can be written as

H =J d3xT!f(x)H1(x)T(x) +| J  d3xd3x'l'*(x)'i'*(x') V2 (x, x') Т(х')¥(х) (4.13)

We notice that the operator for the density of particles is simply

p = r :t( ? ) 'P(x) (4.14)

the number operator becomes

N= Г Т*(х) T(x) d3x . (4.15)

and the total momentum operator is

P= /  d3x T*(x) (-ihV)T(x) (4.16)

5. SOME USEFUL RESULTS FROM GENERAL QUANTUM MECHANICS

Now that we have set up a framework of state vectors and operators, 
we have to determine how the state of the system changes in time. To 
do this, we solve the Schrödinger equation

= H4>S

We write the solution in the symbolic form

. s -iHt лн Ф = e Ф

with

ФН = Ф* 5(0)

Using this formula, we can find the time variation of the matrix elements 
of any operator F

Fjj (t) = < Ф® (t) F Ф? (t) > = < Ф̂1 eiHt F e ‘ iH4 f  >

This can be interpreted as the matrix elements with respect to the 
functions Фн of the operator

F(t) = e iHtF e"iHt (5.1)
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This corresponds to going over to a new representation called the 
Heisenberg picture. Here the state vector is independent of time, 
фН = ф§ (0), but instead the operators change with time according to the 
Heisenberg equation of motion

^ -  = i(HF - FH) =i[H, F] (5.2)

In the Schrödinger picture, the wave functions vary with time, whereas 
the operators do not. The connection between Heisenberg and Schrödinger 
operators and vectors is given by

(5.3)
iHt: e Ф

The wave field operator ¥(x, t) in the Heisenberg picture is thus related 
to that in the Schrödinger picture through

¥(x,t)=eiHt ¥(?)e'iHt

The commutation relations for ¥ and ¥* at equal time are the same as 
those derived earlier and the Hamiltonian is unchanged in form, thus

H= Г d3x ¥*(x,t)H 1(x)¥(x,t) + | d3x d3x' ¥*(x,t)¥*(x\t) V(x,t')¥(x',t)¥(x,t)

We can now derive the equation of motion for the annihilation operator 
by calculating

. Э¥
1 at ’ [H, ¥]

Evaluating the commutator (which is left as an exercise) one obtains

i = H^x) ¥(x, t)+ Г d3x' V(x, x')¥*(x', t)¥(x', t) ¥(x, t) (5.4)

which forms the starting point for some of our later discussions.
A particularly useful picture in quantum field theory is an inter

mediate type, called the interaction picture. We divide the Hamiltonian 
into two parts

H = H0 + H1

and consider the following transformation of the Schrödinger wave 
function <t>(t):

¥(t) =eiH»4(t)
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Differentiating T(t) with respect to time, gives us

i| -Y (t) = Hj(t) T(t) (5.5)

with

H,(t) = e Hi e t

Hj(t) is the interaction energy operator in the interaction picture and 
is explicitly time-dependent, in contrast to the Schrödinger operator. 
A general operator Qs in the Schrödinger picture is transformed into

©'(t) = eiH(|t Qse"iH|>t

and, thus, its time evolution obeys the equation

0 :(t) = i [H0Q!(t) - Q!(t) H0]

We now consider how to determine the state vector in the interaction 
picture. Suppose we know the value of ¥(t) at t =t0. We then go from 
the differential Eq.(5) to an integral equation

t

T(t)=T(t0) - i  / dt' H,(t') Y(t') (5.6)

E q.(6) can be formally solved by iteration. We, however, first intro
duce the operator U(t, tQ) describing the change of the state vector with 
time from t0 to t

T(t) = U(t,t0)T(t0) 

U(t0, t0) = 1
(5.7)

One can show that U(t,t0) is a unitary operator. It obviously satisfies 
the same differential equation as Y(t) and the integral equation

t

U(t,t0) = l - i  / dt1 H, (t') U(tg, tQ)
to

(5.8)
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Solving by iteration gives the series

U(t,tQ)= l+(-i)  j '  dt2 H^tiJ+C-if  J  dta J  dtzH^ti) H!(t2)

t ti *n-i
+  ■ • •  (-if f  Jdt2... J  dtn Hi(ti) Hi(ta)........H^tn) (5.9)

to t0 t0

Note that the operators Hj(t) taken at a later time always appear to the 
left of operators taken at earlier times, since the inequality

t> 4 > t2. . . > t0

always holds. Let us consider the nth integral

/ \  f  <tt2. . . f  d t n H i ( t i) ) • • • Hi(tn)

This expression does not change if we permute the variables ^  . . . tn-» 
tp tp . . -tpn. Considering all such permutations, adding the resulting 
expressions and finally dividing by n'., we can extend the range of inte
gration of each variable from t0 to tj . However, in doing so it is 
important that the operators Hj in the integral are always ordered from 
left to right in the order of decreasing times. Dyson formally removed 
this restriction by introducing the chronological product P

PiHjOiJHjftj;). . . HI(tn)} = HI(ti )HI(tj) . . .  H^tk) 

where t;, t j . . . tk are permutations of tj, t2 . . . tr such that

Thus the nth order term becomes

1
n!

t t
dt. dt2 J d^PtHjttjHjfta). .  . Hj(tn)}

and the expansion of U becomes

n=0

00 n t t
U(t,t0) = ^ ^ -  y ' . . . j T d t 1 . . . d t nP { H I(t1) . . . H I(tn)} (5.10)

to
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or in a compact though not very practical form

t
U(t, t0 ) = P exp { -i H^t'Jdt'} (5.11)

6. HOW "GREEN" IS MY VALLEY

In this section we shall introduce the single-particle Green function 
and choose once more a metal as a model for our considerations. Let 
I О У denote the ground state of the metal. Then, if we send in an electron 
in a Bloch state к at t = 0, we produce the state a'£|o^= jk, 0 )>. The added 
electron will interact with the rest of the system and undergo scattering 
as well as various inelastic processes. Therefore, we do not expect 
I к, 0 У to be an exact eigenstate but rather a form of decaying state as 
it develops in time. Let us ask what the state |k,t̂ > is at a late time t. 
From quantum mechanics we know that the answer is formally given by

I k, t > = e"iHt Ik, 0>

Let us now ask for the probability that the system, after a time t, should 
still be in the same state as at t = 0, i. e . , with an electron in the Bloch 
state it and the rest in the ground state. This probability is <(k, 0|k,t)>. 
Closely related is the one-electron Green function, which we define as

G(k,t)
-i<k, 0 I k, t > t> 0

( 6 . 1 )

t<0

We write this in the form it is mostly used by introducing explicitly the 
Heisenberg operators for creating and annihilating an electron in Bloch 
state к

-i <0 ak(t) a*(0) 0>
G(k, t) = -

t>0

t<0
( 6 . 2 )

We do some rewriting of this formula

G(k, t) = - i <01 ak(t) ak(0) 10 > -i<0 |ak(t) |n> <n|a£(0)|o>

= X  _i Iе 1Н' ак(°) elHt |n />< n|ak(°)|0 '>
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- i (E n(N  + l ) - E 0( N ) ) t

n

^  - i | < n | a * | o > | 2 e Unt ; t > 0 (6.3)
n

In Eq.(6. 3) en = En(N+l) -E0(N). We can, if we wish, make the subdivision

where wn is the excitation energy. The smallest value of en equals q as 
it should.

Fourier transforming (6.3) into energy space we obtain

where 6 is a positive infinitesimal, needed to ensure that G(k, t) = 0 for 
negative times, if we transform back from w to t again.

We can make the same discussion of hole injection. The 
probability amplitude related to the hole Green function is <̂ 0|a]i[(t) ajj(0)10̂ >. 
For conventional reasons one uses the negative time-axis for holes and 
defines the hole Green function as

en = [En(N+l) -E0(N+1)] +E0(N+1) -E0(N)

(6.4)

0 t>0

t<0
(6.5)

We do the analogous rewriting of this formula and obtain

G(k, t) = i <0 |a*(0) ak(t) |o> =Y i <0 | a*(0) | n ><n |a(t) |o>
П

П

Y iKn iaki°>i2 - i (E 0(N )-E n( N - l ) ) t
( 6 . 6 )

n n

where en = E0(N )-E n(N -1) and, of course,
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Fourier transforming (6.6) into energy space we obtain

G(k, ы) dt e G(k,t) l< n 1 ak |° >|2
W- €„-16 (6.7)

It is convenient to combine the particle and the hole Green function 
into one single function which is called the time-ordered or causal Green 
function defined by

G(k,t) = -i< 0| T {ak(t)a*(0)}|0> 

' -i  < o| ak(t) a*(0) |o> t> 0

i <0 |a*(0) ak(t) |a> t< 0
( 6 . 8 )

The time-ordering symbol T means that we should order the operators 
chronologically so that operators with earlier times are placed to the 
right; furthermore, for fermions we should include the minus signs 
arising from the anticommutations.

We can combine (6.4) and (6. 7) into one single formula which gives 
the so-called spectral representation of the Green function. As a 
preliminary, we note that for electrons e(k)> ц and for holes e(k)<q.
It is convenient to shift the energy scale and measure energies from 
the Fermi energy so that particles have positive energies and holes 
have negative energies.

Next we introduce the probability distribution to find the N+l or N-l 
system excited to a given excitation energy. For particles we can define, 
from (6.3), a function

A+(k,u) =У |<n|a*|0>|2 6 (u -€n)
n

(6.9)

with the property that A+ (k, u)du) gives the probability to find the N+l- 
particle system excited to an energy in the interval [cj, u + db)] . 

Similarly, for hole injection we define the quantity

A'(k,u) = y  |<n |a |o >|2 6(u-en) ( 6 . 10 )

with an analogous interpretation (note that e„ is negative for holes). In 
terms of these quantities we can combine (6.4) for particles and (6.7) for
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holes into the following relation:

G(k, to)
oo

du' A*(к, to')  ̂
to - to' +i6

0

o
du' A~ (к, to') 

to - to1 - i6

+ eo
A(k,to') 

to - to'+itoS ( 6 . 11)

where we have defined the total spectral weight function

A(k, to) = A+ (k, to) + A* (k, to) (6.12)

Eq. (6.11) is called the spectral representation for G(k, to) which is 
exact and from which we can deduce various analytic properties and 
relations.

According to its definition A(k, to) is a positive real quantity. Further
more it fulfills the sum rule

/ A(k, to) du = 1 (6.13) •

This follows from inserting (6.9) and (6.10) in the integral
+ oo

J  A(k,to)dto {|<n|a*|o>|2 +|<n|aJo>| }
-o o  П

= ̂ { < o | a k |n> < n | a *  | o >  + < o | a * | n >  < n | a J o > }

a

where we have used the anticommutation relation.
The spectral weight function A(k, to) is the general distribution function 

with regard to both momentum and energy of the system. The positive 
frequency part A+(k, to) is related to processes involving the addition of 
an electron, whereas the negative frequency part A"(k, to) describes 
processes involving holes. Integration over the momenta gives the 
energy distribution in the system and integration over (negative) fre 
quencies gives the momentum distribution.
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In actual calculations one often determines G directly, rather than 
first calculating A. We shall derive a couple of useful formulas by simple 
application of the "well-known relation"

1
x ± ie + Ж 6(x)

e being a positive infinitesimal. The meaning is that if we multiply by 
any reasonable function f(x) and integrate from -oo to oo and let P mean the 
principal value, then the answer corresponding to the formula is obtained. 

Applying this to the spectral representation (6.11) one obtains

Im G(k, w) =
-ж A(k, u)

ж A(k, u)

u > 0

u < 0

(6.14)

Inserting this result in (6.11), we obtain a dispersion relation connecting 
the real and imaginary parts of G

Re G(k, w) 1. Г Im G(k, D') duJ'
7T J  U -  Ш1

o

1
ж p Im G(k, u)')dco' 

и - u' (6.15)

We shall conclude this section by making some remarks about extension 
of the treatment indicated here to more general situations,
i) We can of course define the space-time Green function by means of 

the Heisenberg operators for the wave fields:

G(x, t, x ' ,  t ' )  = -i < 0 |T { Y ( x , t ) Y * ( x ' , t ' ) } | o >

-i<o|'F(x, t ) ' r :‘(x ' ,  t ' ) I 0 >  t > t'

i< 0 |т*(х', t') Y(x, t) 10 > t  < t ' (6.16)

ii) We can generalize the notion of a Green function to n-particles, 
defining the n-particle Green function by

G(*i tj, . . . , xntn, xit'j, . . . , x^t^)

= (-i)n < o| T(T (X1; tj) . . . T(xn, tn) Г Ч К ,  vn) . . .  ¥ *(4 , t' ))| 0 > (6.17)
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iii) The time-ordered Green functions are particularly useful in con
nection with perturbation theory. In many physical applications, 
however, one has use for functions with different properties with 
regard to time evolution. The retarded and advanced Green functions 
are often used and examples of this will be given later.

iv) The Green functions introduced are defined as expectation values 
with regard to the ground state of the system. The appropriate 
generalization to finite temperatures is obtained by replacing this 
by appropriate statistical averages for the temperature T:

<0 I. . .  I 0 > — » ^Tps < s | ...| s > = <  >T

where s denotes the state of the system and ps is the probability that 
the state s is realized.

7. SOME EXAMPLES OF GREEN'S FUNCTIONS AND THEIR USE

(a) A gas of free fermions

This is a particularly simple special case of the results in the 
preceding section. For the time-dependence we obtain

or

G(k,t) =
"i < akak >

- i £(k)te

i < a*ak > - i e (k ) t

t>0

t<0
(7.1)

G(k, t) =

o. '-MW i( 1 nk) e

о -u(k)t l n, e
к

t>0 

t < 0
(7.2)

Thus the Green function describes electrons outside the Fermi sea for 
positive times and holes in the Fermi sea for negative t.

Transforming to energy space, we obtain

G(k, to) 1
to - e(k)

where we must add the prescription of how to treat the singularity. It is 
left as an exercise to show that one retrieves (7.1), (7.2) if one chooses

1
to - e(k) + ito6G(k, to) = (7.3)
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Thus, we have to add small imaginary parts to the single particle energies. 
Their location in the complex w-plane is shown in Fig. 4.

HOLES
x x x x x x x x

x x x x x x x x x x x
ELECTRONS

F IG .4 .  L o ca t io n  o f  s in g u la rities  for e le c tro n s  and h o le s  fo r  the t im e -o r d e r e d  G reen  fu n c t io n .

Had we considered instead the retarded rather than the time-ordered 
Green functions, we would have used the boundary condition

G(k,u) 1
ш - e(k) + i6 (7.4)

for all k. All the singularities are here shifted below the real axis i .e . ,  
the retarded Green function is analytic in the upper half-plane.

(b) Decaying particle

In this case the amplitude |k, О  decays in time and we have that 

-i < к, О I k, t > ~ e"rt e"i£(k)t t>0
G(k,t)

= 0 t<0
(7.5)

Calculating the Fourier transform of this we get

G(k, u) 1
tJ - e(k)+ir (7.6)

From the imaginary part we obtain the expected Lorentzian form for the 
spectral function

A(k,u) = — Im G(k,u)77 1 I
\ Г______
n (u -e(k))2+ r2 (7. 7)

(c) The one-phonon Green function

In complete analogy we can introduce the one-phonon Green function 
defined by

Ds(q,t)= - i<  0 |t  {cpqs(t) <p*(0)}|0> (7 .8 )
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where we restrict the momenta to the first Brillouin zone. The phonon 
field is related to the creation and annihilation operators by

cp = a + a *^qs qs -qs

We observe that for bosons no change in sign is associated with the time
ordering symbol T.

We can obtain a spectral representation of (7.8) by introducing the 
spectral weight function

s( q , u ) = ^  |<п|ф||о>| 6(ш-ып)

1<п|фф |о>|2 6(ш + и п) (7.9)

where un is the excitation energy of the system. The spectral represen
tation is then given by

u , ( q ,  w) =
Bs(q,u') du' 
u-u'+iu 6 (7.10)

where 6 is a positive infinitesimal. 
Again using the formula

- i T  = P -7 iir6 (x )
X  = 10 X

we obtain the relations

Im Ds(q, u) = - 7r Bs (q, u) sgn и (7.11)

and the dispersion relation

Ds(q, u) 1 r dui Im Ds(q,u') sgn u' 
7Г J w-u' +iu6 (7.12)

For a system of free undamped phonons the spectral function is simply

6(u-us(q))
Bs(q,u) =-

и > 0

-6(u+us(q)) w < 0
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and the phonon Green function is

D0s (4 ,u ) 2^s(q)
“ 2-^ (q ) + i6

(7.13)

(d) Calculation of expectation values

From the preceding sections it is clear that the Green functions in the 
first place contain information about excitations of the system. However, 
taking the appropriate limits one can also calculate the ground state 
properties from the Green functions.

For example from the operator for the density of particles we obtain 
the average density of particles

p(x) = < 0| ф * &  t)^(x, t) J 0 > = - i G(x,t; x\ t ' ) ^ »  (7.14)
t ' - *  t + 0

The momentum distribution is given by

N(k) = <0|a*ak|0>=-iG (M )t_ 0

со 0
= -i [ ' j j  G(k,w) е‘ш6 = fA(k,w)du (7.14')

Similarly the energy distribution of electrons is obtained by summing 
A(k, u) over all momenta

N ( u ) £  A(k, u) 
к

(7.15)

The kinetic energy can be expressed in terms of the single-particle Green 
function as follows

<0
V2
2m ф(х, t) d3x |o У

V2 v  x
2m G(x, t, x', t')

J  x ' -► x 
t ' -> t + 0

(7.16)
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For a system with particles interacting via a two-body interaction, the 
interaction energy can be expressed in terms of the two-particle Green 
function

0 j \ J ф*(х, t) ф*(х', t) v(x-x') ф(х\ t) ^(x,t)d3x d3 x '| o >

= -j J  d3x d3x' v(x-x') G(xt, x 't, x t', x1 t')t,_>t (7.17)
t ' > t

8. PERTURBATION SERIES EXPANSIONS. THE USE OF DIAGRAMS

Much of the work up to now has been based upon the use of pertur
bation expansions, systematized with the help of diagrams. Many of the 
important earlier results such as the so-called "linked cluster expansion" 
were obtained in this way. The perturbation expansion is based on the 
adiabatic hypothesis, which implies that the ground state of the non
interacting system is assumed to go over adiabatically to the ground 
state of the interacting system as the interactions are adiabatically 
switched on in time. One also assumes that the energy shift in the 
ground state as well as the Green functions of the system can be expanded 
as a power series in the strength of the interaction.

The key theorem that gives the systematic way of writing down the 
expectation value of any time-ordered product is known as Wick's theorem. 
I am not going to prove this theorem because proofs can be found in most 
texts on quantum field theory or many-body theory. The analysis results 
in a set of rules, and once the rules are written down one need not keep 
the derivation in mind.

We shall give the rules only for the simplest case where we assumed 
crystal momentum to be conserved by the interactions, i. e . , we neglect 
umklapp processes. This means that the Green functions are diagonal 
in momentum, that is they are of the form G(k, u) we have already used 
in Section 7. We assume that the particles move in a common potential U. 
Because of our assumption this potential will only have diagonal matrix 
elements <(k | U |k/>. The electrons are interacting via their Coulomb 
interaction. We introduce as a further approximation the replacing of 
the full matrix element <C к', p' | V |p, k / ’ by a matrix element for plane
waves. The matrix element then depends only on the momentum transfer —► —> *->
q = к - k' of one of the electrons, i .e . ,

It is convenient to use four-vector notation and write k = (k, u), G(k) =G(k,w), 
d4 к = d3 к du etc.

The rules to calculate the one-electron Green function will now be 
listed:
(i) Draw all diagrams in which an electron k, u enters from the right 

and goes to the left undergoing all distinct interactions during the 
process. Only topologically non-equivalent diagrams should be
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considered and we consider only "connected diagrams", i .e . ,  those 
which cannot be separated into two or more unconnected parts without 
cutting any lines. The Coulomb interaction is represented by a
dashed l i n e ---------- and the external potential U is represented by
a dotted l in e ............ X connected to a cross (the source).

(ii) Assign momentum, energy and spin in such a way that they are 
conserved at each vertex of a diagram.

(iii) For every electron lin e --------- ^ ------------ include a factor i G0(k),
where G0(k) is the Green function for the non-interacting system

° 0̂  k0- e(i?)+i k0 6

(iv) For every Coulomb l in e ------------- include a factor

( 8 . 1)

<k|k^|v|k2k1> or just v(q) ( 8 . 2 )

(v) For every interaction with the external potential include a factor

< к I UI к > (8.3)

(vi) Include a factor ( - i)n, where n is the number of interactions 4 and 5, 
and a factor (-1)^ where £ is the number of closed electron loops in 
the graph.

(vii) Multiply all the factors together and integrate over all free internal 
four-momenta according to

d4p
(2ТГ)4 ' ' . . X (all factors form rules iii) to vi)

We illustrate the rules by calculating a few diagrams of low order.

(a) Particle scattered by the external potential

X

p p
«4

(-i) iG0(p) < p | u | p >  iG0(p)= i[G0(p)]2 < p | u l p >
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(b) Particle scattered by the Fermi sea

(-l)(- i)  iG0(p) I  <PP'|V |P'P> iG0(p ')}iG 0(p)

= -i [ G0(p)]2 f  <pp' IVI p 'p> iG0(p')
J (2tt)

(c) Lowest order Coulomb interaction correction

\
P-q

(-i) iG0(p) Г iG0(p-q)v(q) iG0(p)
J  (2 jt)4

= i[G (p)]2 f  -7 -%  iG0(p-q)v(q) 
J (2 ir)

(d) Interaction with a density fluctuation (an electron-hole pair)

p-q

(- i )2 2 { - 1 ) f  7 - ^  Г 77L  iG0(p)v(q)iG0(p-q)iG0(p') iG0(p' +q) v(q) iG0(p) 
J (2тг) J (27r)

= i [G0(p)]2 Г iG0(p -q )v (q )(-2iv(q)) / 7 - 7 4  GQ(p') G0(p '+ q)
J (2тту J (2тг)
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This diagram can be thought of as a modification of the interaction in 
diagram (c) and indeed the particle hole excitations give rise to screening 
of the bare Coulomb interaction. This screening must be included to 
infinite order, and we can illustrate here how this can be done in terms 
of diagrams. The next process we consider corresponds to the diagram 
with two particle-hole excitations:

Applying the rules as in the preceding graph we find for this case the 
contribution

Generalizing the argument we obtain for the diagram with n particle hole 
pairs

n pairs

A. д .

4 4

We can now sum the whole sequence of diagrams

'—.
N

•+

4

= i[G0(p)]2
" I

1 + 2i v(q) / (2jt)4 Go(p ') G0(p' +q)
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This result has the same form as the first diagram but with an effective 
interaction

veff (q) = ---------------

1 + 2i v(q)

v(q)_________________

^4 G0(p') G 0(p'+q) 
(2 ir)

(8.4)

replacing the bare Coulomb interactions.
In terms of graphs, the effective interaction is obtained as the series

v e f f ( 3 ) =  -

+ +

which corresponds to the so-called random phase approximation. 
Higher approximations are obtained by including graphs in which the 
electron and hole interact, e .g .,

One usually writes

veff (q) y(q)
e(q)

where e(q) is the wave-number and frequency-dependent dielectric 
function. In the random phase approximation we find that

e(q) = l + 2iv(q) d V
(2тг)4 G0(p') G0(p' +q) (8.5)

Evaluating the right-hand term member one obtains what is essentially 
the Lindhard dielectric function [3] .
We shall not at this moment comment on the dielectric properties of 
metals; the motive is rather to illustrate in a simple case how certain 
infinite sequences of diagrams may be summed to infinite order to 
renormalize quantities like interactions, single-particle energies, etc.
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We conclude this section by indicating a couple of important 
generalizations.

(i) We can equally well use a diagrammatic representation in a 
space-time picture where each vertex is marked with the 
corresponding four-vector x, t. The identification will now 
be made with the space-time Green function G0(x, x'), the inter
actions in space U(x) and v (x -x ') , etc., and the integrations 
have to be carried out over all free space-time variables of each 
diagram.

(ii) The diagrammatic representation is easily extended to include 
further interactions. For example, if phonons are included we 
should consider the electron-phonon interaction. Phonons may 
be represented by a wavy line. For a process in which a phonon 
of momentum q and polarization s is emitted and an electron is 
scattered from к to k' we have a coupling constant g££. s which 
should be attached to each electron-phonon vertex.

9. GREEN'S FUNCTIONS AND EXPERIMENTS:
INELASTIC SCATTERING

We consider the interaction between our system and external probes 
like beams of neutrons or charged particles, electromagnetic radiation, 
etc. In such experiments the probe goes from an initial state |p)> to a 
final state jp' У and the system makes a transition from |s)> to |s' У as 
illustrated in Fig. 5.

I s >  f i g . 5 Inelastic scattering.

If the interaction between the probe and the system is weak, we can treat 
it in first order and use the Golden Rule for the transition probability 
per unit time

s'

where us.s =us.-u s is the excitation energy of the system and ш = up-u p. 
is the change of energy of the probe (positive change for loss of energy 
in the process). Hint is the interaction between the probe and the system 
and <( s' Ih ^ I s У is the matrix element for the transition.

In most cases we do not have one single initial state but rather a 
statistical distribution ps over initial states. We therefore replace (9.1) 
by the more general formula

dWp-»p’_
dt >|26(u -( (9.2)
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This standard expression is not very useful for practical purposes because
of the difficulty in performing the summation and it is not easy to interpret.
However, a simple transformation using the formula

+00

makes it possible to perform the summation over final states and gives 
a form more suggestive for physical interpretation. The transformation 
goes as follows:

V  p < s |h *pp Is' ><s '|h pp|s >6(w - u , )/  N I mt I '  4 I int I '  '  s s '

dt e HP'P s>in f  1 '
- iw ., t  iw .t  e s e s

_1_ 
2 7Г dt e iuit

{!■
iHt H7*PP , ><s'K H s>

+ 00

-  00

X Hp;f(o)|s>

-L
2tt dt eiwt <|Hfnpp'(t) Hp;p(0)|>T

H denotes the total Hamiltonian of the scattering system. We have used that 
^  I s' У <( s' I = 1 and the definition of a Heisenberg operator, 
s'

The transition probability per unit time now becomes

dWp
dt dt eiw t H*pp (t) Hpp 

I m t '  '  in t (0)|> (9.3)

This formula shows that the scattering depends on a certain time correlation 
function of the interaction operator taken with itself at two different 
times. The transition probability itself is, except for a constant, just 
the Fourier transform of the time correlation function.
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As an explicit illustration, let us consider the case where the probe 
is a particle without spin of mass M. The differential cross-section per 
unit solid angle per unit energy internal and per unit volume of the 
specimen is

d2o
dfldu X l < S ' l H int ■ >|5 6(U) •w , )s s '

(9.4)

We assume that the particles interact via a two-body interaction with the 
particles in the system,

N

Hint(x) v(|x-Xi|) 
i = l

or, in the form of second quantization

Hint = Pd3x' v(|x-x'|) p(x') (9.5)

where p(x ')= 2  ̂ ф*(х')фа(х\) is the particle density operator, 
sp in

In the Born approximation the initial and final states of the particle 
are taken as plane waves

|p)>=eipx and |p'/’ = e ip’ x 

The matrix element becomes, with q = p' - p,

H? n ^ е 4 Ч , Ы  (9.6)

Thus, the interaction matrix is just the Fourier transform of (9.5) 
and, because (9.5) is a convolution (faltung) of v(x - x') and p(x'), we know 
that the Fourier transform is the product of the separate transforms, i. e .,

< f= v (q )p .^  (9-7)

Inserting this formula in (9.4) we obtain

d2q
dfldw P-q ) (9.8)

Thus, the cross-section factorizes into two parts: one, which is con
cerned with the nature of the probe and its interaction with the system
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and one describing the excitation of the system and which is entirely a 
property of the system. Thus we write

,2d a 
dfi du

-> |2  -  
v(q)| S (q ,  u) (9.9)

with

S(q, u) ^  I |s >| 6(u -u s.s)

S(q, u) is the dynamic form factor of the system and contains all the 
information about the system that can be obtained in a scattering experiment.

We notice that it has the form of a spectral weight function, where 
the strength in this case is determined by the matrix element ^s'|p.^ |s/’.

Going from energy to time representation, using the arguments leading 
up to (9.3), we find that

S(q,t) = <P+̂ (t)p.? (0)> (9.10)

Thus this scattering experiment is related to the density-density corre
lation function and the dynamic form factor is the spectral weight function 
for density fluctuation. In order to calculate this function one has then 
to go back to the two-particle Green function. However, it should be 
observed that the result depends on only two, times and this implies that 
only part of the information contained in the two-particle Green function 
is actually needed to obtain the density fluctuation spectrum.

Analogous considerations apply for other scattering mechanisms.
In the case of magnetic scattering between neutrons and the electrons 
we have instead the interaction between the magnetic field from the 
neutron and the spin density of electrons or in other words the m icro
scopic density of magnetization. This interaction leads, by precisely 
parallel considerations, to a study of correlation functions describing 
fluctuations in the spin density of the system. In the case of electro
magnetic radiation, the vector potential of the electromagnetic field 
couples to the current operator of the system, and we are in this case 
led to study the current-current correlation function.

We can summarize and generalize these scattered remarks by 
noting that there is a class of situations with a linear coupling between 
the probe and the system, such that the scattering cross-section 
factorizes as in (9.9). The corresponding dynamic form factor will 
describe the properties of the system and it will be related to a certain 
time correlation function. From E q .(9 .3) we see that only two times 
occur rather than the full number of times contained in the corresponding 
Green function. For this reason one often refers to these objects as 
double-time Green functions, and we shall say more about their properties 
in a later section.
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10. GREEN'S FUNCTIONS AND EXPERIMENTS: THE DRIVEN
RESPONSE OF A SYSTEM

In this section we turn towards another familiar type of experiments 
in which we drive the system with an external field and measure the 
response of the system. As in the preceding section we are going to 
study only the first order efforts, i. e . , the linear response to the 
external disturbance. Typically we deal in these experiments with a 
steady state operation. The external field couples to the system via 
some operator A and we measure the average value of some other 
operator В of the system, as schematically illustrated in Fig. 6 .

fit) A

FIG. 6, The driven response o f a system.

Typical examples are when you apply a frequency-dependent electric 
field and measure the induced electric moment, which gives you the 
polarizability, or when you determine the frequency dependent suscepti
bility by measuring the induced moment when applying an external 
magnetic field.

For simplicity we consider the case where the interaction part of 
the Hamiltonian has the form

< B >

Hint = /  d3x A(x) f(x- t) ( 10 . 1)

We wish to calculate the forced motion of some dynamical variable B.
It is convenient to work in the interaction picture, which was briefly 
described in section 5.

We shall assume that the external force has been switched on slowly, 
formally from t = -  » ,  and this can be taken care of by multiplying f by a 
factor exp(6t), 6 being a positive infinitesimal. In the absence of inter
action the Heisenberg operators A and В are given by

A°(x, t) = e' H°‘ A(x) e 'iHo‘; -т-чО,“* I » i - i  HotВ (x, t) = e B(x) e ( 10 . 2)

Switching on the perturbation adiabatically, starting from t = - oo, the 
time dependence of В will change in the presence of the perturbation into

B(x, t) = U*(t, -oo) B°(x, t) U(t, -oo) (10.3)

To first order in the perturbation we have
t

U(t, -oo) = l - i  J dt' J  d3x 'A °(x ',t ')f(x ',t ')

t
U*(t, -oo) = 1 + i J  dt1 J  d3x' A°(x’ , t') f(x', t')
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and so

B(x,t) = j l + i J dt' J  d3x' A0(x1, t') f(x', t') Bu(x, t)-̂ l dt' d3x' A (x',t')f(x',t')

= B °(x ,t)-i ,,, Г , 3 ,dt' I d x'
J

[B°(x,t) A°(x ',t') - A°(x',t')B°(x, t)] f(x ',t ')

plus second-order terms

t

* B °(x ,t )-i Г dt1 f d3x' [B°(x, t),A°(x', t')] f(x', t*)

Finally we average over the ground state or a statistical distribution, 
which we assume can be taken as that of the system in equilibrium 
before we applied the external field. Assuming В to be a quantity not 
explicitly depending on time, its average over an ensemble will be constant 
in time and so we have that

t

< B(x, t) > - < B°(x) > = -i Г  dt' f d3x' < [B°(x,t),A°(x',t')] > f(x ',t ') (10.4)

giving the change in В proportional to the force f.
The formula has a nice physical interpretation. It shows that a 

disturbance in the system of the point x 1 at time t 1 causes a change in 
<( В at another point x at a later time t, indicating that the disturbance 
propagates through the system.

It is convenient to introduce the propagator

hBA(x, t; x1, t1) = f - i  <[[B°(x, t), A°(x', t')] for t > t' 

I 0 for t < t '

= - i 0 (t-t')<[B°(x, t), A°(x',t')] >T (10.5)

It has the following properties:
(i) It can only depend on the time difference t - t '.

(ii) For a uniform system it depends only on the relative distance 
x -x '. In a crystal lattice it is unchanged if we change both x and x1 with 
the same lattice vector.

(iii) It satisfies the condition of causality, which means, for instance, 
that no polarization will be seen before we apply an electric field. This 
appears explicitly from our derivation of (10.4) and was explicitly included 
in (10.5).
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We are often interested in the response to a periodic external field 
in which the response is given by the frequency dependent conterpart of
(10.5), defined by the Fourier transform

h(x, x ', u) = dt h (x, x', t) eiwt (10. 5')

(We have made a slight change in notation, replacing ЬВд(х, t; x ',t ')  by 
h(x, x ',t - t ') . )

Resonances in the response indicate the presence of approximate 
eigenmodes of the system. A pole in h(x, x ',u ) means that we can have a 
response without a driving field, and signifies that we have a stable 
elementary excitation in the system. The structure of h(x, x ',u ) with 
regard to its frequency-dependence is therefore of great importance in <
studying the excitation spectrum of the system.

The condition of causality, i .e . ,  that h(x, x', t) = 0 for t < 0 imposes 
an important property on the structure of h(x, x',u) as a function of the 
complex frequency u. If we calculate h(x, x ',t) from h(x, x',w) using the 
formula

h(x, x ',t) = dw , -+. . -iwt—  h(x, x ', u) e 
Zir

( 10 . 6 )

we can do this by going over to a contour integration and use Cauchy's 
theorem. We must close the contour with a semicircle in the lower 
half-plane for t> 0, but in the upper half-plane for t<0 . In order to 
have h(x, x ', t) = 0 for t < 0 we must require that h(x, x ',u ) be analytic 
in the whole upper half-plane. All the singularities representing exci
tations of the system must thus be located in the lower half-plane.

From this property it also follows that

Г du' h(x ^ ü ' )
J  U - U ' - l 6

&

du' h (x,5 ',u ') _ 0 
u-u '- i6

Taking real and imaginary parts of this we find that the real and imaginary 
parts of h(x, x', u) satisfy the dispersion relations

о иг* -»I л 1 г-, Г j . Imh(x, x ',u ') Re h(x, x ', w) = — P / du' ------w'-u

г у,/-" 1 _  Г , . Re h(x, x ',u)Im h(x, x1, u) = ----P / du' -------- — —-—-
if  I u’ -u (10.7)
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Examples of retarded response functions are the polarizability, conduc
tivity, dielectric functions, magnetic susceptibility, etc. Their properties 
will be discussed in detail by other lecturers during this course.

The retarded response functions form a class of functions closely 
related to experiments. Although they may contain four and more wave- 
field operators, they only depend on two times (actually only on the 
difference), and again, as in the case of scattering, belong to the class 
of double-time Green's functions which we shall briefly discuss in the 
next section.

11. DOUBLE-TIME GREEN FUNCTIONS AND THEIR EQUATIONS 
OF MOTION

We have encountered several kinds of Green functions in the preceding 
sections. One example has been the time-ordered or causal Green 
functions, defined as

Gc(t,t')=  <<A(t) ; B ( t ') » c = -i< T {A (t)B (t ')} > (П .1)

where T denotes the time-ordering symbol defined as

T A(t) B(t') = ©(t-t') -t)B(V) A(t)

where 17 = ± 1, depending on the nature of the operators A and B.
In connection with the driven response of a system exerted to an 

external force we encountered the retarded Green function defined from 
the retarded commutator

Gr(t,t ')=  <<A(t) ; B ( t ' ) » r = -i 0(t-t') <[A(t), B(t') ] > (11.2)

We can of course also define an advanced Green function Ga(t, t') as

Ga(t,t ')=  <<A(t); B ( t ' ) » a = +i0(t'-t) <[A(t),B(t')] > (П .З)

Finally we have encountered the time correlation functions

F(t, t') = < A(t), B(t') > (11.4)

They do not contain the discountinuous factor ©(t-t’ ) and are also defined 
at t = t '. Because of this property they are not Green functions but they 
are in practice often calculated from the corresponding Green function.

We should mention that A(t) and B(t') need not be simple annihilation 
and creation operators, but are usually composite operators such as 
density, current density, spin density and so on. The alternative 
procedure of writing down the equations for the full n-particle 2n-time 
Green functions will not be discussed in these notes.

Next we shall indicate the nature of the equations satisfied by the 
double-time Green functions. The operators A(t) and B(t) both satisfy
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the equation of motion of quantum theory

i ^ = [ A .H ]  (И.4')

We now differentiate any of the Green functions (11.1), (11.2) or (11.3) 
with respect to t and obtain

i f  = i i  «  A(t), B(t') »

= d0^ ' t ' ) < [A (t),B (t')],>  + « i ^ ; B ( t ' ) »  (И .5)

In obtaining (11.5) we have used 
In the next step we use the formula

0 (t) = 6 (t') dt'

and the equation of motion (11.4') to obtain

dGM V) = <[A(t).B(t)]4> 6(t-t')

+ « [A (t )  H(t) - H(t) A(t)]; B ( t ') »  (11.6)

In (11.6) [ ] means either the commutator or the anticommutator, 
depending on the choice of rj. The last term in (11 .6) is in general a 
function of higher complexity than G(t-t') itself; it is related to a 
higher-order Green function. We can proceed to derive for this quantity 
a new equation of the form given in ( 1 1 . 6) and this in turn will depend 
on some higher-order correlation for which we again construct its 
equation of motion and so on. In this way we generate a chain of coupled 
equations describing successively more and more complicated motions 
and correlations in the system. The full chain of equations will of 
course give the formal description of the complete many-body problem, 
but is of course as intractable as trying to solve the many-particle 
Schrödinger equation itself. One way of finding approximate solutions 
is equivalent to what has been used in the theory of liquids (compare the 
lectures by Professor N. March in this course) where one assumes some 
kind of factorization or decoupling whereby the chain is broken and reduced 
to a small number of equations. The simple-minded decoupling pro
cedure seems to be frowned upon by a number of many-body theorists 
and certainly for some good reasons. In discussing many important 
aspects of these problems, however, this method of obtaining approxi
mate solutions seems to work as well as any other.
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Going back to (11.6), the first term shows the delta-function 
behaviour in time which is characteristic of any Green function and the 
second term gives the change in time because of the interactions. The 
time-correlation functions have no discontinuity in the time dependence 
and satisfy (11.6) with only the second term included. Usually one rather 
determines the corresponding Green function first and then proceeds to 
calculate the time correlation function from the spectral weight function.

We again emphasize that (11.6) holds for all three-types of Green 
functions: retarded, advanced and time-ordered. The equation must 
be supplemented by specifying the boundary conditions. These boundary 
conditions are best incorporated by using the spectral properties. As 
in the preceding cases we can introduce spectral representations for 
the various Green functions which are of the form

for the time-ordered Green functions.
As a simple illustration we shall once more consider the case of 

free fermions. The Hamiltonian of the system is

for the retarded and advanced Green functions and of the form

к

From the commutation relations we obtain

i  = -e(k) a*

Next we introduce the Green function

G(k,t-t') = « a k(t); a * (t )»

The equation of motion is obtained from (11.6)

i ^G (k , t-t') = 6(t-t')+ e(k) G(k, t-t') (11.7)
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This equation is immediately solved using the Fourier transformations

G(k.t-t') G(k, w) e- i u ( t - t ' )

fi(t-t') du
2ir

- i w ( t - t ' )e

and so we get

{u-e(k)}G(k,u) = 1

G(k, u) =- 1
w-e(k)

The spectral weight function in this case is simply

A(k, u) = 6(u-e(k))

( 11 . 8)

and we obtain for the retarded and advanced Green function the solution

^ n \ -  Г  ' M  ка г/а(к<ш) J  u-uj' + i
dco' A(k, uj1) 

i6 (11.9)

and for the time-ordered Green function, the solution

Gc(k, u) = dco' А(к,ц') 
ш-ш' +iu6 ( 11 . 10 )

12. THE DIELECTRIC FUNCTION

We introduced in passing a dielectric function in Section 8 when we 
summed a particular class of diagrams which served to replace the 
bare Coulomb interaction by a frequency-dependent screened interaction. 
In this section we shall start from the point of view taken in Section 10, 
where we discussed the linear response of a system to an external 
disturbance.

Let us consider a system of electrons perturbed by a time-dependent 
external potential Vext(x, t) caused by a test charge p0(x, t) of small 
(formally infinitesimal) strength. This causes a first-order change 
in the average particle density

< 6p(x, t)> = <p(x,t)> - <p°(x)>
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given by the equation

<5p(x, t))> = / d3x' dt' h(x, t; x', t') Vext (x1, t') (12.1)

where

h(x', t; x', t') = -i6(t-t') <[p(?t), p(x', t')) У

In order to avoid cumbersome notations we consider h (xt; x't') as a 
continuous matrix and write (1 2 . 1 ) in the shorter notation

Pind = < 6P> =h v ext = h v Pext (12 .2 )

where the Coulomb potential is written in the form

v(x, t ;x ',t ')  = -p^zrr S(t-t') x -x 1

In macroscopic theory we have the following connection between the 
external and induced charges:

P in d ^ -^ P e x . <12- 3>

where e is the dielectric constant. This allows us to define a generalized 
dielectric function

i  - 1 =hv (12.4)

Now the effective field Veff inside a system which gives rise to the 
classical force on a charged test particle differs from the external 
field because of the induced charges and is given by

veff =Vext + v < ö P> = ( l + h v ) V ext= i  Vext (12 .5 )

This shows that the induced charges screen the external potential by the 
factor 1 /e .

The definition of a dielectric function is very general and we now 
specialize to a uniform system. The dielectric function e(x-x,) t-t') has 
a non-locality range I x-x'l and a retardation in time (t-t'). In momentum- 
energy space this means that the dielectric function e (q, to) depends on 
wave-length as well as on frequency.

We shall only briefly remark on how we shall calculate the function h. 
A straightforward attack is physically not very meaningful. One major 
reason for this difficulty is that the response of any small part of the 
system to the external field is heavily masked by the field created by the
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induced charges. It is indeed much easier if we try to disentangle this 
by asking for the response to the effective field in the first place and 
then use the relation between external and effective fields to calculate h.

The response theory, of course, works for this case as well and we 
can write

- heff Veff ( 12 . 6)

The connection between h and heff is found by using (12.5) and gives

h = heff 1
1-vheff (12.7)

For the dielectric functions this gives simply

e = 1 - vheff ( 1 2 . 8)

We still have the problem of how to calculate heff. However, when 
we have removed the difficulties of the self-consistent effective field, 
it is reasonable to assume that we can obtain a sensible answer by using 
the lowest order approximation for heff. We therefore put heff = h0 
where h0 is the density-density correlation function for a gas of independent 
fermions. Thus

h0(q, t - f )  = -i e(t-t') <0 | [pq(t), p.q(t')l |0 >

= -i e (t -t ')^  { <o| pq(t) I n> <n|p_q (t')| 0> - <0 I P_q(t') I n> <n Ipq (t) |o>}

(12.9)

The density fluctuation operator is

Pq = J  d3x ^*(x)e“*'x 0(x) ak+qak (1 2 . 10 )
к

The matrix element for the transition out of the Fermi sea has the form

<k,k+q|a*+q(t) ak(t)|0>= n“(l-n°+q) ei{£(k + q)-£(k)b

We then obtain the formula by summing over all momentum states 
and spins

h0(q ,t-t') = - 2i^ {n £ (l-n £ +q) e l(£(k+q)-E (k)(t-t') q о -i(e (k  + q )-e (k ) (t - 1')
- ^ ( i - n k )  e
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Writing t  =t-t' we next calculate h0(q, u)

oo

u-e(k+q)+e(k) + i6

For the dielectric function we finally obtain, using (12.8),

( 12 . 11)w-e(k + q)+e(k) + i6
к

This result was first derived by Lindhard (loc. c it.). The integral can 
be performed analytically but the result is a rather lengthy mathematical 
expression. The many applications of this formula to physical problems 
of screening, plasmons, stopping power, etc., will be discussed in other 
lectures during this course. Instead we shall comment a little further 
on the physical assumptions leading up to the formula (1 2 . 1 1 ).

We recapitulate that we started out from the formula (12.4) expressing 
the dielectric function in terms of the density-density correlation function h. 
We next changed the point of view and found it more reasonable to calculate 
first the response to an effective field, thus introducing the new function 
heff, and then using the relation between external and effective potentials 
to obtain Eq.(12.8). The response function heff has a precise meaning 
and the formula (12.8) is of course an exact formal result. The approxi
mation consisted in the replacement heff->h0, where h0 is the response 
function for an ideal Fermi gas. This is precisely the same result as 
if we had directly calculated (1 2 . 6) using straightforward first-order 
perturbation theory, which indeed was what Lindhard did in his pioneering 
work on this problem.

Next we ask this question. By summing this set of diagrams

Is this the same as (12.11) or not? Evaluating the right-hand member 
we can show that the real parts are the same and the imaginary parts 
coincide only for positive frequencies but are equal with opposite signs 
for negative frequencies.

We should remember that the dielectric response function is a 
retarded function, whereas the expansion in terms of diagrams refer 
to time-ordered quantities, and therefore we have to distinguish between

in section 8 we introduced a dielectric function

( 12 . 12)



MANY-BODY THEORY 8 3

the response dielectric function er, which is connected to the retarded 
commutator of the density fluctuation, and the propagating dielectric 
function ec, which is connected to the time-ordered density correlations. 
These considerations hold, of course, for the exact results as well as 
the approximate formulas (1 2 . 1 1 ) and (1 2 . 1 2 ).

The approximations leading to (12.11) and (12.12) are often referred 
to as the random phase approximations or RPA. In perturbation theory 
the RPA means that we sum over this particular sequence of diagrams 
to obtain the propagating dielectric function. Some more physical insight 
was given in the steps leading up to (12.11), showing that RPA corresponds 
to lowest order perturbation theory supplemented with the self-consistency 
condition on the effective potential Veff .

Next we would like to comment, how we can go beyond the RPA. Let 
us introduce what is called the irreducible polarization propagator P(q) 
related to the dielectric function through

ec(q) = 1 + ^ ф -  P(q) (12.13)
q

We note that P(q) is closely related to the response function heff which 
measures the response to the eLective field.

In the RPA we have simply that

PRPA(q) = 2i Ä  ° 0<P) G0(p+q)(27Г)
(12.14)

This describes processes in which electron-hole pairs are excited and 
where they tuavel as free particles until they fall back and annihilate. 
Higher approximations are obtained by including processes in which they 
interact and indeed we can generate the fu±l structure of P(q) as a pertur
bation series of the form

v

+ + + (12.15)

which is a formally exact but practically untractable procedure to 
obtain P(q). In fact not very much is understood about how to go an 
essential step beyond the RPA approximation.

We finally turn to the question of spectral representations. We 
start from the formula

1 . 4тге2
ec(q .“ > q2

dr е1шт<о| T { Pq(r )p_q (0)}j 0> (12.16)
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By inserting a complete set of eigenstates and following the same steps 
as in section 6, we obtain

ec(q,«) ■ 1 = 4тге‘
'X l<nlp-ql0>l

l
u-un0+i6 (12.17)

Introducing a spectral weight function

and

A(q,u) ^T|<n|p_J0>| 5 (“ -wno) for ш> 0 (12.18)

A(q, u)= -A(q,-u) for u<0 

we obtain the spectral representation

9  + "  - »1 Г A(q,(A)dto'
ec(^»w) q2 J  u-u'+iu6

-с о

= ^ T -  f  du)l A(q,u’ ) I ----- -Z-------------, ] , . Z 1  (12.19)q2 J u-u'+iw6 u+u'+iwß J
0

As mentioned earlier, the various Green functions differ only with 
respect to boundary conditions and for the dielectric response function 
which is related to the retarded commutator rather than to the time- 
ordered product we obtain simply

+ oo
.1 4тге2 Г A(q, u)') dm'

e r( 3 »  q2 J  w-u'+i6
( 1 2 . 2 0 )

We finally add that the spectral representation of the density fluctuations 
has the same form as the corresponding one for phonons. The poles of 
these functions give the boson-like excitations of the system, which can 
be either ordinary particle-hole excitations similar to those in a non
interacting gas or, in the long wave length limit, they represent collective 
waves of density-fluctuations, the plasmons.

13. THE ONE-ELECTRON GREEN FUNCTION FOR AN 
INTERACTING FERMI GAS

We should like to discuss in a little more detail the properties and 
structure of the one-electron Green function. The physical problem we
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are concerned with is the motion of an electron interacting in a compli
cated way with the rest of the system. Let us first approach the problem 
in an intuitive way. In the case of no interactions the Green function has 
the form

G0(k,u) 1
u-e(5) + KJ6 (13.1)

Let us now ask what happens if the effect of the interactions is 
accounted for by a potential V(k). It is obvious that this will only shift 
the energy of each level by an amount V(k) in (13.1), so we need only 
make the replacement e(k)-*e(k) + V(k) to obtain

G(S,w) _______ 1________
w-e(ß)- V(Ic)+iw6

(13.2)

We add the almost trivial remark that from the point of view of pertur
bation theory such a result can only be obtained by summing a perturbation 
series to.infinite order. In this case it corresponds to summing the 
infinite sequence of diagrams

G(S, u) ■4

X X

+
---------4-

+
4

= G0 +G0VG0 +G0VG0 VG0 + G0
1 -G 0V

1 = 1________
G ^ -V  w-e(k)-V(k) + iu6

(13.3)

A momentum dependent potential corresponds to an Interaction in space 
which is non-local, i. e . , in an ordinary Schrödinger equation picture 
we have to make the replacement

V(x) ф(х, t) d3x' V(x-x') ^(x1, t)

However, the most general interaction must also be non-local in time, 
i. e . , we must consider the generalization to

V(x)^(x,t) d x' dt' M(x-x', t-t ')^ (x ', t') (13.4)

In momentum-energy space, therefore, it must have the form M(k, u). 
This quantity, which takes over the role of an ordinary average potential
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and includes the full interaction between the particle and the rest of 
the system, is what we call the self-energy or mass operator. Because 
we defined it to be the generalization of an ordinary potential, the Creen 
function shall have the form

G(k, u) = ------- ------Ц -----------
u-e(k)-M(k, u) + iu6

(13.5)

Again this can be considered to be a sum over infinite series of terms

iG(k, u) = KgK-@-

= iG о + i G0MG0 + iG 0MG0MG0 +

or as the solution of the integral equation with iG(k, u) = thus

* ◄ 4- ■<

or

G(k,u) =G0(k,u)+G0(k,u) M(k,w) G(k,w) (13.6)

The self-energy can be defined in terms of diagrams and we go back to 
the expansion of G(k,u) discussed in section 8 . Instead of expanding in 
terms of the bare Coulomb interaction, one should first perform the 
summations over the polarization graphs and then consider the expansion 
in terms of the screened interaction vCoul_/ec(q, w) which we represent by 
a wavy line. In this way we obtain

which is a formally well-defined procedure but practically quite intractable.
M(lc, u) is, in general, a complex function. If М(Й, u) is known we 

can calculate the spectral weight function

A(k,w) = -  Im G(k,u)7Г
^ __________1 Im M(k,u)|____________
17 [w-e(k)-ReM(k,w)]2 + {Im M(k,w)f

(13 .8 )
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Furthermore

<0 fo r u> > 0
Im M(k, u) =

> 0 for u) < 0
(13.9)

In the absence of interactions the function A takes the form

A(k, w) = 6(u-e(k))

i . e . , only one term remains from the entire superposition. When taking 
interactions into account the spectral function does not reduce to a
6-function; it is non-zero for all values of It may turn out, however, 
that the function A(k, u>) has a more or less sharply defined maximum near 
a point co= e(k) with a width Г(к) «  e(k).

This resonance behaviour means formally that the analytical contri
bution into the complex и-plane has a pole near the real axis. Near the 
pole we can put

G(k,u) Z(k)
w-e(£) + ir(£)

(13. 10)

and the spectral function becomes, as expected,

A(k,u) » 1
1Г

Z(k) Г(к) 
[ш-е(к)]2 + Г 2(к)

(13.11)

where

Z(k) = 1 - Э M(k, u) 
9u cj = a(k)

-1

and

e(k) = e(k) + Re M(k,e(k))

Assuming that no more poles occur for the same values of k, the rest 
of the spectrum will contribute in an incoherent way and we can write

—►

G(k,w)=— -------- + Ф ( к , и )  (13.12)
u-e(k) + ir(k)

where the (smooth) function cp(k, w) takes care of the remaining part.
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Transforming to the time-variable, the singular part in (13.12) will 
describe a quasiparticle with lifetime Г, thus

- iZ (k )e U(k)te-r(k)t + incoherent contributions fo rt> 0

G(lc, t) = - (13.13)

+ iZ (k)e e +incoherent contributions for t<0.

We compare this with the corresponding relations for non-interacting 
fermions

- i e '1£(k)t for t>0

G0(k,t) -
. . -i e(k)t .+i e for t < 0

We observe the differences caused by the interactions:
(i) The single particle energies have changed: e(k)->e(k)

(ii) We have a finite damping Г(к), however Г-»0 when we approach 
the Fermi surface.

(iii) A renormalization factor Z(k), (<1) appears in the quasiparticle 
propagator.

We next calculate the momentum distribution function n(K), defined by 

n(k) = <o|a*ak|o> = -i lim G(k,t)

= - i j G ( K u ) j ^  (13.14)

Ф

The location of the singularities is illustrated in Fig. 7.

FIG. 7. Position o f  quasiparticle poles.

The contribution from the quasiparticle gives Z(k) as long as we are 
inside the Fermi sea. As soon as we pass the Fermi momentum the 
pole falls outside the contour and therefore we have a discontinuity of 
magnitude Z(kF) at the Fermi surface. The incoherent contributions will 
add a smooth background. Thus n(k) will have the shape given in Fig. 8.
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Z(kF)

FIG.8. Momentum distribution in interacting Fermi systems.

We finally ask: What is the physical structure in the self-energy operator? 
In order to see the gross features it is instructive to calculate first the 
self-energy of a heavy charged particle moving through the medium with 
velocity v. The difference in the potential from the particle between the 
medium and in vacuum is given by the formula

In order to get the self-energy we evaluate the potential at the position 
of the particle, and remember that we should consider its charge as having 
gradually built up from zero to its full value, thus

The factor l/e (q , q, v )-l describes the Coulomb hole around the electron 
and the self-energy describes just the Coulomb interaction with the 
induced hole around the particle.

This classical calculation ignores a couple of effects which should 
be included for electrons:

(i) The effect of recoil which must be taken into consideration for a 
light particle and

(ii) the effect of quantum statistics, i .e . ,  the effect of exchange.
The effects will all be included in an approximate way if one con

siders the lowest order diagram in terms of the screened interaction

This can be written out explicitly as a sum of a Coulomb hole contribution 
plus an exchange term .

If, instead, we consider the lowest order graph in terms of the bare 
Coulomb interaction, we obtain the weU-known Hartree-Fock exchange 
interaction

(13.15)

(13.16)

(13.17)

(13.18)
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The effect of using the dynamical screened interaction is to make the 
correlation hole narrower and deeper. This is illustrated in Fig. 9 where 
we have reproduced results for the non-local potential for particles on 
the Fermi surface from work by Hedin [4] .

The effect of the dynamic interaction is not only to screen the 
Coulomb interaction but also to give strong resonance effect,, due to the 
coupling, to the longitudinal field of density fluctuations. Indeed, the 
occurrence of plasmon resonances at long wave lengths for which 
£c(<?«u) = 0 gives a strong resonance in the M(k) which is strongly reflected 
in the shape of the spectral function, as illustrated in the following figure 
taken from work by L. Hedin, B.I. Lundqvist, and S. Lundqvist [5].

°o r.

FIG.9. Self-energy operator as a non-local potential. We have multiplied M(r, ji) by a factor 47rr2a0rs 
from the volume element 4rrr2dr::47rr2a(:)rsdx and by an extra rs to make the HF curve rs independent.

< 0 7  
3  0£ -

I  0.5 - 
CD
u j  o .t

_» 0.Э 
<
£  0.2
ОШ
CL 0.1 1Л

0.0 У

0.6 kF .

- 3 - 2 - 1  0 1 2

ENERGY oj/tüp ENERGY u)/U)p ENERGY co/u)p

FIG. 10. A typical example o f  the spectral function for electrons in an electron gas, for moment 
О.бкр l.u .k p  and I .y .k p , respectively.

It should be added that the results of Figs 9 and 10 are based upon 
the first order graph (13.17). Although higher-order effects will 
undoubtedly change the quantitative results, the first-order results will 
already give a good qualitative insight in the structure of correlation and 
spectrum in an interacting Fermi system.
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a limit o f Ss(k, <J). 5 ,3 . Velocity correlation function. 5 .4 . Calculation o f D for hard spheres.
5 .5 . Fourier transform o f velocity correlation function. 6. C ollective motions and S(k, cj). 6 .1 . Euler 
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critical point. 7 .1 . Phenomenology. 7 ,2 . Ornstein-Zernike theory. 7 .3 . Specific heat at constant 
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distribution function and equation o f state for hard spheres. 3 . Relations between time-dependent correlation 
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7. Decay time o f velocity correlation function for hard spheres. 8 . Solution o f linearized Vlasov equation 
for S(k, w ). 9. Phonon Hamiltonian for fluid.

1. DISTRIBUTION FUNCTION THEORY OF THE LIQUID STATE

The basic problem of the liquid state is to calculate the liquid proper
ties from the intermolecular potential energy function Ф(гг . . . rN). These 
properties may refer either to equilibrium or non-equilibrium situations. 
In the first case, we can deal with the situation from probability distri
butions in position, whereas in the second we need to consider time- 
dependent correlation functions, which reflect the molecular dynamical 
motions.

1.1. Definition of distribution functions (canonical ensemble)

We shall be thinking exclusively of monatomic liquids, like liquid 
argon or liquid metals. Suppose we have classical conditions at first;

93



94 MARCH

we shall discuss quantal fluids later in the lactures. Since the probability 
distribution in the phase space is given by exp (-H /k BT), where H is the 
classical Hamiltonian, and kB is Boltzmann's constant, we can integrate 
over momenta immediately and confine our attention to distribution 
functions in co-ordinate space. If we have N atoms in a volume П at
temperature T, then the probability Р ^ й ^ , r2, . . . rN) that atom 1 will 
be found in volume element dr1 around ^ , atom 2 in dr2 around r2 , . . .  
atom N in drN around rN is evidently given by

P(N)h l  r 2 . . .  rN)d r1dr2. . . drN

exp [-ФЙ^, . .  . rN) /k BT] dradr2 . . . drN

J . . . J  exp [~$jк BT] dr 1dr2 . . . drN ( 1 . 1 )

a

The denominator in (1.1) is the so-called configurational integral, and 
will be denoted by Z.

Let us next define the probability that a given number n(n äN) atoms 
will be in di  ̂ around гг , . . .  drn around rn, regardless of the positions 
of the remaining N-n molecules. This is evidently given by integrating 
(1.1) over all co-ordinates rn+1 to rN , and we find

P(n) ( ? Л  . . . r n)

Г  г -  / ,  1
J  ' ' ' J  exp -Ф(Г1 . • r N d r n + l  • ■ d r N

We shall often find it convenient to normalize the distribution functions 
differently from the above definitions. For example, consider P̂ 1Hr1), 
which is such that the probability that molecule 1 will be found at r^,
within drĵ  is P ^^r-Jdrj. This evidently satisfies

P m ( r 1) d r 1 -- (1.3)

and since, in contrast to a crystal where P^(Ll) would be a periodic 
function of ? x, P ^ frj) is constant in a fluid (except very near the surfaces, 
which we neglect generally), say P^\ we see from (1.3) that

P%2=1 (1.4)

S in ce  we g e n e ra lly  w ish  to  take the lim it -*•<», N-»oo , such that the den sity
N /f2 = p ^  rem a in s  fin ite , the n orm a liza tion  o f P ^  in (1 .4 )  is  not v e ry
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convenient, and NP^1) , which from (1.4) is equal to the density pi1), is 
more convenient. In general

,(n) _ N! (n) 
(N- n)l ^ (1.5)

defines distribution functions normalized more conveniently than the
p ( n) _

The reason for introducing the factor N !/(N - n)! is to avoid 
labelling the molecules. In other words, there are N choices 
for the molecule at in volume dr^jN - 1) for dr2 } (N - n+1) for drn . 
Thus the total number of possibilities is

N(N - 1) . . . ( N - n + D ^ J ^

and this factor is just the difference between and

1.2. Radial distribution function and structure factor

Perhaps the most central quantity in the theory of the liquid state 
is then the distribution function (P) (r^r^b which is such that pi2) (?1,r2 )drqd 
is the probability that one molecule of the system will be found at rq in 
drĵ  and another in dr2 at r 2 . In a fluid, pi2) depends only on | r1 - r  ̂|. 
Since in the case of zero interatomic forces, Z = and

,<n>___ N!_P =
Q,N-n

(N -n )1. UN ( 1 . 6 )

we find for a random system

(2) N(N - 1)
p = U2 (1.7)

We shall drop the superscript on p^ generally and denote the particle 
density N/f2 by p . Thus, as N-*to, pi2) -» p2 in this case1. We expect 
this to be true, with non-zero interatomic forces, as | rq - r 2|=r12 gets 
very large and hence, writing

p(2)(r12) = p2 g (r12) ( 1 . 8)

we see that g(r12) "*■ 1 at very large interatomic separations. g(r12) is 
the radial distribution function, the Fourier transform of which, from 
the work of Debye, is known to characterize the X-ray scattering from 
a fluid. It will be convenient at this point to define the structure factor 
S(k), by writing

S(k) = 1 + p [g(r) - 1] exp (ill • r) dr (1.9)

1 This is, frorfi (1 .7 ), only true to 0(1/N).
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and, utilizing the fact that g(r) is isotropic in a fluid, we can integrate 
over angles in (1.9) to obtain the alternative form

S(k) = 1 + pJ 'I g(r) -1] 4тг2 Ŝ ' dr (1.10)

The inverse relations are immediately obtained and are given by

g(r) = 1 + g^ - J [S(k) - 1] exp (ik - r ) d k

= 1 + —  / [S(k) - 1] к sin krdk (1.11)
Z7T рГ J 

0

Then, in treatises on X-ray scattering, it is shown that the intensity I 
of X-rays, measured in units defined by the scattering from a single 
electron, is given by

I = Nf2S(k) (1.12)

where f is the usual atomic scattering factor, and к = 4я- sin 0/X, where 
0 is half the scattering angle, and X is the wavelength of the radiation.

Thus, if we could calculate g(r) or S(k) from the interatomic forces, 
then a knowledge of f, essentially the Fourier transform of the electron 
density in an atom of the liquid, would allow the intensity of X-ray 
scattering to be predicted. So far, however, the main progress has come 
from using X-ray scattering as a tool for determining S(k) from (1. 12), 
and hence g(r) from (1.11). A typical experimental curve of S(k) for 
liquid tin at 530°K is shown in Fig. 1. The corresponding (schematic) 
form of g(r) is indicated in Fig. 2. It is worth commenting at this stage 
that g(r) must be zero within an atomic diameter, due to the very strong 
repulsive forces then obtaining between atoms. This feature is reflected 
in the wavelength of the oscillations in S(k) at large k, the hard core 
diameter being 2ir divided by this wavelength. These statements will be 
made quantitative later.

It is the short-range order, revealed by the peaks in g(r), which is 
the characteristic property of the liquid state. In contrast, for a dilute 
gas S(k) -* 1, g(r) 1 and we have to a good approximation an essentially 
random system.

1.3. Internal energy and equation of state in terms of g(r)

A sa  first application of the radial distribution function g(r), we shall 
show how the internal energy E and the equation of state may be obtained, 
provided we can assume that the intermolecular potential energy Ф can 
be decomposed into a sum of pair potentials ф (г^). This assumption was 
thought for a long time to be realistic for liquid argon and similar fluids,
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S(k)

FIG. 1. Structure factor S(k) measured by X-ray scattering for liquid tin just above the melting point.

FIG. 2. Typical form o f radial distribution function g(r), as obtained from an S(k) o f  the form shown in 
Fig. 1.

but not to work for liquid metals, because of the electron gas. However, 
recent work on liquid metals suggests that the effects of the electron gas 
can be incorporated into a pair potential model, though ф {r ) must then
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^ ?i,r2 ■ • • ?N) =J  ̂ <Иг (1.13)

i < j

then we wish to obtain the internal energy E in terms of g(r) and ф(r).
We note first that

show an e x p lic it  den sity  depen den ce. F o r  the m om ent, h ow ev er, we shall
co n s id e r  ф [ r) to  be e sse n tia lly  the potential en ergy  o f in teraction  o f two
(argon ) a tom s in a vacuum . If we w rite

E = ! NkBT + < Ф > (1.14)

where the kinetic energy is immediately written down for classical atoms 
in equilibrium at temperature T. On the other hand, the mean potential 
energy is simply

< Ф >  = (1.15)

From (1.13), the sum consists of N(N - 1 )/2 terms, all of which contribute 
equally to (1. 15), and hence we find

< Ф >  =

Г Г -Ф/квт,-»
N (N -l) (

' f  <Hr 12 )
dr3 . • drN

2 J Z d?! d?2 (1.16)

But from the definition of the distribution functions, the quantity in square 
brackets on the right-hand side of (1.16) is simply P ^ ( r 1 r^), and using
(1.5) and (1.8) we find

<Ф> = N(N - 1) Г  Г  , . , (N- 2)! 2 ,
-----2----- J I ^^12) — —  P g(r 12 ) dr xdr2

p2fl I (r) g(r) 47rr‘idr (1.17)

one of the integrations giving us immediately the volume of the fluid. 
Hence, from (1. 14) and (1. 1 7), we have

E = f N k BT + ̂ r  f  <Mr ) g (r ) 4л- r 2dr
о

(1 . 18)
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In fact the potential energy term could have been written down directly on 
physical grounds, since the number of molecules on average within a 
distance between r and r+ dr of a given molecule is pg(r)47rr2dr and the 
factor i  is present to avoid counting interactions twice.

To obtain the equation of state, we shall work from the classical 
virial theorem. This relates the kinetic energy К to the virial of the 
forces. It is well known that the virial of the pressure p is 3pfl, giving 
for a perfect gas

2 K = 3 p U  ( 1 . 1 9 )

When there is a force Fj acting on the ith molecule at r; we have to calcu-
V1-  -»late the average of - > r. • F4 , the sum extending over all the molecules, 
i

For central forces, this becomes the average of N(N - 1) / 2 terms again, 
each of which is given by

Эг12 drl dr2
Г-ф/квт ^e dr 3 , . . drN

Z ( 1 . 20)

Writing this again in terms of the radial distribution function g(r), using
(1.5) and (1.8) we have, since K = (3/2)N kßT

3pU = 3NkBT - N(N - 1) 
2 r 12

Э<Нгу,) (N -2)!
Эг-12 №

P2g ( r i 2 ) d r 1d ? 2

or

p = pkBT - J r |^g(r)dr (1.21)

In principle then, from an assumed law of force and a measured (or, 
hopefully, calculated) g(r), we can estimate the internal energy and the 
fluid pressure from (1. 18) and (1. 22).

1.4. Structure and forces

We wish next to consider how we can, in principle, derive the radial 
distribution function g(r) from the pair potential ф{г). As we shall see 
below, an exact equation exists which connects the distribution functions 
p® (oc g(r)) and p ® , with ф(r). Unfortunately, so far we have no exact 
theory of p(3) to insert into this equation. We shall consider several 
approximations which we can make to enable us to estimate g(r) from the 
pair force law.

We have

«  . . .  e

-Ф (г^ . . .^ ) /квТ d?, . . . d?N
g (? ir 2) : ( 1 . 22 )
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We wish to form 9g /9^ , and thus we write

N
,  V  ... . , terms independent ofФ= ) <Hl,s + . -L_ co-ordinate r. .

s =2

We then find

9g
9?i 1 7

s = 2

- 1
kD T

-фДвт drQ drx

(1.23)

-Q2
kBTZ

дф(Г12 
9r1 + (N- 2) 9^(j> 3) з-фД вТ dr, dr. (1.24)

Now we recall the definitions of g and , and we can rewrite this 
equation in the form

3g(ri2)
9l*i = - 1 ЩГ^А  g(r )kBT 9r  ̂ g r̂l2>

-1 • Г P(3) (П. ?!?я) Эф(г13 )
kBT J  p2 9?i dr3 (1. 25)

This is the desired equation and we can rewrite it in a physically signifi
cant form by dividing both sides by g(r12) and introducing a quantity 
U(r 12) through

g(ri2) =
-и (г12)Д вТe (1. 26)

Then we find

-ЭЩГ12) - Эф(г12) Г p(3)( r i r 2r 3) Эф(Г1з) ->
Э?! " -J р2 g(r12) 9rx dr3 '

This has the direct interpretation that, with U(r12) from (1. 26) inter
preted as a 'potential of mean force, 1 the left-hand-side is the total 
force on atom 1. This is split into two parts, a 'direct' part - Эф(г12)/Эг x,
plus a part from the other atoms. Thus p(3̂ (г\г^гз )/p2g(r i2) is pro
portional to the probability that a third atom is at if there are certainly 
atoms at ? i  and r2 . This is simply multiplied by the force between atoms 
1 and 3 and integrated over all positions of the third atom. This equation 
is valuable in giving us a handle on the relation between g(r) [or U(r)] 
and the pair potential ф(r).
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We shall use this as a basis for our approximate theories of the 
liquid state. Before proceeding to discuss them, we should remark that 
the preceding argument is rather general and could have been applied to 
p(n), with n >2. We shall not have occasion to use these more general 
relations in these lectures and so we shall not give the details.

2. APPROXIMATE THEORIES OF STRUCTURE

The basic equation (1.25), or its equivalent, (1.27) which we shall 
call the 'force equation', provides us with a starting point for a theory 
of liquid structure. We mean by this a theory which will allow us to 
calculate g(r) from a given pair potential ф(г).

The presence of pO) ( r 1?2r 3), the three-atom correlation function, 
means that we have to make approximations. However, it is worthwhile 
examining p(3) a little further to see just what part of p(3) is actually 
involved in the relation between ф and g. To see this, it is useful to take 
the scalar product of r2 * ? i  with (1. 25). Then we find,

9g(ri2) r i2 Эф(г12)
u T = ' 1 12 > S r  

12 K В 1 ö r 1212 эг.

1
kBT Р(3) ( ? ! ? 2 ? 3 )  r 12 c o s  6

Э(Н Г 13) 
Э г13

dr 3

where (see Fig.3), 0 is the angle between r3 - гг and r 2 - r i .

FIG. 3. Co -ordinate system for atoms at q , F2 and ?3.

( 2 . 1)

2

It will be convenient to simplify the notation as in Fig. 3 when 
evidently r12= s, r13 = t. Furthermore, pW will only depend on s, t and 
cos 0, for, in a fluid, it cannot depend on the choice of origin. Exploiting 
this fact, we may write

р(3) (г^ГдГд) = p(3) (s ,t ,co s  0)

CO
= p|3) (s ,t )P { (cos 0) (2.2)

£ =0

where the quantities p ^  (s,t), as indicated, are now independent of 
cos 0, after the expansion in Legendre polynomials P ^cos 0). If we now 
insert (2. 2) in (2.1), then because of the presence of cos 0 (= Pi (cos 0)), 
only the i= 1 term in (2.2) contributes (see, for example, Hutchinson [1]). 
This shows that much less than complete knowledge of the three-body 
function is required in relating structure and forces. In particular, we
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could add any terms with i  =j= 1 to p ^  in (2. 1) and not affect the final 
equation. We shall use this fact below, in discussing approximate 
theories.

2.1. Born-Green theory

All that we have said so far is exact for classical fluids with pair 
interactions. However, to obtain p® (s,t) or p^ we must make 
approximations. A sa  starting point, we shall argue that we will treat 
pair correlations precisely through g(r), but shall assume that p ^  can 
be built up as a product of pair terms. Thus, we write

p(3) = P 3 g (r12)g(r23)g (r31) (2.3)

3
the factor p following from the fact that for large interatomic separations 
of the three atoms we must get the random value p3 given by (1. 6), with 
N= 3. It should be noted from Fig.3 that only the term g(r23) depends on 
cos 6, and because of the argument given above, we can substitute

P 3 g ( r 12) g ( r 31) [ g ( r 23) -  1]

in (2. 1), without changing the result from that obtained using (2.3). This 
latter substitution will be convenient, because g (r)-l is a well behaved 
function, tending to zero at infinity. It is often useful, and we shall call 
it the total correlation function and denote it by h(r). Thus we find, after 
a simple calculation from (2. 1),

_d_
ds In g(s) + ф{ s) 

k BT
-P
kBT h(r23)g(t) M i l  iz

at t dr3 (2.4)

where, from Fig. 3, we see that tz is the resolved part of t on 's. It is 
shown in Appendix 1 that this equation may be rewritten, after some 
manipulation, in the form

In g(s)  + Ф( s)
kBT

P
kBT |)h(r)dr (2.5)

where

E(t) g(x)</>’(x)dx ( 2 . 6 )

This is the Born-Green equation, and gives us an explicit integral 
equation connecting structure g(r) and the pair potential ф(г).

We shall consider some solutions of this for different physical cases 
below, but for the moment let us comment on two properties of E(t) which 
will be useful later.
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2 .1 .1 . Properties of E ;

i) At sufficiently large t, we can evidently replace g(x) by unity in (2.5) 
when we immediately obtain

E(t) ~ - Л И
k BT

(2.7)

ii) We can calculate /E (r)dr over the volume of the fluid, in terms of 
the fluid pressure p. Defining the Fourier transform E(k) of E(r) by

then evidently

E ( k ) = p
 ̂ - i k*rE(r)e dr

E(0) = p / E(r)dr

and substituting from (2.5) we may write

( 2 . 8 )

(2.9)

E ( 0 )  = p dr
о

H(rt) g(t) <tnt)
k BT

dt

where

H(rt) = 1, t > r 

= 0, t< r

We can now interchange the order of integration and we find

( 2 . 10)

(2.11)

' H(rt)dr ■ 47rr2dr = 47Tt3
3 ( 2 . 12 )

and hence

oo

о
g(t)d'(t)

kBT t3 dt (2'. 13)

But we saw in the first lecture (E q .(l. 22)) that the fluid pressure p in
volved this integral and we find (Gaskell, 1965)

E ( 0 )  = 2 1 -
p k BTв-1 _

( 2 . 1 4 )
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For a perfect gas, with p = pkBT, we see that E(0) vanishes, which is 
evidently correct from (2,10) when ф= 0.

Before turning to use these results in an explicit asymptotic solution 
of the Born-Green equation for van der Waals interactions, we shall 
discuss a further approximate equation of liquid state theory, given by 
Abe and many other workers (often called the hyperchain equation).

2.2. Abe's approximate form of Born-Green theory

To see how Abe's method results from the Born-Green equation we 
rewrite E(t) from (2.6) in the form

00

E ( r )=- j^Tf  j f d s g ( s ) ^ ; U ( s ) - U ( s ) ]

+ к^т/ dsg(s)S  (2Л5)
Г

Then, since g(r) = exp(-U/kBT), the last term can be integrated explicitly 
and is simply the total correlation function h(r). Thus we find

Е (Г )=к~Т f  ds g(s)Ä  t<Hs) 'U (s)] +h(r) (2.16)
r

Abe's approximation is now obtained (see Gaskell [2]) by putting g(s) in 
the integral term in (2. 16) as unity, that is, replacing it by its asymptotic 
form. Such a procedure would seem to lead to a less accurate theory 
than the Born-Green theory, though the possibility exists that this second 
approximation could counteract the superposition assumption of the Born- 
Green theory. We shall see that, in at least one respect, this latter 
circumstance seems to exist. Then, we replace the function E(r) of 
(2. 16) by c(r), say, defined by

e ( r ) = ^ f  [и(г )-ф (г)] + 11(г) (2.17)

This leads to the second approximate equation of structure theory, namely,

0 (1 ? -? ' |)h(r')dr' (2. 18)

This equation and the Born-Green theory are so similar in structure that 
we can apply essentially the same method of solution to both. We shall 
now show that both equations can be solved asymptotically for van der Waals 
interactions, to give an interesting result for the range of the correlations 
in g(r) in this case.
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2.3. Asymptotic solution of Born-Green equation for van der Waals 
forces

In general, we have to solve the Born-Green and the Abe equations 
numerically for realistic pair potentials. But for van der Waals inter
actions, occurring in insulating fluids like argon, we can get interesting 
information on the range of the correlations, that is, the range of g(r).
It will also show us that for short-range forces of this kind, we must 
make some modifications to the Born-Green theory, such as that made 
by Abe, to have a good theory asymptotically.

Thus, we return to (2. 5) and look at the solution when, at large r,

0 (r )~ - _A
r 6 (2. 19)

where A is the strength of the van der Waals interaction. From (2. 6) 
we have then, since g(x) -*T for large x,

E(r) A
r 6kBT ( 2 . 20 )

Now it will prove convenient to work in к space, and large r implies that 
we look at small It. Thus we can imagine E(k), defined by

E(k) = p f  E (r)e^ r dr (2.21)

expanded in a Taylor series about k= 0. The question is what information 
can we gain about this expansion from the asymptotic form (2.20). The 
answer is provided by a nice theorem of Lighthill [3] which states that if 
a function F(k) is well behaved, with its derivatives, then

F(k)sin kr dk F (0 )  E*'(0) ,
r r 3

FIV(0)
r 5 •

+ terms decaying exponentially with r.

Noticing that the inverse of (2.21) may be written

( 2 . 22 )

E(r) 1
2 n 2 p r к E(k)sin kr dk (2. 23)

о

we can immediately show from (2.20) and (2. 22) that E(k) must have the 
form

E(k) = Ё(0) + Ь2к2 +b3k3 +b4k4 + . . . (2.24)

2
A n  p

at. small k, where
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S(k) = S(0) + a2k2 +a3k3 + . . . (2.26)

where, although we have not proved it here, we can show from the Born- 
Green equation thait if we include a term â k, then the only solution must 
have аг = 0. Inverting the above argument, we find

12a3
М П - - д а  (2.27)

showing that, if we verify that (2. 26) is a consistent expansion, the range 
of the correlations is the same as the range of the van der Waals inter
action. We now must determine a3 from the Born-Green equation and 
since the right-hand-side of (2. 5) is a convolution (cf.Appendix 1) it in
volves, in Fourier transform, the product Ё(к) [S(k) - 1] . Clearly, once 
again, the large r behaviour of the right-hand-side is determined by 
the coefficient of k3 in this product, and this is simply

a3E(0) + b3[S(0)- 1]

Assembling then the leading terms on each side of (2.5) we have

N o te rm  in к can  ap pear in the expansion  (2 .2 4 ) ,  b e ca u se , in fa c t, it would
lea d  to  E (r )  oc r"4 at la rg e  r , in co n flic t  with (2 . 20). B y  analogy  we can
expand

and hence

12a3 A 
7T2pr6 r 6k BT

a 3

4Д —6 [a„E(0) + b„{S(0)- 1}]7Г̂ рГ° J °

A7r2p S(0)
12kBT[l - Ё(0)]

(2. 28) 

(2. 29)

This result is due to Gaskell (1966), while the fact that S(k) at small к 
has the form (2.26) for van der Waals forces was shown by Enderby, 
Gaskell and March [4].

It is perfectly clear that the same argument applies to the Abe 
equation (2. 18) with E(0) in (2. 29) replaced by c(0), with c(r) defined 
by (2.17). We shall return to (2.29) when we have discussed the 
physical significance of c(r).

2.4. Ornstein-Zernike direct correlation function

Let us substitute for (U -ф) from (2. 17) into the left-hand-side of 
(2. 18) when we find

h(r) = c(r) + p J  c(| r - ? ' |)h(r') dr (2.30)

We see that this equation relates c(r) to h(r) for a given density and we 
take it as the fundamental definition of c(r), independently of approxi
mate theories. Clearly, if we measure S(k) by X-ray or neutron
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Scattering and hence get h(r), we can obtain c(r) directly from experi
ment. c(r) as defined by (2 .30) was first introduced by Ornstein and 
Zernike in connection with critical fluctuations. We shall see in Part III 
of these lectures that it does indeed play a central role in any discussion 
of critical phenomena. Most usually, c(r) is referred to nowadays as the 
direct correlation function, for reasons we shall briefly discuss at this 
point.

From (2. 5), we see that the potential of mean force U is split into 
a direct part ф and a convolution of E and h. Asymptotically as we have 
seen, E ~<p and h~U, and if we make these replacements, we see that 
(2. 30) and the Born-Green equation (2.5) have then the same form. We 
are then, in defining c, splitting the total correlation function h into a 
direct part c and an indirect part. Strictly, by analogy with the force 
equation, some three-body correlation function should be involved, and 
we can expect c(r) to have physical significance, at most, asymptotically,

From the Abe theory, we then find

and hence, for large r.

c(r) </>(r)
kBT (2.32)

2 I Iprovided h < |c|. This is true well away from the critical point. Since 
c(r) is, in fact, defined in terms of h(r), we can calculate it from the 
measured structure factor. Taking the Fourier transform of (2. 30) 
we find

h(k) = c(k) + h(k) c (k) (2. 33)

or

c(k) = h ( k )  

l + ff(k)
S(k)- 1 

S(k) (2.34)

Thus the direct correlation function in к space is simply 1 - S '1, but 
since S(0) is typically 0.01-0.03 in liquid metals, the form c(k) is very 
different from S(k) as can be seen by comparing Fig. 1 for S(k) with the 
form of 2(k) shown in Fig. 4 for liquid thallium just above its melting 
point, as measured by neutron experiments.

Having discussed the Born-Green and the Abe (or often called hyper- 
netted chain because of its connection with diagrammatic analysis) 
theories, and noting that they are most conveniently discussed in r space, 
we turn now to two further treatments which are more basically formu
lated in к space, though they will turn out to have a close relation to the 
Abe theory.
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To define the density fluctuations, let us start out from the particle 
density p(r) corresponding to an "instantaneous snap-shot" of the liquid, 
with atoms at ? j ,  r2 . . . rN . Then

2 . 5 .  D en sity  flu ctu ation s and c o r r e la t io n  fu nction s

P(?) =
NI

i = l

(2.35)

and evidently if we take the ensemble average we get
-Ф

^  61? -r^ e 1̂7 drx . . . drN
_i_______________________

Z
к in Ä"

0 1.0 2.0 3.0 4.0 5.0 6.0

and clearly each of the N terms makes the same contribution, 
find

N

-ф -> -> -*■

' кГг (г‘ ’ Г2----
е d?2 . . df*N

Z

We then

and this is just p^ (r) as it should be.
Now we take the Fourier components p£ 

immediately find
N

i = l

of the density p(r) and we

(2 .36 )
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The p-, are the density fluctuations and, since they involve the positions 
of all *ihe atoms, they may be viewed as collective co-ordinates.

Let us now briefly consider how the two-particle distribution function 
p(2)(r) = p2 g(r) may be expressed in terms of the density fluctuations.
This time we are interested in the separation iq - rq of two particles i and 
j. Thus we expect the essential element to be 6(r-~Ti + rj) and again it is 
readily verified that

pg(r) = < ^ J T  6 ( ? - r i + ?j>> 12.37)
i#l

We now show that the Fourier transform of this, the structure factor S(k), 
is simply related to the density fluctuations p-+ .

To do this, we form

n N
ik Т£e

i=l j=l

or

V-1 ik 'r i-r i
pkp-k '  N = 6 (2.38)

Thus, by Fourier transform of (2. 37) we obtain the result

PiTP-k ' N>S(k)=-------------------  (2.39)

Likewise, we can obtain the higher order distribution functions in terms 
of the p£-. We now return to the exact force equation (1. 25) and converting 
it into к space we find

SW=1+ N ^ I  l2' 40»

where we have assumed, for the moment, that the pair potential <j>(r) has 
a Fourier transform, given by

Ф (k) =
ik*r

ф{ r)e dr (2.41)

This equation is exact for a potential that can be Fourier transformed, 
p p-*pj* X  involving three p's comes from the three-body correlation

function.
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2,6, Random-phase approximation

As in the earlier theories based on the force equation, we must now
approximate. Since we want to relate S(k) and ф(к), we must somehow
reduce <”p-> -> У to S(k) and if we pick out from the sum the termk + n n k
n= -k, this is evidently related to S(k). This is, in fact, the random-phase 
approximation which is discussed more fully in other lectures by Lundqvist 
and Thomas. The qualitative argument is that unless к and n bear this 
simple relation, destructive interference between the various oscillatory 
components will tend to annul the other terms. Actually, such an argu
ment turns out to be a long wavelength approximation. We then find, 
collecting the terms in S(k),

S(k) ;
1 + P <Йк) 

kBT

(2.42)

Comparing this with the result

S(k) = 1
1 - c(k) (2.43)

which follows from the definition of the direct correlation function, we 
see that

c(k) = ~Pk^ k) (2.44)

or in r space

c(r ) = ^ 4 jr - (2.45)

This is the same result, for large r, as the Abe approximation yields.
Actually, without going through the It space analysis, this same form 

arises from replacing inside the integration over ?3 in the force 
equation by h(r23). However, its basic theoretical justification for small 
к comes from the random phase approximation.

2, 7, Effective interatomic potential and the Percus-Yevick theory

The crippling limitation of the above approximation is that it assumes 
an interaction with a Fourier transform. For liquids, in general, the 
interaction has almost a hard core, and we cannot Fourier transform it. 
The Percus-Yevick method is an attempt to produce an effective potential 
which will replace the Fourier components $(k) above [5].

The idea behind it is to use the pĵ  as collective co-ordinates. For 
them to afford an accurate approximation we must be able to express the 
Hamiltonian in terms of them and the corresponding momenta, and then 
solve as if they were "almost" independent. But a serious difficulty
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immediately comes up; there are 3N co-ordinates, г г . . . rN , in the original 
Hamiltonian and while, in a finite system with, say, periodic boundary 
conditions imposed over a large cube of side L, к has discrete though 
dense values, all such discrete к are allowed in enumerating the pj> .
Actually, we would transform naturally to centre of mass co-ordinates

N

X : i = l 
N (2.46)

and (3N-3) p-j, and there are many redundant co-ordinates. However, 
this fact, while troublesome, suggests a method of procedure which we 
shall now outline.

Suppose we consider the potential energy. Then, in ( 1. 18) we found 
it in terms of ф (r) and g(r) and by Fourier transform we get

Potential energy =
a l l  к

N] (2.47)

where ф(к) is, as before, the (assumed) Fourier transform of the inter
action. However, if ф(к) cannot be defined, we think of an effective inter
action фе{{ (к) such that

Potential energy = ^  Фец i.к)[ p - IST] (2.48)
(3 N -3 ) l? s

We can, at this stage, ask whether we can choose <j>eff (k) to get the "best" 
possible approximation. There is ambiguity in this statement, but we 
might require that the mean square difference between ф{r) and the ef
fective potential

Фе1{(г) = Y,  ̂eff (2.49)
(3N-3)"it's

be a minimum. More precisely we could minimize

< jt f ( r i - r j ) -  Y 0eff(k)e  ̂ (tl Г]) I  >  (2.50)
(3N-3)k's

A first-order approximation to this indicates that the choice is

<^eff(k ) = M r )g (r )l ( 2 . 5 1 )
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where, by the right-hand side, we mean the Fourier transform of the 
product of ф(r) and g(r). We see already that we have avoided the very 
strong repulsive potential inside the core by weighting the interaction 
with the probability of the occurrence of the pair of atoms i, j at 
separation r = iq - r j .

Actually, since we wish to calculate structure, it is better to mini
mize averages of PgPjfi with respect to the exact distribution function (in
volving ф) and the approximation to it (involving фе{{ ). We then find, 
after numerous approximations,

$eff (k) - kBT g(r)
9(0
k „T 1 (2. 52)

which clearly reduces to the earlier choice if we take i£(r)/kBT to be small. 
This is the choice of the $eff (k)'s generally referred to as the Percus- 
Yevick approximation. Thus we have, from (2.44)

c ( k )  = g(r) (2. 53)

and if we assume (doubtfully, because of the use of the random-phase 
approximation) that this is true for all k, then we may write, finally,

c (r )= g(r) 1 (2.54)

Clearly again

c(r) ф{г)
kBT (2.55)

for large r, and there is a direct equivalence with the Abe approximation 
if U and ф are small.

2.8. Direct correlation function for fluid argon

We are now in a position to construct an approximate c(r) for fluid 
argon. To do so simply, we shall divide the pair potential ф[r) into two 
parts, which we shall call фя and </>£r . The short-range part we shall 
define as the part inside the atomic diameter R, as shown in Fig. 5. If 
we take a Lennard-Jones (6-12) potential, to be quite specific, that is

*(r) = § 2 - ^ -  (2-56)

then we define R by <£(R) = 0 and then D = A R 6 . However, for r<R , we 
assume a rigid hard core, as shown by the dotted line in the Fig. 5. This 
is not essential, but we can now get an exact solution of the Percus-Yevick 
equation for hard spheres. While this is an important result, I shall not
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derive it, but refer to the account in Frisch and Lebowitz [6]. However, 
it is immediately clear from (2. 54) that

c(r) = 0 for r > R

FIG. 5. Potential for fluid argon. The part inside R is replaced, for simplicity, by a hard core (dashed 
line).

FIG. 6. Schematic form o f  c(r) for fluid argon.
chs is the Percus-Yevick result for hard spheres.
C|r is the random-phase approximation for Lennard-Jones potential.

It turns out that c(r) is a polynomial inside R and if we use R as the unit 
of length and write x = r/R , then

c(x) = a + ßx+ yx3 x< 1
(2.57)

= 0 x > 1

where a, ß and yare functions of the packing density p given by

1 Q
Г) =  -  7Г R 3p ( 2 .  5 8 )
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Substituting in the Percus-Yevick equation, it can be shown that a ,ß  and у 
are defined by

(1 - ri)4a = - (1 + 2r?)2

(1 - n)4ß = 6n(l + 2r))2 (2.59)

(1 - r\)4y = -irj(l + 2p)2

c(r) has then the form shown schematically in Fig. 6 while, if we calcu
late the structure factor S(k), we find, for a chosen value R3 p = 0.4, the 
upper curve in Fig. 7. Actually, it seems likely that both the Born-Green

soo

FIG. 7. S(k) for hard spheres for pR3 = 0.4.
Upper curve (c), Percus-Yevick result.
Lower curves, results obtained by density expansion,

(a) Exact theory
(b) Bom-Green theory 
(d) Abe theory

and Abe approximations would give similar results, but so far the corre
sponding equations have not been solved exactly. However, the lower part 
of Fig. 7 shows density expansions of these three theories and, except at 
small k, the results are quite similar. However, the other theories do 
not give c(r) = 0 for r>R and, in fact, it may be shown that the exact c(r) 
for hard spheres ф0. But we expect it to be small and we now turn to 
discuss the final form the above theories suggest for c(r) in fluid argon.

The form of chs(k)/chs(0) is shown in Fig. 8 along with experimental 
results for fluid argon at 84°K. The model obviously has the general 
features of the experimental data.
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FIG. 8. Direct correlation function in к space for fluid argon at 84" K. Curve 1 - Experiment. 
Other curves are slightly different ways o f calculating hard sphere result.

2.9. Form of c(r) and equation of state of fluid argon

We have seen in the Percus-Yevick theory that Chs is zero outside r.
On the other hand, if we use the result (2.45) for the long-range part, we 
have immediately the form shown in Fig. 6,the tail directly reflecting 
the Lennard-Jones potential. This general form of c(r) has been confirmed 
from scattering data by a number of workers. We do not expect the step 
at R, of course, in a real liquid, though we expect a rather steep rise 
which will lead to oscillations in c(k) at large k.

One rather striking confirmation that this approach is highly appropri
ate to fluid argon comes from studying its equation of state at high density 
( i .e . ,  near the triple point). A few years ago, Longuet-Higgins and 
Widom [7] pointed out that in this regime the equation of state was well 
represented by a modified van der Waals theory. Thus, in the van der 
Waals equation of state we have

pkRT 
1 -bp - a p2 (2. 60)

where a and b are constants, independent of p and T. The first term is 
designed to take account of the "finite size" of the molecules, i .e . ,  it is 
the analogue of a hard sphere term, while the second term takes account 
of the attractive forces. In present terms, we want therefore to write

P = P hs (P. T) - ap2 (2.61)

Longuet-Higgins and Widom [7] show that this equation of state gives a 
quantitative account of the properties of fluid argon near the triple point. 
To show this, we reproduce in Table 1 some results they obtained at the 
triple point, together with the corresponding experimental results.
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TABLE I. PROPERTIES OF ARGON AT TRIPLE POINT

(0  jj/Q-s) ln(pf3fi/NkBT) (AS/NkB) ( U { / N k BT)

Theory 1.19 -5 .9 1.64 -8 .6

Experiment 1.11 -5 .88 1.69 -8 .53

The dimensionless quantities shown in Table 1 are, first the ratio of 
the liquid and solid volumes at the triple point, second the pressure, third 
the entropy of fusion AS, in units of NkB and fourth the cohesive energy of 
the liquid. Certain second derivatives of the free energy are given less 
satisfactorily and, in particular, the configurational specific heat is zero. 
But the numbers above are given to illustrate that this is really a very 
good equation of state for the high density fluid.

The link with our calculation of c(r) may now be made by a formula 
for S(0) which we shall prove below. This says that S(0) is related to 
the isothermal compressibility KT and given by

S(0) = p kBTKT

Now KT = -■1_
П

an
Эр I by definition, and hence 

T

(2. 62)

kBT
S(0) kBT [1- c(0)]

the last step following from f2.43).
Now we return to our result for c(r), namely,

( 2 . 63)

c(r) =5= c hs ( r ) +  c « r ( r ) (2. 64)

and

c(0) = chs (0) + c Sl (0) (2.65)

Hence it follows that

1 0 / ( ^ - V T 5» 10'

( 2 .  6 6 )
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from (2.44). Differentiating (2. 61) with respect to p at constant tempera
ture we see immediately that these two expressions agree, provided

2а=-ф£г(0) (2.67)

But this quantity, from the definition (2. 56) is simply given by

47Г r '2/ARl
'12

A_
r 6

A_
R3 ( 2 . 68 )

This is in excellent agreement (within about 10%) of the empirical value 
of a. If we had used the Born-Green asymptotic form, we would have 
been quite wrong. Thus we conclude that this confirms the result (2.45) 
for argon and enables the equation of state to be calculated from first 
principles from the parameters in the force law (Woodhead-Galloway, 
Gaskell and March; in the course of publication).

Actually Longuet-Higgins and Widom used the results of machine 
calculations for Phs(P.T). If we are content with slightly less accuracy, 
we could use the Percus-Yevick result. Substituting in (2.43) at к = 0 
we find then for the equation of state, using (2.62) and (2. 57),

(1 -П)'3[1 + П + П2] (2.69)

This is not unique; however, if we use the virial expression for the 
pressure we get a rather similar result and the thermodynamic in
consistencies are not too serious in this case.

If we use this argument in a metal, chs(0) is made more negative 
by adding C|t (0 ),  whereas in fluid argon it is made less negative. A crude 
calculation in a metal shows that <j>ir{0) is derivable from the pseudo
potential which, as Ziman has discussed, tends to 2/3 Ef as k->0. But 
Ef cc p̂  from electron theory, and integrating this we get a term in the 
equation of state oc p5 . This replaces the p2 term in argon, the difference 
coming from the density dependence of the pair potential. Unfortunately, 
in a metal, we are not sure whether R, defined by ф ( R) = 0 for present 
purposes, is significantly density dependent. It seems likely that it is 
and this means a more complex situation in a liquid metal than in fluid 
argon.

2. 10. Summary and comments on approximate theories

We summarize below a few conclusions about the relative merits 
of the approximate theories:

i) For short-range forces, the Percus-Yevick method seems best.
In particular, the equation of state for hard spheres which it 
predicts is in reasonable agreement with machine calculations, 

ii) The random phase approximation, while of value as we have
seen for argon, is not directly applicable to fluids until the hard 
core is subtracted and treated separately.
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iii) There is some evidence, both pragmatic and fundamental, (for 
the latter, see remarks in Brout's book on 'Phase Transitions [8]) 
that the Born-Green theory is preferable for long-range forces.

iv) For equilateral triangular configurations, Alder has shown that 
for hard spheres p^ = p3 [g(r)]3 to high accuracy by machine 
calculations.

v) It appears that the correct asymptotic result for c(r) is c(r) ~ 
-<£(r)/kBT, provided h2<|c|, the inequality defining the range of 
validity readily following from the Abe approximation. The 
condition is satisfied well away from the critical point.

One final comment seems called for. We began by asking how p^  
could be related to the two-body correlations. In retrospect, it seems 
that we should first have asked about the range of the forces'. It seems 
clear that a relation between p^  and p(2) which will be useful for long- 
range forces is not likely to be valid for short-range interactions. This 
probably means that it is going to be hard to find a single equation for 
relating structure and forces which will successfully describe both liquid 
argon and liquid lead.

3. FLUCTUATIONS, COMPRESSIBILITY AND STRUCTURE

We have seen that g(r) 1 at large r to 0(1/N). This is troublesome 
only when we want to calculate accurately integrals of g(r) -1 over the 
volume of the fluid. It turns out that the quantity 1 + p J[g(r) -l]d r , which 
through (1.9) is simply the long wave length limit of the structure factor, 
can be related to the isothermal compressibility k t .

3.1. Grand partition function

The procedure we shall use, to avoid the above-mentioned difficulty, 
is based on the grand partition function. As is well known, this is related 
to the configuration integral Z of the canonical ensemble rather directly. 
Precisely, let us define the partition function as

Q(N, O, T) = 1 (2тгМквТ) 2 Z
h3NN'

(3.1)

where we have now included the kinetic energy part of H, have put in the 
result that quantum mechanics divides the phase space for a single 
particle into cells of h3 and have accounted for indistinguishability. This 
ensures a correct limiting transition from quantum mechanics. Then the 
grand partition function is given by

Qg = ^  6 Q(N ,^,T) (3.2)
all N

where p is the chemical potential.
Obviously we have a weighted sum of the partition functions for a 

canonical ensemble, the individual terms corresponding to different
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numbers of particles. This is the new point about the grand canonical 
ensemble: it relaxes the condition that we have a definite number of 
particles N.

We see from (3.2) that the probability that a system in the grand 
canonical ensemble does contain N atoms is given by

N fl 
kBT

e Q(N, n ,T )
N '  Q g (

Let p (r i . . . rn)dri . . . drn be the probability of observing molecules 
in d?! . . . drn at r̂  . . . rn, irrespective of N. Then evidently

Р(П) = £  P{Nn)PN (3.4)
N

where the are the distribution functions in the canonical ensemble. Also r N

f f p ^ r ,  . . . )d?x . . . d v  £  PN (3.5)
N >  n

Always defining averages with PN we may write

. . f^Jd?! . . . dr„ = < m
(N - n).'T> (3.6)

3,2, Long wave length limit of structure factor in terms of fluctuations 

As important special cases of the normalization condition (3.6) we
have

P ( r xr 2 )d?xd?2 =< N(N -1) >

= N2 - N

Furthermore,

(3.7)

AD

and therefore

P ( 1 ) ( ? > (1 )  l ^ d ^ d r ^  = ( N ) 2 ( 3 . 8 )
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Hence, by subtracting (3.8) from (3.7), and remembering the fluid 
properties (r) = constant density p, p^ = p^ ( | r2 - гд. |), we find

n [  [p(2) (r) - p2 ]dr =N2 - (N)2 - N (3.9)

Thus, we can express /[g(r) - l]dr, as we desired^ in terms of fluctu
ations, and, in particular, the difference between N2 and (N)2. From 
(3. 9), we find for the limit of the structure factor S(k) as к 0

S(0) = 1 + pß g ( r )  - 1] dr = 1 + ^

—  2 —  2 N - (N)
pQ (3.10)

The final stage of the proof is to relate N2 - (N)2 to the isothermal 
compressibility. We can do this by noting that

N|i

Z-p jT
N e B Q(N, Q, T) (3.11)

N

We now differentiate this with respect to the chemical potential p, at 
constant and T. We then find

Np

9N"\ —V  N квт
esO QG+Nl l ^ T e

£2T N °

Np

V  N kBT = ^ N — 6 Q(N, П, T)
k B T

or

ЭГЛ L  IN8 - (N)2]V9p /S2X kBT 

Thus, combining this result with (3. 10) we find

(3.12)

(3.13)

S(0) = kBT 
p Г2

9N Л
3  ̂ /од1 (3.14)

All that remains is to relate (9N/9p)ptx to (Эр/ЭГ2)м,т< remembering 
that in thermodynamics N *'N. The essential results we require to do
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this is the Gibbs-Duhem relation

SdT - fldp + Ndq = 0 (3.15)

S being the entropy. This expresses the fact that q is determined by p 
and T, and we cannot vary the three quantities independently. In a system 
at constant temperature we may therefore write

or

But

and hence

, П . Ф = ^dp

A ( Зел
P \ ÖPy/'J’

dß JQ'T \3ß j j

3N
Эр

The isothermal compressibility /cT is defined by

(3.16)

(3.17)

(3.18)

(3.19)

(3. 20)

Hence, using (3. 14), (3. 19) and (3. 20) we have the desired result

S(0) = kBTp/cT (3.21)

As we stressed earlier, both (2. 30) and (3.21) will be highly relevant 
to our later discussion of critical phenomena. However, we have a further 
result for the specific heat at constant volume Cv, which we can derive 
from fluctuation theory. Again the application will be to the critical 
region.

3.3. Specific heat at constant volume

It will turn out that the specific heat at constant volume Cv is related 
to a more complex quantity than N - N. In fact, the fluctuation we require
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is in Фы, or the energy. Specifically, we shall calculate

<$#N '  фЛ >

where eventually we shall put Фы = Фы. Фн and are both assumed to have 
the forms

2

Ф
N X  <Mr i j b  * N 

i<  j
X  w rü (3. 22)

Working out Фь|Фы explicitly for N = 4 is instructive in verifying that the 
following terms come in:class ( 1 ) involving only two atoms ij and therefore 
the averages involving p<2) only, class (2) three atoms and the averages 
involving p ^  and finally class (3) depending only on .

3 .3 .1 . Fluctuations in 1(Ф КФМ)>

(1) Every one of |N(N-1) pairs ij gives a term ф (r^ )ф (г у ).
(2) Every one of ^N(N-l)(N-2) triplets ijk gives 6 terms of type 

^(Гц)ф(г jk) (two each of the three possibilities with the three 
indices occurring twice)

(3) Every one of 55 N(N- 1)(N-2)(N-3) quadruplets gives six terms of 
type ф (rij )ф(г ).

Then we must average, and we find

р < фn* n > = ! / d ? 2 Р (2\ г 172 ) ф { г 12) +  ̂
- *  (3)dr0drvp *(r 1г 2г 3)ф[г12)ф[г23)

+ 4  I I I  dr2dr3dr4
(4) - > - > - >p (r1 r2r3 r4) Ф (r 12)^(Г34) (3. 23)

Finally we subtract ^Ф ^^Х  and the last term becomes proportional to

(*T  r 2 r 3 r 4 ) Р(2)( г 12)р(2)(гз4) < M r 12) ^ ( r 3 4 ) d r 2 d r 3 d r 4 (3.24)

This latter term will prove the crucial one in determining the form of Cv 
near the critical point, as we shall see explicitly in a later lecture.

4. LIQUID DYNAMICS AND TIME DEPENDENT CORRELATION 
FUNCTIONS

We shall introduce the van Hove correlation function in an intuitive 
way, and will later point out its intimate connection with neutron scattering. 
We argue purely classically at first. Suppose that we define G(r,t) as the 
average density of atoms at the point r at time t, if an atom was at the
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origin г = 0 at time t = 0. Thus, it gives us the correlation in the positions 
of two atoms which may or may not be different at different times. This 
function can be expressed in the form

N

G (r,t)=-^< ^  6 (r+r.(0) - r.(t))> (4.1)
i, j=  1

The average of the 6 function involved in Eq. (4.1) is obviously the proba
bility that at time t the j atom will be at r with respect to the position 
of the i th atom at time t = 0. We then sum this probability over j and 
average over i. G(r, t) is the space-time pair-correlation function.

The quantum mechanical generalization of Eq. (4.1) is in fact

N

Gquantum(r »t) = < ]T J  dr' 6(r + ?2 (0 )-r ')6 (? ' - ?j(t)) > (4.2)
i.J = 1 J

where r ;(0) and rj(t) are now Heisenberg operators which do not commute. 
If this failure to commute is ignored, it proves possible to integrate over 
r ' , and then Eq.(4. 1) is regained.

4,1. Relation to density operator

An alternative and sometimes useful form for G(r,t) is obtained by 
introducing the density operator p(r, t) of the atoms at the point r at the 
time t: (c f. Eq. (2. 35))

N

P(rt) = 6(Г - (4. 3)
i = 1

If we employ this form in the definition (4. 2) and change the origin by 
substituting r" = r' - r, we find

G , (r , t) = ~r <quantum' * ' N  4 dr" p(r", 0)p(r" - r, t) У 14.4)

Thus, we can interpret G(r,t) as the space-time correlation of the density p.
If we now take explicit account of the homogeneity of the liquid, then 

the integrand in (4.4) is independent of rn and we find

G (r- r ',t - t ')= -< p (? ',t ')p (? ,t )>  (4.5)
P

At this point we follow van Hove, and take the diagonal terms i = j out of the 
sum over i and j in (4. 2) when we obtain

G(r, t) = G$(r,t) + G d(r,t) (4.6)
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where
N

G,lr,t)= £  J d?' 6 ^  + ? i (0 )-? ')6 (r ' (4.7)
1 = 1

and
N

Gd(r,t)= ^ <  £  J  d ? '6 (?+ ri(0 ) -7 ')6 ( ? '- ? j ( t ))>0 (4.8)
i#i=i

By this Separation, we can interpret Gs as the correlation function which 
tells us the probability that a particle which was at the origin at time 
t= 0, will be at r at time t. The part Gd obviously refers to the analogous 
conditional probability of finding a different atom at r at time t.

Let us now investigate the correlation functions at time t = 0. Going 
back to (4. 2) and noting that гЦО) and rj(0) commute, we can integrate 
over r !1 (cf. remarks after (4. 2)) and we find

N
G quantum ^ ,0 )= | j<  £  би  + 7 ;(0 )-^ (0 ))>  (4.9)

i, j = l

Splitting this according to (4. 6), we find almost immediately

Gs(r, 0) = 6(r) (4.10)

G(r, 0) = 6(r)+pg(r) (4.11)

where g(r) is given by

IN
Pg(r) = ^- ^  < 6(?+ ? i- ?j)>

i#j = i
(4.12)

the usual radial distribution function we have discussed earlier.
In the limit of long times, we can assume there is no correlation 

between positions of particles. Thus, in (4. 2) we can replace the 
average of the product of the 6-functions by the product of the averages

N

^  < 6(r + r\(0) - r ')6(r' - ?. (t)>
i. j -1

N N

6(r+ ?i(0) - r ' ) > < ^  6(r' - ?j(t))> 
i = 1 j = l

(4.13)
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Thus, for large r or large t we may write

Gquantum(r > ^ _ dr1 p(r' - r)p(r') (4.14)

which is simply the density-density correlation function. For systems 
with long-range order, p(r) and G(r,t) are periodic in space. For a fluid 
p = N/f2 where G is the volume, and therefore

Gquantum̂ 1'* 00) MP (4* 15)

Similarly for the self-correlation function we can show that for a homo
geneous system

Gs(r ,oo )= i (4.16)

which tends to zero as Cl tends to infinity. This is in marked contrast to 
the situation in which atoms are not free to move far from some ’ lattice1 
sites. In this case, appropriate to solids when we neglect diffusion 
Gs(r, oo) ф О .

For short times Gs(r, t) approximates to a 6 function according to
(4.10), while Gd(r,t) is approximately the pair correlation function g(r). 
As t -*■ oo , Gs(r, t) 0 and G j(r, t) “> p, and these forms are shown 
schematically in Fig. 9.

FIG. 9. Approximations o f G s(r, t) and G<j(r, t).
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4.2. Van Hove correlation function

Having defined the time-dependent correlation function G(r, t) and 
having examined its general properties for short and for long times, we 
shall proceed to discuss two equivalent forms. Whereas G(?, t) is a sum 
of two parts Gs and Gd, the latter part being the time-dependent general
ization of the radial distribution function g(r) [actually Gd pg(r) as 
t 0], the desired generalization of the structure factor S(k) is obtained 
by taking a double Fourier transform of G(r, t).

Thus we write

S(k, u) is directly related to neutron scattering from the fluid and gives the 
probability that there is a momentum transfer fik and an energy transfer 
fiu between the neutron and the fluid. The relation between the van Hove 
correlation function S(k, u) and neutron scattering will be discussed in 
more detail by Professor Brockhouse. (Prof. Brockhouse's lectures are 
not published in these proceedings.)

4 .3 . Intermediate scattering function

Another tool which is often useful is the so-called intermediate 
scattering function, defined by

with a corresponding relation between G(r,t) and F(k, t).
If we substitute the definition of Gs(r,t) into (4. 19) and deal with the 

classical case only, we have

(4.17)

and

(4.18)

(4.19)

N

i = l

N

i = l

= <e
- i k - f r ^ O J - r ^ t ) )

> (4.20)
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If we choose the x axis along the direction of к then we may write

Г5(М ) = < е' 1к{Х1(0)' Х‘И} > (4.21)

4.4. Moments of van Hove correlation function and short-time expansions 

From the definitions it follows immediately that

-► Г  -*  iutFs(k,t) = / Ss(k,u)e du (4.22)

with a similar relation between F(k,t) and S(k,u). Differentiating (4.22) 
twice with respect to t we find

a2Fs(k,t)
3t2 (-)u2Ss(k, u)e ittU du (4. 23)

Hence we have for the second moment of Ss (k,u):

V-, ЭFs(k, t) и Ss(k, u)du --------
t =o

(4. 24)

Similarly, for the fourth moment we may write

и Ss(k, u)du =- ° Fs (k, t)
8t4 t=o

(4.25)

Thus, if the second and fourth time derivatives of Fs(kt) can be found 
from (4.21), we have the desired expression for the moments.

To evaluate these derivatives, we find it convenient to develop the 
small t expansion of (4. 21). Then, since

t2:x(t) = Xl(0) + t k i(0)+ —  x 1 (0) + (4.26)

we have

i k r  *
ik tx^ O ) 2'

F,(k.t)=<e * e
ik d Xj(0)

e
ik t 4 IV
i r x*e

(0 )

. . .  > (4.27)
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The coefficient of t2 in the short-time expansion of (4.27) is clearly given 
by

-j v+2 ь-2+2 л
~ < х 1[0)У-  ^ < { X ! ( 0 ) } 2> (4.28)

The first term clearly averages zero, while the second term gives for 
32Fs/3 t2 |t=0 the result

3?F
9t2 t = 0

k2<{ x1 (0)}2>

But the thermal average of <({ Xj (0)2 >̂ is given by

|M <{x1 (0)}2> = ik BT 

and combining (4.24), (4.29) and (4.30) we find

S$(k, u)du =
k2k BT

M

(4.29)

(4.30)

(4.31)

Actually, from the definition of F(kt) as

F (k ,t)= ^ < e -ii?{r«(0)-ri(tJ> (4.
i

the distinct term i =f= 1 vanishes, since the velocities of two atoms taken 
at the same instant of time are uncorrelated. Hence

и S(k, u)du =
k2kBT

M (4.33)

for classical fluids.

4 .4 .1 . Fourth moment theorem
4We now turn to extract the coefficient of t in (4. 27). After a 

straightforward calculation, we find the real part (the imaginary part is 
readily shown to average zero) as

k4< {x i(0)} >
24

2 2 1
Y < i i ( 0)M (0)> - ^--<{Xi(0)}2> (4.34)

In Appendix 3, we develop the consequences of the fact that for a fluid 
the various time dependent correlation functions must be independent of
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the choice of the origin of time. In particular, it is shown there that

<x1 (0)x 1 (0)>= - < {x !(0)}2> (4.35)

and hence from (4.37) it follows that

aVs
ЭГ

t = 0

k4< {x 1(0)}4>+k2< {x 1 (0)}2> (4. 36)

4 2 2The first term can be immediately calculated to yield Зк (квТ) /М while 
in the second we use the Newtonian equation of motion

M x1 = - ^  (4.37)

Carrying out the averaging with respect to exp -Фм/квТ, we note that
-$n 'фы

_Э
Эхl { * w  } -

1 ЭФЫ квт 
квТ ЭХ 1 6 (4.38)

and using this to integrate by parts we obtain

94Fs
at4

_ 3k4(k BT )2 . pk2kBT
M2 ]VD

2Э ф
dr e(r)

t = о
(4. 39)

Hence from (4. 25) we have

и Ss (k,u)du = — ^ 24„ ___  3k^(kBT)2| pk2k BT
3M‘ dr g(r)V

3_k (к вТ) + 4тгрк^квТ J g ( r ) h n ( r ) + ^ , [ r ) ^ r 2dr (4-40)
M 3M‘

A more lengthy calculation leads to the fourth moment for S(k,co) as 

j V s ( k ,  U)du = — (̂ iT) + /d ? g ( r ) { l  -cos k x } ^  (4(41)
-oo

Thus, we can get the fourth moment in terms of the radial distribution 
function g(r) and the pair potential ф{г).
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4..5. Asymptotic form of G(r,t) at large r and short times for 
van der Waals forces ’ .

Using these sum rules, plus the fact that

S(k, u)du = S(k) (4.42)

we can immediately expand

F(kt) =/ - ime S(k, u)du (4.43)

as

F(kt) = S(k) - t2k2(kBT) t4k4 (kBT)2 
2M 8M2

p k V (k BT)
24M2 dr g(r) [ 1 - cos (4.44)

We can again employ the Fourier transform arguments we used in Part I 
for van der Waals forces to show that /d rg (r) [1 - coskx] Э2ф/Э2х2 has a 
term -7r2Ak5/12 as the first odd power of к in its small к expansion. 
Actually the presence of this odd power of к is signalled by examining the 
coefficient of k6 in the above integral. This involves /  dr g(r) x6 Э2ф/Эх2, 
and at large r the integrand (replacing dr by r2dr for the dimensional 
argument) behaves as г 8 Э2ф/Эг2 constant. Hence the integral blows up 
and we must have missed out a term in the expansion. Since

F(kt) = J d r e 1̂  G(?t) (4.45)

it is readily shown from the Lighthill theorem that the leading term in 
G(rt) at large r is precisely

-70 At4 
M2r 10 (kBT)

where, as usual, A is the strength of the van der Waals interaction. Should 
it prove desirable, the next term can also be calculated by this method 
for a Lennard-Jones (6- 1 2 ) potential.

The non-analyticity arising from van der Waals interactions dominates 
the short-time dependence of G(rt) at large r.
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5. ELEMENTARY TRANSPORT THEORY: PARTICULARLY SELF - 
DIFFUSION

The van Hove function S(k, u) determines the scattering of neutrons by 
a fluid. In fact, as we shall see below, if we could make a first principles 
calculation of S(k, u) from a pair potential $(r), then we can also obtain 
exactly certain transport coefficients.

This is, at first sight, surprising, because older theories of viscosity 
have always proceeded by approximate calculations of the distribution 
function for the non-equilibrium situation. But S(k,u) is determined by 
the equilibrium properties and that seems a great advantage. However, 
no exact calculation of S(k,со) has proved possible so far for any realistic 
force law, and generally (see Sec. 6) the methods of calculation available 
at present have to proceed via some kind of Boltzmann equation. Never
theless,these results for transport coefficients are central in the funda
mental theory. We shall give an elementary treatment in the text of one 
transport coefficient, the self-diffusion coefficient D. However, in order 
to give the reader an idea of how the general argument goes, a sketch of 
a much more sophisticated treatment, requiring, though, a good deal of 
advanced theoretical background, is given in Appendix 4.

V*"5,1. Solution of diffusion equation for Gs(rt)

We can make contact with the macroscopic diffusion constant by 
arguing that the self correlation function Gs(rt) must be related to the 
solution of the diffusion equation, for it represents the meanderings of 
a particle initially at the origin at time t = 0. Actually, this particle 

' can exchange energy and momentum with its neighbours and we then 
fundamentally have only one conservation law for particle number. This 
is why the self-diffusion problem is much easier than when we have to 
deal with viscosity and heat conduction.

The diffusion equation should be obeyed by Gs(rt) for times long 
compared with the collision time and, bearing this in mind for later 
purposes, we write

DV2 Gs(r,t) = '|^ - (5.1)

As we have seen, we need a solution satisfying the condition

Gs(r, 0) = 6(r) (5.2)

and such that, for the probabilistic interpretation of

/ Gs dr =1, for all t (5.3)

Actually, (5.1) has the form of the Bloch equation for the density matrix 
and since this will be useful for quantal fluids, we obtain the desired 
solution from that equation in Appendix 5. The result is

Gs(r,t) 1
(4ttD 11 |)3/̂ e

which is soon shown to satisfy (5.2) and (5.3)

(5 .4 )
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From the results of Appendix 5 we can immediately extract the inter
mediate scattering function Fs(kt), with the result

■k D t (5.5)

From phenomenological theory, we expect the diffusion coefficient to be 
related to some mean square distance over a characteristic time and so 
we next calculate the mean square displacement <V2)> as

<r2> = / r2Gs (r ,t)d r  = 6Dt (5.6)

from (5.4). This result is valid for times large compared with collision 
times and we must expect that, for a Gs(rt) correctly calculated from a 
force law, ^r2)» will be proportional to t, the slope yielding the diffusion 
constant. Machine calculations have been made for a number of cases 
and Fig. 10 shows typical results for two different potentials for liquid 
sodium. These potentials were of truncated oscillatory character and 
the marked differences between curves 1 and 2 show that the diffusion 
constant is sensitive to the pair potential.

FIG. 10. Machine calculations- for two different potentials for liquid sodium. It illustrates sensitivity to 
the potential.

5,2, Diffusion constant as a limit of Ss(k, in)

We turn now to obtain an important expression for D in terms of 
Ss(k, u). To do so, we recall that

5(к,ю)= — I Fs(k.t) - iwt e dt (5.7)
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and using (5.6) and (5.7) we find

Ss(k, « )  = i5 ff

ff [ A  (Dk2) 2 ]

The form of Ss(k, ш) as a function of и is shown in Fig. 11 and it may be 
seen that the total width at half maximum is determined by the diffusion 
constant D.

I - k  Dte cos ut dt

Dk

We have already seen that the above theory can only work for long 
times or small to and, in general, we expect macroscopic arguments to 
work in the long wave length or small к limit. While, therefore, we 
cannot trust (5.8) in general, it is perfectly proper for the limiting case 
of small к and to. If we wish to obtain a non-zero limit as к ^  0 we must, 
from (5.8), consider Ss (k, to)/ k2, and in the limit we have

lim 
к -> о

Ss (к, to) 
k2

D----ь
7Г10 i

(5.9)

In general, for a proper calculation of Ss(k,to) the left-hand side of (5.9) 
will be a function of to which will only become proportional to to2 as to -+ 0 . 
Thus, a general result for D may be written

9D = n lim to lim 
or* 0 k-* 0

Ss (k, to) 
k2 (5.10)

So far, no precise use of this result for any realistic interaction has been 
made, but it clearly gives interesting information about the structure of 
Ss (k,io) near the origin of the (k,to) plane, which any approximate theory 
must yield to be at all acceptable. However, an alternative exact form 
for D in terms of the velocity correlation function proves more fruitful 
for calculating D.
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5,3. Velocity correlation function

We have seen earlier that, for long times, the self-diffusion constant 
of a fluid is given by

D = < r 2>
6t

It is instructive to rewrite this result in terms of velocity v* rather than 
displacement. We have

t

■Iv(s)ds (5.11)

and hence

t t
^ v lS j)-v ^ l^ d s jd sg  (5.12)

0 0

We have assumed that we can interchange the order of the operations of 
time integration and ensemble averaging. This is not always possible as 
we shall see later in a specific example.

We cannot expect the velocity correlation function to depend on the 
choice of the origin of time and we therefore write (5. 12) in terms of 
r = s2 - s 1. We then find

t t
< r2 > =JJ< v(0)-v (s2 - s1 )> ds 1 ds2 (5.13)

о 0

and, after changing the variable and some manipulation, we find
t

<r2 >= 2t J dT <v(0)- v(r)>
о

Provided the velocity correlation function <(v(0)-v(t)^ decays suf
ficiently rapidly at large t, then in the limit as t becomes very large 
we find

(5.14)

<r2> ■I f

/ Г2 Ч i r _>
D =lim  dt<v(0)-v(t)>

г_>" о

This is the desired alternative exact expression for D.

5.4. Calculation of D for hard spheres

W e have seen  in a flu id  lik e  argon  that som e o f the p h y s ica l p ro p e rt ie s
can  be u se fu lly  d is cu ss e d  by using a hard sp h ere  m od e l. F o llow in g  the
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procedure we used in deriving the moment theorem, let us carry out a 
short time expansion of the velocity correlation function

<v(0)-v (t)> = < v2> + t < ^ (v (0)-v(t)>r =

+ T < d ^ 0) ' * t))>t=o + - (5.16)

In most cases, it can be shown that the odd powers of t have vanishing 
coefficients which, it turns out, is related to the fact that positions and 
velocities are uncorrelated in an equilibrium ensemble.

Unfortunately, when we take the limit of hard spheres, this is no 
longer true. The ensemble averaging has to be done before the time 
derivatives, because of the ill-defined properties of a single molecule 
when there is a pathological force law. The term in t remains and to 
make progress, we follow Longuet-Higgins and Pople [9] and write

<v(0)-v(t)> =  <v2 >e 5t (5.17)

where we stress that this is specific to hard spheres. [Actually, we point 
out in Appendix 6 that this is precisely the form describing Brownian 
motion. It is usually rejected as unrealistic for liquids, because of the 
long range of the Fourier transform of the velocity correlation function 
leading to a divergent second moment. This divergence, however, exists 
for hard spheres and (5.17) seems a useful approximation in this case.] - 
Substituting (5. 17) in (5. 15) we have immediately

D = 1 <v2 >
3 ?

kRT
M5 (5.18)

The decay time § 1 of the velocity correlation function may be calculated 
by a kinetic argument, if we write it in the alternative form

f  = - lim 
A t-»  о

(5. 19)

where Av is 
interval At. 
result for D

the vector increment in velocity of the molecule in the time 
The argument is given in detail in Appendix 7 and the final 

is given by

R / тгк BT 
2 V M

P
-PkBT - 1

- 1

(5. 20)
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where the pressure p has entered because, through the virial result (1 . 2 1 ), 
it is related to the value of g(r) at the hard sphere diameter R. This 
result is probably valid over a wide density range. In particular, for 
low densities the square bracket in (5. 20) may be replaced by the second 
virial coefficient, which is, in fact, (16 /3) wR3 for hard spheres. Then 
D becomes

°  32Ri 2p
kRT
7ГМ (5.21)

which is the result obtained earlier by Chapman and Enskog for a low 
density system.

5.5. Fourier transform of velocity correlation function

It is often illuminating to consider the Fourier transform of the 
velocity correlation function. We define this explicitly as

z( u) 1 Г, \ ' iüJt
2^ J  < vx ( ° ) vx (t ) > e dt (5.22)

and we then have

J z(u)dw = J <vx(0) vx (t)> 6(t)dt

= < {vx(0)}2>

- кв I
M

(5. 23)

It is also clear that z(0) = D/ж .
Actually, for hard spheres, this is particularly interesting, because 

of the presence of an odd power of t in the short time expansion of the 
velocity correlation function. Substituting for the velocity correlation 
function assuming the Longuet-Higgins-Pople form (5. 17) for hard.spheres 
we find

1 квТ Г -St -iwt
zlu) = 7  ~ i r j  e e dt

0

i kRT g
■и M S2 +u2 (5.24)
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Thus, at large ы,

)
2

1 А вТ _1
D (5. 25)г \ M

using (5. 18). This slow fall-off of z(u) is a consequence of the non- 
analyticity of the velocity correlation function for hard spheres at the 
origin of time. z(0), on the other hand, from the above result for z(u) 
is simply (kBT/jrM f ) = D/тг, as it must be.

Actually, we can make contact with experiment via z(u) and results 
obtained for liquid sodium and liquid argon are shown in Fig. 12. The hard 
sphere model is clearly inadequate, being far too long-range, as remarked 
above, and not exhibiting the structure found experimentally. Machine 
calculations have shown that the shape for argon comes from a van der 
Waals tail on a hard sphere potential and it is an interesting problem for 
the future to understand the initial dip in sodium in terms of the force law.

FIG. 12. Schematic form o f  Fourier transform o f  velocity correlation function. The dashed lines represent 
the result (5.24).

We may also remark that for a Debye solid, z(u) is equal to the 
frequency spectrum and hence is zero at u=0 , as it must be.

Some further discussion of transport is given in Appendix 4, but it is 
finally worth recording here that a result having a structure similar to
15. 10) exists for viscosity. Thus

Z

z

(5. 26)

where p is the shear viscosity and f  the bulk viscosity.
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6. COLLECTIVE MOTIONS AND S(k,u)

So far we have discussed mainly exact results for S(k, u). However, 
it is clear that to calculate S(k,u) from the pair potential we must make 
approximations, for after all, we have seen that we cannot as yet calculate 
S(k), which is the integral of S(k,co) over u. It is clearly of great interest 
to enquire whether we can approximately relate S(k,u) to S(k) in a classical 
dense fluid.

Clearly, the time dependence of the correlation functions in a classical
system must be determined by the Liouville equation for the phase space
distribution function p(F, p , . . .  3 }. This has the form

1 N N

ЭрLp = ig f  (6 . 1 )

where explicitly, in a classical fluid, L is given by

L = -iI
j

E L  _L_  
M ' Э?.

J
( 6 . 2 )

where Fj is the total force on the j-th molecule.
Now suppose for a moment that we could calculate the eigenfunctions 

Фi of the Liouville operator L, with their eigenvalues Aj. Then in 
principle we can construct a solution of (6. 1 ) as

V  ‘V
= L Ci e (6.3)

Thus the problem is reduced to the calculation of the eigenfunctions. 
This is obviously impossible for a general force law and we follow 
Zwanzig [10] and employ the variational method. Thus, the requirement
that

<(Sfr'̂ L Ф У 
< Ф*Ф>

(6.4)

is stationary with respect to small variations in Ф and Ф* leads directly 
to the eigenvalue equations for Ф and Ф .

We must then decide on the form of trial function. Since, as we have 
said, our basic object is to get the time-dependent correlation function in 
terms of S(k) (or equivalently g(r)) we can only usefully allow to con
tain two-body terms. Thus, Ф itself must decompose into one-body terms 
to make progress and we write

^(^p.) (6.5)

where we have written j for r j; p j.



LIQUID STATE 1 3 9

Now it is very interesting that (6. 5) already includes collective 
motions, for if it is applied to a crystal it yields an independent phonon 
description. This is satisfactory for there can be little doubt that, in a 
dense fluid, the phonons play a crucial role. The merit of this method is 
now that an Euler equation for i//(j) may be obtained in terms of the radial 
distribution function.

6.1. Euler equation for trial function.

Because we are dealing with identical molecules, we can immediately 
reduce <(Ф*Ф )> to the form

Introducing the single- and two-particle distribution functions f(l) and 
f<2>(l, 2) we have

< ¥**> = N < A l№ (l)> + N (N -l)< A 2 № (l)> ( 6 . 6 )

(6.7)

Similarly we have

< #L ¥ >  = N<¥*L<i'(l)> ( 6 . 8 )

and L acting on (//(1 ) gives

L<M1 ) = -iPi . Э0Ч1) .2 . 3^(1) 
M Э? 1 1 ЭЙ (6.9)

On integration by parts we find

<vfL¥> = N<</,*(l) ( 6 . 10)

We define the average force on a particular atom by

( 6 . 11 )

and thus the quantity ¥ *L¥ ) becomes

NJ  d ( l ) f ( l ) ^ * ( l ) | ^ - 7 ^ -  -i<F ! , 1 >--iPi . 3̂ 9
0 ( 1 ) ( 6 . 12)
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Forming (ф ,|‘Ь ф )/(ф * Ф ) and varying with respect to ф*, we find the 
eigenvalue equation for ф as

-iPi . Э 
M э?х -i< F l, 1 >" Ф{ 1)

= X ^(1) + (N- 1) ф(2) (6.13)

This is the fundamental equation of the present method.

6, 2. Solution for fluid and connection with Vlasov equation

We note first that the one- and two-particle densities pW and p(2> dis
cussed in Part I are given in the canonical ensemble by

P(1)(?1)= f ( l ) (6. 14)  

P (2)(?1? 2) = f ( l ,  2)/фв(р 1 )фв(р2) (6. 15)

where is the Maxwell-Boltzmann distribution

/
: (27Г MkBT) 2 exp 'V 2Mk „Т (6. 16)

In a fluid, the one-particle density P ^  is of course independent of 
position, p(2) oc g(r1 r 2) depends only on | - ? 2 | and ( F p  О  vanishes,
because of homogeneity. Hence the basic eigenvalue equation reduces to

-iPl Эф 
M 9?! Хфч- X p J dp2dr2 J (^„(^Jgdrj - r2 |) Ф (r2 ) dr2 (6. 17)

By Fourier transform, or noting that we can solve (6. 17) using functions 
of the form

Ф(?р) = e ‘ -r y(p) (6. 18)

where к is an arbitrary vector, we find

r l 1 "  •
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To cast this into a recognizable form, we transform (using velocity 
v rather than momentum p for convenience), from y(v) to x(v) defined by

y(v) =X (v) h(k)
*„(?) " l + dv'x(v') ( 6 . 20 )

where we have replaced g(ri2 ) - l  by its Fourier transform h(k). The 
quantity /dv' x (v ') is simply the direct correlation function c(k) and if we 
use the identity

-k - v 'в k BT k ‘ 3v (6 . 21 )

we finally obtain

k-vx + k BTS(k)k' dv'x(v') = Xx ( 6 . 22 )

The essential achievement is then summarized by noting that this equation 
has exactly the form of the linearized Vlasov equation, widely used in 
plasma theory (see, for example, Montgomery and Tidman [11]) with 
-k BT c(k) playing the part of an effective potential. This is an appealing 
result in the light of our earlier discussion of structure.

Actually, the Vlasov equation is a Boltzmann equation with however, 
no collision term, but including instead a self-consistent treatment of the 
intermolecular (effective) potential. Then, viewed as a kinetic equation, 
it can be used to calculate a distribution function in r and v which, when 
integrated over v will give us G(r,t) or, by Fourier transforming, S(k, to). 
The achievement of this calculation is that it determines S(k, to) in terms 
of S(k). Though the treatment is primitive we summarize the essential 
argument, due to Nelkin and Ranganathan [12], in Appendix 8, starting 
out from the Vlasov equation in customary Boltzmann equation form. We 
find that S(k, to) is given by

S(k, to) = 2ТГ1
2kgT

M ' 1( k ) +  2 c ( k ) x V dt c(k)x7r2 e

where

u_ I M 
к \j 2k gT (6. 23)

This expression, inserting S(k) and c(k) from experiment or, say, 
for hard spheres from Percus-Yevick theory, has the correct general 
features, as shown schematically in F ig.13. The side peaks show the 
sound propagation and have finite breadth. It is clearly too early to say 
whether this method can be made fully quantitative but it represents a 
promising start on the problem.
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sM

CJ

FIG. 13. Schematic form of S(k, u) against ш as calculated from the solution o f  the Vlasov equation.

7. LIQUID-GAS CRITICAL POINT

So far, we have been concerned mainly with liquids in the region of 
the triple point, where the liquid and solid densities are comparable. 
However, we shall turn briefly to discuss the region near the critical 
point, where liquid and gas densities become comparable. Though the 
arguments we gave earlier relating c(r) to ф(r) break down here, since 
the required inequality h2 < | c | is violated, the direct correlation function 
still plays a central role. We shall first discuss a phenomenological 
approach and later deal with the nature of the correlation functions.

7.1. Phenomenology

The most obvious definition of the critical point is that point at which 
the isotherm has a point of inflexion satisfying

Actually, another definition sometimes given involves the specific heat 
at constant volume C v , for from thermodynamics we can show that

the equality being satisfied at the critical point. We shall be concerned 
with the behaviour of c v at the critical point later.

From (7.1) it immediately follows that the isothermal compressibility 
K x and therefore S(0), diverge at the critical point. Usually, the form 
of KT is taken as

(7.1)

(7.2)

KT = (T -  T c) (7.3)
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measured at the critical density pc , and for insulating liquids у ~ 1 . 1 . As 
we shall see below, this is near to the value of a van der Waals fluid.
Also, we have that the difference between liquid and gas densities is given 
by

Pliq '  Pgas - T£ ) (7.4)

ß takes the values 0. 35±0. 02 for insulating fluids from the available data.
To understand these forms, let us start from the van der Waals 

equation of state. We shall see, in fact, that the predictions of this 
equation are valid whenever we can make a Taylor expansion of the 
equation of state round the critical point.

The considerations of the van der Waals equation are elementary and 
we shall only note that, rewriting

JP__ = P a p2
kBT 1 -bp к BT (1.5)

in terms of the reduced quantities p* = p /pc , e tc ., we find, using condition 
(7. 1 ) to determine pc , pc and Tc ,

jfc Q Ф Q 2p _ Bp 3p
T* ” 3 - p* ' T* (7.6)

We can now find the critical exponents by expanding about the critical 
point and then, with Z!p = p - pc , etc. , we find

Др = а1ДТ + Ь1ДТДр +d(Ap)3 + . . . (7.7)

Though ai, b j and d can be determined, of course, from the van der Waals 
equation of state, the exponents у and ß of (7.3) and (7.4) do not depend 
on them, but only on the gross assumption that we can Taylor expand the 
equation of state round the critical point.

Now it follows from (7. 7) that

blAT + d(Ap)2~ f £ - - ^ g L  (7.8

and both quantities on the right-hand side -» 0 as T -> Tc . Hence 
Др ос (ДТ) i , and ß = \ in this theory. This is in conflict with the ex
perimental value ß = 0. 35 + 0. 02 referred to above. However, for liquid 
metals, where the forces are longer range there is tentative evidence 
that ß~0 .45 . This would be as one would expect, for a van der Waals 
theory is correct as the range of the forces becomes very great.

The conclusion seems to be that ß depends on the range of the forces 
and the above Taylor expansion does not work for insulating fluids.

We can immediately calculate ( Эр/Эр) T from (7. 7) and we find

~Ь2ДТ+ ЗЭ(Др)2
T

(7.9)
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But since we have shown that b1AT + d( До) -* 0 at T —► Tc we may write, 
at the critical density pc ,

2

constant (7,10)

giving the exponent 7 = 1 in reasonable agreement with experiment.
We turn next to enquire how the correlation functions behave in the 

neighbourhood of the critical point.

7.2. Ornstein-Zernike theory

The old argument of Ornstein and Zernike as to the form of h(r) near 
Tc went essentially as follows. From the definition of c(r) we have

and we expand h(r') in a Taylor series about the point r. The first term 
h(r) gives a contribution h(r)p J c(r)dr to the convolution in (7. 1 1 ), the

I -> -> |2term involving grad h integrates to zero, while the term in | r - r 1 | 
evidently gives a contribution

constant (7.12)

We then find, since there is no reason why f  c r 2d? should vanish, 
that, provided c(r) is short range compared with h(r),

= const 1 - c(0) h (7.13)

But, in fact S(0) = [1 - c(O)]'1 , and hence at the critical point, if we
write

V̂ h = q2h (7.14)

q—*0. The solution of (7. 14) decaying at infinity is evidently

h = const. e (7.15)r

and hence, at Tc
, const h = -------- (7.16)r
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But

S(0) = 1 + p / h(r)dr (7.17)

and it is clear that S(0) then diverges because of the r 1 correlations. 
Obviously from (7. 15)

h(k) = const 
k2 + q2 (7.18)

and hence, S(k) ~ l /k 2 at small к as T — >TC .
This argument is perhaps not particularly convincing, though it is 

internally consistent because it is readily verified that c(r) is indeed 
short range compared with h(r), from (7. 15). However, a recent 
important paper by Choy and Mayer [13] has obtained essentially the 
same result from the force-equation (1. 25), by arguing about the form 
of the three-body correlation function near Tc . Their lengthy argument, 
to which the reader is referred, leads to a factorization of p(i+m\ £ + m) 
into p e and pm, the result being

P ' ( £  +  m )  - p' ' ( i ) p '  (m)

Гй (Чал 1Эр Ц) Эр(т) (т )
. Эр 8 L эр J

A (fi + m)

( f m ) 'II
y=l k = £ + 1

h^ ) : ßyk’ -H k TD
(7. 19)

If we use the special case

(3) (2)p ( r i r 2 r 3 ) - p  P  (r12)

x  (2)
- i  2 (  Эр ( f !2 )
■ 2p V Эр yß h(r13)+ h(r.23) (7.20)

we regain the Ornstein-Zernike result from the force equation.

7.3. Specific heat at constant volume

Finally, we note that an interesting result for Cv can be obtained by 
combining our fluctuation result (3.24) with (7. 19). Then it proves 
possible, near the critical point, to rewrite Cv entirely in terms of 
thermodynamic quantities (compare Choy and Mayer, 1967; Botch and 
Fixman [14]) and the following result is obtained

Cv
Э2(РЗП2 
эр dß f

7ГР3Р
Э(рЗ)
. Эр ,

2

(7 .2 1 )
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where D is given by

4л-p Dq = S(0) (7. 22)

q"1 being the range of the Ornstein-Zernike result (7. 15) for h(r).
It then follows that if S(0) diverges as (T - Tc )~У , we may write, for 

the specific heat,

i (3 y -4 )CV~ ( T - T c) (7.23)

It will be seen that unless 4/3, Cv would tend to zero at Tc which is 
clearly non-physical. With the van der Waals value 7 = 1 we find a 
divergence given by

CV~ ( T - T c)4  (7.24)

This is an interesting result and further work, both experimental and 
theoretical, is called for to substantiate it or otherwise.

A much more sophisticated discussion of critical phenomena is 
given by Dr. Thomas. However, we refer the interested reader to an 
important paper by Tisza (1951) for a deeper discussion of the critical 
point.

8 . QUANTAL FLUIDS

We shall conclude the course with a brief discussion of the quantal 
fluids and mainly helium four in its ground state. We shall see that the 
same methods we have employed for classical fluids have a good deal of 
relevance.

The theory of Landau was based on the idea of well-defined elementary 
excitations which were phonon-like for small к and of a more complicated 
(roton) character at larger k. This description was made precise by 
Feynman whose work we focus on first.

As shown in Appendix 9, we can express the Hamiltonian of a non- 
viscous compressible fluid approximately in the form

H =
к

p-*p̂ + L к к
2  ̂up -*p_> к к kJ ( 8 . 1 )

where the р̂ > are the density fluctuations we introduced earlier and 
Wk = ck, where c is the velocity of sound. Thus, we have reduced the 
problem to independent oscillators. Now as we have seen the structure 
factor S(k) is essentially the expectation value of N"1 and since the
average values of kinetic and potential energies are equal, from the virial 
theorem, for a harmonic oscillator, we may write

M 2/ -1- \ ч
F c<pr p? > = <Ek> (8. 2)
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where <(Ek)> is the average energy of the oscillator representing sound of 
wave number k. When T = 0°K, all the oscillators are in their ground 
states and hence

)̂ - 2 ■ 2 lick

It then follows from (8. 2) and (8. 3) that

S(k) =< E k >  Rk
Me2 2Mc

(8.3)

(8.4)

This result has been shown by Gavoret and Nozieres [15] to be exact for 
sufficiently small k. Actually, using Lighthill's theorem (2.22) again, 
we obtain the exact asymptotic form of h(r) as

h(r) - f i

r4 (8.5)

The above result for the ground state structure factor is readily 
generalized to elevated temperatures for we then have that the probability 
of finding the oscillator representing phonons of wave number к in its 
n-th excited state is proportional to exp(-En/k BT) and then it follows 
straightforwardly that

hk 1
S(k)= 2^ COth 2 ßhck

=  (ßMc^) А +2,-1 , . ^ 1 к2+ .
12М ( 8 . 6 )

Here ß = (kgT)"1 and as k"*0 we find

S(0)=p0kBTKT (8.7)

which is the result of fluctuation theory again. It should be noted from 
(2. 5) that the term linear in к has disappeared from the expansion (8. 5) 
valid at elevated temperatures. 8

8, 1. Form of S(k,u) for ground state of 4He

Since the above model is one of independent phonons, we expect that 
S(k,u) will show a 6 function behaviour and we may write

S(k,w) = S(k)6(u-ck) (8. 8)

which satisfies /S(k, u)du = S(k), as it must. Earlier, we derived moment 
theorems in classical theory and the quantum mechanical first-moment 
theorem which we state below includes the classical second-moment result,
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when combined with the requirement of detailed balance, namely,

S(k, u) = e"81“  S(k,-u)

The moment theorem is then

(8.9)

Г  hk2J “3(к,̂ = — (8 . Ю)

and substituting into (8.9) we regain the result (8.4) for S(k).
However, the above argument can now be generalized away from the 

long-wave limit if we assume that elementary excitations with a more 
general dispersion relation и = u (k) exist.

8,2, Use of structure data to determine u(k) and form of ground state 
wave function

Ideally we, of course, wish to calculate g(r), S(k), etc. , from first 
principles given only the interaction ф{r). However, in the absence of 
such calculations we can gain insight into the problem using the measured 
structure factor S(k). First we shall get an approximation to u(k) from 
S(k) and secondly we shall consider the ground state many-body wave 
function.

To get co(k), we simply generalize (8. 8) away from small к by writing

S(k, u) = S(k) 6 (u-u(k)) ( 8 . 11 )

when we find from (8. 10 )

w(k) = fik2
2MS(k) ( 8 . 12)

Using S(k) having the form shown in Fig. 14, we find all the features of the 
Landau excitation spectrum, though the results are not quantitative.

However, we can go further, and obtain the ground state wave function 
if we assume for the boson fluid that

* (?l • • • ) = П
i <J

iu (rji) e (8.13)

If we form and hence find the distribution functions, it can be seen 
that there is a complete analogy with classical statistical mechanics, and 
the approximate theories of structure we discussed earlier are 
immediately applicable, with -ф(г)/квТ in the classical theory replaced 
by u(r). In particular at large r, since c (r )— ф(г)/квТ we have that u(r)
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behaves as c(r) asymptotically. But we have

c(k) = S(k) - 1 
S(k)

- 1
S ( k )

as к -*■ 0

- 2Mc 
bk at small к

Hence by Fourier transform

c(r) ~u(r) Me -2
ж2ра r

(8.14)

(8.15)

The correlations are seen then, in the wave function (8.13), to be of very 
long range.

FIG. 14. Experimental structure factor for 4He at 1.06° К (points). Line through origin represents Feynman 
result 8 .4 . Full line is Percus-Yevick solution for hard spheres (diameter o f  hard spheres is 2 .6Ä , tj o f 
Eq. (2. 58) is 0. 20).

FIG. 15. Two-body correlation function u(r) in wave function (8.13) I = 1 is the Abe approximation. 
u0 is simply £ng(r).
ut is the first step in iterative solution o f the Bom-Green equation using u0 as the starting point. 
Other curves are for £ <  1.
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If we use the experimental S(k) we can in principle obtain u(r) for all r. 
Thus, using the Abe approximation (2. 31), which reads in this case

u(r) - In g(r) = h(r) - c(r) (8.16)

we can find u(r) from the experimental data. The result, first obtained by 
Wu and Feenberg [16] is shown in Fig. 15. The function becomes strongly 
negative inside the core, as is to be expected. Actually (8 . 16) can be 
written explicitly in terms of S(k) as

u(r) = In g(r) - 1
8 7T3p

[S(k) - l ]2 -ii?r 
1 + ?(S(k) - 1] 6 d£ (8.17)

with ? = 1. The factor f  was introduced by Wu and Feenberg to facilitate 
comparison with their numerical solution of the Born-Green equation, also 
shown in Fig. 15. Actually, the introduction of f  1 spoils the asymptotic 
result (8.15) however.

The conclusion is that the approximate theories lead to two-particle 
correlation functions u(r) in fair agreement with one another. These can 
then be used to calculate the ground state energy, since it is readily 
verified for the wave function (8. 13) that the mean kinetic energy <(t )> is 
given by

<T > = f^ /g U r J u U D d ?  (8.18)

and the mean potential energy (cf. e q .(l. 18)) is

J g(r )<Mr )dr (8.19)

In this way, Wu and Feenberg obtained reasonably satisfactory results for 
the ground state energy and we can conclude that we have a very useful 
approximation now available to the true ground state wave function for 4He. 
For further discussion of this problem, the reader should refer to very 
recent work by Chester and Reatto [17].

8.3. Preliminary remarks on the structure of 3He

Much less work has been done on the structure of 3He. We want 
only to emphasize here that 3He is a Fermi liquid and we expect the 
sharp Fermi surface to affect the structure.

To illustrate this, we use the pair function g(r) for free fermions 
derived in Appendix 5 to write

q  f  j i ( k f r ) ] 2
2 1  kfr Jg(r) = 1 (8. 20)
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which is, of course, the 'Fermi hole', with

sin x - x cos x ,,
Ji(x) = ------- p -----------

and kf the Fermi wave number. We see immediately from (8. 20) and 
(8. 2 1 ) that at large r

h(r) cos i kfr
r»4 ( 8 . 22)

We rewrite this as

h(r) 1 + cos 2kfr (8. 23)

and we recognize two distinct contributions in (8. 23), one (1 /r4) from 
small k, and the other from the point 2kf. This is quite explicitly 
demonstrated if we calculate the structure factor from (8 . 20), for we 
'find

S ( k ) = f for к § 2kf

= 1 for к > 2kf
(8. 24)

4
The discontinuity in S"(k) at 2kf is responsible for the term (cos2k fr)/r  
in (8.23) while the term linear in к in (8.24) leads to the term 1 /r4 with 
the velocity of sound c in the Feynman theory of 4He replaced by 
essentially the Fermi velocity.

Needless to say, (8. 24) is a bad approximation for 3He because of 
the neglect of the hard core. But all the evidence we have (particularly the 
success of Fermi liquid theory) points to the fact that in interacting fluid 
3He the Fermi surface is still sharp. We expect then the non-analyticity 
at 2kf to remain and the structure factor in 3He to oscillate out to much 
larger distances than in 4He. It will be of considerable interest to see if 
an X-ray experiment on 3He can reveal the pathology at 2kf , but clearly 
high accuracy will be required.

A C K N O W L E D G E M E N T S

The author wishes to thank especially Dr. T. Gaskell for his valuable 
comments and assistance in preparing the lectures on approximate, 
theories of structure [2, 18], Dr. J.E. Enderby for some comments on 
the lecture on critical phenomena and M r.R. Brown for assisting him in 
preparing a first draft of the lectures. Finally, he wishes to acknowledge 
that Drs.M.Nelkin and S. Ranganathan made their results available to him 
prior to publication.



152 MARCH

APPENDIX 1

Rushbrooke's form of the Born-Green equation

We wish to show here how to go from Eq. (2.4) to the form (2.! 
argument is due to Rushbrooke [19]. Write

G(t) = g(t) Эф It) U  
at t

and consider the integral

J = J  h(r23 )G(t)dr3

To make progress in getting J, consider a function e(t) given by

e(t) = f g ( x ) ^ p - d x

Then

and multiplying both sides by 9t/9tz = t / 1 we find

Эе
at, : G(t)

Defining Fourier transforms by

ik-cG(k) = p G(t)e dt etc

we find from (A 1.4)

Now

G(k) = -ikz e(k)

h(r) = , о L a -  / h (k )e lk’ r dk( 2 7Г)3p ,

and hence from (А Г. 2) we have 

J =
W n l

. The

(A 1.1)

(A1.2)

(A 1.3)

(A 1.4)

(A 1.5)

(A 1.6)

(A 1.7)

(A 1 .8 )
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After some manipulation and use of (AI. 6) we obtain

J = ^ ^ 2/d k h (k )k z?(k)eikzs (A 1.9)

where s = | r2 - r̂ | and hence

h(kM k)elk‘S (A 1.10)

Hence we have

ln g(s) + k^T = (2 )̂3 kBT pf Ь(к)е(к)е1^ 8 + constant (A l . l l )

Now reverse the Fourier transform argument and put E(t) = ( - l /k BT)e (t). 
We then find

ln g(s) + = P /  E( I r - s  I )h(r)dr + constant (A 1.12)к в 1 к в 1 J

The requirement that the left-hand side shall tend to zero as r -» oo shows 
that we can choose the constant in (A 1.12) as zero if we put a = oo in (A 1.3). 
Hence we have the desired results (2. 5) and (2. 6).

APPEND IX 2

Exact relation between radial distribution function and equation of state 
for hard spheres

Suppose that the configurational partition function for N hard spheres, 
each of volume v, in a liquid of volume Г2 is Z(f2,v). Then, from a 
purely dimensional argument we find that if we expand the volumes of the 
liquid and the spheres by the same scale factor X , then

Z(Xf2, Xv) = XNZ(U,v) 

Then by Euler's theorem we find

n i + v f = NZ

(A 2. 1)

(A2.2)

or

a !n z  t a in z
ЭГ2 a in v ( A  2 .  3)
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But, quite generally we have

ptl _ Э ln Z 
kBT Э In Г2 (A 2.4)

and hence

Э ln Z _ pQ 
Э In v 'k BT (A 2. 5)

Arguing along lines proposed by Longuet-Higgins and Pople (1956), 
we now suppose the hard spheres, in some randomly chosen non
overlapping configuration, to increase in volume from v to v+dv. The 
chance that this expansion causes no two spheres to overlap is

Z[U, v + dv) 
Z(Q, v)

We may write this, by Taylor's theorem, in the form
, dv Э ln Z , dv i + —  — ------ = 1 +  —v Э In v v N p!T2

' квТ -
(A2. 6)

But the chance that two of the expanded spheres do overlap is 2gQf2 dR, 
where dR is the increase in radius and gQ = g(k). Thus,

or
1- 2g0 QdR

3
go " 2R

l _ d v

V
(
V k BT

” p
skBT n j

(A 2. 7)

(A 2. 8)

This is an exact result.

APPENDIX 3

Relations between time-dependent correlation functions

The choice of the origin of time cannot affect time-dependent 
correlation functions in a fluid and therefore we may write

<̂ x(n\'0)x(m̂ t) У - <̂ xn\r)x(m\t+ т)У (A3.1)

where denotes the nth derivative. Taylor expanding the right-hand 
side we then find

< х (п)(0 )х ( т Ь ) > = < х (п)( 0 Л ) >
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+T<xCn)(0)^m+1)(t) + x(n+1,(0 ) im)( t ) > + O(T2)

Thus we must have

< x(n) (0)xCm+1>(t) > = - < x<n+1> (0)x*m\t) >

Putting n = 1 and m = 2 we find

<x(0)x(t)>= -< x(0)x(t)>

and Eq. (4. 35) is a special case of this result.
It is worth noting the general results

<x(0)x(2m)(0 )> = 0

and

,  . „  (2m+l) . m ,  (m +l) , 2 .
<x(0)x (0) > = (-  1) <{x (0)} >

(A3. 2)

(A3. 3)

(A3.4)

(A 3.5)

(A3. 6)

APPENDIX 4

Sketch of derivation of correlation function expressions for the transport 
coefficients^

As with our discussion of self-diffusion, we begin with the macro
scopic equations, which are the equations of hydrodynamics in linearized 
form.

A4. 1. Hydrodynamic equations in к space

L etp (?t) be the average density with g _and E as the corresponding 
momentum and energy density. Then since gf = Mpv, where v is the 
velocity we have

(i) Equation of continuity

divg _ Эр(гt) 
M " at (A4. 1)

1 Study o f  this A p p e n d ix  is пел re q u ire d  for th e  understanding  o f  the rest o f  th e  co u r se . T h e  m a te r ia l 
in  it is 'h ig h b ro w ' c o m p a r e d  w ith  th e  o th er le c tu re s , and th e  purpose o f  this sk etch  is to  try to  e x p o se  the 
m a in  fea tu res  o f  th e  arg u m en t. W e f o l lo w  v ery  c lo s e ly  the w ork  o f  F e ld e rh o f and O p p e n h e im  [ 2 0 ] .
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(ii) Navier-Stokes equation

—  d iv f  (rt) = - Î Эр\ 2 _
4 i 3 П+ ?

Ы  p оО.
(£) ,л*0

V“ div g

(A4.2)

where the subscript zero denotes equilibrium values and r) and ? are, 
respectively, the shear and bulk viscosities:

(iii) Energy density equation

at E (r t) = К Q f )  V2 p-  5 oJ_E div I  + к  ( - Щ  V2E
■̂dpo p Mо

where К is the thermal conductivity.
If we separate g into two parts d and c defined by

d = div g(r), c(r) = curl g
—>

and go into к space then Eqs (A4. 1-3) become

(A4.3)

(A4.4)

Эрк -
at M

ad-.__к
a t

(A4.5)

(A4. 6)

and

-k ,< 4
P -

k

E0 + p 
P0M

d _ -k 2K
к

ЭТ
ЭЕ E.

о'ft

\

(A4.7)

where the subscript к denotes the Fourier components of the appropriate 
variable.

These equations may be summarized as the matrix equation

From the continuity equation (A4. 5) we see immediately that the matrix M 
is such that

(A4. 9)
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The only other feature we wish to stress is that, from (A4.7), Mg2 constant 
as Й -»■ 0, whereas all other coefficients in the last two rows of M tend to 
zero as k2 in the long wavelength limit.

If we could calculate M from microscopic equations, then clearly we 
have expressions for the transport coefficients. The resulting correlation 
function expressions appear to stem from the works of Kirkwood [21] and 
Green [22], though we follow Kubo's ideas in this presentation.

We notice that c has disappeared from the equations, and the easiest 
transport coefficient to calculate after D is n which, essentially, can be 
got from a macroscopic diffusion-like equation (c f. Eq. (A4.40)).

A4.2. Solution for perturbed distribution function

Without the necessity of enquiring into the physical mechanism, we 
suppose some 'forces' are switched on, which couple to a particular 
dynamical variable, Aa say. It is only the 'response' of the system to 
a weak force which will concern us. The details of the 'probe' used are 
therefore not involved at all in the final results.

Let us denote the phase space co-ordinates by X and then we write 
the Hamiltonian in the presence of the 'force' as

We proceed to calculate the change in the distribution function f to first 
order in F from the Liouville equation (see Eq.(6.1)). Assuming that 
at t = - oo the forces vanish and that the system is described by a canonical 
ensemble (with p = p ц ), we find

о

Ap(X,t) = p(Xt) - p equU (X)

(A4.11)

where L is the Liouville operator L = i[m, ], the symbol [ ,] denoting 
Poisson brackets.

We now Fourier transform and define

(A4. 12)
-oo

and

(A 4 . 13)
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where <( )>д denotes an average over the ensemble Ap (xt) then the
result for the first order change in the observables is

Aa(k ,u )= ^  x aß (k,u)Fp(k,u) (A4. 14)
в

—>
where xa0(k,u), which is generally called the susceptibility, is given by

00

Xag = J ' e1UJt dt J Фа6(г^ )е"1к,Г d?  (A4.15)
0

The quantity ф is defined in terms of the observables by

</>aß( r - t - t ' )  = <[Aß (X (t ');? '), Aa (X(t);?)]> (A4.16)

Taking the Fourier transform of ф̂  , say ф, defined by

0(r> t)e lkt (A4.17)

then it is easy to show that for a canonical ensemble at temperature T

^ ß ^ t)= k ^ <A^ t ) ) A ß .t (X)>, k fO  (A4.18)

Hence, it may be shown that the susceptibility x at zero frequency is given 
by

Xaß(k,°)= j ^ < A ak (X)A0i. k (X)>, kf=0 (A4.19)

A4.3. Connection with macroscopic equations

This response theory is, of course, microscopic, representing a 
first-order perturbation solution of the Liouville equation.

We wish now to make contact with the hydrodynamic equations. As 
a starting point, take the time dependence of the 'forces' to be

= 0

where has a positive imaginary part. 
(4.14) that

for t S 0
(A4. 20)

for t> 0

Then we find immediately from

A a(k, w) ■I Xcte(MFB(k)
i(co-u0) (A 4 . 21)
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From (A4.12), it follows that

< A J X ) \ l = 0 = ^ x aß(ku0 )Fß (k) (A4. 22)

Let us define the quantity cr^ku) by

aa0(k,w)
Х а 0 ( к , и ) - х а 0 ( к , ° )

(A4. 23)

Then the behaviour for t>0 is described by
—*■

Х а 0 ( к , ш ) - Х а 0 ( к ,  u 0 )
^(k,w) i(cj-u0) F0 (k) (A4. 24)

and then, from (A4.23), it follows that the right-hand side of (A4.24) tends
t0 Z  CTa0(k,u)Fß (k) as u0 0.

a

The essential point to stress is that the 'forces' can now be eliminated 
between (A4.22) and (A4. 24). We then find

[Aa(k,u)l + = £
У

Х а 0 ( к , Ц ) - Х а й ( к , Ц о )

i(u -w0) X„* (k, и ) Aл6у v (r N у к■та>дд=о
(A4.25)

At this stage we connect directly with macroscopic theory by supposing 
that the variables Aa (X(t); r) satisfy (see Eq.(A4.8)):

3AaiT(X(t))
at ■^M a0(k )Ä ^ 5 w )

s
(A4. 26)

If we solve this as an initial value problem, we find

Aa£(X(t)) = ^  {exp [-M(k)t]}aB А0? (Х) (A4. 27)
0

where the exponential operator is defined by its series expansion.

M ore  g e n e r a lly ,  it is th e  F ourier transform  o f  th e  re la x a t io n  fu n c t io n  0 a ß (k t ) .
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If we assume that macroscopic and microscopic results can be com
pared, then we find from (A4. 25) and (A4. 27)

I X „ f l ( k , U ) - X a B ( k ,U n ) -1 £
i ( W -W 0 ) '  X By ^ - U 0>

J + M(I?) ay
(A4. 28)

Let u)0 -» 0 when we find the solution as

X _(к,ы) = aß = Л  —i— < L - xu +
M(k)

iu + M(k) -
X „(к, 0)aß

ay
(A4. 29)

To pass to macroscopic theory, we need only consider the small к 
behaviour of M. When M(k) has the form

M(k) = к N(k) (A4. 30)

where N(k) = N(0) as к -* 0 (see remarks after (A4.9)), then we find the 
matrix N(0) as

lim lim
и-*- 0 Ш-* 0

iu
k 2

X a ß ( k , w ) ) {N (0)} lim
L  “ i' к- о7

V (k’ 0) (A4.31)

However, (A4. 30) is not quite general enough for the hydrodynamics 
equations because not all the elements of the matrix a satisfy (A4. 30) 
as к -* 0, as we have seen.

A4.4. Shear viscosity

As remarked earlier, c is not coupled with the other physical variables, 
and we can therefore find an expression for the shear viscosity rather 
readily.

We have, as defined earlier

V  -  -  -  -d->= ) ik-p exp(-ik-r. )
к Z_, j i

c->= ) ikXp̂ . exp (-ik • r̂ ) 
j

(A4. 32)
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From isotropy arguments we can write

CTgigj C6y " ^ i )  CTt(k2lJ)+^ ^  CT{(k2lJ> (A4. 33)

where i and j refer to Cartesian components and where at and crj are de
fined by this equation. There is a similar result for Xg.g. , and we also 
have, from (A4.19) the result 1 1

X t(k20) = x t(k20) = P0M 

where p0 =N/f2. It follows that

(A4. 34)

0 (* .«) = (к »бц -k lk j)at(k2U) (A4. 35)

CTdd(£,u ) = k2o£ (k2u) (A4. 36)

with similar expressions for x

Мс.с. (к) = A(k2) бу (A4.37)

follows, where X is defined by this equation. It is related to at by

2 P0M 
CTt ^ ' U)= - iU + X(k2) (A4. 38)

Since c-£ becomes an integral of the motion as k -* 0, the first term in the 
expansion of X(k2) in powers of k2 must vanish and we can write

х (к2)=р0м  k2+--- (A4. 39)

where this defines 77. Using only the first term of this expansion, we find 
the macroscopic equation for c as

p0M f  = pV2̂ (A4.40)

We find then, the correlation function expression for the shear viscosity 
as

77 = lim lim -r% Re ar(k, w) 
ш-*0 k-»0 к

This can be transformed into

(A4.41)

Г) - k T f f  <Txy(r,t)Txy(00)>dr dt
B 0

(A4.42)
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where тху is an off-diagonal element of the stress tensor, but we shall 
not go into further details here.

A4.5. Other hydrodynamic equations

We wish finally to sketch the derivation of the other hydrodynamic 
equations for the observables p~, d and Ё, using arguments similar to 
those used above for the shear viscosity.

From the definitions of the density fluctuations pj> and of dj- some 
relations follow between the elements of the susceptibility matrix у Ik, u). 
Thus, from Hamilton's equations we find

Mp^=-d_ (A4.43)
к к

and hence for the variables p_>, сЦ and E-+ the matrix x (?, <*>) takes the 
following form k k k

X(k, u)

Xpp (k,w) -iwMx pp (k, u)

iu M x pp(k, u) k2pQ M + co2M 2x pp (k, w) 

XpE(k,u) - iu M x pE(k,w)

XpE(k,w)

iuMx _ (k, u)pE

X EE(kJ

(A4.44)

where use has been made of symmetry relations, of the fact that for 
reasons of isotropy x pp(&> u) and X pE(k, u) can only depend on the scalar 
k2 and on the vanishing of the correlation functions as the time interval 
tends to infinity.

Now we have that

,r* . V  f  M к ЛХ й8(к, u)= > ( ----------zrzr- )
Lj \ -iu + M(k) Уay - aß(к, 0) (A4.45)

for small к and и and any element of x(k, u) must have the form

Xae(k,u)
2q?u +qiu +qn

( u - i / j J t u  - V 2 ) ( w  - v 3 )
(A4.46)

where the к dependence of the q's and p's is implicit. Thus we can write 
more explicitly
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x  pE

X  ЕЕ

(£,u)

(k,u)

bĵ u + ib„
(u - )(u -v2 )(u - у3 )

2
ih2u +h1u -ih 0 

(u - ух )(u - у2 )(u - у3 )

(A4.47)

where ax = -p0k /М  and the coefficients a0 . . .  h2 are real.
After some calculation, we obtain the matrix M in the form

M ( k ) : M aiho

-bft

bnb'0 D1

M'

ь 1 - a ih i
al h2

Max

M aobi a ibo
al h 2

0

a l

(A4.48)

It is easily verified that the matrix -iM has the eigenvalues v± y2 Уз . The 
first line of this yields the continuity equation (A4.1). The_second and 
third lines contain the coefficients of the equations for div g and E 
respectively.

In order to determine the lowest powers of k2 in the series expansions 
of these coefficients, we invoke the fact that p-., cU and become integrals 
of the motion as k-* 0 .

Then it can be shown that the matrix M takes the form for small к

0 М"1 0

М(к) = к2 M2! к2 М22 к2 м 23

к2 м з1 М 32 1сосо'

(A4.49)

just as required from the macroscopic equations, as discussed following 
(A4.9).

The last step involves showing that although the coefficients M21 , M22 
etc. in (A4.49) are rather complicated when written in terms of ao, b0 , ho 
e tc ., they may be expressed in terms of small (k,u) limits of oa&, just as 
with the shear viscosity 17 in (A4.41). For example, the thermal conduc
tivity К may be written as

1 -*К =  — lim lim -jiR e <7 (к, и)
1 w-»0 к-» 0 к

(A4.50)
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-■* por in terms to the total energy current J (t),

K = i r h n  / < Jx (t)Jx (°)>  dt (A4.51)
в о

Thus it proves possible to derive the linearized equations of hydrodynamics 
together with correlation function expressions for the transport coefficients 
in a rather fundamental way. Unfortunately, any exact calculations from 
such formal expressions are, at present, beyond the power of man, but 
this represents a worthwhile goal in the theory of liquids.

APPENDIX 5

Density matrices and two-body correlation function for free fermions * i

If we have a single-particle Schrödinger equation with eigenvalues Ej 
and eigenfunctions then the canonical or Bloch density matrix C 
defined by

C(r, rQ , ß) - (r0)e ÖEl ; ß = [ A  5. 1)
all i B

is such that the Hamiltonian Hp> acting on C(r\ r , (3) yields

Z u ~|3E-
Ej'/'"?!?) (r̂ > )e ‘ . This is clearly the same as -ЭС/ЭЗ and hence C

i
satisfies the Bloch equation

H7C = - ^  (A5.2)

It is now clear that for free particles, with Hr = this is identical
with the diffusion Eq. (5. 1) provided we replace ß /2 by Dt. Also, as 
ß -*• 0, it follows from (A 5. 1) that

C(r, fj , 0) = (//f (r)^ .(r0)
1

= 6 ( r - ? 0) (A 5.3)

which is the completeness theorem for eigenfunctions. Thus, the required 
boundary condition (5.2) is also obeyed.
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4 2Hence, putting ф1 = ( l / t l 4)exp ik-r, Е = к /2 in (А5. 1) and integrating 
over к we find

8k
-> _ .  1 / - i k - r - r .  2 ,C(r, r0, ß) = e 0 e dk

_ 1 28 
(2 7Tß)3$ e (A5.4)

Replacing ß/ 2 by Dt leads immediately to (5.4) as required. 
The Dirac density matrix

C

- I
p(r, rQ>E)= > ^ ( г )^ ( г 0) (A 5. 5)

is readily shown to be related to C by

C(r ,?Q,ß) = ß j  p(?,?0 ,E)e"SEdE
о

(A5.6)

and hence, from (A 5. 6) and (A 5.5), or by direct calculation, we find

p (r ,r0,E ) = ^
kf W r - ? 0|'

k f lr - r ol
(A5.7)

where Ef is the Fermi energy and kf the Fermi wave number. For a 
determinant of plane waves, we can immediately construct the two- 
particle density matrix and we find on the diagonal

-* -* 2 1
P2lr - ro^= P - 2 P (r ,  r 0)

- 1
j ^ f

2 . I —> I .= P g( I г - r0 I) (A5.8)

where g(r) is the 'Fermi hole'. This is the result required in subsection 
8. 3.
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APPENDIX 6

Velocity correlation function for Brownian motion and other cases

It is obvious that by neutron scattering we can gain some knowledge 
of individual atomic motion, unlike the information we can get from the 
study of bulk properties. A single atom moves, of course, in a very 
complex path and we expect to describe its motion by statistical 
considerations.

A model which is sometimes valuable is that used for Brownian 
motion. Here, for a heavy particle suspended in a fluid, we write

M r + M fr = F [t )  (A 6. 1)

The term M ? r is a frictional or damping term and F(t) is a rapidly varying 
stochastic force. For the velocity correlation function one obtains

<v(0)-v(t)> = ̂ j  e'£t, t>0 (A6. 2)

The friction constant £ is related to the macroscopic self-diffusion constant 
through

D = ! / < v ( ° K ( t , > d t = ^  (A6.3)
о

This is the result we shall use in obtaining the self-diffusion constant for 
hard spheres at high density below.

Limits of validity:

We can say that while (A 6. 1) proves to give an adequate description 
of Brownian motion, it is not known whether it can describe the motion of 
a single atom.

When we use Langevin's equation (A6. 1) the assumptions are implicit 
that the correlated force is proportional to the velocity of the particle and 
that the fluctuating force varies much more rapidly than the correlated one. 
This will be valid for a heavy particle moving in a medium of light atoms.

It is of interest that (A 6. 2) can be obtained, quite properly, by studying 
the motion of a single heavy atom bound in a harmonic lattice (Rubin 
[23, 24]). On the other hand, for equal masses, assuming only nearest 
neighbour interactions.

<v(0)'v(t)> = ^ J 0(u0 t), (A 6.4)

where J0 is the zero order Bessel function.
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For a large mass, Rubin showed that the same correlation functions 
are obtained as are given by Langevin1 s equation for a harmonic oscillator

•• • 2
M r + MS r + Mu0r = F(t) (A 6.5)

where Mu2r is the harmonic restoring force. The velocity correlation 
function is in this case

<v(0)-v(t)> = ^ ( c o s  u 1 1 - '2~  sin u-l t )  e (A6. 6)

where w2 = и 2 - ? 2/4 .

Connection with Liouville's equation

Sjolander has shown that one can get an approximate single-particle 
equation from Liouville's equation: namely

t

v(t)+ ^  J <K(t)-K(t')> v(t')df = iF (t) (A6.7)
о

where ^K(t) •K(t'))> is the correlation function for the actual force on the 
atom and is related to the friction constant ? by

? = <K(0)-K(t)>dt (A 6. 8)
о

F is a stochastic force which does not depend on the co-ordinates of the 
particle being considered.

If the velocity varies slowly over the relaxation time for the force- 
correlation function, then we regain the Langevin equation (A6. 1) with 
the friction term (A6. 8).

\

APPENDIX 7

Decay time of velocity correlation function for hard spheres

If px and p2 are the momenta of two colliding molecules, then the 
momentum gained by sphere 1 will be

Ap1= - (P j-7 -  P 2-1)1* (A 7. 1)
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where 1 is the unit vector in the direction 1 2. Consequently

-Pi ' APi = (P].-P2)Pi (A7.2)

where рх and p2 are the components of p̂  and p2 in the direction Г. The 
probability of sphere 1 experiencing such a collision per unit time is

- P2)^(P2) dP2/M (A7.3)

where ф is the chance of another molecule being within unit short distance 
of the first molecule and ф(р) is the Maxwell velocity distribution

ф(р) = ( 2 т г М к вТ ) ^ exp
2 -|

2MkBT (A7.4)

Ф is clearly related to ggt the value of g(r) at the hard sphere diameter 
R by

—>
We now multiply p1 •Ap1 by ф(р 1)d p a n d  integrate over px and p2 

(Pl - p2> 0), when we obtain

- l i m  <Р 1 - Д Р 1>
A r n A t

±_
' M Ф(Р1)Ф(Р)(Р1- P2) Px dpjdps

p -p  > оl 2

(A7. 6)

Using sum and difference variables we can perform the integration, when 
we find the result

- lim 
At-* о

< P l ' A P ; L >

At = 2 ф m
ж (A7. 7)

Thus we obtain finally the result (5. 20).

APPENDIX 8

Solution of linearized Vlasov equation for S(k,to)

We now change direction slightly and work from the Vlasov equation, 
having justified (to some extent) replacing the interaction by the direct
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correlation function. The Vlasov equation, which resembles the Boltz
mann equation, but which has no collision term in it, reads (see, for 
example, Montgomery and Tidman [11], Eq.(5.3))

9F , 3F p 
9t V’ 9r M dr2 d v2 Эфт?.

9r F(?2 . 9F 
'2' t ) -9v (A8.1)

for the single-particle function F(r,v,t) in the phase space, where 
ф12 = ф ( I x - x j ) .  Linearizing this by writing

F(r, v, t) = фв (v) + f(r, v, t) (A 8. 2)

we find

9f -» 9f p 9 , , , Г ,“*■ дфг? -*
1 Г +У '1 ?  = M W  ФВ(У) J dr2 dV2 V * >

Т Г Т  ФВ( У ) ^  J d?2 I p
(A 8. 3)

where

z(x2,t)= / f(x 2, v2, t) dv. (A 8. 4)

Taking the transform of this we find

-  -> -» -* <MV) -  -  -  -(ico - iK * v) f (K, v, и ) - ik * v p ф (К) z (К, и ) = f (К, v, 0) (A8,5)Kßi

where f(K, v, 0) is the appropriate initial condition. We put

f(K,v, 0) = ф̂  (v)S(K) (A8. 6)

Taking the z axis as the direction of К and replacing the interaction by 
the direct correlation function, we have

f(K, v, w ) =
S(K)<£B(v)
iu-iK zvz

iKzc(k) z(Ku )ф B (v)vz 
iu - iKzvz (A8. 7)

S(k, u) is given by the Fourier transform of G(rt) which, in turn is re
lated to the integral over velocities of f(r ,v , t). This, from (8.4), is
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simply z(r,t) and we find then

S(K) / liu - iK vz )_1 фв (v) ( )2 dv
Z(k, u) =

l + c(K) ( iu - iK v )  </>R(v)

X iKv„ dv 2квМг (A8. 8)

Taking the real part of z(k, ш) we then find the result (6. 22).

a p p e n d i x  9

Phonon Hamiltonian for fluid

In dealing with the irrotational motion of a non-viscous fluid, we shall 
find it convenient to use the velocity potential ф, the density p and the 
pressure p as variables. Let the equilibrium state be defined by values 
pq and p0 of the density and pressure.

We now use as a starting point for describing the fluid the Bernoulli 
equation

i= I (grad ф)2 + U (A9.1)

where U is the quantity together with the equation of continuity

p = div (p grad ф) (A 9. 2)

An equivalent description can be obtained by starting from a 
Lagrangian density given by

L = p [ф -?(grad ф) - W]

■P Ф - E k- Ep (A 9. 3)

Here, Ek is the kinetic energy density and E_ = p W is the potential

^  dp.
Рг

density. W is given by
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We see that
9 dWL = p (U- W) = p2 — = p - pQ , (A9.4)

using the explicit expressions given above for U and W. The Lagrangian 
density is seen then to be the deviation of the pressure from its equilibrium 
value.

p is the generalized momentum corresponding to the 'co-ordinate' ф , 
and hence we can construct the Hamiltonian density as

H = p ф - L

= j  p(grad ф ?  + pW (A9.5)

= Ek +Ep

In quantum theory, this expression becomes

H = -j grad ф ■ p grad ф + p W (A 9. 6)

We now write the equation of state as

P = f( P) = P0 +f'(P0KP - P0 ) + lf" (P 0HP - P0f  + • • • (A9. 7)

The velocity of sound c is given by

dp (A 9. 8)

2and in particular cQ = f'(p Q)

Now we expand U and W in Taylor series around pQ and we find

and Г (A 9. 9)

'o

Hence, for the leading terms H' in the Hamiltonian we have

'o
( A  9 ,  1 0 )
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At this stage we make a Fourier analysis of ф and use the density 
fluctuations р"к instead of p. Thus

and

v—I -ik*]
(r) = Cl )  q_e

4r к

_  - i  у  " ik,tP(r) = p0+Q 2̂

(A 9. 11)

(A 9. 12)

Since ф and p are real we have

q- t =q^ ’ p-t =f4
where the star denotes the Hermitian conjugate. 

The operators ф and p satisfy the relations

[ф(г), <H?')] = [P(r), P(r')] = 0

(A 9. 13)

(A 9. 14)

and

[p(r), ф(г')]=-г 6 ( r - r ') (A 9. 15)

These relations yield

[q-,  q ?  ] = I PT • P r  1 = 0к к к к

[ р_* ,  q _  ]  = т -  6кк, 
к к

Thus we find

тт, 1 V 2 / со N

к Lpo k ч л + и
| р- р -к -kJ

(А 9. 16) 

(А 9.17)

(А 9. 18)

If we introduce а^ and а̂ - by

(a +  aü*),2p к к -к piT & ^ i ( a *  -2c,
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these obey

[aiT’ a k’ l a k
=  0 (A9. 19)

and

■, a£. ] = uk k' (A 9. 20)

H1 then becomes

H z °ok a-»a_
к к

+ а а"' -> -»
к к № сок 2Nk+ ! (А9. 21)

where the quantities 2Nk, positive integers or zero, represent the number 
of phonons in state k. Thus, to this approximation, we have a system of 
non-interacting phonons.

Using (A9.2), we find to the same order of accuracy that

- i V  , . 2  ik .rp = Pon > q_,(-k ) e
‘ к

(A 9.22)

and

p = S i *  У p_eit7
m  к

(A9. 23)

Thus we obtain

V ' k p ° qir

and from (A9. 18) we have the result for the energy density

(A9.24)

H' 2 I  P 0 k 2

к

P - *  p -+  +  и "  Р-» P-*
к к к к к

(А9.25)

The desired result (8. 1) follows when we write the total energy as

H = Г2Н- = 1 Y - A
2 L  Nk"

. . * . 2 * 
P -  P - ,  +  kl» P_> ft* 
к к к к к.

(А9.26)
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LATTICE DYNAMICS

G. LEIBFRIED
INSTITUT FÜR THEORETISCHE PHYSIK, 
AACHEN, FEDERAL REPUBLIC OF GERMANY

Abstract

1. Introduction. 2. Dynamics o f a molecule. 3. Symmetry operations. 4. Symmetry operations 
and waves in infinite lattices. 5. Elastic theory. 6. Classical eigenoscillations and quantum states o f  a 
finite lattice. 7. Lattice Green's functions. 8. Models for potentials and coupling parameters.

1. INTRODUCTION

In this contribution we shall give an introduction into lattice dynamics. 
Starting point is the existence of a potential ф which depends on the co
ordinates of the atoms or ions forming the lattice. This is the adiabatic 
approximation introduced by Born and Oppenheimer wher ф is given by 
the energy of the electronic ground state where the nuclear co-ordinates 
are to be regarded as fixed parameters. We shall throughout remain 
within the frame of the "harmonic approximation" which only takes account 
of quadratic terms in the displacements from the static equilibrium 
conditions. Anharmonic effects are not discussed. Section 2 deals with 
the dynamics of an arbitrary molecule. The effects of translational and 
rotational invariance are discussed, and the procedure of resolving the 
equation of motion into oscillator motions is treated in a general way. A 
simple proof is given of the fact that a purely harmonic theory for three- 
dimensional arrangements is not consistent. In section 3, the influence 
of molecular symmetries is discussed in detail. The lattice symmetries 
are discussed in section 4 for an infinite lattice. It is shown there how 
harmonic motions can be derived easily by employing the lattice transla
tional symmetry. Only simple cubic Bravais lattices are discussed in 
detail. The reduction of coupling matrices for near neighbours, and the 
lattice waves in symmetrical directions are treated extensively, including 
dispersion curves and sound waves for small frequencies. The Brillouin 
zone is introduced. Section 5 deals with theory of elasticity, its derivation 
from lattice theory, and the calculation of elastic moduli from lattice data. 
In section 6, a finite crystal is treated by introducing a periodic boundary 
condition, and the quantum theory of the crystal is shortly discussed. The 
lattice and elastic spectra and the thermal energy are treated. Finally, 
as a simple example the scattering cross-sections for X-ray scattering 
are derived including the Debye-Waller factor and one-phonon cross- 
section. In section 7, lattice Green's functions are introduced. As a 
simple application the dynamical behaviour of an isotopic defect is treated. 
Section 8 contains a brief review of the methods used to obtain coupling 
matrices and dispersion curves. References to review articles and books 
are given at the end.

1 7 5
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2. DYNAMICS OF A MOLECULE

The atoms of the molecule will be labelled by the superscripts m, n 
etc. (m, n : 1, 2, . . . , N for an N-atomic molecule), the masses will be 
denoted by Mm , and the atomic positions by r m= (x™), where the three 
spatial indices i can be 1, 2, 3, or x, y, z (Fig. 1). The molecular, dynamics 
is mainly determined by the potential energy ф (. . r m . .). If, for the sake 
of simplicity, we assume the external forces to vanish then ф must be 
invariant under translations and rotations including improper rotations 
such as reflections and inversion. If we denote these operations by O:

where t is the translation and fi the matrix representing the rotation about 
an axis through the origin, we have

These two invariances correspond to homogeneity and isotropy of space; 
both together also guarantee rotational invariance for arbitrary rotational 
axes.

F I G . l .  A t o m ic  pos ition s  in a m o le c u le :  О  a ctu a l p os ition s  T 171, О e q u ilib r iu m  pos ition s  Rm , d isp la ce m e n ts  
from  e q u il ib r iu m  :” um  = "rm  -  Rm .

In classical dynamics the minimum of ф determines the equilibrium 
positions R m. They are not unique because dRm are equivalent equilibrium 
positions. Starting from one set of positions Rm we describe the molecular 
state by the displacements u mfrom equilibrium

к

Оф = ф (. . О '1 ? 111. . )  = ф ( .  , r m .)

О "1?  = - Г +  D 1г
( 2 . 1 )

X

( 2 . 2 )

where t is the time.
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In most cases it is sufficient to focus attention on small displacements. 
Consequently, we can expand ф in powers of the displacements and keep 
only the low-order terms in an approximate treatment:

<M. . R m + um. . . ) = ф(. . , R m. . .) +

• i l l » : « *
m , i n ,k

* i i  I E I  * Z r
m , i  n ,k  p , l  

where

+

classical equilibrium energy 

harmonic approximation (2.3)

anharmonic terms

A m n  
^  ik

a ^ R 1, ___ Йы)
ЭХ1? ЭХ,"

1 к

nm  
ki • etc. (2. За)

The first-order term vanishes because one starts from the minimum of 
ф . The second-order term determines the dynamics of small oscillations.

О

О

о
о

♦ nu
n

m

F IG .2 .  'F o r c e - *  o n  a tom  m  i f  o n ly  a tom  n is d is p la c e d .

This term alone is most widely used and called the harmonic approximation 
because it is equivalent to a set of 3N independent harmonic oscillators 
with various frequencies. The higher-order, anharmonic, terms destroy 
the independence and lead to interactions between the harmonic modes 
(frequency shift, damping, temperature dependence).

In the equation of motion in the harmonic approximation

м т й? - Щ Г = - 1 Ф7 <  (2-4)
n ,k

the coupling parameters ( c .p . ' s) of second order, Ф ik" , play the decisive 
role. Their meaning is obvious: - ф is the force on atom m in the i 
direction if atom n only is displaced by unit distance in the к direction 
while all other atoms remain in their equilibrium positions (or vice 
versa, depending on the symmetry in m ,i; n, к according to Eq.(2.3a)) 
(see (Fig. 2)). With respect to the spatial indices i, к the quantity фтп 
is a three-dimensional matrix, not necessarily symmetrical except for 
ф mm.
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Besides the symmetries (2. За) the c. p . ' s must obey additive relations 
which guarantee the invariances (2. 1). These can be obtained already 
from infinitesimal translations (t; infinitesimal) and proper rotations 
(STik = 6ik + uik with infinitesimal, anti-symmetrical uik = -u ki, Г2 = l+u ,
IT1 = 1 - u).. The most important relations can be, derived easily from the 
equation of motion. If the molecule in equilibrium as a whole is displaced 
(un = V) or rotated (un = uRn) no forces can arise and the right-hand side 
of Eq.(2.4) must vanish. Consequently, from translational invariance, 
we have

X « ■ »-X0 = ) фк™ = 0, for all m, k, i (2. 5)

(equivalent to the conservation of total momentum, ) Mmu™, in Eq. (2. 4)), 
and from rotational invariance m

X
n.k.l

>m" w,. X” = 0 orlk kl l ^  ф™Х", symmetrical in kl (2.6)

(equivalent to the conservation of total angular momentum, 2^MmF mXr m
m

MmRmX {Г", in (2.4).

The most general conditions (see Ref. [4]) are obtained from

Оф = ф (.. .  O-1? m. . . )  = 0 ( . . .R m +um- ? -и (Й т +ит ))=ф (...Й т  + ит . . . )

if we again expand about equilibrium, keep only linear terms in t and и 
for infinitesimal changes and compare terms with equal powers in u. 
Translational invariance connects only c.p . 's  of the same order, e.g. , 
for the third-order c. p. 1 s:

£  Ф Г  =0 (2.5a)
p

whereas rotational invariance connects orders different by 1 through the 
term u>um. Equation (2.6) is actually a relation between c. p . ' s of first 
and second order where the first-order terms vanish because we start 
from equilibrium. As an example, we may use the rotational connection 
between second- and third-order coefficients:

ф™п ĵl +  ̂u" ĵk + Ф™Р Xj*. symmetrical in i, j. (2. 6a) 
P
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In a purely harmonic theory where all c. p. 1 * s except those of second 
order would vanish Eq. (2 .6a)

*7к“ «п + * r « jk = * r 0ii +фГ б1к

leads to

j.m n _ Jm n  <■ Im n _ 7  nm
<P ik  -  6 i k> Ф  ~  Ф

which can easily be derived by considering all combinations of i,k , j ,l .  
Consequently, Eq.(2.6) reads now

) > " X ?6 ik )mnXn 6., 
к u

(2. 6b)

which implies that

^ГфтпХ" = 0 for 1 = 1,2,3 (2.6c)

which can again be shown by considering all sets l , i ,k  (for instance

1, i, к = 1,2,2 gives фтпХ" = у фтпХ2012 = 0). It is now easy to de- 
n n

monstrate that the equilibrium configuration of such a purely harmonic 
theory cannot be stable. By stable equilibrium we understand that the 
potential energy is a real minimum for small deviations u except for 
small translations and proper rotations. If we now consider a small

homogeneous deformation, u™ disX™, the energy above equilibrium 
s

m ,i n ,k  m ,n ,s , t

vanishes because of Eq.(2.6c) for all homogeneous deformations, e.g. 
homogeneous compression or shear1, whereas it should only disappear 
for small rotations, i. e. , dis = uis. This fact, then, shows that a purely 
harmonic theory is unphysical, and that always anharmonic terms should 
be considered for stable molecular equilibrium configurations. The above 
argument does not apply to one-dimensional crystals with one-dimensional 
displacements, e .g . a linear chain connected by harmonic springs is a 
purely harmonic model for displacements parallel to the chain. In such 
cases, the rotational invariance does not come into play.

1 By choosing d = -1  the m olecule would be even reduced to a point at the origin without any change
in potential energy.
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Consequently, in any physical spatial configuration third-order terms 
are necessary to maintain rotational invariance. If we consider any close- 
packed arrangement with an interaction ф (r) between next neighbour pairs 
only, the equilibrium distance 1 is given by ф ' (1) = 0, the second-order 
c. p . ' s are proportional to ф"(1) and the third-order c. p . ' s contain terms 
ф"(1)/1 and ф"'(1). The contributions proportional to ф"/1 would satisfy 
Eq.(2.6a). Here ф1Л would "induce" fourth-order terms proportional 
to ipm/ 1 whereas the genuine fourth-order terms would be proportional 
to ф"”(1). As a rule, the induced terms are small as compared to the 
genuine contributions, e .g . |ф"(1)/11 «  |фш(1)|. Both terms together 
give the anharmonicity which can be treated as a perturbation except 
for special cases, e.g. He crystals, which we are not going to discuss.

The dynamical structure of the harmonic theory is rather easy to 
resolve. In the most general case, which is considered here, it is con
venient to introduce other displacements

Mm ] 
M J

1/2
u with the average mass M =4 1 M1'

where now

M v:5f - - X
m  *

m,ji il/2
n \ T-jnn n 

v k = /  D ik v k

(2.7)

(2.7a)

If all masses were equal, such as in an elemental crystal, then v = Ü and 
D = ф . To simplify notation we replace the two indices m, i by one index I 
running from 1 to 3N. The simplest solution of the equation of motion

M V i = -  X ° i k v k - D i k  = D k i  ( 2 - 8 )
к

are eigenoscillations where all displacements oscillate with the same 
frequency

Vj = Wj e iwt , and2 therefore Mu2Wj -̂*ikwk (2.8a)
к

There are 3N independent solutions w^ (A = 1 . . . .  3N) of the symmetrical 
eigenvalue problem (2. 8a) with 3N eigenvalues McjJ = XA. The "eigenvectors" 
w f can be chosen real and such that

the eigenvectors are mutually the eigenvectors are independent
perpendicular unit vectors in and form a complete basis
3N-dimensional space

2 It is convenient to use a com plex representation. We could as well use sin cut or cos cut instead o f 
exp (- iojt).
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Then, Vj can be expressed in terms of the eigenvectors and the correspond
ing real amplitudes vA, the so-called normal co-ordinates:

Vj(t) = £ v A( t ) w A , vA(t) = ^ V j ( t ) w A (2.9a)
A I

The kinetic energy E kin and the potential energy of the harmonic 
approximation are separated in the normal co-ordinates:

F  -  Y M m  E km -  2
( ü m )2 = Y

<N<K
l

и

m ,i I A

, 1 \  ,m n m n M
к  = 2 2 / i k U i U k  = x X D i k v i v k - B

u 2a ( v a ) 2

m ,i IK A
n, к

The equation of motion becomes

M vA - - Mu3vA

and the Hamiltonian is given by

A

( 2 . 10)

(2. 10a)

(2. 10b)

where tia - M v Ais the canonical momentum conjugate to the normal 
co-ordinate vA.

The mechanics of the system is completely solved once the eigen
vectors wA and the frequencies шА are known. For example, if V ](0 )

and Vj (0) are given for t = 0 we obtain first vA(0) - ^  vj(0)wf
I

and vA(0) = ^V j(0)w ^. Then from (2. 10a) we have vA(t) = vA(0) cos uAt

+ ^ (0 ) ( sin uAt)/uiA and Vj(t) = ^ v A(t)wA.
A

Stability of the molecule means now that all eigenvalues МшА must be 
positive3 , except for 6 eigenvalues corresponding to possible translational 
and rotational motions in the most general case. Usually, for giant mole
cules such as small crystals translations and rotations are excluded, 
for example, by regarding three atoms on the surface as fixed. The

3 This is not the case in crystals such as He where the harmonic theory would lead to partly negative 
eigenvalues.
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distribution of frequencies uA > 0 is, in such cases, very dense and the 
spectrum4 Z(u) of frequencies

v  r
Z(u) = 2  ̂<5(u - u>A) with J  Z(u) du = 3N - 6 = 3N ( 2 . 11 )

can be replaced by a smooth function of u. The quantum theory of such 
a harmonic molecule is, of course, quite easy. Each term in Eq.(2. 10b) 
corresponds to one linear harmonic oscillator wher яА and -И become 
conjugate operators, [И , v A'] = - ih 6AA. are the commutation relations, 
and the quantum mechanical state фщ ___ пд___ is given by the quantum 
numbers, nA = 0, 1,2,3 . .  . of the various oscillators. Its energy E is

E . . . nA. . . = ^ h u A(nA+ 1/2).

3. SYMMETRY OPERATIONS

In many cases, we can find symmetry operations O, including im
proper rotations, which leave the equilibrium structure invariant. This 
means that with fiR m = Rm = the transformed vector is an
equivalent equilibrium position for all m. By this transformation the 
equilibrium structure is maintained. The simplest example is a diatomic 
molecule (Fig.3) where the inversion, Г2 = I = -1, or the reflection at 
the y-z plane or 180° rotations about the у and z axis and all rotations 
about the x axis would be symmetry operations of this kind if we con
sider equal atoms. For unlike atoms only rotations about the x axis 
and reflections on planes through the x axis would be symmetry operations.

FIG.3. Diatomic m olecule, equilibrium distance a, inversion symmetry about the origin.

Since ф (. . . f2r m. . .) = ф (. . . ? m. . .) for arbitrary rotations we have

Ф (. . . Rm + um . . .) = ф(. . .R n(m) +Qum. . .) (3. 1)

Expansion on the left-hand side up to second-order terms is the usual 
harmonic approximation. Expansion on the right-hand side is an expan-

4 By definition /  Z( u)  dcu is the number o f states with frequencies lying between ш1 and w2 > u*i.
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sion about equivalent equilibrium positions R Q(m ) with rotated displace
ments f2um. Both expansions must agree

1 \  , mn m n
2 u i u k 

m ,n
i.k

ß (m ) ß(n) 
i ’ k’ ^i’i ^ k’ku^

i\  к 
i\k*

(3.2)

for arbitrary displacement u; therefore

,m n  V  a  n (m ) n  о
'Pik -  i ' к ' “ f i “ k’k

i 'k '

(3 .2a)

or, in matrix form

Фтп = п ’ ф n(m) n<n> n , фп(™)п(п) =пфт nq'

where Q' is the transposed matrix, (D1 )ik = fiki and П'П = 1 for rotations. 
Equation (3. 2a) can be used in two different ways. First, we consider 
operations where fl(m) = m, e.g . rotations about the x axis in Fig.3.
Then Eq.(3.2a) relates only elements of one c.p . matrix which are now 
restricted for reasons of symmetry. Having found the admitted form 
of фтп we can then switch to other operations where Г2(т )  # m and 
calculate ф n(m) n(n) from equivalent фтп. In the simple example of Fig.3 
we obtain in this way

(m = - 1 ,

from rotations 
about the x axis5:

from reflection at 
the x-y  plane:

from inversion symmetry 
(П = - 1 , Q(m) = -m ):

L -1 -1

R m = m  ( | , 0 , 0 ) )

!  A m n  

/  ”

0

V ф т п  
y  22

6  mn 
y 23 ( 3 . 3 )

\°-
i mn 

^23 )
1 mn 
* 2 3 0 ( 3 . 3 a )

= Ф 1 \  Ф '

1! «e
-

CO 3  b )

from general translational 
invariance:
(Eq. 2. 5)

- l  - l , -l = 0

ß - 1 + Ш

Equation (3 ,3 ) is obtained by employing an infinitesimal rotation
'0 0 0]

from E q.(3.2a): tu0 mn =0 0 0 

0 - 0  0

(3.3c)
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from general „ „
rotational invariance: ф* j 1 = ф\\ -- ■' ° > ф™п = 0 (3.3d)
(Eq. 2.6)

Only one term ф * * = -1 = ф * 11 = || = -Ф'ц 1 is left and the equation
of motion

MÜ-1 _= - f « 1 - u 1 ), M ü ^ - f f u ’ - u )4 л x  '  X X '

M Ü"1 0r+ 1 =0
у  o r  Z

corresponds just to a simple harmonic spring with spring constant f.

-Ф-"  Ü 1 - 1u

<bII
II
T

F IG .4 .  D e te rm in a tio n  o f  0 Tu , 
i z

The conditions (3.3, 3.3a) can be demonstrated quite transparently 
in a more pedestrian way. Consider the situation of Fig. 4 where atom 1 
is displaced in z direction and the force -ф"1 1 ff1 is indicated. If we 
rotate the system through 180° about the x axis displacement and force 
are as shown in Fig. 4. But, since then u* -> - u1 the force should have 
changed its sign. This is only consistent if the force has no x component, 
ф'хг ~ 0. Using the same argument for the reflection at the x-y plane 
it follows that ф’ у 2 = 0. Therefore, only the ф'2121 component of ф‘ 1 \ 
remains. The same can be shown for ф'/у1 and ф~1% ■ By rotating 
through 90° we can show that ф“2 \ = ф~J J .

Of course, if we start with a potential which is invariant under transla
tions and rotations the symmetries of the c. p. 1 s must be obtained na
turally. For the simple diatomic molecule we must have ф(? , r "1) = cp( | У1-"?'1!). 
Starting with the configuration of Fig.3 the expansion of ф becomes (equi
librium condition: cp'(a) = 0)

Ф = Ф (a) + I  <p" (a) (u* - u 1̂ )2 + . . .

and with cp"(a) = f, the harmonic potential is фь = |f (u j- u"x1)2which leads 
immediately to the above equation of motion. Another simple case is
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that of central, two-body potentials where ф is a sum over invariant two- 
body potentials:

m ,n

with tpmm= 0, фтп = cpnm

where all the invariance relations can be checked.
The invariances (3. 2) have still another meaning. The equation of 

motion

Mm if111 I фтп̂ п

can as well be written as

^ М П ( п )  Jfi(n) 
n

because this is just another notation for the same equation; further 
Mn(m) = Mm since D(m) and m are equivalent positions. Applying Eq. (3. 2a) 
we get

MmQ i p N  =
n

or, in other words, if u™ is a solution to the equation of motion so is 

D 'u fi<m>= D{iTm} or DÜß'‘ (m) = ГГ.1 {um}

(with $2 also 52' = Q_1is a symmetry operation). This means simply that 
from one dynamically possible displacement pattern another admitted 
pattern is obtained by applying a symmetry operation (Fig. 5). Naturally, 
this is true in general, not only in the harmonic theory. For the same

reason, if ura is an eigenvector of фтп, i. e. ^ фтп un = X ifm, then

f2'u n(m) or Пий*т ) are also eigenvectors with the same eigenvalue X, 
so are linear combinations. The operation D is linear in the 3N-dimensional 
displacement space and the above considerations imply that the matrix 
DIKor ф1К commutes with fiIK. Therefore, we may require that the eigen
vectors of ф be also eigenvectors of D. Sometimes, this makes it easier 
to find the eigenvectors and from them the eigenvalues by symmetry con
siderations. In the simple diatomic molecule with the inversion n=I = - l  
as symmetry operation I {um} = - u m, one obtains from one eigenstate 
um another -u ‘m and by combination ifm± u"m which are eigenstates of 
I : I  {umT u m} = ± (um+ u"m). In this way, the eigenstates of the diatomic
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у
x

а

ь 0 < 3 ^ < 3 ^  <

С

f А А А f

FIG. 6. Eigenstates o f  for the diatomic molecule; spring constant f; a) proper oscillation, = 2f;

b .c ) small rotations M(J= 0, symmetrical against inversion; d .e .f )  small translations M j  =0, antisymmetri- 
cal against inversion; eigenstates according to Eq. (2 .9 ).

a b c d e f

ux 1 0 0 1 0 0

"У 0 1 0 0 1 0

/2  .u " 1 ' 0 0 1 0 0 1

-  1
ux -1 0 0 1 0 0

_

c 0 -1 0 0 1 0

-1
uz 0 0 -1 0 0 1
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molecule can be easily determined. They are shown in Fig. 6. They are 
chosen such that the eigenstates are also eigenstates of all the symmetry 
operations of the molecule mentioned above which all commute.

4. SYMMETRY OPERATIONS AND WAVES IN INFINITE LATTICES

The simplest lattices are Bravais lattices which contain only equal 
atoms. They are described by three non-coplanar basic vectors a® 
which define the atomic equilibrium positions

Rm«  = = A -
к

(4.1)

= ^  A ikmk 
к к

The atomic positions are now labelled by a vector in rather than a simple 
index m. Simple examples for Bravais lattices of cubic symmetry are

simple cubic lattice (sc): A = a V„ = a3 (Fig. 7a)

body-centred cubic lattice (bcc): A =
1 1 - 1  

- 1 1 1 Vc =—  (Fig. 7b)

1 ' 1 1

,  /
1 1 3

face-centred cubic lattice (fee): A = -r 1 0 1 1 . v c = T  (Fie-
\ 1 0 J

Here a is the length of the elementary cube edge and Vc is the volume
of the elementary cell (the volume per atom) which is given by the three 
basic vectors. The harmonic and anharmonic expansions can be expressed 
as in Eq. (2.3) where the sum over m -* m, n -> n is now an infinite sum. 
The symmetry relation (2. 3a) holds by virtue of the expansion because 
only the symmetrical part of enters into the summation. The c .p . ' s 
can no longer be determined by derivatives of ф because ф itself becomes 
infinite but, for example, the harmonic part remains finite if the displace
ments um are restricted to finite in. The invariance relations (2.5, 2.6)
remain unchanged, and the symmetry arguments of section 3 can be 
applied as well.
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FIG. 7. Cubic Lattices: a is the cubic-lattice distance, the a(s) are the basic vectors; a) simple cubic 
lattice; b) body-centred cubic lattice; c) face-centred cubic lattice.

For an infinite lattice we have an additive and most important sym
metry operation by which the lattice is transferred into itself. This is 
the lattice translation"? where the translation is given by any integer 
multiple of basic vectors t(h) = Ah. Obviously, the lattice is restored 
by these lattice translations _and in analogy to the discussion leading to 
Eq. (3 .2a) we obtain 7(R) {um} = um + h, 7(ff) (in) = (m + R)

фШ + hn + h =ф1к , for any integer R (4.2)

and analogously for c. p. 1 s of other orders. If we go back to the definition 
of the c. p . ' s as a force displacement pattern such as in Fig. 4 Eq. (4. 2) 
is almost trivial because this pattern can be shifted by one or more basic
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vectors without change. This symmetry shows further that if is eigen
vector o fd 1™, so isik

T(fi) {u«} =un + h (4.2a)

with the same eigenvalue, which means that by shifting a displacement 
pattern its property of being an eigenvector of фь remains unchanged.

For c. p. 1 s of first order, фФ , lattice translational symmetry 
requires

фт. + Ь =0™, independent of m (4.3)

Another important symmetry of Bravais lattices is the inversion with its 
centre in an arbitrary lattice point Ap. This means for inversion about 
the origin that

-m -n , mn
Ф i к = Ф ik

■m _ ,mi - Ф i . etc. (4.4)

Equations (4.4) and (4. 3) imply that the first-order c. p . ' s vanish 
(h = - 2m in Eq. (4. 3)). Consequently, the equilibrium parameters of the 
lattice cannot be determined by requiring the first-order expansion 
term to vanish. The equilibrium can be determined by minimizing the 
potential energy per atom, e.g . for central potentials the energy eat 
per atom is given by

e at = \  <p(| A ( f K - n ) | )  = |  ^  <P(| A Ü |)

ifam) h( 0̂)
and by minimizing eat the parameters A are given except for rotations. 
Since the symmetry relations will certainly also hold in the interior of 
a finite crystal, for short-range forces this means that the equilibrium 
conditions of a finite crystal are "surface" conditions. For the second- 
order c. p . ' s relations (4.4) and (4. 2) combined require that

According to Eq. (2. За) фтп must be a symmetrical matrix.
Equation (4. 2a) allows us to find immediately harmonic solutions of 

the equation of motion by employing displacements which are eigenvectors 
of ?(Я), namely 6

-♦if,,. -♦ i(if-Arf- ил)u (t) = e e t ( № } = 5 n+t i cfAh e (4.6)

6The three translations with I? = (1 ,0 ,0). with Ff = (0 .1,0) and t^3  ̂ with if = (0 ,0 ,1) are 
translations by the three basic vectors If (*). If If m js an eigenvector of the three commuting translations,

" t^ u  m = I f m = X i f 111 and analogously for t ^ ,  t ( 3) we have X ^ 'X  ™ZX з^ТГ0. Physically
reasonable solutions are such that the amplitudes remain finite for all m; therefore the Xj must have an

a b so lu te  v a lu e  o f  1 and i f m  ~  tT° e x p ( i  Z  ~  "e e  ici Am  w ith  ^  = E q .  A ^  and i f 0 ~  e .
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with an eigenvalue exp(iq • Ah) and with a yet unspecified "polarization" 
vector e. We can easily see that expression (4.6) is a solution of the 
equation of motion if e and и are determined from

M и2 e = фч?

d et I ф 4 - M u2| = 0

Mu2 = X(q,a), a - 1,2,3

e -» e (q,a)

where фч is the three-dimensional matrix

Г  = ^ГфЙ • е ^ -А? = £ ф ®  cos q- АЙ 
h h

= ^ф ®  {cos (q • Ah) - 1} = - 2 ^ф (**) sin2 ^  

h h

^^Гфтп = ^ф ®  = 0 according to Eq.(2. 5)^ . 
a ffThe solutions (4. 6)

(4.7)

(4.7a)

u" = e(q, o) exp [i (q • Rn - и (q, a) t)] (4.8)

are travelling lattice waves with three possible, mutually perpendicular, 
polarization vectors e(q,cr) for given 5  which are the eigenvectors of 3>q.
The wave vector is q, the "wavelength" 2-rr/q. From Eq. (4. 7a) we see 
that фч = ф"Ч. Consequently, waves with ± q are degenerate and standing 
waves such as u Tt= e(cf,cr) cos q • R"" cos u (q ,a )t also are eigenvibrations.

Therefore, the lattice translational symmetry enormously simplifies 
the calculation of harmonic motions in an infinite lattice. For Bravais 
lattices, only an equation of third order has to be solved. For particular 
symmetric directions of q the polarizations can be obtained directly, e.g. 
for 5  pointing into the ( 1 , 0, 0), ( 1 , 1 , 1 ), and ( 1 ,ф , 0) directions of the above- 
mentioned cubic lattices. Let us discuss the (1,0, 0) direction in detail. 
Symmetry operations1 £1 which leave q invariant are 90° degree rotations 
about the x axis and reflections_on the x-v and x-z planes. We know from 
section 3 that with unalso £l'{un} = ig a solution. Since obviously
q • R^=* q • Й n'(") = q • П' Йп = • q = q • Rn , the phase of expression (4. 8)
is invariant and with also П? is a polarization vector belonging to the same 
eigenvalue of фч. If e has a component parallel to q and if £1 represents 7

7 There are 48 symmetry operations: f!(X , Y ,Z ) = (+ Xj,  ± X^ ,  ±  X j ) ,  i i  к ̂  1, co-ordinate 
axes parallel to cube edges, origin in one of the cube comers, cube centres or face centres.
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a 180° rotation, with e also fie  and e + 9 e '-q  are eigenvectors (Fig. 8b). 
Therefore, one eigenvector can be chosen longitudinal, i .e . parallel to 
q, e -» ej , M uf = (e'j, if e t is normalized. The remaining two
eigenvectors must be orthogonal to and in the y-z plane, i. e. , trans
verse. Figure 8c shows an assumed et and an equivalent polarization 
rotated through 90°. They form a complete basis for vectors normal to 
q. Therefore, any 5 is an eigenvector to the same eigenvalue Mwf 
and the problem is two-fold degenerate. The reasoning for cj in the 
( 1 , 1 , 0) and ( 1 , 1 , 1 ) direction is analogous; the results are summarized 
in Table I. With symmetry operations which do not leave c| invariant we 
can then produce equivalent lattice waves with f2q. For the inversion, 
in particular, we find e(-q, cr) ~e(q,cr).

FIG.8. Polarizations for'q =q(10Q); a) sc lattice withcf = q(100); b) rotation n  by 180“ about x axis: 
with e , lie and S i? + ? ~  q as polarization vectors; c) rotation SI by 90“ about x axis: all polarizations 

X <f are equivalent.



TABLE I. VALUES OF Mu2 FOR DIFFERENT LATTICE TYPES AND DIRECTIONS

q Mw? SC M u z, b c c Mo;2, fee
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хЯ
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. ,V3qa . fi+ 8 fj  . , qa
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The symmetry operations (3. 2) restrict the number of independent 
c. p . ' s in the symmetrical matrices ф(  ̂. In general, ф(Й) can be represen
ted by its three mutually perpendicular and normalized eigenvectors pW 
and corresponding eigenvalues its :

with

3

ф ®  P (S) =  7TS P (S) ,
4 h> = X ’ r . p ( i > P k )

S — 1

Г р ® Р ( 0  = 6  . ,
/  1 1 s s*  J X P i S) P kS) = 6 i k
i s

(4. 9)

By the relations (3.2) the eigenvectors and ratios of the eigenvalues can 
be partly determined. To see this, we shall discuss this question again 
for h = (1 ,0 ,0) in the s .c . lattice. The possible symmetry operations 
which leave Й invariant have been given above when discussing e (q 11 ( 1 , 0, 0)).

A  . ("h) •»?>*+-ф и

h =(100)

FIG.9. Force displacement pattern for 0^°°^ a) arbitrary force; b) force compatible with lattice symmetry.

The result is

0 0 \

О<N(5 = U a - V  X fxJ i

0  4 / hihk

(="й) is the unit vector in

d .0,0) J
ik

Rh direction. It shows 
that_Rh is an eigenvector with an eigenvalue ti1, and all vectors normal 
to Rh are eigenvectors with an eigenvalue tt2 exactly as in e(q), and for 
the same reasons. Also this fact is obvious from a force displacement 
pattern (Fig. 9a) where only u®  f  0. If uW points in the z direction and 
a rotation through 180° about the x axis is carried out, which is an allowed 
operation, the rotated force must equal to the negative of the original 
force. Consequently, ф̂ 0 = 0. By reflection at the xy plane it is shown
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that also ф® = 0. Therefore, ф$ has only а фM component, 7r„. Ana- 
logously we can show that ф№ and ф ;̂ also have only diagonal components 
7Г2 and 77j . By rotating the pattern in Fig. 8b through 90° it is shown that 
Ji2 = 713. By applying a rotation through 90° about the у axis we can relate 
ф( o.o.i) to ф В .0 , 0) etc., e.g.

ф (М .1)

Representation (4.10) is valid for all equivalent sites, |h| = 1.
Only two independent c.p . 's  remain. The parameter ti1: represents a 
normal harmonic spring parallel to x with a spring constant - the 
parameter 772 represents a leaf spring which is isotropic about the 
(1,0,0) axis. For central forces 7t2 = 0. Therefore, 77 2 gives an indica
tion for many-body forces. For the third nearest neighbours, h = (1,1,1) 
№  = (1, 1, 1) /n/3, the physical situation is the same. Equation (4. 10) 
holds also for li = (1, 1, 1), naturally with other values of 7̂  2 and the 
matrix has the form

kd-i.i) = Iik 3

I  n l  +  27T2  TTj  -  7T2  77 j  -  7T2  \

77j +  2 t72  77 j  77 2

у TTl “ 772 T7j - 772 77j + 277g J

(t7j - 772) + 7726ik, for h = (1 1 1)

(4.11)

For = (1, 1,0) we obtain the eigenvectors = ЙД/2, = (0,0, 1)
and P(2) = (1,-1,0)/J2 and, in general, three different eigenvalues. Here 
the leaf spring is anisotropic, its stiffness is different in the and 
p(3) directions. The eigenvectors can be given in a more general form. 
The first eigenvector belonging to the normal spring is proportional to 
"Й, i.e . the simple spring connects the two atoms 0 and h. Another 
eigenvector is that of the basic vectors a<s) which is perpendicular to h.
It can be represented by

p (3 )= ( l -h 2) (4.12)i i

which is valid for any of the twelve equivalent vectors h, h = (1, 1,0), 
(-1 ,1 ,0 ), (0 ,1 ,1) etc. An invariant representation is given by

3

5<3 * S> = ^ V > (£ a (s + 1)) (£a(s + 2) )
S =  1

( 4 . 12a)
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where
-+(s+ 3) a (s)

The matrix is given by

r{? = (*1 - *2> hihk/2 + U3 - »2) p(f  p(k3) + *2 6ik

for all К equivalent to (1 1 0) and

, ( U 0)
ik

1 + л2 ~ ^
2 2

7Г1 “  7Го 7Г -| "h 7Г о

(4. 13)

(4. 13a)

for h = (1 1 0). For h = 0 all cubic symmetry operations can be used and 
we obtain

ф(°00)
y ik = ^1 6lk (4. 14)

If q is parallel to one of the above symmetrical directions h the eigen
vectors and the structure of the matrices (jfi and^W are the same. 
Further, the form of the c .p . matrices connecting atoms along (10 0), 
( 1 1 1 ), and ( 1 1 0 ) directions is the same for all three cubic lattices of 
Fig. 7 because the corresponding symmetry operations are identical.
The results are given by Fig. 10.

To illustrate the results obtained above we shall calculate the eigen
values for nearest-neighbour interactions, The simplest case is the 
linear lattice (Fig. 11), Xm = ma with m= Ö, ±  1, +2  . . . , displacements 
um in the x direction. Nearest-neighbour interaction means that besides 
ф(°) only = ± 4 = - f are different from zero. This represents a situation 
where neighbouring atoms are connected by harmonic springs with a spring 
constant f. In this case, the polarization need not be determined and we 
have (Fig. 11):

or

Mu2(q) = = - 2 sin2^ T  = 4f sin2
h

u (q) = (S) Sin qa/ 2 = “ max sin IT

(4. 15)

(4. 15a)

The (o (q) curve is called the dispersion curve.
In the simple cubicjattice in (4. 7a) for nearest-neighbour interaction 

only the six matrices ф(ь) with |R| = 1 corresponding to the six nearest
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« о о
ß -  ß 
6 D «

л ß 0 
ß «  О 
OOffj

« ,Т Г ,*21T2

ß s ТГ|- тт2

2 ж : TT, ♦ TTj 

?ß =ттг тт2

FIG.IO. c .p ,  matrices, eigenvectors and eigenvalues for near neighbours o f the sc lattice.

•a 0 a 2a ma (m*1)a

FIG, 11. Dispersion curve o f a linear crystal with nearest-neighbour interaction.

neighbours of ĥ = 0 along the cube edges enter. We give only the quan- 
tities апсЗф^, the other elements follow by cyclic permutation

<J> fas) = ф(<&+:̂  • s + 3 equivalent to s . (4.16)

The matrices have the form (4. 10), and we obtain with эт s = - fs:
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This is a rather degenerate case. The eigenvectors are the three basic 
vectors aW independent of q: e(q,tj) = a^  , and the eigenfrequencies are 
given by the diagonal elements. Naturally, the eigenvectors and their 
degeneracies in the three symmetrical directions which are determined 
by lattice symmetry must be compatible with (4. 17) as can be seen in 
Table I.'

^ In the body-centred cubic lattice eight nearest neighbours with 
Rh = a/2 FT, Ft = (1 1 1 ), etc. , |Fi| = 3 have^to be taken into account. The 
c . p. matrices have the form (4. 1 1 ) and фч becomes

„ fl + 2f2 V  . 2 q • h
? 1 1  = 2 3 4 a

|h| = 3

Ф7  = v12 ‘ 4 2 {sin 2 4 ( q l + q 2 + q3) + sin2| (q3 + q2 - qg)

-s in 2| (4l - q2+ q3) - . 2 a ,sm -  (qx - q2 - q3)
(4.18)

The eigenvalues for symmetrical directions are given in Table I.
In_the face-centred cubic lattice one has twelve nearest neighbours 

with Rh = a / 2 h. It = (1 1 0), etc. , | h | = 2. The matrices have the form 
(4. 13) and from

= 2 (f1 + f2) {s in 2 I  (q1 +q2) + sin2| (qx +q3) + sin2| (q.j - q2)

+ sin2 I  (qa - q3)| + 4f3 {sin2 | (q2 +q3) + sin2| (qz - q3)| (4.19) 

= 2 ( f l~ f2> (sin2 I  (qx + q2) - Sin2 I  (4l - q2)j

we obtain the results of Table I.
From Table I one can see immediately that a nearest-neighbour 

model in sc and bcc lattices would become unstable for central forces, 
f 2 = 0, because there many eigenvalues vanish, e.g . for one transverse 
branch each if ^ || ( 1 1 0 ).

We can use the results of Table I to include further neighbours in 
correspondingly symmetric positions. As an example let us consider a 
fee lattice. The nearest neighbours are in positions equivalent to a/2 (110), 
neighbours of second order are in a (100) positions. Both neighbours give 
additive contributions to <̂ 4 with common eigenvectors for the q directions 
given in Table I. Consequently, the eigenvalues just add up. To obtain 
the results for a fee lattice8 including second-order neighbours we have 
to add to the first-neighbour contribution (the fee column in Table I) the

8 If we want to include second-order neighbours in the (110) directions o f the sc lattice we can proceed 
analogously, but have to replace a in the fee contribution by 2a because the second-order neighbours are in 
positions a (110) etc. instead o f a /2  (110) o f the fee lattice.
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second-neighbour contribution (the sc column in Table I, replacing there 
fs by f s' where the dash indicates the c. p. 1 s corresponding to second 
neighbours), e.g . the longitudinal eigenvalue for q Ij ( 100 ) would be given 
by 8(f a + f2) sin2(qa/4) + 4 f-J sin2 (qa/2). To give an idea of the dispersion 
curves, Fig. 12 shows the dispersion curves of a fee lattice with central
spring interaction (fj=  f, f 2= f 3= 0; f'j = f  , f '2 = 0) for an elastically 
isotropic crystal ( 4 f  = f).

FIG. 12. Dispersion curves o f  an isotropic fee lattice 
orders

c) q=^(110). Mu/ = f | 4 s i n ^ + 5sin2 H

e ~ ( l - 1 0 ) ,  Mu;t2 = f {  4 s in ^  + si"  ^  j-

IT ~  (001), M(n2 = 8fsin  . 

springs f, f /4  to neighbours o f  first and second

If qa «  1 the wavelength of the lattice waves is very large compared 
with the distance between nearest neighbours. The lattice waves must 
then become identical with the elastic waves of the corresponding elastic 
continuum. For qa «  1 only terms quadratic in q remain and u/q = c is 
the velocity of sound belonging to the lattice wave in question. Elastic > 
isotropy means that one has always longitudinal and degenerate transverse 
eigenvectors with sound velocities Cjand c t independent of the direction 
of q. One can check now the isotropic behaviour of the frequencies given 
in Fig. 12 and sees that the values of Cj and c t are independent of the 
directions of (J in Fig. 11. Isotropy can also be checked directly from an
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expansion of ф?:

^  ^ У  фЙ X^X^q q
ik 2 / _ ,  ik m n m n

(4. 20)
h ,m ,n

If this expression assumes the form

= M c2q26., + M (c2 - c2)q.q.ik i ’  ik ' 1  t ' d ^ k (4 .20a)

the crystal is elastically isotropic because the eigenvectors of (4. 20a) 
are obviously given by: e ||q, Muj = Me2 q2 and exq, Mu2 = Mc2q2. It 
has to be noted, however, that even though a crystal may be isotropic 
for small q, in general, the polarizations are neither transverse nor 
longitudinal except for highly symmetrical directions.

The q vectors in Eq.(4.8) are not unique. Indeed, there are many 
equivalent q which represent the same eigenosdilation. If q in Eq.(4. 8) 
is replaced by q + g where

qRh = 2тгр, ju = 0, ± 1, ±2, for all R (4.21)

neither un according to Eq. (4. 8) nor ф? are changed, i. e. q and q + g
are equivalent and represent the same situation. Since Rh = ^ h .a ^  we

i
see that

-* V1 ( s )  - *g = 277 > n$b , where n is an integer vector (4. 22)
s

with b® a^ = 6js and p = ^ n shs = r5h solves Eq.(4.21). The vectors
s

q form a lattice with 2n as basic vectors, the so-called reciprocal 
lattice. The quantity the eigenvalues, and the eigenvectors e(q,a) 
are all periodic in 5  with the periods g.

The reciprocal lattices of the three cubic lattices are again cubic, 
as shown in Table II. The q values are unique if one confines them to one 
elementary cell of the reciprocal lattice from which all solutions of 
Eq.(4.8) can be obtained. It is customary to use a more symmetrical 
confinement volume in q space, the so-called first Brillouin zone which 
is symmetrical about the origin in q space. Connections are drawn to the 
neighbouring lattice points from q = 0 , as well as planes which are per
pendicular to the connecting straight lines and which pass through the 
midpoint of every connection. The origin is then enveloped by inter
secting planes. The planes which are nearest to the origin form a polyeder 
defining the first Brillouin zone. This procedure is analogous to that of 
defining a symmetric atomic volume in a metal by the Wigner-Seitz cell.
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TABLE II. CUBIC LATTICE DISTANCES IN LATTICES AND 
RECIPROCAL LATTICES

L a ttice c u b i c  la t t ic e  
d is ta n ce

r e c ip r o c a l
la t t ic e

c u b ic  la t t ic e  
d is ta n ce

sc a sc 27г/  a

b c c a fe e 4тг/а

fe e a b c c 4тт/а

The endpoints of the dispersion curves in Fig. 11 2n/a, 4~Зтг/&, 2 -J~2 it/ a 
are just the points where q touches the surface of the Brillouin zone. The 
equivalence of q and q + g also shows that concepts like longitudinal and 
transverse do not make sense except for the first Brillouin zone.

In general lattices, the lattice positions are given by Bravais lattice 
positions Ah which define the corners of the elementary cells and positions 
within the cell. The equilibrium positions are given by

R6̂  AH + Rp , ju = 1 . . . s (4.23)

with s atoms per elementary cell. The atoms labelled with different 
ß may be like or unlike atoms. Simple examples are:

CsCl structures where Cs occupies the sc lattice positions and Cl 
the body-centred position, s = 2 , and

R^s = at, Rjlj = a ff+| ( 1 1 1 ), RCs = 0, R^ = | ( 1 1 1 )

Diamond structures with like atoms which consist of two fee lattices 
shifted by one fourth of the body diagonal, s = 2, Rh = All, Rh = Ah t /3 a /4  
(111). The procedure applied to obtain lattice waves is analogous to that 
discussed above. The matrices have the forms ф ^  and ф j?,. The determinant

ik ik
for the eigenvalues is now 3s-dimensional and therefore more complicated 
to solve. Three branches with vanishing eigenvalues for q -» 0 are obtained. 
They are called acoustical branches and they agree with the elastic wave. 
Furthermore, one obtains 3 (s-l), so-called optical branches, with non
vanishing eigenvalues for cf-» 0. Again in cubic lattices and highly sym
metrical q directions analytic expressions can be obtained by taking the 
lattice symmetries into account. In some cases, in particular for very 
different masses contained in one elementary cell, the frequencies of 
optical and acoustical branches are separated by a gap.

5. ELASTIC THEORY

We have mentioned before that for long waves lattice theory should 
go over into elastic theory. "Long waves" can be replaced by saying 
that the displacements vary only little from one lattice point to its
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neighbours. This can also be expressed in the following way. We define 
a continuous displacement field u(R,t) where

we can make use of the fact that uk varies only slowly within the range of 
the c. p.' s, expand uk about R = Rm in powers of Rn - 1rtm = A(n-m) and 
keep only the first non-vanishing terms. In this expansion the zero-
order term vanishes because of ) ф (h) = 0, the first-order term vanishes,

For better comparison with elastic theory, we divide by the volume per 
atom Vc and with the equilibrium mass density p0 = M/Vc Eq.(5.3) 
becomes

The fourth-rank tensor C is obviously symmetrical in ik and mn.
Equation (5.4) is the elastic equation of motion as derived from lattice 
theory.

In the elastic theory of a continuum, one starts as above with a 
continuous displacement field u(R,t) and defines the strain tensor for 
small displacements by (uk/ n + un/k)/2 which vanishes for small rotations. 
The symmetrical stress tensor crim is a linear function of the strain 
(Hooke1 s law):

u“ (t) = u(Rn, t) (5.1)

In the equation of motion

üi(R=lm,t)

(5.2)

too, because of inversion symmetry, ф(̂ > - + ф("ь) , and the first non
vanishing term becomes (in - n -> h):

(5.3)
hmn

where u

(5.4)

^ ik/m n

V i,im (5.5)
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where the tensor of elastic moduli C is necessarily symmetrical in im 
and kn. It can further be shown that C is symmetrical against interchange 
of the pair im with kn. The stresses represent surface forces and the 
equation of motion becomes

"  ^ CTim /m  ~ kn u k/m n 6 )
m mkn

The elastic moduli are usually represented by Voigt's moduli
caß(a,ß  = 1, 2, . . .  6) where the symmetries of C are used according to the
scheme

ik = 1 1 22 33 23 31 12

a = 1 2 3 4 5 6 (5.7)

e - S '  c  n / n  Cjj, C u/22 c 12 ~ C21 <~ '2 2/ ll>  ^12/12 C66< 2̂3/гЗ "  4̂4-
The 6 X 6 matrix caß is symmetrical in aß and therefore contains 21 inde
pendent coefficients, in general. If, analogously, coefficients caß are 
defined from C, the quantity c need not be symmetrical and contains 36 
independent coefficients, in general. Consequently, lattice theory seems 
to have a larger number of elastic moduli and Eq.(5.4) does not seem to 
agree with Eq. (5.6).
__ Lattice theory and elastic theory can be made agree if we require 
C to be symmetric against interchange of ik with mn or caß = cßa:

^Чк/m n  ^"'mn/ik

which is called the Kun-Huang condition. Now C and C have, at least, 
the same number of independent coefficients. But still С ф C because 
C and C enter in different ways Eqs (5.4) and (5. 6). However, only 
those parts of C which are symmetric enter Eq.(5.6). Consequently, if

^ im /k n  +  ^ in /k m C,ik/mn (5.9)

lattice and elastic equations agree. Equation (5.9) which implies that 
Cßß = cßa allows C to be expressed in terms of C uniquely

c . ,. - c . . , + c  ...lm /kn lk/mn m k/m ^mi/nk (5.10)

Actually, Kun-Huang's condition (5.8) need not be derived by arguing 
that lattice and elastic theory must agree. It can be proved directly from 
first principles. It has been discussed in section 4 that for an infinite 
lattice the first-order coefficients ф1?1 vanish for reasons of symmetry 
and cannot be used to define equilibrium. This is an inconvenience occurring 
when an infinite lattice is used. Actually, we need an additive equilibrium 
condition, the condition (5.8) to guarantee that the initial state is stress-
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free. Relation (5.8) can be proved directly by starting from a finite crystal, 
by considering the equilibrium conditions on the surface,and then passing 
to an infinite crystal (see Refs [3, 5]). Another possibility is to start with 
a proper potential in an infinite crystal where the equilibrium is determined 
by minimizing the energy per atom and to show that Eq. (5. 8) is a conse
quence of the equilibrium conditions. First,one sees that for simple 
springs, where ф® ~ X 1?X'j’ , the tensor C is symmetrical against inter
changes of all indices and Eq.(5.8) is obviously fullfilled. In this case 
С = C and there are six other relations between the caß such as c n = c 44. 
These "Cauchy relations" reduce the number of independent cag to 15.
For more general central forces, including central springs under tension, 
the total antisymmetry of C = C can again be proved. Then one can add 
three-body forces where the contribution to the potential would be
( 1 /3 !) ^cp(3) (r™, r", rP) and one single contribution tp® contains three 

mnp
coordinates. Naturally, cp̂ 3̂ must be invariant under translations and 
rotations. Again, Eq.(5.8) can be proved from the equilibrium conditions. 
Now, 4-body, etc. , potentials can be added and again it can be shown that 
the equilibrium conditions imply Eq.(5.8).

In cubic crystals the condition (5.8) is valid by symmetry, and does 
not lead to further restrictions of the c .p . matrices. Cubic symmetry 
requires

C 11 C 22 C 33'  C 12 C 21 C23 C3 1 ’ C44 C 55 C66 (5. 11)

All other Cy vanish (axes are parallel to cube edges). The same 
relations hold for c aß. Equation (5. 10) becomes

'll ' l l ’ '12 2 c 44 ' 12’ 44
(5. 10a)

For the simple cubic lattices with nearest neighbour interaction C 
is easy to calculate. Values are given in Table III, including the case

TABLE III. CONNECTION BETWEEN COUPLING PARAMETERS 
AND ELASTIC MODULI

Moduli SC bcc fee fee with f  and f

a5M 0 2f, - 2f, 
3

f

a c u  = acn f2
2f, + 4f,

3
2fj + 2f, 2f + 4P

ac12 - ac44 f2
2fj + 4f2 

3 fi + fg + 2fj f

ac12 -f.
2f, -  8f,

3 f ,  -  3f2 -  2f3 f

a( c n - Ci2)/2 fl+fz
2

2f2
f] + 5fj> + 2fg 

2
f  + 4P

2
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of Fig. 11 with two central-spring interactions. They can also be obtained 
from the elastic expansion of Eqs (4. 17-4. 19) because expression (4.20) 
is proportional to C9. The most proper combination of elastic moduli is 
given by the reciprocal compressibility (cn + 2c12)/3 , the two shear 
moduli, C44 for shear along (001) planes in ( 100) direction ( c la- c 12)/2 
for shear along (110) planes in (1 -1 0) direction. If all these moduli are 
positive the crystal is elastically stable. If both shear moduli agree the 
crystal is isotropic, e.g . sc and bcc: fj = f2, fee: fj - 3f2+ 2f3 = 0 and 
4f' = f.

In the fee lattice there is one obvious possibility of making the 
nearest-neighbour model compatible with nature, namely by fitting the 
three f to the three elastic moduli, namely f x = а(сп + c12 + си )/4, 
f2 = a(c n ” c i2~ c44)/4 andf3= 3.(20^- cn )/4. This model should be rather 
good if the forces are really of very short range.

In non-primitive lattices (R™) elastic theory can be treated along 
the same lines. The derivation is a little more complicated because the 
partial lattices p are shifting against each other under elastic conditions. 
Therefore, the Cauchy relations are invalid in general even when only 
central forces 10 are assumed.

6 . CLASSICAL EIGENOSCILLATION AND QUANTUM STATES OF A 
FINITE CRYSTAL

If one is only interested in bulk effects the surface of a finite crystal 
should play only a minor role, or, in other words, the boundary conditions 
at the surface should be unimportant. This fact can be made use of by 
choosing the most convenient boundary conditions. Natural physical 
boundary conditions would be: given forces on the surface atoms, in 
particular, no forces, which corresponds to a stress-free crystal, or 
given displacements on the surface. Because of the inherent difficulties 
natural boundary conditions of three-dimensional lattices have not yet 
been treated. As a rule, periodic boundary conditions are used to defme 
a finite volume, i.e . , one selects three non-coplanar vectors c®  = AN® 
which are compatible with lattice translations if are integer vectors.
If the fJ(s) are large they form a periodic volume containing many atoms.
Most simply one chooses a volume similar to the elementary cell:
c(s) = a(s) which contains N = Nfb N(2>N(3) atoms or elementary cells.
In this way, one selects out 3N degrees of freedom or 3N co-ordinates 
and the problem can be dealt with as in section 2. The main advantage 
of this periodic condition is that then the eigenoscillations of the finite 
lattice become a special selection of the oscillation in the infinite lattice. 8

8 One can also compare the 0 4 tensor in the limit q -*0 with Eq. (5 .6 ) setting i f  = ? (q ,o )  exp[i(qR- tot)] , 
resulting in Poto2ej -  Q m/p n qm qn ep which determines the elastic frequencies.

10 Except for lattices where every atom is a centre o f  symmetry such as the CsCl structure.
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The representation (4. 8) remains valid but the periodic boundary 
condition requires that

e iq.A n = i q  . ^An + ^ h sNW or 3 ■ ^ h sN « = 2тгр (6 . 1)
s S

/u = 0, ± 1 , ± 2 . . .

This is analogous to the situation in section 4 where the reciprocal lattice 
was introduced. By expressions (6 . 1) a discrete set of permitted q values 
is selected

q 2 7Гv  b<s> 0, ± 1 , ±2  . . . ( 6 . 2 )

(s)or, if all N are equal,

-  1 
q ‘  N W

ГМ
s

(6 . 2a)

The permitted q values then form a lattice which has the structure of 
the reciprocal lattice but is smaller by a factor N^3. There are exactly 
N permitted q if q is confined to either one elementary cell of the reciprocal 
lattice or to the first Brillouin zone (Fig. 13). The volume per permitted 
value in q space is given by (27r)3/NVc since the volume defined by the 
b<s> is the reciprocal of Vc , the volume defined by the a^ . This is used 
when passing from lattice sums to integrals.

£  F(q) -  F(q) dq (6.3)
permitted cf

FIG. 13. Permitted q values in the simple cubic lattice with N = 103 .
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which can be done for large N when the permitted q values are closely 
spaced. Of course, we can also use a simple cubic periodicity condition, 
e.g. c4s) = N® a 6 is for a fee lattice. Here we have N = 4NH)N^Nf3) 
because one elementary cube, a3, contains 4 atoms in the fee lattice.
The permitted values were

2 7Г ,  , V 2 7Гq s = -  (m ,/N W )-+Tft-/4)1/3a ms

and the volume (2?r)2/(Na3/4) is again (27r)3/NVc since Vc = a3/4.
The eigenoscillations are given by expression (4. 8) where q must 

be one of the N values (6.2) in the first Brillouin zone or an equivalent 
volume in q space. The system is now finite, and we can directly employ 
the methods of section 2. The eigenvectors

w™2= е; (3,ст) e1**™ /ч/N , ? 2 = 1 (6.4)

are now complex. But we can still use the method of section 2 by defining 
the scalar product of two vectors v and v by

) v* v
L  i 1

The 3N values q, a label the eigenvectors. The relations (2. 9) read now 
(e(q,cr) is a unit vector, the factor 1 /\fW guarantees normalization in 
(6.5a)):

Iw *m Q w 
i о

m q' 
i a*

m i

\  m q m q
> W . W  4

l_> ‘  о  i ' a

6-*q.q ’ a,a'

6-* -,,0 .
m ,m ’ i , i

(6. 5a)

(6. 5b)

The matrix w of section 2 was orthogonal, the matrix w above is 
unitary. The complex description is more convenient, in particular, if 
one wants to describe travelling lattice waves which are needed, e.g ., 
in scattering of neutrons by crystals, and in heat conductivity theory.
Of course, a real representation is possible. Because of the ±q degeneracy 
eigenvectors are obtained also if exp(iq-Rm) in Eq.(6.4) is replaced by 
cos q • Rm or^sin q ; R^. As in section 2 we can introduce "normal co
ordinates" vq byо J

vqwinq
a  i o ’

q o

V4 = a l
uP’W?1 ч 1 1 о

m i

( 6 . 6 )
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Here the are complex. The reality of u reduces the number of complex 
co-ordinates. This condition depends on the relation between e(q,o) and 
e ( -q ,a). The polarizations for q and -q are the same. The two e vectors, 
can, of course, carry different signs. Putting

e (- q,cr) = - e (q, a) (6.7)

is simpler and leads to

-qv - - v _ ( 6 . 8 )

which guarantees that U; is real and removes the redundant co-ordinates. 
Kinetic and potential energy become

J  kin
V M .Ä  -  , V M 2, -  V q*= Va' *h = ^ T ^ (q ,a )V4 (6.9)

and the equation of motion is

v„ + u (3,cr) Vo = 0 (6 . 10)

If we go over to real description, using r^al and imaginary part of v q, 
E q.(6 . 6) splits into cos q • Rm and sincf-R m terms. This corresponds 
to an expansion in standing waves. A very convenient transformation 
admits a description by travelling waves and a removal of condition (6. 8). 
With v? and its canonical conjugate Mv| = 7rq which both obey condition 
(6 . 8) we introduce1011

aV  = C q M q , a ) v q + voq }

with C q = M
2h ш (cf, a)

1/2

( 6 . 11)

where from Eq. (6. 10)

aq + ilots',a) aq = 0a '  о ( 6 . 12)

The total harmonic energy becomes

Jkin +  ̂ h a '•'̂ aQfuj (q . cr) о о ' (6 .1 3 )

10aSince 2C ^ oj(7»o) v^=  a Q a * <  the condition (6.8) is automatically fulfilled.
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and the Hamiltonian is

H = -E*iu (q ,a) P  ̂a4

where РЧ = ifia£ is the momentum conjugate to aj 
The displacements are given by

■EC2M u (q, a)

1/2 q.f"

M
(a3q _ a";4) (6. 14)

and analogously for the momenta p* = Mil™. Obviously each term in 
expression (6 . 14) represents a travelling wave according to Eq.(6 . 12).
The constant C in the canonical transformation (6. 11) has been chosen 
such that the expression for the quantum-theoretical Hamilton operator 
becomes particularly simple. In quantum theory, P, a and a* =* a+ become 
operators* 11 with the commutation relations

or

[P4 , a?’,О o' - i h  6 -*-»,6q.q

[aq\ a+q]
о* о

= 6-*», 6q,q o,o
(6.15)

whereas all other operators commute. The Hamilton operator becomes12 

H = У  аУ af fiu (q, a) (6.16)

—»
where Ng can be shown to have the eigenvalues 0, 1,2, etc. The state 
ф (. . . n4. . .) of the crystal is given by the eigenvalues n7 of the "particle 
number operator" Nj which is the number of phonons q,cr.

It should be emphasized that in all the results obtained above the 
co-ordinate belonging to the centre of mass (q = 0) has been left out. It 
ought to be treated separately. The sums all extend over the first 
Brillouin zone excluding q = 0. This is irrelevant, however, because 
in most physical phenomena the centre of mass motion does not enter.
We may regard it as fixed. Rotations are excluded anyhow because of the 
periodicity condition which is incompatible with rotations.

The spectrum according to expression (2. 11) is given by (see Fig. 14):

z (u ) ^  6 (uj - <j(q,CT))
___________ q.o

11 a+ is the Hermitian conjugate o f  a.

(6.17)

12 If we pass to quantum theory before introducing the transformation (6 .11) Nq in expression (6.16) 
has to be replaced by nJ +  1 /2  including the "zero-point energy" hu/2 o f the corresponding oscillator. 
This shifts only the energy scale and is o f  no physical consequence. It is convenient to keep the 1/2  term 
in order to remember the zero-point motion within the lattice at zero temperature.
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If N is very large the sum ^  can be replaced by the integral J ' dqN/VBZ ,
?  bz

Vgz = (2jt)3 /V c , such that

z(u) = 3N| / d q 6(U-u(q,u)) 
bz. B2

(6.18)

zM

where z(u) is normalized to 1 , J  z(u) du) = 1 . In contrast to expression
0

(6. 17), z(u) is a continuous function of и except for certain u values where 
singularities can occur. The usual way to calculate z(u) is to go back 
to a finite crystal, E q.(6. 17), with a number N not too large, solve the 
cubic equation for the q values (6. 2a), and draw a histogram for the 
frequencies contained in small intervals. Analytic solutions for three- 
dimensional crystals have not been given , as yet. Finer analytic details 
at points where z(u) becomes singular have been discussed.

FIG.14. Spectrum o f a fee lattice with nearest neighbour central spring f only (R.B. Leighton, Rev. mod, 
Phys. 20 (1948) 165. The maximum frequency is about 3V f/м".

For the linear chain with expression (4. 15a) as dispersion curve we 

А \ tr =i о /  о , ,/л\ - , .-л - ,.obtain ( 2 ^  drops, VBZ=*2Tr/a, u(q) = w(-q) = umax | sin

7 r/ a

- /  б(ш- I . qa I и sin -4- ) dq = -г J \ max1 2 /  4 7Г
•тг/а

2 / 7Г ----- for OSu Û._. ...
(6. 19)

{ « L *  - y2>1/2

An example of a three-dimensional spectrum is shown by Fig. 13.
The elastic spectrum for small и must also be evaluated numerically 

except for isotropic crystals. In an isotropic crystal, where u(q,ct)-> cQq, 
Cj = Cj and c2 = c 3 = ct , Eq. (6. 18) becomes

2el(u) = 3N 1 J « ( w - c oq) 4?rq2dq

47tN '\_l u2
v̂ T L c *

a  °

4тг NVr V f l  2 
27Г2 \c"f + c^

( 6 . 20 )

(2zr)3



2 1 0 LEIB FRIED

All elastic spectra of three-dimensional crystals are proportional to 
u2. After Debye one often uses this spectrum to approximate the lattice 
spectrum. The elastic spectrum is cut off at the Debye frequency such 
that ioD

/ z el(cü) du = 3N

z(u).
The average thermal energy can also be expressed in terms of

E =<£T> = .£ftu£<N<f> = ^ h u jü 4

where the thermal average of the occupation number, = ng is given
by: oo

£ n  exp
~~a n = 0

nftw(q, <j)
1

kT
no

I exp. nhu (q, a)
kT J exp hu (4 ,cr) 

kT j - 1

With e(u ,T ) = hu/ (exp(hu/kT) -1) + hu/2 as the average thermal energy 
per oscillator ш we obtain

E (u(c|,cr),T) z (“ ) e(u, T> dlJ
q .o

( 6 . 21 )

Another simple example is X-ray scattering (Fig. 15). Here an 
incoming wave exp(iic- r) is scattered by each atom f? “t) of the lattice



LATTICE DYNAMICS 211

which emits a spherical wave S exp(ik | ?  - r m|) / | r - r m| . The scattered 
wave of the whole crystal is asymptotically (for r »  r“1) given by

^  S exp[i(k - k ') • ? m'
m

e*kr
r ( 6 .  22 )

where к' = к r /r  is the к vector pointing into the direction of observation, 
r /r .  The differential cross-section dcr/dflis given by 13

da
du ^  exp[ iK • "?"]

S |2^  exp [iß  • (rm - r 11)] 
m n*

(6.23)

= |s|2̂ e x p [ iK -  (Й™- R")] exp[iK - (u™ - un)]

m n

where К = к - k* .
This result has to be averaged over the thermal distribution, denoted 

by < У , where for any quantity F:

< F > = -

In the expression

пч. . .) , F ф{. . .пч. . .)) exp'

da /  dSl = |sl2X exp [iK ■ (Rm - Rn )< exp [iK • (um- u ")]> (6.24)

the average can be readily determined because it can be shown that the 
thermal distribution of the displacement is Gaussian. Therefore, also 
the distribution of К •(ifm- Ö") is Gaussian, with zero average and if 
the distribution of a quantity p is Gaussian, D(n) = exp(-H2/2\p2 >)/(2тг<(>12 У)1̂ 2 
we obtain <^exp(Sp)^ = exp(?2 '(г) У2/2) such that we obtain:

< exp [iß  • (um- un)]> = e x p [ -X {ß - (u “ -Ün)}2]
(6. 25)

= ex p [-l {< K .u m)2>+<(K 'un)2» ]  exp [<K-a™)(K-H")>]
Y------------------------------------------------- '

e-qW

l3The atomic scattering amplitude S also depends on K.
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The first factor is the Debye-Waller factor which is independent of 
m,n, W = 'K  (K um)2X  The second factor is usually expanded, the 
first term being called zero-phonon, and the second term one-phonon 
cross-section, etc. The first two terms become

= I S I 2 e '2w exp [iR ■ (R™ - Rn)] (1 +<(K- u™)(R- If̂ ) >)
—> —>

mn (6.26)

Here ^ ex p [iK -(R m -ftn)] = L(K) represents the scattering by a static 
m n

lattice; it is periodic in the reciprocal lattice and sharply peaked near 
the points g of the reciprocal lattice (Laue spots). For many purposes 
it can be replaced by a 6-function which is periodic in the reciprocal 
lattice

L(K) = NVBZ 6p(K) = NVj ^ 6(K -q) 
all q

(6.27)

The first term in Eq.(6. 26) permits the reciprocal lattice and from there 
the lattice_structure to be determined by Laue techniques.

For um and u11 we may insert the representation by the operators 
a? and а*ч :Ö o

К ■ un IC
\t/2

2M  ш ( C ^ n J  (K -e (c f,a )  е‘ч"'к (а ч _ а+(:q) (6. 28)

< (К • um) (К u") fi(K-e(q,CT))(ft-e(q',CT'))
2MN {и(5,ст)ш(ф ,а »))1Л! exp[i(q- Rm + q'- Rn)

q a
tf'a'

X < (a f-  ( 4 -  a7 ’ )> (6 . 29)

This average can now be easily calculated from the average of pairs 
of the creation and annihilation operators a and a+. These averages are

<Ca+q a4' У = n  ̂ 6 ,
N o ' o ' °  ад* aa ’

<( aq, a+q, У  = (nq + 1)  6-*-», 6N о а '  ' о  ’  q q о а

(6 .30 )

All other averages containing two a or a+ vanish. The fact that only 
averages with equal q and a remain is due to the independency of the 
oscillators q, a and to the vanishing of the averages over a or a+.
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With

\ ( a2 - a q) (a4, 4 ' о о ' ' о
+-q’ . ч  ап. )> = äoa.-(n(-q,tJ) + n(q,or) + 1

and

n(-q ,a )=  n (q ,ct), e(-q,a) = -e (q ,a ), u(-q,cr) = u(q.o-)

we obtain finally

<(K-uffi)(K-uff)> - ^  exptiq-lR1" - ^ ) ]  (6.29a)
q о

and the one-phonon cross-section is given by

da
~5n Is I2 e ‘ 2Ŵ  6p(K +i)V BZ е(ы(д,а), T) 

Mu2(q, a) (K -? (5 ,a ))2

q,o

(6.31)

where е(ш, T) = tuj(n(w, T) +1).
While (d(j/dn)0 vanishes outside the Laue spots К = q, the one-phonon 

cross-section has a non-vanishing intensity everywhere in the reciprocal 
lattice. The intensity'is given at R = q by the factor in the summand, 
Therefore, from the intensity between the Laue spots frequencies u(q,cj) 
can be concluded, and experimental dispersion curves can be obtained. 
The Debye-Waller factor is contained in Eq.(6. 29a)

i  <(K-i imf> = A - 1
q,°

e (u)(q,or) T) 
Мсо2(3,ст) (K- e(q, ct)) (6. 32)

This also gives an expression for ^(um)2̂> by putting K s = 6is in E q.(6. 32) 
and summing over s

e(u(q, a) , T) 
Moj2 (q, cr) 3 e(to,T)

Mu2 z(u)dco (6.33)

if the summation is replaced by integration over the spectral distribution. 
Moreover, in cubic crystals, the average of any component gives the same

result <̂ (u™)2 )> = J 6 zdu/u2.

In one- and two-dimensional lattices a corresponding derivation 
has to be done a little more carefully. The initial equation (6. 24) con
tains only differences between m and Й, but in the Debye-Waller factor 
and in the one-phonon expansion in and n appear separately. This proce
dure breaks down in one- and two-dimensional crystals. This can be
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see best in Eq'. (6.33). The integral exists in three dimensions because 
z(u) ~ u2 for small и. It does not exist, however, in one and two di
mensions where z ~ const and z ~u.

Again, the theory is essentially the same for non-primitive lattices.

7. LATTICE GREEN'S FUNCTIONS

Green's functions are needed to solve the equation of motions with 
forces

M u“  + 2 / Г кПик = fT(t) (7.1)
n к

where fm(t) is the force acting on atom m at time t. It is convenient to 
study first a harmonic time dependence

f™(u) e 'iwt where ff(t) = / d u lf (со)е' 1ш1
-  00

(7.2)

and analogously by introducing u1?.
If we further introduce a small damping constant 7 > 0 i. e. a term 

у u 1̂ in Eq. (7. 1) we obtain

(-Mu2 - iyu) (7.3)
nk

This equation can be solved by

S f = ^ G f k"fj; (7.4)
n к

where G41kn(u) is the Green's function or Green's function matrix (rather 
its Fourier transform). The Green's function can be easily represented 
by the eigenvectors and eigenvalues of ф . We expand the displacements 
and the forces according to

uf1 = ^ u (q ,a ) et(q, ct) 
q о

^ S f e ^ , * ) -u(q,<r)

■JW

JW

(7 .5 )
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and analogously for f f1, compare the coefficients of the eigenvectors, 
and transform back. The result is

I d
n к q a

ei (q ,g ) ek(q ,<J)
X(cf, a) - Mu2- iy u exp[iq-(Sm-Rn) » f f  (7.6)

Gm n 
ik

o ( m  - n) u ik

Up to now we have treated a finite lattice

(I bz)
q BZ

we have

If we pass to an infinite lattice

lk vlz^ dq ei(q,u) ek(q,a) 
xctTäy^MÜ? - iyu о1« i # (7.7)

o —*where X(q,cr) = Mu (q,a) are the eigenvalues_of ф . We verify easily that 
Gw> has the same symmetry properties as фOj) . If the frequency и is within 
the spectrum we have a singularity in the integrand and the term iyu tells 
how to integrate around that singularity, у -» + 0. So far damping has only 
been an artificial device to define the proper integration. If ш is outside 
the spectrum the у term can be dropped. This choice of у -» + 0 means 
that a periodic force acting on one atom produces "outgoing" waves which 
emerge from that atom. If we transform back to time у -» 0 means that a 
force produces displacements only after it has been applied. Further it 
can be shown that for values of u lying outside the spectrum <5(h) decreases 
essentially exponentially with the distance Й .̂ There are not yet analytic 
results available for three-dimensional Green's functions. But the 
properties listed above are easily demonstrated by the results for the 
linear chain with nearest-neighbour interaction f, МищИ= 4f = Xmax:

g (h) g i.expfisgny|qah|) « ! _  = sin2 ^
sgnu2f sin|qa | ug,ax 2 (7.8)

= g x p ( - H h | - l * h [  c os h2 ^
2f sinh |k h I Umax

Of particular interest is Ĝ hik°) = G ^ 6ik because it has the same symmetries 
as 0Й ;

ik

l
)  /  dq3VBZ z_j J
°  BZ

1__________
X (q,ст) - М у ! - iyu

z (X) dX 
X - Mu2 - iyu (7.9)
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where z(X)dX is the fraction of eigenvalues X(q,cr) in the interval 
(X, X + dX), z(X) dX = z(u ) du, J z(X) dX = 1. Since

(7.10)

where P denotes Cauchy's principal value we see that the imaginary part 
of is related to the spectrum (6( X - Mu2) = (1/M) 6 (X/M -u 2)
= (l/2Mu) 6 (X/M - u) = (1 / 2Mu) 6(u(q, a) - u) for u > 0):

The method of Green's functions permits a rather transparent 
treatment of the effects caused by lattice defects. If the lattice contains 
one single "point defect" the lattice waves are no longer eigensolutions. 
The lattice waves are scattered by the defect. There is further the 
possibility of "localized modes", usually at frequencies14 uloc > umax 
where the amplitudes decrease exponentially with distance from the defect. 
Also resonant modes with particularly strong resonance-like scattering 
for certain frequencies ures < umax are possible. All these phenomena 
are analogous to .the behaviour of a free electron: a defect corresponds 
to introducing a potential at which the electron is scattered (resonance 
scattering is also possible); localized modes correspond to bound states.

The theory of lattice defects is rather simple, in principle. Let us 
rewrite Eq. (7.3) in the following form:

where Й and 7 are vectors with ( “ ) components and ф is a matrix in this 
space which operates on Й as indicated in Eq.(7.3), M and у are diagonal 
matrices. In a defect lattice masses and c. p. are changed (M -> M'
= M + 6M, ф ->ф' = ф + 6ф, e .g . if the mass at the origin is changed by 
/u and no other changes, then 6ф = 0, 6М|̂ П = P5йо ikb ancl equatior 
of motion for harmonic time dependence is

(- M' u2 - iyu + ф' ) u = f, 7-*+ 0  or (-M u2 - iyu +ф) u = (6 Mu2 - 6ф )u +7

Im  = 2 ^ Z{U)  = * 2(X) (7. П)

(7. 12)

&  (7.13)

where represents the deviation from the ideal lattice. 14

14 Rayleigh waves at the surface of crystals are a counterexample where < u»max.
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In a scattering problem (T = 0) we have an incoming lattice wave 
(i)
u = (e.(q,a) e lq-R ), u(q,cr) = и

and look for a solution u, which consists of the incoming wave and a 
(sc)

scattered wave u, which contains only outgoing waves (completely ana
logous to quantum-mechanical potential scattering where ^  represents 
the potential):

(i) (sc)~u = u + u

Equation (7. 13) can be solved by
W

u = u + G Ju

(7.14)

(7. 15)

(i)
because u is a solution of the homogeneous equation (J = 0) and because 
of the properties of G the scattering wave contains only outgoing waves. 
Consequently,

(i) 
—► (ä  1

G J  u
J

u
u +  1 -  G J

’

1 (Й
u = G J

1 -G J  U

(7. 16)

The scattered wave behaves as though forces J(1 - GJ)(i) were acting
in the ideal lattice or forces Ju in the defect lattice because we see 
immediately that (1 - GJ) ' 1 G is Green's function of the defect lattice.
The procedure is again as in potential scattering, Eq.(7. 15) corresponds 
to^Bornes integral equation, and Born's approximation would be
if = GJu . Cross-sections can be defined in the familar way, and it 

can be shown that the results are independent of whether we use classical 
or quantum theory to calculate them (in the harmonic approximation). A 
localized mode is a state where If according to Eq.(7. 15) exists without 
an incoming wave. Consequently,

Ü = GJ u -» Det 1 - GJ = 0 (7. 17)

determines the localized frequencies Ujoc. The matrix elements'of J are 
concentrated near the defect, symbolically

(7.18)
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so that we have

and

G J

(7.19)

Det I 1 - GJ I = Det 11 - gj| = 0

i. e . , for calculating the localized frequencies we need only the finite 
submatrix g of G which has the same range as the defect. If one intro
duces a defect matrix D

D = CD

which cutSjjput the^defect range, we have D2 = D, JD = DJ = J, g = D&D, 
i .e . D cutsidown G to defect size, g. Equation (7.19) determines only 
those displacements belonging to the defect, Du, where changes in M 
and ф are present. We then obtain from relation (7. 17) the amplitudes 
outside the defect

u = G J3 = G JD3 (7. 20)

The simplest example is the isotopic defect where (7.17) becomes

<JT
2 , pto 6l iO ^ n  O^ik ■

“f 'Z Aiu &m °6-» u" ik n,0Uk

The term in = 0 leads to

о 2 ж(0) о , Ui = pto G|( u. or 1 pto2 G(°} (to)

(7.21)

(7.22)

as a condition for to]oc, and Eq.(7.20) gives then the amplitudes m f  0 
once W[oc is determined. The displacement 3° is obtained from normaliza
tion. Because uloc > umax the term containing у in (7.9) can be dropped:

1 - pto2GC°) (w) = 1 IUU) (X) dX
Mto2 1 + ß_

M
z (X) dX

1 - X/Mio5 (7. 22a)

в (to)

The function B(io) is positive for to > iomaxand decreases monotonously 
with increasing to (Fig. 16). Its value at to = iomax depends on the behaviour 
of z(X) near X = Xmax = Mto^ax. As a rule it will be finite. The condition
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В (со)

FIG. 16. Determination o f the localized frequency for an isotopic defect.

for idjoc is now B(u) = -M j\x = -M /(M ° - M) = M /(M -M °). Obviously,
MQ must be smaller than M. A' localized state occurs if B max> M/(M - M0)> 
If Bmax = oo which holds for the linear chain all isotopes with M°< M produce 
a localized state. The localization becomes more and more pronounced 
if M0 becomes smaller and uloc increases accordingly. For very strongly 
localized defects Mufoc>> Amax = Mw^ax we can expand in (7. 22a):

1 t i / s i x x n  { i  + г Ь }  * о ■ 1 + M { i  + s b r / « < » > » « }

where J z(\)Ad\ = J Mw2 z(u)du = Mu2 and u2 is the average of u2 over

the spectral distribution. In cubic crystals 'Л ?  is the frequency with 
which an atom would vibrate if its surroundings were fixed. For strong 
localization the environment of M° can be assumed to be fixed. Therefore,

М Ош 1о с =  o r ^ / “ L =  Mo/M

which agrees with the statement made above. Furthermore,

= - 1 s 1+P/M = M°/M

because ц/M° = - 1 .
The reduced Green's function g has still another meaning. Consider 

the motion of a defect lattice with forces acting only on the defect atoms, 
Df = fD = ?.

From
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it follows that

г* ~ ~ % % 1 -*u = GJu + G f - * u  = 7----Gf
1 -  G  J

The motion of a defect atom, Du, is given by

D3 = D . T G? = DI  - ftj

= D

1 - GJ 

1
1 - gJ 

1

GDf

g D ?

1 - gJ g?

(7.23)

Here G can be replaced by g because G always stands between two D. 
Consequently,

g '^ l - g J )  Du = (g' 1 - J)Du = f (7. 24)

represents the motion of defect atoms under the action of forces. The 
influence of the surrounding lattice is included.

For an isotopic defect, we have

GШ ' = T°= - M°u2 + Mu2 Gj°)(«)
(7.25)

and -(Mu2 + 1/G(0>)u° is the force on the isotope by the surrounding 
lattice consisting of restoring forces by the surrounding springs and 
damping due to eradiation of lattice waves. The friction by eradiation 
will be lowest for small frequencies. Resonance motions are such that 
the motion is almost stationary. Therefore we shall expect resonance
like motions for very heavy isotopes at low frequencies. For small и 
we can expand 1 /G(|^in powers of u:

G f H  = 2?+1?Ш

and Eq. (7.24) becomes (M° »  M):

(- M°u2 - iyu + 2f) 5° = f° (7.26)

This corresponds to an equation of motion

M°Ü° t  7 Ü°+ 2ftf° = f ° (7. 26a)
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The restoring forces by the lattice are given by the effective spring 
constants f, the damping by sound waves is given by y. The (static!) 
restoring force and the damping by emitting sound waves can be obtained 
directly without using Green's functions. Sharp resonances occur for

M°u2 = 2f if tu «  M°и2 = 2? (7.27)res res res

These resonances imply strong scattering of lattice waves with 
frequencies of about ures . This can be experimentally demonstrated in 
heat conductivity where at kTres = ftures the heat conductivity should show 
a dip due to the strong scattering of ures phonons which contribute most 
to heat conductivity in this temperature range. The resonance also 
shows up in the spectral distribution. For many defects in the lattice 
z(u) exhibits a peak at ures which is in first order proportional to the 
defect concentration and which can be seen in scattering experiments.

8 . MODELS FOR POTENTIALS AND COUPLING PARAMETERS

The simplest model for c. p . ' s is the near-neighbour model which 
has been discussed extensively in section 4. It can be used if the forces 
are short-range ones which is not too bad an assumption in metals. The 
c. p . ' s can be determined from macroscopic data such as the elastic 
moduli or electrical polarizabilities in ionic crystals. More refined 
c .p . ' s can be obtained by fitting them to experimental dispersion curves 
which are usually given only for symmetrical directions. Once the c. p. 1 s 
are determined we can then obtain frequencies and polarizations off 
symmetry directions by numerical calculation.

In ionic crystals the Coulomb forces are long-range ones. Here 
we often use a model potential consisting of the Coulomb potentials between 
the ionic charges ê  and repulsive potentials between the ions of Born- 
Mayer type, A^^exp- г11и/ац, which come from the overlap of the ionic 
cores. Here the А^у and aflvare parameters to be fitted to experimental 
data. More sophisticated spring models can also be employed, such as 
the so-called shell model. In its simplest form it replaces an ion p by 
a core with charge e j and an "electronic" shell of charge e'M. Core and 
shell are connected by a spring and cores and shells of different nearest- 
neighbour ions are also connected by a spring. Figure 17 shows an example 
where only one spring i^v between the shells of two ions is present. The 
spring fjjy should be repulsive and correspond to the repulsive Born-Mayer 
potentials (fMb, < 0). The springs fß and f„ are related to the polarizability 
of the ions. This model then contains near-neighbour spring constants 
and long-range Coulomb forces. The spring constants and the charges 
have to be fitted. The shell model contains many-body forces because 
it includes polarization. In symmetric ionic lattices, it does not produce 
deviations from the Cauchy relation because in elastic deformation every 
atom remains a centre of symmetry. This means that the polarization 
of every ion vanishes and that, therefore, this particular kind of many- 
body forces does not give deviation from Cauchy’ s relation. If an overlap 
between the shells is taken into account Cauchy's relations are destroyed. 
Several attempts have been made to discuss three- and four-body inter
actions either phenomenologically or by applying quantum-mechanical
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perturbation theory (compare Ref. [5]). In simple metals such as A1 and 
the alkali halides, great progress has been made during the last few 
years. The contribution due to the conduction electrons can be calculated 
in a self-consistent way in quite good agreement with experimental disper
sion curves.

FIG,18. Planar force constants o f  the alkali metals: a) (100) shear wave; b) uniform displacement o f  the 
plane x = a; c) distances used to calculate the potential o f  a periodic dipole chain.

♦
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A particularly simple example is the calculation of the transverse 
dispersion curves in symmetrical direction of the bcc alkali metals 
(see Ref. [5]). The ionic cores of the alkalis are so small that their 
interaction may be neglected in a first approximation. The lattice energy 
consists mainly of Coulomb energy (eAt ~  - e 2/a) where the conduction 
electrons can be thought of as distributed uniformly, and the kinetic 
energy (Fermi energy) of the conduction electrons (eAt ~ 1/a2) which 
approximately depends only on the volume per atom. If only transverse 
waves in the symmetrical directions are considered the volume per atom 
remains constant (Fig. 18a). Consequently, only electrostatic forces 
between the ions submerged in a sea of electrons need to be taken into 
account. For the shear wave (Fig. 18a), q = q(100), H = (001), all the 
planes x = (a /2)n with integer n remain rigid in themselves and move 
against each other such that the atomic volume remains unchanged. From 
Eq. (4. 7a) we obtain for the frequency of this wave

Мш2 = ф1} = - 2
r  33 > 3 3 '

2 q • i f1
-  2 X' ,№)

3 3
qX 1(h)

( 8 . 1 )

The equilibrium positions of the lattice (Rh = Äh with integer h) can be 
written more conveniently:

R ‘1 2 ' ^  + 7 d - ( - ) hl). , a + | ( l - ( - ) h l )

0 for hj even 
a/ 2 for hj odd

Here again h is an integer vector, hj labels the planes, and h2, h3 label 
the position in the planes. Equation (8. 1) remains unchanged:

Mu2 .  2 , In*
Z_. 33 2

- 2X {h} . 2 _
!Х ф{зз‘} sil

2 qX {h j

hi
with

and

ф{ h,}
33

( 8 . 2)

X{h>> = h j a/2
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As before -ф ®  uh is the z component of the force on the atom in the 
origin if only atom {Fi} is displaced by u|f in z direction and analogously 
- ф{Ь̂ }и{Ь]} gives the force if the plane hj is displaced as a whole. The 
calculation of the planar force constants ф{^} is simple. The situation 
for the plane hj = 2 is shown in Fig. 18b. The force eEz(Ug) on the charge 
e in the origin is given by the electrical field at r = 0, E(u3), produced 
by the displacement u3. The contribution by the plane is e {E z(u3)-  Ez(0)} 
because the forces must vanish for u3 = 0. The field corresponds to 
charges e in the displaced position and charges -e in the original positions 
(Fig. 18b) which form dipoles of moment eu3. The quantity ф^} is then 
given by

Э
3u3 e <Ez(u3) - Ez(0)}

u3 =0 ® 9u3 Ez(u3) lu3=o

The plane can obviously be resolved into periodic dipole chains. The 
potential ф of a single chain for the situation in Fig. 18c is given by 
(see Ref. [1]):

= £ к 0 (| | п | р) e x p ( i 2T rn | )[l
n = -°®
(n/ 0)

Here K0(rj) is the modified Hankel function of zero order 
exponentially for p > 1

- exp

(8.3)

which decreases

'I  1/2

В Д 2 p j
(8.4)

The contribution to ф ^  by one row is

3 9 . I
Ш 6 - 91 ^ (? ’ P) I

X K,

u = 0 

2tt
0\ d

д Ш  ^(€' P) I u = 0

I n I p j exp ( 27ГП -j

■ In̂ O

2^ ( 2тгп)2
d3

(8.5)

and Ф̂33‘  ̂ is the sum over all chains in the hj plane e.g. in the plane 
hj = 1 , we have 5 = a /2 , d = a and p =[(a/2)2 + (ma + a /2)2 ]i/2 ( 
m = 0, ± 1, + 2, ± 3, etc. Because of the exponential decrease of K0, 
only few terms have to be calculated, in one plane only the chains with 
small p and only terms with small n are significant. For planes with 
larger distances hj a/2 the contributions also can be neglected. This 
is a case where only the nearest planes are important (compare Table IV). 
In this way we can easily calculate the planar force constants to a high 
degree of accuracy. The results are given in Table IV. The last column 
gives the relation between sound velocity c and elastic moduli which is 
valid for all cubic lattices. The comparison with experimental dispersion 
curves is gratifying (Fig. 19). From Table IV we see that for the (100) 
and ( 1 1 0 ) directions we obtain an almost pure sin-function because the
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TABLE IV. PLANAR FORCE CONSTANTS FOR bcc LATTICE (IN 
UNITS OF e2/a 3) AND RELATION BETWEEN SOUND VELOCITIES 
c AND ELASTIC MODULI c a& FOR WAVES IN SYMMETRICAL 
DIRECTIONS

q e
1st neighbour 

plane
2nd neighbour 

plane
3rd neighbour 

plane
distance
between

planes
p0c2=p0w2/ q 2

4(100) j- q - 2.088 0.164 -0.006 a /2 C44
a q Cli

> n) . -2, 795 - 1.055 0.719 a/V3 C11 " c12 + C441 q 3

a q C,, + 2c12 +4C«
3

1(1-10) -0,109 0.0024 0 C11 - c12 
2

(0 0 1) -0.756 0.0038 - 0.0003 a/V2 C44
N t

Сц + 2c44 
2

contributions of the nearest-neighbour planes are so large. In the (111) 
direction more planes have to be taken into account. From the last 
column we can calculate the two shear moduli c 44 and (cn - c12)/2. For 
the sake of simplicity, we consider only the nearest planes, where for 
small q according to Eq.(8 , 1):

Mu2 = - 4 ( Щ 2- ) = -ф{пР} X ‘ q202 
P

or c2 = _л{пр}
m

Here is the force constant of the nearest plane according to Table IV 
and Xp is the distance between the planes. Consequently, for

q = q (100) (p0 = M/Vz = M2/a3)
2 2

we have c 2 * 2.088 %  ~  = c44/p 0, c 44 = 2.088 ^

_ _a_ _i_and for q = ( 1 1 0 ), e = ^  ( 1 - 1 0 )Л

are get c2 = 0. 109 —  = (с п - си )/2p0 , Cll- ~ Cl2 = 0. 109 4 - 2 a42
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FIG. 19. Transverse dispersion curves for

Na, u»p 4.5 X 1 0 'IS s '1 for Na.

________  calculated from Table IV.

О О О experimental points (A .D .B . Woods in Inelastic Scattering o f 
Neutrons in Solids and Liquids (Proc. Symp. Chalk River, 1962) 2, IAEA, Vienna (1963) 3.

It is seen that the alkalis must be highly anisotropic because the two shear 
moduli differ by about a factor of 10 which is also observed experimentally 
The absolute magnitude agrees with experimental moduli rather well, too.

One world should be said about fitting to macroscopic data, dispersion 
curves, etc. These data depend on temperature. For high temperatures 
(T > Debye temperature) the experimental data depend linearly on T. The 
harmonic data can be obtained by extrapolating the experimental data down 
to T = 0. Otherwise, the data at elevated temperatures can show, for 
example, deviations from the Cauchy relations even for simple crystals 
with central forces. This extrapolation to T = 0 from high temperatures 
allows us to avoid anharmonic effects which are also present at T = 0.
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APPENDIX.

1. DYNAMICS OF BLOCH ELECTRONS

The main object of our attention in this course is the fact that "free" 
conduction electrons, inside a solid crystal, are constantly under the 
influence of a periodic field. We assume that the many-body problem has 
already been dealt with, the simple particle picture derived, etc. Still 
our particle cannot behave as an entirely free electron, always being 
subject to the field inside the crystal. But it is this object, the electron 
constrained by its interaction with the periodic field, which is always 
responding to the forces we apply from the outside in our experiments so 
that we need a description in terms of Bloch electrons dynamics.

1.1. The velocity of a Bloch state

The first question to ask is: How does a Bloch electron move by itself? 
Follow Weinreich (1965, Chapter 6).

Take an electron in a stationary Bloch state

W r) = Unl(r>
ik-

( 1 )

2 2 9
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obeying stationary state Schrödinger equation

( 2 )

Using (1) in (2), we rewrite

Taking the expectation value of the electron momentum

<P>_*n к I (4)

we can redefine, due to crystal periodicity, our wave functions so that 
they are normalized in one unit cell and, transforming (4), write

Now, there is a nice theorem due to Hellmann and to Feynman (1939) 
which comes in very handy. This theorem has been recovered by Morgan 
and Landsberg (1965) from a study of sum rules and the hypervirial 
theorem in Quantum Mechanics, which is rather interesting in itself. We 
can state it as follows: Letg?(a) be a Hermitian operator which depends on 
a parameter (or set of parameters) a, and let cpa(r) be a normalized eigen
function of a), with eigenvalue X (a). Then

(5)

where the integration is carried out over one unit cell. 
With

( 6 )

we obtain

Thus, from (7) and (3), the velocity of a Bloch state is

(9 )
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which we shall often write as vn̂  or v^, when the band index can be omitted 
without confusion.

This is a rather interesting result, and one which constitutes a typical 
result of quantum theory. It turns out that the particle moves quite easily 
through an array of obstacles. Now, a particle in a stationary state would 
correspond to a monochromatic wave of frequency (in this case) h"1 $n(k). 
Moreover, unless we invoke some perturbation to destroy this state of 
affairs the stationary state is never destroyed, which corresponds to a wave 
propagating through a non-dissipative medium. The only difference to the 
vacuum is the fact that frequency u and propagation vector к are related 
by a non-linear dispersion relation u(k), determined by the structure of 
the band. Thus, each frequency has a different propagation velocity and, 
being a monochromatic wave in a non-dissipative medium, this is given by 
the group velocity

which is the same formula as (9) and constitutes its interpretation in terms 
of waves instead of particles.

1.2. The effect of an external field

How, then, does a Bloch'electron respond to external forces? It is 
clear that we cannot describe this simply by a straight-forward application 
of Newton's law, since the acceleration of the momentum is given by the 
fötal force, of which that due to the external field is only a part. Once we 
have "dressed" the particle, to account for its constant interaction with the 
field inside, we have to use a more involved language to describe its 
response to the external forces. Since the state of motion is determined 
by its wave vector k, we seek the way in which к changes with time, as a 
result of an external potential U(r). Then, in the new states, we know how 
to calculate the velocity again, and so on.

A fully rigorous answer to this question constitutes a rather difficult 
problem. Detailed discussions have been given by Weinreich (1965), 
Wannier (1959) and Blount (1962) and, in less rigorous but more readable 
terms, by Callaway (1964), Ziman (1964) and Slater (1967) among others. 
We shall mostly follow Ziman's treatment.

1.2.1. Wannier functions

Now suppose we want to describe the electron as being here or there 
in the crystal. Taking all Bloch functions of a band and adding them up, 
we o'btain the sum

(N = number of unit cells)
At the origin (r = 0), this simply adds up all amplitudes unf(0 ); the sum 

has its greatest value. But, for non-zero values of r, the effect of including

v_> = V-»u к к ( Ю )

U l )
к к
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all possible phase factors is to produce a kind of destructive interference, 
as in the theory of wave diffraction by a central slit. It turns out, after due 
calculation, that when r is of the order of the radius of the unit cell the 
interference has become sufficiently destructive that the resulting wave 
function essentially describes an electron localized within a unit cell, 
although the actual amplitude still has small wiggles outside the cell. This 
can (and to achieve full rigour, must) be said in a more technical language, 
but the result is quite plausible. If we remember that ft к is something 
like the momentum (we shall come back to this), and that the size of the 
Brillouin zone is of the order of тг/ a (a = lattice constant), we expect that on 
going from a definite "momentum" ftk to a state like Eq. (11) in which the 
uncertainty in the momentum is spread over a size of the order of h/a, the 
uncertainty in position is approximately reduced to within a unit cell.

There is an easy trick in localizing the electron at any other unit cell 
labelled by position vestor R. Just form

a”(?"5 )=̂ rI elkR̂ (?) (12)
к

and everything is now shifted to the cell R instead of the cell at the origin. 
In fact Eq.(12) defines a unitary transformation from the basis ф^(r) to 
the basis an(r - R), which we may sometimes denote by anf .  It is formally 
proved that these functions (the Wannier functions) form a proper basis 
and it is easily seen that

(k -R -k '-R ')

—> —►к, к

1 V  i k - ( R - R ' )

= N Л"
1

Thus, Wannier functions centered on adjacent lattice sites are orthogonal.
Notice also that there is one set of Wannier functions for each different 

band. It is also proved that functions with different band indices are 
orthogonal.

Thus, we have changed to a new orthonormal basis. Now, what do we 
do with it? In a conductor, where charge carriers run freely from cell to 
cell, this description in terms of localized states is not the most appro
priate for a direct physical picture. In fact, Wannier functions are not 
typically used for actual calculations, but they are useful for proving 
theorems.

1.2.2. Equivalent Hamiltonian

Clearly, the a ^  are not eigenfunctions of the Bloch Hamiltonian. 
Instead,

^ an( ? ' S) = Ж  I 6 ^  R
к

<a -+| a-», > = У  e
x n R 1 nR '  N

R, R

(13)
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1
nTn I-

- i k -  R
<f(k)^-.(r)
n nk

к

N I
-k- Re S (k) e a (r - R1) ir ' n '

k,R’

The last equality follows from inverting Eq.(12). 
Defining the Fourier transform

(14)

*„<«> H¥ l e ^ V S) <15>
к

(since <fn(k) is periodic with the periodicity of the reciprocal lattice) we 
have from Eq.(14):

<16>
R'

Let us now suppose that an external potential U(r) is applied. This 
will change the stationary states of motion, so we look into the time- 
dependent Schrödinger equation for a time dependent wavefunction:

(gT+U)0(?,t) = ih 9^ r,t)
and use a Wannier representation

^ (?,t) = Y  f (R -1 ) anTt

(17)

(18)

Our task is to find the fn̂ . Substituting into Eq.(17), taking the scalar 
product with an,-̂ . and writing

U (R,R*) = <a-Ju|a - t>
nn* 4 n R 1 1 n* R /

we have with the help of Eq.(16):

X  { 6nn' Ф  - 5 ' )  +  Unn,( R ,I ') } y R ,t )  = i h  ^
afn,(Rlt)

3t

(19)

( 20)

n R

So far, this is a mere (and exact) rewriting of Eq. (17). The idea behind the 
equivalent Hamiltonian formulation is to consider the inversion of Eq.(15),
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to rewrite this in terms of a crystal momentum file, to replace it by the 
operator -iftV, which means replacing к by -iV, and to see how this is 
inserted in Eq. (20).

It is easy enough to do the calculation, but let us pause for a brief 
digression. We know from general quantum theory (Dirac, 1947, 
section 25) that the momentum, being canonically conjugate to the position, 
is the displacement operator which generates infinitesimal translations. 
For a system with translational invariance, an infinitesimal translation is 
a symmetry operation of the system and a symmetry invariance is always 
related to a constant of the motion. The momentum, indeed, is a constant 
of the motion for such a system. But now we are dealing with a lattice, 
with discrete positions Й, and the symmetry operations are the discrete 
translations R. Indeed, if we investigate the effect of the momentum 
operator on a Bloch wave function we find

- i h V ^ ( r )  = -ihV  junl>(r)elk Г j - = h i t ^ fr )  - ih e  Vunl>(r) (22)

and, what do we do with the extra term on the right-hand side?
Let us define a crystal momentum operator P through the eigenvalue 

equation

Р ф  _Дг) = h k ^ ( r )
nk nk

(23)

and let us investigate its effect on an arbitrary function F(r), which we 
shall naturally expand in the basis of P:

F ( r ) = V  A (k )^ J r )
A j n nk 
nk

(24)

What we actually want is the effect of the exponential operator exp(i P'R/ft). 
From Eqs (23) and (24), we have:

iP ’ R/ft t—, / .̂ ■ V"1 . ,V , iP*R/fi .e F(r) = ) An,(k)e ^ ( r )
nk

= У  An(k)elk % ntfr)
n !

(25)

u -*( r) enk
i к *(r+ R)

nk

Now, if and only if Й is a lattice translation, the periodicity of un-jj(r) 
allows us to replace its argument by r + Й, whereby Eq.(25) becomes

eiP- R/f> F (r) = F (r  + R) (26)
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Thus, the operator whose eigenfunctions are the Bloch functions and 
whose eigenvalues are the allowed values of fi k, generates the lattice 
translations, which are the symmetry operations of our problem. This 
is why It is a good quantum number, a constant of the motion, and serves 
to label the Bloch states. Therefore, this operator is not canonically 
conjugate to the position operator with continuous eigenvalues r and the 
replacement of It by -i V "must be taken with a tablespoon of salt" as 
remarked by Weinreich, who follows this up with detail. However, after 
due regard for formal considerations it turns out that the procedure we 
shall presently continue is justified provided one is dealing with slowly 
varying perturbations, etc. Thus, we shall simply notice that there is 
here a non-trivial formal question, and shall carry on with what is done 
in practice.

We now come back to Eqs (21) and (20), and regard the expansion co 
efficients f (R, t) as the numerical values taken at position Й by a smooth, 
continuous, differentiable function f^(r, t), replace к by -i V and obtain

—»•

*n(- iV )fn(r.t) = £  <£n(R ")eR' V fn(r,t) 
r"

S (R ")f (r + R'Jt)
R ”

Thus, Eq.(20) reads

(27)

f,(-i V) f , (r, t) - ih
Э fn<r, t)'

at £+ ) U ,(R, R ')f (Rit) = 0 (28)

r = R n, R

We are back to a kind of Schrödinger equation in which the perturbation is 
written in the Wannier representation, and the effective unperturbed 
Hamiltonian is obtained by replacing к by -iV  in the unperturbed eigenvalues
<fn. (k).

This is still a rather clumsy differential equation but, if we are not 
explicitly interested in perturbations capable of inducing interband transi
tions, then Unn. is diagonal in the band index and we only have to use 
Wannier functions of one band. If, furthermore, the external potential is 
sufficiently slowly warying, as is usually the case with electric fields in 
conductors, then we can take ип.(Й, S ') as diagonal in the lattice position 
indices, and we are reduced to the diagonal matrix element

U . ,(R, R) = [U (r)U -n n r=R (29)

At last we happily forget about discrete lattice positions and we write the 
effective equation of motion (dropping the prime from the band index)

( - 1 V ) .* 9
l h ^ f (r, t) + U (r)f (r, t) = 0 (30)
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Thus, we are describing the problem in terms of an equivalent classical 
Hamiltonian

$ ? (r ,h k )  = Sn(k) + U(?) (31)

in which we take ft к as canonically conjugate to r and replace к by -iV . 
Taking all this for granted, we need only write down at once Hamilton's 
equations

r = vfit£r; f t k = - V ^  (32)

The first one reproduces Eq.(9) for the unperturbed velocity, while the 
second one gives the equation we were seeking as a substitute for Newton's 
law. With U = - qE -r, we obtain

hk = qE (33)

Thus, the quantity whose rate of change is the external force is the crystal 
momentum, not the electron momentum. As emphasized by Kittel (1954), 
this has a simple physical interpretation in terms of the momentum trans
ferred between the electron and the lattice.

Expanding the periodic function of Eq.(22) as

^ u - ( k ) e iK'r (34)
К

the expectation value of the electronic momentum (dropping the band index) 
is

V k (r )  =

<P> = <>_| - i v | < 0  = ftk+hV  К I <Uk)|2 (35)
nk nk j К

К

Suppose under the influence of an external field the state of motion of the 
electron is changed so that its crystal momentum changes from ft к to 
ft(k + 6 k). The true momentum of the electron then changes by

6<p> =fi6 k + ^ftK:|v^| о^(к)|2 бк| (36)
К

Since the electron interacts with the lattice, a change in electronic momen
tum entails a momentum transfer to the lattice and, since ft б к is the total 
momentum change seen from the outside, the above equation is equivalent to

h 6 к = 6 p̂)> + 6 p (37)

whence

К

(38)
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that is to say, the lattice sees the process as ajsuperposition of Bragg 
scattering events, with momentum transfer -fiK, with a weight factor 
arising from the corresponding admixture of К vector in Eq. (34), i. e. 
in the Bloch state of wave function Фп~£- It is always instructive to interpret 
the interaction of the electron with the lattice from the viewpoint of dif
fraction theory, as one may realize from band theory.

Furthermore, from Eqs (35) and (32), we have

v k <f(k) = |k + |ö-(k)|2}  (39)
-*
К

whence the standard formula for the inverse effective mass tensor yields

Г -»T 1

Jij
j_  э2^(к) _ jl
ft2 9 kj9 kj m +Lk>f?

—>
К

<*-Лк)к
(40)

Comparing with Eq. (36) we find another interpretation of the crystal 
momentum:

(41)

Thus, the usual definition of the effective mass gives the apparent coefficient 
of inertia with which Bloch electrons respond to the external field when we 
describe the dynamics in terms of the apparent Newton's law of Eq.(33).

1.2 .3. Bloch electrons in magnetic fields

The case of a magnetic field is very different, and always more subtle. 
We could for example quickly obtain a result like Eq. (33) in the following 
(more intuitive than rigorous) way: let an electron be in a state 1c with 
energy S{k). After a time interval dt, equating the energy change to the 
work done by the field; we get:

dS - —j^-dt = V»^-kdt = qE- vdt = hv- fd t (42)

thus fik = qE. Now we try to play the same trie for the Lorentz force

F = ^ v X H  (43)
L C

and we get nothing at all because, Fj_ being at a right angle with v, it does 
not perform any work.

Let us consider the difficulties of the quantum mechanical treatment. 
We might start with a Hamiltonian in the presence of a magnetic field, 
which is then perturbed by the periodic potential. We can do this because 
the magnetic field (unlike the electric field) has stationary states (the 
quantized cyclotron orbits, or Landau states), which are the eigenstates
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of the Hamiltonian

1
2m

2
(44)

where A is the vector potential (H = curl A) and p is the canonical momentum, 
conjugate to the position, i. e. the vector in brackets is the kinetic momen
tum (Appendix). An explicit solution of the problem of adding the pertur
bation of the crystal potential to this Hamiltonian would be, in the first 
place, very cumbersome and, in the second place, it would be rather more 
like attempting a band structure calculation in the presence of a magnetic 
field. Such a standpoint may be suitable for other purposes, but what we 
really want is an acceleration equation for Bloch electrons, i .e . we want 
to start from the stationary states of the crystal and to see how these 
states change in time due to the effect of the magnetic field. Thus we write 
down the Hamiltonian

and look at it as the Bloch Hamiltonian perturbed by the addition of A. We 
are, however, dealing with a theoretically infinite crystal, and for a 
homogeneous magnetic field, a vector potential increasing linearly with r 
and, therefore, capable of assuming arbitrarity large values cannot be 
treated as a perturbation.

One possible way (Wilson, 1954, Chapter 2; Slater, 1967, AppendixA) 
is to form a wave packet and to choose a gauge in which the mean value of 
A is zero. This consists essentially of making X assume instantaneous 
values such that it becomes vanishingly small on getting close to the centre 
of the packet. The term in A2 can then be neglected and the linear term, 
which involves the spatial derivatives of X,  gives in fact a perturbation 
linear in the magnetic field strength. One can then proceed to study the 
acceleration of the wave packet by time-dependent perturbation theory.
This procedure is not entirely desirable; it is not too elegant since it 
depends on a particular choice of gauge, and it finally establishes the 
desired result provided the magnetic field strength is less than a certain 
upper value which, in view of later developments, seems too restrictive.

There is a more attractive promise in the effective Hamiltonian 
approach. The perturbation due to the electric field is also linear in r (it 
is equal to q г-Ё, for a uniform electric field). But the effective 
Hamiltonian theory is designed to cope with extended perturbations, pro
vided they are slowly varying. The kihd of argument we would like to put 
forward runs as follows:

For Ä = 0 we start from the actual Hamiltonian

(45)

and arrive at the effective Hamiltonian
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for States in the n-th band. Thus, for A #  Owe start from the actual 
Hamiltonian (45) and arrive at the effective Hamiltonian

„(к) к = -i V _3_
he A (47)

It is this last step which creates difficulties which are specifically due to 
the nature of the vector potential. The crux of the matter lies in the 
diagonalization with respect to the band index. If this cannot be achieved, 
there is no point in the effective Hamiltonian theory (we do not want to 
have to use wave functions from different bands together). Luttinger and 
Kohn (1955) derived the effective Hamiltonian theory using a representation 
in which one can see very directly (Kohn, 1959) that the Hamiltonian (45) 
has non diagonal matrix elements between bands of different indices. Thus 
the derivation of (47) as an effective Hamiltonian for states in one band, 
requires an explicit justification, and this is done in the specialized articles 
(see also Weinreich, 1965, Chapter 9).

One would now think that in the presence of crossed electric and 
magnetic fields, with

-» 1 ЗА -> -*E = - Vcp----- H = V X A (48)c dt '

having justified (31) and (47) separately, the total equivalent Hamiltonian is 
obviously

$n(k) + qcp; к = -iV  - ^  A (49)

However (Zak and Zawadzki, 1966), this also involves some subtleties.
To put it briefly, when two perturbations are acting simultaneously and 
if a diagonalization procedure has to be carried out, the non-diagonal 
elements of one perturbation must be small also compared with the diagonal 
elements of the other perturbation. This ultimately imposes a restriction 
on the ratio E/H (in the case where qEa « f iu c , where a is the lattice 
constant and uc is the cyclotron frequency).

The above digression is only meant to give an informative glimpse 
into the rigorous quantum dynamics of Bloch electrons, which is a very 
difficult problem and is still far from being completely solved. However, 
for the kind of problems we shall cover in this course a semiclassical 
picture is sufficient (Lifshitz and Kaganov, 1960). Thus, for the practical 
purpose of deriving acceleration equations we proceed as in the case of an 
electric field alone. We go back to the semiclassical Hamiltonian (49) 
and use Hamilton's equations.

dE.
dt V S - q Vcp = ^ V_<£ • VA - q Vcpn e p n  'Г (50)

dr
dt

and
(51)
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Furthermore

(52)

Putting together these equations, and using the identity

- v-VA + VA • v= t X (VX A) (53)

we finally obtain putting back the indices for the sate, etc.

(54)

which is the expected equation for the "crystal kinetic momentum" under 
the influence of the complete Lorentz force. Notice that, since v^-is 
proportional to Vj*<$(k) and is therefore normal to the constant energy 
surface, the state of the particle is, under the influence of the magnetic 
field alone, precisely the curve (in к space) determined by the intersection 
of the surface of energy S and the plane perpendicular to the direction of 
the magnetic field.

2. TRANSPORT THEORY IN SOLIDS WITH NO MAGNETIC FIELD

While the electronic theory of the solid state, and the scope of the band 
picture, have recently undergone significant changes and are at present in 
a state of effervescence, there has been nothing really spectacular, which 
would be likely to have a similar impact at the level of the everyday practi
tioner, in the field of transport theory in solids. There are, of course, 
profound questions concerning the rigorous quantum theoretical foundation 
of the Boltzmann equation, byzantine questions concerning ergodicity, etc. 
But, by and large, this topic is rather a "classic" in solid state theory.
The Boltzmann equation has been rederived in countless different ways, 
sometimes gaining further understanding of the limitations of its validity, 
the implications of manybody interactions have been carefully scrutinized, 
but in the end almost always one comes around to the Boltzmann equation 
and the practical question is how to solve it. In these lectures we shall 
approach the subject in this "classic" mood, and we shall work in a semi- 
classical frame. Lack of time prevents us from going into specifically 
quantum effects in high magnetic fields. As a matter of fact, such effects 
are of paramount importance in the study of the magnetic susceptibility of 
the conduction electrons, and you will see it in the lectures on Fermiology 
(de Haas-van Alphen effect). But in transport phenomena the quantization 
due to a magnetic field only introduces (when the field is very high) small 
variations on top of a classical pattern of behaviour. The typical situation 
consists in, say, a curve plotting the resistivity of a metal as a function 
of magnetic field, which exhibits, in the high field limit, small ripples on 
top of a curve continuing the previous trend. And this curve can be pre
dicted by the semiclassical theory, and is the part of the story which 
conveys the greater information.
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This will then be the frame of these lectures. We shall take the semi- 
classical Boltzmann equation picture for granted. It is not the most 
rigorous procedure one can follow, but it works very well in practice.
Lewis (1958) gave a very good discussion, with simple physico-mathematical 
apparatus, largely explaining why this is the case. Finally, although this 
is outside our scope, there is the question of why some solids are conduc
tors while others are insolators. It might be in order to remark that, 
although we shall constantly use the band picture, it has its limitations.
The idea of screening is more important and powerful than the usual story 
about exclusion principle and filled and empty bands. These ideas, stressed 
by Mott (1958), are reviewed in qualitative tutorial terms by Cottrell. See 
also Ziman (1964).

More related to what we have just seen is the curious fact that, granted 
that a solid has "free"\conduction electrons, and is allowed by all re
spectable theories to be a conductor, it would be radically prevented from 
carrying any current at all by the very same facts which determine the 
ability of Bloch electrons to sort out the array of obstacles. We have just 
seen in Eq. (33) how they are accelerated by an electric field. Let us look 
at the trajectory in real space. Suppose, for simplicity, that the electric 
field is in a symmetry direction, so we are dealing with a one-dimensional 
problem. We simply have to integrate:

A+ Г 1 dSn .. Г 1 ££п dt „
r _ r ° = J  v d t = J ^ d t = J

0 0 0

J _  / JL
qE J Эк qE 

0
k(t)^- <S q k( 0)

(55)

Thus, unless the field is sufficiently strong to provoke tunnelling into the 
next band, as the energy reaches the top value it meets the gap and does 
not increase any further. At this instant, ic reaches the frontier of the 
Brillouin zone and the electronic wave undergoes a Bragg reflexion: The 
velocity is reversed, the state of motion, having climbed up to the top of 
the <%n versus к curve (view it in the repeated zone scheme), starts going 
down this curve, Sn decreases again and the actual position in real space 
recedes. And so on, back and forth, within a span of length equal to the 
width of the band divided by qE. It turns out, after all, that if a conducting 
crystal carries any net current at all, it is precisely because of the col- 
lisions, which disrupt the otherwise oscillating motion of the conduction 
electrons. The actual displacements, even after striving to achieve 
conditions as near to ideal as possible, are always, in real samples, much 
smaller than the length calculated from Eq.(55). This means that the change 
in.crystal momentum is very small compared with the dimensions of the 
Brillouin zone, and such a situation permits a displaced distribution which 
carries a net current. But, after the very existence of scattering has made 
conduction possible, it is precisely this mechanism which gives rise to the 
resistance to charge flow.

The topics we shall see in the following lectures are well covered in a 
number of books and reviews: Beer (1963), Blatt (1959), Brooks (1955), Fan
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(1955), Jan (1957), Jones (1956), Lifshitz and Kaganov (1966), Smith (1959), 
Tsidil'kovskii (1962), Wilson (1954) and Ziman (1960), 1964). Kittel's 
book (1963) contains also one chapter on the semiclassical theory of magneto
resistance in metals.

2.1. The Boltzmann equation

We shall use a distribution function

f (k, r)

such that

f (k, r) d3k d3r (56)

gives the probability of finding an electron in the volume element d3kd3r 
of the 6-dimensional phase space (k, r). The r dependence will be omitted 
when the sample is homogeneous (which for us, who will not mention real 
inhomogeneity, means isothermal conduction). In this case we may write 
the distribution function as f-£. In any case, remembering that on quantizing 
the momentum space we assign a "volume" h3 to each quantum state, which 
means a "volume" (2тг)3 in к space, the number of electrons per unit 
volume (of real space) with the к vector in the element c^k will be, after (56)

dn = 2 fyК (57)

The factor 2 is due to the twofold spin degeneracy. We shall indicate

d3k =
(2ТГ)3 “ dk (58)

and thus the real concentration of the electron gas will be

n = 2J  f_*dk (59)

n itself, may be a function of r. In the presence of a thermal gradient, 
e .g . the distribution function depends on temperature T, which is assumed 
to be a function of r and on the chemical potential, which is also a function 
of r. The very use of these concepts involves an important approximation. 
In thermal equilibrium (no electric field, no thermal gradient), the distribu
tion is known. We shall indicate it by f^. It is the Maxwell-Boltzmann 
distribution, for the gas of conduction electrons (or holes) in non-degenerate 
semiconductors, or the Fermi-Dirac distribution for metals or degenerate 
semiconductors. The concepts of temperature and chemical potential are 
then well defined. When the thermal equilibrium is upset, the straight
forward use of these concepts is unwarranted. What we do is to assume
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that the disturbed distribution

f -=  f t +  6f_> (60)к к к
is still sufficiently close to equilibrium such that

6f _ «  f i  (61)к к
and so we linearize in 6f j, which is due to the external disturbances. Thus, 
from the computational point of view, we are performing a linear approxi
mation in the strengths of E and VT. From the thermodynamical point of 
view we assume that the departure from thermal equilibrium is sufficiently 
small that we can assume, at every local volume element, a local thermal 
equilibrium, with its own local value for T (r) and £(r) (? = chemical poten
tial). That is to say, we assume that it is a good approximation to calcu
late n at every point by inserting f| in Eq. (59) instead of the actual per
turbed distribution.

But we cannot do this to calculate the net flow of anything (mass, 
charge, energy). We know that the equilibrium distribution does not carry 
any net flow. The zero-order evaluation yields nothing, and we must 
evaluate the flows to first order. This requires the knowledge of the true 
distribution, at least to first order in the driving forces. It is easy enough 
to describe the changes due to these forces. Liouville's theorem, in 
statistical mechanics, states that the representative points in phase space 
move about as if they formed in incompressible fluid. Thus, the total 
time derivative

+ (62)

ought to be zero. We shall not be interested, in these lectures, in the 
partial derivative, which is needed when f-j> is explicitly time-dependent,
(the case of variable fields). But we must include another fact in our 
description: No conduction electron ever does travel through an ideal 
crystal lattice. All crystals contain imperfections of some sort, and these 
random obstacles are really felt by the electrons in the form of collisions 
by which they are scattered. Even if a lattice does not contain any constitu
tional imperfections all lattices vibrate as a consequence of thermal agita
tion, and an electron reaching a lattice point would find the local ion 
randomly displaced and bump off. And even if this were not the case, we 
would still have to enquire about mutual collisions between the electrons. 
Thus, from whatever source, we must include the effect of collisions 
through a term which we shall indicate by

(f-0к coll
The derivative written in (62) is not zero but, instead,

k- V_f_ + r ■ к к V£it (U  „к coll (63)

It is instructive to interpret this equation. Representative points in the 
6-dimensional element d3kd3r, centred at (Ic, r) at time t were all, at
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time t-dt, in the volume element of the same extension centred at the 
point (k-dk, r-dr). During this time interval the electric field has been 
accelerating ic at a rate qE/h, pushing the representative point along the 
3-dimensional trajectory such that

dk = kdt = qEdt (64)

Meanwhile, a varying chemical potential induces a physical diffusion from 
r-dr to r so that

dr = r dt

Thus, if we sit at (k, r), the density of representative points at time t is 
given by:

f(k, r)

At time t + dt, all these points have drifted out and all the points from 
(Ic-dlc, r-dr) have drifted in, so that we have now exactly for the density:

f(k-dk, r-dr)

Thus we see a rate of change

(f-J
к drift

Lim
dt-*o

f(k-dk, r-dr)
dt ^ = - i . v ? frк к r - v f ? (65)

But also, collisions are all the time bringing representative points in 
and out of the element at (k, r), resulting in an extra rate of change of 
f-j>. Liouville's theorem, all counted, says that we must have the same 
total density of representative points, thus

(f-к drift ( V c o l l ( 6 6 )

which is Eq.(63). Writing now, more carefully, v-g instead of simply r, 
we take the following as our starting form of the Boltzmann equaltion 
(henceforth denoted as B .E .):

vIf v f_ + h qE ■ V-*f-» = (£♦) 
к к к coll

(67)

We shall presently see that the collision term is a complicated integral of 
the unknown distribution. But the problem is formulated in this integro- 
differential equation. If we can solve it we can calculate the density of 
charge and energy flow:

J = 2 q v_»f_>dk; W = 2 / «SLv-^dk
к к J  к к к

( 6 8 )
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A first simplification is achieved by using the assumption of small 
departures from equilibrium. Thus, we start by evaluating the left-hand 
side of (67) to lowest order, i. e . , we write

v „- V fl  + ^ q E -V ^ fl  (69)
к к n к к

—у —♦
and then we look into what determines the dependence of fj->on r and k.
The latter is trivial,

о Э d  Э f i

'  Ж  4r*s ■ "ТгЛк к
(70)

For г we consider the explicit form

f° =
* e (^ S)/kBT + 1

(71)

and assume that, at each point r, there is a meaningful T and f . Thus

Vf.о
t

Э f° Э£?
= a ^ V T + r f v ?

(72)

It is more convenient to lean on the explicit form of fjland rewrite (72) as

(A Boltzmann equation describing size effects would have an extra term 
which we are not considering here. See Ziman (I960, Section 11.2). The 
reason for the term qE - V? is obvious: in moving a charged particle into 
another position we must perform electrostatic work and chemical work 
as well (this is the definition of the chemical potential). Thus, the total 
force acting on the charge carrier is given by the gradient of the electro
chemical potential, and is precisely equal to

q E 1 = - V(qcp + ?)

As to the other term, we shall presently come back to it.
We still have to deal with the collision term. Let Q (Й, it1) be the 

elementary probability per unit time that an electron known to be occupying
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the state k, be scatterecLinto the state k' known to be unoccupied. Then, 
obviously, for Fermi statistics

( ' t S ,* 1’»'/1 ‘ 'г) +«<*■ « 'X 1 -v) } *  ™
In thermal equilibrium the collisions alone do not change the total density 
of representative points at any one particular point, and (75) vanishes. 
Thus we define a symmetric function

P(k,k ') = Q ( k , k ' ) f J l - f J  = P(k,' k) (76)к \ ky
This symmetry states concisely the principle of detailed balancing for 
a system in thermal equilibrium.

It is customary to write the perturbed distribution as

f° + 6f = f 
к к к к kßT к к к (77)

This suggests the idea of a first-order expansion about the equilibrium 
value. We redefine our unknown as Ф-*, which will be linear in the forces. 
Thus, we use (77) and (76) in (75), linearize, substitute in (74) and finally 
obtain

3f-
T V ( f j + q ( B - i v ? ) } = ~ Ф^-Ф„к к/

P (к, к') dk1 (78)

It is from this equation that we shall start the calculation of the phenomen
ological transport coefficients.

2.2. The phenomenological transport coefficients: Relation to the 
thermodynamics of irreversible processes

We now have two tasks. On the one hand, we must write down the 
precise formulae for the quantities measured experimentally. On the other 
hand we must calculate them from our Boltzmann equation.

The electric current is quite clear. It is given by 3  in (68). The heat 
flow (or thermal current) is not the energy flow W written in (68). Allowing 
ourselves to use the first law of thermodynamics for a small volume 
element, i .e .

6S = T6S + ?6n = 6Q + £6n

(S = internal energy, S = entropy, Q = heat)
we see that an energy flow Ы/ЬХ involves a heat flow

5Q _ 6$_ 6n 
6t " dt ?6t
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T h u s, w e  m ust su b tra ct  fro m  W the p a r t ic le  c u rre n t  t im e s  5 ,  i . e .

U = W - 2 ?  / v v  f „ d £  = 2 / (<£_-? J v ^ f - ^  (79)
J k k  J \ k / k k

T h is  i s  the m eaning o f  - ? )  in E q .  (78).  A s  fo r  V ( i / T ) ,  w e s im p ly  
o b s e r v e  that a heat flow U i s  an entropy flow Ü / T  whose d ive rg e n ce

V - U - V (80)

g i v e s  the th e r m a l  entropy production a s so c ia te d  with the i r r e v e r s i b l e  heat  
flow in the stead y state.

L e t  u s w r it e  the r .  h. s .  of (78) as

1

к вТ
P  (?, ic') dk1 =  L  Ф_, 

к
( 81 )

We have defined the l in e a r  in te g ra l  c o llisio n  o p e ra to r  L .  L e t  u s u se  the 
notation

F r G ?
F  G  dk 

к к
(82)

T h en  fro m  (78), r e m e m b e r in g  (77) and the fact that f^ c a r r i e s  no flow  
w h a te v e r  k

T Ü - V k
•* -» I

+  J  - E  = 2 Ф , L  Ф (83)

T h e  second te rm  on the left-h an d side i s  also  fa m ilia r ,  it is  the Jo u le  
heat, o r  T  t im e s  the " e l e c t r i c a l  entropy p rod u ction ".  It is  e a s y  to show,  
u sin g the definitions (8 1)  and (82), interchanging dum m y integration v a r i 
ab le s  and manipulating a little, that

° f L F t )  ( Fr L F T ; ) i 0
(84)

Th at i s  to s a y ,  the o p e ra to r  L  is  se lf -a d jo in t (it is  r e a l ,  s y m m e t r i c  and 
positive  definite). T h is  m ath em atical  fact h as an im m ed iate  p h y s ic a l  
consequence, nam ely, from  (83)

The entropy production i s  positive  definite. A s  w ritten  in (83), the le ft-,  
hand side e x p r e s s e s  S  in t e r m s  of the m a c r o s c o p ic  quantities of the
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e x perim en t, i . e .  the th erm od yn am ic f o r c e s  and flow s (P rig o gin e ,  1 9 6 1 ) ;  
the right-h an d side g iv e s  the fo rm u la  fo r  calcu la tin g  S fro m  the s t a t is tic a l  
th e o r y.  The inequality of (84) e x p r e s s e s  B o ltzm a n n 's  H -th e o r e m : C o l
lis io n s ,  c r e a tin g  d iso rd e r,  a lw a ys  i n c r e a s e  entropy. Our form u lae  fo r  
J  and U m a y be com plicated in te g r a ls  depending on the details of the band 
s tru c tu re  and sc a t te r in g  m e c h a n is m s ,  but we know that, i r r e s p e c t i v e  of  
the model, any tr a n sp o r t  calcu lation  w e p e r f o r m  based on E q .  (78) w il l  
give  r e s u lts  in a g re e m e n t with the th e rm o d y n am ics  of i r r e v e r s i b l e  
p r o c e s s e s .

W e can se e  this m o re  explicity  by actu ally  evaluating the phenomen
o lo g ica l tr an sp o rt  c o e ffic ie n ts .  The e xplicit  form u lae  a r e  given in all 
textbooks. It s u ff ic e s  here  to notice that, since the o p e ra to r  L  is  se lf -  
adjoint, it can be in verted  (no fe a r  of sin g u la rities ,  a s  L  is  positive definite)  
and its r e c i p r o c a l  is  also  s y m m e t r i c .  L e t  us put

Then, fo r m a lly  so lvin g (78), w e see that Ф_, w i l l  be of the form
к

(85)

wh ere

( 8 6 )

T h u s,  the flo w s w i l l  be

(87)

and

( 8 8 )

which we can c o n c is e ly  r e w r ite  as

(89)

W e have w ritte n  the solution of our tr an sp o rt  problem  in the canonical form  
of l in e a r  relation ship s between flows and a s so c ia te d  th erm od yn am ic f o r c e s . 
N o tice:
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i) A n  e le c t r o c h e m ic a l/ t h e r m a l  gradient contributes to a th e r m a l/  
e le c t r ic  flow. T h u s, our re su lt  d e s c r ib e s  th e r m o e le c tr ic  e ffects

ii) B e c a u s e  К is  positive  definite and s y m m e t r i c  we have

К  g 0.t t  ’ К  1  0, К -  кЕЕ ТЕ ET (90)

Th e inequalities a r e  som ewhat sy m b o lic ,  since KTT and K EE, in g en e ral,  
m a y  be se c o n d -r a n k  te n s o r s  (although c r y s t a l  s y m m e t r y  m a y  red u ce them  
to s c a l a r s ) .  In any c a s e  what w e m ean is  that, in turn, they a r e  s y m m e t r i c  
te n s o r s ,  with positive  definite p rin cip al v a lu e s .  The equality is  a new and 
im portant statem ent. It is  an exam p le  of the r e c ip r o c it y  relation s o r  
O n s a g e r  re lation s in the g e n e r a l  th e rm o d yn am ical th e ory  of i r r e v e r s i b l e  
p r o c e s s e s  (The com plete O n s a g e r  relation s include also  the positive  
d efiniteness of the diagonal kinetic c o e ffic ie n ts .  H o w e v er ,  in the context  
o f our d isc u ss io n  this adds nothing new to the statem ent of the H -th e o re m  
a lr e a d y  made. It i s  the s y m m e t r y  between kinetic coe ffic ie n ts which  
r e v e a l s  som ething new).

A s  obtained fro m  the can o n ical fo rm  (89), these  relation s a r e  not yet  
e x p r e s s e d  in t e r m s  of the actu a lly  m e a s u re d  c o e ffic ie n ts ,  but the change  
i s  v e r y  e a s y .

a) E l e c t r i c a l  m e a s u re m e n t.  Although Ё  i s  d e rive d  from  the e le c t r o 
static  potential, w e would actu a lly  include the effect of V ?  in the o bserve d
E .  M. F .  in the c ir c u it ,  so we sh all  s im p ly  w r it e  Ё  f o r  the " o b s e r v e d "  
e le c t r ic  field instead of Ё 1 .

b) T h e r m a l  m e a s u r e m e n t. We ju st use the t r iv i a l  identity

T V  = T _1( - V T )

Our phenom enological equations then read

U = T _ 1 K t t - ( - V T )  + K te - E  

J  = T _ 1 K e t - ( - V T )  + k ee • Й

(9 1)

And the e x p e rim e n ta l definitions a r e :
T h e r m a l  conductivity к. Open c ir c u it .

Ü = /T-(-VT), under the condition J  = 0 (92)

Iso th e rm a l e l e c t r i c a l  conductivity

J  = ct • E ,  under the conditions V T  = 0

Seeb eck  coefficien t (therm opow er)

—У _^
E  = Q - V T ,  under the condition J  = 0

(93)

(94)
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P e lt ie r  coefficien t v

U = я • J ,  under the condition V T  = 0 (95)

T h e s e  c o e ffic ie n ts  a r e  e a s i l y  e x tra cte d  fro m  E q . ( 9 1 ) .
T h e  point is  that the O n s a g e r  r e latio n s w e have ju st v e r i f ie d  in our  

solutions, when r e - e x p r e s s e d  in t e r m s  of the e x p e rim e n ta l c oeffic ien ts,  
y ie ld  im m e d ia te ly  the K elvin  re lation s in th e r m o e le c t r ic ity .  T h u s, the 
solution of the Boltzm ann equation d e s c r i b e s  th e r m o e le c tr ic  phenomena 
c o r r e c t l y .

Incidentally, w e a r e  r e f e r r in g  h ere  to the e le ctro n ic  th e r m a l cu rre n t.  
T h e r e  i s ,  of c o u r s e ,  a  phonon heat cu rre n t.  Although th e se  two con tribu 
tions can  be disentangled, and the pred iction s of the e le ctro n ic  theory  
checked independently, it i s  a lso  p o ssib le  to extend the th eory h ere  sketched  
to d e s c r i b e  e le ctro n  and phonon tr an sp o rt  sim u ltan eou sly,  by studying two 
coupled Boltzm ann equations. T h is  p ro vid e s  a c o r r e c t  f r a m e  to account  
fo r  so m e details of the electron-phonon sc a tte rin g  p r o c e s s e s  which a r e  
im portant in r e a l  li fe .  F o r  exam p le, on c o n sid erin g  the ele ctro n ic  
B oltzm an n  equation, we ought to account fo r  the fact that the e le ctro n s  
m eet phonons which, fo r  V T  Ф 0, a r e  not in th e r m a l equilibrium . T h is  is  
c o r r e c t l y  d e sc r ib e d  i f  the phonon distribution is  obtained fro m  the s i m u l
taneous B oltzm an n  equation fo r  phonons.

W e sh all  no lo n g e r d eal with this field although it is  v e r y  in te re stin g  
and a t tr a ct iv e .  T h e  connection with the th e rm o d y n am ic s  of i r r e v e r s i b l e  
p r o c e s s e s  i s  i t s e l f  a v e r y  fundamental asp ect,  and the fo r m a l  tr an sp o rt  
th e ory  is  ae sth e tic a l ly  v e r y  appealing. Think, fo r  exam ple, how much we  
have obtained fro m  the sim ple  statem ent that L  i s  se lf -a d jo in t  (and sti ll  
m o r e  can be obtained). Th e phenomenology of th e r m o e le c t r ic ity  i s  rich  
and re w a r d in g  in t e r m s  of solid state p h y s ic s .  E x c e lle n t  accounts can  be 
found in the books of Z im a n  (19 6 0 ,  19 6 4 ),  and MacD onald ( 1 9 6 2 ) .  But we  
sh all  now give  up tr ea tin g  this p a r t ic u la r  as p e c t  now and concentrate on 
the is o th e r m a l e l e c t r i c a l  conductivity, paying m o r e  attention to the actual  
m od els fro m  solid state th e o r y.

A s  w e se e  from  E q s  (86) through (93), the actual evaluation of a  in vo lves  
f i r s t  in ve rtin g  the c o llisio n  o p e ra to r,  and then evaluating an in te g ra l  in 
Ic s p a ce .  T h u s,  the b a s i c  in gred ien ts of the model (sc a tte r in g  m e c h a n is m s ,  
band s tru c tu re  and s t a t is t ic a l  ru le s )  a r e  re fle c te d  in the ultim ate re su lt .  
L e a v in g  F e r m i - D i r a c  and M a x w e ll-B o ltz m a n n  s t a t is t ic s  as  they a r e ,  we  
can  hope to le a r n  som ething about sc a tte rin g  an d /o r  band s tru c tu re  from  
the in terpretation  of the o b s e r v e d  conductivity.

2 . 3 .  S c a tte r in g  and the re lax atio n  tim e approxim ation

T h e  co llisio n  t e r m  in vo lve s  a com p licated  in te g r a l  o v e r  the unknown 
function and " in v e r t in g  L " ,  as  w e have been happily w ritin g , is  often e a s i e r  
said  than done. A  v e r y  pow erfu l help can be obtained again from  the 
statem ent that L  i s  se lf -a d jo in t.  A s  i s  known from  the g e n e ra l  th e ory  of  
in te g r a l  equations, one can  then a s s o c ia te  a  v a r ia t io n a l  p rin cip le  to be 
sa tis f ie d  by the solution, and this can  be turned into a p r a c t i c a l  method  
fo r  con stru ctin g  a con vergen t sequence of approxim ations to the e x ac t  
solution. Som e ingenuity i s  needed to g u e s s  ap propriate t r ia l  functions, 
so that a  combination of ju st  a v e r y  few (or, i f  p o ssib le ,  only one) w i l l  do
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in p r a c t i c e .  In any c a s e ,  the v a r ia t io n a l  p rincip le  g iv e s  the ultimate  
c r i te r io n  fo r  doing the b est out o f  the chosen t r ia l  functions. It can be 
pro ved  that, i f  w e p ro ce e d  in this w a y ,  the appro xim atio n s to the sa m e  
o r d e r  s a t is f y  the c o r r e c t  O n s a g e r  re latio n s.  H e re  is  another fo r m a l  
advantage: the s u c c e s s i v e  appro xim atio n s a r e  th e rm o d y n a m ic a lly  con 
siste n t.  Th e p ow e r of the v a r ia t io n a l  p rincip le  c o m e s  in v e r y  handy when  
w e have to deal with t r ic k y  sc a t te r in g  m e c h a n is m s ,  and it p r o v e s  v e r y  
u s e fu l  in c la r i f y i n g  so m e  fin e r  a s p e c ts  of tr an sp o rt  phenomena, like the 
v a lid ity  o r  o th er w ise  of the W ie d em an - F r a n z  law at low te m p e r a t u r e s ,  
w h ich  i s  a  relation ship  betw een e le c t r ic  and th e r m a l  con d u ctivities,  o r  
M a tt h ie s s e n 's  ru le,  which c o n c e r n s  the total r e s i s t i v i t y  when two s o u r c e s  
of r e s i s t a n c e  a r e  acting sim u lta n eo u sly .  But in m an y o rd in a ry  c a s e s  we  
can  m ake c e r t a in  assu m ption s which g r e a tly  sim p lify  the p ro ble m . The  
standard sim p lif ic a t io n  c o n s is t s  in the r e lax atio n  tim e ap proxim ation. L e t  
u s  se e  how this c o m e s  about.

T h e  c o llis io n s  su ffe r e d  by the e le ctro n s  m a y  involve a change of  
momentum and a change of e n e r g y .  The m ain thing fo r  the th e ory  of  
e l e c t r i c a l  conductivity i s  the change in k, as  this change d e te rm in e s the 
lo s s  of fo r w a r d  drift,  w h ich  m e a s u r e s  the tr a n sp o r t  of c h a r g e .  -The 
change in e n e r g y  i s  r a t h e r  a n u isa n ce . But th ere  a r e  m any c a s e s  in which  
w e m a y  p r a c t i c a l l y  n eglect this change as  s m a l l  co m p are d  with the e n e r g y  
o f  the a v e r a g e  conduction e le ctro n .  Obvious e x a m p le s  of e la s t ic  sc a tte r in g  
a r e  the c o llis io n s  of e le ctro n s  with s t r u c tu r a l  d e fe c ts .  (It is ,  h ow eve r,  
no idle specu lation  to think that an in com in g e le ctro n  m a y  hit an im p u rity  
and set it in v ib r a t in g  motion, thus losing e n e r g y .  But this would be ju st  
one of the m an y p a r t ic u la r  e ffe c t s  one can a lw a y s  d re am  up, and s o m e tim e s  
actu a lly  o b s e r v e ) .

E lec tr o n -p h o n o n  c o llis io n s  a p p ea r  to be v e r y  different;  w e c l e a r l y  
m ust e x p r e s s  an e n e rg y  balan ce  in w h ich  the e n e r g y  of the e le ctro n  chan ges  
by an amount equal to the e n e r g y  of the phonon ab so rbed  o r  em itted. H ow 
e v e r ,  in m any c a s e s  this e n e r g y  turns out to be v e r y  s m a l l  co m p a re d  with  
the in itial  e n e r g y  of the e le ctro n .  L e t  us, fo r  exam p le, c o n s id e r  the c a s e  
o f aco u stic  phonon s c a t te r in g  in a ty p ic a l  se m ico n d u cto r.  One would tend  
to think that this c a s e  i s  h a r d e r  to ju stify  than that of a m etal,  b e c a u s e  the 
a v e r a g e  e n e r g y  o f  the conduction e le ctro n  in a m e ta l i s  o f  the o r d e r  o f  the 
F e r m i  e n e rg y  (a few e V),  while in a se m ico n d u cto r it is  of the o r d e r  of 
k BT ( i . e .  0 .0 2 5  e V  at room  te m p e r a tu r e ).  A s  a  m a tte r  of fact the situation  
i s  a lm o st the opposite. It is  tru e  that at room te m p e r a tu r e  the r e la x a tio n 
tim e  ap p roxim ation  ( fo r  which, a s  w e  sh all  se e  im m e d ia te ly ,  w e must  
have e la s t ic  sc atte rin g )  i s  su ffic ien tly  ju stif ied  in a m e ta l.  But a much  
m o r e  elab orate  calcu latio n  is  needed to d e s c r ib e  c o r r e c t l y  at all  t e m p e r a 
tu r e s  the full co m p le x ity  of the electron -phon on  interactio n .

On the o ther hand, it i s  e a s y  to se e  that the c a s e  of se m ic o n d u cto rs  i s ,  
on th is  account, s i m p l e r .  Th e point is  that, with th e r m a l  e n e r g ie s ,  the 
a v e r a g e  w avelen gth  of the e le ctr o n ic  w a v e s  i s  of the o r d e r  of

m v  - J 3 m k  T
D

<= 5 X 1 0  7 cm

fo r  a f r e e  e le ctro n  v alu e  of m and at room  te m p e r a t u r e .  T h is  is  l a r g e r  
than the in te ratom ic  d istan ce, so that the e le c tr o n s  can  in te r fe r e  with long
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lattice  w a v e s ,  i . e . , w i t h  phonons with a s m a ll  w a v e v e c t o r  q. Thus the 
ty p ic a l  e n e rg y  of phonons able to s c a t t e r  e le ctro n s w il l  be sm all,  of the 
o r d e r  of

In the f i r s t  equality w e u se  the fact that w e a r e  dealing with the longwave  
side of the phonon sp e ctru m ; in the second equality we e x p r e s s  the matching  
between lattice  and e le ctro n  w a v e s .  H ere s m ean s the speed of sound. Now, 
we have:

Thus we expect electron-phonon sc a tte rin g  to be, to a good approximation,  
e la s t ic  in a ty p ica l sem icon ductor.  Of c o u r se ,  this is  only a v e r y  crude  
e stim ate  (although it can  be made m o re  p r e c is e )  and it can  fa il  at v e r y  low 
te m p e r a tu r e s  but, by then, defect sc a tte rin g  of som e sort predom inates  
anyw ay.

A  c u rio u s c a s e  i s  that of conduction e le ctro n s at low te m p e ra tu re s  in 
a p o lar  c r y s t a l .  The ele ctro n  is  stro n gly  coupled to the p olarization w a v e s  
c a r r i e d  by the optical m o d es. T h ese  optical phonons have much higher  
e n e r g ie s  than the e le ctro n s (their freq u en cies a r e  in the in frare d ,  of the 
o r d e r  of 1 0 13 r a d / s ,  correspo n d in g to about 1СГ1 eV , c o m p ared  with, sa y  
4 X 10 ~ 3 e V , which is  k BT  at T ^  50°K . It is  a p ara d o x ic a l  c a s e  in which  
the scatte rin g ,  b e cau se  it is  v e r y  in elastic ,  b e co m es e la s tic  again. T h is  
i s  one of those pred iction s which could only com e out of quantum theory,  
and it i s  not only am usin g but also in stru ctive  to c o n s id e r  it. B r i e f ly ,  
what happens is  that an e le ctro n  with a s m a ll  e n erg y  a b so rb s an optical  
phonon and ju m p s up into a state of v e r y  high e n erg y .  A c c o r d in g  to the 
in ce rtain ty  p rin cip le ,  this state l iv e s  fo r  a v e r y  short tim e and it c om es  
b a ck  down again v e r y  quickly, emitting another phonon. It all happens so 
quickly  that it is  as  i f  the two e le m e n tar y  f i r s t  o r d e r  p r o c e s s e s  m e rg e d  
togeth er into one se c o n d -o r d e r  p r o c e s s ,  in which the e n erg y  of the electro n  
r e m a in s  unchanged ( F i g .  1 ) .  The detailed treatm ent can be c on sid erably  
m o re  involved, but in the end boils down to establishing that we could  
c alcu la te  the c u rre n t  on the b a s is  of e lastic  scatterin g , in which only к 
chan ges.

W e have seen with a few ex am p les  that it is  often justifiable  in p ra c tic e  
to a s s u m e  e lastic  scatterin g , but we still  should c o n sid er  another question: 
Is  the r e s i s t i v i t y  only cau sed  by the collisio n s of the conduction electro n s  
with phonons an d /o r  im p er fec tio n s?  The an s w e r  i s  r e a lly  no. If the size  
of the sam p le  is  su fficien tly  s m a ll  c o m p ared  with the a v e r a g e  distance  
t r a v e r s e d  by the e le ctro n s between collisio n s,  then we must account fo r  
the re fle ctio n  from  the su r fa c e  (not n e c e s s a r i ly  sp e c u la r  r e f le c t i o n ! ). We 
sh all not c o n s id e r  s ize  and shape e ffec ts  which m ay take place in this c a s e .  
It i s  a lso  p o ssib le  fo r  a tr an sp o rt  problem to involve a la r g e  sam p le, but

A t  room te m p e ratu re  ..................................

E v e n  at liquid-helium  te m p e ratu re  . . .  

w h e r e a s

the ty p ic a l  v a lu e s  of the speed of sound

v  =* 1 0 7 c m / s  

v  ^ 1 0 6 c m / s

s ^  1 0 5 c m / s
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FIG. 1. a) Two separate inelastic electron-phonon collisions, b) The first collision is very inelastic, 
resulting in a very short-lived state. Phonon reemission follows very quickly. The net result is a composite 
second order process. Finally E(l<)=(and tn jq  = htu^ '), but к '. Process (b) is elastic but tends to 
destroy the forward drift acquired by the electron.

to co n ce rn  only c h a r g e  c a r r i e r s  in a l a y e r  v e r y  n e a r  the s u r fa c e ,  e. g . , 
due to skin effect in m e ta ls ,  o r  to v e r y  n a r r o w  boundary l a y e r s  in s e m i 
con d u ctors.  W e sh a ll  a lso  not be con cern ed  with these  c a s e s .  T h is  st i ll  
le a v e s  a wide r e a lm  of phenomena to con sid er,  but w e s t i l l  have another  
question to a n s w e r :  what about e le c t r o n -e le c t r o n  c o llis io n s ?

It is  obvious that co llis io n s  between fre e  e le ctro n s  would not re su lt  in 
y ield in g  r e s i s t i v i t y .  C o n s id e r  a m o m en tu m -co n se rv atio n  balance like

W W °  <9 6 >

T w o  in com in g e le ctro n s  have exchanged momentum with one another, but 
this does not affect the tr a n sp o r t  of c h a r g e .  It does not m a tte r  w h ich  one 
c a r r i e s  m o r e  than the other, p rovided both add up to the sa m e  total  
fo r w a r d  mom entum. But the conduction e le ctro n s a r e  in a la ttice .  E v e n  
i f  w e can re a s o n a b ly  make a kind of fr e e  e le ctro n  model, with som e  
n u m e r ic a l  e ffe c t iv e  m a s s  and a p r a c t i c a l l y  sp h e r ic a l  F e r m i  su r fa c e ,  our  
e le c tr o n s  sti ll  can interchan ge c r y s t a l  momentum with the lattice .  The  
se le ctio n  r u le s  fo r  the c o llis io n s  now allow fo r  a m o re  g e n e ra l  p r o c e s s  
than that of (96). T h e s e  a r e  the umklapp p r o c e s s e s ,  which you w il l  see  
in the c o u r s e  on electron-phonon in te ractio n s.  A  m o re  g e n e r a l  condition  
than (96) is  allowed, nam ely

i T + l c - i c - i c = K  (97)
1 2  3 4

К is  any r e c i p r o c a l  lattice  v e c t o r .  Now the total momentum of the two 
c a r r i e r s  can change, and we m a y  su sp ect this to be a so u r c e  of r e s is t a n c e  
in a m e ta l.  R a th e r,  we should ask  w hether it i s  likely  to be an ap p reciab le  
so u r c e  of r e s i s t a n c e .  On the one hand, the mutual sc r e e n in g  of the in t e r 
action between any two e le ctro n s  by the p r e s e n c e  of the other ones weakens  
this in teractio n  changing it fro m  a lo n g -r a n g e  Coulomb potential into a
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s h o r t- r a n g e  potential.  On the other hand, the re q u ire m e n ts  of the e xclu sio n  
p rin cip le  on all  four states  r e p r esen ted  in E q . ( 9 7 )  im p o se v e r y  s e v e r e  
r e s t r i c t io n s  on the entire  p r o c e s s .  A lto g eth er, this sc a tte r in g  s e e m s  to be 
redu ced to r a t h e r  w e ak  proportions. A s  a m a tte r  of fact, a th e o r etical  
calcu latio n  of the r e s i s t i v i t y  of this m ech an ism  (Z im a n  19 6 0 ,  Sections 4 .6 ,  
and 9 . 1 4 )  p r e d ic ts  a law fo r  the te m p e ra tu re  dependence of the r e s i s t i v i t y  
which i s  not o b s e r v e d  e xp e rim e n ta lly .  T h e r e  i s  one important exception  
to this argum ent, n am ely, the c a se  of tran sitio n  m e ta ls .  But we cannot 
then e a s i ly  talk about co llis io n s  between B loch  e le ctro n s in the sa m e  w a y  
as with n on -tran sitio n  m e ta ls .  It is  m o re  ap propriate to think of n e a r ly  
fr e e  e le ctro n s  sc a tte r in g  off n e a rly  bound e le ctro n s (nam ely, those in the 
d -o r b it a ls ,  o r  w h a te v e r  th ese  f r e e  atom states have becom e in the m e ta llic  
c r y s t a l ) .  W e sh all  a lso  exclude this c a s e .

T h u s,  o u r final m odel (and this i s  a statem ent of the lim itations set  
to our scope in this c o u r se )  is  the following: Conduction e le ctro n s,  in 
sin gle  iso lated  events,  collide with o ther o bjects and the co llis io n s  a r e  
e la s t i c .  L e t  u s then see what happens to the co llis io n s  in te g r a l  in our  
final Boltzm ann equation

q в  - L .
9 V Vt  E  kBT

Ф - Ф  ) P ( k ,  k ') d k '
 ̂ к W

(98)

fo r  is o th e r m a l  e l e c t r i c a l  conduction.
A t  this stage, let u s be m o re  intuitive and h eu ristic  than r ig o r o u s .  

W e  expect that the effect of the e xtern al field w i l l  be to pull som ew hat the 
distribution so that a net flow r e s u lts .  L e t  us im agin e that each electro n  
is  acted on by the fo r c e  q E  so that, in between two co llis io n s,  it gains an 
e n e rg y  q E  , w h e re  Л i s  a m e a s u r e  of the m ean f r e e  path. L e t  u s w r ite

Л = t v * (99)
к

fo r  the e le ctro n  k. T h u s, т m e a s u r e s  the mean tim e between co llis io n s.  
W e m a y  expect, to f i r s t  o r d e r ,  that the distribution w il l  be something like  
a sl igh ly  d isp la ce d  equilibrium  distribution. Th at is ,  we shift the o rigin  
o f e n e r g ie s  by

A  ^ q E ' r v - »  (100)
к n к

and t r y  f o r  f_, an e x p r e s s io n  of the form
к

.  \ 9f!
(101>к

What w e a r e  doing is  to v ie w  the effect of the e le c t r ic  field as  im p artin g
an e x t r a  " o r d e r e d "  kinetic e n e rg y ,  but only fo r  an a v e r a g e  tim e in te r v a l  t .

T h u s,  w e t r y  fo r  Ф-* a solution of the form  
к

Ф = q E  • t  v  ( 1 0 2 )
i f  i?

T h is  i s  only a p ro v is io n a l  postulate. W e now must see  w hether this 
solution i s  perm itted  by the in te g r a l  equation (98). If the test  i s  positive,
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then we have calcu lated  t . In the f r a m e  of our w o rk ing assu m ption s we  
sh all allow т to be a function of

Now, with e lastic  scatte rin g ,
but not of the v e c t o r  k.

,o

a - ' i
3 f -

= - к T
В ЭЛ (ЮЗ)

T h u s, from  (98) and (76):

q v ^  • E  = q t  E  • v_> - v _  ) Q (k, k ’ ) dk'
к kV

T h is  w il l  make sen se  i f  t , l i t e r a lly  evaluated from  here, i . e .

(104)

t  = ( 1 0 5 )
t

turns out to be independent of Й.
We have a lr e a d y  made so m any assum ptions that w e might as  w ell  

a s su m e  sp h e r ic a l  e n erg y  s u r f a c e s .  With these hypotheses we w r it e ,  for  
the sc a tte rin g  probability, the following e x p r essio n :

Q (k, k ’ ) = £ P ( S _ ,  0) 6 ( S  - S_J) (106)
к к к1

H ere &  в)  depends only on the e n erg y  of the incom ing e le ctro n  and on 
the sc a tte rin g  angle в between 1c and Й'. U sin g s p h e r ic a l  tr ig o n o m e try  we  
can now manipulate ( 1 0 5 )  so that E • v-> i s  pulled out of the in tegral,  leaving  
a f a c t o r  (1 - co s  6), i . e .

_1
T

( 1  -  COS 6 )  3P s_>,e
\ к /

6 -  s
к к'.

dk' (10 7 )

T h is  fo rm u la  r e v e a l s  v e r y  much. L e t  us r e m e m b e r  the definition of the 
density of states  in e n erg y  (for one spin only):

/ r [ , ) " - / i l 7 / k' “  11081

w h e re  d f i i s  an element o f  solid  angle in к s p a ce .  ( L e t  u s s im p ly  w r it e  
S ,  S  instead of Sr*,  S-*,,  e t c . ,  ju st fo r  b re v ity ) .  T h u s, we can r e w r it e  
( 1 0 7 )  as  follow s:

r  = / ( f ^ j 3  / k ,Zd  - c o s 0 )  ^ > (^ ,0 )  6 { S  - S ' )  dfl

= J d S '  6 ( S - S ' )  J jT(S') ( 1 - c o b O)  0 > (g ,  0)dSl'

= f  j f ( S )  (1 - c o s e )  0 > ( S , e )  dfl'

(109)
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and now w e see the m eaning of all  the fa c t o r s  affecting the collisio n  tim e:

is  ju st the density of final states  available.
6) i s  the net differen tial sc a tte rin g  c r o s s - s e c t i o n .

(1 - c o s  0) is  the fra ct io n a l  lo s s  of fo r w a r d  drift ve lo city .

W e would not have g u esse d  this from  a naive p ictu re, thinking that t ' 1 
is  the collisio n  fre q u en cy  and th e refo re  it should be given by the in te g ral  
o v e r  the d ifferen tial  c r o s s - s e c t i o n .  W e have now v e r i f ie d  that what d e t e r 
m ines the r e s is t e n c e  is  the weighted c r o s s - s e c t i o n :  it is  the co llis io n s  
through la r g e  an gles which contribute m ost e ffe c t iv e ly .  T o  put it differently,  
t  is  the m ean f r e e  time between m o m en tu m -d estro y in g  c o llisio n s,  which  
w a s  not at all  apparent fro m  the naive argum ent leading to ( 10 2 ) .

What we have d erived  is  the standard e le m e n ta r y  solution of the 
Boltzm an n  equation, to geth er with a fo rm u la  fo r  the calcu lation  of r ,  leavin g  
only the application of perturbation th eory  to evaluate the scatte rin g  
p ro bability  as  an ex plic it  calcu lation  to be p e rfo rm e d  in each c a s e .

T h e  c o l lis io n -t im e  approxim ation could be p hrased  a bit m o re  generally.  
C o n sid e r  the sc a tte r in g  te rm  in the form

Ц  ,
dt J

co ll

r d ( 6 f j -
____k_
dt

coll
6 f ? - 6 f ^ Q ( k ,  k ')d k ' ( 110)

which holds fo r  e la s tic  sc a tte rin g .  If it is  p o ssib le  to pull 6 f ^  out of the
in te g ral,  so that the r e m a in d e r  is  independent of E ,  then afte r  integration
o v e r  Ic', we a r e  left on the right-hand side of ( 1 1 0 )  with - 6 ^ m u l t i p l i e d  by
a function of 5  only. W e  can define this function as  T-^and then we have

к

r d ( 9 V
d t

coll
( 1 1 1 )

That i s  to s a y ,  т m a y  be in g e n e ra l  a function of the v e c to r  k. H o w ever,  
there is  no e a s y  g e n e r a l  p ro ce d u re  fo r  evaluating r-% in this c a s e .  In fact  
the e le m e n ta r y  solution w e have ju st worked out is  the only r e a l l y  obvious 
e xam p le  of this kind.

Now, E q . ( l l l )  s a y s  that i f  we have a disturbance 6 f-j* and, at tim e 0, 
w e sw itch  off the field, then the d istu rb a n ce s d e ca ys  exponentially

« f - 6v  е'1/Тй ( 112 )

The distribution r e la x e s  back to equilibrium  with a relax atio n  tim e. If we  
m aintain a constant field, w e have a stead y state in which

к
= -  q  E -  T

i?

9 f о
К

к

(И З )
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re su ltin g  in a c u rre n t  density

J  = 2
1 2
q v  v  

"к к к

whence a conductivity te n s o r

ct = 2

2 . 4 .  The e l e c t r i c a l  conductivity of solids

( 1 1 4 )

( 1 1 5 )

A t la st ,  a ft e r  m any sim p lif ic a t io n s ,  we have d e rive d  an explicit  
fo rm u la, re a d y  fo r  im m ed iate  evaluation. M ost of the standard th e ory  of 
the conductivity of solid s i s  based  on this fo rm u la  (perhaps with som e  
к - v e c t o r  dependence fudged into t , which fo r  the tim e being we sh all d i s 
r e g a r d ) .  It turns out to w o r k  r a t h e r  w e ll  in m any c a s e s  of e v e r y d a y  
p r a c tic e ,  and it exhibits all  three f a c t o r s  determ in in g the conductivity:  
Band str u c tu r e ,  s t a t is t ic s  and sc a tte r in g .  Th e detailed application of this 
fo rm u la  to the a n a ly s is  of the e x p e rim e n ta l o b se rv a tio n s is  w e ll  c o v e r e d  in 
the books of Z im a n  (19 60)  and Sm ith ( 19 5 9 ) ,  and we sh all  here make only  
so m e  broad r e m a r k s .

T o  begin with, the g e n e r a l  effect of s y m m e t r y .  T a k e  a s y m m e t r y  
a x is  in the c r y s t a l  and deco m po se all  v e c t o r s  in two components labelled 1 
and 2, the f i r s t  one being the p ro jectio n  along the a x is  and the second one 
n o rm a l to it.  The e x p e rim e n ta l definition of the r e s i s t i v i t y  is

E  • J
( 1 1 6 )

i . e . , w e  maintain a stead y c u rre n t,  m e a s u r e  the v o ltage, drop along the 
cu rre n t,  and divide by J .  Thus,

P (ф) =
E j J i  +  E 2J2 '£2

2

= p c o s2 Ф + P2 sin 2 Ф ( 1 1 7 )

w h e re  cp i s  the angle between J  and the s y m m e t r y  a x is .  T h u s, two in 
dependent m e a s u r e m e n ts  su ffice  to d eterm ine the two p r in cip al v a lu e s  of 
the r e s i s t i v i t y  te n s o r .  Its r e c i p r o c a l ,  the conductivity te n so r,  has also  
two p rin c ip a l  v a lu e s .  H o w e v er ,  i f  the plane p erp e n d ic u la r  to the s y m m e tr y  
a x is  contains another a x is  equivalent to it, then c l e a r l y  = p2 , and the 
te n s o r  b e c o m es a s c a l a r .  T h is  i s  the m ost frequent c a s e ;  e . g .  cubic  
s y m m e t r y .  W e sh all  r e s t r i c t  o u r s e lv e s  to iso tr o p ic  conduction. The  
conductivity  is  then s im p ly  the r e c i p r o c a l  of the r e s i s t i v i t y .  T h is  d i s 
tinction between a s c a l a r  and a te n s o r  w il l  becom e v e r y  im portant when  
we c o n s id e r  conduction in the p r e s e n c e  of a m agnetic  field.

The fo rm u la  fo r  <7 i s  now w r itte n  in different fo r m s ,  to suit convenience  
depending on the sy s te m  one i s  studying.
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2 . 4 . 1 .  M etals

We can w r it e ,  fo r  instance,

о
d < f  
4 ж3

( 1 1 8 )

w h e re  dS^ is  the element of a r e a  of the su rfac e  $ -^ =  S . F o r  a degenerate  
e le ctro n  gas

a
1 2tf3ft

T v d S p
1 2 ж 3Ь

i d S F ( 1 1 9 )

(Sp = F e r m i  s u r fa c e ) .  T h is  explains why m etals  with la r g e  F e r m i  s u r fa c e s  
a r e  good conductors.  Denoting by a b a r  the a v e r a g e  o v e r  the F e r m i  su rfac e

cr
q2Spi
12тг3 й

( 120)

which i s  the fa m ilia r  form  in p r a c tic e .
Only the F e r m i  e le ctro n s (in fact, those within the th e rm a l la y e r  on 

the F e r m i  su r fa c e )  can take part in the ch arg e  tr an sp o rt.  The others are  
prevented by the exclu sio n  p rin cip le .  H ow ever, take a s p h e r ic a l  F e r m i  
s u r f a c e .  Then

4тгк2 = SF F
1 4 i , 3

4 tt3 3 F
n

h
m  F ( 121 )

and (120 )  b e co m es

T h is  i s  what w e would have g u esse d  from  a v e r y  crude e stim ate: A  fo rce  
q /m  p e r  unit e le c t r ic  field, during an a v e r a g e  time t , im p a rts  an av e rag e  
drift  v e lo c ity  q r / m .  With a c a r r i e r  concentration n, each one with c h a rg e  q, 
we expect a c u rre n t p e r  unit field which is  ju st what we have in ( 1 2 2 ) .  But  
it is  the value of т at the F e r m i  su r fa c e ,  i . e .  the mean fre e  F e r m i  
e le ctro n s,  which must be used in the fo rm u la fo r  o.

W e see that sim p le-m in d e d  p ic tu res  a r e  often a good g u e ss,  but e v e r y -  
once in a while there a r e  som e subtle ca tc h e s .

2 . 4 . 2 .  Sem icon d u cto rs

O u r s im p le-m in d e d  picture would have been m o re  appropriate for  
a non -d egen erate  sem iconductor,  b e cau se  all conduction electro n s can  
take p art  in the p r o c e s s  of c h a rg e  tr an sp o rt.  L e t  us follow our deductive
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m ethod again . W e retu rn  to  (115)  and w rite

CF
2 q 2
3 к T

в
^  f°  
it  Tc

1 - f -  dk ( 1 2 3 )

In a n on -d e g en e rate  gas

hence

But

hence

f о

к
«  1

a .  M l .
3 k BT

2t  v_+ f ^ d k
к к

(12 4 )

- n k BT  = 2
. о -
? r f k d k ( 1 2 5 )

n q '

' t  \  vj; f^ d k  
1 к к

J ^ C d k
к к

n q ^
< т > ( 12 6 )

w h e re

<т>

3 /2  -Ä /k  T
? т (3  ) е в d<?

3 /2  - / / к . ТР -  В d 8

( 1 2 7 )

О

i s  the a v e r a g e  o f  the re lax atio n  tim e o v e r  the e n erg y  distribution. T h is  
is  s o m e tim e s  w r itte n  as

a  = n q  /л, ( 12 8 )

w h e re  ц  i s  the m obility  (acquired drift  v e lo c ity  p e r  unit field) as  m e asu re d  
m a c r o s c o p i c a l ly .

W e have a s su m e d  sp h e r ic a l  e n e r g y  s u r f a c e s ;  perh ap s we should have  
w ritten  m * e v e r y w h e r e .  The e m p h a sis  now is  on the e n e rg y  dependence  
of t . F o r  m any sc a tte r in g  m e c h a n is m s it turns out to be, to a good 
approxim ation, of the fo rm

t ( S  ) = c (129)
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and s is  c alled  the sc a tte r in g  index. Then

0 )
(130)

Г 5

in t e r m s  of g a m m a  functions. In this c a s e  it is  v e r y  e a s y  to se e  the 
te m p e ratu re  dependence of the m obility.  Then n i ts e l f  has an e a s y  t e m p e r a 
ture dependence (in a metal, on the c o n tr a r y ,  n is  constant, but the 
te m p e ra tu re  dependence of the phonon r e s i s t i v i t y  is  co n s id e ra b ly  m o re  
involved). T h is  p r a c t i c a l  fo rm u la  is  frequently used, although there are  
m any in stan ces in which т is  m o re  com p lex.

Of c o u r se ,  if we have e le ctro n s  and holes, we sim p ly  add up the 
con ductivities (notice that they a r e  proportional to q 2 ). Alto geth er

Im agine that both ty p e s of c a r r i e r s  had the sa m e  <(t )> (a v e r y  a r t i f ic ia l  
assum ption).  We could then w r ite

T h is  hypothetical argum ent te lls  us how to w r ite  a fo rm u la  f o r  the 
"co n d u ctiv ity  e ffectiv e  m a s s " ,  when c a r r i e r s  of different m a s s  p artic ipate  
sim u ltan eo u sly .

S o m e tim e s one s e e s  the com plete fo rm u la  fo r  q in the c a s e  of, sa y ,  
aco u stic  phonon sc a tte rin g .  It goes like m“5/2 . It is  im portant to r e m e m b e r  
that only the fa c to r  mT1 c o m e s fro m  the fo rm  of ( 1 2 8 ) .  Th e r e st ,  m 3/,2) 
c o m e s  from  the evaluation of r :  the c o llisio n  rate  is  proportional to an
in te g r a l  o v e r  the density of states ,  as  we saw  in (109),  and this goes like 
m -2/? T h is ,  incidentally, w a r n s  us that an effective  m a s s  obtained from  
a different ex p e rim e n t which r e f le c t s ,  m o re  o r  le s s ,  a m e a s u r e  of the 
density of states  would co r re s p o n d  to a different a v e r a g e ,  e .g .  the " t h e r m a l  
e ffective  m a s s " ,  obtained fro m  the e le ctro n  sp e cific  heat.

A c a s e  in point is  the r a th e r  important e llip so id al model,  which d e 
s c r i b e s  so w e ll  the stru c tu re  of the conduction band of G e and Si n e ar  the 
e n e rg y  m in im a. An e llip so id al e n erg y  s u r fa c e  would exhibit in p rin cip le  3 
(in p r a c t ic e  2) p rin c ip a l  v a lu e s  of the e ffectiv e  m a s s ,  s a y ,  irq, m 2, m 3 . 
Hence we have three p rin cip al v a lu e s  of the mobility, going like т ' Д .  But  
these e llip so id s  a r e  a rr a n g e d  in a s y m m e t r i c  disposition, and w e have seen  
that the effect of m a c r o s c o p ic  s y m m e t r y  is  to reduce the conductivity  
te n s o r  to a s c a l a r .  So we can w r it e  at once the conductivity (o r  mobility)  
effectiv e  m a s s

a = n eq q e + nhq Mh ( 1 3 1 )

w h e re

m *  m e m h
l _  = _1 ( 1 3 2 )

1 1 (m
( 1 3 3 )
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to in se r t  in the fo rm u la  fo r  the m a c r o s c o p ic  mobility, since the m a c r o 
scopic  cu rre n t w il l  be, say, t r a n s v e r s e  fo r  som e e llip so id s and longitudinal  
fo r  others,  and we ju st add up all  the contributions to the total cu rre n t.
But now, assu m in g  aco u stic  phonon sc atte rin g  again, we would have a 
density of states  effectiv e  m a s s  given by

It is  e a s y  to v e r i f y  these r e s u lts  from  detailed calcu latio n s. The point to 
notice is  how a c e r t a in  " e x p e r i m e n t a l "  effective  m a s s  is  re late d  to the 
p a r a m e te r s  of the band s tru c tu re .  (The c yclotro n  effective  m a s s ,  for  
instance, is  a v e r y  d ifferent function of m t and m t . It is  obvious from  
what we saw in section  1 . 3  that we could, in fact, m e a s u r e  m t and m t 
independently, fo r  suitable orientations of H . )

A s  u sual,  the com plete sto r y  is  m o re  com p lex. W e have taken no 
account, e . g . ,  of in te r v a lle y  scatte rin g ,  which takes a c a r r i e r  from  one 
ellipsoid to another one. B r o o k s  ( 1 9 5 5 )  has d is c u s s e d  Ge and S i  in detail.

2 . 4 . 3 .  In su lators

It m ay se e m  n o n sen sical to talk about the e le c t r i c a l  conductivity of 
in su la to rs .  Indeed, no one has e v e r  m e a s u re d  it. But there a r e  in te re stin g  
expe rim e n ta l and th e o r e tic a l  studies of e lectro n ic  c h a rg e  tr an sp o rt  in i n 
su lato r s  like, e . g .  alkali halides o r  s i l v e r  halides only that the conditions 
a r e  som ewhat p e c u lia r .  T h e r e  is  obviously no hope of maintaining a 
m e a s u ra b le  steady cu rre n t,  but it is  p ossib le  to excite  ( e .g .  by light a b 
sorption) ju st a few c a r r i e r s  into the conduction o r  v ale n ce  band and to 
m e a s u r e  d ir e c t ly  th e ir  drift  v e lo city .  T h is  is  w h e re  the sem ico n d u cto r  
nom enclature b e c o m e s e ss e n tia l .  W e no longer talk about a, w e n e v e r  
know n fo r  su re  (except that we a r e  certain  that it is  v e r y  sm a ll ,  and p erhaps  
have an idea of its  o r d e r  of magnitude), the only object of study in this  
field is  the mobility, which is  the d ir e c t  ex p e rim e n ta l re su lt.  The e x p e r i 
ment is  v e r y  difficult indeed, but the th e o r etical  a n a ly s is  is  much m ore  
excitin g  than it is  with any o r d in a r y  sem iconductor,  and it is  a v e r y  neat  
exam p le  of the application of field theory.

3. T R A N S P O R T  T H E O R Y  IN S O L ID S IN A M A G N E T I C  F I E L D

Th e p r e s e n c e  of a m agnetic  field both c o m p lica te s  the th eory and 
m a k e s it m o re  r e w a r d in g .  The fe a tu re s  of band stru c tu re  and sc a tte rin g  
m e c h a n is m s a r e  r e fle c te d  in the galvanom agnetic e ffec ts  to a l a r g e r

( 1 3 4 )

and, altogether,

or,  with two equal t r a n s v e r s e  effective  m a s s e s
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d e g r e e  of s e n s it iv e n e s s ,  and make it p o ssib le  to catch  fin er d etails.  We  
sh all  se p ara te  in our d isc u ss io n  the g e n e ra l  phenomenological as p e c ts  
fro m  the sta t is t ic a l  and m ic r o s c o p ic  th eory  as  such.

3 . 1 .  Ph enom enological a s p e c ts  of tr an sp o rt  in a m agnetic  field

Th e phenom enological a n a ly s is  is  v e r y  important in the c a s e  of a 
m agnetic field b e cau se  there is  a g re a t  v a r i e t y  of p o ssib le  expe rim e n ta l  
a r r a n g e m e n t s .  In fact the r e a lm  of galva n o -th er m o m ag n e tic  e ffects  is  
bew ild erin g, but w e sh all r e s t r i c t  o u r s e lv e s  to is o th e r m a l galvanom agnetic  
phenomena. W e sh all  be dealing with a set of l in e a r  relations of the form

J. = ^ a j j ( H ) E j ( 1 3 5 )

j

T h e  g e n e r a l  th e rm o d y n am ic al th eory  of i r r e v e r s i b l e  p r o c e s s e s  s a y s  that 
the r e c i p r o c i t y  re lation s m ust now re ad

a..(H) = о.. (-H) ( 1 3 6 )

T h e r e f o r e ,  the conductivity te n s o r  can be split into a s y m m e t r i c  part,  
which is  an even function of Й, and an a n tis y m m e tr ic  part,  which is  an 
odd function of H. T h is  g e n e ra l  p rin cip le  constitutes a u sefu l guide in 
p r a c tic e .

3 . 1 . 1 .  G alvan om agn etic  e ffe c ts  and c r y s t a l  s y m m e tr y

Suppose w e st a r t  with an iso tr o p ic  model,  one in which the c r y s t a l  
anisotro py is  not an yw here  r e fle c te d  ( i . e .  iso trop ic  t , sp h e r ic a l  e n erg y  
s u r f a c e s ) .  T h en  we add a m agnetic  field. T h is  introduces anisotropy into 
the s y s te m .  W e now have one a x is  of c y l in d r ic a l  s y m m e t r y .  We know 
then that we need two independent m e a s u r e m e n ts  to d eterm ine the longitu
dinal and the t r a n s v e r s e  con d u ctivities.  Thus we seek two conductivity  
c o e ffic ie n ts ,  w h ich  m a y  th e m s e lv e s  be iso tr o p ic  functions of H2 , and two 
m agnetoconductivity te n s o r s .  Since the medium, in the absen ce of all  
field s ( E  and H), is  iso tr o p ic ,  we take any r e fe r e n c e  f r a m e  X  and im p ose  
the condition that a relation ship  of the form

J  = s (H) X Ё

m ust be in varian t when w e tr a n s fo r m  to another f r a m e  x ' . We a r e  then 
a s s e r t in g  that the p h y s ic a l  p r o p e r t ie s  a r e  the s a m e  no m a tte r  which fr a m e  
w e u s e .  We se e k  two te n s o r s  having this p ro p e rty .  It is  w e ll  known that 
the definition of the dyadic product has this p ro p e rty ,  i .  e.

H H — > H' H 1

T h is  is  then all  w e need. The other in varian t is  o bviously  the unit te n s o r  T.
But we know fro m  ( 1 3 6 )  that th ere  is  another te r m  which i s  a n t is y m 

m e tr ic  and odd in H. It does not re q u ire  too much imagination, knowing 
the fo rm  of the L o re n tz  fo r c e ,  to g u e ss  that this is  ju st 2  X 2 .
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T h e  com plete m agnetoconductivity te n s o r  is  then e x p r e s s e d  by

J  = A E  + у H H - E  + ? Ё  X H ( 1 3 7 )

w h e re  A, v  and f  m a y  be functions of H . If w e set out to solve  the 
B o ltzm an n  equation, fo r  exam p le, we can be guided by the fact that the 
solution m ust have this fo rm .

Th e situation is  a bit m o re  involved in the c a s e  w h e re  the c r y s t a l  is  
an iso tro p ic ,  but the doctrine i s  r e a l l y  beautifully c l e a r .  T h is  is  what we  
can  u se group th eory  fo r .  W e sta rt  with a se c o n d -r a n k  te n so r  ст(Й), split  
it into s y m m e t r i c  and a n t is y m m e t r ic  p a r ts  and expand in p o w e rs  of the 
com ponents of a p se u d o ve cto r  H. With the convention of su m m ation o v e r  
repeated in d ic e s  we have

s .  (H) = s.  .. + s .  „ H .H . + s  ...„ H . H . H  H + - - -  ( 1 3 8 )ij ' ' 0, i j  2, i jk f к C n .ijk lm n  к l  m t i '  ’

а (Й) = a , H , + a ,  H, H H + - - -
ij 1 ,  ljk  к 3, ijk£m к C m

We know the tr a n sfo rm a tio n  p r o p e r t ie s  of the galvan om agn etic  c o e ffic ie n ts  
ap p earin g  to v a r io u s  o r d e r s :  the s c o e ffic ie n ts  a r e  s y m m e t r i c  in (i, j), 
the a c o e ffic ie n ts  a r e  a n t is y m m e t r ic .  Then, they a r e  a l l  o bviou sly  s y m 
m e tr ic  in the d u m m y su m m ation in d ic e s,  but w e m ust r e m e m b e r  that H is  
a p se u d o ve cto r.  T h u s, the tr a n sfo r m a tio n  p r o p e r t ie s  a r e  those of: s y m 
m e tr ic  s e c o n d -r a n k  te n s o r  X, to tally  s y m m e tr iz e d  n -th  rank te n so r,  fo r  
n-th o r d e r  c o e ffic ie n ts ;  p se u d o v e c to r  X totally  s y m m e t r i z e d  n-th  rank  
a x ia l  te n so r,  f o r  n-th  o r d e r  a c o e ffic ie n ts .

L e t  R be an orthogonal tr a n sfo rm a tio n

x -» c x  + sy  
у  -> - s x  + c y  
z -» ± z

(c = c o s  cp, cp = rotation angle about z a x is ) .  It is  w e ll  known that the 
c h a r a c t e r s  of such a group elem ent a r e  given by (B aghavantam  and 
Ven katarayu d u , 1 9 5 1 )

(i) X (R )  = 2 c ± l

(R) = !  j [ X ( R ) ] 2 + X ( R 2) |  = 4 c2 ±  2 c ( 13 9 )

(iii) | x 2| ( R )  s i  j [ X ( R ) ] 2 - X (R 2 ) |  = ±  2 c  + l

in the r e p r esen tatio n s having, as  a b a s i s ,  functions w h ich  tr a n s fo r m  like 
the com ponents of a (i)

(i) v e c t o r
(ii) 2nd rank s y m m e t r i c  te n s o r

(iii) p se u d o ve cto r
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Then, if  we can find the c h a r a c t e r s  in the represen tation  whose b a sis  
functions tr a n sfo r m  like the components of a totally s y m m e tr iz e d  n-th  
rank te n sor, and we c a ll  them Xsm, we can w r ite  down at once the c h a r a c 
t e r s  in the rep resen tatio n s whose b a sis  functions tr a n sfo rm  like our s and 
a c o e ffic ie n ts .  F o r  the n-th  o r d e r ,  they w il l  be

Now, what we have in ( 1 3 8 )  is  a com pletely  g en e ral statem ent. F o r  
each c r y s t a l ,  the s y m m e t r y  of its point group w il l  r e s t r i c t  the number of 
independent galvanom agnetic coeffic ien ts to e x actly  the num ber of lin e arly  
independent combinations th e reo f which a r e  invariant under all  the t r a n s 
form ation s of the group, i .  e. , which a r e  b a se s  of the unit r e p r esen tatio n . 
T h e r e f o r e ,  we must calcu late  the num ber of t im es that the unit r e p r e s e n 
tation of a c r y s t a l  point group is  contained in the represen tation  whose  
b a s is  functions a r e  the galvanom agnetic coefficien ts and whose c h a r a c te r s  
we have w ritten  down in ( 140 ).  T h e r e  is  a standard fo rm u la  fo r  this: If 
X (R )  a r e  the c h a r a c t e r s  in a given represen tation  and X1 (R) a r e  the c h a r a c 
t e r s  in the i -t h  ir r e d u cib le  representation, then the number of tim es the 
i - t h  ir r e d u c ib le  re presen tatio n  is  contained in the given represen tation  is

w h e re  N is  the o r d e r  of the group and hj is  the number of elem ents in the 
c l a s s  of R . We now have all  the elem en ts fo r  calcu latin g this num ber; all  
we have to do is  to evaluate ( 1 3 9 )  fo r  the rotations of the group of interest,  
which is  tr iv ia l ,  and to calcu late  Xsn , which is  also  r ath e r  e a s y .  We only 
need to take a C a r t e s ia n  fr a m e  appropriate to each rotation and to watch  
the effect of the tr an sfo rm atio n  on a m onomial of the form  x ay b zc (in our  
c a s e  a+b+c = n). Only those m onom ials which tr a n sfo r m  into th e m selve s  
contribute to the c h a r a c te r .

C o n sid e r,  for exam ple, the operations of the cubic s y m m e tr ie s .
-E  (i) . - T a k e  any fr a m e .

A l l  m onom ials a r e  invariant.  A l l  contribute + 1 .  The number of mono
m ia ls  we can fo rm  is

s : (4 c 2 ± 2 c) Xsn 

a : ( ± 2 с + 1 ) ( ± 1 ) ПХш
(140)

( 1 4 1 )

X -*• X
E  : у  у

z -* z

Then
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- C3 (S6 ). T a k e  the diagonal of the f i r s t  octant as  the rotation a x is .

x -* У
C 3 : У -  z 

z -» x

The contribution to the c h a r a c t e r  is  1 i f  a = b = c, and 0 o th er w ise :

1 i f  n = 3

*sn(C3 ) =
0 if  n i  3

- uh(C 2 ). T a k e  the z a x is  p erp e n d icu lar  to the reflection  plane.

x -> x

CTh : у  -  у
z -» - z

Contribution: ( - i f .  We c alcu la te  the num ber of decom positions of n in 
three su m m an ds, so that c is  even o r  odd, and we su btra ct .

X sn(CTh) = f  + 1 if n = even

= + 1 i f  n = odd

- C4. T a k e  the rotation a x is  as  z.

x -  У
C4 : у  -  - x 

z -►  z

Contribution: 0 i f  a # b; ( - 1  )a i f  a = b. The f i r s t  five  c h a r a c t e r s  are  
e a s i l y  found. T h ey  a r e  1 ,  1 ,  0, 0, 1 .
Then

X „( C,) = X s, n + 4 4 S! (C. ) X f C  ) = X ( C J4 s4 4 sn 4

C 6(S3 ). T a k e  the rotation a x is  as z

1 ^  / 3
• 2 X +  T y

2 Х + 2 У

z -> z

E x p lic it  evaluation of the f i r s t  seven  c h a r a c t e r s  y ie ld s

1, 2 , 2 , 1, 0 , 0 , 1
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Then

\ п +в(с б) Xsn(C6) X s6(C 6) x sn( C 6)

With this we can im m ed iately  fo rm  our table of c h a r a c t e r s ,  u se them  
in ( 1 4 1 )  and evaluate the vn fo r  the O h group (and also  fo r  the grou ps О and 
Td , which a r e  in the sa m e  L a u e  s y m m e t r y .  We find

n : 0 1 2 3 4 . . . 

v : 1 1 3 2 6 . . .n
( 1 4 2 )

Now, i f  w e set out to solve  a Boltzm ann equation by a p ow er s e r i e s  
expansion in H (fo r  the e x p e rim e n ta lly  in te re stin g  c a s e  of m oderate m a g 
netic fields),  we know the m axim um  number of different galvanom agnetic  
c o e ffic ie n ts ,  i . e . ,  a lso  that of different galvan om agn etic  te n s o r s  which  
m ust ap p ear to each o r d e r .  T h is  num ber, of c o u r s e ,  is  an upper lim it, as  
perm itted  by s y m m e t r y .  Som e of the coe ffic ie n ts m a y  be ze r o  fo r  sp e cific  
p h y s ic a l  r e a s o n s ,  e . g . ,  due to i d io s y n c r a s ie s  of the model.

T h is  is  a  g r e a t  help to the phenomenological a n a ly s is  of the ex p e rim e n ts ,  
but we also  would like to know not only how many independent e x perim en tal  
a r r a n g e m e n ts  to plan on, but how m ust we set them up. That is  to say,  
knowing that there a r e  vn p erm itted galvanom agnetic te n s o r s  of n-th  o r d e r  
w e want to w r it e  them down, so that the relationship between J  and Ё ,  to 
o r d e r  n, takes an e xplicit  fo rm . T h is ,  again, co n c e rn s in va rian c e  a r g u 
m en ts.  F o r  the Oh s y m m e t r y  the re su lt,  to second o r d e r ,  r e f e r r e d  to the 
cubic a x e s ,  is

2
J  = aQ E  + a  E  X H + ß  H E  + y  HH • E  + 6 D - E  ( 1 4 3 )

w h e re  D is  the diagonal te n s o r  of elem en ts

О ц = Н ? 6 ц (144 )

T h is  fo rm u la, f i r s t  derived  by Seitz, has been e n d le ss ly  used in the 
a n a ly s is  of low field galvanom agnetic  phenomena. Th e standard p r a c t ic a l  
p ro ce d u re  in se m ic o n d u cto rs  is  to m e a s u r e  the Seitz co e ffic ie n ts .  

Incidentally, we could r e w r ite  ( 1 4 3 )  in m a trix  fo rm  a

a = o0 I + o ' A + j 3 E + y S  + 6 D  ( 1 4 5 )

wh ere
A is  the a n tis y m m e tr ic  m a tr ix  of E  X H, E  is  H2 I, S is  the s y m m e tr ic  
m a tr ix  of H H  and D is  the diagonal m a tr ix  of S .  T h e s e  m a t r i c e s  a r e  
in varian t,  and so a r e  their products, so we can e a s i ly  c a r r y  on the e x 
pansion beyond ( 1 4 3 )  by sim ple  m a tr ix  multiplication. In fact we must  
r e m e m b e r  the O n s a g e r  s y m m e tr y ,  so that we must form  s y m m e tr iz e d  
p roducts,  i . e .

[A B ] = A B + B A  i f  A B - B A  4 0

A B i f  A B - B A  = 0
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Th us, to third o r d e r  we have

[A E ]  = H 2A  

[AS] = 0 

[AD] = A D  + DA

(146)

Indicating by ((H)) the s k e w - s y m m e t r i c  pseudotensor, such that

((H)) • I  =  E  X H ( 1 4 7 )

we obtain im m ed iately ,  fro m  (146 ),  the th i r d -o r d e r  extension of ( 1 4 3 )  in 
te n so r  fo rm , i. e.

What one does with these fo rm u lae  is  to figu re  out independent and 
meaningful arr a n g e m e n ts  of the v e c t o r s  H and J ,  so that one knows which  
galvanom agnetic coefficient,  o r  com binations thereof, y ie ld s  a given  
m e a s u re m e n t.  Since the coe ffic ie n ts  a r e  in turn calcu lated  fro m  a 
th e o r etical  model,  this is  c l e a r l y  the p ro p e r  s y s te m a tic  w a y  i f  we want  
to c o m p are  e x perim en t and th eory. T h is  i s  m o stly  u sefu l fo r  se m ic o n d u c 
to r s .  F o r  exam p le, on the b a s is  of the te n s o r  f o r m s  ju st d e rive d  one can  
p red ict  the existe n ce  of non-conventional th i r d -o r d e r  e ffec ts  which, in 
fact,  have been e x p e rim e n ta lly  o b serv e d .

Th e only purpose of this d ig r e s s io n  has been to give  an explicit  exam p le  
of the application of group th e ory  to a p h y s ic a l  problem  involving c r y s t a l  
s y m m e t r y ,  and to show you how v a r ie g a te d  the phenomenology of g a lva n o 
m agnetic e ffec ts  can be. T h is  topic is  d isc u ss e d  in detail by B e e r  ( 19 6 3 ) ,  
and we sh all not go any fu rth e r  into it.

3 . 1 .  2 .  The ex p e rim e n ta l a rr a n g e m e n t:  good and bad conductors

One n e v e r  m e a s u r e s  the conductivity of a good conductor. Th e thing  
to do is  to maintain a steady c u rre n t  and then m e a s u r e  the re su ltin g  
components of the e le c t r ic  field. T h is  g iv e s  then the r e s i s t i v i t y ,  as  defined 
in E q .  ( 1 1 6 ) .

On the other hand, in a poor conductor one applies a fixed e le c t r ic  
field and m e a s u r e s  the r e su ltin g  drift  of c h a r g e .  F o r  the r e a s o n s  stated  
in 2 . 4 . 3 ,  we do not w r ite  down an ex p e rim e n ta l definition of the conducti
vity  but, rath e r,  of the m obility. It would be appro priate  in fact to w r ite

a s  the p r a c t i c a l  form  fo r  the a n a ly s is  of ex p e rim e n ta l data. Then m agn eto 
conductivity m e a s u r e m e n ts  yield  the elem en ts of the te n so r  p, m agn eto
r e s i s t i v i t y  m e a s u r e m e n ts  y ie ld  the elem en ts of the te n so r  p . Not mentioning  
m o re  d ire ctio n al e ffects  involved, of the above-m entioned kind, F i g u r e  2 
s u m m a r i z e s  the e x p e rim e n ta l definitions of p, R (Hall coefficient), pc 
(conductivity mobility) and p H(Hall mobility).

F o r  the lo w -fie ld  e ffe c ts ,  in ve rs io n  of ( 1 4 3 )  y ield s

cr(3) = C 1 H2 ((H)) + C 2 ( ( D X H ) ) (148)

(14 9 )

E = pQ J  - R 0 J  X H +  bH2 J  + с HH • J  + d D • J ( 15 0 )
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ПЧМС[ 1 + (мнП/с)2]

R= - j - f m ) ______!______
n q c  \ u c / [1 +  ( M H H / c )  “ ]

FIG. 2. Experimental definitions: R= Hall coefficient; 0^ = Hall angle; = Hall mobility;
pc = conductivity mobility

w h e re  the su b sc r ip t  0 m ean s the ze ro  m agnetic  field v a lu e s ,  and (obviously  

Po = a ? )

„ 2  2 R  0Vi 
0 0 (J

c = Rg %  -
_y_

ao

d = - A
ff0

Th e co e ffic ie n ts  (ß , y , 6) a r e  those calcu lated  by so lving the Boltzm ann  
equation. T h e  c o e ffic ie n ts  (b, c,  d) a r e  those m e a s u re d  in the experim en t.  
It is  c u sto m a r y  to define the m a g n eto r esista n ce  as  the fr a ctio n al change in 
r e s i s t i v i t y  upon application of the m agnetic  field. It is  e a s y  to see from
( 1 5 0 )  that, to second o rd e r,

P (H) - о 2 2 . 2 , 2 . 2 . 2 ,
2 : = b + c (j • h) + d (j h + j h + j h ) 

H  x x у у z z
( 1 5 2 )

w h e re  i , i , j , h , h , h a r e  the directio n  co s in e s  of J  and H. T h is  
fo rm u la, f i r s t  w ritten  by B a rd ee n , is  re a d y  fo r  d ir e ct  d escription  of the 
orientational dependence of the m a g n e to r e s is ta n ce .

F o r  the m agnetoconductivity a n a ly s is ,  the m obility  co e ffic ie n ts  defined  
in F i g .  2 a r e  d ir e c t ly  given in te r m s  of the calcu lated  conductivity te n s o r  
by

->
U_

->
; J  _ J _

nq E nq

c Ü' • J c
H u •jf H

u • a  ■ u

u 1 • a  • u
Ü - a -  u

( 1 5 3 )

w h e re  u and Ü' a r e ,  r e s p e c t iv e ly ,  the unit v e c t o r s  of the d irectio n s of Ё  
and Й X Й. The d ire ctio n al dependence is  im m ed iately  obtained fro m  the
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Seitz  fo rm u la, again fo r  lo w -f ie ld  e ffe c ts .  (But ( 1 5 3 ) ,  of c o u r s e ,  is  a 
valid  definition fo r  any field s t r e n g t h .)

3 . 2 .  The B o ltzm an n  equation in a m agn etic  field

W e now re tu rn  to E q s  (78) and (8 1)  through (84) and a s su m e  that w e can  
sti ll  u s e  the sa m e  quantization sch em e  and that the sc a tte r in g  p ro bab ilities  
a r e  st i l l  the sa m e .  W e then have to add, on the left-hand side of (78), the 
L o r e n tz  te rm

W e cannot make the z e r o - o r d e r  approxim ation h e r e .  T h is  would yield

It w il l  be noticed that now we a r e  not talking about s u c c e s s i v e  ap p ro xi-  
mations in the m agnetic  field, but in the true th e rm o d y n am ic al f o r c e s ,  E '  
and V T .  Th e L o re n tz  fo r c e  is  not a th e rm o d y n am ic al  fo r c e .  Th at is  to 
sa y ,  there i s  no a s so c ia te d  flow so that this flow t im e s  the Lo ren tz  fo r c e  
g iv e s  a contribution to the m a c r o s c o p ic  e x p r e s s io n  fo r  the entropy p r o 
duction, as  E 1 and V T  do in the left-h an d side of (83).  We have a lr e a d y  
re m a r k e d  that the L o r e n tz  fo r c e  does not p e r f o r m  any w o rk , and this fact  
c r e e p s  up again in ( 1 5 5 ) .  T h is  im p lie s  that a m agnetic  field by i t s e l f  does  
not give r i s e  to any net flow: Th e c a r r i e r s  a r e  ju st constantly  turning  
around in th e ir  c yc lo tro n  o rb its  and this does not change the distribution  
function. T o  be s u re ,  the co llis io n s  a r e  sti ll  taking p lace, d isrupting the 
life of the e le c tr o n s  in th e ir  statio n a ry  o rbits ,  but under a m agnetic  field  
alone this does not re su lt  in any net rate  of entropy production.

Of c o u r s e ,  the actu al statio n a ry  flow s in the p r e s e n c e  of a m agnetic  
field and the th e rm o d y n a m ic a l  f o r c e s  a r e  different from  those e xistin g  
when Й = 0, but the effect of Й is  only to modify the flow s set up by the 
th erm o d yn am ic  f o r c e s .  We e x p r e s s  this fact by u sing ju st 6f-g., the 
d e partu re  fro m  the equilibrium  distribution, in ( 1 5 4 ) .  If this perturbed  
distribution c a r r i e s  c h a r g e ,  the L o r e n tz  fo r c e  w il l  deflect part of it into 
t r a n s v e r s e  motion. T h is  is  the m ech an ism  of the Hall effect which we  
have ju st c o n sid ere d  phenom enologically.  Defining again Ф^. as  in (77) we  
obtain fro m  ( 1 5 4 )  and ( 1 5 5 )

H e re  we have defined the "m a g n e tic  o p e r a to r "  M (H ).
L e t  us f o r m a lly  substitute this te rm  into the right-hand side of (78).  

Our Boltzm an n  equation is  then

( 1 5 4 )

1

( 1 5 5 )

(15 6 )

(157)
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Since M is  not a s so c ia te d  with any flow s, we might f o r m a lly  r e g a r d  this  
e x t r a  " d r i f t "  te r m  as  a so rt of " c o ll i s i o n "  te rm , a s  i f  the electro n s w e re  
constantly colliding with the lines of fo rc e  of the m agnetic  field. F o r  the 
true co llis io n s  we had the principle  of m ic r o s c o p ic  r e v e r s ib il i ty ,  which  
d eterm ined the s y m m e t r y  of L .  But our fo r m a l collisio n s a r e  funnier.
A  state к is  deflected into another state k' but, i f  we allow the sam e  
amount of tim e to elap se  in th e rm a l equilibrium under H alone, we shall  
only se e  that the state Tc' w i l l  be deflected back into the state к i f  we r e v e r s e  
the m agnetic  field. T h is  is  re fle cte d  by the following fo r m a l p ro pe rty  of 
M , which is  e a s y  to pro ve  from  its definition:

(A.*, M ( H ) B J  = - (B M (H )A  ) = (Br , M ( - H ) A J  ( 15 8 )
к к к к к к

In our Boltzm ann equation ( 1 5 7 ) ,  Ф£ is  now acted on by a m o re  com plicated  
o p e ra to r  which is  no lon ger se lf-ad join t.  Instead

[ A ^ ,  | L  + M ( H ) J  B ?j  = ( ^ . j L  + M ( - H ) j  A ^ j  ( 15 9 )

If  we now go o v e r  all  the steps we took afte r  E q .  (78), up to the calculation  
of J  and U, we sh all  find that, becau se  of ( 15 9 ) ,  the l in e a r  tr an sp o rt  c o 
efficien ts s a t is f y  st i ll  the O n sag e r  r e c ip r o c it y  relations, but modified by 
the need to r e v e r s e  H, i . e .  in con cise  fo rm :

К (H) = К (-H) (160)
aß ßa

in ag re e m e n t with the c o r r e c t  modification of the m a c r o s c o p ic  th e rm o 
d yn am ical theory of i r r e v e r s i b l e  p r o c e s s e s  in the p rese n ce  of a magnetic  
field.

T h e  v a r io u s  g alvan o-th erm o m ag n etic  e ffec ts  a r e  d e sc rib e d  in detail 
by B e e r  ( 19 6 3)  and T s id i l 'k o v s k ii  ( 19 6 2 ) .  F r o m  now on we sh all  r e s t r i c t  
o u r s e lv e s  again to iso th e rm a l galvanom agnetic e ffects,  fo r  which the 
r e c ip r o c it y  re lation s a s su m e  the p a r t ic u la r  form  we have exploited in 
E q .  ( 1 3 6 ) .

T o  so lve  this com p lex in te g ro -d iffe ren tia l  equation fo r  a com pletely  
g e n e r a l  m odel is  a v e r y  difficult ta sk  indeed. Th e only obvious g en e ral  
method s e e m s  to be the v ariatio n a l approach mentioned in section 2, but 
the fact that L + M  i s  no longer se lf-ad join t g r e a tly  c o m p lica te s  m a tte r s .  
T h e r e  a r e  w a y s  of extending the fo rm a l theory, and one has again the 
advantage that all  approxim ations worked out in this w a y a r e  th e rm o 
d y n am ic ally  consistent, but the whole thing is  neither so obvious (as for  
H = 0) n or so e a s i ly  manageable when.it c o m es to p r a c t ic a l  calcu lation s.
A s  usual, a g r e a t  sim plificatio n  is achieved by u sing the relaxation time  
approxim ation, which w e shall do in fact. We now start  our a n a ly sis  from  
the following form  of the Boltzm ann equation:

q %  ' i  = 4 + ^ v 4 ’ HX
к Г  к he к к к

( 1 6 1 )
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3 . 3 .  E l e m e n t a r y  solutions of the Boltzm ann equation in a m agnetic  field

W e a r e  now faced with a f i r s t - o r d e r  l in e a r  d iffe ren tia l  equation in 
ic s p a c e .  In p rin cip le ,  the e x ac t  solution of ( 1 6 1 )  can be w ritte n  down at 
once by standard methods (W ilson 1 9 5 4 ,  section 8 .5 5 ) .  But the resu ltin g  
e x p r e s s io n  i s  h o p e le ss ly  co m p le x  f o r  an a r b i t r a r y  band str u c tu r e .  B e s i d e s ,  
its  evaluation would be p u re ly  a strenuous tour de fo r c e  which would not 
te ach  anything.

A  fo rm u la  equivalent to an e xact solution of this equation (even of the 
B o ltzm an n  equation befo re  l in e a r iz in g  it in the e le c t r ic  field strength) can  
be w r itte n  down d ir e c t ly  in a m o re  appealing p h y s ic a l  w a y .  T h is  i s  the 
C h a m b e r s  method, which w e sh all  mention la te r  on. F o r  the tim e being  
w e sh all c o n s id e r  the c a s e s  when the solution of ( 1 6 1 )  can be e a s i l y  obtained  
e ith e r  b e c a u s e  the m odel fo r  the band stru c tu re  is  v e r y  tr a c ta b le  o r  
b e cau se  the m agnetic  field is  not too high.

3 . 3 . 1 .  S im p le  soluble m odels

Th e s im p le s t  c a s e  is  that of sp h e r ic a l  e n e rg y  s u r f a c e s .  W e can be 
guided by the follow ing c o n sid era tio n s:

T h e  m odel is  iso tr o p ic .
W e know the fo rm  of J  in t e r m s  of E  and H, fro m  s y m m e t r y  a rg u m en ts.  
W e know 3  i s  l in e a r  in Ф^, so that Ф-j* a lso  depends on E  and H in the 

s a m e  m an n er.
F o r  H = O w e  know Ф.-£ is  red u ced  to (102).

T h u s the solution must be of the form

®U = t v  - q V  ( 16 2 )
К к

—>

w h e r e  V  is  a v e c t o r  o f  the form

V  = C j E  + c 2 E X  H + c 3 H H - E  ( 1 6 3 )

w h e r e  Cj, c 2 and c 3 m a y  be functions of H 2
Substituting in ( 1 6 1 )  we find that, i f  the equation is  to be sa tis f ie d  fo r

all  v a lu e s  of v-?- w e  m u st have
k

E  = V  + u r h X V
i (164)

which, on account o f  ( 1 6 3 ) ,  y ie ld s

_> E + w ,t E X h + (w.t) h h . E
Ф_> = t  v_, • q -----------1------------------------ 1-------------------

k k l + ( u i T ) 2
( 1 6 5 )
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F r o m  h ere  we evaluate im m ed iately  the coe ffic ie n ts of ( 1 3 7 ) :

n 2 2 / 3 f fq tv h —
2 r

x = 3 ./ , . , ,2 dk
1 +  ( u . t )

v
2
3

q2r (u.t ) v l ( -
1 к \

1 +  (W jT )2
d t (166)

5
1 +  ( u .t ) 2 ' 1

d S

Notice that in a metal, w h e re  only the integration o v e r  the F e r m i  su r fa c e  
counts, we can take the functions of т out of the in te g ral and we have

CTo K - T > . g  _ ° o ^ T >2
i + f u ^ ) 2 ’ 1 + t U j T ) 2

( 1 6 7 )

In this c a s e  we can also  w r ite ,  r e m e m b e rin g  ( 12 2 ) ,

V  = p J  = —  J  (168)
0 ffo

Hence, fro m  (16 4 )

E  = о J  - —  J  X H (169 )
0 nqc

Notice that this re su lt  would not give any m a g n e to r e s is tiv e  effect, w h e r e a s  
the r e c i p r o c a l  relationship  ( 1 3 7 )  does give a m agnetoconductivity effect.

The next step in com plication is  to take sti ll  quadratic,  but not 
s p h e r ic a l ,  e n erg y  s u r f a c e s .  T h is  is  the ellip so id al model

к

h2 /  m \  , 2 / m nn , 2  /  m N , 2
2m

—  к + к + ----- к
L i 4 m2y 2 V  т 3 У 3

(170 )

Now w e have a r e c i p r o c a l  m a s s  te n sor and this c o m p lica te s  the solution  
of ( 1 6 1 ) .  One p ossib le  w a y  around this co n s ists  in p erfo rm in g  a 
tran sfo rm atio n

к к = а 2 к. 
i i i 1

m
m.1

k. (171)
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which sq u e e zes the a x e s  of the ellipsoid and changes into a sph ere. We  
m ust be c a r e fu l  to tr a n sfo r m  also  all  the other v e c t o r s  in the problem .  
Thus

1 г ,v. -> v. = a. k .i i i i

E. -> E 1 = о4  E. (172)1 1 1 1

H. -* H.1 = (mQ'k) 2 H. (ijk) = c y c l i c  o r d e r .

In so doing w e a r e  ensuring that the equations of motion in the prim ed  
coord in ates read the sa m e  as  in the iso trop ic  c a s e .  We now solve  the 
problem  as  befo re, and obtain, a ft e r  tr a n sfo rm in g  back to the unprimed  
coordinates,

E  + 9 1 ' ■ ( E X H ) + \ j f  ( E  -Н )и Г- H

Ф = T q v  • 
к к

1 + H • J ' - H  / \ S k \

( 1 7 3 )

w h e re  is  the effectiv e  m a s s  te n s o r  and \\~4?\\ is  the determinant thereof.
It is  som e com fo rt  to know that we can w r it e  down e x p lic itly  the exact  

solution of the Boltzm ann equation, but now we must evaluate from  h ere  the 
resu ltin g cu rre n t and then add up the contributions from  all  the e llip so id s.  
T h e  calcu lation  is  str a ig h tfo r w a r d  in principle, but v e r y  tedious in p ra c tic e ,  
and does not teach anything sp e cia l.

3 . 2 . 2 .  The method of Jo n e s  and Z e n e r  for low fields

If  the m agnetic  field is  su fficien tly  low that the e le c tr o n s  undergo  
c o llisio n s much before they can com plete a cyc lo tro n  orbit (i. e. collisio n  
rate »  cyc lo tro n  frequency, o r  «  1 fo r  the iso tr o p ic  model), then we  
can r e g a r d  the s y s te m  of flow s fo r  H = 0 as  sl igh tly  perturbed by the 
addition of a m agnetic  field, and seek a p ow er s e r i e s  expansion in som e  
suitable d im e n sio n le ss  v a r ia b le  proportional to Э .  T h is  is  ju st the fo rm a l  
in ve rs io n  of ( L  + M) by p ow e r s e r i e s

(L + M)'1 = L"1 (1 + L 1 M)"1 = L"1 + ( - 1)"  (L"1M)n ( 174 )

n

which a c q u ir e s  a tr actab le  form  when, in the relax ation  tim e approximation,

Th e re su ltin g  solution w a s  ac tu a lly  f i r s t  d erived  (by Jo n e s  and Z e n e r )  by 
iteratin g  E q . ( 1 6 1 ) , '  which i s  the sa m e . If we put

П =  v  X V  ( 1 7 5 )
к* к
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then the p ow e r s e r i e s  solution is

Ф = q 
к

t v  ’ E  + ^ — H ■ П
T? f i c ( 1 7 6 )

Now w e  can tie up with our phenomenological e x p r e s s io n s  ( 1 3 8 ) .  Identifying  
the coe ffic ie n ts of H k, H k H{ , etc. with the correspo n d in g  te r m s  in the 
cu rre n t calcu lated  out of ( 1 7 6 )  we obtain explicit  fo rm u lae  f o r  the evaluation  
of the galvanom agnetic  c o e ffic ie n ts .  S in ce  w e want these to be re a d y  fo r  
actual u se in r e a l  life, and the end r e su lt  does not look too obvious, we  
find it convenient at this stage to r e ly  again on our s y m m e t r y  arg u m en ts.  
Knowing the form  that the final solution m ust have is  a g r e a t  help to obtain  
it c o r r e c t l y .  In p a r t ic u la r ,  fo r  the c a s e  of cubic s y m m e t r y  we can i m 
m ed iately  evaluate from  here the co e ffic ie n ts  of the Seitz fo rm u la. The  
resu ltin g e x p r e s s io n s ,  which a r e  com plicated in te g r a ls  in к sp ace  and 
th e refo re  depend on the band s tru c tu re ,  have been used, togeth er with
( 1 5 1 )  and ( 1 5 2 ) ,  in many actual calcu latio n s fo r  m e ta ls  and se m ico n d u cto rs.  
Th e g e n e r a l  fo rm u lae  fo r  the galvanom agnetic  coe ffic ie n ts of ( 1 3 8 )  are  
given by B e e r  ( 1 9 6 3 ) .  See a lso  W ilso n  ( 1 9 5 4 ,  section  8 . 5 5 1 ) .

T h e  p ow e r s e r i e s  method r e p r e s e n t s  the m ost obvious w a y  out fo r  low 
f ie ld s,  and h as been u sed rep e ate d ly .  It might be in o r d e r  to r e f le c t  upon 
its  p ossib le  ran ge of valid ity .  It c l e a r l y  is  valid  fo r  any band s tru c tu re .
W e have h ere  im plied that it applies to the c a s e  when т is  only a function 
of S . . A s  a m a tte r  of fact, the expansion (or iteration) p r o ce d u re  can  
also  be applied i f  т is  a function of the v e c t o r  k, only that it w i l l  re su lt  in 
m o re  c om p licated  e x p r e s s io n s .  Th e r e a l  difficulty i s ,  as  a lr e a d y  re m a rk e d ,  
to produce e x p lic itly  a p lausible  model leading to a Tl-dependent r .  But  
the p ow e r of the expansion p ro ce d u re  need not stop at a r e la x a tio n -t im e  
model. In fact, ( 1 7 4 )  s u g g e sts  that one can u se it fo r  a r b i t r a r y  sc a tte rin g  
m e c h a n is m s . '  Suppose the o p e ra to r  L  can be inverted, to a good a p p r o x i
mation, by m ean s of a v a ria t io n a l  calculation. T h en  one would have an 
app roxim ate  re presen tatio n  fo r  L  and hence fo r  LT1 , which could be used  
in ( 1 7 4 ) .  The r e s t  of the calculation would sim p ly  account fo r  the s m a ll  
perturbation due to the m agnetic  field.

3 . 4 .  H all  effect in low fields

Now w e a r e  all  set to e x tr a c t  som e p h y s ic s  fro m  our Boltzm ann  
equations and the solutions we have been able to find. T h e  s im p lest  
galvan om agn etic  e ffect is  the Hall effect, which we have a lr e a d y  defined.  
Its p h y s ic a l  b a s i s  is  obvious: It is  due to. the L o re n tz  fo r c e  acting on the 
m o vin g c h a r g e s  which make up the c u rre n t density. T h is  would be the 
point of v ie w  fo r  con d u ctivity-type  of m e a s u r e m e n ts ,  and this is  done for,  
sa y ,  alkali  o r  s i l v e r  h alides. One m e a s u r e s  p r e c i s e ly  the t r a n s v e r s e  
drift and u s e s  the fo rm u la  fo r  given in ( 1 5 3 ) .  But in m e ta ls  and ty p ica l  
se m ico n d u cto rs  one p e r f o r m s  r a t h e r  a r e s i s t i v e  type of m e asu re m e n t.
The e x p e rim e n ta l  condition is  then that there is  no net t r a n s v e r s e  cu rren t,  
so that a t r a n s v e r s e  e le c t r ic  field must be set up to counterbalance the 
L o r e n tz  fo r c e .  T h is  is  m e a s u r e d  e x te rn a lly  as the H all  field, whence the 
H all coeffic ien t a r i s e s .  In low field s,  as  the experim en t is  frequently  
done, the Hall coefficien t is  ju st  a constant, independent of the m agnetic  
field.
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T h e  H all  coeffic ien t is  not v e r y  se n sitiv e  to the g e o m e tr y  of the constant  
e n e rg y  s u r f a c e .  L e t  us then make a sim ple  iso tr o p ic  model. The solution  
of the Boltzm ann equation w a s  wo rk ed  out in ( 1 6 5 )  and (16 6 ) .

3 . 4 . 1 .  M e ta ls

A s s u m in g  the iso tr o p ic  model, the Hall coefficien t w a s  evaluated in 
(16 9 ) :

R
1

nqc
( 1 7 7 )

T h u s,  the in form ation con veyed  by R i s  e ss e n t ia l ly  a m e a s u r e  of the 
c a r r i e r  concentration. T h is  i s  why it is  so p r a c t i c a l .  With this sign  
convention w e would e xpect R  <  0 fo r  an o rd in ary  m etal.  E x p e r im e n ta l ly  
this turns out to be the c a s e  with m e ta ls  like L i ,  Na, Cu, A g ,  and A l .
E v e n  the actu al f ig u r e s  a r e  in f a i r l y  good n u m e r ic a l  a g re e m e n t with this  
e le m e n ta r y  e st im a te .  But th ere  is  a s u r p r i s e  with Z n  and Cd. The Hall  
coefficien t is  negative'. T h is  is w h e re  the d i s c o v e r i e s  of band th eory help. 
W e  know that the F e r m i  s u r fa c e  m a y  c o n sist  of h o le -lik e  sh eets.  ( F i g .  3).

( b)

FIG. 3. Electron-like (a) and hole-like (b) Fermi surfaces. The arrows indicate the rotation around 
constant energy orbits under a magnetic field normal to the plane o f the drawing. The shaded regions 
indicate occupied states, (a) Area of Fermi surface increases with increasing energy, (b) Area of Fermi 
surface decreases; (a ) Electron-like trajectory, leaving occupied states inside; (b) Remapping into a 
hole-like trajectory, leaving occupied states outside.

Th e topology of the F e r m i  s u r fa c e  w il l  be seen in g r e a t e r  d etail in the 
c o u r s e  on F e r m i o l o g y .  It s u ff ic e s  h ere  to r e m a r k  that w e  can r e w r i t e  the 
H all coeffic ien t as

-  S  T
c m a ( 1 7 8 )

w h e re  the e ffe c t iv e  m a s s  m i s  given by the second d e r iv a tiv e  of the e n e r g y .  
T h is  would be n egative  fo r  c a s e  b ( F i g .  3).  A m etal with a F e r m i  s u r fa c e  
of this kind h as a positive  Hall c o e ffic ie n t.  Th e altern ative  convention, 
g e n e r a l ly  u sed in se m ico n d u cto r  nom en clatu re, i s  to think of m a s  positive  
and change the sign  of q : w e m a y  talk  of holes as  c a r r i e r s  of positive  
c h a r g e .
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In fact, the actual F e r m i  su r fa c e  of som e m e ta ls  has s e v e r a l  sheets,  
som e e le c tr o n -lik e  and som e h o le-lik e .  The e ss e n c e  of this situation is  
m o st e co n o m ically  syn thesized in the two-band m o d e l. We o v e r s im p li fy  
a com plicated situation in te r m s  of two standard iso trop ic  bands, one of  
e le ctro n s and one of holes, ju st as  ap p ea rs  n aturally  in the theory of s e m i 
con d u ctors.  We sh all  la te r  com e back to the two-band model.  A l l  we need 
now is  to solve  the problem  to f i r s t  o r d e r .  T h is  is  v e r y  e a sy .  We have  
two contributions J j  and J 2 , both calcu lated  in the standard manner given  
in 3 . 3 . 1 .  Adding up and u sin g the definition of R we find

T1 °j /m  1 +  T2g2/m 2
2

CTi R i
2

+  Co

( °1  +  °2  ) " ( ° 1  +  °2  ^
(179)

T h u s, the net R re su lts  from two com peting opposite signs for electro n s  
and holes, and we can in te rp ret  in this w a y  the ap pearance of experim ental  
v alu e s of e ither sign.

T h is  is  v e r y  n icely  d isplayed in the transition m e ta ls .  C o n sid e r  the 
following se q u ences:

(3d) 26
F e ( + 1 4 )

27
Co ( + 4)

eo 29
Cu (- 0.8)

(4d) 44
Ru ( + 2 .5 )

45
Rd (+ 0.6)

46
P d ( - 0 .7 5 )

47
A g  (-0 .8)

(5d) 76
Os (?)

77
I r  ( + 0.3 5)

78
Pt (-0.2)

79
Au (- 0.7)

To the left we have unfilled d -o r b it a ls  (holes). Moving to the right we 
grad u a lly  fi l l  them up until w e a r r iv e  at the noble m etals ,  which in this  
r e s p e c t  a r e  f a ir ly  c lo se  to the ideal model. We would then expect the Hall 
coefficient to be positive on the left (we would not even be su r p r is e d  if  
there w e r e  a co n sid era b le  quantitative departure from  the prediction of the 
fr e e  ele ctro n  model), afte r  which it should d e c r e a s e ,  change sign and 
becom e v e r y  c lo s e  to the value p redicted by ( 1 7 7 )  for the noble m etals .  
T h is  expectation is  borne out by the experim en tal re su lts  given in b rack ets  
next to each m etal (T h ese  nu m b ers a r e  R tim e s  n / q / c ,  so that the ideal  
c a s e  c o r r e s p o n d s  to - 1 ) .

Of c o u r s e  in a m etal n is  e a s i e r  to find out, independently of Hall  
effect m e a s u re m e n ts ,  than in a sem icon ductor.  It is  not affected by 
im p u ritie s,  te m p e ratu re ,  etc. The se m im e ta ls  ( e .g .  Bi) could be d e 
sc r ib e d  as  so rt  of m etals  with much fe w e r  conduction e le ctro n s.  The  
F e r m i  su r fa c e ,  fo r  exam ple, is  much s m a lle r .  Thus R is  l a r g e r  and 
begins to exhibit som e te m p e ratu re  dependence.

3 . 4 . 2 .  Sem icon du ctors

The te m p e ratu re  dependence is  here the key featu re. In fact, the 
m e a s u re m e n t of R is  the standard w a y of evaluating n fo r  a given sam ple  
and given p h y s ic a l  conditions.
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It is  c u s t o m a r y  to talk about the H all  mobility ( F i g .  2). B y  definition, 
in low fields

Hence

H
= tan E ±  R H J

E
J

= R t r , H

d H = R c R
1

nqc
c

(180)

( 1 8 1 )

One s a y s  that by m e a s u r in g  R and <r0independently one can know the c o n 
centration of c a r r i e r s  (with sign) and their m obility. In fact the n u m e r ic a l  
ag re e m e n t between the two m o b ilit ies is  not p e r f e c t .  H ere  w e have the 
e ffe c ts  of s t a t is t ic s .  The sim ple  form u lae  of ( 1 6 7 )  a r e  re p laced  by

X = ^ < ------ W >
m  1 +  ( u t T)

o 2 о 2 3
l _ y  .  _ n q 2 U j T

<
1 + ( U j T ) '

( 18 2 )

Hence, fro m  ( 1 5 3 )

H z .  < i ! >

^  < - > 2
ф  i ( 1 8 3 )

In p a r t ic u la r ,  fo r  an e n erg y  dependence of т like that of ( 129 )

< z _ >  r u ; r i 2 p + 2

< t > 2 "
Г  p + :

(184)

If we a s s u m e  aco u stic  phonon scatte rin g ,  for instance, p = - 3 / 2  and (184)  
takes the valu e  Зж /8 ,  which one frequently s e e s  multiplying (nqc)’ 1 in the 
definition of R . T h is  n u m e r ic a l  f a c t o r  i ts e l f  is  of no im p o rtance. The  
point is  to r e a l i z e  that in a se m ico n d u cto r we m ust evaluate the tran sp o rt  
co e ffic ie n ts  by a v e r a g in g  o v e r  the c a r r i e r  e n e rg ie s  as  in ( 18 2 ) ,  and this  
does introduce m a jo r  n u m e r ic a l  d iffe re n c e s when it c o m e s  to sim ultaneous  
e le ctro n  and hole conduction, o r  to m u ltiv alley  conduction (B e e r ,  1 9 6 3 ;  
Smith, 1 9 5 9 ) .  The detailed calcu la tio n s are  stra ig h tfo rw a rd  but v e r y  
boring.

3.  5. M a g n e to r e sis ta n c e  in low fields

T h e  next o r d e r  effect p redicted by the phenomenological a n a ly s is  is  
the dependence of the r e s i s t i v i t y  on the m agnetic  field. We must r e m e m b e r  
that this kind of a n a ly s is  only in dicates that a c e rta in  effect, o r  a coefficient,  
is  allowed by g e n e ra l  c on sid eratio n s like O n s a g e r 's  relation s, c r y s t a l  
s y m m e t r y ,  etc.  T h is  can be v e r y  helpful in indicating new u n d isco vered  
e ffe c ts ,  o r  in checking the c o r r e c t  fo rm  of the r e s u lt  of a calcu lation . But
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only the p h y s ic a l  a n a ly s is  can explain the e ffect and only the calculation  
can e stim ate  its  magnitude. It m ay turn out, fo r  exam ple, that a c e rta in  
coefficien t is  n u m e r ic a lly  z e r o ,  and then there is  no such effect.

L e t  us c o n s id e r  the fo r w a r d  tr an sp o rt  of c h a rg e  in the p re s e n ce  of 
c r o s s e d  E  and H. B y  fo r w a r d  we mean drift along the directio n  of Ё .  L e t  
us not r e s t r i c t  o u r s e lv e s  to a s m a l l  m agnetic  field. In fact, let u s im agine  
such a high m agnetic  field that the co llisio n s becom e unimportant. A s s u m e  
a solution like ( 1 6 5 ) .  Ta ke  the lim it ( l / r ) - >  0. It su ffic e s  to look at the 
sim ple  c a se  of ( 1 67 )  (since the co llis io n s  becom e unimportant, details  do 
not m atter).

We find:
F o r w a r d  c u rre n t : Z e r o
T r a n s v e r s e  c u r r e n t:  (nq2/m) (m c/q H ) E  = nq (c E /H )

T h is  c o r r e s p o n d s  to a t r a n s v e r s e  drift ve lo city  n u m e r ic a lly  equal to 
( c E / H ) .  But w e knew this a lr e a d y  (Appendix). B y  sw itching off the s c a t 
terin g, o u r st a t is t ic a l  treatm en t r e p r o d u c e s the t r a n s v e r s e  ve lo city  with  
which the instantaneous cen tre  of the c yc lo tro n  orbit d r ifts .  Now let us 
sw itch  on som e sc a tte rin g  again. The sa m e  solution of the Boltzmann  
equation does give a fo rw a rd  c u rre n t.  What happens is  shown in F i g .  4.

FIG. 4. (a) No scattering. All drift i  E. (b) We switch on some scattering. This disrupts the
cyclotron orbits. "Randomizes" electronic motions. The carriers start afresh after each collision. On the 
average it does not matter that each one carrier may start with some initial velocity. It is as if they 
started com pletely anew, from rest. The result is to stop some of the transverse drift and throw it into 
the forward direction. It is the existence of scattering which actually brings about any forward conduction 
current.

Th e co llis io n s  disrupt the stead y o r b its ;  the e le ctro n s sta r t  th e ir  t r a j e c 
to r ie s  again; in so doing they have moved fo rw a rd  a little. Thus, i f  there  
is  any fo rw a rd  cu rre n t,  it is  p r e c i s e l y  b e cau se  of the c o l l i s i o n s . The  
d etails  m a y  be a bit m o re  com p licated  with anisotropic  e n erg y  s u r f a c e s  or  
t r ic k y  F e r m i  s u r fa c e  topologies, but the situation is  e ss e n t ia l ly  the sa m e .

In a conductive m e asu re m e n t,  letting the c h a rg e  flow f r e e ly ,  we shall  
a lw a y s  find that the p r e s e n c e  of a m agnetic  field r e d u ce s the fo rw a rd  
cu rre n t,  in asm u ch  a s  part of the drift is  thrown into the t r a n s v e r s e  direction :  
th ere  is  a lw a y s  a magnetoconductivity effect.  In a r e s i s t i v e  m e asu re m e n t,  
w h e re  we fo r c e  the c h a rg e  to flow down the w ir e ,  the e le c t r ic  field is  
rotated, a s  w e have a lr e a d y  d isc u ss e d ,  and we need v e r y  sp e cia l  conditions  
to maintain E  constant ( F i g .  2).  We sh all  find a m a g n eto r esista n ce  effect,  
u n less the can cellation  between L o re n tz  fo r c e  and the fo r c e  of the Hall  
field result's not fro m  a balancing out between sta t is t ic a l  a v e r a g e s ,  but
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from  a detailed equilibrium of f o r c e s  fo r  each one individual c a r r i e r .
Only then the stead y flow of each p a r t ic u la r  c a r r i e r  w il l  continue going 
down the fo r w a r d  directio n  unperturbed and th ere  w i l l  be no m agneto
r e s i s t a n c e  e ffect.  F o r  this to happen all c a r r i e r s  must have the sa m e  
in ertia  and the sa m e  friction, i . e . , t h e  e n erg y  s u r f a c e s  must be the sa m e  
fo r  all  c a r r i e r s .  We sh all c a l l  this a n o n -d isp e r siv e  s y s te m . L e t  us see  
this in t e r m s  of equations.

We take Й х Ё  and u se the c om p lex notation (Appendix). The re su lt  of 
( 16 7 )  can be c o n c ise ly  w ritten  as

J  = ffo
1 + i cjgT

E

Hence

and

E  = p (l + i u r ) J  =  E + E ,  
о i ] x

E,
P ( H ) = ^ = P0

( 18 5 )

(186)

( 18 7 )

T h e r e  is  no m a g n e to r e s is ta n ce ,  while

J,
E 1 +(w t  Г

d(H) =
i + к н / с Г

(188)

Th e c ru x  is  the in ve rsio n  of ( 1 8 5 ) ,  from  which ( 18 6 )  follow s only if  we do 
not have to p e r f o r m  any a v e r a g in g  o v e r  e n e rg y  s u r f a c e s  o r  e n erg y  
distribution.

Th e m a g n eto r esista n ce  phenomenon is  c l e a r l y  m o re  in fo rm ative  than 
the Hall effect.  Although it does not yield  d ir e c t ly  any n um ber like the 
c a r r i e r  concentration, its  v e r y  e x iste n ce  r e v e a l s  that there is  som e form  
of d is p e r s iv e  behaviour in the s y s t e m :  either the sc a tte r in g  rate  is  different  
fo r  different c a r r i e r s ,  o r  the e n erg y  s u r f a c e s  a r e  not sp h e r ic a l ,  o r  both. 
Th e phenom enological v a r i e t y  i s  a lso  g r e a te r .  We can a r r a n g e  v a r io u s  
g e o m e tr ie s  fo r  the v e c t o r s  Й, Ё  and Й, we can rotate the m agnetic  field and 
scan  angular dependences, etc.  Th e Hall effect is  a lso  affected by all  these  
chan ges (or by most) by v e r y  little, w h e r e a s  the v ariatio n  of the m agn eto 
r e s is t a n c e  is  v e r y  conspicuous and so m etim e s even d r a m a tic .  B r o a d ly  
speaking we can make the following distinction: in low m agnetic  field s the 
main u sefu ln ess  of the m a g n e to r e s is ta n ce  co n s ists  in re v e a lin g  something  
about the anisotro py of e ither the e n e rg y  s u r fa c e s  o r  of, s a y ,  the relax atio n  
tim e. It is  perh ap s m o re  d ir e c t ly  useful for se m ic o n d u cto rs.  In high 
fields the m a g n eto r esista n ce  y ie ld s  information about e n e rg y  s u r f a c e s ,  
disentangled fro m  details of the sc atte rin g  m e c h a n is m s .  It is  much m o re  
u seful fo r  m e ta ls ,  and r e v e a l s  a s p e c ts  of the anisotropy and the topology  
of the F e r m i  s u r f a c e .  ( F e r m i - s u r f a c e  topology m a y  also  be re fle cte d  in 
lo w -f ie ld  phenomena, but th is  is  much m ore subtle and w e sh all  not d i s c u s s  
i t . ) L e t  us now c o n s id e r  low field s,  continuing the argum ent along the 
p ow er s e r i e s  expansion.
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T h e  solution is  provided by the method of Jo n e s  and Z e n e r .  A l l  one 
has to do is  to evaluate som e in te g ra ls  into which the model is  d ir e c t ly  fed. 
T o  second o r d e r  one w r it e s  the final re su lt  as

^  = в н 2
0o

(189)

thus defining the m a g n eto r esista n ce  coefficient B .  The lo w -fie ld  w o rk  
c o n s is t s  in talking about B, which exhibits m arked  d irectio n al e ffects ,  as  
seen in E q .  ( 1 5 2 ) .  It is  on the b a sis  of this so rt  of fo rm u la  that one begins  
to f igu re  out different g e o m e tr ic a l  arr a n g e m e n ts  so that fu rther e x p e r i 
m ents yield  new inform ation. Tw o sp e c ia l  c a s e s  a r e  p a r t ic u la r ly  important,  
co r resp o n d in g  to Й || ? ( B L , L  for longitudinal) and to Йх(? ( B T, T  fo r  
t r a n s v e r s e ) .  W e have a lr e a d y  seen that В т  va n ish e s  u n le ss  there is  som e  
d is p e r s iv e  beh aviou r in the sy s te m , but it can be n o n -ze ro  even with an 
e n tire ly  iso tr o p ic  model. The longitudinal m a g n e to r e s is ta n ce ,  h ow ever,  
absolutely  r e q u ir e s  som e anisotropy. O therw ise  the c a r r i e r s  would sim ply  
flow along the m agnetic  field direction, with no L o r e n tz  deflection, and 
nothing would happen.

3 . 5 . 1 .  M etals

The evaluation of the s e c o n d -o r d e r  co e ffic ie n ts  in te r m s  of any non
tr iv i a l  model of F e r m i  su r fa c e  is  u su ally  r a th e r  laboriou s (look up the 
fo rm u lae  in B e e r  o r  W ilso n  and you w il l  se e ).  In the end one obtains an 
e x p r e s s io n  fo r  В  in t e r m s  of som e p a r a m e t e r s  c h a r a c t e r i z i n g  the g eo m etry  
of the F e r m i  s u r fa c e  and then one se e k s to explain the o b s e rv e d  e ffec ts  in 
t e r m s  of these p a r a m e t e r s .  F o r  exam ple, one might figu re  out an a p p r o x i
mate re presen tatio n  of a n o n -s p h e r ic a l  F e r m i  su r fa c e  with, s a y ,  cubic  
s y m m e t r y  by an expansion in cubic h a rm o n ic s .  The f i r s t - o r d e r  te rm  in 
the expansion would be

Y  (0,cp) P4 (cos 0) + -
168

•2 p 4 (cos 0) = <x - ± .y 4 + z4)
4 (x2 + y 2 + z 2) 2

о  I  2 2  I 2  2  , 2  2 .3 (x У  + У  Z +  Z X )

(190)

T h u s w e might think of a su r fa c e  like

к = a Q { S - £ >  + a x { S ^ )  Y4 (0,cp) + - - (191)

and expect, u n le ss  the F e r m i  su r fa c e  touches the B ril lo u in  zone boundaries,  
that an expansion of this so rt  might be m o re  o r  le s s  adequate, e s p e c ia l ly  
if  the anisotro py is  not too la r g e .  Stopping at f i r s t  o r d e r  one could define  
one anisotro py p a r a m e te r

S F)

a 0 ( $  p)
( 19 2)

to d e s c r ib e  the anisotro py in the shape of the F e r m i  su r fa c e  and another one

F

(193)
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to d e s c r ib e  the an iso tro p y  in the F e r m i  v e lo c ity .  On doing the calcu lation  
one finds fo r  the c o e ffic ie n ts  of ( 1 5 2 )  e x p r e s s io n s  of the form

b = bx A2 + b2 A A* + b3 A' 2

c  = c1 A2 + c 2 A A '  + c 3 A ’ 2 ( 1 9 4 )

d = d: A 2 + d2 A A '  + d3 A ' 2

(Th u s: no anisotro py, no m a g n e to r e s is ta n ce .  ) In the end one e valu ates  
B L and B T fro m  here  as  qu adratic  e x p r e s s io n s  like ( 19 4 ) ,  with c o e ffic ie n ts  
d e sc r ib in g  an gu lar dependence. F o r  a given g e o m e t r ic a l  ar r a n g e m e n t one 
fin ally  a r r i v e s  at the detailed c o m p a r iso n  of o b s e rv e d  m a g n e to r e s is ta n ce ,  
on the one hand, and as su m e d  F e r m i  su r fa c e ,  on the other hand. The  
longitudinal e ffect is  u s u a lly  much s m a l l e r  than the t r a n s v e r s e .  But many  
e x p e rim e n ta l  data have been taken in p o ly c r y s ta llin e  s a m p le s  and, on 
a v e r a g in g  o v e r  orientations, B L b e c o m e s co m p a ra b le  to B T .

3 . 5 . 2 .  S e m ico n d u cto rs

—> —̂
T a k e  sp h e r ic a l  e n e rg y  s u r f a c e s .  T a k e  H i E .  Then, u sin g  again the 

com p lex notation

sal.
1 + i u r T

> E ( 1 9 5 )

We cannot in ve rt  this relation ship  as  e a s i l y  as  ( 1 8 5 ) .  We f i r s t  have to 
w r ite

« a !
m  1 + ( u  t )‘

U r T *

m Ni + ( U Ty
-> E  =  ( a - i b )  E (196)

and then in ve rt :

a - i  b + b2 J + i i 2 + b2 (19 7 )

T o  second o r d e r  this y ie ld s

Др _ <т3 ) < т )  - < t 2^  2

po '  < t > 2
( 19 8 )

T h is  d is p la y s  v e r y  n ic e ly  the e ffe c ts  of st a t is t ic a l  d isp e rsio n .  B e c a u s e  of 
S c h w a r t z 1 inequality ( 19 8 )  is  positive  definite. T h is  p rin cip le  can be pro ved  
g e n e r a l ly .

In m any im portant c a s e s ,  like n - S i  and n -G e ,  the m a g n e to r e s is ta n c e  is  
not only due to s t a t is t ic a l  d isp e rsio n ,  but a lso  to an isotro pic  e n e r g y  s u r f a c e s  
We have a lr e a d y  indicated how to c a lc u la te  the tr a n sp o r t  co e ffic ie n ts  in 
this c a s e .  Th e standard b u sin e ss  in this b ran ch  of se m ico n d u cto r  r e s e a r c h  
c o n s is t s  in w o rk in g  with oriented single  c r y s t a l s  and scanning an gu lar
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pattern s, which a r e  then an alysed  with the fo rm u la given in ( 1 9 5 2 ) ,  in which  
the coe ffic ie n ts have been calcu lated  afte r  adding up the contributions to 
the total c u rre n t due to the different e llip so id s. The actual calculation is  
r a t h e r  tedious but straig h tfo rw a rd ,  and it leads to e x p r e s sio n s  im m ed iately  
u sable fo r  the a n a ly s is  of ex p e rim e n ta l data. A  g re a t  deal of v e r y  u seful  
inform ation has been obtained in this w ay.

3 . 6 .  Interm ediate m agnetic  fields

Th e m a g n eto r esista n ce  continues in cr e a s in g  with H. It is c u sto m a r y  
to plot the data in the K oh ler d i a g r a m . We have seen in section 3 . 3 . 2  that 
the solution in the p re s e n ce  of a m agnetic  field c o n s ists  in applying an 
o p erato r,  which depends on т H to = 0). T h e r e fo r e ,  the cu r r e n ts  in
the p r e s e n c e  of Й, and ultim ately  the m a g n eto r esista n ce ,  depend on 
t  H. But t  is  i n v e r s e l y  proportional to pQ . T h u s: the m agn etoresista n ce  
is  a function of the form

(K o h le r 's  rule).  Th e b a sis  of this rule is  the statement that the deflection  
of a c a r r i e r  is  proportional to H and to the time the c a r r i e r  continues under  
the influence of H between two co llis io n s.  Of c o u r se ,  (19 9 )  can only hold 
e x a c tly  when there is  no sta t is t ic a l  d isp e rsio n  in t . K o h le r 's  rule is  th e r e 
fore m o re  u sefu l (in fact ap p ro xim ately  valid) fo r  m e ta ls .  The rule indi
c a te s  that w e can  figure out what the e ffec ts  would be in a higher magnetic  
field by d e c r e a s in g  the te m p e ratu re .  E v e n  if  the rule  does not hold e xactly,  
we can a lw a y s  s a y  that u ^ r  can be made la r g e  by in c r e a s in g  uc o r  by in
c r e a s i n g  t , which in vo lve s  the sa m e  idea: m a g n eto r esista n ce  e ffects  are  

favoured by low te m p e r a tu r e s .  K o h le r 's  rule is  also  u seful in providing a 
w a y  of com p arin g the m a g n eto r esista n ce  data fo r  v a rio u s m etals  in one 
u n iv e r s a l  plot. One chooses a standard tem p eratu re  T c and plots in one 
u n iv e r s a l  d iag ram  the m a g n eto r esista n ce  v e r s u s

W e have a lr e a d y  indicated that the form  of the conductivity ten sor  
allowed by c r y s t a l  s y m m e t r y  su gg e sts  the existen ce  of a v a r i e t y  of an iso 
tropic  phenomena. The p h y s ic a l  b a s is  of these phenomena can u sually  be 
understood in sim ple  t e r m s .  F o r  exam ple, suppose an e le c t r ic  field in 
the (100) a x is  of a cubic c r y s t a l ,  and a magnetic field being rotated in the 
p erp en d icu lar  plane ( F ig .  5).  Suppose, further,  that the e n erg y  s u r fa c e s  
a r e  an isotro pic.  _The a c c e le ra tio n  of Ic, depending on Й, is  a lw a ys  
p erp e n d icu lar  to H, but the actual p h y s ic a l  drift of ch arg e  follows the 
a c c e le r a tio n  of the v elo city

(199)

V -, = f v ^ v - ? )  • f  = ( v - v -  sS)-( V -  x  h )
к V k k /  f t 2 \ k k k / V k  J ( 2 0 0 )
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T h is ,  of c o u r s e ,  can have a component along Й. If an e le c t r i c  cu r r e n t  is  
maintained in the (100) d irection, then this deflection in the directio n  of  
Й m ust be stopped by an e x tr a  e le c t r ic  field, much as  in the c a s e  of the 
o r d in a r y  Hall effect .  It i s  a s  if  w e had a Hall effect in the sa m e  direction  
as Й. Knowing what to look fo r ,  it i s  not v e r y  difficult to go through the 
calcu latio n  and e st im a te  the e ffect.  One finds that this i s  z e r o  up to second  
o r d e r :  w e m ust at le a s t  go up to 3 r d  o r d e r ,  which m ean s that w e must  
s e a r c h  e x p e r im e n ta lly  in the in te r m e d ia te - f ie ld  region . T o  the low est  
o r d e r ,  one finds that fo r  a given  H the magnitude of the effect should v a r y  
like sin  4 cp ( F i g .  5).  T h is  effect has actu a lly  been o b s e r v e d  in s e m i 
conductors and it exhibits the expected an gu lar dependence. T h is  is  only a 
sam p le  of the m any d ifferent phenomena which a r e  to be expected fro m  
a com plete elucidation of a l l  the components of the conductivity te n s o r  in a 
m agnetic  field.

FIG. 5. For 15 not in a symmetry direction, actual drift T3 may result in the direction o f i? itself, if the 
energy surfaces are anisotropic.

3 . 7 ,  H ig h -field  e ffec ts  in m e ta ls

The galvan om agn etic  e ffe c ts  have som e v e r y  distin ctive  and in te re stin g  
fe a tu r e s  in high m agnetic  field s due to the fact that the sc a tte rin g  be co m es  
then r e la t iv e ly  unimportant and the c a r r i e r s  go round th e ir  orbits  in an 
e ss e n t ia l ly  undisturbed fo rm . T h e  fe a tu re s  of the model, unmasked by the 
sc atte rin g ,  becom e then m o re  apparent.

L e t  us e x plo re  the s im p le s t  exam p le  of a d is p e r s iv e  s y s te m , nam ely,  
a two-band model. L e t  us even a s s u m e  that both typ es of c a r r i e r s  have  
the sa m e  m and r .  W e ju st have the m o st idealized model of (negative)  
e le ctro n s  and (positive) holes. In this d isc u ss io n  we sh all use the following  
notation:

N  = n um ber of e le ctro n s
N + = n um ber of holes
N = N . +  N +
n = N  - N

+
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L e t  use c o n s id e r  c r o s s e d  E  and H and use the c om p lex notation. We have  
an e le ctro n  c u rre n t

N_q2T E 
m 1 + i (uc t  )

( 2 0 1 )

and a hole c u rre n t

N .q 2T E  

m 1 - i (uct ) ( 202 )

hence a total cu r r e n t  J  + J  . Put

then

hence

and

N q 2T __ nq2 r ^  = N
m b -  m a n

D

j
CTa - Н и с т) crh 

1 +(шс т ) 2

E
J

ga t1 + ( цс т)2]

° a  +  (Шс  t )2 ° t >2

crb[l + (WCT f ] (uct )
 ̂ 2 2 2

(J + (w t ) Vа c b

L e t  u s in te rp ret  the r e s u lts .  F r o m  (205):

-  J _  t1  +  ( Ц . Т )  ]

P °a 1 + (u  т ) 2 (n/N )2

F r o m  (206):

R  = _ 1_ И  + ( ц е т )2 ]

’  ПЧС (N/п )2 + (uct )2

Now look at the high field lim it.

—  ( -  ) R -  —  
W  nqc

(203)

(204)

(205)

(206)

(207)

(208)

(209)

T h u s, the r e s i s t i v i t y  tends to a saturation value and the Hall effect is  just  
what we would e xpect fro m  a net c h a rg e  density N+ - N .  . We can take these
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l im its  provided n ф  0. Suppose there a r e  as  many e le ctro n s as holes, as  
is  the c a s e  with divalent m etals  with one atom p er unit c e l l  (we a r e  not yet  
con sid erin g  open orbits ,  which we sh all  com e to p rese n tly ) .  Then we have  
n = 0 and (207) shows that p continues in c r e a s in g  like H2. T h e r e  is  no high 
field saturation fo r  N+ = N .. T h is  is  a v e r y  sh arp con trast  (saturation or  
not, depending on N + and N_). M o r e o v e r ,  from  (208) if  N+ = N. then R = 0. 
T h e r e  is  no Hall effect.

We have o v e r s im p lif ie d  the treatm en t. Since these th e oretical  p r e 
dictions in sist  that high field studies can furnish r a th e r  d ire ct  information,  
let us scru tin ize  a little the assu m ption s we have made. A s  there is  a 
la r g e  fractio n  of a full c o u r s e  on high field m a g n eto r esista n ce  in this 
se m in a r,  I sh all  only d is c u s s  the su bject in broad outline.

L e t  us f i r s t  tr e a t  the sc atte rin g .  T h is  is  e a s y  to dispense with. Since  
we a r e  in terested  in the h igh -field  lim it, the sc atte rin g  be co m es unimportant 
and we might as  w e ll  make the sim p le s t  assum ption (constant r ) .  Then  
there is  the F e r m i  s u r f a c e .  T h is  can indeed introduce m a jo r  d iffe re n c e s.  
L e t  us p ro vis io n a lly  c o n s id e r  only closed  F e r m i  s u r f a c e s .  Still,  the 
g e o m e try  can be r a th e r  com p licated . A r e  we su re  that a prediction like,  
say, (209) st i ll  holds fo r  any g e o m e tr y ?  L e t  us c o n s id e r  the situation  
d e sc rib e d  in F i g .  5. We have e le ctro n s and holes, contained in se p ara te ,  
clo se d  s u r f a c e s  of oth erw ise  a r b i t r a r y  g e o m e tr y .  We c o n s id e r  the high 
field lim it in which we ignore the sc atte rin g .  We a r e  then,confronted with 
the situation studied in the Appendix, only now with B loch  e le ctro n s instead  
of fre e  e le ctro n s.  L e t  u s -r e m e m b e r  the quantum treatm en t in c r o s s e d  $  
and H, b e cau se  we did that r a t h e r  m o re  fo r m a lly ,  sp e cify in g  w h e re  to use  
canonical m om enta o r  kinetic mom enta. The object to w atch  is  the 
Hamiltonian w e w r o te d o w n  in ( A . 69). We a r e  not in terested  now in changing  
our sy s te m  of quantum nu m b ers, but we can notice one thing in this  
Hamiltonian. A l l  the te r m s  except the one containing the ex plic it  depend
ence on the kinetic momentum p contain the m a s s  of the p a r t ic le .  On 
going o v e r  to the s e m i c l a s s i c a l  p ictu re  fo r  Bloch  e le ctro n s,  these te r m s  
w ill  change (at the v e r y  le ast  m would go o v e r  into the e ffectiv e  m a s s )  and 
the te rm  in py w il l  s t i ll  contain the e xplicit  dependence on the 'c r y s t a l  
kinetic mom entum' liky . T h u s, our c a r r i e r s  in F i g .  6 have th e ir  e n erg y  

explic itly  changed by an e x tr a  te r m  ( c E / H ) h k y, hence a net drift  
ve lo city

F r o m  this we get, out of the s l i c e s  shown in F i g .  6, a t r a n s v e r s e  c u rre n t

( 210 )

( 211 )

±

w h e re  (&v)  i s  the density of states p e r  unit a r e a  of the s l i c e s .  The sign is  
p ositive fo r  one contribution ( e . g . ,  holes) and negative fo r  the other one 
(ele ctro n s).  C le a r l y
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FIG. 6. A section o f a Fermi surface consisting of two closed non-intersecting surfaces. One electron
like and one hole-like. The section is normal to H .

i s  ju st the a r e a  of the t r a n s v e r s e  section  which, multiplied by (6 v )  g iv e s  
the num ber 6N± of c a r r i e r s  contained in the s l ic e .  Sum m ing o v e r  all  the 
s l i c e s  which make up the F e r m i  su r fa c e  we get

J  (N+ - N
, c E

■) q l T
( 2 1 3 )

which is  the s a m e  as  our p revio u s fo rm u la  fo r  R in (209). T h is  shows that 
the re su lt  w a s  m o r e  g en eral.

W e would in fact like to w r ite  down an e xact solution of the Boltzm ann  
equation with which to evaluate in d etail the elem en ts of the conductivity  
te n s o r.  W e have a lr e a d y  mentioned som e methods of solution either fo r  
p a r t ic u la r  m od els of band stru ctu re  o r  fo r  low field s.  If a relaxation  
tim e is  a s su m e d  (and this is  quite appro priate  fo r  the h igh -field  lim it) then 
a fo r m a l  e x a c t  solution of the Boltzm ann equation can be w ritten  down. It 
i s  convenient f o r  this to d e s c r ib e  the motion of the c a r r i e r s  in If sp ace  
u sin g  sp e c ia l  coo rd in ates ap propriate to the c a s e  of a m agnetic  field.  
C o n sid e r  a section  (of the F e r m i  su rfa c e )  n o rm a l to Й, and r e m e m b e r  we  
a r e  sti ll  a s su m in g  c lo se d  s u r f a c e s .  L e t  v x denote the component of the 
e le ctro n  v e lo c ity  in the plane p erp en d icu lar  to Й, and dk denote the element  
of length around the the orbit (section of the F e r m i  su r fa c e )  contained in 
this plane. T h en  in an e le m e n tar y  tim e in te r v a l  dt:

dk = v, H dt 
he x

( 2 14 )

T h u s, fo r  a c lo se d  path, the period of the o rbital motion is

^ J d t ^  №
u h J  qH J  v x

(215)

H ere w e have defined the freq u en cy of the orbit, which depends on the 
g e o m etry  of the F e r m i  s u r f a c e .  T h u s, fo r  a fixed k z , in the anulus
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between o rb its  of a r e a  У  and У  +  d У ,  correspo n d in g  to e n e r g ie s  i  and 
S  +  d S ,  w e have

and

d y  = £ ~  dk
d

2;rqH
h2c u H

d S

_  2 ж д Н  ( d j d \  

U H -  Ъ2 С \ d S j

If  we define the m a s s  of the orbit m H by

д н
m Hc

и H

( 2 16 )

( 2 1 7 )

(2 18 )

then ( 2 1 7 )  p ro v id e s  the fo rm u la  f o r  calcu la tin g  m H. F o r  exam p le, let us 
take a sp h e r ic a l  F e r m i  s u r f a c e :

У  = тгк2
27rm
h 2

2тгдН h 2 = qH_ 
ft2c 27rm me

(2 19 )

which r e p r o d u c e s  the o r d in a r y  c y c lo tr o n  freq u en cy. You w i l l  find ( 2 17 )  
u sefu l in the th e ory  of the H a a s - v a n  Alphen effect.

But w e w e r e  a ft e r  so lvin g our Boltzm ann equation, fo r  which we look 
at ( 2 1 4 )  and ( 2 1 5 )  and define a phase v a r ia b le  cp which m e a s u r e s  the (angular)  
position around the o rbit.  T h u s,  between two instants,  t 0 and tj :

ф, -  Ф0 = 4
eft Г  dk

h  qH (220)

A f t e r  a com plete p eriod cp chan ges by

^  £
qH У S dt = ^ dt = 2ir ( 221 )

T h u s its  tim e d e r iv a t iv e  is

Ф = (2 22 )

W e then u se  the c oo rd in ates ($,  к , cp) a s  a convenient set to locate  an 
e le c t r o n  with p hase  cp in a se c tio n  kz of a  s u r fa c e  of e n e rg y  $. Our  
distribution function b e c o m es

f ( $ , k z ,cp) s  f ° ( g )  +  6 f ( $ , k z ,cp) (2 23 )
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T h e  Boltzm ann equation now re ad s

(224)

which is  am azin g ly  sim p le. Th e fo rm a l solution is

Г v  ( ё  kz ф') e dcp1 (225)

о

and the elem en ts of the conductivity ten sor:

V.(cp) e v  (cp + c p ')  dcp (226)

T h is  fo rm u la  is  valid  for a r b i t r a r y  F e r m i  s u r f a c e s .  Its r e a l  u sefu ln ess
c o n s is t s  in lending i ts e l f  quite natu rally  to an expansion in p ow ers of
(uht )~1 ,  which is  ap propriate to study high field e ffe c ts .  An explicit example
can be seen in Z im a n  (19 60, section  1 2 .7 ) .  One can evaluate crvv, forЛ )
e xam ple, and r e c o v e r  ( 2 1 3 )  again. F o r  low fields, of c o u r se ,  it reproduces  
the re su lts  d ir e c t ly  obtained by the method of Jo n e s  and Z e n e r .  The  
C h a m b e r s  method c o n s ists  in an altern ative (and direct) evaluation of the 
non-equilibrium  distribution in r a t h e r  intuitive and appealing physical  
t e r m s .  Hence the cu rre n t is  im m ed iately  written down. If the result is  
lin e arize d  in E ,  then the C h a m b e r s  form ula re p r o d u ce s (226).

So f a r  we have a ssu m ed  that the F e r m i  s u rfa c e  contained only closed  
o rb its .  Then we can define u., and m „ .  But re a l  F e r m i  s u r f a c e s  can  
exhibit a different topology, and this is  c r u c ia l  for the galvanom agnetic  
e ffec ts  in high field s.  C o n sid e r  the types of orbits of the hypothetical  
F e r m i  s u rfa c e  shown in F i g .  7. T h is  su r fa c e  is  a conceivable tight binding 
model fo r  a s im ple  cubic lattice .  Imagine this unit repeated p e r io d ica lly  in 
all d irectio n s.

Now suppose a m agnetic  field is  applied in the z direction. The  
o rb its ,  determ ined by planes with orientation ж ( F i g .  7) are  shown in F i g .  8 
fo r  different v a lu e s  of k z . O rbits A a r e  e le ctr o n -lik e ;  orbits  В are  hole
like. O rbits C a r e  neither type. T h e s e  orbits  are  not n e c e s s a r i ly  clo sed .  
T h e y  run e n d le ss ly  through the saddle points P  in the repeated zone sch em e.  
H ow ever, these orbits  o c c u r  only fo r  d isc r e te  v alu es of kz and the p ro bab i
lity of the c a r r i e r  having the right value of kz is negligible, so that these  
orbits  have negligible effect.

But suppose Й is  rotated in the (y, z) plane. The orbits  are determined  
by planes with orientation, s a y ,  ж' ( F i g .  7). Then as  shown in F i g .  9, open 
orbits  w il l  re su lt  fo r  a range of v alu e s  of kz and their effect w ill  be felt 
in the resu ltin g m a g n eto r esista n ce .  W e need not go here into the details,  
which you w il l  have in full la te r .  It su ffic e s  to notice that fo r  closed  orbits  
the c a r r i e r s  go round them s e v e r a l  t im es as soon as the field is  su fficiently  
high, so that fu rth e r  i n c r e a s e s  of H do not introduce the c a r r i e r s  to new 
fe a tu re s  of the F e r m i  s u r fa c e .  In fact, nothing new happens, the m agneto
r e s is t a n c e  settles down to a saturation value (unless there is  exact c an cel-



ELECTRON DYNAMICS 289

lation between e le ctro n s  and holes). F o r  the open o rb its ,  on the other  
hand, the c a r r i e r s  n e v e r  com plete the orbit and thus go on sam p lin g new 
fe a tu r e s  and the r e s i s t i v i t y  goes on changing. A detailed calcu lation  shows  
that it i n c r e a s e s  like H2. In between there a r e  the c lo se d  but v e r y  extended

FIG. 7. A hypothetical model o f  a Fermi surface.

FIG. 8. Cross sections k2 = constant for different values o f  kz (planes o f  type тг) o f  the Fermi surface
dzk

in Fig. 7. Shaded areas represent occupied states and A --  closed electron orbit ——2> ® B -- closed
d2k dkhole orbit * < О C - -  critical extended orbit P— saddle points where vv = v, = 0, —  = 0
d c 2 ^  x У d#
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FIG. 9. Cross sections of the Fermi surface shown in Fig. 7 for planes rotated about kx (planes of type jr’ ). 
Orbits A and В have the same meaning as before. But orbits of type A may coalesce and give open 
extended orbits D. Notice that strips (1), (2), (3), etc. no longer cut equivalent parts o f  the Fermi 
surface. In general their orbits will be different; they may change in dimension or even in topology.

o rb its ,  which m a y  re q u ire  v e r y  high fields befo re  saturation is  attained.
It i s  c l e a r  that by sy s te m a tic  exploration of oriented single c r y s t a l s  and 
patient a n a ly s is  of the e x p e rim e n ta l data one can u ltim ately  u n rav e l the 
topology of even v e r y  com p licated  F e r m i  s u r f a c e s .  T h is  is  hard, c h a l
lenging and r e w a rd in g  w o rk .

T h e r e  is  one fact of life that we ought to mention. M any expe rim e n ts  
have been done with p o ly c r y s ta llin e  s a m p le s  and they show a continued  
i n c r e a s e  of the r e s i s t i v i t y  going r a t h e r  like the f i r s t  p ow e r of H. It is  
plau sible  to think that the explanation lie s  in the topology of the F e r m i  
s u r f a c e  and in so m e a v e r a g in g  o v e r  the e ffe c ts  of open and c lo se d  s u r f a c e s  
which ap p ear fo r  a fixed directio n  of H and v a r ia b le  c r y s t a l  orientations.  
H o w e v er ,  there is  no f irm  ground fo r  a quantitative theory of this av e ra g in g  
and it i s  in fact m o re  ad visable  to s t r i v e  to c a r r y  out a p r o g r a m m e  with 
single  c r y s t a l s .  The most v ig o r o u s  push in this directio n  has com e fro m  
the R u ss ia n  school (C h a m b e r s ,  1960).

3 , 8 ,  A  s e m i c l a s s i c a l  v ie w  of high field quantization effects

T o  conclude let us make a few r e m a r k s  about quantization e ffects  in 
high field s and, keeping within the sp irit  of this c o u r se ,  let us v ie w  them 
in a s e m i c l a s s i c a l  w ay. R e m e m b e r  the fo rm u la ( 2 2 1 )  fo r  u H and the 
allowed s i z e s  of the o rb its  in к sp ace  (A. 65). T h u s,  s u c c e s s i v e  allowed  
o rb its  d iffe r  in a r e a  by

Д У =  2j q H  
he (227)

L e t  us a s s u m e  high quantum number, so that

_  A  jd  = 2тгдН 

d S  ~  A S  h c A $
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What w e a r e  saying, in vie w  of ( 2 1 7 )  and (228), is  that a change in 
a r e a  co r r e s p o n d s  to a change in a quantum of e n erg y

A S  = fiwH (229)

ju st a s  in the sim ple  theory f o r  fr e e  ele ctro n s,  
m ean s uht  »  1 .  T h is  m ean s

ft
T

We im p ly  that high fields

(230)

The right-hand side of this inequality is  a m e a s u r e  of the collisio n  broad en 
ing of the quantum e n erg y  le v e ls ,  i.  e. of the u n certain ty in the e n erg y  
of these le v e ls  a s so c ia te d  with a finite lifetim e t , a fte r  which the state is  
d e stroye d  by a collisio n . Thus, on this account, the quantum le v e ls  are  
sh ar p ly  defined. But we st i l l  have to think of k BT .  The quantization w il l  
be blu rred  up u n less

ftu H § k BT ( 2 3 1 )

F o r  a fre e  ele ctro n  m a s s  this r e q u ir e s  a minimum m agnetic field (in g au ss)  
of the o r d e r .o f  1 0 4 T  (T  in d e g r e e  Kelvin). E v e n  if  one h as v e r y  expen sive  
equipment to w o r k  at T =  1 °K ,  this would requ ire  field s which a r e  c e r ta in ly  
a c c e s s i b l e  but not too e a s i l y  (o r  too cheaply). But still,  this would be 
o r d e r s  of magnitude below the d e g e n e ra c y  te m p e ratu re  of a typ ica l  
m etal,  i . e .

f t u H «  S f (2 3 2 )

Outside the r e a lm  of sc ie n c e  fiction it is  reason able  to think o f F e r m i  
e le ctro n s in states of high quantum nu m b ers. T h is  is  why even o b s e rv e d  
quantization e ffec ts  can be f a i r l y  w e ll  explained in a s e m i c l a s s i c a l  pictu re.  
T h e  kind of quantum theory which could sa tis f y  a p u rist  i s  not r e a lly  needed 
in this b u sin ess to understand the o bserve d  behaviour of m e ta ls ,  but only  
to la y  down the r ig o r o u s foundation of the theory. A s  fo r  the actual quanti
zation e ffec ts  they are ,  of c o u r se ,  the renowned o sc il la tio n s.  I f  S ?  i s  an 
exact multiple o f  ftuH, then we have "a llo w e d  conduction e le c t r o n s " .  But,  
a s  H i n c r e a s e s  a little, the allowed o rb its  a r e  outside the F e r m i  su rfac e,  
and the conductivity drops, only to go up again when the next allowed  
quantum le v e l  r e a c h e s  the F e r m i  le v el,  and so on. Thus w e need

fiw
(F

H

If___H
ftqH

c

to be an in teger,  
w il l  be

T h e r e f o r e ,  the period o bserved, as  a function of H

A
к

(2 3 3 )

which explain s the c e le b ra te d  and som ewhat u n interesting o sc i l la to r y  
behaviour of the r e s i s t i v i t y  in v e r y  high m agnetic  field s (Shubnikov-deHaas  
e f f e c t ) .
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T h e  c a s e  of in su lato rs  is  different. Think again of a few, v e r y  few,  
conduction e le ctro n s (or polarons) in teractin g with optical p olar  m odes of 
e n e r g y  ftco  ̂ W e can  e a s i ly  put all  the conduction e le ctro n s in the lowest  
Landau le v el,  and then we do have a thoroughly quantum region. We might 
expect the sc a tte r in g  to be enhanced e v e r y  tim e the e le ctro n s,  by absorbing  
a p o lar  phonon, can jump up to a h igh er quantum le v el.  U nder these  
c ir c u m s t a n c e s  the e le ctro n s find a v e r y  concentrated density of final states  
fo r  sc a tte r in g  into, and this would happen e v e r y  time is  an exact su b
multiple of which is  e x p e rim e n ta lly  quite fe a s ib le .  T h e  m obility
would then exhibit o sc il la tio n s as a function of H. Such effect has in fact  
been o b s e rv e d .  T h is  is  ju st to show (a) how am usin g the phenomenology of 
tr an sp o rt  in a m agnetic  field can be, (b) when to take quantum theory  
s e r io u s ly .

A P P E N D I X

D y n a m ics  of fr e e  e le ctro n s in a m agnetic  field

In o r d e r  to understand the d y n am ics  of e le ctro n s with a com plicated  
band stru c tu re  in the p r e s e n c e  of a m agnetic  field it is  important to f i r s t  
understand the theory fo r  fr e e  e le ctro n s.  Since this, fo r  no r e a l  reason ,  
s e e m s  to be a r a t h e r  unpopular topic, we shall s u m m a r iz e  h ere  the main  
fa c ts .

1 .  C l a s s i c a l  th eory

W e sh all u s e  the com p lex notation in the plane p e rp e n d icu lar  to the 
field. Thus H w il l  be a " s c a l a r "  m u ltip licative  fac to r,  r,  v  and E  w il l  be 
v e c t o r s  and m ultiplication by i w i l l  m ean rotation through 7r/2  about the 
a x is  of the m agnetic  field. The com plete L o re n tz  fo r c e  w il l  be

q E - i ^ v H  (A . 1)

F o r  E  = 0

thus

q qH
m v  = - i — v  H ; v  = vne ; w = ------

с о c me
( A . 2)

r  = l —  e =  rn e

that is  to s a y ,  a c i r c u l a r  orbit with the c yc lo tro n  fre q u en cy  uc . And the 
orbit in r  sp ace  is  d erived  fro m  the orbit in v  sp a ce  by a rotation of 90° 
and multiplication by a s c a le  fa c to r.

F o r  c r o s s e d  E  and H

m v = q E (A. 3)
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Put

then

q
G = —  E  m

v  + iucv  = G

( A . 4 )

( A . 5 )

w h ich  is  solved by

-iw c i
v  = ivx - iv± e

(taking v(0) = 0) with

T a k in g  r(0) = 0 and putting

x о

w e  have

r

c E
H

G _ \ l_ m c 2F

и 2 Ш q H *
c c

-io i t
x + i v, t + x e 

0 J- 0

( A . 6)

( A . 7)

( A . 8)

( A . 9)

T h e  g e o m e t r ic a l  in terp retatio n  is  given  by F i g .  1 0 .  Notice that v  does not 
depend on the sign  of q.

FIG. 10. Particle motion in a magnetic field.

Now, in o r d e r  to p r e p a r e  the w a y  to the quantum th eory, it i s  c o n v e 
nient to r e f r e s h  som e e lem en ts of c l a s s i c a l  d y n a m ic s .  Putting  

T  = kinetic e n e rg y
L  = T  - V  L a g r a n g ia n

V  = potential e n erg y  
the L a g r a n g ia n  equations of motion a r e
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and the canonical momentum conjugate to q. is

9 L

4

T h is  p ro ce d u re  is  possib le ,  provided the fo r c e s  can be d erived  from  
a potential.  If not, c a l l  F tM the fo r c e s  which cannot be d erived  from  a 
potential.  Then, i f  a function M (q j,  q; ) can be found such that

pM _ _d_ ЭМ ЭМ
i dt 9q 9q

( A . 10)

the L a g r a n g ia n  sch em e  goes through with L  re p laced  by

L  = L  - M = T  - V  - M (A. 1 1 )
M

L e t  u s now w r ite  down N ew ton's law with the fa m ilia r  L o re n tz  fo rce.

-~ 7  (m v) = q (E + — v  X H) 
dt H c

( A . 12)

T h is  can e a s i ly  be rew ritten, in te r m s of the s c a l a r  and v e c to r  potentials  
(cp, A) as

-yy ( m v  + ^ X )  = V(-qcp + ^ v  • A)  
dt с c

( A . 13)

T a k e  components:

o r

sa tisf ie d  by

= ( - q c p + ^ . A )

dt V 3 r . )  9r.4 i x i

t 1 2
L m  = 2 m v

q cp + — v  ' Ä  
c

( A . 14)

( A . 15 )

( A . 16)

T h u s,  the M function of our problem is
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T h e r e f o r e ,  the can o n ical m om enta conjugate to the coo rd in ates rt a r e

-  9 L Mp = — —  = m v  + — A  
i d r .  i c i

and the relation  with the kinetic momentum

p = m v

is

P = P + - A

(A . 18)

(A . 19)

T h e  Ham iltonian is

g f  = )  fj r  - L  ( r  , r  )
l—i i i M  1 1
i

= P • v - ~  m v ■ v -  ̂3 ■ v + qcp (A. 20)

1 .  q -> 2
= T —  ( # -  - A )  + qcp 2 m c  ^

o bviou sly.
When p a s sin g  o v e r  to quantum th eory we sh all  have to be c a r e fu l  about 

o r d e r in g  of fa c t o r s  in the b ilin e a r  te rm  p- A  (or A  • p ).  Think o f a s c a l a r  
function f.  In the p a s s a g e  to quantum th e ory  we sh all find

j - A f -  - i h V ( A f )  = - iftA • V f -  i f t f V - A  (A. 2 1 )

i . e .  between o p e r a to r s :

[p. A ] = - i f i V - A  ( A . 22)

T h u s,  w h e th e r th e q u a n tu m -m e c h a n ic a l  o p e r a to r s  ]5 and Ä  can be in t e r 
changed o r  not depends on w hether div Ä  = 0 o r  not. Does this im p ose  
any im portant r e s t r i c t io n ?  R e m e m b e r  that Й = V X  Ä  le a v e s  an a r b i t r a 
r i n e s s  in Ä ,  s in c e  w e can  add to it any gradient of a tim e-independent  
s c a l a r  function and this w i l l  not change the f ield s.  C an we then choose X  
so that d iv  3  = 0? We a r e  touching the question of gauge in va ria n c e .  L e t  
u s se e  this s t i l l  in the c l a s s i c a l  theory.

T a k e  a s c a l a r  function A ( r )  and change

3 - 3 '  = 3 + V A ( r )  (A . 23)

If  Л  i s  a lso  tim e dependent, e ffect  a change of s c a l a r  potential

Ф
1 3 A ( r ,  t ) 

ф '  c at
( A . 24)
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L e t  us take the g e n e ra l  c a s e .  With th ese  tr an sfo rm atio n s

Ё '  = E ,  H' = H ( A . 25)

T h e  field s  a r e  g a u g e -in v a r ia n t  (as p h y s ic a l  quantities must be).
Suppose then that, to begin with

V‘X+c If = S(r,t)fO ( A . 26)

Then, by choosing A ( r ,  t) su c h th a t

V -  (V A )
э2 л
a t 2

( A . 27)

w e sh all have, a fte r  the gauge tr an sfo rm atio n :

V -  A '  + -  = 0 ( A . 28)
c at

T h u s, we can a lw a y s  choose a gauge such that the L o r e n tz  condition is  
sa tisf ie d ,  while p h y s ic a l  quantities re m a in  in varian t.

II. Quantum th eory

T h e  expectation v alu e s of the quantum m e c h a n ic a l  o p e r a to r s ,  y ield in g  
the p h y s ic a l  quantities, w i l l  be g auge-in varian t,  but this le a v e s  the p o s s i b i 
lity that the w a v e  function m a y  be multiplied by a phase fa c to r .  Thus  
( r e s t r ic t i n g  o u r s e lv e s  to tim e-independent fields) the gauge tr an sfo rm atio n  
(A . 23)  e ffe c ts  a tr a n sfo rm a tio n

ф -> ip' = ф (A. 29)

We can find X fro m  the condition that, fo r  any d y n am ic al v a r ia b le  Q we  
have, in the g au ges S  and S ' :

<Ф  I Q(A)|0>= 0 ' | q ' ( A ' ) | ^ >  ( A . 30)

W e also  want to c o n s e r v e  the p ro bability  density and the probability  cu rre n t  
density. T h u s we s t a r t  from  the Hamiltonian

r~ -|2
■ § ? (A )  = ^  { p  ‘  c A  + qcp^  + U  (r) ( A .  3 1 )

—>
w h e re  U can be any o rd in a ry  potential,  ap art  from  (A, cp). We w o rk  in 
the position represen tatio n , in which the o p e r a to r s  ^ op and T op a r e  r e 
p resen ted  by

—г  л —* pr  f  = r f  op p f = -iftVf  г  op (A . 32)
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T h u s, w e have to be c a r e fu l  and w r ite  (A . 3 1 )  as

-  ieft Q 2
^ T ( A )  = - V  + qcp + U + Т Г 5-----(A - V + V - A )  + - ------A
^  ' 2m ^  2 m c  2m c

h 2 _2 ( A . 33)

b e cau se  w e do not know whether, to begin with, d i v A  = 0 o r  not. W e f i r s t  
look fo r  a continuity equation

,2
Э I ^ I 

at - + V - ]  = 0 ( A . 34)

T h is  w il l  g ive  us the fo rm u la  fo r  the p ro bability  c u rre n t density in the 
p r e s e n c e  of A .  U sin g

we have

at i f ie  v  > at lb e  vat ift
( A . 35)

® M L = _ _ J L _  f . ^ v - ^ A  
at 2iftm V i  c

q - A  ,*
— V  — A  j ф 
1 c J

2 ihm Vi c J
( A . 36)

whence, a fte r  som e r e a r r a n g e m e n t

а \ф \
at + v- 2m i (ip*Vip - фЧф'г ----- ~K ф''~ф V = 0

me I
( A . 37)

T h e  te r m  in c u r ly  b r a c k e t s  g iv e s  fo rm u la  fo r  the c u rre n t  density in the 
p r e s e n c e  of A .

Now c o n s id e r  the w a v e  function ф' of (A . 29), which goes with the 
gauge tr a n sfo rm a tio n  of (A . 2 3 ) .  We want the fo rm u la  fo r  the cu rre n t  
density to r e m a in  the sa m e  in the new gauge. We evaluate

h f  -iX * iX iX 
— г I e ф V e  ф - e A V emi у

- (A + V A )  е ' Х ф " е Хф

= — { Г У Ф - Ф У Г )  (iVA + iV X )  (;//>)

---- —  А  ф'"ф — —  (VA) ф*ф
me me
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T h u s,  the fo rm u la  r e m a in s  invariant with A = q A / h c .  
Sum m ing up.

1  -* A 1 = A  + V A ( r )  

ф ~ ф *  = e iqA/*c ф

( A . 38)

It i s  e a s y  to v e r i f y  that this value of A also  e n su r e s  the in va rian c e  of the 
S ch rö d in g er  equation and the kinematic v e lo city .  F o r  exam ple, c o n s id e r  
the v e lo c ity  o p e ra to r

v
op

(A) ( A . 39)

Suppose ф i s  an eigenstate correspo n d in g  to eigenvalue v .  Then, in the 
gauge 2

and, in

V Ф = уф 
op^

V ( А ) ф '  = — V - - A  -  f t (VX ) ] - (e%)  
op m l  i c J

( A . 40)

= j j i ( V A )  - f t ( V A ) |  + elXv p (Ä)t//

= elX v ( A )  ф = v ( A ) (//' ( A . 4 1)

that i s  to s a y ,  i f  (A . 40) is  sa tisfie d , then also  in the new gauge ф' i s  an 
eigenstate of the v e lo c ity  o p e ra to r  with the sa m e  eigenvalue as  b e f o r e .

W e can e n vis a g e  the following p icture in an a b str a c t  v e c t o r  sp a ce :  
A  gauge tr a n sfo rm a tio n  i s  s im p ly  a rotation of the v e c t o r s  (ф1 = е1Хф). 

Th u s the o p e r a to r s  a r e  tr a n sfo rm e d  like

Q (A ')  = elXQ ( A )  e lX 

indeed, we have said in (A . 40) and (A . 4 1 )  that

v  ( A 1) ^ 1 = elXv  (A) e lX0 'op op

( A . 42)

( A . 43)

T h u s, fo r  the kinetic e n e rg y  o p e ra to r  w e have
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Thus

Top [ А ' ) ф '  = е \ р(А) е~1Хе Хф = е‘ ХТ(А)  ф = Т ( А ) 0 '  (А .  45)

and we again  have p h y s ic a l  in v a r ia n c e .
A s  f o r  the total potential e n e r g y  o p e ra to r,  Uop + q<pop(r) sin ce  2  does  

not a p p ea r  ex p lic ity ,  the gauge in v a r ia n c e  is  t r iv i a l l y  obvious. T h u s, fo r  
the total Ham iltonian

g ? ( l ' )  = e Xg f ( A ) e iX ( A . 46)

G auge in v a r ia n c e  a rg u m en ts  a r e  involved in the w a v e  packet tr ea tm e n ts  
of the d y n a m ic s  of B lo c h  e le c tr o n s  mentioned in the n otes. F o r  exam p le,  
s ta r t in g  fro m  the gauge

Ä  = Й X r

if  w e p e r f o r m  the tr an slatio n

r  -»  r ' = r  -  ( r)>

w h e re  i s  the expectation valu e  o f  the position in the packet, then this  
induces a gauge tr a n sfo rm a tio n .

I  -  = ~  H X ( r  - < 7 »  = A  + v | - | ? - H X  < r > |

su ch that, at e v e r y  instant, the v e c t o r  potential b e c o m e s van ish in g ly  s m a ll  
on getting c lo s e  to the c en tre  of the packet.  T h is  is  the p r o ce d u r e  mentioned  
in the notes.

III. Quantization of the motion of a fr e e  c h a rg ed  p a r t ic le  in the p r e s e n c e  
of a m agn etic  field.

F o r  H = (0,0 H) cho o se  gauge A  = ( - у  H, 0, 0).
L e t  us r e c a l l  the com m utation re lation s between c an o n ic ally  conjugate  

v a r i a b le s

(We put h ere  гх = x ,  
mom entum {5 a r e

[r . ,  p.] = i h 6 . j , etc .  ( A . 47)

r 2 = У< r 3 = z )- Then, the c o m m u tato rs  of the kinetic

[p , p ] = i  = i m f i i i
x у c

( A . 48)

[ P , P J = [ p , p ]  = 0X z у z

T h u s,  since
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we have

[p  , m  = оz
Th e kinetic momentum in the d irection of Й is  a constant of the motion. 
T h is  d e gr ee  of freed om  can be treated s e p a r a te ly  and it has its own 
sp e ctru m  of e ig en valu es p 2 /2 m  wh ere  pz is  not quantized by the m agnetic  
field (e. g . , in a c r y s t a l  pz can take the allowed v a lu e s  of h k z as  fo r  H = 0). 
The z dependence of the eigenfunctions is  s im p ly  given by plane w a v e s

^ iz p z/ft

W rite

« Г  =  +  З Г ,
1

2

C o n sid e r  . It has the form

! ( p 2 + q \ with [P, Q] = i h u c

( A . 49)

T h is  is  f o r m a lly  the p roblem  of the h arm on ic  o s c i l la to r  Hamiltonian, with  
e ig en valu es (Landau le v els)

E 1 (n) n + й ш с

T h u s, the sp e ctru m  of eigen valu es of (A. 49) is

Е(п,рг) = ( п + у й ис +^ р 2

W e started  out with three d e g r e e s  of freed om  and now w e have two quantum 
n u m b ers .  What happens? It happens that we have a d e g e n e ra c y  in (x, y).  
L e t  us look at the equations of motion in the (x, y) plane.

Thus

К = i [K‘ px ] = uc Py = m u c vy = т и сУ

Py = h Py1 = - “cP r - mwc vr - m “ t i

(A . 50)

x 1 .
т ы Ь

У =
1 .

-------- Рm « c u

(A . 51)
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Define the o p e ra to rs

= x + -

y o

(A. 52)

Then

*0 = 0  = [£ 1 '  xolj  % = 0 = l & l ’ yo ] ( A - 5 3 >

T h u s, x 0 and y0 a r e  constants of motion. T h e y  a r e  the o p e ra to rs  of the 
c o -o r d in a te s  of the cen tre  of the c yclotro n  o rbits .  However, we cannot 
p r e c i s e l y  locate the cen tre  of the orbit as in the c l a s s i c a l  c a s e .  C o n sid e r  
the following c om m u tators

and

[ * ,  y ]
i ft

(A . 54)

( A . 55)

and notice that

[ i ,y ]  = [v , v  1 = U u )  [ Y  У0 ] (A . 56)

Now r e m e m b e r  that in the g e n e r a l  theory [q, p] = ift m eans that the 
product of the u n certain tie s  is

Aq А р  ё ft

It i s  convenient to define a c h a r a c t e r i s t ic  length b by

2 h e
I q I H m I uc 2

Then [xg, y0 ]
2 2 i b  and [Vy, vx ] = i ( b u c) m ean that

Л  x 0 A y 0 ё j  b ,  A v y A v x § j  (buc)

We cannot derm in e x 0 and y 0 (or, equivalently, vx and vy) sim u ltan eou sly;  
the c o m m u tato rs  give  us a m e a s u r e  of the uncertainty involved. Now, 
with our choice of gauge, the Hamiltonian does not contain x o r  z e xplic itly .  
T h e r e fo r e

[px , ^ ]  = [ p * . # ]  = 0 (A . 57)
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T h u s,  with this g a u g e , the dependence of the w a v e  function on x g iv e s  also  
a plane w ave te r m

i x p / t l
e x

F o r  an orbit " c e n te r e d  about" the point (xq, y0 ) w e sh all t r y  som e function 
o f (y - y0). Now i f  w e c o n sid er  an eigenvalue of v y, this d e te rm in e s the 
eigenvalue of x and then y0 i s  com p letely  undetermined. Indeed, a l l  w a ve  
functions of the fo rm

f i ( x p x + zp x)/ti] Yn(y -y 0) 
e

a r e  d egen erate, i . e . ,  they c o r resp o n d  to the sa m e  e n e rg y  (A. 49) fo r  all  
v a lu e s  of yQ . T o  sum up: T h e  p re s e n ce  of two non-com m uting constants  
o f motion (x Q and y0) b rin g s  about an infinite d e g e n e r a c y  (unless the motion 
in the (x, y) plane w e r e  lim ited by finite extension, in which c a s e  the d e 
g e n e r a c y  would be finite); the e n erg y  eigen valu es depend only on two 
quantum n u m b ers.

C o n s id e r  now the o p e ra to r

p2 = x2 +  y 2 (A. 58)
o o o

w hose e ig en valu es give  the sq u are  of the distance fro m  the o rigin  of c o 
o rd in ate s to the c en tre  of the allowed o rb its .  C le a r l y ,

[ < ? . # ; ]  = 0 ( A . 59)
0 ^  -*•

2
T h u s, p i s  a constant of motion. Now  

о

p = -  ̂ -T(n/ 2 x f  +  (>У2у f T ;  [ J 2 x  ,s / 2 v  ] = 2 i b2 . (A . 60)
0 ^ ^ 0 0 0 0

T h e r e f o r e ,  the e ig en valu es of pQ are

pg(n') = (2n* + 1) b2 (A . 61)

How about the allowed " s i z e s "  of the o r b its ?  C o n sid e r  the o p e ra to r

p* = ( x - x /  + ( y - y 0)2 = ^ V ,  (A. 62)
q h

Its e ig en valu es labelled by the sa m e  quantum num ber as  in (A. 49) a r e :

P2(n) =
2 m c 2

2 t j2q h
f t l q l H

me
( A . 63)

T h u s,  w e obtain this p ictu re:  T h e o rb its can be centred on points contained  
in con cen tric  c i r c l e s  of rad iu s b s/2n' + 1  and the s iz e  of the allowed orbits
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( i . e .  of the rad iu s thereof) is  b\/2n + l .  Now in Ic sp a ce ,  r e c a ll in g  the 
definition of b and u sin g the s a m e  com p lex notation as  be fo re ,  in the plane  
p erp e n d ic u la r  to H:

к = - r  ( A . 64)
b_

i . e . ,  a rotation by - n j 2 and a s c a lin g  by a f a c t o r  b ’ 2. T h e r e f o r e ,  the 
o r ig in a l  quantization sch em e  is  modified in the following w a y :  The kz 
component i s  unaffected, but the continuous density of states in (kx , k y) 
is  now changed d r a s t i c a l ly ,  the allowed ( ,  ky) o rb its  can have rad ii  equal 
to b 1 %/2n + 1 and a r e a s

7r|q|H

= <2 n + 1 ) “ h T " (A . 65)

You w il l  find these  notions u sefu l a s  a background to the th e o r y  of the 
de H a a s - v a n  Alphen effect, which you w i l l  see in the c o u r s e  on F e r m i  
s u r f a c e s .

T h e  c a s e  of c r o s s e d  E  and H is  e a s i l y  tr eated  in the sa m e  m an n er.
F o r  $  in the x d irectio n  and Й in z direction, let u s choose

1  = (0, xH, 0) (A . 66)

Then

Define

J * ( l )  =
2 m

p2 + (p - — x H)2 + p 2 )- - q E x  
x у c — 1

Q = ‘  p y
m c E

H

( A . 67)

( A . 68)

Then

# 4 ^ )  = (p2 + Q 2) -  % P . .  -  Ö  mI  +
H ry 2 m \  H y  +  2m ( A . 69)

with

p- J L
_ s f m ’  \ fm

i f t w „ (A . 70)

A ls o ,

[ру.£ Г ( А ) ]  = 0

T h u s w e can w r it e  down at once the sp e ctru m  of e ig e n va lu e s:

( A . 7 1 )

E  (n, p , p ) = f n + ^ f i u  - T T  P - ^  m
У z V 2J  с H *У 2 \ Н У  2m (A . 72)
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w h e re  py and pz a r e  now the eigen valu es of the correspo n d in g  o p e ra to rs  in 
(A. 69). Notice that the quantization sch em e is  now different from  that 
obtained fo r  E  = 0.

Th e meaning of the f i r s t  and la st  te rm  is  obvious. A s  fo r  the others,  
let us look again at the coordinates of the (instantaneous) cen tre  of the orbit.  
F o r  instance

(A. 73)

but now

x = x + -% - (p - — H x ) = - 7 7  p (A. 74)
0 qH v*y c qH *y '

Hence

x 0 = 0 (A. 75)

Th e x coordinate of the centre of the orbit is  constant. F o r  the other one

0̂ = £  [p E x > ^  Px
c E  , , c E
1 Г [ х - p x ] = ~ “ h

(A. 76)

T h e r e fo r e  the у  coordinate is  shifting with the p r e c i s e  (constant) v elo city  
- c E / H ,  i . e .  Py takes ju st one eigenvalue

m c E
H

( A . 77)

and th e refo re  we evaluate the second and third t e r m s  in (A. 72):

c E  
H Py

c E \  1 .  
H J  2

c E N  
H )

( A . 78)

which i s  p r e c i s e l y  the expected kinetic e n erg y  of the motion along the у  ax is .  
N e e d le ss  to sa y ,  we have r e c o v e r e d  the c l a s s i c a l  t r a j e c t o r ie s .
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Abstract

1. Properties o f  Fourier transforms. 2. Fourier transforms in structural crystallography. 3. Fourier 
transforms in lattice dynamics. 4. Fourier transforms and inelastic neutron scattering.

1.  P R O P E R T I E S  O F  F O U R I E R  T R A N S F O R M S

Since the r e a d e r  might, a fte r  the precedin g p a p e r s ,  be in a mood to 
ap p reciate  something sim ple, which does not introduce new ideas or  
m any new con cepts,  but which w ill ,  I hope, throw light fr o m  a different  
angle on som e of the topics a lr e a d y  encountered, I have decided to d is c u s s  
F o u r i e r  tr a n s fo r m s  and som e of their p ro p e rt ie s .  F o u r i e r  tr a n s fo r m s  
ap p ear in the d iscu ssio n  of any p ro ble m  involving the sc atte rin g  of radiation  
by condensed m a tte r ,  and the determination of the s tru c tu re  in sp ace  and 
tim e of condensed m a tter  fro m  the momentum and e n erg y  changes of the 
radiation which it s c a t t e r s .

When the quantum e n erg y  of the incident radiation is  la r g e  com pared  
with the e n e rg y  of excited  states  of in terest in the solid (for m e, condensed  
m a tte r  is  solid m atter)  we have e ss e n tia lly  e la s tic  sc atte rin g ,  a s  in the 
sc a tte rin g  of X - r a y s  by a c r y s t a l .  In units of the amplitude sc a tte re d  by  
a single c l a s s i c a l  e le ctro n ,  the amplitude and phase of the radiation s c a t 
te r e d  by an electro n  distribution p (r ) is

_^ ^ — > — >

F  (K ) = /p (r ) e x p iK ‘ r d3 r  ( 1 . 1 )

wh ere

К = - k  + k 0 (with к = k 0) ( 1 . 2 )

is  the change in w ave v e c to r  of the sc a tte re d  radiation. A t  this stage I 
a m  following the notation used in X - r a y  c r y s t a l lo g r a p h y ,  wh ere  F ( K )  is  
c a lle d  the stru c tu re  factor.  Solid state p h y s ic ists  often m is u s e  the te rm ,  
and apply it to |F(S)|2 which is of c o u r s e  the quantity that can be m e a s u r e d  
e x p e rim e n ta lly ,  while F  (Й) cannot be d ire ctly  m e asu re d .  Since E q . ( l .  1) 
e x p r e s s e s  the fact that F  (Й) is the F o u r i e r  tr a n s f o r m  of p ( ? ) ,  p ( ? )  must  
be the in v e r s e  F o u r i e r  tr a n s fo r m  of F  (K), thus

P ^ ^ ^ e ' ^ W  (1' 3)
30 7
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(See for exam p le, Stuart [1 ]) .  d3 K is  an element of volume in the F o u r i e r  
sp a ce  o r  r e c i p r o c a l  sp ace  in which I? is a v e c to r .  (The fa c to r  (27г)'3 
introduces a trou b leso m e a s y m m e t r y  between e x p r e s sio n s  (1 .  1) and 
( 1 .  3) which would not be there i f  we u sed к = 1 /X r ath e r  than k =  2 ж/Х  for  
the w ave num ber, but this would introduce a fa c to r  2ж in the exponential,  
in co n fo rm ity  with the u sag e  of all  c r y s t a l l o g r a p h e r s  but c o n t r a r y  to the 
u s a g e  of a l l  p h y s ic i s t s .  T h is  is a sim ple  test  to distinguish a c r y s t a l l o -  
g r a p h e r  fr o m  a p h y sicist) .

B e fo r e  going on to som e of the p h y s ic a l  applications of F o u r i e r  
t r a n s f o r m s  I want to rem in d  you of so m e  of their p r o p e r t ie s .

(a) It is advantageous to r e f e r  I? to a set of a x e s  r e c i p r o c a l  to those to 
which r  is  r e f e r r e d .  Note that we a r e  not yet concerned with p eriodic  
distributions. Thus with

г = xi + x 2 a 2 + Xgä’g

and ( 1 . 4 )

K =  y j b !  + y 2 b2 + ygbg

w h e re

27га2 X afg
e tc . ,  and v  = a i  • a.% X аз ( 1 . 5 )

we have

-> -» 3
Г • K =  2ж П Xi y; ( 1 .  6)

i = l

d3 r  = v  dxg dx2 d x 3

and ( 1 . 7 )

d3 K 1 ,  , ,
(2^j3 = -  dy i dy2 dy3

T h is  m e an s,  incidentally, that if  we know the F o u r i e r  tr a n s f o r m  of a 
distribution, we also  have the F o u r i e r  tr a n s f o r m  of any other distribution  
which can be d e rive d  b y  a homogeneous distortion of the f i r s t .  The t r a n s 
fo r m  re m a in s  the s a m e  when e x p r e s s e d  in fractio n al coordinates of r e c i 
p r o c a l  a x e s .

(b) F r o m  E q .  (1) the tr a n s f o r m  of a  s p h e r i c a l l y - s y m m e t r i c  distribution is

F(K )  = J  4ж г2 p (г) dr ( i . 8 )

0

T h is  w il l  be re co g n ise d  a s  the fo r m  fa c to r  o r  atom ic sc atte rin g  factor  
fo r  X - r a y s .  A s  K~> 0 it r e d u ce s  to Z ,  the atom ic number of the atom.

(c) Som e e x a m p le s :
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If

P  (r)

3/2
e 'P i ( 1 . 9 )

then

I L
F(K )  = e"4p ( 1. 10)

The F o u r i e r  tr a n s f o r m  of a G a u s sia n  is also  a G a u s sia n  and there is a 
r e c i p r o c a l  relation betw een th e ir  widths.

A s p - »  oo, ( 1 .  9) b e c o m e s a 6-function sa tisfyin g  /6  (r)d3 r  = 1 ,  and 
F(K )  = 1 .  T h is  is  the w e ll  known re su lt  for the F o u r i e r  tr a n s f o r m  of a 
6 -function.

^  p ( r )  = -i, w e h a v e  F(K )  = ^  ( 1 . 1 1 )

T h is  re su lt  is  used frequently in sc atte rin g  by a Coulomb potential.
If p ( ? )  is  unity inside a p ara lle le p ip e d  of dim ensions X i ? i ,  Х г ? 2 , Х з а з  

and zero  outside, the t r a n s f o r m  is

f <£) = v Ü
i = l я-Xiyi

( 1. 12 )

w h e re  V  is  the volum e of the p ara lle le p ip e d . The o n e-d im e n sio n al fo rm  
of this e x p r e s s io n  is,  of c o u r s e ,  f a m i l i a r  fr o m  the th e ory  of F r au n h o fe r  
d iffraction.

(d) T h e r e  is  not tim e to d is c u s s  the s y m m e t r y  of F o u r i e r  t r a n s f o r m s  in 
any detail, but it can be shown that any orthogonal tr a n sfo rm a tio n  of the 
distribution without change of o rigin  r e s u lts  in the sa m e  operation on the 
tr a n s f o r m .  It is  e a s y  to show that if

p '( r  ) = p ( r -  r^ )

F ' ( K )  = e iK ^ F ( K )  ( 1 . 1 3 )
(e) When two distributions a r e  added, th e ir  tr a n s f o r m s  add. The  
operation co r resp o n d in g  to multiplication in one sp a ce  is  convolution in 
the other s p a ce .  _ T h i s  Requires som e d iscu ssion . Define the in ve rse  
tr a n s f o r m  of F j ( K )  F 2 (K) by

P i 2 ( r ) = / * ’1 ( K ) F 2 (K) (1 .14 )
К

We w ish  to find p12 in t e r m s  of and p2 .

P l 2 ^ ) =J F i ( K ) j y P 2 ( r ') eiK -r ’ d3 r ' | e x p ‘ 1̂ ’ r - ^ y g

= / p 2 ( ? ■ ) { / F l ( g ) e « o | K } d 3 r , 

г' к

= / P2 (r>,)Pi(r?-  r ' )d 3r' = pa(r )* p2(r) ( 1 .  1 5 )
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This is the convolution theorem. In particular we can use it to show

This is an important result; we have already noted that in X-ray scat
tering it is |F(K)|2 which is accessible to measurement. What we can 
get from it by Fourier transformation is the auto-correlation function 
of the distribution.

(f) It is useful to know the Fourier transform of a lattice, taking the 
latter to be a set of 6-functions of unit weight at the points

with -|Na < ii  <iNi etc. defining the extent of the lattice. Then

This function peaks at integral values of y; , that is at the points of the 
reciprocal lattice. In the limit where N ,̂ N2, N3-» oo we get the following 
result. Integrate the above function over reciprocal space, near a 
reciprocal lattice point, for which incidentally we use just as we 
used rf for a point of the lattice in (direct) space:

that the transform of |f (I?)|2 is

(1 .  16)
Г'

rc = i 1a 1 + i 2a2 + i 3 a3 ( 1 . 1 7 )

( 1 . 1 8 )

and

( 1 . 1 9 )

Using fractional co-ordinates as before, this reduces to

3 sin NjTryj
( 1. 20)

I Fl (K) d3K = (2tt)3 r%  si
v JJJ

Sin Ni 7ГУ1 sin N2 7ГУ2 sin N3 ТГУз 
sin 7ГУ! Sin 77y2 sin ТГУз dyi dy2 dy3

К near Kh

= ( 2 tt) 3
( 1. 21 )

V

where v now is the volume of the unit cell of the (direct) lattice. Thus 
in the limit of large N = the transform becomes a 6-function of
weight (27t) 3 / v ,  repeated at every point of the reciprocal lattice,



FOURIER TRANSFORMS 311

That is

Fl (K) = ^ i ^ 6 (K -K h)
h

(1.23)

when

PL (r ) 6 (r - ?{ )
i

2. FOURIER TRANSFORMS IN STRUCTURAL CRYSTALLOGRAPHY

The principles of crystal structure analysis can be given concise 
expression in terms of Fourier transforms. Structure analysis nowadays 
is largely left to the chemists and molecular biologists, but many of the 
concepts are useful in considering analogous situations involving, for 
example, inelastic scattering of neutrons, which physicists still regard 
as their domain — although the chemists are beginning to move in.

Let us forget about thermal motion meantime and simply take the 
density to be the same in every unit cell, p (?). As before, the transform 
of p ( r ) is F(i?). The electron distribution on the crystal is then

pc (r) = ^ p ( ? - r 5) (2. 1 )
a

If we write this as

Pc ( ? > = £ / 6 ( ? ' - ? * ) p ( r - r ' ) d 3r ' (2.2)
i r '

we see that it is the result of convoluting the distribution p (r ) with the 
distribution^ 6 (? ' - ? { ). Consequently by the convolution theorem, the

i
transform of the crystal is the transform of p (?) multiplied by the transform 
of the lattice

Fc (K) = F(K)Fl (K)

(27t )3 \  —> —*

= i- ? !- 2 JF(K )6(K ' Kh) (2- 3) 
h

The transform of the crystal is therefore the structure factor of one 
unit cell, sampled at reciprocal lattice points. If every unit cell of the 
crystal is identical, there is nothing in reciprocal space except at the 
reciprocal lattice points. We can now get an alternative expression for 
P c(?) using

Pc(r ) J  Fc (i?)e"iK' r d3K
(2 tt)3 (2.4)
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Substituting from (2.3) in (2.4) we get

P c ( ? )  = ^ F ( K h) e -4 -^  (2.5)
h

This is a well known result, the electron density in a crystal is given by a 
three-dimensional Fourier series. Each Fourier coefficient is just the 
transform of the density in one unit cell, sampled at a reciprocal lattice 
point which is the wave vector of the Fourier term. In practice this 
series cannot immediately be evaluated since experimental measure
ment of the intensities of the Bragg reflections gives |F(Kh)|2 -  the 
condition

-k + k g -K h  (2. 6)

incidentally, being simply the expression of Bragg's law, and corresponding 
to the fact that intensity can be found only when К = K .̂

However it is always possible to evaluate the function

Pc(?) = vX lF(̂ h)!2 e ' iKh I (2' 7)
h

which reduces to a cosine series since F(-Kh) = F>:< (K^), p (r ) being 
entirely real (unless the wavelength of incident X-rays is near an ab
sorption edge for some atoms in the crystal). Using the methods out
lined earlier it is easy to show that

P c (r )=J  Pc ( r ' ) p c (r + r ') d 3r' (2.8)
r’

the integral being over one unit cell of the crystal. This function is 
known as the Patterson function, after its discoverer (1935). It is widely 
used in crystal structure analysis.

The scattering of X-rays is principally by the core electrons. It is 
very difficult to determine the distribution of valence electrons or the 
state of ionisation of an atom by X-ray diffraction. Consequently, for 
our present purpose it is an excellent approximation to take

П

P (?) PK (r -  r̂  ) (2. 9)
к — 1

where pK (r) is the spherically-symmetric distribution in the к-th atom, 
centred at ?K. The structure factor is then given by
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where fK (К) is the form factor of the к-th atom. Consequently we have

|F(Kh ) |2 = £  fK(K) fK, (К) e‘ К • £  - V> (2. 1 1 )
KK’

Comparing (2. 11) with (2. 10), we readily reach the conclusion that an 
alternative expression for Pc (r) is

and

P (? ) = ^Tpkk.(? - (?k iv ))

( 2 . 1 2 )

where PKK, (?) is got by convoluting the distributions pK (?) and pK, (?).
In words, the Patterson function or auto-correlation function has a peak 
for every atom pair, in a position which is the vector distance between 
the atom pair. We might call it a vector map. It can be shown that, 
just as

f  PK (r)d3r = ZR , the atomic number (2. 13)

so f P KK. (r)d3r = ZKZK. (2.14)

The weight of a peak in the vector map is thus proportional to the product 
of the corresponding two atomic numbers. If a crystal contains both light 
and heavy atoms, peaks representing vectors between heavy atoms will 
dominate in the vector map. The total number of peaks in one unit cell 
of the vector map is in general n2, but of these n occur at the origin and 
represent the interactions of atoms with themselves.

We have already remarked that pc (? ) cannot be evaluated directly from 
the experimental data since the phase of F(I?h) is unknown, but we can 
always evaluate Pc (?) since it involves |F( ? h)|2 . Can we reconstruct 
pc (r ) from a knowledge of Pc (?), in other words, can a crystal structure 
be directly determined from X-ray data alone? The answer in principle 
is yes, when certain conditions are satisfied which unfortunately are 
seldom satisfied in practice. Figure la is supposed to represent a centro- 
symmetric (two-dimensional) structure in which atoms are represented 
by points. Figure lb is the corresponding vector set of points, those at 
± 2r2 etc. have unit weight and those at ± (rj - ? 2 ) etc. have double weight. 
Now set down Fig. lb twice with origins separated by the vector to any 
peak of unit weight, say 2r̂  . The result is shown in Fig. lc, coincidences 
in the superposition map out the original set of points. This is generally 
true, a set of points can be recovered from the corresponding vector set 
of points. While we have illustrated this for a non-periodic structure 
the result remains true for a periodic structure. The difficulty in practice 
is that peaks in a vector map overlap one another and superpose by acci
dent. I present this result to you as an interesting curiosity, possibly 
there are applications in other branches of physics and I shall mention 
one in lattice dynamics if time permits later.
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FIG. l a .  A centrosym m etric set o f  eight points, o f  which one is at 7̂

F IG .lb . The corresponding vector set

F I G .lc ,  The vector set put down with its origin a t*? , giv ing the dots on the diagram , and at to give 
the c irc le s , C oin cidences map out the orig inal fundamental set. with the correct origin
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Similar principles apply in a discussion of X-ray scattering by a 
liquid, which we take to be monatomic. The spherically-symmetric 
function

r < r )= /| F < K )P Ü 2 J ä !2 g d £

depends on the number of interatomic distances lying between r and 
r + dr. Each such vector is represented not by a point but by a peak 
given by

р к к  ( r )
sin Kr 

Kr
Aw K2dK 

(2л-)3 (2. 16)

Since the peak at the origin is of no interest we subtract it out to get

P1(r)=J j  |F(K)|2 -N f2 ( K ) } ^ y ^  (2.17)

Apart from the difference of notation, this is Eq. (1. 11) given by 
Professor March in the present book [2].

I pointed out earlier that in discussing X-ray scattering by a crystal 
we had taken the density to be the same in each unit cell. One type of 
density variation involves electronic excitations and leads to inelastic 
incoherent scattering designated Compton scattering. Scattering by 
phonons also takes place as shown by Professor Leibfried in the present 
book [3]. The zero-phonon or elastic scattering is unchanged by 
temperature except that each atomic scattering factor fK(K) is replaced by

fK(K) e~wK (K) (2.18)

The Debye-Waller factor exp (-WK (K)) involves WK (K) and in the harmonic 
approximations this is given by

WK (K) = 1
2Nm„ £ | к .Г Й ) 1! MaD + ij-hKcpi)

u'2 (qj) (2. 19)
qj

This is not essentially different from Leibfried's equation (6.32). An 
alternative form of this expression is

WK (K) = |(K.u{/c)2 (2.20)

where ицк is the displacement of the atom of type к from its equilibrium 
position F̂  + r>K, and the average is taken over all values off!. We are 
usually content to take WK (2) to be isotropic, but this is not necessarily 
so even for an atom in a cubic crystal if it occupies some general posi
tion in the unit cell. The form of Eqs (2.18) and (2. 20) shows that the 
effect of thermal vibration is to give an average density for the atom 
of type к which is pK (r) convoluted with the transform of WK (K). In the 
harmonic approximation this is a Gaussian of different widths in three 
mutually perpendicular directions. These directions are determined 
by the interatomic forces of the structure concerned, if we denote distances
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measured in the respective directions by zj z2 z3 the transform of 
WK (I?), normalised so as to give the probability that the atom centre is 
in the volume element dzi dz0 dzQ is

( 2. 21)

2where u2 is clearly the mean square displacement in the Zj-direction. 
Correspondingly,

W(K) = 2 (ujKj +u|K| + U3K3 ) (2 . 2 2 )

where K1 K2K3 are the components of К in the same system of axes. Six 
parameters are therefore involved, three being the axes of the "ellipsoid 
of thermal vibration" and three specifying the orientation of this ellipsoid, 
for each type of atom. This is a refinement which solid state physicists 
are usually prepared to ignore, in fact they are usually content to work 
out W(?) using the Debye approximation for the frequency distribution.
For molecular crystals the anisotropy of Debye-Waller factors can give 
information about their dynamics since in many instances the contribution 
of "internal" modes, which deform valence bonds, is small, and Debye- 
Waller factors are determined by "lattice" modes in which the molecule 
behaves as a rigid unit which can translate and librate. Obviously there 
are then relations between the Debye-Waller factors of the individual atoms 
of the molecule (see, for example, Pawley [4]), and these can be determined 
experimentally in the course of a crystal structure analysis.

Even when the harmonic approximation is not valid, it remains true 
that the transform of the Debye-Waller factor determines the average 
electron distribution, or strictly speaking the average nuclear distribution 
of an atom, which the electrons are usually presumed to follow. (See, 
for example, Dawson [5]).

3. FOURIER TRANSFORMS IN LATTICE DYNAMICS

From this point it is convenient to adopt a notation which prevents 
proliferation of symbols. Thus ф (К) is used for the transform of ф (?) etc., 
except that from force of habit we shall continue to use F (?) and p (?) as 
before for charge distributions.

Let us begin by considering the energy of a static assembly of points 
which interact with a potential ф (r). We then have for the total energy

Introducing the structure factor appropriate to a distribution of points,

(3.1)

(3. 2)

j = l

(3.3)
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we see that

4> = ljT  0(K)(|F(K)|2 -n) d3K
(2тг)3 (3.4)

The presence of a structure factor in this expression hints at the connection 
between energy and scattering properties. The term -n subtracts out the 
interaction of each point with itself which would otherwise be included.
This type of result is particularly useful when we have to deal with Coulomb 
interaction. The potential at a distance r from a distribution p (?) is

By suitable manipulation of the convolution theorem, Eq. 1.15, we find 
that ф is also given by

Applying this result to a crystal, we readily find that the energy per 
unit cell (including the self-energy) is

Suppose for example we wish to evaluate the Madelung energy of a crystal, 
taking the ions to be point charges ZK at ?K. The electrostatic energy 
between point charges is the same as that between spherically-symmetric 
charge distributions which do not overlap, so we replace each point charge 
by

(3.5)

This convolutes the functions p (?) and r"1, so that

(3.6)
which is a frequently used result.

The energy of an extended distribution of charge p (?) is

(3.7)

(3.8)

(3.9)

Then, using Eq. (1. 10),

(3. 10)
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The expression (3. 9) can then be evaluated without difficulty. It includes 
the self-energy which can be shown to be (р/2тг)Ь Z2 per atom. The basis 
of the related Ewald method of evaluating lattice sums is that one secures 
rapid convergence of the series by choosing a relatively small value of 
p and making a correction for the effect of charge overlap, which turns 
out to involve a rapidly convergent series in the direct lattice.

We turn now to a consideration of how the energy varies with atomic 
displacements. To simplify the notation we take the crystal to be composed 
of atoms all of one kind, although the method can readily be extended to 
the general case. Using a, ß, у  for three mutually perpendicular directions 
and writing the displacement of the atom in the i'th  unit cell as

u* = u (q) e
.—>iq ■ti w(q)t (3. 11)

so that the usual normalising factors are all incorporated in the amplitude 
i?(q), the equations of motion lead to

mu2(q) ua(cf; Maß (q)u0 (q ) 
ß

(3. 12)

Assuming the existence of an interatomic potential ф (r) one readily de
duces (see for example these proceedings Leibfried [3]) that

M«b (q) = V  (  э2 Ф (r )L \ Э x a3 xg I ( e ^ - l )
i=it

(3. 13)

The term Л = 0 makes no contribution, but the atom at the origin is 
correctly included, the - 1  in the bracket originating from the fact that 
the force constant "between an atom and itself" is minus the sum of the 
force constants between the atom and all other atoms. Putting

Naß (q ) = У  / Э2 (Hr) 'L V З х а Э х 0
elq' !i (3. 14)

we see that

Maß (q) = Nag (q )-N a„ (0) (3. 15)

Substituting for ф (r) in terms of ф (К) in Eq. (3. 14) we get 

Naß (q) = Y f  КаКв Ф (К) е‘ ж ' r2 eiq 'гя
J0

_ (2 л-)3 Г гг , ,7t 7?  ̂ d3K------— J  KaKß Ф (К) у  6 (К - q - Kh) (2я.)5
h

X
V

h
+ q)a (Kh+q)e ^(Kh+q) (3.16)
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We finally have therefore that

This result was apparently first derived by Pines [6]. A variant of it 
applicable only to Coulomb interaction has however been known for a 
long time. In practice Eq. (3. 17) is sometimes the most convenient way 
of evaluating the Maß (cf), which when used in Eq. (3. 12) lead to phonon 
frequencies and eigenvectors. A good example is the problem of calculating 
phonon frequencies in an alkali metal, using the pseudo-potential idea as 
applied by Harrison and others (see, for example, Ref. [7]).

We can use these considerations to develop a very oversimplified 
theory of phonons in an alkali metal. Consider two identical spherically 
symmetric positive charge distributions pc (?) and pc (г - Й), where c 
now denotes 'core '. The form factor of each will be denoted fc(K), and 
fc(0) = Ze, the total charge in each. The interaction energy is readily 
found to be

and the transform of this is obviously

If the two positive charge distributions are immersed in a gas of free 
electrons, the transform of the screened potential is found to be

Here e (K) is just the special case for u = 0 of the dielectric function 
e (K,w) discussed by Professor Lundqvist [8]. An expression for e (K) 
was first obtained by Bardeen in the Hartree approximation 30 years ago. 
If we now substitute expression (3. 20) for ф (К) in Eq. (3. 17) we have 
the matrix elements which, via Eq. (3. 12), will give phonon frequencies 
and eigenvectors. The question of how fc (K) is to be determined is one 
we shaH not pursue, we note however that pc (r) is just the charge dis
tribution which will produce the appropriate localised pseudopotential, 
and that fc (K)/e (K) is the transform of the charge distribution in what 
Professor Ziman has called a 'neutral pseudoatom'[9].

To show how this works let us derive the Bohm-Staver formula 
for the velocity of sound in a metal. From Eq. (3. 12) we have for a wave 
traveHing in the (100) direction with longitudinal polarisation that

If ф (K) falls off sufficiently fast that only the term h = 0 contributes to 
the series 3. 17 we find from (3. 17) that

(3. 18)

mu2(q) = M „(q ) (3.21)

V
(3.22)
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Now following Ziman [10], we find that

e (q) =
67rZe2
v q2 E f for q-* 0 (3. 23)

where fc (0) - Ze is the total charge in a core, or the conduction electron 
charge per atom, and Ef is the Fermi energy. Consequently

2 9= — q^vZEf for q -» 0

From equations (3. 21) and (3. 22) we then have

wS = - 2ZEf\* 
3m )

(3. 24)

(3. 25)

for the velocity of sound. Note that m is an atomic mass, not the mass 
of the electron!

4. FOURIER TRANSFORMS AND INELASTIC NEUTRON SCATTERING

The discussion in this section follows that of Lomer and Low [11], 
but makes considerable use of analogy with earlier results. Taking a 
nucleus of scattering length b = 1 as the unit, the density appropriate to 
neutron scattering is evidently

P ( ? )  = ^  bj 6 ( ? -  rv ) (4. 1)

j
(only coherent scattering will be considered), 
wave function as

ф0 = ei(k̂

Taking the incident neutron

(4.2)

it is very plausible that (in the units we are using) the scattered wave 
function is

Ф% (t) = Г р  (r,t) e lK' rd3r (4.3)

A detailed proof is in [11]. We next evaluate the Fourier transform of 
this over some long period t ,

T

f(co) = ~ J"<PS (t) e 1ш1 dt (4. 4)
0

where ft (u0 - u) will be the scattered neutron energy. The scattered 
intensity in a range Дш is evidently
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where the sum is over the discrete energy values allowed by the finite 
time t of analysis. The number of terms is тДш/27г, so that

^ M l 2 l i j j p ^ t j e ^ - ' ^ r  dtp (4.5)
О г

Thus taking account of the way in which neutron flux is defined, the flux 
in an energy range ft Ди and solid angle ДО is

|f (Ш)|2Д О ft k/m n

so that

(4- 6)
О г

- Г ,  2^ г 1р (К,»)|! , say. (4.7)

the quantity (1/2тгт) |F (K, u) | is always written as S(Ku) by practitioners 
of the art of neutron scattering. Now just as (Eq.l. 16)

d2cr
dOdw

■ -» ,2 Г -> -> -» 3|F (К)I <+ / p (r ') p (r + r ') d r' (4.8)

so 2ttS (K, w) = -i|F(K,u)| «■* J~' J '  р ( г 'и )р ( г  + г ' , 1  + и )й 3г 'Ь и  (4.9)
t'=o t

where <+ as beforg means "is thj| transform of". The time of observation т 
which relates |f (K, u)|2 and |s (K, u)| appears unexpectedly. However 
just as I F (K) |2 of relation (4. 8) is always proportional to V, the volume 
of the scatterer (for actual physical systems), so | F (Й, w)|2 is proportional 
to both V andr. We do not object to d2a/dU du being proportional to V, 
but we normalise it to be independent of т as т -> » .  Thus in the defini
tion of F(K, u) (Eqs (4. 6) and (4. 7)) we let the range of t be ± со.

Writing^ for an average over t', the important relation (4. 9) 
written as an equation becomes

S (К, u) = -^  /р (r ', t')p  (r + r ', t + t') d3r ' У

X ei(K' r‘ wt)d3r dt (4. 10)

In words, S (K, u) and therefore the scattering cross section, is the 
Fourier transform of a space-time correlation function.

Let us confirm a result we assumed earlier to be intuitively obvious, 
in discussing the Debye-Waller factor, and find on what the elastic 
scattering depends. If we simply put и = 0 in Eq. (4. 6) we run into
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trouble with factors ofT, because the elastic scattering is not spread 
over any finite number of terms tAu/2v, but depends only on |(f(0)|2 . 
We find that

f ( 0)|2 = If < p ( r t )  > e ^ - ^ r p 4. 11)

where<  ̂ У denotes an average over infinite t, in agreement with our 
earlier assumption. Thus elastic scattering depends on the persistence 
of at least some part of the scattering density in an unchanging pattern, 
as in a crystal.

In X-ray scattering, or the scattering of neutrons of comparatively 
high energy, kKko and

do _ Г d2 a
dfi ~ J dfidu dU S (K, u)du (4. 12)

From Eq. (4. 10) we find that

j S (K, u)dw= f < j p (r t') P (r + r ', t ')d 3r' )>eiK d3 r
d °  i. (4.13)

We can call this the transform of the average snapshot of the correlation 
function -  not the same thing as the snapshot of the average, which gives 
the elastic scattering! We need not dwell on the fact that the transform 
of S (K, u) is a space-time correlation function, as discovered by van Hove — 
this has emerged from our discussion at an early stage. A difficulty we 
have not faced up to as yet is that in writing Eq. 4. 1 we have an expres
sion involving operators rather than ordinary vectors, is not an ob
servable. Before we need tackle this, we give an alternative form of 
S (K, u) which is useful. Introducing a time-dependent structure factor, 
which will therefore also be an operator,

F(K, t) =
—> —>

(4. 14)

one finds after some manipulation that

S(K, u) = ^  K F ( -K , t ')F (K , t + t')>exp (-iut)dt
(4. 15)

The average У must now be interpreted as giving 

S (K, u) = ^  j ^ w n<n|F(-K, 0) F (K, t)|n> exp (-iwt)dt (4. 16)

with the sum taken over all states |n)> of the system in equilibrium at 
temperature T.wn is the population factor

,-ßEn

-BEn
where ß = (kB T )"1 (4. 17)
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If we write F (K, t) = exp (iHt/h)F(K, 0) exp(-iHt/fi) and follow through 
a derivation given by Professor Lundqvist [8] in his lectures (Eqs 9.2 
and 9. 3) we find an alternative expression

S(K,u) = ^ w n |< m I F (K, 0)|n>|26(u-(wm-w n)) (4.18)

where |n )> is an initial state with energy level and |m/>is a final 
state. This is the expression for S (2, u) which can be derived directly 
from second-order perturbation theory and is usually the starting point 
of a discussion of its properties. From the relative probabilities of 
transition probabilities with increase or decrease in energy of the system 
in response to an external perturbation, we have

(4. 19)
m<n m>n

where^ denotes the sum in (4. 18) evaluated over states such that wm<un, 
m<n

i.e . for neutron energy gain. Hence

S(K ,-u) = е'№ш S(K, u) (4.20)

Finally, let us recast Eq. (4. 15) in a form which applies to neutron 
scattering by a crystal. Eq. (4. 15) is

S (K, = bjbj.<e"lK’ rj(0)elK' rj ' (t) )■ exp (-iut) dt (4.21)
h'

In a crystal we can replace the index j by i  and к to identify the unit cell 
and type of atom and write

ri = u üK + r «K (4.22)

where r^K is independent of time. If we now make use of the result 
which applies in the harmonic approximation,

<expi? ' “ >= exp4<(K' u)2> (4.23)

Eq. (4. 21) reduces to

s(̂ u)=i J T b* e 'WKlv e' w*' e (2 w » i« « ')
KK’

-iu t , ,  i K - ( r n . „ r r .  )e dt e ' 1 к tic (4. 24)

where

2Wi i ' n *•(*) = K - u £k ( 0 ) K - u £. k. (t) (4.25)
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and the definition of the Debye-Waller factor exp (-WK ) is as given before. 
We omit this factor from Eq. (4. 26) since it can be considered to be in
corporated in the modified scattering length bK. On expanding 
exp(2"V̂ {,KK, ) as a power series, we get successive terms which are just 
the cross sections of the crystal for zero-phonon (elastic), one-phonon 
etc. processes. Thus the cross-section for one-phonon scattering is

This can be evaluated by introducing phonon co-ordinates along the 
lines indicated by Professor Leibfried [3].
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1. LINEAR RESPONSE TO A DYNAMICAL DISTURBANCE. THEORY

1.1. Response function and generalized susceptibility

The system to which we apply an external force at a given time is 
assumed to be initially in a state of thermodynamic equilibrium. The un
perturbed system is characterized by a density operator D which is non
negative definite with:

The mean value of any operator В related to the system is given by:

and therefore D determines the state of the system completely.

For a classical system, D would be a probability distribution in a 
phase space, rather than an operator, and each observable В would be a 
function defined in this space. In the classical limit, the formalism is 
not fundamentally different; consequently, we shall deal mainly with 
quantum systems, but the results will often be extended to classical 
systems by passing to the limit ft = 0.

When the system is at thermal equilibrium, the density operator must
be:

Tr D = 1 ( 1 . 1 )

<B> = T r (DB) ( 1 . 2 )

(1.3)
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where H is the effective Hamiltonian and Z the partition function. Actually, 
if, for example, the system consists of a set of identical particles and if 
the number of particles is not fixed we must put:

H = ^ f -p N  (1.4)

where g ?  is the true Hamiltonian, ц the chemical potential and N the 
number of particles.

Let us now apply a time-dependent external disturbance to the system. 
In this case, the Hamiltonian H is replaced by the time-dependent 
Hamiltonian H(t):

H{t} = H + v {t} (1.5)

where v {t} is supposed to be a small perturbation. Since we are only 
interested in linear responses, we may assume without loss of generality 
that v {t} has the simple form:

v {t} = - a (t) A (1.6)

where A is a constant operator, and a(t) a function of time representing a 
generalized external force and vanishing for remote times. Actually, it is 
convenient to assume that a(t) vanishes exponentially when t goes to 
infinity:

3 e with e > 0 -> lim e £t a (t) = 0 (1.7)
t “► ~ 00

As a consequence of the perturbation, the average of the operator В becomes 
time-dependent and its mean value, at time t, will be denoted by <(B(t)̂ >v.
The linear relation between this quantity and the small perturbing potential 
can be written in the form:

+ DO
<B(t)>v -<B> = J  X BA (t- t') a(t') dt' (1 . 8)

-  oo

where XBA (t) is assumed to be a bounded function of t:

IXBA (t) I < C (1.9)

This mathematical assumption expresses the fact that the system reacts 
in a rather smooth way to any percussion, i. e. any strong instantaneous 
perturbation.

Thus, X BA (t) defines a linear response. Owing to causality require
ments, we have, however,

X BA (t) = 0 t < 0 (1.10)

Therefore, the preceding equation must be written:

t
<B(t)>v - <B> = f  X^ (t - t ')  a(t') dt' ( 1 . 11 )
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This relation takes a very simple form if we use Fourier transforms. 
For this purpose, it is useful to associate a function XBA(z) of the complex 
variable z = z' +iz" with XBA (t); for z" > 0 this function is defined by the 
following (Lebesgue) integral:

00 00

*BA ( Z ) = /  ХВ А ^ е‘г' d t = /  ХВ А ^е1Йй (1Л2)
-  00 0

As XBA(t) is assumed to be bounded, the integral converges uniformly in 
any domain z" s e > 0 and therefore defines an analytic function XBA(z) of 
z in the upper part of the complex plane of z (i. e. z" > 0).

Actually, by putting z = u+ ie, we can write:

t iwtXBA(t)e 'e  dt (1.13)
-  00

which shows that for a given value of e, ХВд(и-Не) can be considered as the 
Fourier transform in ш of the function XBA(t) exp(-et). By passing to the 
limit e ->0, we can define a function (or, in special cases, a distribution) 
XBA(u):

У « )  =XgA(u + iO) = lim XBA(u + ie) 
£->0

(1.14)

which is the boundary value of the analytic function XBA(z) on the real axis. 
Conversely, we have:

ХВА̂ ) = 2^ / W “ !
-101t ,e dw (1.15)

With the same kind of notation, the Fourier transform a(u) of a(t) can 
be defined by:

a ( u ) 2jt
u jt  -e e ' a(t) dt = lim

+ oo

00

(1.16)

Thus, a(t) is equal to:
+ oo

a (t) = a (u) e 0t je dco (1.17)

In the same way, the function <̂ B (t))> -<(B^>can be expressed in terms of its 
spectral distribution:

+00

<B (t)^ -<B >= J  ß(u) e 'iwt + 0tdt (1.18)
“ OO
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where ß(u) is given by:
+ 00

ß(u) = h  I  <B (t)>v' <B> ®ilJt+ot<lt (1.19)
-  00

Then Eqs (1.8) and (1.9) can be written in the simple form:

ß(u) =XBA(u) a(u) ( 1. 20)

Thus, XBA(u) can be regarded as a generalized susceptibility.
At this point, we must remark that the appearance of broken symmetries 

may sometimes obscure our simple picture. Let us consider, for example, 
a ferromagnetic system at a temperature below the Curie point. In the 
absence of any magnetic field, the average magnetic moment is zero, but 
if we apply to the system a very small magnetic field Bq, a finite magnetic 
moment appears. Thus, the influence of this infinitesimal field changes, 
in a drastic way, the nature of the density operator. However, for a given 
value of b0, we can define a magnetic susceptibility X (u, b0) which describes 
the variations of the magnetic moment produced by adding (for instance in 
the same direction) a small field b(t) to bo . Thus, a magnetic susceptibility 
for a zero field can be defined as the limit of X (u, b0) when-!^,-. 0. The 
same kind of behaviour is to be expected when strong modifications of the 
state of a system can result from its interaction with infinitesimal symmetry
breaking external sources.

1.2. Reactive and absorptive part of a susceptibility. Definition

The response function XBA(t) can always be written in the form:

XBA(t) = Xj^(t) + iX--A(t) ( 1. 21 )

where by definition we have:

1 . 22 )

1.23)

In fact, x’ A(t) and X̂ jA(t) are also defined by:

(1.24)

(1.25)

For reasons which will be given later on, X'BA(t) and XgA(t) will be called 
the reactive and the absorptive part of the response function, respectively. 
(Note that XBA (t) is real and XBA(t) is purely imaginary.)
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In the same way, we define Х̂ д(и) and Х£д(и) by (see E q .(l. 13))

Г  -01'I ШЦА(и) = X'BA(t) e e 1 dt

4 a M 4 a (*)
-o|t| itjte dt

Thus, we have:

хы И +ХА1*-и>

x b» У “ ) - XArf'u)

These quantities satisfy symmetry conditions:

X* ((d) = X * ( - W )  = 
B A v '  A B v ' XW“>

X" (u) =
BA '  1 x " B ( - w)  = x> >

Thus, in the space of the operators A or В, X.' (u) and x"(u) may be 
sidered Hermitian.

Incidentally, we remark that Хдд (u) and Хдд(и) are both real, 
case, we have:

*AA(w) = f  C0S Wt XAA )̂ e 0t dt 
0

CO

xaa = J  Sin tot XAA(t) e’0t dt
0

and, conversely:

X AA W  = \ f  C 0 S  U t  X AA  dtJ 

0

ХАА<*> = sin ut Хдд(и) du

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

con- 

In this

(1.32)

(1.33)

(1.34)

о
(1.35)
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F I G .l .  Integration contour ce.

1.3. Kramers and Kronig dispersion relations

The causal nature of the response function implies relations between 
x'BA (u) and x"BA(u), These dispersion relations are derived by expressing 
the analytic function XBA(z) in terms of its boundary value ХВА(ш).

This result is usually obtained by writing XBA(z) as a Cauchy integral 
on the contour 4P of Fig. 1. This contour consists of a fraction of a line 
parallel to the real axis (at a distance e above it) and of a fraction of a 
circle centered at the origin (radius R).

XBA' z) 1
2 7ri

W x)
x-z dx (1.36)

Now the Lebesgue lemma [1] says that X(u + ie) which is the Fourier 
transform of the "good" function XBA(t) exp (-et) goes to zero when |u| -»0. 
On the other hand, since XBA(t) is bounded in the domain z" > e, Phragmen- 
Lindelöf theorem [2] can be applied and it shows that in the domain z">  e, 
the preceding conditions imply the uniform convergence of XBA(z) to zero 
when I z I -» oo .

Let us then keep e fixed and let R increase. We see that, as a con
sequence of the preceding remark, the integral on the circle must vanish 
in the limit R ->oo. Therefore, in this limit, Eq. (1.35) becomes:

V Z> 2 zri
' XBA(tj+ie) 

u + ie - z
dw (1.37)

The same result can be obtained by direct application of the following 
theorem given by Titchmarsh [3].

Theorem

Let Ф(г) be an analytic function regular for у > 0 and let

IФ (x +iy) I dx

exist and be bounded. Then, as у -* 0, Ф(х + 1у) converges in mean to
ward a function Ф(х) and also Ф(х+1у) -* Ф(х) for almost all x. For у > 0:

Ф(г) 1
27ri

Ф(и) 
u - z du

-  00

(1.38)
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In order to apply this theorem, we put:

z = x + i y + i e  у I 0

xBA(z) = XBA(x+iy+ie) = Ф(х + iy)

(1.39)

(1.40)

On the other hand, as X ^ z ' + iz ") is the Fourier transform in z 1 of 
XgA(t) exp (-z"t), Parseval's theorem leads to the following condition for 
z" ё e :

+  CO

X,BA'
I2 - 2 z " t  , ,(t) e dt

2 2 
1ГЧГ 7ГУ

z" " e (1.41)

Thus, Titchmarsh's theorem can be directly applied and we obtain 
Eq. (1.37) again.

In order to express XBA(z) in terms of XBA(u) which is a quantity of 
physical interest, we consider now the limit e -► 0. We note that if the 
function XBA(t) is square integrable, Titchmarsh's theorem can be applied 
for e = 0. Then, XBA(u) is also a function of square integrable modulus and 
we have:

+°° +oo
1 Г х ва( ц  +  1° )  d u  =  _ J _  r W M) 

2Tri J u+ iO -z  ~ 2iri J u -z (1.42)

Incidentally, we verify that the integral on the right hand side of this 
equation is convergent. However, if the square of XBA(t) is not integrable, 
the preceding equation can be given a meaning if we consider XgA(u) to be a 
distribution.

Finally, dispersion relations are obtained when z becomes real 
(z" -* + 0). We get:

V (U) =XBA(U+i0)
1

2 7ri
xBAK)
и' -u-iO du' (1.43)

Making use of the relation

1
u '-u-iO

9>
u'-u + i ir 6 (u1 -u) (1.44)

Eq.(1.43) can be written in the simple form:

X ( w )  -  —  BAW  itr /
-00

Хва(ц')
u'-u du' (1.45)

This equation can be written more explicitly by separating the Hermitian 
and the anti-Hermitian part of XBA(u) (see Eqs (1.28) and (1.29)).
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This Operation leads to the Kramers-Kronig relations:

1
7Т

du' (1.46)

ХваИ
XBA(u') , . 
—“ ----- du' (1.47)

which are very useful for the interpretation of many experiments.
Thus, we see that the total response X Ba ( w )  can be expressed in terms 

of X'BA(u) or XBA(u), only. However, in general, the function XgA(u) (which 
corresponds to the absorptive part of the response function) is more 
localized than XBA (u). For this reason, it is interesting to express XBA(u) 
in terms of XBA(u) only. Actually, from the Kramers-Kronig relations, 
we deduce:

X .(u) = ~~ / ,BA — du' BA 17Г J u1 -u-iO-<e

We may remark also that (for z" > 0)

X (z) = -
BA 7Г

+ 00 f|
1 Г  ХВА^ ,------  duu-z

(1.48)

(1.49)

a relation which can be derived easily from Eq.(1.42) by using relation
(1.46).

1.4. Formal expression of the response function. Kubo formula

For a quantum system in a state of equilibrium the density operator D 
is a constant in any representation (Heisenberg, Schrödinger, or inter
action representation). On the other hand, the formal expressions giving 
the response function XBA(u) in terms of H, A and В may be derived by using 
any representation. However, it may be simpler to use the interaction 
representation as will be done here.

First, we shall define the time-dependent operators A(t) and B(t) 
by putting:

i  — - i  ill
A(t) =

f i1 e A e b (l.. 50)
. Ht -■  ÜL

B(t) =:e lft TD 1 AВ e ( l . ,51)

In the interaction representation, the density operator D(t) is given by its 
initial value and the equation:

ihD(t) = {t} e ,D(t)e [A (t), D(t)] a(t) (1.52) .
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On the other hand, we have:

<B(t)>v -<B> = Tr f[D (t) - D] B(t)

Now, we may put:

D(t) = D + <5D(t)

where 6D(t) is given in the linear approximation by:

t
6D (t) = ih / [A(t'), D] a(t') dt'

( 1 . 53 )

( 1 . 54 )

( 1 . 55 )

This expression is rather formal, but a really meaningful result is obtained 
by using this expression in Eq. (1.53):

t
<B(t)> - <B>= ih' 1 J  dt' a(t') Tr ([A(V), D] B(t) ( 1 . 56 )

By using the cyclic invariance of the trace, we obtain:

<B(t)>v - <B> = ih' dt' a(t') Tr D[B(t), A(t')] ( 1 . 57 )

t

= ih 1 f <[B(t), A(t')]> a(t') dt' ( 1 . 58 )

By comparing this expression with the definition (1. 11), we get finally:

XBA(t-t') = ih' 1 <[B(t), A(t')]> O (t-t') (1.59)

where © (t) is the step function (© (0) = 0 (x) = + 1 for x > 0,©(x) = 0 for
x<0). Incidentally, we see immediately that this function satisfies the 
causality requirements (E q.(l. 10)). On the other hand, the response 
function must be real since B(t) and A(t') are Hermitian, which implies that 
the mean value of their commutator is purely imaginary. Finally, the 
fact that the response function depends only on the difference ( t - f ) is 
immediately evident since we have:

x baW - -
e(t-t ')

ih <[B(t), A (t ')]> : Q(t-t')
ihZ Tr e '№[B(t), A(t')]

Q(t-t')
ihZ

m  -ß H r iH ( t - t ' )Tr e e B e-ff lM ,A ]

(1.60)

^ ^ < [ B ( t - t ' ) ,A ] >
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The Hermitian and anti-Hermitian parts of the response function have 
very simple expressions; according to Eq.(1.59)and the definitions (1.24) 
and (1.25) we have (e(t) = - 1 +20(t)) :

X ^ t -t ')  = i^ fi^ e tt-t ')  <[B(t), A(t')]> (1.61)

XgA(t-t') = (2ft) 1 <[B(t), A(t')]> (1.62)

Incidentally, we remark that XBA(t-t') can be written in terms of XBA(t-t') 
or XgA (t-t') alone:

XBA(t-t') = 2i© (t-t1) XgA (t -1') = 20 (t-t ')X ;A(t-t') (1.63)

Actually, the first relation coincides with the dispersion relation (1.48).

1.5. Symmetries

The reality of the response function implies relations between the 
real and the imaginary parts of XBA(w):

Re XBA(U) = ReXBA(-U) (1.64)

Im XBA(u>) = - Im XBA(-u) (1.65)

and also, as we have seen, between the Hermitian and the anti-Hermitian 
parts of XBA(u) (E qs(l. 30) and (.1.31)):

xba(u> - 1ХУ “ >1* t1-66)

x> >  = - XM<-U> = tVe(u)]* (1- 67)

Additional symmetry properties can be found by time reversal. Let 
0 be this transformation. The Hamiltonian H is, in general, invariant with 
respect to time reversal; however, if a magnetic field b is applied to the 
system, then, the time reversal operation changes b into - b. On the other 
hand, the operators A and В have often simple symmetry properties under 
time reversal such as:

0A0' 1 =ед А 0 B0 1 = евВ (1.68)

and for any operator Q , the time reversal operator в satisfies also the 
relation

Tr в&в'1 = Tr 0f (1.69)
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Consequently, the time reversal invariance of the system can be expressed 
as follows:

/  -ен(Ь) \
x BA(t-t',b ) = - ©(t-t')Z Tr ( ---- —  [B(t), A(t')]J (1.70)

/  -ß H ( t T )  ч

= - ©(t-t’ ) z ' 1 Tr fe[A(-t>), B(-t)l e- — — e"M (i .7i)

where H(B) is the Hamiltonian considered to be a function of b (Z is 
invariant under time reversal). The last equation can be written 
(eiS' 1 = -i)

-  f  -в н е ? )  ч
XBA(t-t', b) = - e AeB© (t-t')Z  1 Tr (̂ [A (t '), B(t)] ----- - ----- J (1.72)

-1  / „ - 6 H ( - b )  \
= -e  e ©(t-t ')z Tr ----- ------  [B(t), A(t')l (1.73)

A B  V  " i n  /

Finally, we get:

b) = f ^ X J t - t ' ,  -b) (1.74)

or, by using Fourier transforms:

X (u,b) = e e X (i), -b) (1. 75)
BA л в AB

1.6. Absorption and interpretation of X" (u)

Our aim is to calculate the energy produced in a system by the external 
perturbation v{t} . This energy is of course always positive and due to 
absorption in the system. But dissipative effects are non-linear. For this 
reason and in order to preserve interference terms, it will be assumed 
in this section that the perturbing potential is a sum of terms:

v{t} = - ^  a.(t) Aj (1.76)
i

For the sake of simplicity the response function corresponding to Â  and 
Ac will be simply written (t). In Heisenberg representation, we have:

ih^jy=[H, H{t}] = [H, v{t}] = -^ a .(t) [H, A. ] (1.77)
j

All the operators in this equation are assumed to be time-dependent. This 
means that we have:

j
(1.78)
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The static part <([H,Aj])> vanishes for a system in thermal equilibrium. 
Therefore from (1.57), we get:

[H, A, (t) ], A £( t1) I > a£( f )  dt'
jf

t

= -^ a  (t) J  Jt" Aj!(t') ] ) ’ a£(t') dt (1.79)

Therefore by using definition (1.59), we obtain:

i < H> =X / a;(t)lr d -8°)
jl

For reasons of simplicity, we assume that the perturbation is monochromatic 
(but real); therefore we put:

aj(t) -ic jt  i<fi iona;e + a< e (1.81)

Then, the preceding expression becomes:

<H>d /TT\ -itoV1
dt

- i o n  Udt

T L \ ? i e  a i e
‘ ШЯ I \ * \a£e Xjt( u ) - a £e Xj£ (-u) (1.82)

it

Now, we can drop the periodic terms which are irrelevant here and calculate 
the average flow of energy:

a?'a{Xj{ (u) a> j V " u)

Then, by using definition (1.29), we obtain finally:

(1.83)

£ < H> , ii' 841
j«

This result shows that Xj" (u) can really be identified with the dissipative 
part of Xj£ (u).

1.7. A Kubo formula

Another formal expression of the response function has been given by 
Kubo [4] . In order to derive it, we write XBA(t) in the following form which
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results from the cyclical invariance of the trace of a product of operators; 
in doing so we start from Eq. (1.60):

X [e‘ №, A] B(t) (1.85)

Now, we use the following identity:

r -6H  д .[e , A] = -SH \H e e [A,H] -XHe dX
о

( 1 . 86 )

which can be easily proved by multiplying both sides by exp(ßH) and 
differentiating. Thus,

В
. o n  Г' _

[e , A] = ift / e A(-ihX)dX (1.87)
о

Finally, by introducing this expression in Eq.(1.85) we obtain Kubo's 
formula:

e
XBA(t) =©(t) J  <A (-ihX) B(t)> dX 

0

ß
= - 0(t) y<A(-ifiX) B(t)> dX (1.88)

о

1.8. Fluctuation dissipation theorems

The natural fluctuations occurring in a system at equilibrium are 
related to the dissipation effects resulting from an interaction of the system 
with external forces. Of course, this connection proves to be very im
portant and, though it has been clarified only rather recently [5], it has 
been recognized and used a long time ago (Einstein relation, Nyquist 
theorem [6]) in special cases.

The time-dependent fluctuation function FgA(t) is defined by the 
anti-commutator:

FBA(t-t') =|<{(B (t) - < Б », (A (t ') -< A » }>  (1.89)

Our aim is to establish a relation between the Fourier transform ФВА(ш) of 
FBA(t) and the dissipative part of the susceptibility XBA(u).

фва(“ >

+eo

(t)
ion - 0|t| 

e dt ( 1 . 9 0 )
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For this purpose, we introduce the function SBA(t) and its Fourier trans
form £BA(to):

SBA(t) = <(B(t) - <B>) (A - <A>) > = <(B - <B>) (A(-t) - < A »>  (1.91)
+00

/ v Г ic j t - O l t l

SВА^е dt d - 92 )
-eo

By using these definitions, we see immediately that:

XbA <t) = (2ft)'1 [SBA(t) - SAß(-t)] (1.93)

F BA(t> = I  tSBA(t> + Sa b ' - ^ 1 f1 '9 4 )

But on the other hand:

/  . Ht ; i l l  N
<A(-t)B>= Z 1 Tr (V ßHe ' ‘ 11 Ae bJ

= Z Tr f e eh B e "  A)

= <B (t-ifi/3) A> (1.95)

Consequently we obtain

âb̂ '1"̂  = SBA(t-iftß) (1.96)

and, therefore, we have:

X l l t l ^ ^ i y t l - V « ] (1.97)

Рва̂ = 1 [5ва̂ + ^ - ш ^П (1.98)

Let us now take the Fourier transforms of these expressions. If we 
assume that

1 ) < (a  (t) - <A>) (V <B>) > -. 0

for t -> 00
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we can write:
iu>t

e SAB(-t)dt s
lCJte SBA(t-ihß)dt

+00

-ßhw P icjt -ßfiw
= e / e S (t) dt = e L (u)

BA BA

Therefore, we obtain in this case:

м -1 -ßfiw
XßA(u) = (2fi) ( 1 -e ) £вд(и)

Ф (u) = ^ ( 1 +e №“ ) £ (u)
BA 2 BA

(1.99)

( 1 . 100) 

( 1 . 101 )

Thus, we are led to the fluctuation dissipation theorem:

x 'ba(u) = b  1 th (ßftu/2) ФВА(и) ( 1 . 10 2 )

1,9. Moments and sum rules

The corresponding classical formula is, of course, obtained by passing 
to the limit ft -» 0; in this way we obtain:

1"вд(и) ф и ФВАМ  (1.103)

Note that, if A = B, XßA(u) and %А(ш) are real.
As an interesting application of the preceding theorem, we have also:

+ «
ft / coth f <ЗйьЛ -itu(t-f) и

XAA(U)dU:
- i w ( t - t ’ ) Фдд(ш) du = 27rFAA(t-t>) (1.104 )

which leads to the sum rule (for t = t '):
+«0
J  coth XAA(u) du = гя -й ^ А -<A> )̂2 > (1.105)

or for a classical system

/  Ха"а( -)^  = ^ < (A-<A>j> (1.106)

This equation can be generalized by taking derivatives of E q .(l. 104) with 
respect to t and t'. Thus, we get (when the equation has a meaning):
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2nu coth (^t) x"a<u> du Zvb1 < Л ) 2> (1. 107)

where A(n) (t) is the n* order time derivative of A(t) (t is arbitrary). In 
the classical limit, we have also:

f  w2" ' 1 XA"A(u) du = irß < (а(П) (t ))2> (1.108)

We note that if the potentials acting on the particles of the system 
are regular, all the moments of XAA(u) exist since the mean values appearing 
on the right-hand side of (1.107) are finite. But, of course, this is not 
true in the case of Coulomb interactions.

1.10. Classical case. Additional sum rules

In the classical case, useful relations are obtained also between the 
reactive part of the susceptibility and the fluctuations by using the Kramers- 
Kronig relation (1.46):

AA
D du' (1. 109)

Thus, by putting и = 0 in this equation and by taking into account the 
symmetry properties of XAA(u) and XAA(-u) we deduce from E q.(l. 106):

+■»

V ° ) =XAA(°) = i  /  u’ lx AA(u)ciw = ß<(A (t) - < A »2> (1.110)

On the other hand, by examining the behaviour of X AA (u )  for large values 
of <j, we obtain also an interesting relation (see E q .(l. 108) for n= 1):

+00

l im u 2 Xa a (co) = - ^  f  u Xaa(u) du = - (3<(Ä(t))2> (1 .111 )
U3 "  J

If this equation has a meaning, we can infer from the convergence of the 
integral that lim u2XAA(u) = 0. Thus, we get finally:Ш —► eo

lim u2 XAA(u) = lim u2 X̂ A (u) = -ß<(Ä(t))2> (1 . 1 1 2 )
(J со Ш oo

1.11. Spectral representations and energy levels of the unperturbed 
system

The meaning of all the preceding relations may become more evident 
by using explicit representations in terms of the eigenstates and eigen- 
energies of the system. Thus we have immediately (see Eq.(1.91)):
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sn4(t) = ZXX
- ßEn 1 ( V Em> t/fi ^п|а |гп̂ > <т|в|п^>-

( 1 . ИЗ)- ^ е ~ №п<п|А|п> Y  е '№ т<т|в| ш >)
n m

Hence, we get the Fourier transform:

- V -1 -ßEn . . . .
^ A(U) =ÜZ 2, e 6 (fru - (Em -En)) <n | A | ш> <m | В | n> (1.114)

mn
and by using Eqs (1. 100) and (1. 101) we obtain:

Х з » . К Х  (e' ßEn " e' №m ] б( ^ - ( Е т -Еп))<п|А|т><т|в|п> (1.115)
mn

ФВА(и) = | z  1 ^T(e ßEn +e 0Em ) ö(fiu- (Em-En)) <n| A| rn> <m |b  |n> (1.116)
mn

In the same way, it is easy to find an explicit representation for Хвд(и), 
since we have according to Eqs (1.63) and (1. 97):

XBA(t) = 2i©(t) X'’A(t)

. -l X= ift 0 (t) ) (e - e ) e
-ßE „ - 0E i ( E - E  )t /f i

m' - n m <n| A I m> <m I b | n> (1.117)

Therefore we obtain the following expression:

-lY, " ßEn ‘ ßEm < n lA lm >  < m lB ln>
xBA(U) = - z ‘ X '

U Ulve - e ) fiu - (E - E )+i0' ш n'
(1.118)

which shows the relationship between the excitations of a system and the 
response function.

1.12. Density fluctuations, f sum rule and longitudinal sum rule

The general theory is frequently applied to the study of large systems 
consisting of a set of identical particles of mass m interacting between 
each other and with the medium in which they move. In this case, the 
Hamiltonian can be written in the form:

N

H = —- )  + U( r . . . .  r j2m /_j s v 1 N'
s = l

(1.119)
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where U (rx. . . rN) is an operator which depends on the medium and on the 
positions ^ . . . rN of the particles under consideration; on the other hand,
? s is the momentum of the s* particle. The form of this Hamiltonian 
implies an interesting relation, the f sum-rule, which plays an important 
role in the theory of conductivity and will be derived now.

First, we introduce the density operator n{r} and the current operator j{r}

n{?} = ^  6 (r - rg) 
s

(1 . 120 )

I (?s f i ( r - r  ) + 6 ( r - r  ) ? )
s

( 1 . 1 2 1 )

and their Fourier transforms:
-> V  ik' rs n(k) = ^  e

S
( 1 . 12 2 )

S
(1.123)

which are related by:

[H, n(k)] = hk-T(k) (1.124)

a relation which implies the conservation of particles; in fact, if we 
define:

. Ht _Ht_ 

n(ic,t) = e ъ n (f) e 1 (1. 125)

ii£  - i  m 
Г(к, t) = e fi7 (k) e (1.126)

these time-dependent operators satisfy the conservation equation: 

"^n(k, t) [H, n(k, t)] = ilc-lO*, t) (1. 127)

Now, we note that:
(7 (k), n(-k)] = - ^  h f (1.128)

With the help of Eq. (1.124), we deduce:
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F o r  a sy s te m  at te m p e ratu re  T  the m ean valu e  of the left-hand side can be 
e x p r e s s e d  in t e r m s  of the eig e n state s |n)> of H:

<[[ H, n (k )] , n ( - k ) ] >  = Z 1 ^  e *(E{ - E m) ( < i  | n(k) | m >  <m  | п(-Й) |i >

£m

+ <.£ I n(-kj I m >  < m  | n(k) | SCy) ( 1 .  130 )

In the right-hand side of this e x p r e s sio n ,  both t e r m s  a r e  even in k; t h e r e 
fo re ,  by co m p a rin g  this e x p r e s s io n  with E q . ( l .  1 2 9 ) ,  we obtain:

2 Z ' 1 ^ e SEj( E m- E i() | < Je |n (k )|m > | 2 = ^  f t ¥  ( 1 . 1 3 1 )

. {m

It i s  c u s t o m a r y  to define the o s c i l la to r  strength of the le v e l  |n)> by:

2 m
f{ (k, T) =
1 N  Zn  к

^ e " “ 1 ( E m- E t )|<je|n(k)|m> | 2 ( 1 . 1 3 2 )

and thus, we get the f  sum ru le:

.£>.*> = 1 ( 1 . 1 3 3 )

T h is  relation  can be e x p r e s s e d  in a sl ightly  different form  which is  
also  v e r y  usefu l.  In ag re e m e n t with definition ( 1 . 6 2 ) ,  w e put:

X "  . ( r - r \  t - t ' )  = (2ft) ' 1 <[j { r , t } ,  j e{ r ' , t ' } ] >  ( 1 . 1 3 4 )
V e

w h e re
. Ht Ht

"J{r, t} = e ^ { r }  e ( 1 .  1 3 5 )

and its  F o u r i e r  tr a n s fo r m :

i k - ( r - f )_ >  f  3  1 К - 1 Г - Г  ;  p i w ( t - t ' )

X n . ( k ,y )  = d r e  / dt e X'J • ( r - r ' . t - t 1)
V ß  J  J  V ß

= (2 ftf2) 1 Г dt e Ш (t Г ) < и а (к, t), j fl( [ k , t ' ) ] > ( 1 . 1 3 6 )

(O = volume of the sam p le).
Our aim  i s  to find a sum ru le  which i s  ju st another v e r s i o n  of the f  sum rule  
fo r  the su scep tib ility  Xj'a je (k, u).
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n (k, u) into аja j 
e 6

:<xk 0 y ,T
k ‘z ,/ В

( 1 .  1 3 7 )

T h e r e f o r e :

x "  (k,u) = (2 fik П) / dt e <[k . j(k, t), к • j ( -k ,  t ' )] > ( 1 . 1 3 8 )

T h is  e x p r e s sio n  can  be tr a n sfo r m e d  by u sing the continuity equation ( 1 . 1 2 7 )

Xм (£, u) = i (2hk2 Г2) 1 
j j

dt e 1W(t 15 <[к-"](к, t), ri(-k, t ') ]> ( 1 .  139 )

= - u(2ftk2f2)1 / dt <([?• J(ic, t), n(-lc, t')])> ( 1 .  140)

T h u s,  w e d e riv e  the longitudinal sum ru le:

+00J du и г х". (ff, со) = - (2ftk2 S7) 1 <[к-7 (Й), n(-ic)] > ( 1 . 1 4 1 )

which by u sing E q .  ( 1 .  12 8 )  b e c o m es:

+co

( 1 . 1 4 2 )

(where n = N / 0  is  the density of p a r t ic le s) .
O r  by application of the K r a m e r s - K r o n i g  relation  ( 1 . 4 6 )  and of the 

s y m m e t r y  conditions ( 1 .6 6 )  and (1 .  67):

X.L. ( £  0) = X jJfS ,  0) = ^  ( 1 . 1 4 3 )

2. L I N E A R  R E S P O N S E  T O  A  D Y N A M I C A L  D I S T U R B A N C E .  E X A M P L E S  
A N D  A P P L I C A T I O N S

2 . 1 .  C l a s s i c a l  o s c i l la to r

A s  a sim ple  illu stratio n  of the theory, w e c o n s id e r  now the c a s e  of 
a sim ple  c l a s s i c a l  o s c i l la to r  driven  by an e xtern al fo r c e .  The coordinate  
x(t) of the o sc il la tin g  m a s s  m sa t is f ie s  the equation:

m x(t) + у  x(t) + m u2 x(t) = f  (t) ( 2 . 1 )
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w h e re  m is  the m a s s ,  m u j  the sp rin g  constant, у  a frictio n  coefficien t and 
f  (t) an e x te rn al fo r c e  which can be re g a rd e d  as re su ltin g  fro m  a pertu rbin g  
potential:

v  {t} = -x f ( t ) ( 2 . 2 )

T h e  p re c e d in g  equation and the u su al assum ption x(-oo) = 0 d e te rm in e s  
the v a r ia t io n s  of x(t) com p le te ly :

x (t)  = X j t - t ' J f f t M d t '

Now, we get:

f(t) = ^  / e ш cp (и) du

x(t) = Г e 1Wt ? (u) du

( 2 . 3 )

( 2 . 4 )

( 2 . 5 )

and thus the p rece d in g  equation can be tr a n sfo r m e d  into:

I (w) = XjJu) ф(ы)

But E q .  ( 2 . 1 )  g iv e s :

2 2
[m(wQ - u ) - iyw] f  (u) = cp(u) 

and th e re fo re ,  we have:

Ххх( ш) = r~2  2T
m ' u o ’  10 ' '  1-1,10

T h is  function has two p oles;  two r e g im e s  a r e  p o s sib le :  

a) 7  <  2 m u0 (w eak ly damped o sc il la to r ) ,  

then the roots a r e  given by:

и  = ±  -  i u 2 >  0  u 2 >  0

b) 7  >  2 m u0 (stro n gly  damped o sc il la to r ) ;

then

( 2 . 6 )

( 2 . 7 )

( 2 . 8 )

( 2 .9 )

и = - i(u ± u2) u1 > u2 > 0 (2 .10)

In any c a s e ,  the roots have negative im a g in a r y  p a r t s  and th e refo re ,  in 
ag re e m e n t with the c a u s a lity  r e q u ire m e n ts  \ x ( u )  i s  analytic  in the half  
plane Im и >  0 .
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T h e  K r o n i g - K r a m e r s  relation (see  E q . ( 1 . 4 5 ) ) :

X (со) =—  du
XX1- ITT J  co'-co ( 2 . 11)

turns out to be obvious b e c a u s e  we can w r it e :

&>

co-co1

1
+  -со' - со + i0 u’ - w - iO ( 2 . 12)

on the right-hand side of E q . ( 2 .  1 1 ) ,  c lo se  the contour u pw ards and c a lc u 
late the re sid u e  at the pole со' = со + iO; this resid u e is  of c o u r se  X ^ cj). 

T h e  r e a l  and im a g in a r y  p arts  of Xxx(co) a r e  given by:

4 »  =

, 2  2 .
m(co0 - со )

2,2 . 2 2
m (cOq- со ) + 7  и

( 2 . 1 3 )

_________ у ш ___________
2 . 2 2 ,2  2 2 

m  (CO - CO ) + -v CO0 ' 1

( 2 . 1 4 )

and we v e r i f y  im m e d ia te ly  the s y m m e t r y  conditions of section 1 . 4 .  The  
shapes of the c u r v e s  c orrespo n d in g to th ese  functions a r e  v e r y  c h a r a c 
te r i s t i c  fo r  s m a ll  v a lu e s  of y ;  they a r e  r e p r esen ted  in F i g .  2.

F I G .2 a . x' M  for sm a ll va lu es  o f  y. F I G .2 b .  x" (w ) fo r  sm a ll v a lu e s  o f  y.

Th e w o r k  W(t) done by the e x te rn al fo r c e  f(t) is  given by:

= ± ( t )  f(t) = J f(t) X J t - t ' )  f(t') dt'
-CO

+CO

= ~  J m  е шЧ' f(t ')co 'Xju)')dco'dt' ( 2 . 1 5 )
-CO

T h u s, i f  we put:

f(t) = | ( f e ' iWt + f :;eia,t) ( 2 . 1 6 )



LINEAR RESPONSE 3 4 7

we get:

dW(t) _ to и 
dt 2  **

(to) ff ( 2 . 1 7 )

in ag re e m e n t with the g e n e r a l  r e s u lts  of section  1 . 5 :  this re su lt  rem inds  
u s that (to) i s  the a b so rp tiv e  p art  and Xxx (to) the r e a c t iv e  part of the 
su scep tib ility .

L e t  us now exam in e how the fluctuation d issipation  theorem  ap p lies to 
this c a s e .  O u r sy s te m  is  c l a s s i c a l  but the frictio n  у  is  ju st  a phenomen
o lo g ic a l  coeffic ien t and no r e a l  Ham iltonian c o r r e s p o n d s  to the equation of 
motion (2. 1 ) .  T h e  o sc il la tin g  m a s s  m a y  h ow eve r be re g ard e d , f o r  exam ple,  
a s  a ba ll  m oving in a v is c o u s  m edium . In this c a s e ,  there e x is t s  a 
Ham iltonian fo r  the whole s y s te m  c o n sistin g  of the ball and of the medium  
in which it o s c i l la t e s ,  and у  d e s c r i b e s  the re sp o n se  of the m edium . Then  
the fluctuation dissip ation  th eorem  should be valid  fo r  the whole s y s t e m .  
Equations ( 1 . 1 1 0 )  and ( 1 .  1 1 2 )  a r e  w r itte n  in this c a s e :

X ( 0 ) = ß < x 2(t)>

lim u2 X (и) = - (3<x2 (t)>

But, on the oth er hand, fro m  ( 2 . 8 ) ,  w e get:

Xxx(0) =
m и.

о

lim u2 X (u) = ■

F r o m  the c o m p a r iso n  of these e x p r e s s io n s ,  we get finally:

ij m < x 2 (t)> = ^  m < x 2 (t)>= yr K T

( 2 . 1 8 )

( 2 . 1 9 )

(2 . 2 0 )

( 2 . 2 1 )

T h is  is  e x a c tly  B o ltz m a n n 's  equipartition th eorem , and this re su lt  a p p e a r s  
r a th e r  r e m a r k a b le  i f  w e c o n s id e r  the phenom enological nature of y .

W e note a lso  that a l l  these r e s u lts  would r e m a in  unchanged i f  the 
fr ic tio n  f o r c e s  w e r e  frequ en cy-d epen d en t and r e p r esen ted  by a coefficient  
y(w) provided that:

7 ( 0 )  = 0 lim  w 1 у  (u) = 0
U) -*  00

( 2 . 2 2 )

2 . 2 .  Conductivity  te n so r

Th e beh aviou r of the s y s te m  c o n sistin g  of a sam p le  of m a tte r  in t e r 
acting with an e le ctro m a g n e tic  field is  determ ined by two kinds of equations.



3 4 8 DES CLOIZEAUX

F i r s t l y ,  the field s s a t is f y  two groups of M a x w e ll  equations which, in the 
r e c i p r o c a l  sp ace  and with p ro p e r  units, can be written:

(h(k, u) is  the e le c t r ic  field, b (k , w) is  the magnetic induction)

I)

£  X fi (it, u) - u S ( f ,  u) = 0 (2. 23)

к ■ b (к, u) = 0 ( 2 .2 4 )

II)

ic x  tT(£, u) + w iT(?, w) = - i j(ic, ш) ( 2 . 2 5 )

к • h (k, w) = p (k, u) ( 2 .2 6 )

w h e re  p (k, u) = en(k, u).
Secondly, there a r e  the " m a t e r ia l  equations" which give the cu rren t and 
the density of c h a rg e  ap pearing in the m a te r ia l  as  a r e su lt  of its in te r 
action with the electro m ag n e tic  field. Thus J ( k , u )  and p(it, u) are  functions  
of h(l?, io) and b(Ic, u). H ow ever, p(ic, u) is  not independent of T (K, u) since  
we have the continuity relation:

u) p(lc, u) - ic • ?  (?, u) = 0 ( 2 . 2 7 )

On the other hand, Тэ (Й, u) can be e x p r e s s e d  in t e r m s  ofliflc ,  to) by m ean s of 
E q . ( 2 . 2 3 )  which im p lie s  a lso  E q .  ( 2 . 2 4 ) .  Thus, the resp o n se of the 
m a te r ia l  to an electro m ag n e tic  stimulation is  com p letely  determined by the 
conductivity which r e la te s  J(k , to) to h(k, to). In an homogeneous medium (and 
a c r y s t a l ,  fo r  exam ple, can be considered homogeneous for wave lengths 
which a r e  long c o m p ared  with the interatom ic d istances), we can w r ite :

J a (k, u) = ^  CTaß(k, u) hß(k, со) ( 2 .2 8 )

ß

w h e re  стаВ(к, u) is  the conductivity te n sor.
In o r d e r  to em p hasize  this point, we can assu m e, for exam ple, that 

the medium is  iso trop ic  and expand a ^ fk ,  u); for s m a ll  v alu es of к and и 
we find in this w a y :

CTa ß ( k . = P '1 6ctß  ‘  iu ) ^ 6 c<e +  i ^ ' 1 <k a k 0 -  k 2  ba e )

+ ( 2 .2 9 )

У

w h e re  p is  the r e s is t iv it y ,  j d  the e le c t r ic  p olariza b ility  (with J d -  e - 1 

w h e re  e is  the d ie le c tr ic  constant), 3B a magnetic constant (with Зд  = 1 - p ’ 1 

w h e re  p is  the m agnetic  perm eability),  a constant of ro tato ry  pow er  
(with ea gy com p letely  an tis y m m e tric  with r e sp e c t  to the indices and 
exyz = 1).  and A  the London constant (if  the sy ste m  is  a superconductor).
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T h u s,  we se e  how all  the sim ple  e le ctro m a g n e tic  p r o p e r t ie s  of an iso trop ic  
medium a r e  re late d  to the form  of o^gfk, u).

Th e conductivity  te n s o r  cra g(It, ш) can be e x p r e s s e d  in a fo r m a l  w a y  by  
m ean s of a Kubo fo rm u la  which often s e r v e s  as  a startin g  point fo r  fu rth e r  
in ve stig atio n s.  Th e com plete Ham iltonian can be w ritten :

N N

H {t}  = 2 t X [^  - f  A { r s , t } ] 2 + e ^  V { 7 s , t }  + U ( r i . . . r N ) ( 2 . 3 0 )

S=1 S=1

W e note now that it i s  a lw a y s  p o s sib le  to choose a gauge such that:

V { r ,  t} = 0 (2. 3 1 )

On the other hand, since we a r e  in te re ste d  in the l in e a r  r e sp o n se  only, 
we m a y  w r it e :

H {t}  = H + v { t }  ( 2 . 3 2 )

w h e re  H i s  the unperturbed Ham iltonian and v { t }  the perturbation:

v { t }
e

2 mc
^ [ l f . A { ? s , t }  + A { ? s , t } - P s ]

e
c

H r )  - A { ? ,  t} d3r ( 2 . 3 3 )

w h e re  j { r }  i s  g iven  by ( 1 . 1 2 1 ) .  On the other hand, the total cu rre n t is  
given by:

2
J { r }  = e j { r }  - n{r} A { r ,  t} ( 2 . 3 4 )

me
B y  a s su m in g  that the s y s te m  is  homogeneous, we m ay w r it e ,  in f i r s t  
approxim ation:

{ r , t }  = —
c dt'

3-, 
d r ' X ( r - r ' , t - t ' )  A g { ? ' , t ' }  n A  {r,  t} ( 2 . 3 5 )

a  В m c

Now, we can u se  the relation :

t

IT{ r, t} = " ~  ^ { r ,  t} Ä  { r ,  t} = - c F h{r", t ' }  dt' (2. 36)

o r  its  F o u r i e r  tr a n s f o r m :

A(k, u) = . C h (k, u)
i u  -  0

(2. 37)

B y  co m p a rin g  E q s  ( 2 . 2 8 )  and (2. 33) ,  w e get:
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In p a r t ic u la r ,  i f  we denote the longitudinal part of any v e c t o r  g(Ic) by the 
sym bo l g L (£) with:

g L(ic) = 1c(ic • g(lc))/k2 ( 2 . 3 9 )

we can w r it e :

J L(k-u) = a L (k, u) h L(k, u) ( 2 .4 0 )

with

a L (Ic, u ) = t
iu- 0 Xi i ^ u + i ° ) - ^ ( 2 . 4 1 )

w h e re  x jl  (k,u ) is  defined as X^L(k, u) in E q .  ( 1 .  1 3 7 ) .

Then the sum rule ( 1 .  1 4 3 )  e x p r e s s e s  the fact that, fo r  a n orm al  
s y s te m , the d . c .  conductivity ( u = 0 ,  к = 0) is  finite. H ow ever, it must be 
noted that, fo r  f r e e  e le ctro n s,  although the f  sum rule re m a in s  valid fo r  
к ф  0, the d. c .  conductivity is  infinite. T h is  anomaly can  be re late d  to the 
fact that in this c a s e :

im xj", (к, и) ф  XH(0, u) = 0l i m  
h

( 2 .4 2 )

Another sim ple e x p r e s sio n  of the longitudinal conductivity can be 
obtained by using the Kubo fo rm u la of section 1 .  7. F r o m  E q s  (2. 35) and 
(2. 36), we deduce afte r  p artia l  integration with r e s p e c t  to t ' :

J L{r ,  t} = e2 / dt' / d3 r 1 / dt" x f l ( r - r ' ,  t - t " )  h L{ r ' ,  t 1} ( 2 . 4 3 )

by u sing E q .  ( 2 . 3 6 )  and the f  sum rule (see E q .  ( 1 .  1 4 2 ) :

X j* j(r-r ' ,  t - t ' )  dt1 = 6 ( r - r ' ) ( 2 . 4 4 )

O r, from  E q .  ( 1 . 8 8 ):

t g

J L{r ,  t} = e 2 / d t ' /  dX<(jL { r ' ,  - iftX} j L{r ,  t - t ' }  h L{ r ' , t '}
-oo о

t e

1J '  dt' J ' dX<j { r ' , t ' - i h X }  j {r ,  t } )> h  { r ' , t ' }  ( 2 . 4 5 )
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which g i v e s :

00 6

(rL (k,u) = e2 J T e ik(r' r' ) d3 r  J dt eiiJt J \ i X  < j L{ ? ' ,  -iftX} j L{ ? , t } >

0 0 

со ß

= П ' 1 e ^ d t  -ihX) j L(ß ,t)>  ( 2 . 4 6 )

о 0

2 . 3 .  E in ste in  relation

The w e ll  known E in ste in  relation  which connects the m obility of a set  
of p a r t ic le s  with th e ir  diffusion constant D:

H = e D / K T  ( 2 . 4 7 )

is  a sim ple  consequence of E q .  ( 2 . 4 5 ) ,  in the c l a s s i c a l  lim it (h = 0). In 
fact,  i f  w e  denote by v s the v e lo c ity  of the s th p a r t ic le  along an a r b i t r a r y  
a x is ,  w e m a y  w r it e :

, .-1q = (en) a  (0 ,
- l

0) = N eß3/ dtZ<' ( 0 ) v - ( t ) >

= ej3 J 'dt <v(0) v(t))> ( 2 .4 8 )

о

w h e re  v(t) is  the v e lo c ity  of any p a r t ic le  (the mean d ensity  is  n = N / f 2 a n d  
ß  = 1 / K T ) .
On the other hand: ( fo r  1)

f  dt < v ( 0 ) v(t)>  = ^  J dt J a t . < v(t) V(t i)>

о 0 0

= 2 T  < (x ( ^ )  " x ( ° ) ) 2 > ( 2 .4 9 )

But a p a rt ic le ,  which is  at the o rigin  at t = 0 has a probability  p(?, t) of  
being at r  at tim e t which is  given by:

p(r, t) = ( 4 7rDt) 2 e 4Dt ( 2 . 5 0 )

T h e r e f o r e :

<  ^x(t) - x (0 )^ у  = J  x 2 p(r, t) d3r  = 2Dt ( 2 . 5 1 )

T h u s, fro m  E q s  ( 2 .4 8 ) ,  ( 2 . 4 9 )  and (2. 5 1 ) ,  w e  can deduce E q . ( 2 . 4 7 ) .
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R ZU»)

FIG.3. A Circuit with a resistance R and a block box o f independence Z(tn).

2 . 4 .  N y q u is t th e o r e m

The th e r m a l noise of a r e sista n c e  1 7 ] can be calculated by d ire ct  
application of the fluctuation dissipation theorem . Thus, let us c o n s id e r  a 
r e s is t a n c e  connected to a b lack  box of impedance Z(w) (see F i g .  3) which  
w ill  be a ssu m ed  to be p u rely  r e a c tiv e  (Z(u) = i Z "  (u)) with Z " ( u )  re a l.
The conductivity of the loop consisting of the r e s is t a n c e  and of the black  
box w il l  be given by:

o(td) = [ X „  (u) -  Xj j (O)] ( 2 . 5 2 )

T h is  fo rm u la i s  com pletely  equivalent to E q .  ( 2 . 4 1 )  and can be d e rive d  in 
the s a m e  w ay. H ere  J(u) is  the F o u r i e r  tr a n sfo rm  of the total cu rre n t:

+00

J(u) = f  eiutj { t }  dt

and Xj j (u ) is  the F o u r i e r  tr a n sfo rm  of:

X n (t-t ')  = Ь_ 1 < [ J { t } ,  J { t ' }  )>  © (t-t ')  ( 2 . 5 3 )

On the other hand, by definition, w e have:

a ( w )
R - i z " ( u )

R + Z ( u )  R2 + [ Z " ( w ) ] 2 

T h e r e f o r e ,  by com p arin g  E q s  ( 2 . 5 2 )  and (2. 54), w e get (x"j (0) = 0);

( 2 . 5 4 )

u " 1 X "  (u )  
IJ

______R_______

R2 + [Z "(w ) ] 2
( 2 . 5 5 )

We can now apply the fluctuation dissipation theorem  E q . ( l .  102)  o r ,  m ore  
conveniently, its c l a s s i c a l  form  given by E q .  ( 1 .  10 3)  b e cau se  in all  c a s e s  of 
p r a c tic a l  in te re st  ßtiu <к 1 .
Thus, we get:

Фл (и) = 2  ß
R2 + [ Z " ( u ) ] 2

( 2 . 5 6 )
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On the other hand, ac c o r d in g  to E q s  ( 1 . 8 9 )  and ( 1 . 9 0 ) ,  we have:  

< { j ( u )  J ( - u ' ) } >  = J dt e ^ y ' d t '  e lwt < { J { t } ,  J { t ' } } >

= 2 dt d f  ei(‘IJt" <̂ t') f ,JJ ( t - f ) ( 2 . 5 7 )

= 4ir б(ш-и') ® j j (u )

J{u )  can be c o n sid ere d  here  to be c l a s s i c a l  (i. e., a c -n u m b e r )  and t h e r e 
fo re  :

< J ( u ) J ( - u ' ) >  = 2 тг6 (и-ш') Sjjfu) ( 2 . 5 8 )

B y  co m p a rin g  with E q . ( 2 . 56), we fin ally  obtain the Nyquist th e or em :

< J(u )  J ( - u ' ) )  -  4 ж K T  a- 2 б (м -ц ')  ( 2 . 5 9 )
R + IZ (u)J

T h e  m eaning of this theorem  can be be tte r  understood i f  w e sim u late  the 
effect of the th e r m a l noise which p ro d u ce s c u rre n t  fluctuations in the 
black box. F o r  this p urpose, we m a y  add:

a) e ith e r  a c u rre n t  g e n e r a to r  (cu rren t J 0) of infinite im pedance in 
p a r a lle l  with the r e s i s t a n c e  R ( F i g .  4a).

b) o r  a vo ltage  g e n e r a to r  (e. m. f. E  ) in s e r i e s  with the r e s is t a n c e  
( F i g . 4 b ) .

It is  t r iv i a l  to show that J 0 o r  Eo must be given by:

< J 0 (w) J 0 ( - u ' ) >  = 4тг K T  R ' 1 6 (w -u1) ( 2 .6 0 )

< E q(u ) E  ( - u ' ) >  = 4 tt K T  R 6 (u-w')  ( 2 . 6 1 )

T h e s e  r e s u lts  indicate c l e a r l y  that the th e r m a l noise c o m e s  only fro m  the 
r e s i s t a n c e  and does not depend on the p u rely  r e a c t iv e  b lac k  box at all.

ZU»))

Z Г ~

z m

F IG .4 a . C urrent g e n e ra to r  in  p a r a l le l w ith  a re s is ta n ce .

F I G .4 b . V o lta g e  g e n e ra to r  in  series w ith  th e  re s is ta n ce .
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PHASE TRANSITIONS 
AND CRITICAL PHENOMENA

H. THOMAS
IBM ZÜ R IC H  RESEARCH LABORATORY,  
SWITZERLAND

Abstract

1 .  Fundamental thermodynamic, microscopic and statistical concepts. 2. Linear response, normal 
modes, fluctuations. 3. Specific microscopic models. 4. Molecular field approximation (MFA).
5. Ornstein-Zernike theory of fluctuations. 6. The spherical model. 7. The Onsager refinement of 
the MFA. 8. The random phase approximation (RPA). 9. Nature of the phase transition.

1 .  F U N D A M E N T A L  T H E R M O D Y N A M I C ,  M IC R O S C O P IC , AN D  
S T A T I S T I C A L  C O N C E P T S

S ta tis tic a l  m e c h a n ic s  g i v e s  the relations between the therm odynam ic  
p r o p e r t ie s  of a s y s te m  and its m ic r o s c o p ic  d escription . We list here  
f o r  e a s y  r e f e r e n c e  so m e  of the fundamental concepts.

T h e r m o d y n a m i c s : A l l  th erm od yn am ic p r o p e r t ie s  of a sy s te m  can  
be d e rive d  fr o m  its  th erm o d yn am ic  potential.  The choice of the p ro p e r  
potential depends on the s y s te m  c on sid ered . Th e m ain ty p e s of s y s te m s  
a r e :

1) No interaction of the sy s te m  with its environment except with  
constant e x te rn al f ie ld s  X ;  constant e n ergy  E  and p a r t ic le  number N.  
P r o p e r  th e rm o d yn am ic  potential is  the entropy

S = S (E ,  X , N) ( 1 . 1 )

Th e th e rm o d yn am ic  p r o p e r t ie s  of the sy ste m  - its te m p e ra tu re  T ,  e x 
te n siv e  v a r i a b le s  x  belonging to the f o r c e s  X ,  c h e m ic a l  potential p - a r e  
given b y  the p a r t ia l  d e r iv a t iv e s  of S:

dS = ^ d E + | d X - | d N  ( 1 . 2 )

It is  often m o re  convenient to solve  ( 1 . 1 )  fo r  E :

E  = E ( S ,  X ,  N) ( 1 . 1 ')

dE = T d S  - x d X  + p d N  ( 1 ..2')

2) S y ste m  in e n e rg y  exchange with a heat bath at te m p e ratu re  T ;  
constant f o r c e s  X  and p a r t ic le  number N. P r o p e r  th erm o d yn am ic poten
t ia l  is  the f r e e  e n erg y

F ( T ,  X ,  N) = E - T S  ( 1 . 3 )

dF = - SdT - x d X  + pdN  (1 .4 )

357
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3) S y s t e m  in e n e rg y  and p a r t ic le  exchange with a bath at te m p e ra tu re  
T  and c h e m ic a l  p o t e n tia l^ .  P r o p e r  th erm o d yn am ic  potential is  the " id e n 
t i c a l l y  van ish ing potential"

П(Т, X,ju) = F - mN = E - juN - T S  ( 1 . 5 )

df2 = - S d T  - x  dX - Nd/u ( 1 . 6 )

Conventionally, the in tern al e n erg y  U i s  defined f o r  ä  sy s te m  with given  
v a lu e s  of the exte n sive  v a r i a b le s  x; it is  related  to our E  b y  the contact 
tr a n sfo rm a tio n

U(x) = E + x X ;  f f  = X  ( 1 . 7 )

and our E  is  called  the enthalpy. C o rre sp o n d in g  re lation s hold f o r  the 
other th e rm o d yn am ic  potentials. F o r  the s y s t e m s  we a r e  going to con 
sid e r  we find it, h o w e v e r,  m o re  convenient to include the interaction  
t e r m  - x X  with the e x te rn al fo r c e  X  in the definition of the en ergy,  
since we then get a c l o s e r  c o rrespo n d en ce with the m i c r o s c o p i c  d escription,  
w h e re  we a lw a y s  include the interaction with e x te rn a l  f ie ld s  X  in the 
Ham iltonian. The only exception is  the c a s e  of f r e e l y  m oving p a r t ic le s  
in a box of volum e V ,  w h e re  it is  e a s i e r  to c o n sid er  V  a s  the independent 
v a r ia b le  (the id en tica lly  vanishing potential is, in this c a s e ,  Г2(Т, V ,  X ,  p )+pV),  
instead of introducing an e xtern al potential which is  ze ro  in V  and jum ps to 
an infinite v alu e  at the s u r fa c e  of V .

A l l  the th e rm o d yn am ic  potentials have the important p r o p e r t y  that 
they have a minim um  (except fo r  the entropy which h as a  m axim u m ) in 
the state of th e rm o d y n am ic  equilibrium  of the sy s te m  to which they b e lo n g . 
T h is  e x tr e m a l  p r o p e r t y  le ad s to a v e r y  convenient v a ria t io n a l  p rincip le  
form ulation of st a t is t ic a l  m e c h a n ic s.

M i c r o s c o p i c  description : In quantum m e c h a n ic s ,  the m ic r o s c o p ic
state of a s y s te m  is  d e sc r ib e d  by a v e c to r  in Hilbert sp a ce ,  and p h y s ic a l  
o b s e r v a b le s  c o r r e s p o n d  to H erm itian  o p e r a to r s  in H ilbert s p a ce .  In the 
H e ise n b e rg  re presen tatio n , the state v e c to r  i s  constant, and the o p e r a to r s  
depend on t im e .  Th e m i c r o s c o p ic  p r o p e r t ie s  of a sy s te m  can be d erived  
fr o m  its  Ham iltonian the equation of motion of an o b s e r v a b le  A  is

If does not depend e x p lic itly  on t im e , it i s  the o p e ra to r  of the e n erg y  
of the s y s te m .  Th e expectation valu e  of the o b s e r v a b le  A  in a state  
d e sc r ib e d  b y  the v e c t o r  ф i s

< A \  = (0, А Ф )  ( 1 . 9 )

In c l a s s i c a l  m e c h a n ic s ,  the m i c r o s c o p ic  state of a  sy s te m  is  d e sc r ib e d  
b y  a point in p hase sp a ce  Г; p h y s ic a l  o b s e r v a b le s  and e s p e c ia l ly  the 
Ham iltonian a r e  functions in Г, and the equations of motion a r e  obtained  
fr o m  ( 1 . 8 )  b y  re p la c in g  the com m utator b y  the P o is s o n  bra ck et:

ТТГ [A , B]  
m

r

V  /  З А  ЭВ 
L  \ 9 q t 9pr

ЭА ЭВ Л 
3p r 3qr )

( 1 .  1 0 )
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S t a t i s t i c s : Th e p r o p e r t ie s  of a th erm o d yn am ic s y s te m  a r e  c on sid ered  
a s  s t a t is t ic a l  a v e r a g e s  o v e r  an en sem ble  of m i c r o s c o p ic  s y s t e m s .  Th e  
s t a t is t ic a l  distribution of the m ic r o s c o p ic  s y s t e m s  in the en sem ble  is  
(for the c a s e  of quantum s y s te m s )  d e sc rib e d  by the sta t is t ic a l  o pe ra to r  
(density m a trix )  p. T h is  is  a H erm itian  o pe ra to r with the p r o p e r t ie s :

A l l  eigen values pn s a t is f y  D s pn 5 1; ( 1 . 1 1 )

I =  t r  p = 1 ( 1 . 12)

In an en sem ble  d e sc r ib e d  b y  the st a t is tic a l  o p e ra to r  p with eigen valu es  
pn and feigenvectors Фп , each of its  m e m b e r s  is  in one of the states  ,Фп , 

and pn g iv e s  the pro bab ility  distribution o v e r  th ese  states .
T h e  equation of motion of the st a t is t ic a l  o p e ra to r  is  in S c h rö d in g er  

re presen tatio n

<1ЛЗ>

The s t a t is t ic a l  a v e r a g e  (therm odynam ic expectation value) of an o b s e r v a b le  
A  o v e r  the ensem ble is

< A >  = ^ p n(0n . A0n) = t r p A  (1.14)

T h e  connection to th e rm o d y n a m ic s  is  effected b y  B o lt z m a n n 's  h ypothesis  
which r e la t e s  the entropy of a th erm o d yn am ic  s y s te m  to the st a t is tic a l  
p r o p e r t ie s  of the ensem ble:

S = - k  < lo g p  > = - k t r  p lo g p  ( 1 . 1 5 )

The v a r io u s  ty p e s of th erm o d yn am ic  s y s t e m s  c o n sid ere d  above a r e  re la te d  
to correspo n d in g  ty p e s  of e n se m b les :

1) M ic r o c a n o n ic a l  en sem ble: A l l  e ig e n ve c to rs  фп belonging to 
n on-vanishing eigen valu es pn lie  in a su bsp ace  of H ilbert sp a ce  which  
i s  spanned b y  the e ig e n v e c to r s  of the Ham iltonian with e n e r g y  e ig e n 
v a lu e s  in an in te r v a l  5 E  around e n e r g y  E ,  and p a r t ic le  num ber equal 
to N:

S ( E ,  N) = -  k t r p E N lo g p £ N ( 1 . 1 6 )

M a x im izatio n  of S under the constraint ( 1 .  12) g i v e s  at th e r m a l  equilibrium  

Pe. n  = const • ------- ----------- ; g N(E) = density  of states  ( 1 . 1 7 )
E+6E

/ g N (E) dE
E 1

and

E+6E
S ( E ,  N) = к log /  gN ( E ) d E  

E
(1 .1 8 )
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T h u s, in th e r m a l equilibrium  the entropy is  e s s e n t ia l ly  equal to the 
d e g e n e r a c y  of the states  of constant e n erg y.

2) C an o n ical en sem ble: A l l  e ig e n v e c to r s  фп belonging to non
van ishing eig e n va lu e s pn lie  in the su bsp ace  of constant p a r t ic le  number N:

F ( T ,  N ) = t r { p N^ + k T p N l o g p N} ( 1 . 1 9 )

M in im ization  under the constraint ( 1 .  12) g i v e s  at th e r m a l equilibrium

-В£Г 1

p n = - ! z ^ - ;  z N = t r N e " ß^  ß = T ? f  ( ! - 2 о )

and

F ( T , N )  = k T  log Z N ( 1 . 21)

Z N is  the can o n ical partition function. W e sh all  u se  m o st frequ en tly  
this canonical en sem ble.

3) G ran d  can o n ical ensem ble: No r e s t r ic t io n s  on p.

Г2 = t r  {p g f -  p p J T  + k T  p log p} ( 1 . 22)

( J T -  p a r t ic le  number o p e r a to r .)  M in im ization  under the co n stra in t ( 1 .  12)  
g i v e s  at th e r m a l  equilibrium

-S  (й г -М О
Z  = t r  e

■ В (й г - м^ )
( 1 . 2 3 )

and

f i( T ,  ц )  = - k T  log Z ( 1 . 2 4 )

Z  is  the gran d  partition function. It is  m o st convenient to introduce the 
" g r a n d  can o n ical H am iltonian" Then, the gran d can o n ical
e n sem ble  b e c o m e s f o r m a lly  equivalent to the can o n ical en sem ble.

A l l  th e se  equilibrium  st a t is tic a l  o p e r a to r s  com mute with g f ,  and 
a r e  th e r e fo r e  a c c o r d in g  to E q . ( l .  13)  constant in tim e, a s  is  to be re q u ire d  
f o r  equilibrium  d istribution s.

F o r  la r g e  s y s t e m s ,  the th erm o d yn am ic  p r o p e r t ie s  w i l l  be the sa m e  
in the v a r io u s  e n se m b le s ;  the fluctuations m a y ,  h ow eve r, be quite 
different.

V a lu e s  fo r  th e rm o d yn am ic  quantities can either be obtained as  
s t a t is t ic a l  a v e r a g e s  of the correspo n d in g o b s e r v a b le s ,  o r  a s  d e r iv a tiv e s  
of the th e rm o d y n am ic  potentials.  E s p e c i a l l y ,

E = t r  p, ’ =F - T

= t r p ?  = -

8 F  . 
ЭТ '

9 F
ЭХ

к 9{ßF)
ß dß

( 1 . 2 5 )

( 1 . 2 6 )

w h e re  f  is  the o b s e r v a b le  m ultiplying the e x te rn al fie ld  X  to obtain the 
in teraction  t e r m  - if X  in the Hamiltonian.
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F o r  c l a s s i c a l  s y s t e m s ,  p is  just the p ro b ab ility  d ensity  in p hase sp a ce  
Г  with the p r o p e r t ie s

p ё 0 ( 1 - 2 7 )

J p d F =  1 ( 1 . 2 8 )
Г

and a l l  the above fo r m u la e  a r e  tr a n s f o r m e d  into the c l a s s i c a l  analogues  
b y  r e p la c in g  the t r a c e  b y  an in te g ra l  o v e r  p hase sp a ce :

t r p  A  -  f  p A  d r  ( 1 - 2 9 )
г

2. L I N E A R  R E S P O N S E ,  N O R M A L  M O D E S ,  F L U C T U A T I O N S

W e  sh all  be in te re ste d  in the re sp o n se  of a s y s t e m  to a s m a l l  e x te rn a l  
p erturbation, and quote h e re  the fundam ental r e s u lts :  C o n sid e r  a sy s te m
in th e rm o d y n am ic  equilibrium  at tim e t = -  oo. A  s m a l l  e x te rn a l  p e r t u r b a 
tion Y(t) is  sw itched  on a d iab atic ally ,  g ivin g r i s e  to a coupling t e r m

^ m t = - n Y ( t )  ( 2 . 1 )

in the Ham iltonian. C hoose rj such that

y(t) =< h(t)>  = 0  at t = -o o  (2 . 2 )

Th e re sp o n se  y(t) at tim e t is  then to f i r s t  o r d e r  in Y  given  b y  a l in e a r  
relation

t
y(t) = / x(t - t ' )  Y (t ')  dt» ( 2 . 3 )

i
o r  in F o u r i e r  re p r e s e n ta tio n  y(u) = —  J y(t) e 11Jt dt:

2 ^  - o o

oo

y(u) =X(u) Y(u);  х М  = / х ( т ) е 1ИГdr (2 . 4 )
о '

T h e  l i n e a r  re sp o n se  function (g e n e ra liz e d  su sceptibility)  x i s  g iven  by  
the fo rm u la

X(t - t ' )  = ^ < [ n ( t ) , i 7 (t')]> f o r  t > t '

( 2 . 5 )
X ( t - t ' ) = 0  f o r  t < t'

• 00
X(<*>) I  < N T), 4 (0 )] >  e >WT d r  ( 2 .6 )

о

w h e re  n(t) is  in the H e ise n b e r g  re p r e se n ta tio n  of the u nperturbed s y s te m  
(interaction rep resen tatio n ),  and the a v e r a g e  i s  o v e r  the unperturbed  
distribution.
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Since y(t) and Y(t) a r e  r e a l ,  we have

X * ( u ) = X ( - w * )  ( 2 . 7 )

Th e p o les  of the re sp o n se  function a r e  called  the n o rm a l mode fre q u en c ies .  
Sin ce  the unperturbed s y s te m  i s  in th e r m a l equilibrium , none of the 
n o r m a l m odes can be growing, i . e .  none of the p oles  can lie  in the upper  
half  u -p la n e .  A s  a  consequence of this a n a ly tical  p ro p e rty ,  one obtains 
the d isp e rsio n  relation

oo

r e latin g  r e a l  and im a g in a r y  p a r t  of x  to each other. The integration is 
to be c a r r i e d  out above any s in g u la rities  which x(u')  m a y  have on the 
r e a l  a x is ;  at u = u ' ,  the p rin c ip a l  value m ust be taken.

T h e r e  e x is ts  a  v e r y  in terestin g relation  between the im a g in a r y  part  
x"(u )  of the r e sp o n se  function and the tim e c o r re la tio n  function of the 
fluctuations of the coordinate r)(t) in the equilibrium e n se m b le.  T h is  
f lu ctu atio n -d issip atio n  th eorem  w as d is c o v e r e d  by H . B .  C allen  and 
T . A .  Welton and h as the fo rm

Kb(t) n(0) + rj(0) rj(r)> = - ^  J x"(u) coth^ f  e *WT du ( 2 .9 )

F o r  the m e an  sq u are  fluctuation of the coordinate p one obtains thus

x " ( u) coth du (2 . 10)

If a l l  fre q u e n c ie s  fo r  which x"(u>) is ap p re c ia b ly  different fr o m  zero  
s a t is f y

hu «  kT  ( c l a s s i c a l  limit) ( 2 . 11)

one obtains b y  the u se  of the d isp e rsio n  relation  (2 . 8 ) the c l a s s i c a l  
fluctuation th eorem

O 2 > = k T x (0 )  ( 2 . 1 2 )

T h is  re su lt  can also  be obtained d ir e c t ly  fr o m  calcu latin g x(0) as  the 
r e sp o n se  to a  static  f ield  Y :  W e have in the can on ical ensemble fro m  
( 1 . 2 6 )

3 F  /  ч 1 ,  - 8 (£r0 -IJY)
y(Y) = - Э7  = < h > Y = ^  t r u e

X(Y) = | | г = ^ ; « Г ) 2 >у -<г1>2) (2.13)
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We note h e re  the analogous r e su lt  f o r  the sp e c if ic  heat:

E  =

2( | f  ) Y = kß2(< ^ 2> - < ^ ’>2) (2. 14)

The c l a s s i c a l  ap proxim ation c o n s is t s  of the assum ption  that rjY can be  
com m uted with H one ta ke s the l im it  Y ^ O ,  one r e c o v e r s  (2 . 1 1 ).

3 .  S P E C I F I C  M I C R O S C O P I C  M O D E L S

W e c o n s id e r  the fu ll H ilb ert  sp a ce  5 ” a s  the product sp a ce  of " s i n g le  
p a r t ic le  s p a c e s "  У  j of much lo w e r  d im ensionality,  and w r ite  the 
Ham iltonian in the fo r m

w h e re  each o p e ra te s  only in the correspo n d in g  component sp a ce  У i.
It should be noted that this decom position is  not unique, and it often 
r e q u ir e s  co n sid era b le  p h y s ic a l  (and m ath em atical)  intuition to find that 
d ecom position which b r in g s  the e s s e n t ia l  sim plificatio n  to the p ro ble m  
to m ake it tr a c ta b le .  F o r  the sa m e  re ason , the concept of a " p a r t i c l e "  
i s  not unique. One m a y ,  f o r  instance, start  with a s y s te m  of in teractin g  
ato m s, but w il l  then find that a decom position in which the p a r t ic le s  a r e  
phonons i s  m o r e  adequate; or one m a y  start  with a s y s te m  of spins and 
find that a  d ecom position with spin w a v es a s  the p a r t ic le s  m a k e s the 
p ro b le m  t r a c ta b le .

In the s im p le s t  c a s e ,  the single  p a r t ic le  s p a c e s  a r e  only tw o -d im e n sio n al;  
the fu ll  H ilbert sp a ce  of a  s y s t e m  of N  p a r t ic le s  h as  then dim ension 2 N.
Since the P a u li  m a t r i c e s  togeth er with the unit m a tr ix  fo r m  a b a s i s  fo r  
a ll  2 X 2  m a t r i c e s ,  one can in this c a s e  a lw a y s  e x p r e s s  the Ham iltonian

W e sh all  h e r e  c o n sid er  only c a s e s  with tw o -s p in  in teractio n s (no th ree  
and m o r e - s p i n  in teractio n s).

B e c a u s e  of the p r o p e r t ie s  of the P a u li  m a t r i c e s

( 3 . 1 )

a s  a  p se u d o -s p in  Hamiltonian:

( 3 . 2 )

the Ham iltonian can then a lw a y s  be w ritten  in the fo rm
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In spite of this s e v e r e  re s t r ic t io n ,  the set of p ro b le m s e x p r e s s a b le  in this 
f o r m  is  r e m a r k a b ly  ric h .  Sin ce  m o st of the spin Ham iltonians w i l lb e  d isc u ss e d  
in the other le c tu r e s  of this c o u r s e ,  w e d i s c u s s  them h e re  only b r ie f ly .

Th e c a s e  of n o n -in te ractin g  spins is  tr iv ia l ;

Z  = 2N j [ c o s h ß H i ;  < ? ;  >  = tanhßHi
~i >

Only in teractio n s can give  r i s e  to c o -o p e r a t iv e  e ffe c ts ,  and a phase  
tran sitio n , in p a r t ic u la r ,  is  the r e s u lt  of a competition between in te r 
actions fav o u rin g  an o r d e r e d  state, and entropy favou rin g d is o r d e r .

H e ise n b e rg  m a g n e t: H e re ,  the a r e  r e a l  spin v e c t o r s  of e le ctro n s
at lattice  s ite s  i, Й; is  the e xtern al fie ld  acting on (Jj , and v/jj is  the 
g e n e r a l ly  an isotro pic  interaction between ai and <?j . F o r  iso tr o p ic  
exchange

v ij = v ij * 1  ( 3 .4 )

F o r  dipolar interaction,

2

v ij = T 5 - [ 3 ? ij -? ij - 4  • 1  1 (3-5)
ij

w h e re  p i s  the dipole moment.

Isin g  m a g n e t: T h is  is  a H e ise n b e rg  m agnet with e x tre m e  anisotropy:

^ij = v ij ’ ez ( 3 .6 )

In g e n e ra l ,  one r e s t r i c t s  a lso  the field to the z-d ir e c tio n .  Then, the 
m odel b e c o m e s c o m p le te ly  c l a s s i c a l :

^ - X h ^ - A ^ v ^ :  p ? = l  ( 3 . 7 )

‘ i.j

L a tt ic e  g a s  [ 1 ] : T h is  is  a p a r t ic u la r ly  sim ple  m odel of a g a s  the 
m o le c u le s  of which can only occu p y lattice  s i t e s  i, but which s t i l l  allow s  
one to study the p ro b le m  of condensation. Tw o  m o le c u le s  occupying  
lattice  s ite s  i and j in te rac t  with an e n e rg y  Wjj , so that the Ham iltonian is

^  ^  w ij n i n j П; ( 3 . 8 )

i.j '

W e have included the c h e m ic a l  potential t e r m  - p ^ n j  in the Hamiltonian,

sin ce  we want to keep only the num ber of lattice  s i t e s  constant, but want 
to u se  the gran d  can o n ical en sem ble with r e s p e c t  to the num ber К  of 
m o l e c u l e s .
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Since th ere  a r e  two states p e r  lattice  site (it can either be occupied  
o r empty), the Hamiltonian m ust again be e x p r e s s a b le  in p se u d o -sp in  
f o r m . In fact,

n i = £ ( l + K i )  (3 -9)

and th e refo re  with w 0 :

j

i.j 1

T h u s, the la tt ic e  g a s  is  com p letely  equivalent to the Is in g  magnet in 
constant e x te rn a l  field . T a b le  I shows the c o r resp o n d e n ce s obtained; 
the la st  line follow s fr o m  the fac t  that F gas + p N  i s  the id en tically  van ishing  
potential.

Since the v e r y  important h a r d - c o r e  repulsion between atom s is  
n atu rally  taken into account in the la ttic e  g a s  m odel (two atom s cannot 
get c l o s e r  than the lattice  constant), this model, despite its s e v e r e  r e 
strictio n s,  is  actu a lly  su p e r io r  to m od els of f r e e l y  m oving atom s which  
n e glect  the h a r d - c o r e  repu lsion .

T A B L E  I. C O M P A R IS O N  O F  ISING M A G N E T  
A N D  L A T T I C E  G A S

Ising magnet L a tt ic e  g as

4v

N um ber of spins N  

N u m ber of up spins ^

R elativ e  magnetization

N + 

R =

i ( i  +  R )

H

2(H - v 0)

F Ismg - i N H

H - T - F lsing / N

w

Volum e N  (in units of c e l l  volume)  

N um ber of m o le c u le s  К

2  p - 1

D en sity  p = K / N

M , Wq

2 4

P

F gas + iN p

P r e s s u r e  p = - F gas / N
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It is  a str a ig h tfo r w a r d  m a tter  to g e n e r a liz e  th is  m odel to the c a se  
of a  b in a r y  m ix tu re  of two s o r t s  of atom s A 'a n d  В  with in teractio n s w aa  , 
w BB, and w AB.

B C S -S u p e r c o n d u c t o r  [ 2 ] : The B C S  Ham iltonian of a  su perconductor is

I

(ek - k 0 ( n kt + n - k * )  - Y  v k k ' b k V ( 3 . 1 1 )

w h e re
к k .k ’

II2c t ,
c k o c ka!  “ k c k t c "kJ

, t _ t t 
; D  ̂ C -k  j  Ci{| ( 3 . 1 2 )

and the c h e m ic a l  potential t e r m  h as again been included. T o  a given  
set (kt, - k t ) ,  th e re  belon gs a fo u r-d im e n s io n a l  sp a ce  spanned b y  the 
fo u r sta te s  | n ^  , n-k;^>. T h is  sp ace  d e co m p o se s again  into a product  
of two tw o -d im e n sio n al su b sp a c e s:  one spanned b y  the two p a ir  states

I/>! = I 00 >  ; Ih2 = | 1 1  >  ( 3 . 1 3 )

the other spanned b y  the two s i n g le -p a r t ic le  states

* 1  = | 0 1 > ;  <P2 = | 1 0 >  ( 3 . 1 4 )

If one w r it e s  where

^ 1  = к * ^ ) ( n k t + n - k i  - 1 ) -  Y  V k k 'b k b k'
к к .к '

& 2 = Y  (£k
к

( 3 . 1 5 )

( 3 . 1 6 )

then i s  n o n -ze ro  only in the p a ir  s p a ce ,  and is  just a constant.  
T h e r e f o r e ,  ^  m ust again p e rm it  a  p se u d o -s p in  rep r esen tatio n .  In fact,

CTk = b k + b k; < * £ = 7  (b k " b k): °k  = 1 - n k t - n - kt ( 3 . 1 7 )  

W e thus obtain the A n d e rs o n  spin m odel of a su perconductor

- ^ ( e k - n )  CTk Y  Vkk' (CTkCTk' + crkcrk') + ̂ V k  -M) (3 .  18)
к kk' к

It is  equivalent to a  H e ise n b e rg  m agnet with an iso tro p ic  exchange  
in a n on -u n iform  m a g n etic  field, but the spin o p e r a to r s  act on the o cc u p a 
tion of p a ir  states  in r e c i p r o c a l  sp a ce .

O r d e r - d i s o r d e r  f e r r o e l e c t r i c  [ 3 - 5 ] :  B l in c ,  de Gennes, and Brou t,  
M ü lle r  and T h o m a s  have studied a m odel of a f e r r o e l e c t r i c  in which  
each f e r r o e l e c t r i c  ion s it s  in a  d o u b le-w e ll  potential in which it can
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tunnel b a ck  and forth  with a tunneling fre q u en c y  2Г/Й. D ifferen t ions  
in te ract  with an e le c t r o s t a t ic  dipole interaction vy . It is  a s su m e d  that 
the p r o p e r t ie s  of the f e r r o e l e c t r i c  can be adequately  d e sc r ib e d  in the 
su b sp ace  which is  spanned b y  the lo w est p a ir  of states ф?Ут т  and Ф iantlsymm 
of each ion. With the b a s i s  functions

Ф 11 = - р ( Ф \  - t ' l )  ( 3 . 1 9 )

one obtains the p se u d o -s p in  Hamiltonian

-  r I CTi ^  (3 - 20)
i i . )

It i s  equivalent to an Is in g  magnet in a t r a n s v e r s e  m a g n etic  fie ld .  In 
F i g .  1 ,  we have  s c h e m a t ic a l ly  indicated the ty p e s  of p hase tr a n sit io n s  found 
in the v a r io u s  c a s e s .

T h is  p se u d o -s p in  fo rm u latio n  p r o v e s  to be v e r y  convenient. One 
only h as  to r e m e m b e r  that the d ire ctio n s x, y ,  z in spin s p a ce  have  nothing 
to do with d ire ctio n s in r e a l  sp a ce ,  and the spin does not have  the tim e  
r e v e r s a l  b e h avio u r of a  r e a l  spin.

A s  an e xam p le  f o r  a m o d e l with high er dim en sio n ality  of the s in g le 
p a r t ic le  s p a c e s ,  w e mention only the H e ise n b e rg  m agnet with S >  i :

&  = £  S j J j j S j - g ^ - S ,  (3.21)
i . j  1

T h e  s i n g le - p a r t i c l e  s p a c e s  h av e  dim ensions 2 S + 1 ,  the fu ll H ilb ert  sp ace  
d im ension (2 S +  1 ) N.

In the lim it of
S - o o ;  S / S  = ct ( 3 . 2 2 )

J j j  S 2 = w.j, g S  = m finite  

one obtains the c l a s s i c a l  H e ise n b e r g  magnet

" I  Z  - m ^ H j - ? 1 ; a ?  = 1 ( 3 . 2 3 )

i . j  ‘

the p hase  s p a ce  of which c o n s is t s  of the s u r f a c e s  of N  s p h e r e s .

4. MOLECULAR FIELD APPROXIMATION

T h e  fundam ental d ifficu lty  in s t a t is t ic a l  m e c h a n ic s  is  a  p r a c t i c a l  one: 
E x c e p t  in v e r y  s p e c i a l  c a s e s ,  it is  im p o ss ib le  to compute the t r a c e  in

Z  = t r  e ' 8# '
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I .  I S I N G  M A G N E T  A N D  L A T T IC E  GA S

M agnetization as function o f  field at constant 
temperature.

M agnetization as function o f  temperature at 
constant field.

I I .  S U P E R  C O N D U C T O R

Pair am plitude as function o f  к at constant 
temperature T <  Tc .

Ш . F E R R O E L E C T R I C

Polar am plitude <oz> and tunnelling amplitude 
< o x> as functions o f  temperature.

Density as function o f  ch em ica l potential at 
constant temperature.

Density as function o f  temperature at constant 
chem ical potential.

Pair potential = £  v j^ . < o^- > as function 
o f  temperature.

FIG.l. Phase transitions in pseudo-spin systems (schematic).

in the lim it of a la r g e  s y s te m . One th e refo re  h as to r e s o r t  to a la r g e  extent 
to approxim ation m ethods. We shall d is c u s s  in the following the m o re  
important ones, and th e ir  sh o rtco m in g s.
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The s im p le s t  approxim ation sch em e  available  is  the m o le c u la r  f ield  
ap p ro xim atio n  ( M F A ) ,  which we sh all  p rese n t h e r e  f o r  the c a s e  of the 
Isin g  fe r r o m a g n e t :

" 1  X  ' X HiMi ^ i  = ± 1 ) (4 - l )
i, j i

T h e  g en e ra liza t io n  to other c a s e s  is  str a ig h tfo r w a r d  a s  long a s  o p e ra to rs  
actin g on different s in g le -p a r t i c l e  s u b -s p a c e s  com m ute, which is  the 
c a s e  fo r  a l l  spin s y s t e m s .

A c c o r d in g  to E q .  (4. 1),  a given spin p; is  under the action of an 
instantaneous lo c a l  field

И ’ocal = £  Vjj/i. + H ; (4.2)

The b a s i c  idea of the M F A  c o n s ists  in the following: We know fr o m  
qualitative arg u m en ts  that in the o rd e red  state in uniform  field  Hj = H, 
th e re  e x is ts  a u n iform  m agnetization R:

<Mi> = R (4.3)
One a s s u m e s  that the fluctuations of-the m agnetization a r e  sm a ll ,  which  
is  p o s sib le  only if  the fluctuations in the lo c a l  field a r e  s m a ll .  One t h e r e 
fo r e  ap p ro x im a te s  the lo c a l  f ield  b y  its  sta t is t ic a l  a v e r a g e ,  the mean  
m o le c u la r  fie ld  (W e is s  field)

H*4 = < H j°cal >= v(0)R +H  (4.4)

H ere, is  the q = 0 component of the F o u r i e r  tr a n s f o r m  of

the interaction

j

в ’* * « ( 4 . 5 )

But the s t a t is t ic a l  m e c h a n ic s  of a sin gle  spin in a constant field is  a 
t r i v i a l  p ro b le m . One obtains fo r  the a v e r a g e  moment of s p i n p f :

< p ; > = R = tanhß[v(0)R + H] (4 .6 )

which is  a s e lf -c o n s is t e n t  con d ition for determ ining the m agnetization  
R = R ( H , T ) .

B e f o r e  d is c u s s in g  the r e s u l t s  of the M F A ,  we shall p rese n t two 
m o r e  f o r m a l  methods to obtain the M F A .

M F A  as  the b e st  independent p a r t ic le  theory: Another w a y  to e x p r e s s  
the assu m ption  of negligible  fluctuations in the m agnetization is  to a s su m e
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that the ц  j fluctuate independently of each  other, i .  e. that th e ir  co r r e la tio n  
i s  n egligible.  F o r  c o m p le te ly  u n c o r r e la te d  P i 's ,  the p ro bab ility  p(Mj . . . pN) 
sp lits  into a product of single spin p ro bab ilit ies :

P ( M l - • - P N ) = I l M ^ i ) ;  *г; р ; = 1  ( 4 .7 )i

We th e r e fo r e  expect to obtain a good approxim ation to the equilibrium  
f r e e  e n erg y ,  if we m in im ize

F = tr {p -  kT p log p} (4.8)

o v e r  a l l  product t r i a l  functions of the fo r m  ( 4 . 7 ) .  F o r  such product  
functions,

F  =-jXtrii ( pi p i v ü ^ i ) -  Xtri(piPiHi) + kTXt r j  Pj log  p ^ (4 .9 )

It is  in str u ctiv e  to find the f r e e  e n e r g y  fo r  given  a v e r a g e  mom ents

<Mi >= rj (4.10)

which w i l l  f in ally  be d eterm ined b y  m in im izin g  F  with r e s p e c t  to the r j .
In other w o rd s ,  we p e r f o r m  the m inim ization of F  in two steps: F i r s t  
with r e s p e c t  to a l l  " in t e r n a l"  d e g r e e s  of fre ed o m , givin g a f r e e  e n e r g y  
Ffr-L . . . r N, H, T) depending on the rj and H s e p a r a te ly ;  and only fin ally  
with r e s p e c t  to the " e x t e r n a l "  v a r i a b le s  Г ; , giving the th erm o d yn am ic  
equilibrium  v a lu e s  r ;  = Г; (H, T ) .

W e then have to find the m inim um  of (4. 9) under the con stra in ts

tri P; = 1; trj (pih1> = ri ( 4 . 1 1 )

With the L a g r a n g e  m u ltip lie r s  К  j = - k T  (log Z i  -  1) and X i one obtains 
fo r  the v a r ia t io n s  of F

-|f  - ^ K j  tr j  pi - ^ \ j  t r  pi р; j ^ = ^ t r j  { [ - A j P j  + k T  log pj Z j ]  6  p; } ;

whence

H e re ,

1 -ел,Pi

Л, = H^+Xj

( 4 - 1 2 )

H ^  being the m o le c u la r  field

H + H. 1
3

(4 .1 3 )
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A s  u su al,  the L a g r a n g e  p a r a m e t e r s  A, a r e  the f o r c e s  n e c e s s a r y  to 
s a t i s f y  the c o n stra in ts  ( 4 . 1 0 ) .

Th e L a g r a n g e  p a r a m e t e r s  Z j  and A ; a r e  determ ined b y

Z j  =trj е8Л‘ м‘ = 2 cosh ß A i ( 4 . 1 4 )

r j  = ~  t r ä р; eßAl|Jl = ta n h ß A j ( 4 . 1 5 )

Th e f r e e  e n e r g y  can be w ritten

F  = £  v ^ r j  - Y Ui ri +kTI  A ( r i )  ( 4 - 1 6 )

i. j i i

w h e re  (see F i g .  2)

A (r i ) = ß A i r i - log Z i = l ° g - p p *  + p p l ° g  Ц р -

= r ; a rt a n h r i  + lT o g ( l  -  r ? )  - log  2 ( 4 . 1 7 )

has the p r o p e r ty

■d-̂  = artanh r  ( 4 . 1 8 )

Equation (4. 16) h as an e s p e c ia l ly  s im p le  fo rm : it e x p r e s s e s  the f r e e  
e n e rg y  a s  a sum of two t e r m s ,  the f i r s t  of which is  just the Hamiltonian  
igf^rj . . . r N) taken at the a v e r a g e  v a lu e s ,  and the second is  a  u n iv e r s a l  
function of th e se  a v e r a g e  v a lu e s .

FIG.2. А(г) =алг4 -  log Z i.

M in im izin g  (4. 16) with r e s p e c t  to the Г; g iv e s  the s e lf -c o n s i s t e n c y  
equations

-log Z

r j  = tanhß v i j r j + H i p  ( 4 . 1 9 )

j

In the f e r r o m a g n e tic  c a s e  in u n iform  field, the lowest f r e e  e n e rg y  is  
obtained f o r  r ; = R ,  w h ere  R is  d eterm ined b y  ( 4 .6 ) ,  and

F = N { -  iv (0 )  R 2 - HR + kT A(R)} (4.20)
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T h is  is  the m o st c le a n -c u t  derivation of the M F A .  It is ,  h o w ev e r,  difficult  
to se e  how it could be im p ro ved  in a s y s te m a tic  fashion. We th e refo re  
d i s c u s s  b r i e f l y  another method in which the M F A  a p p ea rs  as  the f i r s t  
te r m  of an expansion.

M F A  by an expansion method; W h e r e a s  the introduction of p r e s c r ib e d  
a v e r a g e s  r j  w a s  p u r e ly  optional above, in this method the con stra in ts a r e  
v ita l  f o r  its s u c c e s s .  W e w r ite  down the conditions of minimum f r e e  
e n e r g y  under the con straints

t r  p = 1 t r p f j j  =Tj

p erm ittin g a r b i t r a r y  p(p х . . .  p N ) as t r i a l  functions. We find

1 - ß £ r (X) _
p = — e ; Z = t r e  b

( 4 .2 2 )

(4. 23)

where

ё г (Х) = з г - )  M h i  - n ( 4 .2 4 )

The f r e e  e n erg y  is

F  = - k T  log Z ( 4 .2 5 )

We now u se a t r ic k  to evaluate the partition function. We invent a 
s im p le r  Hamiltonian with a pro bab ility  distribution

P о
- 6 «

Z 0
Z 0 t r  e - ß £ o (4. 26)

F r o m  the identity

Z . Z 0 < e - ' * - W - « ’ > 0 ( 4 . 2 7 )

wh ere  the a v e r a g e  (  ^>0 is taken o v e r  p 0 , we obtain fo r  the f r e e  e n erg y

- ß F  = log Z  0+ log < e"ß(# ' (X)’  ^ ) > 0 ( 4 .2 8 )

T h is  is  st i l l  e xact.  We now a s su m e  that ^ ff0 is  su fficien tly  c lo se  to 
that we can expand log ^ exp[- ß ( g ? ( X) -  j i f  о)] У  and keep only the f i r s t  
te r m .  Then,

F  = - k T  l o g Z 0 + < ^ (X) - ^ 0 > 0 (4 .2 9 )

We now u se  fo r  that p a r t ic u la r  n on -in teractin g spin Hamiltonian

# 0  = - ^ A i P i ( 4 .  3 0 )
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which g iv e s  r i s e  to the sa m e  a v e r a g e  m om ents r j :

<jUj > 0 = ta n h (ЗЛi = r ; ( 4 . 3 1 )

Л; is  evidently  the m o le c u la r  f ield  at site i.
Since p0 f a c t o r s  into s in g le -s p in  p r o b ab il it ies ,  we have

i,j i i

and s i m i l a r  to (4. 17)

log Z 0 =

In sertin g  th ese  e x p r e s s io n s  in ( 4 .2 9 ) ,  we r e c o v e r  (4. 16).
R e s u lt s :  L e t  us f i r s t  find whether the s y s te m  h as a p hase tran sitio n ,

and to what type of m agn etic  o r d e r .  W e start  at a  high te m p e r a tu r e  with  
the s y s t e m  in the d iso r d e r e d  state, and g ra d u a lly  red u ce the te m p e r a tu r e .  
W e obtain a p h a se  tr an sitio n  when at som e te m p e ra tu re  T  = T c the s e l f -  
co n s iste n c y  equations ( 4 . 1 9 )  have a n o n -t r iv ia l  solution rj «С 1 fo r  
H i=  0. T h is  le ad s to a l in e a r  eigenvalue pro blem  f o r  T c :

The C u r i e  te m p e r a tu r e  is  the l a r g e s t  eigenvalue and the correspo n d in g  
eigenfunction d e s c r i b e s  the type of m agnetic  o rd e rin g .  W e diagonalize
( 4 . 3 2 )  by F o u r i e r  tr a n s f o r m s

Th e eig e n va lu e s a r e  thus just the F o u r i e r  tr a n s f o r m s  v(q) of the in te r 
action. If v(q) a s s u m e s  its m a x im u m  at q = 0, w e obtain f e r r o m a g n e tic  
o rd e rin g  with a C u r ie  te m p e r a tu r e

If v(q) a s s u m e s  its  m a x im u m  f o r  q = Q / 2 ,  w h e re  Q is  som e r e c i p r o c a l  
lattice  v e c to r ,  we obtain s im p le  tw o -s u b la tt ic e  an tife rro m a g n e tic  o rd e rin g  
If v(q) a s s u m e s  its m a x im u m  at a g e n e r a l  q -v a lu e ,  we obtain a g e n e r a l  
an tife rro m a g n e tic  spin stru c tu re  with w ave number q.

W e  sh a ll  d i s c u s s  fu rth e r  the c a s e  of fe r r o m a g n e tic  o rd e rin g .  F r o m
( 4 .2 0 )  and ( 4 .6 ) ,

(4. 32)

tv(q) - kT c ] r q = 0 ( 4 . 3 3 )

k T c = v(0) (4. 34)

F  = N { - i v ( 0 ) R 2 -H R  + k T A ( R ) }  

R = tanhß [v (0)R  + H]
(4.35)
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we obtain f o r  the e n erg y ,  sp e c if ic  heat, and su scep tib ility

E  = j g ( ß F )  -  N { - | v ( 0 ) R 2 - H R }

= (If )H = №  artan h 2R  ' T I'R O )  ( 1 - R 2 ) ■ 

_ Л н Л  „  1 -  R 2
X ЧЭНУт '  P l - ß v ( 0 ) ( l - R 2 )

N e a r  T c , we obtain with т = | T  - T c | / Т  

R cc T i

X ос t " 1 with different coefficien t above and below  T c 

ch  finite discontinuity at T c 

R ^ H 1 at t  = 0

( 4 .3 6 )

( 4 . 3 7 )

B e lo w  T c , in going fr o m  p ositive  to negative f ie ld s ,  we find a f i r s t  o r d e r  
tr an sitio n  at H = 0 without latent heat, but with a finite jump 2R in 
m agnetization. L e t  u s find the stab ility  l im it s  in the m e ta stab le  re g io n s  
w h e re  R is  an tip a ra lle l  to H. We obtain f o r  s m a ll  deviations 6r; fr o m  
the equilibrium  state r j= R

F - F ° = i  I  { - v u + k T r ? V } 6 r i 6ri <4 - 38)
ij

o r  in t e r m s  of F o u r i e r  tr a n s f o r m s

F ‘ F 0 = ! 1 { - у(ч) + Т § ? } |б Г <И2 ( 4 .3 9 )
q

Sin ce  fo r  the fe r r o m a g n e t,  v ( 0 ) > v ( q )  f o r a l l q ^ O ,  the instability  o c c u r s  
f o r  the q = 0 mode, when

1 - R 2 = k T /v (0 )  (4 .4 0 )

E lim in a tio n  of R betw een (4 .6 )  and (4 .4 0 )  g iv e s  the stab ility  l im it s  in the 
T - H - p l a n e .

With the help of the table given  in section  3,  it is  an e a s y  m a tte r  
to tr a n sla te  th e se  r e s u l t s  to the c a s e  of the lattice  g a s .

W e  have  sketched som e of the r e s u l t s  in F i g .  3 .  A s  w i l l  be d is c u s s e d  
fu rth e r,  th ey  a r e  i n c o r r e c t  in m a n y d etails,  but they do g ive  the c o r r e c t  
q ualitative beh av io u r.  In o r d e r  to understand th is  qualitative s u c c e s s  
of the M F A ,  we note that the M F A  a c tu a lly  b e c o m e s  c o r r e c t  in th ree  
lim itin g  c a s e s :
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Spontaneous m agnetization as a function o f  
temperature.

M agnetization at constant temperature as a 
function o f  field.

R eciprocal susceptibility at H « 0  as a function 
o f  temperature.

FIG.3,

S pecific heat at H = 0 as a function o f  
temperature.

Results o f the MFA.

1) At high temperatures, as can be seen from the expansion leading 
from (4.27) to (4.28).

2) At low temperatures, because then all fluctuations freeze out.
This argument is not so good for a Heisenberg ferromagnet, since there 
the fluctuations freeze out much more slowly because of the low frequency 
spin waves (see Chapter 8). It does not hold at all for a quantum system 
with non-vanishing zero point fluctuations, e .g . , the Heisenberg anti- 
ferromagnet.



THOMAS37  6

3) For long range interactions, since then the local field (4.2) is 
the sum of contributions of many partners, and we expect its fluctuations 
to go as 1 / z, where z = number of partners interacting with a given spin.

The whole treatment is easily generalized to the other cases mentioned 
in section 3.

5. ORNSTEIN-ZERNIKE THEORY OF FLUCTUATIONS

We have obtained the MFA under the assumption that the fluctuation 
of the magnetization is small. We can check the internal consistency by 
actually calculating the fluctuation from the fluctuation theorem which, 
for the case of the Ising model, we can use in its classical form (2. 13).

When we perturb the system by an incremental field h; , we obtain 
a coupling term in the Hamiltonian

h i h i  = M q h - q  (5. 1)
i q

where /uq and hq are the Fourier components defined by

1 V  'tf'Ri 
aa \7w A a i e  

1

According to (2.13), we therefore obtain for the mean square fluctuation 
of the Fourier component Mq of the magnetization,

<hq> -< h q >2 = k T .Xq (5.3)

where xq is the susceptibility for the linear response to the Fourier com
ponent hq. For uniform magnetization,

<Mq> =s/NR6q, 0 (5.4)

By expanding (4. 19) around the state of uniform magnetization, we obtain 
for the susceptibility in MFA

ß(l  - R2)
1 -ßv(q) (1 -R 2) (5.5)

and therefore,

/ 2 ч /  \2 (1 -R2)_____  e.
< M q > - < h q > - !_ß v (q)( i_R '<i) (5 - 6)

This result shows the following: At high temperatures in the paramagnetic 
phase (R = 0), ß v(q) < ß v(0) 1 , and the fluctuations are of order unity
and therefore very small compared to Jn . As we approach the Curie 
temperature ßv(0)-> 1 , and the fluctuations of the small q (long wave
length) components of the magnetization become large. At the Curie
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temperature itself, the fluctuation diverges for q->-0. Below the Curie 
temperature, on the other hand, the factor 1 - R2 removes the divergence 
and very soon enforces again very small fluctuations.

Thus, the MFA appears to be well justified at high and at low tempera
tures, but becomes drastically inconsistent in the transition region.
This difficulty is not accidental, but is inherent in the problem, as can 
be seen from the following argument: The mean square fluctuation

У - pq )>2 is the Fourier transform of the correlation function

g(Rij ) = <Pi Pj > - O i ><Pj > (5.7)
As we approach the Curie temperature, the range of the correlation in
creases and becomes infinite at Tc , indicating the onset of long range 
order. But an infinite range of g(Rij ) causes a divergence of the q = 0 
Fourier component. In other words: the onset of long range order re 
quires the divergence of the fluctuation.

We can use (5.6) in order to get a first approximation of the cor
relation function: For small q,

which gives

v (q) v(0) 1

<M2q > - < M q>2
const 

—5T—5 +qz

(5.8)

(5.9)

where

- 2o Tc (l-R ^ (5.10)

The Fourier transform of (5. 9) gives for the asymptotic behaviour of the 
correlation function

" Kl Rij I
g(Rq) = const

R,-
(5.11)

which shows that к"1 is the correlation range. Close to T , we obtain

|T-T,|-l -J. к cc t  2 ; (5.12)

showing clearly the divergence of the correlation range. 6

6 . THE SPHERICAL MODEL *[6, 7]:

We insert here a short discussion of the spherical model of Berlin 
and Kac, mainly because some of our later results will turn out to be 
identical to those of the spherical model. In the spherical model, the
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value of the spin p; at a given lattice point i is not restricted to the values 
± 1 , but can take on any value between -JW  and +JW such that

(6 . 1)

If one interprets the state {p j . . . pN } as a point in N-dimensional space, 
(6. 1 ) permits all states corresponding to points on the surface of the 
N-dimensional sphere, wher'eas the Ising model permits only states 
corresponding to the corners of the N-dimensional cube. We assume 
the same Hamiltonian as in (4. 1), but take the magnetic field to be zero:

(6 - 2)
ij

This model describedby (6 .1) and (6 . 2) has the merit to be rigorously 
solvable: The partition function can be written

Z = J d p x . . . J dpN -N ^ e x p ^ J ^ V ijP iP j)  (6.3)
i ij

Use the integral representation of the 6-function

6(x) 1
27ri

+ 1 oo
ds

make the quadratic form in the exponent positive definite with the aid of 
(6 . 1), and perform an orthogonal transformation of the p; to their Fourier 
transforms pq in order to diagonalize the quadratic form. Then, the 
N-fold integral factorizes into a product of N identical single integrals, 
which are easily evaluated. Performing the remaining integral over s 
by a saddle-point integration yields the partition function and therefore 
the free energy, which in turn determines internal energy and specific 
heat. In order to obtain the susceptibility in the paramagnetic phase, 
one uses the fluctuation theorem (5.3) with <(ря)> = 0 and evaluates.
^Pq У by an analogous method as described above. The result is 
remarkably simple: The susceptibility is

Х Ч = 1 - ß[v(q) - X] (6,4)

it differs from the MFA result only by the appearance of the saddle point 
parameter X. This parameter acts as a sort of chemical potential to 
guarantee the saddle point condition which takes the form of the sum rule

/3n X X<1 “  n X ^ ^  = 1
ч q

(6 .5 )
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The three-dimensional spherical model has a phase transition with 
a Curie temperature which is somewhat lower than the MFA result (4.32); 
the two- and one-dimensional spherical models show no phase transition. 
In the paramagnetic phase, the spherical model turns out to be a much 
better approximation to the Ising model than the MFA.

Below the phase transition, on the other hand, the spherical model 
behaves very differently from the Ising model: The specific heat, for 
example, becomes a constant independent of temperature. This is easily 
traced to the occurrence of a large fluctuation of the q = 0 Fourier com 
ponent of the magnetization in the ordered phase which is possible on 
account of (6 . 1 ).

One can try to remedy this deficiency by considering a modified 
spherical model in which this large fluctuation of the order parameter 
is avoided: For a given value of the magnetization R, write

Pi = R + 1/ i (6 . 6)

Assuming negligible fluctuations in the magnetization requires

J i / ? = N ( 1 - R 2) (6.7)
i

and

£ * =  - | N V ( 0 ) R 2 - |  ^ V i j i q i q  ( 6 .8 )
i.j

We are thus led to consider a spherical model with the Vi as variables, 
and (6 . 8) as the sphericalization condition. The susceptibility in this 
"modified spherical model" of Brout becomes

1 - H ̂
ХЧ = 1 -ß(vq -X )(l - R2) (6Л0)

it differs from the MFA result (5 .6) again only by the appearance of a 
"chemical potential" X which is determined by

ßN X  х ч H n  = 1 " R 2 (6- n )
ч q

The magnetization R is determined self-consistently by minimizing the 
free energy with respect to R. The result

R =tanh [j3(v(0)-X)R +H] (6.12)

is again the generalization of the MFA formula (4. 6).
This modified spherical model has indeed eliminated the large un

physical fluctuations of the magnetization. Unfortunately, it is still not 
acceptable as a meaningful approximation to the Ising model in the tran
sition region, because in this region it gives an increase of magnetization 
with increasing temperature (i.e . a first order phase transition some
what above Tc) and an associated phase transition at finite fields.
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This same sphericalization method can, with only slight generalizations, 
also be applied to the classical Heisenberg magnet (3. 23).

7. THE ONSAGER REFINEMENT OF THE MFA [8- 111 :

We have seen that the principal failure of the MFA lies in the neglect 
of correlation. For the particular case of dipolar interaction of classical 
dipoles, there exists a prescription due to Onsager to modify the molecular 
field in such a manner that the most important correlations are taken into 
account. We shall briefly review Onsager's argument, and then turn to a 
discussion of its generalization to other types of interaction, in particular 
to the Ising model, and of the justification for the procedure.

FIG.4 . a) A dipole oriented by the local Lorentz field e 4  b) Fluctuating dipole carrying a polarization 
cloud; c) The reaction field Er , parallel to the instantaneous direction o f the dipole.

In the case of interacting dipoles, the neglect of correlations leads 
to a catastrophe: MFA (which is then called Lorentz field theory) predicts 
a ferroelectric transition of polar liquids with a Curie temperature far 
above the melting points. In 1936, Onsager [8] pointed out the physical 
origin of this failure, the principal point being as follows: In MFA, a 
given dipole is considered to be oriented by the local Lorentz field Ё1 
which is the sum of the external field and the average field due to inter
action with all other dipoles (Fig. 4a). However, as the dipole fluctuates, 
it carries a polarization cloud with it (Fig. 4b). The field due to interaction 
with this polarization cloud — the reaction field Йг — is always parallel 
to the instantaneous direction of the dipole, and has, therefore, no orienting 
effect on that dipole. Thus, MFA overestimates the orienting field by an 
amount equal to the average reaction field. The correct orienting field 
on a given dipole is the cavity field E c

Ec = EL - < E r > (7. 1)

it is independent of its instantaneous direction, and can be considered 
as the molecular field at the site of the given dipole, when this dipole 
is removed from the system (Fig. 40).

The average dipole moment is, in the spirit of effective molecular 
field theory, given by

< p >  = p 5 f ( p E c / k T ) ^ p 2E c /3 k T (7 .2 )
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where &  is the Langevin function, and p the dipole moment. For small 
fields, one obtains the polarizability and hence the dielectric constant e. 
Onsager uses linear electrostatic theory in continuum approximation to 
express Ё г and Ёс in terms of e, and thus arrives at a self-consistent 
equation for e, the solution of which — in contrast to MFA — is found 
to agree well with the experiment. We wish to emphasize that this good 
agreement is somewhat surprising at first sight, since one might expect 
that g r and f i c were strongly influenced by dielectric non-linearities due 
to local saturation, which have not been taken into account.

Together with R. Brout, the author has extended the Onsager method 
to other many-particle systems, in particular to the Ising model, and 
has analysed its physical and formal contents. Our principal finding is: 

The Onsager prescription of subtracting the reaction field is the 
necessary modification of MFA in order to guarantee the fluctuation 
theorem (2. 13), i .e . , to remove the inconsistency discussed in 
chapter 5.
Applying the Onsager concept to the Ising model, we have to determine 

which part of the instantaneous local field (4. 2) changes sign with , 
and which part is independent of p; . We have

H ^ al (^ = ±1) = £ у ц < P j> iu  + H f"  (7.3)

and obtain for reaction field and cavity field,

ч - i  X v < “ . > „ - < > . > „ >  <7 -'4 >

H i  X T U * Н Г '  <7 ' 5 )
j

Here is the conditional average of pj if p; is up or down,
respectively.

Following Onsager, we now calculate < by using linear response
theory. We allow for arbitrary external fields, i .e . for arbitrary un
conditional averages <(pj )> . We then add a field h; at lattice site i and 
obtain in terms of the susceptibilities Xji

<Mj > ' - < h j > = Xjihi (7.6)

where primed quantities are taken at the value h ;, unprimed ones at 
h; = 0. The field h; is eliminated by using the same equation for j = i:

< й].> ' -  <pj > = М ( < м. > ' - < й . »  (7. 7)
M i

This equation, which is evidently correct for small h; , is now used to 
calculate j )> it i as the limit <( ц j )>1 -» ± 1 (Fig. 5).
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F IG .5. C alcu lation  o f  when < ^ j  )>• -* ± 1 .

This procedure certainly appears dubious at first sight, since
-»±1  requires Ь(->±оо. In other words, local saturation effects 

are expected to play an important role. The surprising result is, how
ever, that although Eq.(7.6) becomes invalid for high fields, Eq.(7.7) 
is actually an exact result. This is a consequence of the fluctuation 
theorem

X« = / 3 [ < M i h j > - < h i > < h j > ]  (7.8)

and can be seen as follows: By definition of the conditional averages, 
one has

P i t < ^ > i t + P u < f J i > i r  ( 7 ' 9 )

Pit<Mj>l t - pu<^>i4, = O iP i>  (7Л °)

where p ид = i  (1 ± <(p ; У) is the probability of finding ju; = ± 1 , respectively. 
One thus obtains with the help of (7. 8)

- < h i h j  >  -  < M i >  < P j >  
± l + < h i > (7.11)

= ^ ( ± 1 -  < ^ i > )Mi

This proves that Eq. (7.7) is indeed correct in the limit of complete 
saturation of spin i, which is all that is needed for the calculation of 
H[ and Hf (7.4, 5). But Eq.(7.7) is actually correct for a llh ,: since
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the H?xt are completely arbitrary, Eq. (7. 11) holds not only for h 4 = 0, 
but for any value of h j :

X j i  ( h j )  _  Э j ) > _ ^ P j / ’ i t  -  ‘( h i  У
Х Н (Ь, )  - 9 < M i > '  ‘  l - < P i >'

This differential equation for <̂ pj У' as a function of has the
solution

< M i > i t  -  < h i > '  .  < P j > i t  -  <  M j )  

1 -  < M i > ( l - < P i >
(7.13)

By again using Eq. (7. 11), we obtain (7. 7). 
From (7.5) and (7. 12), we obtain

H l vü < ^ i> - <^i> V . . V  ..  +  
v l ]  л  J1 ^ H (7.14)

It is this cavity field which is considered as the effective orienting field 
in the Onsager theory. Therefore,

< p ; > = tanh ß H? (7. 15)

Since Xij = Э <( й;]>/Эн^ХГ, Eqs (7. 14) and (7. 15) represent a system of 
N simultaneous first-order differential equations for the functions 
<Pi> = fi(H r\ . . .  Ĥ xt).

In the paramagnetic phase for infinitesimal external fields, we can 
linearize Eqs (7.14) and (7. 15) and obtain

Х У Ч < ^ 1 > -  X < ^ i >  +  H Г
j

or, after taking the Fourier transform,

Here,

which can be written

= < л * 1  =_____ ё______
а д )  H ext  l - ß ^ ( q ) - X ]

=̂ I v(q)x(q)
j q

(7.16)

(7.17)

(7.18)

We thus find the surprising fact that in the paramagnetic phase the results 
of the Onsager method are identical to those of the spherical model,
Eqs (6.4) and (6.5).
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For arbitrary magnetization R, Eqs (7. 14) and (7. 15) can be some
what simplified if they are converted into equations for the orienting field 
j jc a v ity  =  j?. by substituting

<M j > = tanh ß ? j (7.19)

One then obtains

5i = ^ v u tanhßfj - vu li ^ ta n h ^ i+ H T 1 (7.20)
j j

where we have used the notation

4 j  ЭН?ХГ ß ( l - < M . > 2) (7- 21)

Eqs (7.20) cannot be solved exactly. Therefore we introduce a scheme 
of successive approximations which may yield physically sensible results 
after a few iterations. We set

H*xt = H+hi (7.22)

and expand around (7 .20) the uniformly magnetized state:

5, = artanh R + £  5° . hj + | ^  jk h,hk + . . .  (7.23)
i jk

Equating terms of equal order in the h ; , we obtain a hierarchy of equations 
for the derivatives of the f j, where the n'th derivative is expressed in 
terms of all derivatives up to order n + 1. We can close this system by 
neglecting the derivatives of some order n0_. and thus obtain a hierarchy 
of approximations.

The leading approximation, in which already the first derivatives f i j  
are neglected, is the Weiss theory (4. 6). In the next approximation, 
neglecting the second derivatives i i jk  , one recovers the modified spherical 
model (Eqs (6 .10), (6 . 11), and (6 .12)). We note here that it actually

makes more sense to neglect the field dependence of gj j  = д XУ— утгт
than that of Xij alone. 1 / I

As  mentioned at the end of chapter 6 , this approximation is inadequate. 
One might expect that a fruitful line of attack is to proceed with one more 
step of the iteration also including the gjj], .

We have thus constructed a molecular field theory which takes the 
correlations of the magnetization into account. It does not suffer the 
inconsistency described in chapter 5: The fluctuation theorem has been 
imposed on the theory and hence is satisfied by the theory. We would, 
therefore, expect it to be a much better approximation than the usual 
MFA. This is actually the case: The Curie temperature is within a 
few percent of the exact value (obtained by numerical methods):
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kTc/v(0) for s. c. b . c . c. f . c. c

Spherical model: 0.66 0.72 0.74

Exact result: 0.75 0.79 0.81

The nature of the singularities at the phase transition is, however, 
still different from the exact result:

Spherical model: X “ t "2 ; CH

Exact result: X oc t "5/4 ; CH

a -  t  + const
.. const

s l o g T r

Further, in two dimensions the spherical model does not have a phase 
transition at all, whereas the two-dimensional Ising model is the famous 
exactly solvable model with a phase transition.

In conclusion, we remark that the Onsager method rests on the form 
(4. 2) for Н!оса1 (р;) which is an approximation to the exact expression

^ H ™ 1 (pj) = kT lo g t r 'e '8*'

where tr ’ means the trace over all spins except щ .  Further improvement 
would require an analysis of the nature of this approximation.

8 . THE RANDOM PHASE APPROXIMATION [12-17] :

At high temperatures, we expect little difference between the Ising 
magnet and Heisenberg magnets with less anisotropic interactions. At 
low temperatures, on the other hand, the magnetization of the Ising 
magnet approaches saturation much more rapidly than that of the iso
tropic Heisenberg ferromagnet. The reason for this difference is easy 
to understand: In the Ising magnet, the lowest excitation consists in turning 
one spin which costs the finite energy 2v(0), and the number n of reversed 
spins will be proportional to exp[-2ß v(0)]. Therefore,

R = 1 - 2 = 1 - const • e '2Bv(0) (8.1)

In the isotropic Heisenberg ferromagnet, on the other hand, there exist 
transverse excitations of arbitrarily low energies, the long wavelength 
spin waves, in which the spin direction changes very gradually from one 
lattice site to the next. Since each spinwave corresponds to one reversed 
spin, the magnetization will become

R = 1 - N 1<Пч> 1
2_
N I 1

e ßfiwч-i
(8. 2)

where <( nq)> is the average number of spinwave excitations of wave 
number q, and uq their frequency. Since for small q, uq q2, we obtain
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in three dimensions

R = 1 - const.
Ч тах

1 - const. Т 3/2 (8.3)

The MFA gives the Ising result (8.1). We can interpret its failure for 
the isotropic Heisenberg magnet again by the same argument as in 
chapter 5: In order for the MFA to be valid, the fluctuations of the 
magnetization have to be small. But in the isotropic Heisenberg magnet, 
in addition to longitudinal fluctuations which are small except in the 
transition region, there exist transverse fluctuations of the magnetization 
due to long wavelength spin waves, which are frozen out only very slowly.

Actually, in the two-dimensional case, they cannot be frozen out at 
any finite temperature: The two-dimensional Heisenberg magnet has 
no phase transition.

The random phase approximation (RPA) is a method taking the spin 
wave excitations into account. We shall discuss a method due to Englert 
which proceeds in the following manner: One calculates the linear response 
to a small transverse field К of frequency u; the fluctuation-dissipation 
theorem then gives the transverse fluctuation of the magnetization. The 
magnetization is finally determined by a sum rule.

Let us then find the linear response of the isotropic Heisenberg 
magnet with magnetization along z (constant external field H = {0, 0, H}) 
to a small transverse field (h*(t); hf(t); 0}, from the equations of motion 
for the spin operators <?;,

= цг [?i, &Г] (8.4)

By using the well-known commutation relations for the spin operators, 
one obtains

j

It is the essence of the RPA to linearize the equations of motion around 
the equilibrium state, which is equivalent to decoupling the different spin 
wave modes. This amounts to replacing all a? in Eq. (8 .5) by their equi
librium values <( ff?)> = R. Then, by taking Fourier transforms,

hä* = 2 (R[v(0) - v(q)] +Н}стУ- 2Rh^

= - 2{R[v(0)-v(q)] +H} <r*-2Rh*

( 8 . 6)
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W e thus obta in  f o r  the re sp o n se

CTq = tfq +  10-q

to a circularly polarized transverse field of frequency u,

„ ' iwthq = ^h*e { l ; T i ;  0}

the transverse susceptibility

Xq 2R
ft(Uq T u)

(8.7)

( 8 . 8 )

(8.9)

where uq is the frequency of the spinwave with wave number q,

fiwq = 2R[v(0) -v(q)] + 2H (8.10)

The results (8 . 9) and (8. 10) show two things: in RPA, the exchange part 
of the spin wave frequency is normalized with the magnetization, and the 
"weight" of the spin wave excitation is also normalized with magnetization. 
Very recent work seems to show that only the latter result is rigorous; 
the spin wave frequencies, which become complex in higher approximation, 
seem to stay finite at the Curie temperature.

In RPA, the imaginary part of the susceptibility is just a 6-function 
at u= ± uq:

Im xq = ± -g- R 6 (u ± uq) (8 . 11)

In order to calculate the fluctuation of the magnetization, we have to use 
a slightly generalized form of the fluctuation-dissipation theorem (2 . 10 ). 
The interaction term with the field h is

^Tint = - £ 4  -5, = - \  £  (hqOq +hqCTq) (8. 12)
i 4

For this case, the fluctuation theorem takes the form

<  CTq ° - ’q+  q CT-+q  >  =  2 <  CTq < ,  +cr q  a - q  >
+ 00

= 2 j^Im[Xq(u)+Xq (u)] c o t h ^ -  du (8.13)

With Eq. (8 . 11) we thus obtain for the transverse fluctuation of the 
magnetization

< l CTq|2 >  = < К У|2 > = R coth
ßftUq

2 (8.14)
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where we have made use of the symmetry with respect to rotations 
around the z-axis. Since uq <= q2 for H = 0, we recognize how very slowly 
the small q fluctuations are frozen out.

The magnetization is determined from the sum rule

which gives

or

= l (8.15)

R V  |3Ruq 
N A coth - г 1 = 1 (8.16)

R =•
1 + - у — -N L—I ßftüjn

N U  e0fiWq _ x (8.17)

е№шч. i

Since uq given by (8. 10) depends on the magnetization, this is a self- 
consistency equation to determine R.

At low temperatures, R -  1, and we recover conventional spin wave 
theory. At somewhat higher temperatures, we obtain a T 3 correction 
which is spurious, because we know from Dyson1 s theory that the lowest 
correction to spin wave theory is of the order T 4. However, the Dyson 
series breaks down at fairly low temperatures because of the "kinematic" 
spin wave interactions, which are taken approximately into account in 
RPA. We therefore expect the RPA to be a better approximation at finite 
temperatures than the Dyson series, in spite of the spurious T 3-term.
In order to obtain the Curie temperature and the susceptibility in the 
paramagnetic region, we linearize (8 . 16) with respect to R and H. We 
find with x = R/H:

1
ßN 1

q

______ 1______
lv (0 ) -v (q ) ] - i

= 1 (8.18)

which to our great surprise is again the spherical-model result (6.4) and
( 6 . 5 ) f o r q  = 0. This can best be seen by solving Eq. (6.4) for X, taking 
q = 0, and substituting this value into Eq. (6.5). Thus,we obtain the same 
Curie point and the same paramagnetic susceptibility as in the spherical 
model, and we have already seen that this is an acceptable approximation, 
except very close to T c. From (8 . 16), we obtain for the magnetization 
immediately below T e,

R cc r 1/2 (8 . 19)

Formula (8 . 14), on the other hand, allows us to calculate the spin wave 
contribution to the energy, and thus to the specific heat. Close to Tc , we
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now obtain a singularity
- 1/2 ( 8 . 20)

The exact results are

R  K t
1/3

C H log 1
FT

For the isotropic Heisenberg ferromagnet, we have thus obtained 
an approximation which reproduces the Curie point within a few per cent, 
and which is an acceptable approximation in the whole temperature range 
with the exception of the immediate vicinity of the transition region. 
Unfortunately, this satisfactory situation does not extend to the aniso
tropic Heisenberg magnet; as we reduce the transverse interaction to 
zero, thus passing from the isotropic Heisenberg magnet to the Ising 
magnet, the RPA goes over into the MFA, and not into the spherical 
model.

Let us finally discuss how the RPA goes over into the MFA when the 
interaction becomes long-range. As the number of partners z interacting 
with a given spin increases, the Fourier component v(q) of the interaction 
contains many interfering terms which tend to cancel as soon as |q|a> l / z 1/3 
As a consequence, except in a small volume of order l /z  around the origin, 
the spin wave frequencies (8 . 10 ) become constant:

huq = 2[Rv(0) + H] (8.21)

With such a spectrum, Eq. (8 . 16) immediately reduces to the MFA result
(4.6). 9

9. NATURE OF THE PHASE TRANSITION [2, 18]:

With the experience we have gained so far, we shall now try to 
analyse the physical nature of the phase transition, and to understand 
the general mechanism of the approximation methods.

If we critically examine the self-consistent field methods (MFA, 
Onsager method, RPA), we recognize that they must contain a fundamental 
formal error: the statistical operator we tried to approximate,

has obviously the full same symmetry of the Hamiltonian and is, 
therefore, invariant under simultaneous reversal of all spins (in zero 
external field). But our approximate distributions describe the existence 
of a spontaneous magnetization below the phase transition, and can, there
fore, not be invariant under spin reversal: we have "broken the symmetry" 
We will now argue that this breaking of symmetry, although formally in 
error, was the physically correct way to describe the phase transition,
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the p r in c ip a l point b e in g  as fo llo w s . The exact d is tr ib u tion  has z e r o
m agn etiza tion , but a m a c r o s c o p ic a l ly  la rg e  flu ctuation  o f the q = 0 F o u r ie r
com pon en t o f the m agn etization

(9.2)

where

M = O(N) (9,3)

We can think of this distribution as that of an ensemble of macroscopic 
permanent magnets with magnetic moment m = ± M with equal probability 
of pointing up or down. We can suppress these large fluctuations by a 
magnetic field of order l/N  which does not essentially change the magnetic 
moment of the dipoles, but which gives rise to an average magnetization

< m > = M tanhß M H + 0( 1) (9.4)

We see that in fact a field H of order l/N  is sufficient to drive the magne
tization to its saturation value M, and at the same time to reduce the 
fluctuation

< m2> - < m >2 = M2(l - tanh2ßMH) + 0( 1) (9.5)

to very small values. We have thus condensed the macroscopic fluctuation 
of the magnetization into a macroscopic average magnetization by an 
external field which vanishes in the limit N-* oo. (For small particles, 
these macroscopic fluctuations have a very real physical significance, 
giving rise to the phenomenon of superparamagnetism.)

In the self-consistent field theories, we use the device of the molecular 
field to condense the macroscopic fluctuation into a non-vanishing order 
param eter.

This procedure can only be correct for an infinite system. In fact, 
the partition function of a finite system is the sum of a finite number 2N 
of analytic functions of temperature and can, therefore, not have any 
singularities: the singular behaviour at the phase transition appears only 
asymptotically as N -*■ oo.

The self-consistent field breaks the symmetry of the system. Of 
course, symmetry can never get lost: whenever a symmetry is broken, 
a degeneracy must occur which restores the symmetry. This principle 
of conservation of global symmetry is naturally obeyed by the self- 
consistent field theories: instead of one state with <(m)> =0 and the full 
symmetry, we find two degenerate states with <( m )> = ±M, each with 
broken symmetry, which are transformed into each other by the symmetry 
operation (spin reversal) which has been broken.

Actually, we see from the above discussion that the degeneracy is 
larger. For any value of < m )> between + and - M, there is a probability 
distribution with the same free energy (in the limit of N -*oo). We thus 
discover another formal error of the self-consistent field theories: 
instead of the two minima of the free energy at ±M we found in Chapter 4,
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the free energy in zero field ought to be constant between + and - M, 
thus permitting any value of the order parameter between these limits.
As a consequence, the stability limits of the two phases seem to lose 
their significance. The degeneracy formally removes any hysteresis 
in going from the +M to the - M state.

We would again argue that the approximate methods, although formally 
in error, are physically correct; although the system finds a continuous 
set of degenerate states to go from +M to -M  as the field changes sign, 
it would require an infinite relaxation time for this process. Thus, in 
an actual physical experiment, we will find a hysteresis which is ap
proximately described by the self-consistent field theories, in spite of 
the continuous degeneracy of states at H = 0. A deeper understanding of 
this point would require a discussion of the difficult problem of the 
dynamics of state changes, which is beyond the scope of this lecture.

We believe that the concepts discussed so far:
- breaking of the symmetry by the self-consistent field;
- condensation of a macroscopic fluctuation into a non-vanishing 

order parameter;
- degeneracy below the phase transition

although obtained from an analysis of very simple models, represent the 
correct physical scheme of any phase transition with an order parameter 
going continuously to zero as T -*■ Tc . If one adds to these concepts 
certain analyticity assumptions about the free energy as function of the 
order parameter (essentially the existence of a Taylor series in the 
order parameter with finite radius of convergence at all temperatures, 
including Tc ), one obtains the Landau theory of second order phase tran
sitions. This theory leads to the same critical behaviour as the MFA;

R = t 1 /2 ; x cc t " 1 (9.6)

which is in disagreement with the exact results. One has, therefore,to 
conclude that the analyticity assumptions, however plausible they may 
appear, become invalid in the critical region.

We finally discuss one other highly interesting feature of phase tran
sitions which is an application of Goldstone's theorem to solid state 
physics: There exists evidence that the breaking of symmetry always 
gives rise to the appearance of a zero frequency normal mode. If the 
spectrum is continuous (which will be the case except for long-range 
interactions), there will then exist a spectrum of excitations with arbi
trarily small excitation energies.

If we break a continuous group (e.g . the group of three-dimensional 
rotations of spin space in the case of the isotropic Heisenberg ferro- 
magnet, or the three-dimensional translation group in the case of freezing 
of a liquid), we have a continuous set of degenerate states at all tempera
tures below the phase transition. This set can be generated by successive 
applications of an infinitesimal operator (or a set of such) which carries 
one state into an adjacent one, or, in other words, which "rotates" the 
state in the space spanned by the set of degenerate states. This 
"symmetry-re storing operator" is now interpreted as the creation opera
tor of a zero frequency collective mode (q = 0 spin wave in the Heisenberg 
ferromagnet, q = 0 sound wave in the crystalline solid). We thus see that 
in the case of the breaking of a continuous group, we obtain a spectrum
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of elementary excitations which extends down to и = 0 at all temperatures 
below the phase transition, and the corresponding response function has 
a pole at u = 0. This conclusion is obviously well confirmed by experi
ment: in both examples, we have a spectrum with и -» 0 for q -» 0 at all 
T < T c :

ojq = aq2 (isotropic-ferromagnet)
(9.7)

Uq = с I qI (crystalline solid)

However, application of this principle requires some care. Recently,
H. Stern has pointed out that the mode created by the symmetry restoring 
operator is.not necessarily the limit of the simple normal mode spectrum. 
This problem needs still further clarification.

If a discrete group is broken (e.g. spin reversal symmetry in the 
case of the uniaxial Heisenberg ferromagnet, or space inversion in the 
case of a uniaxial ferroelectric), the state of our knowledge is still less 
satisfactory. One will argue in the following way. At temperatures 
below Tc , the symmetry restoring operator connects states with a finite 
"distance" and can, therefore, not be interpreted as a creation operator 
of an elementary excitation. As we approach the phase transition, how
ever, the order parameter goes continuously to zero, and the degenerate 
states become arbitrarily close. We would therefore conclude that for 
T < Tc there exists a spectrum with a finite, gap, but that the gap goes 
to zero as T -*■ Tc . This conclusion is again in good agreement with the 
behaviour of known systems. The Cochran theory of displacive ferro- 
electrics [19] is a classical example which shows exactly the described 
behaviour. For the uniaxial Heisenberg magnet, we obtain in RPA a 
spin wave spectrum with a finite gap, which goes to zero as T -*■ Tc and 
stays zero above T c:

uq = R(T)[A +aq2] (9.8)

and for the pseudospin model of a ferroelectric, the gap given by RPA 
is finite both above and below Tc , but goes again to zero as T Tc :

u2 = A | T -T C I +Bq2 ( T - T c) (9.9)

But we have to emphasize again that the q = 0 mode of this spectrum is 
not necessarily identical with the zero frequency excitation created by 
the symmetry restoring operator. This is immediately evident for 
the case of the uniaxial ferromagnet. The spin waves are transverse 
excitations, but the symmetry restoring operator creates a longitudinal 
excitation. We conjecture that it is the spin diffusion mode

ftuq = iD q2 (9.Ю)

which is connected to the symmetry breaking. The above result for the 
spin wave spectrum appears fortuitous and may not even be right in higher 
approximation.
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Abstract

1. Introduction. 2. Thermodynamic theory and the role o f symmetry in ferroelectric phase 
transitions. 2 .1 . Relation between the paraelectric and ferroelectric point groups. 2 .2 . Symmetry and 
the thermodynamic "order" o f the transition. 2 .3 . Landau theory and critical phenomena. 2 .4 . Relations 
between anomalous quantities near a X-transition. 3. Lattice dynamics and ferroelectricity. 4. Order- 
disorder type hydrogen bonded ferroelectrics. 4 .1 . Elementary excitations o f the isolated protonic system. 
4 .2 . Temperature dependence o f the protonic "quasi-spin" frequency spectrum. 4 .3 . Proton-lattice 
coupling. 4 .4 . Cluster approximations. 4 .5 , Exactly soluble models.

1. INTRODUCTION

The purpose of these lectures is to present in a reasonably simple 
form some basic aspects of recent developments in the theory of ferro
electricity. For obvious reasons the presentation has to be brief, and we 
shall therefore leave out most of the details and concentrate our attention 
on the basic concepts.

Ferroelectric phase transitions are — as other phase transitions: 
gas-liquid transition, freezing, ferromagnetism, super-conductivity, 
Bose-Einstein condensation — marked by a sudden onset of a new phase 
when external variables (such as temperature) are continuously varied 
through a critical region. In the critical region itself there is a loss of 
stability against fluctuations of a certain type, accompanied by anomalies 
both in thermodynamic and response functions. The onset of the new phase 
is characterized by the appearance of an order parameter — the spontaneous 
polarization — and a reduction of the symmetry of the system [1]. In con
trast to the case of the isotropic ferromagnets, it is the symmetry of a 
discrete group which is broken at a ferroelectric phase transition. In the 
disordered phase the crystal symmetry is described by a space group G.
In the new ordered phase the crystal structure is invariant only under 
those operations of G, which leave the spontaneous polarization invariant.

The sudden onset of the ordered phase is connected with the fact that 
the symmetry of the system is a property which can appear or disappear 
only all at once and not gradually. Even an arbitrarily small displacement 
of the atoms from their initial positions or an arbitrarily small non
equivalence of the "right" and "wrong" lattice sites in a disordered crystal, 
result in an abrupt change in the symmetry of the crystal lattice.

Though the appearance of the order parameter below the Curie 
temperature is a spontaneous process, similar changes can always be 
induced even above this temperature by an external electric field. This 
statement is very helpful in deriving all possible ferroelectric states for

395
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a paraelectric crystal with a given space group and, in addition, makes it 
easier to understand the mechanism responsible for the phase transition.
The external electric field is always coupled to that co-ordinate of the 
system whose non-vanishing expectation value breaks the symmetry below 
the Curie temperature. The field produces either an ordering of disordered 
permanent dipoles in the crystal or shifts some of the atoms from their 
initial symmetrical positions in a given direction thus inducing an electric 
polarization. The interaction between the dipoles furthers this ordering 
since parallel allignment is the state of lowest interaction energy. The 
effect of the external field is thus enhanced through the internal interaction 
field. Thermal fluctuations tend to upset this ordering. At a sufficiently 
low temperature, however, the interaction field prevails and the state 
remains ordered even when the external field is turned off. At the Curie 
temperature itself, even an infinitesimal external field extablishes a 
finite polatization. Hence

(dP/dEext)Eex( = 0 = °° (1-1)

and the zero-field susceptibility is infinite at the Curie point. The polar 
structure of ferroelectrics is only a slightly distorted non-polar structure. 
The polarization can thus be reversed by the application of a sufficiently 
large external field. In a strong alternating electric field the relation 
between P and E is therefore given by a hysteresis loop. The reversibility 
of the spontaneous polarization is such an important characteristic of 
ferroelectric crystals that Aizu [2] even defined a ferroelectric as a system 
which has in .some direction two stable states at E = 0, _and is capable of 
alternating between them by means of an electric field E.

Whereas the simple local field theories qualitatively explain the 
occurrence of an ordered phase (because the self-consistent field equation 
has — below a certain temperature — a non-trivial solution which breaks 
the symmetry of the problem), the more exact solution of the problem is 
rather difficult. There have been, however, two important breakthroughs 
in this field in the last few years. The first is due to Cochran. He showed 
that at least in "displacive" ferroelectrics the transition from the non
polar to the ferroelectric phase is a problem in lattice dynamics and the 
result of an instability of the crystal lattice with respect to long-wavelength 
transverse optical vibrations. The second one is due to a group of mathe
matical physicists (Lieb, Wu, Sutherland, C. N. Yang, С. P. Yang) who 
found an exact solution for a two-dimensional model of hydrogen-bonded 
ferroelectrics of the order-disorder type. The introduction of the quasi
spin formalism and the subsequent exploitation of the analogies with the 
case of ferromagnetism have as well contributed to our enhanced under
standing of this field.

2. THERMODYNAMIC THEORY AND THE ROLE OF SYMMETRY IN 
FERROELECTRIC PHASE TRANSITIONS

The thermodynamic theory of ferroelectricity attempts to relate all 
macroscopic equilibrium properties of ferroelectrics to each other and 
to describe them in terms of a few parameters. One of the most important
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recent developments in this field is the "scaling law" concept, which pre
dicts relations between the "critical indices" describing singularities in 
various thermodynamic derivatives and correlation functions. Another 
breakthrough is the generalization of the Pipard equations which provides 
thermodynamic relations between anomalous quantities in anisotropic 
dielectrics near a lambda transition, where the Ehrenfest and Clausius- 
Clapeyron equations become indeterminate. Connections have been 
established between the symmetry and the coupling of anomalous quantities. 
Similarly one can now predict all possible ferroelectric space groups 
and even the possible domain structure if the space group of the para- 
electric state is known as well as all possible paraelectric space groups 
if the space group of the ferroelectric phase and the kind of transition 
between the two stable states with different polarization is given.

The fundamental concept on which all thermodynamical theories of 
ferroelectric phase transitions are based is the idea that the transition 
can be described by an order parameter, whose appearance at the Curie 
point breaks the symmetry of the paraelectric phase. This parameter 
measures the amount of long-range ordering of both permanent and 
induced dipoles in the ordered phase and is identically equal to the 
spontaneous polarization in case of ferroelectrics (in antiferroelectrics 
it is equal to the sub-lattice polarization). It vanishes above the critical 
point and is non-zero below Tc. It can approach zero continuously as 
T -» Tc from below or discontinuously in case of first-order transitions. 
Below Tc, the order parameter may — in the absence of an external 
electrical field — assume two or more different values under otherwise 
identical conditions, i. e. , the crystal breaks up into domains.

2. 1. Relation between the paraelectric and the ferroelectric point groups

Let the space group of the disordered — paraelectric — phase of the 
crystal be G. This group contains some symmetry elements which require 
a zero value for the order parameter. In the ordered ferroelectric phase 
the crystal structure is invariant only under those operations of G which 
leave the order parameter unchanged. The first question is whether there 
is a more stringent relation between G and H and whether any predictions 
about the possible number of domains can be made.

A simple and physically very clear approach to this problem is the 
use of the "Curie principle", which has been recently suggested by 
Janovec [3, 4]. This principle allows the space group of the ferroelectric 
state H to be determined when both G and the direction of the spontaneous 
polarization are specified. In addition, it enables us to determine the 
possible directions of the spontaneous polarization, i. e ., the number of 
possible domains. It is based on the fact that though the appearance of 
the ordered parameter is a spontaneous change similar changes can 
always be induced by an external electric field: The change of G to H 
is the same as^the symmetry change under the influence of an external 
electric field E provided that E is applied in the direction of P. The 
symmetry of E, which is a polar vector (as P) is that of the continuous 
group да mm. The principle can be formulated by saying that H contains 
all symmetry elements common to G and E. By varying the direction of 
E with respect to the symmetry elements of G we can thus find all possible 
ferroelectric space groups Hj, H2 . . . Hnfor a given paraelectric space 
group G (Table la-Table Ie).
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T A B L E  la . PO SSIBLE F E R R O E L E C T R IC  ST ATES AND D IRECTIONS
O F Ps F O R  TRANSITION S FRO M  CUBIC PO IN T GROUPS

Direction of
m3m 43 43m 23

Ps (or E)

< 100 >
< in  >
< 110 >
< hko >

< hkk >

< hhk >

< hkl >

Initial state

Possible ferroelectric states

4 mm (6) 

3m (8) 

mm (12)

m (24)

1(48)

4 (6 )

3 (8 )

2 ( 12)

1 (24)

mm (6) 

3m (4) 

m (12) 

1 (24) 

m (12)

1 (24)

mm (6) 

3 (8 )

m (12)

1 (24 )

2 ( 6)

3 (4 )

1 ( 12)

TABLE lb. POSSIBLE FERROELECTRIC STATES AND DIRECTIONS 
OF Ps FOR TRANSITIONS FROM HEXAGONAL POINT GROUPS 
[i = -(h + k)l

It should be stressed that all possible space groups are not necessarily 
realized in nature. Symmetry only allows but does not say what really 
occurs. Asher recently proposed that the polar space group H which is 
indeed realized is the maximum polar subgroup of G. This principle 
works well for most ferroelectrics but is not fulfilled in NaH3(SeC>3)2, as 
well as in some other ferroelectric crystals. Hence it is safer to re 
formulate the Asher principle by saying that H is the maximum polar 
subgroup of G for a given direction of P. It can be further shown [3] that 
the number r of possible domains with different directions of the spontaneous 
polarization for a given ferroelectric group H is equal to the order of the 
group G divided by the order of the group H:

(2 .  1)
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T A B L E  Ic . PO SSIBLE F E R R O E L E C T R IC  ST ATES AND D IRECTIONS
OF Ps F O R  TRANSITION S FRO M  TRIG O N AL PO IN T GROUPS

Initial state
Direction of 

~PS (or f )
3m 3 3m 32 3

Possible ferroelectric states

<0001> 3m (2) 6(2) 3m (l) 3(2) 3(1)

<1120> 1 2(6) ' и в ) 2(3)

< i o I o > J m(3)
*s

<hkio>
l  K12)

- 1(6)
f  1(6)

1(3)

<hh2hl> J J ■ 1(6)

<hohl> m(6) m(3)

<hkil> 1(12) 1(6)
-

TABLE Id. POSSIBLE FERROELECTRIC STATES AND DIRECTIONS 
OF P FOR TRANSITIONS FROM TETRAGONAL POINT GROUPSs

where N stands for the number of symmetry elements in a given group.
The paraelectric space group of BaTi03, for example, is Pm3m which 
transforms at 120°C into a tetragonal ferroelectric phase with space 
group P 4 mm, which is of course a subgroup of Pm 3m. Ng = 48,
NH = 8, and hence.r = 6. For an arbitrary direction of E, one could find a 
ferroelectric point group with no symmetry elements except the identity 
operation. Hence the point group of H would be H = 1 and NH = 1 resulting 
in r = 48. Not all possible domains, are, however, realized because of 
compatibility with the minimum-stress requirement. For triglycine 
sulphate (TGS), the paraelectric point group is G = 2/m. The possible 
subgroups are Hx =2, H2 = m, H3 = 1, H4 = 1. Below Tc , the crystal 
belongs to the polar group 2 of the monoclinic system and P is parallel to 
the two-fold axis. Hencejhe point group of H is H = 2 and the lost symmetry 
elements of G are m and 1:

Ng 4 _ „
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T A B L E  Ie. PO SSIBLE F E R R O E L E C T R IC  ST ATES AND D IRECTIONS
OF Ps FO R TRANSITION S FR O M  ORTH ORH OM BIC, M ONOCLINIC
AND TRIC LIN IC  PO IN T GROUPS*

Direction of 
\  (o r t )

<001>
<010>
<100>
<hko>

<hol>

<okl>

<hkl>

mm(2)

m(4)

1(3)

m m (l)

m (2)

1(4)

m(2)

1(4)

2(2 )

1(4)

2(2) 

■ m(2)

1(4)

m<2)

1(4)

m (l)

1( 2 )

m (l)

1(2)

m (l)

. 1(2 )

2( 1)

1( 2 )

mmm mm 222 2/m m 2 1 1

Possible ferroelectric states

Initial state

1(2) 1( 1)

* The transitions m m, 2 -> 2 , 3 -> 3 , 6-> 6, etc. are not true ferroelectric transitions, since 
they are connected with a change in the magnitude of ? s and not with a change in direction o f ? s 
or a lowering o f crystal symmetry. They are included in the table because they are possible under 
the Curie principle.

In agreement with the theoretical prediction there are, indeed, only 
two different 180°C domains with antiparallel polarization in this crystal.

The lost symmetry elements evidently determine the possible directions 
of the polarization and hence the domain structure. The complete domain 
structure would restore the full symmetry of the paraelectric phase (as is 
this the case in TGS), but all possible domains cannot co-exist in the 
general case because of stresses.

2. 2. Symmetry and the thermodynamic "order" of the transition:

According to Ehrenfest [5], the thermodynamic "order" of a phase 
transition is determined by the lowest order of the differential coefficient 
of the Gibbs function:

Gi = U - TS + pV (2. 2)

which shows a discontinuity on the transition line. In a first-order 
transition, Gj is continuous across the line, but its derivatives are 
discontinuous and hence latent heat is released at the transition point(Fig. 1.). 
In a second-order transition, the first derivatives of G are continuous, 
but the second derivatives (such as specific heat) are discontinuous. The 
classification may be extended indefinitely, but since the discontinuities 
in the physical properties become less and less significant these higher 
transitions are not of great interest. There are many transitions, which 
do not conform to this classification, a well known example being the 
X - type transitions, where the specific heat rises to infinity as the tran
sition is approached. For all transitions, however, except those of first 
order, not only Gy but also the entropy and the volume are continuous 
across the transition line.
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с.

I

с.
J

2 2aV v
2b

T

HG. 1. Classification o f transitions Type 1 is a simple first order transition with latent heat. Types 2 
show no latent heat but a discontinuity in Cp, which is infinite in 2c and finite in 2 and 2a. Types 3 
represent third order transitions, with a discontinuity in 5C p /3T .

Landau [6, 7] distinguishes two types of phase changes in a crystal:
a) An abrupt change by a first-order phase transition accompanied 

by a discontinuous change in the polarization and the lattice parameters.
At the transition temperature, two different phases are in equilibrium 
with each other, i .e.  their free energies are equal. There are no 
symmetry requirements for a transition of first order to be possible.

b) A more gradual change by a second-order phase transition, 
where the polarization goes continuously to zero as one approaches the 
Curie point from below. At the Curie point itself, there is, of course, 
still a sudden change in the symmetry. At each temperature, only one 
phase exists so that this is a transition within one phase. The symmetry 
of the crystal at the transition point must include all symmetry elements 
of both states. This type of transition is only possible if the following 
necessary and sufficient symmetry requirements for a homogeneous body 
are fulfilled:

1) The symmetry group of one state is a subgroup of that of the 
other state.

2) The change of the crystal corresponds to a single irreducible 
representation.

3) Third-order terms in the expansions of the free energy (or Gi) 
in terms of the order parameter must vanish by symmetry.

Let p 0 (x , y, z )  be the "density function" which determines the 
distribution of different positions of the atoms above the Curie point and 
is invariant under all operations of the paraelectric space group. If the 
crystal changes slightly and continuously so that the symmetry is lowered, 
the new density function p (x, y, z) can be written as:

p = p 0 +  bp (2 .3 )
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where 6p (x, y, z) is the small change in the density function due to the 
lowering of the symmetry. The symmetry group of p (which is the same 
as of 6p ) cannot contain symmetry elements not contained in p0. Hence 
the group of p is a subgroup of the group of pQ .

Let us now expand 6p in terms of functions ф(n) (r ), which form the 
bases of the n irreducible representations of the group of p0 :

60 =I  Z ° i n> ^  (2>4)
n i

where the identical representation (which represents no change in symmetry) 
is omitted. The number of functions i for a given representation n is equal 
to the dimension of the representation. The actual values of the co-efficients 
Cj are determined thermodynamically by the equilibrium conditions.

Changes corresponding to two different irreducible representations, 
are independent and represent two different phase transitions. Hence we 
can omit the summation over n, assuming that we deal with this irreducible 
representation, which appears for the transition in question, and we get:

P = P о + (2.5)

In order that the crystal has the symmetry of p0 at the transition 
point, all quantities c (n) must vanish at this point, i. e.

6P It  = tc~ 0 » P It = t c_ Pо ( 2 . 6 )

In view of the second-order nature of the transition, the vanishing 
of <5p must occur in a continuous manner, i. e. the coefficients C; must 
vanish taking arbitrarily small values when we approach the transition 
from below. As a result of this, we can expand the free energy (or some 
other thermodynamic potential) in powers of Cj in the vicinity of the 
transition. Substituting

C i = ^ i

so that

we get for the thermodynamic potential:

(2.7)

( 2. 8)

F = Fq + A(p, T)n2 + B(p, T)p3f <3> (7 j) + C(p, T)r]4f<4> (7 ;)+. . (2. 9)

Here f 1(7 ) is a homogeneous function of order 1 in the coefficients 7 ; . The 
operations of the group of p 0 will transform the 7 j into each other. Since 
the thermodynamic potential must be invariant under all coordinate 
transformations, it must be invariant under the operations of the group



FERROELECTRI CITY 403

of p0. Hence the functions f ^  (7 j) must contain only invariant combina
tions of 7 j. Because first-order invariants exist only for the identity re 
presentation, which is not considered, there is no linear term (proportional 
to f C1) (7j) = 0) in the expansion (2. 9). Further, there is only one quadratic 
invariant for any representation, which can always be reduced to a sum of 
squares, so that f^  (7 j) = 1 .

The stable state of the crystal is found by minimizing F with respect 
to rj and 7 j. From the stability conditions,

3F
ЭГ7 = 0, d*F

dry2 > 0 ( 2 . 10)

we find that the state r) = 0 is stable for A > 0, whereas for A < 0 the stable 
state corresponds to p ) 0. Thus, the transition from a state of higher 
to a state of lower symmetry could occur at A = 0. However if the crystal 
should in fact be stable at A = 0, rj = 0, F must increase both for positive 
and negative small changes of ry. This can happen only (excluding the 
isolated case that A and В vanish simultaneously) if f(3) (ji) is identically 
zero, i. e. if there are no invariants of third order in у;, which transform 
according to the given irreducible representation of the group of Pq.

Even if conditions 1), 2), and 3) are fulfilled the transition will be 
of first order if C is not positive but C < 0.

Since second-order terms do not contain the 7 ;, these are determined 
by a minimization of the fourth-order term. The quantities y ; found in this 
way determine the symmetry of the crystal in the ferroelectric state:

Landau [6], Haas [7], and Aizu [2] have shown that in the case of the 
so called "primitive" transitions where the space group of the ferroelectric 
state is a subgroup of the space group of th^ paraelectric state with half 
the number of symmetry elements, a second-order phase transition is . 
always possible. Examples are the phase transitions in TGS, Rochelle 
salt, KHjPOj, and others.

In methylammonium aluminium sulphate dodecahydrate,
(NH3CH3)A1 (S04)2 • 12 НгО the number of symmetry elements is not halved.
The transition is thus not "primitive" but "complex" and one must investigate 
in each case whether conditions 2) and 3) are satisfied [condition 1) is auto
matically fulfilled]. The paraelectric space group is T4 - P2a3 and the 
ferroelectric c |  - P21 with the unit cells being the same for both.states.
The polarization vector transforms as the three-dimensional representation 
T, and the transition thus corresponds to this representation. The number 
of independent invariants of order i  is equal to the number of times the 
identical representation A is contained in the symmetrical direct product 
T of order £. Since (TX T X T)symm is A + 3T, third-order terms 
(like PxPyPz) will occur in the expansion of the thermodynamic potential 

.and a second-order transition is not possible. The transition is indeed 
found to be of first order.
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2.3. Landau theory and critical phenomena

Ginzburg [8 ], Kadanoff [9] and others have recently applied Landau's 
theory of phase transitions of the second kind to the study of critical 
phenomena and fluctuations in ferroelectrics. In this theory, the free 
energy F near the transition point is expanded in a power series of the 
order parameters. The theory gives a qualitatively correct view of the 
phase transition, but — as all theories which neglect fluctuations — 
breaks down very close to the transition point. Confining ourselves, for 
the sake of simplicity, to a single parameter — the z component of the 
spontaneous polarization — we write this expansion as applied to unit 
volume in the form

g = g0(T) + a(T)Pz2 + b(T)P* + c(T)(grad Pzf  - EPz (2. 12)

where

F = J g(?)dV

and the first term g0 represents the free energy per unit volume in the 
absence of spontaneous polarization. The term c(grad Pz)2 damps out 
spatial variations in Pz for c > 0 and is, of course, absent in the spatially 
homogeneous case. For c < 0, the polarization is never uniform. The 
last term measures the direct interaction between the applied electric 
field — which may be varying in space — and the polarization of the 
sample.

For equilibrium the free energy must be stationary under the 
infinitesimal change

P ,( ? ) -P z(r) + 6 P2(r) (2.13)

i. e. the first-order change in F due to this transformation must vanish 
for all values of 6 Pz :

6 F = dV ö Pz[2aPz + 4bPz - 2c grad2Pz - E] = 0 (2. 14)

This is possible only if the bracket is zero. The most probable value 
of Pz is thus obtained from

[2a + 4bPz - 2c grad2]Pz = E (2.15)

The free energy is obtained by solving Eq. (2. 15) for Pz and substituting 
back into (2. 12). From all possible solutions of (2. 15) one must choose 
that which actually minimizes the free energy.

In the spatially homogeneous case Eq. (2. 15) reduces to

[ 2 a  + 4 b P 2 ] P z = E (2.  1 6)
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which has the following solutions in the absence of an applied field:

Pz = 0 (2. 17a)

P z =±( -a /2b)*  (2.17b)

In case that b is positive, the first solution (2. 17a) minimizes the 
free energy when a >0. The solutions (2. 17b), which correspond to a 
non-zero spontaneous polarization, minimize the free energy when 
a < 0. In order that there should be a phase transition, the coefficient 
a must change sign; at the transition point itself this coefficient must 
vanish. Thus

a > 0 , T > tc

a < 0 , T < T C
(2 . 18)

whereas b > 0 for both phases. Landau further assumes that near the 
transition point one can write

a(T) = a' (T - Tc) (2. 19)

where a' = Эа/Эт|т=Тс, whereas b(T) and c(T) are equal to constants 
b(Tc) and c(Tc). This choice results in the fact that at the critical point 
(T = Tc, E = 0) the system can produce non-zero polarization with an 
increase in free energy which is of fourth order in Pz. Hence large 
fluctuations can occur at the critical point with little cost in free energy. 
Before considering this point in some detail, let us look at some other 
predictions of the Landau theory. From an inspection of Eqs (2. 17b) and 
(2. 19) it can be seen that the Landau theory predicts that the polarization 
in the vicinity of the Curie point vanishes as (T - Tc )̂  . The critical index 
ß which describes the vanishing of the order parameter near Tc at E = 0, 
is thus obtained as ß = 1/2. For E 0, we similarly obtain from Eq. (2. 16):

Pz = (E/4b)1/6 with 6 = 3 .  (2.20)
The susceptibility below the Curie point is obtained as

1
= 4a' |T-TC| ( 2 . 21)

whereas above the Curie point we have

X(+) 1
2a' (T-Tc) (2. 22)

The susceptibility thus in both cases diverges as |т-Тср with 7 = 7 ' = 1.
The entropy of the body near the transition point in the ferroelectric 

phase i s :

S = OF
ЭТ dV ; so + f s (T' Tc) dV (2.23)
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C p =  СРФ0- C p = 0 = ^ p -  (2.24)

It should be mentioned that if b < 0, the transition would be of first order 
with a stepwise change in Ps. At the Curie point, the crystal suddenly 
loses all the energy associated with the polarization and this causes a 
latent heat:

w h ere  s 0 = - (9g0/9 T ) p so  that the en tropy  rem a in s  continuous on going
through the tra n s itio n  point. The s p e c if ic  heat, C P = T (9 S /9 T )P, on the
oth er  hand, is  d iscon tin u ou s:

AQ = TCAS = I  a' TC(APS)2 (2.25)

where A Ps is the jump in Ps at Tc . In the following, we shall limit 
ourselves to transition of the second kind.

So far we have characterized the state of the system under consideration 
with the mean value of the order parameter and have neglected fluctuations 
around this mean value due to thermal motion. Since the probability of 
fluctuations w at constant temperature is proportional to

w ос е "лг‘ /квТ (2.26)

where AF, = F - F is the change in the total free energy due to a given 
fluctuation, and since at Tc even a large change in the order parameter 
produces only a small change in the free energy, it is clear that fluctu
ations will become very large in the immediate vicinity of the transition 
point and will eventually produce a breakdown of the validity of the 
Landau theory. To calculate the fluctuations, let us expand the deviation

A P .ffl = Pz (? ) -P z (2. 27)

into a Fourier series:

A Pz (?) I
к

Л к -г (2 . 28)

where Pk = Pj‘k . For a non-equilibrium state we get with an accuracy 
to quadratic terms1

AF, = J [  g(Pz + APZ) - g(P2)]dV = + ck2)| P k|2 (2.29)
к

since the linear term vanishes on integrating over the whole volume. Each 
of the terms in this sum involves only one of the Pk, so that the fluctu
ations with different wave vectors are statistically independent. Inserting

1 g(P + Д Р) = g(P) (S  )p=p
(А Р )2

2
+ c(grad Д Р )2 + . . .
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the expression in (2. 29) into relation (2. 26) we find the mean-square 
fluctuation:

where A is a normalization constant obtained from J w(x)dx = 1 . Since 
gj1 -> 0 as T -* Tc, the long wave length fluctuations with к -» 0 increase 
without limit at the transition point and the neglect of fluctuations is no 
longer justified. It should be noted that this formula applies only for not 
too large values of k. For larger к values, higher spatial derivatives 
should be taken into account.

The important quantity is the amount of correlation between fluctu
ations at different point in space. This is described by the correlation 
function

which can be obtained either from the mean square fluctuations by an 
inverse Fourier transformation, or from the free energy as shown by 
Kadanoff [9]. In the latter case we write the Hamiltonian as

---- "Ö +" ,2
Pk| = A f  |Pk| w(|Pk|)d |Pk| =

-oo (g '' + 2ck2) V
квТ (2. 30)

g(r, r 1) = < [P z(r) - Pz(r)][Pz(r' ) - Pz(r')]> (2.31)

(2. 32)

and define

Pz(r) = Tr Pz(r)e’ SH /T r fe'SH (2. 33)

A small variation in E(r) induces a change in Pz(r), which is obtained 
from

6 Pz(r) = -|3TrP2 (r)6H e ‘ 0H/T r e 'ßH + j3TrPz(r )e 'ßHTr 6 He‘ ßH/(Tre"ßH)2

(2. 34)

using

(2.35)

as

(2. 36)
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as Pz-> Pz + 6PZ and E -» E + 6E :

[2a + 12b Pz(?)2 - 2c grad2] 6 Pz(?) = 6 E(r) (2. 37)

In Landau1 s theory we used Eq. (2. 16) to determ ine the average p o la r i
zation Pz(r). F rom  this equation we get the follow ing relation  between
the firs t  order changes 6PZ and 6E

Inserting expression (2.36) for 6Pz(r), we get:

J dV' {[ 2a + 12b Pz(r)2 - 2c grad2] g(r, r ' ) - kBT 6 (r - r ' )}  6Efr' ) = 0

Since 6E (r ') is arbitrary, the entire bracket must vanish and we get for the 
correlation functions the differential equation:

[2a + 12b Pz(r)2 - 2c grad2] g(r, r ' ) = kBT 6 (r - r ' ) (2. 38)

For T>TC and E = 0, Pz = 0, and we find:

[2a'(T-Tc) - 2cV2] g(r, ? ' )  = kBT 6( r - ? ' ), T >TC (2.39)

whereas for T < Tc , Pz = and

[4a1 (Tc -T ) - 2cV2] g(?, ? ' )  = kBT 6( r - r ' ), T < Tc (2.40)

The solutions of these differential equations, which can be reduced to 
Ai - x2f = - 4 7Г 6(r - r 1 ), are well known:

Thus we obtained in three dimensions:

g(r, r ' ) exp (- |r - r 1 |/g) kBT 
Ir - r ' I 8tc (2.41)

where

? = (с / a ' f  (T - Tc)-i, T > Tc 

5 = ( c / 2 a (Tc - T)-i , T < Tc

(2.42)

This solution is again valid only if |r - r 1 | is much bigger than a lattice 
constant. The important point is that the characteristic range f  of the 
correlation function becomes very large near Tc, since 5 grows as 
(T - Tq)"" where u = 1/2 in the Landau theory. At Tc itself, | becomes 
infinite and the correlation of the fluctuations drops off only as 1 /R.
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There is a close connection between the anomalies in the correlation 
functions and the singularities in thermodynamic derivatives near the 
critical point.

Equation (2. 36), for instance, gives the response of the mean polari
zation to a change in the external field. This, however, is the definition 
of the susceptibility. Thus one obtains,

X = 9PZ A
Э Е  / Т ,  E=0

(kßT)-1 dV1 g(r, r' ) = (2c)"1! 2

and

X +̂  ̂ = 2a' (T - Tc) ’ T > TC 

= 4a' (Tc- T) ’ T < TC

(2.43)

(2.44)

i. e. we get the familiar Curie-Weiss law for the dielectric susceptibility 
as given by Eqs (2. 21) and (2. 22). This result shows how the divergence 
in the range of correlation between fluctuations ? produces a divergence 
in the thermodynamic derivatives.

Another example of a relation between a thermodynamic derivative 
and a correlation function is provided by the specific heat at fixed 
external field and the correlation function for energy density fluctuations. 
Defining an average energy density

u(r) = Tr u(r)e'eH/T r e 'SH (2.45)

which is connected with the total mean energy U by U = /  u(r)dV one gets 
the following relation between the change in temperature, 6/3, and the 
response in the mean energy, 6U:

6U(r) = - J  dV' [ u(r) u(r') - u(r) u(r') ] 6/3 (2.46)

from which one gets the specific heat at constant field:

Ce = fjr I e  = (kßT2)-1/  dV'guu ( ? ,? ')  (2.47)

where

guu ( ? , ? ' ) =  < [ u(r) - u(r) ] [ u(r' ) - u ( r ' ) ] >  (2.48)

The parameter, which tells us where fluctuations become important is 
the normalized difference between the temperature of interest, T, and the 
Curie temperature, Tc :

Д T T - Tc 
Tc = Tce (2.49)



TABLE II. PARAMETERS DESCRIBING THE PHASE TRANSITIONS AS e -  0 AND VALUES OF CRITICAL 
INDICES PREDICTED BY THE LANDAU THEORY AND THE TWO DIMENSIONAL ISING MODEL 
(d = DIMENSIONALITY OF THE PROBLEM)

P h y s ica l q uantity e = ( T - T c ) / T c E B eh a v iou r o f  q u an tity Landau 2 -d  Ising

> 0 0 P = 0

< 0 0 p  ~  ± u i s 8  = 1 /2 8 =  1 /8

0 + 0 ± E 1 /ä 6 = 3 a = i s

-(м), > 0 0 ~ е - У r  = i -r! II -J 4

< 0 0 ~ H - r ' r ’ = i y ‘  = 7 /4

g (T ,r f)= P (? )P (7 ! ) -  P 2 0 0 f ? - ? r d + 2 - ’> h = о T) = 1 /4

6 = ra n ge  o f  g o ! ? ) > 0 0 ~ e - v

NII V  = 1

< 0 0 ~  l e i ' 1' ' v ' = 1 /2 V '  = 1

C e  = s p e c i f ic  heat at 
E = const

> 0 0 A  , £ ■ “ '+ В j d is c o n t in u ity  
in  C E

< 0 0 A 2je|-C‘' + B 2

o r  fo r  a  =  a '  =  0 > 0 0 C  j lo g  e " ' + D , lo g  « in  C g

< 0 0 c 2log U | - ' +  d 2 a  -  a ’  =  0

410 
BLINC
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For the Landau theory to be valid, | e | must be larger than a critical 
value, determined by the condition, that the fluctuations in the order 
parameter must be small compared to the order parameter itself over 
distances comparable with the coherence distance f :

g (r ,  ? '  ) = [P ,(r)  - P"z ] [ P z( r ' )  -  P z ] «(p z f  (2. 50)

Equations (2.41) and (2. 17b) yield:

kBTc/4 тгес f(e )  « -a /b  (2.51)

Introducing X = (c/2a' Tc)5 we get the critical value of e as:

ec = (кв/ДС.Х3)2 (1/16 7re)2 (2.52)

where ДС is the jump in heat capacity per unit volume.
Ginzburg [8 ] has shown that ec ~  10"4 in BaTiOg and the Landau theory 
will work for all |e | »  10'4. The experimental data support this statement 
since у was found to be equal to 1 ± 0. 02 for TGS and KH2P04 down to 
values for e = 2. 10"4 and 8. 10‘ 4, respectively. The reason for the 
preservation of this "molecular field" theory and the relatively minor 
role of fluctuations in ferroelectrics as compared to other critical systems 
(in the magnetic case ec ~ 10 "2) is that the polarization is relatively small 
as compared to the maximum possible polarization when ions would be 
displaced by a distance of the order of a lattice distance.

The thermodynamic functions approach a simple behaviour as 
e -* 0. The parameters describing the phase transition and the values of 
the critical indices predicted by the Landau (or any other molecular field) 
theory and the ones obtained from the exact solution of the two dimensional 
Ising model are collected in Table II. The experimental data have generally 
not been collected close enough to the critical point and the accuracy is 
not such that a comparison between theory and experiment would be fruit
ful. Using the same set of experimental specific heat data in KH2P0 4, 
for instance one group finds a logarithmic singularity CE = -A log e + B, 
whereas another group finds that a law CE = K /(T-TC)“+ L with a = 1/2 
is obeyed up to e = 1СГ3 in agreement with Landau's theory. Only у has 
been measured accurately enough and the value — as already mentioned — 
agrees with the Landau theory (y = 1) up to |e | ~ 1 0 ‘4.

Several authors have recently suggested that the nine critical 
indices a, a' , ß, у, у 1, 6 , v, v' and т) are not independent but can be 
expressed in terms of two fundamental quantities. No exact derivation 
of these results has been given so far, and we shall only list the suggested 
scaling laws:

2 -or = 2 - a ' = dy = dtP = y+ 2ß = y '+ 2ß = dy /(2 -p )= ß (5+ l)
(2. 53)

The results of the two-dimensional Ising model completely agree with 
the scaling law conclusions. Very recently the scaling laws have been 
generalized to time-dependent correlation functions and yielded some 
information about the dynamical behaviour in the "critical" region where
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the wavelength is smaller than the coherence distance f, so that kf » 1 .
It should be mentioned that this "critical" region extends down to zero 
wave number (k = 0) as T-»TC since the coherence length § becomes 
macroscopic.

2.4. Relations between anomalous quantities near a X-transition

The Clausius-Clapeyron and the Ehrenfest relations which relate 
abrupt changes in thermodynamic quantities at a first- or a second-order 
phase transition become indeterminate at X-type transitions where some 
quantities (such as the specific heat) tend to infinity rather than to finite 
values at the transition point.

To see this let us remember that the entropy and the volume are con
tinuous at a second-order phase transition:

Si = s 2

Vi = v 2

(2.54)

Hence

and

" a s A 6T +/ 9Si
)T 6P=

/ a s 2 ^

\Эт ; p \9p / a t ;

A v A

v9T ; p 6T + (V9p ,) <5p = 
T

/ a v 2 '

\9T ,

6T + / 9 S 2\
W a

6p

6T + A v A  
V9p Л 6p

(2. 55)

dT '  V a sg i A S A  
V>p ) r  '  \9p /

(2. 56)

whence, taking into account

we obtain

dp _ 1 Cp2 - CP1 = a2 - oq
dT VT «2 - <*i <2 - K-i (2.57)

where a is the volume expansion coefficient and к is the isothermal 
compressibility. In a X-type transition, both Cp and a tend to infinity, 
and Eq (2. 57) becomes indeterminate as oo/oo.
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Janovec [10] has recently generalized the Pipard equations [5] to 
get relations between anomalous quantities near a X transition in a 
dielectric crystal. The quantities which may behave anomalously around 
a X transition in a ferroelectric crystal can be arranged in a symmetric 
compliance matrix, the elements of which are the partial derivatives of 
the "extensive" variables (entropy per unit volume s, the components of 
the strain tensor ep, and polarization Pr) with respect to the "intensive" 
variables (temperature T, stress ap, electric field Er):

Here
„o,E = T(9s/9T)°D’ СГ

c o,E

T
a ° ’ E . . ■ а %л p f E • •

Wa

a , E 
? 1

c T , E 
b l l  • •

oT , e 
* 6

j T ,  E d u ^ T .E  
• °*13

A . e
а Ё

cT . E 
Ö61 • •

qT, e 
• ö 66

h T.E  
a 61 • • HT 'E ■ a 63

pO.E d T ' E. . 
11

. d T - E 
16

v  T, a
x n  • • . X T ’ °  

13

pa .E
^ i E- -

d T,E 
• 36

v T ,o  
X 31

v T .o  
* * 3 3

(2. 58)

is the heat capacity (per unit 
volume) at constant stress and field

o,E

-,T,E

/ 9S 
\9<V

T. °p/M • Er

ЭеЛ
9Eu/T,op/p,Er

Э1 е
p /p

эт
P * г

are the thermal expansion coef
ficients at constant stress and field

are the isothermal elastic compliances 
at constant field

dfT,E 9e \
9 E j A , 0p,Er/j

/ 9 Pi_

V 9orp A ,a p /p , Er
are the isothermal piezo-electric 
coefficients at constant field

p o,E  

and

x l ' a - №

э s Л
-9 E j / T , o p ,E r /j

' 1J \ 9 E j A , o p ,Er/j

9 Pi 
ЭТ are the pyro-electric coefficients 

at constant stress and field

is the isothermal dielectric sus
ceptibility at constant stress. The 
symbol p ju means p j= u.

General relations between the components of this matrix can be 
found by introducing a new variable

T - Tc (crp, Er) (2. 59)

and expressing derivatives at constant T in terms of derivatives at 
constant t.
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The main results are

(2 . 60)

where

E
(2.61)

is a tensor of rank two whose zero components are determined by the 
point group of the crystal. It measures the negative change of the 
transition temperature Tc due to mechanical stress and, of course, does 
not depend on temperature, whereas aj, S° d°i(J are slowly varying
functions of temperature.

The above equations thus predict the existence of linear relations 
between the anomalous quantities C0,E, and the pyro- and piezo
electric coefficients jd° ’e anddfi(J. An anomalous behaviour in the heat 
capacity, for example, indicates an anomalous temperature dependence 
in all non-zero components of the thermal expansion coefficient. These 
predictions have been verified in the case of TGS.

3. LATTICE DYNAMICS AND FERROELECTRICITY

Born and Huang [11] have shown that a crystal will be stable against 
small deformations if all the normal modes have real frequencies.
Cochran [12] and Anderson [13] demonstrated that in some ionic or partly 
ionic crystals a long-wavelength transverse optical frequency may become 
imaginary in the harmonic approximation resulting in an instability of the 
lattice with respect to this normal mode and a ferroelectric phase transition. 
The theory is based on the argument that in ionic crystals lattice vibrations 
are accompanied by polarization oscillations which create a local field 
interacting with the ions through long-range Coulomb forces. If, for a 
given normal mode, these long-range forces have the same magnitude but 
are of opposite sign than the short-range forces, the crystal becomes 
unstable against this mode. Above the Curie temperature anharmonic 
interactions stabilize the system, making the observable quasi-harmonic 
frequency real and positive, but temperature dependent.

The anharmonic terms in the potential energy lead to temperature 
effects connected with thermal expansion or contraction and to constant 
volume temperature effects, which dominate the temperature dependence
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of this "soft" mode. The anharmonic contribution decreases with de
creasing temperature and the frequency varies as

Uf(0) = 7 <T - Tc) (3.1)

and approaches zero as T-*TC so that the lattice displacements associated 
with this mode become unstable and produce a "displacive" ferroelectric 
phase transition.

The simplest way to understand this behaviour is to go back to the 
early theory of Slater [14] and to consider the motion of individual ions 
in the lattice (such as the titanium ion in ВаТЮ3). The equation of 
motion of such an ion may be written as:

m x + у  x + (Ks - K L + ВТ) x = q E0ei<Jt (3.2)

where Ks is the short-range harmonic restoring force constant, -K Lx 
is the long range electrostatic driving force which tends to drag the ion 
away from its equilibrium position, and ВТ is the effective anharmonic 
restoring force constant, which arises from inclusion of anharmonicity 
to lowest order. The amplitude of the external electric field of frequency 
и is E0 and q is-the effective charge of the ion. Using the relation

P = Nqx (3. 3)

where N is the number of ions per unit volume, and solving Eq. (3. 3) 
with the ansatz x = x0 exp [i(wt-ф) ], we get the following expression for 
the susceptibility of the system:

X =
“ o

N q 2/m 
w2 + iyw/m (3.4)

where

ul - (ВТ - K L + Ks)/m  = g  ( t  - Kl b~ Ks)  (3.5)

Expression (3. 5) is equivalent to expression (3. 1 ), and expression (3.4) is 
nothing but the Curie-Weiss law (if |k l | is slightly larger than |k s|) 
with

TC = (K L - K S)/B  (3.6)

as the real part of the low frequency dielectric constant is from expression
(3.4) obtained as

_ .  Nq2/m C
U2 T - Tr0 c

(3.7)

where C = Nq2/B .



416 BLINC

The static (e0) and high frequency (e„) dielectric? constants of a 
crystal are related to the long-wavelength lattice vibrations by the 
Lyddane-Sachs-Teller (LST) relation [15], which for a diagonally cubic 
crystal with two atoms in the unit cell takes the form

e0/e »  = “ l/ “ t (3.8)

Here uL and uTare the long-wavelength longitudinal and transverse 
vibrations and — since and wL are essentially temperature independent 
— a vanishing of uT leads to a singularity in e0. Cochran and Cowley
[16] have extended this relation to crystals of other symmetry classes.
For crystals having orthorombic symmetry or higher, they obtain

aa
£ 0. (3. 9)

where a is the direction of a crystalographic axis, uL (a) is the frequency 
of one of the n- 1  modes for which the polarization is longitudinal with the 
wave vector parallel to a and uT(a) is the frequency of one of the n- 1  
modes for which the polarization is transverse and the wave vector is 
perpendicular to the a direction. The results have been obtained in 
the adiabatic, electrostatic and harmonic approximation and are hence 
not correct in the limit k-> 0.

Cowley [17] has developed a Green's functions approach to study the 
lattice dynamics of an anharmonic crystal and Wilcox [18] has derived 
most of these results using a classical diagram technique. His treatment 
is confined to the study of the relationship between the static dielectric 
susceptibility tensor and the spectrum of lattice vibrations, and "frequency 
renormalization" technique is used to obtain a Curie formula for the 
susceptibility of paraelectric materials. _

The potential energy of the crystal in a constant applied field E is

U(E) = U - E-M (3. 10)

where M is the dipole moment of the crystal, whereas the susceptibility 
is related to the statistical fluctuations of the dipole moment in the 
absence of the field:

Xaß = (ß/V) [<M“Mß> - <M“><Mß>] (3. 11)

Here ß = l /k BT and the thermal average of the dipole moment is in the 
classical statistical approximation given by:

<M> Me"ßU<E) dV // e"ßü(E) dV (3. 12)
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To evaluate the ensemble averages it is convenient to use complex normal 
coordinates A\ which contain the square root of the mass of the atoms and 
where X stands for (kj) with j standing for a particular branch of the 
spectrum. The potential energy is expanded as:

U = H + V (3. 13a)

where

WXA X A x (3. 13b)

and

V = V3 + v 4 + . . .

with

■ IV3 = ) Д(к+ к' + kg) V3(X X' X2)AxAx.A
XX'

(3. 13c)

v„ I Д (k + k' + k2 + k3)V4(XX' X2X3)AxAxAx A^
X X X̂Xg 2 л3

(3. 13d)

and

M = M0 + Mj + M2 + . . .  (3.14a)

where

MQ = const

Щ  MyAj
j

M2 Д(к+к')М 2(Х ,Х ')А хАх- (3.14b)

Here ux stands for the temperature-independent harmonic frequencies. 
The summations over X are over all normal modes in the first Brillouin 
zone. The Д functions ensure wave vector conservation since Д (k) is 
zero unless к = 0 or a translation vector of the reciprocal lattice, in 
which case Д(к) = 1. The quantities V3 and V4 are completely symmetric 
with respect to interchanges of X 's  and the A x satisfy the relation:

A -\ = A  X (3. 15)
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The evaluation of the susceptibility is thus reduced to the calculation 
of the quantities

<M>= (e ‘ ßvM )/(e 'ßv) 

<M“M ß>= (e‘ ßvM“Mß) /(e 'ßv)
(3.16)

where parentheses are used to denote harmonic-ensemble averages for 
any quantity Q:

dV (3.17)

By expanding exp -ßV  in its power series, one finds that in lowest 
order the susceptibility is temperature-independent

X “e (3. 18)

whereas the first-order term, X j, is proportional to temperature, etc. 
This expansion in powers of temperature is not very convenient when 
"soft" low frequency optical modes are present. In particular, it 
diverges whenever one of the harmonic modes is unstable, Ug< 0. In 
this case it is better to take the anharmonic terms into account by a 
"renormalization" procedure. The new unperturbed Hamiltonian now 
represents a collection of independent harmonic oscillators with 
temperature-dependent frequencies The renormalization procedure
is as follows:

The potential energy is again divided into an unperturbed part H 
and a perturbation v:

where

U = H + v (3. 19)

H = H + Q (3. 20)

v = V - Q (3. 21)

and

Q = ^ ^  A + (k) C(k) A(k) 
к

( 3 .  22 )
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with C being a positive definite, for the moment unknown, temperature - 
dependent Hermitian matrix.

Defining new temperature-dependent normal co-ordinates with the 
unitary transformation

A = UA (3. 23)

which also diagonalizes (u2 + C), we find that the unperturbed part of 
the potential energy becomes equal to

H = a * A  (3 -24>
X.

where the matrix of the temperature-dependent "quasi-harmonic" frequencies 
w2 is given by

w2 = U(u2 + C)U+ = Uw2U+ + Ö (3. 25)

and

Q = ^ A +(k) C(k) A(k) (3.26)
к

Equations (3. 13c) and (3. 13d) are similarly expressed in terms of the 
Ax replacing the old potential constants Уз(ХХ' Хг), V^XX' X2X3) by new 
temperature-dependent^ ones V3(XX' X2) and v4(XX' X2X3). The harmonic 
ensemble average of (A\Ax') — which is sometimes called a contraction 
symbol — with respect to H is now

Ixv = (ÄxÄv )  = S-xvW fcV 1 (3.27)

The matrix C is now obtained from the requirement that higher-order 
terms should not contribute to the "propagator"

Gjj.(S) =<Äj (k)Äj,(-k )> -< Ä j(k)><Äj.(-k)> = gjj. + g jD jj.f,. + . . .
(3. 28)

Since

Dj j • - Dj j ■ + ß C j j • 

the above requirement means that

(3. 29)

ß C = - D (3.30)
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which provides an equation for C. It should be noted, however, that 
D = D(C) so that an iterative procedure must be used.

Introducing

M“ = UM“ (3. 31)

the dielectric susceptibility is given in terms of the temperature- 
dependent optical modes:

X IMfj Mfj / «__2

j
or, by using2 (3. 25)

XaB= (M?)+ (©2 + c )"1

j

Mgii M-ij
u? + c Ji

(3. 32)

(3. 33)

Let us now consider the ease with one "soft" mode with renormalized 
frequency

К + c n

In this case,

where

x « e = i .  (u2+ m j j +

i

C0 - “ kgT D00

(3. 34)

(3. 35)

(3. 36)

and, for cubic symmetry,

D00 - 12 I v4(-XX 00)
r  2

X
+ 18I-

w
k=k'

|v3(- XX' 0) 
U X U X'

(3. 37)

The choice of signs indicates that the unstable harmonic mode, u>2 < 0, 
is stabilized by the quartic potential to make Uq> 0. If the soft modes do 
not contribute too strongly to the sums in D00, D00 will be approximatively 
temperature-independent and provided that < o, Eq. (3. 35) yields .a 
Curie-Weiss law:

X = const. / (T  - Tc ) (3. 38)

2 Неге c  is the diagonal part of C.
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Silverman [19] proceeded in another way and developed an effective 
equation of motion for the modes of wave vector k. This equation is 
obtained by assuming that each mode of wave vector к sees the self- 
consistent anharmonic potential due to the presence of all other modes. 
This equation is a lattice-dynamical analogue of the Hartree self- 
consistent equations. The temperature dependence of the effective 
"quasi-harmonic" frequencies arises from averages over the spectrum 
of temperature independent modes.

k 2
КАЛЛЛЛЛЛЛ,

T ki
ЛЛЛЛЛЛЛЛ/

k2

FIG. 2. Diatomic linear chain with alternating plus and minus charges interacting with nearest (k1) and 
next nearest (k 2) neighbour harmonic coupling.

To illustrate this procedure in the simplest possible way let us 
consider a diatomic linear chain of alternating plus and minus charges 
with mass m interacting with nearest (Ц) and next nearest-neighbour 
(k2) harmonic coupling (Fig. 2). The equations of motion for this system 
are:

m d2Xj
dt2 2(k i  + k ^ X j  + k a( X i+1 + Х ы ) + k 2(X 1+2 + Xj_2 ) (3. 39)

and the frequency spectrum is obtained as:

Acoustic branch: (k) = -^ l sin2 sin2kda m 2 m
(3.40)

O i k s
2d

Optical branch: о/. . 4kj 2 kd 4кг  . 2 , ,ug(k)  ----- cos2 —  + -----  sin2kdu m 2 m

The frequency of the zero wave vector optical motion is completely 
determined by the nearest-neighbour coupling kj. Choosing ki small 
and negative and k2 large and positive we build into the system an 
instability ne'ar wave vector zero whereas the system is stable 
for larger к values (Fig. 3). The Hamiltonian can be written in terms 
of the harmonically unstable "normal modes":

H 0 = H (PkP-ak + Ша(к) + ^ ( P k0P-k +
к к

(3 .41)
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FIG.3. Optical and acoustic branch of the frequency spectrum o f the above diatomic chain.

Introducing a fourth-order anharmonic interaction between nearest 
neighbours

H' = | f ^ ( X i+a - X ;)4 
i

and expressing it in terms of normal modes, we get

(3.42)

Nm2/_, _
к "  k ’

[ I
. » k ' d

S l r f ~  ‘ q k ’ q -k ’ cos2¥  • < qk+ (3.43)

An effective "quasi-harmonic" Hamiltonian can be obtained by averaging 
over the q®, qfk,:

H eff = I X [ Pk P-k  +  Üa2 (k )  q k q tk  1 +  1 1 [ Pk P -k +  * 0  q kq -k  1 ( 3 ' 4 4 )
к к

with

8V4 V  . s 
.Nm2^ 111 

k'

k ' d
<q® q a. > + —  ̂N̂ k n -k' m

, kd 4 k 2cosz-v  + — - sin2kd (3.45)

and an analogous expression for u2, which is however still relatively 
temperature-independent. Averaging over the acoustic spectrum

/  a a \  к в Т ________ к в Т _________
^qk q-k />~u2(k) ~ (4k2/m)sin2kd (3 .46)
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and restricting ourselves to small wavenumbers, where sin kd «  kd, one 
obtains

ь»о(к) =
V4kBT 
2 m к 2

4 k i cos 2 kd 4k2 . 2, , — - sin kd m (3.47)

The presence of the anharmonic term therefore stabilizes the system 
above Tc . For к -* 0 the frequency varies with temperature as

«g(k=0) oc (T-Tc)

with

_ 8 |k l|ka 
c V4 kB

(3.48)

(3.49)

Inelastic neutron scattering results [20] (BaTi03), infrared reflectivi
ty measurements [21] (SrTi03 and KTa03) and Raman scattering data 
(NaN02) have confirmed the predicted variation of with temperature 
(Figs 4 and 5). A very promising technique to study the temperature 
dependence of the optical modes is also the measurement of the nuclear 
magnetic resonance spin-lattice relaxation time of nuclei with non-zero 
quadrupole moments, which is determined by the quadrupole spin-phonon 
coupling. Near Tc this coupling should be dominated by the "soft" mode 
so that the spin-lattice relaxation should vary with temperature as

Tj = К (T - T )̂2/T 2 + const (3. 50)

FIG. 4. Low-lying temperature dependent optical branch from inelastic neutron scattering data compared 
with optical branch from the above diatom ic chain model.

4. ORDER-DISORDER TYPE HYDROGEN-BONDED FERROELECTRICS

In many ferroelectric crystals one of the ions in the unit cell moves 
in a multiple well potential. In hydrogen (H)-bonded ferroelectrics, in 
particular, the proton has very often two possible equilibrium sites in



424 BLINC

Tl* И

HG. 5. The square o f the frequency o f the q = 0 mode o f the ferroelectric branch versus temperature for 
SrTi03. The broken line represents the temperature dependence o f the reciprocal dielectric constant 
[Cowley (1964)3 .

the X - H —  X bond, thus forming a reversible electric dipole with two 
equilibrium orientations. Whereas in displacive ferroelectrics (such 
as in BaTiOs), the ferroelectric instability is marked by the cancellation 
of the short-range "restoring" and electrostatic "driving" interactions, 
which results in ionic displacements and the formation of induced dipoles, 
it is the ordering of permanent X - H —  X dipoles which is responsible 
for the instability in H-bonded ferroelectrics. The potential field is so 
anharmonic, that the elementary excitations cannot — even approximately 
be described as phonons, and the methods developed in the previous 
chapter are not directly applicable. The problem can sometimes (but 
not always) be simplified by ascribing to each proton a fictitious spin 1/2  
(so that S2 = 1/2 if the proton occupies the "right" and Sz = - 1/2 if it 
occupies the "left" equilibrium site) and writing the Hamiltonian in this 
pseudo-spin space. The problem of how to determine the elementary 
excitations is then somewhat similar to the determination of the spin- 
wave spectrum in a ferrimagnet. An additional complication is the 
presence of a strong proton-lattice coupling which mixes the "quasi-spin" 
and "phonon" modes. The fact that in some of these crystals the strongest 
part of the effective interaction between protons is a short-range four- 
proton or three-proton interaction through intermediate ionic groups is 
as well a difficulty which is not present in the ferromagnetic case (see Fig. 6).

An excellent review of the state of art in this field till 1962 has been 
given by Uehling [22]. Since then DeGennes [23] introduced the quasi
spin formalism, and Matsubara and Tokunaga [24], Novakovic [25],
Villain and Stamenkovic [26] as well as Brout, Müller and Thomas [27] 
used it to investigate the collective excitations in these crystals. Blinc 
and Ribaric [28] pointed out the importance of the proton-lattice inter
actions, and Kobayashi [29] recently determined the collective excitations 
of the coupled proton-lattice system. A cluster approximation method, 
which allows one to take into account the four-body nature of the proton- 
proton interactions in KH2P04 and which reduces to the Silsbee-Uehling- 
Schmidt (SUS) [27] model in the classical limit, has been developed by
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Blinc and Svetina [30]. An exact solution [31] of the two-dimensional 
Slater [32] model has recently been found by Wu, Lieb, Yang and Yang, 
and Sutherland, whereas low and high temperature series expansions for 
the free energy of the classical Slaterunodel were given by Nagle [33].

In the following we shall try to sketch some of the new ideas in this 
field.

FIG. 6. Crossing o f optical phonon and protonic "quasi-spin" branch in H-bonded ferroelectrics.

4.1. Elementary excitations of the isolated protonic system 

The total Hamiltonian of the system is of the form:

H = HP + H L+ Hp.L (4. 1)

where HP stands for the Hamiltonian of the proton system in a rigid 
lattice, 4 L is the Hamiltonian of the lattice vibrations in the absence 
of proton motion and HPil stands for the proton-lattice interaction. 

The proton self-energy Hamiltonian can be written as
N n

HP = 2 Г £  £  Sf* +^T ^ { B f“ ssfxa sge-1+JffsL  Sg%}
f=l a=l f.g а. в (4.2)

+ V(?, {S z : Sz : Sz} + V(4) { Sz : Sz : SZ:SZ}

where the first term describes the motion of isolated protons between 
the two possible sites in a given hydrogen bond with Г as the tunneling 
frequency [34], the second term takes account of the effect of the 
tunneling of one proton on the tunneling frequency of another, and the 
other three terms describe an interaction between proton sites of two-, 
three-, and four-body character. Vj4) {Sz : Sz : Sz : S2} , for instance, 
represents in case of KH2PO4 the dominant effective short-range inter- 
protonic interaction through the PO4 groups and can be expressed in the 
following form:

V(4) {Sz : Sz : S2 : S2} = £  Ffghj Sf*S*S*S* (4. 3)
f. g.h.j
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The operators Sf̂  and Sza are represented by the Pauli matrices

Sx = 0 1/2 
1/2 0 Sz = 1/2  0 

0 - 1/2 (4.4)

and operate on a basis which we label |<£l> and |фк)>. These are the 
states in which the whole proton is localized either on the right or left 
hand side of the barrier in the double well potential of a givenH-bond.

By definition

I4> = ф .  si I4> = \ I4>.
(4.5)

I4 >

whereas the eigenfunctions of Sx are the symmetric and anti-symmetric 
linear combination of |фк ^ and |$L^:

K >  = > + К  »  = Ф
(4.6)

Kl >̂ = 4/2 ^ " I ^  ■ /̂2 ^-1 ^

The term associated with the ground state energy doublet is

Г ( J J) = 2 Г Sx (4.7)

where 2Г = Ец - Ej denotes the splitting of the unperturbed ground state 
due to proton tunneling.

In the above summations a twofold index labels a unit cell (f or g) 
and a particular proton in a given unit cell (a or ß). The quantities 
Bfg = Bgf, Jfg = Jgf depend only on the relative distances r f - rg. Of 
course B ff = J f f = . . . = 0 .

Let us for the moment forget about the proton-lattice interaction as 
well as about the three- and four-body coupling terms and let us look 
for the frequency spectrum of the protonic "quasi-spin" Hamiltonian 
taking only two-body interactions into account:

N n N n

- V  2 Г Х  X  SXfa+I  Z  <B? g SfaSgß + J ffs ^ S g V
f  = 1 a  = l  f ,  g  a ,  ß

(4.8)
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The important point is that this Hamiltonian is now "harmonic" in 
the quasi-spin variables and the normal modes can be easily found.

In the simplest, molecular-field approximation, the Hamiltonian 
(4. 8) becomes

where

and

(4.9)

Hx = 2 Г + 2B< Sgs > 

Hz = 2 J<SgS>

(4.10)

В = £  Вf“ ß, J = £  J?gß 
fa fa

The molecular field thus forms a vector H^p = (Hx, 0, Hz) in our pseudo
spin space which interacts with the spin variables. Here <(SZ >̂ denotes 
the thermal average of Sz:

Sz = <SZ> + 6SZ (4. 10a)

and terms like 6SZ which are dropped in the molecular field approximation , 
give rise to fluctuation effects and collective motion.

To study the normal "quasi-spin" modes of the system, let us rotate 
the co-ordinate system in such a way that the molecular field Hamiltonian 
takes a simple diagonal form:

- Hp = НмрI s £
ö i ,  ос ( 4 . 1 1 )

where

and
H:MF Ĥ + H2

Z

S* = cos ф S£ + sin ф S£

(4. 12)

Sz = - sin ф S| + cos ф Sjp
(4.13)
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The rotation angle ф is determined by the condition that the term 
in the Hamiltonian, linear in S? vanishes in the new co-ordinate system. 
The new temperature-dependent axes ? у ? are such that at all temperatures 

^s|)> = 0, whereas^S У̂, which is parallel to H, is different from zero:

sin ф = 7^ ,  cos ф = (4.14)
-H-MF M MF

We are now interested in the collective motion of our system of 
fictitious spins around the molecular field. For the ground state |g )> 
of our system — where we assume that in analogy to the case of ferro
magnetism all quasi-spins point "up" — we have by definition

S£f |G> = S |G> (4. 15a)

whereas

Sf+ |G> = 0 (4. 15b)

with

S* = Sf± i Syf (4. 16)

Let us now use the language of second quantization and introduce for 
S = 1/2 the representation:

S f a  “  P f a '  S f a  "  P fa (4.17)

where the creation and annihilation operators p^a and p ja satisfy the 
commutation relations:

P fßpge -  pg+ß P f«

Pfapgß -  Pgß P f .

43 p1
 ю

 
и

° * P f « P f «

(1 - 2n+ p. ) 6, 6'  *Та ^ for fg aß

Ча rfa Па Ha (4. 18)

fa

It should be stressed that the above quasiparticles (called [35] 
paulions by Agranovic and Tosic) behave like bosons at different lattice 
sites (f /  g, a f  j3), whereas at the same lattice site (f = g, a = ß) they 
behave like fermions. In case that we are interested in such low lying



FERROELECTRICITY 4 2 9

states that

П =<PfaPfa > «  1 (4.19)

one can neglect the term 2pja in comparison with 1 in the first of the 
commutation relations (4. 18) and the paulions can be treated as bosons. 
Recently, however, an exact procedure was developed by which one can 
express paulions in terms of operators satisfying the Bose-Einstein 
statistics.

Taking
1/2 —1

[ }
w  V

A v  afcx afa a fa = [ }
, f v  V
4 a f a a fa

v=0 v=0 (4. 20)

P f a fa

CO

[I
11/2

X a f  аУ,v fa  fa affa

_ eo

I b a fa ?v f a  fa
v=0 v=0

where the new creation and annihilation operators aj(, af satisfy the boson 
commutation relation

[afa, agg ] - 6fg6ag (4.21)

we obtain:
X„ = ( - 2)"

( 1 +n)!
(4.22a)

and

bQ = l, b 1 = - i , -  (1 + n/3/3), etc. (4. 22b)

so that

^ fa  Pfa — a fa a fa )  a fa

S fa = P f a =  a f a ^1 -  a f a a fa )  (4 ‘ 2 3 )

S fa =  ! / 2  -  a+f a a fa

The above expressions differ from the approximate expansion formulas 
of Holstein and Primakoff as here the third-order terms in the aja and 
afa are larger by a factor of two, which was lost in their approximate 
treatment.
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At very low temperatures the third-order terms in expressions 
(4. 23) can be dropped. Doing this and expressing the Hamiltionian 
(4. 8) in terms of Fourier-transformed coupling constants and operators:

and

where

Jae(q) = £  J f f e ^ V V

g.f (4. 24)

!aßfq) = Y Baßei?.(Rf-Rg)

g.f

a«“ =Jn I
f

e^-h afa

(4.25)

a t = - p ' Y  e*i?'tf a?«
T

[aqi a-j] = 6q q (4.26)

the Hamiltonian (4. 8) takes the form:
n n

Hp=I {  I  (J + A H )a|«a?a- Y,
<1 a = l a . 6=1

" 2 Vaß(q) (*3.-cja ̂ -q ß ^qa a-qß)

(4. 27)

a ,ß = l

Here

Vaß(q) = Vßa(q) = I  (Baß(q) cos2ф + Jaß(q) sin24>)
(4. 28)

ДН = (2B sin2$ + 2 J cos2  ̂)<^aja a fa У

The Hamiltonian (4. 27) can be brought to a diagonal form by a linear 
Bogolyubov transformation

Aqa ‘I :uaß(q) ah âs(q)a-qßJ

(4. 29)

Aqa [ u aß( q ) a qß  -  v a ß ( q ) a t : qßJ

ß

where uaß(q) and vaß(q) are even and real functions of q.
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In terms of these operators the Hamiltonian becomes 

H = ̂  ^  Чх(ч) A([ a (4 .3 0 )

a q
and the collective "quasi-spin" proton modes ua(q) are obtained from

det
J + ДН - U„(q) - V(q) - V(q)

- V (q) J + ЛН + u«(q) - V(q)
= 0 (4. 31)

Here V(q) is a n Xn matrix with elements Vag(q).
In KH2P 04 the primitive cell contains four non-equivalent protons 

(which surround a given PO4 group) so that a = 1, 2, 3, 4, but because 
of the symmetry axis perpendicular to the XY plane (V12 = V 14) we get 
only 3 different "quasi-spin" modes:

^ (q ) = H2- 2 H [ V 1 1 (q) + 2 V12 (q) + V13ß )l

W§(q) = U&q) = H2- 2H[Vn (q) - V13(q)]

u2(q) = H2- 2 H [V u (q) - 2V u (q) + УЦЙ)]

where H = J + ДН.
Wj has the lowest frequency and belongs to the irreducible represen

tation Г 4 of D2(j, whereas = u3 below to Г5 and u4 to Г2.
It should be noted that at low temperatures ДН will be small and 

H~ J. whereas ~Vag* Baß(q). An elementary excitation wa(q) in the region 
of small q values in a direction s has the energy

(4.32)

(4.33)

(4.34)

h2 2
Ua(q, s) =4«(0,s) + 2 < ( I )  + 

and propagates through the crystal with a group velocity

H? (3 -st I = ii <Mq- I - I fa q
l « lq* 'b dq ' im ^ )

(4 .3 5 )

(4 .3 6 )

Here one has, following Novakovic [36]:

Uj(0, s )  = n/J 2 -  JB ; h2 = JBa2 
2 m*(s) 12(J2- JB)1/2 (4.37)

with a2 being the. square of a lattice distance.
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The group velocity is hence proportional to В and should therefore 
be strongly mass-dependent. In particular, it should be much larger in 
KH2PO4 than ЮЭ2РО4. In this respect, it is interesting that Bjorkstam 
indeed found a great difference in the tip velocity of ferroelectric domains 
of KH2P04 and KD2P04, the ratio ^KH2poJv KDi?oi being of the order of 105.

4. 2. Temperature dependence of the protonic "quasi-spin" frequency 
spectrum

The temperature dependence of the "quasi-spin" modes can be obtained 
in the random phase approximation (RPA) by a linearization of the trans
formation (4. 23) which consists in replacing Sf = (1 - aj? af) af by 
Sf «  (1 - <̂ â af >̂) af and Sf = af (1 - af af) by Sf «а}(1 -<afat>). After 
this has been done the Hamiltonian is diagonalized by two further successive 
transformations as in Eq. (4. 1).

The results are:

U)2(5) = H2 - 2H[ Vn (3) + 2V12(q) + V13(q)]

U2(q) = u2̂ ) = H2 - 2H[ УЦИ) - V13(q)] (4. 38)

U2(q) = H2- 2H[Vu (q) -2V12(q) + V13(q)] 

where H is the molecular field and

Vaß(q) = (<S?«> + y ) [ B aß(q) со s2 ф + Jaß(q)sin2iH (4.39)

with

6 = 1 / 2  - < S L > (4.40)

measuring the deviation of <(Se )> from the ideal one-half value at low 
temperatures. Neglecting the small correction, quadratic in 6, one 
obtains3 for in the vicinity of Tc :

^(q) = 7(T - Tc) + Q q2 (4.41)

whereas the other three "quasi-spin" modes do not reveal any anomaly on 
going through the Curie point. We see that for q -» 0, ua -» 0 as T -» Tc.
The "quasi-spin" mode Uj thus exibits the same behaviour as the "soft" 
phonon modes in displacive ferroelectrics.

The same result is obtained if the Heisenberg equations of motion 
are linearized for the spin variables instead of Eq. (4. 23).

3 Note that for T = TC: tv u (0) + 2V12(0) + V13(0)] = H /2
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To illustrate this procedure and to demonstrate the T-dependence 
of the molecular field H let'us consider the Hamiltonian

- Hp = 2 Г ^  Sf + X { B fg S f S g +  J fg J fZ Jĝ  (4 - 42)
f fg

where we now, for the sake of simplicity, assume that there is just one 
proton per unit cell. Again we first transform the molecular-field 
Hamiltonian

s*+  H2^ s fz
f f

н х= 2Г +  2 B<Sf > (4.43)

Hz = 2 J<SZ >

to diagonal form

I *Hp = H )  Sf, H 2 = H2 + H 2 (4.44)

by the transformation from xyz to § у f where cos <j> = Hz/H, 
sin ф = Hx/H , and evaluates

. , 4 Tr Sf e"ßHp d
<Sf>  - "тг e-BHp d(ßHp taTre f = l / 2 tgh(№ /2)

(4.45)

Using this result one easily gets:

<SZ> = cos 0<SC> = ^  <4- 46>H 2

<SX> = sin 0<S{ > = 2 r  +H2B<S >A tgh «ЗН/2) (4.47)

Since <SZ> is proportional to the spontaneous polarization, Eq. (4.46) 
represents a self-consistent field equation for Ps.

The transition temperature is obtained as the boundary of the region 
beyond which there is no non-zero solution for<^Sz>. It is given by:

7  '  ^  < W 2> OT ,or T* Tc; 7 5  * *sh (и д  Т 7 5 7 7 ) -Ч й ь ) (4.48)
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The condition for the existence of a ferroelectric transition temperature 
Tc is thus: (J - B) > 2 Г. Above Tc <(Sz >̂and Hz are zero so that cos ф = 0, 
sin ф = 1. Below Tc, on the other hand, <̂ SZ)> j= 0, <̂ SX̂  = r /(J -B ), and 
si пф = 2Г/( J -B ).

Having the molecular field results we can investigate oscillations 
about the mean state by linearizing the Heisenberg equations of motion

in the RPA approximation. An exp("lart) time dependence for S is as well 
assumed. These Fourier-transformed"quasi-spin" operators are now 
collective variables in the sense that S“ is related to all sites i, j, etc. 
in the sample. RPA assumes that each Fourier component S“ fluctuates 
independently. It isolates terms proportional to S“ and replaces other 
operators occurring in such terms by their expectation values.

The solution of Eq. (4.49) is then reduced to the problem of solving 
a set of homogeneous linear equations for Sx, S ,̂ S :̂

i h S 5 = huS*= [£$ Hj3 (4.49)

for the Fourier components of S

(4. 50)
f

h uq®q = M &q (4.51)

where

(4.52)

The non-zero eigenfrequencies are:

( b u /  = 4[Г+ B<SX>] [ Г - (J(q) - B)<SX>] + 4J(J - B(q))<Sz> (4.53)

In the limit q -» 0, this expression reduces to:

(4.54)
T < Tc : (h io0) = 2 n/J (J - B) <SZ>

Below Tc, u0 is proportional to the spontaneous polarization and 
goes to zero as ,\SẐ  when T-* Tc . If <̂ SZ  ̂ is proportional to (Tc-T )1,/2,



FERROELECTRICITY 4 3 5

the "soft"-mode temperature dependence is exhibited. Above Tc, however, 
where <SX> = <(SC> = 1/2 tgh (ßH/2), Uo goes to zero as

Wo = 7 (T - Tc) (4. 55)

and thus again exhibits the Cochran "soft"-mode-type behaviour. This 
mode, however, is so strongly damped in the paraelectric phase, that 
it should be very difficult to observe it directly, even if the coupling with 
the lattice vibrations were absent.

It is interesting to note that this tunnelling "quasi-spin" wave model 
predicts not only an isotope effect in the Curie temperatures on replacing 
H by D, but also an isotope effect in the pressure dependence of the Curie 
temperatures, dTc /dp, since dr/dp >0 and strongly mass-dependent.
Both effects have been observed.

4.3. Proton-lattice coupling

In view of the strong proton-lattice coupling, the "adiabatic" rigid- 
lattice approximation is not appropriate and the complete Hamiltonian 
has to be diagonalized:

H = Hp + H L+ H PiL (4.57)

and not just Hp. Dropping the small BS* S* term in (4.42), we have

тГ Р = - 2 Г ^  Sx Jfg Sf Sg (4 .5 8 )

f f.g

(PqP-q + ^qQqQ-q) (4.59)
q

and

^ p,l = " X  VqQq s !q (4,60)
q

where Ŝ q is a Fourier component of

а V"1 ctSq = ) Sj eii-Rj (4.61)
j

and HPiL stands for the interaction of the proton with "inert” polar lattice 
vibrations via the electrostatic Coulomb field. The interaction of the 
proton with the high-frequency non-inert component can be included
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in the H-bond potential and leads to a renormalization of the parameters 
occurring in Hp.

Rewriting Hp and HP L in the ? у ? system, introducing 
S* = ± iS^, so that

HP ,L  = s i n  Ф Y ( v ? (S.-5 + Sqjj)Qq - co s  cp у V^SÜ^Q

q q

and finally expressing ,Hp in terms of the Fourier components (4. 61), 
as well as using the commutation relations:

[ Qk> PK'] = ift5KK.

[S$. sTq-l = ±2SEq+q. (4. 61a)

[ s?,q = ±Sq+q'

we obtain the coupled equations of motion

i b f s  = W o q= [ Oq, g r ] (4.62)

with

o„ s ;, s q, Qq, p.q

Linearizing these equations in the RPA approximation, 
resulting biquadratic equation for u, one gets:

Id = — ± 2
2 2'

up(q) + Y(q)

and solving the

16NVqrtsC> 1
H f

(4. 63)

where up(q) stands for the protonic "quasi-spin" collective mode, Qq 
is the polar lattice vibration to which the proton motion is coupled, and 
H is the molecular field.

It has been shown in the previous chapter, that up(0) -* 0 as T-* T0 
whereas Q is temperature-independent. An inspection of Eq. (4. 63) 
shows that the frequency of the coupled "quasi-spin"-phonon mode, 
u_, tends to zero even above Tq. At To, where up(0) is zero, w.is 
imaginary as the second term in Eq. (4. 63) is larger than the first one.

The ferroelectric transition temperature is within this model de
termined as the temperature where u .(0) = 0 and obtained as:
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Tc = T0 + N Vp 
"kgtTo ’

ы. = К (T-Tc (4. 64)

where К depends on the mass of the hydrogen isotope. The slope of the 
u? versus temperature curve should thus be different for KH2PO4 or
k d 2p o 4.

This remarkable formula is now, in principle, able to explain 
qualitatively the shifts of the Curie temperatures in the KH2PO4 family. 
Equation (4.48) shows that To is strongly mass-dependent (due to the 
dependence of the tunneling matrix element Г on the mass of the hydrogen 
isotope), explaining the shifts in the Curie temperatures on deuteration. 
f20, on the other hand, which is essentially a translational vibration of 
K+ against the PO4 group, changes when the К ion is replaced by Rb or 
Cs and the P ion by As, thus explaining the isotope effects in this series 
of isomorphous ferroelectrics. According to this model, these shifts 
come from the second term in Eq. (4. 64) the contribution of which to 
Tc is small.

It should be stressed that whereas in displacive ferroelectrics the 
lattice instability arises from the cancellation of the short-range restoring 
and electrostatic driving interactions, it is the ordering of the protons 
(Wp(0) -► 0) which produces the ferroelectric instability in KH2P0 4-type 
hydrogen-bonded crystals.

While to. (which is always smaller than fl) goes to zero at the Curie 
temperature, w+ does not significantly change at the ferroelectric 
transition and is always larger than Г2.

An inspection of the eigenvectors of the system (4.62) further shows
that

(Q 0/ Sp )ta_
( Q o / s fL +~ w-2 -

(4.65)

Since u2 > f2g, u2_< U2, in one of the coupled modes (u_), the proton system 
and the lattice oscillate in phase, whereas in the other coupled mode 
(u+) they oscillate 180°C out of phase.

The above treatment is still oversimplified though it accounts for 
many characteristic features. A more satisfactory treatment should 
include:

(i) Non-linear terms to account for damping effects;
(ii) Higher excited states to account for phonon-assisted tunnelling 

which dominates the deuteron and, to some extent, also the 
proton dynamics in the paraelectric state;

(iii) The change of the "quasi-spin" modes at low temperatures 
to the "diffusion" mode at higher temperatures.

4.4. Cluster approximations

While the above "quasi-spin" wave treatment elucidates the dynamical 
aspects of the phase transition, it is not very appropriate for a calculation
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of the partition function and other thermodynamical quantities in the 
vicinity of the transition temperature where the interactions between 
the "quasi-spin" waves cannot be neglected.

For this high temperature region, where the long-range correlations 
start to disappear, a cluster approximation method was developed [30] 
which takes the four-body nature of the interactions between the protons 
surrounding a given P04 group explicitly into account. The aim of the 
cluster expansion is to obtain a rapidly convergent series for the free 
energy of a N-body system with the successive treatment of one-, two- 
and more-particle problems. The procedure developed in Ref. [30] 
consists in the separation of the Hamiltonian into an unperturbed single
particle part and a perturbed many-particle part, introducing a, for 
the moment, unknown ordering parameter Д:

H(E) = H0(E, Д) + H'(E, Д) (4.66)

with E being the external electric field. The free energy of the system 
can consequently be written as

F(E,T) = F0(E, T, Д) + F'(E, T, Д) (4.67)

Expanding F' in terms of the number of particles in a cluster, we get
a series of approximations for the free energy: F ^  , F^j .......... F ^
where n is determined by the size of the cluster.

Each approximate free energy is a function of the external field, 
temperature, and an, up to now, arbitrary ordering parameter Д. This 
is to be determined in such a way that the approximation is thermo
dynamically consistent. Differentiating the approximate free energy 
we get

dF,
(n )

3F(n)
ЭТ dT + 9F(n)

ЭЕ dE + dA (4.68)

The entropy and the polarization of the system are defined as

S (n)
p  = _ (  9 F (nA

" \ ЭЕ Л (4. 69)

respectively. The thermodynamic relation dF = -SdT - PdE is then 
satisfied by the approximate free energy for the value of Д for which

Э F,
9ДIs) = 0 (4. 70)

i. e. our approximate free energy must be stable for small variations of Д.
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The successive approximations to the free energy of the KH2PO4 
and KD2PO4 model Hamiltonian are an example of the above procedure. 
The model Hamiltonian of KH2PO4 reads in the notation of Ref. [30] as:

N 4

H = £  j  - I  r^T (Sy + S'y) + [«^ N l0 + Ni4) + «.(N i! + Ni3) + e N\2] 
i=i j=i
4 (4.71)

+ I X  [ - 7 < Р > (П;].Г п.и ) + | 7 <Р>2] }
i = i

where Stj and Sjj are proton "jump" operators

Sij " b ijf bijl * s " (4. 72)

whereas the ni;|. are the proton "number" operators. The Nio (a = 0, 1 . . .4) 
are four-particle operators, describing the arrangement of the protons 
around a given P04 group and ■\p)> is the mean value of the reduced 
hydrogen-bond dipole-moment operator:

< P >  = < n ijT -  n iU > (4 .72 ')

The unperturbed part, HQ, and the perturbation term, H' are:
N 4

H° = \  ^  [ - r (s U + sij ) - (7 <P>+A) (nijt -  n,iu )] + N 7<p>2
i=l j=l

with H' = H - H„.

The first approximation to the free energy is to include into the cluster 
four protons (thus taking the short-range interactions around one P04 
ion exactly into account), and the second is to include the seven protons 
around two neighbouring P 0 4 groups. The free energies are:

F(4) = -kTN [InTr e ‘ SH(4) - 2 InTr e ' eH(i) ] + N 7 <p> 2

F(7) = -kTN [ 2 ln T r e "eH{7) - 31nTr e ’ SH(4)] + N 7  <p> 2
(4. 73)
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with

H(4)

H(1) = -  Г  (St;  +  St; ) -  (7<p> + A ) ( n ijT -  n , u )

4

■ I  { - r <S,i + S - ) - ( T<p> + | л )(п 11( - Пц(, }  ,
i=  1

+ «*(NU + Ni3) + eN'

7

i2

г (N + N ) 
r  iO i 4 /

(4. 74)

H(T) = X  { _ r ( S U +  S t j)  ‘  ' > ' < ? >  ( " i i f n i i 4  +  X  ^ ( N i°  +  N i4 }
i = l  i = o f .  8

+ «d(Nn + Ni3) + eN!, 2 K j f "  nii^
i= 1

The ordering parameter is determined from the equations 9F(n) /ЭД = 0, 
which yield for both approximations

Tr (nUT- пщ )р(1) = \ Tr ^  (ni jr  nm ) p(4)
j = l

(4. 75a)

Tr ) (n..,- n ) p, = — Tr ) (n - n ) p
L , ut 1Ц (4) 3 «Т Щ (?)
i = i  j = i

respectively, and where

(4. 75b)

e"SH(i) e ‘ SH(4) e~6H(7)
(l) Tr e '0H(i) ’ f(4) Tr e 'SH(4) ' (̂7) Tr e_SH(7) (4. 76)

The convergence of the series is very good in predicting both the temperature 
of the phase transition and the shape of the polarization curve. In the 
classical limit (Г-* 0) the results of the four-particle cluster approximation 
reduce to the SUS model of KD2P04.

4.5. Exactly soluble models

It has been recently shown [31] that the two-dimensional classical 
(Г = 0) Slater KH2P04 model can be solved exactly. The model is based 
on the original suggestion of Slater that each of the four hydrogens 
surrounding a given PO4 group has a choice of two off-center equilibrium 
sites in the O-H--O bond subject to the condition that there are always 
only two hydrogens close to the P04 group. This condition limits the 
number of possible configurations to six.
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The above simplified picture permits a well defined mathematical 
model to be constructed by associating arrows to lattice bonds and energies 
to lattice sites. We consider a hydrogen bonded N XN square lattice with 
periodic boundary conditions. The rule is that there are always two 
arrows pointing toward and two arrows away from a given lattice site, so 
that a hydrogen atom near a site is represented by an arrow directed 
towards the site. Then there are altogether six possible arrow configurations 
that can be associated to a site. A zero site energy is associated with two 
of the six configurations and an energy e > 0 with the remaining four.

Site configuration:

Site energy:

( 1 ) (2) (3) (4) (5) (6 )
• t i, /\ у

\ \
A ’ 1 ' 1

Each distinct way of associating arrows to the lattice as a whole is a 
state of the lattice. The energy of a given state is simply n(e)e, where 
n(e) is the number of sites with energy e,

Z = L e - r , ( e ) e /k T  (4 . 77)
a ll states

and has been evaluated [31] by the transfer-matrix method: The results 
are as follows:

(a) A phase change occurs at kTc = e In 2 in agreement with Slater's 
mean field result;

(b) Below Tc , the specific heat is zero, C = 0;
(c) The transition is of first order with a latent heat.
(d) Near and above Tc the specific heat goes as С ~  (T - Tc)"1 2̂ 

in contrast with Slater's result that C is finite at Tc .
(e) Near and above Tc the susceptibility goes as X °c (T - Tc) '1.
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1. INTRODUCTION

The aim of these three lectures is to give an overall, general and 
up-to-date account of the principles of the methods of neutron spectro
scopy. They are meant, in principle, for those experimental and theo
retical physicists who are not specialists either in X-ray or in neutron 
diffraction. For this reason, the lectures (particularly the first one) 
present the subject in a very elementary and simplified way and stress 
only the main features of the methods.

The first lecture — which is of an introductory character -  is devoted 
to a brief review of the basic experimental methods of neutron spectro
scopy and illustrates the usefulness of the reciprocal lattice concept for the 
description of neutron diffraction phenomena. The second lecture deals 
with methods of neutron spectroscopy for structure analysis of solids, 
and the third shows how neutrons can be used in studies of lattice dynamics.

Although these lectures are supposed to deal with methods of neutron 
spectroscopy only, for didactic reasons the X-ray spectroscopy methods 
are also occasionally discussed.

Those who are or will become interested in a certain problem will 
find at the end of this text a list of references to textbooks, monographs, 
proceedings of scientific conferences and papers published in scientific 
journals, where they can find a more detailed description and discussion 
of that particular problem.

In the textbooks for elementary physics the word "spectroscopy" is 
usually found for the first time in connection with the description of the
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famous experiment of Newton concerning the study of the composition of 
light by means of a glass prism. Using more modern expressions, one 
would say that Newton studied the wave-length distribution or the spectral 
distribution of light. In this sense the word "spectroscopy" was in the 
course of time applied to measurements of wave-length distribution of other 
types of radiation, e .g ., infra-red, ultra-violet, X-rays, neutrons.

However, very soon it was discovered that spectroscopy of radiation 
scattered by or transmitted through matter can supply useful information 
on the matter itself. In this connection special methods using the inter
action of radiation with matter as a means of studying the properties of 
matter have been developed. As a general rule, they include not only 
wave-length distribution measurements (i. e. , spectroscopy in the original 
sense), but also angular distribution measurements. In some cases (as, 
for example, in X-ray structure analysis using a monochromatic beam) 
only the angular distribution is measured. It is common, however, to 
call these methods also methods of spectroscopy, e. g . , methods of 
X-ray or neutron spectroscopy.

We shall first treat the methods of neutron spectroscopy in the 
original sense of the word, and afterwards we shall learn how they are 
used for studies of structure and lattice dynamics of solids.

2. METHODS OF SPECTRAL DISTRIBUTION MEASUREMENTS

2.1. General remarks

There are two main methods of spectral distribution measurements 
of electromagnetic radiation and neutrons. One uses the wave properties, 
the other one the corpuscular properties of radiation. The two methods 
are briefly described in this section. It will be shown afterwards (in 
sections 4 and 5) that both methods can be applied to studies of structure 
of solids and lattice dynamics.

There are also other methods of spectral distribution measurements 
of radiation (e .g ., resonance methods); however, they will not be discussed 
in these lectures.

2. 2. Methods using the wave properties of radiation

2. 2. 1. Electromagnetic radiation

2. 2. 1. 1. Light (visible, infra-red, ultra-violet)

Figure 1 shows schematically the principle of a spectrophotometer 
for studies of wave-length distribution of visible light, infra-red and 
ultra-violet radiation. By moving the arm of the detector we can measure 
the angular distribution of the refracted or diffracted beams and by using 
the equations for prisms or gratings it is possible to calculate the wave
length distribution of the radiation to be studied. (As is well known, in 
such measurements several corrections must be introduced). It is also 
possible to keep the arm of the detector fixed and to rotate the prism or 
the grating. In both cases the angular distribution leads to the wave length 
distribution.
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FIG. 1. The principle o f a spectrophotometer for measurements o f the wave-length distribution o f light.

2. 2. 1. 2. X-rays and gammas (see Refs [1, 2])

Figure 2 shows schematically the principle of an X-ray or "soft" 
gamma spectrometer. It is analogous to that in Fig. 1 with one important 
exception. Because in this case the Bragg reflection is used, the angle 
of incidence must always be equal to the angle of reflection. To ensure 
this, both the analysing single crystal and the arm of the detector must 
be rotated (with an angular velocity ratio of 1:2). By measuring the angular 
distribution it is possible, using the Bragg equation,

2 do sin0 = X ' (1)

(where do is the known interplanar spacing) to obtain the wave-length 
distribution. As in the previous case, several corrections are needed 
(e. g. wave-length-dependent reflectivity of the single crystal, efficiency 
of the detector, absorption, extinction, geometrical factors). Some 
difficulties also exist with the so-called higher-order reflections (this 
point will be discussed in section 3.5). However, regardless of some 
technical details, also in this case, the angular distribution leads to the 
wave-length distribution.

2. 2. 2. Neutrons [3-5]

In order to use the wave properties of the neutron, in this case it is 
necessary to ascribe to it a wave-length

mv (2)
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FIG. 2. The principle of an X-ray spectrometer for wave-length distribution measurements.

TABLE I. NEUTRON VELOCITIES, ENERGIES AND 
WAVE-LENGTHS

V 1000 4000 m /s

E 5 80 meV

X 4 1 X

where h is Planck's constant, m the mass of the neutron, and v its 
velocity. For studies of structure and lattice dynamicsoof solids the 
wave-lengths of the most useful neutrons are between 1A and 4A. Table I 
shows the corresponding velocities and energies.

The arrangement for wave length distribution measurements of a 
neutron beam is similar to that for X-rays (Fig. 2). The dimensions of 
the spectrometer are, however, larger because of the low intensity of 
neutron sources compared to X-ray sources. Of course, a neutron counter 
(e. g. a gas BF3 counter) must be used instead of an X-ray detector. The 
corrections to be applied are similar to those listed in sub-section 2. 1 . 1 . 2 . 
Figure 3 shows a typical wave-length distribution of neutrons from a 
thermal nuclear reactor. It is nearly Maxwellian, at least in the middle 
part.

As can be seen from what was said above, the angular distribution 
here again leads to the wave-length distribution. This is usually the 
case when the measurement of the spectral distribution of the radiation 
under investigation is based on its wave properties.
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FIG. 3. A typical wave-length distribution o f neutrons from a thermal nuclear reactor.

2. 3. Methods using the corpuscular properties of radiation

2. 3. 1. Electromagnetic radiation

For electromagnetic radiation we have

£ he 
v  E f (3)

where c is the velocity of light, i/ the frequency, and Ef the energy of the 
photon.

Equation (3) shows that by measuring the energjr-distribution of photons 
it is possible to obtain the wave length distribution of the electromagnetic 
radiation to be studied. Nowadays it is especially easy to measure the 
energy distribution of X-ray and gamma photons in the energy range from 
about 10 keV to several MeV by means of semiconductor detectors.
Figure 4 shows schematically the arrangement to be used. It can be 
shown that the height of the electric pulse obtained from a semiconductor 
detector (e. g. Ge or Si Li-drifted) is proportional to the energy Ef of 
the photon absorbed by the detector. The electric pulses from the detector 
are registered in appropriate channels of a multichannel pulse height 
analyser (according to their height), and in this way the energy of the 
photon is proportional to the number of the channel in which this photon 
was registered. Figure 5 shows an example of an energy distribution 
measured by means of a semiconductor detector and a multichannel pulse 
height analyser. Of course, in this case also, several corrections must 
be introduced in order to obtain the correct spectral distribution.

2. 3. 2. Neutrons [3]

To run through a distance 1 a neutron of velocity v needs the time

t 1_
v (4)

By combining Eqs (4) and (2) we obtain
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S em icon d u ctor
d e te c to r

C o llim a to r

• :—

X - r a y
s o u rce

0

M ultichannel pu lse
height a n a ly se r

FIG. 4 . T h e  p r in c ip le  o f  an a rra n gem en t for X - r a y  en e rg y  d istr ib u tio n  m ea su rem en ts  b y  m ea n s o f  a 
s e m ico n d u c to r  d e te c to r .

FIG . 5 . A n  e x a m p le  o f  an en e rg y  d istr ib u tio n  o f  X -r a y s  m easured  b y  m ea n s o f  a s e m ico n d u c to r  d e te c to r  
and a m u lt ich a n n e l p u lse  h e ig h t a nalyser.

which shows that the wave-length of the neutron is proportional to the 
time needed by this neutron to run through a certain distance 1. This 
feature can be used for wave-length distribution measurements and the 
method using it is called the time-of-flight method (TOF). Figure 6ishows 
schematically the principle of a TOF arrangement. A collimated neutron 
beam is chopped by means of a rotating disc (chopper) with one opening 
(slit). The disc is made of a material not transparent1 to neutrons, and 
the neutron beam will be let through the disc in small intervals of time 
only when the slit is opposite to the collimator. In this way neutron 
pulses with frequency^ and half-time width At = fi/u (see Fig. 6a) will be 
obtained2 3. For the kind of neutron studies which will be discussed later,
At is usually about 10-15qs and и about 300-600 s '1. Every time the 
neutron pulse leaves the chopper, the multichannel time analyser starts 
to count.

If the detector is located at point A (Fig. 6a) very close to the slit 
and if the channel width 6t is greater than At, then all neutrons would be 
recorded in the first channel (Fig. 6b, diagram A)®. If, however, the

1 In p r a c t ic e ,  n o  id e a lly  n on -tran sp a ren t m a te r ia l ex ists , and th e re fo re  a pa rt o f  the neutrons 
a lw a ys runs th rou gh  and co n tr ib u te s  to  th e  b a ck g rou n d .

2 P ro v id in g  that th e  c r o s s -s e c t io n  o f  th e  c o l l im a t o r  has th e  sa m e  s iz e  and sh a p e  as th e  s lit .

3 B ecau se  a ll  neutrons w ou ld  b e  re co rd e d  in  th e  first ch a n n e l, th e  n u m b er o f  cou n ts  p e r  ch a n n e l 
fo r  th e  first ch a n n e l w o u ld  b e  v e ry  la rg e .
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А В С

FIG. 6 . a ) T h e  p r in c ip le  o f  a t im e - o f - f l i g h t  arra n g em en t fo r  w a v e - le n g t h  d istr ib u tion  m ea su rem en ts 
o f  neutrons e m itte d  fr o m  a neutron  s o u r ce , b )  N u m b er o f  neutrons per ch a n n e l versus c h a n n e l num ber 
fo r  v ariou s pos ition s  o f  th e  d e te c to r  show n in  F ig . 6 a .

detector is located at point C, the neutrons will be recorded in different 
channels according to the time of their arrival at the detector. In general, 
neutrons arriving within the time interval (t,t + 6t), where t is counted from 
the moment when the neutron pulse leaves the chopper, will be recorded 
in channel number N = t /6t. These neutrons have a wave-length within the 
interval (X, Х+ДХ), where

A = — 6t ml N ( 6 )

and

Д A = -Ц 6t (7)ml
All these facts show that the distribution of neutrons recorded in 

various channels of the time analyser leads to the wave-length distribution 
of neutrons of the analysed beam. An example of the result of this kind 
of measurement performed with the detector at point C can be seen at 
Fig. 6b, diagram C. From Eq. (7) one also sees that the wave length 
interval ДХ increases with the decrease of 1. For example, at point В • 
(Fig. 6a) ДХ is twice as big as at point C and, consequently, the wave
length distribution measured at В will be squeezed compared to that at C 
(Fig. 6b, diagram B).
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To obtain the correct wave-length distribution from the distribution 
recorded by the multichannel time analyser, several corrections must be 
introduced. The most important is the transmission of the chopper. A 
disc chopper like that shown in Fig. 6a has a transmission practically 
independent of wave-length; however, other kinds of choppers have trans
mission functions which,in general,depend on both kandv.

In these lectures the term "chopper" will be used for a chopping device 
which (although it may change the spectrum of the transmitted beam) 
produces polychromatic neutron pulses. In section 5. 3. 1. chopping 
devices producing a monochromatic pulsed neutron beam will be described; 
they will be called "mechanical monochromators" in order to distinguish 
them from choppers as defined above.

3. CRYSTAL LATTICE; MOMENTUM SPACE,
CRYSTAL MONOCHROMATORS [2, 6]

3,1. Crystal lattice in real spaces

As is well known, a crystal lattice can be built up from unit cells, 
one of which is shown in Fig. 7. The vectors {iq} , where i = 1, 2, 3, are 
called basic vectors. For reasons of simplicity all further considerations 
will be limited to lattices with basic vectors perpendicular to each other 
(cubicoidal lattices), although most of the discussion is valid also for 
other types of lattices.

Let us consider first a two-dimensional lattice, as shown in Fig. 8 
with the basic vectors ^  and ~Й2. The lattice points are marked by dots. 
Any plane crossing lattice points is called a crystallographic plane. In 
a two-dimensional lattice, crystallographic planes reduce to straight 
lines. To a set of parallel crystallographic planes in a three-dimensional 
lattice (a set of parallel crystallographic straight lines in a two-dimensional 
lattice) the Miller indices (hkl) can be ascribed. This can be done in 
several equivalent ways. For simplicity, we shall define them as

h=3T; к = — ; 1 = ̂ 3- 
xo Уо zo

where (x0, 0, 0), (0, yo, 0) and (0, 0, zq) are the co-ordinates of the crossing 
points of the crystallographic plane nearest to the origin point and the 
axes Ox, Oy, Oz respectively. Two remarks should be made in this 
connection. First, that the Miller indices are ascribed to a set of parallel 
crystallographic planes and not to one crystallographic plane, in particular. 
Second, that the Miller indices are integers with no common factor. If 
the parallel set of crystallographic lines in the two-dimensional lattice 
shown in Fig. 8 would represent a set of parallel crystallographic planes 
in a three-dimensional lattice parallel to the z axis (z0 = oo) the indices of 
this set would be

h= 2 к = 1 1= 0

and one would write (2 1 0).
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2

FIG. 7 . U nit c e l l  o f  a crys ta l la t t ic e  ( t j ,  ~ a 2, ~&3 -  b a s ic  v e c to rs . A j -p o s it io n  o f  the j a to m , jq  -  its 
m a g n e t ic  m o m e n t).

The interplanar distance duj between subsequent crystallographic 
planes (hkl) is equal to the distance from the origin to the nearest crystallo
graphic plane. For a cubicoidal lattice, it is easy to calculate that

5 7

(8 )
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FIG. 9. Construction o f a two-dimensional reciprocal lattice.

3.2. Reciprocal lattice [2, 6]

The reciprocal lattice is a lattice with basic vectors aj* * (j = 1, 2, 3) 
satisfying the equation

aj aj' = 6ц (i,j =1,2 ,3) (9)

For a cubicoidal lattice

a * = f -  ( i= 1, 2, 3) (10)
a i

and vectors gî  and ar are parallel to each other. Figure 9 illustrates 
how to construct a reciprocal lattice for a two-dimensional lattice. In 
this case, according to Eq. (10)

* 1 a* = —  l ai

a#•
2 a 2

and
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It can be shown that the vector rn  (Fig. 9) in the reciprocal lattice is perpen
dicular to the crystallographic straight line (1 1 ) in the real space and 
that тп  = l /d n. For the three-dimensional lattice we find that тщ is 
perpendicular to the (hkl) plane and that

where, as was said before, hkl have no common factor (this restriction 
will be discussed below).

We see that a straight crystallographic line in the real two-dimensional 
space corresponds to a point in the reciprocal lattice. In a three- 
dimensional case each crystallographic plane (hkl) in the real space is 
represented by a point (hkl) in the reciprocal lattice and a vector тщ , 
called reciprocal lattice vector. It should be stressed, however, that 
points (hkl) in the reciprocal lattice in the case when hkl have a common 
integer do not correspond to any crystallographic plane in the real space. 
For example, to the reciprocal lattice point (20) on Fig. 9 there would 
correspond a straight crystallographic line in real space labelled with a 
question mark in order to stress that this is not a crystallographic line 
because it does not cross any lattice point. Therefore, as has been said 
above, -l/Thki equals the interplanar spacing of a set of crystallographic 
planes only in the case when hkl have no common factor. The physical 
meaning of тщ ш  the other cases will be discussed in the next section.

3.3. Bragg's equation [ 2, 4]

As is well known, the Bragg equation can be derived from Laue's 
equations which take into account interference phenomena and the wave 
properties of X-rays and neutrons. In textbooks the Bragg equation is 
often written in the form

and illustrated by a figure like Fig. 10 where d is the interplanar spacing, 
Ag the wave-length of the monochromatic X-ray or neutron beam, and n 
the order of reflection. The physical meaning of n is evident from Fig. 10:

As can be seen from Eq. (12), for each Ag several reflections can be obtained 
corresponding to different 0n . These reflections can be studied by using 
a crystal spectrometer shown schematically in Fig. 11. Since sin0<l, 
the number of reflections cannot be greater than 2d/Ao- 

Equation (12) can be rewritten in the following way:

2 d sin0n = n A0 (n = 1, 2, 3, . . . ) ( 12)

AB + AC = nA0

(13)

which can be formally interpreted as a first-order reflection from a set 
of crystallographic planes with an interplanar spacing d/n.
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FIG. 10. Bragg reflection of neutrons or X-rays.

Single cry s ta l

333

n = 1 n = 2 n = 3

FIG. 12. Real and "formal" interplanar spacings.

Let us now suppose that d is the interplanar spacing of a set of crystallo
graphic planes (hkl). Remember that hkl do not have a common factor.
Then using Eq. (-8) we obtain

dhkl
'  l - b -  \ 0  /  \ 4n (14)
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and we could write formally

d hkl
n dnh, nk, nl (15)

remembering, however, that dnh, nk, nl does not mean a real interplanar 
spacing, but one of the kind shown in Fig. 12. However, taking into account 
Eq. (11), we obtain

d hkl -  1

n  Tnh, nkl, nl
(16)

where, as shown in section 3. 2, Tnh пк nl corresponds to a reciprocal 
lattice point (nh, nk, nl). This means that a reciprocal lattice point 
(nh, nk, nl) represents the nth order reflection ("higher-order reflection"4) 
from the (hkl) crystallographic plane. The term "(nh, nk, nl) reflection" 
will from now on be used in this sense, e. g. , reflection (3 9 15) will mean 
the third-order reflection from the (1 3 5) crystallographic plane.

3. 4. Ewald's construction [2, 4]

Let us now look at the Bragg equation, taking into account the corpus
cular properties of the X-ray photon or the neutron. Both the photon and 
the neutron have a momentum fi к where к is the wave vector of the 
photon (27Г/X) or the neutron (2ж/X = mv/fi). Figure 13 shows how the 
direction of the momentum of the photon or neutron changes in the process 
of a Bragg reflection. The Bragg reflection takes place without change 
of wave-length such that

k0 = k,

which means that the energy of the photon or neutron has not changed in 
this process and the crystal lattice has neither gained nor lost any energy.

The law of momentum conservation leads, however, to the conclusion 
that the crystal has transferred to the photon or neutron the momentum

ftQ = h k - f ik 0 (17)

m o m e n t u m  o f  t h e  r e f l e c t e d  

n e u t r o n

( h k i )

m o m e n t u m  " s u p p l i e d ”  
b y  t h e  c r y s t a l  l a t t i c e

'm o m e n t u m  o f  th e  
in c i d e n t  n e u t r o n

FIG. 13. The momentum change o f neutron or the X-ray photon in a Bragg reflection.

See end o f  section 3 .5 .
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With the help of Fig. 13 and the Bragg equation

2dhklsin0B = nX0 

where Xq = 27r/k0, we obtain

Q =
27Ш 
dhkl

or, using Eq. (16),

Q 27rTnhnknl

Remembering that the vector Tnhnknl is perpendicular to the crystallo
graphic plane (hkl), we see immediately from Fig. 13 that the vectors Q 
and t have the same direction and, therefore,

Q = 2lr Tnh nk nl

or

fiQ 2Атп̂  nl (18)

Equation (18) leads to the physical meaning of the reciprocal lattice 
vector r^ j (where hkl may have a common factor): the reciprocal lattice
vector multiplied by 27rfi represents the momentum which is, must and can 
be transferred by the lattice to the photon or neutron whenever a Bragg 
reflection occurs. In this sense the reciprocal lattice vectors (multiplied 
by 27rR) form a discrete set of momenta which can be supplied by the 
lattice without change of its energy. For this reason, the reciprocal 
lattice represents a momentum space. Whenever this will not lead to 
confusion it will be assumed fi = 1 and k0, k, Q, 27rr will be simply called 
momentum. The symbols d hki and (hkl) will also be used with regard to the res- 
trictionthat they have no common factor. However, dhkl will mean l /тыа (and 
not necessarily the real interplanar spacing) and hkl will mean a reflection only 
(and not the Miller indices of a crystallographic plane). To avoid confusion 
we shall use the symbol (hkl) to denote a crystallographic plane and the 
symbol hkl (without parentheses) for a reflection.

The above considerations lead to the Ewald construction, enabling one 
to find in an easy way the directions in which a Bragg reflection should 
occur. Figure 14, with a momentum diagram in the two-dimensional 
reciprocal lattice, is closely related to Fig. 13 in real space, ко pointed 
to the origin of the reciprocal lattice (point 000) represents the direction 
and momentum of the incident photon or neutron. The circle has a radius 
k0 = k. Whenever the circle crosses a reciprocal lattice point the law of 
momentum conservation is fulfilled and one gets a reflection. On Fig. 14 
it takes place for one reciprocal lattice point marked hkl . The circle 
is called an Ewald circle. In the case of a three-dimensional lattice we 
have an Ewald sphere instead of a circle. If several reciprocal lattice 
points are lying at the sphere several reflections will occur.

Using the Ewald construction (Fig. 15 -  the Ewald circles are not 
shown explicitly) it is possible to explain the existence of higher-order
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FIG. 14. The Ewald construction in the two-dimensional reciprocal lattice.

FIG. 15. The Ewald construction explaining higher-order reflections of a monochromatic neutron 
(or X-ray) beam.

reflections of a monochromatic beam under different Bragg angles discussed 
previously in section 3.3. We see that in the case presented in Fig. 15 
the reflections 111 , 222 and 333 are possible; however, higher-order
reflections will not occur because 2ko < 27ГТ444.
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FIG. 17. The Ewald construction explaining higher-order reflections (222, 333, 444) o f  a polychromatic 
neutron beam diffracted under a fixed angle.

3, 5. Single crystal monochromators [3, 4, 5]

When a "white" (polychromatic) beam of neutrons (X-rays) is reflected 
from a single crystal under a fixed angle of incidence 0O then the reflected 
beam will contain neutrons (X-rays) of wave lengths Хцд fulfilling the 
Bragg equation

2d№1 sin6 о = Xhid (19a)

Let us suppose that the polychromatic beam contains wave lengths 
between Amin and Araax(Fig. 16) of a Maxwellian spectrum of neutrons.
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Лmin corresponds to к and Xmax to kg1111 . Let us make the Ewald construc- 
tion(Fig. 17) for kg1“1 (the smallest circle). The circle does not cross 
any reciprocal lattice point -  no reflection occurs. Let us now continuously 
increase the radius of the circle up to k™ax . For klf k2, кз and k4 it will 
happen that the Ewald radius crosses the reciprocal lattice points 111 ,
222 , 333 and 444 . This means that in the direction shown by k4 (it is

the same as for кг, 1?з and k4) one will observe reflections 1 1 1  , 222 ,
333 and 444 . They correspond to wave lengths X4, Xj/2, X4/3, Xi/4 

on Fig. 16. They are also called higher order reflections, but they are not 
of the same nature as those discussed in para. 3.3. There we had a 
monochromatic beam and we were changing the angle of incidence; here 
we deal with a polychromatic beam and the angle of incidence is fixed.

The discussion above shows that by Bragg reflection from a single 
crystal one does not obtain a truly monochromatic beam. It is always 
contaminated by higher-order reflections. However, methods exist of 
decreasing or removing the higher-order reflections.

4. STRUCTURE ANALYSIS

4. 1. Introductory remarks * 4

To know the crystal structure means in general terms to know:
a) The unit cell (the basic vectors ah);
b) The kinds and positions (Xj, yj , Zj ) of all atoms Aj in the unit 

cell (Fig. 7);
c) The mean square displacements of all atoms Aj in the unit cell. 

Knowing a) and b) we can ascribe an appropriate space group to each 
structure to be studied.

For the knowledge of the magnetic structure it is necessary to know 
in addition the direction and values of the magnetic moments /]*■ of all 
paramagnetic atoms (ions). It may happen that the crystal unit cell is 
different from the magnetic unit cell.

Crystal and magnetic structure analysis can be performed using single 
crystals or powered crystal. As a general rule, the single-crystal 
methods are more precise than the powder methods, however, it is often 
difficult to obtain the sample in the form of a single crystal.

We shall first discuss single-crystal methods and afterwards powder 
methods. No detailed description of the methods or techniques applied 
will be given. Only the principles will be outlined and the general 
"philosophy" mentioned.

4. 2, Structure analysis using single crystals

4. 2. 1. Crystal spectrometer method (rotating crystal method)

4.2. 1.1. X-rays [1,2]

Figure 18 shows schematically the principles of an X-ray spectro
meter applied to single crystal structure analysis using the rotating 
crystal method. A monochromatic X-ray beam of wave length X0 is 
scattered on a single crystal which .is slowly (or stepwise) rotating around
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FIG. 18. The principle o f an X-ray spectrometer for single crystal structure-analysis.

X-RAY FILM

OPENING FOR — 
THE DIRECT BEAM ' -Q * 2 ®hKl

010 100 110 020

FIG. 19. Reflections (a) and their intensities (b) along the 2 ©hkl "axis” obtained using the X-ray spectrometer 
shown in Fig. 18.

the axis perpendicular to the plane of the figure. Whenever the Bragg 
equation

2dhkl sin0hkl = *0 (19b)

for a certain set of hkl planes is fulfilled (and the structure lactor is 
not equal to zero -  see sub-section 4. 2. 1. 2) the incident X-ray beam is 
reflected and its intensity recorded by the X-ray film. Figure 19 shows 
schematically the recorded reflections (dark lines) and their intensities 
measured along the 2бщ "axis" by means of a photometer. Measuring 
flhjii one can — with the help of Eq. (19) -  obtain a set of dj^ values. By 
rotating the crystal round another zone5 axis it is possible to obtain 
another set of dhkl values. Elaborate techniques already exist for calcula
tions of the basic vectors of the unit cell and the indices of the observed 
reflections from the measured sets of dhkl values (also taking into account 
the presence or absence of some reflections). From X-ray diffraction 
patterns, as shown in Fig. 20, one can also (after subtracting the back
ground) measure the areas under the peaks (e.g. the shadowed part of the 
peak 010). As will be briefly explained later (sub-section 4. 2. 1. 2), the 
knowledge of the areas under the peaks enables one to calculate the 
positions of atoms in the unit cell.

The formation of reflections in the rotating crystal method can be 
better understood with the help of the reciprocal lattice and the Ewald

5 Crystallographic planes o f  different (hkl) parallel to a straight line form a crystallographic zone; 
this straight line is called zone axis.
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FIG. 20 . T h e  Ewald co n s tru c tio n  e x p la in in g  th e  ro ta tin g  crysta l m e th o d .

construction. The Ewald circle in Fig. 20 has the radius k0 and is fixed 
in the laboratory system. The reciprocal lattice is, however, rotating 
in this system about the axis perpendicular to the plane of the figure and 
crossing this plane at point 000 Each point of the reciprocal lattice 
moves round a circle as shown in Fig. 20. The crossing point of this 
circle and the Ewald circle represents a reciprocal lattice point (at a 
certain position of the rotating crystal) for which a Bragg reflection occurs. 
As can be seen in Fig. 20 (for the particular lattice represented there), 
the following reflections will be observed: 010 , 100 , 1 10  , 020 ,
120_̂  etc. They can be seen in the directions of i?2 , 1?з etc. , and k£, 

k2', etc. If, starting from_£>oint 000 , which i| the centre of rotation, 
straight lines parallel to klt k2, k3 . . . and k ,̂ к ' . . . are drawn, then 
the points of interception of these lines with the X-ray film will indicate 
the position of reflections on the film (compare Figs. 19 and 20).

4. 2. 1. 2. Neutrons [4, 7, 8]

The rotating crystal method using neutrons was developed about twenty 
years ago and was based on the already known method for X-rays as out
lined above. Figure 21 shows schematically the principles of a neutron 
crystal spectrometer (we shall call it double crystal spectrometer or,
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Collimator

FIG. 21. The principle o f  a neutron crystal spectrometer for single crystal studies.

for short, DAS) for single crystal studies by means of the rotating crystal 
method. Since the reflected neutrons are recorded, not by a film covering 
the whole range of angles 20, but by a neutron counter located on the 
spectrometer's arm (not shown on the figure) both the crystal and the arm 
must be rotated. Only when both the counter and the crystal are in a 
position fulfilling the Bragg equation the diffracted beam can be both pro
duced and reflected. Thus, if the counter arm is set for automatic rotation 
with the crystal synchronized to follow with half the angular velocity, the 
record will include only successive orders of reflection from a single set 
of parallel planes, for example the reflections 310 , 620 , 930 , etc.
To record other reflections in the same zone, such as 220 , 440 , 660 ,
etc. it is necessary to make a different adjustment of the azimuthal
setting of the crystal in relation to the counter. Methods exist nowadays 
for doing this completely automatically. Figure 22 shows an example of 
a single crystal diffraction pattern of potassium bromide.

It can be shown that in the rotating crystal method the areas Ihkl under 
the peaks (see Fig. 19) fulfil the following equation:

Ihkl = const ~ If  l2
sin20

hki
( 2 0 )

where Fjy is the structure factor for the hkl reflection and 20^1 the 
scattering angle for this reflection. As is well known, the structure
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FIG. 22. An example o f  a single-crystal diffraction pattern of potassium bromide (G. Bacon, Ref. [4]. 
p. 83).

factor Fyj is equal to

unit
cell

where fj is the scattering amplitude for the jth nucleus (magnetic scattering 
will not be discussed — see Refs [4, 7, 8]).

For a particular symmetry of the crystal, F ^  can be equal to zero 
for certain values of hkl and if this happens no reflection hkl appears.
Thus the presence or absence of certain reflections is one of the clues 
which helps to solve the problem of crystal structure. Another important 
piece of information is supplied by the measured areas under the peaks.
As can be seen from Eq. (20), by measuring 1щи and 0щ<1 one obtains

lFhkl |„= const. 1ш  з т 20ш  (22)

where subscript "o" means observed or measured. Many practical 
techniques exist to deduce the structure of the crystal from the measured 
positions of the peaks and their intensities [ 7] . However, they cannot be 
described in this kind of brief review; here only the general "philosphy", 
which leads to the values Xj, yj and Zj of the atoms in the unit cell will 
be briefly outlined.

We assume a model of the unit cell and calculate -  using formula (21) — 
the structure factors for that model and afterwards the reliability factor R 
defined as

(23)

where subscript "c" means calculated. Finally, the factor R is minimized 
by appropriate changes of Xj, yj and Zj ; that means by changing the model 
of the unit cell. The values of x . , y. and z. which give Rmin (usually
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Rrain ~ 1-5%) are supposed to describe the correct positions of the atoms 
in the unit cell. In this way, the structure is assumed to be solved.

Formula (20) is not exact in the sense that the "constant" appearing 
there usually depends also on вщд . Therefore several corrections should 
be introduced (extinction, absorption, etc. ). For details see Refs [4, 7]. 
The "constant" also contains the Debye-Waller factor, which depends on 

» too, and takes into account the mean square displacements of the 
atoms due to thermal motion. The procedure’ 'of minimizing R should 
include also the Debye-Waller factor and in that way mean square dis
placements of all atoms are becoming known.

For complicated structures with many atoms in the unit cell, many 
reflections (sometimes of the order of 10 000) are needed in order to solve 
the structure. They are taken from a number of zones. As mentioned 
before, the process of collecting data is nowadays fully automatic and the 
handling of data is done by modern computers.

FIG. 23. The principle o f the TOF method for structure studies o f single crystals.

4. 2. 2. Time-of-flight method [9]

This method has been developed recently and is an application of 
the TOF method described in section 2. 3. 2 to structure analysis of single 
crystals. Figure 23 illustrates the principle of the method. A pulsed6 
collimated polychromatic neutron beam is scattered on a single crystal 
sample with its zone axis perpendicular to the plane of the figure. Their 
intensities are measured by a circular type detector connected to a multi
channel time analyser, which -  as is known from section 2.3.2 -  segregates 
the reflections (peaks) according to the reflected wave-lengths. Figure 24 
shows an example of a neutron pattern of an aluminium single crystal with 
its zone axis [HO] perpendicular to the plane of the experiment. Because 
the angle Д6 (Fig. 23) was only about 50°, only several peaks are visible. 
Using the reciprocal lattice and the Ewald construction'it is easy to find 
what reflections would be recorded for Д0 = 2v. This is shown in Fig. 25.
If BO represents the length of the smallest k^lnvector represented in the 
pulsed polychromatic beam (corresponding to the largest wave-length) 
and AO is the largest к max vector represented in the beam (corresponding 
to the smallest wave-length) then the reciprocal lattice points in the

6 A pulsed polychromatic neutron beam can be obtained at steady state reactors by means o f a 
chopper as shown in Fig. 23 (see section 2 .3 .2 ) . A pulsed reactor is another (very intense) source o f  
polychromatic neutron pulses [9] .
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FIG. 24. An example o f a neutron pattern o f an aluminium single crystal with its zone axis [110] 
perpendicular to the plane of the experiment obtained using the TOF method.

FIG. 25. The Ewald construction explaining the TOF method for single-crystal structure analysis for 
Д0 = 2тг (see Fig. 23).

shadowed area correspond to the reflections to be recorded. For а Д0 
angle as shown in Fig. 23, the picture in the reciprocal lattice will be 
like that in Fig. 26.

There is a technique of indexing the peaks recorded by this method 
and of calculating the respective dhki values. Computation of the observed 
structure factors can be carried out by means of Laue's formula

1Ш = const. [i(X) A2 d2 I F |2 (24)
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FIG. 26. The Ewald construction explaining the TOF method for single crystal structure analysis for 
л е  = 2 (0max '  e min)-

where Ijjj is the area under the peak (after subtraction of background), 
i(X) the neutron flux per unit interval of wave length, X is the neutron 
wave length, d is the interplanar spacing, F the structure factor and the 
subscript hkl indicates that the quantities are connected to the hkl 
reflection.

The further procedure of solving the structure is similar to that 
described in section 4. 2. 1 and similar corrections must be taken into 
account. It should be clear, however, that, in the TOF method, in order 
to solve the structure it is necessary, as can be seen from formula (24), 
to know the spectral distribution i(X) of the incident neutron beam.

The main advantages and disadvantages of the TOF as compared with 
the rotating crystal method will be discussed briefly in section 4. 4. At 
that point it should be said only that the TOF method is especially suitable 
for searching for reflections in a certain direction in the reciprocal 
space. In that case Д0 (see Fig. 23) must.be very small and the picture 
in the reciprocal lattice is, in principle, the same as shown in Fig. 17. 
Figure 27 shows the diffraction pattern for the [010] direction in chromium. 
We see the reflections 020 , 040 , 060 , 080 and, in addition, on both
sides of the forbidden reflection (structure factor equals zero) 010 two 
reflections Sj and S2 called "satellites". They are of a magnetic nature 
and disappear at temperatures higher than the Neel temperature of 
chromium.

4. 3. Structure analysis using powdered crystals

4. 3. 1. Crystal spectrometer method (DAS)

The experimental set-up for this method is very similar to that 
shown schematically in Fig. 21; however, instead of a single crystal
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FIG. 27. Neutron diffraction pattern for the [010] direction in chromium obtained using the TOF method 
(B. Buras et a l . , Phys. Stat. Sol. 11 (1965)567).

FIG. 28. An example o f  a powder (M g F e ^ ) neutron diffraction pattern obtained by the DAS method 
(L. M. Corliss et al. . Phys. Rev. 90 (1953) 1013).

sample a powdered crystal sample is put on the table of the spectrometer, 
and the arm of the neutron detector is not coupled with the table of the 
sample, as it is in the case of the rotating-crystal method. The arm of 
the spectrometer, with the neutron detector, are rotated stepwise and 
the neutrons scattered by the polycrystalline sample are recorded.
Figure 28 shows an example of a powder neutron diffraction pattern.

The formation of reflections in this case can be easily understood 
with the help’ of the reciprocal lattice. Let us look at Fig. 20 and imagine 
that the reciprocal lattice is rotating not only about the axis perpendicular 
to the plane of the figure, but also about other axes going through point 
000 This means, however, that the position of the reciprocal lattice 

in the laboratory system is random. And this is, of course, the case 
when a polycrystalline (powdered) sample is studied. This will mean 
that all reciprocal lattice points are distributed at radom on spheres.
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The interception of each of these spheres with the Ewald circle represents 
a reciprocal lattice point for which a Bragg reflection occurs. In this 
sense the picture will be very similar to that shown in Fig. 20 with one 
important difference. In the rotating-crystal methods only reflections 
from one zone and in the powder method reflections from all zones can 
be recorded. This may look, at first glance, like an advantage; however, 
this is really a disadvantage because most of the peaks overlap and finally 
only a limited number of reflections can be used for structure analysis. 
Consequently the information obtained by means of the powder method 
is not so accurate as that for single crystals.

The procedure for indexing the peaks is similar to that for the single 
crystal method. In this case, the Bragg equation

2dhkl sin^hkl = ^0 (25)

is used. The intensities of the peaks (areas under the peaks) lead to the 
measured values of structure factors; however, the formula.is different 
in this case from that for single crystals and reads as follows:

1 Ш = const. i M 2___
sin0 sin20

hkl
(26)

where F and 0 have the same meaning as before, and j is the multi
plicity factor which gives the number of equivalent (hkl) planes. The 
procedure for solving the structure is, in general, similar to that out
lines in section 4. 2.

4. 3. 2. Time-of-flight method (TOF) [9]

Figure 29 illustrates the principle of the method. A pulsed poly
chromatic neutron beam is scattered on a powdered crystal sample and 
the intensity of the scattered neutrons at a fixed angle 20o is measured 
by means of a neutron counter connected to a multichannel time analyser. 
Whenever the Bragg equation

2с*Ш sin®o = ''-hkl (27)

is satisfied for a certain neutron wave-length contained in the polychromatic 
beam, neutrons with that wave-length are scattered in the direction of 
the counter and recorded by the multichannel time analyser. Therefore 
to each dhki a corresponding Хьы< in accordance with Eq. (27), can be 
ascribed. But, as is known from section 2. 3. 2,

4*1 rnvud ml *1*1 (28)

where 1 is the distance between the neutron source and the sample counter. 
Finally Eqs (27) and (28) lead to

Jhkl 2ml sin0.'th k l (29)
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FIG. 29. The principle o f  the TOF method for powdered samples.

X (X)
FIG. 30. An "early" neutron diffraction pattern of powdered silicon obtained using the TOF method 
with a chopped neutron beam from a steady-state reactor.

which shows that a very simple relation exists between dj^ and the time 
thkl at which the time analyser records the intensity of the hkl reflection. 
Figure 30 shows a neutron pattern obtained in the early days of the TOF 
method using a chopped neutron beam from a steady state reactor.

Figure 31 shows the arrangement for this method used at the IBR 
pulsed reactor at the Joint Institute of Nuclear Research at Dubna 
(see Ref. [10]). Scattering angles of 52° and 90° were used, the flight 
path was about 18m, and the average power of the reactor several kW 
(peak power about 20 MW). Figure 32 shows a typical neutron pattern 
obtained with this arrangement.

As in other methods, the structure factors can be calculated with the help 
of the formula for integrated intensity. For this method the following 
formula must be used:

1Ш = const [i( A) X3j I F i2] ^ (30)
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2 1

FIG. 31. The arrangement at the IBR reactor at Dubna used for neutron structure studies o f powdered 
samples by means of the TOF method (A .C . Dariewski et a l . , Report No. 2411, JINR Dubna (1965).
1) Reactor core; 2) moderator; 3) collimators; 4) scintillation counters; 5) neutron (vacuum) 
guide tube; 6) sample: 7) concrete shielding; 8) water shielding.

FIG. 32. A typical neutron pattern obtained at the BR reactor using the TOF method (powdered silicon).

Here also, as for the TOF method for single crystals, the incident 
neutron spectrum i(X) must be known.

This method was developed several years ago and several labora
tories are already using it for structure analysis.

4.4. Crystal spectrometer methods (DAS) vs. TOF methods for 
structure analysis

Crystal spectrometer methods have almost half a century's tradition 
in X-ray crystal structure analysis and have been used for about twenty 
years for neutron structure determination. The TOF is very young (it 
started for powders in 1963 and for single crystals in 1965); therefore
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TABLE II. MAIN FEATURES OF THE DAS AND TOF METHODS
DAS TOF

Neutron beam M onochrom atic P olychrom atic

Necessary to  m easure **0 i(K)

H igh-order
contam inations arising 
from  m onochrom atization

Present
(can  b e  rem oved by 
spec ia l measures)

Absent

Neutron flux o f  
the incident beam Constant Pulsed

S am ple seen by 
the neutrons

T he w h ole  tim e  o f  
the measurement

During short periods 
o f  t im e
(stroboscopic m ethod)

T he measured 
distribution o f  
scattered neutrons

Angular Spectral

G eom etry o f  the 
experim ent

Changes in the 
course o f  
m easurements

Fixed

R eflection  measured One after another Sim ultaneously

Resolution high 
for

S m all interplanar 
spacings

Large interplanar 
spacings

intensity

Steady
state
reactor

C om parable

Pulsed
reactor

High

it is not so highly developed as the DAS method. Table II presents the 
main features of both types of methods, and Fig. 33 shows how the resolu
tion in the DAS and TOF methods depends on the interplanar spacing.
Note the very good resolution obtained with the TOF method used at the 
IBR reactor. Which method should be used will always depend on the 
problem to be studied. Those interested in a more detailed comparison
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d i l )
FIG. 33. Resolution versus interplanar spacing for the DAS and TOF methods (L. H. Schwartz, Nucl. 
Instrum. M eth. 42 (1 96 6 )8 2 ; the curve d ^OF* for the IBR reactor added by  the author o f  this 
contribution.

of the methods and in some special applications of the TOF method will 
find some additional information in Refs [11] and [12]. 5

5. LATTICE DYNAMICS STUDIES [3, 5, 13-15]

5,1. Introductory remarks

In this brief review only the main methods for phonon frequency 
distribution measurements and dispersion relation measurements will be 
discussed. Other methods as, for example, for magnon dispersion re
lation measurements or critical scattering studies, will be omitted; 
however, some of the methods discussed here can be applied to those 
studies.

Let us, using the reciprocal lattice, look first at energy and momentum 
relations for inelastic scattering of neutrons. In Fig. 37 kQ is the wave 
vector of the incident neutron, к the wave vector of the inelastically 
scattered neutron, q the wave vector of the phonon which takes part in 
this process (only single-phonon processes will be discussed) and 2тгт, 
as usual, is the reciprocal lattice vector. The law of conservation of 
momentum gives the following equation:

S0-  £  = 2tt t + q (31)

and the law of conservation of energy leads tQ

(32)

where fiu is the energy of the phonon and e equals +1  or - 1  for phonon 
annihilation or phonon creation processes, respectively.
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The frequency и of the phonon and its wave vector q are related 
by the dispersion relation

u = ui (q ) (33)

which specifies the frequency и in terms of its polarization i and wave 
vector q.

Knowing the values of k0 and к and their directions with respect 
to one another and to the crystal lattice, we can easily -  with the help 
of Eq. (31) and the reciprocal lattice diagram (Fig. 34) -  find both the

FIG. 34. Conservation o f  a m om entum  for the phonon creation  process in the rec ip roca l la ttice .

direction and the value of the momentum q of the phonon. From Eq. (32) 
it is possible to find the frequency of the phonon and in this way to know 
both the momentum and frequency of the phonon. If this is done for a 
number of phonons propagating in a certain direction we obtain the dispersion 
curve for phonons travelling in that direction. This shows that neutron 
measurement c.an supply direct information on dispersion relations.

For this type of measurements it is in general necessary
a) to produce neutrons with a known wave vector k0;
b) to measure к (both value and direction);
c) to have the possibility of changing the angles between k0 and к 

and also between ко (or k) and the single crystal.
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There are a number of methods by which these requirements can be met. 
They can be divided into two categories:

i) utilizing neutron crystal spectrometers at steady-state reactors;
ii) utilizing the TOF method and a pulse source (a steady-state reactor 

with a chopping device or a pulse reactor).
Dispersion relation measurements can be made for single crystals 
scattering coherently (at least partly). For frequency distribution w(q) 
measurements, pure incoherent scatterers are ideal; however, an admixture 
of coherent scattering is tolerable. In general, for such measurements 
only polycrystalline samples are needed.

In the following sections the main methods will be briefly discussed.

5. 2. The neutron crystal spectrometer method [3] * 5

5. 2. 1. The triple-axes spectrometer (TAS)

Figure 35 shows schematically a triple-axes crystal spectrometer.
By changing the angle 6m it is possible to change ко; by a proper setting 
of the table of the sample (angled) one obtains the desired angle between 
k0 and a certain (hkl) plane of the single crystal to be studied; by rotating 
the second arm the angle Ф between kg and 5? can be changed and by rotating 
the third arm (with single crystal analyser synchronized to follow with half 
the angular velocity) the scattered neutron beam in the direction к can 
be analysed. This shows a very great flexibility of the triple-axes spectro
meter; however, because the neutron beam is scattered by three crystals, 
the final intensity measured by the counter is usually not very high and 
therefore much effort is needed to keep the background low. Because all 
quantities needed to solve Eqs (31) and (32) can be measured by means of 
the described triple axes spectrometer, one can obtain the frequencies w 
and corresponding momenta cf of phonons. However, the directions of 
the phonons will be, in general distributed at random in the reciprocal 
lattice and, in addition, their energies may not cover the range necessary 
to draw dispersion curves. For this reason, several techniques already 
exist to ensure a quick and automatic collection of data of phonons enabling 
dispersion curves to be obtained both for acoustical and optical phonons. 
Those interested in these techniques will find more detailed information 
in Refs [3, 13-15]. Figure 36 shows a typical picture of phonon dispersion 
relations obtained by this method.

5. 2. 2. The neutron crystal spectrometer with a polycrystalline 
filter in front of the detector

Figure 3 7 shows schematically this type of apparatus. A collimated 
polychromatic neutron beam from the reactor is monochromatised by the 
single crystal M and is scattered by the sample. The scattered beam 
is passing a polycrystalline filter (e. g . , Be filter) and is recorded by a 
counter (or set of counters).

As is known, a polycrystalline filter lets through all neutrons with 
wave lengths larger than 2dmax (where dmax is the maximum interplanar 
spacing of the crystal used as a filter) because those neutrons cannot be 
reflected by any plane of the crystal. Neutrons with wave length smaller, 
than 2dmax will be reflected by the polycrystalline sample in all directions
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FIG. 36. A typ ica l picture o f  phonon dispersion relations (for a single crystal o f  s ilicon ) (G . D olling, 
Ref. [14] 2 41).

COUNTERS

SHIELD

Be- FILTER

FIG. 37. Principle o f  a crystal spectrom eter with a polycrystalline filter in front o f  the detector.

and finally absorbed by the walls of the filter. For beryllium dm3X equals 
approximately 4 A which corresponds to 5 meV. Figure 38 shows the 
neutron spectrum before and after passing a beryllium filter. The 
spectrum obtained is called "edge spectrum". The mean energy of neutrons 
obtained in this way is about 3 meV.

Taking this into account, it is reasonable to assume that in the set-up 
presented in Fig. 38 the neutrons which reach the counter have a fixed 
energy of about 3 meV. In this sense, к is also fixed. k0 can be changed 
continuously by changing 6M, the angle Ф and the orientation of the crystal 
could also be changed. Thus, in principle, this arrangement could be 
used for measurements of phonon dispersion relations. However, the 
resolution would be very poor and therefore it is used only for frequency 
distribution g(u) measurements.

As mentioned before, pure incoherent scatters are ideal for such 
measurements. This will be illustrated in a simple example. The double 
differential cross-section for inelastic incoherent scatters for a monatomic 
substance with a cubic structure has a very simple form:

d V nc
dfldE

k_ 
ко u

e '2W
еЪш/кТ _ j g(w) (34)
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FIG. 38 T h e  neutron spectrum b e fo re  and after passing a beryllium  filter.

ENERGY

FIG. 39. An exam ple  o f  energy distribution o f  neutrons scattered by  NH4I at -150°C  measured using 
the arrangement shown in Fig. 37. (K . M ikke , A .  Kroh, Ref. [1 4 ], 2 243).

where
Q = к - k0

and exp(-2W) is the Debye-Waller factor. From Eq. (33) it is evident 
that by measuring the differential cross-section as a function of ко (к is 
fixed in this experiment) we can — with the help of Eqs (32) and (34) — 
calculate the frequency distribution g(w). Figure 39 shows an example 
of energy distribution of neutrons scattered by NH4I (-150°C) measured 
by the method described above. From this energy distribution the 
frequency distribution could be calculated.

5. 3, The TOF methods [3]

5. 3. 1. The TOF methods using a monochromatic incident beam

5. 3. 1. 1. Filter method

Figure 40 shows schematically the arrangement using a semi- 
monochromatic incident neutron beam obtained by means of a filter
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FIG. 40. Principle o f  an arrangement for neutron inelastic scattering studies using ' 'c o o l ' ' neutrons and 
the TOF technique.

(see section 5. 2. 2). This beam is chopped by means of a chopper (usually 
with curved slits in order to secure a good transmission of long wave
length neutrons) and scattered at the sample. The scattered neutron beam 
is analysed by the time-of-flight method (see section 2. 3. 2. ). k0 in this 
method is fixed, but the orientation of the crystal (angle ф) and the angle 
cp between ко and к can be changed. This enables us to measure both 
phonon dispersion relations and frequency distributions. Since the 
energy of the incident neutrons is very small ("cold neutrons") only 
processes involving phonon annihilation can be measured. Not all tech
niques which enable a quick and automatic collection of data needed for 
phonon dispersion relations can be applied to this method. Nevertheless, 
it is often used, especially on medium neutron flux reactors.

This method can also be used at a pulsed reactor and in that case, of. 
course, the chopper is not needed. However, at pulse reactors other 
methods are more powerful (see sub-sections 5. 3. 2. 1. and 5. 3. 2. 2. ).

5. 3. 1. 2. Mechanical monochromator method [3. 13-15]

Figure 41 gives a general idea of this method. A polychromatic 
collimated neutron beam from a steady-state reactor is chopped by means 
of a rotating disc. As can be seen from Figures 6a and 6b and the 
discussion in section 2. 3. 2. , the spectral distribution of neutrons in the 
beam at point C (very close to the rotating disc II) will have the shape as 
shown in the lower left corner of Fig. 41. Because the rotating disc II lets 
the neutrons through only in a short interval of time, 62t, the spectrum 
of the neutrons at point D will be as shown in Fig. 41. That means the 
neutrons will be monochromatic with a certain spread of wave-length 
depending on 62t and the distance between the two rotating discs. By a 
proper choice of the time interval between the moments when the beam 
is passing disc I and disc II, the desired wave-length of the monochromatic 
beam can be obtained. Such an arrangement, as described above, is 
called a mechanical monochromator. The technical details of mechanical 
monochromator can be quite different from what is shown on Fig. 41; 
however, the main idea is always the same.
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FIG. 41. Principle o f  m ech an ica l m onochrom ator method for neutron inelastic scattering studies.

The monochromatic beam is scattered on a sample and the scattered 
neutrons are analysed by the time-of-flight method. Several detectors 
and several multichannel analysers can be used (this applies also to the 
arrangement described in sub-section 5. 3 .1 .1 . ). Similar comments can 
be made as in sub-section 5. 3. 1. 1. ; however, using this arrangement, 
a better resolution is usually obtained on account of the lower intensity.

A mechanical monochromator can also be applied to a pulsed reactor.
In this case the monochromator should be synchronized with the pulsing 
device of the reactor.

5. 3. 1. 3. Rotating crystal [3, 13-15]

This method of obtaining monochromatic neutron pulses is illustrated 
in Fig. 42. A polychromatic collimated neutron beam is reflected under 
the scattering angle 26B from a rotating single crystal. Reflection takes 
place only when the Bragg equation is fulfilled.

2 c *hkl s i n 0 B  = ( 3 5 )

which happens (the crystal rotates I ) only for short periods of time. In 
that way a pulsed monochromatic (with some higher-order contaminations -  
see section 3. 5) neutron beam is obtained. The remaining part of the 
apparatus is similar to that described in sub-sections 5. 3. 1. 1. and
5. 3. 1. 2.

The rotating crystal can be -  at least in principle — used at a pulsed 
reactor in order to obtain monochromatic neutrons and to shorten the
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FIG. 42. Principle o f  the rotating crystal method for neutron inelastic scattering studies.

neutron pulse. In this case the rotation of the crystal should be synchronized 
with the pulsing device of the reactor.

5. 3. 2. The TOF methods using a polychromatic incident beam [11, 12]

5. 3. 2. 1. TOF spectrometer with a beryllium filter and crystal 
monochromator in front of the counter [ 1 1 , 1 2 , 16]

Figure 43 shows the principle of this arrangement. A pulsed poly
chromatic neutron beam (from a pulsed reactor or a steady state reactor 
equipped with a chopper) is scattered on a sample. The scattered beam 
goes through a beryllium filter, is reflected by a single crystal (set for 
a Bragg reflection of neutrons of about 4 A wave-length in order to increase 
the resolution) and recorded by a neutron counter connected to a multi
channel time analyser. This arrangement is similar to that shown in 
Fig. 3 7 and described in section 5. 2. 2. The principal difference is the 
following. In the set-up presented in Fig. 3 7 the wave-length of the incident 
neutron beam is performed by changing the angle бм and therefore for a 
certain value of k0 the whole arrangement must be put in a certain position 
(by rotating the arm of the spectrometer on which both the sample and 
the filter, together with the counter, are located). This means that 
measurements are performed step-wise, point by point. In the set-up 
shown in Fig. 43 the value of the wave vector k0 at point A (that means 
when the neutron is scattered) is a function of time. Thus, the multi
channel time analyser records the intensity distribution of the scattered 
neutrons for continuously changing wave vectors of the incident neutron 
beam. The full spectral distribution of the scattered neutrons is in this 
way measured in one run. Such an arrangement is working very satis
factorily at the IBR reactor at Dubna (see Ref. [16]); it is used for 
frequency-distribution measurements.

5. 3. 2. 2. TOF spectrometer for dispersion relation measurements [17]

The principle of an arrangement similar to that described in sub
section 5. 3. 2. 1. -  but meant for dispersion relation measurements — is 
shown in Fig. 44. The direction of I?o is fixed, but its value is a function 
of time. The orientation of the crystal (angle ф) and the direction of 
к (angle Ф) can be changed by rotating the crystal and the arm of the 
spectrometer. The value of к is determined by the Bragg angle 0д-
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F IG .43. Principle o f  the TOF spectrom eter with a beryllium  filter and crystal m onochrom ator in front 
o f  the counter used at the IBR reactor at Dubna. (K . Parlifiski et a l . , Ref. [11] 179 .)

•  PULSED 
T  NEUTRON SOURCE

-O COUNTER

MULTICHANNEL 
TIME ANALYSER

FIG. 44. Principle o f  a TOF spectrom eter for dispersion relation  measurements.

This allows, for one fixed position of the spectrometer, simultaneous 
measurement of phonons for the same preset к value. By changing^,
Ф and eA it is, in principle, possible to follow a prescribed programme 
of measurement. A preliminary check of this type of arrangement has 
been made at the IBR reactor and the results for resolution and intensity 
are promising.

5. 4. Crystal spectrometer methods vs. TOF methods [12]

Both the crystal spectrometer methods and the TOF methods briefly 
outlined above have been applied very successfully to a variety of problems. 
A comparison of both methods should take into consideration the particular
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problem in which one is interested. As it stands now it seems that for 
dispersion relation measurements the triple-axes spectrometer is more 
favourable, and for frequency distribution measurements the TOF methods 
seem to be more appropriate. A more detailed comparison of both kinds 
of methods can be found in Ref. [12].

6. OUTLOOK FOR THE FUTURE [11, 12]

The general overall picture presented in these three lectures on 
methods of neutron spectroscopy, although very elementary and simplified, 
shows that a variety of methods exist both for structure analysis of solids 
and lattice dynamics studies. However, for studies of tiny and subtle 
effects, still better resolution and higher intensities are required. This 
needs reactors with very high fluxes. Until recently, only steady-state 
reactors were available (with neutron fluxes up to 1015 neutrons per cm 
and second). The only existing pulsed reactor, IBR in the Joint Institute 
for Nuclear Research in Dubna, has been working only since 1960. Ex
perience with the IBR reactor and the expectation of very high cost, together 
with the technolgical difficulties connected with steady-state reactors with 
fluxes of the order 10 16 and higher, led in recent years to a comparison 
of the merits of steady-state and pulse systems. Several mettings have 
been devoted to this problem and those interested in the future of neutron 
spectroscopy can find in Refs [11] and [12] a number of papers dealing 
with new concepts of reactors and their applications to solid-state physics.
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Abstract

Introduction. 1 . Phase transition and cr it ica l phenom ena. 2 . Neutron scattering. 3 . Experimental 
results: 3 .1 .  C ritica l scattering by m agnetic m aterials; 3 .2 . C ritica l scattering by n on -m agn etic m aterials.
4 . C onclusions.

INTRODUCTION

In preceding lectures we have reviewed critical phenomena as well 
as neutron scattering in solid state physics. A special development of this 
application of neutron scattering to critical phenomena may, at first view, 
look somewhat surprising. We can give two reasons for this development. 
The first reason is the fact that critical phenomena, which are very 
generally associated with second-order phase transitions, must be the 
object of systematic studies to find out if there are any general laws or 
rules in such transitions. The large amount of literature, both in theory 
and experiment, which appeared in this field during the last two years, is 
just a consequence of this necessity. Thus, three more lectures on this 
subject may be useful. The second reason, as we shall see in more detail 
later on, is that neutrons are among the best tools for performing such 
studies. This can be seen from the expression for the scattering cross- 
section in the Born approximation, in which the leading term is

where g(r) is the pair-distribution function and q the scattering vector. 
So the cross-section is sensitive to g(r) mostly for

where X is the wavelength of the radiation used for the experiment and 
0 is the scattering angle. For visible light of X -  6000 A the situation 
is rather insensitive to what happens at a scale of, say, 100 A. For 
X-rays, with a wavelength of 1 A even if small angles are used, one 
sees the material at an atomic scale or, at most, at a few hundred A.

o
In the case of neutrons incident wavelengths between 1 and 20 A are 
available. Thus, one can adjust this tool of observation which is at 
its best anywhere between the atomic scale and 1000 A.

о

483



4 8 4 JACROT

We shall see also that the neutron magnetic moment, and the low 
energy of neutrons which allow dynamic study are of great importance. 
Before explaining this in detail, we shall briefly review phase transition, 
and the theory of neutron scattering as it applies to this special case, in 
order to see the characteristics of this radiation. Then we shall review 
the results obtained up to now.

1. PHASE TRANSITION AND CRITICAL PHENOMENA

Since this question has already been treated in much detail, we 
shall only review the important facts to be used as a guide in experi
ments with neutrons. Good review of these problems can be found in 
the proceedings of a conference on critical phenomena held in Washington 
in 1965 and in a paper by Kadanoff et al. [2].

In what follows we shall only consider second-order phase transitions
[3], which are characterized by continuous first derivative of the thermo
dynamical potential Ф (e.g.,the entropy), but a discontinuity in the second 
derivatives of this potential (specific heat at constant volume Cv, etc. . .). 
There is a great variety of such transitions: magnetic transitions, order- 
disorder transitions in alloys, X point in liquid helium, ferroelectric 
transitions, etc. . . This behaviour of the potential shows up also at the 
critical points of fluids (liquid-gas critical point), or liquid mixtures.
It is of very great importance to find a general theory of these transitions, 
independent of the nature of the interactions, which are completely different 
for, e .g . ,  ferromagnets and liquid helium. The fact indicating the possible 
existence of such a general theory is the similarity in the behaviour of 
some physical quantities, as, e .g . ,  the specific heat, at these points.

The first theoretical approach to this problem was the introduction 
of an order parameter p done by Landau [4]. In all phase transitions 
mentioned above (critical points must be considered separately), the tran
sition is between an ordered phase (ferromagnet, Hell, etc.) and a less 
ordered or disordered phase (paramagnet, He I, etc.) of higher symmetry. 
The parameter p is a measure of the order in the less symmetric phase.
P is zero in the disordered phase. The fact that the transition is of second 
order is expressed by the fact that p vanishes continuously at the tempera
ture of transition Tc . The exact physical meaning of p is not always 
simple. For a ferromagnet, it will simply be the spontaneous magnetiza
tion M, and for an antiferromagnet, the sub-lattice magnetization. But 
in the case of a superconductor it will be the wave function ф which is 
related to the gap.

The next step in the Landau theory is an expansion of the potential 
ф in powers of p near Te . Landau shows that, if such an expansion 
exists, it should be of the form

ф = ф0(р, T, . . .) + A(p, T, . . . )p2 + c(p, T, . . . )p4 + . . . ( 1 )

with
A(pc>Tc ) - 0 (2)

Starting from these assumptions one is able to derive the behaviour 
of all physical quantities near Tc . Before going further, we must now
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give a classification of these quantities and of the related parameter 
which will be derived from the Landau theory (or from other theories) 
and eventually checked by experiments.

For reasons of simplicity, we shall list these quantities for the 
case of magnetic transitions, which is the most important for neutron 
scattering. Close to Tc we have the following relations:

below Tc :

M ~ (Tc - T)S (3)

where M is the spontaneous magnetization (for ferromagnets) or the 
sub-lattice magnetization (for antiferromagnets)

X ~ ( T C -T)? '  (4)

where x is the susceptibility of the lattice (ferromagnets) or of the sub
lattice (antiferromagnets)

Cv = A + B(TC - T)‘ “ ’

at Tc :
l

M - H «

where H is the applied magnetic field 

above Tc :

(5)

(6 )

X ~ ( T - T C)1 (7)

Cv = A '+ B ' (T  - Tc) ' “ (8)

The last quantity to be introduced is the correlation function 
g(r, r '), defined in this case as

g(r, r ') = (M(r) - < M(r) >)(M(r') - <M(r') >) (9)

As a consequence of the form of ф near Tc, large fluctuations of p 
(in this case M) can take place. These fluctuations,which are neglected 
in ( 1 ) since they give only a very small contribution to the free energy, 
can be calculated by a general theorem of statistical mechanics [4]; 
one finds that for large distances

g(r, r ')  ~
1 -iqcr-o

( 10)(r - r ')  C

Ki  ~ ( T C - T ) v' below Tc ( 1 1 )

K j ~ ( T - T C)H above Tc ( 12 )
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In fact, the existence of these long-range fluctuations (when T - T c , K ' 1 
becomes infinite) play a fundamental role in critical phenomena. Now 
we come back to the Landau theory, in which it is further assumed that

A(T) = a(T - Tc) (13)

From this, all the parameters listed above can be derived. It is found 
from the Landau theory that:

ß = 3 

7  = У '  = 1 

v = v' = \

For the specific heat, Landau theory predicts a finite jump. This 
last point is rather strongly contradicted by experiments, which, instead 
of a finite jump, indicate a specific heat which seems to become infinite 
at Tc . Also the values of the other parameters do not seem to be con
firmed by experimental data. Nevertheless, this theory gives a useful 
frame for the interpretation of neutron scattering and other data. We must note 
that molecular field theory is just the same as Landau theory as far as 
phase transitions are concerned. The fundamental reason for this failure 
seems to be the fact that the expression for the thermodynamical potential 
does not include the fluctuations which appear to be very large at Tc .
Thus, this theory is not completely self-consistent.

The case of critical points, such as fluid critical points, should be 
treated differently as was pointed out by Landau. In this case, the 
critical point is isolated and it is possible to turn around it. So this 
point is not a separation between two phases. In this case the Landau 
theory is slightly different. The fourth-order term of (1) is zero at 
Tc and the specific heat is expected to become infinite. Nevertheless, 
the physical quantities show a behaviour which is rather similar to that 
given above. The correspondence between the magnetic and the one-fluid 
case is given by

M -  Pi - pg

у  -*■ К

where pj is the liquid density, pg the gas density and к the compressibility; 
ß, a ,  a ' , 7 , 7 1 , v, v 1 can also be defined in this case. But (pj - pg) cannot 
really be regarded as an order parameter since liquid and gas phases 
have the same symmetry.

The next step in the theory was to calculate numerically the critical 
quantities in specific models such as the Ising models. Reference to the 
literature on this problem may be found in Refs [1] and [2]. A more 
ambitious approach has been made by Kadanoff [2]. The physical foun
dation of this theory consists of considering cells which are much larger 
than the atomic distances, but much smaller than the correlation range 
K"1. This is possible since K "1 goes to infinity at Tc . Kadanoff assumes 
that the interactions between the cells play a fundamental role in critical
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phenomena. He assumes the details of the interaction to be of no im
portance and that the cell assembly has a critical behaviour which 
can be scaled on the critical behaviour of the atomic assembly. From 
dimensional arguments he then derives relations between the critical 
parameters. The relations obtained by this theory are called the "scaling 
laws" for a three-dimensional system

2 -a  = 2 - a 1 = 3v’ = 3v 37 
2 - n 7+ 2ß (14)

The parameter rj, often named the "Fisher" parameter, gives the cor
relation function at Tc as

S M | x c (15)

The above-mentioned calculations with specific models are a good check 
of this theory. To see if the relations [14] are correct is one of the 
purposes for which the experiments are made. Up to now, we have 
considered the substance near the phase transition to be a static assembly. 
More precisely, we have not introduced the time of evolution of the fluc
tuation. As neutrons are going slowly through matter, we cannot make 
the simplification called "static approximation". Thus, as we shall see 
later on from the cross-section, neutron scattering will give information 
on this dynamical aspect of the fluctuations. Some macroscopic quan
tities like the self-diffusion coefficient and transport properties are re 
lated to this dynamical behaviour.

The theoretical aspect of this behaviour is still much more intricate 
than the static aspect as it makes use of the concept of an irreversible 
thermodynamic process; an introduction of these theories is not the scope 
of these lectures. We shall give here just a few qualitative statements 
which are useful in the interpretation of the neutron data. First, we 
must give a generalization of the pair-correlation function and make it 
time-dependent, i .e. ,g(r ,  t). Now, if we consider a configuration with 
some local order at t = 0, this configuration will develop with a certain 
relaxation tim e. Two forces are active in producing this evolution; 
under effect of heat, the disorder in the system increases, but the inter
actions between elements (e.g. ,  Heisenberg forces in a magnet) are acting 
towards more order. Tc is just the temperature at which these two 
effects cancel so that there is no active force to relax the system. This 
effect is the "thermodynamic slowing-down". It has the consequence 
that the time of evolution of a system near Tc is very long.

To analyse this relaxation, one makes a Fourier analysis of the cor
relation function and looks for the time of relaxation of each of these 
components. As pointed out explicitly by several authors [5], [6], the 
process of relaxation will be of different nature according to the value 
of the ratio q/K (where K"1 is the range of correlation). For q/K «  1 
one assumes the relaxation of a fluctuation of the extent l /q  much larger 
than the range of correlation 1 /K and one is in the field of hydrodynamics, 
where phenomena are analysed by a diffusion process. For q/K »  1 , 
however, relaxation within the range of correlation is considered. This 
case, which is perhaps of more fundamental importance, is very difficult
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from the theoretical point of view, as in this case the interaction has to be 
considered in detail. We shall come back to this point when analysing 
the neutron data in ferromagnets and anti-ferromagnets.

2. NEUTRON SCATTERING

The theory of neutron scattering has already been set forth in pre
ceding lectures and will not be repeated here. Only the results will be 
given. The general formalism of neutron scattering introduced by Van Hove
[7] is the most suitable, as it expresses the neutron cross-section in terms 
of the generalized pair-distribution function g(r, t) which we have just intro
duced. In the case of nuclear scattering the cross-section has two parts:

a) The coherent cross-section

where a is the scattering amplitude,ко and kj are wave vectors of incident 
and scattered neutrons respectively, and q is the momentum transfer 
in the scattering.

b) The incoherent cross-section

In this case, the general correlation function g(r, t) is replaced by the 
"self-correlation function" gs(r,t) which gives the space distribution 
at time t of a given scatterer, which was at the origin at time t = 0. The 
coherent part of the cross-section gives information of the same nature 
as X-ray scattering, but, in addition, measures the time dependence of 
the correlation function. The incoherent part of the cross-section describes 
the space behaviour of a scatterer as a function of time. In the limit of 
very long times it will yield,the self-diffusion coefficient.

In the case of magnetic scattering, the cross-section has only one 
part. For the case where an atomic spin can be defined,the correlation 
function is given by the expression

where S“ , S® are the spin components. The cross-section is given by

(16)

(17)

GaS (r, t) = < Sa(0, 0) SS(r, t) > (18)

( ■)
2

|F(q)|2̂  (<5a0 - )df2 de
d2o 1. 91 e2 

m o c 2
1 k!

2тгй k0
qaqe
q2 dte i(qr- ^ ) G aS(r,t)

(19)R

In this formula, e and m0 represent the charge and mass of the electron 
respectively, and c the velocity of light, F(q) is the form factor of the
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magnetic electrons and e = hu is the energy transfer between the neutron 
and the scattering system. This expression contains both the elastic and 
the inelastic parts of the scattering cross-section. It refers to the case 
of fixed atoms (no magneto-vibrational contribution). The elastic part 
of the cross-section is given by the contribution <( S(0) У S(r) у to the 
correlation function. This contribution vanishes for T > T C .

Another expression for the cross-section has been given by De Gennes. 
Writing down a Fourier expansion for the magnetization M(r):

(where V is the volume of the sample), he arrives at the following formula 
for the scattering cross-section:

Here Mi(q) represents the component of M perpendicular to the vector q, 
and M(q,t) is the corresponding Heisenberg operator. The spin of the 
magnetic ion does not enter in this expression, which is identical to the 
preceding one; formula (2 1 ) is extremely useful in the case of a metal, 
for which it is not possible to define the spin.

As the magnetic case is the case where most of the data have been 
obtained as yet, we shall concentrate on it. Anyhow, the treatment of 
neutron scattering by a fluid near its critical point would be very similar. 
Furthermore, we shall consider only the case of ferromagnets. The 
special case of anti-ferromagnets and other structure will be considered 
later on.

We first consider the static approximation. By introducing the con
cept of susceptibility in an inhomogeneous field, simplifications of the 
calculation become possible. The definition of the "new" susceptibility, 
X(Q) in the case of an inhomogenous field is given in the following way.
Let us apply a small external excitation which is sinusoidal in space to 
a spin system; the response of this system will then also be sinusoidal and 
have the same wavelength. For Q put equal to zero in x(Q), the definition 
of classical susceptibility is regained. It can be shown that for a semi- 
classical system of spins we have

This expression may be regarded as a good approximation for the case 
of a quantum-mechanical spin. Xo is the value which the susceptibility 
would have in the absence of interactions (free-law susceptibility). 
Thus, the calculation of the correlation function is now the calculation 
of this generalized susceptibility. This can be done, e .g . ,  by using 
the molecular field theory. Substituting this correlation function into 
(19) and integrating over an infinitely small energy change (static ap-

(20 )

q

(22)
r
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proximation), we find

da
dG )

2 2 kBTV
\  + Aq2 + Bq4 . . .

(23)

where x is the static susceptibility, and A and В parameters not varying 
strongly as functions of temperature. This expression is identical with 
the original expression of Van Hove [7] which is given by

which introduces explicitly the range of correlation l/K; r a is a measure 
of the range of direct exchange interaction. Between these variables the 
following important relationship holds:

De Gennes [8] has shown that Eq.(23) can be derived without any assumption 
of localized spin,on a purely thermodynamic basis. To do this, the thermo
dynamic potential written down before is used, and terms describing the 
inhomogeneity due to the magnetization fluctuations are introduced in it.
The probability distribution of the magnetization may then be calculated 
on the basis of the theorem stating that the probability for a quantity x to 
take a value between x and x + dx is proportional to ехр(-Ф(х)/квТ). A c
cording to Landau, this kind of treatment is allowed as long as quantum 
effects can be neglected, which will be the case for

where T is a time characterizing the evolution of the system. For tran
sition temperatures above 10°K this condition is well fulfilled.

Now we shall try to see what can be said about the inelastic cross- 
section if the dynamics of the fluctuations are taken into account. The 
original treatment of Van Hove [7] assumes that for sufficiently large 
values of t the Fourier component <pq(t) of the correlation function has 
an exponential decay with a time Tq given by

In this theory, the thermodynamic slowing-down mentioned above gives 
A(TC) =0. Further improvement of the theory by Mori and Kawasaki [9] 
shows a q dependence of the diffusion constant and predicts a q4-dependence 
of T q at Tc . These theories are oversimplified in that the exponential 
decay is considered as the leading phenomenon. As pointed out by 
Marshall [10], Villain [5], Kawasaki [11], and Resibois [12], this is 
correct only if the time necessary to establish this exponential decay 
is short enough so that no other relaxation process takes place during this 
time. In ferromagnets, however within the range of correlation l/K  some

da
df2 r2 (K2 +q2)

1 (24)

r?K2 =
1 X (25)

t  »  h /kBT

(25a)
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kind of collective modes may take place which will speed up the relaxation 
process. As mentioned above, we should then distinguish two extreme 
cases, that of q/K much smaller and that of q/K much larger than 1.
For q/K «  1 we are in the domain of hydrodynamics, the exponential 
decay is the leading phenomenon and the prediction of the authors is that 
Eq.(25a) is correct and

Л ~ «Лс (26)

In this case the cross-section is given by an expression calculated by 
Van Hove

d2 cr _ _____ 1______  A q2
dU d€ " C V . 2  u2 + A2q4— + Aq + . . .

X 4

(27)

with Л given by (26).
For q/K »  1, that is to say at Tc and very close to it, we must 

take into account the relaxation process inside the local domain of 
magnetization.

The predictions of the behaviour in this domain differ from author 
to author. Both Villain [5] and Halperin [6] predict that in this domain 
the time of relaxation should be independent of temperature

1
Tq q5 / 2

In this case, the cross-section should be of the form

d2 о 
df2 de

q 5 / 2  

u2 + q5

(28)

(29)

Case of antiferromagnets and other magnetic structures

The value for the bulk magnetization of an antiferromagnetic material 
is zero. Consequently, it will not show any critical fluctuation. On the 
other hand, critical fluctuations may appear in the magnetization of each 
of the sub-lattices. The preceding theory can easily be extended to such 
a case even if the structures are rather complex [5, 6, 13]. The following 
results have to be kept in mind:

a) Critical scattering appears at the position of peaks of super-structure. 
More particularly, critical scattering will not be observed at small angles 
This statement will possibly not be true for a metamagnetic material such 
as FeCl2 , which can be regarded as a superposition of ferromagnetic 
planes.

b) In general, the number of parameters required to describe the 
scattering, is larger than in the case of a ferromagnet. The number of 
parameters required depends on the type of structure and on the number 
of sub-lattices.
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The above mentioned authors who have worked out the relaxation 
in a ferromagnet have also calculated the case of anti-ferromagnets.

For the case of an helical structure, critical scattering will occur 
when the scattering vector is close to the spiral-wave vector Q. It 
has been shown [14] that the time of relaxation in the case of a ferro
magnetic spiral is

~  =T(Q,T)+A(Q, T)q2 (30)
Tq

where q is the deviation of the scattering vector from the spiral-wave 
vector Q.

This review of the theory of critical neutron scattering is very in
complete; we just tried to give the most important results for analysing 
the experimental data.

3. EXPERIMENTAL RESULTS

Also in this section the review will not be complete, and only part 
of the results will be presented.

3.1. Critical scattering by magnetic materials

These experiments have two purposes. The first purpose is to deter
mine the critical parameters, and the second one is to verify the theories 
of relaxation and obtain information on the dynamics of fluctuations.

a. 1) Determination of critical parameters

The determination of the critical parameters makes, above all, use 
of the static approximation; the inelasticity of the scattering must, how
ever, be taken into account to correct the rough data. So what is measured 
in this case is the scattered intensity versus the scattering vector I(q). 
From [24] and [25] we see that this will yield y,  y' and v, v ’ . The 
parameter ß is also accessible to neutrons by an accurate determination 
of the intensity of a Bragg peak. In Fig. 1 we show typical curves of 
intensity versus temperature in critical scattering. This has been 
measured for iron by Bally et al. [18]. We see a very intense peak 
due to the cancellation of x at Tc in formula (23). In addition, for very 
small values of the scattering vector we have an extra peak at lower 
temperatures due to spin waves [17]. For large values of the scattering 
vector, the peak is shifted to temperatures higher than Tc . This is a 
consequence of the fact that for large q the situation is sensitive to short- 
range correlation, where the asymptotic formula ( l /r )  exp(-Kr) is no longer 
valid; results can be explained by using a’ general expression of the form

1 -Kr -ar
g(r) = ~ e (1 - e ) (31)

which reduces to the asymptotic expression for large r.
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600 700 800 900

F I G .l .  C alcu lated  ve lo c ity  auto-correlation  in liquid argon at 85.5® K . Curve A: <^u;2^>av = 50 x l 0 24s " 2 , 
D = 1 .8 8  x Ю " 5 c m 2 s " 1, Curve В: <̂ cо av = 45 X 1 0 24 s~2 , D = 1 .8 8  x 1 0 "5 c m 2 s " 1 ( see Ref. [9 ] ) .  
T h ec irc le s  are from N ijboer, B .R . A . , Rahman, A . ,  Physica 32 (1966) 415.

FIG. 2 . D eterm ination o f  cr itica l parameters.
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Figure 2 shows a good example of the data of Ref. [15] used for the 
determination of critical parameters. In this figure we note the following 
general features:

1) a linear variation of I"1 with q2, which is in good agreement with 
relations (23) and (24) which are a direct consequence of a pair correla
tion in (l/r)exp(-K r) at large distances (Ornstein-Zernike expression).

2) a deviation from linearity when the scattering vector becomes 
larger. This is a direct consequence of the fact that correlation function 
at small r deviates from the Ornstein-Zernike form.

3) an intercept with the ordinate axis which increases with (T - Tc) 
and which according to (23) is a measure of the susceptibility.

4) curves which are roughly parallel, but deviate slightly from
this parallelism. This indicates that rj in (24) varies slowly with tempera
ture. A complete analysis allows us to obtain К as a function of (T - Tc).

To get accurate values of x(T) and K(T) we must correct these 
curves for angular divergence and inelastic effects. The expression 
for such corrections can be found, e .g . ,  inEricson's thesis [16]. If 
one uses neutrons of long wavelengths, the angular divergence cor
rection will be smaller, but the inelastic correction will be larger than 
if one uses short wavelength neutrons. Obviously, inelastic correction 
can only be made if the time of relaxation rq is known. To our knowledge, 
this has been done in the case of iron, making use of relation (25) and 
using values of Л determined as indicated below. The results for iron 
are the following:

2v T Authors

1.28 1 .20 Jacrot et al. [17]
- 1.30 Passel et al. [ 15]

1.38 1.33 Bally et al. [18]
1.27 - Spooner and Averbach [19]

We note the large dispersion of these results, at least, if we want 
to check the scaling-law conclusions. A more accurate determination, 
where, in particular, data of different wavelength ranges should be col
lected, is still advisable. Results in other ferromagnetic materials 
are the following:

Nickel у ~  1.30 Parette [17]

Cobalt 2v = 1 .20 
7 = 1. 19 Bally et al. [18]

Terbium 7 = 1.20 Als-Nielsen et al. [ 14]
(Ferromagnetic

spiral)

It is interesting to compare these results with data obtained by usual 
magnetics techniques, which yield
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Iron 7 = 1.33
Nickel У = 1. 29 to 1.35
Gadolinium 7 = 1. 16 to 1.33
Cobalt 7 = 1 . 21

Cr02 7 = 1 .6

As pointed out by Belov [20], these magnetics measurements have 
special difficulties. Neutron techniques are the only ones where one 
really obtains the susceptibility in zero field. As one is interested 
in the sublattice susceptibility in the case of anti-ferromagnets, only 
neutrons yield this staggered susceptibility. The results obtained so 
far are the following:

Cr20 3 2v = 1. 34 . Riste et al. [21]
Fe20 3 2v = 1.26 Riste et al. [21]
KMnF3 7 = 1.34 Cooper et al. [22]
MnF2

ОотНIIг- Parette et al. [23]

For these anti-ferromagnets, no corrections have been applied to take 
account of inelastic correction. But Parette et al. have shown that these 
results are identical for short and long wavelengths, 'which indicates that 
in this case these corrections should be very small.

The parameter ß has also been measured in some cases:

D. A. G. ß = 0.41 Norwelletal. [24]
Terbium ß =0.25 Dietrich et al. [25]
KMnFg ß =0.33 Cooper et al. [22]

We must note that if the result for у in MnF2 is correct, a violation 
of the scaling laws is implied. We know that a = 0 and (3 = 0.33 in MnF2. 
So in this case we have

2 - а ф  y+2ß = 1 .66

The last point of the static aspect of critical scattering by magnetic 
substances which we should mention is the very high sensitivity to 
applied magnetic fields, even of 10 to 100 Oersted [17].

a. 2) Relaxation in critical phenomena

The dynamical aspect of critical phenomena is seen in neutron scatter
ing by the non-elastic character of the scattering. As can be seen from 
Eq. (27) this fact appears essentially as a line broadening, with a width 
given approximately by

Ди
1

Tq
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A simple analysis from the line broadening is rather inaccurate; 
mostly, the instrumental width is large compared to this broadening.
Thus, the data have to be analysed by fitting the experimental cross- 
section to expressions as, e.g. (27) or (29).

Iron and Nickel;

In the case of iron, it has been shown in Refs [15, 17] that at the 
Curie point the scattering is inelastic, which indicates that at this 
temperature r q is finite for q ^ 0, The data are not accurate enough 
to yield any detailed information on Tq(q), but one can say that the data 
can be fitted by an expression of the form of (27), with a value of the 
dimensionless parameter of p = (2/fi)mA= 11. This value seems to be 
constant for T c STSTc + 30°. All data have been obtained for q/K > 1.
So this result is in agreement with theoretical predictions given above.
The data of Jacrot [17] seem compatible with an expression of the form 
(29). More accurate measurements must be made. For this purpose, 
one should use good energy and temperature resolutions and look at Tq(T) 
for a fixed value of q. The width should remain constant and start to 
increase at temperature where q ~K .

In nickel, the data are poorer [17], but look rather similar to those 
in iron, with, perhaps, a q4 dependence of Tq [26]. Also here more work 
is advisable. Drabkin et al. [27] studied the polarization of scattered 
neutrons and claim to have proved that the scattering was elastic. In 
our view, the sensitivity of this technique is too small to see parameters 
A of the order that has been observed directly.

Terbium:

We have seen that the time of relaxation should be as indicated in 
Eq.(30), A ls-Nielsen [14] has measured F(Q, T), by experiments with 
q = 0. The result is shown in Fig. 3. This result is explained qualitative
ly by Villain [5] who assumes in his analysis that at high temperatures 
where the range of correlation is small the substance behaves like a ferro- 
magnet, and close to Tc where the range of correlation is large compared 
to the pitch of the screw the relaxation is of the anti-ferromagnetic type.

RbMnF3 :

The most interesting study made in this anti-ferromagnetic substance 
shows the simultaneous existence of a broadened line corresponding to 
critical fluctuations and of two peaks associated with spin waves. This 
is true below and just above Tc . These observations are in good agree
ment with Marshall's [10] prediction, who regards the finite relaxation 
time observed in iron as being due to unresolved spin wave peaks.

3.2. Critical scattering by non-magnetic materials

The data available in non-magnetic materials are rather limited.
In particular, to the knowledge of the author, nothing has been published 
on scattering by critical fluids. This is due to technical difficulties as 
usually one works with large beams of neutrons, which are incompatible
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F IG .3 . Tem perature variation o f  the t im e -d e ca y  parameter Г(ср, T ) . The result o f  con ventional theory 
is also shown.

with a good definition of critical fluid conditions due to, e. g . , gravity- 
effects. In our opinion the existence of high-flux reactors, which allow 
work with narrow beams, should make these experiments possible and 
useful. Two kinds of information are expected. First, in hydrogenous 
material, which has a highly incoherent cross-section, one should be 
able to measure the self-diffusion coefficient by means of Eq. (17); it 
must show anomalies at Tc . Secondly, the study of the time of relaxation 
should complement the laser results, which are always in the hydro- 
dynamical domain.

In critical binary liquid mixtures, which are quite similar to single 
critical fluids, a preliminary observation has been made by Wignall 
and Rainey [29] using a bismuth-gallium mixture. Critical scattering 
has been clearly observed. The mean magnitude of concentration fluc
tuation, which is the equivalent of the usual range of fluctuation, has a 
temperature variation with 2v ~~ 1 , and the variation of the concentration 
with chemical activity which is the equivalent of the susceptibility shows 
a temperature dependence with у ~ 1 .

As far as order-disorder transitions in alloys are concerned, a 
systematic study of the ß-brass transition has been made by Als-Nielsen 
and Dietrich [30]. In this case, obviously all times involved are very 
long (macroscopic) and the static treatment is rigorous. The experiment 
shows that the correlation of occupation of lattice sites has the shape 
(l/r)exp(K r). The variation of К with temperature is given by К ~(Т -ТС)И 
with 2v = 1 . 30. One can also define the analogue of the magnetic suscepti
bility, as an order-disorder transition in an alloy is formally equivalent 
to an order-disorder transition in an Ising anti-ferromagnet. This 
susceptibility which is given by K^r^, (intercept of l / l  with the ordinate 
axis), has a variation with у = 1.25. It is also possible to determine the 
variation of long-range order below Tc by intensity of Bragg peaks. This 
gives ß = 0.305. We can observe that in this transition we have 
у + 2ß = 1. 86 and 3v = 1.95 such that we are not far from the scaling- 
law prediction which states equality of these figures.
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4. CONCLUSIONS

The potentiality of neutron scattering to provide useful information 
is fairly large and if the applications have been limited so far, this is 
mostly for technical reasons. In the future, careful work will make it 
possible to handle these technical difficulties.

The greatest difficulty with neutrons is, so far, the low intensities 
of the available fluxes which are much smaller than in the case of X-rays. 
But, on the other hand, neutrons have considerable advantages:

1) The large available range of the scattering vector.
2) The possibility of reducing multiple scattering by reducing the 

thickness of the sample (this cannot be done with light, whose 
wavelength is too large, so that thin samples give rise to refraction).

3) The transparency to neutrons of nearly all materials. We must 
notice that, on the other hand, the incoherent cross-section makes 
it difficult to work on hydrogenous materials with neutrons.

4) The magnetic moment of the neutron which makes it a unique 
tool to study magnetic transitions.

For the study of the dynamics of transitions, at first sight neutrons 
have a very strong competition with laser. This competition seems to 
be hopeless for neutrons as laser can see a broadening of 1 cycle/second. 
This is 105 more sensitive than what can be done now with neutrons. But 
with laser the wavelength is nearly always larger than the correlation 
range (q/K «  1 ) so that we observe only the hydrodynamic process of 
relaxation. Neutrons allow us to observe both hydrodynamic and real 
critical processes.
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INVESTIGATIONS OF MAGNETIC MATERIALS 
USING NEUTRON SCATTERING

W. MARSHALL and G .G. LOW*
ATOMIC ENERGY RESEARCH ESTABLISHM ENT, 
HARWELL, U N ITED  KIN GDO M

Abstract

1. Basic form ulae: 1 .1 . Introduction 1 .2 . Bragg scattering 1 .3 . Spin w aves; 2 . M agnetic 
m om ent distribution in m eta ls, alloys and transition ion com plexes: 2 .1 .  Ferrom agnetic m eta ls; 2 .2 .  Transi
tion ion com p lexes ; 2 .3 .  Disordered alloys; Shull-W ilkinson m od el; dilute a lloys; 3. Paramagnetic 
and cr it ica l scattering by ferrom agnets: 3 .1 .  Formulae for param agnetic and cr it ica l scattering; 3 .2 . The 
inelasticity  o f  the scattering; 3 .3 . T h eoretica l discussion for T approaching T c ; 3 .4 . Recent experiments 
at temperatures very c lose  to T c .

1. BASIC FORMULAE

1.1. Introduction

The purpose of these lectures is to give some idea of the power of 
neutron scattering methods to investigate magnetic solids'. We shall 
see that neutrons can tell us a great deal about magnetic systems and 
that most of the information could not have been obtained by using any 
other technique. In principle, neutron scattering methods can be used 
to answer almost any question about the structure or dynamics of a 
magnetic system and it is probably fair to claim that neutrons provide 
us with the most powerful single technique for investigating magnetic 
solids which is known today. Perhaps it is as well that the experiments 
are so valuable, because they are certainly expensive.

The general idea of the experiments is very simple. Thermal 
neutrons emerge from a nuclear reactor, are collimated into a beam 
and velocity selected and then allowed to fall on the sample. The intensity 
of scattered neutrons is measured as a function of scattering angle and 
for inelastic experiments an energy analysis is made using time-of-flight 
or other techniques. Figures 1 and 2 show schematic diagrams of a 
Bragg scattering apparatus and a time-of-flight apparatus for inelastic 
experiments. They are self-explanatory.

We must now decide how to relate the observations to properties of 
the scattering sample. It is convenient to define the wave-vector change 
I? and the energy loss hu of the neutron as follows

К = к - к' (1.1)
h2hu = E - E* = -̂--- (k2- k'2) (1.2)2m0

*  The paper was presented by G .G . Low.
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FIG. 1. A schem atic diagram  o f  a Bragg scattering apparatus.

FIG. 2. S chem atic diagram  o f  a t im e -o f-f lig h t  apparatus.

In terms of these quantities the magnetic cross-section per unit solid 
angle per unit energy interval is

,2d cr
dO'dET

N
h

2

X U - K p S ' Z(K, u) + ( l - K b s X!i(K,u)) + (l k2y)syy(K,w)} (1.3)
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w h e re  N is the number of atom s in the c r y s t a l ,  у  = 1 . 9 1  is a m e a s u r e  of 
the n e u tr o n 's  m agnetic  mom ent, К  is  the unit v e c to r  in the directio n  of Й; 
F ( I ? ) i s  a fo rm  fac to r  defined as  the F o u r i e r  tr a n sfo r m  of the spin density  
a s so c ia te d  with an individual ion or atom

F(K ) = S ' 1 / dr e iK' r ps (r) ( 1 . 4 )

The inclusion of the total spin S in the equation e n su re s  that F(0) is unity. 
Equation ( 1 . 3 )  a s s u m e s  only s c a l a r  interactions between the spins.

The quantities S xx(K ,u ) ,  so m etim e s called the sc a tte rin g  la w , a r e  
related  to c o r r e la tio n  functions by

S XX(K, u) = ^ f d t  ^ e i(K' R '  ш1) < S x( 0 ) S ^ ( t) >

R

oo

= 2 ^ f  / dt e ilJt< S X( - K ,  0 ) S x( K , t ) >

( 1 . 5 )

( 1 . 6 )

wh ere

Sx(K ,t )  = ^ e ‘ ^ ' RS x(t) ( 1 . 7 )

R
*-> —>

In these form u lae  S^(t) is the spin at site R and tim e t. The co r r e la tio n  
functions used in E q s  ( 1 . 5 )  and ( 1 . 6 )  a r e  important b e cau se  they g ive  a 
v e r y  com plete and sim ple  d escription  of the sa m p le .  In p art  of section  2 
we w il l  examine what information can be obtained fr o m  the fo r m  fac to r  
F ( K ) ,  but m o st of the time we w il l  d is c u s s  the quantities SXX( S , со), etc.
It should be noted that it can be shown that

Sxx(K,u)=^ J d t ^ e iK' R' ilJt < Sx(0) Si(t)>
R

= j  (eShw - 1) 'Ч [ в(К.ы) - g (-K , -со)] ( 1 . 8 )

w h e re  g (K ,u )  is the d iffe ren ce  between the re ta rd ed  and advanced G re en  
functions along the r e a l  a x is  of u. The G re en  functions a r e  defined in 
Z u b a r e v 's  notation [1]  :

G-~(t) = «  S'4t); S i ( O ) »ПШ n m

= + ie (± t) <[s'-4 t), s+-(0)] >n m ( 1 . 9 )
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1 . 2 .  B r a g g  scatte rin g

F r o m  ( 1 . 3 )  w e notice that scatte rin g  which is s t r i c t ly  e la s tic  must  
have a contribution proportional to 6(io) and th e refo re  we f i r s t  a s k  for  
this. E x p r e s s i o n s  ( 1 . 5 )  and ( 1 . 6 )  show this is related  to the co r re la tio n  
functions at infinite tim e. But at infinite tim e there can be no c o r r e la tio n s  
between spin fluctuations. Hence

„XX .
S„ (K ,u )  =Bragg ' 2 7Г ,

dt 5i (K .R -w t)  / s x(0 )  g^x(oo)>

eo

= 4 -  f  dt 27Г J
^ e i ( ? . R - Ut) < S * > < S x >

t

= fi(u) У
e i K -R < s x >  /  s | >

->
R

■  « М  я V e i ? ^ < S| > | 2

R

The r e m a in d e r  of the sc a tte r in g  is  called  " i n e l a s t i c "  and, fo r  exam p le,

S L e l . 2тг
dt 5i ( K . R - u t) (<sx(0) s|(t)>- <So><s|>) ( 1 . 11)

In m an y m agnetic  m a te r ia ls  the spin patterns a r e  v e r y  sim ple  with the 
tim e a v e r a g e  spin a lw a y s  along a single  direction. Conventionally, this 
d irection is  labelled the z - a x i s .  Then

SBragg ( K , u )  = 0 = S yRL 0 ( K , u > ( 1 . 12)

In a fe r r o m a g n e t  a l l  spins a r e  equivalent; hence ( 1 .  10) g ive s

2
s f  ( K , u )  = 6 ( U ) ) < S > 2 ^Bragg'  ’ ' '  ' N '  N I  "

R

= 6 (u j)< S > 2 ^ ^ y  6 ( K - r )  
v 0 L j

( 1 . 1 3 )
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w h e re  v 0 is  the unit c e l l  volum e and т is  the r e c i p r o c a l  lattice  v e c to r .  
Substituting into ( 1 . 3 )  g i v e s  the B r a g g  c r o s s - s e c t i o n

da
с Ш

| f (K)|2 < s >2 (1  - K | ) б ( К  - T )

T

( 1 . 1 4 )

T h is  va n ish e s  above T c , w h e re  ^s)>  is z e r o ,  and is  u s u a lly  r e co g n ize d  
with the help of a m agnetic  field which is  able to orient the f e r r o m a g n e tic  
domains in v a r io u s  d ire ct io n s,  i . e .  the " z - a x i s "  is  along H. In the 
ab se n ce  of H the orientation f a c t o r  (1  - K z) m u st be a v e r a g e d  o v e r  d om ains.  
In a cubic c r y s t a l  it is  s im p ly  2 / 3 .  The la s t  fa c to r  of ( 1 .  14)  is v e r y  
r e s t r i c t i v e ,  it te lls  us that sc a t te r in g  can only o c c u r  if  Й c o in cid es with  
a r e c i p r o c a l  la ttic e  v e c t o r .  T h is  fa c to r  is  the sa m e  as  that o c c u r r in g  
in X - r a y  d iffraction  and the e x p e rim e n ta l techniques fo r  o b serv atio n  a r e  
identical in p rincip le  so w e w il l  not d is c u s s  them here.

In a sim p le  a n t i- fe r r o m a g n e t

< S | >  = ( ± ) ; f < S > ( 1 .  1 5 )

w h e re  <(s/> is  the t i m e - a v e r a g e d  spin on a su b -la tt ic e .  In p lace  of ( 1 . 1 4 )  
we then get

da
dfl'

( 2  ir)'
N ( |f (K )|2 < s >2 ( i - k 2) \  6 ( ic - t ) I f c (t )I ( 1 . 1 6 )

T

w h e re

Fc (?) = > e1K'P(±) p ( 1 . 1 7 )

P

w h e re  v 0 is  the volum e of the m a g n etic  unit c e l l  (frequ en tly  l a r g e r  than 
the c h e m ic a l  unit cell)  and the su m  o v e r  p includes a l l  the m agnetic  
ions in one unit c e l l .  T h is  fo rm u la  ( 1 . 1 6 )  can be u sed to deduce the 
spin pattern of a n t i- f e r r o m a g n e ts .  To se e  how this is  done w e look at 
only one e x am p le,  M n F 2 .

The c h e m ic a l  str u c tu r e  of MnF2 is  w e ll  known. The position of 
each unit c e l l  is  g iven  by

n = ( n ja ,  n 2 a, n3 c) ( 1 .  18)

and the unit c e l l  volu m e, v 0 , is  a2 c and contains 2 Mn atom s and 4 F  
ions. T h e  r e c i p r o c a l  la tt ic e  is

tg_
a

t  = 2 tt ( 1 .  19)
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w h e re  tj, 1%, t3 a r e  in te g e rs .  Within the unit c e l l  we have  

M n ++ a t ( 0 ,  0, 0) a n d ( j ,  | ,

and F "  at { a ( l  - u), a ( l  - u), 0} ; j^a(0.5+ u), a(0 .5  - u), ^  j-

{a u ,  au, 0 } ;  | a ( 0 . 5 - u ) ,  a(0.5 + u), ( 1 . 2 0 )

w h e re  u -  0. 3 1 .
Hence the n u clear sc a tte rin g  has

Fnuc (?) = bMn{ l  + exp[iTr(t1 + t2+ t3)]}

+ bF {exp  [i27ru (tj + 12)) + e x p [ i 2 ? r ( l  -  u) (tj + tg)]

+ exp[i7r (tj + ^ + t3) + i27ru (tj - t̂ )]

+ exp [iw (ta + t2+ 13) + i27ru (t2 - tp)]}

= 2 b Mn+ 4bF co s  27rut1 cos 27rut2 if  t j + t 2 + t3 is  even 

= - 4 b F sin 2j7Utj sin 2u  ut2 if tj + tg + tg is odd. ( 1 .  21)

In these fo rm u lae  bMn and b F a r e  the coherent scatte rin g  amplitudes of Mn 
and F  nuclei, r e s p e c t iv e ly .  Hence for the f i r s t  few r e c ip r o c a l  lattice  
v e c to r s

F nuc(100) = 0 

F n u c ( ° 0 1 > = 0

F nuc( HO) = 2 b Mn+ 4 b Fc o s 2 2?ru

F  ( 1 0 1 )  = 2b., + 4b cos 27tu, etc. ( 1 . 2 2 )n u c'  '  Mn F

N e v e r t h e l e s s ,  below the N eel te m p e ratu re ,  a B r a g g  peak at (100) is  
o b serv e d  together with m agnetic  peaks a t . ( I l l ) ,  (2 10 )  and ( 2 0 1) .  We  
f i r s t  note that these a r e  indexed on the sam e unit c e l l ,  i. e. in this 
c a s e  the m agnetic  and c h e m ic a l  unit c e l ls  have the sa m e  volum e. Th ere
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a r e  two Mn atom s p er c e l l  which m u st have opposite sp in s. Hence  

F c ( t ) = l - e x p [ i 7 r ( t 1 + t2 + t3)]

= 0 i f  tj + t 2 + t 3 is  even

= 2 if  t 2+ t 2+ t 3 is  odd. ( 1 . 2 3 )

W e notice that we expect a m agnetic  peak at both (100) and (001) but the 
la tte r  does not a p p ea r  in an e x perim en t. It follow s that for this peak the 
orientation fa c to r  ( 1  - K \ )  m u st be z e r o .  Hence the spins a r e  d irected  
along the z a x is  and the spin pattern of the c r y s t a l  h as been com p le te ly  
determ ined.

Th e exam ple ju st chosen is  v e r y  sim ple but all  determ in ation s of 
a n t i- fe r r o m a g n e tic  and fe r r o m a g n e tic  o rd e rin g  u se sim p le  extensions  
of the fo rm u lae  given here. Notice that we cannot sw itch on o r  off the

FLG. 3. Powder diffraction patterns for MnO (Schull, Strauser and Wollan, Phys.Rev. 83 (1951) 333.
Figure reproduced from Neutron Diffraction by G. E. Bacon by courtesy o f  the author and the Clarendon Press.)

FIG. 4. Spin pattern in MnO. (Figure reproduced from Neutron Diffraction by G. E. Bacon by courtesy of 
the author and the Clarendon Press.)
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m agnetic  sc a tte rin g  of an a n ti- fe r r o m a g n e t  b e c a u s e ,  except in sp e cia l  
c a s e s ,  the a n ti- fe r r o m a g n e tic  domains do not respond to an extern al  
m agnetic  field. H o w e v e r ,  a n ti- fe r r o m a g n e tic  peaks a r e  e a s i l y  noticed  
by com p arin g d iffraction patterns below and above the N eel tem p eratu re.  
An exam ple is  shown in F i g .  3 for MnO, together with the spin pattern  
determ ined fro m  the r e s u lts  ( F i g .  4).

1 . 3 .  Spin w a v e s

The e le m e n ta r y  excitations p resen t in fe r r o m a g n e ts  and anti-  
f e r r o m a g n e ts  at low te m p e ra tu re s  a r e  called  spin w a v e s .  F i g u r e  5 
shows an "in stan tan eou s snapshot" of a spin w a ve  in a fe rro m a gn e t,

each spin p r e c e s s e s  and the phase of the p r e c e s s io n  v a r i e s  through 
the c r y s t a l  acco r d in g  to the w ave v e c to r  q of the spin w a v e.  In o rd er  
to c alcu la te  the app ro priate  c r o s s - s e c t i o n s  we m ust u se spin w ave  
th eory to calcu late  the c o r re la tio n  functions in ( 1 . 9 ) .  To do this we  
u se  the f a m i l i a r  H e ise n b e rg  model with a Hamiltonian

- 2 J  ) S - '  S - .  ( 1 . 2 4 )Z_j n m 
<n,m>

w h e re  the sum runs o v e r  n e a r e s t  neighbour p a ir s  only. If w e use the 
H o ls te in -P r im a k o ff  tr an sfo rm atio n  we h ave, to leading o r d e r ,

£  = -  S + a*a_*n n n

S* = - J 2 S  a *
n n

s *  = J f  ( a *  + su)П \ ь  n n
(1 .25 )

= s F2S" a S2.= - i  f f ( a *  - a j  n \ l  n n

w h e re  a-» and a *  a r e  B o s e  annihilation and crea tio n  o p e ra to rs  for site n.n n r
U sin g the F o u r i e r  tr a n s fo r m s

1

^  " -Jn

V  e+ i? ' "  h/ e
l -> q
q

)  e ' ^ - n  b *
n s/N V  q

q

( 1 . 2 6 )
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w h ere b'J and annihilate and c r e a te  spin w a v e s  of v e c to r  q, it is found 
th a t^ fh s  diagonalized to leading o r d e r  and b ecom es

g f  = - J N r S 2 + \  hu^-n^ ( 1 . 2 7 )

wh ere
q

hu-, = 2 J S r  ( 1 - 7 - * )
q q

4 P "

n-» = at>a 
q q q

( 1 . 2 8 )

and r  is  the number of n e a r e s t  neighbours.  
F r o m  ( 1 . 2 5 )

S i(t)  = . I  ( a * ( t )  + a-*(t)}
П V Z n П

я г Д  Й О )  + • ‘я ' п V »
O'

(  S \ V"1 , - i cf* n* + iohft >0 i q « n  -
Л ш ) 1 {е ^ bl + e  Q b ?} ( 1 . 2 9 )

Hence

/
\

-
m (n->+ 1) + 

v q '
i q* n - iaut _ . 

e я n->)
q

w h e re  we have introduced the th e rm a l expectation v alu e s

q BTÜZTT 
e q 1

S i m i la r ly ,  we can show that

<эУ(0)s^(t)> = < sl?(0) s*(t)>
U n u n

( 1 . 3 0 )

( 1 . 3 1 )

( 1 . 3 2 )

Hence fr o m  ( 1 .  1 1 )

C l .  ( Й , ы ) = | - Ц ^ -  ^  { 6 ( K - 5 - ? >  6 ( ы - и ^ ( й 7 + 1 )

T  . q

+ 6 ( K  + q + r)  6(u +ii»)  n_>} 
q q

( 1 . 3 3 )
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and substituting into ( 1 . 3 )  g ive s

d f l 'd E ' inel.
spin-wave

X ^  { 6 (К -  q - т ) 6(u -  (n ^ +  1)

t .q

+ (K  + q - t ) 6 (u +  u_>) n_J
q q

( 1 . 3 4 )

,3

) ( ^ - j j +  1 ) + 6(и + ‘^ . ^ ) п ^ ^ }  ( 1 . 3 5 )

The f i r s t  te r m  co r r e s p o n d s  to spin w a v e  crea tio n , the second to spin w a v e  
annihilation. T o  study spin w a v e  sc atte rin g  the c r o s s - s e c t i o n  is  o b serv e d  
as a function of и  and, at fixed K , this shows two m a x im a, one fo r  positive  
w correspo n d in g  to neutron e n erg y  lo s s  and spin w a ve  crea tio n , the other  
for negative  u c orrespo n d in g to annihilation. The o b servation s give  the 
spin w a v e  fre q u en c y  correspo n d in g  to the ap p ro priate  К  value.

FIG.6. Spin wave dispersion in fee Coo.sz Fe0.08 (Sinclair, Brockhouse, Phys.Rev. 120 (1960) 1638).

In this w a y  m an y spin w a v e  s p e c t r a  have been determ ined. A  few  
e x am p les  a r e  given in the d ia g r a m s .  F i g u r e  6 shows u q as a function  
of q fo r  f. c .  c .  C o 0 .9 2 F e 0.08  and F ig -  7 for b. c .  c .  F e .  F i g u r e  8 shows  
r e s u lts  fo r  F e 3 0 4 , F i g .  9 fo r  M nF2 .

• (ш )

0.1 0.2

27Г
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FIG. 7. Spin wave dispersion in b cc Fe 

(Shirane, Minkiewicz, Nathans).

FIG.8. SpinwavedispersioninFejCU (Brockhouse, B .N ., 
Watanabe, H. in Inelastic Scattering o f Neutrons in 
Solids and Liquids (Proc. Symp. Chalk River, 1962),
2, IAEA, Vienna (1963) 297.

FIG.9. Spin wave dispersion in MnF2 (Low, 
Okazaki, Turberfield, Stevenson, J.Appl. 
Phys.35, (1964) 998).



5 1 2 MARSHALL and LOW

2. M A G N E T I C  M O M E N T  D IS T R IB U T IO N S  IN M E T A L S ,  A L L O Y S  
A N D  T R A N S IT IO N  ION C O M P L E X E S

2 . 1 .  F e r r o m a g n e t ic  m etals

W e have seen how B r a g g  scatte rin g  involved the form  factor F(K )  
which w a s  defined as

-*■ - i  Г  -+ iK*r
F(K ) = S / dr e ps (r) ( 2 . 1)

w h e re  ps (r) is the spin density and S the total spin a s so c ia te d  with each  
atom. B e c a u s e  ps (r) in total is a p eriodic  function, (2. 1) can be inverted  
so a s  to lead to

,->4 \
\ P s ( r ) >  = ——  /  e F ( t )

v 0 A -1 
r

( 2 . 2)

giving the t i m e - a v e r a g e d  spin density in te r m s of the experim en tal quan
tities ^ S ^ F ( t ). F r o m  this fo rm u la it follow s that fro m  the intensity  
of B r a g g  peaks we can deduce ^ps(r) )> throughout the unit cell .  <(ps ( г ) У  
is  b est r e p r esen ted  as  a contour map.

In fact it turns out that there a r e  con sid erable  advantages to be 
gained by c a r r y i n g  out B r a g g  scatte rin g  m e asu re m e n ts  on fe rro m a gn e tic  
sp e cim en s with a beam  of polarized  neutrons. In terferen ce  between  
n u cle ar  and m agnetic  scatte rin g  then g ive s  r i s e  to a c r o s s  te rm  in the 
c r o s s - s e c t i o n  which is absent fo r  an unpolarized incident beam . Thus,  
if  we w r it e  the m agnetic  sc atte rin g  length as

P =
Y e
m e 2

F ( r ) < S > ( 2 . 3 )

and the n u c le ar  length a s  b, for a suitable scatte rin g  g e o m e try  we have  
c r o s s - s e c t i o n s  of (b ±  p ) 2, dependent on whether the neutrons a r e  polarized  
p a r a lle l  or an tip arallel  to the magnetization of the sp ecim en . M e a s u r e 
m ents can e a s i l y  be made for both incident neutron polarizations by the 
use in the experim en tal apparatus of a suitable polarization " f l i p p e r "  
based on the rad io fre q u en cy  reso n an ce technique. The ratio between  
these m e a s u r e m e n ts  g ive s  the ratio  of p/b, i . e .

R = 'b  + p f
4b - p/

( 2 . 4 )

or

p ^ R -  1 
b ~~ 4

( 2 . 5 )
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for p «  b as  is u s u a lly  the c a s e .  The p olarized neutron method enables  
the m agnetic  sc a tte rin g  to be a c c u r a t e l y  and e a s i ly  m e a s u r e d  in the p rese n ce  
of the n u c le ar  B r a g g  peaks (unpolarized neutrons a r e  sc a tte re d  with an 
intensity proportional to b2 + p2 and the sm a ll  p2 te r m  cannot be sep arated  
off with any g r e a t  p rec isio n ).  Additionally, it is u n n e c e s s a r y  to m e a s u r e  
the integrated intensity by trackin g a c r o s s  a B r a g g  peak: all  that is  
requ ired  is a single pair  of m e a s u r e m e n ts  at the point of m axim u m  inten
sity ,  together with an a c c u r a te  background count.

IRON _______ г 1
NUCLEUS ■ LI00J 2

FIG. 10. Magnetic moment density in Fe (Shull, Yamada, J. phys. Soc. Japan 17, (1962) Supplement B -3 ,1).

F i g u r e s  10  and 1 1  show contour m aps obtained in this w a y  by Shull  
and c o lla b o ra to rs  for m e ta ll ic  F e  and Ni. N otice that between the F e  
atom s the spin density is negative. A  c a r e fu l  d isc u ss io n  by Shull has  
shown this to be a r e a l  effect and it w a s  the f i r s t  c l e a r  cut evidence that 
the 4 s  e le ctro n s in F e  a r e  p olarize d  in the opposite d irection to the 3d 
e le ctro n s.  A  s i m i l a r  situation s e e m s  to e xist a lso  fo r  Ni. Notice also  
that the r e s u l t s  do not have resolution enough to show up the fa l l  of the 
spin density n e ar  the F e  and Ni nuclei — this m ust in fact happen becau se  
3d e le ctro n s have no amplitude at a nucleus.
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FIG. 11. Moment density in Ni (Mook, Phys. Rev. 149 (1966) 495).

2 . 2 .  T r a n sitio n  ion co m p le x es

The sa m e  idea is  e a s i ly  extended to a n t i- fe r r o m a g n e ts .  F i g u r e  12  
shows a contour m ap fo r  NiO determined by A lp e r in .  The figu re  c l e a r l y  
shows up that the Ni++ ion does not have a sp h e r ic a l  spin distribution but, 
a s  we would expect, has the m agnetic  moment distributed in E g o rb ita ls .  
A c t u a lly  it turns out that expe rim e n ts  such a s  these can give important  
inform ation on c o v a le n c y  e ffects  in transition ion co m p le x e s .  Th is  
p o s sib il ity  has been examined in detail by Hubbard and M a r s h a l l  (see  R ef.  [ 2 ]) .

The existe n ce  of a d e gr ee  of c o v a le n c y  in a nom inally ionic compound 
c o r r e s p o n d s  to the retu rn  of som e part of the ele ctro n  c h a rg e  which would  
be donated fr o m  the cation to the anion in the fully  ionic situation. In the 
c a s e  of a m agnetic  m a te r ia l ,  this b a c k - t r a n s f e r  of e le ctro n s to the cation  
w il l  u s u a lly  have a s s o c ia te d  with it an outward tr a n s f e r  of unpaired spin 
on to the ligan d s. The total amount of u n paired spin a s so c ia te d  with an 
isolated ion c o m p le x  w il l  often re m a in  unaffected: the change in its 
sp a tial  distribution m a y ,  h ow eve r, be quite pronounced and should in 
m a n y c a s e s  be o b s e rv a b le  in neutron d iffraction  ex p e rim e n ts .  Such  
m e a s u r e m e n ts  would thus lead to quantitative inform ation on the d e gree  
of c o v a le n c y  p rese n t.  In fa c t ,  in concentrated m a t e r i a ls  w h e re  anti
f e r r o m a g n e tis m  o c c u r s  som e cancellation of spin takes place  a ls o ,  as  
we sh all se e .

A  convenient f r a m e w o r k  within which a lot of the d isc u ss io n  of 
c o v a le n c y  h as been c a r r i e d  on is  the l in e a r  combination of atom ic o rb ita ls  
( L C A O )  approxim ation. The wavefunctions d e sc rib in g  the outer electro n s
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FIG. 12. Moment density in NiO (Alperin, J. phys. Soc. Japan 17 (1962), Supplement B-2, 12).

a s so c ia te d  with a transition m etal ion and its surrounding ligands a r e  
w ritten  in the fo r m :

Фа = 1Ма(ф - AX) ' (2.  6)

Фи = N t (X + Вф) (2. 7)b b

w h e re  ф is  an atom ic o rbital of the c en tral m etal ion and X is  a suitable  
combination of ligand o rb ita ls  having the sa m e  o v e r a ll  s y m m e t r y  as  ф .
N a and N b a r e  n o rm alizatio n  fa c t o r s  and A  and В  a r e  the ad m ixtu re  
p a r a m e t e r s  which a r e  s m a l l  n um bers for the nom inally ionic compounds.  
A s  a consequence of orthogonality between the m o le c u la r  o rb ita ls ,  i . e .  
№ a k >  = 0. we have the relation ship

_ A  - (ф I X)
1 - А(ф I X)

between A  and B .  (The ( a | ß ) a r e  o v e r la p  i n t e g r a ls . )

( 2 . 8 )
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F r o m  the above com m ents we see  that фъ has predom inantly the nature  
of the ligand o rbitals  while фл c lo s e ly  r e s e m b le s  an orbital of the m etal  
ion. In the c a s e  of фъ , the plus sign has the effect of in cr e a s in g  the electron  
d ensity  in the region  between the m etal ion and the ligand nuclei and thus 
lo w erin g  the e n erg y  of an electro n  in this orbital re la t iv e  to that of an 
e le ctro n  in a pure atom ic o rbital either on the m etal ion or on a ligand  
atom. C o n v e r s e l y ,  the e n e rg y  of an electro n  in фл is  in c r e a s e d .  Thus 
фъ is known as  a "bonding" orbital and фa as  an "an ti-bo n d in g" orbital.
In the c a s e  of the nom inally ionic compounds we shall be d isc u ss in g  in 
detail below , it m a y  be as su m e d  that the bonding orbitals  a r e  full. Th us,  
they have no net unpaired spin a s so c ia te d  with them and all we need con
s id e r  in connection with neutron sc atte rin g  and other m agnetic  p ro p e rtie s  
a r e  the anti-bonding o rb ita ls .

L e t  us now w r ite  down the explicit  fo r m  of the anti-bonding orbitals  
correspo n d in g  to a d -ion surrounded by a r e g u la r  octahedron of F  or  
О lig an d s, ф in E q . ( 2 .  6) b e c o m es one of the five functions d 3z2 _t2 , d x2_y2 , 
d xy, d yzo r d zx. F o r  X we fo r m  lin e ar  com binations of the s and p o rbitals  
of the ligands having correspo n d in g o v e r a ll  s y m m e t r i e s .  The resulting  
m o le c u la r  o rb ita ls  a r e  either the ct o rbitals  fo rm ed  fro m  wavefunctions  
of e s y m m e t r y ,  i . e .

^ 3z2 . r2 = N o { d 3z>-r 2 - Ao(P°3+ P°6- i p °

p£) - A s ( s 3 + s 6 - I  Sj

•  1  S j -  I  s 4 -  1  S5^J ( 2 . 9 )

^  x 2- y2 “  N o { d x2 - y2 ~ ~ 2~  A ° ( P l  +  P 4 “  P 2 ■ P 5^

A s ( S j  + s 4 - s 2 - s 5) j  ( 2 . 1 0 )

or the 7Г o rb ita ls  form ed fro m  wavefunctions of t2g s y m m e tr y

^xy = V d x y -  V P 1 + p 2 -  P 4 P 5 ) }  ( 2 Л 1 >

фуг = { d yz - A lr(P2 + Pj - p i -  P^)} ( 2 . 1 2 )

^ Zx = N , { d z x - A , ( p ? + p 3 - p I - p 6 ) )  <2 - 1 3 >

The s u b sc r ip t  n u m bers on the p and s functions r e f e r  to the ligand  
positions a c c o r d in g  to the convention shown in the d iag ram  (see F i g .  12 a ) ,  The  
s u p e r s c r ip t  on a p function shows the direction of its p ositive lobe; a  indicates,  
that it points tow ard s the c en tral d-ion. A  d ia g ra m m a tic  represen tation  
of Ipzx is  g iven to i llu str ate  these points ( F i g .  12b).
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FIG. 12a. Conventional subscripts for p and s functions.

FIG. 12b. Diagrammatic representation o f ф .

The n o rm alizatio n  fa c t o r s  a r e  given by

n ;2 = i + 3 a 2 - 6A 0So + 3A2 - 6ASs ( 2 . 14)

n; 2= i + 4A2 ■- 8A.S, ( 2 . 15 )

where the overlap integrals are defined as

UD
CO (d3z2-- r2 1 P3) ( 2 . 16)

s s = (d3z2- r21 s3> ( 2 . 17)

s* = (dzxl Р3) ( 2 . 18)

Th e m agn etic  mom ent d en sity  a s s o c ia te d  with an iso lated  d -io n  plus  
its o ctah ed r al a r r a y  of ligands is  given by the su m  of the s q u a r e s  of the 
w avefu n ction s (2. 9) to (2 .  1 3 )  which contain u n p aired  e le c t r o n s .  T h u s,  
fo r  e x a m p le ,  if  the d -io n  is  N i++ w h e re  we have 2 unpaired e le ctro n s in the
e m o le c u la r  o rb ita ls  we would have

g

P ( r )  = \Фй7г .  гг(г)|2 + k x2 . y2 ( ? ) | 2 (2 . 19 )

Now p(r) can be e x p r e s s e d  as  the sum of three p a r t s ,  i. e.

P ( r )  = pd ( r )  +  P d l ( r )  +  p , ( r )  ( 2 . 2 0 )

w h e re  p d(r) and ft (r) depend only on w avefunctions a s s o c ia te d  with the 
d -io n  and the ligands r e s p e c t iv e ly  and P d i ( r )  depends on products con 
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taining both these types of wavefunction. W e have im m ed iately  that

Pd(? )  = N 20 ( I d 3z2 _ rü|2 + I  ̂хг_yz|2} (2 .21)

and that

Pdi(?) + Pi(?) = [ Ф 3г. . г. | 2 + | ^ . уз|2 } - N ^ {| d 3z,_ r, | a + |dx ! . y2|2 }] ( 2 . 2 2 )

It follows straigh t a w a y  that

f dr {pdl(?) + Pl( ? ) }  = 2 ( 1 - Ng) ~  2 ( 3 A 2 - 6A0S0 + З А 2 -  6 A s S s) ( 2 . 2 3 )

so that

dr pd] (r) ~  - 12  (A 0S0 + A sSs ) ( 2 . 2 4 )

dr pj (?) 6 ( A 2 + A 2) ( 2 . 2 5 )

In fact  if  w e now c o n sid er  the situation in a concentrated Ni sa lt  such  
a s  NiO o r  K N i F 3 w h ere  m agnetic  o rd e rin g  o c c u r s  and examine the d is 
tribution of m agnetic  moment in the a n ti- fe r r o m a g n e tic  phase we se e  that 
an in terestin g cancellation has taken place. F o r  the types of anti
fe r r o m a g n e tic  stru c tu re  found in both of these s y s te m s  the ligands lie  
at the cen tre  of straig h t lin es joining p a ir s  of neighbouring d-ions of 
opposite spin direction. The Pj(r) correspon d in g to a pair  of d-ions having  
opposed spins w il l  have opposite signs too and thus cancellation w il l  result  
and fo r  the a n ti- fe r r o m a g n e tic  situation

/ dr p(?) dr ( p d( r )  +  Pd l ( r ) }

= 2 { N 2 - 6 ( A 0 S 0 + AsS s)} ~ 2 ( 1 -  3 A a2 - 3 A s2) ( 2 . 2 6 )

T h is  m ean s that the intensity of the a n ti- fe r r o m a g n e tic  reflection s  
w il l  be l e s s  than one would calcu la te  in the absen ce of covalen cy. In 
the fo r w a r d  direction the m agnetic  fo rm  fac to r  w ill  be diminished by the 
fac to r  (1  - З А 2 - ЗА2 ) in E q .  (2. 26). Thus, a ca re fu l  study of the absolute  
in tensities of the low index re fle ction s can lead to a determination of 
this quantity and hence provide quantitative information on the degree  
of c o v a le n c y .  Nathans et al. [3] w e r e  the f i r s t  to follow this approach  
and e stim ate  c o v a le n c y  p a r a m e te r s  using data from  ca re fu l  powder  
m e a s u r e m e n ts  on a range of an ti- fe r r o m a g n e ts .  Other m e asu re m e n ts  
have been m ade by F e n d e r ,  Ja co b so n  and Wedgwood at H a r w e l l [4].
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It is e a s y  to se e  that, w h e r e a s  the fra ct io n a l  lo s s  of m agnetic  mom ents  
found above fo r  an eg o rbital is

3 A 2 + 3 A 2 ( 2 . 2 7 )

that for a t ^  o rbita l  is

4 A 2 ( 2 . 2 8 )

Although the above d isc u ss io n  c o v e r s  a number of the m o st important  
a n t i- fe r r o m a g n e ts ,  e . g .  NiO, MnO, K N i F 3 , K M n F 3 e t c . ,  in g e n e r a l  
the su rroundings of the ligands in a n t i- fe r r o m a g n e ts  do not have the 
sim ple  s y m m e t r y  n e c e s s a r y  fo r  the can cellation  e ffec ts  d e sc r ib e d .  In 
p rin cip le ,  it is then n e c e s s a r y  to w o rk  with the s q u a r e s  of the full w a v e -  
functions given in E q s  (2. 9) to (2. 13 ) .  H o w e v er ,  b e cau se  the ligands are  
sp aced  so fa r  fro m  the c en tral d -io n , th eir e ffec ts  in the sc a tte r in g  do not 
app ear until quite s m a ll  v alu e s  of sc a tte r in g  v e c t o r  a r e  reached . Th us,  
for s im p le  st r u c tu r e s  the lo w e s t-a n g le  B r a g g  peak w il l  probably have a 
diminished intensity rou ghly in a c c o r d  with the fo rm u lae  quoted above.
A  table of r e s u lts  fro m  neutron d iffraction  e x p e rim e n ts  of this so r t  is 
given (T ab le  I ) .

2 . 3 .  D is o r d e r e d  a l lo y s

Important information about the e le ctro n ic  stru c tu re  of a l lo y s  can  
be obtained by studying the e la s tic  diffuse sc a tte rin g .  To exam ine this 
w e re tu rn  to section 1 and note that

elastic ( K , u )  = 6 ( u ) £  e « , R < S o > < S f >

and substituting into ( 1 . 3 )  g ive s

du • _ N / е 2 у  \ 2 

^ e l a s t i c  "  4  W V
F ( K ) |2 ( 1 - K 2 )

(2. 29)

( 2 . 3 0 )

w h e re  w e have introduced the m agnetic  mom ent ц -g at R (in units of the 
B o h r magneton). The fo rm u la (2. 30) is  better to u se than the correspo n d in g  
one involving (  S O  b e cau se  it takes better  account of any orbital moment  
which is  unquenched.

The valu e  of ( 2 . 3 0 )  depends on whether o r  not there a r e  fluctuations in 
fr o m  site  to s i te :  it is  understood that the o rigin  atom 0 is a r b i t r a r y .

W e  define the mean mom ent as

( 2 . 31 )
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T A B L E  I. C O V A L E N C Y  P A R A M E T E R S  F R O M  N E U T R O N  
D I F F R A C T I O N

Configuration Ion Material Result

da Cr3 + LaCr03 A 2 ~ 3.5% * Nathans et al.

d 5 Fe3 + LaFe03 A 2 + 2A% + A2s ~ 8 % * Nathans et al.

Mn2 + MnF2 A^ + 2 A 2 + A2 ~ 3. 3% Nathans et al.

MnO Ao + 2 A 2 + A 2= 3.5% Fender et al.

MnS A2 + 2 A 2 + A 2 = 1 .6% а 7Г * Fender et al.

MnC03 Cation moment loss ~ 10% Brown & Forsyth

d 8 N? + NiO A ^+ A2 ~4%
Alperin 
Fender et al.

Note: The values o f the covalency parameters given above have all been roughly
corrected for the effects o f zero-point motion in an anti-ferromagnet. Because 
o f these corrections those values marked with an asterisk differ from the figures 
originally published.

and the co r resp o n d in g  c r o s s - s e c t i o n  is the B r a g g  term  

x2
der

d O 'Bragg
( 2 . 3 2 )

The r e m a in d e r  is  the e la s t ic -d if fu s e  sc atte rin g

dO'
da

elas. diff.
= 1  ( ё у  l F < K ) f  ( 1 - K 2Z)

( 2 . 3 3 )

w h e re  the b r a c k e t s ^  ^ n o w  m ean that w e take an en sem ble a v e r a g e .  Ob
v io u s ly ,  th ere  is  no e la s tic  diffuse sc a tte rin g  if the sa m p le  is  pure with  
all  equal t o p .  But in a b in a r y  a l lo y  v a r i e s  fr o m  site to site.  To  
evaluate ( 2 . 3 3 )  we look at s e v e r a l  sp e c ia l  c a s e s .

S h u ll-W ilk in son  model

Suppose the allo y  has atom s of type A  and concentration ( 1 - c ) ; '  of 
type В  with concentration c. And suppose a l l  atom s A  have the sa m e  
mom ent p A and all  В  atom s have p B ; this is  a crude assum ption but g iv e s
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a sim ple  model. If we define

—>

p_> = 0 if atom A  is at n
n

p_>= 1 if atom В is at n
П

Then

< P ^ >  = c
П

< P_P-* > = C2 + c( 1 - c) 6-*-> 
n m nm

In this model

^ = ( 1 - p̂ A+ p / B

= ma+pJ pb- pa)

SO M = /UA + C(jUB - MA)

= < { p A + Pn (PB { p A + P -> (P „  ' P A) } >n m m D

= /Ü2 + c  (1 - c ) (pB - AJA )2 Ö-»-.
n m

Hence (2. 33)  is

(2. 34)

( 2 . 3 5 )

(2. 36)

( 2 . 3 7 )

d a
d H ’el. diff.

( 1 - K ; 2) c ( 1 - c ) (m b - M a )2 ( 2 . 3 8 )

This is  the w ell  known Shull-W ilk in son  fo rm u la. It d e s c r ib e s  a b a ck 
ground sc atte rin g  which v a r i e s  with sc atte rin g  angle only through the 
fo rm  fac to r  F(I?). It has frequently  been used to determ ine the magnitude  
of { ß B - ß A). Th is  coupled with a magnetization m e a s u re m e n t to give  fi then 
enables us to calcu late  p A and pB s e p a r a te ly .  A  knowledge of Д, pA and pB is  
e ssen tia l  to understand the e le ctro n ic  stru c tu re  of these allo ys.

Dilute a llo ys

We now attempt a m o re  p r e c i s e  theory. Suppose the concentration  
c is  only a few p er cent. M o st of the A  atoms w il l  have a moment /ид b e 
cau se  they a r e  far  fro m  a В  atom. The atom В  its e l f  w il l  have mb . The  
A  atom s n e ar to В  w il l  have their mom ent disturbed fro m  p A : suppose  
this disturbance is  g(R) at the distance R ,  then

ju-= MA + P-(/u -Й А) + /  P - » g ( n i-n )  ( 2 . 3 9 )
• n A n В A Aj  m 

m
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Defining

G (K )  =

R

( 2 .4 0 )

(note g (0) = 0)

ц = ц А + с  {мв - n A + G ( 0 ) }  ( 2 . 4 1 )

and substituting ( 2 . 3 9 )  into ( 2 . 3 3 )  g iv e s  eventually

m r —  = f  ( ä ) 2 ! F Ä f ( l - ^ c ( l - c ) { MB- , A +  G ( K ) f  ( 2 . 4 2 )

To se e  ro ughly how this v a r i e s  with К  c o n sid er  the exam ple w h e re  g (S )  
is  confined to n e a r e s t  neighbours at positions p . Then

G (S )  = g l ^T e ^ - P  

P

which in a s p h e r ic a l  approxim ation w e r e p la c e  by

( 2 . 4 3 )

G(K) r g i
sin Kp 

K p
( 2 . 4 4 )

Hence

d D '
da

e l. diff.
~ f ( K ) ^ В * ^ A + r t l

sin Kp  
K p ( 2 . 4 5 )

The behaviour of this is shown sc h e m a t ic a l ly  in F i g .  1 2 c .

W e se e  that at la r g e  К  w e r e c o v e r  the Sh u ll-W ilkin son  r e s u lts .  A t  s m a ll  
К  a s tru c tu re  a p p ea rs  which enables us to d eterm ine G(K) and hence  
g ( S ) .  A  sp e c ia l  apparatu s has been developed at H a r w e ll  for this 
e x perim en t.

A  few of the H a r w e ll  r e s u lts  a r e  shown in the F i g s  1 3 ,  1 4 ,  1 5 ,  16 ,
1 7  and 1 8 .  N otice that the F e - b a s e d  and N i- b a s e d  a l lo y s  a r e  quite 
different. T h e s e  e x p e rim e n ts  have led to new th e oretical  m od els which  
have advanced our qualitative understanding of m e ta ls  and a l lo y s .  The
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FIG. 13. Diffuse scattering lengths for alloys based on Fe (Collins and Low).

Radid distance from solute site

FIG. 14. Sketch o f  p'(r) for alloys based on Fe *  the plots (a) and (b) correspond to transition element 
solutes to the left and to the right o f  Fe in the periodic table respectively.

FIG. 15. Diffuse cross-sections for alloys based on Ni (Low, Collins, J.appl.Phys. 34 (1963) 1195).
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/ o ( r )
Jig / ATOM

FIG. 16. Sketch showing qualitative behaviour o f 
the magnetic disturbance for alloys based on Ni.

FIG. 17. Diffuse cross-sections for alloys based on Pd (Low, Holden).

FIG. 18. Polarization around Fe and Co 
solute atoms in Pd (Low, Holden).
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plots in r e a l  sp a ce  in the f ig u r e s  a r e  in t e r m s  of the m a g n etic-m o m e n t  
d ensity  d isturbance p ' (r) r a th e r  than g(R). In the solvent m etal

R t  0

F ( K ) G ( K )  = F ( K ) ^ T e * ‘ R g(R) = ^ T e ^ ‘ R

R R

F(K )  J  d r p ' ( r )

Unit ce ll at R

R ^ 0

aiK* R

R Unit ce ll at R

dr p*(r) e
iK- (r-R)

( 2 .4 6 )

Thus fr o m  E q . ( 2 . 4 2 )  

da
dfi ' el.

F(K ) {pB - p A + G (K )}

Л К -Re‘" J dr p ' ( r )  eiK

R Unit ce ll at R

I f  н е-?] I a r  p ' ( r )  e

All space
( 2 . 4 7 )

3. P A R A M A G N E T I C  A N D  C R I T I C A L  S C A T T E R I N G  B Y  F E R R O M A G N E T S  

3 . 1 .  F o r m u la e  for p ara m ag n e tic  and c r i t i c a l  sc atte rin g  

Using E q s  ( 1 . 6 )  and ( 1 .  10) w e have that

S a a
inel. (K ,u )  = S“ ° (K,u)  - S “ “gg(K,cp)

= 27n J  dt e" itJt{< s a(-K , 0 ) s “(K ,t)> -< sa(-K)Xs°tK)>}
( 3 . 1 )

fro m  which we notice that

/ du S “ e“ (K,w) { < S a( - K ,  0 ) S “ ( K , 0 ) >  - <S“ ( - K ,  0) > < s “ (K,  0)>}  (3 . 2 )

In the lim it  K - *  0 (3 .  2) is proportional to the mean sq u a re  fluctuation in 
m agnetization which, by e le m e n ta r y  th e rm o d y n am ic s,  is  proportional to 
the m agn etic  su scep tib ility .  Hence

lim
к о

dU s “ “ . (K ,u )  = k T X “ 7 g V ( 3 . 3 )
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w h e re  the su sc ep tib ility  Xa a is defined in the u sual w a y .  F o r  the c o r r e c t  
choice of p rin cip le  a x e s ,  X“ “ has two v a lu e s  Xzz and Xxx = ХУУ below T c , 
and one v alu e ,  Xzz = Xxx = \УУ, above T c .

The fo rm  of (3 .  3) su g g e sts  that we seek a m o re  g e n e ra l  relation,  
valid  at all  K, by introducing the quantity x “ “(R) which d e s c r i b e s  the 
re sp o n se  to a field of w a ve  v e c to r  K. We introduce a relax atio n  function

e
R aa(i?,t)  = J d X < e XeS“ ( - K ,  0) e"X,grS a( K , t ) >  - ß < S a( - K ,  0) > < s “ (K, t)> ( 3 . 4 )

0

It can then be shown that

Saa(ft, u) - S“ °( R ,u )
f iu  1

B™gg i - e ' hwß 27tN
dt e ' lwt R aot K , t )  ( 3 . 5 )

and also  that

->• ct2i,2 a a  -+
X ac\ K )  = R  (K, 0) ( 3 . 6 )

Hence

S a °Uc,u) -  S acti?,u)
kT

Bragg * g 2^2 Xaa(g )  F ao(K,ur) ( 3 . 7 )
1 - e

w h ere

F “ “( K , u ) = i  / dt e ' iwt f “ °(K, t)
2 7Г J

( 3 . 8 )

and

г Г ( й , п  _ g s
f aCtK ,  t) = Raa(Vg ’ 0) = Nx“ “ (ß) R ( K - t} ( 3 . 9 )

B y  definition f actK , 0) is  unity and hence, fr o m  ( 3 . 8 )

du)F“ “(K ,u )  = 1 (3 .  10)

T h e r e fo r e  ( 3 . 7 )  g iv e s

kT
g 2 / i 2

X“ a(K) = d u
1 - e ' 11“ 8

hu/3
{ S ac{K , u) - Saa(K, u)Bragg } (3. 1 1 )
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Th is is  an important relation  b e cau se  it is the gen e ralizatio n  of ( 3 . 3 )  and 
becau se  it unam biguously r e la t e s  the o b serv e d  c r o s s - s e c t i o n s  to a quantity  
of th e oretical  in te re st.  W hether or not we understand the full u dependence  
of the c r o s s - s e c t i o n  we can deduce Xaa(K) provided the experim en tal  
r e su lts  a r e  known with sufficient a c c u r a c y  to evaluate the in te g ral on the 
right-h an d side of (3 .  1 1 ) .

F r e q u e n tly ,  it is  m o re  convenient to m e a s u r e  the total count rate  
at a fixed sc atte rin g  angle instead of the full S (K ,u );  to deduce Х(Й) fr o m  
such m e a s u r e m e n ts  involves two approxim ation s. The in te g ral  in (3 .  1 1 )  
should be p erfo rm e d  at fixed K, not at fixed sc a tte rin g  angle. The e r r o r  
introduced by this is s m a ll  if  the incident neutron e n e r g y  is  la r g e  com p are d  
with the e n e r g y  chan ges, fiu. Second, the count rate  is  not weighted  
with the fa c to r  ( 1 -  e " “ ß)/hwß and th erefore  we r e q u ir e  that ftw «  k T .  If  
this la s t  condition is sa tisf ie d  the fa c to r  b e co m es unity and the e x p e rim e n ts  
give  XaQ(K) d ire ct ly .

The m o le c u la r  field th eory  fo r  a fe rro m a g n e t  above TJ. p red ic ts  X(K) 
to have the fo rm :

X x x ( K )  = X Z Z ( K )  = * c
rf (k‘i + q2)

( 3 . 1 2 )

wh ere

К  = t + q

and t is  the n e a r e s t  r e c i p r o c a l  lattice  v e c to r ,

X c = g V S ( S + l ) / 3  k T c

r j  g iv e s  a m e a s u r e  of the ran ge of the exchange interaction

J ( R )  R 2
r 2 = I  _R______________

1 6 V̂ J ( R )
R

( 3 . 1 3 )

(3 .  14)

(3 .  15)

and Kj is  an in v e r s e  c o r r e la tio n  range defined above Tc by

2 2 x 
Г1 K1 = Xzz(0) ( 3 . 1 6 )

Other sim ple  th e orie s  of f e r r o m a g n e ts  give r e s u lts  q u alitatively  s i m il a r .
T h e s e  p red iction s have been tested by P a s s e l l  et a l . ( [ 9 ]  , se e  F i g .  19)  

by neutron e x p e rim e n ts  on m e ta ll ic  iron. T h ey  conclude that the g en e ral  
fo rm  (3 .  12 )  is  c o r r e c t  within the l im it s  of e x perim en tal e r r o r  but that 
г 2к 2 does not have a l in e a r  va ria t io n  with T -  T c , as  p redicted by ( 3 .  16)
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but instead

~ ( T -  T c )4/3 fo r  T ~ T C ( 3 . 1 7 )

T h is  4 / 3  law is  in ag re e m e n t with re ce n t th e o r etical  w o r k  by Dom b [ 5 ] 
and by G a m m e ll ,  M a r s h a ll  and M o rg an  [ 6 ] who found a 4 / 3  law  fo r  the 
d ive rg e n ce  of Xzz(0) using the m a th em atical  technique of s u c c e s s i v e  Pade  
ap p ro xim an ts.

FIG. 19. Temperature dependence o f tj к* in Fe (Passell, Klinowski, Bran and Nielsen, 1965, Phys.Rev. 
139 , A1866).

B e lo w  Tc the m o le c u la r  field th e ory  again g iv e s  the g e n e r a l  fo rm  
(3 .  12 ) ,  but with

fo r  T  < Tc (3 .  18)

0

Sin ce  this s im ple  th eory g iv e s  the i n c o r r e c t  pow er la w  above Tc we would  
expect it a ls o  to be in c o r r e c t  below Tc but, to date, no e x p e rim e n ta l  
r e s u lts  of su fficien t a c c u r a c y  a r e  av ailab le  below T c . A  th eory  due to 
E llio tt  and M a r s h a l l  [ 7 ] g iv e s  r e s u lts  v ir t u a l ly  identical with (3 .  12)  
to (3 .  18)  with the one important d iffe ren ce  that they p red ict  a n o n -ze ro  
к j x below T c . The p r e c i s e  r e a s o n  w h y the th e orie s  d iffe r  in this w a y  
is  not y e t  understood; n o n -in teractin g spin w a v e s  a lso  give  к1х = 0 and 
th e re fo re  it a p p e a r s  that in the th e ory  of E llio tt  and M a r s h a l l  a d iffu siv e -  
like behaviour is  built into the p erp e n d icu lar  c o r r e la tio n  function  

^ S q(O) S£(t)/> . W e  w il l  re tu rn  to this point in the next section.

3 . 2 .  The in e la s tic ity  of the sc a tte rin g

T o  c o n s id e r  this pro blem  w e concentrate our attention on F xx(K ,u ) .  
A b o ve  Tc this is  identical with F zz(K ,u )  and th e refo re  g iv e s  a com plete  
d e scrip tio n  of the и-d ep en d en ce, w hile  below T c it g i v e s  the single  
spin w a v e  sc a tte r in g .  W e a r e  not able to c alcu la te  F xx(K ,u )  r ig o r o u s ly

1 lz

2
Klx  =
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but w e can get so m e inform ation about its m om ents of it. W e f i r s t  note 
that

I  Rxx( K ,t )  = ± - < [ S X(- K , 0 ) ,  S X( K ,t) ]  > (3 .  19)
ot n

Hence

R XX(K , t) = i < [ S x ( - K , 0 ) ,  ^  Sx( K . t ) ] >

and

Э"
at"

R xx( K ,t )  = i < [ S X( - K ,  0),
g l l - l

a t ^ f
sx( i t , t ) ]> (3 .  20)

It is  e a s y  to show that F xx(I£ ,ij) is  even in ш so only the even mom ents  
a r e  n o n -z e r o .  Then

<u 2 >  = Jdu u 2 F xx(K ,u )  = - fxx( K . t ) |

- g V  f a2
n x x x ( K )  \ a t 2  К Х Х ( К Д ) t = 0

and s i m i l a r l y

<^4> = g V
N ХЛА(К) L9R5

R XX(K , t)
t = 0

( 3 . 2 1 )

( 3 . 2 2 )

If w e now a s s u m e  a n e a r e st-n e ig h b o u r  m odel these two e x p r e s s io n s  can  
be evaluated. W e  find, u sing ( 3 . 2 0 )  and ( 3 . 2 1 ) ,

<u2>
2 g 2n2 J  
h2 xxx(i?) (To - y K ) < s y s i +  SZS l > ( 3 . 2 3 )

w h e re

T К ( 3 . 2 4 )

The e x p r e s s io n  fo r  is  v e r y  long and w i l l  not be repeated  h e re .  It
is  of a s i m i l a r  fo r m  to (3 .  23)  with a denom inator Xxx(K) and a n u m erato r  
involving c o r r e la t io n  functions between four spins which a r e  c lo s e  
togeth er. T h is  n u m e rato r  is  a lso  p roportional to (t 0 -  YK), as  is  (3 .  23) .
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F r o m  these r e m a r k s  we can now r e c o n s tr u c t  the g e n e ra l  c h a r a c t e r  
of the m om en ts <(un̂ > as a function of n.

(a) <ш° У  is  unity.
(b) < u 2 > ,  ^ u 4 )> and all  higher mom ents a r e  i n v e r s e l y  proportional  

to X *x(2).
(c) < u 2 >, <w4 >  and all higher mom ents a r e  proportional to (y 0 - y K ). 

T h is  follow s a s  a g e n e ra l  ru le  fro m  the r e m a r k  that f xx(K ,t )  is  independent 
of t in the l im it  К  -» 0.

(d) <u2 >, <u)4> etc. a r e  proportional to c o r r e la tio n  functions  
between spins which a r e  c lo s e  together. T h is  follows fr o m  (3 .  19 ) ,  (3 .  20) 
which involve a com m u tator,  and th e refo re  r e d u ce ,  at t = 0, to sh o rt-  
ran ge c o r r e la tio n  functions.

W e  now note that effect (d) cannot produce im portant qualitative  
e ffects  n e ar the c r i t i c a l  te m p e ratu re .  F o r  exam p le  w e note that (3 .  23)  
can be r e - w r i t t e n ,  above T  , as

= ( 7 °  <3 ‘ 2 5 >

w h e r e  E ( T )  is the th e rm a l e n erg y  fo r  a typ ica l p a ir  of spins

E ( T )  = - 2 J < S  • Sa>  (3 .  26)

W e  know that the sp e c if ic  heat has a w e ak  s in g u la r ity  (probably logarithm ic)  
at T c , and hence E ( T )  is  continuous, but with an infinite slope, at T c .
T h is  is a w e ak  sin g u la r ity  c o m p ared  to the d ive rg e n ce  in X(0); this e ssen tia l  
d iffe ren ce  is  b e cau se  any sh o rt range co r r e la tio n  function can have only  
w e a k  s in g u la r it ie s  w h e r e a s  Х(Й) in vo lve s  lo n g -r a n g e  c o r r e la tio n  functions.  
W e conclude that effect (d) p roduces n u m e r ic a l  f a c t o r s  s lo w ly  v a r y in g  
with T .

E f f e c t  (b), the therm odynam ic slowing down of fluctuations, shows  
that the sc a tte r in g  b e c o m e s m o re  n e a r ly  e la s tic  n e ar  Tc . E f f e c t  (c), the 
kinem atic  e ffect ,  shows that long wavelength fluctuations a r e  slow .

A t  infinite te m p e ratu re  the d isc u ss io n  is  str a ig h tfo r w a r d .  F r o m  
(3 .  12 )  and (3 .  16)  we get

X(K)-> X CTC/ T  = g V S ( S + l ) / 3 k T  = X0 ( 3 . 2 7 )

w h e r e  w e u se X0 to stand fo r  the C u r ie  su scep tib ility .  The sh o rt range  
c o r r e la t io n  functions app earin g in the mom ent fo rm u lae  a r e  a lso  in v e r s e ly  
p roportional to T  and a tedious calculation g iv e s  the r e su lts

< U 2> -  ( ^ )  I  S ( S + 1 )  ( 7 0 - T K )

< u 4>  -> I  { S ( S + 1 ) } 2 (T0 - 7 k ) | | t0 ö  7K - 2 - 4 S ( S +  1)

( 3 . 2 8 )

(3 .  29)
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In the fo r w a r d  d ire ctio n 1 w e notice, since both <(ш2 ^ and ^u4 )> a r e  
proportional to К  2, that is  much l a r g e r  than < u 2> 2 . It follow s
that although the half  width at half  height of F(fÜ,u) m u st be s m a ll  the 
shape m u st have la r g e  w in gs to it,  i. e. F ( 2 , u )  m u st be something like  
a c u t-o ff  L o re n tz ia n .  W e th e refo re  a ssu m e

w h e re

F ( K , u ) I TK
71 Ш2 + Г 2

for Ш <  s

= 0 for I U I > s

77

Г к  = 2 S
"<u2 > 3 l

and

s
3 < U 4 > l i

<u)2> J

( 3 . 3 0 )

( 3 . 3 1 )

( 3 . 3 2 )

a r e  chosen to give  the second and fourth mom ents c o r r e c t l y .  Substituting  
fr o m  (3 .  28) and (3 .  29) g i v e s ,  to leading o r d e r  in K 2 ,

г к = ! й (т° - T K)
S ( S +  1)

_ { r  -  1 - 3 / 1 6  S ( S +  1)}_

i

s = ^ [ S ( S + l ) ] i [г  -  1 - 3 /  16 S ( S +  l ) ] 4

( 3 . 3 3 )

( 3 . 3 4 )

w h e re  r  is  the num ber of n e a r e s t  neighbours. If we w r ite

Г к = Л К 2 at T  = oo ( 3 . 3 5 )

and u se m o le c u la r  field th e ory  to give  J  in te r m s  of T c , w e  can now 
evaluate Л. F o r  F e  w e find

2 mg Л/ft = 1 9  at T  = oo ( 3 . 3 6 )

The fa c t o r s  on the left  hand side of (3 .  36) a r e  convenient and give  a 
d im e n sio n le ss  num ber. Equation ( 3 . 3 6 )  is only a rough e stim ate  becau se  
w e have u sed a n e a r e st-n e ig h b o u r  H e ise n b e rg  m odel to r e p r e s e n t  m e ta llic

1 At large values o f  К and especially for a polycrystalline sample, deGennes has shown that, in 
the infinite temperature lim it, a Gaussian curve approximates the energy distribution quite well. The
fitting o f a Gaussian function to experimental measurements of high temperature paramagnetic scattering 
has allowed the exchange parameters in a number o f salts (MnF2 , MnO, KMnF3, NaMnF3, LaCrO 3,
LaMn03, LaFe03, RbMnF3)‘ to be evaluated. This work is reviewed by Collins in the Proceedings o f the
Boston Magnetism Congress [8 ] .
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F e  and fu rth e rm o re  we used m o lec u la r  field theory to r e late  J  to T c . 
N e v e r t h e le s s  it should be of the c o r r e c t  o r d e r  of magnitude. It should 
be noted that the only significant sin g u la rit ie s  of ( 3 . 3 0 )  a r e  poles on the 
im a g in a r y  a x i s ,  at ш = ±  i r R .

A t  low te m p e ratu re s  the d iscu ssion  is also  straig h tfo rw a rd .  In a 
fe r r o m a g n e t  the la s t  fa c to r  of (3. 23) be co m es S 2 and both m o lec u la r  field  
th eory  and spin w ave theory give

Xxx(K) = g V
2 J ( Y 0 - 7 £ )

( 3 . 3 7 )

Hence

<w2 > - + 4 J 2 S 2(y 0 - 7 ? )  /ft2 at T  = 0 ( 3 . 3 8 )

The g e n e ra l  e x p r e s sio n  fo r  can be used to give

<u 4 > = <u2 > 2 at T  = 0 ( 3 . 3 9 )

The only distribution which s a t is f ie s  (3. 2 1)  is  a 6-function. Hence  
( 3 . 3 8 )  and ( 3 . 3 9 )  together give

F xx(K ,u )  = j  6(u  - u K) + j 6 ( u  + u K) ( T  = 0) ( 3 .4 0 )

w h e re

uK = 2 J  S ( y 0 - 7 0 / h ( 3 . 4 1 )

is  the c o r r e c t  spin w a ve  frequency. A s  the tem p e ratu re  is r a is e d  the 
spin w a v e s  get damped and the 6-functions of ( 3 .4 0 )  becom e broadened  
into c u t-o ff  L o r e n tz ia n s,  i . e .  the sin g u la rities  of F xx(l?, u)  move  
sligh tly  off the r e a l  ax is .

A s  the te m p e ratu re  is  r a i s e d  sti ll  fu rther the spin w a ve  interactions  
r e s u lt  in an e n e rg y  re n orm alisatio n .  It is w e ll  known that at low te m p e r a 
tu res  this e n e rg y  r e n o r m alisatio n  follow s a Т 5У2 law. Up to, s a y  0 .8  T c , 
it is p robably reason able  to u se (3. 23)  d ir e c t ly  to give a rough estim ate  
of the spin w a ve  e n erg y. Hence, v e r y  roughly,

wK ~ 2 J ( 7 0 -Yj?) { < S y s y +  Sz S za> } * / f i  fo r  0 < T  < 0.8 T c ( 3 . 4 2 )

In the neighbourhood of T̂ . w e expect

< S y s O ~ < s y s | > - ( 3 . 4 3 )
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Hence

u K = A  K 2 ( 3 . 4 4 )

wh ere

A  ~  ( 2 J  a2 r/6h )  { 2  S(S + l ) / 3 ( r -  1 ) } * ( 3 . 4 5 )

Substituting for J  as  before we find for F e  [S = 1 ,  r  = 8] the r e su lt

2 m 0A / h  ~  30 ( 3 . 4 6 )

T h is  la s t  e stim ate  is  rough b e cau se  w e have made no r e a l  attempt  
to calcu late  the re n o r m a liz e d  и K within, s a y ,  a fac to r  of 2. N e v e r t h e le s s ,  
within this kind of u n certainty it should be s a t i s f a c t o r y  up to about 0 .8  Tc 
and beyond that te m p e ratu re  the spin w a ve  interaction problem  is too 
difficult to d is c u s s  h ere .

W e now notice by com p arin g ( 3 . 3 5 )  and ( 3 . 4 6 )  that the separation  
between the spin w a ve  peaks at about 0 . 8  Tc is roughly the sa m e  as the 
width of the sc atte rin g  c u rv e  at infinite te m p e ra tu re .  The shape of 
F xx(K ,u ) is v e r y  different at the two te m p e r a tu r e s  but the s c a le  of the 
dependence on и is roughly the sa m e .

We now turn to a d isc u ss io n  of F xx(K ,u )  n e ar  T c . B e c a u se  of the weak  
T  dependence of effect (d), near but just above Tc we m a y  estim ate  mom ents  
as

w h e re  X0 is the C u r ie  su scep tib ility .  B y  c o m p ariso n  with the d isc u ss io n  
of F ( K , u )  at infinite te m p e ratu re  we see  this has the effect of re p lacin g  
K 2 by K2 X0/X (R , T ) . The ratio  \ U 4)>/<(ш2 У 2 is now even l a r g e r  than at 
infinite te m p e ratu re  b e cau se  X (К, T) is la r g e  near Tc . In the ab sen ce of 
any other information about F ( K , u )  w e a s su m e  it is a c u t-o ff  L o re n tz ia n  
just as at infinite te m p e ratu re ;  by analogy to ( 3 . 3 5 )  w e get im m ed iately

in typ ica l neutron expe rim e n ts  on fe r r o m a g n e ts  the o b servation s a r e  
made at an gles such that q2 = К 2 ~  k \  . T h u s,  fo r  an expe rim e n ta l situation  
such as  that used by P a s s e l l  et al. [9] the e x p r e s sio n  ( 3 . 4 8 )  is so m e two 
o r d e r s  of magnitude s m a l le r  than the ap p ro priate  e x p r e s sio n  fo r  infinite  
te m p e ra tu re ,  ( 3 . 3 5 ) .  Hence the th e o r etical  prediction is  that there is  
a v e r y  substantial n arrow in g  of the s c a tte r e d  neutron distribution as  the 
te m p e ratu re  is reduced to w ard s T c .

< u 2 > KiT ~ < u 2>K,„ X0/ X ( K , T )  

< ( /  >K T ~ < w 4 >Ki„  X0/ X ( K , T )
( 3 . 4 7 )

( 3 . 4 8 )

2 2
F r o m  either (3 .  16) or (3 .  17 )  we see that r jK ]  is s m a ll  n e ar  Tc and
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H o w e v er  in the expe rim e n ts  by P a s s e l l  et al.  [9 ]  and in oth ers by 
J a c r o t e t a l .  [ 1 0 ] ,  none of the featu res  of ( 3 . 4 8 )  a r e  o b s e r v e d .  In p a r t ic u la r ,  
these e a r l i e r  expe rim e n ts  su ggest:

( 1)  The o r d e r  of magnitude of Гк is given by an e x p r e s sio n  like ( 3 . 3 5 )
with

2 m 0A/fi ~  1 1 . 4  [E x p e r im e n t T  ~  TJ. ] ( 3 . 4 9 )

T h is  is  about two o r d e r s  of magnitude l a r g e r  than ( 3 . 4 8 ) .
(2) Г к is  a p p ro x im ately  independent of te m p e ratu re .  Th is  is  in 

c o n trast  with ( 3 . 4 8 )  which v a r i e s  s e n s it iv e ly  with T  b e cau se  of the 
г 2 к2 dependence.

(3) Г к is proportional to K 2 within ex p e rim e n ta l e r r o r .  No te r m  
proportional to K 4 , a s  predicted by ( 3 . 4 8 ) ,  is  observed .

W e  a r e  fo rc ed  to conclude that the conventional th eory  as  we have  
ju st su m m a r iz e d  it, f a i ls  su bstantially.  T h e r e f o r e ,  in the next section,  
we look fo r  an im p rovem en t.

3 . 3 .  T h e o r e tic a l  d isc u ss io n  for T  approaching Tc

The d isc u ss io n  of 3.  2 has shown that the in e la s tic ity  n e ar  Tc is hard  
to understand and th e refo re  in this section w e sh all d is c u s s  the qualitative  
fe atu res  which it now a p p e a r s  a good th eory of the c r i t i c a l  region  must  
have.

W e f i r s t  note that the calculation fo r  infinite te m p e ratu re  ( 3 . 3 6 ) ,  
the spin w a v e  calculation at about 0 . 8  T c , i . e .  ( 3 . 4 6 ) ,  and experim en t  
ju st above T c , ( 3 . 4 9 ) ,  all  give  r e s u lts  roughly in ag re e m e n t a s  r e g a r d s  
the dependence of F xx(j?,u) on u. T h is  su g g e sts  that, a p ar t  fr o m  a v e r y  
n a r r o w  te m p e ratu re  region  right at T c which we shall d is c u s s  in 3 . 4  below,  
the и s c a le  of F xx(K,u)) does not in fact change sign ifican tly  fr o m  0 .8  T c 
up to infinite te m p e ratu re  but that the shape of F xx(K ,u )  changes c o n sid era b ly  
fro m  two distinct spin w a ve  peaks below Tc into a single  L o re n tz ia n  at 
infinite te m p e ra tu re .  But calculation s which r e l y  upon mom ent calculation s  
a r e  quite unable to g ive  se n sitiv e  information on shapes and th e refo re  the 
th eory  a s  d e sc r ib e d  in 3 . 2  is su sp ect.

W e now exam ine m o re  c a r e f u lly  the behaviour of ( 3 . 4 7 ) .  Using  
( 3 . 1 2 )  it g iv e s

< “ 2 >K,T = < “ 2 > к , » < г 1 к21 + г 1к 2 > т с / т  <3 - 5 0 >

< u 4 >K,T = < ^ > K, J r ? 4 + r^ 2) T c / T  ( 3 . 5 1 )

( 3 . 5 0 )  is proportional to K 2 at infinite te m p e ra tu re ,  b e cau se  <̂ ш2 )>K „  is 
p roportional to K 2 but as  the te m p e ratu re  is  lo w ere d  ( 3 . 5 0 )  b e c o m es s m a l le r  
and b e c o m e s proportional to K 4 at te m p e r a tu r e s  su ffic ien tly  c lo s e  to Tc 

that к2 «  K 2 . If w e a s su m e  that F xx(K ,u )  r e m a in s  a c u t-o ff  L o re n tz ia n  
we a r e  im m e d ia te ly  led to ( 3 . 4 8 ) .  But the above behaviour is quite 
con sisten t with a g rad u al change of shape in F xx(K,u>) fr o m  a L o r e n tz ia n  
at infinite te m p e ratu re  to one which is dominated by two peaks at 
и = ±  A  K 2 fo r  te m p e r a tu r e s  such that Kj «  K 2 . T h e s e  peaks would make
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a negligible contribution th e m selve s  to<(u)4 i> and the higher m om ents.
Such peaks, if  they e x isted , would have the obvious interpretation of 
q u a s i-sp in  w a v e s  above T c . H o w ever we notice that a r e cta n g u la r  d i s t r i 
bution bounded by u = + A  K 2 would s e r v e  equally w e ll  a s  a dominant d i s 
tribution near Tc . W e also  r e c a l l  that, above T c , F xx(i£,u) and F zz(lv,w) 
a r e  identical and we cannot p o ssib ly  a s s o c ia te  single  spin w a v e  p r o c e s s e s  
with F zz(K ,u ) .  N e v e r t h e le s s  the g en e ral point re m a in s  v alid , it is  quite 
consistent with (3 .  50) and ( 3 . 5 1 )  for any c u r v e  whether double peaked or  
not, to be sh a r p ly  confined to lim its  ш = ±  A  K 2 provided it a lso  has weak  
" t a i l s "  which can g ive  la r g e  v a lu e s  to ( u 4)  and higher m om ents.

Th is argum en t can be su m m a r iz e d  as  follow s:

(i) The moment calcu latio n s a r e  se n sitiv e  to the tails  of the d istrib u 
tion F xx(K ,u )  w h e r e a s  the neutron expe rim e n ts  m e a s u r e  only the cen tral  
portion of F xx(K,w).

(ii) A p a r t  fro m  a v e r y  n a rr o w  range of te m p e ratu re  right at Tc which  
we d is c u s s  in 3 . 4  below, this c en tral  portion has a width, ~  A K 2 , roughly  
independent of T  fro m  0 .8  Tc to infinite tem p e ratu re  but with a shape  
v a r y in g  fr o m  a double peak (re p re sen tin g  spin w a v e s )  at the lo w e r  l im it  
to a single  peak at high T .  T h is  c e n tra l  portion a lw a y s  contains the m a jo r  
part of the a r e a  of F xx(K,(j).

(iii) The tails of the distribution F xx(K ,u )  a r e  se n sitiv e  to T  and v a r y  
so as to g ive  ag re e m e n t with the moment calcu latio n s. T h ey  a r e  difficult  
to o b s e r v e  expe rim e n ta lly .

(iv) Ab o ve T c , F zz(K,co) is  identical with F xx(fÜ,u) but below T c does  
not show distinct spin w a ve  peaks. H o w ever the ш- s c a l e  is roughly s i m il a r .

The above conclusions ap p ear to be dictated by the expe rim e n ta l  
r e s u lts  which w e r e  obtained fo r  the g e n e r a l  ran ge К  ~ к 1. F o r  either  
К «  к j or  К  »  Kj the neutron e xperim en ts give  no information and th e r e 
fore it is p o ssib le  that in these re g io n s the to dependence is q u alitatively  
different.

The c le a r e s t  w a y  of d e sc rib in g  the situation is  in te r m s  of the 
sin g u la rit ie s  of F xx(K,io) in the com p lex to plane. We have a lr e a d y  
r e m a rk e d  that the high te m p e ratu re  th eory, ( 3 , 3 5 ) ,  g iv e s  two s ig n ifi 
cant poles at + i A K 2 ; the other sin g u la rit ie s  of F xx(K ,u ) ,  [which a r e  
needed to d e sc r ib e  the c u t-o ff  p ro ce d u re  for |w| > s] , a r e  distant ~ J / f t  
fro m  the o rigin . The conventional th eory, ( 3 . 4 8 ) ,  n e ar  T c te lls  us that 
the two sign ificant poles have m oved along the im a g in a r y  a x is  to 
+ i A K 2X0/X (Й, T) and the other sin g u la ritie s  of F xx(R ,u )  re m a in  at a 
long distance fro m  the origin . H o w e v er ,  the neutron e x p e rim e n ts  in sist  
that this is not c o r r e c t ,  there m ust be s in g u la rit ie s  of so m e  type d i s 
tributed at d istan ces ~ A K 2 fro m  the origin; the poles predicted by ( 3 . 4 8 )  
m a y  or m a y  not e x ist  but if they do e x ist  they m u st have a weight s m a ll  
c o m p ared  to those at d istan ces ' A K 2 .

The fo r m  of F xx(it ,u )  below T c is  of sp e c ia l  in terest.  W e ll  below  
Tc we know that F xx( 2 , u )  is  dominated by two spin w a v e  peaks centred  
at ±  u K, w h e re  is the r e n o r m a liz e d  spin w a v e  e n e rg y ,  and with a width  
dependent in the spin w a ve  life tim e . A s  the tem p e ratu re  is  r a i s e d  does  
F xx(K ,u )  retain  this fo rm  o r  does a distinct diffusive mode ap p ear in
addition? W e  m a y  sp ecu late that an an alo gy  to the c l a s s i c a l  fluid m ay  
e x ist.  A  c l a s s i c a l  fluid, at s m a ll  K ,  m a y  be d e sc rib e d  by the usual
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equations of h yd rod yn am ics .  In the ab sen ce of any d issip ative  e ffects ,  
v i s c o s i t y  or th e rm a l conductivity, the relax atio n  function [equivalent to 
F xx(K ,u )]  has two 6-function peaks at + c sK w h e re  c s is the ve lo city  of 
sound. The introduction of v is c o s i t y  or th e rm a l conductivity damps  
these sound w a v e s  and sim ultan eously  a d iffusive mode also  ap p ea rs  in 
the re lax atio n  function. In other w o r d s ,  in the com p lex u> plane, a s  soon 
a s  the sound w a v e  poles move off the r e a l  a x is ,  a new pole ap p ears on the 
im a g in a r y  a x is .  In suitable c a s e s  th e refo re ,  the relaxation function as  
m e a s u re d  by experim en t as  a function of r e a l  u, can have three m a x im a ,  
one at u = 0 and two s y m m e t r i c a l l y  placed either side at the appropriate  
re n o r m a lis e d  fre q u e n c ie s .  In the m agnetic  s y s te m  the sa m e  phenomena 
might take place as the spin w a v e s  a r e  damped. This p ossib ility  is  
in tim ately  linked with the problem  of the e n erg y  r e n o r m alisatio n  of spin  
w a v e s  v e r y  c lo se  to Tc and in view of the e x tr e m e ly  sp ecu lative  nature  
of this p a r t ic u la r  d isc u ss io n  we shall not pursue it fu rther other than 
to r e m a r k  that it is a lso  connected with the behaviour of k21x below T c 
(this problem  w a s  mentioned in 3. 1).

T>~ TC

T »  T ,

(a) (b) (c)
FIG. 20. Possible singularities o f  FXx (К? ш) in the com p lex  w -p lan e (Marshall).

Th e d isc u ssio n  of 'this  section is m ost c l e a r l y  s u m m a r iz e d  in F i g .  20 
which shows the positions of the sin g u la rities  of F xx(K,u>) in the com p lex и 
plane ac c o r d in g  to the conventional theory and also  two p o s sib ilit ies  which  
would be con sisten t with the neutron re s u lts .  In this figure s in g u la rities  
which a r e  a long distance ~  J / f i  fro m  the o rigin  a r e  not shown. F i g u r e  20a 
g iv e s  the conventional theory, F ig .  2 0 b  the theory we would expect by
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analogy to h yd r o d y n am ics  and F i g .  20c the theory we might expect if no 
" d if f u s i v e "  mode a p p ea rs  below Tc . A t  the p rese n t time we a r e  not able  
to tell w hether p o s sib il ity ,  (b) or (c) is c o r r e c t .

FIG. 21. Inelastic scattering at q = 0.2 Л in RbMnF3 (N eel point 82.65 ± 0.07°K) (a ccord in g  to Nathans, 
M enzinger, Pickart).

3 . 4 .  R ece n t e x p e rim e n ts  at te m p e r a tu r e s  v e r y  c lo se  to Tc

F i g u r e  2 1  shows the strikin g neutron r e su lts  obtained by Nathans,  
M e n zin g er  and P ic k a r t  on the a n t i- fe r r o m a g n e tic  c r y s t a l  R b M n F 3 . The  
p e r s is t e n c e  of two outer peaks at u + 0 up to te m p e r a tu r e s  ap p re c ia b ly  
above T c is c l e a r l y  d em onstrated. (Below Tc the и = 0 peak m ust not 
n e c e s s a r i l y  be taken a s  evidence that the d ia g ra m  in F i g .  19 b  above is  the 
c o r r e c t  one. R b M n F 3 has cubic s y m m e t r y  and consequently the neutron  
m e a s u r e m e n ts  w e r e  c a r r i e d  out with a m ixtu re  of domains presen t which  
would allow sc a tte rin g  fro m  both longitudinal and t r a n s v e r s e  excitations,  
i . e .  the c en tral peak m ay com e fr o m  F zz(i?,u) not F xx(i5 ,u ) .)

The d isc u ss io n  in 3 . 3  concerning in elasticity  n e ar  Tc m ust be extended 
in view  of re ce n t r e s u lts  which indicate that v e r y  c lo se  indeed to T c 
th erm o d yn am ic slowing down does take p lace ,  at le a s t  under som e condi
tions. E x p e r im e n ts  on Ni by Drabkin, Z a b id a r o v ,  K a sm a n  and Okorokov
[ 1 1 ]  and on Tb by A l s - N i e l s e n ,  D ie tric h ,  M a r s h a ll  and L in g a r d  [ 1 2 ]  show 
the e n e r g y  width n arr o w in g  r ap id ly  as  T  ap p ro ach e s T c (se e  F i g .  22).  
N a r r o w in g  is a lso  o b serv e d  for R b M n F 3 by Nathans et al.  [ 1 3 ]  when  
q = I К  -  r| = 0. In fact ,  a com m on feature in all these o b serv atio n s is 
the s m a l l  value of q involved. Thus except right at Tc or T N, w e probably  
have a situation w h e re  q «  к j , and the sc a tte rin g  in effect s a m p le s
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d istan ces la r g e  com p ared  with the co r re la tio n  length in r e a l  s p a ce ,  and 
is r ath e r  in sen sitive  to s h o r t-r a n g e  fluctuations within the regio n s of 
c o r r e la te d  spin, such as  would c o r resp o n d  to " s p i n  w a v e "  excitations.
In t e r m s  of F i g .  20, the ap p earan ce of th erm odyn am ic slowing down 
in a v e r y  n a rr o w  tem p e ratu re  range n e ar  Tc su g g e sts  that at T  ~  T c 
the s in g u la rit ie s  on the im a g in a r y  a x is  a r e  c lo se  to the o rigin  and dominate  
the su sc ep tib ility  and neutron sc a tte r in g  p r o p e r t ie s .  A s  T  is in cre a s e d  
these s in g u la r it ie s  m ove aw ay  v e r y  rap id ly  and the situation is  once m o re  
controlled by the " s p i n  w a v e "  s in g u la rit ie s  indicated in F i g .  20.

FIG. 22. Tem perature variation o f  the inelasticity in the scattering from  T b (A ls-N ielsen , D ietrich, 
Marshall, Lingard, Solid State C om m unications 5 (1967) 607).
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Abstract

1. Neutron spectroscopy and e lectrica l con du ctivity in liquid m etals: 1 .1 .  Introduction;
1 .2 .  Structure factor and radial distribution function ; 1 .3 .  Structure factor, direct correlation  function and 
ion -ion  potentia l; 1 .3 .1 .  The results o f  the Bom and Green theory; 1 .3 .2 .  The results o f  the Percus-Y evick 
theory ; 1 .3 .3 .  The io n -io n  potential in liquid zinc ; 1 .4 . Structure factor and e le ctr ica l conductivity o f  
liquid m etals.

2 . A pplications o f  elastic d iffraction  o f  neutrons to solids and liquids: 2 .1 . Introduction; 2 .2 .  Physical 
m eaning o f  the m ethod o f  elastic d iffraction  o f  neutrons; 2 .3 .  A pplications o f  the m ethod o f  elastic d if
fraction o f  neutrons to the study o f  liquids; 2 .3 .1 .  The growth o f  the D ebye-W aller cloud  in a sim ple 
liqu id ; 2 .3 .2 .  A ccurate determ ination o f  the structure factor; 2 .4 .  Applications o f  the m ethod o f  elastic 
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2 .4 .2 .  Diffuse disorder scattering and thermal diffuse scattering; 2 .4 .3 .  Elastic d iffraction  o f  neutrons 
and crystal structure analysis o f  hydrogenous com pounds; 2 .5 .  Summary and conclusions.

1 .  N E U T R O N  S P E C T R O S C O P Y  A N D  E L E C T R I C A L  C O N D U C T I V I T Y  IN 
LIQUID M E T A L S

1 . 1 .  Introduction

In this s e m in a r  I would like to present the connections e xistin g between  
the inform ation obtainable by d iffraction of neutrons and other radiations in 
liquid m e ta ls ,  and the tr an sp o rt  p ro p e rt ie s  of the electro n s in the m etal  
its e lf .

M y  ta sk  has r e a l l y  been made e a s i e r  by the c o u r s e s  given by p r o f e s s o r s  
Z im an , M a rch ,  G a r c i a - M o l i n e r ,  and L lo yd ;  I r e f e r  to their com p reh ensive  
le c tu re  notes fo r  the background underlying the m a tter  c o v e re d  in this 
s e m in a r .  In o r d e r  to d is c u s s  the connection between the stru ctu re  fac to r  
S(Q) and i) the rad ia l  distribution function g(r), ii) the d ire ct  c o r relatio n  
function c(r)  and the ion-ion potential ф(r) and iii) the e le c t r i c a l  conductivity  
of liquid m etal, I w i l l  make also  use of som e experim en tal r e su lts  recen tly  
obtained in I s p r a  on liquid zinc, in collaboration with D r s  C o r c h ia  a n d R iz z i .

1 . 2 .  S tru ctu re  fa c to r  and rad ia l  distribution function

W e sh all a s su m e  that the connection between S(Q) and g(r) is  w ell  
known to the p artic ipan ts such that we shall only give a su m m a r y  su r v e y  
of the situation. We shall f i r s t  study the sim plest  c a s e ,  the diffraction of 
radiation by a p a ir  of atoms at a distance r, and then g e n e ra lize  to o rd in ary  
monatomic s y s t e m s .

539
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The ingoing plane w a v e  kQ a s so c ia te d  with the incident radiation  
(neutrons, X - r a y ,  e t c . )  is  sc a tte re d  by the atomic c e n t r e s  acco r d in g  to the 
Huygens p rin cip le ,  and the re su ltin g  amplitude A(Q) of the outgoing w a v e  к 
is  proportional to:

-  /  i Q 'A
A(Q) oc a ( l  + e  j  ( 1 . 1 )

w h e re  (see F i g .  1 . 1 )  a is  the sc a t te r in g  amplitude o r  fo rm  fa c to r  of the 
sc a tte r in g  cen tre  and ($ = 1c -Tc' is  the w a v e  v e c t o r  t r a n s f e r .  The intensity  
I(Q) a s so c ia te d  with the sc a tte r in g  p r o c e s s  is  then given by:

and fo r  an iso tr o p ic  sy s te m  it turns out to be proportional to the a v e r a g e  
of |A (Q )|2 o v e r  the solid angle 47t:

I(Q) oc 2a2 1 + sin Qr4̂

Qr J
( 1 . 3 )

L e t  us now think of the liquid as  an en sem ble of N - l  p a i r s  of atoms  
is o tr o p ic a lly  distributed around anyone of the N atoms taken as  the origin.  
The sc a tte r e d  neutron intensity is  then given by:

I(Q) oc Na2
sin Q r ' 

Qr .
( 1 . 4 )

o r

I(Q) oc N a 2 ^ 1  + 4 i r ß J g(r) ~ “ ^ - r 2d r)  ( 1 . 5 )

o

In E q . ( l .  5) p and pg(r) a r e  the a v e r a g e  and the lo c a l  num ber density  
of atom s in the liquid, r e s p e c t iv e ly .

Putting:

KQ) KQ)
N a 2 I(oo)

=  S(Q) =  i(Q) + 1 ( 1 . 6 )
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one obtains from  E q . ( 1 . 5 )  a fo rm u la  equivalent to E q . ( l . l O )  of P r o f e s s o r  
M a r c h 's  notes:

Q(S(Q) - 1) = 4 trp J (g(r) - 1) sin Q r  r  d r  ( 1 .  7)

о

The d iffe ren ce  between ( 1 . 5 )  and ( 1 . 7 )  c om es fro m  the term

R
47гр Г  sin Q r  r d r

d
0

on the right-hand side of ( 1 . 7 ) ,  which, as can be shown, would add con tribu 
tions to the s c a t te r e d  intensity only at w a v e v e c t o r  tr a n s f e r s  com p arab le  
with the r e c i p r o c a l  of the m a c r o s c o p ic  dimensions R of the sam p le  c o n 
ta in e r.  N e g le ctin g  th ese  contributions, which a r e  only im portant in an 
e x p e rim e n ta lly  i n a c c e s s ib le  region, we see  fro m  E q . ( l .  7) and its  F o u r i e r  
i n v e r s e :

r p ( g ( r ) - i ) = - ^ -  [ Q(S(Q) - 1)  s i n Q r  dQ ( 1 . 8 )
2 J 

0

that Q tim e s  the fluctuations of the sc atte re d  intensity around its  asym ptotic  
valu e and r  tim e s  the lo c a l  fluctuations of the atom ic num ber density around  
its a v e r a g e  value a r e  connected v ia  a F o u r i e r  t r a n s f o r m : the knowledge of 
the s tru c tu re  f a c t o r  S(Q) of a monatomic liquid is  p e r f e c tly  equivalent to 
the knowledge of its distribution function g(r). g(r) g iv e s  a d e scrip tion  of 
the sy s te m  at a m ic r o s c o p ic  le v e l  in o rd in ary  sp a ce ,  S(Q) g iv e s  an equi
valent d e scrip tio n  in r e c i p r o c a l  o r  w a v e - v e c t o r  sp ace  and, so to speak,  
defines the amount of p le a s u re  the sy ste m  finds in the p r o c e s s  of exchanging  
a w a v e v e c t o r  Q o r  momentum iiQ with the impinging radiation. S(Q) is  
independent of the nature of the radiation  used, being a c h a r a c t e r i s t ic  of 
the s y s t e m :  it is  the sa m e  fo r  X - r a y s ,  neutrons, e le ctro n s in a m etal,  etc.

The e x p e rim e n ta l beh aviou r of the stru c tu re  f a c t o r  S(Q) fo r  zinc at 
4 7 0 °C ,  as obtained by neutron diffractio n  in our la b o ra ro ty  at Isp ra,  is  
shown in F i g .  1 . 2  (taken fro m  R ef.  [ 1 ] ) .  T h is  behaviour, m o s tly  confirm ed  
by independent neutron m e a s u r e m e n ts  p e rfo rm e d  at about the sa m e  t e m p e r a 
ture in England [2] and in the Philippines [ 3 ] ,  a p p e a r s  in stro n g con trast  
with that obtained in 1 9 4 1  by X - r a y  d iffraction [4] : the X - r a y  data, c o r 
r e cted  fo r  the atom ic form  f a c t o r  a(Q), (see F i g .  1 . 3 )  show an anomalous  
bump in the region  Q ~  1 . 5  A -1 and, fu rth e rm o re ,  S(Q) as  obtained by 
X - r a y s  o s c i l la te s  around unity in a r ath e r  unusual and u n sa tisf a c to r y  way.  
F u r t h e r m o r e ,  the r a d ia l  distribution function g(r) obtained by F o u r i e r  
in v e r s io n  of the neutron d iffraction  data m atches the in teratom ic  d istan ces  
between n e a r  neighbours in the c r y s t a l ,  w h e r e a s  this is  not true fo r  the 
X - r a y  data.

1 .  3.  Stru ctu re  fa c to r,  d ir e ct  c o r r e la tio n  function and io n-ion  potential

In his le c tu r e s  P r o f e s s o r  M a r c h  has shown in detail the connections  
between S(Q), g(r),  the d ir e ct  c o r r e la t io n  function, c (r) ,  and the io n-ion
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potential, ф(r), ac c o r d in g  to the th e o r ie s  of B o r n  and G re en , and P e r c u s  
and Y e v ic k .  It is ,  th e refo re ,  sufficient to su m m a r iz e  the th e o r etic al  b a c k 
ground and to p resen t th e r e a fte r  the g en e ral behaviour of the io n-ion  poten
tia l  as  obtained e x p e rim e n ta lly .

1 . 3 . 1 .  The r e s u lts  of the B o r n  and G r e e n  theory

F r o m  the definition of the iön-ion potential <j>(r) in t e r m s  of the potential  
of the mean fo r c e  U(r) = K BT  In g(r) and the th r e e -a to m  c o r r e la tio n  function

f lG . 1 .3 . X -ray  d iffraction  pattern o f  liquid z in c  (this figure deduced by Professor Harrison from the data 
in Ref. [41, is taken from Ref. [7 ] , page 154).

and by u sing the Kirkwood su perposition approxim ation f o r  p (3).

p (3)(r  , r 2 , ? 3 ) = p3 g(rJ2) g(r2 3 ) g (r3 1 ) ( 1 . 10)

and A b e 's  approxim ation fo r  the evaluation of the in te g ral  on the right-  
hand side of E q .  ( 1 . 9 ) ,  we obtain:

Inglr) = (g (r ) - l )  - c(r) ( 1 . 1 1 )
k bt

wh ere c(r)  is  the O r n s te in -Z e r n ik e  d ire ct  c o r r e la tio n  function, a c c e s s i b l e  
by neutron e x p e rim e n ts  a s  w il l  be seen below (se e  E q .  1 .2 4 ) .

1 . 3 . 2 .  The r e su lts  of the P e r c u s - Y e v i c k  theory

U sin g  the F o u r i e r  components of the density

P Q
s

( 1 . 12)
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S(Q) - 1 s i(Q) = pj e lQ ('s ts ^ ( r  ) - 1 ) d(r - r , ) (1. 13)

can be regarded as N times the average of exp[iQ -(rs - rs, )] :

i Q -  ? s - V )
i(Q) = N<e > (1.14)

we can write i(Q) in terms of the pQ and compute the corresponding 
ensemble average. By long and nonelementary algebra Percus and Yevick 
find it possible to connect i(Q) and ф(r) as follows:

as the L agran ge c o o rd in a te s  o f  the sy stem , e x p re s s in g  the k in etic  and
p a irw ise  potentia l en erg y  o f the H am iltonian  in te rm s  o f  the Pq ' s and th e ir
con ju gated  m om enta , and noting that, by defin ition  o f  g (? ) , the quantity:

i(Q) + i(Q) Nr(Q)
KBT + N«/(Q) - о

KBT

Nr(Q)
KBT

(1.15)

(1.16)

via a quantity y(Q), which is directly accessible through the diffractional 
data:

Ny(Q) _ i(Q) 
KBT 1 +i(Q) (1.17)

The Fourier transform of y(Q) is connected with the direct pair corre
lation function, c(r), as is verified by Fourier transforming Eq.(1. 15). In 
fact, putting

c(r) Ny(Q)
KBT (1.18)

and

h(r) = g(r) - 1 (1.19)

we obtain (see Fig. 1.4):

h ( ? 1- ? 2 ) = c ( r i - r 2) + P  / c ^ - r ^ h f r g - r ^ d r g

= с(?: -?2) +Pj c(rr ?3) jc (?3-?2) +pj c(?3 -? 4)h(?4-r 2)d?4 j  d? 3 (1.20)

= c (? -  r’2) + p f :(?J- ?3 )c(?3- ?2)d? + p ' j c l ? - ? ) ^ ? - ? ) c (?4- ? ) ^ г 4+...

giving the pair correlation function in terms of "direct" interactions between 
pairs of atoms in the liquid.
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By Fourier-transforming both sides of E q .(l. 16) and remembering 
Eqs (1.17) and (1. 18), we find the desired connection between ф(r) and the 
diffractional data:

c(r) = g(r)
o(r)

( 1 . 2 1 )

g(ri-r2) =c(r,-r2) + p/ c(?‘ - r3> S(?3 -?2)d?3 = ■----- * +

J

1 2  1 2  1 2

3
/f/  /
/ 1, г  _ _ 1 _ ✓  ' 1

:(?1 - ? 2) + p / c (?1 -?3) { c (?3 -?2) + p J  c(?3-?4)g(r4 -r2 )dr4 |d r3=  ̂ 2 +  '  < +  ^

Ü3 4

c ( r j - r 3) c ( r 3 - r , ) d r , +

+ p*J c(F,-?3) c (r3 - r4) ci;4-JI)iiljii?( +.

✓  /
/-------+  s  t +

1 2 1 2

У 4
1 2 "+ ~ +  ..

FIG. 1 .4 . Pair correlation function h(r) = g (r ) - l  and "direct" correlation function c(r).

Summarizing we obtain as the most important results of ( 1 .3. 1 ) and 
(1 .3 .2 ): the Born-Green equation (in the "hyper-chain" approximation:

In g(r) + tt-=- = h(r) - c(r) (1 . 22 )kbt

the Percus-Yevick equation:

M il  = ln Л _ c (rA  (1.23)
KBT V  g(r )J

and
00

rpc(r) =2 ^ / Ql S SinrQdQ (1-24)
0

When used together with Eqs (1.8) and (1.24), Eqs (1.22) and (1.23) 
allow us to obtain the ion-ion potential ф( r) directly from the diffractional 
data.
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1.3.3. The ion-ion potential in liquid zinc

The ion-ion potential ф( г) in liquid zinc, as obtained in the Ispra 
Laboratory according to the Percus-Yevick theory from Eq. (1.23) and the 
experimental data of Fig. (1.2), is shown in Fig. (1. 5). This form of ф(г) 
shows a marked minimum at a distance corresponding to that of nearest 
neighbours in the liquid and a well-defined maximum at larger distances. 
ф(r) tends then rather rapidly to zero without exhibiting strong Friedel-type 
oscillation. A similar behaviour had been previously found in our labora
tory for liquid gallium [5] . The absolute depth of the minimum, which for

ION-ION POTENTIAL IN LIQUID ZINC AT 470 °C 

XT= 3-101J cm2 /dyne

FIG. 1 .5 . Ion -ion  potential in liquid z inc, according to the Percus and Y ev ick  theory (this figure is taken from 
Ref. [8 ] ).

liquid zinc does not seem to be large enough to avoid evaporation, is 
strongly affected by the low Q behaviour of the structure factor. We think 
that, with some improvement in the accuracy of the experimental data, it 
will be possible to obtain, from neutron diffraction in liquid metals, as 
good a basis for a reliable determination of ф(r) as the one represented 
by the analysis of the dispersion curves in the corresponding solid.

1.4, Structure factor and electrical conductivity of liquid metals

It is known (see for instance the lectures by Garcia-Moliner and Lloyd) 
that, within the framework of the relaxation-time approximation, the 
electrical conductivity a in a liquid metal is given by:

e2

Зтг2!!2
T (k p ) kpa (1.25)
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In Eq.(1.25) kF is the radius of the Fermi sphere, e is the electron 
energy, and the relaxation time т(кр) is defined as follows:

1
T (k F)

V
2-пЪ. 1- cos i})|<k +Q| WI k> I 1 2 sin tfdtf (1.26)

In Eq.(1.26) V is the volume of the liquid, (1-cos ft) is the percentage 
of the forward momentum conserved as a result of the collision, kpsimldtl 
is the element of the Fermi surface representing possible final states 
associated with elastic scattering of electrons, and the strength of the 
interaction is represented by the quantity:

|<k+Q| W| k> |2 (1.27)

The matrix element of the pseudopptential W felt by an electron in the 
liquid, connects electron states к and £ + $ . If the pseudopotential W(r) 
can be described in terms of a sum of pseudopotentials w due to all ions 
in the liquid, i. e.

(1.28)

we easily obtain

w ( r - r
i

)e
S

1 ' * fe - ■h)
N,u  v0J

S

w (r-r )d(r-r ) (1.29)

In (1.29) V0 is the atomic volume. (1.29) can then be written as follows:

<k + Q IWI k> = pQ w(Q) (1.30)

The matrix element of the pseudopotential giving the amplitude of the 
strength of the electron-ion interaction is the product of the Fourier 
components of the density, pQ, and the form factor, w(Q). Substitution of 
(1.30) into (1.25) and (1.26) eventually leads to the well known expression 
for the resistivity:

The very presence of the structure factor S(Q) in the formula for the 
resistivityl represents a strong connection between neutron spectrometry

1 As a m atter o f  fa ct it can be shown that sim ilar expressions containing the structure factor and the
form factor hold for other transport properties o f  electrons in liquid m etals, such as the therm oelectric 
power, e tc .
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and the transport properties of electrons in liquid metals. Another less 
direct link between these two fields could originate from the quantity w(Q): 
in principle, the ion-ion potential, as measurable, e.g. , by neutron 
diffraction, is due to a short-range repulsive interaction, a direct Coulomb 
interaction between the bare ions and an indirect interaction between the 
ions via the conduction electrons. This last contribution is certainly related 
to the form factor w(Q), although it is not easy to build models for the 
pseudopotentials capable of reproducing the measured ion-ion potential.

Finally, we want to mention that some of the comparisons between 
computed and experimental values of the resistivity of liquid metals, 
considered "satisfactory" in recent literature on the theory of pseudopotential, 
are really not encouraging: for example, in the case of liquid zinc, the 
use of the structure factor obtained by X-ray diffraction, together with the 
Heine-Abarenkov form factor led to a computed value of the resistivity of 
44 jiohmcm, compared to an experimental value of 37 /uohmcm, while the 
use of the above model for the pseudopotential together with the experi
mental data obtained in Ispra [1] and in the Philippines would lead to a 
theoretical value of about 22 /uohmcm [6] and 19 fiohmcm [3 ], respectively.

2. APPLICATIONS OF ELASTIC DIFFRACTION OF NEUTRONS TO
SOLIDS AND LIQUIDS

2.1. Introduction

1 shall now present and discuss some of the possible applications of the 
method of elastic diffraction of neutrons to the physics of condensed matter 
[9-16].

This method has been developed for several years in our laboratory at 
Ispra.2 Although in the language currently used in the literature conven
tional diffraction is often confused with elastic scattering, these two 
processes are basically different both in the nature of the information they 
provide and the experimental arrangement.

Conventional diffraction consists of the determination of the intensity 
of monochromatic neutrons scattered in the sample under investigation. 
Usually, measurements are made by a two-axis spectrometer (see Fig. 2.1a), 
recording the diffracted neutron intensity at any scattering angle and 
ignoring any energy transfer undergone by the neutron as a result of the 
scattering process.

Elastic diffraction consists of the determination of the intensity of 
monochromatic neutrons, elastically scattered in the sample under investi
gation. Usually, to this end, a three-axis spectrometer is utilized, whose 
analysing spectrometer, centered at the wavelength of the impinging radi
ation, records, at any scattering angle, only those among the diffracted 
neutrons which have an energy equal, within the spectrometer resolution, 
to that of the impinging neutrons (see Fig. 2. l.b ).

In section 2.2. the physical meaning of the method of elastic diffraction 
will be discussed. In sections 2.3. and 2.4. some of its applications to 
the physics of liquids and solids respectively, will be presented. Finally, 
a summary will be given in section 2.5.

2 It is a pleasure to acknow ledge the contributions to the work presented here given  at different times 
by M . Antonini, P. A scarelli, G . Borgonovi, F. Pom pa, and D. T occh etti.
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2.2. Physical meaning of the method of elastic diffraction of neutrons

It is well known that any measure of conventional diffraction can be 
regarded as a collection of instantaneous pictures of the system being 
studied: ignoring possible energy transfers between the system and the 
radiation is equivalent, according to the Heisenberg principle, to sharply 
defining the collision time. When, instead, the scattered radiation is 
allowed to give contributions to the recorded intensity only if its energy

0 40 80 120 cm

FIG. 2 .1 . a ) A tw o-axis  spectrom eter prepared for conventional neutron diffraction .
b) A three-axis spectrom eter prepared for elastic d iffraction  o f  neutrons. In this arrangement 

only diffracted neutrons o f  energy equal (within the instrumental energy resolution) to the energy o f  the 
neutrons im pinging on the sam ple are a llow ed to be B ragg-reflected in the analysing spectrom eter and to 
reach the BF3 counter.

is equal to that of the impinging radiation within an instrumental energy 
resolution ДЕ (which can easily be kept down to ~  2 meV), the experi
menter is left with information which can be conceived as a collection of 
pictures of the system, each one taken during a time At which is inversely 
proportional to ДЕ.

In fact, the differential cross-section dcr/dfiel of a system of N sup_- 
posedly identical atoms, for a process of elastic diffraction, is:

where acohis the (coherent) scattering amplitude; the "scattering law"

о

(2 . 1)

(2 . 2)
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is the Fourier transform of the van Hove space-time pair correlation 
function G(?, t), and the instrumental energy resolution function

-41n 2
R(u) = R0 e (2.3)

is the probability of recording a neutron undergoing an energy transfer 
flu; for the sake of simplicity, this probability is supposed here to be a 
Gaussian function of ftu/ДЕ.
Also the Fourier transform R(t) of R(u) is a Gaussian function of t. Its 
full width at half maximum At is connected with the experimental energy 
resolution ДЕ by:

At = (8 In2)ft/AE (2.4)

(The time At happens to be of the order of 1.8 X 10"12 s when ДЕ ~2 meV). 
Substitution of (2.2), (2.3) and (2.4) into (2.1) eventually leads to:

da
d£l e lг W coh

iQ-T,_ 2(ln 2)* e dr —s----- L~
•J~ж At

4 In 2 2

G(r, t ) e (At,Z dt (2.5)

It is then verified that the expression in { } in Eq. (2.5) is a time 
average of the space-time pair correlation function performed over R(t),
i. e. during time of observation At given by Eq. (2.4) (see Refs [9, 12]).

2,3, Applications of the method of elastic diffraction of neutrons to the 
study of liquids

In this section we shall show that the elastic diffraction of neutrons can 
be profitably used to investigate the properties of a liquid in two instances:
a) the study of the freedom of movement of an atom in the relaxed 

structure of the liquid during the time of observation At defined in 
Eq. (2.4) [9] .

b) the precision determination of the structure factor S(Q) [14].

2 .3 .1 . The growth of the Debye-Waller cloud in a simple liquid

In order to easily comprehend the main features of a pattern of elastic 
diffraction of neutrons in a liquid, it might be appropriate to remember 
that, at least within the frame of the convolution approximation [16], the 
differential cross-section of a liquid for (coherent) scattering, d2acoh/dfldE, 
can be written as the product of the structure factor S(Q), which expresses 
the instantaneous correlations between atomic positions, and the Fourier 
transform Ss(<5, u) of the "self"-space-tim e pair correlation function, which 
describes the energy spread of the scattered neutrons caused by atomic 
motions. The general behaviour of S(Q) is well known (see, for example, 
the previous seminar); a 3-dimensional sketch of Ss(C§), u) is shown in 
Fig. 2.2, where the portion bounded by the dotted line represents the 
fraction of Ss(Q, w) accepted by a supposedly Q-independent instrumental 
energy resolution function R(w) associated with the three-axis spectrometer
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prepared for elastic diffraction. For example, referring for the sake of 
simplicity to a condensed system characterized by a strong structural 
disorder (S(Q)~ 1) and by dynamical properties similar to those of a perfect 
gas, it may be proved that substitution of the appropriate Ss(Q, u) in 
E q .(2 .1) would lead to the following expression:

,2
d cr 
dfl

Na
= R„ coh

e l
1 +•( Q v q  At) ‘ 

16 In 2

( 2 . 6 )

F IG .2 .2 .  Sketch o f  the Fourier 
transform, Ss(Q , cj) ,  o f  the "self*  
sp a ce -t im e  pair correlation  
function , G s(r. t ) . The dotted 
lines in d ica te  the supposedly 
Q -independent instrumental 
energy resolution function R(u>) 
associated with the three-axis  
spectrom eter prepared for elastic 
d iffraction .

FIG .2 . 3 ,  Elastic d iffraction  
pattern o f  liqu id  b rom in e. The 
full lin e  is a fit o f  the experi
m ental data a ccord in g  to  the 
vacan cy  theory o f  liqu ids. It is 
found that the m ean square 
am plitude o f  the so lid -lik e  
m otions o f  a brom ine atom  in the 
liqu id  during an observation tim e 
o f  the order o f  1 .3  X 10“ 12 sec is 
0 .3 9  Ä2 . (T h is  figure is taken 
from  R ef. [1 ] ) .

The elastic scattering cross section would then decrease as a function 
of the wave vector transfer Q, by an amount depending on the most probable 
length v0At that an atom of mass M and velocity v 0 = (2 KBT/M)i travels 
during the time of observation At.

Actually, the pattern of elastic diffraction of neutrons in a liquid 
happens to be of the type shown in Fig. 2.3. This pattern is remarkably 
different from that obtainable in a conventional diffraction experiment (see, 
for example, Fig. 1.1), especially at high wave vector transfers where the 
downward slope can be explained, as suggested above, in terms of the 
Debye-Waller cloud built by the atomic motion during the time of obser
vation. It becomes then possible to fit experimental data of this kind to
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2 .3 .2 . Accurate determination of the structure factor

These features of the elastic diffraction of neutrons in a liquid might 
be of interest in some cases also for an accurate determination of the 
structure factors [14]. For example, the very fact that the elastic 
component of a neutron diffraction pattern in a liquid differs so much from 
the total intensity, stimulates sortie discussions on the reliability of the 
static approximation; this approximation implies that, since the time taken 
by a neutron to proceed along distances between near neighbours is short

su itab le  m o d e ls  fo r  the dyn a m ics o f  the liqu id  and, a cco rd in g ly , to  obtain
in te re stin g  in form a tion  (se e  F ig . 2 . 3 )  on the fre e d o m  o f  m otion  o f  an atom
in the re la x ed  s tru ctu re  o f  the liqu id  [9] .

FIG. 2 .4 .  Conventional neutron diffraction  in.laboratory and wave vector space. (This figure is taken 
from  Ref. [6] ).

compared to the time necessary for the occurrence of major changes in the 
local configuration of the liquid, possible energy transfers in the scattering 
are small enough to allow a single value of the wavevector transfer,
47rsin 0/Ao (Xobeing the wavelength of the monochromatic beam), to be 
uniquely associated with any scattering angle 20.

On the basis of this hypothesis, the measured and the true values of 
the structure factor, given by:

and

der
dO

,2d acoh
dQdE dE

,2
d °coh
df2dE dE

Q = constant

(2.7)

( 2 . 8 )

respectively, .should be equal (see Fig. 2.4). In order to appreciate how 
much these quantities actually differ, we may compute their difference 
(within the frame of the convolution approximation) in the case of a liquid 
described again by a gas-like behaviour of Ss(Q, u).
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One then finds, to a good approximation [14] :

dacoh
dO - S(Q) = Na

k bt

2 2 ft Q
2M

coh 32 E„ S(Q)
d2S(Q)
dQ2

Q (2.9)

The information obtained by a measurement of conventional diffraction, 
dacoh/dO, differs from the one required, S(Q), by a term increasing with 
the sample temperature Т, the recoil energy ft2Q2/2M and the local curva
ture of the structure factor, and decreasing, as expected, with the im
pinging neutron energy E0. It has, in fact, been verified experimentally 
that an efficient way of obtaining more resolved patterns is to increase Eo, 
notwithstanding the loss of experimental resolution generally accompanying 
the reduction of the wavelength used [6].

O-̂ tlsen̂  (Ä)"1
FIG. 2. 5. Conventional neutron diffraction: the pattern of a powder sample of N H 4Br. (This figure is taken 
from Ref. [7] ).

Another suggested possibility of improving the experimental situation 
is to use the elestic diffraction arrangement with poor energy resolution 
(i. e. R (w) ^  constant). By a procedure discussed in detail elsewhere [14] 
it is possible, in some cases, to arrange the spectrometer for quasi
elastic diffraction so as to enable it to perform instrumentally the inte
gration indicated in Eq. (2. 1) (or, under conditions of poor resolution,
Eq. (2. 7)), along a line very close to the line characterized by Q = constant 
and required by definition (Eq. (2 .8)). Under these conditions, it is possible 
to obtain well resolved patterns. Up to now, the instrumental energy reso
lution used in this kind of problems has been too narrow to decide whether 
the improvement of resolution obtained should be attributed to the truncation 
effectively operated on the integration (2. 1) by the steep R(u) adopted so far 
or to the more correct orientation of the instrumental path of integration 
provided by the elastic arrangement. In any case, the bumps found in 
regions of the patterns of elastic diffraction in liquid bromine and gallium 
where only inflection points appear in the corresponding patterns of con
ventional diffraction (see Fig. 2. 5), suggest that further study along these 
lines could lead to an improvement of the quality and reliability of structure 
factor data.
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2.4. Applications of the method of elastic diffraction of neutrons to the 
study of solids

In this section, three possible cases where elastic diffraction of 
neutrons has been profitably used to improve the quality of the experimental 
information will be presented:
a) the determination of the Debye-Waller factor; [10,11,12,17]
b) the analysis of the static-like component of the structural disorder in

some crystals [1 1 ] or glasses [2 ];
c) the crystal structure analysis of hydrogenous compounds [15].

2 .4 .1 . Accurate determination of the Debye-Waller factor

It is well known that an accurate measurement of the Debye-Waller 
factor in a solid is only possible if the elastic and inelastic (or thermal 
diffuse) components of the intensity in the Bragg reflections can be sepa
rated. Usually, both in X-ray and conventional neutron diffraction, the 
essentially inelastic contributions associated with thermal motions are 
eliminated by setting the base of the Bragg peak along the linearly inter
polated line at the background level. This procedure can be only in part 
justified by the fact that the radiation inelastically scattered by phonons 
associated with the (normal) modes of vibration in the crystal acquires 
besides the wavevector transfer 2тгт of the nearest reciprocal lattice point, 
an additional amount of wavevector transfer, q, the wavevector of the 
interacting phonon; and, consequently, like a collection of pairs of Lyman 
ghosts, it is located away from the Bragg node. Nevertheless, animportant 
portion of the inelastic component unfortunately lies just beneath the Bragg 
peak since it is due to production or annihilation of phonons of small wave- 
vector. Among these phonons, of course, the acoustic ones have a very 
small energy fiuq ~ ficq (c being a measure of the sound velocity). Since 
the neutron scattering cross-section is proportional to the mean square 
amplitude of the wave associated with the interacting phonon -  and there
fore, in the classical limit, to the square of the inverse of the relative 
frequency -  the inelastic component of the intensity, appropriately weighted 
over the scattering surface, has a maximum exactly at the reciprocal 
lattice vector (logarithmic singularity smoothened by the finite angular 
resolution and by the fact that the number of normal modes is actually 
finite [10]). This result has been proved directly by Mössbauer experi
ments (see Refs [19, 20, 21]) and, accordingly, it is difficult to subtract 
correctly the thermal diffuse component from the essentially elastically 
Bragg-scattered neutron radiation, unless use is made of the method of 
elastic diffraction.

Actually, it turns out [10] that the efficiency of the method of elastic 
diffraction of neutrons depends on the relative values of the instrumental 
energy resolution ДЕ (in practical cases ДЕ can be kept down to about 
1 meV [12, 13]) and the energies ftcq associated with the phonon lines 
building up the thermal diffuse component of the scattered intensity. The 
effectiveness of the filtering action exerted by the analysing spectrometer 
on the scattered neutron energies becomes smaller as q is decreased, 
that is where it is more needed. Nevertheless, the possibility of eliminating, 
at least, part of the thermal diffuse intensity beneath the Bragg reflections 
and the whole of it in regions of wavevector space between reciprocal



NEUTRON SPECTROMETRY 555

lattice nodes, the improvement in resolution and the reduction of the effects 
of second order contamination in the monochromatic beam due to the 
presence of the analysing spectrometer, make the method of elastic dif
fraction of neutrons an attractive one especially in connection with powder 
samples of low crystal symmetry or in cases where an accurate value of 
the Debye-Waller factor is needed.

Measurements performed in our laboratory in white tin [11] and 
aluminium [13] samples gave results consistent with those reported in the 
literature.

2 .4 .2 . Diffuse disorder scattering and thermal diffuse scattering

It is well known that any reason for disorder in an ideally periodic 
crystal structure leads to removal of intensity from the ideally sharp Bragg 
reflections. We have just indicated that when the disorder is dynamical in 
nature, besides additional wave vector transfers, also energy transfers 
are experienced by the radiation probe. If, instead, the disorder is static- 
like (we refer here especially to lattice distortions, vacancies, etc. in 
crystals possibly undergoing structural modifications, or to amorphous 
solids) -  in the sense that an appreciable variation of its configuration 
takes a time much longer than the time of observation (Eq.(2.4)) associated 
with a typical instrumental energy resolution -  neutrons accordingly re 
moved from Bragg reflections are not allowed to experience perceptible 
energy transfers, and give rise to an essentially elastic component of the 
scattered intensity which we might call diffuse disorder scattering.

While X-ray and conventional neutron diffractions do not distinguish 
between elastically and inelastically scattered radiation and at any wave- 
vector transfer furnish a scattered intensity due to both thermal and static
like disorder, elastic diffraction of neutrons is associated only with the 
diffuse disorder component of the scattering; consequently, the method of 
elastic diffraction of neutrons appears to be the only available tool for 
separating in a direct way diffuse disorder scattering from thermal diffuse 
scattering [22 ] .

As an example of the application of the suggestions reported here, 
reference is made to the elastic diffraction pattern of the region around 
the (002) forbidden reflection of white tin [1 1 ] .

2 .4 .3 . Elastic diffraction of neutrons and crystal structure analysis of 
hydrogenous compounds

It is well known that one of the most important fields of application of 
conventional neutron diffraction is the determination of the hydrogen position 
in inorganic and organic compounds. To this end, nevertheless, due to the 
high value of the proton cross-section for incoherent scattering, crystal- 
lographers have been forced either to make recourse to single crystal work 
or to use deuterated samples. It is also known that the best way of esti
mating extinction corrections in the intensity data from single crystals is 
to compare those with the corresponding data from powder samples. So 
far, it has in general been impossible to obtain by conventional neutron 
diffraction reliable intensity data from non-deuterated hydrogenous 
compounds in powder form: the background associated with the incoherent 
scattering cross-section of hydrogen, tTincoherent(H)~ 80 barn, overwhelms



w> 2150 
fc

£  2500-1

2

Й  2000
Л4 L .•'»'«.у чТ'.лА»

Л >«чл  Л

rtacto r fac* -

Ы220) V

4

V4'.-.4.»»« * •w«C »*V4A*e « % * 1 \. 4.% ̂

>-* NHt0f
( h

?_w : <r>
<f/“‘

(i!/ BF,

I I I I I I I

<• . .eJW/V4v*.*
•• • - ^ ^ S x v i

I I I  I I I  I I
n o  111 200  210 211 220 221 310 311 222 320 321 400 322 411 331 420 421 332

10* is* 20* 25* 30* 35* 40* 4S* 50* 55* 60* 65* 70* 75* 60* 85* 90* 95* WO*

SCATTERING ANGLE 29

FIG. 2 . 6. Elastic d iffraction  o f  neutrons: the pattern o f  a powder sam ple o f  NH4Br. (T h isfigu re  is taken from  Ref. П ] )•

556 
CAGLIOTI



•,'r .V-
"',m4- *.vvI •

1,0 r r Sv^i. .г-Г-*'
I

210

Pb<220l\

I • - - ̂  Aгп I • -А,- 4 A

i f  NH40r

/У -

" " V

221 f Inn 1>»» j,u r j ,  I
”  ■” “  s  4  A .!..!. ,i,

5* 10* 15* 20* 25* 30* 35* 40* 45* 50* 55* 60* 65* 70* 75* 80* 85* 90* 95* 100*
SCATTERING ANGLE 26

FIG. 2 . 7. C onventional d iffraction  pattern o f  NH4Br.

N
EU

TRON
 SPECTROM

ETRY 
557



55 8 CAGLIOTI

the Bragg signal associated with the coherent scattering cross-section, 
CTcoherent(H ) ~ 1 -8 barn (see, for example, Fig. 2 . 6 ) .

Fortunately, a close examination of this problem makes it possible to 
ascertain that while, as discussed in section 2 .4 . 1 ., the contribution of 
hydrogen to the coherently scattered intensity at the Bragg reflections is 
associated with processes which are basically elastic, the corresponding 
incoherent contributions responsible for most of the background are as
sociated with processes which are basically inelastic.

The amount of the mean square energy transfer in a process of in
coherent scattering -  determined by the second moment of S(Q,io) -  is of 
the order of the geometrical average of the thermal energy KBT and the 
recoil energy h^Q2/2M H; for not too low temperatures of operation and 
wavevector transfers, these energies are large enough, with respect to the 
instrumental energy resolution of a three-axis spectrometer, to justify a 
careful investigation of the possibilities offered by the method of elastic 
diffraction of neutrons for enhancing the (elastic) signal to (inelastic) 
background ratio in the powder patterns of nondeuterated hydrogenous 
compounds.

Preliminary experimental results along this line, together with a more 
detailed discussion of the dynamics of the scattering process of a neutron in 
a crystal containing hydrogen, are reported in Ref. [15]. Here it will be 
sufficient to compare the elastic and conventional diffraction pattern of 
NH4Br (see Figs 2 .6 and 2.7) and deduce that the method of elastic dif
fraction of neutrons enables the experimentalists to eliminate instrumen- 
tally most of the undesired background whenever the origin of the latter is 
due to the presence of hydrogen in the sample under investigation.

2.5. Summary and conclusions

In conclusion it seems possible to state that the method of elastic dif
fraction of neutrons can be used to advantage in several cases. Its appli
cations to the physics of liquids, to an accurate determination of the Debye- 
Waller factor, to the analysis of the static-like disorder in crystals and 
amorphous solids, and to the crystal structure analysis of hydrogenous 
compounds seem very promising if one considers the experimental evidence 
obtained so far in the Ispra laboratory.
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M A G N E T IZ A T IO N  D E N S IT Y  IN  
F E R R O M A G N E T IC  M ETA LS

A. PAOLETTI
LABORATORIO FISICA NUCLEARE APPLICATA, 
CENTRO STUDI NUCLEARI DELLA CASACCIA, ROME 
ITALY

The problem of obtaining information on the charge density in solids 
(i.e . on the function p (r)) has been of great importance from the very 
beginning of the study of solid state physics as it throws some light on the 
electron wavefunctions. It is well known that, in principle, such information 
is given by X-ray scattering, by means of the relationship:

where p (x, y, z) is the charge density at any point x, y, z in the unit cell and 
F(hkl) is the structure factor for the reflection (hkl). The sum is extended 
over all the (hkl) which implies that structure factors for all reflections 
must be measured [1 ]. This is, of course, impossible; however, X-ray 
experimentalists have been able to get from Eq. (1) information suitable for 
solving chemical structures. As far as the problem of electron wave 
functions in solids is concerned, X-ray scattering has been of little help, 
so far. All electrons contribute to the scattering, and it is not simple to 
separate the contributions from different shells. Furthermore, only 
recently the experimental problem of high-precision scattering factor 
measurements in single crystals has been faced [2] . On the other hand, 
in magnetic neutron scattering Eq. (1) can be used as well: in this case 
p(x, y, z) is the magnetization density and F(hkl) the magnetic structure 
factor. Also in neutron scattering termination problems in calculating p 
from experimental data arise; however, it can be shown that reasonable 
accuracy can be obtained also for a maximum (sin0)/X value of about 1 Ä 
provided proper use of the averaging method suggested by Marshall and 
developed by Moon and Shull [3,4] is made.

Furthermore, higher sensitivity in determining the magnetic structure 
factors can be obtained for ferromagnets and some anti-ferromagnets by 
means of polarized neutrons and finally neutrons do interact with magnetic 
electrons only, so that information on wave functions of outer electrons 
can be obtained, whose contribution to X-ray scattering is usually heavily 
masked by all other electrons of the atom. It is well known that for a 
single atom the neutron magnetic form factorinelectronunits is determined 
in the case of complete quenching of the orbital moment, by the unpaired 
spin density and is given by

( 1 )

hkl
-  CO

( 2 )
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where pt (r) and p^(r) are the charge densities per electron for electrons of 
spin up and spin down, respectively, к = К - Ко is the scattering vector and 
the integral is extended over the whole space. It can be shown that if the 
one-electron charge density is spherically symmetric, Eq.(2) reduces to

f(k) = ß !(r ) - R.(r) sin kr 
kr dr (3)

where R2 is the radial part of the charge density. In other words, if the 
charge distribution is spherically symmetric the form factor is independent 
of the direction of К which from an experimental point of view means that 
form factors measured at different К values must fall on the same smooth 
curve, and furthermore any pair of reflections of the same К must give an 
identical form factor.

The first measurements made with unpolarized neutrons indicated for 
experimental magnetic form factors a behaviour in general agreement with 
free-atom one-electron calculations, but did not permit many details to be 
seen, until in 1959 the first polarized-neutron measurements [5] were 
able to give evidence of the departure of 3d electrons from spherical sym
metry in cobalt, iron and nickel. This was interpreted in terms of a 
deviation of the T2g and Eg sublevel population from the statistical values 
of 60% and 40%, respectively. In other words, within the one-electron 
approximation and keeping for convenience the separability condition of the 
3d electrons wavefunction into radial and orbital parts, we can directly 
calculate from the experimental form factor values how 3d electrons ac
commodate between the two sublevels (three-fold and doubly degenerate, 
respectively), which would maintain the cubic symmetry of the charge 
distribution. In Fig. 1, the experimental form factor of cubic cobalt is 
plotted as a function of (sin0)/A. The departure from spherical symmetry 
is evident by examining the reflection pairs which for the same (sin6)/X 
give different form factor values.

Weiss and Freeman [6, 7] were able to show that for T2g and Eg electrons 
form factors were, respectively, given by

fT = <J0(kr)> - \ A <J4(kr)>
*2g

and

fEg= <JQ(kr)> + 2 A <J4(kr)>

where A is a simple function of the Miller indices of the reflection only, and

<Jn(kr) У ~ J  r2(R2 - R2)Jn(kr)dr 
о

where Jn(kr) is the nth order spherical Bessel function. To calculate 
<Jn(kr)>, for n ф 0, Watson and Freeman [8] used one-electron wave
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functions calculated for free atoms by the Hartree-Fock method. In this 
way the aspherical contributions to the form factor are evaluated.

For the calculation of the spherical part which gives the general trend 
of the magnetization density unrestricted Hartree-Fock calculations were 
performed by Wood and Pratt [9], Stern [10], and Watson and Freeman [11].

As is well known, the Hartree-Fock formalism consists of approxi
mating a true many-electron wave function by a single Slater determinant.
In practice, this formalism is further modified by the addition of re 
strictions which have the advantage of simplifying the task of solving the 
equations, but which also have effects on the final form of the wave functions. 
These restrictions are:

(1) The spatial part of a i/л is assumed to be separable into a radial and 
an angular part:

(//j(r, 0, <p, a) = [Ui (r)/r ]F i (0)Sj(cr)

where Sj(o) is a spin function with a spin quantum number ms of ± 1/2. In 
practice, Fj(0) is normally chosen to be a spherical harmonic, or, in other 
words ipi is assumed to be an eigenfunction for a spherical environment 
(which is true only for atomic S states). The F;(0, <p) are assigned before 
the application of the variation principle and only the Uj(r) are obtained 
variationally. The problem becomes one-dimensional.

(2) Assuming (1), Uj(r) is constrained to be independent of the mf 
value associated with .

(3) Uj(r) is likewise constrained to be independent of ms .
The last two restrictions imply a single Uj(r) for any shell ( i . e . , n and 

Я value) and, in turn, a separate Hartree-Fock equation for the shell 
rather than a separate equation for the electron. Now it has been shown
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FIG. 2. The m agnetic form  factor o f  hexagonal coba lt com pared with the fe e  case. T he solid line was 
drawn to em phasize the sm ooth decrease in the hexagonal form factor, indicating almost spherical sym m etry. 
Taken from  Ref. [3 ] .

by Pratt [12] for an atom with net spin that if orbitals with the same n, St, 
and mf values, but different ms are varied independently, the resulting 
variational equations have a different form for orbital of different ms .
This difference arises because of the net spin of the atom, there being a 
different exchange interaction for electrons with ms of the same spin as 
the total Ms than for electrons of opposite spin. This effect is described 
as an exchange polarization and the separate variation with regard to the 
different ms values'is known as the unrestricted Hartree-Fock method.

As far as the symmetry of surrounding atoms is concerned, it seems that 
they influence strongly the deviations from spherical symmetry, but 
affect very little the radial distribution of magnetization as can be inferred 
from the data of Fej and Fen in Fe3Al and by comparing fee and hep data 
for cobalt as given in Fig. 2. We could perhaps conclude that the Hartree- 
Fock method itself is not very sensitive to the shape of the outer-electron 
wave function; in other words, self-consistency can be obtained also 
with an outer-electron distribution deviating appreciably from the real one. 
Furthermore, the Hartree-Fock equations do not take into proper account 
the inter-electron correlation which might play also a significant role in 
the outer-electron distribution.

Therefore, interpreting the form factor measurements in term of 
Watson and Freeman calculations means to be always within the frame 
of an approximation. In general, it is much more significant to obtain a 
three-dimensional magnetization density map which gives a direct insight 
into the situation. The interpretation of the map in terms of one or another 
approximation might always be a matter of speculation and of possible
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FIG. 3. M odel o f  the m agnetization  distribution in the b od y -cen tred -cu b ic  unit c e l l  o f  iron. The concentration  
o f  the very large positive 3d shell m agnetization  along the cu be edges is overem phasized to  show its relationship 
to  the n egative  m agnetization  rings. Taken from  Ref. [4 ].

future improvement. Figure 3 shows the magnetization density map of 
iron found by Shull and Yamada [13] . The interatomic magnetization 
distribution is characterized by a series of interlocking, negative magneti
zation rings arranged in a three-dimensional chain structure [4]. Each 
ring is centred at the midpoint between second-nearest neighbours in the 
body-centred cubic lattice with the plane of the ring being transverse to 
the bonding line. There is some variation of the negative field with values 
ranging as high as -2 ,0  kG. As the nuclear position is approached the very 
much larger and positive 3d shell magnetization is encountered with fields 
as large as +500 kG. It is estimated from the volume of negative magneti
zation rings that as much as 35% of the unit cell volume is characterized 
by a negative field. As far as the interpretation of the iron data is con
cerned a first analysis was made by Shull and Yamada [13] who, together 
with the spin magnetization, made also allowance for the 3d orbital moment 
scattering, together with possible form factor contributions from other 
electron groups. The orbital unquenched moment contribution can be 
evaluated from the experimental magneto-mechanical ratio which in iron 
is 1.93. Furthermore, Shull and Yamada calculated the population of the 
Eg and T2g sublevels directly from the observed form factor deviations 
from spherical symmetry and finally introduced a parameter ? which 
represents the fraction of the 3d quenched spin magnetization, (1 - f )  being 
the orbit-quenched 4s electron contribution so that experimental data 
provided the following relation:

Mf = Ai?f3d + q (i  - ?) f4s with q3d = q? and q4s = (1 - C)q

By using the form factor calculations by Watson and Freeman already 
mentioned and reported in Fig. 4 they were able to obtain the best fit for a 
? value of 1.10 corresponding to a negative magnetization from 4s electrons
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FIG. 4. Comparison between experimental and calculated values of magnetic form factor. Solid curve 
gives the spherical 3d form factor, the broken and dotted curves give 3d orbital and core contribution 
respectively. Taken from Ref. [13].

of -0.21 qB as is indicated in Fig. 5 which gives the 4s contribution which 
would have to be added to the f3d for different ? in order to give the experi
mental values. We see that for § = 0.9 and 1 a f4s much higher than the 
value which is derived from the 4s wave function calculated for iron by 
Wood and Pratt [9] and is never higher than 0. 01 over the region of 
observation, would have to be added. Of course, one may object that such 
an interpretation has the same limits of validity as the Watson and Freeman 
results. However, it must be pointed out that, while the origin of the 
negative polarization is still under discussion, its presence seems to be 
beyond any doubt as it is obtained directly from the experimental data. 
Negative polarization was also found by Moon in hep cobalt [3], as can be 
inferred from Fig. 6 and by Mook in Ni as is shown in Fig. 7. Moon and 
Mook [14] interpreted their experimental data by writing the form factor 
as

f(k) (1 +a) f3d(k) - об (k) 
j

Ez2lf (k) + f (k) (4)

where the subscripts s, о and c refer to spin, orbital and core respectively. 
The g factor determines the fraction of the total moment due to spin 
polarization and the fraction due to unquenched orbital motion. The values
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FIG. 5. f(expt)~f(3d calc) gives the possible contribution from 4s electrons for various 6 values. 4s contribution 
is expected to be smaller than 0.01 o f  a unit. Taken from Ref. [13].

(0,0) .0,$«#)

FIG. 6. Projection o f  magnetic moment density on basal plane. Lower right diagram shows projected 
position o f  atoms in orthorhombic unit ce ll. Dashed lines indicate portion o f ce ll shown in density map. 
Taken from Ref. [3].

for metallic cobalt and metallic nickel are 2.17 and 2.20, respectively, 
as given by magneto-mechanical measurements [15]. As can be seen from 
Eq. (4) in the form-factor expression a 6 (K) function is introduced which 
only makes a contribution at К = 0 and thus corresponds to a uniform 
contribution to the magnetization, that is, by taking into account the constant 
negative polarization which appears in both the Co and Ni magnetization 
density maps. On the other hand, it should be pointed out that as was 
already mentioned for iron, we find that also in Co and Ni the measured 
form factor is appreciably higher (=16%) than those calculated in the free- 
atom approximation unless the negative magnetization due to the Fourier
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NICKEL

FIG. 7. The magnetic moment distribution in the [100] plane. Taken from Ref. [141.

FIG. 8. Comparison o f  experimental results o f  hexagonal Cobalt with ffee-atom  calculation when a  = 0.18. 
The free-atom form factor is based on a 3d74s2 spin-polarized Hartree-Fock calculation by Watson and 
Freeman. Taken from Ref. [3].

inversion of the experimental data is taken into account. Also in these 
cases the calculated form factors to which the experimental data were 
fitted are those of Watson arid Freeman, and precisely for Co the best fit 
was found fot the spin-polarized calculations relative to the configuration 
3d74s2 shown in Fig. 8, and for Ni with the unrestricted Miscalculations 
shown in Fig. 9. From this analysis of the data the following contributions 
to the magnetization were obtained:
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FIG. 9. Comparison o f calculated and measured form factors. Taken from Ref. [14].

cobalt 3 spin +1.86 ± 0.07 nickel 3d spin 0.656
constant spin -0.28 ± 0. 07 constant spin -0. 105
3d orbital +0. 13 ± 0. 01 ц 3d orbital 0. 055

+1.71 +0.606цв

The good agreement of the free-atom calculations with the experimental 
data is interpreted by the fact that in cobalt and even more in nickel the 
unpaired electrons occupy the top of the 3-band where, as was shown by 
Stern [10] and Wood [16] with tight-binding calculations in iron, the 
wave functions are expected to be very similar to free-atom wave functions 
(Fig. 10). Finally, we want to point out the possible contribution to the 
form factor of the paired electrons. This is due to the different forms of 
the radial part of the wave function for the two spin states because of the 
exchange, or as is briefly said, to the polarization exchange. This effect
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FIG. 10. The spherically symmetric part o f  the charge density p(r) for 3d electrons in iron is shown for 
an atomic sphere radius r s = 2.66 Bohr radii. The dashed and solid curves refer, respectively, to the 
states at the top and at the bottom o f  the 3d band when the wave vector is at the endpoint o f  a (110) direction 
in the Brillouin zone. [See Eqs (13) and (14)]. The dot-dash curve gives the spherically symmetric part 
o f  the charge density due to overlapping atomic charges, calculated from the adjusted coefficients. Ail 
charge densities are normalized to 4ir over the atomic sphere. Note that the vertical scale has been ex
panded by a factor o f  10 for r >1.5. Taken kora Ref. [10].

can be seen in Fig. 11. As to the interpretation of the negative magneti
zation two possible explanations were provided by Mook: (1) the electrons 
of the conduction band could be polarized oppositely to the 3d electrons 
according to the hypothesis of Shull and Yamada, (2) the spin polarization 
effects can account for the negative densities observed in Fourier maps.
In the latter case all the scattering would come from the 3d band and it 
would be unnecessary to include 4s electron effects.

Recently band calculations for ferromagnetic nickel have been performed 
by Hodges, Ehrenreich and Lang [17]. They use an interpolation scheme 
in the sense that unhybridized d bands are represented in terms of linear 
combinations of atomic orbitals and the conduction bands in terms of a 
four-orthogonalized-plane-wave approximation while the hybridized wave 
functions Вкп(г) are written as linear combination of L .C .A .O . b K(i(r) 
and О. P. W. bKk (r)

The Hamiltonian H = Hband + Hso + Hcorr where the first term gives the 
results of ordinary non-relativistic band theory, the second the effects of 
the spin-orbit interaction and the third correlation effects which are very 
important in determining the features of ferromagnetic bands, as they 
provide a change in energy when the system goes from the para- to the 
ferromagnetic state so that the Hamiltonian which is used is more general 
than that of the usual one-electron Hartree-Fock scheme. Various 
parameters enter into the calculation which are adjusted in order to fit the 
results of Fermi surface experiments, magneto-optical experiments, 
electronic specific heat, high field susceptibility, etc. Within this frame 
the calculations indicate a fairly good agreement with the experimental 
results of Mook. However, the hypothesis of a slight negative polarization
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FIG. 11. The net radial spin density o f  the Argon-like core pA, i. e . , [p (coref) - p (core!)] and the Argon 
core radial charge density [p (core!) + p (core*)] for spin polarized Ni+2. Taken from Ref. [11].

of the conduction electrons is ruled out on the basis of consistency with 
the Hamiltonian which is being used while an appreciable contribution to 
the form factor from the paired electrons of the type mentioned above is 
found as is shown in Fig. 12. The discrepancies for the first three 
reflections are attributed to the fact that no unrestricted conduction-band 
wave functions have been used, and that it is particularly difficult to obtain 
a good estimate of the contribution arising from paired electrons since it 
depends on the exact form of the unrestricted d-band wave function not 
only at the top of the band where the L. C. A. O. approximation is certainly 
valid, but through the whole range of d band energies.

Finally it might be worthwhile to mention some measurements of 
polarized-positron annihilation in Fe and Ni by Mijnarends and Hambro 
and by Berko and Zuckerman [18], which have also been interpreted as an 
indication of negative polarization of the conduction band. Precisely 
Berko has shown that a peak appearing in the experimental plot of 
p(e) = [N|(6) - Nj(6)] /  [N.j.(0) +Nj(0)] as a function of 0 can be interpreted on 
the basis of a very crude model due to the negative polarization of the 
conduction band electrons. Here and Nf are the counting rates of the
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FIG. 12. Comparison o f  calculated magnetic form factor o f  Ni with experimental results o f  Mook and 
Shull. Solid line indicates contribution o f paired electrons obtained from unrestricted Hartree-Fock atomic 
wave functions o f  Watson and Freeman. Taken from Ref. [17].

photons from positron-electron annihilation at the angle 0, with a magnetic 
field set respectively parallel or antiparallel to the incident positron 
momentum.

Until now, we have limited our description to the only metals where 
magnetization comes only or mostly from the electron spin. It might be 
interesting to examine a case like Tb (see Ref. [19] where the orbital 
moment is completely unquenched. However, great experimental dif
ficulties arise as, while the form factors of 3d metal have been measured 
with considerable accuracy by means of polarized neutrons, the same 
technique was only partially suitable in the case of unquenched orbital 
moments. As a matter of fact in the 3d case, where the unpaired spins 
constitute the predominant part of the magnetic moment, the anisotropy of 
the spin density is not influenced by the application of a magnetic field in 
the sense that only the spin direction follows the magnetic field, but its 
spatial distribution determined by the crystalline field does not change.
In rare-earth metals, the presence of an unquenched orbital moment 
determines a spin-orbit coupling which is larger than the crystalline field 
effects. Consequently, when a large enough magnetic field is applied to 
align the moment, as is required for the polarized beam experiment, this 
field direction becomes the unique axis of moment distribution, so that the 
cloud of the moment distribution turns with the field. Therefore, we can 
measure with polarized-neutron technique only the projection of the moment 
density on a plane normal to the zone axis along which the magnetic field is 
applied. This implies that also unpolarized neutrons without applied field 
must be used in order to get the form factor and, what is more important, 
that the two sets of data are not necessarily identical.

Terbium has hep structure and exhibits helical antiferromagnetism 
below 230°K and ferromagnetism below 220°K. The saturation moment is 
of 9.34 along the easy b axis and the deviation of this number from the 
free-ion value of 9 qB has been attributed to conduction electron polarization.
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It can be shown that the Fourier transform of the magnetization density i. e. 
the form factor of Tb can be expressed in terms of the quantities Ŷ , (0), 
<gj)>and ( j j  )>, where Y^ (0) are the spherical harmonics, 0 is the angle 
between the direction of magnetization and the scattering vector, and 
<(gt У and (j/y are radial integrals which have been calculated by Blume, 
Freeman and Watson [20] using Hartree-Fock wave functions. Also in 
this case, of course, the form factor can be divided into a spherical and 
an aspherical part: f(i£) = fs(K) - Да. The experimental data indicated 
the presence of a non-localized polarization which gave a contribution of
0.48qB /atom, which has been ascribed to conduction-electron polarization 
and has the right value to explain the difference between the total magnetic 
moment per atom and the spin and orbital contribution of 4f electrons.

Until now, we have considered magnetization density in metals which 
are ferromagnetic as pure elements and have a magnetization due essentially 
to 3d electrons. Recently, some interest has been also devoted to 4d and 
5d electrons. None of the 4d and 5d transition metals exhibits a magnetically 
ordered state as an element, but some of their alloys show bulk magneti
zation properties which were interpreted as an indication of a contribution 
of 4d and 5d electrons to the magnetization. We will briefly review the 
results obtained in the Pd-Fe system. As a general rule, the data were 
collected by polarized-neutron experiments which provide very accurate 
values of form factors; these form factors are to be Fourier-inverted for 
the purpose of drawing magnetization density maps. However, to distinguish 
between the two components of the system it is usually necessary to perform 
some extrapolation or some normalization and to make use of two sets of 
neutron scattering data: fundamental and super-lattice reflections or 
fundamental reflections only coupled with magnetic diffuse scattering data.

In the Pd3Fe alloy the Brookhaven group [21] has determined a 0. 34 цв 
moment on the Pd while the resulting form factor was slightly higher than 
that calculated by Watson and Freeman. The collected data did not allow 
a Fourier inversion to be performed but could be interpreted in terms of 
a distribution of the d electrons of iron between the Eg and the T2g. levels 
giving a situation of practical perfect spherical symmetry. It might be inter
esting to compare these results with those obtained with the same experi
mental technique in the alloys Pd0.5o-Fe0.so [22] and in the Pd0.987-F e 0.oi3 [23] . 
In the former the symmetry appears to be slightly on the Eg side while the 
latter shows definite evidence of T2g symmetry so that there is a trend from 
Eg to T2g symmetry as the Fe content is decreased.
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remarks; 4 .2 . Situation in water; 4 .3 . Situation in liquid methane.

1. INTRODUCTION

From the title of this paper it will be understood that it deals with 
neutron scattering by molecules of a gas and by what will be called mole
cular groups in liquids and solids. Molecular groups in solids and liquids 
are either radicals and/or ions such as NH4, H30 +, H20  (water of 
crystallisation), etc., or entire molecules (e.g. CH4) bound by weak 
Van der Waals forces.

For a gas the importance of using an adequate theoretical description 
of neutron scattering by molecules will be stressed.

For liquids and solids an attempt will be made to understand neutron 
scattering in terms of molecular dynamics of the substance and hence to 
deduce information on the dynamics.

The paper gives, of course, a selection of the existing material, both 
theoretical and experimental. More complete information may be obtained 
from the References at the end.

2. SCATTERING OF NEUTRONS BY MOLECULES OF A GAS

2.1, Zemach-Glauber Formalism1

A quantum-mechanical theory of the scattering of neutrons by mole
cules, which took into account the translational, vibrational, and rotational 
molecular degrees of freedom as well as spin effects was given by Zemach 
and Glauber [1]. Following their arguments, we assume that the neutron- 
molecule interaction potential has the form:

(U

1 This section was prepared on the basis o f R e f.[3 ].

5 7 7
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where ^  denotes summation over all nuclei in the molecule, and suffix n
V

refers to the neutron; b„ is the scattering amplitude of the v-th nucleus.
We shall denote the initial and final neutron momentum, respectively, 

by hlc and hTc', the initial and final energy of the molecule by E ; and Ef , 
and the corresponding molecular wave functions by ф; and ф f . A quantum- 
mechanical formula for the neutron scattering cross-section in which a 
transition from the i to the f state takes place is (in the laboratory system):

CTfi (0) = m
2Trh2

- i ( k ' - k 0) - r n
e U d ?J * , > 2

I
k '  1 -  ko)* Tu I . , -  i(k -  k0) • r„.7Г- <̂ ilb„e \Ф{ Х Ф f I e

о
^i ( 2)

We shall further denote by hQ the change in neutron momentum 
(Q = k' - k 0), and by e the change in neutron energy. Of course, we have

h 2
2m (k21 - k 2) = E j-E f

To obtain cr;(0) we must make in afi (0) a summation over all final states:
' CO

de 6 (E; -  Ef -  e)crfi (0) (3)
f -E0

where the delta is introduced in order to assure the energy conservation 
law. Now we introduce formally the parameter т which we shall interpret 
as the time parameter:

CTi<e ) = 27 de - i e r  i(E;-Ef)T  
d r  - e e a  (0)

fi
-En

27Г I I I
k! -  ier

e /  , I, iHiitJ.? -
< I b ye e e

Ит
* f >

X<^f |ьи,е lQ r"|<//. > de dr

( h e r e  w e  h a v e  m a d e  u s e  o f  th e  f o r m a l  r e l a t i o n  [ e x p ( - i E f T ) ] i / / f  = [ e x p ( - i H T ) ] ^ f  
s i m i l a r l y  f o r  i/л , w h e r e  H  d e n o t e s  t h e  H a m i l t o n i a n )  an d  t h e n  i m m e d i a t e l y :

1/7»' “En
b.b iHr iQ 

, e  e
-Шт -iQ* 

e I (//j^de dr
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We see that the differential cross-section 04(0) may be represented 
as an integral over the energy of the double differential cross-section 
CTi(0, e):

+  00

v , v '

- ie r  1 Шт iQ
e < ф. b b , e e

N  r l  1 V  V

Гу -Шт -iQ e e r" k j  > d r (4)

Here the terms with v - v' describe the direct scattering and those with 
v f  v' the interference scattering.

We shall further denote the expectation value in (4) by xvv• and intro
duce the time dependence of r v by a formal relation:

_* iH r -  Ш тr (t ) = e r e
v  v

where
? , ( 0)

Thus

X , =<(ф .  I b b 
v v  N T1 1 v

i<5-"r’1/(i') -iQ*r„.(0) I .
„•e e 14><> (5)

We make use now of a dependence

ei®-r" p ie '1® ‘ t|',= pu- h 3

which may be easily written in the form:

e 4 l ( . . . p  , r  . . .) e‘ ‘Q ' ri/ = H(. . .p -  hQ, r , . . . ) = H

Limiting ourselves to the direct scattering only, we obtain:

X , = < ^ | b 2 eiHV “ V \ ф  > 
v v  4 11 v  ' i  ' ( 6)

Now we represent the Hamiltonian as the sum of translational, ro
tational, and vibrational parts:

H = H . r + H rot + H v i b (7)

and the wave function

^spin Лг AotAib (8)

We shall not at the moment discuss the spin dependence of the 
scattering.

The contribution to the translational part of the expectation value may 
be obtained from a Hamiltonian of a monatomic gas which is:
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the H' is then given by:

H '
(p -hQ )2 

2M

and hence:
/  , I fflr -iH 'T| 4 iT (2 h p -3 -b ! Q ! )/2M<^j|e e I = e r (9)

As we are not interested in the (0, e) but in its thermal average, we per
form an averaging over a Boltzmann distribution of initial states, and ob
tain (for a monatomic gas):

О  (0, e) >T b̂ _ k̂ _ Г 
2тг k0 J  ®

'  h2Q2 
€ + — ■■■2M (t 2 kB T Q 2 fi2)/2M

dT

= b2

M f  Q 2fi2 
M  k 1 ’  2kBT Q V  1ч е+ 2M

2n к BTQ2h2 к о 6 ( 1 0 )

It is not possible to discuss here, in detail, further (i.e . rotational, 
vibrational, spin) contributions to the cross-section. The reader may 
find these details either in original papers [1], [2] or in a monograph [3]. 
Let us now conclude that the vibrational contribution was calculated (fol
lowing the Zemach and Glauber method) by Krieger and Nelkin [4], who 
also calculated the rotational part for classical rotators. The rotational 
contribution for quantum rotators was calculated by Griffing [5].

2.2. Rahman-Griffing Theory

Griffing applied the Zemach and Glauber theory as a basis, and fol
lowed the Krieger and Nelkin method of treating translations and vibrations. 
Hence, the translatory part of the cross-section, which had the form (10), 
is now modulated by a Debye-Waller type of vibrational contribution (in 
which the inelasticity of vibrations is, however, not taken into account).
The rotational part of the expectation value is calculated by Griffing fol
lowing Rahman's method [6]; the resulting double differential cross- 
section for the methane molecule is:

cr(0, e)  = 4crpp(0> e) +  12crpp, (0 > e) +8стс р (0 - e) +стсс ( 0 ,  e) (11)

where

JPP _L
*PP 27Г k 0 ' \! TQ2

2HVT -Qzy,
1
iJ

(t + <*)
" 2TQZ/M

21 + 1  
2j +1

i+J

BT(j) ( 12 )

I HI
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and similar expressions may be written for стрр' , acp and acc. New 
notations used in formula (1 2 ) are:

7v v '
[(C ^  )2 + (C(„V)2]

summation over X means summation over all vibrational modes, are 
vibration frequencies and C u-vibration amplitudes of the y-th nucleus 
(normalised in the way explained in the Krieger and Neljrin paper [4]),

, = A A , + 6 , С C ,i.' II ti' ini II II

where A v and C„ are bound coherent and incoherent scattering amplitudes, 
a ■ replaces the b„ and bu. scattering amplitudes used in section 2 . 1 , 
where the spin dependence of the scattering was completely neglected. 
jn(x) is the spherical Bessel function, j and J are the quantum numbers 
for the initial and final rotational states, B^j) is the Boltzmann distri
bution of initial rotational states for a spherical top, and

Q2 ,i(.i + l) . J(J+1)Гу — ------- — * • *.......  +  ■" —112M 21 21

where I is the moment of inertia.

2.3. Situation in Methane Gas

Griffing's original calculations were numerically performed in order 
to explain the experimental results on gaseous methane obtained by 
Randolph et al. [7]. These results have'shown a significant deviation from 
the theory of Krieger and Nelkin for small energy and momentum trans
fers, i. e. for a region where the quantum structure of molecular rotation 
should have been taken into account. Figure 1 presents a comparison of 
Griffing calculations and experimental results [7]. In calculations, the 
values of the initial and final quantum numbers from 0 to 20 were taken 
into account. It is evident that the theory is able to explain the inelastic 
peak, which arises from rotations, in contrast to the Krieger and Nelkin 
theory. However, it does not give a proper magnitude of the quasi-elastic 
peak as seen in Fig. 1. The second calculation based on Griffing formulas 
was performed by Venkataraman et al. [8] in order to explain Webb's ex
periment with gaseous methane [9]. Here the incident neutron energy was 
much lower than in Ref. [7], hence the rotational effects are much more 
clearly visible. Figure 2 shows again that although the general shape of 
the experimental curve is explained by the theory, there is a small dis
crepancy qualitatively similar to that pointed out in connection with Fig. 1. 
The third calculation based on Griffing was performed by Otnes [10] in 
connection with his experiments on the scattering of cold neutrons by 
gaseous methane. As seen in Fig. 3, a similar disagreement as those from 
Figs 1 and 2 was obtained.
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FIG. 1. A comparison of Griffing theory and Krieger- 
Nelkin theory with experiment [7] for gazeous 
methane. Solid line -  Griffing theory, dotted line - 
Krieger-Nelkin theory.
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FIG.2. A comparison o f 
Griffing theory with ex
periment [8, 9] for gazeous 
methane.



FIG.3. A comparison o f Griffing theory with experiment 
[10] for gazeous methane.
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To sum up, the situation in gaseous methane may be presented as 
follows:

The double differential neutron scattering cross-section is in a wide 
energy and momentum transfer region well described by the Griffing 
theory and also, for large energy and momentum transfers, by the Krieger 
and Nelkin theory. However, for small energy and momentum transfers, 
the Griffing theory seems to be not quite adequate, as there are fewer 
neutrons -  in the quasi-elastic part -  in experiment than in theory, if nor
malization is arbitrarily made in the inelastic region.

200 600 1000 1400
Time of flight ( y v r f 1)

SO40 » " ' f Ö V  6 5 4 5
Energy (mev)

(6)

FIG. 4. A comparison o f Griffing theory with experiment [8, 9] for gazeous ammonia.

2.4. Situation in Ammonia Gas

Venkataraman et al. [8], following the Griffing method, performed 
calculations for ammonia gas in order to explain Webb's experimental 
data [9]. Earlier, but much less accurate calculations were made by 
Czerlunczakiewicz and Kowalska [11]. Figure 4 presents a comparison 
between the experiment and the theory, taken from Ref. [8]. It is evident 
that the same small disagreement which was reported in section 2.3. for 
gaseous methane is also seen for ammonia gas, i .e . there are fewer 
neutrons obtained experimentally in the quasi-elastic region than the 
theory predicts, if one arbitrarily normalizes in the inelastic region.
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2.5. Discussion

It should be stressed once more that neutron scattering in gases is 
fairly well understood in terms of the Krieger and Nelkin theory for large 
energy and momentum transfers and in terms of the Griffing theory in a 
much wider transfer region covering much smaller transfers where the 
quantum structure of rotations must be taken into account. However, there 
is a significant deviation from the theoretical predictions, which is prob
ably localized in the quasi-elastic region. This localization is not quite 
certain as, in order to make it, it is necessary to have absolute double 
differential scattering cross-section measurements. From the methane 
experiments quoted above, only that of Randolph et al. [7] gives absolute 
values of the cross-section. All other experiments [9, 10] give only 
figures which are proportional to the cross-section values. In these cases, 
arbitrary normalizations are necessary, which, of course, do not indicate 
where the disagreement is.

It should be pointed out that the question of whether the disagreement 
is in the elastic or inelastic part, is of primary importance for the theory, 
as the theoretical investigations are entirely different in the two cases.

It should also be stressed that it is very difficult to find any reason 
fcur the discussed discrepancy, as it seems that the Griffing theory takes 
into account all necessary facts. The only possible point which could 
a priori be criticized lies in the fact that the Griffing theory does not take 
the so-called spin correlation effect into consideration.

This effect appears in molecules containing identical nuclei and re
sults in a correlation between the space part and the spin part of the mole
cular wave function. Calculations concerning this effect in gaseous 
methane were made by Sinha and Venkataraman [12]. For a hypothetical 
methane gas at 10°K, the effect on the neutron scattering cross-section ob
tained by them is as large as 30%. For a room temperature methane it is 
negligible, amounting only to 0.7%. In view of this last value, it is highly 
improbable that the spin correlation effect might be responsible for the ob
served discrepancies between the Griffing theory and experiments.

A new attempt to solve this difficulty was made by Fulinski and 
Zgierski [13]. They analysed the influence of intermolecular interactions 
on crtr (6, e), assuming at the same time that Orot (6,e ) and aVib ( 0,e ) remain 
uninfluenced. The authors introduce further the form of intermolecular 
potential, which differs from the generally accepted Lennard-Jones 
potential, in order to have a finite value at r = 0, for these calculations.
The correction obtained is important for small momentum and energy 
transfers only. Numerical calculations were made for the conditions of 
the Randolph et al. experiment [7], i .e . the one which was a basis for the 
original Griffing calculations. The theoretical curve of Fulinski and 
Zgierski is identical with that of Griffing on both sides of the quasi-elastic 
peak as a consequence of the assumption that intermolecular interactions 
influence the ст,г (0, e), i. e. the quasi-elastic part only. The latter is de
creased as compared with the unperturbed case, hence the theory is now 
closer to the experimental points.

These considerations cannot as yet be treated as definite. It is 
necessary to perform more extensive numerical calculations and to com
pare the results of experiments other than those reported in [7].
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3.1. Dynamics of Molecular Solids2

In some crystals it is justifiable to select s groups of atoms in each 
unit cell and call them molecular groups. The i-th group now contains

3. SCATTERING NEUTRONS BY MOLECULES IN A SOLID

r, atoms, and :p equals the total number of atoms in the unit cell.

This procedure allows a classification of the vibrations in the crystal into 
external vibrations (oscillatory motions of the s groups in a lattice) and 
internal vibrations (in each group).

Let us denote by SL, p, v indices numbering unit cells, groups in the 
unit cell, and atoms in the group, respectively. The displacement of an 
atom may be represented in the following form:

(13)

Here S denotes a translational displacement of the ( ~ J group as a whole,
в is the angle of rotational displacement of the whole group, r  ̂ ) is the
position of r-th atom in the p-th group, and W is displacement caused by 
internal vibration in the group.

The potential energy of the crystal may be written in the form of a 
series expansion with respect to 3, 6, W. Denoting by an index a or ß the 
x, y, z coordinates of these variables, we have

o . » »  + , + u3 + . (14)

The U i term vanishes since it contains first derivatives of potential energy 
vanishing as the potential energy has minimum at the equilibrium position. 
The U3 and higher terms are assumed to be zero in this so-called har
monic approximation. The ф are the so-called force constants; they are, 
of course, second derivatives of potential energy taken in equilibrium 
positions.

An expression for the kinetic energy is:

T = M„
£,|i £,fi,v

w fp )̂]2 (15)

where is the total mass of the group and Ijj its inertia tensor.
V

2 This section was prepared on the basis of Ref.[15].
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It is now useful to change variables by substitution:

р=«/м^ S; р=-Л^0; v =

We shall now, additionally, assume that forces between groups are 
small compared with the forces within the groups. This leads to the neg
lect of all ф(ww) except for those with £= £' and ц = ju'. We shall also as
sume that the (SW), (W0), (WS), (0W) force constants are small compared 
with (SS), (S0), (0S), (00).

Taking this into account in writing the equations of motion, we obtain 
two independent systems of equations:

The first two equations determine external vibrations, which may be 
either translational or rotational. There are 3(2s -t) solutions of this kind 
(t denotes the number of groups containing only one atom). The third 
equation describes internal vibrations of isolated molecular groups. There 
are 3(p-2s+t) vibration frequencies.

All solutions are supposed to be plane waves:

ß )  = * o 'eV

Л  \ i( 2ttq *R ( f , )  -  u t
hl ß j = hoe (17)

f t  \ if 2trq -R
v  U  =V0 -e V  

kr

-* f  £Here R
Substituting now solutions (17) into Eqs (16) we obtain relations be

tween и and q, i.e . the dispersion curves. There are altogether 3p curves, 
which may be divided into four groups (phonon branches):

1. acoustic (3)
2. optical translational (3s -  3)
3. optical rotational (3(s — t))
4. optical internal (3(p-2s+t))
In the approximation under consideration, the frequencies of the 4th 

group are-very well defined, i .e . the corresponding dispersion curves 
are flat.

is the position
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In some cases the rotational curves will also be flat: this should 
occur when the mass of the molecular group is much larger than I /r 0 
(r0 being the characteristic distance of atoms in the group). In molecular 
groups containing hydrogen this is very often fulfilled.

3.2, A Brief Look at the Experimental Material Obtained with Neutrons3

The double differential cross-section for incoherent scattering of 
neutrons by the v-th atom in the crystal may be written:

inc d2o),nc 9 k1 -2 wu<r (0, e) = Л  = C2? -  -edOdE wk„
(2W„ )2 ^ (B)G ' ( E ' - E 0) (18)

n=0

where Eq and Ef denote the initial and final neutron energy, e ^E1 -Eo,

G ^ e ) = 6(e)

, , coth ———
G [ v\ e ) = G W (e) whereas GW ( e ) ^  — ^  ^ bT

T 00

С(ь)Де) = f  G(v) ( e - e ’ )G(w)(e')de' n +1 J  n ' '

2W* =

cmax COth
y v ( 0 )  =  j  -------- g j e)de

0

g (e) = g(e) |C (e)

is a function equal to the frequency spectrum of the crystal modulated by 
the squared amplitude of displacement of the y-th atom from the equi
librium position.

Factor C„(e)|, called the polarization factor, is a linear combination 
of 1 P о I* I h о » I vo I which correspond to translational, rotational, and 
internal vibrations. Because of this factor, some frequencies cannot be 
observed. For hydrogen atoms, this factor is almost zero for acoustic 
vibrations. Often the difficulties in determining polarization factors com
plicate the interpretation of inelastic neutron-scattering spectra.

Formula (18) is called the phonon expansion. The term with n = 0 de
scribes elastic scattering. The term with n = 1 describes neutron scatter
ing connected with the excitation or annihilation of a single phonon; this 
incoherent one-phonon cross-section is proportional to the frequency 
spectrum of the crystal. The term with n = 2 describes neutron scattering 
connected with the excitation or annihilation of two phonons (overtones, 
combination bands), eto.

This section was prepared on the basis o f R ef.[1 5 ].
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As the following discussion will be limited entirely to hydrogenous 
crystals we shall not discuss the coherence effects in neutron scattering. 
As examples some few substances studied in the Institute of Nuclear 
Physics in Cracow in cooperation with the Joint Institute for Nuclear 
Research in Dubna will be discussed. The main reason for this discussion 
is to compare the INS data with those obtained in IR and Raman 
spectroscopy.

3 .2 .1 . Methyl Iodide

Solid methyl iodide probably has an orthorhombic structure belonging 
to the C2v space group. Its molecular dynamics were studied by the INS 
method by Janik et al. [14, 15] and by spectroscopy methods by Ito [16], 
Lafferty and Robinson [17] and Dows [13].

FIG. 5. INS spectrum for solid CH3I [15].

Figure 5 presents the INS spectrum and Fig. 6 the function g v{e) for 
hydrogen atoms in CH3I, obtained from the data of Fig. 5 by applying the 
phonon expansion formula (18) in one-phonon approximation (with the 
additional assumption that the Debye-Waller factor is equal tol[15].
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gHfcJ)

FIG. 6. gjjMI function for solid CH3I [15] .

Table I gives a comparison of the INS data [15] and those from Raman 
spectroscopy [16].

There is a very good agreement between the two sets of data in the low- 
frequency region, which is certainly the external vibration region of whole 
CH3I molecules in the lattice. This agreement may be treated as a test of 
the flatness of corresponding phonon branches in view of the fact that 
spectroscopic methods give information on the q = 0 region only (i. e. for 
phonons of very long wavelength) whereas neutrons scan the whole 
q-reg'ion.

There is also a very good agreement in the region of higher frequen
cies, which are interpreted as internal vibrations in CH3I.

The intermediate region appears only in neutron data. Broad bands, 
whose peak values are listed in Table I, are interpreted as arising from 
two-, three-, and four-phonon contributions which are much less eminent 
in spectroscopy than in INS. The small marks made in Fig. 6 indicate the 
positions of such many-phonon peaks, calculated on the basis of single
phonon lattice vibration data. As may be seen, the marks form several 
groups, which roughly correspond to the bands observed.

3 .2 .2 . Methylene Iodide

The situation for CH2I2 is in many respects similar to that for CH3I. 
Again there is good agreement between the INS data of J.A . Janik et al.
[15] and the Raman data given by Ito [19].

A comparison of these two sets of data is given in Table II. The 
agreement seen in the external (lattice) vibration region may again be
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TABLE I. VIBRATION FREQUENCIES IN SOLID CH3I 
INS -  neutron inelastic incoherent scattering method 
R -  Raman method

Janik et al. [15] Ito [16]
INS

temperature -160°C
R

temperature -196°C Interpretation

cm "1 cm "1

- 47

- 58 Translational (T)

71 84

97 94

103 104 Rotational (R)

108 112

182 - two phonons
212

300 - three phonons

387 -  . four phonons

508
508

из o f  CH3I
525

895 888 "6 o f CH3I

TABLE II. VIBRATION FREQUENCIES IN SOLID CH2I2 
INS-neutron inelastic incoherent scattering method 
R -  Raman method

Janik et al. [15] 
INS

temperature -160°C 
cm *1

Ito [19]
R

temperature -196°C 
cm *1

Interpretation

_ 42
Lattice vibrations

(T and R)
115 99

-  . 134 " „ o f  с н ^

230 - 2 X 115

487 487 "3 ° fC H ^

588 575 О О 3

723 - 1/, o f  CHjIj

considered to be a proof of the flatness of the corresponding phonon 
branches.

An interesting (although quite natural) fact may be seen in Fig. 7, 
which presents a comparison of INS spectra for the solid and liquid CH2I
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the high energy parts of the spectra are almost the same in each case, 
which shows that internal vibrations are not much effected by phase tran
sitions; the low-energy parts, on the other hand, are quite different, and 
especially the liquid spectrum is completely smeared out, owing to the 
freedom of molecular motions in the liquid state. 3

c

FIG. 7. INS spectra for liquid and solid СНг1г [15] .

3. 2.3. Thiourea

The situation of CS(NH2)2 may also be regarded as an example in 
which the INS and the spectroscopic data can be compared. There is good 
agreement between the INS data obtained by Bajorek et al. [20], and the 
IR ones [21].

Some additional interesting information on this substance may be ob
tained from Fig. 8, which presents two spectra for hydrogen atoms in 
CS(NH2)2 corresponding to the ferroelectric and paraelectric states [20]. 
As the spectra are practically identical it may be concluded that dif
ferences in the dynamics of hydrogen atoms cannot be responsible for the 
ferroelectric properties of the substance, as was suggested by several 
authors.
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3.2 .4 . Hydronium nitrate

The structure of H3O • NO3 is orthorhombic; H3O • NO3 is composed 
of alternate layers of flat NOj ions and slightly pyramidal H30 + ions. 
There exists hydrogen bonding between the two layers. For this sub
stance molecular dynamics studies were performed by the INS method 
(J.A. Janik et al. [15], J.M. Janik et al. [22]) and by the Щ method 
(Savoie and Giguere [23], Bethell and Shepard [24]). Figure 9 shows the
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TABLE III. VIBRATION FREQUENCIES IN SOLID H30  ■ N03 
INS -  neutron inelastic incoherent scattering method 
IR-infrared spectroscopy

Janik et al. [15] 
INS

temperature -150eC 
cm "1

Savoie & Giguere [23] 
IR

temperature -180°C 
cm “ 1

Interpretation

117 Tz

164 г

20b 205 Tx

246 237 TY

321 329 +

758 675 R

gy(e) function corresponding to hydrogen motions in H30  • N03 in crystal
line form, obtained from INS data [15]. Table III gives a comparison be
tween the INS [15] and IR [23] results.

We shall restrict ourselves to a discussion of a disagreement which 
exists for the high-frequency band. The INS result is a broad band with 
maximum at 7 58 cm-1, whereas the IR result gives the value of 675 cm ' 1 . 
A possible explanation may lie in the dispersion of the corresponding 
phonon branch which leads to a broadening and to a change of frequency 
of the INS data as compared with the IR data, the latter being limited to 
the q = 0 region only-. Another explanation might be that there are two 
maxima unresolved in the INS data: one at about 670 cm' 1 corresponding 
to torsional motion R x and Ry of the H30 + group and another one at 
higher frequency corresponding to Rz, which is not being seen in IR in 
view of the selection rules.

3,3. The Case of NH4C1

We shall discuss this case separately as (apart from the case of 
methane) the NH4C1 (structure shown in Fig. 10) is the only substance for 
which some theoretical predictions concerning the molecular dynamics of 
the NHJ ion could be made. These predictions, made by Parlinski [25], 
will be summarized below.

FIG. 10. Structure o f  NH.C1.



594 JANIK

It should be clear from the theory presented in section 3.1. that to 
solve a problem of molecular dynamics in a crystal it is necessary to know 
all force constants (ф ^  , ф^у\ . . . , Ф ^  > ■ ■ ■ > etc). The total number 
of force constants of this type is reduced since there exist some mathe
matical connections between them, in which no additional physical know
ledge of the system is involved. Parlinski further obtains some force 
constants from an electrostatic model, in which the NH4 ion is approxi
mated by a composition of four electric charges, each +(e/4), situated in 
the hydrogen positions, whereas in the Cl positions charges -e  are placed.

FIG. 11. Dispersion relations for NH4C1 [25].

There are still some force constants unknown so it is necessary to 
take some experimental data into account. These are: the moduli of 
elasticity of the substance, and the q = 0 values corresponding to trans
lational and rotational vibrations of the NH4 groups. On this basis it is 
possible to obtain the remaining force constants, and hence the dispersion 
relation (phonon branches) for the three important directions in the 
NH4C1 crystal (Fig. 11). It may be noticed that the phonon branch cor
responding to the torsional motion of the NH4 group is indeed very flat, as 
explained in section 3.1. It should give rise to a very sharp peak in the 
INS spectrum, as is indeed observed at 49 meV in Fig. 12 [26]. The peak 
at 22. 3 meV is caused by translational vibrations of the NH4 group, and 
those pertaining to higher energies are overtones and combination bands.

3.4. Situation in Solid Methane

We shall discuss only the situation in solid CH4 near the melting point. 
At these temperatures carbon atoms form a cubic lattice. The rotational 
and translational motions of the CH4 molecules in this lattice are an open 
problem.

INS measurements with solid methane were made by Stiller and 
Hautecler [27], Harker and Brugger [28], and Otnes [ Г0].

An attempt to understand the INS results was made by Kosaly and 
Solt [29] and by Solt [30], who tried to fit their calculations to the con
ditions of Otnes' experiment. These considerations will be discussed 
below.
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FIG. 12. INS spectrum for solid NH4C1 [263-

FIG . 13. INS spectrum for solid CH 4 [10] . Solid line -  Griffing theory with incident spectrum used in 
experiment. Dotted line -  Griffing theory with monoenergetic incident spectrum.

Otnes [10] tried to understand his results with solid methane in terms 
of the modified Griffing theory, assuming (as Griffing did for СЩ gas) 
that molecular rotations are free in solid CH4, but translations are com
pletely stopped. Figure 13 presents Otnes' data and their comparison
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with this kind of modified Griffing theory. The normalisation was arbit
rarily made at the quasi-elastic peak. One may observe a distinct dis
agreement, as there are more neutrons scattered in the inelastic part 
than is predicted by theory. Also the shape of the inelastic part is dif
ferent from that predicted: especially characteristic and not easy to ex
plain is a flat part of the inelastic spectrum in the region of small energy 
transfers, or, in other words, an inexplicable shallow "valley" between 
the inelastic and quasi-elastic parts.

Solt [30] introduces rotational hindrance in solid methane by assum
ing a hindering potential. He introduces (£q(u), the wave function of the 
hindered rotator, expanding it in a complete set of the free-rotator eigen
functions <Pjmk(u}:

= X “ jmk ĵmk M  <19>
jmk

where r denotes the quantum number of a hindered rotator and a are coef
ficients of expansion which are to be determined.

We put further:

<PimkM
2T+T
8ir2 '& mk ( u ) ( 20 )

as the ^-functions are used in a formula for the hindering potential, which 
is supposed to be:

v (W)=/3.b { t^ > >  +

+ j +^ .444и +a>4i_4(u)+ 0 $ г 4 т  (2D

where В is a rotational constant.
Solt analyses further the role of the ß parameter in the shape of pre

dicted INS spectra, assuming the translations to have been stopped, and 
adjusting all conditions to those in Otnes1 experiment. Figure 14 shows 
the results for /3=0 (free rotation) and ß = 8 (rather strong hindrance) 
together with Otnes1 data. It is evident that rotational hindrance smears 
out discrete rotational peaks, but it does not explain the magnitude and flat 
shape of the observed spectrum. It is clear that further improvements 
of the model of dynamics in solid methane are needed.

Kosaly and Solt [29] analysed the influence of translational vibrations 
of CH4 molecules on the form of the INS spectrum. They showed that if 
the frequency of such vibrations is low, their influence on the form of the 
spectrum is quite significant and, as needed, they increase the inelastic 
part, the "valley" between the elastic and inelastic parts at the same time 
becoming filled. In Fig. 14 this translational contribution is exemplarily 
shown for uD = 50 cm”1 and for uD = 100 cm"1.

It is suggested [30] that a complete understanding of the solid methane 
INS spectrum may be obtained by assuming an almost free rotation and 
translational vibrations,the frequency of which is not higher than about 
30 cm"1.
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FIG. 14. Comparison o f Solt theory [30] with experiment [10] for solid methane. -------- hindrance para
meter 0 = 0. --------- hindrance parameter 0= 8....................... (a) translatory contribution wD = 50 c m '1.
............. (b) translatory contribution o p  = 100 cm -1.

4. SCATTERING OF NEUTRONS BY MOLECULES IN A LIQUID

4.1. General Remarks

We shall not discuss here the very special subject of molecular self
diffusion in liquids, for whose study neutrons proved to be a very powerful 
tool. The reader may find general and detailed discussions of this subject, 
for example, in a monograph edited by Egelstaff [31].

As a matter of fact, apart from the diffusion problem, other problems 
in molecular liquids are, in principle, the same as in solids, i .e.  when 
investigating liquids by neutrons, we are interested in the frequency 
distribution of molecular vibrations which, together with diffusion motions, 
form what is called molecular dynamics.

In the following two sections we shall exemplarily discuss two liquids 
from the point of view of molecular dynamics, water and liquid methane.

4.2. Situation in Water

The structure of ice was studied by a number of authors who applied 
different techniques, among which X-ray scattering appears to be the most 
powerful. In this structure each oxygen atom is connected by tetrahedral
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arms to other oxygen atoms with hydrogens separating them. This struc
ture has considerable free space into which some water molecules may be 
introduced if they are for some reason separated from the hydrogen-bonded 
structure. .

FIG. 16. INS spectrum for liquid C H 4 [10] . Notations the sam e as in Fig. 13.

This situation stimulated Szkatula and Fulinski [32] to interpret the 
INS data for water and ice in the following way:

They observed that the INS spectra for water and ice differ signifi
cantly, as shown in Fig. 15. Hence the frequency spectra also differ, 
which must result in a difference of specific heats. If, however, we com
pare this difference in specific heats with that measured by the calori
metric method we notice that the difference obtained with neutrons is ap
proximately five times less than that known from calorimetry. The 
authors now make an assumption that the total specific heat (as measured
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in calorimetry) is a composition of dynamical and associational parts, the 
latter being connected with the energy needed for breaking the hydrogen 
bonds at melting:

c=cdyn+cass0C-

From the difference between calorimetric and neutron specific heat 
data the authors are able to obtain information concerning the number of 
hydrogen bonds broken at melting, and they conclude that about 30% of 
hydrogen bonds are broken at 0°C.

300 600 900 300 600 900 1200

time of flight (/* sec m'1)

FIG. 17. INS spectrum for liquid C H 4 [3 4 ] ,  [3 7 ]. Lines correspond to two m odels, both with hindered rotation. 

4.3, Situation in Liquid Methane

Liquid methane has been investigated by the INS method by several 
authors. Hautecler and Stiller [33], Harker and Brugger [28], Otnes [10], 
Dasannacharya and Venkataraman [34] performed measurements with CH4 
liquid, and Venkataraman et al. [35] with liquid CD4.

Theoretical attempts to understand the experimental material were 
performed by Griffing [36] and by Sears [37].

We shall limit our discussion to only a few remarks.
First, it should be noticed that apart from a broadening of the quasi

elastic peak, which is explicable in terms of self-diffusion, the inelastic 
part of the neutron spectrum is very similar to that obtained for the solid 
CH4.

A very natural attempt to understand the experimental data is to try to 
fit them with a modified Griffing theory with free molecular rotations and 
translations replaced by a simple diffusion. As shown in Fig. 16 [10],
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there is a significant disagreement. If the theory is arbitrarily normalized 
to the quasi-elastic peak, there are (similarly as for solid CH4) more 
neutrons than predicted in the inelastic region, and (again) the "valley" 
between the quasi-elastic and inelastic parts is inexplicably shallow.

A similar situation was obtained by other authors and for both CH4 
and CD4 [34, 35].

Some improvement was obtained by Sears [37], who tried to interpret 
the data of Dassanacharya and Venkataraman [34] by introducing the ro
tational hindrance. The hindrance was taken into account in a semi- 
empirical way, by using the Ш data for liquid CH4. Such a treatment was 
successful in explaining the practical lack of valley between the inelastic 
and quasi-elastic parts but there are still more neutrons in the inelastic 
region than theory predicts, as seen in Fig. 17.
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1. INTRODUCTION

The dynamical theory of classical liquids is very little understood.
We are in a much better situation regarding the theory of the quantum 
liquids He II and He3. In the last few years inelastic neutron scattering 
experiments have revealed many interesting features of the atomic motions 
in liquids. For example, we now have some evidence of the existence of 
collective motions not only in the very long wavelength and low-frequency 
region, but also in the very short-wavelength and very-high-frequency 
region. The single-particle motions as revealed by neutron scattering 
experiments are more complex than we had hitherto anticipated; they are 
not governed by the simple Langevin equation. The task of the theorist 
is to explain these features from first principles. Not being able to do so, 
he has been forced to propose, during recent years, several models 
furthering the understanding of neutron scattering results. To a certain 
extent, these phenomenological models have helped us to understand 
the nature of atomic motions in liquids, but the basic problem still remains 
unsolved.

The state of the subject up to the beginning of 1964 has been 
summarized in two excellent review articles, one by Sjölander and the 
other by Larsson [1]. In these lectures I shall, therefore, confine myself 
to what has been done since then, and be mainly concerned with theoretical 
developments. For the sake of completeness, my first lecture will cover 
material with which some of you are perhaps fimiliar. 2

2. CORRELATION FUNCTIONS

We shall begin with the well-known formulae for the coherent and 
incoherent differential scattering cross-sections first derived by 
Van Hove [2] using the first Born approximation and the Fermi pseudo-

603
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potential. These are

and

d2 CTcoh x _ _b_ _k
dfi du 27г кц

9 9 _  2d Qjnc _ цл- b - b к 
dß du 2тг k0

' i(K- г -ш t)

'  i(K-r-wt)

G(?, t) dr dt

G r̂*, t) dr dt

(la)

(lb)

where hie and ftu denote, respectively, the momentum and energy transfers 
in the collision between the neutron and the scattering system and are 
given by

and

к = к - k0

ftu ft2kjj ft2k2
2m 2m ( 2 )

m is the neutron mass and kQ and к are, respectively, the initial and final 
wave vectors of the neutron, b2 and ( b5 - b2) are the squares of the usual 
coherent and incoherent scattering lengths. The correlation functions G 
are defined by

G (?,t)=  i  £  jTd̂ ,<6(?+Rj (0) - ? ’) 6 (?' - Rj(t)) > (3a)
and iJ

/ d?,<6(? + R i(° ) -? ')  6 ( ? ' - ^ t(t))> (3b)
' i

where 6(- • •) is the Dirac 6-function, Rj(0) and Rj(t) are the usual 
Heisenberg operators denoting, respectively, the positions of the j*  
atom at time t - 0 and that of the ith atom at time t. The bracket <(•••)> 
denotes the statistical average corresponding to equilibrium conditions 
at temperature T.

To understand the physical meaning of the G-functions let us go over 
to the classical limit where the operators in (3) can be permuted at will. 
Performing the integration and remembering that the atoms are 
equivalent, we have

G (? ,t)= ^ < 6 (?+ R 0(0)-R .(t))>  (4a)
and 1

Gs(r,t)=<6(?+R 0(0 )-R 0(t))> ( 4 b )

where Ro(0) is the position at t = 0 of an arbitrarily chosen atom. As a 
consequence, we have for t = 0

Gs(r, 0) = 6(r) (5a)

G(r, 0) = 6(r) + pg(r) (5b)



ATOMIC MOTIONS 605

where g(r) is the static pair-distribution function which gives the 
instantaneous probability of finding a particle at ?  around a particle at 
the origin. For t -*• Gs(r, °°) = 0 and G(r, °°) = p, the mean particle 
number density. G(?, t) thus represents the probability of finding any 
particle at r at time t if there was a particle at the origin at t = 0. On 
the other hand, Gs(r, t) gives the probability of finding the particle at 
r at time t if the same particle was at the origin at time t = 0. The latter 
is thus related to the self-diffusion in a liquid. Such a simple interpre
tation is valid only in the classical limit. In general, these functions 
are complex whose real and imaginary parts are related through the 
fluctuation-disipation theorem. Since it has not been possible to calculate 
these functions rigorously for a liquid, one resorts to model calculations 
guided by the above mentioned physical considerations.

Writing the density operator p(r, t) as

valid for a homogeneous system. G(r, t) thus gives the correlation between 
the densities at two different positions and times. Equation (7) brings out 
clearly the collective aspect of the G-function.

Remembering the definitions of the G-functions and taking the Fourier 
tranforms, Eqs (la) and (lb) can also be written as

( 6 )

we can express G(r, t) as

- 4 <p(0, 0) p(r, t) > (7)

2
(8a)

and

(8b)

where the intermediate scattering functions F are defined by

(9a)
i.j

and

> (9b)
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Let us define the dynamical structure factor S(k, u) through the relations

1 Г  _itJt
S c o h ( K' ш) = ^7 J e F(K,t)dt (10a)

and

Sinc^’ U)= ^  f e ' Wt * & * ) * *  (10b)

With the above definitions, we see that the coherent and the incoherent 
differential scattering cross-sections are, respectively, proportional 
to Scoh(/c, u) and Sinc(i?, w). It is these functions which are determined by 
a scattering experiment. We could not ask for more information than 
what is provided by these functions. It is complete. In practice such 
complete information for all к and и values is not available.

3. SUM RULES

The functions S(ic, u) satisfy certain very important sum rules which 
serve to check the internal consistency of any experiment or a theory. 
From Eq, (10a) we have

(i?, u ) du = S(ic) = F(ic, 0)

= 1+F(ic) ( И )

where
_  Г iKTГ(к) = p j  e (g(r) -1) dr (12)

using Eqs (9a) and (5b). The X-ray scattering experiment usually gives
S (if).

Similarly,

fS in c ( ' ‘ * UJ) dtJ = Fs(i?* ° ) =l (13)
•  00

From Eq, (10) it follows that

wcoh = J'**3 SCOh(K* u) d(j (~i) F ( K , t ) ^ ( 14a)
-  oo

and
+ « n

s  s in c (“ .  u ) d u  = ( - i ) n ( j p r  Р8 ( к , 1 ; ) ) г _ о ( 1 4 b )
•  00
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One can easily show that

and

w'coh
flic
2M (15a)

. hx 
' 2M (15b)

where M is the atomic mass. Notice that the first moment is independent 
of the interaction between the particles of the system and is the same 
for both the coherent and the incoherent case. Quantum-mechanical 
expressions for the higher moments have been given by Rahman et al [3]. 
Since in this series of lectures we shall be mainly concerned with 
classical liquids we shall, following De Gennes [4], derive expressions 
for these moments in the classical limit.

From (11) and (14a) we have

NS(/c) < P .? ( ° ) ^  f^(t) >t = 0
(16)

where

i

which denotes the xth Fourier component of the density fluctuation p(r). Now

< p*(°) PLfW > = Ж  >

= -<p*(-1) P^O) >

= -<p^(0)pt (t) >

(18)

since the ensemble average is independent of the time origin. 
From (17) we have

. V 1 i«X(W
P? (t) = iK L e Vix (t) ( 19)

where the direction of < has been chosen along the X-axis. vix denotes 
the velocity'of the i,h particle in the X-direction. Using (18) and (19) in 
(16), we have
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“ 2 - -̂ coh _ *
£?> NS(k()

i K ( X . - X j )
v v

ix ij  
ij

>

__ i _
NS(k) E e  > < v i,

1
S(k)

2/  2 \  
К < V .  >

IX

1 .дквТ 
S(k) M

(20)

The second step follows from the fact that the velocity and position are 
uncorrelated in a classical system. The third step follows from the fact 
that only terms with i = j contribute.

Proceeding in a similar manner we can show that

U c o h  -  _____L _

ĉoh NS<K>
<P -(0)p-(t) >

~ к  К t = 0
( 2 1 )

where

■■ .2 V  i K X i (t) 2 - V  iKXi «  •
Р ^ ) = ( 1 Х )  2 /  ^ х ^ ) + 1 К А е  v ix (t) ( 22)

Substituting (22) into (21), we have for the right-hand side of (21)

K4 V < v 2 V 2 eiKXi2 > + ^ Y < f v 2 ™  - v 2 L  vix vjx 7 M L  \ )X ЭХ. i:
ij ij

к2 У 2  3U  ЭЦ ж Xij ч
Z_E 9Xj 3Xj 7

where we have put

3U 1

(23)

1X 3Xj M

U is the potential energy of the system; it is a function of all the co 
ordinates of the particles. Using the well known result

< p g > k BT < | | >  (24)
i  i

in (23), where . . .  Rn) is any regular function of R, we have

ĉoh - 1
ĉoh '

3«4 kaX
M + K- ^Z<:;квТ

U P  N X 4 ЭХ ЭХ.
i j  1

3 U eiKXij ^ (25)
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Similarly, one can show that

3k - o , 4  ( k bT  f A bT / 3 2U ,
Ш \ M )  M 2 ЧЭХ?7m e 4 1

(26)

Since =У’u = ^ v ( Rij:
i <3

< S ? >
(27)

Using (27) in (25) and (26) we have

4 4CJpoh _ к квТ
'^oh м ^ (К) 3kBT+ g(R) 1 - c o s k X   ̂ f  Э V

Ш dR (28)

and

4 _ Л в Т
M " 3kBT + /g (R )4 j ( p ) d S (29)

Defining a frequency fi0 by

Mß20 dR g(R) Э2 V(R) 
ЭХ2 (30)

Eq. (29) can be written as
“ 2"

Vine' inc 0 (31)

For very large values of к the second term in (31) is negligible
compared to the first and in that case Ш;4ПС = 3 which implies that 
Sinc(i?, u) is a Gaussian function of u. For a perfect gas model neglecting 
recoil we have

S?
,gas M

27гквТ,
1
) e

Mm*
2KjkBT (32)

which leads to (31) with no second term. Thus, for very large values of 
k, the gas model is a good approximation. On the other hand, for small 
values of к the fourth moment given by (31) is much greater than that for 
a Gaussian model, thereby implying that the actual Sinc(K, u>) has large 
wings as for a Lorentzian distribution. For the coherent case we have
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which in the limit of large к reduces to

again implying that in this limit the gas model is good. For intermediate 
values of ic this ratio shows strong fluctuations as a function of ic. It has 
the largest value for that "ic for which S(k) is maximum. This means that 
for such ic values the distribution Scoh(ic, u) becomes narrow in the centre 
and broad in the wings. Such a narrowing effect in quasi-elastic 
scattering was first predicted by De Gennes [4] and was later observed 
experimentally by Brockhouse and Pope [5]. This result as deduced from 
sum-rule arguments is quite general and does not depend on any specific 
model. Any model must fulfill these sum-rule requirements.

Remembering the definition of the bracket^........ X Eq. (10a) can
be written as

where Z is the partition function, ß = l /k 0T, and | m ) and |n /  denote, 
respectively, the initial and final exact eigenstates of the system 
corresponding to the energies Em and Ед.
Furthermore, we have

X <m I е Гк-¥ 0) I n><n I eiHt/* е ^ (0) e iHt/fi | m>

m , n

where

or

(34)
m , n

Interchanging the indices in (34), we have

m ,n

= Ne*wS Scoh(?, <-oj)
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where we have used the fact that | (P^)mn | = | (P-£)nm ! which follows from 
time-reversal invariance. We have thus proved the following important 
result:

S c o h ( ? * - “ ) =  ( 3 5 >

The above result is a sophisticated statement of the principle of detailed 
balance.

Relation between SC0h(ic, ш) and the density-density response function
# , m ) :

The function \(k, u) is defined by the relation

X(i?, w) = (36)ф(к, и)
where^p(/J, и)У is the Fourier transform of the average density fluctuation 
and ф(к, ш) is the Fourier transform of an externally applied weak scalar 
potential. Using Kubo's linear response theory one can derive an 
expression [6] for x(k, u). It is given by

X(iu u) =
m ,n

1
u + 4im + ih

where p -*■ +0. Let

(37)

Х ( к ,  t o )  =  x' (к, u) + ix" (к, t o )

where x' and x "  are, respectively, the real and imaginary part of x. 
Using the identity

_ J _  = p ( i j  + i* 6(x)

we can write for the imaginary part of x(<, w)

X " ( *•“) X'
-8E„

(pt) IКПШ - S(“  + “ nm)
т , п

Using (38) we can write (37) as

X(k, to) = 1
7T

dto1x"(*, Ц')
to1 - to - irj

(38)

(39)

X”  (i?, to) thus serves as the spectral density for x(x, w). Using (34) and
(35) x "  0?, to)'can be written as

X "  ( к ,  u )  =  - t t N  S c o h ( / ? ,  t o )  -  S c o h ( x , - u )  У

= -:rN (l-e® “ ) Scoh(i?,u)
(40)
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The above equation relates the imaginary part of the response 
function to S(k, со)  which is the Fourier transform of the density fluctuation. 
It is called the fluctuation-dissipation theorem. Defining a symmetrized 
)э(к, u) through

S((?,u) = (S (5c,u) + S h (ic, - 4 ) ) / 2

_ Scoh(*, u) [1 + е-А̂ ш]
(41)

we can write

s(k. w) = -  X " ( i c , u )  coth ^| —

Integrating both sides with respect to y, we have

NS(-c) = - x " (к, u) coth (&jj±
- oo

where N is the number of particles per unit volume.

It can be shown that [6]

Lim x(ic, 0) = -N2KiS0 

N
= ' MsL

(42)

(43)

(44)

where Kiso is the isothermal compressibility and sis0 is the isothermal 
sound velocity. From (39)j (40) and (44) it then follows that

Lim 
"it-* о

2N f  du = Lim. Г 1 f d u x ! ^ l l
J w J k-*-0 L ir J u J

N (45)

4. INCOHERENT SCATTERING

A good discussion of various models for the self motion of an atom in 
a liquid has been given in the review article by Sjölander [1]. We shall, 
therefore, not go into this discussion but rather concentrate on more 
basic considerations. It has been shown by Rahman et al.[3] that the 
intermediate scattering function F (к, t) can be written as

F
s

(к, t) = e -K*r i (t) + 0 ( к 4) (46a)

where
t

7i (t) = ~2М + I / ~ u)<v(0) • v(u)> du 
0

(46b)
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<\?(0) • v(u) > is the velocity autocorrelation function. In Eq. (46) terms 
of order к4 involve higher velocity correlations which can symbolically 
be written as

<1234> - <12> <34> - <13> <24> - <14> <23>

If we neglect these and higher-order correlations we have for Fs (ic, t) 
a very simple expression

Fs(ic,t) = e ‘ KV >  (47)

which is valid only under the above assumption. This approximation is 
called the Gaussian approximation since it leads to a Gaussian form for 
Gs(r, t). From very general considerations it follows that Gs(?, t) for a 
liquid is Gaussian both for very small and very large times. It is only 
in the intermediate time region that it is non-Gaussian. There are 
indications that the non-Gaussian corrections are small. Thus (47) is a 
reasonably good approximation. 7 j(t) is the time-dependent width of the 
distribution and, as is seen from (47), it is complex. For a harmonic 
solid (47) is exact.

From the definition (9b) of Fs (ic, t) it is easy to show that [7]
+ oo + co

J e ImFj (ic, t) dt = - itanh J e  Re Fs (ic, t) dt (48)

Equation (48) implies the following relation:

Im Fs (ic, t) = - tan Re Fs (?, t)

Let us define a new function Hs(i?, t) through

Hs(k, t) = Fs 1 K,t + ~2
i f t f

(49)

(50)

or
iftß d

Hs(k, t) = e 2 d‘ Fs (ic, t)

= sec ft ß d 
, 2 dt Re Fs (ic, t) (51)

using (49). Hs(k, t) is therefore real and an even function of time (since 
Re Fs (ic, t) is an even function). One can also show that

where

H,(^ t )
-K 2p(t)e

p(t) = ft2
8Mk„TD 0

(t-u) < v(0) • v(u)>
c l x

(52)

(53)
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And

+ 00

I -iw t TT .e Hs(k, t) dt (54)

Thus, for a classical liquid the problem of calculating the incoherent 
scattering cross-section is reduced to that of calculating the classical 
velocity autocorrelation function.

5. FREQUENCY SPECTRUM

Sinc(/c, u) is related to the frequency spectrum of the velocity auto
correlation function (see Eq. (63)). A measurement of the former can, 
in principle, determine the latter. Let us define [3] two frequency 
spectra related to the real and imaginary parts of the velocity auto
correlation function

(55)
о

and

(56)

Using the fluctuation-dissipation theorem(48) it follows that

(57)

Integrating (55) with respect to t, one can show that [3]
CO

(58)
0

f(u )is , therefore, normalized.

Taking the inverse Fourier transform of (56), we have
CO

0

which on using (57) becomes
CO

0
(59)
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This relation is exact. In the classical case the above equation reduces 
to

2M
37ГквТ ^v(0)-v(t))> cos(ut)dt cl

The diffusion coefficient D is given by

1
3 J < v ( 0 ) - v(t) \/ Cl0

dt

(60)

(61)

It follows that

f (0) = 2MD 
ik  T

Also one can easily show that

Lim
k-*0

(?, ш) = ft
4M U) f (ш) 1 + coth Tita

2kBT

(62)

(63)

The above relation is exact. In principle, using (63) one can determine 
f(u) if one knows Sinc(ic, u) for very small values of it. In practice, this 
procedure has not proved very successful.

If we assume that the motion of an atom in a liquid is governed by 
the Langevin equation, then the velocity autocorrelation function is an 
exponential. This leads to a frequency spectrum which is Lorentzian. 
From the available experimental data, although not very reliable, it is 
certain that f (u) does not have a Lorentzian shape. Computer experiments 
of Rahman [8 ] for liquid argon have given detailed information about the 
behaviour of 'Cv(O) • v(t)^ and hence of f (u). The former (open circles) is 
shown in Fig. 1. From an inspection of Fig. 1 it is clear that ^7(0) • v(t)^ 
is far from being an exponential function. Its characteristic feature is 
that it drops sharply to zero in a time of the order of 3 X 10"13 sec and 
then remains negative until it finally goes to zero. There does not seem 
to be an indication of damped oscillations in this function for the case of 
liquid argon, but oscillations might very well exist for liquid metals.
The frequency spectrum (dashed curve) obtained from this velocity 
autocorrelation function is shown in Fig. 2 and has a broad peak.

The behaviour of <о?(0) • v(t)X suggests that the motion of an atom 
in a liquid consists of a diffusive component and a vibratory component. 
Models which take into account these two kinds of motions have been 
proposed. Certain parameters are introduced in these models in a rather 
ad hoc manner and cannot, therefore, easily be related to microscopic 
quantities.

6. MEMORY FUNCTION

Let us define a normalized velocity autocorrelation function <£(t) by

<Kt) = <v(0)-7(t)> /<v2> (64)
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О
( kBT/fi) t

10

FIG. 1. V e loc ity  autocorrelation in liquid argon at 8 5 .5’ K. Curve A : (u^|a v  = 50 X 1024 s e c '2, 
D = 1.88 x 1 0 "5 c m 2 s e c '1. Curve B: (w2)av = 45 x 1024 s e c - 2 , D = 1 .8 8 x 10_S cm  s e c '1. The 
c ircles  are from  B. R. A . N ijboer and A. Rahman, (Physica 32 (1966) 415).

FIG. 2. C alculated frequency spectrum o f  ve loc ity  autocorrelation in liquid argon at 85.5°K. Curves A 
and B: data as in F ig . l .  Curve C : ( o / ) av = 50 X 10z4 s e c " 2, D = 2.07 x 10‘ 5 c m 2 s e c " 1. The broken 
curve is from A. Rahman, (J. ch em . Phys. 45 (1966) 2585).

Equation (60) can then be written as
OO

f (to) = ^ J<j>(t) cos (tot) dt 
о

the inverse transform of which is

*(t) = J'f (to) cos (tot) dto
о

(65)
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Making a Taylor's series expansion of <£(t) and remembering that it is an 
even function of t, we have

« ■ К 1# 1; ,
n = 0

Z n м2п 2n

( - 1) (to,!* ( 6 6 )

where use has been made of (6 5) and u2n is defined by

2nCJ 2n f(w) dto
0

(67)

Differentiating (66) once, we have

dflt)
dt

n = 1

tJ2n 2n-l
(2n-l)'. * ( 6 8 )

Let us write

2п V /  n k 2(n‘ k) (2k' 2)u = > (-1) u a 
к = 1

(69)

which expresses the 2nth moment as a linear combination of all the lower 
moments. af2k"2) are arbitrary numbers. Using the identity

l
J xß (1 -x)^ dx =
о

ß  '• У !
(ß +Т + 1)1

(70)

it can be shown that (68) can be written as an integro-differential 
equation

t
^  - J Y ( t) Ф ( t - т )  dr= 0 (71)

о

In Eq. (69) â 2k) is the 2kth moment of the Fourier transform of Г(т). 
Equation (69) can also be written as

=I (-i)k u2(n'k)(f^ r(t0  (72:
к = 1 t = 0

Equations (66) and (71), therefore, provide two equivalent formulations of 
the problem which are connected by the relationship (69). The advantage
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of using Eq. (71) is that it enables one to guess a reasonable functional 
form for the kernel T(t) which has the physical meaning of a memory 
function. The foregoing discussion is due to Singwi and Tosi [9]. A more 
formal derivation of (71) from statistical-mechanics considerations was 
given earlier by Zwanzig and Mori and later used by Berne et al.[10] to 
discuss the velocity autocorrelation function.

The frequency spectrum f(u) can also be evaluated directly from the 
Laplace transform of the kernel T(t) for imaginary argument. Indeed, 
by multiplying both sides of Eq. (71) by exp(±iut) and integrating over 
time we find

f(u) = -
. f  ( i w )  +  i w  F (

1-iu) - iu j

where

- Г ±iwtГ(± iu) = / T(t) e dt

In particular, one has

f(0) = - f r(t) dt
-1

On using (62), (75a) becomes

2MD = _ 2 
7rkBT  it

OO _.

J r(t) dt

(73)

(74)

(75a)

(75b)

One sees immediately from Eq. (71) that when T(t) is a delta function 
0(t) is an exponentially decaying function corresponding to the motion of 
a particle governed by the Langevin equation. On the other hand, if 
T(t) is a constant, ф(t) is an oscillatory function corresponding to the 
case of an Einstein oscillator. Thus, the two limiting cases are contained 
in Eq. (71) for an appropriate choice of the memory function. A simple 
and reasonable choice for the memory function in a liquid will be a 
Gaussian form

-Bt
T(t) = - Ae (76)

We note that the choice of an exponentially decaying memory function is 
not consistent with the relationship (69), since only the zeroth moment of 
its Fourier transform exists. However, this form of the kernel may be 
alright for very large times but then these times do not play any 
significant role for our present discussion.

For a Gaussian kernel, the frequency spectrum f(u) tends to zero at 
high frequencies as u2 exp ( -u2/4B ). On the other hand, for small 
frequencies it has the form

f(«)=f(0) ;t 1 + 4B 1 - Ü
7Г

В
A

(77)
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f(io) will, therefore, have a positive slope in this limit if the parameters 
satisfy the condition (see Ref. [9]):

0. 057 Bf A 4  0. 943

The parameters A and В can be fixed from experimental data by 
means of Eq. (69) for n = 1, and from Eq. (75). These give

and

Now
ГзII (78)

1в
A

1 1
= 4 * f(°) (79)

J
sI coII

1 C'J 
1 3 J g(?) V ф(?) dr (80)

where g(r) is the pair distribution function, ф(r) is the interatomic 
potential, and M is the atomic mass.

7. THEORY OF SELF MOTION

In Fig. 3 the dashed curve shows the memory function T(t) (rather 
F(t)/r(0)) as obtained by Rahman [11] from a numerical solution of 
Eq. (71) using his computer data for ф(t) for liquid argon. One notices 
that T(t) has two important characteristic features: (a) it drops very 
sharply from its value at time t = 0 to a value which is smaller by an order 
of magnitude in a time range of 3 X 10’ 13sec, and (b) it has a fairly long 
tail with a much smaller time dependence. The theory that I am going to 
outline has been recently worked out by Singwi and Sjölander [12]. This 
theory is capable of explaining these two characteristic features of T(t) 
in terms of g(r) and ф(r). In this sense, it is what may be called a 
first-principle theory. Since the theory is somewhat involved, I will only 
attempt to sketch its outlines without going into too many mathematical 
details. The interested reader should refer to the original paper.

The basic physical idea underlying the theory can be briefly 
summarized as follows: we focus our attention on an atom marked "blue" 
and having a velocity v Q(t) and ask how the surroundings will respond to 
the motion of this marked atom. The change in the density of the 
surroundings arising from the motion of the "blue" atom is calculated 
from a simplified Liouville equation. Knowing the change in the density 
enables us to calculate the force on the "blue" atom from the surroundings 
and hence enables us to write its equation of motion. From this equation 
of motion we fin'ally obtain an integro-differential equation of the type (71) 
for the velocity autocorrelation function.

The one-particle distribution function f^x , p, t) of the surrounding 
medium is governed by the equation
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F IG .3. Ratio e x p ( t / r ) r 0( t ) /T o (O) versus tim e  and versus the param eter i  = a ( t ) /A „ .  The solid curve repre
sents the ca lcu lations o f  Singwi and S jölander for r  = " ,  and the corresponding dotted curve is for t  = 1 .0 x 1 0 "12 
sec. The dashed curve represents Rahman's m achine com putations o f  the m em ory function for liquid argon 
at T  = 8 5 .9 ”K.

where " l "  is here an abbreviated notation for (2,]5. t) and Vx and Vp stand 
for gradients with respect to x and p, respectively. ? 0(t) denotes the 
position of the "blue" atom. V(x) is the interaction potential between the 
atoms. The third term in the above equation is due to the influence of 
the "blue" atom. The last term takes into account all interactions between 
the surrounding atoms and contains the two-particle distribution function 
f 2(l, 1'). Writing

f1(l)=f°1(l) + f'1( l)  (82)

and

f2(l, 1*) = f°(l, 1>) + f2(l, 1’ ) (83)

where f°(l)  and ^(1, l 1) are the equilibrium distribution functions around 
the "blue" particle at x Q(t). f (1) and f2(l, 1’ ) refer to corresponding 
deviations from equilibrium, f J(l) is further given by

f“(l)=f°(P ) g (x -x Q(t)) (84)

where

f (P) =
m ß

2n

! _ l£ 2
) e 2m

J3 = l / k BT ; g (x -x Q(t)) is  the static equilibrium  pair distribution function
around the m arked atom . Note that the function g depends here on tim e.
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Substituting (82) and (83) into (81) and remembering the equilibrium 
equation, we have

Э f l ( 1) 
at + 7- VI f1( l ) - V ^ I 0(t))'V  f 1(l)

at

(85a)

where

9 3 ^  = - f°(p) ^ g (x -? (t))  . vo(t) (85b)

Here the major complication arises from the last term on the left-hand 
side of Eq.(85a). It is responsible for the following physical effects:

(i) The bare interaction between the particles will be normalized 
to some effective interaction.

(ii) The free-particle flow term represented by the second term in 
(8 5a) will be modified so as to take into account the erratic 
Brownian type of motion.

(iii) The surroundings will have a tendency to reach thermal 
equilibrium around the "blue" atom.

In order to illustrate the point of view we are going to adopt in our 
discussion, we shall consider the following special case of Eq. (85a):

(y t  + v . V + fx(l) =f°(p) Vg(x-x0(t))-v0(t) (86)

where т is some appropriate relaxation time for the medium. In this 
way, we have incorporated the effects mentioned under (iii), but have 
disregarded (i) and (ii). The above linear equation can easily be solved 
by going over to the Fourier transforms. The solution is

^ (x , p, t )=J dV J dx* 
0

t-t*

'di_
(2тг)3

iq  • (X“X‘ ) - iv -q (t • t ' )
e

X e T f°(p) V g (5 '-x 0(t'))-v0(t')

(87)

The change in density is obtained by integrating (8 7) over the momenta. 
We thus obtain

t
P (x. t)

where

dt'
0

t -t '

dx' e T G°(x-x\ t-t') Vg(x'-x0(t')) • vQ(t')

t) =(7ta(t))
3"I e a(t)

( 8 8 )

and
(89)



622 SINGWI

Gs(x, t) is the classical form of the Van Hove self-correlation function 
for a freely moving particle. In a real physical situation the particle 
does not move as a free particle but performs a complicated Brownian- 
type motion. One should, therefore, in Eq. (88) replace the free particle 
"propagator" Gs by the appropriate "propagator" G$(xt, x' t' | xQ(t)). This 
function gives the probability of finding an atom at x at time t, if it was 
located at x1 at time t1 with due consideration of the presence of the 
"blue" atom. In this respect, it differs from the proper Van Hove self
correlation form. We,therefore, instead of Eq. (88) write

t t-r
= J d t'J dx' e T Gs(xt, x't* | x q) Vg(x * - x0(t!)) • v^t') (90) 

о

In this way, we have taken care in an approximate way of all the effects 
mentioned under (i), (ii) and (iii). The time т represents the average time 
it takes for the surrounding medium to establish complete thermal 
equilibrium.

The equation of motion for the "blue" atom is then

m = -^ d x  VV(?o(t) - x) p (x, t) + a fluctuating term (91)

In the above equation we have not specified the form of the fluctuating 
force term. This term arises from fluctuations in the density of the 
surrounding medium. We shall assume these fluctuations not to depend 
significantly on the velocity of the "blue" atom. In this case the fluctuating 
force will be statistically independent of the velocity and, therefore, 
disappear in the equation for the velocity autocorrelation function. It 
should be noted that V(xQ(t)-x) in (91) is the bare potential and not any 
renormalized interaction potential.

Substituting (90) into (91), multiplying both sides by vQ(0) and taking 
the statistical average, we have

m JjT<v(t) • v(o)> = -^ J^ d t' e T
a 6 0

XJ  d 3 d x '< v av(5f0(t)-x) G,(2t, x 't ' I x Q) Ve g(3'-5f0(t')) vß(t') va(0)> (92)

where we have omitted the suffix zero on v. The bracket . .У denotes 
the thermal average, a and ß each denote the three cartesian components.

Gs(xt, x 't 1 I x 0) depends on the history of x 0(t). However, the most 
dominant effect arising from the presence of the "blue" atom is that a 
surrounding atom is excluded from a small region around the position 
5?0(t) at time t. We shall average Gs (x t, x 't ' | x Q) over all the paths of 
the "blue" atom which terminate at ? Q(t) at time t, and we substitute the 
so-obtained "propagator" for the one introduced earlier. This averaged 
"propagator" will be denoted by Gs(xt, x 't1 | x 0(t)). We further define
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an effective potential through the relation

VV(x (t )-x ', t - f ) W (3 0(t)-5) G (xt, x 't1 x 0(t))dx (93)

Using (93) in (92) we have
t t-t*

m ̂  = ~Yj l dV 6 Г
aß 0

dx' <VaV(xQ(t) -x '( t-t')
(94)

X V0 g(Sc'-x0(t')) Vg(t') va(0)>

In the Gaussian approximation, as discussed in section 4, it can be shown 
(Ref. [12])that Eq. (94) can be written as

t t t

+ J r o(t-t ')* (t ')+  y ,r(t-t')dt>y'*(r)dT = 0 (95)
0 0 f

where

r ( t )  = 3m . Vg(x) • VV(x-x', t) G (x',t) dx 1 dx (96)

and

r x(t) = (97)

Gs(x) t) is the Van Hove self-correlation function given by

GJx.tJ^jraft))'1 e a«  (98)

and
t

a(t) = Ij^(t--u) <v(0) • v(u)>du (99)
о

Equation (95) is our basic equation. It is clear from an inspection of the 
above equations that (95) is a very complicated non-linear integral equation 
and can only be solved numerically. Compare (95) with (71). In general, 
Eq. (95) cannot be written in the form of Eq. (71) unless the term 
containing E^t) is negligible. It turns out that this term is small but not 
insignificant. A detailed numerical integration of Eq. (95) has been 
undertaken by the Swedish group [13 ]. An approximate evaluation of 
r Q(t) has been made by Singwi and Sjölander [12] on the basis of our 
earlier knowledge of a(t) and noting the fact that the detailed form of ф(t) 
will have a small influence on the integrated value in a(t).

To calculate the memory function r Q(t) we should have a knowledge of 
the function Ü(xt, x' t'|x0). This probability function is obviously zero
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for I X - X 0 | < a, a being the radius of the hard core of the interatomic 
potential. We may write

Gs(x + y, t; x, 0 : j = + n) Q (y, t)
f a ( x  + y ' -x0) Gs(y ',t )  dy'

(100)

The normalization condition

Gs(x + y, t; x, 0 | x 0) dy = 1

is automatically fulfilled. The function a ( x - x Q) is such that it drops 
sharply to zero for |x-x0| < a and is of order of unity for | x -x 0| > a •
Its precise form is not known to us. It plays the role of excluding a 
certain volume corresponding to the hard-core radius around xQ. The 
interatomic potential V(x) is taken as the 6-12 Lennard-Jones potential. 
For mathematical reasons and also in order to get a better physical 
insight, V(x) has been divided into a hard-core part V (x) and a soft 
attractive part Vs(x); the latter is shown in Fig. 4. V (x) is given by the 
difference V(x) - Vs(x); Vs(x) has again been chosen as a Gaussian for 
mathematical reasons. Contributions of V (x) and V (x) to F0(t) have been 
studied separately.

For t = 0, since Gs(x t; x '0 | x ) = 6(x-x ') and Gs(x, t) = 6(x), it follows 
from (93) that

V(x) = V(x)

and from (96)

r0(O) = ‘ 3 k /VV(x)‘ Vg(x)d? (101)

which is the expression for the second moment (Eq.80). Remembering 
the fact that a(t) appearing in Eq. (97) varies as t2 for small times, one 
concludes that 1̂  (0) = 0.

One can easily convince oneself that the form of the function »(y) is 
unimportant as far as the contribution of the soft attractive part of the 
potential to Г (t) is concerned. On the other hand, it plays a vital role 
as far as the contribution of the hard-core part is concerned. What enters 
into the expressions is the function Vj.(y)ff(y), Vj,(y) being the derivative 
of Vc(y). This function has an extremely sharp peak at у = a ~ a with half 
width ■JA. We shall choose the following form:

(y-Qo)2
V'(y) o-(y) = -с(7гД) 2 e Л (102)

c denotes the area under the peak. We have two unknowns c and Д in (102) 
which are related to Г°(0). Гд(0) is the contribution of the hard core to
the second moment (Eq. 101) and which can be calculated if V (x) and g(x) 
are known. In this theory, therefore, Д is left undetermined and occurs 
as a  parameter. The other parameter is the relaxation time t . The 
quantity of interest which enters into the calculation of the memory function 
is the function g '(x) which we know and is shown in Fig. 5. The first two
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FIG. 4. Lennard -Jones potential (in units o f  e = 120 кв) and the pair correlation function g(r) (based on 
Rahman's com putations for liquid argon at .T = 85.9 ”K) versus distance (in units o f  о  = 3 .8 П  Ä). The 
dashed curve represents the assumed Gaussian form  for the "soft part" o f  the potential.

peaks of g'(x) one of which is positive and the other negative play an 
important role. In the present calculations these two peaks have been 
approximated for mathematical reasons by two Gaussian functions with 
half widths \F A Q and s/Ar

In Fig. 3 the solid curve denotes the calculated value of exp(t/T) / r o(t)/F0(0) 
for Д/Д0 = 0.5 and т = °o. For Д/Д0 = 0.7 and т = °o, our calculations gave 
a nearly perfect fit with Rahman's curve (dashed) for t ■§ 10'13 s, but it 
gave an appreciable increase over Rahman's value in the height of the tail. 
On the other hand, for Д/До < 0.5 the height of the tail becomes less but 
instead the peak for small times becomes narrower. Now it is unreason
able to expect t  = со. For illustration, we have also plotted in the same 
figure (dotted curve) the results obtained for r = 10'12 s, which is a 
reasonable value to assume for the relaxation time. The diffusion
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coefficien t o f a liquid in term s of r Q(t) is  given by

J r 0(t) dt
0

which using our calculated r Q(t) (corresponding to A /A q = 0. 5) for т = 10’ 12 s, 
gave D = 2.2 X 10"5 cm2 / s, whereas the value of D obtained from Rahman's 
F0(t) is 2.10 X 10 cm /s . The correction term 1̂  (t) was estimated by 
us to contribute less than 20%.

It is worth noting that in the present theory the width of the rapidly falling 
part of rQ(t) is determined by the half width \Гд of the function V|(x) a(x), 
whereas the width of the tail is essentially governed by the relaxation 
time t . The value of Г0(0) is determined precisely by the static pair 
correlation function and the interatomic potential. The shape of T0(t) 
depends on the detailed shape of the main peak of g(x). The dependence 
of T0 (t) on time is neither an exponential nor a Gaussian but a rather 
complicated function. The time expansion of r Q(t) is valid as long as 
a(t)< A, i .e . for t% 4 X 10"14 s. This smallness of the radius of con
vergence is responsible for the failure of some« of the recent attempts 
towards time expansion of the velocity autocorrelation function.

The theory which I have briefly outlined makes it possible to 
understand the main features of the memory function and hence of the 
velocity autocorrelation function in terms of the static pair correlation 
function and the interatomic potential. The question of what the pre
dictions of the theory are for liquid metals is now under investigation.

FIG. 5. The derivative o f  g '(r ) versus r (in units o f  о  = 3 .8 И  Ä ). The solid curve is based on Rahman's 
num erical com putations for liquid argon at 85.9°K. The dashed curve represents a Gaussian approxim ation 
used in the ca lcu lations o f  Singwi and SjSlander.
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Assuming that the hard-core part of the potential is more or less the same 
in liquid metals as that for liquid argon, one would expect the short-time 
behaviour of the memory function to be the same in the two cases. In 
liquid metals, on the other hand, the remaining part of the potential is 
long-range and has an "oscillatory" character; one should, therefore, 
expect a different behaviour in the intermediate and long-time region of 
rQ(t) from that of liquid argon. All this needs to be shown quantitatively. 
Assuming for the moment that the predictions of the theory are correct, 
the interatomic potential derived from the use of, say, the Percus-Yevick 
equation with a previous knowledge of g(x) should also give a right 
dynamical behaviour.

8. COHERENT SCATTERING

That collective modes corresponding to sound waves (low u and q 
values) exist in a liquid has long been known through the Brillouin 
scattering of light. These long wavelength density fluctuations are 
governed by the Navier-Stokes equations. In this hydrodynamic limit 
Scod“ >u) is Siven ЬУ (see Ref- [14]):

Scoh(K' u) =Pk BT X,7
9  2 4i i c  к

s 7Г ( u ' - C h Y  + l f  u r )
(103)

where xs is the adiabatic compressibility, C = (Mpx ) 2 is the sound 
velocity and Г, = (S + f  rj/Mp), where r) and S are the coefficients of viscosity. 
It is evident from (103) that the structure of SfcohC'G ш) consists of two 
Lorentzian peaks centered at gj = ± ck with a width determined by the 
coefficients of viscosity. From (103) we have

F(k. 0) = Scoh(K, u) du
(104)

* k BT V
whereas the exact value o'f F(i?, 0) is

F(ic, 0) = 1 +Г(к)

= pkBT x T for k-*0 (105)

where xT is the isothermal compressibility. The two results given by 
(104) and (105) are different. This discrepancy arises from the fact that 
in writing (103) we have neglected the non-propagating entropy fluctuations 
which are governed by the equation of heat diffusion. The correct 
expression for S (i?, u) is obtained by adding the following term to 
Eq. (103): “

. _ 2, 2 2 2. -i
i  D t *  ( u  - С  К  ) I 
7Г (J1 - C V Y  + (Гик* f j
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and replacing Г by Г. DT is the heat diffusion coefficient

Г=° т ( ? '1) + ( ?+1 Г}) /М?

The next question that arises is: do collective excitations in the 
large to and q region, where hydrodynamic considerations do not apply, 
exist in a classical liquid? Until a few years ago the answer to this 
question was negative, but recent neutron scattering experiments which 
indeed measure in the high to and q region have indicated that such collective 
modes probably do exist. Such studies have been made for insulators 
like liquid argon [15] and liquid metals [16-18] such as Na, Pb, Al, and 
Sn. These studies have shown a striking similarity between the spectra 
scattered from the solid and the liquid phase.

As an illustration we have shown in Fig. 6 the data of Larsson and 
Dahlborg (see Ref. [1], Larsson's article) on coherently scattered 
beryllium-filtered neutrons from polycrystalline Al at 630°C and from 
liquid Al at 677°C. The striking similarity between the two inelastically 
scattered spectra is quite evident. The sharp cut-off in the intensity on 
the low frequency side in the solid is the result of the operation of the 
usual momentum conservation condition

|2?г т - q I i 2 л- т + q |

where т is the reciprocal lattice vector. Also, the peak in intensity at 
w - 2.5 X 1013 rad/s is due to transverse modes. This peak continues to 
persist in the liquid phase. Reasonably well defined peaks due to 
longitudinal vibrations have been observed by Egelstaff and his co-workers 
in liquid metals. These peaks do not change their width by more than a 
factor of two as one goes from the solid to the liquid phase (near the 
melting point). Observations like these have prompted many workers, 
in particular Egelstaff [19] and Singwi [20], to use quasi-harmonic solid
like models with minor modifications to interpret the inelastic coherent 
scattering in liquids. This kind of approach leads one to propose dispersion 
relations for "quasi-phonons" in classical liquids. These models have 
had a reasonable success but their theoretical foundation is very shaky.

There exists another set of very beautiful experiments of Woods [21] 
on collective excitations in He II and He I. His results are shown in Fig. 7. 
Incident neutrons of wavelength 4.05 A (energy 5.0 MeV) were used.
The second peak marked with an arrow in the figure represents neutrons 
scattered from liquid He with the excitation of a phonon. The position 
of the peak denoted by e gives the energy in °K of the phonon and its width 
is denoted by Де. All the phonons measured have a momentum corre
sponding to p/ft = 0.38 Ä"1. The point to note is that these phonon peaks 
continue to persist even beyond the X-point (2. 17°K) though they are 
somewhat broader. Above the X-point liquid He is a classical liquid, 
probably with some quantum corrections. One notices the broadening of 
the peak with the increase of temperature. At 4.2°K, which is near the 
boiling point, the phonon peak is no longer well defined and has moved to 
the left considerably on the energy scale. This experiment clearly 
demonstrates that phonons do exist in He I, which is a classical system.
The existence of the phonons, therefore, does not necessarily depend on
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15 10 7 5 3 2 1.5 1

ш « 10 ra d /s

FIG. 6. Coherently scattered neutron spectra scattered from an alum inium  polycrystal at 630°C, and a 
liquid sam ple at 677°C. The angle o f  observation in both cases was 60°, w hile the ingoing spectrum was 
the fu ll co ld  neutron spectrum .

the existence of a superfluid phase. What is the nature of these phonons? 
Are the phonons observed in He I and those "observed" in other classical 
liquids the same or different? These are still open questions.

9. CONVOLUTION APPROXIMATION

Equation (9a) for the intermediate scattering function F(ic, t) can be 
written as

F(K, t) = F ( 1 V /  ■i^ ' Rj (0) iK -R jf O) iK - R j ( t )

it j

“ F, (i?,t) (1+Г(к))
(106)

In writing (106) we have assumed that the thermal average in the first 
line can be written as the product of two thermal averages. This approxi
mation was first introduced by Vineyard [22]. This is equivalent to 
writing

G(F, t) = Gs(r ,  t) + J g (r ' )  Gs( r - r ' ,  t) dr (107)
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FIG. 7. D is tr ib u tion s o f  neutrons sca tte re d  fr o m  liq u id  h e liu m  at p / f i  = 0 .3 8  Ä “ 1 at v ariou s tem peratu res 
(A . D . B. W ood s, se e  R ef. [2 1 ]) .

as can e a s ily  be v e rifie d  b y  taking the F o u r ie r  tr a n sfo rm s of both sid e s  
of the equation. Th e nature of the convolution approxim ation  c o n sists  
in assu m in g  that the m otion of an atom  which is  at r 1 at tim e t = 0 fro m  
another atom  at the o rigin  at tim e t = 0 is  independent of the p re se n ce  of 
the atom at the o rig in . O b viou sly, th is is  not a good approxim ation  if 
the two atom s a re  c lo se  to geth er, but m a y not be too bad if the atom s in 
question a re  w id e ly  se p ara te d  fro m  each  oth er.

T h e re  a re  c e rta in  objection s to the convolution ap p roxim ation . Th e  
f ir s t ,  and the one w hich is  often cited , is  that it v io la te s  the second  
m om ent re latio n  (20 ). Instead, it g ive s

. 2 . _ кв T  2

'  Wc o h  'c o n  M  ^

The second objection  is  that in the lim it ic-. 0, it p re d ic ts  an u n displaced  
R ay le ig h  line w hose width is  d eterm in ed  by the m a c ro s c o p ic  se lf-d iffu sio n  
co e ffic ie n t, w h e re a s  in actu al fa c t one h as th ree lin e s — the c e n tra l  
R ayle igh  line co rresp o n d in g  to en tropy flu ctu atio n s and the two d isp laced  
B rillo u in  com ponents co rresp o n d in g  to d en sity  flu ctu atio n s. A lso , it 
does not p re d ict the De G ennes n arro w in g  e ffect of the q u a s i-e la s tic  
sc a tte rin g  d isc u ss e d  e a r lie r  fro m  v e r y  g e n e ra l s u m -ru le  arg u m en ts. The
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p red ictio n s of th is approxim ation  re g a rd in g  the in e la stic  coherent 
sc a tte rin g  a re  not borne out by e x p e rim e n ts. In spite of a ll these fa ilu re s ,  
the convolution approxim ation  h as the m e rit  of s im p lic ity  and of not 
in vo lvin g any ad ju stable p a ra m e te rs  which are  in v a ria b ly  p rese n t in all 
m o d els. A ttem p ts to im p ro ve  upon it [20] have been m ade during re ce n t  
y e a r s  with reaso n ab le  s u c c e s s .

V e r y  re c e n tly  Sköld [2 3] h as pro po sed  that E q . (10 6 ) should be 
m odified to

F ( ? ,t ) = ( l + F ( / c ) ) -K2r,(0/(1 + ГМ) e 1 (10 8 )

T h is m o dification , which is  ad hoc, im p lie s re p la c in g  e v e r y  к2 in 
Fs (к, t) of the convolution approxim ation  by к2 / 1 + Г ( к ) .  The p h y s ic a l idea  
behind this m od ification  is  that the co h e ren tly  s c a tte re d  in ten sity  is  
com posed  of s c a tte rin g  fro m  s e v e r a l  atom s, 1 + Г ( к )  bein g the m e a su re  
of the e ffe c tiv e  num ber of atom s w hich contribute to the in te n sity . The 
r e c o il e n e rg y  tr a n s fe rre d  to the s y s te m  is  h 2K2 /[2M ( 1 + Г ( к ) ], i . e .  the 
sam e as if  the re c o ilin g  m a ss  w as M (1 + Г (к )). With fo rm u la  (10 8 ),
Sköld w a s able to explain h is m e asu re d  width of the q u a s i-e la s tic  
sc a tte rin g  as a function of к in liquid argon.

A p p ro xim atio n  (10 8 ) fu lfills  the second m om ent but v io la te s  the fourth  
m om ent. It is  also  apparent fro m  the stru c tu re  of the fo rm u la  that it w ill  
not be able to explain the in e la stic  sc a tte rin g .

T h e re  is  another re cip e  p roposed  b y  Rahm an [8 ] c a lle d  the delayed  
convolution ap proxim ation . It is  based  on the re s u lts  of h is m achine  
com putations fo r  liquid argon  and la c k s  a th e o re tic a l b a s is .  A c c o rd in g  
to this re cip e  Fs (к, t) in E q . (10 6 ) should be re p la ce d  b y  Fs (ic, t ') ,  w h ere

t 1 = t - T

with the d elay tim e т = 1 X 10 “12 s . T h is re cip e  s a y s  that the instantaneous 
g e o m e trica l stru c tu re  of atom s around a given atom  does not d iss o lv e  as  
q u ick ly as given by the convolution ap proxim ation . T h e re  is  a fin ite tim e  
la g  d eterm in ed by t . It i s  v e r y  lik e ly  that т is  a function of /?.

Equation (10 7 )  is  an approxim ation  fo r  G (r, t). The e xact e x p re ssio n  
shoud read

G (r, t) = G s(r , t ) +  / g (r ')  H (r, r ' ,  t) d r ' (10 9 )

w h ere H (r, r ',  t) is  the p ro b ab ility  that given an atom  A  at the o rigin  at 
tim e ze ro , an atom  В  at r  1 at tim e ze ro  m o ves to ?  in tim e t. In the 
convolution approxim ation  H ( r ,r  ',  t) is  re p la c e d  by Gs( r  - r  ',  t). N ow  if  
the atom  A  h as m oved to r "  in tim e t, then the atom  В  is  excluded fro m  
a sp h ere of rad iu s a  around r  "  at th is tim e, a  being the rad iu s of the 
h ard  c o r e . In our d isc u ssio n  of the th e o ry  of the se lf-m o tio n  in sectio n  7, 
we introduced a function Gs(x + y , t ; x ,  0 | x 0) defined b y  E q . (100 ) which  
h as the p ro p e rty  of taking into account the e ffect of e x clu sio n . The fo rm  
of the function a ( y) is  g iven  b y  E q . ( 1 0 2 ) .  It would be in te re stin g  to 
ca lcu la te  G ( r , t )  fro m  (10 9 ) u sin g  fo r  the function H the e x p re ssio n  fo r  
G s given by E q . (10 0 ). No su ch attem pt h as been m ade so fa r .
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10 . Q U A S I -C R Y S T A L L I N E  M O D E L

Sin ce  th e re  is  no th eo ry fo r  coh eren t sc a tte rin g  which could even  
re m o te ly  be c alled  b a s ic , one is  fo rc e d  to take re c o u rs e  to m o d els.
T h e se  p h en om en ological m odels are  due to E g e ls ta ff  [19 ]  and Sin gw i [20] 
and are  e s s e n tia lly  the sam e although the one due to the la tte r  is  m ore  
g e n e ra l.

E g e ls t a f f 's  su ggestio n  is  that the u su al one-phonon coherent 
s c a tte rin g  fo rm u la  v a lid  fo r  a p o ly c ry s ta llin e  solid  should also  be 
ap p licable to a liquid w ith the d iffe ren ce  that the distribu tio n  of the 
re c ip r o c a l la ttice  v e c to r s , in stead  of being d isc re te  as in a so lid , is  
continuous in a liquid; the distribution  bein g given by the stru c tu re  fa c to r  
1 + Г (к ). The phonon w ave v e c to rs  thus h ave th e ir o rigin  in a liquid at 
any point in the r e c ip r o c a l sp a ce . Th e fo rm u la  fo r  a liquid then b eco m es

,2d a  

df2 du
- 2 k 

: b

Ь W 
. 2kRT coth

coh

ftoj 
2k  BT

fix
4  Mu7 f(u) Z ( 110 )

w h ere
к + q

Z = 2Kq~ J x(1 + r (x ))p: ( x - dx ( 1 1 1 )
к-q

The p o larizatio n  fa c to r  (x, q, к) is

2 2
PL (x, q, к) -  (к • a L ) j  к fo r  longitudinal phonons

and ( 1 1 2 )

-» - , „ 2 2
PT (x, q, к) = (к • a  ) /к fo r  tr a n s v e r s e  phonons.

ö-l and <?T a re  unit v e c to r s  p a ra lle l and at righ t an gles, re s p e c tiv e ly , to 
the phonon w ave v e c to r  q. It is  assu m ed  that the tr a n s v e r s e  b ra n ch e s  
a re  d egen erate. Th e m om entum  co n se rva tio n  condition is

ic± q = 2 h t  ( 1 1 3 )

The sy m b o ls in the above equation have th e ir u su a l m eaning.
The adoption of fo rm u la  ( 1 10 )  fo r  a liquid in vo lve s som e b a sic  

assu m p tio n s: (a) that the h arm on ic approxim ation  is  v a lid  fo r  a liquid and 
(b) that the concept of a re c ip r o c a l la ttice  in a d iso rd e re d  stru c tu re  like  
a liquid h as a m ean in g. Both of th ese a re  fa r -r e a c h in g  assu m p tion s whose  
v a lid ity  is  v e r y  q u estion able. N o n eth eless the fo rm u la  is  cap able of 
explain ing the o b serve d  fe a tu re s  in the sc a tte rin g .

In the approach  adopted by Singw i [2 0 ], it is  assu m ed  that a ll te rm s  
in the in term ed iate  s c a tte rin g  function that contain position v e c to r s  of 
atom s m o re  than a c e rta in  d istan ce R  ap art fro m  each  oth er could be 
trea te d  a cco rd in g  to the convolution ap p roxim ation . C o rre la te d  m otion  
of atom s c lo s e r  to each  oth er than th is d istan ce w e re  tre a te d  as if  the 
liquid w a s a q u a si-h a rm o n ic  so lid . In th is approach  one could d e rive  
e x p re s sio n s  both fo r  the q u a s i-e la s tic  and in e la s tic  s c a tte rin g  without
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m aking any e x p lic it  assu m ption  of the e xiste n ce  of r e c ip r o c a l la ttice  
v e c to r s  in a liquid. The stru c tu re  fa c to r  1 + Г (к ) e n te rs in the form u latio n  
in a n atu ral w a y  but th e re  o c c u rs  a p a ra m e te r  R w hich is  a m e a su re  of 
s h o rt-ra n g e  o rd e r  in a liquid. In the lim it R -* °o, S in g w i's  fo rm u la  
re d u ce s to that of E g e ls ta f f  with due c a re  fo r  the p o lariza tio n  fa c to r . F o r  
d e tails the re a d e r  is  r e fe r r e d  to the o rig in a l p a p e rs . U sin g  fo rm u la  ( 1 10 )  
it h as been p o ssib le  to d e rive  d isp e rsio n  re la tio n s (u v e r s u s  q) fo r  
"q u a si-p h o n o n s" in liq u id s like argon , lead and tin. T h e se  d isp e rsio n  
re la tio n s a re  v e r y  m uch like those exp ected  in a solid  a fte r  d ire ctio n a l  
a v e ra g in g . Such d isp e rsio n  re la tio n s are  shown in F ig s  8 and 9 fo r  liquid  
le ad . M e asu re m e n ts of Randolph and Sin gw i [16 ]  h ave been p erfo rm e d  
in the f i r s t  "B r illo u in  zo n e ".

q ( V )
FIG . 8 . F re q u e n c y -w a v e -n u m b e r  p lo t  o f  th e  pea k s in  S C(Q , w) fo r  liq u id  le a d . T h e  fu ll l in e  is c a lc u la t e d  
using  th e  e q u a tio n  u>2(Q ) =  (N +  l ) k T Q 2/M S (Q ) .  B roken  cu r v e , e x tra p o la t io n  o f  uj =  c Q ;  th ic k  strokes, 
C o c k in g  and E g e ls ta ff [1 7 ] .

In a liquid the tra n sla tio n a l s y m m e try  of a so lid  is  lo st, but it ap p ea rs  
that the sh o rt-ra n g e  o rd e r s t ill  p e rs is t in g  in a liquid is  su ffic ie n t to 
p r e s e r v e  the c o lle c tiv e  nature of the e x cita tio n s. In p h y s ic s  one often 
co m es a c r o s s  su ch c a s e s .  11

1 1 .  S C A T T E R IN G  IN LIQ U ID  H E L IU M

Th e e x iste n ce  of q u a s i-p a r t ic le s  (h ere  phonons and rotons) in liquid  
He II w a s p red icte d  m an y y e a r s  ago b y  Lan d au . It is  a re m a rk a b le  exam p le  
of h is g re a t and p en etratin g intuition. The nature of the d isp e rsio n  cu rv e  
fo r  th ese  e xcitatio n s w a s explain ed  th e o r e tic a lly  b y  Fe yn m a n  [ 2 4 ] .  H is  
r e s u lts  can be d e rive d  in a sim p le  m an n er fro m  the fo llo w in g s u m -ru le  
arg u m en ts:

W e h ave fo r  the zero th  and the f i r s t  m om ent the re latio n s

J  S(k,(j) du = S(ic) (114)



634 SINGWI

F IG . 9 . D ispersion  cu r v e  fo r  liq u id  le a d  d e r iv e d  from  th e  ex p e r im e n ts  
o f  R a n d o lf and S in gw i ( s e e  R e f . 16) and co m p a r e d  w ith  o th er m ea su rem en ts .

and

Jb)S(Z,u) du = 2 ^ ( 1 1 5 )

H e re  S (k ) stands fo r  1 + Г (к ). The p rin cip le  of detailed balan ce in in ve rsio n  
sy m m e tric  s y s te m  states

_> -ßhui
S (k, -to) = e S (k, to) ( 1 16 )

(se e  E q . (3 5 )) . We w rite  S(tc, to) as a sum  of two s y m m e tric a lly  broadened  
d istrib u tio n s g cen tered  about tô  and io_k .

S (k , u ) = A K[g(to-toK) + e“ W g(to + u J ]  ( 1 1 7 )

w h ere g is  n o rm a lize d  to unity and A K is  som e w eighting fa c to r.
Equation  ( 1 1 7 )  is  co n sisten t with ( 1 1 6 ) .  A K can be determ in ed u sin g ( 1 1 4 )  
i f  the width of g is  much le s s  than кв T . The re su lt is

A r = S(/c) [ 1 + e №ш] 1 ( 1 1 8 )
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F r o m  E q s  ( 1 1 5 ) ,  ( 1 1 Y) and ( 1 1 8 )  we have

l>k tanh fiuKß 
4 2

fin
2

2M S (k )
( 1 1 9 )

if  the width of g is  le s s  than wK.
In the low  te m p e ra tu re  lim it, i . e .  ß ftu  1 , E q . ( 1 1 9 )  re d u ce s to 

the w ell-k n o w n  relation

fin

2M S (k )
( 120)

f i r s t  d e rive d  b y  Fe yn m a n  [2 4 ] ;  w h e re a s  in the lim it ßfiioK «  1 we a r r iv e  at

ик . м э д ) '  " ( 121)

The b a s ic  assu m ption  lead in g to E q s  (12 0 ) and ( 1 2 1 )  c o n s ists  in 
w ritin g  fo r  S(ic, to) the e x p re ssio n  ( 1 1 7 ) .  It am ounts to sa y in g  that at 
any fin ite te m p e ratu re  S(/?, u) c o n s ists  of only two p eak s. T h is  c e rta in ly  is  
not tru e  fo r  la r g e  v a lu e s of к when we h ave m ultiple e xcitatio n s p re se n t.
F o r  a c la s s i c a l  liquid we h ave fu rth e r n eglected  the d iffu sive  p art of S(ic, u). 
It is ,  th e re fo re , understood that the d isp e rsio n  relatio n  given by ( 1 2 1 )  
can, if at all, only be ap p ro xim ately  c o r r e c t  fo r  a c la s s i c a l  liquid.
E g e ls ta ff  h as found that the o b se rv e d  d isp e rsio n  cu rv e  fo r  liquid lead  
(se e  F ig .  7) can be fitted with fo rm u la  ( 1 2 1 )  with a m u ltip lyin g fa c to r  of 
n e a r ly  two on the righ t-h an d  sid e . The im portant point to notice in 
fo rm u la  ( 1 2 1 )  is  the o c c u rre n c e  of the stru c tu re  fa c to r  S(if) in the d en om i
n ato r. The m inim um  in the d isp e rsio n  cu rv e  o c c u rs  w h ere  Sfic) h as its  
m axim u m  v alu e . In the ran ge of i? -v a lu e s  o v e r  w hich a fit is  obtained,
S (n )  v a r ie s  by as m uch as a fa c to r  of ten. The strik in g  s im ila r ity  betw een  
the d isp e rsio n  c u r v e s  in He II and c la s s ic a l  liquid lead  cannot e sc a p e  o n e 's  
n o tice. T h e re  a p p ea rs to be a v e r y  intim ate connection betw een S(i?) and 
the e n e rg y  of an excitatio n  in a liquid.

1 2 .  Z E R O  SOUND IN LIQ U ID  4HeI

It h as been su g g e sted  by P in e s [2 5 ] that the phonons o b se rv e d  by  
W oods [ 2 1 ]  in He I a re  an analogue of L a n d a u 's  ze ro  sound fo r  F e r m i  
liq u id s. T h e y  c o rresp o n d  to the c o llis io n le s s  re g im e  fo r  which

и t »  1
q

w h ere  is  the phonon e n e rg y  and т is  a  c e rta in  m ean c o llisio n  tim e. 
P la sm o n  in an e le ctro n  liquid is  an exam p le of su ch  an e xcitatio n . In the 
lo n g -w avelen g th  lim it the p lasm on  fre q u en cy

f 47t ne2 У  
UP

re m a in s u n affected  b y  the tran sitio n  fro m  the n o rm a l to the su percon du ctin g  
sta te . F o r  su ch  c o lle c tiv e  m odes we know that the r e s to r in g  fo rc e  is  the
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4 2
Фро1 (q.ш) =-^1- <p'(q. ш)> (122)

where ^p"(q, w)/ is the Fourier transform of the average charge density 
fluctuation. For a neutral system, we can likewise define a polarization 
potential

av era g ed  s e l f -c o n s is te n t  fie ld  o f  a ll the p a r t ic le s  acting  in  c o n c e r t . F o r
an e le c tr o n  liqu id  the r e s to r in g  fo r c e  re sp o n s ib le  fo r  p la sm a  o s c illa t io n s
is  the p o la r iza t io n  potentia l 0 pol defined by

^po! ( q - u ) = f0< p ( q .  ^ )>  (123 )

where f0 is a phenomenological constant. A local relationship of the 
type (123) between фро1 and <̂ p )■ will be valid only if

qr0 <<

r0 being the interparticle distance. For larger values of q, f0 will be 
q-dependent.

In analogy to the electron liquid one can define two density response 
functions

< p ( q ,  u ) >  = x f q ,  u) 0 ( q ,  u) (124)

and

<p(q, u)> = x^ (q, u) j<Kq, ^) + Фро1(q, u) (125)

where x(q, w) measures the density fluctuations induced by an external 
scaler potential 0(q, u) and x (q, u) measures the same but induced jointly 
by ф and 0 . From Eqs. (123), (124) and (125) we have

x(q, w) = Xsr.(q, Ц)
1 - f0xsc(q -*»)

(126)

We now make use of the f-sum rule according to which 

Lim X(q, to) = Lim x (q, to) =
m —* aa SC 3nCÜ

(127)

This sum rule follows from Eq. (37). xsc(<5, u) will attain its asymptotic
value given by (127) as soon as to is large compared to any of the character
istic frequencies which appear in its spectral representation. We denote 
such frequencies by <osc . We therefore have

nq 2/m
X(q-to) = , +iri 2 _ f nq2 f o r u > u sc (128)

°m

w here we have in trod u ced  17 = 0 + to a llow  fo r  the fa ct that x(q, w) is  analytic
in the u pper half o f the co m p le x  u -p la n e . It fo llo w s  fr o m  (128) that
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x(q, и) has a pole corresponding to a phonon-like collective mode of 
frequency

wq=s0q

where

(129)

(130)

The existence of a sharp zero sound peak depends on the condition 
и > usc . For a degenerate Fermi liquid we have for the existence of 
zero sound the condition

S0 >  VF

or

(131)

The dispersion relation according to (129) is linear in q, but as q 
increases such that qrQ > 1, fQ will become a function of q. In He II this 
value of q is nearly 0.6 Ä '1 as revealed by Woods’ experiments.

As the temperature increases the number of thermally excited 
quasiparticles increases and there is a broadening of quasiparticle spectrum 
due to collisions between quasiparticles. Multi-pair excitations start 
playing an important role. In this circumstance, Landau theory is not 
applicable. But if fQ is large enough, high-frequency sound might continue 
to exist as a reasonably well defined mode even for kgT EF, Ep being the 
Fermi energy— the criterion 1 needs to be satisfied only. In the
high-temperature limit there is no difference between 4He and 3He since 
the statistics now does not matter. One might expect that f0 in 4He is of 
the same order as in 3He. If that be the case, one could reasonably expect 
the zero sound mode in 4HeI, too. On the basis of such arguments one 
arrives at the conclusion that the zero sound mode will be less broad if 
Woods’ experiment were to be carried out at a higher value of q and, 
therefore, of u.

Notice that Eq. (130) will reduce to Eq. (121) for f Q= KgT/nS((c).
In order to get a reasonable fit with the dispersion curve in liquid lead 
we need a f which is four times this value.

It might be expected that the high-frequency zero sound is character
istic not only of helium but of classical liquids like argon. In that case the 
experiments of Ref. [15] could be interpreted as an evidence for the 
existence of zero sound mode in liquid argon. This mode would, however, 
be very much damped. An attempt to develop a theory of zero sound in 
classical liquids is being made at present by the author.
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3. The "three electron” electron states. 3 .1 . Optical properties. 3 .2 . Hall effect. 3 .3 . Knight shift.
4. Theoretical calculations o f the density o f  states. 4 .1 . Perturbation of energy levels. 4 .2 . E, к relations 
in a liquid. 4 .3 . Expansion of the density o f states. 4 .4 . Difficulties with the density o f  states expansion. 
4 .5 . A state-counting E, к relationship. 4 .6 . General comments.
Bibliography.

I. PHYSICAL PICTURE OF A LIQUID METAL

These lectures are concerned with the electronic properties of the 
simple metals whilst in the liquid state. By a "simple" metal we mean, 
technically, a metal for which pseudopotential theory is applicable.
Routhly speaking, this means any metal in which the electronic property 
being studied is unaffected by any "D-bands". Typical of such metals are 
the alkali metals, Al, etc. On the other hand, a transition metal would 
not be a simple metal; it has a half-filled D-band at the Fermi surface.
The noble metals, which have a filled D-band inter-secting the conduction 
band below the Fermi surface, will be included for most electronic pro
perties but not for others.

Now, although liquid metals have been studied both theoretically and 
experimentally for a large number of years, it is only recently that a 
straightforward physical picture of the simple metals in the liquid state 
has emerged. We shall start these lectures by stating this "picture",
a) The ions in the liquid metal are positioned throughout space in a 
random close pack distribution. This distribution is similar to that as
sumed by ball bearings randomly thrown into a box.

The arrangement of the ions in the liquid state is discussed by March 
in this book. Of the different (static) correlation functions which may be 
defined in a liquid, only the pair correlation function, g(r) may be measured 
or approximated theoretically. This function has the typical shape of being 
zero for small distances (where the atomic cores cannot overlap), unity at 
large distances and with a number of oscillatory peaks in between these 
two limits.

The pair correlation function may be deduced from scattering experi
ments. The intensity of a beam scattered from a liquid depends on the 
structure factor, a(k). This is defined as

639
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a(k) =
ik-a, - T2)

e > ( 1 . 1 )

where <( )> denoted the expectation value over the probability distribution
for the ion positions 1. N is the total number of ions.

The structure factor is related to the pair correlation function as 
follows:

a(k) = 1 + ik-(£i-t2)
>

= 1 + -N (N -1) e* Г P(r) d3 r

( 1 . 2 )

(1.3)

where P(r)d3r is the probability of finding a second (given) ion in volume 
element d3r at a distance r from the fixed (given) ion. Hence

P(r)d3 r ^ g (r )d 3r (1.4)

where Q is the volume of the system. 
Consequently,

a(k) = 1 +|  ̂ J  e ‘k Г g(r) d3r (1.5)

This function contains a delta function at к = 0; it is more usual to express 
this result as

a( k) =1 + ^  J  elk r [g( r) - 1 ] d3r

( 1 . 6 )

for I к I > 0

The structure factor is then a type of Fourier transform of the pair 
correlation function. For large values of к it approaches unity; for 
smaller values of к it has a number of oscillatory peaks. For very small 
values of k, one is considering very large wave-lengths. At these,wave
lengths the ions are not "seen"; the waves will be density oscillations 
depending only on the compressibility ßL and the absolute temperature, 
kBT. In fact one may show

a(k) к = 0 -  ß,Q Pl kpT (1.7)
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The arrangement of the ions in the liquid state has been described by 
Bernal as "random close packing". Although the density of the liquid is not 
greatly different to that in a solid, the structure is in no sense crystalline 
or microcrystalline. This has an immediate and important simple physical 
consequence. There will not be any band gaps due to Bragg reflection in 
the liquid state. Consequently, there will not be any liquid semi-conductors. 
Indeed all the usual semi-conductors Ge, Si become simple metals on 
melting.
b) The time dependence of the thermal motion of the ions may, for most 
problems, be ignored.

In general, the ions just act as a set of stationary, but randomly 
arranged scattering centres. It is the randomness of the positions of the 
ions, rather than the time dependence of these positions, which determines 
most electronic properties. For example, Faber has shown that the time 
dependence of the arrangement of the ions only alters the conductivity of 
lithium by a few percent. As lithium is the lightest metal this is where 
the biggest effect will be seen.
c) In the simple metals the ions act as weak "neutral pseudoatom" scat- 
terers of the electrons.

The screened ion potentials in the simple metals behave "as if" they 
were very weak. Cohen and Phillips have shown that in these metals the 
true screened ion potential may be replaced by a screened pseudopotential.
It is this fact, together with the fact that the pseudopotential is sufficiently 
weak to allow perturbation theory to be used, that has led to the progress 
which has been made in the theory of liquid metals.

The pseudopotentials are often complicated non-local potentials. 
Throughout these lectures we shall assume that they are ordinary local 
potentials and denote them by v(r). The total potential of all the ions is 
then

where Л is the position of the ions. Also we shall, in general, drop 
the prefix "pseudo" and just refer to the "potentials".

The Fourier transform of the pseudopotential is usually defined as

i. e. with an additional density factor from the mathematical definition.
The approximate shape of this function may be deduced from an argument of 
Ashcroft's. The screened pseudopotential will be a bare ion pseudo
potential vB(k) divided by a dielectric constant e (k)

( 1 . 8 )

( 1 . 9 )

v(k) = ^ ( 1 . 10)

e(k)

The dielectric constant will be given for large wave-lengths (small k) by 
the Thomas-Fermi argument. This gives
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2 2where the screening parameter X is 4я-е times the density of states at the 
Fermi surface, i.e .

X2
( 1 . 12 )

where kF is the Fermi momentum as given by

k3 /37r2 =M =n (1.13)
is the density of electrons.

Now a pseudopotential arises because the orthogonalization of the 
conduction wave function with the core state wave functions produces an 
effective potential which cancels the true core potential. If this cancel
lation was complete then one would have (in real space)

vB(r) for r > rc

0 for r < rc (1.14)

where rc is approximately the radius of the core of the ion. Using 
expression (1. 14) we then have

v(k) - 47rZe2N/n
к2 + X2 cos г к

c
(1.15)

as the approximate shape of the screened pseudopotential (in к space). 
There are two important general features of this shape. At к = 0 we

have

v(k) , „k-0 - (2/3) ep (1.16)

i.e . it is just the deformation potential and is quite independent of the 
particular ion being considered. Secondly, the pseudopotential passes 
through zero at a position corresponding to the core radius of the ion.
d) After the introduction of a screened pseudopotential the electrons may 
be treated as non-interacting fermion quasiparticles.

The one-particle states of the system are then the solutions of the 
single-particle Hamiltonian

* k(r ) = ek «к И  U- l ? )
i

Moreover, as the potentials are weak, we shall have

fu 2 V  -> -* ~  V + ) v(r - i) 2M ' '

*2, 2h к
2m (1.18)

i.e . the electrons will be in free electron-like states.
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The occupation numbers of these states will be given by the Fermi 
distribution function

f (e) =(1 + e
fe -eF)/kBTyi (1.19)

2. CONDUCTIVITY

From the picture of the liquid given in section 1 we can, following 
Ziman, easily deduce an expression for the conductivity of a liquid metal. 
We have a free electron distribution of electrons before switching on the 
field. The electric field will cause the electrons to accelerate, thereby 
gaining energy and altering the distribution function. However, the ion 
potentials will scatter these electrons so that only a finite current results.

These considerations are the basic ingredients of the Boltzmann 
equation. The standard methods of the Boltzmann equation then predict 
that the conductivity, a, is given by

m

where т is the relaxation time of the electrons. The relaxation time is 
also given by the usual result

Iti i mk p . v .2
-  = ^  / (1 - cosö) П <k Г k'> Sine de (2.2)
t  2ir ft'3 J 1 1 1 1

о

where 9 is the angle between к and k'; both of which have length kF. This 
formula corresponds to the usual interpretation that L2 | k̂| Г |k')> |2 is the 
Born approximation for scattering around the Fjermi surface by an angle 0, 
and that the factor (1 - cos в) appears because |k| (1 - cos 0) is the loss of 
component due to the scattering (Fig. 1).

F ig .l .  Scattering around the Fermi surface.

The factor D | <(k | Г | k'̂ > |2 may be evaluated by forming the components 
of the potential

Г = r -  £)

l
between box normalized plane wave states.
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Hence

т  I  \ 1 i k r

V r> = 7W  •

<f| г |ti> - i j d ’,  e“llM ', * V v (r  - t)

(2.3)

-i(k-k')*« Г.З . . -i(k-k')-xe / d xv(x) e

± ^ е ^ - ^ - Ч ( к - к - ) (2.4)

Hence
I / т *  I I г » ,  ч I2  О  I f , , | 2  1 I V  - i ( i T - " k ’ ) - I r
|<k I Г I k V  I = -  | v ( k - k ' ) |  N I Z , 6 1

-|r I v(k - к ’ ) I a(k - k 1) (2.5)

The final formula, which is usually used for the conductivity, is then 
obtained by transforming to

if = к - k'
Therefore,

I q I = q = I If - k '|

= 2kp sin 0/2 ( 2 . 6 )

(1 - cos 0) sin0 d0 = I -j7^-q3dq (2. 7)
k F

Hence
Zkp

" Ь  ( f t f j r f  / l v ( 4 ) | 2 a ( q ) q 3dq (2 . 8 )
F 0

This formula for the conductivity of a liquid metal seems to have been put 
forward, independently, three times; first by Bhatia and Krishnan in 1948, 
then by Gerstenkorn in 1952 and finally by Ziman in 1961. However, the 
earlier workers were hampered by the fact that pseudopotential theory was 
then unknown; the formula is usually called the Ziman formula.
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2.1. Accuracy of calculations

Before discussing the physics involved in this formula, let us obtain 
some idea of the accuracy of the calculations. Typical modern calculated 
values and experimental values are shown in Table I.

TABLE I. p (EXPERIMENT) AND p (THEORY) FOR SOME METALS

(/iQ cm) Li Na К Rb Cs Zn A1 Pb

P (Exp) 24.7 9.6 13.0 22.5 37 37 24 95

p (Theory) 25 7.9 23.0 10 10 37 27 64

FIG.2. A plot o f |v(q) |2 and q3 a (q).

We see that the overall agreement is quite good; however, individual calcu
lations may be in error by a factor 2 or more while others are almost 
exact.

The above table then gives us an idea of what we mean by "good agree
ment with experiment" in the calculation of the conductivity of liquid metals: 
the figures are a marked improvement on older theories.

As well as obtaining an idea of how well we can agree with experiment 
we must also obtain an idea of how accurately we can numerically evaluate
(2.8): the structure factor is only known to within the accuracy of the 
experimental measurements and the pseudopotential is not completely 
accurately known. If we plot the terms in the integration in (2.8), then we 
obtain the curves shown in Fig. 2.
The typical integration limit for a monovalent metal has also been shown. 
The calculation is then strongly dependent on the accuracy of the measure
ments of the leading edge of the first peak of the structure factor. However, 
this region, which involves small momentum transfer, is the most difficult 
region in which to make experimental measurements.

The lesson from this is that the calculated values of resistance or 
conductivity are very sensitive to small errors in both the pseudopotential 
and the structure factor. The errors in the numerical calculations may be 
quite large.
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'2.2. Effect of the structure factor

The basic formula for the resistance gives the relaxation time (2.8) as
Zkp

 ̂ * f  I v(q) I a(q)q3dq (2.9)
0

The structure factor a(q) appeared in this expression because we considered 
the scattering by the entire potential

Г = £ v (? -T >
—>t

( 2 . 10 )

The factor expresses the fact that there is a phase coherence between 
scatterings from different ions. If the distribution of the ions in the liquid 
was purely random in the mathematical sense of absolutely no correlation 
between the positions of the ions, then no phase coherence between the 
scatterings will exist and indeed (1.6) shows that

a(k) = 1 (2 . 11 )

Alternatively, if we had treated the scattering from each ion separately 
as one would from different impurities when calculating the impurity re
sistance of a solid, then we would also have obtained

zkF

^  oc J  I v(q) | q3dq ( 2 . 1 2 )

0
The importance of the coherence in the phase between different scatterings 
in determining the order of magnitude of the resistance can be seen in 
Fig. 3. Here we see that the majority of the integral (for monovalent 
metals) is over a region where a(q) »  a(0) = (N/fl)ßL kBT, which is consider
ably smaller than unity. In fact, if the incorrect formula (2. 12) is used to 
evaluate the resistance of the monovalent metals the result is in error by 
a factor of about 20.

FIG.3. A plot of I v (q) |2 and a (q).
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The correlation which does exist between the positions of the ions in a 
liquid has a dramatic effect on the value of the resistance.

2.3. Plasma and structure resistance

If we plot the terms in the formula for the relaxation time (2.8) then 
schematically we have the curves shown in Fig. 3.
Here we show the structure factor, the pseudopotential squared and the 
limits of integration for 1, 2, 3 electrons for ions.

Now the low q part of this integration corresponds to a scattering of 
the electrons by thermal density waves with a deformation potential of 
(2/3) eF . This contribution is then approximately independent of the 
particular liquid metal. It corresponds to a contribution to the resistance 
due to the "plasma" of electrons on neutralizing ions which are a basic 
constituent of any metal.

For larger values of q the contribution is highly sensitive to just where 
and how the pseudopotential passes through zero and to the peak in the 
a(q) curve. Both of these depend on the "structure" of the particular 
liquid metal and in particular on the core radius of the given ion (see 1. 15).

In calculating the resistance we see that where the pseudopotential is 
large, the structure factor is small and vice-versa. This tends to decrease 
the resistance; but it makes the numerical calculating very sensitive to the 
details of the structure factor and pseudopotential.

In the above plot we left out the q3 term which heavily weights the 
larger q values in the integral. Because of this term the plasma resistance 
is negligible in doubly and trivalent liquid metals, although it is a major 
contribution to.the monovalent liquid metals.

2.4. Temperature dependence of the resistance

One of the great triumphs of this theory has been the success with 
which it has explained the temperature dependence of the resistivity. An 
older theory of the resistance, due to Mott, equated the resistance to the 
scattering by independant "Einstein oscillators". These were usually 
pictured as individual atoms moving about some mean position. However, 
as we have already pointed out, such independent scatters would have a 
resistance about 20 times too large. In the light of the above discussion it 
would be fairer to equate these oscillators with density waves (just as 
Debye waves should be used in the theory of specific heat) and to say that 
this theory only involved the plasma resistance.

The important point here is that any picture of scattering by indepen
dent oscillators gives a resistance proportional to the absolute temperature. 
Hence any theory based along these lines predicts

d In p _ 
d ln T = (2.13)

Experimentally this condition is approximately satisfied by the alkali 
metals but not by the others. The figures for some typical liquid metals 
are shown in Table II.
These older theories were then quite unable to explain the results for 
higher valence liquid metals, particularly the divalent metals, as it is 
impossible for any oscillator to lose amplitude with increasing temperature.
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TABLE II. dlnp/dlnT FOR SOME TYPICAL LIQUID METALS

Metal Valency
dlnp 
din T

Na 1 0.85
К 1 0.76
Rb 1 0.70
Cs 1 0.69

Zn 2 -0 .24
Cd 2 -0 .22
Hg 2 -0 .10

Ga 3 0.14
In 3 0.16

FIG.4. a(q) versus q for lower and higher temperatures.

In the present theory we see that all the temperature dependence is 
contained in the a(q) curve. Now what happens to this as the temperature 
is increased at a constant volume? We can answer this quite generally.
The part due to the density wave must increase proportional to T, for this 
is just an oscillator contribution. The position of the peak must stay in the 
same position for this is determined by the mean spacing of the ions which 
will stay constant for constant volume conditions. On the other hand, the 
peak must become broader and less high for there is greatly increased 
disorder with increasing temperature.

Hence, schematically, we have the curves shown in Fig. 4.
We can now see at once the explanation of the experimental results: for 
the monovalent metals the largest contribution to the resistance is the 
plasma resistance. The closer dlnp/d lnT  is to unity the greater is the 
contribution of the plasma resistance. For divalent metals the plasma 
contribution is negligible (~ 2%) for the q3 factor heavily weights the large 
q values. The resistance of the divalent metals will then decrease with 
temperature as the height of the main peak becomes smaller. While for 
the trivalent metals the resistance should again increase with the increasing 
temperature. This is exactly what is observed.
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3. THE "FREE ELECTRON" ELECTRON STATES

The theory of conductivity that we have presented relies heavily on our 
physical picture of the electrons being free and our derived result of a well 
defined relaxation time for the scattering by the ions. Let us now look at 
some other physical properties.

3.1. Optical properties

The optical properties of eleven liquid metals are known. By reflecting 
light from the surface of a liquid metal it is possible to measure the real 
and imaginary parts of the dielectric constant (or refractive index) as a 
function of frequency. If the dielectric constant

e = ex - e2 (3.1)

results from a free electron model in which a single relaxation time т for 
scattering exists, then the Drude equations for these quantities are

1 _ e__ n _
£1 7Г m 2m 2 , 21IJ v + 7

(3.2)

- ё!  л  a  l
2 7Г ТП V i/2 + y 2 (3.3)

where n is the number of electrons per unit volume and

7 1
27ГТ (3.4)

is an inverse relaxation time.
From the experimental results we can ask two questions: can we fit 

the curves over all the frequency range by adjusting the two parameters n 
and 7 ? If so, has n the same value as given by the number of valence 
electrons and is

n e2r
cr = --------------m (3.5)

the same as the DC conductivity?
The answer to the first question is yes for all the liquid metals that 

have been measured except Hg. Here two different observers disagree 
over whether or not Hg has a Drude fit over all the frequency range.

The answer to the second question is given in Table III for some 
selected liquid metals.
We see that the results are very close to unity in the liquid, whereas this 
is not the case at all in the solid (cf. last colume of Table III). This gives 
strong supporting evidence to our picture of the liquid state. On the other
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TABLE III. Nobs/Nval AND cropt/ffeiec FOR SOME SELECTED LIQUID 
METALS

Metals Cu 4 Ga Ge Sn Pb Pb (solid)

W Nval 0.84 1.13 0.98 1.08 1.05 1.18 0.32

°opt^°elec 0.70 0.96 0.97 0.82 0.95 0.94 0.7

TABLE IV. n I e I Robs FOR SOME METALS

Metal Na Zn Cd Hg Ge Sb

n 1 e 1 Fobs 0.98 0.9 0.98 0.97 1-06 1.14

hand, the difference from unity are outside the experimental errors for 
some of the liquids (but this is not so for copper). Hence this data can 
also be interpreted as experimental evidence for small, but significant, 
deviations from the free electron picture.

3.2. Hall effect

The transverse voltage resulting from an electric current flowing at 
right angles to a magnetic field is measured in terms of.the Hall coefficient,
R. The free electron model provides a particularly simple result for this 
quantity, namely

R = - - г г  (3.6)n| e I
where n is the number of free electrons per unit volume. In a solid metal 
the free electron value is expected if (1) the Fermi surface is spherical, (2) 
the relaxation time is isotropic. In solids the Hall coefficient almost never 
has the free electron value.

In liquids, however, the free electron value is almost invariably found. 
The measurements have a large experimental error due to magneto- 
hydrodynamic effects causing the ions to move and circulate.

These results again show the experimental validity of our free electron 
picture of a liquid metal.

3.3. Knight shift

The most damaging evidence to the free electron picture comes from 
the Knight shift. The Knight shift, K, expresses the fractional difference 
in the magnetic frequency of a nucleus which is measured in a metal and a 
non-conducting salt. The theory gives

K = f 4 M P F (3 .7 )
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where XP is the paramagnetic susceptibility per unit mass of the electrons, 
M the mass of one atom, PF the average probability density at the nucleus 
for electrons at the Fermi surface. Since both Xp and Pp depend on the 
electron states, any change in electronic states on melting should be 
reflected in K.

The experimental results are shown in Table V.

TABLE V. KNIGHT SHIFT FOR SOME METALS

Metal Li Na Rb Vs Hg A1 Sn

К (sol) 0.0261 0.114 0.654 1.49 2.45 0.164 0.75

K(liq) 0.0261 0.116 0.662 1.46 2.45 0.164 0.73

These results are disturbing; by the criteria of the Knight shift the 
electronic band structure would not appear to alter on melting.

The current explanation of the above figures is that they should be 
taken as evidence of a free electron-like density of states in the solid.
The paramagnetic susceptibility of the electrons depends on the density of 
states, or equivalently on m*/m. Now specific heat measurements predict 
m*/m in a solid to differ by 10% from unity: hence the original workers 
expected to see at least a 10% change in the Knight shift on melting. How
ever it is now believed that the specific heat is strongly altered by an 
electron-phonon interaction. Indeed all calculations of band structure in 
these metals give m*/ m only differing from unity by 1 or 2%.

4. THEORETICAL CALCULATIONS OF THE DENSITY OF STATES

We have presented evidence and derived results by assuming that the 
energy eigenvalues are given by

Eк

*2. 2 h к
2m (4.1)

This is equivalent to saying that the density of states, n(E), the number of 
eigenstates per unit volume per unit energy range, is

2 Щ  for E > 0 
4тг2

n(E) = (4.2)
0 for E < 0

or that the integrated density of states, ^r{E) the number of eigenstates 
per unit volume below energy E, is given by

-Л  (E) =

(E)3/2
67Г2 for E > 0

(4 .3 )
0 for E < 0
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Now even under the assumption of weak pseudopotentials there must 
be at least some change from this result and one might even expect a large 
change if something analogous to Bragg reflection occurred. We turn now 
to the question of how to calculate these quantities for the liquid state.

4.1. Perturbation of energy levels

At first sight one might try to use standard perturbation theory on the 
energy levels (Eq.(4. 1)). In fact, we cannot do this, for the states form 
a continuum and any perturbation, no matter how weak, is large compared 
with the distance between energy levels. Let us see what actually happens. 
If we use the Rayleigh-Schrödinger perturbation scheme we obtain

The immediate difficulty is that we do not know how to handle the pole 
in the denominator.

4.2. E,lt relations in a liquid

We see from Eq.(4. 5) that we cannot uniquely label the eigenstates in a 
liquid by the к value of the unperturbed free electron state. Nor can we 
define a Bloch vector к in the liquid, for we do not have translational in
variance for a given arrangement of the ions. There are, however, three 
physical ways of defining an E, к relation. Each of these reduces to the 
usual relation in a solid; but three different generalizations result for the 
liquid.

(i) Time development of a plane wave

If we imagine the existence of a plane wave state in a medium at time

then this will not be an eigenstate. It will then develop in time. The 
amplitude of the plane wave will then be given by

(4.4)

For simplicity we choose the energy zero such that <̂ Й|г|Й̂ > = 0. Then 
using (2.5) we have

(4.5)

t = 0
Фк (x, 0) = e ik  ' x

which after a long time will have a time dependence of the form

~ e ‘ 2Ekt
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This time development will define an energy Ek,^and in a solid this will be 
just the energy of the Block function labelled by k.

In a liquid, however, this energy will be complex and of the form

Ek = E ; - i r k (4.6)

The imaginary part will give rise to an experimental damping

and will define a life time of the state.
Without proof we shall state that this energy is given by (to second 

order)

Ek = k2 + d3q o_ N q ) l  a(q)
(27r)3 N k2 - (k + q) +ie

(4.7)

i. e. the pole is interpreted as if it had an infinitesimal imaginary part 
contained in it.

Using the relation

1
x +ie

P
x - “  6 (x)

7Г
(4.8)

we obtain that the imaginary part is given by

rk
2 Г  d 3q Q

я J  (2 7Г) 3 N
I v( q) 12 a(q) 6(k2- (k + q)2) (4.9a)

which is the same as the inverse life-time of the conductivity problem, 
except that it does NOT contain the (1-cos 0) factor.

(ii) The refractive index

If we allow a plane (electron) wave to fall onto a surface of a medium 
then it will change its wave-length on entering the medium. The medium 
will behave as if it has refractive index. In the medium we shall have a 
wave proportional to

—> —>
i kE- r

e
where k£ = k'£ ' + ikg . For a solid this procedure will again define a real 
Bloch vector k; but in a liquid we shall obtain a complex part to the Ic vector. 
This complex part will define a coherence length (rather than a life time) 
for the wave in the medium.

Without proof we state that we can obtain this vector by solving (4. 5) 
with a real E and a complex k2.

(Ш) A state counting к

The Bloch vector, k, energy, Ek, relationship in a solid (as well as 
describing how the wave develops through space and time) also describes
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' the density of eigenstates. The states are uniformly distributed throughout 
k-space. This property can also be used to define an E, к relationship 
for a liquid. As one might expect, this replaces the pole in (4. 5) by a 
principal part. We shall prove this below.

We see that when we have a disordered system, the different physical 
properties of the E, к relation in a solid generalize in different ways. 
There is no unique E, к relation in a liquid. For this reason one must be 
very careful about using concepts derived from solid state physics E, 
к relations (and in particular the use of an effective mass) in a liquid.

4.3. Expansion of the density of states

In order to overcome the difficulties concerned with interpreting the 
pole in (4. 5), investigations into this problem, almost without exception, 
start from an alternative expression which gives the density of states 
directly and bypasses the construction of eigenstates.

The density of states, n{E), is the number of energy levels per unit 
energy range per unit volume. Consider a finite energy range, e, and a 
finite volume so that the energy levels are discrete. Then

n(E)
1 /e for I En - E I < e/2 

0 for I En - EI > e /2

We must finally take the limits D -»oo and e -* 0: it is clear that we must 
take the limit Г2 -» oo, so that the levels form a continuum, before we take 
the limit e -> 0.

For mathematical simplicity we replace the function of height, l /e , 
and width, e, which appear in the above sum by

1̂ ______e______  _ Im 1_____
л- (E - En)2 + e 2 я- e  - En + ie

In the limit e -* 0 both these functions approach delta functions. We then 
have

n(E) = lim {  lim ^  £  E . e n + ie }  (4‘ 9b)
n

Now the sum over eigenstates represents a trace of the operator.
The trace may be taken in any representation: it is convenient to state it in 
a momentum representation. Hence

n(E) = ^  ^HTiil1̂ }  (4-10)
"k

where the factor 2 is due to spin and in the limit of large volumes

к

(4 .11)
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Eq. (4. 10) represents the starting point of most investigations. The 
limiting procedures are explicit, although we shall not generally write 
them in the formulae, but just understand that they are present. The 
function <1? |(E - H + ie)"1 |lc)> is the diagonal part of the Green's function 
or the operator (E - H_+ie)_1. The advantage of this approach is that the 
ie eliminates (and in the limit e -» 0, gives a precise meaning to) any poles 
which otherwise would appear.

If the Hamiltonian is written as
2H = - V + Г

= H0 + r  (4.12)

and we again take the origin of energy such that <(k|r|"&̂  = 0, then

------1------ = .------- 1------- + ------- --------г ---------------- + ----E - H +ie E - H0 + ie E - H0 + le E - H0 + ie

This is usually expressed as

G = G0 +G0 Г G0 +G 0 EG0 EG0 + . . .  

where G0 is the free-particle Green's function

Gn =r° E - Hn + i .

From this general operator expansion of the total Green's function we 
can immediately form the diagonal part in a momentum representation as

<k|G|k> = -------1------  -
E - к 2 + ie E - k2 + ieЬтг <k|r|k>—-4E - к + ie

T — Л . < f| r| * > -------Ц------ <k'|r|k>
, E ' k + ie E - k 'Z + ie ■

1
E - к + ie

+ • • •

Putting U' = ic + q and using (2.5), and <5|г|1Г> =0 gives

< к IG I k> 1
E - k2 + ie

1
(E - k2 + ie)2

d3q §  Iy(q)j2 a(q)
(2^)3 E-(k+q)2+ ie

+ . . ( 4 . 13)
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The pole in the second-order term is now completely defined, the reason 
being that nowhere here have we introduced individual eigenstates.

4.4. Difficulties with the density of states expansion

By transferring our attention to the density of states, instead of on 
individual eigenstates, we have overcome the difficulty that the expansion 
of the eigenstate only converges when the perturbation is small compared 
with the separation between levels. However the expansion of the density 
of states only converges when the change in the density of states is small 
compared with the free electron density of states. Equation (4.2) then 
shows that the expansion can never be valid when E < 0; indeed (4.13) 
shows that the expansion of Im <(l£| (E - H + ie) 1 lc)> is a series of infinite
simal terms when E<0.

To overcome this we must form some other type of expansion than a 
straight Taylor series expansion. This may be done in an infinite number 
of ways: we cannot justify any particular method on purely mathematical 
grounds. We must justify the type of expansion we use on physical grounds.

The usual method is to assume that the Green's function will have a 
form analogous to that corresponding to free electrons in a uniform poten
tial, £. In this case one would have

< k |
l

E - H + ie |k> =
1

E - k2 -E
If we now assume a slight extension of this formula, so that the potential is 
a function of E and k, then we would have

< k |
1

E - H + ie k> = 1_______
E - k2- £(E, k) (4.14)

If now we expand E in powers of the potential as

E(E, k) = XE' + X2E2 + • • • (4. 15)

and then expand (4. 14), we have

< k |

1
E - H + ie k> = 1 1 

E - к2 + (E - k2)2 XE' + X2E2+ • ■ •

+ (E - k2)3 XE' +
-|2

(4.16)

By writing Г as ХГ in Eq. (4. 13) we may equate powers of X with (4. 16) to 
find £ = 0

£ 2(E , k) = d 3q § l v(q)l2a(q)
(2" )3 E-- (k + q)2 + ie

( 4 . 17)
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and the density of states to this order is

n(E) = 2 Im 1 
%г (2тг)3 d3k 1________

E - k2- E2(E,k)
(4.18)

Let us just restate that the functional form (4. 14) cannot be rigorously 
justified; an infinite number of function forms could have been chosen at 
this stage.

4,5, A state-counting E, к relationship

The method given in the last section is the basis of the methods which 
have generally been used in the literature. In fact, if it is just left at the 
simple stage (4.18) there are still difficulties in the neighbourhood of 
E = 0, so further modifications must be made.

As we have stated, the justification of any step, such as (4. 14), must 
be based on physics rather than mathematics. I believe that in the free- 
electron limit the best assumption is that an Ek function exists where the 
к are uniformly distributed. If, as in a liquid, we have an average 
spherical symmetry, then we should have that the integrated density of 
states was just the volume of a sphere of radius к in к space, i .e .

d3k

(2тг)3 3

The ordinary density of states is then

(4. 19)

n(Ek) = 1 k2 
tf2 dEk/dk (4.20)

The method of finding this Ek is then the same as before. After 
integrating expansion (4. 13) both with respect to the energy (to give the 
integrated density of states) and the к variable in that expression we can 
invert the expansion to give Ek. The result is

E„ = к2 + т г  к 4 л
r  d3q n |v(q)|2 a(q) 

\l  (2>r)3 N k2 . (iJ+ - ) 2 + i e (4.21)

to second order in the potential. This expression is then the same as 
(4. 5), but with the pole interpreted as ^principal part and spherical 
average of the directions of the vector Й taken. We may in fact complete
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this latter integral; the result is then

Ek = k2 '  8~7i7 N / qdqlv(q)|2 a(q) ln (4- 22)о

4.6. General comments

By two quite plausible procedures we have obtained two different 
answers for the density of states, namely (4.18) and (4.21) together with
(4.20). The first of these is based on the physical picture of an optical 
potential, while the second is based on an analogy with the Rayleigh- 
Schrödinger perturbation series. Both of these ideas appear equally likely 
(in the weak scattering limit); however when E «  0 the two expressions 
lead to quite different results. This again demonstrates the lack of 
uniqueness in the mathematics. Fortunately the two expressions give 
similar numerical results when E «  EF.

Calculations based on these types of expressions tend to confirm the 
general picture of the electron states in the liquid metal being very "free 
electron like". In particular, no radical changes in these functions appear 
when k = qM/2, when qM is the position of the peak in the structure factor. 
This is the position where Bragg reflection occurs in a solid. Quite small 
disorder appears to eliminate these strong reflections.

Finally we like to remind you again that this Ek curve is limited in its 
applications to state counting. It is wrong, for example, to use it in the 
Boltzmann equation by replacing the equation

by

(4.23)

(4.24)

In fact the correct quantum-mechanical Boltzmann equation (correct to 
order Г 2) shows that this term should be

df
T

dt

k2 - k'
<k| Г I k'> I 12

where P denotes principal part. This later term subtracts off part of any 
m*/m correction due to using (4.24) in place of (4.23). Just because the 
Bloch vector is uniformly increased with time by an electric field, it does 
not mean that this property still holds for one of the three generalizations 
of this quantity that we have formed for a liquid.
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A SIMPLE MODEL FOR 
MONATOMIC LIQUIDS
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Abstract

A SIMPLE M ODEL FOR M O N A T O M IC  LIQU IDS. A  re v iv a l o f  an o ld  id e a  in  an im p ro v e d  fo rm  
g iv e s  th e  op p o rtu n ity  o f  a n a ly sin g  th e  re la tio n sh ip  b e tw e e n  th e  structure o f  liq u id s  and that o f  crysta ls .
It a lso  a llow s o n e  to g iv e  s im p le ,  i f  a p p r o x im a te , expression s fo r  th e  s ta tic  and t im e -d e p e n d e n t  pair 
c o r r e la t io n  fu n ctio n s . A  co m p a r is o n  w ith  the n u m e r ica l e x p e r im e n t  b y  Rahm an suggests in terestin g  
co n c lu s io n s  on  th e  r o le  in  th e  d y n a m ic s  o f  th e  liq u id  p la y e d  b y  w hat is th e  e q u iv a le n t  o f  th e  " v a c a n c ie s "  
in  a c r y s ta llin e  structure.

We try here to formulate the elusive relationship between the structure 
of monatomic liquids and that of crystals. This attempt is akin to a much 
older one made by Prins and Petersen [1].

It is based on the following assumption. The positions of the atoms 
in a sample of monatomic liquid at any given instant of time are considered. 
If we take,a number of neighbouring atoms — say, a dozen or even more — 
we should be able to recognize a pattern more or less like a distorted 
crystal lattice in them. Let us now assume that an ideal lattice of a 
suitable type is superimposed such that the best correspondence possible 
between the sites of this lattice and the positions of the atoms is achieved. 
Since neither the angles nor the distances of the real structure are quite 
correct, we should not be able to follow very far the correspondence 
between atoms and lattice sites. However, in a place where the correspon
dence has got lost, we should still be able to relocate the ideal lattice so 
as to accommodate the atoms that are in this place in a way which, on the 
average, should be as good as for the initial atoms themselves.

This ideal lattice which, on the average, agrees with the real distri
bution of the atoms only over a limited range, will, for convenience, be 
called the tangent lattice. Its existence is, of course, an assumption.

The site of origin of a tangent lattice is, by definition, the one most 
closely corresponding to an atom of the liquid. By proper choice of the 
tangent lattice, it can be made to lie near any atom of the liquid, so that 
we may speak of the tangent lattice "relative to this atom". However, 
the tangent lattice has also a kind of "collective" character, because it is 
determined by a certain number — dozens or perhaps hundreds — of 
atoms. It is, moreover, a dynamic entity, displacing and rotating little 
by little, according to the individual motions of the atoms. There will 
be a correlation between the tangent lattices relative to the same atom 
considered at times close enough to each other, just as there will be a 
correlation between the tangent lattices relative to two atoms sufficiently 
close to one another, at the same time. However, these correlations 
should vanish for sufficiently large separations in time or space.
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To get from the above some formulae which can be compared with 
experiment, some further assumptions are made, namely: (a) if we 
plot the positions occupied by the atoms in the course of time in the 
frame of reference of the tangent lattice relative to any atom, we assume 
that they cluster about the lattice sites according to Gaussian distributions; 
(b) the square widths of these distributions increase linearly with the 
distance of the site from the origin. Herein lies the similarity with the 
work by Prins and Petersen who assumed that the radial density p(r) 
could be expanded in a sum of Gaussians centred about the radii Rn 
of a suitable lattice. More recently, a similar assumption has been 
made by an MIT group of workers [ 2] who postulated that r2p(r) could 
be expanded in a similar manner.

From the above assumptions we obtain an expression for p(r) which 
turns out to be

p(r) = 3 , „  .2 3 „ 2
(r " Rn) - exp L-23j(r + R“> J

Here gn is the number of sites at a distance Rn from the origin of a 
suitable lattice, while cr„ = ß Rn with ß being an adjustable parameter. 
(The second term in the square brackets is negligible except for r^O). 

Similarly, for the scattering function i(s) we find

i(s) X  gne x p ^  n2ns2
n = 1 4

sinRn s 
R n  s

Comparison with known results (for Ar, Ne, He) shows fair, although 
not perfect, agreement (assuming hexagonal close-packing). The fact 
that the calculated density is always higher (15% for Ar is typical) than 
the experimental one suggests there are vacancies in the quasi-crystalline 
structure.

The model has also been applied to Rahman's numerical experiment 
[ 3] . It is found that the results for the time-dependent pair correlation 
function Gd(r, t) at various times, can be accounted for by giving suitable 
values to Д2 appearing in

Gd(r, t) ( 3 ii v  gn
r AjR (a2 + д2)г

4 7 n=l nv n '
exp 3 (r - Rn)2 

(ct2 + Д2).
3 (r + Rn)2 
2 (a2 + Д2). }

a formula which foUows from the model. Here A2(t) is the mean square 
displacement of the origin of any tangent lattice supposed to obey a diffusion 
law (6 is the instantaneous displacement):

A(6„t) £

i
I Д '3 exp 3 62 

2 Д2 A2=A2(t)
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The values found for A2(t) are consistently lower than the corresponding 
values found by Rahman for the average square displacement r2 = f(t) of 
the atoms. Through a tentative analysis of the atomic motion, which 
cannot be summarized here, we conclude that the above difference can 
be accounted for by the "jumping" of the atoms into the structure 
vacancies. A rate of jumping of v = 1. 8 X 1010 per atom per second is 
estimated. It amounts to an average of about one jump per 50 "oscillations" 
of the atom about its (approximate) position of equilibrium.
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Abstract

1 . In tro d u ct io n . 1 .1 .  B orn 's th e o ry : h a rm o n ic  a p p ro x im a tio n  and a d ia b a t ic  a p p r o x im a tio n .
1 . 2 .  R e la tio n  b e tw e e n  fo r c e  con stan ts and d y n a m ic a l  m a tr ix . 1 .3 .  I llu stra tion  w ith  a 3 -D  la t t ic e  and 
sy m m e try  e f f e c t .  1 .4 .  C e n tra l and tensor fo r c e s .  2 . F o rce s  in  s im p le  so lid s . 2 . 1 .  C e n tr a l f o r c e  and 
tensor fo r c e  m o d e l fo r  N a . 2 .2 .  M e th o d  o f  F ourier a n a ly sis . 2 .3 .  W ork  o f  de L aunay, B hatia  and K rebs; 
fa ilu re  o f  C a u ch y  r e la t io n s . 3 .  F orces  in  a lk a li h a lid e s  and s e m ico n d u c to rs . 3 . 1 .  D iscu ss ion  o n  G e .
3 . 2 .  D iscu ss ion  N a I . 4 .  F o rce s  in  f r e e - e le c t r o n - l ik e  m e ta ls . 4 . 1 .  P se u d o p o te n tia l a p p ro a ch  o f  H arrison 
and S h a m . 4 . 2 .  H a rrison 's  m e t h o d . 4 . 3 .  W ork  o f  S ham  and o th ers .

1. INTRODUCTION

Many solids occur in crystalline form in nature, i .e . their atoms are 
arranged in a regular repetitive structure. However, this statement is 
true only on the average, because at any instant the atoms constituting the 
solid are vibrating about, their equilibrium positions and the term "repeti
tive structure" applies only to their equilibrium positions. These motions 
constitute the thermal energy of the solid. Historically, the interest in 
these motions arose with a view to understanding the thermodynamic 
properties of solids. However, it is natural to expect that these motions 
of the atoms will depend upon how the atoms interact with one another. 
Consequently, the interest in recent years has shifted to learning the 
detailed information these motions reveal about the nature of interatomic 
forces. We will see in this paper how experimental information about 
dispersion relations, obtained through inelastic scattering of neutrons, is 
used to understand the nature of interatomic forces.

We begin with a quick review of Born's theory of lattice dynamics and 
the basic assumptions on which it is based [1] .

1.1. Born's theory: harmonic approximation and adiabatic approximation

The dynamics of the vibrations of the atoms in a solid is discussed in 
terms of the harmonic approximation. For small displacements of the 
atoms from their equilibrium positions, the potential energy ф of the solid 
is expanded as a Taylor's series in the displacements of atoms. The 
series is broken off at terms of second order in displacements. This is the 
so called harmonic approximation. The equation of motion is then set up 
for each atom: these are, in general, coupled differential equations. They 
are solved by transforming to normal co-ordinates of the system taking 
advantage of the translational periodicity of the system. These normal co 
ordinates are independent of each other (in the harmonic approximation) 
and are just as many in number as the total number of degrees of freedom
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for the system. They give the normal modes of vibrations of the system, 
each with a characteristic frequency. The solution of the equations of 
motion shows that the motion of atoms can be described by a superposition 
of quantized elastic waves called the normal modes of vibration of the 
system.

It turns out that these modes of vibrations are directly related to the 
interatomic force constants. Thus, a study of these will enable us to 
derive information on the force constants.

Adiabatic approximation: In many solids the presence of a (mobile) 
gas of valence electrons necessitates the introduction of another approxi
mation, the so-called adiabatic approximation, according to which the 
electrons adiabatically adjust to ionic motions. The physical basis of this 
approximation is that the ions, being much heavier than the electrons, 
must be moving much more slowly than the electrons. Therefore, from 
the point of view of electrons every ionic configuration (in the course of 
vibration) can be assumed as though the ions are frozen in that configuration. A 
consequence of this approximation is that the energy of the electron gas 
acts as a potential energy for the motion of the ions. This total potential 
energy (of ion-ion interaction + that due to electrons) must be treated 
within the framework of the harmonic approximation, itself, the

1.2. Relation between force constants and dynamical matrix

We now proceed to a study of the relation between dynamics and inter
atomic force constants in a solid. For this purpose, we consider a solid 
of n atoms per unit cell. The relationship between the frequencies of 
normal modes of vibration of the solid and the force constants (this term 
will be defined below) is best expressed as a matrix equation:

where £ runs over all k' = 1. . . n (i. e. atoms in a unit cell) and over the 
Cartesian components; m'k = mass of k'th atom in the unit cell. The 6 are 
Kronecker deltas. Uytk','?)) is the yth component of the amplitude of the 
k'th atom, and q is the wave vector of the propagating mode. The quantity 
Mxy(q, kk1) is called the element of the dynamical matrix and is related to 
the second derivatives of the potential energy function ф by:

where r (ik) denotes the equilibrium position of kth atom in üth unit cell 
and

k'y

Э ф2

Ф^ик, i 'k 1) =Эг (ük) 9r (ü'k1) х у о

where ф is defined above and subscript 0 refers to the value of derivative 
being taken at the equilibrium separation of the relevant atoms. The 
quantity Mxy is independent of £ and therefore r (£) is set equal to zero.
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For a given pair of atoms (4k), ( f 'k 1) the quantities-^ are called 
force constants and the corresponding 3X 3 matrix

is called the force constant matrix. The physical meaning of -ф is that 
(Фа$ )  is nth component of the force induced on (ik)th atom when the atom at 
r ( i 'k ')  is given an infinitesimal displacement 6 along the direction 0.
Since the approximation is harmonic, the force constants are usually called 
harmonic force constants.

1. 3. Illustration with 3-D lattice and effect of symmetry:

So far we have given only a very formal discussion. We illustrate all 
that we have said by a hypothetical example (since no such crystal is found 
in nature) of a (3-D) simple cubic crystal in which only the nearest neigh
bours interact. To demonstrate this example, let us refer to Fig. 1. We 
have taken an atom at the origin and chosen its six nearest neighbours. 
Choosing the axis as indicated, it is easy to write down the co-ordinates 
of all the atoms.

Atom label Co-ordinates

Let us write down the force constant matrix connecting the atoms 
0 and 1. Through symmetry arguments it can be shown that the matrix

gets very much simplified. Now it is clear that since a symmetry operation 
of the lattice transforms the lattice into itself,the force constant matrix 
also must transform in a definite way under the symmetry operations, 
e .g . the operation of a clockwise 90° rotation about the x axis brings atom 5 
to the position 2, and so the force constants for the atoms (0 - 2) and (0 - 5) 
must be related by (se6 Ref. [2] :

0
1
2
3
4
5
6

(000) 
(a 0 0) 
(0 a 0) 

(-a 0 0) 
(0-aO) 

(00a) 
(0 0 -a)
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FIG. 1 . A n  a to m  w ith  s ix  nearest n eighbours .

The result essentially follows from the transformation law of second-rank 
tensors. T is the transpose of T, and T is the matrix representing the 
90° rotation about the x axis.

To see how 0(0, 1) gets simplified, note that a 90° rotation (clockwise) 
about the x axis leaves the atoms 1 and 0 invariant. And the matrix T 
representing this rotation is given by

T =
0 0

0 0 -1

0 1 0

-» X, У - - z
above ф{ 0, 1) must satisfy

rxy
0УУ
Фzy

y z

0 
0

>0 -1

xy
Ф*yy
Фzy

yx
Ф
r z x

^xy ^xz\ 0
° \ X̂Z ^Xy\ /^xx ^xz >

s

1

0 0 = o 0 1 0 Ф - 0 M  ^ Ф - Ф
УУ yz 1 Ух yz УУ yx Z Z zy

0rzy *zz/ \ °
-1 0 / V z x ФY ZZ "^ zy / -фryz ф у у

This gives us the following relations

i = 0 = - S (say)
r y y  r  Z Z  J  ' x̂x = ~a <say)

^ x y  T x z

ф = Ф
Y y x  v  zx

0xy consequently 0xy = 0X2 = 0

Ух therefore r y x  ^ z x = 0

i>yz = ẑy = (say)



INTERATOMIC FORCES 669

Substituting these values into the definition of ф we obtain:

/  a 0 0

©iiT—1o’-e- ■ ß 7
Vo -7 ß

Another symmetry operation is a mirror plane (the xy plane). The trans
formation matrix has to represent x -* x; у -> y; z -» -z and therefore is 
given by:

1 0 0

0 1 0

0 0 -1

Thus ф(0, 1) must satisfy (just as before)

f a  0
°\ ( l 0 0\ j a 0

°\ /'1 0
°\

0 ß 7 j - ° 1 0
Г

ß 7 ) 0 1
0\0 -7 ß/ \o 0 - 1 / \o -7 ß i \v0 0 -1 /

( 1 0 o\ f a  0 °\ / a 0 °\
=

Г
1 0 11 ( 0  13 -7 J • 0 ß -7

\o 0 - \ ) \0 - 7 ß/ \0 7 ß/

This tells us that 7 = - у therefore у = i0. Hence the symmetry of the
lattice requires that 0 (0, 1) have the fo:rm:

/  a 0 0 '\
0(0,1) = 0 ß 0 (1.1)

\o 0 ß , I

To find out 0(0, i) with i = 2, 3, 4, 5, 6 we note that suitable rotations trans-
form the atom 1 to atoms 2, 3, 4, 5, 6. In this way we can, for example, 
see that a rotation through 90° (counterclockwise) about z axis takes 
x->y and y-»-x  and z->z and takes (0,1) to (0,2) and, therefore,
0 (0,2) = T 0(0, 1) T where T represents the above symmetry operation.

Going through the algebra as before we get:

0 (0 ,2 )=  0
0

0
0

ß

( 1 . 2 )
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[ a 0 °\ f ß
0 0'

<M 0,3) =
0

ß
0

Ф(0, 4) =
Г

а 0
\o 0 ß / \0 0 ß.

l ß
0 ° \ ( ß 0 0

Ф (0,5) =
0

ß
0

Ф( 0,6) =
[ °

ß 0
\o 0 а \o 0 a,

(1.3)

Note that the structure of all these force constant matrices is the same, 
i. e. there occur two ß and one a in diagonal element in all these. It is 
therefore usual to indicate only the structure of force constant matrices 
for each type of neighbour. Since our lattice is without basis the formulae 
are very simple. The dynamical matrix Mxy(q, kk) is defined as:

Mxy(q, kk) -Г <ky (0, V)
i q . r ( t ' ) ■XI ( 0 , f (1.4)

where, as stated earlier in the definition of M(q, kk), r(f) has been set = 0. 
And also the second term on the right-hand side Of Eq.(4) appears because 
of the definition of the term (^(0, 0). The prime on the summation indicates 
that the 1' = 0 term is to be omitted. Since we have asserted that only 
nearest-neighbour interactions are important the summations in Eq.(1.4) 
run only over the atoms labelled by 1, 2, 3, 4, 5, 6 in Fig. 1.

It is a simple matter to use the Eqs (1-4) to get an expression for 
M(q, kk) which we write as M(q,) for the sake of simplicity.

12a cx + 2ß(cy + cz) 
M(q) = I 0

0
2a(cx + cz)+2ßcy

0 
0

2acz + 2ß(cx+ cy)//

/2а+4ß 0
0 2а+4ß
0 0

о 
о

2а +4ß .

where сх = cos (qxa), cv = co s (q va), and cz = cos (qza). Thus

0 (
у z  ■

M(q) = I 0
^2a(cx-l)+2ß(cy-l+cz-l )

2a(cx-l+cz-l)+2ß(c -1)
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The eigenvalues of the above matrix give the square of frequencies (w2).
In this way a plot of u versus if for any given direction of q can be built up.

The parameters a, ß, etc. are usually adjusted so as to either fit the 
dispersion relations (u versus cf plot) measured experimentally or to re
produce the observed elastic constants. The scheme outlined here is very 
simple. Of course, the assumption of only nearest-neighbour interactions 
is very drastic. However, the inclusion of the interaction with further 
neighbours presents only a computational problem. Indeed, in a realistic 
analysis of the experimentally determined phonon dispersion relations 
interactions even up to 4th or 5th neighbours are allowed. Only the number 
of parameters increases. In this way if the to- versus- q plot is known from 
experiment we can get the force constants.

1.4. Central and tensor forces

Up to now, no assumption about the nature of the forces has been made 
except in that they are derivable from a potential energy function ф. The 
only thing we have used is the lattice symmetry. The model that we have 
considered is the so-called tensor-force model (t.f. model). It was developed 
by Born and his students (see e .g . Ref. [2]. Some other models in which 
specific assumptions are made about the nature of ф have also been used in 
the calculation of dispersion relations. These models assume that the 
potential energy function ф is a sum of two-body potentials, which are 
functions of the value of their separation, i.e. ф(г (fk), r ( f ’ k1)) = ф (| r(fk)
- ?(.№ ) I). If we start with such a potential energy function we shall, 
in general, get only two types of parameters for a given set of neighbours.1

1 d<£ 
r dr о

and d !i|
dr2 о

where r is the separation of the atoms and the subscript 0 indicates that 
the values have to be computed at the equilibrium separation. The two types of 
constants mentioned here are called "bond bending" and "bond stretching" 
force constants. This model has been suggested by Lehman et al. [3 ].
They called it axially symmetric model and applied it to Cu, Al and ZrH 2 
including interactions up to three nearest-neighbours, with six adjustable 
parameters for Cu and four for Al. The fit which they obtain to the experi
mental measure is not as good as with t.f. model.

There is yet another kind of model in which "bond bending" force 
constants are altogether dropped. This is a central-force model with a 
still greater simplification. But the fact that experimental results are 
almost never satisfactorily fitted with this type of model shows that this is 
an over simplification of the facts.

To sum up, the experimental information on the phonon dispersion 
relation can be used to understand the nature and magnitude of the force 
constants (in the framework of harmonic approximation); usually it turns 
out that for almost all solids for reasonable agreement with the experiment 
results tensor forces extending up to 5th or 6th neighbours are required.

1 The actual number o f force constants is (2n-l) because o f the equilibrium conditions. Here n is 
the number o f neighbours up to which interactions are assumed to extend.
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2.1. Central-force and tensor-force model for Na.

We have seen how symmetry arguments are used to get the force 
constant matrices. We discovered that, in general, the lattice symmetry 
reduces the number of force constants. We will now take up a few examples, 
of simple solids wherein the agreement between theory based on such 
models and experiment is quite satisfactory. A simple solid that we are 
going to talk about is sodium.

Sodium has a bcc structure. Its phonon dispersion relations were calcu
lated by Toy a [19] from first principles and later on measured by Woods et al. [5 ] 
using neutron spectroscopy. For the moment we are not interested in the 
basic calculations, but will concentrate on the force constant models. We 
shall return to the basic approach of Toya later on.

Now in sodium it is known that the elastic constants C12 and C44 satisfy 
the Cauchy relations (namely C12 = C44) to about 20%, therefore the 
possibility of the existence of central forces cannot be excluded. In fact, it 
turns out that nearly as good fits to the experimental dispersion curves are 
obtained by tensor-force and central-force models. Now, as was pointed 
out previously in the case of central forces, there are only 2 parameters 
for every set of neighbours. But, in addition, the equilibrium condition 
imposes some relations on the force constant parameters. For a simple 
structure like bcc there are 2n-l independent force constant parameters if 
interaction up to the nth neighbour are included. On the other hand, 
symmetry alone governs the number of force constant parameters occurring 
in tensor-force model.

Following the aboveindicated procedure it can be shown that for the 
tensor-force model in the case of a bcc lattice the force constants for 
various neighbours have the following form:

2. FORCES IN SIMPLE SOLIDS

Neighbour position

1st neighbour 

^ (1 ,1 ,1 ); a is side of cube

2nd neighbour

I  (2, 0, 0).

force-constant
matrix

(Note that 2nd neighbours in the bcc lattice are in the same position 
as the nearest neighbours in simple cubic lattices and, therefore, the 
structure of the force-constant matrix is of the type indicated earlier.)
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3rd neighbour a 3 ^ 3 0

f  (2. 2, 0) u “ з 0
Z

\° 0
^ 3

4th neighbour
Л 4

64 V

f  (3, 1, 1) 04 У4
z

A e* У4 04

5th neighbour
Л 5 05 /V

a (1, 1, 1) a5 05

U 5̂ “ 5.

With the help of these, the dynamical matrix can be set up and for phonons 
propagating in high-symmetry directions the dynamical matrix itself 
reduces to the diagonal form. The parameters a, j3, y, 6 are now varied so 
that the experimental data on the dispersion relation is best fitted in the 
sense of the method of least squares. If these parameters do not show un
necessarily large oscillations when the range of forces is increased, then 
we consider them to be really meaningful. For sodium Woods [4] 
carried out this type of analysis using both the central- and tensor-force 
models. The results are summarized in Table I:
By including interactions up to 5th neighbours the tensor-force and central- 
force models give an agreement within experimental errors. By including 
interactions up to 2nd neighbours we obtain a qualitative fit only. The 
fair success of the central-force model achieved led to the derivation 
of an effective interatomic potential from these three-neighbour force 
constants. The best fit in the form

V(r) = Ar П - Br

was obtained as

V 35.7 a = 4.24 X 10 cm

It is plotted in Fig. 2.
Assuming that the form of the potential function does not change with 
temperature, calculations of the temperature dependence of compressibility 
were made with this potential which had only qualitative success.

Thus, we see that the interatomic forces in solid sodium extend say as 
far as up to the 4th or the 5th neighbour only. However, the nature of 
the interatomic forces is not purely central. Thus, the force-constant 
analysis reveals the fact that for a more basic understanding of the dis
persion relations, a mechanism giving rise to long-range forces should be 
sought.



674 IYENGAR

TABLE I. FORCE CONSTANTS FOR Na AT 90°K OBTAINED 
EXPERIMENTALLY (in dynes/cm)

Force constant t .f. model c . f .  model

a l
6 l

1178 ± 10 

1320 ± 10

1173 ± 10 

1319 ± 10

s 472 ± 30 431 ± 20

104 ± 30 110 ± 20

-38 ± 10 -47 ± 10

ß3 -4  ± 30 20 ± 10

-65 ± 10 -67 i  10 (a ,-  0S)

“ 4 52 ± 20 44 ± 10

ß4 -7 ± 10 0 .5  ± 10

L 3 ± 10 5 ± 10

64 14 ± 10 16 ± 10

“ s 17 ± 10 17 ± 10

ß5 33 ± 10 17 ± 10

'6 0
-40
-2 0

1
-2 0
-4 0
- 6 0

1 .0  2 . 0  3 .0

2.2. Method of Fourier analysis

The labour involved in making a tensor-force analysis of the experi
mentally determined phonon dispersion relations is very large. A simpler 
approach was given by Foreman and Lomer [6] in 1957. To appreciate 
their idea fully, let us first consider the dynamics of a linear chain of 
atoms, each of mass m, separated from each other by a distance a

-3 -2 -1 6 1 2 3 4
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The equation of motion of the atom at origin is then:

2 00
m-—ф- =У  -f P (u + u - 2u )!• (2.-

g-j. 2 /_j L n+1 n+1 п-1 о J
n=o

where Pj is the force constant for the nearest neighbour; P2 that for next 
nearest neighbour, etc.

Making use of the translational periodicity of the lattice and thus 
writing the solution of Eq. (2. 1) in the form of travelling waves

„  i(qn a -w t) u = U eП

we obtain

CO
2 V  i 4(na + aj -iq(na+a) r- m u - )  P (e + e -2) (2.5

Z_i n+i
n=0

or we write it in Foreman's notation as

mu2 =
00

^  2 фп(1 - cos  (qna))
n=o

where фг = P1; etc. 
Consequently,

^max jr/a

such that

mu2 = ^  2 фп( 1 - cos (nq7r/qmax)) (2.3)
n=l

Consider now a fee crystal (e.g . lead or aluminium).
Consider a phonon propagating in a symmetry direction, say, e.g . the 
(100) direction. Recall that the displacement of ith atom here is given 
by (for a 3-D lattice it is just an extension of 1-D):

-» a  - t̂)u, = Ue

with the usual notation. Note that atoms lying in a plane of to the direction 
of q will all vibrate in phase, since for any two such atoms the vector 
(r ( f ') - r ( f )) lies in a plane /  to q and hence ((r (f1) - r ( i )) • if) is zero. 
Therefore, for phonons propagating in symmetry directions in the 
fee lattice (as the (100)) the planes of atoms xr to q vibrate in phase and so 
dynamically the problem is very similar to a one-dimensional case, if one 
treats the фп as the interplanar force constants. Let us now Fourier analyse 
the dispersion relations along such a high-symmetry direction, e .g . (100) 
in Al. Then by Fourier analysing the transverse and longitudinal branches 
we can obtain the Fourier coefficients which are precisely the interplanar



676 IYENGAR

000) direction

FIG. 3. An example of how interplanar force constants are related to interatomic force constants.

force constants. Roughly speaking, this will give some indication 
about the range of interplanar and^thus, of interatomic forces; in this way, 
the method provides, at least, a useful estimate of the range of forces.

To see how these interplanar force constants are related to interatomic 
force constants, we shall refer to the Fig. 3.

In the figure, let plane 1 contain N' atoms one of which we have shown 
at the origin, and let it be coupled to the atoms in plane 2 by springs with 
force c o n s t a n t s w h e r e  (u, v, w) are the co-ordinates of the atom in the 
2nd plane with reference to the origin atom in plane 1. The interplanar 
force constantS“$ jjlanes 1 and between planes 1 and 2 are then related to 
interatomic force constants by:

(planes 1 and 2)
Ф11

V w

(2.4)

-Фи is the force induced on plane 1 along x-axis when plane 2 is
moved parallel to x-axis through a unit distance. Now, by Fourier analysing 
the longitudinal branch in a Fourier series of the type indicated earlier the 
left-hand side can be obtained. Similarly, the interplanar force constants 
between plane 1 and other planes ±r to the (100) direction at distances 2a,
3a, etc. can be found. Now in such a high-symmetry direction the trans
verse branches are degenerate, and also the longitudinal and transverse 
modes can be treated independently. Thus, similar results can be obtained 
by changing the subscripts 11 in Eq.(2.4) to 22 or 33. The left-hand side 
can again be obtained by Fourier analysing the transverse branches. The 
problem of actually estimating the force-constant matrix elements from the 
data on the interplanar force constants can be solved if one has as many 
linearly independent equations similar to Eq.(2.4) as the number of force 
constants. Of course, assumptions as to how many neighbours should be 
included, etc. have to be made.

An analysis of the type indicated here was first performed by Foreman 
and Lomer on the results obtained for aluminium. They found that although 
in the (100) and (111) directions the longitudinal and transverse branches 
could be fitted by assuming only two harmonics in the Fourier series, in
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the ( 1 1 0 ) direction (in this case the two transverse branches are non
degenerate), four Fourier components, at least, were necessary to get 
a reasonable fit. They concluded that within the framework of adiabatic 
approximation and harmonic approximation the fourth-nearest-neighbour 
interactions were not quite negligible.

An analysis of similar type has also been performed on many other 
substances; for lead, it gave some significantly interesting results. The 
structure of lead is fee; it is a substance with four conduction electrons 
per atom. As remarked earlier, the presence of a mobile electron gas in 
metals is supposed to be responsible for long-range forces. One would 
therefore expect very-long-range forces in lead and the method described 
just now could be used to advantage to check this point.

Brockhouse et al. [7] performed this type of analysis for lead and found 
that to get a fit to the dispersion relations within experimental errors, 
indeed, interactions up to the 12th neighbour had to be allowed. It was also 
found that the interatomic potential showed an oscillatory behaviour after a 
certain number of neighbours. These oscillations are assumed to be due to 
the presence of a sharp Fermi surface and thus the effective interatomic 
potential induced by the electrons is supposed to give rise to such an effect.

So in conclusion, we can say that the work of Foreman and Lomer also 
gives conclusions similar to the Born-von-Karman tensor-force analysis, 
that although qualitative agreement between theory and experiment is 
possible on the basis of short-range interactions, a quantitative agreement 
is possible only if long-range forces are assumed to exist.

2.3. Work of de-Launay, Bhatia and Krebs; failure of Cauchy relations

Our conclusion that the electron gas plays an important part in determining 
the lattice vibrational spectrum and the interatomic forces has also been 
drawn long ago. It was found that in many cubic metals (in fact in many 
solids) the elastic constants do not obey the Cauchy relations (C12 = C44). If 
the forces between atoms were of central character only, this should not 
have been the case. Thus, there must be forces of other character. 
Although people have erroneously interpreted this fact as meaning that 
even in the presence of forces of other types the central part of the forces 
still obeys Cauchy's relation, we must remove any doubts of this kind. 
Cauchy relations can be expected to hold only if central forces alone are 
acting.

The efforts to include the presence of the electron gas in determining the 
lattice vibration spectrum were initiated by de Launay [8 ] and Bhatia [9] .
In their models, the electron gas is assumed to have a bulk, but not shear 
modulus, and so the electron gas is assumed to affect only the longitudinal 
and not transverse vibrations. In this way, the models had two types of 
success: 1) since we have now some volume-dependent forces, the Cauchy 
relations need not hold; 2 ) the dispersion relation could be fitted rather 
well using only nearest-neighbour and next-nearest-neighbour interaction 
together with a parameter related to the bulk modulus of the electron gas.
It had, however, a great disadvantage in that dispersion relations did not 
obey some required degeneracies at certain points. This was corrected 
later on by Krebs [10] whose model was very often used in the interpretation of 
dispersion relations. But a number of examples were found (e.g. lead) 
where the model did not work. These were all simple attempts to include
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the effects o f the e lectron  gas. But considerable p rogress  has now been
made to include the e ffects  o f the e lectron  gas in a m ore fundamental way.
We shall return to this problem  later on.

3. FORCES IN ALKALI HALIDES AND SEMICONDUCTORS

The subject of interatomic forces in alkali halides and semiconductors 
presents some very interesting results. We shall confine ourselves to 
one example from either group, i.e . Nal and Ge.

The reason why we say that they present some interesting results is 
that naively one would expect that in a covalent solid like germanium the 
interatomic forces would not extend beyond the first or at best the second 
neighbour. Similarly, in alkali halides one would expect that the inter
action between ions is well known. For example, the ions can be assumed 
to be point charges for electrostatic interaction and their overlap potential 
should be well accounted for by Born-Mayer interaction. Indeed, the 
compressibility of the alkali halides computed on the basis of such a model 
turns out to be in good agreement with experiment. However, it turns out 
that the phonon dispersion relations measured by neutron spectroscopy for 
Ge by Brockhouse and Iyengar [11] cannot be fitted by assuming interactions 
even up to second-nearest-neighbour and only after extending up to fifth- 
neighbour-interactions the agreement of theory and experiment is somewhat 
good (Herman [12]). Similarly, in alkali halides a calculation for Nal 
based on the simple picture indicated here, which usually is called point- 
ion approximation, gives results which are very far from the experimental 
measurements, In this lecture, we shall direct our attention to the possible 
explanations that have been put forward to account for these somewhat 
anomalous observations.

3.1. Discussion on Ge

It is found that the elastic constants of germanium obey rather well 
an identity obtained by Born

4 C n ( CU - C44> = <Cn +Cl /

where the C's are the usual elastic constants. This identity can be shown to 
follow if only the nearest-neighbour interactions are important. However, 
the validity of the identity does not imply that only nearest-neighbour inter
actions are important. Hsieh [13] was the first to make a Born-von-Karman 
tensor-force analysis for germanium based on the assumption of nearest- 
neighbour interaction. His calculations involved only two adjustable 
parameters, which could be found from elastic constant data. However, 
the phonon dispersion relation measurements later on revealed that the 
transverse acoustic modes at small wavelengths were as much as 70% off 
from the measurements. Although the experimental observations of 
Brockhouse and Iyengar [11] were also interpreted in terms of a general 
second-nearest-neighbour'tensor-force model, the conclusion reached was 
that simple Born-von-Karman theory does not seem to hold.
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3.2. Discussion on Nal

Nal is a substance with fee structure and two atoms per unit cell. In 
a simple picture, the interatomic forces in such a solid are assumed to be 
due to two contributions:

(1) Short-range overlap interaction of the ions;
(2) The long-range Coulomb interaction between ions assumed to be 

fully ionized, i .e . e+ on Na and e‘ on I.
The calculations of the phonon dispersion relation based on such a 

simple model can be done exactly by assuming some form for interaction (1) 
The usual form is b exp (-r /p ) where b and p are parameters, and r is the 
separation of the two atoms. The contributions to the dynamical matrix 
from interaction (1) is then easily evaluated. The calculation of the 
contribution to the dynamical matrix from interaction (2) involves the 
evaluation of a series like

Г д 2ф ( 1 г (jg1 к1) - r (jg.kll ) i"q-(r*(rk') - 7(1, к))
Lj ЭхЭу 6
r

where ф varies as l / r .
Such a series is only conditionally convergent. However, following a 
method due to Ewald known as 6 -function transformation, it is possible to 
evaluate such a series. The parameters b and p entering interaction (1), 
and thus the corresponding contribution to the dynamical matrix can be 
found using elastic-constant data. A calculation for the dispersion 
relations for Nal based on this picture was done by Woods et al. [14].
The results are shown in Fig. 4. The dotted line shows the calculations 
based on the above-described model. The experimental measurements 
were carried out by Woods et al. The full line is based on the shell model, 
which will be discussed later on.

The lack of agreement between theory and experiment shows clearly 
that there must be some other forces not taken account of. It is not very 
difficult to obtain an answer, for we have assumed ions to be rigid, i .e . 
non-polarizable. But, in fact, the experimental atoms or measurements on 
the infrared absorption in germanium, even before the dispersion relation 
measurements were made, had shown the presence of dipoles in solid 
germanium. And, similarly, there is no reason to believe that during 
the vibrations of an ion in an ionic crystal the entire ion should vibrate as 
a rigid point ion. The structure of an ion will suggest that during vibrations 
of an ion it is possible that the positive and negative charge centres in the 
ion may get separated either because of a "mechanical rubbing" of the ion 
against its neighbour, or owing to some external field. In short, there is 
a chance for the ion to get polarized.

Although in a covalent solid like germanium which has strongly "directed 
bonds" one may find it hard to understand whether such a polarizability is 
possible or not, it can be shown on the basis of quantum mechanics that the 
atom can be polarizable.
It turns out that if such dipoles are produced during lattice vibrations they 
may give rise to long-range forces. Of course, the polarizability of the 
atoms will suggest that there may be higher multipoles induced in the 
lattice. In fact, it has been shown by Lax [15] that the symmetry of lattice
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FIG. 4. The dispersion curves for the three symmetry directions in Na I at 110°K determined by Woods et al. 
The curves are calculated a priori and are not fitted to the neutron measurements.

permits quadrupole interactions, but the dipole approximation is much 
easier to work with (see Ref. [15]).

We have essentially discussed the physical basis of a model that we 
are going to describe and which is called shell model; it was first intro
duced by Cochran [16] in lattice dynamics. There have been several 
extensions of the model suggested by Cochran (see, e .g . Cowley [17]),but 
we will restrict ourselves to a discussion of the simplest kind of shell 
model, in which only seven parameters occur. The model has intuitive 
simplicity and has been quite successful in explaining the dispersion 
relations of germanium (and Born's identity) and the dispersion relations 
in Nal.

We shall not give any details as to how the calculations are done, but 
will give the essential physics of the model. We are mainly interested in 
learning what light the model sheds on the interatomic forces in semi
conductors and halides.

Cochran regards every atom in the solid as consisting of a rigid 
"core" that comprises the nucleus and the inner electrons and a "shell" 
of the outer electrons. We shall collectively speak of the "shell" and the 
"core" as atom or unit. The shell is assumed to be coupled to the core 
with an isotropic force constant k. It is doubtful whether for germanium 
this is very true because of the presence of covalent bonds, but it is never
theless a simplifying assumption which appears to work. Similarly, in ionic 
crystals the ions are assumed to be made up of a "core" and a "shell of 
electrons". The core is assumed to be rigid and non-polarizable. The 
positive ion also is assumed to be non-polarizable, although this restriction
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FIG. 5. Cochran's generalized shell model. The interactions F(12) and F(21) are frequently taken to be equal.

has been removed by Cowley to include the polarizability of positive ions 
as well. We shall discuss the use of this model for Ge, although for alkali 
halides the discussion is almost parallel.

The entire solid is now assumed to be consisting of suchunits, i .e . cores 
and shells. The schematic representation of possible types of short-range 
interactions between two units is given in Fig. 5. Thus, there can be 
core-core, core-shell, and shell-shell interactions.

Discussing the lattice dynamics of such a system, Cochran sets up the 
equations of motion for the entire system treating each of the four quantities 
in the unit cell, i .e . two cores and two shells as independent. The contribu
tion to the dynamical matrix (which will now be a 12 X 12 matrix) from the 
different sources of interaction between the constituents are divided into 
two parts.

(1) Representing the short-range overlap interaction.
(2) The long-range Coulomb interaction.
The most general tensor forces are allowed for the interaction between 

neighbouring units for part (1).
The short-range interactions that are allowed are those between nearest 

neighbours. The contribution (2) due to the Coulomb interaction is evaluated 
using the method given by Kellermann based on theta-function transformation.

The assumption corresponding to adiabatic approximation is made by 
assuming the shells to be massless such that the system of equations 
governing the lattice vibrational frequencies reduces to a system of six 
equations. Its solution gives the frequencies of normal modes of vibration 
for the crystal.

Mashkevich and Tolpygo [18] had earlier obtained expressions similar 
to those of the "shell model" by assuming that the potential energy of the 
system is made of nuclear displacements and dipole moments of the nuclei2. 
Mathematically speaking, it is, therefore, possible to arrive at 
all the conclusions stated here without introducing the shell and core 
picture, but the model has physical appeal.

In all, in Cochran's theory seven parameters occur, three of which 
represent the ratio of (some short-range) force constants for core-core, 
core-shell and shell-shell interactions to be denoted by yr , 7T and ys .
(If the nearest-neighbour interaction alone is taken into account for the 
overlap interaction, only then seven parameters are obtained.) The other 
parameters entering the theory are related to the values of bonding co 

2 Cochran has pointed out that there are differences in the final expressions which are very important
in Ge.
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efficients between core-core, core-shell and shell-shell interactions in the 
limit q -* 0. Another parameter related to the polarizability of the atom is 
obtained from the dielectric constant. Five of these seven parameters 
are obtained from elastic constant data and equilibrium conditions, etc.
The remaining two parameters related to the bonding coefficients in the 
limit q 0 are obtained by adjusting to the experimentally determined 
frequencies at some high-symmetry points. The overall agreement between 
theory and experiment is good except for the LA branch along the (111) 
direction where the discrepancy was of the order of 14% between theory and 
experiment. The comparison between the theory and experiment is shown 
in Fig. 6. Born's identity is also shown to be satisfied by this type of 
analysis.

♦  Т »  ( - I  + 0 ( * l  ♦ ! »  1*1 ♦  TOI+I

♦  L » ( - l  ф  LI+) * L » ( * I  + L 0 I - M

FIG. 6. The dispersion curves o f  germanium at room temperature. The branch assignments ТА, LA, e t c . , 
were made from the intensities o f  the neutron groups. The straight lines through the origin have slopes 
given by the appropriate velocities o f  sound.

Application to Nal:

The dispersion relations for Nal determined experimentally have also 
been analysed by Woods et al. [14] in terms of the shell model. The curves 
shown in Fig. 4 are based on calculations where the polarizability of the 
positive ions was neglected. Cowley has extended the calculations to include 
the polarizability of the positive ions also. Though the agreement between 
theory and experiment does improve, the number of parameters has also 
to be considerably increased.

In conclusion, we may therefore say that in semiconductors like 
germanium and in alkali halides like Nal there do exist forces due to the 
dipole interaction which have considerably long range, and the polarization 
of atoms due to both short-range forces and long-range electrical fields 
must be included (at least up to a dipole approximation) in order to get a 
reasonable description of the actual phenomena.
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4. FORCES IN FREE-ELECTRON-LIKE METALS

We have already mentioned that in most metals force-constant analysis 
shows the existence of long-range forces. We have also stated that this is 
attributed to the presence of a mobile gas of conduction electrons. In this 
section we shall briefly survey some attempts made to take account of the 
presence of electrons in a fundamental way and in this way learn about the 
role of electrons in determining interatomic forces.

The usual metal model is the following: the valence electrons of free 
atoms are detached from their parent atoms and spread all over the crystal. 
The ionic cores (i.e . nuclei + closed shell of electrons) are imbedded in 
the valence electron gas and carry their charges rigidly with them. There
fore, the model will apply only to simple metals. Our treatment is not 
applicable to the situation in transition metals, where d-electrons cannot be 
treated as belonging to parent atoms only or to the entire crystal. Indeed, 
the problem of transition metals will invoke a lot of interest in the future.3

As stated in section 1, the adiabatic approximation constitutes the 
basis of all the theories. The different theories differ only in the extent to 
which the valence electron interactions with the ions and with one another 
are treated.

The basic problem is to find the total energy of the electron gas which 
acts as a potential energy for the motion of the ions within the framework 
of adiabatic approximation or to directly find the self-consistent second- 
order change in the energy of the electron gas when the ions are displaced 
from the equilibrium positions, and from where the contribution to phonon 
frequencies can be arrived at, directly.

The first fundamental calculation was made by Toya [19] for sodium, 
by using the Hartree-Fock method. Following Toya, we also treat the 
potential energy for the motion of ions as coming from three distinct parts:

(1) The Born-Mayer exchange repulsion interaction between the ionic 
cores.

(2) The direct Coulomb interaction between the ionic cores together 
with a uniform compensating background of electrons to give charge 
neutrality.

(3) The potential induced amongst the ions by the response of the 
electron gas to the ion motion (within the framework of adiabatic 
approximation). Our task is to find the contribution from each 
of these terms to the elements of the dynamical matrix. Then to 
arrive at phonon frequencies we only have to diagonalize the 
dynamical matrix, i .e . find its eigenvalues.

Since the form of the interaction potential for part (1) is usually taken 
to be A exp ( -r /p )  with A and p being parameters to be found from elastic 
constant data, it is necessary to include only nearest- or next-nearest- 
neighbour interactions. The corresponding contribution to the dynamical 
matrix is straightforward to obtain. For part (2) the method of Ewald as 
extended by Kellermann is used. In evaluating its contribution to the 
dynamical matrix, auniform compensating background charge of electrons 
to neutralize the ionic charge is assumed. This also presents no difficulty.

The problem of finding the contribution due to part (3) is an extremely 
complicated problem because essentially it is the problem of finding the

3 Recently Sinha [27] has developed a method applicable to transition metals, but no calculations 
have been made as yet.



684 IYENGAR

energy changes for a many-body system like electron gas, when the ions 
are displaced from their equilibrium configuration by the propagation of a 
normal mode of vibration. One has to resort to one-electron formalism 
and then add the corrections due to dynamical correlations between 
electrons in the system. One does not try to arrive at the total energy of 
the electron gas (which is the problem of finding cohesive energy) but tries 
to directly evaluate the second order change in energy of the electron gas 
when the ions are displaced from the equilibrium position.

Now the problem of finding this change in energy is complicated by the 
fact that electrons strongly interact with one another. Therefore, the exact 
change in energy has to be found by allowing for the fact that any electron 
will see a perturbation not only due to the displacement of the ions, but also 
to the re-adjustment of the other electrons. It is therefore,as if the ions 
were coupled to one another by springs via the entire electron gas. In 
order to see the physical basis underlying this ion-ion coupling via the 
electron gas let us consider an example (Fig. 7).

Consider an ion lying at the equilibrium position taken as the origin 
which is displaced to a position as shown in the figure. The electron cloud at 
a point x shown in the figure will try to re-adjust to such a change in a 
self-consistent manner, i .e . consistent with the way in which its neigh
bouring cloud adjusts to this change which, in turn, is determined by the 
response of this electron. The net result is that the change in the charge 
density of electrons at x can be written as:

where R(x, x') is the response function of the electrons which is independent 
of the ionic displacements. 6Vie (x1) is the change in the potential at the 
point x' due to a displacement of the ion at origin. This change in the 
charge density distribution of electrons gives rise to a change in the poten
tial as seen by another ion which also responds to it. In this way, a 
coupling of the ions is brought about by the electron gas. From this discus
sion we can see that the response function R(x, x') and the ion electron inter
action potential Vie both will determine the coupling between ions via the 
conduction electrons.

In the actual theory it is more convenient to work in the reciprocal 
space rather than the real space and thus the Fourier transform of the 
response function and of the ion-electron potential enters the calculation. 
This former quantity is usually called the dielectric matrix of the electron 
gas. Its off-diagonal components are set equal to zero (or assumed to be 
very small) in making an explicit calculation. Depending upon how we 
allow the electrons to interact with one another we get the corresponding 
dielectric matrix. We shall see what sort of assumptions have been used 
by various authors.

О D isp la ced  p os ition  o f ion 

—  E qu ilib rium  p osition  o f ion

Ions im m e rse d  in va len ce  e le c tro n  gas

FIG. 7. An example o f  the ion-ion coupling via the electron gas.
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The other quantity entering the theory, the Fourier transform of ion- 
electron potential, is usually taken from the Hartree-Fock potential of the 
ion either in free state or in a metal. Its validity has been doubted by 
Vasko et al. [20], but has nevertheless been used very often in literature.

We will now survey the work of several authors. To evaluate contribu
tion (3), Toya assumed that the valence electrons interact with one another 
in a Hartree-Fock way, but for the exchange term he used simplified Slater 
picture. Toya also assumed that the unperturbed valence electrons in 
sodium can be well represented by single plane waves (1/-УН) exp (iJ-r) 
and their energies can be represented by the equation

h2k2e-> = e + —----к 0 2m

He then applied usual second-order perturbation theory to evaluate the 
second-order change in the energy of the electron gas due to the displace
ment of ions (second-order in ionic displacements),and the corresponding 
contribution to the dynamical matrix was written out, in which the Fourier 
transform of the electron-ion potential was written in the form

f 4?rZe2 
Г  q2Q0 g(qr )

in which rs is the Wigner-Seitz sphere radius and g(x) = 3(sinx - x cos x ) /x 2 
ß0 is a parameter. The other quantity occurring in the theory corresponding 
to the response function in direct space is the wave-number-dependent dielectric 
constant of the electron gas which in the Hartree approximation is given by:

e (q) = 1 + 4?rZe2
q X

1
2

a i 2 2
4k F - q
8kpq log

2k +q -|

To take account of correlations between the electrons Toya modified the 
dielectric constant.

Toya made calculations for four symmetry directions in sodium and 
they were later on experimentally checked by measurements of Woods etal. 
Toya's calculations were within 15% of the measurements except in one 
symmetry direction where the discrepancy in some branches was quite 
large. Although the calculations cannot be said to give a better agreement 
than the Born-von-Karman tensor-force model analysis, the essential 
correctness of the approach of Toya was nevertheless proved.

Later on, Toya [21 ] extended his method to copper and lead, but in these 
calculations the results do not agree as well with the theory as in case of 
sodium.

4.1. Pseudo potential approach of Harrison and Sham

The very useful concept of a 'pseudo-potential' has recently been borrowed 
by Harrison [22] from the band structure theory to investigate a series of 
metal properties. There is a method of orthogonalized plane waves in band 
structure theory in which one starts with a basic set of functions for the 
conduction electrons which are plane waves orthogonalized to core states.
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It has been shown by Phillips and Klienmann that the effect of orthogonali- 
zation may be looked upon as giving rise to a "Pauli repulsive potential" 
which the conduction electrons see in addition to the bare ion potential.
The repulsive potential acts against the ionic potential to give a sum called 
the pseudo-potential. Actually this pseudo-potential is a complicated 
integral operator, but it can be approximated by a local potential and it is 
this local pseudo-potential which becomes very handy for treating many 
electron properties.

4.2. Harrison's method

In this method of computing lattice vibration spectrum Harrison 
evaluates the contribution due to part (2) and neglects part (1). To obtain 
part (3) he finds the total energy of the electron gas and then separates it 
into volume-dependent, but structure-independent and volume-independent, 
but structure-dependent parts. And assuming that during lattice vibrations 
volume remains constant he drops the volume-dependent term in the total 
energy of the electron gas.

The rest of the energy terms can then be factorized into a form-factor 
and a structure-factor part, just as in diffraction theory (in fact Harrison 
calls this a diffraction model of solid). The structure factor part is then 
expanded in terms of a series involving the displacements of the ions from 
which the second-order term is extracted, and the corresponding contribu
tion to the dynamical matrix is then evaluated. Harrison has performed 
such calculations for aluminium with only moderate success.

On the basis of this picture Harrison has also found the effective 
interatomic potential in some substances. But a basic calculation of this 
type involving no parameters has not been very successful.

4.3. Work of Sham

A more satisfactory calculation for the phonon dispersion relation in 
sodium was made by Sham [23] using two models, one involving the local 
pseudo-potential and the other one the non-local pseudo-potential.

Sham approaches the problem of finding the vibration spectrum in a way 
similar to the earlier approach of Toya as far as the contributions from 
parts (1) and (2) are concerned. To find the contribution due to part (3) 
Sham assumes a model of independent electrons influencing each other 
through a self-consistent Hartree potential and a screened exchange 
potential. In this way, the influence of the electron-electron interaction 
is expressed in terms of a dielectric matrix. He also evaluated the second- 
order term in energy by perturbation theory. The contribution to phonon 
frequencies from the presence of the electron gas can then be expressed 
in terms of the dielectric matrix and the Fourier transform of the pseudo
potential. Sham evaluates an averaged local pseudo-potential in his 
model A and then extends it to include non-local effects in his model B.
For his calculations he uses a dielectric constant instead of a matrix.
His calculations show that both models A and В are quite successful in 
explaining the lattice vibration spectrum.

Very recently, Animalu and Heine [24] have evaluated model potentials 
based on spectroscopic term value data for many elements. From this 
they arrive at model potentials in metals, and the computation of the phonon
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dispersion relations based on these has been done by Animalu et al. [25] in the 
spirit of the local pseudo-potential model of Sham on a number of alkali 
metals and aluminium with considerable success.

What does all this tell us about the interatomic forces in metals?
Well, surely the fact that very few basic calculations have been successful 
in explaining the dispersion relation without parameters is discouraging, 
but also the fact that such a large number of sweeping assumptions made 
in the analysis still yield a result in the right direction is satisfactory.
From the standpoint of understanding interatomic forces in metals, there
fore, considerable amount of understanding with regard to the behaviour of 
electrons is necessary. As for the present, some parametric approaches 
confirming the internal consistency of our schemes are bound to help. In 
this connection it is useful to summarize also the work done by Schneider 
and Stoll [26]. These authors have used the method of local pseudo-potential to 
find the pseudo-potential from the measured phonon dispersion relation by 
leaving a few parameters in a plausible form for the pseudo-potential.
These parameters are then obtained by least squares analysis of the 
measured dispersion relation. From this knowledge of the pseudo-potential 
they have computed a number of electronic properties, e .g . band structure, 
Fermi surface distortion, etc. Their calculations yield results which are 
in moderate agreement with experiment.

To sum up, one cannot as yet very accurately find the interatomic 
forces due to the presence of the electron gas in metals. Considerable 
effort has to be made by theoreticians before a quantitative agreement 
between theory and experiment can be obtained.
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INTRODUCTION [1, 2]

In this contribution I intend to discuss only some topics of the field.
I do not aim at completeness, but wish to present some aspects of the subject 
in a pedagogical manner. Band magnetism is of interest for the tran
sitional metals; I shall not discuss in detail the case of real metals, 
but focus interest on some simple models (with one band). The emphasis 
will be on methods rather than on a detailed comparison with the experi
mental results. A qualitative discussion of more recent theories will 
be given.

A large part of the modern theory of magnetism is based on the 
Heisenberg Hamiltonian

where the S; are localized spins on the sites Rj and the exchange integral 
Jjj depends only on (R j -  Rj).  Let us summarize some of the important 
results which can be derived with the use of expression (1):
a) We can justify the molecular field approximation and derive the 
high temperature susceptibility

( 1 )

i)

g2/u2S(S + l)
3k(T-T )P

( 2 )

691
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b) In the ordered  ferrom agnetic state, at low  tem peratures, we can
introduce the elem entary excitations o f the system , the spin w aves, and
derive the m agnetization M (T):

M(T) = M (0 )[l-c?T 3/2] (3)

where M(0) per atom is g/jBS. The spin-wave spectrum for long wave
length is given by fiu = Dq2 and the variation of D with temperature (due 
to spin-wave interactions) is

D(T) = D(0) [1-0 T 5/2] (4)

c) In the critical domain (T=TC), the susceptibility X(T) behaves as 
(T-Tc )  ̂ where 7 = 4/3.
d) When Jjj is negative for first-neighbour distances, antiferromagnetism 
may occur. If extends over first-neighbour distances, we may have 
helical or sinusoidal structures.

In the Hamiltonian (1), J is often regarded as a phenomenological 
parameter. In his original work, Heisenberg introduced J as the direct 
exchange integral between electrons in different orbitals (at different 
sites). In fact, it appears that this mechanism is small. In ionic 
crystals, J is due to super-exchange. In rare earth metals, J is due 
to an indirect mechanism caused by the conduction electrons.

Let us look now at the experimental results for transitional metals 
and see if they can be explained within the framework of the Heisenberg 
theory.

1. EXPERIMENTAL PROPERTIES OF TRANSITIONAL METALS [l]

In transitional metals, the existence of d electrons is the origin 
of magnetism. We shall first review the properties of magnetic tran
sitional metals which are understood within the Heisenberg picture.

1.1. Magnetic properties

At high temperatures, X oc (T- Tp)"1; this is well observed for Fe 
and Co.

At low temperatures, the magnetization in Fe, Co, Ni follows the 
Bloch law given by Eq.(3). The inelastic neutron scattering gives a 
dispersion relation ftu = Dq2; D varies with T as given by Eq. (4).

At T = TC the susceptibility behaves as (Т -ТС)'У with 7 = 4/3 
(7 = 1.36±0.04 for nickel). The scattering cross-section for neutrons 
dcr/dDoc l /(q 2+K2) where K =(T -T C)“, a^y/2  as expected.

In Fe and Co the electrical resistivity behaves as shown schemati
cally in F ig .l . This is very similar to the case of rare-earth metals 
and suggests that the magnetic part of the resistivity has the same origin 
(spin disorder). In nickel, the resistivity is not linear above Tc and 
varies similarly to the case of Pd. This suggests that spin disorder 
plays a different role in Fe (or Co) and Ni.
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FIG. 1. Electrical resistivity in Fe and Co; ----------- total resistivity; ............magnetic part o f resistivity.

The last remark is that the existence of sinusoidal structures (in 
chromium, for example) is not by itself in contradiction to the Heisenberg 
model.

1,2, Other properties

The properties which we shall discuss now are usually properties 
not only of the magnetic metals, but of all the transitional metals. They 
indicate that the electronic structure of magnetic metals should be ex
plained in the same framework as the structure of non-magnetic metals.

There are, first of all, some magnetic properties which cannot be 
understood within the Heisenberg model.

The saturation moments should be gpBS, an integral number of Bohr 
magnetons. For Fe, Co, and Ni we have, respectively, 2.22, 1.7, and
0.60 Bohr magnetons. For chromium, the magnetic moment (obtained 
from neutron scattering) is 0.6 pB at the maximum of the sinusoidal 
distribution. For the ferromagnetic compound ZrZn2) the magnetic 
moment is 0.18 pB.

The Curie constant in the susceptibility law does not lead to half
integer values for S, and there is no correlation with the saturation 
moments. In some cases the Curie law is very badly obeyed.

Inelastic neutron scattering above the critical temperature does not 
reveal any spin fluctuations in chromium as it should with the Heisenberg 
model.

The magnetic entropy derived from specific heat experiments should 
be equal to к log(2S + l). For Fe, this gives S = 1. For Cr, the entropy 
is very small, much smaller than what is expected from the magnetic 
moment.

Other properties indicate that outside the conduction band incompletely 
filled bands exist; this is true for all transitional metals (including 
the 2nd and 3rd series).

The linear electronic term in the specific heat is 5 to 10 times larger 
than in normal metals. This indicates that the density of states at the 
Fermi level is very large.

De Haas-Van Alphen experiments have been made in transitional 
metals, even in the magnetic case (Ni or Cr). They indicate clearly 
the existence of a Fermi surface for d electrons and give information 
on its shape.

Transport properties of transitional metals show that d electrons 
participate in the conduction mechanism. In particular, the galvano- 
magnetic properties of Fe, Co, and Ni can only be explained if the 
magnetic electrons are itinerant.
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The variation of the magnetic moment in alloys, as given by the 
Pauling-Slater curve, indicates very clearly that d bands exist. For 
example, when one adds Fe, Co, or Cr to №, the average saturation 
moment m varies linearly with the concentration dm/dc = -рв Д Z where 
AZ is the valence difference between the solute and the matrix. This 
can be understood easily with the filling of d bands for one spin direction. 
Similarly, the very different variations of m with the addition of Cr or 
Ti indicate the appearance of d bound states above the Fermi energy [3] .

The problem of magnetic transitional metals should thus be under
stood in the framework of a theory of all transitional metals. In par
ticular, we have to understand why some of them are ferromagnetic 
(Fe, Co, Ni), antiferromagnetic (Cr, Mn, -yFe) or non-magnetic (Sc, V,
Ti, and the 2nd and 3rd series). We have then to understand why some 
magnetic properties are very similar to those deduced from the Heisenberg 
model. Finally, we have to explain why some magnetic materials (Fe, 
for example) are described better in terms of a localized picture (local 
moments at high temperature) than in terms of a band picture.

It is clear that we need a description in which the d electrons are 
itinerant. So we must have d bands with interacting electrons. The fact 
that we have itinerant electrons does not forbid the formation of local 
moments (around impurities in non-magnetic materials, for example).

2. THE BAND MODEL [2]

Transitional atoms are characterized by incompletely filled d 
shells. The filling of the d shell occurs from Sc, Ti . . . to Ni, Cu. The 
d orbitals are more compact than the s orbitals (4s for the first series;
5s and 6s for the 2nd and 3rd series). When the atoms are brought 
together to form a solid, there is a partial overlap of the atomic orbitals. 
This effect is very large for the valence (conduction) electrons and much 
smaller for d orbitals. In this case, it is a good approach to build • 
linear combinations of atomic orbitals (LCAO) to describe the band 
states. A first approximation is to build these LCAO wave functions 
from the d orbitals only. We have thus two kinds of bands:

The conduction band with a width of the order of 10 eV.
The d bands with a width of the order of a few eV.
Theoretical treatments have often considered conduction and d 

bands as independent. In fact the s-d admixture should not be neglected 
and it may be important in parts of the Brillouin zone. It may have 
important effects and be responsible for a part of the d band width. 
Nevertheless, we shall neglect it and regard the d bands as being 
independent of the conduction band.

The band Hamiltonian is thus

where m and m' are indices for the orbital degeneracy (5 for d states), 
and i and j are indices for the atomic positions. The Hamiltonian given

(5)
ija 

m, m'
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in Eq. (5) can always be diagonalized to

H 0 - X  e Mir C i ( i a  C Ttna <6 )

k)ia

ц being a band index and к a wave vector in the Brillouin zone. We shall 
refer to H0 as the "kinetic" part though the are matrix elements of the 
kinetic energy plus the periodic one-electron potential V(r)

T ” m= < "  f  m( ?- Rj) 2m + V(r) cpf(?-Rj)>

We have now to introduce interactions among the electrons. We shall 
keep only intra-atomic interactions, which are the most important. The 
Hartree-Fock Hamiltonian for the atom i is

mo 
A m 'o '

U

_1
2 I n im o  ^ im 'a

m Ф- m'

(7)

where

Umm. and Jmm. are, respectively, Coulomb and exchange integrals.
They should be corrected for intra-atomic correlation. The values of 
U and J have an order of magnitude of 10 eV and a few eV, respectively. 

The total Hamiltonian for the d bands is

Н = Н0+^Гн; (8)

Dealing with 5 d bands, even with the simplified interaction given by 
Eq.(7), is complicated, so that we shall essentially discuss a simplified 
model with one band (no orbital degeneracy) in the following sections.
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This model with one band and intra-atomic interaction has been widely 
used. It corresponds to the Hamiltonian derived from expression (8)

Even with the simplified Hamiltonian the problem is very difficult. 
It is a many-body problem, and we shall use various approaches to 
discuss it -  Hartree-Fock, RPA, etc. Note that we do not know the 
fundamental state of the kinetic energy (10); we do not even know if 
it is a magnetic state.

3. HARTREE-FOCK STONER THEORY [4]

We shall first make the simplest approximation: the Hartree-Fock 
approximation. As we are interested in magnetic problems, it will be 
an "unrestricted" Hartree-Fock approximation. This description of 
band magnetism was first made by Stoner.

As usual, we keep only the terms involving one number operator 
in the interaction terms and obtain

We then replace n-* n-* by (nr* n-j +n-j- nr* ) where nr* are average
к T к I  КТ к I  k f к j, ко

values of n£a which will have to be determined in a self-consistent way. 
The one-electron Hartree-Fock Hamiltonian fi is

(9)

Diagonalizing the kinetic energy, we obtain

( 10)

ko kk*q

where

kk’

% CU + ^
к о  ко N Z (n-> n-»- + n - >  n-t, ) -  / E-> it -*kt к I kt 1?+ / ,  ко ко

kk' ko

(11 )

к

where the one-electron H-F energies Eja are

(12)
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Equation (12) can be written

к o = €-* + 
к s i ( U -U 6  , ) n

к* o'
к'o'

where two terms appear: the first term is the Coulomb term, the second 
one is the exchange term. Note that this Hartree-Fock solution is par
ticularly simple. The one-electron states are the same as for the non
interacting system. Let q, = l /N ^ n ^ .  п = пт+щ is the average number

—>к
of electrons per atom, m = nt - щ the magnetization per atom (in Bohr 
magnetons). Equation (12) becomes

Eko = €k +Un-°

3.1. Non-magnetic Hartree-Fock solution at T = 0

(13)

Eko < E P 

Efc >E F

EF is determined so as to have the good number n of electrons per atom.
Let us study the stability of this state with respect to ferromagnetism. 

If we take a shell of thickness 6E of down-spin electrons and put them in 
the spin-up band (Fig. 2), the change in the kinetic energy is

= 1 if

= 0 if

Д Т  = p ( E p ) 6 E 2

where p( E)  is the density of states. The variation of the interaction 
energy is

A E int = U §  + p6 E f - p 6 F - U - T  = - U  p2 ( EF ) 6 E 2

The total change in energy is

Д Е  = p ( Ep )  6 E 2[ l  - U p ( E p ) ]

We see that Д Е  is quadratic in 6E (Hartree-Fock solution) and that 
the non-magnetic state is a stable state (minimum energy) when 
U p ( E p )  < 1 .

The condition for a differential ferromagnetic instability of the non
magnetic state is

Up ( Ep ) > l (14)
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FIG. 2 . Density o f  States for spin up and down. FIG. 3. C alcu lation  o f  the susceptibility.

When the non-magnetic state is stable, we can calculate its 
susceptibility. With a field H0 in the z direction the Hartree-Fock 
one-electron energies are

Mg Hq
E kV ^  +  U n l - g _ -

M о Hn
E k i  = e k ' +  U n t  +  g  - V 0

The up and down bands are displaced by ± 6E (see Fig. 3) where

(15)

E-ĵ  - E-jj = 26E = U(nt -ni) + g^BH0 (ni) with nt-ni = 2 p (EF)6(E)

So we get

6E ; g^BHo
2[l -Up(EF)]

( I 1
The change in the total energy is: ДЕ = Д ( ) ДЕ;^ where we

subtract the interaction energy which has been counted twice with the 
Hartree-Fock Hamiltonian (11). We get for ДЕ

ДЕ ..—l . .. ̂ 2 . тт2 2 r i—l . . t—12 1 2 2 Tt2 p( Ep )= -p(EF)6E +U p (Ef)6E - -  -  g pBH0 j T j j Ä )

where E is equal to -XH./2, we have for the susceptibility

l-Up(EF) (16)

where X° is the Pauli susceptibility of the non-interacting electron gas:

g V
x° = r —  p ( e f )2
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The susceptibility has been enhanced by the factor

S = .1
l-Up(EF) (17)

X becomes infinite when the instability criterion (14) is fulfilled:

Up(EF) = 1

3,2, Magnetic solutions * 18

If the non-magnetic state is unstable, we may have either complete 
ferromagnetism (a) or partial ferromagnetism (b) at T = 0 (see Fig. 4). 
This depends on the band structure through p(E) and on the average 
number n of electrons per atom. In case (a) we can verify that the 
wave function of the ferromagnetic state is an exact eigenfunction of the 
Hamiltonian (10). It is the eigenfunction of the lowest energy for the 
maximum of Sz but we do not know if it is the ground-state wave function 
and if it has anything to do with it. In case (b) the Hartree-Fock wave 
function is not an eigenfunction of the Hamiltonian (10).

In the magnetic case, at finite temperatures and zero field, we have 
to solve a self-consistent equation for m (it looks very much as in the 
molecular field theory)

(18)
к

where f(E) is the Fermi function l / {  exp [(E-EF)/kBT)] +1}; EF is 
determined by nt+nj. = n, and the E£ are given by Eq.(13). We shall 
not discuss in detail the solution of Eq.(18), which depends on the band 
structure. We shall only give some results.

m(T) is given schematically in Fig. 5. At low temperatures1, the 
magnetization is given for the complete ferromagnetic case by

д
m(T) = m(0) [1 -ffe kßT ]

FIG. 4 , C om p lete  (a ) and partial (b ) ferrom agnetism .

T here is also com p lete  m agnetism  i f  we have on ly  spin-dow n holes.
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FIG. 5. M agnetization as a function o f  temperature.

where Д =U n- Ef is the energy necessary to excite an electron from 
the spin-up band to the spin-down band (see Fig. 4a). In the case of 
partial magnetism Д = 0 (Fig. 4b), and m(T) behaves as

m(T) =m(0) [l-ß  T2]

Inboth cases, we do not find the Bloch law (T3̂ 2); this is obviously, since in 
the H-F approximation only individual excitations are considered.

The Curie temperature Tc is given by the condition

1
N x

к

~df(Eg t) d flE gJ l 
dm dm J

m  = 0

Using Eq. (13), we obtain

u r  df(]¥
X L  dE- m = 0

U df
dE dE = - 1

This equation determines Tc which goes to 0 when U p(EF) = 1 [for T = 0 
we have df/dE = -6(E -EF)] .

Above Tc it is easy to obtain the susceptibility. In the presence of 
a magnetic field H0, m satisfies Eq.(18) where the E^ are given by 
Eq.(15). For the susceptibility we get

_ gdB dm 
2 dH,

dm
dH„ - 1 V rdf(Er t ) df(Ej-t ) dm df(E^ ) df(Eirt) dm n

h 0= o N dH0 dm dH0 " dH0 dm dH0

ГЕ II О

4 Z
df
dE

t , d m

- U Щ
J H „= o
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It follows that

g ^ |  p(T)
2 l-Up(T)

where p(T) is an effective density of states at the temperature T

(19)

P(T) p (E )-^ d E ( 20 )

3,3. Applications

The Hartree-Fock theory has been widely used for explaining the 
properties of ferromagnetic metals and alloys. With intra-atomic 
interactions the properties of the system depend only on the density 
of states curve. It is commonly recognized that Ni is a case of 
complete magnetism (with 0.6 d holes per atom), and that Fe and Co 
are cases of partial ferromagnetism.

The Hartree-Fock theory provides an explanation of the non
integral values of Bohr magnetons of the saturated magnetization. It 
also explains the magnetization of alloys at T = 0 : dm/dc = - AZpB is 
well understood by the filling of d bands. The peculiarities of the 
Slater-Pauling curve (Cr or Ti) can be very well understood by a 
Hartree-Fock treatment where the d electrons on the impurity are 
submitted to a strong repulsive potential.

It also explains why the susceptibility may be different from a 
Curie susceptibility. There is no a priori reason why the susceptibility 
given by (19) should behave as (Т-Тр)_1 at high temperatures. If this is 
the case, it is not surprising that the Curie constant does not correspond 
to a half-integer value for S. Nor is it surprising that there are spin 
fluctuations above Tc and that the magnetic entropy should be different 
from what is expected in the Heisenberg model.

Finally, the band model is in accordance with all the experiments 
which show the existence of d bands (electronic specific heat, transport 
properties, Fermi surfaces, etc.).

In conclusion, we can say that qualitatively the Hartree-Fock 
treatment of the band model gives a satisfactory explanation of many 
properties of transitional metals and alloys. For a better understanding 
of their properties, we need a precise knowledge of the band structure, 
but we also have to treat the electron interaction in a less simple way. 
This will be done in the next sections where we shall discuss the notion 
of spin waves in the band model and the influence of correlation and spin 
fluctuations.

4. SPIN WAVES Ш THE RANDOM PHASE APPROXIMATION [5]

In the last section with the Hartree-Fock approximation (which is 
time-independent) we have considered individual excitations only; an
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excited state lowering the spin by one unit2

фг ^ =  C %  -  Сйkq k+q;  kt 'V m d  ^

has an excitation energy of Ej»+^ - E£f = U(nt-ni) for small q. It is 
obvious that within this framework we cannot describe collective exci
tations (spin waves) which should have excitation energies Dq2 for 
small q.

The simplest thing to do is to try to build up spin waves as a linear 
combination of individual excitations:

ФЫ) =̂T <21>
к

Obviously, this is an approximation, because true spin waves should 
also have terms involving the creation of electron hole pairs of the 
same spin; for example, for one pair the term would be

C* _ C_ C*  ̂ C-,
k+q'| И  k' + q " o  к'о V u n d >

with q' +q" = q .
To build a wave function of type (21), 

of motion for the operators B*_= Gj _> C_, 
We have kq k + cu kt

we shall consider the equation 
where H is given by Eq. (10).

id____ ks
dt = [H, b £-,] = kq

"k +  q В* U V  
И ' N L

c i  -
k + q| к - q't c v q'i k’ t

k ' q'

U
N I О* 6  .  G  kt k+qt kt CTs -» -*■

k + q -  q 't

k' q'

( 2 2 )

Within the random phase approximation (RPA), we shall keep only 
the terms in which operator numbers п̂ а appear and shall replace them 
by their average values n̂ a in the fundamental state \фУ in the last 
term of (22). This can be extended to the case T f  0 if we take Hartree- 
Fock averages at the temperature T (see below). The second term of (22) 
gives

к and q are wave vectors within the first Brillouin zone, k + q m ay be outside the first Brillouin 
zone. In this case it m ay be  brought back into the first Brillouin zone with the help o f  a vector K. o f  the 
reciprocal la ttice , k + q means in fact k + q + K  where К is such that к + q + К is within the first Brillouin 
zon e. Throughout this paper we shall keep the notation k+ cf with this new m eaning. It may be  particularly 
important to take into account these"um klappprocesses" (see section  6).
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U
N I m* -> C t* C ’-j* -*k'i kq N / j  k + q* к - q f k+q-q' t

k' q'

The third term of (22) gives

U
N I k't В

kq Пт* Ст* kt k't c%к hqt
k' k'

(23)

(24)

The first terms of (23) and (24) transform into the Hartree-Fock 
one-electron energies E-^ such that we have

d B|-
— = [ H , B ! ; J  = ! 

dt kq k+qt kt
|B* +(nr  _ 

kq k + q;
) S V iiTt N/ _ ,

k'
k'q

(25)

The linearized set of Eqs (25) is easy to solve. We look for an 
operator Bv of the form

B * ( q ) = ^ B! ?  (26)
кsuch that

[H,B*(q)]=E B*(q) (27)

If we apply (27) to exact or approximate Hartree-Fock eigen
state of H, then B(q)|(&&nd У is an approximate eigenstate of H with 
energy Efund + E.

Writing Eq.(27) with the help of the relation (25) we get

Y m ^ E - f E ^  -  -Eg- )] = ^  У  (Ht* -  -П тО <х-*в£,- ( 28)
/  , к k + q t  k f  k q  N  [_>  k + q i  k t  к k 'q  v '

к k k ’

The independence of the leads to the set of linear equations

ar [E-(Er 
к кч q4- - E kt )] ~ N X  П̂k' + qt ‘ n k't = A (29)

The second part of this equation is a constant A independent of к so that
we can solve for a-* к

E-(E-> -  -Е-» )
k+q;  kf

(30)
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Putting back (30) into (29) gives the eigenvalue equation

U V »k+qj-nkt
N /  E-(E-» -  -E-> )

'  k + q i  k t '  
к

(31)

The eigenvalues E can be found by a graphical discussion. Let 
F(E) be the function of E in the first term of Eq.(31). F(E) is infinite 
when E = Ej(q) = E^+j t -E ^ , one of the excitation energies of the 
Hartree-Fock description. The E, are bounded by Emin (q) and Emax(q). 
The function F(E) has the behaviour given by Fig. 6 and the roots are 
given by F(E) = 1. We see that if there were, for a given value of q,
M excitation energies E;(q) in the Hartree-Fock description, we now 
find M - 1 roots which are very close to the old values Ej. These are 
"individual" excitations. The last one is smaller than Emitl(q) and well 
separated. It is a "collective" excitation, a spin-wave. When the spin- 
wave energy is well separated from the pseudo-continuum of individual 
excitations we can replace the sum in Eq.(31) by an integral, letting the 
system become infinite. The spin wave energy is thus given by

U
(2tt)3

h ql "nkt
E-(E k+ q - % r >

d3 к = 1 (32)

When q->0, E -0 , as is easily seen from Eq.(32). This corresponds to 
the fact that the q = 0 mode corresponds to a rotation of the whole magneti
zation. It is easily seen by a development in powers of q that for small q 
E behaves as E= Dq2 .

Let us take a simple example: a spherical band with an effective 
mass m*. In the Hartree-Fock ground state, the Fermi surfaces for 
up or down spins have the radii k^and kp .̂ Then, for small q

_  k F t q  П2x(q) = U (n t -m )+ -—

FIG. 6. G raphical discussion o f  the roots o f  Eq. (31)
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The pseudo-continuum of individual excitations with spin reversal 
corresponds to the shadowed part of Fig. 7.
The spin-wave energy for small q turns out to be

E = _n
m

4
3Um2

(etn t-em i)

where n is the number of electrons per atom, m is the magnetization 
and et and ei are the average kinetic energies of up and down electrons 
in the Hartree-Fock ground state.

When q increases, at the point qc the spin-wave energy becomes 
equal to Emin(q). For q>qc , the spin waves are no longer exact eigen
states in the RPA; they are damped (see next section). It can be verified 
that the spin-wave curve of Fig. 7 runs tangentially into the boundary of 
the pseudo-continuum V̂ E(cJ) = V̂ -Emin(q).

FIG. 7. Individual excitations and spin waves.

A spin-wave with vector q represents 
hole pair; for low q values the binding energy is approximately -U (nt-ni). 
The spin wave function ^(q) is

a bound state for the electron-

Ф(ч) = B*(q) фfund > = I ° ,.c *  -
к k+ qi, k t f̂und>

where the are given by expression (30), E being the spin-wave root 
of Eq.(31). Spin waves may be regarded as bosons: the physical reason 
is that among the M individual excitations (Fig. 6) only one is a collective 
excitation. We can thus construct a wave function with two spin waves 
Ф(Ч, 5') = B*(q) B*(q')| <//fund X  We shall find the same result for the B* 
to the order of l /M  (that is l/N ). This remains true as long as the 
number of spin waves is not a finite fraction of N. (This can be seen 
also in calculating the commutators of the various B* and applying the 
result on 10 furld X )  Having introduced spin waves, we again find, using 
Bose statistics, that the magnetization for small T (small number of 
spin waves) behaves as

m(T) = m(0) [ 1 -n T 3/2]

At finite temperatures we can also define approximate spin waves 
if we use for n-£ in (31) the average values of n£ corresponding to the
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temperature T. We can use, for example, the Hartree-Fock values and 
get an approximate renormalization of the spin-wave energies. The 
best method would be to use the average values n j taking into account the 
individual and collective excitations: this is difficult because, at finite 
temperature, the number of excited spin waves is a finite fraction of 
the number of excitations; they can no longer be regarded exactly as 
bosons and their existence diminishes the number of degrees of freedom 
among individual excitations by a finite amount. In fact, the problem has 
only been treated in the limit T-*0.

Remarks: One can also define spin waves for a non-magnetic state 
in the presence of a magnetic field H0 . The result is the same as in 
expressions (31) and (32), but with Hartree-Fock one-electron energies 
IS ко given by Eqs (15). For q-"0 the one-electron excitation energies 
tend to

S being the enhancement factor (17). Inserting this into Eq.(32) for q = 0 
easily gives the energy E(0) of the spin-wave mode

This result is exactly the energy which is associated with the frequency 
of free spins in a magnetic field H0. The individual and spin-wave 
excitations are given schematically for any q in Fig. 8 for this case. The 
spin waves merge into the pseudo-continuum for a critical value qc . The 
exact result (33) remains true in Landau's theory of Fermi liquids (see 
section 7). Observations of such spin waves in non-magnetic metals 
(and normal metals) have been made by transmission of electromagnetic 
waves. The shape of E(q) for low q gives information on the interactions [6]. 5

5. SUSCEPTIBILITIES -  EQUIVALENCE BETWEEN THE RPA AND 
THE TIME-DEPENDENT HARTREE-FOCK APPROXIMATION

5.1. Definition and properties of the susceptibilities [7, 8]

According to the theory of linear response, one can introduce wave- 
vector and frequency-dependent susceptibilities X(q, u). In an isotropic 
medium, for a small field h(R;,t) in the z direction the magnetization is

which gives, at T = 0 (see the reasoning of Eq. (15)),

E(0)=gPBH0 (33)

(34)
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SgftjHo

9ИВЦ>

q
FIG. 8 . Individual and spin wave excitations in a normal n on -m agn etic m etal with a m agnetic fie ld  H0.

X(Rj, t) is the response to a field

where со has a small imaginary part_ir); X(q, со) characterizes the response 
of the system to a magnetic field h(Ri, t) = h(q, со) exp [-i(iot-q • R; )] . For 
a real field h(q, co)cos(cot-q • Rj) the real magnetization is evidently

where Re means "real part".
When the system is anisotropic, having a privileged z axis (this 

happens, for example, in the ferromagnetic case) we can define longitudinal 
and transverse susceptibilities.

The longitudinal susceptibility XL(q, со) is the response to a magnetic 
field along the z axis hz(q. со) exp[-i(cot-q • R;)] so that XL(q,co) = Xzz(q,co).
The perturbing Hamiltonian is

Introducing the operators Ck which diagonalize the kinetic energy and the 
q component of the magnetization

h{Ri, t) =h ö^.^ö(t)

Taking the Fourier transform of Eq.(34) we have

m(q, со) = X(q, со) h(q, со) (35)

m(R.,t) = h(q, со) Re[X(q,co) e‘ ] (36)

(37)
к

□we have for HL

(38)
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In the Heisenberg representation (taking into account н£)о^ varies with 
time and the Fourier transform of the magnetization per atom is

For the transverse case, we can proceed as follows. Let us 
consider a magnetic field in the x-y plane having components 
h exp [-i(ut - q • Rj)] and i h exp [-i(ut - q • R()] along the x and у axis, 
respectively. The corresponding real field has components: 
h cos (ut - q • Rj) and h sin (wt - q • R;) . This field on a given R; rotates in 
the positive direction with time. At a given time, the field is constant 
in the planes q • R; = const, and rotates in the negative direction from 
plane to plane when q • Й; increases. With such a field, the perturbing 
Hamiltonian is

mL(q > ) =XL(q,u)h = g q Bc/(t)e ' (39)

= -NgjuBh(q,u) e‘ iwt <J+q (40)

where

(41)

к

The response is given by

m. (q,u) =mx(q,w) -im y(q,w) = gpBap' (t)e1“1

where

к

By definition we shall write:

m_(q, u) =X_+ (q,w)h(q,u) (42)

Now, we obviously have

m+(q,u) =mx(q, u)+im y(q, w) = 0

so that
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And we have for the transverse susceptibility XT = Xxx = Xyy

= \ X- + (q»u) (43)

One could as well have introduced a field rotating in the opposite direction 
and definedX+_(q,u). Evidently X+_ =X _+-»XL(q, w) andXT(q, u) (suscepti
bilities per atom) satisfy the Kubo formulae

XL(<Lw) = i g V B J  elujt [(Aft), a l(0 )]d t
o

XT(q,w) = ~ X_+(q, w) = |  ̂Ц1 f  ̂  ст_+-,(0)] dt
0

In Eqs (44) the operators at time t are Heisenberg operators varying in 
time under the influence of the Hamiltonian H (without Hp) and thus the 
Kubo formulae are relations between the susceptibilities and the spin 
fluctuations of the system without magnetic field.

In the following we shall be interested in the transverse susceptibility. 
Above Tc , we have XT = XL.

5.2, Susceptibilities in the RPA. Time-dependent Hartree-Fock 
approximation

Let us calculate the transverse susceptibility for the Hamiltonian (10). 
We have to calculate the commutators [H+Hp, B=L-J ■ Making the RPA in 
[H, B-5-], we get from (25) kqkq

dB-kq _
dt = [H + H , B* ]»[Ev* -  -Ef* ]Sq k + cU kkq

—  n U+ Ilf -»• - Пт*. ) —' k + q i  kt '  N У  BS^ + (nr  -  -nr  )g и he'iwtk’ q ' k+q| kt '  ё  ИВ
(45)

Taking the average, we obtain 

d в !
dtlu= [E r _  - EvJ B5^+(n-. -  -n - )

k+ q ^  k t  k q  k + qt  kt

k’
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We want the Fourier component of B* at the frequency w; it is

B t =
Пт* k+ qt ‘ kt

qw. Ш + ir) - (Er- -► - Er ) 4 '  k + q ;  kt  ' [§I В-,— +g pBh e 
к q

•iort

We can then have for ой 
q

к

o~> = gq 6
-iwt Xt(4 .w)

i -u x ° (q .u)

where

XT(q,u)
П-* -> - Пт*, k+ql- kt

U + ir) - (E^ -► k+q; ■Е-»kt
(46)

(g2M^X°)/2 is the susceptibility of a gas of independent electrons with 
В T

energies E£o .
For the RPA susceptibility we obtain

XT(q, ш) 82j 4  X°(q>)
2 i-u xT (q .w)

(47)

The RPA result (47) is the same as if we had neglected the second term 
on the right-hand side of (45) and replaced h e'iwt by

h e" U
--------  CL,
8 A*B 4

h e‘ 1 +
2U

g 2 ^
XT(q, w) (48)

We can obtain the same result with a time-dependent Hartree-Fock 
approximation. In the presence of the magnetic field h(q, u) we have a
time-dependent Hamiltonian. The interaction term h int = U \ П; 
can be written

Hint = - U N ^ : t ^  (49)

q'

In the time-dependent Hartree-Fock approximation we make averages at 
time t. There are only two terms which are different from 0 : q' = q 
which gives -NU cc; and, in the ferromagnetic case, q1 = 0 which gives
U ) (n-* m+n-> nt). The Hartree-Fock Hamiltonian is then kt kl

к
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H
■ I

k o

Er*- n.к о  к о - N  [ g q  h ( q ,  u )  e ’ 1(ilt +  c ü ] ct+_> B q -q (50)

where the Ê 0 are the Hartree-Fock one-electron energies. Equation(50) 
clearly exhibits the result given by Eq.(48).

In conclusion, we can say that there is a strict equivalence between 
the RPA and the time-dependent Hartree-Fock approximation. This is 
simply a generalization of the concept of the molecular field [9], as can 
be seen from (47), (48) or (50): the molecular field is in this case 
hmol = with X = 2U/g2q| .

Let us look at some applications.
a) In the non-magnetic ordered state (T>TC or non-magnetic metal)

XT=XL and X°(q, u) k + q к_____
w+irj - (e-г* -*-e-r>) k+q к '

(51)

For free electrons, expression (51) is the well-known Lindhard function 
[10]. If we look at the static susceptibility (w = 0) and let q-*0 then X°(0, 0)

= -J p(E) (df/dE)dE, and we find the result of section 3 for the susceptibility

X(0, 0). For non-magnetic metals at T = 0, X°(0, 0) = p(EF), and we get the 
enhanced Stoner susceptibility

X(0,0)
P(Dp)

2 l-U p(E”)

The case of q /0  will be discussed in section 6.
b) In the ferromagnetic case, XT(q, w) is infinite when

UX°(q, u) = 1 (52)

If we write X° =X °+iXF , we must have

Ux’° = l and x"°=0 -

The real poles cj = Е(ф of XT represent the spin wave energies; 
Equation (52) is then equivalent to Eq.(32) and this corresponds to 
q < qc of Fig. 7.

When q>qc , X]j,° fO . Suppose that it is a small quantity and let 
ш = E(q) b'e the root of UX?®, = 1. x’O (q, u) can be written for и near E(q) 
(F ig .9):

x £(q, ш) = ^ + -^3- [u-E(q)]
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FIG. 9. Real and iam ginary parts o f  for E (q)

Then

where

XT(q, u) —_____ a____
w - E(iJ)+i A

(q,u)
dXj) (q, Ц)

Эи
<q = E (q )

(53)

and a a constant near и = E(q). XT(q, w) has a pole for w = E(q) - iA . The 
spin wave energy has an imaginary part -iA and thus a lifetime of 
t =ti/A .

6. SPIN DENSITY WAVES [11]

6.1. Appearance of spin density waves at Tc

Let us look for the static susceptibility in the non-magnetic case. 
X(q, 0) is given by Eq. (47) wherb we have

Aj t k ьк + ч 
к

X(q, 0) for a given q may be infinite at a temperature Tc(q) such that

(54)

UX° (q, 0) = 1 (55)
V 3If this never happens for any value of q, the system is non-magnetic.

If Eq.(55) is valid for q in a domain of the 1st Brillouin zone, then the 
non-magnetic system will become unstable at the maximum value of

3 In his first papers, Overhauser (see Ref. [1 1 ]) em phasized the fact that instability should occur for 
any sm all value o f  the interaction  and in the lim it o f  vanishing interaction for = 2kp. These conclusions 
are only va lid  for special cases: one-d im ension al problems or in three dimensions with an unscreened C oulom b 
interaction.
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m,

(b)

FIG. 10. Sinusoidal (a ) and spiral (b ) spin density waves

Tc(q). Let Tc be this value and q0 the corresponding value of q. Obviously, 
we have Tc (q) =Tc(-q).

If q0 = 0, we have ferromagnetic instability; if q0 = 7r/a, we have 
antiferromagnetic instability. But may have any value in the first 
Brillouin zone. What kind of instability does this represent? By analogy 
with the discussion of section 5.1. we see that we may have instabilities 
of two kinds. Let the z axis be taken arbitrary. We may have (Fig. 10):

a) Sinusoidal spin density waves

The choice of ± corresponds to the positive and negative rotation of the 
magnetization when q0' Rj increases. From the three spin density waves 
we can construct spin density waves with any polarization.

At Tc one of these spin density waves builds up with an infinitely 
small amplitude. Its nature (sinusoidal or spiral) and its polarization 
cannot be determined by these considerations.

When do helical or spiral structures occur at Tc ? From Eq.(54) 
we see that qQ will be determined by the maximum of X°(q, 0). At a 
given temperature X*\q, 0) will be large if we have a large number of 
values of к for which e£+̂ * -eg- is small. This will occur if two parts of 
the Fermi surface nearly coincide over an important area by a trans-

They correspond to the magnetization

(56)

b) Spiral (or helical) spin density waves 
The corresponding magnetization is

(57)
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M  Occupied states FIG. 11. Fermi surface considerations

lation of vector q (see Fig. 11). It is easy to see that in case (a) there 
will be a large contribution of those regions of к space which will add for 
к inside and outside the Fermi surface. On the contrary, in case (b) they will 
subtract and give =0. (Ifincase(a) the two parts could match exactly over 
a finite area, then X°(q, 0) would be infinite.) If such a situation exists, 
then q0 = q.4 In all cases a detailed calculation of X®, has to be done in 
order to determine qn .

Before ending this section let us remark again that if ic + q is 
outside the first Brillouin zone, we have umklapp processes and Ic + q 
means in fact k + q+K, К being the reciprocal lattice vector which brings 
it back in the first Brillouin zone.

6.2. Spin density waves below Tc

Below Tc we have to find static Hartree-Fock solutions corresponding 
to the cases (a) and (b).

a) Sinusoidal spin density waves
The interaction part of our Hamiltonian (10) can be written 

Hint = u £ n ltnu = - -| u ^ (n .t -nu )2 + ^ £ ( n . t +n.; )
i i i

= 2 N u V  +
L  ч -q 2
q

The Hartree-Fock factorization gives for a sinusoidal wave with vector q:

Hint =-2 Н и(п5а1+а!о1) + ^Ц^[ lnl q -q q -q 4

For a wave of maximum amplitude m we have for the total Hartree-Fock 
Hamiltonian

H = H0+Hint =) [ eknkn-m U X (CJ, C_, + Ct cu  ) +
n N U

k + q o  к о  k - q o  к о

к а к о

(58)

4 The case o f  nearly com p lete  co in c id en ce  by a translation q is m ore likely to appear with two (or 
m ore) bands.
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For a given q, Eq.(58) has to be solved so as to find the one-electron 
energies and then determine m self-consistently. Then we have to find 
the value of q minimizing the total energy. This should be done as a 
function of T. The problem is, in principle, always soluble, but it 
involves long numerical calculations.

b) Helical spin density waves
The factorization of Hint as written in Eq.(49) gives

Hint = - N U (cr ĉrl.+ o'̂ cr!»)q q -q q
For a spiral wave of amplitude m, cr_>=cr_>=m; this givesq -q

H = H0+Hint =X « o - UmI< C? . CU +CU _ c -
- q t  kt k + qt kt

к о

(59)

For a given q we have to solve the one-electron problem, determine m 
and then calculate q. In this case, the problem is simpler because the 
one-electron Hamiltonian is easy to solve (59). It is evident that only 
the matrix elements <(k + qt |Hint |kt)> are different from zero. So that 
states kt with k + qt are only coupled to one another and not to the other 
states. The eigenvalue equation is

E-e-к g
= 0 where g = U m

E-6jj -  k+ q

This gives E2-E (^ + e ?+- )  + e jejr+- - g 2 =0. If x = ( e ^ - e j / 2  

the solutions are

(60)

E‘  = e k + e k + sign x x* +g (61)

and the wave functions

+ ̂ = -c ° s  —  cp  ̂+ sin —  ФГ+qt

ekФ-* -►= - sin —  cp.* +COS —  ф_ _ 
k + q 4 id l  k + qt

where tg 0^/2 = (e^-Ef*)/g . With these definitions ф̂ , which is a mixture к к к к
of states with wave vectors k, and k + q has a "dominant" wave vector
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FIG. 12. O n e-e lectron  energies as functions o f  the dom inant w ave vector

Fig. 12 as functions of these dominant wave vectors. The states + are 
dominantly up spin, the states - are dominantly down spin.

The energy eigenvalues E* have discontinuities of magnitude 2g 
when e-j. a free-electron spectrum, the discontinuity occurs
at planes which bisect the vectors -q and +q, respectively, (or -q+It 
and q + k, to take into account umklapp processes, if necessary). For 
more general cases, we shall have discontinuity surfaces on which
0-j = ±(ж/2). Near these discontinuities the wave function and 11Л -» 

k k _k+qare half spin up with wave vector к and down with wave vector k + q. If 
the Fermi level appears to be in the gap, the Fermi surfaces look as 
shown in Fig. 13, as functions of the dominant wave vector.

When the one-electron states are known, we can calculate the total 
energy and minimize with respect to g . The self-consistent equation is, 
at finite temperature.

1 _ 1 V + f(E+) 1 у  f(E')
U ~ 2 n A  2NZ,

where Г means summation with E  ̂ EF This equation can be written
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V V + f(E + ) (62)

which is a generalization of Eq.(55). Equation (62) gives m(q, T).
Minimizing the total energy with respect to q we obtain the value of 

q0 as a function of T . The determination of q0(T) and m(T) can only be 
done by numerical calculations; it involves a good knowledge of the band 
structure and of the interaction. In fact, such calculations have only 
been done for very special cases [11] .

The value of q0 should be such that the Fermi energy is in the gap 
of Fig. 12 for a large region of к directions. This means that the Fermi 
surface should have a large area of contact with the discontinuity surface 
(Fig. 13). This situation is the most favourable for a decrease of energy. 
We also understand, with the same argument, why sinusoidal waves are 
more likely to appear than spiral waves. In the sinusoidal case the dis
continuity surfaces are doubled; the state |kcr̂ > has matrix elements 
with I к ± qor)>.

The polarization is not determined in the simple band model. To 
know it, one would have to take into account the anisotropy field.

6,3, Application to chromium * 7

The case of chromium has been particularly studied. Cr (BCC 
structure) exhibits sinusoidal spin density wave below Tc = 310°K. The 
wave vector is in the [100] direction and q„ = 0.96 2тг/а where a is the 
length of the unit cell. It is very near antiferromagnetism (q = 2ж/а).
The polarization is longitudinal (|| q) for T<115°K and transversal (]_q) 
for T>115°K. The maximum value of the magnetization in the wave at 
low temperatures is 0.59 q B.

This situation can be qualitatively understood with the above discussion. 
Detailed comparison, in relation to the Fermi surface of Cr, has been 
fairly successful [11, 12] .

The antiferromagnetism of a and у  Mn and у Fe can be qualitatively 
understood along the same lines. In all these cases it is not surprising 
that the properties are different from the Heisenberg picture (specific 
heat and entropy, susceptibility neutron scattering above Tc).

7. INFLUENCE OF CORRELATION

In the preceding sections we have always used Hartree-Fock theory 
or generalizations of this theory. It would be necessary to go beyond 
Hartree-Fock theory and know the effect of correlation on the magnetic 
properties of the system. A phenomenological way is to use Landau's 
Fermi liquid theory. Then a second step is to try to determine the 
parameters of the Landau theory taking into account correlation by some 
approximate methods.

7.1. The Landau theory of Fermi liquids

We shall not explain here the Landau theory (see Ref. [13], for 
example), but only recall the results which we need. For weak changes,
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6n-£ in the occupation distribution of quasiparticle states with vector к 
near the Fermi surface, we may write the change of the total energy 6e:

6e = ) E-> бп-» f (йт ; £ 'сг1) 6пт+6n* , (63)ko ko 2N /_j к о к'o'
к о  как* o ’

—> —►

where the E-^ are the quasiparticle energies; f(ka; к'ст') the quasi
particle interaction; N is the number of atoms in the system. In the 
presence of a magnetic field H0, we have to add the term

-ghBH
2

-6n
k ;

к

(64)

The calculation of the susceptibility proceeds as in the case of 
Hartree-Fock. A difficulty arises if f(k, a, It1 a1) depends on 5 and k' [14]. 
Thus, we shall suppose spherical symmetry: f is a function of cos 6 
only, 0 being the angle between Й and!*' and of a and ct': f(ста1, cos 0).
The calculation is the same in section 3.1. and one easily obtains for 
the non-magnetic state (Ej^ = E^ )

g2p| PL(Ep)
1 -p 4 E FL)[fn - f M ]

(65)

where pL(Ejj) is the density of states for the quasiparticles. X(q, u) can 
also be calculated, but it is rigorous only in the limit of small q and small 
u. When q or u is finite the calculations involve quasi-particles above 
or below the Fermi level by a finite amount of energy. The quasi
particles have a finite life-time and the Landau approach becomes an 
approximate method. The same results hold for the transverse suscepti
bility in the presence of a small magnetic field H0 . The results for the 
spin-wave spectrum (derived in the remark of section 4) can be rigorously 
extended to small q (and u). They are approximate for finite values of q.

For a ferromagnetic ground state, the longitudinal properties (XL) 
of the system can be derived rigorously for small q and и in terms of 
the quasiparticle energies E and interactions f. We note that these 
parameters are different from those used in the non-magnetic case. On 
the contrary, the results for the transverse properties (XT and the spin- 
wave spectrum) are only approximate even for small q o r u .  The reason 
is the following. The calculation of transverse properties, even for q = 0, 
involves the use of states far from the Fermi level and with a finite life
time. For example, if E-£f ~Ер, Е-j» is larger than EF by a finite amount.

The Hartree-Fock approximation used in the preceding sections is an 
approximation of the Landau theory with the following assumptions:

In the non-magnetic case ё* = &£ + "'̂ Г< where the e-j are the one-
electron energies of the band without interaction, and f(ict, ) = 0,
f(icticU ) = U.
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In the ferromagnetic case, E^o = e-* + Un_o and the same interaction 
function.

We thus see the limit of the Hartree-Fock theory. Firstly, it has the same 
limitations as the Landau theory. Secondly, it approximates the quasi
particle energies and interactions in a very crude way. In the next 
section, we shall try to get better values for these parameters by taking 
into account correlation effects.

1.2.  Approximate treatment of correlation [14]

We shall study mainly the non-magnetic state.
Taking correlation into account we shall, first, obtain quasi-particle 

energies Eĵ 0 ^eJ + Un.0. The band shape will be changed, giving a density 
of states pL(E). From other similar studies (hard-sphere gas) we expect 
that pL(E£) > p(EF) and a new band width Weff smaller'than the original 
band width W will occur.

Secondly, the interaction functions f will be different from U. We 
may define an average value Ueff:

Ue{{ should be smaller than W even when U is very large. The physical 
reason is that it is always possible to prevent two electrons (or holes) 
from ever coming on the same atom by increasing the one-electron 
energy. The maximum value of this energy is of the order of W.

The condition for ferromagnetic instability should thus be (see Eq.(65))

Different methods have been used to study correlation effects [14] . 
We shall describe here the method due to Kanamori which is similar 
to the nuclear theory developed by Brueckner. This method is simple, 
and we know exactly the limit of its validity: it is the short-range 
potential and the low-density limit, that is, a small number of electrons 
or holes in the band ( n « l ) .

In the t-matrix approach used by Kanamori, we keep ali the ladder 
diagrams of Fig. 14 for the scattering operator t. The total energy is 
written as a Hartree-Fock energy with the bare interaction U replaced 
by the sum of the ladder diagrams (Fig. 15).

The t-matrix satisfies the integral equation represented by Fig. 14:

U£ff =f(kt,kH) - f(kt,k ’ t) ( 66 )

Ueff PL(E^)>1 (67)

(k + qt, k '- q' 1 |t |kt k ';) = U

U(k + q 't, k '-q 4-|t|kt, k 'i)
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k*qt

mm  =

k'-q*

k*qt

+ *?U

kt

?-q*
Ü '-q 'l

FIG. 14. Ladder diagrams for the t matrix

О ....... о

Гу/77777/////7ГЛ (b)

FIG. 15. Diagrams in the energy; (a ) H artree-Fock; (b ) t-m atrix

The second term does not depend upon q so that the matrix elements of 
t are independent of q. We immediately get

(k + qt, k'-qi|t|k, k 'i) = U
1 + Ug(k, k')

(68 )

where

g(k, k') : 1 V  (1 nk + q t^ 1"nk-'cH ^ (69)

From t we get the total energy and the quasi-particle energies

E^o = [(kok'cr' 111 ka k'a') - (ka k'a' 11 |к'ст' ко)] n ^
k ?

Here, with the help of Eq.(68), the last terms are zero, and we have

' I
E"k0 = ei<+ ' (ka k '-a |t| ka k'-a)6n k‘ -a (70)

so that the interaction between quasi-particles is given by



BAND MAGNETISM 721

In the Brueckner theory, Eqs (68) and (70) have to be solved self- 
consistently. In the denominators in Eq.(69) the quasiparticle energies 
(70) appear.

Before solving Eqs (68) and (70), let us note that the t matrix is 
identical with the t matrix for a two-body problem, except for the factors 
(1-n-j). This explains physically why the t matrix approximation is good 
at low densities (п^-Ю).

7.3. Applications

The solution of Eqs (68) and (70) is difficult, so we shall make the 
approximation of replacing к and k' in g(k, k') by 0. This is not unphysical 
because we only need to know t for small к and k1 values (inside the 
Fermi surface). We thus get for a non-magnetic state

l Г p(E)dE 
g "  2 / E (72)

e > ef

The matrix elements of t become constant (and equal to Ueff) and we get

f(£t£'J.) = ueff = (73)

With this new approximation the modification of the band structure 
is completely neglected so that Weff =W and pL(E) =p(E). Even within 
this approximation the values of g and thus of t and U ff would be 
different in a ferromagnetic state. At this point it is not necessary to 
refine the theory and we shall take the same value for Ueff • We have 
thus arrived at the situation where the Hartree-Fock approximation 
becomes approximately valid if we replace U by Ueff • For example, the 
susceptibility of a non-magnetic state is

_ g2^f P(Fp)
2 l-U effp(EF)

Ueff depends on the density of states through g (7 2), but mainly through 
the width W. Near the bottom of the band p(E) varies as E1̂2. For a small 
number of electrons we can write relation (72) as

w
1 Г p(E)dE

g 2 J E 
ef

which is a constant of the order of l/W . For a spherical band limited at 
E = W, in order to have one electron, we find g -  3 /2W. With U = 7 eV,
W = 3 eV, this gives Ueff =1.5 eV which is a considerable reduction 
compared with U.
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Although Ueff might be much smaller than U, it seems to be possible 
to satisfy the ferromagnetic instability condition: Ueff p(EF)> l if the 
density of states is sufficiently large at low energy (or high energy, for 
the case of holes).

These considerations have been extended to the case of degenerate 
d-bands (see Ref. [14]). We shall not discuss here the results, but 
want to point out one problem which has been widely discussed. Is 
ferromagnetism due to the Coulomb integral U or to the existence of 
exchange integrals J? The second alternative would mean that, as in 
atoms, Hund's rule is obeyed. The answer to this question is not yet 
very clear. From the values of Ueff and Jeff obtained in the degenerate 
case, it appears that ferromagnetism would be possible with J (and Jeff) 
equal to zero. When J f  0 the corresponding term makes the situation 
more favourable towards ferromagnetism. It might be essential to 
satisfy a criterion of the type (67) for the appearance of magnetism 
although J is a small term. In the case of Ni and Pd, where three bands 
are involved, this criterion can be written

where p(EF) is the density of states per band. We can understand the 
appearance of magnetism in nickel as being due to a larger density of 
states than in palladium.

In conclusion of these discussions on correlation, we may say that 
the Hartree-Fock description can be used as a qualitative and semi- 
quantitative theory if, instead of the Coulomb and exchange integrals, 
one uses effective values for these parameters. 8

8. NEARLY FERROMAGNETIC METALS [15]

Let us consider a metal very close to the ferromagnetic instability 
condition. The enhancement factor S = 1/(1 -U p(EF)) is large. We may 
expect large spin fluctuations as in the case of a phase transition slightly 
above the critical temperature. In fact, the discussion of this section 
also applies (with some small differences) to magnetic cases for T 
above and near Tc and to non-magnetic cases and large S. We shall 
explicitly consider the second case.

Let us look at the susceptibility X(q,w) given by Eqs (47) and (51). 
For u = 0 and small q,

(Ueff + 3 Jeff) p(EF)> 1

X°(q, 0) =
P (E f)

2

The static susceptibility has the Ornstein-Zernike form

(74)
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where K2 = 12 k2[l-Up(EF)] . In real space the spin-spin correlation 
function is

X(r, 0) =
g2K2 3 k2

____ F (75)

Formulae (74) or (75) are what is expected near a critical point when 
spin fluctuations become important.

The frequency dependence of the susceptibility is very typical for 
large S. When (q/(2kF ))2 < 1 - U p(EF ), X" has a well pronounced peak 
for frequency

The width is of the same order. We can thus qualitatively speak of 
excitations of the system having a large damping. They behave like 
phonons, with a phase velocity which goes to zero when the system be
comes ferromagnetically unstable. These pseudo-excitations have 
received the name of "paramagnons". There are three paramagnon 
modes with values o f Sz m = ± l  or 0.

Paramagnons and phonons have very similar effects. It is therefore 
interesting to review briefly the effect of phonons on the effective mass 
of the electrons. '

8.1.  Mass enhancement due to phonons [16]

Let us consider the Hamiltonian for the electron-phonon interaction

H=V e-ctc^+Vj к к к q q q
- *  —*
к q

+У (M y -c t  -c -^at+h. c.)
/__> kq k- q к q '
kq

where a!̂  and â j are the phonon operators of energy fiu-» .
In the Green function formalism we have the Dyson equation

(77)

G(k,u) = G°(k, u) + G°(k, u) Z (k,w)G(k,w) (78)

where G° and G are the electron Green functions with and without inter
actions, respectively; £(If,u) is the self-energy.

G° (If, u) = ---------- i---- ;-------w- e_>+ir) sign 
к к
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where the energies are counted from the Fermi energy. Then (78) gives

G(k,u) 1
u -e_ - £(k, u)

к

If G(k, ш) has poles near the real axis, we have

(79)

EiT  eiT+Re E(k- Er i r t
Г .̂= - Im £(k, E->-i Г->)

(80)

Ej- is the renormalized energy and Г^-the width of the state which has 
to go to zero faster than E^-when E ^ O  in order to have good quasi
particles. Then G(k, u) can be written

G(k,u)' -------к-------+G
u - E ^ + i T ^  reg

(81)

where Greg is a regular function near w = Ej+ and

, a Re L(k, E^-iT^)
Z'i =1-------------- — Ü-----s-к (82)

From there one easily obtains, for the effective mass m* at the Fermi 
level,

ЭЕ (k , 0)1______£___

m m aS(kF, 0)
кр Эк

The second term in the denominator is usually negligible.
The simplest approximation for E(k,w) is shown in Fig. 16.

For Eq.(78) this corresponds to the diagram shown in Fig. 17. We shall 
not go any further in this discussion (see Ref. [16] and the references 
therein) but only comment on the results. The numerator in Eq.(83) 
is larger than one and we have a mass enhancement which may be im
portant. This may be seen, for example, in the electronic specific 
heat; at low temperatures Ce = yT, where у is proportional to the density 
of states and thus to the mass m*.

On the contrary, we have to use this bare mass for the density of 
states which appear in the susceptibility. The reason is simple: the 
renormalization produces a hump and a bump in the energy curve (Fig. 18). 
This occurs on a shell of width ftu>D around about the Fermi energy.
It is a phenomenon which is linked to the Fermi surface. When a 
magnetic field is present, the Fermi level for spin-upmoves up, but 
the hump and the bump move up also. The same happens for spin-down. 
Then the susceptibility is not affected by the phonon interaction. In 
calculating enhancement factors S, for example, one should use the
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FIG. 16. Phonon contribution to the electron  s e lf -e n e r g y ;-------- ---------  e lectron  lin e ; ^ ^ ч ^ ч ^ р Ь о п о п  line

+ ( . r I

FIG. 17. Electron renorm alization ; renorm alized electron  line; •<:------bare electron  line

к
FIG. 18. Energy curves; 
electrons

energy for the bare electrons; energy for the renorm alized

bare density of states p(EF) (mass m) rather than the density of states 
deduced from specific heat experiments, which is related to the mass 
m*. This may be important for all transitional metals where the mass 
enhancement due to phonons is of importance.

8,2,  Mass enhancement due to paramagnons

In analogy to the phonon problem, one can introduce diagrams 
similar to that of Fig. 16 where the phonon line is replaced by a para- 
magnon line. In the RPA, where the susceptibility is represented by 
Fig. 19, we can replace Fig. 16 by Fig. 20. The difference in the case 
of phonons lies in the fact that for the m =± 1 modes the spin of the 
electron in the intermediate state is reversed. The paramagnon modes 
can be represented as in Fig. 21.

X *  +  CV_D - ...... FIG. 19. Susceptibility in the RPA

The paramagnon contribution to the self-energy ЦЙ, u) is given by

From Eq.(83) one gets a mass enhancement for a spherical Fermi surface

II d3£' du' G° (k + k', u+u') x" +(k', u1) (84)

2k,F

(85)
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FIG. 20. Paramagnon contribution to the self-energy £  m o d e +1

t
ЛЛЛ/VVЛЛ. + +

FIG, 21. Paiam agnon m ode m = + 1

U sin g e x p r e s sio n  (74) fo r  X(q, 0) we get

( 8 6 )

wh ere S is the Stoner enhancement fa c to r .
It has re ce n tly  been pointed out that also  the m = 0 mode should be 

introduced. D ia g r a m s  as shown on F i g .  22, wh ere  the number of bubbles 
is  odd, should be added to the s e l f - e n e r g y  d ia g r a m s of F i g .  20. Th is  
includes the contribution of the m = 0 mode and also  the contribution of 
the density fluctuations. The net resu lt g iv e s  a fa c to r  3 / 2  in the m a s s  
enhancement [see E q s  (85) and (86)].

T h is  m a s s  enhancement can be o b s e rv e d  in the electron ic  sp e cific  
heat. It should again be em phasized in this c a se ,  as  in the c a s e  of  
phonons, that it is  the b a re  m a s s  which enters into the su scep tib ility .

8 . 3 ,  A pplications

T h e s e  re su lts  have been applied to the c a se  of palladium, which  
s e e m s  to be n e a r ly  fe r r o m a g n e tic .  Th e sim ple  m odel which has been  
d is c u s s e d  h ere  has to be extended in o r d e r  to m ake quantitative c o m 
p a r is o n s .  Thus the e ffects  of band stru ctu re, n on -local interaction,  
e ffects  of co r r e la tio n  have been included. The enhancement fac to r  for  
palladium depends c r u c i a l ly  on these effects;  by including them, one 
obtains a value fo r  S of the o r d e r  of 10  and fo r  m !|‘ /m  of the o r d e r  of 
2 o r  3.

Strik ing expe rim e n ts  have shown that the m a s s  enhancement r e a lly  
e x is t s .  In №  Rh a l lo y s,  fe r r o m a g n e tis m  sets in at 63% Ni. The su s c e p ti 
b ility  i n c r e a s e s  near the c r i t i c a l  concentration, and it has been o bserve d  
that the у  constant o f  the s p e cific  heat in c r e a s e s  con sid era bly .

F in a l ly ,  if  we look fo r  higher te m p e ratu re  te r m s  in the calculation  
of the e le ctro n ic  sp e cific  heat, we find

FIG. 22. Diagram  o f  the m = 0 contributing to the self-en ergy Zt t r

Ce =7T +0T3 log ^ (87)
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w h e re  ß  is  a constant. T h is  T 3 log T  te rm  s e e m s  to have been o b serv e d  
in Ni Rh a l l o y s .

T h is  th e o r y  has also  been used to explain the p ro p e rt ie s  of 3He, 
p a r t ic u la r ly  the s p e c if ic  heat ( T 3 L o g  T  te r m ).

C O N C L U S I O N

In this c o u r se ,  we have tr ied  to explain within a sim ple  m odel the 
p rin c ip a l  methods and ideas in the field of band m a g n e tis m . T h is  
enables us to understand, at le ast  qualitatively, the p ro p e rt ie s  of itin
eran t m a g n etic  e le c t r o n s .  It is  c l e a r  that any quantitative c o m p ariso n  
with e x p e rim e n ts  r e q u ir e s  the use of m ore  elaborate m o d e ls :  r e a l  band 
s t r u c t u r e s ,  r e a l  in teractio n s, influence of the conduction band, etc.

M an y difficult p r o b le m s re m a in  n e v e rth e le ss  unsolved, even with  
the one-band m odel with in t r a -a t o m i c  in te ractio n s.  L e t  us m ake a list  
o f som e of these p ro b le m s:

Th e e xact nature of the ground state is  not known. Is it fe r r o m a g n e tic ,  
a n t i- fe r r o m a g n e tic ,  h e lic a l  o r  n o n -m ag n etic?
In the tim e-dependent H a r t r e e - F o c k  theory, individual and c o lle ctive  
excitations a r e  not tr eated  at the sa m e  le v e l .  It would be a gre at  
im p ro vem en t to c alcu la te  the m agnetization at finite te m p e r a tu r e s  
b y  taking account o f  both typ es of excitations. T h is  has only been 
done fo r  the lo w -te m p e ra tu re  c a s e .
It w il l  be n e c e s s a r y  to c l a r i f y  the s ig n ifica n ce  of Hund's rule:  
is  m a g n etism  in m e ta ls  m a in ly  due to Coulomb interaction U o r  to 
the exchange in teraction  J ?
A  treatm en t of c o r r e la tio n  at finite den sities,  without too crude  
ap p ro xim atio n s, would be appreciated.
T h e  band m odel in its  p rese n t state s e e m s  to explain p a r t ic u la r ly  
w e ll  the p r o p e r t ie s  of Ni, Pd, o r  C r .  On the other hand, F e ,  fo r  
exam p le, has m a n y  p r o p e r t ie s  which a r e  c lo s e r  to the p ro p e rt ie s  
of a H e ise n b e rg  fe r r o m a g n e t.  T h is  is true f o r  T >  T c w h e re  lo c al  
m o m en ts se e m  to exist in F e . How could a band model d e sc r ib e  
this fa c t ?
T h is  l is t  shows that although the understanding of band m agn etism  

h as in c r e a s e d  v e r y  much, a number of questions s t i l l  re m a in  unsolved.
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Abstract

1. Form o f  crystal H am iltonian. 1 .1 . A diabatic approxim ation and electron -phon on , interaction.
1 .2 . Harm onic approxim ation and phonon-phonon interaction. 1 .3 . Crystal m om entum  conservation.
2 . E lectron-phonon interaction in m eta ls. 2 ,1 .  R eal-tim e Green functions. M igdal's  theorem .
2 .2 .  Renorm alization effects  in norm al state. 2 .3 .  Pair interaction and superconductivity. 2 .4 .  Hydro- 
dyn am ica l lim it and transport equation. 3 . Phonon-phonon interaction in insulators. 3 .1 .  Im aginary- 
tim e Green functions and perturbation theory. 3 .2 .  Therm al and e lastic properties. 3 .3 .  Phonon 
renorm alization e ffects . 3 .4 .  Heat propagation and second sound.

1 .  F O R M  O F  C R Y S T A L  H A M IL T O N IA N

The e xact Hamiltonian of a c r y s t a l  co n s ists  of the kinetic and Coulomb  
e n e rg ie s  of the N nuclei and all  the e le ctro n s.  H o w e v er ,  in m o st c r y s t a l s  
part of the e le ctro n s a r e  bound to the nuclei fo rm in g clo se d  sh e ll  ions.
The rem ain in g Z  e le ctro n s p e r  atom occu p y the states  of the v a le n c e  band.
If at te m p e ratu re  T  = 0 this band is  not filled the c r y s t a l  is  a m e ta l.  If 
the v ale n ce  band is  filled at T  = 0 the c r y s t a l  is an in su lato r.  It is  an ionic  
c r y s t a l  or a covalent c r y s t a l  ac c o r d in g  to whether the valen ce  electro n s  
a r e  lo c a liz e d  at the negative ions (e le ctro sta tic  cohesion fo r c e s )  o r  in- 
between ions (covalent cohesion fo r c e s ) .  A t  T  > 0 e le ctro n -h o le  p a ir s  
a r e  excited; the m etal b e co m es a conductor, the insulator a sem icon ductor.  
In a fourth c a te g o r y  of c r y s t a l s  the ions and v a le n c e  e le ctro n s fo r m  neutral  
atom s o r  m o lecu le s  which keep together in the solid by e le c t r ic  multipole  
f o r c e s .  T h is  is  the c a se  of the van d er W a a ls  c r y s t a l s .  The division  
into the four c a te g o r ie s  is  of c o u r se  not sh arp.

1 . 1 .  Ad ia b atic  approxim ation and electron-phonon interaction

B e c a u s e  of the s m a ll  ratio of the e le ctro n  m a s s  m to the ion m a s s  M 
(assu m in g  a B r a v a i s  lattice),  in fact

the v ale n ce  e le ctro n s establish  equilibrium  much m o re  r a p id ly  than the 
ions. A s  w i l l  be d isc u ss e d  in section  1 . 2  the ratio  of their a v e r a g e  v e lo c ity  
is

( 1 . 1)

V,
( 1 .  la)

electron

7 2 9
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T h e r e f o r e  the v ale n ce  e le ctro n s s c r e e n  the Coulomb interaction both 
between ions and between ions and excited e le ctro n s and holes (in ionic  
c r y s t a l s  the s c re e n in g  is  of c o u r se  not com plete). W e c a ll  the sc re e n e d  
potentials U and W , r e s p e c t iv e ly .  The effect of sc r e e n in g  can of c o u r se  
be treated e x p lic it ly ,  a s  has been done f i r s t  by B a r d e e n  (se e ,  e . g .  R ef.  [ 1 ]  , 
C hapter 6). F o r m a l l y  it is  d e sc r ib e d  by a can on ical tran sfo rm atio n  
introduced b y  N a k ajim a (se e ,  e . g .  R e f .  [ 2 ] ) .  W e skip this problem  
w ritin g  d i r e c t ly  the sc r e e n e d  fo r m  of the Hamiltonian

w h e re

&  = ^ i o n + %

^ i o n

N

P j2 / 2 M  + U(R)

1 =  1

ZN

%  = X ^ / 2 m  +  ^ ' c o u l + W ( r i ' R )
i = 1

( 1 . 2 )

( 1 . 3 )

( 1 . 4 )

Coul

i t  i'

( 1 . 4 a )

H e r e  R -  ( R j R 2 • • • R N) a r e  the instantaneous ionic p ositio n s, oscillatin g  
around the la ttice  positions R° = . . . Й£|),

Uj = R t - R °  ( 1 .  5)

being the d isp lacem en t, and r  = (r x r 2 . . . r ZN ) a r e  the e le ctro n ic  positions.  
The in teraction  W ( r ; R) is supposed to depend ad ia b a tic a lly  on the ionic  
positions. Th e adiabatic  approxim ation of B o r n  and Oppenheim er then 
c o n s ists  in w r itin g

^ el( R ) | f ; R >  = E t (R) | f ; R > ( 1. 6)

with

< f « ;  R | f ; R >  = ^ | f ; R > < f ; R |  = 1  ( 1 . 6 a )

l

and w h e r e  the R x enter the ele ctro n  pro blem  only a s  p a r a m e t e r s .  Th is  
is  justified b y  E q s  ( 1 .  1 ) ,  ( 1 .  la ) .  W ritin g  in addition

* ! o J n > = n J n > (1 .7 )
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with

<^n, | n ) > = 6 nln; ^ | n ) >< ( n | = b  ( 1 . 7 a )

n

the e ig e n state s  of the total Ham iltonian m a y  be w ritte n  a s  l in e a r  
com binations of the states  | f ; R ^  and |n^>,

d - в )

= ^ e f nli,|je; R >  | n >  ( 1 . 8 a )

n£

T h is  is  the u su al fo r m  in which the e ffe c ts  of the e le ctro n s on the ionic  
s y s t e m  a r e  d is c u s s e d  (see  R e f .  [ 2 ] ) .  It i s ,  h o w e v e r,  c om p licated  by the 
fa c t  that the ionic kinetic e n e r g y  a c ts  not only on the states  |n^> but a lso  
on I SL; R X  Indeed

O'; и|£ф; R >  = (€Tion + E t ( R ) ) 6 |f| + a m (r ) + в , . ,  (r ) ( i . 9 )

w h e re

A rj! (R) =  ; R | j  g | -  I f ; R > P j M

I

B n ( R ) =  X ° ' ; R l ( r  ж ) 2 l i ; R ) l / 2 M

( 1 . 9 a )

Th e trouble is  that th ere  a r e  c an cellation s am ong E { (R), A C.,;(R)+ and 
B r £ (R). T h is  is  seen  fr o m  a study of the com m u tator

( 1 . 10)

which m e a s u r e s  the m ixin g of the e le ctro n ic  and ionic states  in ( 1 .  8a).
W e  get

< n '| < f ;  R | [ ^ . on, y r j  | i ; R > | n >  = |  £ £  { ( « „ .  -Й „ .)  <n* | ux | n" >
n" I

X < n " | 0 ' ;  R  \i>; R > | n > +  (Пп„ -  Пп) < п " | и 1 |n >
9 R j

х < п ' Ю  ' ;  r | | ^ -  I ^ ;R > l n"  > }

* % [IP T
2M

W ( r ;R ) 1 - 1 V fi a w ' _ i y rJ 2 LT . M’ i + - 2 Д
aw
эЙ л

( 1 .  10a)
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T o  get an yw here  an expansion in p o w e rs  of the Uj is  n e c e s s a r y .  Th is  
is c e r t a in ly  allowed at low te m p e r a tu r e s ,  T  < TD (TD = Debye tem perature)  
w h e re  the Uj a r e  s m a ll ,  except fo r  quantum c r y s t a l s  for which a lr e a d y  the 
z e ro -p o in t o sc illa tio n s a r e  important (se e ,  e . g .  R e f .  [ 3 ] ) .  Then

< n '  I < f ; R | [ £ f Ion, ^ el ] \ i ;  R > | n >  = £ ( П п, -  Пп) < п '|  u j n )
I

X <et ; £; R ° Z  + higher o rd e r  te r m s ( 1 .  10b)

D e fe r r in g  fu rther d iscu ssio n  of E q . ( l .  10b) to section 1 . 2  we notice here  
that the r . h . s .  of this equation is c lo s e ly  related  to the electron-phonon  
interaction contained in , 0 ^ .  Indeed, expanding W in we can w r ite

w h e re

I P i
2 m

+ W (r ;  R °)  + Я Г '  +
^  Coul ^  e l - ph

(1. И )

9 Г .el - ph
u j + higher o rd e r  te r m s ( 1 . 12 )

is  the electron-phonon interaction. H ere  the s u c c e s s i v e  te r m s d e sc rib e
1-phonon, 2-phonon, etc. p r o c e s s e s .  U su ally  only the 1-phonon te rm  is 
retained. (The only p roblem  w h e re  multi-phonon p r o c e s s e s  have been 
con sid ere d  s e r i o u s l y  s e e m s  to be the te m p e ratu re  dependence of the 
m ob ility  of se m ic o n d u cto rs,  se e  R ef .  [4 ] .)  C o n sid e rable  sim plification is  
ach ieved  b y  a s su m in g  that the e le ctro n s in te ract  individually with the 
ions, which is  c e r ta in ly  a good approxim ation.

W (r ;  R) = > w ( r . ;  R) ( 1 .  13)

Then eliminating the bulk of the Coulomb interaction by a H a r t r e e - F o c k  
treatm ent w e have

w h e re

■S^HF +  ph +  el ( 1 .  14)

' Z ( ä t v < 4
i

> V  ( r . )
HF 4 1 '

( 1 . 1 5 )

Coulel -e l ( l .  i 6 )
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is  a r e s id u a l  in teraction , and

V ( r )  = w ( r ;  R°) + V Hp(T) ( 1 . 1 7 )

is  the perio d ic  potential,

V  ( r +  R) = V  (r) ( 1 . 1 7 a )

(H ere and in what fo llow s R stands fo r  one of the R °)

U sin g Bloch  states defined by

( 1 . 1 8 )

w h e r e  ±  к = (± k,cr) and a = f , j, is  the ele ctro n ic  spin, the second quantized  
fo r m  of E q s  ( 1 .  16 ) ,  ( 1 .  1 7 ) ,  ( 1 .  1 3 )  is

kk' I

( 1 .  1 9 )

( 1 . 20)

el - el I  ^ < k ' + q ,  к - qI | k ' k

k'kq
a k 4 q a k’

*a, a,k-q к k >  a k' a k 
( 1 . 21)

w h e re  k ±  q = (k ±  q, a).

T h e  ground state | 0 У  is  c h a r a c te r iz e d  by

a k | ° >  = 0 ;  >  0

a *  I 0 >  = 0; e °  < 0 
к 1 к

( 1. 22)

and a B lo c h  state  |k)> d e s c r i b e s  an excited e le ctro n  or hole ac c o r d in g  to
w hether e ° >  0 o r  e °  < 0 

к к

|k> = a*|0 >; e° > 0
(1 . 22a)

I к > = a_k| 0 > ; e£ < 0

(Note that h e re  ekj. = 0, h k F being the F e r m i  m om en tum '
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N e g le ctin g  the r e sid u a l  interaction ( 1 .  2 1 )  (which would lead  us into the 
F e r m i  liquid problem ) we se e  that |R ;  R °  У  a r e  eig e n state s of ^ f HFwith  
fixed num ber Z N  of e le ctro n s and c h a r a c te r iz e d  by an a r b i t r a r y  number  
of excited  e le ctro n -h o le  p a ir s  kj, k t  (e k > 0, eg, < 0),

I F ; R 0 >  = П  a ?  a - J ° >  ( 1 . 2 3 )
j > 1

w h e re  & =  (k jk 'j  k 2 k'2 . . . ) and

E f ( R °)  = Е 0 + У  (ek° + |ek°, |) ( 1 . 2 3 a )

j

E 0 = У  eg being the ground state e n e rg y .  Note that E q s  ( 1 . 2 3 )  a r e  

k(e°k < 0) , nx
not all states  \SL-, R /  . excitations into high er bands being neglected. F o r  
se m ico n d u cto rs  holes and excited e le ctro n s a r e  in different bands (valence  
and conduction band).

1 . 2 .  H arm o n ic  ap proxim ation and phonon-phonon interaction

N eg lectin g  the te r m s  ( 1 . 9a) in ( 1 . 9 )  the e ffective  ionic potential e n ergy  
is  seen  to be

U(R) = U(R) + E 0(R) ( 1 . 2 4 )

Ü(R° + u) = 0(R°) + y u xux + |f у  Uxx. uxux, + . . .  (1.24')

H e re  Ü (R °)  is  the e n e rg y  re sp o n sib le  fo r  cohesion and

Ux i . . . x n 9R
X1

9nU 
. . . 9R ( 1 . 2 4 " )

R lw (v = 1 , 2 ,  3) a r e  the C a r t e s i a n  components of R j ,  e t c . ,  and x = ( I , i / ) .  
In equilibrium  at T  = 0 without s t r a in s ,  Ux = 0, so that

^ i o n  = + E 0<R ) = ^ h a r m  + ^ ’anh <1 ‘ 2 5 >

w h e re

’Scharm У  2M  + 2 X  ^ xx' u xux' ( 1 . 2 5 a )
X xx’

i s  the h arm o n ic  p a r t  and

« ' ■ » I .  ‘  I  К
п а з

( 1 . 2 6 )
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« v i r  I
U  ' u  . . . u

X1•••ХП X1 x
( 1 . 26a)

Xl . . .  xn

the anharm onic interaction. N o rm a l c o -o r d in a te s  introduced by

Ux = £
q

P x = £  0q(x) (M u °)+1' 2 Pq

wh ere

t/L, (Iv) = N e ' 1/2 eiq'%° 
qH q(J. v

( 1 . 2 7 )

( 1 . 27a)

and ±  q = (± <f,p), tr a n s fo r m  the Hamiltonian into 

& harm = 2 X
u 0(p p *  + Q Q * )  = \  u ° ( b *  b „  + i )  

q' q q ^ q ^ q '  qv q q ( 1 . 2 8 )

q

« ' ■ ■ - s r l  c S ! . . A , - - - 4
( 1 . 2 9 )

4i...qn
wh ere

Q < = Q -* = 7 T ( V b *«.>

P  = P *  = — -j=- (b - b *  ) 
' q q i s f l  ч -q

and

( 1 . 3 0 )

c (n) = C (.n) *  . = M ‘ 2 (u 0 . . . u °  ) ' 1 / 2  У  U ф (x,).  . .ф (x )
4i • • • Чп 4i* • • qn 4i 4n Z_j xi • • • xn Я! 1 Чп n

( 1 . 3 1 )
x , . . .x n

The polarizatio n  v e c t o r s  e ^  and fre q u en cies  s a t i s f y  the eigenvalue  
equations

^ ( D w .(q ) - ^ 6 VV. )  e -  iP. = 0; м = 1 ,2 ,3 (1 .3 2 )
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w h e re

and

D,
✓  ( 5 )  I  и - ' ( Й )  е ' ^

U ro.(R ? - R r  ) -  u Iyj v

= 6 )j'ii

( 1 . 32a)

( 1 . 3 3 )

F r o m  D ос M“ 1 (Ü depends sl ig h tly  on M through screenin g) follows  
uO oc M _1/^and U j oc P j  oc M 41^4 , f t j  ос M ' 3/4 . Hence with the definition
( 1 . 1 )  and taking the e le ctro n  m a s s  as  unit

harm X
/с2 ; ■' ос к п

HF e l -  ph

( 1 . 3 4 )

T h is  is  the ju stificatio n  fo r  treatin g g f '  ^  and <@fanh as pertu rbation s.  
C l a s s i c a l l y ,  equipartition im p lies

Y  v el =  3 k BT  = P j2 / 2 M « k 2

Hence v el ос к and E q . ( l .  la)  fo llow s. Q u a n tu m -m e c h a n ic ally  w e have

Hence

~ 0 0 ~  0 ~ 9
VF 4  =  e k + q -  e k =  =  Vph q  oc /С2

Vph / V p OC K2 ( 1 .  34a)

In sertin g  E q . ( 1 . 2 7 )  into E q .  ( 1 .  20) w e find

^ ' e l - p h  = l  Sk 'k c  a k - a k V ‘ - -
( 1 . 3 5 )

k ’ kq

w h e re

g k-k4 = Stk-.-q = (М и 5) '1/2/ , < к Ч Жa w  X 1 k >  •’e q e^ '"^* ( 1 . 35 a)
1 0
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In g e n e r a l  calcu latio n s a r e  made by a s su m in g  tw o -bo d y f o r c e s  fo r  U(R) 
and w (r ;  R),

U ( R )  = ^  Ф ( R p  R p ) ( 1 . 3 6 )

I)6 г

w (r ;  R) = \  ф(г; R t ) ( 1 . 3 7 )

Equation ( 1 . 3 6 )  is  u s u a lly  a good ap p roxim ation  except fo r  cubic c r y s t a l s  
with in ve rsio n  cen tre  w h e re  t h r e e -b o d y  f o r c e s  a r e  s o m e tim e s  needed (se e ,  
e . g .  R ef.  [ 5 ] ) .  ф(Йр R p )  is  in g e n e r a l  r e s t r i c t e d  to n e a r e s t  n eighbours.

If in addition d eform ation of the ions is  n eglig ible

<MRj; Rj.) =<HR, - Rj. ) ( 1 . 3 6 a )

c p O ? ;  Й: ) = ф ( r  -  R j ) ( 1 . 3 7 a )

E x p r e s s i o n  ( 1 . 3 6 a )  is  often a poor ap p roxim ation  fo r  the calculation  
of phonon d isp e r sio n  c u r v e s  (se e ,  e. g. R ef.  [6 ] ) .  F o r  us this is  not 
im portant sin c e  neither E q . ( 1 . 3 6 )  nor E q .  ( 1 . 3 6 a )  is  v e r y  u sefu l for  
sim p lifyin g  e x p r e s s io n  ( 1 . 3 1 )  fo r  C<W . On the other hand, the r ig id -  
ion ap p roxim ation  ( 1 .  37 a )  is c o n sid ere d  good ( s e e ,  e . g .  R ef.  [7] ) and it 
also  s im p lif ie s  the coupling function g k,kq, E q . (  1 . 3 5 a ) .  W ritin g

3 w

9 R ^
Эф
Э? ГР. ф]

w e have

<kf l ( ^ " )  lk > = - £ ^ {< И р | кП> < к,,|ф|к > - < k* IФI к" > <k" I p |k> }
k"

T h is  is not r ig o r o u s  sin c e  the v a le n c e  band states  | k ^  do not fo r m  a 
com plete se t  of sta te s .  A p p ro x im a tin g  the Bloch  states by plane w a v e s ,

<k> |p |k> = ft Ic 6k,k

w e find (ф does not a c t  on the spin v a r ia b le  a)

gl<-kqs 7 = ^ =  • ®q ^  <S’ CT* |cp(? - R) I kor > eici*R 6o,a (1.35b)
i f

C om in g back to E q . ( l .  10b) w e se e  that to lo w e s t  o r d e r  in к w e  m a y  
take the | n )  as  eig e n state s of . Then the s ta te s  i n ^ n '  | uj |n)>
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differ  only by one phonon so that fin, - S7n = ±  . Hence

< n '  |<  v  ; RI [ g r ion > | i ; R >  I n >  oe <c3 ( 1 . 3 8 )

T h is  shows that in the h arm on ic  approxim ation the ionic s y s te m  is d e 
coupled fr o m  the e le ctro n s and can be treated independently. H o w ever,  
anharm onic e ffects  a r e  of the sam e o r d e r  as  the m ixing effects  ( 1 . 3 8 ) .  
T h e r e f o r e ,  for c r y s t a l s  with excited electro n s and holes (m etals  and 
se m ico n d u cto rs) ,  the anharm onic e ffects  cannot be treated independently  
of these excitations and one has to go back to the u n screened fo rm  of the 
potentials. F o r  in su lato rs ,  on the other hand, the ele ctro n -h ole  excitations  
can be neglected.

L e t  us now examine the te r m s  of <^n' | V  ; R \^ff\ £; R)> | n )> . W e  find 
fr o m  E q s  ( 1 .  9), ( 1 . 9 a )

<n- | E c( R ) | n > 6 r {  = E { ( R °)  6 n.n6 r {  + ] [ ( ^ ) o < n , |u I | n > 6 £,| + . . . ( 1 . 3 9 )  

< n '  | A r { ( R ) | n >  = ^ T O  ; R I —g -  I £; R > Q (Пп, - s y  < n '|  u, |n> + . . . ( 1 . 4 0 )

i 1

w h e re  we have used P j / M  = ( i / й ) [ ^ 4 , u j] and

< n ' i B , . , ( E ) | n >  = ^ < i . ; R | ( 5 5 | - ) 2 U i R > a - t i » . . .  ( 1 . 4 1 )

Now fr o m  E q  . ( 1 . 6 )

0 = < i ' ;  r |t J t  { ( ^ el(R) - E £( R ) ) | i ; R > }

= 0 ;  R | ^ - | i ;  R >  - + ( E £.( R )-  E ,(R ))  ; R R >
3 R i  o K j  3 R j

w e find

< i . ; R | 4 W | i ; R > = 2 5
9R , ЭЙ1  6 v i -  E r  = ( 1 . 4 2 )

O ' ; R l - щ -  l ^ ; R >  =

O '  ; R | ^ | i ;  R >
' 9 R T 1

E ,(R )  - E e.(R) * E r ?  E , ( 1 . 4 3 )

In addition it follows fro m  time r e v e r s a l  in varian ce  of that the states  
\i) R ^  m a y  be chosen r e a l ,  so that we find fro m  ( 1 . 6 '  )

Hi R > = ^  - | - < X ; R | i ;  R > = 0 
2 a R j

< i ;  R
Э (1.44)
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F r o m  E q .  ( 1 . 4 2 )  w e conclude that the second te rm  of Eq . ( 1 . 3 9 )  is  the 
diagonal p art ,  in the ele ctro n ic  c o -o r d in a te s ,  j£• = £ ,  of the e le ctro n -  
phonon interaction (e n e r g y  is  not c o n s e rve d  in this te r m  since it c r e a t e s  
o r d e str o y s  a phonon). F r o m  E q . ( 1 . 4 4 )  we se e  that E q . ( 1 . 4 0 )  is non
diagonal in the e le ctro n ic  c o -o r d in a te s .  And E q . ( 1 . 4 3 )  shows that its 
e n e r g y -c o n s e r v in g  part is identical with the electron-phonon m a tr ix  
elem ent (se e  E q .  ( 1 .  12)) :

< n ' A r { (R) n > t + Er, : fin + E 1
Щ р )  | f ;  R °  ><n' I u I n > + . . .
9 R / 0 1

= < П ' Ю ' ; R °  I ph | l ;  R °  > | n >  + . . . ( 1 . 4 5 )

P h y s i c a l l y  this m ean s that . also  r e a c t s  on the ions. The rem aining,
e n e r g y  n o n -c o n se rv in g ,  te r m s  of E q .  ( 1 . 4 0 )  as w e ll  as  E q .  ( 1 . 4 1 )  are  
difficult to e stim ate  (see  R ef.  [2] ). In o rd e r  to a s s u r e  the m ain r e s u lt  
E q . ( 1 . 3 8 )  they must combine to g ive  te r m s of o r d e r  к3 at le ast.

1 . 3 .  C r y s t a l  momentum c on servatio n

B y  tran slatio n  in va rian c e  of the whole s y s t e m  both U(R) and W (r ;R )  
in E q s  ( 1 . 3 ) ,  ( 1 . 4 )  depend only on co-ordina.te d iffe re n c e s.  Now the ionic  
groundstate R = R ° is  s y m m e t r y  breaking in the se n se  that it is  invariant  
only with r e s p e c t  to the tran slatio n s by lattice  v e c t o r s  R = Since

^ e “^  Д(£) ( 1 . 4 6 )

w h e re  К  a r e  the v e c t o r s  of the r e c i p r o c a l  lattice  defined by e x p ( i K -  R) = 1 
w e find im m ed iately  fr o m  E q s  ( 1 . 3 5 a )  and ( 1 . 3 1 )  that

gk 'kq *  A <k ' - k  -  4>

c (n) oc A(q . +. . . +  
41 • • • Яп 1 4 n >

( 1 . 4 7 )

T h is  m ean s momentum co n se rva tio n  modulo a К  • К  f  0 a r e  umklapp  
p r o c e s s e s .  Since k and q lie within the redu ced B ril lo u in  zone umklapp  
is p o ssib le  only fo r  p r o c e s s e s  involving m o re  than two p a r t ic le s .  Th is  
is  the c a s e  both for ^ ' el. ph and ^ r ' anh but not fo r  couplings to e xtern al  
field s which a r e  of the fo rm

a k- a k< X ^ ' q b q’ Ь Ч
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W ritin g

^ ’ el-ph Ph ( К )

К

W  = Х ^ п (Й)
К

( 1 . 4 8 )

( 1 . 4 9 )

w h e re

V p h ( K > X б к’ Л + < ,+ к ё к ' к Ч а к- a k Q k
k’kq

Ä "  (К) = - V  У  « -  * . - » К С  W”  n n! Z_j  Я1 + -- -+чп. Ч!... Q n . ■ ■ Q ,Чп 4i
Ч1 ‘ ‘  ЧП

( 1 . 4 8 а )

(1 .49а)

/е see  that the t e r m s  with Й = 0 and Й f  0 give  r i s e  to n orm al p r o c e s s e s
and umklapp p r o c e s s e s ,  r e s p e c t iv e ly .  F r o m  E q s  ( 1 . 35 b ) ,  ( 1 . 4 6 ) ,  ( 1 . 5 2 )  
w e find fo r  ( 1 . 48a) (note that | к + К  У = I к )

# S i -  ph <K > ' ® Ч < ? +  Ч . ^ | ф | k - >  • a k + q+K  a k Q q  t 1 - 5 0 >
kq 4

which shows that n o rm a l p r o c e s s e s  e ss e n t ia l ly  couple only to the longitudinal  
phonon mode. In the approxim ation of the Bloch states | k^> by plane w a v e s

< k' о-1 ф I if or> = cp (R1 - S)

w h e re

Ф (5) = J d3 rcp (r) e~iq* r

v

is  the F o u r i e r  tr a n s fo r m  and V  the c r y s t a l  volum e. In this approxim ation  
e x p r e s sio n  ( 1 .  50) r e d u ce s  to

«T'el-ph s  I  < +q + Ka kQq ( X- 50a)
kq

w h e re

7q° ( K )  =
. J N M m O

(q + K) 0 (a) (1.50b)

and Vg = V /N  is the volume of the unit cell.
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F o r m a l l y  umklapp is e x p r e s s e d  by the fact that the Й f  0 te r m s  in 
E q s  ( 1 . 4 8 ) ,  ( 1 . 4 9 )  do not commute with the (Hermitian) c r y s t a l  momentum  
operator 7. A s  in field th eory  we define J  as  g e n e ra to r  of the tran slation s  
by lattice  v e c t o r s  R,

^  = e u-R ( 1 . 5 1 )

Now the Bloch states have the p ro p e rty

5 ^ | k >  = e ^ ' *  |k> ( 1 . 5 2 )

and since | О У = | 0 we have fr o m  E q s  ( 1 . 2 2 ) ,  ( 1 . 2 2 a )

= е +15>1?а *  ( 1 . 5 2 a )

On the other hand, translation by Й tr a n s fo r m s  u, into uT, with
RO, = Й °  + Й

U, ( 1 . 5 3 )

With E q s  ( 1 . 2 7 ) ,  ( 1 . 3 0 )  we find (see  R ef.  [8] )

e+i" ' ^ b q ( 1 .  53a)

Expanding E q s  ( 1 .  52a) and ( 1 .  53a)  in p o w e rs  of Й w e obtain fr o m  the 
lin e ar  te r m s

[ ? , a £ ]

[ ? ,  b * ]

T h is  has the solution

J  =

( 1 . 5 5 )

7 e i = P a k *a k : J p h  = ^ b * b q

к q

Now it is e a s y  to calcu late  (se e  R ef.  [8] , for the phonon case)

f ^ e T ^ e l - p h  +  S k  + q+K ,k ,q a k + q + К ' a kQ q
kq

= к a?

q  • b a

( 1 . 5 4 )

(1.56)
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[ J p h - ^ e ' l - p h ^ ) ]  = ) T  ( - q ) g k +q+K , k , q a k+q + K a kQq 
kq

(*>] = к«Г!,

Hence fo r  К  = О,

( 1 . 5 7 )

( 1 . 5 8 )

[ J ^ e l - Ph ( ° ) ]  = 0

t f . g W O H  = 0
( 1 . 5 9 )

T h e  com m utator of the umklapp part (K f  0) of the interactions g i v e s  r i s e  
to e xtern al f o r c e s  e x e r c is e d  by the la ttice ,

'—>
K = 0 (1

W io n *  J] = i j t r 'a n h  (К), 1] -  ?ph
к У  0

- i  —>
Note that the non-vanishing of these fo rc e  o p e ra to rs  F el and Fph is  not 
in contradiction with the fact that a l l  te r m s  of the Hamiltonian ^ ? ”a r e  
in varian t under lattice  tran slatio n s,

( i . 6 i )

T h is  is  due to the fact  that the la tter  fo r m  a d is c r e te  A b elia n  g ro u p . Th e  
only e x am p les  of such grou ps in e le m e n ta r y  p a r t ic le  p h y s ic s  a r e  p arity ,  
tim e r e v e r s a l  and c h a rg e  conjugation which a r e  known to give  r i s e  to 
m u ltip licative  con se rva tio n  la w s  w h e r e a s ,  ac c o r d in g  to N o e t h e r 's  th eorem ,  
L i e  groups g ive  r i s e  to additive con servation  l a w s .  C r y s t a l  momentum  
con se rva tio n  modulo K n th e refo re  is  a m ultip licative  c on servatio n  law ,  

n
n am ely  JJ  expfitfj -Й) = 1.  And umklapp is  the p r ic e  one pays for w ritin g  

i = l n
it in the additive form

i = 1

2 .  E L E C T R O N - P H O N O N  I N T E R A C T I O N  IN M E T A L S

In this section we d is c u s s  what we think to be the ty p ic a l  c a s e s  of 
how the electron-phonon interaction m o difies the p r o p e r t ie s  of the 
e le ctro n s in a m e ta l.  It is  not su r p r is in g  that the b a s i c  question turns  
out to be how the coupling function 7 q its e l f  i s  modified. Now the 
M ig d a l  th eorem  states  that up to o r d e r  к it is  not modified at all ,  at le ast  
under conditions such that the exchanged phonons have not too long a
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w a v e -le n g th  and the e le ctro n  e n e r g ie s  a r e  not too f a r  off fr o m  the F e r m i  
s u r f a c e .  It tu rn s out, h o w e v e r,  that the ty p ic a l  c a s e s  a r e  in a loose  
se n se  just exception s to this th e or em . T h e s e  a r e  the r e n o r m aliz atio n  
e ffe c ts ,  the p a ir  in stability  leading to su percon d u ctivity  and the h yd r o -  
d y n a m ic a l  l im it  givin g r i s e  to a  tr a n sp o r t  equation.

2 , 1 .  R e a l - t i m e  G r e e n  functions. M i g d a l1 s th eorem

Th e o n e -e le c t r o n  G r e e n  function is  defined by

G? = J" <  T (a k, 0 4 )  a k2 (*2 )) >  = 1 2

H e r e  T  i s  the o r d e r in g  ac c o r d in g  to r e a l  t im e,

T(A(t) B (t '))  = 6(t - t ')  A(t) B (t ')  ± 0(t' -  t) B (t ')  A(t)

(2 . 1)

(2 . 2)

the upper (lower) sign  r e f e r r in g  to boson (fermion) o p e r a t o r s .  A(t) 
is  the H e ise n b e rg  r e p r esen tatio n  (we put ft = 1 fr o m  h e r e  on)

A(t) = e ^ A e ' ^ 1

Th e a v e r a g e  is  defined as

. . 6(F-^r+fiNe i)
< A >  = T r ( e  elA)

( 2 . 3 )

( 2 .4 a )

w h e re  p i s  the c h e m ic a l  potential ( F e r m i  energy) and N el = ^  a *  a k
к

the e le c tr o n -n u m b e r  o p e r a to r .  F  being the th e rm o d y n am ic  potential  
defined by

< 1 > = 1  (2 .4 b )

S i m i l a r l y  the one-phonon G r e e n  function is  defined b y

D ( l , 2 )  = ^ < T ( Q q i (t1 ) Q * 2(t2 ) ) >  = 1 ^ 2  ( 2 . 5 )

T h e s e  G r e e n  functions depend only on the tim e d iffe ren ce  t j  - t 2 and, 
a c c o r d in g  to E q s  ( 1 . 5 2 a ) ,  ( 1 . 5 3a)  and ( 1 . 6 1 ) ,  c o n s e r v e  mom entum,
G j  oc , D ( l ,  2) oc Sqj'q^ Sin ce  does not induce sp in -fl ip  p r o c e s s e s  
(we did not c o n s id e r  exchange in teraction s) w e h ave, in addition,
Gf <* 60lo2 . Th u s we can w r ite

G ?  = G ( k i ;  t i ' t 2 ) 5 k ,k 2 ( 2 - 6 )

In g e n e r a l  D ( l ,  2) cannot be s im p lif ie d  in the sa m e  w a y  b e c a u s e  
contains p o la r iz a tio n -f lip  p r o c e s s e s ,  p -» p ' . H o w e v e r ,  a c c o r d in g  to 
Eq.(1.34) these t e r m s  a r e  at le a s t  of o r d e r  k4 (the lo w e s t  o r d e r  d ia 
g r a m  i s  Note that ^ ^ l - p h  does not induce p o lariza tio n  flip s
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D ( l ,  2 ) = D ( q i; Ч - 1 2) 6 ч Ч2+ 0 ( / с4) ( 2 .7 )

D(q; t) s t i ll  contains the r e n o r m aliz atio n  e ffects  due to the e le ctro n -  
phonon interaction. C allin g  G ° ,  D° the G re en  function r e f e r r in g  to the 
f r e e  Hamiltonian,

^ 0 = ^ H F + ^ h a r m  ( 2 ' 8 )

th e ir  F o u r i e r  tr a n s fo r m  a s  defined by

i f  um klapp is  n eg lected , s in ce  on ly  the longitudinal p o la r iza t io n  is
cou p led . H ere  we sh a ll n eg lect um klapp and w rite  the coup ling  function
( 1 . 50b) f o r  Ä  = 0 s im p ly  7 °. Then

e t c . , is  found to be

G °(k ; u)

D ° ( q ;U) = 

w h e re  6 -*• 0+ and

G ( k ;  U) = j 1 d t  G ( k ;  t ) ‘ wt ( 2 . 9 )

1 f  01 -  I к f k
u  -  e{J + i 6 u -  e g - i 6

( 1  + n q )  U 0
я n q U q

ЛЛЛЛЛЛЛЛЛ. ( 2 .  1 0 b )
« 2 - K - :L6)2 u 2 .  ( y0  +  i § ) 2

) /  »I«
< = <  a k a k > o  =

Бсь ,
( e  k + 1 )  1 ( 2 .  1 1 a )

= <  b *  b  
N q q > o  = ( е Ч  -  l ) ' 1 ( 2 .  l i b )

a r e  the e le ctro n  and phonon occupation n u m bers r e f e r r in g  to In

( -

G ° ( k ;  t o )

the lim it T  -*• 0, fj| -*■ 0(- e£), n° 0, so that

1
to -  + i 6  s i g n e °

D  (q. u ) u2 -  to 02 +  i s

( 2 .  1 2 a )  

( 2 .  1 2 b )

T h is  l im it  a lr e a d y  g i v e s  in terestin g re n or m alizatio n  e ffects  in the 
electro n  s y s te m .  The l im it  is  even n e c e s s a r y  if perturbation theory  
is used fo r  r e a l - t i m e  G r e e n  functions. A t  T > 0  only the perturbation  
th eory of im a g in a r y - t im e  G re en  function w o rk s p r o p e r ly  (see su b
sectio n s 2 . 4  and 3 .  1 ) .  We sh all  not m ake u se of perturbation theory  
in this section, h o w e v e r.  Of c o u r s e ,  n o n -perturbative  methods  
(functional d e r iv a t iv e s ,  equations of motion (see, e . g .  R ef .  [9])) are  
a lw a y s  p o s sib le .

B e c a u s e  of the 9-functions in the definition of the t i m e - o r d e r  ( 2 .2 )  
G and D c o n sist  of two p a r t s  each of which is  an alytical,  re s p e c t iv e ly ,  
in the upper and lo w e r  half u -p lan e.  While fo r  finite te m p e ratu re  these  
p a r ts  of G and D have cuts all  along the r e a l  w -a x is  (see E q s  ( 2 . 14a),
( 2 . 14b)), at T  = 0 the cuts extend only o v e r  the positive and negative  
r e a l  и a x is ,  r e s p e c t iv e ly .  T h e r e fo r e ,  at T  = 0, G and D have a unique
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s p e c t r a l  re p r esen tatio n  (see the contribution of P r o f .  Lundquist in this  
book)!1

a r e  the s p e c t r a l  functions at te m p e ratu re  T .  \&s, gs a r e  the e igen states  
and eigen valu es of E q . ( 1 . 8 )  and ps is  the eigenvalue of the density  
m a tr ix  defined in e x p r e s s io n s  ( 2 . 4 ) .

A  and В  a r e  r e a l  and A  is  n on-negative b y  construction. Both  
s a t i s f y  a sum ru le,

The e ffect of re n o r m a liz a tio n  on G and D due to the electron-phonon  
in teractio n  is  contained in the ele ctro n  and phonon s e l f - e n e r g i e s  £  and 
П, r e s p e c t iv e ly .  T h e y  constitute the o n e -p a r tic le  ir r e d u c ib le  (or proper)  
p a r t s  of G and D. And the o n e -p a r t ic le  re d u cib ility  of the la tter  is  e x 
p lic it ly  exhibited through the D yso n  equations (which m a y  also  be con 
sid e re d  a s  a definition of £  and П)

Actually, a spectral representation exists also for T > 0 but it is not commonly used. Indeed, 
with the method presented in Part 3 to derive Eq.(3.11) one finds

and similarly for D(q,to) . Here A ,  and A2 are the two terms o f  Eq.( 2 . 14a) which in the limit T -» 0 
are non- zero only for to > 0 and to < 0, respectively.

(2. 13a)
-  CO

H e re
(2. 13b)

(2. 15a)

+ oo

(2. 15b)
“  oo

In addition

G ( k ;  t o )  =  G ° ( k ,  t o )  +  G °  ( k ,  t o )  £ ( k ,  t o )  G ( k ,  t o )  

D ( q ,  t o )  =  D °  ( q ,  t o ) + D ° ( q ,  t o ) n ( q ,  t o )  D ( q ,  t o )

(2. 16a)

(2. 16b)
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o r  in d ia g r a m m a tic  fo r m

- * — ( Z

/W  = - W  ♦'VXXgA/V
M aking u se  of E q s  (2. 10a), (2. 10b) th ese  equations m a y  be inverted  
to give

G <k > ->) = 7 7 7 7 Ö
1

w - - H(k; u)

1~\ / 4 vO g
D ( q '  ^  = w2 _ U 02 .  u o n ( q ;  u)

(2. 17a)

(2. 17b)

One obtains a c lo se d  set of equations b y  introducing the re n o r m a liz e d ,  
o n e -p a r t ic le  ir r e d u c ib le ,  3 -point v e r t e x  (see R e f .  [ 1 0 ] ) :

k +  q, ш +  i/

Y(k, U; q, v )  = 4, v = +

( 2 . 1 8 )

k, w

H e r e  y °  is  the u n re n o r m aliz ed  v e r t e x  as  given  b y  the coupling function  
( 1 . 5 0 b )  f o r K = 0 .  F r o m  the d iag ram  equations

k-*-cj, w  +  V

4 D -  =

я - v

k+c), oo + v

~®~ = 7CX 1 )''
k ,c o

the additional equations a r e  seen  to be (the fa c t o r s  m a y  be determ ined  
fr o m  the lo w est o r d e r  perturbation th e o r y  d iag ram s)

E(k;u) = y ^  G(k + q, u + v) D(q; v)  y(k, io; q, v)  ( 2 . 1 9 a )

q

n (q ;v )  ^ 1 4  G(k +  q; u  +  v) G(k, w) у  (к, W; q, v) (2. 19b)
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Note that these equations involve only exact G re en  functions G and D 
and hence a r e  independent of perturbation theory. T h e y  just exhibit an 
internal stru c tu re  like the Dyson equations and m a y ,  in fact,  be d erived  
by functional methods (see, e . g .  R ef.  [ 1 5 ] ,  p . 3 3 2 ) .  If the v e r t e x  function  
is  supposed to be given, then E q s  (2. 19 a),  (2. 19b) and (2- 1 7 a ) ,  ( 2 . 17b)  
fo r m  a clo se d  sy s te m  of coupled in te g ral  equations.

Now M ig d al states  [10] that fo r  the v alu e s of k, u, q, v which a r e  
relevan t in E q s  (2. 19 a),  (2. 19b) ( i . e .  near the F e r m i  su r fa c e ,  q, 
к = k F; u, v = uD = Debye frequency)

7(к,ы; 4 , v) __ 1 + Q ( k 2 )

T n
( 2 .  20 )

(See also  R e f . [ 1 2 ] ,  pp, 1 5 6 - 1 6 3 . )  We shall c a l l  this the M ig d al th e or em .  
It s im p lif ie s  co n s id e ra b ly  the calculation of E and П since E turns out to 
v a r y  little  with к n e ar  the F e r m i  s u rfa c e  so that ac c o r d in g  to (2. 17a)
G can be ap proxim ated b y  G °  in E q s  (2. 19a), (2. 19b). F o r  this r e a s o n  
the M ig d al th eorem  is  a lso  called the "w e a k  momentum dependence  
ap p ro xim atio h " (see R ef .  [ 1 3 ] ) .

That the M ig d al theorem  is  not g e n e r a lly  true can be seen  in explicit  
e x am p les  (see s u b -s e c t io n s  2 .3  and 2 . 4 )  which a r e  c h a r a c te r iz e d  b y  v e r y  
s m a ll  q -v a l u e s ,  q «  k F . Th e f i r s t  w a s  pointed out b y  E n g e ls b e r g  and 
S c h r ie f f e r  (see R ef .  [ 1 4 ] ) .  T h e y  noticed that the g e n e ra liz e d  W a r d -  
T a k ah ash i identity

y(k, Ц; q, v) _ G ' 1 (k + q, u + v) - G ' 1 (k, u)
л/Q v

taken in the l im it  " f i r s t  q -* 0, then v -» 0 " ,

7(k, u; q, v)
у  0

q

_ 9G 1 (k, u) ЭЦк, со)
q-*0 3t0 9 tO
l/-*0

(2 . 21)

m a y  in c e rta in  c a s e s  lead to a c o r r e c tio n  ЭЕ/Э10 of o r d e r  one.

2 . 2 .  R en o rm alizatio n  e ffec ts  in n o rm a l state

If E q s  ( 2 . 17 a )  o r  ( 2 . 17b) a r e  w e ll  approxim ated b y  one o r  s e v e r a l  
poles n e a r  the r e a l  a x is  in the и-p lan e these poles a r e  called  q u a s i
p a r t ic le s .  The location of q u a s i-e le c t r o n s  is  c h a r a c te r iz e d  b y  the 
r e n o r m a liz e d  e n erg y  e k and the width | Г к | such that u = e k- iTk . F r o m  
(2. 17a)  we then find

ek - £k - R e £ ( k - ek - i r k ) = 0  ( 2 . 2 2 a )

Г к = l r kl = - I m E ( k ; e k - i r k) (2 .2 2 b )

the assum ption being that | Г к | «  | e k | .
A  development E(k, w) in p o w e r s  of и - ek + i T k g iv e s

9E
Е ( к , Ш) = Е ( к , е к - 1 Г к ) +  (Ш - е к + 1 Г к ) ^
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and one finds fr o m  E q .  (2. 17a)

G " 1 (к, и) = ( и - е к + 1 Г к )
ЭЕ
9 u

irk-
+  .  .  .

which can be w ritte n  a s  

G (k,u) =

wh ere  zk is  defined b y  (se e  R e f .  [ 1 6 ] )

ЭЕ-1 = 1 -
Эи

= ek ' irk

(2. 23)

( 2 .2 4 )

and G reg is  r e g u la r  in the v ic in ity  of the pole. T h is  form ulation of the 
q u a s i- p a r t i c le  concept is  su fficien tly  g e n e r a l  fo r  m o st p u rp o s e s .  The  
s p e c t r a l  function a s s o c ia te d  with (2. 23) i s ,  at T  = 0 ,

A(k, w) = — I n !
V (u - e k)2 + Г 2  +  Aback ( 2 . 2 5 )

w h e re  A back d e s c r i b e s  a background sp e ctru m  which i s  smooth in the 
v ic in ity  of the pole and d e te rm in e s z k through the sum ru le  ( 2 . 15a)

l - z k = / d u ' A back(k, W) (2. 26)

so that z k S 1 .
A c c o r d in g  to E q .  (2. 25) a q u a s i- p a r t i c le  h as a L o re n tz ia n  line shape  

su perp osed  on the background. If the la tter  i s  negligible the q u a s i
p a r t ic le  "e x h a u s ts  the sum r u l e "  and zb = 1 .  Note that this lim it z k =  1 
would be r e q u ire d  b y  the M ig d al th eorem  if  it applied g e n e r a l ly ,  since  
fr o m  the W ar d  identity ( 2 . 2 1 )  we have

-l  = y(k, ek -  i r k; q, v)
к «у® q -> 0

q v ->0

In o r d e r  to show that E q .  ( 2 . 2 5 )  in se rte d  in E q .  ( 2 . 13a )  le a d s to E q .  ( 2 . 2 3 )  
we u se  the identity

f(cj') du1
и  -  u 1 + i 6  s i  g n u '

f(m')db)1
u - u '  ±i6

2irif(u) в (7  и)

which is  obtained b y  u sing

1 P
u ' - u T  i6 u 1 - u

± i n  6(io' - u)
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fo r  the second t e r m  on the r ight-h an d  side. Now we put

m  = 7Г
ln. I

(U - e k ) 2 + r 2

and u s e  the upper (lower) sig n  of the identity fo r  ek >  0 (e k <  0). Th e  
f i r s t  in te g r a l  on the r . h .  s .  of the identity can be in tegrated  in the 
c om p lex co'-plane (see  figure) and le a d s to the f i r s t  t e r m  in E q .  ( 2 . 2 3 ) .

T h e  second te r m  is  n o n -s in g u la r  b e c a u s e  со and e k have  opposite sign s  
b y  assu m ption . It m a y  thus be added to the in te g r a l  o v e r  A back which  
togeth er g ive  Greg in E q .  (2. 2 3) .

In the lim it | Г к|"» 6 = 0+ we h ave, at T  = 0, a stable  q u a s i- p a r t i c le  
(se e  the contribution b y  Lundquist in th is  book)

A(k; со) = z k6(co -  e k) + A

G(k; со) = Zk
CO -  € k +  i6 s i g n e k

‘ I 1 -
9 R e £

9co ш =ek

back (2. 27a)

^ re g (2. 27b)

( 2 . 2 7 c )

Sin ce  now z k1 (G - G reg) h as  e x a c t ly  the fo r m  of G 0 we can introduce  
q u a s i- p a r t i c le  c re a tio n  and annihilation o p e r a to r s  A *  , A k and c a ll  
\Tz"  ̂• A ^ |  0 У  the q u a s i- p a r t i c le  w a ve  function (in an alo gy  to ( 1 . 2 2 ' ) ) .  
Hence z k is  the w a ve  function re n o r m a liz a tio n  f a c t o r  (se e  R e f .  [ 1 6 ] ) .  
With the c o r r e c t io n  f a c t o r  zk the q u a s i- p a r t i c le  p ic tu re  i s  a good a p 
p ro x im atio n  as  long a s  Im(k; со) is  s m a l l  (see R e f .  [ 1 7 ] ) .

D ifferen tiation  of (2. 22a) with r e s p e c t  to к g iv e s  in the lim it
| r k b 6

Эе 9 e k 9 R e £  
91? " "aST 9 l T w = c k

9R e S  9 e k _

o r  fo r  sp h e r ic a l  bands (see  R ef .  [ 1 8 ] )  

Vk _ , , 1  9 R e £  
1 v? 9k ■s zk <l ( 2 . 2 8 )
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wh ere v k = 9ek/9 k  and v k a r e  the electro n  v e lo c it ie s .  The sim plification  
on the r . h .  s .  is  a consequence of the M ig d al th eorem . Indeed, by putting 
7  = 7 ° in E q . ( 2 . 1 9 a )  it can be shown (see, e. g. R ef .  [ 17 ] ,  p. 162) that near  
the F e r m i  su r fa c e  Re E is  a lso  s m a ll  and depends only v e r y  little on 
ß so that

1 9Re E 
v °  Эк ck

= О  ( ) «  1

In spite of these p r o p e r t ie s  Re E m a y  depend stro n gly  on u, so that 
z k f  1 .

If an e ffective  m a s s  approxim ation is  valid  fo r  the valen ce  band, 
so that

then the electron-phonon interaction g iv e s  r i s e  to a m a s s  ren orm alizatio n  
such that

, 2  , 2к - kp
2 ( m B + 6 m t

F r o m  E q s  (2. 28), (2. 27c)  we find

X E  = 1 + 6 m  „ z .1 
v p m cJB

w h e re  z = zk , 6m = 6m k . It follow s that

k F = ( r n B +  6 m ) V F = m BV F

(2. 29)

i . e .  no r e n o r m aliz atio n  effect on k F.
Since r e n o r m aliz atio n  e ffects  die off fo r  | e k | »  uD the situation is  

a s  d e sc r ib e d  in the f ig u r e  w h e re  ц° = k F/ 2 m B is  the unren orm alized  
F e r m i  e n e rg y .

u D

D

S i m i la r ly ,  the effect of re n or m alizatio n  on the density of states  is  
e s s e n t ia l ly  d e sc r ib e d  b y  zj)1 :

№ ( u )
2 dk

d e c
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N(u) =

к

(a f a c t o r  of 2 c o m e s  fr o m  the spin sum ). Now fo r  u -v a lu e s  of the o r d e r  
of phonon fr e q u e n c ie s  u q, k - k F = q v ph/ v F «  kF , i . e .  к is  a lm o st constant.  
Hence (see R e f . [ 1 7 ] )

N ( u )  _  v j j  - l
N ° V )  “  v k £];= eo =ш ( 2 .3 0 )

N u m e r ic a l  calcu la tio n s of 6 m / m B and N (u )/N °(u ) have  been m ade fo r  
sodium b y  G r i m v a l  [ 19 ] .

F r o m  E q s  ( 2 .2 9 )  and ( 2 . 3 0 )  it fo llow s that

N(u) = № (u )  
m B +  6m m B ( 2 . 3 1 )

T h e  shift 6p of the F e r m i  e n e r g y  is  determ ined by

p °

N(io) du = J n ° (u) du

so that (see the f ig u re  above)

I ' W P o I - ^ d A ' o «  1

On the other hand, the w ave function re n or m alizatio n  im p lie s  that 
the ratio  of e le ctr o n ic  m a tr ix  e lem en ts with and without r e n o r m aliz atio n  
e ffe c ts  is

M  _ 
M °  = (2. 32)

Hence (see R e f . [ 1 3 ] )

N (m B + 6m) I M| : № m n

N - M  = N ° M °
( 2 . 3 3 )

F r o m  th e se  and s i m i l a r  con sid era tio n s T a b le  I is  obtained (see  
R e f s  [ 1 8 ,  2 3 ] ) .

2 , 3 .  P a i r  in teractio n  and su percon ductivity  

T h e  electron-phonon interaction

^ e l - p h  = Z Y q a k+q a k Q q
kq

(2.34)
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T A B L E  I. E L E C T R O N - P H O N O N  R E N O R M A L I Z A T I O N  E F F E C T  
ON V A R IO U S  P H Y S I C A L  Q U A N T I T I E S

Physical quantity .

Electron-phonon renormalization effect

Yes No

Electronic band mass mg + 6m ccz _I

Electron velocity vk a z

Shape of  Fermi surface kF s  mBvF

Fermi energy s  0

Phonon velocity vph = 3 u q/dq

Electronic specific heat Ce/ T  cc N cc z ' 1

Phonon specific heat c ph

Para-diamagn, spin susceptibility X ccdf^/ЭM

Cyclotron frequency u c  cc(mg + 6m)~l ccz

Amplitude de Haas-van Alphen 
effect present

Amplitude of Kohn anomaly present

Electronic matrix elements M cc z

Nuclear spin-lattice relaxation Ti ^  mg/N

Ultrasonic alternation a o c N j [ M 0|2

Positron annihilation a ccN cc z"1

Tunnelling rate present

Electronic mobilities 
and mean free paths

й - T ( m B a m B N j M j 2

Mean free times TCCN|MP 0=2 ‘

Transport processes: 
dc electric conductivity 
thermal conductivity 
viscosity, spin 
diffusion coefficient 
thermopower 
magnetoresistance

present
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g iv e s  r i s e  to an e ffective  e le c tr o n -e le c tr o n  interaction which m a y  be 
obtained by a canonical tr an sfo rm atio n  ■jS#’-* g ?  g iven by

Ж  = es , g r e 's = [S, W )  + | p  tS[S, £ ? ] ] + . . .

= + ^Tri-ph + LS, ^ 01+ [S, ^ ' el.ph 1 + \  [S[S, £T0]] + .. .

We d eterm ine S so a s  to elim inate h to f i r s t  o rd e r,

Л -ph + [ S , ^ o l = 0  ( 2 - 3 5 )

T h u s m a y  be w ritten as

& =  « r o  +  ^ S , # " el . ph ] +  . . .

Ta k in g  the phonon vacuum  of this equation we have  

< ° l ^ | 0 > ph= ^ F + «Teff + • • ■
where

< ° l l S , ^ 1. ph ] | 0 > ph ( 2 .3 6 )

i s  the e ffective  interaction we a r e  looking fo r .  Introducing the in t e r 
action re presen tatio n

A[t] = е ‘ л ‘ А е м л ' (2. 37)

E q . ( 2 . 3 5 )  m a y  be w ritten as

# V p h  It] = - (S[tl, $ r 0 ] = - i s w

which can im m e d ia te ly  be integrated,

t

S[t] = S +  i  f  d t ' e ‘ 5t' ^ i - p h  [t 'l

0

A s s u m in g  adiabatic  switching of . at t = +oo (or -oo) such that
S[+  oo] = 0 we have P

S = - i J dt e ' 6t bph [t] ( 2 . 3 8 )

0

In s e r t in g th is  into E q .  ( 2 .3 6 )  we find the explicit  e x p r e s sio n

OO

S T i f f  =  -  I  f dt  e ' 6 t  <  0  I l ^ T e l - p h  M .  £ " e l -  ph ( « I  ]  I 0  > p h
0

which is  ju st the expectation value of the reta rd ed  com m u tator.

( 2 . 3 9 )
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A s  c o m p ared  with the u s u a l  a lg e b r a ic  method, the method used here  
to d eterm ine h as the advantage of containing a p r e s c r ip t io n  how to
go around a sin g u la rity ,  which is  often u seful (see R e f .  [2 0 ]) .  The e v a 
luation is  stra ig h tfo rw a rd ,  noting that

< o | f e p h W ,  ^ b p h [ 0 ] ] | 0 >

= * e 1(£k q - ek>t Y  l T ° | 2 { a *

ph

-lCOat *  * + KOnt
ai< ak'-nak' e nab’ ab „аь e+ q k ^ k ' - q ^ k ' *k ’-  qa k' к + q к

kk’q

One obtains, a fte r  r e lab ellin g  the su m m ation indices in the second te rm ,

# ”eff = ^ < к '- Ч >  к + ч1 V eff| k ' k > a | +qak a ^ . q a k, (2 .4 0 a )

kk'q

wh ere

< k ' - q ,  k +  q | V eff | k ' k > l7g°l2
e k + q - £ k '  У Ч+ 1 6  e 2 ' - q  ' 4  + “ ? + «

(2 .40b)

i s  the effective  coupling function c orrespo n d in g to the 4 - v e r t e x  of the f ig u re .

k +  q, (J

k' -  q, a '

k, a

4,q

\ —  Й ' ,  a '

T h e  e le ctro n  p a i r s  m o st important fo r  su perconductivity,  (R, a) and 
(-Й , - a), have  a coupling function

< - i c - q ,  - a, Й +  q, a | V
.,02U) q

l V eff lg , CT- - g > = l7q|(g0 _ e o + i5)
'  k + q  к 1

•tj02
q

( 2 .4 0 c )

the r e a l  p art  of which h as  the beh aviou r of the f ig u r e .  Since  
I е£+ч - e °  | < u ° ,  the a ttr a c t iv e  part of the interaction dom inates.
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Now repeated action of this a t tr a c t iv e  e le c t r o n -e le c t r o n  interaction  
m a y  lead to an in stability  of the n o rm a l ground state again st form ation  
of coherent ele ctro n  p a i r s  (Coulomb repu lsio n  p r e v e n ts  a bound state).  
The c o r resp o n d in g  d ia g r a m s  a r e  the la d d e rs  with a r b i t r a r y  num ber  
of phonon lin e s .

-<■

Such a la d d er  d ia g ra m  contributes to the s e l f - e n e r g y  £  the te r m

g i v e s  r i s e  to a v e r t e x

which is  o bviou sly  d ifferent fr o m  y 0 . T h e  in stability  of the n o rm a l  
ground state aga in st  p a i r  fo rm atio n  m a y  be understood a s  piling up of 
such lad d er contributions to у  (see R e f .  [ 1 2 ] ,  section  7 - 1 ) .  Hence у  
in this c a s e  is  another exceptional c a s e  to the M ig d a l  th e or em . (A c tu a l
ly ,  one would have to p ro ve  that the la d d e r s  a r e  of o r d e r  к0 .)

2 . 4 .  H y d ro d y n a m ic a l  lim it and tr a n sp o r t  equation

T h e  B o ltzm an n  equation fo r  the distribution function f k (P, t) of the 
e le ctro n s is

9fk 9fk 9ek 9f 9 ф
9t 9 r  ” э!Г " Ü f '  ' 9 r I ( « k ) ( 2 . 4 1 a )

H e re  Ф( r , t) i s  an e x te r n a l  potential and I(6fk) the co llisio n  in te g ral.  
If we w r ite

f k(? *t) = f k + (2.42)



w h e re  f  к is  the equilibrium distribution function, then the lin e arize d  fo rm  
of E q .  ( 2 . 4 1a )  is
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3(6 fk) 9 {6 f k) ?  9 f k 9ф 

at 9 r  ‘ k S X  • 9?  -  I l ( 5 f k)

o r  a fte r  F o u r i e r  tr an sfo rm atio n

( 2 .4 1 b )

- i(r  - q - 7 k) 6 f k(q, i / ) - i ? - ? k | | М ( 3 ,  ")  = M ^ ) ( 2 . 4 3 )

On the other hand, startin g fr o m  quantum sta t is t ic a l  m e ch a n ics  the tim e  
evolution is  d e sc rib e d  b y  the Lio u v ille  equation fo r  the density m a tr ix

i ^  = pt ]

wh ere

(2 .4 4 )

= J " d 3 r 0 ( r , t ) n ( r )  = V ' 1^  ф Й , 1/)п (-3 ) 

к

( 2 . 4 5 )

is  the interaction of the e le ctro n s with the e xtern al potential ф(r , t) 
H ere n(q) is  the F o u r i e r  tr a n sfo rm e d  e le ctro n  density

n(q) = ^ n k(?)
к

w h ere

(2 .46 a )

n k(q) = a к a k + q

Th e solution of E q .  ( 2 .4 4 )  under the initial condition

ß (F -^  + (JNel)
Pt = - „  = P = e

is  (see the contribution of des Clo izeau x in this book)

(2.46b )

Pt = P °  + i  P ° , f d V e &t

0
( 2 . 4 7 )

Th e quantum s t a t is t ic a l  definition of the function ( 2 .4 2 )  then is

f k = < n k( r ) > (2 .4 8 )

6fk (r ,t )  = T r ( ( p t - p ° ) n k(r)) 

or

(2 .4 9 a )

eo

6 f k( ? ,^ )  = ^ 0 ( 3 >  v ) J d t e 0l/" 5)t < [ n ( - q ) ,  n k(q,t)] >
0

(2 .49 b )
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w h e re  the a v e r a g e  is  defined b y  e x p r e s sio n  ( 2 . 4 a )  and the tim e dependence  
of the o p e r a to r s  b y  ( 2 . 3 ) .  Introducing the re ta rd ed  2 - p a r t i c l e  G re en  
function

K k ( ? ,t )  = 0(t)< [n(-q), n k(q, t)] > e ' 5t 

Fu n ctio n  (2 .4 9 b )  m a y  be w ritten  as  the F o u r i e r  tr a n sfo r m

6 fk( 3 , y )  = ф ф ( 5 , у ) -  K * ( q , y ) ( 2 .4 9 c )

K k (q, v)  i s  a n a ly tic a lly  connected, in the v a r ia b le  v , with the im a g in a r y -  
tim e 2 - p a r t i c l e  G r e e n  function (see s u b -s e c t io n  3 . 1 ) ,  which is  then 
an a lyse d  (see R e f .  [ 2 1 ] ) .  Now in the domain of applicability  of a t r a n s 
port equation, v and q • v k a r e  so s m a l l  that they a r e  of the sa m e  o rd e r  
a s  the width | Fk | . T h is  is  the definition of the h yd r o d y n am ica l lim it .
It tu rn s out that in this l im it  the p a r t ic le -h o le  la d d ers

contribute to K k(q, v)  to o r d e r  к 0, independently of the num ber of steps.  
T h e r e f o r e  a l l  the la d d e r s  have to be su m m ed in o r d e r  to get a good a p 
p ro x im atio n  of K k (q, v)  (see R e f .  [ 2 2 ] ) .  Thus we se e  that the tr an sp o rt  
equation is  s t i l l  another exam ple of an exception to the M ig d al th eorem ,  
since b y  s im p ly  attaching a v e r t e x  y °  to the right of the la d d er  we get  
the lad d er ap proxim ation of у  (which is  quite different fr o m  the one 
re sp o n sib le  f o r  superconductivity):

The an a ly tic a l  continuation in v is  quite d elicate and one would like to 
a r r i v e  at the sa m e  r e s u lt  b y  u sing r e a l - t i m e  G re en  functions only. It 
w o r k s  to a c e r ta in  extent, and we sh all  sketch the method.

F i r s t  r e w r i t e  E q .  ( 2 .4 9 b )  with the help of the Kubo identity

i [ A , p ° ]  = ß p ° Ä

w h e re
в

Ä  = ß~1J  A ( -  i r ) d T

о
( 2 .  50)
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We find after a partial integration over t

5fk = 6fk + 6f Dк (2.51a)

where

6fk(q, v)= -^ (q ,y )< 6 n k(q)6n(-q)> (2.51b)

is the "local equilibrium variation" and
oo

= - iv  ^  ^  < Т(бпк(51) 6nk- ( - q)) > (2.51c)
0 k'

the "dissipative variation" (see Refs [23, 24]). Here we used the ab
breviation 6A = A - <( АУ  and we inserted the real-time ordering T (which 
is unity in the interval of integration). Now the difficulty is that we have 
again real and imaginary time arguments (t and - iT) mixed together 
which prevents development of a perturbation theory in the usual way 
because a simultaneous ordering according to real and imaginary time 
is impossible. One possibility is to define a generalized ordering along 
an arbitrary path in the complex t-plane (see Ref. [24]). This, however, 
is rather cumbersome. Here we shall simply assume that the average 
(2. 50) can be neglected, which amounts to a high temperature approximation.

Now the ladder sum mentioned above is just the solution of the Bethe- 
Salpeter equation

1’
1

2'
2 “

1'----<
1----s-

2’
2 + 1’

1
-*•
->■

3’ Ü
L

3 4

-s— 2' 
—  2 (2. 52)

where ’ ■ 
1

2'
' is the time-Fourier transform of 
2

< T(afj (ti)akl,(tr ) a£2, (t2.) akz (t2) >. Similarly to Eqs (2.16a), (2.19a), 
etc., this Bethe-Salpeter equation simply exhibits the 2-particle struc
ture of K. L is the 1- and 2-particle irreducible 4-vertex

(2. 53)

(2, 52) is thus again independent of perturbation theory and can be ob
tained, e .g . by functional methods (see, e .g . Ref. [11], p.337).
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Taking into account energy and momentum conservation we can 
write, using the abbreviation 1 = (k1; шг), etc.

T
1

2’
2 = K(1; 2; 1 '-  l )6 r - li2.-2

1'
1 = L(l; 4; 1 '-  1 )6 !'-!, 4 ' - 4

Then the identification with the Green function in Eq. (2. 51c) is

< T(6nk(q,t) 6nk,(-q ))>  = 2irJ 2ir 2 tt K(k, w; k> - q, ш1; q, у1)
(2.54)

and the Bethe-Salpeter equation (2. 52) becomes

K(l ;  2; 1> -1) s G i G j 6 12 + ^ L (i ;  4; i ' ■
4

1)K(4; 2; 1 '-  1U (2.55)

The ladder solution is obtained by taking only Lo in Eq. (2. 53). The fact 
that this ladder solution in the hydrodynamic limit is of order к0 comes 
from the structure of GiGp in this limit. Indeed, adopting for Gi and 
Gj. the form (2.23) with the identification k^=k; uj = u; kp =k + q;
Up =u + v, we see that in the hydrodynamical limit | v | = | q -Tk | = | Tk| 
we can neglect the q-dependence in zk+qek + q and |Tk + q| but not in 
rk + q= lr k I sign ekvq and ek+q - ek = q • . Hence

G i G p  s zk________________
y - q - r k + i|rk| (signek + q-s ig n ek)

w -e k -i| r k| sign ek и - ek + i| Гк | signek + q

The last bracket vanishes unless sign ek + q= - signek, in which case 
we have

G iG p^ 27rizk[A(k, u) - Aback(k,u)] 
v - *Tk + 2iTk (2.56)

Now with

1'
1

4'
4 7 k4- k j2° ( k4 ‘  k l * u4-ui)
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we see that each step

G i

G i

у  0

4

D

70

added to the ladder brings in a factor GjG-^l 7 °|2 D which, according to 
Eq. (2. 56) is proportional, in the hydrodynamic limit, to | 7q' |2'/  | Гк| , 
But to lowest order of perturbation theory

G

r k = - !m ос I у 0 |2 ос K 2

D
Hence G iG i' I 7 ° (2 D oc k.0 as indicated before. The transport equation is 
now obtained from the ladder approximation of Eq. (2. 55) in the following 
way. Put k2 =k' - q; w2 = u'; k2 = k'; u2 = w '  + V;  k4 = k"; u4 = u"; k4. = k" + q; 
io4. =u"+y and

M(ku; qr) = ^  J K(k, u; k' - q, u '; q, v) (2. 57)
k'

then with Eq. (2. 56) and L = L 0 the Bethe-Salpeter equation (2. 55) may 
be written in terms of M,

Mfku- Ал = zktA(k, u) - Aback (к, Ц)] sign e к 
( ' q )  i (r -^ -i? k) - 2 r k

x { l  + 2?t̂ J dto"|7k°„.k |2D(k"-k, u"-w)M (k"u";qr)| (2.58)
k"

It follows that

M(ku; qr) o c  A(ku) - Aback(ku) = zk6(u - ek)

Thus putting

M(ku; qr) = ipk (q, v) 6(u- ek) (2.59)

Eq. (2. 58) becomes, after rearranging terms,

- i(v - 4 -Vk)<Pk(q,v)  + ъ\ = - 2|Гк |<pk (q, v) - 2wzk

x X l 7k--kl2D(k" - k’ ek- - ek)<pr (q ^ )
k"

(2.60)
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From Eqs (2.54), (2.57), (2.59) we find for the dissipative variation 
(2. 51c)

so that we see from (2.60) that 6fj^(q, v) satisfies indeed the transport 
equation (2.43). The two terms on the right-hand side of Eq. (2. 60) 
describe, respectively, the scatterings out of and into the state k, con
tained in the collision integral I j . One difference is that the inhomo
geneous term proportional to the potential ф turns out to be proportional 
not to q -i/k but to v (see Ref. [21]). But since the values of v and (q • yk ) 
are close this is not so important.

It should be mentioned that Kadanoff and Baym have given a quite 
different derivation of the Boltzmann equation by the equation of motion 
method (see Ref. [9], chapter 9).

Finally we remark that if we use in the Bethe-Salpeter equation the 
term LJ, of Eq. (2. 53) instead of L 0 the ladders are replaced by the chains

which are equivalent to a random phase approximation. In the case of 
repulsive effective 2-particle interactions this approximation is known 
to lead to a collective mode (plasma or zero sound). Now, in cases 
where such a collective mode exists it will be dominated by the hydro- 
dynamical excitations, except at sufficiently low temperatures where 
the chain solution of the Bethe-Salpeter equation may dominate the ladder 
solution. This possibility may be realized in second sound which at the 
usual frequencies of observation is a hydrodynamical mode (see 
section 3.4) but for и 0 may gradually go over into a collective mode

3. PHONON- PHONON INTERACTION IN INSULATORS

The phonon-phonon interaction has a much more complicated structure 
than the electron-phonon interaction and information about the coupling 
function Cq")...qnis difficult to obtain. One source of information are the 
elastic constants, as will be discussed in section 3.2.

For phonons the limit T -► 0 is obviously not a good approximation.
On the other hand, perturbation theory at finite temperatures is a reason
able approach. This leads naturally to the "imaginary-time" Green functions 
discussed in section 3.1.

Experimental information on renormalization effects (frequency shifts 
and widths) are available mainly from neutron diffraction and ultrasonic

(2.61)

If <pk(q, v) can be assumed regular in v (without this assumption the 
analysis is somewhat more complicated) we simply have

(2.62)
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attenuation. But the new technique of heat pulses seems promising as the 
discovery of second sound has shown (see section 3.4).

3.1. Imaginary-time Green functions and perturbation theory

As remarked in section 2, perturbation theory at finite temperature 
necessitates an ordering according to imaginary times or reciprocal 
temperatures. This can be done both for electrons and phonons, but here 
we will concentrate on the phonon Green function as defined by

where Qq ( - i-j-j ), etc. is the Heisenberg representation (2. 3) with imaginary 
time argument, taken with the Hamiltonian (1.24), which in this section will 
be written as - gfo + $ ? '(gothic letters and straight lines will be used to 
represent the Green functions of this section). t1 etc. varies in the interval 
0 <  t 1 < ß  and the ^ -orderin g  is defined by

(lower sign: fermions) which is quite different from Eq.(2.2). It is useful 
also to define oriented phonon lines analogous to the electron Green 
functions,

From now on we will drop the restriction to Bravais lattices introduced 
in section 1 so that the index p in ± q = (±q, p) now runs over 3B values 
corresponding to the three polarizations for the В branches (1 acoustic 
and B -l optical). В is the number of basis atoms of mass Mb and equilib
rium positions Ri + rb (b = 1, . . ., B). The orthonormality (1.33) has then 
to be modified as follows;

(3.1a)

(3.1b)
± 0 (т' - t ) B(-iT') A(-ir)

(3.1c)

в

b=l
As in section 2. 1, we can write

(3.2a)

(3.2b)
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Thus тх - t2 varies  between -j3 and + ß .  It is , however, sufficient to con sider
the m atrices  £ ) { q ;  t ) and ^ (q ; t ) in the interval 0 -* ß  because o f the
im portant period icity  property

£2>(q\ t ) = S)(q~, r -ß );  0 < r < ß (3.3)

and similarly for S? . To prove (3.3) we notice that for such т (writing
q’ = (q, M')

= <Qq(-iT)Q*(0)>

S) , (q ;r -ß )  = <Q*(0)Q ( - i ( T - ß ) )  > fl ß я 4

Using the identity (which is a simple consequence of the cyclic property of 
the trace (2.4a))

<A(a)B(b)> = <B (b) A (а+iß) > (3.4)

valid for any operators A, В and complex "times" a, b, Eq.(3.3) readily 
follows.

In this interval and may be expanded into a Fourier series

&>{q-,7) = ^  &(q; o) e laT (3.5a)
a

(and similarly for S? ) where о  is defined by

eioß = 1, a = ± X integer (3. 5b)

(for fermions j  is to be added to the integer). The inverse of expression 
(3. 5a) is

ß
Ä>(q;o) = ß J dT ^ l(q;T )e1 (3.5c)

о

The zero-order, i .e . harmonic, Green functions are again easy to 
calculate. First we notice that

ü?°(3;t ) = ! ^ ° ( 3 ; т )  + ^°(-сГ;-т) (З.ба)

Using expression {3. 5) for ^ ° ( - q ;  - t ) we find

?>0(q; ° )  = 2 { ^ ° ( q i ff) + ^ °(-q ;-o -) (3.6b)
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Now with Eq. (2. 11)

so that

,(q;cr) = ß 1— -— ~6 =^°(q;cr)6
^  iff+io°q W W

0
&>° .(qicr) = ß „ 02 «ММ г /+ м “  ̂ FM

i u-1 q о6 , 5 3  (q; ct) 6 , 
a +to“‘  ^  ^

(3.7)

(3.8)

As remarked in section 2. 1, the spectral representations (2. 13a),
(2. 13b) cease to be valid at T̂ = 0. However, 3 (c [ ;o )  does have a spectral 
representation with the same spectral function B(q; to), Eq. (2. 14b). To 
see this let us w r ite r  in the representation by exact eigenfunctions of 

, Eqs (1.7) and (1.7a), We find

3> (q;cr) = ß cp+(-icr) + cp (-icr)

where

±
Ф

0'±(п, n1)
П - Q t to 

n n

again are matrices in ц, ц' and

(3. 9a)

(3.9b)

%■(“ - “ ') = <n lQ?(,ln,X n,l<4 (1.ln>

a~ (n, n') = a* (n', n)
MM’ MM

(3. 9c)

Both cp+ and cp- are analytic in each of the half planes Im to > 0 and 
Im to < 0. In order to connect the two pieces through the real to axis we 
may write cp+ as sum of two functions defined by splitting

into a part with Qn, > f2n 
nn'

and another with f2n. < $2n. Each of these new functions then has a cut only 
along half of the real to axis and is analytic in the entire cut to-plane. Using 
Cauchy's formula for them and going back to cp+ and cp we find

cp* (to) = ± dto' у  B(F-nn) 
w-to

n, n*

X ct (n, n') 6 (Г2п~ ± to') (3.10)
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Combining Eqs (3 .9a), (3. 10) we find immediately 
+00

& {q ;o )  = ß dco1
u' + icr B(q; u' (3.11)

where B(q;u) is given by Eq.(2. 14b) with ?s replaced by |n>, On and 
the labels ц ц' are put correctly. It is important to note that although the 
real-time Green function D(q;p) has no spectral representation (2. 13b) 
for finite t the Fourier transform of the retarded Green function

D et,(q;t) = 0 (t)< 
MM

Q-* (t), OZ (0) 
4M 4M'

> (3.12)

has, at any temperature, the spectral representation

‘ (q;u>) = f  du- ̂ J u-u ' +16D (3.13)

which is similar to Eq.(2. 13b). Equation (3. 13) is easy to prove by 
expressing Dret (q;u) again in terms of cp+ and cp". (The analogous results 
are of course true for (q; a) but also for the electronic Green functions 
where the definition analogous to Eq. (3. 12) contains an anticommutator.)

The practical importance of the connection between S) and Dret through 
their common spectral function В lies in the fact that 3> can be calculated, 
e. g. by finite temperature perturbation theory (see below), thus 
determining B. But В then determines Dret which is the function describing 
causal responses. Now the derivation of the spectral representations
(3.11), (3.13) did not make use at all of the particular nature of the 
operators Q_>. In fact, any pair of operators could have been used in (3. 9c) 
instead of Q'Â ,. Therefore the connection between &  and Dret through В 
is much more general. An example of a more general retarded function 
is given in (2.49b). In fact, this is the general form (Kubo formula) of a 
transport coefficient (see the contribution of des Cloizeaux in this book). 
Thus the spectral function plays an important role in the calculation of 
physical quantities.

We now describe the procedure of perturbation theory. A typical 
quantity to be calculated is of the form

^ I . . . r £ <5'(A 1 (-iT 1) . . . . A r( - i r t )) > (3.14a)

where the A j(r  ё 0) are any linear combinations of Qq or bq, b* 
Since in perturbation theory we make a development in powers of the 
interaction , the passage from the Heisenberg representation (2. 3)
to the interaction representation (2. 37) is the natural starting point. It 
may be written as

A(- iT)  = S(0;r)A[- iT] S (t ;0) ( 3 .14b)
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Similarly

p = e ß(F' F0) p°S(ß; 0) (3.14c)

where p = exp ß{F-g?)  and p° = exp ß (F°-ßfg) and where we have used the 
definition

S (т, ; T„ + Ti«po -Ti^  ^e e e
t 5? - r Ä*2̂  л 2̂ 0 e

This operator has the property

(3. 15a)

S (Tj; T2) S ( t 2 ; T3 ) = S (rx ; T3) (3. 15b)

and may be expressed in terms of the interaction •gf’änh as imaginary -  
time ordered exponential (defined as formal power series)

vi

S ( V T2) = ^ exP { '  f dT$an tJ 'iT l }  ; т3 ё т 2 (3.15c )
T 2

(3. 15c) may be verified by comparing its derivative and its value at Tj = t2 
with those of (3. 15a). With (3. 14b), (3. 14c), (3. 15b) the expression (3. 14a) 
may be written

ß (F -  F°  )
e < У S ( ß ; т ) A [-ir  ] S ( t  ; t  ). l i i 1 2 '

S ( t -i ' Tr ) Ar [~it r] S (тг; 0) T >0

where )>Q refers to pQ . In this expression all operators are strictly 
т -ordered, as is seen from (3. 15c). Therefore we can gather all S-operators 
together and use (3 .15b). Hence

^  t = eß(F' F0) < 5 '(A 1[-iT1] . . . A r[-iTr]S (M ))> 0

Inserting (3. 15c) and the expression (1. 26), (1.29) for one sees that
5^ r is a sum of integrals o f  expressions < ^ " ( A j [ - i ^ ]  As [ - iT s] ) >̂0, .
(s £ r) multiplied with coupling functions Cq"L- qn. Now it can be shown 
("Wick's theorem", see, e .g . , Ref. 1) that 1

< ^■(A1[-iT1] . . . A s[-iTs] ) > 0 = h < Aj.[ - iT j.])>0

a ll pairings (j j ')

(3 .16a)



ELECTRON-PHONON INTERACTIONS 767

In part of these propagator-lines are linked together in the vertices
C(n) but some have free ends due to the presence of Aj . . . Ar in 
This leads to diagrams (see the examples in sections 3. 2 and 3. 3).

An important simplification comes from the fact that all diagrams in 
Г 1 . . . Г  which have no free ends ("equilibrium diagrams") contribute the 
same disconnected part to each diagram with given free ends. Therefore 
this disconnected part, which is just <(s (ß; О)У0 , can be factored out, and 
we are left with only the connected part of each diagram. Since, according 
to (3. 14c),

1 =<1> = e(F' F0) <S (ß; 0)>0

the disconnected parts just cancel the factor exp ß(F-F°) in / l iir so that 
we arrive at the result

< 5 '(A 1(-ir1)- - -A r(-iTr)) >

= <5"(A [ - i T  ] - - -A  t - i T  ]S(ß; 0)) > (3.16b)1 * 1 1 0, conn.

Finally the argument about disconnected parts can also be applied to the 
equilibrium diagrams of <(S(ß; O))>0 . The result is (see, e .g . Ref. [26]))

<S(ß;0)>Q = exp {<S (ß ;0 )>o_conn_ = l j  (3.17a)

or also (see, e .g . Ref. [27]))

F - F° = - ß"1 {< S (ß ;0 )>  = l }  (3.17b)I 0, conn. J

Eqs (3. 15c), (3. 16a), (3. 16b) and (3. 17b) form the basis of any perturbation 
calculation. Examples are given in the next two sections.

3,2, Thermal and elastic properties

As a first application of the perturbation theory developed in the last 
section, let us calculate the lowest order anharmonic correction to the 
free energy, Eq. (3.17b). Insertion of expression (3. 15c) gives, 
remembering the definitions (1.26), (1.29) of ■̂ ’a'nh

ß (F -F 0 ) = 1 -<  Э- e x p j -  J  d t ( # ; ' [ - ir]

+ £ f4' t-ir] + . . . 0, conn.
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e

dT ['iT] >0,  c o n n .

ß ß
- i / d T / d T. <y ( ^ H T lÄ H r 'l ) >

о о

= ß(Fx+Fz+ . . . ) (3.18)

Now

< £ f !  И т ]> ( < ^ 4 > 0 , c o nn .

= ■“  V  C °  <t (q t - i T ] . . . Q  [-i t  Л  \  I 
4 '. q ^ . - q ^  \  4 , 1 q 4 4 J '0, con n . | r = .

V " q4
But according to (3. 16a)

<5"(Q [ - i T ]. . . Q [- iT ])>
q 1 q 4 0 ,co n n .

=  . . .  = т  = о

= 3 g ?  ( q , ; Tj -  T2 ) 6 ^ ° ( q  J  t  -  т  ) 6
V  - q2 3 3 4 q3. - Я,

corresponding to the Fourier transform of the 
.Й?0 - lines in the diagram Fj , taken in 
the three distinct combinations. Hence

o

Fi
_3_ у  (4)
4! L

q , q„
^ 0(qr  0) ^ °(q3, 0)

According to Eq. (2.1 lb),

so that

Л ; о +) = <QqQ* V V 2

1  У  c (4)8 Z_j о. _<ь q’. -q'
qq*

“M " ° , - 4 (3.19)
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For the second term in Eq. (3. 18) we have to calculate

< r ( ? r 3l - i ( T - T ' ) ) ^  [°])>0,conn.

( 7 7 )  V  c (3) C (f l t < f ( Q  [-i(T-T '] . • -Q , [0 ] ) >  
\ 3 '■ / L  1,4,4, q’ q'q' N V q, q, /  °.<

Applying Eq.(3. 16a) one finds that there are two possible diagrams:

contributing with combinatorial factors 3X 3 , and 3X 2 , respectively, 
so that F2 = F2 + F2" and

2 ß

q.q,q',

(3)
c q. q„. -q.

(3)
C-q . q', - q'

1 2 2

X 9
0

ß

0

ß
dT1 ^ ,°(qi;T-T ')-^°(q2;0) ^>°(q'2;0)

(3) ( 3)
c  c

= 6 /  d T  /  d r '  ^ 0 ( q l ; T - T ' )  ^ > 0( q 2; r - T ' )  ^ ° ( я 3 ; т - т ' )

о о

In Fj' crystal momentum conservation (1.47) implies that cjj = 0. 
c j  q. _q. = 0 for any q' (see Ref. [28]). Hence

However,

F2 = 0 (3.20)
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To proceed further with F2" it is best to introduce the Fourier trans
formed by (3. 5). Then

в В
d T  J d T 1 0 ) ° ( q ‘, T - T ' )  0 °(q '  @ ° {q " ; t - t ' )

о о

ß2^T^>°(q; a) 0 ° (q '  ;a') S>\qn;a  + a')
о o'

For the evaluation of such sums one may either use the method of partial 
fractions or the identity

w C

, к

(3-
о C

where C is the contour shown in the figure and f(u) is supposed to be 
regular inside and on C. (3.21) is due to the fact seen from (3 .5b) that 
for u = icr the denominator vanishes. Thus, choosing

f (u) 2 02 2 02
- (w -v )  +Uq -(u -r1 +icr) + C J q -

and taking =f= ± v, и>°, =f= ± v' (the excluded values can be reached as a 
limit of the result) we see that f(w) has only poles outside C. By de
forming the contour C as indicated in the figure, we find, making use of 
Eq. (3. 8)
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2 ^  +iv) sP(q'\ст + аг' + iy')
o'

= n(y +w 0) SDü{q' ; <j - iu° -iv + iv ')  q  ̂ q

- n(y-u°) ^>°(q'; cr + iu° - iy + iy')

+ n(y'+u>° )^°(q;CT + iu 0 - iy + iy 1) q' 4 q’

n(y' - u°, ) jZ>°(q;cr- iu°, - iy +iy') (3.22)

where n(u) = (exp ßu - l ) ”1. Applying the same identity to the cr-sum we 
finally find, making use of hermiticity, Eq.(1.31),

= - A у
2 48 L

- , (3)
-'q q’ q"

qq'q’
n°(n°, ■+ 1) + n°.(n°„ + 1) + n°„(n° + 1)q q ’ q v q”  ’ qm  q ’

0 , 0 , 0  U + U + to 
q q* q "

0/ 0 0 , . n (n , + n „+ 1) - q q* q
0 0 П ,n „ q q п0,(п°„+ n° + 1) - n°.n° qv q q ' q q

0 0 0 -wq + Uq. + Wq„ 0 0 0 
4, - Wq- + V

0 / 0 , 0 . 1 v 0 0n B(n + n , + 1) - n n , q q q ’ q q
U° + U°. - U°„q q q

(3.23)

From (3.19), (3.20), (3.23) the lowest order anharmonic corrections 
to the entropy S = - (9F/3T)V and the specific heat (heat capacity per unit 
volume) Cv = - (T/V) (92F/3T2)V may be obtained (see, e .g . Ref. [2]).

The coupling functions C*n̂ , on the other hand, may in principle be 
obtained from the elastic constants. They determine the change per unit 
volume of the potential energy U in Eq. (1.3) due to macroscopic strains. 
For given strains uv|J the macroscopic displacements U; (the index C 
indicates that, these are’ C-numbers) are
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In elasticity theory one defines the deformation tensor by

r) = rj = 7Г (u  + u + ) u u ) (3.25)
v ß  ix v  2  \  v i i  i i v  v  a  a ß j

a

Then the potential energy change per unit volume may be written

= V '1 ju (R °  +uC) - U(R°

(3.26)

= ) C n +Z7 ) С , ,4 4 ,  , +ГГ У C , , . .Г) n , ,17 „ •/  , V ß  V ß  21 V ß V ß  V ß  V ' ß  31 V ß V ß  V ’ ß  V ß  v ' ß  v " ß "

Here CVjl, Cvjiv, .̂ ,, . . . are the first, second, third . . . ., order
elastic constants, respectively. In terms of the u^, Eq.(3.25), we have

AU
V I  °vßUvß

+ ~  ) i  C , , +C  . 6 ,  i u  u , , 21 vßv' ß vß* v'ß J vß v'ß'

зШ c  c  , , s .  , + cVßV'ß’ v ß" 2 \VßV'ß" V "  ß' VßVß' V ß

X u u u + . . .Vß V'ß' V ß" (3.27)

Insertion of (3.24) into the expansion of U(R° + uc) given in section 1. 2 
gives, on the other hand, (we assume a Bravais lattice for a moment)

ли I 0

1 V 1 0 0
" 21 2 j ^ivW V l ' ß '

+ 17 ^ U IuIvru„ R ^ H ^ .R ^ + (3.28)
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Comparison of Eqs (3.27) and (3.28) then gives the relation between the 
force constants UIy __ and the elastic constants CU(J- - (see, e .g . Ref. [29]

3,3. Phonon renormalization effects

In section 2. 1 we freed ourselves from the complication of polarization 
flips |U-> /и' by neglecting the anharmonic interactions, Eq. (2.7). But here 
we have to take the problem seriously. In addition, ц now has 3B values. 
The Dyson equation, which evidently also holds for imaginary-time Green 
functions, is now a 3B by 3B matrix equation

In order to obtain renormalized phonons or quasiparticles Eq. (3. 31) 
has first to be diagonalized in цц' . This, however, is not generally 
possible by unitary matrices because П contains an antihermitian part 
which gives rise to a width or finite life-time of the quasi-phonons. If the 
antihermitian part is sufficiently small one can diagonalize just the 
hermitian part of Eq. (3. 31). The result of this procedure is usually called 
the quasi-harmonic approximation (see Ref. [27]).

A more practical way of diagonalizing (3. 31) is to separate П into 
diagonal and non-diagonal parts (see Ref. [28]).

I { )
I I '

etc. (3.29)
I I ' Г

where means appropriate symmetrization.

2> = 2 >  ° +  2 ° П 2 >  = 2 > °  +  + .® 0ГШ0П 2 > ° + .  . . (3.30)

With (3.8) the inversion of expression (3.30) is

(3.31)

(3.32)

with = 0. Defining a diagonal matrix d by
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(3. 33b)

(3.31) may be solved by iteration

(1 - dnN)_1 d = d +dnNd+dnNdnNd + . . . (3.34)

By comparing expression (3. 33b) with expression (2. 17b) we see that the 
approximation made in Eq. (2.7) is equivalent to retaining only the first 
term in the analogue of the development (3.34). In this same approximation 
the quasi-phonons are determined by the poles of dq(u). If near a pole
I nq(u) I «  2ßu° we find from Eq. (3.33b)

d q( u ) 2/3 -u+w° - nq(u)/2j3 +u+u° -nq(u)/2ß
(3. 35)

But the poles of the two terms should describe the same quasi-phonon but 
with opposite sign of the renormalized frequence uq. This implies 
nq (-u) = nq (u*), so that the location of the poles is u = ±uq - irq . The 
renormalized frequency uq > 0 and the width Iq > 0 are determined by

“ q = uq '  2/3 Re nq(uq ‘  irV  (3.36a)

rq = i ß  Im nq(Uq - i r q) 0.36b)

They are both temperature dependent and may be obtained from neutron 
diffraction experiments.

Expanding Ilq(u) in the vicinity of the poles

ЭП
IM“ ) = nq(± U)q - irq) T (T U+ Uq T irq) ^ + . . .

we find for expression (3. 35), in analogy with Eq. (2.23)

dq(u) ~  2ß 1 - U + Uq - ir q +U) + U)q + irq  ̂ + dq8(u) (3.37)

where Zq is defined by

-l an
K )  = 1 ± 2ß~du' <J=ia'q'irq

(3. 38)
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The spectral function which leads to Eq. (3. 38) through Eq. (3. 11) then is

, r Z Г Z Г, , . =j _  j  q q_____________ 3__i
4 W 27r Itu -U q)2 + rq2 (u + uq)2 + r t

and the sum rule (2. 15b, c) gives

2 i zq '  Zq

In the limit 1̂  6 = 0 we have

I K

1 , back / , 
,2 }  +  bq (“ ) (3 .  39)
q

Г  back
/ bq (u)dio ( 3 .4 0 a )

b qack (u )ü ^ du (3 .4 0 b )

(£  1 1 ) л- ( 3 .4 0 b )

.back , . 
b (U) ( 3 . 4 1 )

and in the harmonic approximation Zq = Z q = 1 and bq (u) = 0.
As an application let us calculate the lowest-order contributions to the 

self-energy П as defined by Eq.(3. 30). According to the prescription 
(3. 16) we have, with ± q '= (±q, ц'),

&(q;-iT) = <^(^Qq[-iT] Q.q,l0]

0
X exp { -  f  dr' (gf'l-iT') + [-iT'j + . . . ) ] - ' ) >

L ^  J  /  0, con n .

6
= Ä °(q ;-iT )- Г  dr' <^(Q  I-ir] Q , [ 0 ] # '  [-ir'])>„

J  Я ~q ^  4 4 > ,con n .0

+ I  Tdr' Г dr«<  <T(Q f-iT]Q  [0] &r'l-lT<]&: И т " ] )>  + .. .
*  J  J  ч -q 3 о 0, con n .0 0

= g>°+ g ) 1 + 2 ? +  . . .
Now

&)1 (q, t  ) = - it l ,<4)
6
^dr' <5-(QqI-iT] Q.q, [0]

(3.42)

X Q [-ir ' Qc DX conn.
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? г  X '  Cq ^ . . q  / d T ’ 4 . 3 ^ ° ( q ; T - T ' )  

q . • . q  0
1 4

x  ^ u ( q : r ’ ) ^ > u ( q Q; 0 )  6 6 6
* 1:1 q. - q, q', q, q , - q

1 2 3 4

ß
2 l ^ J q - . q - . - q - G q  > + | ) / dT' ^ ‘ T') ^  V  )

q" 0

The Fourier transform is

^1(ч;ff) = -f I  4 )^°(q;CT) (3.43) -

and corresponds to the diagram of the figure. 
The next term gives &>

Л%т) = \ Q r
q . . . q ‘i 3

c (3) c (3)
q  q q q* q ' q ’

1 2  3 1 2  3

X л & ° ( q ; T - r ' )  & ° ( q ' ;t " ) ^ °(q  j t ' - t " )  iZ°(q j t ' - t 11)
(. 1 2  3

X 6 6 6 6
q.-q: q;. q; q,.-q; V ' 4’

+ ^°(q ; т -т ')  ^ 0(q2;r') ^°(q3;r '- t") ^°(q^;0)

X 6
q.  - 4 j  q 2. q ’ q ,  . '  4  ;  q  • ‘  Ч,1

The two corresponding diagrams are

ST

q
|0
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Now the second term involves a factor Cq' _-q> i4' so that from crystal 
momentum conservation q3’ = 0 and this term vanishes (compare Eq. (3.20)). 
After Fourier transformation we then have

(q;cr) =- £ I
q" q "

,0) „ (3 )с  C
-q q "  q "  q\ - q ” , - q ”

X ^>°(q; ct) ^>°(q';cr) ^  ^>°(q";cr) ^>°(qm ;o -a ') (3.44)
o ’

From Eqs (3.43) and (3.44) we see that to this order the Fourier transform 
of (3.42) can be written in the form of the first two terms of the expansion 
(3. 30), so that the self energy is, up to this order,

П = П1 + П 2

where

n: (q;u) = - I  У  C4 , ( n° + -^)
1 L  -q.q'.q", - 4 V q" 2 J

q”

2

n 2 (q ;a) = j -  Y  Q̂ qq- q” Cq,_ - q- ^  Ä  V  ICT -  ff')
q" q ”

corresponding to the diagrams

(3.45a )

(3.45b)

(3.45c)

TT=-
TT =

The diagonal part nq(icr) defined in Eq. (3. 32). is particularly simple since 
then q' = q,

„ 1 , .  . |3 Г  n (4) / о  1
nq(ia) = * 2 £  c -q.q.q".-q"(v + 2 q”

2
nqU®) = f  ^  I C-q3,q„q„|2^  ^ 0(q '';a ')^ ° (q '" ;a -a ')

q" q "

(3.46)

(3.47)

Hê re we have made use of hermiticity, Eq. (1.31), which also implies 
that C_q ^ _q„ is real. This shows that (we have to continue analytically 
iff-* u) '

Im П1(ш) = 0 q (3.48)
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so that this term does not contribute to the decay rate (or width). In order 
to do the analytic continuation of expression (3.47) we have to insert the 
o' sum which is given by Eq.(3.22). Here a more convenient form is the 
following, which is easily obtained by using partial fractions:

4ß 2^^°(q;a') tE>°(q';a - a')
o’

П п +  П?. + 1q q* n° + n°, + 1 q q’
, 0 , 0 ia + и + tJ , q q’

0 0 ia * U) -q q

no - n°, q q n° - n°, q q
ia - u° + u°, q q icr + u° - u°, q q

(3.49)

If now we analytically continue i<7 -*u>-i6 we find for (3.47)

Re У  | c<3> Г p ■
r n°,+ n° + 1 f q q

ZLj - q  q* q"
q* q"  ̂ w + to0 + to0 q’ q"

n°.q - n“ n° - n°a„ q" q’ q"

Im П (u) = ßir 
8 I 1

0Dm U> -q"
0U) .q

c (3) I2-qq’ q" 1
o' ч

(3. 50)

X ■{ (n°, + n°„ + 1) f  6 (и + u° + uq!)  - 6 (u - u°, -  w°„)

n°„)f 6(u - w°, + u°„) - 6 (u + Uq°, - <0°. ) (3.51)

From these expressions the quasiparticle formulas (3. 36) to (3.40) 
are readily constructed. A considerable improvement of the approximation 
is achieved by replacing n° and^°(q;a) in Eqs (3.46), (3.47) by the exact 
quantities nq, a). This is the analogue of Migdal's theorem of
section 2 in the sense that again the vertices C(n) are taken in their non- 
renormalized form whereas the phonon lines are calculated rigorously.
In the approximation by the first term of (3. 34) this means that in Eqs (3.50), 
(3. 51) the renormalized frequencies are to be taken. If this is done Fq as 
given by Eqs (3. 36b), (3.51) represents quite well the decay rate of phonons 
of quantum numbers q= (q;/^). For phonons of sufficiently long wavelength 
this quantity is directly measurable by ultrasonic attenuation (see Ref.
(30]).
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3,4. Heat propagation and second sound

Heat propagation has become an increasingly important domain of 
investigation of insulators. This is due on the one hand to the technique 
of heat pulses which has been used for a long time for liquid helium but 
which is new in solid-state physics. On the other hand it is due to a new 
mode of heat propagation discovered last year (see Ref. [31]), namely 
second sound, which again was well known in liquid helium. While ordinary 
heat conduction (i.e . phonon diffusion) and heat convection (i.e . phonon 
drift) obey the diffusion equation, second sound is a wave propagation of 
heat and hence does not produce entropy. Here we give a unified phenome
nological description of these phenomena. The same description can be formu
lated in terms of purely microscopic quantities (correlation functions) and 
in this form gives a rather direct connection of heat propagation with the 
anharmonic interaction £T'anh (see Ref. [32]).

Heat propagation is governed by two local balance equations, first the 
energy balance _

h + V s = ß a (3.52)

where h (r , t) is the energy density and ^ ( r , t) the energy flux. The 
entropy production a (r , t) is negligible so that energy is not dissipated but 
is conserved. The second balance equation is that of momentum

T + V l P = ^ h (3.53)

Here j ( r , t )  is the momentum density and.IP (r,t) the momentum flux 
tensor. fph (r , t) is the density of the lattice force introduced in Eq. (1.60) 
and gives rise to momentum dissipation. Now a heat pulse injected from 
outside will induce a local temperature variation 6 T (r , t) and a local phonon 
drift velocity u (r , t). This causes local variations of the quantities in 
Eqs (3.52), (3. 53), the Fourier transforms which have the form

6 h (q, u) = С б T - iq- a -U

6sf (q, ш) = - к iq5 T + ßu  

öf(q , u) = -Aiq 6 T + p u

iq  • 6IP (q,u) - 6fph(q, u) = q i q 6 T + 7 u (3.54)

Here C is the heat capacity per unit volume, к the heat conductivity tensor, 
p the excitation mass density tensor (see Ref. [32]). The coefficients 
o , ß ,  A,q, 7 have a somewhat less obvious intuitive meaning (ß, \ , ß , y  are 
in general tensors). Introducing expressions (3. 54) in the Fourier 
transform of Eqs (3. 52), (3. 53) we find

(3.55)(-iwC + q-к -q) б T + iq • (iua + ß) • u = 0 

(i uA + ц) ’ iq б T - (iup - 7) • u = 0 (3 .56 )
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Solving Eq. (3.56) for u,

and inserting into Eq. (3.55), we find

- iuC + q-K-q- q • (iu)a+ ß) (iup - y) 1- (iuA + p). q = 0

This can also be written, in the limit q-> 0, as

(3.57)

where q is the unit vector q /q and

cp (u) = - (iwu+ß) (iup - 7)’ 1 (iuA+p) (3.58)

is the convectivity tensor since it comes from the term proportional in 
if in the energy conservation Eq.(3. 55). For cubic crystals all tensors are 
numbers and the q may be dropped. Two frequency regions are now of 
interest.

In the diffusion range u « ( |p/A |, | ß /а \, \ у /p |) we have

which is the dispersion relation of the diffusion equation. We may relate 
the static conductivity к (0) and convectivity cp(0) to the "umklapp" relaxation 
time tu and "normal" relaxation time t n  , respectively, in the conventional 
way

(3. 59)

<p(0) = ^ - =  Cv,2t ' ' у 11 u (3.60)

where vn = \/ßp/Cp is the "second" sound velocity. 
In the second-sound range

we have to the first order

(3.61)
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In particular if, as for fluids,

S = V j j ; IP = I 6h • 1 ;

Vj being the first sound velocity, one finds

ß = РУ i i У*Ц~; 

and (3.61) takes the usual value

vn •J~3

fPh = u

(3 .61a)

This excitation (3. 16) exists in the "frequency window" TNa »  и > т ' 1.
It has been found in solid He4 at temperature T =  0.5°K and high 
pressure (^  50 atm.). Up to now it has not been found in other crystals. 
The balance Eqs (3.52), (3. 53) can be obtained from a transport equation 
(see Ref. [34]). They are typical hydrodynamic equations. Therefore, 
the problem of deriving a transport equation in a way analogous to section 
2.4 is of great interest for the problem of heat propagation in insulators 
(see Ref. [35]). Second sound as described above is then to be understood 
as a hydrodynamical excitation. However, it might be that in the limit 
u ■* oo the hydrodynamic mode (as given by the ladder solution discussed 
in section 2.4) disappears in favour of a collective mode (as given by the 
chain solution) [11].
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THE FERMI SURFACE

A.R. MACKINTOSH 
TECHNICAL UNIVERSITY, 
LYNGBY, DENMARK

Abstract

1. Introduction. 2 . Energy bands and the Fermi surface. 3 . C onduction electrons in m agnetic 
fields. 4 . The De H aas-V an  Alphen e ffe c t . 5. Transport properties. 6 . G alvanom agnetic e ffe cts .
1 . E lectrom agnetic absorption. 8 . C yclotron  resonance. 9 . The R .F . size e ffe c t . 10. The m agneto
acoustic e ffe c t . 11. Positron annihilation. 12. The Kohn e ffe c t . 13. Electron interactions. 14. The 
Fermi surface in m etals. 15. Prospects in Fermi surface studies.

1. INTRODUCTION

The purpose of these lectures is to discuss the concept of the Fermi 
surface (FS), to explain its importance in understanding the detailed 
properties of metals, and to show how it can be studied experimentally. 
Much of the material is standard and is contained in reviews and books, 
notably Chapter 9 of "Principles of the Theory of Solids" by J.M . Ziman 
(PTS) to which frequent reference will be made. I shall, however, re
fer to more recent developments where appropriate, and these will be 
covered in somewhat more detail in these notes. There will be con
siderable overlap with other courses at the School, but I think that no 
harm will be done by repeating some of the material from other lectures, 
perhaps from a slightly different viewpoint. At the end of the notes I 
shall give a list of references for further reading for those students 
who are particularly interested in electrons in metals. It is, however, 
intended that these lectures should form a self-contained course at a 
fairly elementary level, and I will therefore try to cover most of those 
aspects of FS studies which seem to me to be most relevant in the under
standing of the properties of metals.

A knowledge of the form of the FS and the behaviour of the electrons 
on it constitutes only a small fraction of the information required to cal
culate most properties of metals, of course. A number of properties, 
such as the electronic heat capacity, the Pauli paramagnetism and most 
transport properties are completely determined from such a knowledge, 
but many more, including optical properties, lattice dynamics and mag
netic interactions, involve the complete band structure. The primary 
importance of FS measurements is that they allow an extremely accurate 
determination of the band structure at one energy, the Fermi energy p, 
and it is not at present possible to measure the energy levels of the 
electrons away from the Fermi level with anything like the same accu
racy. This means that FS studies provide a unique method for checking 
the results of band structure calculations, which in turn are fundamental 
for understanding all electronic properties of metals. They can also 
be used to check the extent to which the band structure, based on an in
dependent particle model, is a useful concept in the strongly interacting 
electron system.

783
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The electronic band structure, particularly those aspects which are 
related to the form of the PS, will be discussed in the first section.
The next few sections will deal with the standard methods of FS deter
mination, all of which require very pure metals and low temperatures. 
The FS in alloys, and methods of obtaining experimental information on 
it, will then be discussed. The corrections to the single particle model 
due to electron interactions, and particularly their effect on FS proper
ties will then be described, with emphasis on the physical principles 
involved. Finally, the knowledge which has been obtained by experi
ments and calculations on the FS of real metals will be summarized, 
and likely future developments in FS studies will be speculated upon.

2. ENERGY BANDS AND THE FERMI SURFACE

In this section, we will summarize briefly some of the important 
results of energy band theory, which have been discussed in detail in 
other lectures, and show how to derive the FS from a general set of 
energy bands.

The single-particle Schrödinger equation for an electron moving 
in the crystal lattice is

where the potential V(r) is composed of the lattice potential and the 
self-consistent potential of the conduction electrons. It therefore has 
the periodicity of the crystal lattice, so that

where a*, a2 and аз are the primitive translation vectors of the lattice 
and the n are integers. This important symmetry property of the lattice 
leads to Bloch 's theorem, which states that the electron eigenfunctions 
may be written in the form

where u£(r) also has the periodicity of the lattice.
The primitive translation vectors of the reciprocal lattice are de

fined by the equations

( 1 )

V(r + Rn) = V(r + n1a1 + n2a2 + n3a3) = V(r) ( 2)

iltfr) =«£(?) е ‘к' Г (3)

(4)

so that

a j * bj — 2 7Г 6 (5)

A general reciprocal lattice vector is

im = m ibj +m 2S2 +m3b3 (6 )
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so that

ёт  -Йп = 2TTi

where S. is an integer, and therefore

' gm' Rn e =1

(7)

(8)

It is this relation which makes the reciprocal lattice such an im
portant concept in solid state physics.

The choice of к in expression (3) is not unique, since we can write

u^(r) e ik-r U£(r) e i(k + g) t

= Vr>k + •(Г) ei(k + g)  t
(9)

where, from Eq.{8), v(r) also has the lattice periodicity. Й is there
fore arbitrary to the addition of any reciprocal lattice vector, and a 
single unit cell in reciprocal space contains all non-equivalent к vectors. 
A convenient choice for this cell is the primitive Brillouin Zone (BZ), 
which is the volume in reciprocal space nearest the origin, bounded by 
planes which perpendicularly bisect reciprocal lattice vectors. The BZ 
for the three common metallic structures are shown in Fig. 1.

If we describe the energy eigenvalues by using к values within the 
primitive BZ only — the reduced zone scheme — the energy is a 
multiple valued function of k, and the energy band structure is defined 
by this function €j(k) throughout the zone, j is a band index which is 
defined so that, for any k, a lower j always corresponds to a lower 
energy. A part of a typical transition metal band structure is shown 
in Fig. 2.

It is often convenient to describe the band structure in a scheme 
in which all points K + g are considered equivalent — the periodic zone 
scheme. In this case

e(k + g)=e(k)  (10)

so that e(k) has the full translational symmetry of the reciprocal 
lattice. The rotational symmetry of the Hamiltonian is also reflected 
in e(Ic) and hence in the form of the FS. e(k) has the full point symmetry 
of the crystal, and is a continuous function within the primitive BZ. If 
we take into account the electron spin, Kramers' theorem states that

e(k,t) = e(-k, j.) (11)
If, in addition, there is a centre of inversion symmetry,

e(lc,t ) = e(-£, t) = e(£, i ) (12)
and all ic states are at least doubly degenerate. Further degeneracies 
may occur in symmetry planes of the BZ and may also be reflected in





L H

FIG. 1. Brillouin zones for the fe e , b ee  and hep structures.

FIG. 2. A part o f  the energy band structure o f  Pt.

786 
M

ACKINTOSH



FERMI SURFACE 787

the FS. Spin-orbit coupling, which is important for heavy metals may 
lift some_of these degeneracies.

The к value for which e(k) is constant in a particular band fall on 
a surface in reciprocal space, and variation of Ej(k) produces a family 
of constant energy surfaces. The independent electrons are distribu
ted in energy according to the Fermi-Dirac law

f ( c ,  = , e ' * ■ » ' "  +  1 , - (13)
The constant energy surface in к space on which e(k) =p is called 

the FS, and at absolute zero it separates occupied from empty states. 
When the energy bands are known in detail, the FS may readily be deter
mined. The Fermi energy is fixed by requiring that the number of 
states beneath it is equal to the number of valence electrons. To do 
this, we need to know that the number of states in a volume 6Й in reci
procal space is, including spin,

6n (14)

where Q is the volume of the crystal. The number of states in a single 
band is therefore two for each unit cell of the crystal lattice. For a 
particular direction in к space, the positions at which the Fermi level 
cuts the various bands determine the extension of the various sheets 
of the FS in that direction. In three dimensions, the FS is traced out 
by observing the variation of kF with the direction of k.

FIG. 3. Sections through the Fermi surface 
corresponding to the bands o f  Fig. 2, 

in the period ic zone schem e.

The FS corresponding to the energy bands of Fig. 2 is shown in 
Fig. 3. It has three sheets, of which two are closed and enclose filled 
and empty states respectively. These are called electron and hole 
surfaces. There is also an open surface, unbounded in the [100] di
rections. Open surfaces are very common in real metals, and an under
standing of their properties is fundamental to FS studies.

3. CONDUCTION ELECTRONS IN MAGNETIC FIELDS

Before going on to discuss the various methods of measuring FS 
dimensions, we will first review the dynamics of conduction electrons 
in magnetic fields.
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We shall make use of the relation

1 de
^  = h ä l  (15)

and the Lorentz force equation

ftS = e^E +-ivX B ) (16)

which are discussed in PTS, Chapter 6.

S

FIG. 4. The m otion in к space o f an electron  in a m agnetic fie ld .

If the electron is acted on by a magnetic field only, Eq. (16) shows 
that the component of Й along Ё is constant, while the component in 
the plane normal to S moves around a constant energy contour, called 
the orbit in К space, as in Fig. 4. If we introduce co-ordinates к and p 
in the plane perpendicular to B, Eq. (16) can be integrated to give

ftic = |pX В (17)

The orbit in the metal is therefore related to the 1? space orbit by 
a rotation through 90° and a scaling such that

Лр = f i  Лк (18)

The types of orbit which occur in a magnetic field in a metal depend 
on the FS topology, and may be classified as follows:

(a) Closed orbits are characterized by the fact that v = 0 in any 
direction normal to B, where the average is taken around the orbit.
The frequency with which the electron goes around its orbit, known as 
the cyclotron frequency ioc , may be calculated by introducing co-ordinates 
Kt and кп tangential and normal to the orbit, as illustrated in Fig. 4.
From Eq. (16) we then have

dKt _ eB Эе 
dt c fi Экп (19)
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or

dt
2ch dKn d/t t

1 b  dT

Integrating around the orbit

Tc Ф dt = ch2
eB

9a \
К

(20)

( 21)

where a is the area enclosed by the orbit, and we have taken the field 
to be in the z direction. We then have

2tt eB

where the effective mass m* is given by

2тг V 9e /  к

(22)

(23)

For an electron orbit, which encloses states of lower energy, m* 
is positive, while a hole orbit, which encloses states of higher energy, 
corresponds to a negative value of m*.

Because of the Bohr-Sommerfeld quantization condition

Ф p* dq = (n + |)h (24)

the areas enclosed by the orbits are quantized. In a magnetic field, 
the canonical conjugate to ?  is hk+(e/c)A, so that

(n+ l)h = f  [ h K  + ^  j  • dp

—  • <)> p X dp* + — $A-dp c c

Hence the area enclosed by the orbits in к space can take only the 
values

( n +  2)
2v eB 

he (25)

This is the Onsager-Lifshits quantization condition, which will be 
the basis of ou-r discussion of the de Haas-van Alphen (HA) effect.

(b) Open orbits are characterized by the fact that v is generally 
non-zero in directions normal to B. In the periodic zone scheme, such 
orbits extend indefinitely through It space, without closing.
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FIG. 5. The Fermi surface o f  the noble metals in the periodic zone scheme and sections through it, 
corresponding to orbits in a magnetic field.

In Pig. 5 is shown the FS of the noble metals in the periodic zone 
scheme. It is essentially a bcc array of spheres joined by necks along 
[ i l l ] .  Also shown are sections through the FS, normal to [001], and
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hence the S space orbits which result when a magnetic field is applied 
in the [001] direction. As the section is moved up the zone, the cha
racter of the closed orbits changes from electron to hole and back to 
electron. If the field is tilted towards [100], a single section contains 
both electron and hole orbits, and between them there is an open orbit 
running along [010] in If space, and hence along [100] in the crystal. 
Such an open orbit is periodic and exists for a one-dimensional line 
of magnetic field directions.

If the field is tilted away from [001] in an arbitrary direction, we 
get the situation depicted in Fig. 6. There are still electron and hole 
orbits in the same section but they are now separated by an open orbit 
which is not generally periodic. Such open orbits run, in If space, in 
the direction defined by the intersection of the plane normal to the 
field and a reciprocal lattice plane, and exist over a two-dimensional 
region of field directions. The directions of magnetic field for which 
open orbits exist in the noble metals are plotted stereographically in 
Fig. 7.

(c) Extended orbits are closed orbits which cannot be contained 
in a single unit cell of the reciprocal lattice. An example of an extended 
orbit, produced by tilting the field away from [001] beyond the region 
in which aperiodic open orbits exist, is shown in Fig. 6. The effective 
mass for an extended orbit is defined by Eq. (23), and clearly is general
ly large.

If the energy separation eg between two bands is small enough, it 
is possible for an electron in a magnetic field to make a transition be
tween them, by a tunnelling process. This phenomenon is called mag
netic breakdown, and it occurs when the field is sufficiently large that 
ftwcp becomes comparable with (eg)2, which may happen in a field of 
a few kilogauss. In this case, the electron may move from one sheet

FIG. 6. An aperiodic open orbit and an 

extended orbit in the noble metals.
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of the FS to another, so that a closed orbit becomes open, or vice-versa. 
As the magnetic field is increased therefore, the type of orbit present 
in the metal may change as breakdown begins to occur, and at inter
mediate fields a complicated pattern of coupled orbits may result. At 
high fields, when breakdown is complete, the situation becomes rela
tively simple again, but the effective FS topology may be quite different 
from that at low fields. This phenomenon may profoundly affect all of 
the experiments which we shall discuss which involve high magnetic 
fields.

FIG. 7. One- and two-dimensional regions o f  field directions giving open orbits in Au, deduced from 
magnetoresistance measurements by Gaidukov, Yu„ Soviet Phys. JETP 10 (1960)913.

4. THE DE HAAS-VAN ALPHEN EFFECT

It is appropriate to begin our review of methods of FS determination 
with the HA effect, because it is incomparably the most important ex
periment in FS studies. Almost all of the most accurate measurements 
of FS dimensions have been made with this technique, to an accuracy 
as high as 1 in 104. The experiment consists of measuring the oscilla
tions with field of the low temperature magnetic susceptibility of a single 
crystal, as a function of the field direction. The principle of the steady 
field method, which is normally used for the most accurate measure
ments, is shown in Fig. 8. The sample is placed in a high steady field 
and a small modulating field of frequency и is applied by means of a 
small coil. A second coil is used to detect the oscillating moment of 
the sample at 2u, which is proportional to the second derivative 
d2M/dB2 of the sample moment. The period of the HA oscillations 
may be measured by slowly sweeping the steady field, and its depen
dence on field direction by rotating the sample in a fixed field.

The magnetic moment of a system is related to the free energy 
by the thermodynamic relation

M(B) = 9F
ЭВ

ЭЕ
ЭВ (T = 0) (26)

The HA oscillations are therefore a manifestation of the oscilla
tions of the energy of the metal with field, which in turn are due to the
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FIG. 8. Schematic diagram o f apparatus for measuring the De Haas-Van Alphen effects, with some 
typical results.

FIG. 9. Quantized orbits in к space in a magnetic field.

quantization of the к space orbits. In a magnetic field the electron 
distribution in I? space has the form shown in Fig. 9, with the allowed 
states falling on irregular tubes of area

(n+|) 27Г eB 
Tic (25)

whose axes run along the field direction. The energy of such quantized 
levels has been discussed elsewhere in the School, and is

en,kz = (n + |)fiuc + e(kz) = (n + i ) ^ f  (free electrons) (27)

The degeneracy of these quantized levels is eBdkz/27r2lic, so that 
they can accommodate all the states which would lie between them in 
zero field. In practice, the number of occupied levels is several thou
sand, and under these conditions, the Fermi level p can be taken as 
effectively constant. The physical reason for the oscillations in E can 
then be seen from Fig, 9. As В is increased, the area of the tubes in-
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creases, and, as the area of the outermost filled level approaches the 
extremal area o 0 of the FS, it abruptly empties when

aо (n+i: 27Г eB 
he (28)

This occurs for successive values of n, and the resulting oscillations 
in the energy and moment are periodic in l/B , with a period

A i
2ire

fica0 (29)

In order to calculate the moment at a finite temperature, we must 
use the expression for the free energy of a system of non-interacting 
Fermions

F Np -kT Oj-qj/kT + e )

= N p - kT eB
2 7 T 2 h c

^  log (l + exp [ (p - en kz)/kT]) dk2
n = 0

(30)

The evaluation of this integral is performed in PTS, p. 275, and 
we shall not reproduce the details here. Differentiation of F to give the 
moment yields the result

M = (7!

X V J _  
L  y3/2
y = l

ftuc

thermal broadening

spacing variation
o f Landau o f a  near
levels extremum

(9  logo: Y 1 ( * * ) -
V Эе Л \ Щ Л

/  . , тг2укТ ' /  sinh—e 2—
2тгу 

0 шст

collisions

X cos ( П Ш 1 ,  sin

spin splitting

ftcy , n I
¥ S o ± 4 ’ , y J (31)

In this expression т is the relaxation time and g the Lande factor 
for the conduction electrons. The + and - signs are to be taken if a0 is 
a minimum or maximum, respectively. The origin of each term in 
this expression is briefly indicated.

There is clearly an enormous amount of information about the con
duction electrons contained in the dependence of the HA oscillations on 
the magnitude and orientation of the field, and the temperature. 
Specifically:
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(a) The period gives the extremal area of the FS normal to the 
field direction. Because the phase of the oscillations is so high, the 
measured area is very exactly the extremal value. If a number of 
extrema are present, as frequently occurs, a corresponding number 
of periods is observed. By careful measurement of these periods as 
a function of the direction of S relative to the crystal axes, the shape
of the FS may be determined in great detail and with extreme precision.

(b) The temperature dependence of the amplitude of the oscillations 
gives the effective mass of the extremal orbit. At low temperatures, the 
amplitude is proportional to exp(-kT/ftuc ), which emphasizes the need 
for low temperatures and high magnetic fields in this experiment.

(c) The field dependence of the amplitude gives, in principle, the 
mean relaxation time around the extremal orbit. The collision broaden
ing term emphasizes the need for pure crystals and correspondingly 
long electron free paths, although the requirements in this respect
are not so great as in some of the other experiments which we shall 
discuss.

5. TRANSPORT PROPERTIES

The other experiments which have been used to obtain precise in
formation on the FS of pure metals all involve transport currents in 
the metal, and we must therefore consider the response of the electron 
system to external fields. To do this, we will make use of the Chambers 
path integral method, which gives an integral solution of the Boltzmann 
equation, provided that a relaxation time describes the scattering of 
the electrons adequately. This method is particularly useful for con
sidering transport properties in a magnetic field, or when boundary 
scattering is important.

We wish to determine the distribution function f(k, r, t), defined 
so that f(ic, r, t)dScdr is the probability that an electron has a wave- 
vector in dk and is in the volume d? at time t. The path integral me
thod is based on the fact that all electrons with a particular к and e 
at a certain position F at time t must have followed the same path since 
their last collision. We can therefore determine f(lc, r, t) by integrating 
along the path, as in Fig. 10. If the energy acquired from the field be
tween r ' and r is Де, we have

(32)

probability 
o f  scattering 
in dt'

probability probability o f
o f  having surviving to ¥
correct energy without scattering

FIG. 10. Illustrating the path integral method.

(Tfy.t.e)
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We now expand

so that

fo (e -A e )= f0(e)-

6f(k, r, t) = f(k, r, t) - f_(k, r, t)

9f0 f A -(ft')/r dt’ 
9 e J t

Integrating by parts

6 f = ^ o  /  d(Ae) e - ( t - f ) / T  d t ,
de J dt

If a force F acts on the electron
t

Д e = J  F (r ' ,  t ' ) • v (r', t ') dt' 

so that 1
d(Ae)

dt - F • v

Hence, we have

6f(k, r, t) = - J  F ( r ', t ' ) • v ( r ', t ' ) e dt’ (33)

where the integral is taken over the path of the electron. If the relaxa

tiontime depends on k, e ^ 1 must be replaced by exp ( - ^ .

6. GALVANOMAGNETIC EFFECTS

We shall now use Eq. (33) to calculate the current density in the 
metal in a d .c . electric field E. From Eq. (14) we have

?(?.t) = 4! 3 . / v 6f(k', r - 1) dk' (34)

The force on an electron in an electric field is eE, so that from 
Eqs (33) and (34)

1 0) = dK /  e g  • V exp )  dt (35)
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and the conductivity tensor, defined by

Ji = CTi j E j (36)

is given by

= ^ s / vi ( -  j f ) exp ( - / t )  dt {37)
-  OO t

In the absence of a magnetic field, v and т are, to first order, 
constant along the path. We can write the integral over If in the form

dS de _ dS de
dk = l * R  = - * r

where dS is an element of constant energy surface, as in Fig. 11. Using 
the 6-function character of 9f0/9e

g(e) 9f0
Эе de = g(p) (38)

we find for the d .c . conductivity, tensor

aii =473h / Tvi dSi

where the integral is taken over the FS.
The magnetic field dependence of the conductivity is determined 

by the variation of the path integral

(39)

Л = 'j  (t ) e dt (40)

as the electron orbits are modified by the field. We will consider the 
high field limit, such that uct »  1 for all closed orbits. In the case 
where only closed orbits are present, vj (t) is periodic and we may write 
it as a Fourier expansion

vj(t) = ^  snsinnuc t + ^  c ncosnuc t (41)

Substituting in (40) and integrating, we find

У  nsnucr2 у  CnT
Z-j l+ n 2u|r2 L  l+ n 2Û T2

If s is in the z direction

(42)

vx =vy =0, 0 (43)
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Since we are interested in the high-field limit of the conductivity- 
tensor, we retain only leading terms in l/B . Remembering that uc is 
proportional to B, and using the Onsager reciprocal relation

aij (B) = (-B)

we find

O' ß 7 б
B2r В В2т в

lim a ,. = J - + 7 е ф
В —> cc в В2т В2т в

6
" в

Ф
' В 9т

(44)

(45)

The only multiplying factor whose value we need to know explicitly 
is ß, which is shown in PTS, p. 258 to be given by

ß = ec(ne - nh)

where ne and nh are the number of states enclosed by electron and hole 
Fermi surfaces, respectively.

If there are open orbits running in the kx direction, both vy and vz 
may be non-zero. In this case

а ß 6
W r в в

ß
■ В ЦТ VT

6
" в VT От

(46)

If there are two sets of open orbits running in different directions, 
all components of a have a constant high-field limit.

Experimental studies of galvanomagnetic effects involve the measure
ment not of the conductivity tensor but of the resistivity tensor. A current 
is passed through a sample, and the components of the resistivity tensor 
are measured as a function of a transverse or longitudinal magnetic field, 
as shown schematically in Fig. 12. Very pure samples and low tempera-
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FIG. 12. Measurement of galvanomagnetic effects.

F
H a ll o r transverse T  
even voltage j_

---------Г

V o ltage  a  res is tance  

____ L

® T
В (Transverse)

B ( L o n g itu d in a l)

tures are required, so that the high-field limit may be attained. Spe
cifically we normally measure

pxx — the transverse magnetoresistance
P xy  — the Hall voltage (~B) or transverse even voltage (~B2) 
pzz — the longitudinal magnetoresistance

The resistivity tensor is obtained by inverting ац, giving

__ °n ffkk - _ _ смети - (Tjk okj
P i i  [ г П  ’  P i i  Г 7 П

where

[ a j = on CTjj Ckk + <Уц ajk + Cj-jCTik + Cjj

(47)

(48)

The high field behaviour depends on the FS topology and the number 
of electron and hole carriers. If there are an even number of conduction 
electrons per unit cell and all sheets of the FS are closed, the fact that 
each band contains two electrons per unit cell requires that ne = пь and 
the metal is said to be compensated. On the other hand, if the number of 
conduction electrons per unit cell is odd, or if the field direction is such 
that open orbits exist, the metal is uncompensated. In general, a FS 
sheet has electron/hole character if every orbit is an electron/hole 
orbit when Й is applied in a non-symmetry direction giving no open orbits.

We may distinguish the following cases:

(a) Closed orbits, ne ^ nh. In the high-field limit pxx is proportional 
to l /т , so that the transverse magnetoresistance saturates and the mag
netoresistance ratio

R P x x  ( ° ° )  

P x x  ( 0 )

is almost independent of t , having a value of typically around 10. The 
Hall field is given by

= В
РхУ ec(ne - nh) (49)

which is independent of the direction of В relative to the crystal axes. 
The longitudinal magnetoresistance saturates, as it does in all cases.
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(b) Closed orbits, пе =пь. For a compensated metal pxx varies 
as В2т, so that R is proportional to B 2 t 2 . For a pure metal in high 
fields, R can be as high as 104-105. There is no Hall field, but
pXy ~ B 2r and there is a transverse even voltage.

(c) Open orbits running along kx . In this case pxx ~ B2t while 
pyy ~ 1 / t . If the current flows in the xy plane making an angle ф with 
the у axis, the resistance has the form

Р(Ф) = Pxxsin20 + pyy cos20 (50)

By studying the transverse magnetoresistance as a function of 
current and field direction, the presence of open orbits can be detected 
and their direction in к space determined. This allows the FS topology 
to be studied in detail and may also give FS dimensions. For instance, 
the magnetoresistance data of Fig. 7 gives the radius of the necks in Au. 
There is also in this case an anisotropic Hall field and a transverse 
even voltage proportional to B2sin0 совф.

(d) Open orbits in two directions. In this case, all components of 
the resistivity tensor approach constant values in high fields.

7. ELECTROMAGNETIC ABSORPTION

We now consider the transport of electrons in electric fields which 
vary in space and time, which may be studied experimentally by measur
ing the microwave absorption of a crystal, using the type of apparatus 
shown schematically in Fig. 13. The absorption coefficient A, which is 
the ratio of the absorbed to incident power, may be measured by the in
crease in the sample temperature, the amplitude of the reflected signal, 
or the change in Q of the cavity.

Microwaves

У/У/////////7Л

Resonant 
" cav ity

^S ingle c rys ta l 
sam ple

FIG. 13. Principle o f microwave absorption measurements.

If a microwave field varying as exp(iut) 
face, with the coordinate system of Fig. 14,

is applied to the metal sur- 
Maxwell's equations give

ЭЕ x iu TT 3Hy _ 4я- T
— ~-------- —  H y . —5---------- —  Jx9z с ' Эz c (51)

where the displacement current has been neglected, since и is much less 
than the plasma frequency.
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/
' E ( - z )

Sample surface

6 / Hv
FIG. 14. Specular reflection at the sample surface.

e /  \  e

E ( z )

The surface impedance is defined by

Z = R + iX = —  = lEx °̂—c VHy/ 0 j J(z)dz
о

(52)

and the absorption coefficient is

A
7̂Г (53)

If the local relation

J = crE

can be used, Eq. (51) may be written

92E x _ 47riu T _ 4̂ iuJCT ^
~JPr=  Jx = “T 5“  Ex

(54)

(55)

which has the solution

Ex (Ex)0e 'rz, 7 = (1 + i) 2 7 T U X J

c2 (56)

The wave therefore decays exponentially with an extinction distance

6 = 2т*)ст (57)

This is the normal skin effect, which occurs under such conditions 
that the mean free path £ is much less than the skin depth 6, so that the 
local relation (54) may be used. At low temperatures in pure metals, 
at typical microwave frequencies of about 1010 c /s , 6 is about 10"6 while 
£ may be as large as 10 ~2 cm, so this condition is not generally satisfied, 
and it is necessary to consider explicitly the Fourier components cr(cf, u) 
of the conductivity, to calculate the surface impedance under anomalous 
skin effect conditions.

Accordingly, we Fourier transform the field, writing
00 oo

E(z) = J E (q )e '14Zdq, E(q) = ^  J E(z) e ^ d z (58)
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From Eq. (55) therefore

q2E ( q ) + ^ LJ'(q) = о (59)

where J1 (q) is the Fourier component of the total current. The solution 
of this problem for general boundary conditions is complicated, but if 
we make the simplifying assumption of specular reflection at the sur
face as in Fig. 14, the boundary condition can be replaced by consider
ing an infinite sample and putting E(z) =E(-z). Such a field distribution 
requires a current sheet I at z = 0 with Fourier components l/2v.
Equations (59) can then be written

q2E(q) + ^  ( b  + CT(q) E(q)) = 0 (60)

so that

E(q) = - 2ioJl
c2q2 + 47riwcr(q)

E(z) = - 4Iiu - 5Г-2-cos qz
о +47riu<j(q) dq (6i)

Since the fields and therefore the total current are confined to the 
skin layer

J(z) dz = (62)

so that

Z = dq8iu
сг J 2 , 4я1ш 

o q +  т г  a (q)

(63)

From Eqs (33) and (34)

CTij(q) dk i(ut-q.p 7e' dt
• oo

(64)

In the limit when q£ »  1, it may be shown (Ref. [2], p. 52) that

ffxx(q) = 4 ^ W / |py|dky (65)
M

where py is the radius of curvature of the FS in a section normal to ky 
and the integral is restricted to the zone on which the electron velocity
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FIG. 15. The effective zone on the Fermi surface 
for electromagnetic absorption.

is normal to cj, as in Fig. 15. From expression (64), it is clear that 
these are the only electrons which contribute to the conductivity, since 
the path integral vanishes for the others when £ is large. cr(q) is in
dependent of £ in this limit. If we define

<66>
h

we may write the surface impedance in the anomalous limit

Z«, 8 inJ
C2

dq _ Brno ,, . r 
q2+iS3/q  3 З/2  g c 2 1) (67)

For the more realistic condition of diffuse surface reflection, this 
expression is multiplied by a factor 9/8.

From a study of the anisotropy of the surface impedance, it is 
therefore possible to determine information about the curvature of 
the FS. This method is of great historical importance since Pippard 
used it for his pioneering work on Cu. The difficulties of interpretation 
for all but the most simple surfaces are so great, however, that it 
has now been rendered obsolete by more powerful techniques.

8. CYCLOTRON RESONANCE

If a steady magnetic field is applied parallel to the surface of the 
metal, as in Fig. 16, the electrons spiral about the field direction and 
may make periodic excursions into the skin layer. If the field is such 
that

и = nuc ( 6 8 )

for a particular electron, it will always experience the same field as 
it passes through the skin layer and hence absorb energy strongly from 
it. In one cyclotron period the exponential terms in the path integral 
in Eq. (64) change by

... . 2-n (  1 .W = —  1 — + iu
U , \ T

(69)

6

FIG. 16. Azbel-Kaner cyclotron resonance.
в,
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/  -tv-  Cl + '“ ) V 1
A= A 0(l + e‘ w+ e ‘ 2w. . . )  = A0( l - e  c )  = F Д 0 (70)

Provided the шт> 1, the factor F is oscillatory and gives rise to 
the resonance oscillations. As in the anomalous skin effect, the dis
tortion of the FS is limited to an effective zone where the electron ve
locity is parallel to the surface, and detailed calculation shows that, 
in strong fields, the contribution from a section normal to S is 
approximately

so that the path integral may be written in the form

d°xx (q) = F (B ) e 2 lP2ftqdky (71)

which, apart from the factor F(B), is similar to the zero field result.
If uc is constant over the FS, the surface impedance is

Z„(B) = uZoo(0)F"^ (B) (72)

where ct varies slowly with B. Fig. 17 shows the theoretical value of 
dR/dB compared with experimental results on Cu.

FIG. 17. Experimental and theoretical cyclotron resonance signals, from Kip, A. F. , Langenberg, D. N ., 
Moore, T. W. , Phys. Rev. 124(1961)359.

If wc varies over the FS, the extremal value will generally dominate 
the resonance. If the field is tilted slightly out of the plane of the sur
face, only those electrons for which the mean velocity in the direction 
of the field vanishes will return to the skin layer, and these will dom
inate the resonance. If the r .f . electric field is along the magnetic 
field
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d°yy (q) = F(B) e2 lp, dkx
27T2fiq (73)

and the limiting points L in Fig. 15 may dominate.
A careful study of cyclotron resonance for many different field 

orientations will therefore give information about the FS topology, from 
the angles over which the various orbits are observed to exist, and 
more importantly, allows the velocity at all points on the FS to be de
duced. Fig. 18 shows some of the effective masses observed in the (110) 
plane of Cu, together with the orbits to which they correspond.

9. THE R .F . SIZE EFFECT

This technique, in common with the magneto-acoustic effect which 
will be discussed next, depends on the relation (18) between the orbit 
sizes in r and к space. From the dimensions in the crystal of the 
orbits of electrons on the FS, it is possible to infer the dimensions 
of the FS itself. In the RFSE the orbit dimensions are compared with 
the dimensions of a very thin crystal plate. Once again, the surface 
impedance of the sample is measured, but this time at relatively low 
frequencies, typically 1-5 M c/s. The sample may be placed within the 
inductance’ of the tank circuit of an oscillator, as in Fig. 19, in which 
case the change of frequency with field is given by

9f _ Эх 
ЭВ = '  7 ЭВ (74)

where у  is approximately constant. Alternatively, standard NMR 
techniques may be used to measure 9R/9B.

At the frequencies used, the skin depth 6 is about 10"3 cm, so that 
the fields are effectively confined to the surface of the samples, which 
are generally somewhat less than 1 mm in thickness. Since и «ш с, 
the fields experienced by the electrons are effectively static. If the 
metal is sufficiently pure that i  is comparable with the thickness d, 
there will be a field Bo, below which the dominant orbit just scatters 
from the bottom surface, as shown in Fig. 20. This will cause a sudden 
change in the path integral in Eq. (64) and a consequent anomaly in 
9Z/9B, an example of which is shown in Fig. 21. From Eq. (18) the 
extension of the orbit in Й space normal to 3  and the metal surface is

Д к  ;
eBp
ch (75)

When SL is long, the electrons in a magnetic field can set up current 
and field sheets within the metal, so that an anomaly also occurs at nB0, 
or when two orbits from different FS sheets have a total extension d, 
as shown in Fig. 20. It is therefore possible to trace out the linear di
mensions of the FS by using different crystal and field orientations, and 
the results are accurate to approximately the ratio 6/d, or typically 
about 1%. This method is probably second only to the HA effect for de
termining FS dimensions and, in addition, it can give valuable informa
tion on electronic mean free paths.



806 MACKINTOSH

FIG. 18. a) Orbits in Cu giving rise to cyclotron resonance oscillations, b) Cyclotron resonance 
effective masses in the (110) plane o f Cu, observed by Koch, J. F ., Stradling, R. A . , Kip, A. F ., 
Phys. Rev. 133 A (1964)240. The numbers correspond to the orbits in Fig. 18 (a).
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Oscillator

4 h  ® B
1ГПТГ~ Thin single crystal plate FIG. 19. Principle o f  R. F. size effect measurements.

FIG. 20. Electron orbits in a thin crystal plate.

R. F Size Effect in К

FIG. 21. R. F. size effect signals observed in К by Koch, J. F ., Wagner, T . K. , Phys. Rev. 151 
(1966)467.

FIG. 22. Principle o f  magnetoacoustic measurements. 10

10. THE MAGNETOACOUSTIC EFFECT

This method also traces out the linear dimensions of the FS by 
measuring the sizes of the orbits in the crystal. The reference length 
in this case is not the dimension of the sample, but the wavelength of 
a high frequency acoustic wave propagating in it. A schematic diagram 
of the apparatus used for such measurements is shown in Fig. 22. A 
short r .f .  pulse is applied to a piezoelectric quartz plate and generates 
an ultrasonic pulse. Successive acoustic reflections from the end of



FERMI SURFACE 809

the single-crystal sample are reconverted by the transducer into r .f . 
signals, which are displayed on an oscilloscope, or measured other
wise. The attenuation coefficient a is thereby determined as a function 
of the applied magnetic field.

We first consider the ultrasonic absorption by a free electron gas, 
in which are embedded N positive ions per unit volume. The energy 
flows from the acoustic wave, via the electric fields which it sets up, 
to the electrons, whence it returns to the lattice in a random form 
through collisions. The energy flow from the acoustic wave to the 
electrons is given by the Joule heating

Q =.Re(J* -E)

where is the electron current. 
The ionic velocity is

-» i(wt-<fü5 u = u0e

(76)

(77)

and we consider only longitudinal waves, for which u and q are parallel. 
The attenuation coefficient is then

26L
pu2s (78)

where p is the density and s the sound wave velocity. For frequencies 
well below the plasma frequency, the electronic and ionic currents 
cancel, so that

Je = Neu (79)

We now use the path integral method to calculate the electric field 
which self-consistently produces an electronic current which just bal
ances the ionic current. As in Eq.(32), we therefore have

t
f(k ,?,t) = f f 0( £ ', ? ', t ') e * (t' t,)/T ^  (80)

where (?') is the Fermi distribution in the strained moving lattice, 
which is

- i - l

*0 (* '.* ') exp  ̂ 1 л " J + 1 (81)

where

, Л , 2 6N \ Л  2 u '.q
“ , =Ч 1 + 5 1 Г > Ч 1 + з ^ (82)

and

e ' = e - m ? 1 -u ' (83)
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If we now expand to first order in ü and proceed as in the derivation 
of Eq. (35), we find

Je ^ t )  №
, mu' * , 2  u' • qeE '+ ----- ----- -1_ 3 u t

(t-f)
dt' (84)

For longitudinal waves propagating in the у direction, with a field 
В in the z direction, we may write this formally as

J x = f f x x E x +  0 xy
E I 1 + i^ S .

У е т = 0

j y  "  f f y x E x +  CTyy ^ E y + 1 + lavp Neu,

(85)

where v0 is the Fermi velocity and a =qj?/(l + iuT). 
From Eqs (76), (78) and (85), we therefore have

a =------( ----------  я - 1
P ST V ^ x x ^ y y "  CTxy

where the d. c. conductivity a is given by

Ne2T

(86)

(87)

and we have used the fact that ior «  1 at acoustic frequencies.
In zero magnetic field v and r are constant along the path and

*yy(q) = "(ql)3(q  ̂' tan' 1 CT*y = 0 ( 8 8 )

so that

Nm
p ST

(ql)2 tan-1ql
3(qi - tan'1 qi) - 1 (89)

In a magnetic field, v varies along the path and the conductivity 
depends on B. We may write

tjjj (q,B) = o-jj (ß)

where

ß = 2а^  = 2 D
Uc л

(90)

(91)

and D is the diameter of the largest orbit in the crystal in the field B. 
Integration of the sinusoidally varying forces around the circular electron 
orbits may cause the components of the conductivity tensor to oscillate
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FIG.23. a) Theoretical magnetoacoustic 
oscillations for the free electron model, 
from Kjeldaas, T ., Holstein, T .,
Phys. Rev. Lett. 2 (1959) 340. 
b) Magnetoacoustic oscillations in the 
noble metals, observed by Morse, R.W . and 
coworkers (see The Fermi Surface,
John Wiley and Sons, New York (i960 )).
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if qi is sufficiently large, and these oscillations are reflected in the 
attenuation coefficient, as shown in Pig. 23.

In a real metal, the attenuation coefficient may be written as an 
integral over the FS of the form

a = (2Tr31ipsu2 )" dS
SL

P • v exp (92)

where F is an effective force on the electron which, as in Eq. (84), re
presents the effect of electric fields and the lattice strain and motion. 
This force has the spatial periodicity of the acoustic wave and, again, 
the variation of the path integral with fi results in magnetoacoustic 
oscillations. For an orbit of the type shown in Fig. 24, for instance, 
the path integral will clearly be maximum when

(n + I) X = D = —  Дк (93)

where Ak is the extension of the Й space orbit normal to В and q. For 
more complicated orbits this relation will not be so simple, and the 
factor j  in Eq. (93) will be replaced by another value, but in general 
a set or sets of oscillations in the absorption will be observed, with a 
period in l/B  given by

2 v e
cfiqAk (94)

where Ak is the extension in Й space normal to 3  and q of the dominant 
orbit or orbits. The linear dimensions of the FS can then be deduced 
from measurements with a variety of crystal orientations and field 
directions, just as in the R .F . Size Effect. The Magnetoacoustic 
Effect is somewhat less satisfactory however, because the oscillations 
from different sheets of the FS may be difficult to disentangle, and it is 
not always quite sure which orbit is dominant in a particular set of 
oscillations. 11

11. POSITR ON ANNIHILATION

The experiments which have been discussed so far all require long 
electronic mean free paths and are therefore restricted to very pure 
metals or ordered alloys at low temperatures. We shall now discuss 
two techniques which, though substantially less powerful than those pre
viously mentioned, do not suffer from this limitation and may there
fore be applied to metals at elevated temperatures, or alloys. In a 
disordered alloy, B loch 's theorem is no longer strictly valid, and the 
scattering of the conduction electrons by the disordered potential pro
duces a reduction in the free path which is reflected in a smearing out 
of the FS by, typically, a few percent of к f. Within this limitation, 
however, the FS of an alloy is a valid concept. The electronic struc
ture of disordered alloys is a topic of great current interest.
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FIG. 24. Electron orbit and acoustic wave in a crystal.

П Т ргу '

Acoustic wave

slit

FIG. 25. Form o f  apparatus used for measuring the angular correlation o f  photons from  positron 
annihilation.

The first method which we shall discuss for studying such systems 
uses the momentum distribution of the photons emitted when electrons 
and positrons annihilate,to study the momentum distribution of the 
electrons. The type of apparatus most commonly used is shown schema
tically in Fig. 25. Positrons from a radioactive source are absorbed 
by the monocrystalline sample and thermalize in about 10'12 s, so that 
they have essentially zero momentum when they annihilate after about 
1СГ10 s. Because of the momentum of the annihilating electron, there 
is a small angle 0 between the photon paths, and the experiment con
sists of measuring the number of photon coincidences as a function of 0. 
A typical photon distribution is shown in Fig. 26.

With the long slit geometry of Fig. 27, a coincident pair of photons 
can only enter the counters if they have a total momentum ftj5 such that

в  A me (95)

If we neglect the Coulomb correlation between the electrons and 
positrons, the number of coincidences at an angle 0 is proportional to

00

N(e) = n (S f)  =/ / dpxdpyZr( (96)
It

where the sum is over all occupied electron states, and the probability 
of producing a photon pair of momentum p by the annihilation of a posi
tron with an electron of wavevector к  is proportional to

y W ( r ) 'M i ')  e ^  Г drг ( р Д )  = (97)
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9 (MILURADIANS)

F1G. 26. Experimental and theoretical angular distribution o f photons from positron annihilation in a 
c-axis Y crystal, from Williams, R. W ., Loucks, T . L ., Mackintosh, A. R ., Phys. Rev. Lett. 16
(1966)168.

FIG. 27. Positron annihilation 
in the free electron model.

For the free electron model, the positron wavefunction is constant 
and the electron wavefunction is a plane wave, so

r(ftß)  = 6(p-ß) (98)

and the photons carry off the electron momentum, as expected. The 
integral (96) is now just the area of a slice through the spherical FS at
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a distance k z = 0mc/fi from the origin, as in Fig. 27, so that the photon 
distribution has the form

where
N(6) ~ ( i - ( e / e F)2)

0 = hkp
r me

(99)

( 100)

For Bloch electrons, we have

r (P. £) '̂+ (?) Ui-(?) e
(T<-p) • d? ^c|6(5-ic-D

t

( 101)

so that the photons have momentum ft(k + g), where j? is any reciprocal 
lattice vector. The components with =̂ 0 in (101) are generally small, 
because the nuclear repulsion keeps the positron out of the ion cores, 
where most of the oscillations in u£(r) occur.

In a real metal, there will be discontinuities in the slope of N(0) 
at those angles at which Eq. (100) is satisfied for any k F in the periodic 
zone scheme. These will generally be too small to detect however, and 
it is usually necessary to compare the measured distribution with that 
calculated using Eqs (96) and (97), and thereby to determine whether the 
calculated electronic structure is correct. Such a comparison is made 
for Y in Fig. 26, from which it may be seen that the theory reproduces 
the qualitative features of the experimental results, but that some of the 
predicted structure in the distribution is smeared out, probably due to 
correlation effects not taken into account in the independent particle 
model.

It is possible to increase the amount of information derived from 
this experiment by using another pair of slits at right angles to the first, 
and thus to accept photons emanating from annihilations with electrons 
in a line, rather than a slice, through E space. This causes a severe 
decrease in the coincidence counting rate, but the method has been 
successfully applied to the determination of the neck radius in concentrated 
disordered alloys of Cu.

12. THE KOHN EFFECT

The phonon spectrum of a metal can readily be measured by inelastic 
neutron scattering, as has been extensively discussed in other courses, 
and it contains implicitly a great deal of information about the conduction 
electrons. We shall here be concerned only with the anomalies which 
may occur due to the discontinuities in the occupation of the electron 
states in к space, and which therefore provide an image of the FS, as 
first pointed out by Kohn.

In the adiabatic approximation, the frequencies u(q) and displace
ments u(q) of the lattice waves in a metal of ionic mass M are deter
mined by the equations

■ I -M</(q)Ui(q) = > M q (5) Uj (q) ( 102)
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where Mjj (q) is the dynamical matrix, defined by

Mij (q) = 4 -  )  [(q + g)i (q + I)j<^(q+l) - fifj Ф(Я)1 (ЮЗ)
c  ^

g

Пс is the volume of the unit cell and a(q) is the Fourier transform of 
the interionic potential. This potential is screened by the conduction 
electrons, and the screening is expressed in terms of a 5 dependent 
dielectric function x(q). The anomalies in the dielectric function are 
therefore reflected in the phonon spectrum.

For a free electron gas, as shown in PTS, p. 126,

*(q) = I fo(k) - fp(k + q)
e(E + q)-e(E)

= 1 + 1 I 4 k j-q 2
2 8k Fq log 2kF +q 

2k p- q

(104)

where N(p) is the density of electron states at the Fermi level. The 
Fermi distribution functions in the numerator ensure that, at absolute 
zero, only states for which I? is occupied and k + q unoccupied, or vice- 
versa, contribute to the sum. The strongest contribution to the sum 
is made by terms with small energy denominators, which come from 
states к lying just inside the FS, such that the addition of q takes them 
just outside. The rapid disappearance of such states as q approaches 
2kF produces a rapid drop in x(q) at this value, and this means that the 
screening of the interionic potential drops, so that, from Eq. (103), the 
frequencies suddenly increase.

For a real metal, the dielectric function may be written in the form

x(q) = 1 + 47ге2 V 
q2 L  

i, j', к

Fjj • ( £ K  + q)[fo(ej(gy) - foCeffK + qV)] 
er (Ic + q) - €j(k) (105)

where j and j' are band indices, Fjj' is a slowly varying function which 
depends on the electron wavefunctions, and the electron states are 
described in the periodic zone scheme. The weak singularities in the 
free electron dielectric function may be considerably enhanced in some 
circumstances, especially when the FS has large flat regions, as often 
occurs in transition metals, for instance that shown in Fig. 28, and 
many small energy denominators therefore occur for some critical q.

The anomalies in k( )̂ can be translated into anomalies in the phonon 
spectrum by using Eqs (102) and (103) and remembering that 0(q + g) is 
screened by x(q + ̂ ). If a sharp decrease in x(q) occurs in the primitive 
BZ, an increase in the interionic force results, and the frequencies 
abruptly increase. If the anomaly in K(q) occurs outside the primitive 
BZ, the simplest method of determining the effect on the frequencies . 
is to use the periodic zone scheme for the phonons, which is equivalent 
to considering the different terms in Eq.(103).
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FIG. 28. — Cross section of the Fermi surface in paramagnetic Cr, in the periodic zone scheme.

74* T V 72* 71* TO* 89* 6ß* ST* 
*5 20 21 22 23

Ee(io**ev)
FIG. 29. Kohn anomaly in lead, observed by Brockhouse, B .N ., Arase, T . , Caglioti, G ., Rao, K. R ., 
Woods, A. D .B ., Phys. Rev. 128(1962)1099.

An example of an experimentally observed Kohn anomaly in a phonon 
dispersion curve is shown in Fig. 29. As a method of tracing out the FS 
of a pure metal, the Kohn effect suffers from the limitation that the 
anomalies tend to be rather broad and the derived dimensions there-
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fore imprecise. Furthermore, clear anomalies are rather rare, so 
only a few FS dimensions may be determined. However, the anomalies 
may be as well defined in disordered alloys as in pure metals, so that 
the effect of solute concentration on some FS dimension may be studied 
systematically. The Kohn effect may also be observed in magnon 
spectra, since the Fourier transform of the exchange interaction between 
magnetic ions has a form very similar to Eq. (105).

This completes our brief survey of the main methods of FS deter
mination. The De Haas - Van Alphen effect remains supreme in this 
field, although the other techniques may give valuable supplementary 
information. The information which each experiment provides is sum
marized pictorially in Fig. 30.

Electron velocity Linear dimension

Weighted area
(positron
annihilation)

FIG. 30. Methods o f  Fermi surface determ ination.

13. ELECTRON INTERACTIONS

The discussion so far has proceeded entirely within the framework 
of the independent particle model, and it is now appropriate to discuss 
briefly the extent to which the results which we have derived remain 
valid when electron interactions are taken into account. Many body 
effects in metals have been treated in detail elsewhere in the School, and 
we shall merely review those aspects which are relevant to FS studies.

In the Landau Fermi liquid theory, the interactions are taken into 
account by writing the excitation energy of the electron system as

6E 6nT+ _1
2

^  f(iT, Й') 6n£6n£, (106)
к
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where 6n-£ is the number of excited quasielectrons in state k, in which 
the spin is implicitly included, and f(K, 1?') is a quasiparticle interaction 
energy. The interactions among the electrons and phonons therefore 
have two effects. Firstly they modify the single quasiparticle energy 
e 0(k), so that it is different from the e(k) which would be given by an 
accurate band calculation based on the independent particle model, and 
secondly they cause an interaction between quasiparticles. The quasi
particle energy in the presence of other excited quasiparticles is given 
from Eq. (106) as

e(k) = е о Й + ^ Й Д ') ^ .  (107)
F

and the equilibrium distribution function is

(e
( e (k ) - | i ) /k T + 1)-1 (108)

The FS at absolute zero is that surface in к space on which eQ (I?) =p, 
and the volume which it encloses is independent of the interactions, 
although they may affect its shape. Because of the electron-electron 
interactions an excited quasiparticle has a finite lifetime, which is 
inversely proportional to (е(Й) - p)2 + (7rkT)2, and a state with a single 
quasiparticle is therefore only an eigenstate of the system as the quasi
particle energy approaches p at T = 0.

A transport equation, analogous to the Boltzmann equation, can be 
written for the quasiparticle distribution n£, and from this it may be de
duced that transport properties which are independent of time are un
affected by the quasiparticle interactions. The galvanomagnetic effects 
are therefore still determined by the FS topology, and the magneto
acoustic and R .F . size effects, for which the fields are effectively 
static, measure the caliper dimension of the FS. Time dependent 
properties generally depend on f(£, I?1), but not the surface impedance 
in the anomalous limit, so that the anomalous skin effect still measures 
the FS curvature, and Azbel-Kaner cyclotron resonance the effective 
mass.

Although Bloch states are not eigenstates of the system, the ground 
state wave function can be expended in terms of them and an occupation 
number for the Bloch states thereby defined. This occupation probabi
lity does not fall from one to zero at the FS, as it would in the non
interacting system, but it does have a discontinuity when £=KF, and 
this is sufficient to ensure that the Kohn effect still measures the FS 
extension. The photon distribution from positron annihilation still 
has a kink at an angle determined by Eq. (100), although the general 
form of the distribution may be considerably affected by the interactions. 
Most importantly, these discontinuities also determine the oscillations 
in the magnetic susceptibility, so that the HA effect measures the extre
mal area of the FS, and its temperature dependence, the effective mass.

It is therefore fortunately true that all of the experiments which we 
have discussed are essentially unaffected by the quasiparticle interaction 
f(U, It'), and measure the FS and the effective mass in the interacting 
system. This is true both for electron-electron and for electron-phonon 
interactions. This is not to say that the FS itself is unaffected by the
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interactions, of course, е0(Й) will generally differ from e(k), so that 
the FS geometry and the Fermi velocity may differ from that predicted 
by the independent particle model. The change in the FS itself appears 
to be generally small, but the effective mass may be considerably 
altered, especially by the electron-phonon interaction, and we will 
discuss this with reference to the electronic heat capacity. This is given 
in the independent particle model by

7Г2Cv = —  k2 N(p)T (109)

From Eq. (14) the density of states is given by

^  , U Г dS _ OS (  1 \ , 11П.
4ir3 J |Эе/ЭЕ| 4тг3й ( v 0 J

(J

where the average is taken over the FS.
Eq. (109) remains valid in the interacting system, but N(p) must 

be that deduced from e0 (Й). The effect of the electron-phonon inter
action on e0(S) may be expressed by a relation of the form

e0(k) = ee (k) + 1
2тгЗ dq| M k ,k -q  I

1 ~ nf - r ______________I________ nk- У __________________

ee(E) - ee(E"4) ee(R)- ee (K-q)
( 111)

where ee(K) is the quasiparticle energy without the electron-phonon inter
action, and is the matrix element for scattering by a phonon of
energy ftu-jf from к to Й -q.

FIG. 31. The effect o f  the electron-phonon interaction on the energy bands near the Fermi level.

The phonon correction is only large at low temperatures for energies 
differing from p by an amount less than about the maximum fiu. The band 
structure near p in the interacting system therefore looks as shown in 
Fig. 31, and the effective mass may be considerably enhanced. For 
instance, in Pb the electron-phonon interaction is believed to cause 
about a twofold enhancement in the density of states, whereas the 
electron-electron interaction produces only a 10% increase. As the 
temperature is increased above the Debye temperature, the two terms 
in the integral in Eq. ( I l l )  tend to cancel and the phonon enhancement 
disappears.
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An important property which is affected by the quasiparticle inter
action is the Pauli paramagnetism of the conduction electrons. In the 
independent particle model

X =M§ N(m) (112)

Because of the spin dependence of the quasiparticle interaction, 
this value is enhanced to

_ M§ Щ»)
*0 1 - V (113)

where, writing the spin dependence of f explicitly

(27r)6N(p)ft1! [f(£t, i ? U ) - f ( I ? t ,K 't ) ] ^ (114)

Because of the exchange correlation, v is always positive, and for 
Na the enhancement of the paramagnetism is about 30%. For transition 
metals the exchange correlation is large and v£ small, so that v is 
generally large. If it exceeds 1, ferromagnetism results, as in Fe,
Co and Ni.

Such a magnetic instability need not occur for a uniform magnetiza
tion. The response of the system to a sinusoidally varying static magnetic 
field of wavevector q may be written in terms of a ^-dependent suscepti
bility, which is given in the Hartree approximation by

xH(q) =h§x0(q)

= w2 V  Ijj’ (k,k + q)[f0(£j(k)) - f0(ey(k + q))]
e (h + 5) - e (E)

j.j'.k
(115)

where Ijj. is determined by the wavefunctions. This is again enhanced 
by the electron interactions and, in the self-consistent field approxima
tion, the susceptibility in the interacting system has the form

X(q)
hBXo(q)

l-V (q )X 0(q) (116)

where V(q) is the Fourier transform of the exchange interaction between 
the conduction electrons. If x(q) diverges for some non-zero q, a spin- 
density wave will be formed in the conduction electron gas. Because of 
the form of Eq. (115), which is similar to Eq. (106), this is likely to happen 
at some q which spans a dimension of the FS. In Cr, for instance, the 
q of the spin density wave is believed to be determined by the separation 
between the parallel electron and hole sheets of the FS, shown in Fig. 28.



822 MACKINTOSH

14. THE FERMI SURFACE IN METALS

The experimental techniques which we have reviewed, together 
with band structure calculations, which have been discussed elsewhere, 
have revealed an enormous amount of information about the FS in 
metals. A fairly comprehensive list of references to this work has 
been assembled (Ref. [14]) and should be referred to for detailed in
formation. In this section we will present a brief summary of the sa
lient features of the band structures of the different classes of metals, 
which have resulted from these investigations.

(a) Simple metals. The conduction electron states are derived 
from atomic s and p states and, because of the cancellation between the 
core potential and the kinetic energy associated with the oscillations of 
the conduction electron wavefunctions in the core, the energy levels are 
very close to the free electron, or empty lattice, values

ii  ̂ r -> .2
е| М - 2 г г |к+в1 о

The empty lattice energy bands for the fee structure are shown in 
Fig. 32, together with the calculated energy bands for A1 and Pb. The 
spin-orbit splitting is significant for the latter. The empty lattice FS 
may readily be constructed by noting that a state 5 is filled in the nth 
band if it lies less than the free electron kF from at least n reciprocal 
lattice points.

The band structure and FS of a simple metal can generally be 
described quite well in terms of a few Fourier coefficients vg of a 
weak local pseudopotential, although for the highest accuracy a non
local pseudopotential may be necessary, and spin-orbit coupling must 
be included, especially for heavier metals.

The remarkable sphericity of the К FS is illustrated in Fig. 33, 
while the close resemblance between the FS of Pb and the empty lattice 
model is shown in Fig. 34.

(b) Semi-metals. These metals (As, Sb, Bi) are really a sub
group of the simple metals, since their energy bands are close to the 
free electron bands. However, they have an unusual structure and a 
very small number of carriers. They each have three electron pockets 
and a compensating number of holes. The form of the hole surfaces
is very dependent on the spin-orbit coupling, and different in the three 
metals.

(c) Transition metals. The atomic d-levels contribute to the con
duction bands, which bear no resemblance to the empty lattice model.
A typical transition metal band structure, with d-bands intersecting 
and hybridizing with the parabolic s-p bands, is shown in Fig. 2. This 
interaction with the d-bands is the reason for the necks in the [111] 
directions of the noble metals.

Although the pseudopotential method is of no use for describing 
transition metal band structures, and more complicated interpolation 
schemes must be used, there are certain simplifying features, ^he 
rigid band anoroximation works rather well, so that the band structures
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( b )

FIG. 32. Energy bands in the fee structure, (a) The empty lattice model, (b) Al. (c )  Pb.
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12-9

FIG. 33. The Fermi surface o f  к measured by Shoenberg, D . , Stiles, P. J . , Proc. R. Soc. A 281 (1964) 
62, using the De Haas-Van Alphen effect. The contours show departures from sphericity in parts in 105.

of all transition metals of a particular structure are rather similar, 
especially if they are in the same period. The band structures of, for 
instance, Rh, Pd and Ag are very similar and, in practice, a common 
band structure may be used to determine the PS, by allowing p to vary



FERMI SURFACE 825

[»£1

FIG. 34. Cross sections o f the Fermi surface in Pb compared with the empty lattice model. From 
Anderson, J. R ., Gold, A. V. , Phys. Rev. 139 A (1965) 1459.

according to the number of conduction electrons. Descending a column 
in the periodic table, for instance the series Cr, Mo, W, one finds 
that the d-bands become broader and spin-orbit splitting becomes pro
gressively larger.

On the right side of the 3d transition series, where the bands are 
narrow and the electron interactions large, magnetically ordered states 
are common and the band structures may be considerably modified by 
the interaction between the conduction electrons and the ordered moment. 
In the ferromagnetic metals, Kramers' theorem is no longer valid and 
the energy bands for up and down spin electrons split. The Fermi sur
faces for the two spin states must then be considered individually in dis
cussing, for instance, the galvanomagnetic properties. In antiferro
magnetic metals the periodicity of the total potential is modified, so 
that new energy gaps will appear in the band structure and the FS will 
generally be considerably modified.

(d) Lanthanides and actinides. Very little experimental work has 
been carried out on the FS of these complex metals, which are character
ized by having unfilled f shells. Band structure calculations have been 
performed for many of them, and for hep rare earth metals are in quali
tative agreement with positron annihilation experiments. Many of these 
metals are magnetic and their complex magnetic structures are known 
to be intimately related to the conduction electron band structure.
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15. PROSPECTS IN FERMI SURFACE STUDIES

In these notes, we have emphasized the determination of the geo
metrical shape of the FS, and so much work has been carried out in 
the last ten years that this aspect of FS studies may reasonably be 
considered to be drawing to a close. It is true that there remain many 
metals for which the FS has not been measured in detail, notably the 
alkaline earth metals and magnetic metals, but these problems are 
being actively pursued and will probably be solved fairly soon. Much 
less is known about the velocity and relaxation time. The variation 
of the velocity over the FS is known in detail only for the noble metals 
and it is an important parameter for many phenomena, notably transport 
properties. The comparison between the measured velocity and that 
derived from band structure calculations gives an estimate of the many 
body enhancements of the effective mass, and its variation over the FS. 
Very little is known about the relaxation time and its Ic dependence, and 
indeed it is clear that the relaxation time approximation is not, in many 
cases, an adequate method of describing the scattering process. We 
may anticipate that there will be a careful study of scattering mechanisms 
in metals in the future.

FS studies have had a very important effect in increasing confidence 
in band structure calculations, even for complex metals. The emphasis 
in these calculations will probably now shift towards the application of the 
calculated band structures and wavefunctions to more complicated 
phenomena, such as the optical absorption, the phonon spectrum, magnetic 
interactions, the properties of defects, and many others. The experi
mental emphasis may be expected to shift at the same time towards the 
study of the electrons away from the FS, and the effect of the inter
actions in modifying the band structure. In this programme, the in
formation which has been accumulated about the electrons on the FS 
will provide invaluable assistance to future research.
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1. INTRODUCTION

The existence of the positron as the antiparticle of the electron is a 
fundamental consequence of the Dirac electron theory. After the dis
covery of the positron, early work [1] was devoted to testing the impli
cations of this theory experimentally, for example the equality of the rest masses 
of the electron and the positron, and the annihilation of an electron-positron pair 
to produce two y-rays, eachof energy me2 * * * * * * * = 511 keV, travelling in opposite 
directions. With the development of quantum electrodynamics, the 
electron-positron system again became the centre of interest. Selection 
rules for the dematerialization of the particles into photons were formu
lated. Experiments were successfully performed to vindicate these and 
other predicted polarization properties of the annihilation y-rays. From 
the fact that a component of the annihilation was independent of pressure 
in certain gases, an interesting discovery was made: namely, an electron-
positron pair could exist in a bound state, the positronium.

In this paper we shall not consider the fundamental aspects of quantum 
electrodynamics, but concentrate on the phenomena that occur when 
positrons are injected into bulk matter, particularly solids and liquids.
The emphasis will be more on quantitative understanding of the compli
cated processes that occur.

2. SELECTION RULES OF ANNIHILATION [2]

An electron-positron pair can annihilate by emitting one, two, three,
or more у-quanta. The higher quantum yields are negligible.. For
energy-momentum conservation, one quantum annihilation occurs in the
presence of a third particle, and, because of its rarity, it is not of
much interest to us [3]. Annihilation into two y-rays of equal wave
length, travelling in opposite directions from a bound electron-positron
pair at rest, happens with a lifetime ~ 10"10 s. The three y-annihilation
takes a longer time, ~  10-7 s, since it is a process of higher order.

829
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Consider two photons of equal wavelength X propagating in opposite 
directions along the z axis. There are four such states which we shall 
denote by Y1*  , , YLR and YLL . The first index refers to the circular
polarization state of the 7 -ray propagating in the +z direction, the second 
to the other photon. Thus Y1̂  would represent a state with a right- 
circularly polarized photon proceeding along the z axis and a left-circularly 
polarized photon proceeding along the -z axis.

To investigate the behaviour of these four states under a space rota
tion or an inversion, let us first write down the electric field for a right - 
circularly polarized electromagnetic wave moving along the z axis:

(Ex)? = E0 cos (kz-ut + 6?)

(Ey )? = E0 sin (kz - ut + 6? ) (1)

For a right-circularly polarized wave moving in the opposite direction

(Ex)? = E0 cos (-kz -ut + 6? )

(Ey)? = -Eg sin (-kz-wt + 6?) (2)

Under a rotation through an angle cp around the z axis 

, x = x 1 cos cp + у ' sin ф

у =-x' sin cp + y' cos cp

z = z 1 (3)

we have

№*)+' = Eg cos (kz - ut + 6? +cp)

(Ey)+ = Eg sin (kz - ut + 6+ +cp) (4)

(Ex )-' = E0 cos (-kz - ut + 6? - cp)

(Ey )?' = -Eg sin (-kz -ut + 6R -cp) (5)

Thus the phase of a right-circularly polarized wave along the z axis changes 
by +cp, while that of a right-circularly polarized wave along the -z  axis 
changes by -cp under the rotation. For the quantum state Y^ the total 
phase factor is the product of the two phase factors of the two photons.
Hence we conclude that the state Y1® is an eigenstate of the rotation (3) 
with eigenvalue 1. Mathematically the states are changed under the 
rotation (3) by a unitary transformation which we shall call R,,. We 
conclude that

R<p
RR = \|/RR (6)



POSITRON ANNIHILATION 831

Similar conclusions are reached for the rotation around the x axis through 
an angle 180°(RE ) and for an inversion (P). More complete derivations, 
including the polarization properties, follow from field theoretic con
siderations. The results are summarized in Tables I, II and III.

Now it is well known that opposite parities are assigned to particle 
and antiparticle (fermions), so that the intrinsic parity of an electron- 
positron pair is odd, with the convention that vacuum has even parity. 
Therefore both 1 S0 and 3S1 states have odd parity. Hence from the above 
tables the 3Si state cannot decay by two photons, while the 1So state can. 
The 3Si state can decay into three or more photons, through higher order 
interaction, and thus lives longer. The experiments checking the various 
predictions of Tables I, II, and III are described by DeBenedetti [1].

TABLE I. EIGENVALUES OF ROTATION R̂ ,, Rg AND 
INVERSION FOR THE TWO PHOTON STATES

tyRR -f tyLL tyRR _ tyLL *RL tyLR

R<y) 1 1 e2^ e-2i<P

Re 1 1

P 1 -1 1 1

Rq; = Rotation around the z axis through q>.

Rg = Rotation around the x axis through 180c.

P = Inversion.

TABLE II. ANGULAR MOMENTUM (J) AND PARITY OF 
THE TWO PHOTON STATES

\ j
parity s. 0 1 2 , 4 , 6  . . . 3,5, 7 ...

Even tyRR + ^LL Forbidden tyRR + tyLL tyRL tyLR tyRL tyLR

Odd tyRR _ tyLL Forbidden tyRR _ tyLL Forbidden

TABLE III. CORRELATION OF THE PLANES OF
POLARIZATION OF DISINTEGRATION PHOTONS

J
Parity's. 0 1 2 ,4 .6  . . . 3,5,7, ...

Even I I = 50%
j [ =  50%

Odd

I I Forbidden 

I Forbidden

' I I s  50% 

. ±=50%
Forbidden



832 MAJUMDAR

Let us now turn to the bound state 'positronium'. Except for finer 
details originating from quantum electrodynamics, the energy levels En 
of positronium are similar to the hydrogen atom, the reduced mass being 
only half the electron mass in the Schrödinger equation. So

En me4
4h2n2 (7)

The ionization potential is 6.8 electron volts; the energy of the first excited 
state is 5.1 eV and the Lyman a line has a wavelength 2400 A. But, 
for an increase of the radii the internal wave functions are the same as 
for hydrogen. The lifetimes of the excited states against optical de
excitation are twice as great as those of the corresponding hydrogen 
states.

The IS ground state is split into a lower singlet (para) and higher 
triplet (ortho) level by the magnetic and radiative interactions. The 
splitting is

AW = 2.0337 X 105 M c/s = 8.35X КГ4 eV

Radiative transitions between these states are very slow, since they are 
of magnetic dipole character. The singlet state (1S0) decay rate Xs en
tirely by two-quantum annihilation is ( t s = singlet lifetime)

Xs = 0.804X 1010 s ' 1, t s = 1.25X КГ10 s

For the triplet state (3S i ) decay by three-quantum annihilation, the decay 
rate is (Tt = triplet lifetime)

Xt = 7.2 X 106 s-1, Tt = 1.4X10-7 s

The states of positronium show no first order (linear) Zeeman effect. 
There is, however, a second-order effect due to mixing of singlet and 
triplet components in a magnetic field. Owing to this admixture the triplet 
state can now decay by two-quantum annihilation. The experimental 
aspect is summarized by Deutsch [1].

3. EXPERIMENTS IN CONDENSED MATTER [4]

Fundamentally there are two types of measurements done with posi
trons interacting with matter. One may measure the lifetime of positrons, 
or one may study the angular correlation of the annihilation 7 -rays.

The lifetime measurements are done with standard delayed coinci
dence techniques. The sample may be a pure substance or may contain 
certain impurities, for instance doped semiconductors or liquids with 
magnetic ions. The dependence of lifetime^ on temperature and pressure 
has also been observed in many cases. In metals, lifetime measurements 
reveal information about the interaction of the positron with the electrons. 
In other substances we get information about the collision processes, for 
example exchange scattering cross-section of positronium, or sometimes 
the average scattering cross-section of the positron against atoms. The 
strong Coulomb interaction of the positron distorts the electronic wave-
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functions in condensed systems, and this is a limitation of the method of 
positron annihilation to explore the electronic properties.

The angular correlation measurements may be done for two or three 
annihilation quanta. The three-quantum annihilation has been studied 
particularly to check predictions of quantum electrodynamics [1], but 
is not of any great interest to us. Two-quantum annihilation yields in
formation about the momentum distribution of electrons in matter, so it 
is of direct interest in the study of the Fermi surface of metals. For 
other materials, as the exact state of the positron may not be clearly 
established, the data are difficult to interpret, but some progress has 
been made.

The two-photon angular correlation has been studied at different 
temperatures to observe the motion of positrons in metals. This is a 
measurement of the effective mass of the positron in a metallic environ
ment. In addition, information can be obtained about the rate of energy 
loss and thermalization of positrons in metals. It is now known that 
positrons in metals annihilate before thermalization at very low tempera
tures. There is thus a natural limit of resolution.

Some studies of angular correlation have been made in magnetic 
metals to derive information about the polarization of magnetic electrons.

We shall now look at the experimental data in more detail.

3.1. Lifetime measurements

Materials in which the lifetime has been measured can be divided into 
two classes. The first class consists of metals and heavily doped semi
conductors which show essentially one lifetime (Fig. 1). The second class 
comprises materials in which evidence for at least two lifetimes is known 
(Fig. 2). The short lifetime, called , is roughly ~2X  10-10 s. The 
longer lifetime, t2 , varies more, from about 5X 1СГ10 s to about 10“8 s 
in various substances.

Table IV represents the lifetime data of metals and semiconductors 
[5-11]. is characteristic of homogeneous metal. The second long- 
lived component, t 2 , present with a small intensity, I2, is now generally 
regarded as due to annihilation in the surface as well as lattice defects 
in metals [6]. The decay rates for the 'nearly free electron' metals Li,
Na, K, Rb, Cs, Mg and A1 fall on a smooth curve (Fig. 3) which approaches 
the spin averaged positronium rate at low densities or large rs . In 
standard many-body theory, densities are often referred to in rs units 
defined as follows. If n be the number of valence electrons per cm3, and 
ao the Bohr radius, we write

The rates for Be and Bi and the semiconductors Si and Ge are below the 
nearly free electron curve; the rates for the transition metals and Cd are 
above it, but we should remember the difficulty of defining the exact 
number n of valence electrons in transition metals. For the rare earths, 
Eu (r$ ~3.24) and Yb (rs ~2.9) appear to contribute 2 valence electrons 
while the rest contribute 3 (rs ~2.47), andthe rates fall accordingly. Re
calling that the density of electrons varies as rs' 3, the variation of life
time with rs is rather small; clearly the density of electrons at the
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FIG. 1. Measured decay curve for sodium, after Weisberg, H ., Berko, S . , Phys. Rev. 154 (1967) 249, 
showing essentially one life-com ponent.

FIG.2. Typical lifetim e curve with two components. 1 channel^ 1.41 x 1 0 '10 s; (a) benzene,
(b) chlorobenzene, (c) bromobenzene, (d) prompt coincidence curve. (After Germagnoli, E ., Poletti, G .. 
Randone, G . , Phys. Rev. 141 (1966) 419..

positron position is quite different from the average density and the Cou
lomb interaction between the electrons and the positron is important.

On the other hand, it is not possible to interpret the lifetime data 
in terms of positronium formation. The fact that singlet positronium 
would be formed only one quarter of the time would lead to an unobserved 
long lifetime, or, if triplet-to-singlet conversion were rapid, to a life
time four times that of singlet positronium, 5X 10-10 s. In fact one can 
show that a positronium-like bound state does not exist at metallic den
sities, and the concept of the bound state cannot be defined properly [12, 13].

The long lifetime t2 is shown by most other solids, liquids, and 
gases. The problem logically separates into two parts: the explanation
of the intensity I2 and the origin of t2 . In most cases triplet positronium
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is formed. Sometimes, as in alkali halides, a more complicated long- 
lived compound state may form. The mechanism and probability of the 
positronium or complex formation will explain I 2. Then its transition 
to the singlet state with subsequent decay gives rise to the t2 component

FIG.3. Measured annihilation rates plotted against rs (after Weisberg, H ., Berko, S ., Phys. Rev. 154 
(1967) 249). Theoretical values indicated are: Xpos. the spin-averaged positronium annihilation rate; 
Aps the rate for positronium negative ion; 'Som m erfeld ', the rate for a non-interacting electron gas: 
"RPA" the rate calculated in the random-phase approximation by Kahana [29] and 'Kahana', the full 
many-body calculation o f Kahana and Carbotte [2 9 ].

The problem of formation of positronium is not quantitatively under
stood1. The intensity I2 varies a great deal, from 20% to 60%. Ore [16] 
has discussed the energetics of positronium formation in gases, and his 
treatment can be adapted to the molecular solids. Let us designate the 
binding energy of positronium by Wps. This may be somewhat smaller 
than 6. 8 eV inside a solid. Suppose that the ionization potential of a 
molecule of the material is I (for most materials this is about 10 eV).
If the initial energy of the positron is E, positronium formation is possible 
provided E>I-W pS- As long as E is greater than the lowest electronic 
excitation energy of the molecule, however, inelastic scattering will 
compete. At energies above the ionization threshold, inelastic scattering 
with ionization will generally have a larger cross-section associated with 
the presence of two free particles in the final configuration. Thus there 
exists a limited range of energy over which positronium formation will 
take place. This range is called the 'Ore gap'.

1 The formation o f  positronium in the scattering o f a positron in atomic hydrogen has been investi
gated by Massey and Mohr [14] in the Bom approximation. They also allow for the fact that a slow posi
tron is repelled by the nucleus o f  the hydrogen atom, such that the wave-function for its motion relative 
to the atom has a considerably smaller amplitude in the region o f  the atom than a plane wave. The positronium 
formation cross-section is zero below 6.8 eV, but rises quite rapidly to a maximum 4.5 7rap at ~14 eV and 
then falls off. Allowance for the repulsion cuts down the maximum by almost 2, and makes the curve 
flatter. The inelastic cross-section becomes important above 10.2 eV. Hence the region 6.8 to 10.2 eV 
roughly corresponds to the Ore gap. A recent calculation is due to Cheshire [15].
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TABLE IV. LIFETIME DATA OF METALS AND 
SEMICONDUCTORS

z Material r l [ns] тг [ns] I 2[%] Reference

3 Li 0.29 ± 0 .0 2 0.59 6.5 [5]

0.291 ± 0. 006 2. 78 ± 0.25 0. 6 ± 0 .1 [6]

4 Be 0.213 ± 0. 005 0 .44 18 [6]

5 В 0.35 ± 0 .0 5 1. 9 ± 0 . 05 2 .8  ± 0. 5 [10]

11 Na 0. 315 i  0. 02 0. 57 4 .3 [5]

0.338 ± 0. 007 [6]

12 Mg 0.232 0 [6]

13 A1 0.1 1 .0  ± 0 .2 30 [7]

0.193 ± 0. 02 0. 39 6.5 [5]

0.187 0. 324 6 [8]

0.21 ± 0 .0 1 [9]

0. 201 1 0. 005a 0. 32 30 [6]

14 Si 0. 222 ± 0. 005 0. 508 ± 0. 094 1. 0 ± 0. 7 [6]

0. 26 ± 0. 03 1. 2 ± 0 . 05 2. 6 ± 0. 5 [10]

19 К 0. 40 ± 0. 02 [5]

0.397 ± 0.010 0 [6]

21 Sc 0.238 ± 0. 009 [8]

26 Fe 0.160 ± 0. 005 0. 38 15 [6]

27 Co 0.162 ± 0. 014 0. 577 ± 0. 051 1. 2 ± 0. 2 [6]

28 Ni 0.172 ± 0. 005 0. 465 ± 0. 080 1. 8 ± 0. 9 [7]

29 Cu 0.1 0. 7 ± 0 . 06 20 [7]

0.181 ± 0. 005 0. 445 ± 0. 055 2. 5 ± 1.0 [6]

31 Ga 0.194 ± 0. 004 0. 426 ± 0. 048 3 .1  ± 1 .2 [6]

32 Ge 0.226 ± 0. 005 0. 480 ± 0. 063 2 .2  ± 1.1 [6]

0 .24  ± 0. 05 1 .9  ± 0 .0 5 1. 6 ± 0. 5 [10]

37 Rb 0.401 ± 0. 010 [6]

39 Y 0.252 [8]

47 Ag 0.15 ± 0. 06 [11]

48 ca 0.185 ± 0. 004 0. 526 ± 0. 041 1.6  ± 0 .4 [6]

50 Sn 0.202 ± 0. 005 0. 521 i  0. 050 2. 0 ± 0. 6 [6]

55 Cs 0. 43 ± 0 . 02 [5]

0.418 ± 0. 010 0 [6]
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Table IV (cont. )

z Material Tj [ns] T2 [ns] 12» ] Reference

57 La 0.251 [8]

58 Ce 0.244 [8]

59 Pr 0.239 [8]

60 Nd 0.244 [8]

62 Sm 0.246 [8]

63 Eu 0.278 [8]

64 Gd 0.248 [8]

65 Tb 0.247 [8]

66 Dy 0.241 [8]

67 Ho 0. 243 [8]

68 Er 0.242 [8]

69 Tm 0.246 [8]

70 Yb 0.263 ± 0. 009 [8]

71 Lu 0. 247 [8]

79 Au 0.1 0. 66 ± 0. 03 30 [7]

80 Hg 0.220 ± 0. 007 0. 426 ± 0. 065 4. 4 i  2. 9 [6]

82 Pb 0.201 ± 0. 005 0. 477 ± 0. 048 2. 7 ± 1. 0 [6]

83 Bi 0. 243 ± 0. 008a 0. 34 20 [6]

GaS 0.28 ± 0 .0 5 2 .1  ± 0 .0 5 2 .3  ± 0 .5 [10]

SiC 0.22 ± 0 .0 5 1 .8  ± 0 .0 5 1 .3  ± 0 .5 [10]

With 12 constrained to be 5%o.

The application of an electric field should cause an increase in the 
amount of positroniums formed, because of the acceleration of any free 
low-energy positrons present back into the Ore gap. This has been 
found to be true [17]. Several polyatomic gases failed to show any in
crease in yield, probably as a result of large inelastic scattering cross- 
sections with excitations of low-lying molecular levels. In other words, 
here positrons have a short mean free path. Hence the average scattering 
cross-section of positrons in some gases can be estimated, for example, 
for He, Ne and A we have a = .023тгад, 0.12 тга̂  and 1.5 гга̂  respectively.

In alkali halides positrons appear to decay through at least two dif
ferent processes [18]. The first component ~ 2X  10-10 s is conceiv
ably due to positrons which annihilate when free. The second component 
which occurs with an intensity I2 between 25% and 85% is characterized 
by a mean life r2 ~ 4  to 8 X 10~10 s. The annihilation rate X2 is connected 
with the molecular density n within each halide series according to the 
relation X2 = X0 + cm- -̂0 decreases on passing from fluorides to bromides
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and a turns out to be simply proportional to the square of the radius of the 
negative ion. The r2 component is sensitive to the application of a static 
magnetic field; the magnetic quenching, however, is appreciably lower 
than what would be expected if one attributed this component to the decay 
of free triplet positronium atoms. Theoretical arguments against posi- 
tronium formation in alkali halides have been advanced [19]. It has been 
suggested that the T2 component is due to the formation of compounds 
such as Cl (e- e+). Table V represents some data on alkali halides. 
Various other data can be found in the article of Wallace [4]. Sometimes 
in these decays a third component is seen. The decay in liquid He has 
also three components, but is very little understood [20].

Let us now turn to the origin of the t 2 component. Any process 
whereby the two-photon annihilation replaces the longer-lived three-photon 
annihilation and contributes to the t2 component is called 'quenching' [21]. 
Here various mechanisms operate: unpaired electron exchange, angular 
momentum reorientation, chemical compound formation, pick-off and 
spin reversal by internal magnetic fields. One can also induce quenching 
by applying external magnetic and electric fields.

The quenching effect was discovered quite early [1]. Addition of 
small amounts of paramagnetic gases like NO, N02 or 02 in inert gases 
argon and freon, or alkali metals in ammonia solution, or paramagnetic 
ions in aqueous solution shows a large change in t 2 from that charac-

TABLE V. LIFETIME DATA ON ALKALI HALIDES [18]

Halide n x  10‘ 22 t , x IO10 s тг x 10”  s 12» ] т3 X 109 s i s№]

LiF 6.04 4. 02 ± 0.21 70 t  15 2 .7 0.8

NaF 4.00 5.05 ± 0.35 49 ± 5 2. 5 1 .4

KF 2.57 6.20 ± 0 .4 0 33 ± 7 2 .7 0 .4

CsF 1.42 7.60 ± 0.21 46 ± 5

LiCe 2. 94 1. 8.± 0.6 4.25 ± 0.25 30 ± 10

NaCl 2. 23 1. 6 ± 0. 8 4. 96 ± 0 .24 52 ± 15 2 .0 0 .9

KC1 1. 60 2 .2  ± 0 .9 6.07 ± 0.12 50 ± 15

RbCl 1. 37 2 .2  ± 0. 9 6.27 ± 0.19 31 ± 10

CsCl 1.42 1. 6 ± 0. 5 6. 39 ± 0.18 25 ± 4

LiBr 2.40 4. 58 ± 0.20 55 ± 10 3.6 1.0

NaBr 1. 87 5.56 ± 0.20 34 ± 7 3. 6 0 .8

KBr 1.39 6.73 ± 0.22 37 ± 7

CsBr 1.26 6 .5 4  ± 0.38 31 ± 4

Nal 1.48 5.11 ± 0.18 61 ± 9 3 .3 1.2

KI 1.13 6.40 ± 0.21 43 ± 7

Rbl 1. 00 6. 36 ± 0.18 56 ± 15 3.9 0.2

Csl 1. 05 6.36 ± 0 .29 25 1 4 3 .9 0.8
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teristic of pure argon, freon, ammonia or water, respectively. The 
free unpaired paramagnetic electron can quite easily be exchanged with 
the electron in positronium, converting the triplet into the singlet state.
The cross-sections are large, ~ 10 -16 or 10' 15 cm2 . In 0 2 both the outer 
electrons of the 3£g ground state can be exchanged, the molecule re 
maining in the triplet state but with a changed orientation in space. The 
quenching cross-section of Cl2 is also high, about 1 0 ' 16 cm2, probably 
owing to a compound formation, as shown by the absence of any effect 
of an external magnetic field. The similarity with the alkali halides may 
be noted.

In most other substances, particularly with all their spins paired up, 
the t 2 decay occurs through pick-off. During collisions of ortho- 
positronium with atoms and molecules, the positron finds itself in a 
region of high density of electrons, and picks up one electron of the cor
rect spin to form a singlet combination, which annihilates. This mode 
of decay accounts for the r2 component in inert gases and other molecular 
substances. The cross-sections are about 10-20 to 10-19 cm2 . Spin re
versal may also occur because of internal magnetic fields or spin-spin 
interaction, but the cross-section is quite small compared with those 
of the other processes.

3. 2. Angular correlation studies

If the electron-positron system were at rest, the two 7 -rays would 
come out exactly opposite and could be detected by two counters in a line 
on the horizontal plane. The positron in the solids has very low momentum 
during annihilation. However, electrons in atoms will generally have 
momenta ~ m e /137. Electrons in metals have all monenta up to the Fermi 
momentum. Hence the annihilating pair will have generally a finite 
momentum, and the two 7 -rays will come out at a certain angle. One of 
the counters can be moved up or down from the horizontal plane and the 
coincidence curve will measure the number of pairs having a certain 
component of momentum along the vertical z axis.

The angular distribution curves for metals can be divided into two 
types [22]. The first type consists of simple metals like Li, Na, K, Cs,
Ca and Al. Here the curve is almost, but not quite, an inverted para
bola with a sharp cut-off at the Fermi momentum kF and a small tail 
beyond it. Now, according to the Sommerfeld theory, the angular corre
lation curve will be a simple inverted parabola. If P(I?) denotes the 
probability of an electron of momentum к (neglect positron momentum), 
the observed curve is

The tail is attributed to the annihilation with the core electrons and in 
part to the electron-positron interaction. The surprising feature is that 
the angular correlation curves seem to follow the prediction of the free 
electron theory so well, while the lifetime measurements manifestly 
require the consideration of the electron-positron Coulomb interaction.

2?r(k| - к2) for kz5kЮ Г  2 — ivp

for kz l  kp
(9)

0
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Since this experiment measures the momentum component along a 
definite direction, any anisotropy of the electron momentum distribution 
due to the Bloch character of the metallic electron should show up [23]. 
Metallic single crystals have been studied to detect these anisotropies 
in the Fermi surface (Fig. 4). These measurements may sometimes be 
used to make estimates of the band gaps at the Brillouin zone boundary.

The angular correlation curves of the second type of metals com
prising Cu, Ag, Au, the transition and rare earth metals, start off at 
the centre like a parabola, but have a relatively large tail. A substantial 
fraction of the annihilation must be occurring with the d-electrons and 
the core electrons (Fig. 5).

Be Na

0 .2 A t  .8 1.0 12 1.4 1.8 1.8 iO 2.2 2.4 2.6 2.8 ЗЛ 3.2 3.4 3.8 3.8

ELECTRON WAVE VECTOR. K, IN Ä

FIG. 4. The angular distribution o f photons arising from annihilation with electrons in Be single crystals for 
three different crystallographic orientations. Also shown is the angular correlation curve for Na metal and 
the estimated instrument resolution (after Stewart, A .T . ,  Shand, J .B ., Donaghy, J .J ., Kusmiss, J .H ., 
Phys. Rev. 128 (1962) 118).

Another method of presenting the data is to plot the slope of the 
angular distribution curve 124]. This, by Eq. (9), should be a straight 
line with a sharp discontinuity at the Fermi momentum; above kp , the 
slope vanishes. Actually, at finite temperatures the triangular shape 
is somewhat smeared out. The results of the first category of metals, 
l'"":ever, show a fairly sharp fall-off at kF, while the metals of the second 
type do not show the fall-off so clearly (Fig. 6).
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FIG. 5. Decomposition o f N j (0 )  in Fe into a conduction band (1) and a 3d band (2) contribution. The 
predicted p (0 ) and the experimentally observed p(6) (cross points) are shown (Berko, S ., Zuckerman, J . , 
Phys. Rev. Letters 13 (1964) 339a)).

SPECIMEN TEMPERATURE (*K)

FIG, 6. Effective temperature o f  positrons in Na, Rb. Assuming thermalization (linear portion), the slope 
gives the effective mass rn£. At low temperature, thermalization does not occur (Stewart, A .T .,
Shand, J .B ., Kim, S .M ., Proc. phys. Soc. London 88 (1965) 1001 and Kim, S .M ., Stewart, A .T . ,  
Carbotte, J .P ., Phys. Rev. Letters 18 (1967) 385)).

Angular correlation in alkali metals and mercury has also been ob
tained in the liquid state [24, 25]. This is a convenient method for studying 
momentum distribution of electrons in liquid metals. At high tempera
tures, however, the motion of positrons should be considered.

In Si and Ge, the angular correlation curves show similar anisotropies 
and can be understood roughly by taking into account the Bloch character 
of the electrons [26]. Data also exist for alkali halides [27]; the effect 
of the positive ion is found to be rather small, and there are charac
teristic variations with the halogen ions. The interpretation of these 
curves is rather difficult, since the exact nature of the positron-halogen 
binding is not clearly understood.
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3.3. Polarization of electrons in ferromagnets Г281

Since positrons fromß-decay are longitudinally polarized and retain 
most of the polarization while slowing down in metals, they can be used to probe 
the polarization of electrons in ferromagnetic materials. Several such measure
ments have been performed. Positrons are collimated by circular apertures be
fore they strike the ferromagnetic sample. A strong magnetic field is used 
to saturate the sample parallel ( f ) or antiparallel (I) to the incident posi
tron momentum. Because of polarization, the probability of singlet 
overlap is changed from 1/4 to| (1 T Pe Pp ). Pe and Pp are the electron 
and the positron polarization, respectively. Similarly, the triplet overlap 
is changed to|(3± Pe ). The experiment now measures

The explanation of these measurements is unfortunately somewhat model 
dependent, particularly because of the poor status of the theory of ferro
magnetic metals. However, the shape of p(0) in Fe can be interpreted 
to imply a conduction band polarization opposite to that of the d-electrons.

4. THEORY OF POSITRON ANNIHILATION IN METALS [29]

We have noted the failure of the Sommerfeld theory of free electrons 
to explain the lifetime in metals. To incorporate the electron-positron 
interaction, Ferrell [19] computed the first-order correction to the wave- 
function of the annihilating pair, using the perturbation method on a 
screened Coulomb interaction. His results indicated a correction in 
the right direction. Since then the entire theory has been worked out in 
detail with the techniques of the many-body theory by Kahana, Carbotte 
and others. Some progress in real metals has been achieved. The 
results are in good agreement with the experimental observation.

To understand Kahana's work, consider the positron interacting 
with the electron gas. First we want to treat the two-body correlations 
of an electron and the positron accurately. One must, however, take into 
account the effect of the Pauli principle and the screening of the Coulomb 
interaction, because of the other electrons. So we write down the 
Schrödinger equation for the pair, but in momentum space, where the 
above restrictions can be conveniently handled. Since the positron has 
negligible momentum, the entire momentum comes from the electron; 
put I?p = 2 ia . The equation reads

The prime on the integration sign indicates the restrictions of screening 
and the Pauli principle. The latter demands that the electron go outside 
the Fermi sea before interacting in an intermediate state with the positron. 
Momentum consideration gives

Nf(fl) - N1(6) 
Pl ; N f(0) + N4(0)

(10)



POSITRON ANNIHILATION 843

The Screening can be accounted for by demanding that the relative 
momentum transferred in the pair collision satisfy

| £ -£ '| * k c (12)
where

kc = 0.470 r* kF (13)

Eq. (10) is now brought into a more manageable form by concentrating on 
the distorted part u(I?) of the wave function. Write

Ф (It) = 6 (k -"a) + fu(lc) (14)

or  k' = a (forward Scattering) (11b)

The 6-function represents an initial plane wave of relative momentum 
st = |T?e, and f = 4?r ( 2 tt) -3  a“l . Equations (14) and (10) give

U(k) = (k2  ̂ a2) |s?-S|a + k2 - aa ’ / d3k' (15)
-J,

|k' + a I £ k P

The denominator is non-singular because of the restrictions on momenta.
Eq. (15) is valid for |Ic - 's .|ёkc . When [It -~a | § kc, u (k )=0 .

As the restrictions on the momenta are quite complicated, Kahana 
had to carry out a good deal of numerical work. However, some features 
are easy to see. For a = 0,

«<“> ■ i s & f  л '
к ’ a  kp 

|k’ - к I > kc

u(k')
|I? - К ' (16)

The perturbation solution consists of iteration in Eq. (16). So to the first 
approximation u = l /k 4. The configuration space wave function is then

00
T("r) = J  Ф(к)е1к 1 d3k = 1 ^  s n̂ kr (17)

kF

The second term represents a concentration of electrons about the position! 
of the positron. If we now assume that the annihilation rate does not vary 
very much with the electron momentum, one can compute the enhancement 
over the Sommerfeld rate given by Eq. (14).

T(0)|2 1 + 2
тга о kF 1 + 2rs

6.02
,2

(18)

This was, in fact, the result of Ferrell [19].
The above approach overlooks an important aspect of the pair inter

action. Actually the force between the positron and the electrons is
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crudely represented by a static potential. One ought to include the re
tardation effects in interaction, and the way to do it is to consider the 
dynamical dielectric constant of the electron gas.

We shall only give the outline of the Kahana-Carbotte approach. The 
calculation of the annihilation rate reduces to an estimation of the electron 
density at the positron averaged over all the positron positions, that is, to

n =У<(//+(3)0(з?)ф + (х)ф(5?)> d35? (19)

cp(x , t) is the Heisenberg field operator for the positron at time t and 
position, x, while ф(х, t) is the corresponding electron field. The ex
pectation value is taken in the fully interacting ground state for the system 
of electrons and positrons. Once Eq. (19) is known we get the annihila
tion rate R by comparison with the known density and rate in positronium

4  ^  Positronium (n/r Positronium ) = Xn (20)

X = rRPositronium /ПPositronium (21)

The factor! arises from the spin averaging, when we remember that 
annihilation into two у-quanta takes place from the singlet state.

The quantity (19) is related to the electron-positron Green's function

Gep(xy; x'y')= (-i)2<T(^(x)cp(y)cp+(y)(//+(x))> (22)

Then

n= (-i)2 / d3x lim G_n (x , t, x , t; x , t 'x , t ' )  
J  t '-»t+o p

(23)

If the positron were uncorrelated with the electrons (Sommerfeld theory), 
we would have

(25)

Gep(xy; x 'y ') = Ge (xx')G p(yy') (24)

where

Ge (хх ')= Н )< Т (| И х)^ (х '))>

Gp (x,x')= (-i)<T (cp (x)cpt (x'))>

In the presence of interaction, we have an integral equation for Gep(xy;x 'y') 

Gep(xy; x 'y ') = Ge(xx ')G p(yy') + (-i) J d? dp d ? ' dp'

X Ge(x5)Gp(yrj)I(fr);f'i7')Gep(5V; XV ) (26)
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The interaction I will contain the polarization part, so we can, to start 
with, put I = u(x-y) where u satisfies another integral equation:

u (x -y )  = v ep (x -y )  + (-i)  / dz d z 1 v ep (x -z )  G e (z z ' ) G p ( z  z ' ) u  ( z ' - y ) (27)

vep (x-y) = -v ee , where vee is the Coulomb interaction between the 
electrons. We may neglect the self-energy parts on the propagators 
here, and solve Fig. (27) by using Fourier transform

u(x) = (2tt)4 d к d u e ik  • x -  iw t uk(u) (28a)

(2тг)4
, - *  , ik -  x -  iw td к d to e vk>

4тге4
k2 6 (to) (28b)

G°eW  1(2тг)4к d к dto 6
ik *  x  -  i c j t

кгк-
to + ek + ip (2tt)4

—> pdk dto
ik  *x -  i cut

k<kp
-to + ek - ip (28c)

We obtain

Qk (w)

uk(w) = vk/e (k ,to), 
1

e (k,to)= 1 + 2vkQk(to)

(2tt)4, d q* d e _> (to + e) G^(e)
q  + k  q

(29)

e(k,to) is the frequency dependent dielectric constant of the electron gas. 
In the limit of high density the correlation correction becomes

h.d. _ 2 i X 
n " (2тг)б d к dp dto 

2 7Г

Uk( Ц)
ek -to - ip

8( |p- к I - kF) 6 (kF- p) 
ep - eP-k -w + ip

в (kF - |p-i?|) e (p- kF) 
ep - ep - к - U - iP p= 0+ (30)

The calculation now proceeds numerically. Various other corrections, 
such as self-energy effects, have been investigated. On the whole, the 
rates calculated by Carbotte and Kahana agree with the experimental 
results.

If we omit the j?-integration in Eq. (30) we get the momentum- 
dependent annihilation rate, that is, this is the probability of annihila
tion with a total momentum j?. From this, the angular correlation 
can be computed. The positron's Coulomb force leaves the break at the 
Fermi surface unaltered [33] but has other subtle effects. The angular 
correlation curve bulges out significantly from the free electron para
bola, and there is a small residual tail.

Annihilation with the core electrons has been estimated for simple 
metals. Since the positron is repelled by the nucleus, its wave function 
in the core region is small, and its Coulomb force is counteracted by 
the nuclear Coulomb force. Hence the core annihilation is small. This 
remark does not apply to the d electrons in the transition metals.
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The total charge attracted by the positron must be unity [30]; 
Carbotte has calculated the charge distribution around the positron. It 
has a smaller amplitude at the centre than at a heavy impurity, but it 
extends further, with weaker Friedel oscillations. Annihilation in real 
metals is now under study by Carbotte and collaborators. For metallic 
sodium, the crystal field has a small effect.

5. THE EFFECTIVE MASS OF THE POSITRON

The problem of the determination of the effective mass of the positron 
has not been completely cleared up yet, but much progress has been 
achieved on the experimental side.

5.1. Definition of the effective mass nrj: [31]

The operational definition of the effective mass m* is based on an 
analysis of the temperature dependence of the angular correlation curve 
of the tw o-у -annihilation. Theoretical calculations show that the positrons 
are thermalized before annihilation, if the temperature of the metal is not 
very low [32]. In practice the temperature above which thermalization 
occurs is roughly the Debye temperature. We shall discuss the problem 
later but assume thermalization now. Since the annihilation rate is 
practically velocity independent, the final momentum distribution g(p?) 
for low concentration of positrons can be taken to be a Maxwellian 
characteristic of the temperature T of the solid;

where kB is the Boltzmann constant. This equation defines m$ .
For simple normal metals the angular correlation curve for two-

7 - ray annihilation manifests a sharp break at the Fermi momentum in 
the limit of zero temperature. Despite strong Coulomb interaction of 
the positron and the electrons this break can be shown to persist, at least 
to all orders of the perturbation theory [33]. At non-zero temperatures, 
when the diffuseness of the Fermi surface due to electronic momenta 
is still negligible, the finite momentum of the positron will cause the in
tensity of the 7 -rays to rise at the Fermi momentum above that expected at 
zero temperature. This rate of rise is proportional to T 5 and is quite 
different from that due to other effects, such as mean free path or thermal 
expansion, which will be proportional to T or higher powers of T.

The probability that the 7 - rays have a momentum Kz in the z direction

where p is the Fermi energy of the electrons, and X is a constant de
pending on experimental conditions, source strength, etc. We assume 
a free electron model and a spherical Fermi surface, so Ep = pZ/2m. 
Eliminate X by taking the values of P(KZ) at Kz = kF where the positron 
effect is maximum and Kz = 0, where the geometry is well-defined and

g(p) = ex p (-p 2/2m* квТ)/(2тгт* kßT)5 (31)

is given by (see Eq. (9))
t - ( K - p ) ! / 2 m * k B T]

(32)
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the intensity large . This gives

P(kF)/P(0) = 'm* t V  
mTF )

1_ m* T 
4 mTF + 0 (T*) (33)

Consider next extraneous effects of the mean free path and thermal 
expansion. The mean free path contribution is calculated by determining 
the momentum distribution of the electrons in the presence of a small 
concentration of impurities and finding P(kF)/P(0) for zero momentum 
positrons. The effect of thermal expansion is easy to estimate for 
spherical Fermi surfaces, where the expansion simply causes a decrease 
in the Fermi momentum. Putting these corrections together, we obtain

P(kF) _ 1 / m$ T 
P(0) яЗГ \ m TF

1 m?T 
4 m TF

, fiUF
7rkgTF 1

Q

T

a(T')dT' (34)

Up and 1 are the Fermi velocity and the mean free path, respectively, of 
the electron, and a is the linear expansion coefficient. Since 1 varies 
inversely as T and a is constant or varies with higher powers of T, the 
correction terms are small at low temperature. A good check on the 
assumption of complete thermalization of the positron will be obtained by 
actually noting the T  ̂ behaviour.

The experimental requirements are as follows. To avoid complica
tions in thermal expansion, the Fermi surface should be nearly spherical. 
The metal should have high T m / T f and 0 d / T f to maximize the positron 
effect and minimize thermal expansion ( T m  is the meeting point, 6 d  is 
the Debye temperature), but ( T m  - @ d ) should be large so that thermali
zation of the positron occurs over a large range of temperature. Finally, 
it should be a good conductor. The metals suggested are

t m° k 0D°K TF /T M 0d/ tf

Li 459 363 120 0.62 X 10'2
Na 371 150 100 0.41 X 10'2
К 337 100 71 0.42 X 10'2
Rb 312 58 67 0.28 X 10"2
Cs 301 42 60 0.23 X 10"2
Caa 1124(740) 230 49 (73) 0.42 X 10'2

(Ca has a transition at 740°K, which limits the temperature range)

5. 2, Theoretical computation of m‘j[34]

The effective mass of the positron will be changed from the bare 
value because of two effects. First, the positron moves in a periodic 
potential of the solid; this we call the 'band effective mass'. Secondly, 
it interacts with electrons and phonons in solids; these may together be 
subsumed under the 'many-body effective mass'. The phonon part is 
small: the electronic part is the major contribution to m*as measured
by the experiment. The positron forms a dressed complex with electrons 
that screen out its long-range Coulomb field. In thermal equilibrium 
with the solid at temperature T, it has the same momentum distribution
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as a classical particle of mass mf. The band effective mass is of indirect 
significance. The above picture regards the positron and the electrons 
in metals as free particles. While for conduction electrons in alkali 
metals such a picture is justified by both theory and experiment, this is 
not a priori evident for the positron without an examination of its band 
structure. If the positron near the bottom of the ground-state band has 
an effective mass close to unity, our assumption about its free character 
is justified. This is indeed true, for the band mass in metals turns out 
to be essentially unity.

For the band effective mass we use the classical Wigner, Seitz, and 
Bardeen [3 5] method. The potential V seen by the positron in a unit cell 
is a weak repulsion, the resultant of a nuclear repulsion screened out 
over most of the volume of the unit cell by the electron is attraction. The 
wave function of the positron for the state of wave vector к is written 
as

ф^(г) = elk 1 [u0(r) + ilc-rv(r)] (35)

Writing

u0(r)=R /r, v(r)= (P /r2) - (R /r )  (36)

the equations satisfied by R and P are obtained from the Schrödinger 
equation

2
^У г + | г  (Eo -V (r)]R =0 (37)

0 - | r P +^ - ( EO-V(r))P=O (38)

The boundary condition to determine the ground state energy E0 is

(du0/d r)r =0 (39)0

at the cell boundary r 0. For P the scale factor for the solution non
singular at the origin is fixed by

v(r0 ) = 0 P (r0) = r0R(r0) (40)

We integrate (37) and (38) numerically and the energy obtained is

Ei T  E°
+h V
+ 2m* (41)

which gives m* directly. Table VI represents some results.
We may therefore ignore the band structure altogether for calcu

lating the many-body effective mass m .̂ First take a static model, that 
is, consider the electron-positron interaction to be a screened, short-
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TABLE VI. EFFECTIVE MASS m* FOR POSITRON IN METAL

Metal rs
Band mass 

m * /m
Many-body 
mass m * /m

Experimental 
value m * /m

Li 3. 27 1.13c

1- 15C1 j

1.8

Na 3. 97 1. 06a, 1.05b 1 .12a Kt. 6d
1 .18CJ

1.8  ± 0 .2

К 4.95 1 .19c 2 .1

Rb 5. 30 1.20° 2 .3

Cs 5.71 1.21c 2. 5 (?)

Ca 3-25 1. 09b 1. 13C 1.8

(a) Reference [34(a)] and [34(c)]

(b) Reference [37]

(c) Reference [34(b).]

(d) Reference [34(e)]

ranged Yukawa potential. Calculate the second order perturbation energy 
with a positron of momentum p interacting with the Fermi sea of electrons.

E(2) = £  I V(q) I2/
к skp 

|k+"q I akF

_E l . j E l  (P - q )2 (k' + q)a\
V 2 m  2 m  2 m  2 m  J  y 1

Here V(q) =-47re2/(kj + q2 ). The electron-electron interaction is taken 
into consideration through the screening wave vector ks . Using the fact 
that |"p| is small, we obtain the terms in p2:

4Q,2r~2
E P ~ 2m Зтг2

q  ̂ i r f - ln(1+q)
dq

q2+i k?Ti 1+1 Л . £ 1 \ п |±9
qV 4 J 2 -q

+J dq
2

q Jin q + 1 2q 
q - 1 q2 - 1

„ , 1 , 2 Я2 +^ kFT 1+1 Л . Д 2) 1пл ± |
q V 4 J  q - 2

(43)

Here a= (4/q7r)s and kpj is the Fermi-Thomas screening wave vector.
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The second-order contribution comes out to be negative, so m* is larger 
than one

р2/2 т *  = p2/2m + E ® ß )  (44)

One ought to point out that the term in p2 is just the leading term, but 
there are other non-analytic terms of the type p4 In p, so that a series 
expansion in powers of p is not strictly valid. It is only in an asymp
totic sense that the effective mass can be defined. Using Eqs (43) and 
(44) for rs = 3.97 in Na, one obtains m j = 1.12m.

The interaction experienced by the positron, as we have seen above; 
is not really static, and one should consider the dynamic response of 
the electron gas. We therefore consider again the bare Green's function 
of the positron

Gp (к , u) = (ш - i6) (45)

and the full Green's function with interaction

Gp(k,u)= '£_>■£ (k, u)к (46)

L (k,u) is the self-energy of the positron and

Gp(k,u) = Gp(k, u) + G°(k, w) £ (£,u)G p(k,w) (47)

The infinitesimal imaginary part 6 in Eq. (45) is always positive as the 
Fermi energy of the free positron may be taken to be vanishingly small. 
Including the dynamical response function e(lc, u), the self-energy L is

E(k,u>)= J  d3q dW G°(k - q, и - u ')v(q)
€ (?.<*>') -1

2 /2where now v(q)= 4?re /q . We can write

(48)

v(q) - J — г - Л Л  r d t|im _ ^ a L .e(q,u) J 7rJ e(cf,t)
0

1 1
w - t + i5 w + t - i6

and after the u' integration

w) = - ^ 4  J  d3 q J  dt
о

e (q*,t) 1 _*-t + i6
к - q

The quasiparticle energy, to a first approximation, is given by

Ek = ek +Re E(k, ek)
00

= ek f  d3q P f  dt llm ^4^ - | ------ 1k 8tt4J 4 J 1 e(q,t)' ek -e£V?-t
0

(49)

(50)

(51)
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The calculation from here on requires some care, because of the loga- , 
rithmic terms we described above. Hamann has carried out the nu
merical work and finds m*= 1.15 m in Na. Estimating exchange and 
other corrections in e(k,u), he maintains that m*<1.18 m in Na. Table VI 
represents the results. Hamada and Nakamura showed that the rela
tivistic effects did not change this result.

Recently Mikeska has studied the positron phonon interaction and 
found that the momentum distribution of the positron has a part pro
portional to l /p 4, besides the usual Gaussian of Eq. (31). This long- 
range part dominates for p > 0.2 kp where kp is the characteristic Debye 
wave vector of the solid, and may raise the effective mass in Na to 
about 1.6 m.

5. 3. Experimental data

The experiments on m* measurements have been carried out by 
Stewart and Shand [36], and Stewart, Shand and Kim [37]. Actually they 
find it difficult to verify Eq. (34) and use a different analysis with the 
assumption that the extraneous effects are small. In the first experi
ment on sodium Stewart and Shand observed the angular correlation 
curves with the specimen at temperatures 110°, 300°, 400° and 600°K.
These were fitted by a convolution of a free electron momentum distri
bution with a Gaussian function for resolution (cf. Eq. (32)). The reso
lution consists of two parts, an optical part determined by the apparatus 
geometry and a part due to the positron motion. The instrument resolution 
is separated out. Then the data are plotted in the slope method against 
temperature, the fitting being done by a variable effective temperature 
Teff in the Gaussian (with m* = m). Assuming complete thermalization 
Teff is the actual temperature and the slope then gives the effective mass
[36] (Fig. 6)

m* = (1.9 ± 0.4) m.

Stewart, Shand, and Kim repeated their experiments in several other 
metals, and the values quoted in Table VI show that they are quite high 
compared with the computed values.

Continuing their experiments they discover [39] that positrons are 
not always termalized before annihilation. At high temperatures, the 
observed effective temperature is linear with the specimen temperature.
The linearity is taken as good evidence of thermalization and then the 
data can be appropriately characterized by an effective mass. At low 
temperatures the linearity is lost, and positrons do not appear to thermalize. 
Assuming as before a Boltzmann distribution (which is, however, not true 
for unthermalized positrons) the analysis of these measurements yields 
a positron effective temperature of about 160°K at the lowest temperature 
for Na. Similar results are given in Table VII.

5. 4. Thermalization time [32]

The thermalization time was calculated by Lee-Whiting by assuming 
an interaction of the form e2 exp(-ksr ) /r  between the electron and the 
positron. In recent re-examination of the problem Carbotte and Arora
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TABLE VII. MINIMUM POSITRON ENERGY

Metal T°K eV

Li ~  200 ~  0. 017

Na 160 ± 50 0. 013 ± 0. 004

к г о о -  0. 008

Rb ~  60 ~  0. 005

have derived the same formula for the rate R of energy loss 
(for ft2k2 /2m = E « E F)

R. = i “ P “ E F(k /ks) (52)

where

F W - f 5 - f + ( 4 - | 5 ) l n ( 1* 4 x * )L

For small k,

__1_ 16 e4 k6
K ~ 3 tt 35 ft k4

18 - 2x2 tan 2x (53)

(54)

An essential difference is that the Thomas-Fermi screening parameter 
крт replaces the semi-phenomenological screening length used by Lee- 
Whiting. The resulting thermalization time increases considerably 
because of the strong k‘4 dependence. Also R depends sensitively on the 
temperature through the cube of the positron energy. Numerical esti
mates show that, while in metals at high temperatures the thermalization 
time is much shorter than the annihilation time, at low temperatures 
positrons may annihilate prior to complete thermalization. For example, 
in A1 the positron would fall to 0.01 eV (~120°K) in a time 4X 10'10s, 
which is about twice as long as the annihilation time.

6. THEORY OF PARAMAGNETIC QUENCHING [14]

The long lifetime t2 arises by quenching, and we have discussed the 
various processes involved. Recently we have made some progress in 
the calculation of paramagnetic quenching, with alkali atoms acting as
quenching agents in liquid ammonia [39].

A theoretical calculation of the triplet to singlet conversion in col
lisions of orthopositronium with atomic hydrogen was given by Massey 
and Mohr [14], using the Born approximation. Since the alkali atoms are 
hydrogen-like, we can illustrate the calculation in these systems by 
this simpler example.
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The total Hamiltonian describing the collision of positronium and the 
hydrogen atom is

P2H= ^ -  +
->2 -»2 

2m 2m 2m
Ё1
J~1

_
Г2

ez
I? - rt (55)

The subscripts 1 and 2 denote the two electrons; (r, are the co 
ordinate and momentum of the positron. The origin of the co-ordinates 
is taken at the proton, and recoil effects are neglected. To describe 
the scattering it is convenient to utilize the formulation described by 
Goldberger and Watson [40]. We decompose H into the incident channel 
Hamiltonian when electron 2 is in the hydrogen atom:

К =-El -0 2m

H =Kc+ V (55')
2 2 2 оe_ + £ _  + £ l_  .  e 2

r2 2m 2m | r* - i* | (56)

e2 e2 e2 
+ r - + (57)

The incident channel wave-function can be written as

XAU] =
ii?  (7*ь rf)/2

( 27t) t ■$is(|r -  )2XS (2) (58)

Here tpls and cpls denote the ground state of positronium and hydrogen, 
respectively, 3XM(1) is the triplet spin function of the orthopositronium, 
and (2) is the spin function of the electron 2. Since there are two 
electrons in the problem, we must antisymmetrize the wave-function (58):

*aW = 72 txa '  P12 Xal (59)

where P12 interchanges particles 1 and 2. Since in the final state the 
positronium changes into the singlet state, the outgoing channel wave- 
function is

i k '- 0 - T ^ ) /2

Xb = 6"  {2ж)\----------Фь ( Ir - r j )  X̂q (!) cp is (r 2)2XS' (2) (60)

and after antisymmetrization

X A [ b] = (X b “  P l 2  X b ) ( 5 ! )

The matrix element for the transition in the Born approximation can be 
written as (A[b] | V| A[a]), which can be reduced to

(A[b]|v|A[a])=<Xb|v|x0 > - < P 12X b |v|xa > (62)

The first term is the direct term, the second the 'exchange' term. As

1X+(1)2 X+ ( 2 ) 3X M( 1 ) 2XS ( 2 ) = 0 (63)
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the direct term vanishes. Thus we have only the exchange term left 
from Eq. (62). Now

1x£(2)2Xst, (1 )3XM(1)2XS (2)

J 2 ^  65,14

- ' | ( 5s’4, - 6s-t 6 )

&s'i

(64)

corresponding to M = 1, 0, -1. Now define

1 = S elk ' (r + ^  ? is(|^ - r2|) <pls(r2) V (r. r2 , r 2) 

x eik-(t+h)/2 ? ls (I? - ^  I ) ф18 (r2 )d rd r j dr2 (65)

For calculating cross-sections we need the square of the matrix 
element averaged over the initial spin state and summed over the final 
ones.

Y * Y ^ Y  K °S'lTexlMs>|2 4 ‘ (Й)Н1|2 (66)
s '  s M

The problem is to calculate I, which is an extremely complicated many- 
centre integral. However, if we assume that positroniums are thermalized, 
only s-wave scattering is important, as ka0<£ 1, k'a0«  1. A good ap
proximation for our purpose may be obtained by calculating I for к = к1 = 0. 
We get

I = -2тге2а2 X 3.75 (67)

The differential cross-section for ortho-para conversion is then

d£ .  (2тг)4 Г d3kf
dfl hVj J dO Ul ef (2>r) (68)

= 14.1a2
—>

Here we neglect the triplet-singlet energy difference and put kj = kf • S0

<jq 56.4 л- a2 (69)

A more exact calculation by Fraser gives 34л-а| and shows how the 
cross-section falls off with energy.

One can go on to the quenching action of alkali atoms, treating each 
atom hydrogen-like. Intuitively we should replace the scattering integral 
I by a corresponding integral involving the outermost alkali orbital ф{r)

e2 Ф^г*- r 1|) /̂(r2)dr drjdn.

(70)
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A more thorough investigation for the problem with the Li atom has been 
done again in the Born approximation. Besides Eq. (70), which indeed 
gives the dominant contribution, there are contributions from two kinds 
of terms. First, the screening of the nuclear charge by the inner electrons 
has certain exponential terms in the interaction part. Second, there are 
contributions when some inner electrons are also permuted -  the so-called 
rearrangement terms. These are found to be small. For Li and Na in 
liquid ammonia we have found the quenching cross-section at zero mo
mentum transfer to be

aq(Li) = 5.9X 10'14cm2

aq (Na)= 7.2X10'14 cm2 (71)

The quenching process for these systems has not been studied accurately, 
but the order of magnitude seems to be correct.

We have now also calculated the quenching cross-section for the 
oxygen molecule [41]. A difficulty here is the enormous complication 
of the ground state wave-function in the oxygen molecule. Fortunately, 
by rephrasing the Born approximation as a variational calculation, we can, 
to first order, avoid the complications of the internal wave-functions, and 
use quite simple molecular orbitals. The quenching cross-sections for 
low concentration of O2 is found to be

aq(02) = 3.56X 10'16 cm2 (72)

This is in fair agreement with the experimental data. Much still remains 
to be done in this area of investigation.
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Abstract

A short historical and general introduction is followed by the thermodynamical explanation of the 
disturbance of superconductivity by high m agnetic fields and of the occurrence of an interm ediate state. 
Meissner's effect and London's equations are discussed. The introduction of an order parameter is advocated 
as well as the Ginsburg-Landau refinem ent in which such a parameter receives a com plex character as w ell 
as spatial stiffness. The value o f the G -L formalism for interpretation o f the mixed superconductive state 
and its properties is explained. After the general im portance o f the energy gap in superconductors and of 
the В. C . S. theory has been stressed, a few applications, in  particular of type II superconductors in the 
mixed state, are m entioned.

1. Superconductivity of m ercu ry  was discovered by Kamerlingh Onnes 
in 1911 [1] as a direct consequence of the liquefaction of helium in 1908. 
The first experim ents w ere carried  out on Sn, Pb and Hg, all "soft"  
superconductors. There is a very sharp transition tem perature Tc (F ig . 1). 
Superconductivity is disturbed by an external magnetic field (see Ref. [2])

HC~ H C( 0 ) ( 1 - T 2/ T C2 ), (1)

or by an e lectric  current as soon as the magnetic field see (F ig . 2) caused 
by the current is equal to Hc (Silsbee's rule). In the periodic system  of 
elements there are  two separate groups (F ig . 3) of superconductors: nine 
elements, among which Al, In, Sn, Hg, Pb, the so-called  soft super
conductors, and sixteen "hard" superconductors, among which V, Nb, La, 
Те, U. Sometimes different modifications of one element (L a , Hg) are  
superconductors; Bi becomes a superconductor under very  high p ressu res. 
Many m etallic compounds, among which CuS and BiAu2, are also super
conductors. Compounds of the ßW structure (Nb3 Sn, V3Ga, Mo3 Ir) have 
the highest critica l tem peratures (up to about 20°K) and can also stand up 
to the highest magnetic fields.
2. At Tc there is no heat of transform ation but m erely a jump in the 
specific heat (transition of the second ord er). The disturbance of super
conductivity in a needle o r film by a parallel magnetic field H can be 
explained by simple thermodynamics (Ref. [3]) .  The electronic specific 
heat per unit volume (Figs 4a, 4b, 5a, 5b) in the norm al state Cn = yT and 
in the superconducting state at T > Tc / 3 ,  is Cs = З-уТ3/ Т 3 . This gives at 
H = 0 for the difference of the free energies per unit volume:

c

As a consequence of a longitudinal magnetic field H, Gs =FS + H 2/ 8 tr.

( 2 )

857
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F IG .l, Specific resistance o f  superconductors, rather pure p and impure normal conductor ip, as a function 
o f  temperature

FIG. 2. Critical magnetic field Hc separating superconducting and normal state. The critical field as a 
function o f temperature is approximately a part o f  a parabola with its top at T = 0

Io Па Ша BZa2a Шо 20a ГЬ ПЬ шь т m>ШЬ VllhSD

H He

Li Be в с N О F Ne

No Mg Al Si P S CI A

К Co Sc Ti V_ Cr Mn Fe CoNi Cu Zn Go Ge As Se Br К

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd !ü Sn Sb Те J Xe

Cs Bo 4 Ha To W Re Os lr Pt Au Hj д Pb Bi Po At Rn

Fr Ra Ac Th Pa U

FIG.3, The two groups o f  superconducting elements in the periodic system; those with critical temperatures 
above 3eK have been underlined

FIG.4 . a) Electronic entropy S in the normal and superconducting states as a function o f temperature 
b) Electronic specific heat C in the normal and superconducting states as a function of 

temperature
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FIG. 5. a) Electronic specific heat over temperature as a function o f  T 2 for the normal and superconducting 
states

b) Electronic free energy as a function o f  T 2 for the normal and superconducting states

2TC------
(b)

FIG. 6. a) Gibbs free energy G o f a round wire as a function o f a longitudinal--------------------------- and a
transverse---------------- magnetic field H

b) Induction В and magnetization M in a round wire in a longitudinal magnetic f ie ld _________
(superconducting and normal states) and in a transverse fie ld ---------------- (superconducting,
intermediate and normal states)

Consequently, a first-order transition to the normal state occurs at
ЛHe

8  7Г
(F „(0 )-F s (0)) (1 -T 2/T C2)2 (3)

and consequently

Hc ~Hc (0) ( 1 - T 2/T C2) (4)

3. If the sample has another shape or orientation, the transition starts 
at a lower field but ends at Hc (Ref. [4]). If the demagnetizing factor is e 
(= 2л- for a transverse cylinder and = 4л-/3 for a sphere), Gs - Fs is 
Н2/(8 л- - 2e). Thus the magnetic flux enters the body at Hc(l - e / 4 jt) and the 
last trace of superconductivity disappears at Hc , the variation of the magne- 
ization M = (B - H)/4n being linear in H for completely homogeneous samples 
(Figs, 6a, 6b). At the field Hc(l - е/4тг) the local field at the equator is 
equal to Hc. Between that field and Hc the body is in the intermediate state 
consisting of a periodic mixture of normal and superconducting regions.
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The periodicity in this mixture is of the order (i  6)z where £ is the di
mension in the direction of the field, while 6H2/8?r is the surface Gibbs 
free energy of the boundary between the normal and the superconductive 
state (Fig. 7).

FIG. 7. Boundary structure o f  intermediate superconducting state. Magnetic field perpendicular to the paper

4. The connection between the heat of transition at the transition between 
the superconductive and the normal phase is simply given by Clapeyron's 
equation in which p -» H and v -» -M:

dH_c _ 4?r(Sn -Ss) Ä 2THc(0) 
dT H Tc2

while at Tc Rutgers' equation

(5)

(6)

is valid. Both expressions (5) and (6) are in agreement with formula (4).
5. The thermodynamical treatments discussed above assume that the 
transitions between the superconducting and normal states are reversible. 
This was confirmed for very homogeneous samples by the Meissner effect 
(Ref. [5]) according to which, in a transition from the normal to the super
conducting state, the magnetic induction is expelled from the interior of the 
sample; so B = 0. This requires that a thin screening current should run 
just below the surface of a superconductor in an external field. Supposing 
that screening currents just below the surface are carried by n electrons 
with mass m and charge e per unit volume, the current density is jQexp - x/X, 
X being the penetration depth first calculated by Mrs. De Haas-Lorentz 
(Ref. [6]) and being given by

X = m c2 
471 n e9 (7)

where X is of the order of 10'° - 10'° cm while the current density may go 
up to 109 amp cm"2.
6. In 1934 Gorter and Casimir (Ref. [7]) introduced an order parameter 
1-x for superconductivity which goes to zero when T approaches Tc . The
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guessed dependence (Fig. 8) of the free energy density at H = 0 on x and T 
was

= xHcj°). .  I  i T2 
8n 2 7X 1 (8)

For every T the minimum value of Fs is supposed to be realized and this 
value decreases and moves to the right when T increases. The dependence 
on T of 1 - x at the minimum is given by

x = (T /T c )4 (9)

The measured increase of X near Tc led to a marked proportionality of 
1-x and n given in (7), but also other expressions, instead of (8), may 
do rather well (Fig. 9).

FIG. 8. Free energy density as a function o f  disorder parameter x = 1 -  у at five different temperatures. The 
realized equilibrium states are indicated by dots,

FIG. 9. Order parameter 1 -  x as a function o f temperature

7. De Haas and Voogd [8] discovered in 1930 that some alloys can remain 
superconducting up to quite high magnetic fields. Eqs (3). (2), (5) and (6) 
would lead to differences in specific heats that are many times higher than 
those observed. In connection with this it was suggested Ref. [9] that in 
these superconductors may split up into superconductive regions which 
are smaller or thinner than X. So magnetic induction would penetrate into 
these regions and the magnetic term in G could remain much smaller than 
H2 /8 7Г. It remained unclear why in certain alloys (now called type II 
superconductors) this splitting up is possible and not in pure or almost
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pure soft metals. Pippard [10] called attention to the range of coherence 
? in superconductivity. In a pure superconductive metal

?0« 0 .1 8 ^ - e (10)

where rFe is an average velocity of electrons at the Fermi surface, while 
in a dirty superconductor where the mean free path of the electrons 
£ < i 0, the range of coherence f0 K £. It may then be argued that near Tc 
the surface Gibbs free energy of an s-n boundary should be about 
0.74 ?0 [ Tc / { Tc - T) . Н2/87Г. The fact that the magnetic field penetrates
into the superconductor over a distance X= X0( l -T 4/T 4)_1 leads to an 
effective surface free energy term of negative sign of the order of 
-X0( l -T 4/Tc4)"5 . /87Г. If the resulting total surface free energy is
positive, one has the old-fashioned (type I) superconductors, while if it is 
negative one has a type II superconductor in which a splitting up into very 
small regions occurs in high fields. Then this type-II superconductor is 
in what is now called the mixed state. Schubnikov had been stating that 
this new phase occurs in a well-defined field range from Hcl to H^.
(Figs 10a, 10b, 11a, lib ). Later it was found by Cribier [11] c .s . ,  by 
interference of monochromatic neutrons, that the splitting occurs in a 
regular way of quantized vortices in agreement with the Ginsburg-Landau- 
Abrikosov theory (see Ref. [11]).

FIG. 10. a) Induction В and magnetization M in a type II superconductor; b) demagnetization factor e = 0. 
For HC3 see section 12

HCi н са

FIG.11. a) Induction В and magnetization M in a type II superconductor; 
b) demagnetization factor e = 2тг, H
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8. The relation between the magnetic field just below the flat surface of a 
superconducting region and the screening current is given by one of 
Maxwell's equations

4  7T -*  —►—  j = curl h c
together with London's equation (Ref. [12])

curl j

(H )

(12)

h being the local value of the magnetic field. The latter equation may be 
found by eliminating E from dj/dt = n e(Ee/m) and Maxwell's equation 
curl E = - (1 /c  (dh/dt). One then gets

dT (curl j)
n e dh 
m e  dt (13)

and integrating this, taking the integration constant to be zero, gives the 
London equation (12). Taking the integration constant zero eliminates the 
possibility of having a homogeneous magnetic field inside the body of the 
superconductor (Meissner effect).

From Eqs (11) and (12) one gets, taking the surface of the super
conductor in the yz plane and the magnetic field in the y-direction,

where

hy = H0 exp-x/X

cHn /s
К = -Z^r exp-x/X

X = m c 2\  
,4тгп e2/

(14)

(15)

(7)

The Maxwell pressure P at adistance x belowthe surface P = (Hq/ 8гг) exp-2x/X 
may be transformed with the aid of Eqs (14, (15) and (7) into:

P = (16)

which, in view of j = nev, just compensates the Bernouilli pressure 
-1/2 mnv2, connected with the average velocity of the electrons. At the 
surface itself there is a total pressure jump H^/8jt,
9. Bohr's quantum condition (Fig. 12) for the momentum of an electron 
in the hydrogen atom is

J  ps- dS=j>{ps • ds?= <j> (mvs + -̂ • diT= S. h (17)

where 1 is an integer. In 1948 F. London [13] proposed an application of 
this condition to the particles responsible for superconductivity. The main
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term in the expression for the angular momentum is then the magnetic 
term

and thus

® A - ds = | / / В dO

BdO+^p-jTv,. • dsT = "Bdo^ / 7' d=

BdO + 47гХ2 Гj> j • ds (18)

The expression

BdO + J f d s

taken round a hole in a superconductor is, according to London's equation, 
independent of the path chosen round the hole and is called "fluxoid".
In analogy with (17), London suggested that the fluxoid should be a multiple 
of hc/e (Fig. 13).
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In 1961, however, the fluxoid through superconducting rings was 
found by Deaver and Fairbank and by Doll and Näbauer to be a multiple of 
hc/2e = 2 X КГ7 gauss cm"2. This indicates that the quantum condition 
ought to be applied to pairs of electrons with a total charge of 2e (and a 
mass 2m) which fitted very well into the theoretical concepts of Fröhlich 
and the B. C.S. theory (see sections 10 and 15).
10. Fröhlich [14] suggested that superconductivity is due to an interaction 
between conduction electrons by means of virtual phonons and that hence, 
for a given arrangement in space, Tc should be proportional to the hi/of 
conformable lattice oscillators and so to the Debye temperature. Since 
for an average atomic mass M of different isotopic conditions 0Deb°C M"5, 
he predicted Tc °C M . This was found to be in good agreement with the 
behaviour of almost all isotopic mixtures (exceptions: Ru, Os).

In E A L

FIG. 14. Difference o f  reflection coefficient in the far 
infrared by a superconductive and a normal surface

FIG. 15. Occupation o f the electronic energy 
bands at the two sides o f  an In-Al tunnel junction

Earlier, Daunt and Mendelssohn [15] had already concluded from the 
absence of a Thomson heat when a supercurrent runs parallel to a tampera- 
ture gradient, that there exists an energy gap 2Д in the electron spectrum 
of a superconductor. This was confirmed by the exponential disappearance 
of the specific heat and of the electronic thermal conductivity below about
V 3-

Clear proofs (Ref. [16]) of this hypothesis were given by the absorption 
of electromagnetic radiation at frequencies between the infra-red and the 
microwave region and, most clearly, by the tunnel effects when a current 
passes an insulating barrier between two superconductors (Fig. 14). In the 
current voltage diagram sharp kinks are seen when the bottom or the top 
of the gap in a superconductor passes a bottom (or top) of the metal at the 
other side of the barrier (Figs 15, 16).
11. One may write for the free energy density given in Eq. (8) if one is 
in the temperature region just below Tc ,

Fs
.  tTc

4 -1+4 Tr - Т 
Tc

(19)
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FIG.16. Current through a In-Al tunnel junction as a function o f  voltage. In being positive, at very low 
temperature T, and somewhat higher temperature T2

where у = 1-x. Ginsburg and Landau in 1950 introduced two essential 
refinements into this expression. First, they replaced the scalar order 
parameter у = 1-x by the square (ф° )2 of a complex order parameter and, 
secondly, they described the quasi-elasticity of that parameter and the 
interaction with a magnetic field h by adding a space-dependent expression, 
taking care of gauge invariance conservation

1
2mx I -ih V^° ~ ^ | 2

The complex famous G-L guess for the Gibbs free energy (Ref. [17]) 
density thus became

q  =Gn + a» И 2+§- k T + ä b -ihV-^ A |2 +  —  
' 87Г

(20)

X Xwhere A is a vector potential fitting to h; m and e are the effective mass 
and charge of the electric particles responsible for superconductivity 
while the coefficients a0 = - yTc (Tc - T)/2 and /3° = уТ2/87г characterize the 
slope and curvature as a function of | °̂ |2. The dimensionless order 

arameter ф °  is connected with the original G-L order parameter фЪу 
ф° |2 = |2/n0, where is the temperature-independent electron density.

In the pure superconductor the penetration depth

/  me2
X= W n o|0°|2ex2

and the coherence length

? = ft(-n0/2mx o'0)* (22)

are the characteristic lengths in characterizing the superconductor. 
In particular, the ratio

к
\ (23)
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characterizes the nature of the solutions of the G-L equations which we 
shall discuss. Since both X and 5 are proportional to (Tc - T)’ 2 , к is a 
constant in the neighbourhood of Tc . Another well-known expression is

к =\T2 eX 
he HCX2 (24)

Gorkov's variation [18] of the B.C.S. theory near T permits us to derive 
the G-L equations for the cases of a "clean" superconductor f0 2> l  as well 
as of the "dirty" case (Cq«  ü). A very essential conclusion is moreover 
that ex = 2e(see Sec. 9). The expressions for к are, near Tc ,

Kcl = 0.96 X0 / i 0 (25)

icd = 0.715 \  j!L (26)

while the expressions for the Gibbs free energy of the surface of an ns- 
boundary are 1.89 §H2/8 tt for к « 1  and -1.104 ХНс2/8л- for к » 1 .
12. In order to find the thermodynamical solution based on (20), Gs has 
to be minimized with respect to variations of ф and A, which leads to the 
G-L relations in their usual form:

1
2mx -iftV

2
) ф + аф + ßip \ ф\

2= 0

-* ^h
J = 2mxi ifjx V̂ / - ipV ф1

12
Ф \  a

(27)

(28)

where ф = n| ф°, a = o°/n0 and ß = ß°/rig . It is confirmed that the solution is 
simple as long as the total Gibbs free surface energy is positive. This 
occurs if к < |n/2. One then has a type I superconductor and only small 
complications may occur at the surface of the metal i f l  \Гб < к< \ -J2.

If к > i- /2  one has (Ref. [19])' a type II superconductor (see section 7) 
with a fully superconducting state if 0 < H <1^ , a mixed superconductive 
state if Hcl < H < H,2, a normal state at H > Hc2 with the possibility of a 
thin surfaCce layer if Hc2 < H < Hc2\T3 (Fig. 17).

FIG.17. Critical magnetic fields as a function o f  temperature in a type-II superconductor. Superconductive 
and mixed states are separated by the HC1 transitions and mixed state and normal states by the Hc2 transitions. 
The dotted line in between is an abstraction indicating direct transitions between superconducting and normal 
states if  it were a type-I superconductor (see F ig .2)
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13. The mixed state between Hcl and Hc2 presents a few complications. 
Only for the case к »  1 there is a simple expression for the value of Hcl:

Hcl
H c ,—p- In к
kJ 2 47tX2 In к (29)

where <pQ =hc/2e is the fluxoid quantum (see section 9), but for Hc2 one 
has the general expression

Hc2 = k/2H c (30)

FIG.18. Electronic specific heat divided by T for H =0, two magnetic field values below HC1(0) and two 
field values between Hc l (0) and HC2(0) as functions o f  T 2

FIG. 19. Electronic specific heat divided by T extrapolated to T =0. The linear slope near Нс г (0) confirms 
the second-order character o f  the transition between mixed and normal states

At Hcl, quantized flux vortices (p0 then enter the superconductor, 
repulsing each other with a force which decreases exponentially with the 
distance. This transition to the mixed state is accompanied by a steep 
fall of -M. If one passes into the mixed state by increasing T, keeping H 
constant, one passes a steep peak in the specific heat (Ref. [20]). If 
к 3> 1 the energy per unit vortex length is (hc/2eX)2 In X/S while the central 
field in the vortices is supposed to be about 2HC. The quantized vortices 
have the tendency to arrange themselves in a regular triangular lattice. 
This has been verified by means of interference of neutrons (Ref. [11]).
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When Hc2 is approached, the average value of ф2 decreases linearly. 
The variations become less and less pronounced and, apart from the 
immediate neighbourhood of the surface, the normal state is reached 
everywhere at Hc2. If к »  1, dM/dH is almost constant in a wide field 
range. Then

dM _ 1
dH “  1.16(2^ -1) (31)

FIG. 20. Sketch o f moving intermediate state structure in a current-carrying wire in a transverse field 
below Hc

FIG. 21. Observed electric resistance for four currents in the case o f  Fig. 20

At lower к values the magnetization curve may be remarkably hollow.
14. When intermediate state structures or if quantized vortex lines in 
the mixed, state are moving in a direction perpendicular to the direction 
of the induction (Ref. [21]) this gives rise to a voltage perpendicular to 
the two directions mentioned (Fig. 20). This leads to an effective 
resistance which is usually a fraction of the resistance in the normal 
state (Fig.22). Hall and Nernst effects also occur. In case of inhomo
geneities in the sample, (Ref. [22]), flux pinning may occur; this may lead 
to lower voltage or even zero voltage and thus to preservation of super
conductivity, even at quite high current densities. It also leads to inhomo
geneity of flux density and to magnetic hysteresis. If the Lorentz forces 
lead to flux jumping, this will be accompanied by sudden extra dissipation 
of heat (Fig. 22). Large flux jumps may occur at temperatures much lower 
than T and in the absence of rapid cooling. In specific heat measurements 
in the presence of an external magnetic field, this may lead to an apparent
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shift o f the sp ecific  heat to higher tem peratures and thus to entropy
production. A lso , at the surface of sam ples and at the boundary between
s -  and n -reg ion s ir re v e rs ib le  p rocesses  m ay o ccu r .

FIG. 22. Magnetization in the fitst two quadrants o f  a type-II superconductor with hysteresis
-------------------- indicates a part o f the com plete hysteresis cycle

indicates the magnetization curve in the absence o f  hysteresis

15. The theory of Bardeen, Cooper and Schrieffer (Ref. [23]) (B. C.S. 
theory) ascribes the occurrence of an energy gap in superconductors to 
interaction between pairs of quasiparticle excitations by means of virtual 
phonons, the mean velocities of the interacting pairs of excitations being 
the same, or anyhow varying very slowly in space. The energy gap is 
the energy required to break up a pair. This energy gap at T - 0,
(see section 10) is, according to the B. C.S. theory, given by

A0.2ho,D. l e-1« » ' '  (32)

where N(0) is the density of states of one electron at the Fermi surface 
and -V the interaction energy between a pair of quasiparticles. Studying 
the dependence on temperature one gets 2A0^ 3.52 к Tc and thus one gets

kTc «1 .1 4 h  idoeb e’ 1/N(0)v (33)

which fits quite well for the cases that N(0)V < 0.4. Then kTc -$ 0.1 hwDeb.
It is further expected that (dHc /dT)Tc “  1.74 Hc(0)/T  and (Q, -Q )X(.
1.43 yTc. In case of small values of N(0)V this fits better to the data than 
(dHc /dT)Xc = 2HC(0)/T  and (Cn -C s)Xc = 2yT ( as follows from sections 2 and
4). In the "strong coupling" cases Pb and Hg, however, the deviations 
from the formulae of sections 2 and 4 are in the opposite sense 
(where kTc 0.1 tiuDeb). For Nb those formulae are rather well obeyed.
16. A most interesting field of research was opened in 1962 and the 
following years by the investigations on quantum interference (Ref. [24]). 
There was no time available to embody this topic, which has fascinating 
connections with the anomalous flow properties of liquid helium П, in the 
present introductory lectures.
17. In the course of time a number of applications of superconductivity 
have been proposed and developed, e. g ., in bolometers functioning at Tc ,
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memories and switches for computors and different measuring equipment. 
Since the development of type II superconducting compounds with Hc2 values 
of the order of 200 000 p , the obtaining of permanent very high magnetic 
fields with no or little energy dissipation belongs to the direct possibilities. 
Such fields may be of great use in magnetic research, in constructing 
particle accelerators and perhaps for thermomagnetic generation of electric 
energy. Fields of 140 000 p  have been reached (Ref. [25]) by using Nb3Sn 
bands. The reduction of microwave losses in cavities (Ref. [26]) 
e. g ., made of Pb or Nb, is another near possibility but this is not an 
application of type II superconductivity.
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Abstract

1. Introduction. 2. The band structure o f  semiconductors. 2 .1 . Free-electron model.
2 .2 . The band structure o f Ge and Si. 2 .3 . Semiconducting compounds with zinc-blende structure. 
2 .4 . Energy levels in a magnetic field. 2 .5 . Effect o f  homogeneous deformation on energy levels.
3 . The optical properties o f  semiconductors. 3 .1 . Optical constants. 3 .2 . Optical transitions.
3 .2 .1 . Direct (vertical) interband transitions. 3 .2 ,2 , Indirect interband transitions. 3 .2 .3 . Direct 
intraband transitions. 3 .2 .4 . Interband transitions In a magnetic field. 4. Electrical conductivity in 
semiconductors. 4 ,1 . Electrical con activity. 4 .1 .1 . Simple parabolic band. 4 .1 .2 . Simple 
ellipsoidal band. 4 .1 .3 . Many-valley band. 4 .2 . Piezoresistance. 4 .3 . Magnetoresistance.
4 .3 .1 . Simple parabolic band. 4 .3 .2 . Single ellipsoidal band. 4 .3 .3 . Many-valley band.

1. INTRODUCTION

In this lecture I shall try to review some typical optical and transport 
phenomena in semiconductors starting from the basic results of the band 
theory of solids. Some of these topics have already been mentioned 
during the course of this school, particularly as regards metals. We 
shall show that the description of some properties of semiconductors and 
metals can be given by the same formalism. The main difference be
tween metals and semiconductors seems the fact that the number of 
current carriers in a semiconductor is not a constant as in metals, but 
can be shown to be a thermodynamic quantity depending on various 
factors, as, e .g . temperature, impurity content, etc. It is well known 
that this fact is closely related to the band structure of semiconductors. 
Therefore the first lecture is primarily intended as a brief review of 
energy-band theory with special emphasis on those aspects of the band 
structure of semiconductors which are important for optical and 
transport phenomena. In the following sections we shall examine what 
can be said about the optical and transport phenomena when the details 
of the band structure are already known and, at the same time, we 
shall try to determine what can be inferred about the band structure 
from some detailed measurements of the optical and transport properties.

2. THE BAND STRUCTURE OF SEMICONDUCTORS

2.1. Free-electron model

Let us start with the free-electron model of a semiconductor, e .g . 
Ge or Si, to illustrate the general method. We have chosen this special 
case because these crystals have been carefully investigated and their
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band structures are relatively very well known. Moreover, the energy 
bands of Ge and Si contain many of the features which are likely to be 
found with other semiconductors as well. The better we understand 
the properties of these two crystals the easier it will be to understand 
other semiconductors in general.

FIG .l. The diamond-type lattice.

Ge (and also Si, diamond and grey tin) possesses the diamond 
structure shown in Fig. 1. This structure is composed of two inter
penetrating face-centred cubic lattices displaced along the body diagonal 
by one fourth of its length. We can also say that a primitive basis of 
two identical atoms at (0,0,0) and a (1/4, 1/4, 1/4) is associated with 
each lattice point of the face-centred cubic lattice. The primitive 
translation vectors are given by

These vectors form the primitive unit cell containing two atoms. The 
volume of this primitive cell is

A
P 4 (2)

The three primitive translation vectors of the reciprocal lattice are 
given by the relation

a'. • b. = 2n 6.. 
i  J ij

Using expressions (1) and (3) we get

(3)

(4)
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A general vector of the reciprocal lattice is given as follows:

K ^ b i+ n g b g  + ngbg (5)

where n2j n2, n3 are integers.
The Brillouin zone is the same as with the face-centred cubic lattice 
and is shown in Fig. 2. The volume of this zone is found to be

Abz = (2 )̂3A  (6)
a

Using the well known relation between the number of electron states 
(including spin) corresponding to the volume d3k of the к space and 
unit volume of the semiconductor given by

(2tt)3 d3k (7)

we can easily find, by taking into account expressions (2) and (6), that 
the number of electron states in the Brillouin zone per primitive cell is

2
(2 n f т <2*)34  = 2 ̂ a

As Ge has four valence electrons per atom (4s2 4p2) we can see that 
at least four bands (each doubly degenerate because of the spin) in the 
reduced zone scheme have to be considered.

When discussing the band structure of metals it has been shown 
that the general aspects of the band structure and often the intricate 
details of the observed Fermi surface can be explained by the free- 
electron model (see Ref. [ l ] ). We shall see that even with semi
conductors the empty-lattice band structure may often serve as a 
useful frame of reference giving the general form and degeneracy of 
energy bands.
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When V(r) = 0, the general solution of the Schrödinger equation

2m Д +V(r) ф г- = e (к) ф -»vnk n nk (8)

is clearly a plane-wave exponential whose propagation vector has to be 
decomposed into the sum of a reciprocal lattice vector К (5) and a 
vector 1?lying in the first (reduced) Brillouin zone. The corresponding 
Bloch function becomes

ф-*Л r) = e KiT
i k -ru—(?)Klc (9)

where

u_,_(r) = e1 K' r (10)
к k

—>
Note that К plays here the role of the band index n. The corresponding 
energy eigenvalue is given by

= h (i d

Let us now consider the behaviour and degeneracies of the energy 
bands in the reduced zone for an empty diamond lattice. As usual, 
we shall consider two special directions in the Brillouin zone only: 
[001] and [111] (see F ig .3).

FIG.3. Free electron energy bands for a diamond-type lattice. The heavy lines denote the position o f the 
highest valence band and the lowest conduction band.



SEMICONDUCTOR 877

The lowest energy band is given by E q .(ll) for K = 0. The minimum 
of this band lies at Sc = 0 (Гг point, see Fig. 3) and this state (and the 
whole first band as well) is clearly non-degenerate. Taking into account 
expressions (4) and (5) we see that the next energy level at i? = 0 is 
е(2гг/а, 2гг/а, 2гг/а) -  (h2/2m) 12 7T2/a2 which is eight-fold degenerate 
(there are eight states with this energy having eight different wave 
vectors (±27г/а, ±2гг/а, ±2гг/а). Group-theoretical analysis shows 
that all these functions form a basis for a reducible representation of 
the group of the wave vector k = 0. This reducible representation can 
be reduced, and we get the following irreducible representations:

Гг(1) + Г' (1)+Г15(3 )+ Г '5 (3) (12)

The numbers in brackets denote the degeneracy and the subscripts 
refer to the corresponding irreducible representations of the group of 
the wave vector. The degeneracy of each state is equal to the dimension 
of the corresponding irreducible representation and in general (for 
V(r) /0 ) , there will be one energy value for each irreducible represen
tation. As the lowest level at к = 0 is non-degenerate (being of type Tj) 
it can accommodate two electrons only. The next free-electron state (12) 
is eight times degenerate, and thus it could accommodate 16 electrons; 
actually, we have only 6 electrons left. Even a very rough estimate 
indicates that of the four levels (12), Г^5 will be the lowest. This level 
is triply degenerate and can thus accommodate the remaining six 
electrons. The other three Г levels (12) will then correspond to 
empty (conduction) bands.

A similar argument applies to the next higher level at к = 0 having 
an energy of e (4гг/а, 0, 0) = (h2/2m) 16 (гг2/а 2) which "splits" into three 
levels

Г ' (1)+Г-2 (2) + Г-5(3) (13)

All these levels are unoccupied and thus form excited conduction levels.
Let us consider the [111] direction (A points, see Fig. 3). The 

lowest two bands having wave vectors (k, k, k) and (2тг/а-к, 27r/a-k, 
2гг/а - к) are of the type Aj. At the end point L the energy is 
(h2/2m) 3(ir2/a 2) and the corresponding wave vectors аге(тг/а, гг/а, гг/a) 
and (-гг/а, -гг/а, -гг/а) (L ^ l) and Ь'2 (1)). The next energy level at 
L ise (± 3rr /a , + гг/а, + тг/а) = (h2/2m) 11 (гг2/ a2) with six independent 
wave vectors. This level "splits" into four levels

L1( l ) + m i )  + L 3(2) + LJ(2) (14)

Starting from this point one has two non-degenerate points and two 
doubly degenerate points A3 along [ i l l ]  .

A similar analysis can be performed for the [001] direction. The 
classification of the representations of the energy bands is given in 
F ig.3 . The numbers in parentheses indicate band degeneracy. The 
heavy lines denote the position of the highest occupied and the lowest 
unoccupied bands.
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As an illustration of wave functions corresponding to the points 
considered we shall write the symmetrized free-electron wave functions 
belonging to the irreducible representations (12) estimated by the usual 
method of group analysis. Let us take the eight plane waves 
exp [i 2тг/а (± x ± y ± z )] , for example, in the order ( + + +), ( + - - ) , ( -  + -),
(--+ ), ( ----), ( -+  + ), ( + -+ ) , ( + + -). Then in the lowest approximation
the free-electron wave functions at this point may be written as follows:

г\ : Ф = +( + + + Ж + - -) + (- + -)+ (- - +) -i[ +(---- )+(- + +)+( + -+)+( + + -)]

Г - : Ф = + + + + +i[ + + + + ]

Г25:СРГ + + - - -i[ + + ]
Ф2= + - + - -i[ + - + - ]
Фз= + - - + -i[ + - + - ]

r!5 :CPl= + + - - +i[ + + ]
ф2= + - + - +i[ + - + - ]
Фз= + - + +i[ + - + ]

As we have seen, the free-electron model of a semiconductor enables 
us to obtain a qualitative insight into the band structure scheme, the 
classification and degeneracy of electron states with respect to the 
symmetry operations of the crystal and an estimation of the corresponding 
symmetrized wave functions at different points of the Brillouin zone.

2.2. The band structure of Ge and Si

Let us now consider V(r) f  0. in Eq. (8). We may imagine that the 
potential energy varies slowly from zero to the actual value in a real 
crystal. The energy bands shown in Fig. 3 will then slowly vary in form, 
the accidental degeneracies due to V = 0 (e.g . expressions (12), (13), etc.) 
being removed by the effect of the periodic potential. The final order 
of these degenerate electron states depends on the detailed form of V(r) 
and, in general, many possible band structures can arise.

Figures 4 and 5 show the valence and low-lying conduction band 
structure of Ge and Si as estimated by Herman et al. using a certain 
modification of the OPW method [2] . Although there is a significant 
distortion in the band structure passing from Fig. 3 to Figs 4 and 5, 
some of the basic features persist. It can be seen that the fully occupied 
(at least at T = 0°K) valence bands are separated by the energy gap from 
the (empty) conduction band. In comparing the band structures of Si 
and Ge, we see that the form of the valence bands is approximately the 
same in contrast to the conduction bands where some differences exist.

When discussing some transport phenomena or optical properties 
of semiconductors we are mostly interested in the top of the valence 
band and in the bottom of the conduction bands. Therefore we shall 
shortly investigate them in greater detail.

Figures 4 and 5 show that the top of the valence band in Si and Ge 
(and in other semiconductors having the diamond-like lattice structure) 
is defined by the triply degenerate state Г^5 . If we want to study the
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FIG. 5. Energy band structure o f Ge (see Ref. [2] ).

shape of an energy band around its edge in detail we usually use a 
special perturbation method called ic • p approximation. We shall show 
presently that this method makes it possible to estimate the function 
en (k) in the vicinity of a point in к space using a small number of 
parameters which may be estimated from experiment.

When discussing the к -p approximation we usually start with the 
Schrödinger equation for the periodic part of the Bloch function un .̂ 
Substituting into Eq.(8) we get

2 ^  (p+hC)2 +V (r) u ->=e (k) u -* nk n nk (i6 )
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For any given к the set of functions un£, obtained by letting n run over 
all bands, forms a complete set of functions having the same periodicity 
as the lattice. Let us suppose that we know all solutions un-̂  and en(kQ) 
at a chosen point of the Brillouin zone and we want to examine the 
function en(£) in the vicinity of kQ. Denoting

% 0 = 2 b (P + hKo)2+V(? ) <17>

Eq.(16) can be rewritten as follows:

U _>= 6 
n к 1 (й) un к

(18)

For small к - k0 we can use the usual perturbation theory taking

Щ = - (к -к 0) - p + £ ( k 2-kg) (19)]< m ctci

as a small perturbation and expressing u^in  terms of the complete 
set of the functions un£ .1 In practice, we use either the non-degenerate 
or degenerate (quasi-degenerate) perturbation theory according to the 
degeneracy of the unperturbed level en(kQ). A more detailed analysis 
of the k- p approximation is given in Ref.[3],

We shall now return to the top of the valence band. In this case 
we are dealing with a triply degenerate band at k0 =0. Let us denote 
the corresponding unperturbed wave functions by |l>, |2> and |3> .
It can be shown (by expanding the qx given in expression (15) in series 
for small arguments) that these functions transform as yz, xz, xy 
about the centre of the line joining the two atoms in the primitive cell. 
Using the perturbation approach given by Van Vleck, the energy 
eigenvalues at к f  0 are found to be

e = (k) =e (0) + -^— к +Л V ' ' ' 2m (20)

where X is given by the following secular equation:

L k 2 + M(k2 +k2) -X N к к Nk кX у z x у X z
N kxky Lk2 + M(k2 + k2) -X Nkykz

N k x k z Nkyk2 Lk2z + M(k2 + k2) -A

1 Actually, Eq. (18) is correct for any к . In general, we can expand in terms o f u ^

without using perturbation theory. Unfortunately, this approach would need far more parameters to be 
estimated than the present procedure.
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L, M, N denote the corresponding parts of the matrix elements of
(19) and may be written as follows:

T _4i2 V  < 1|PxlmX m IPxl1>
L 2 /  € - €m  L I c v c m

m̂ v

M -1L .V  < 1 I Py lm><m I Py 11 > 
ir? L-i ev ~ em

m̂ v

N < 1|Pxlm> <m| Py |2> +<l|pv | mXrn| P x | 2 >

m̂ v

In fact, L, M and N are determined by experiment (e.g . by cyclotron 
resonance measurements).

The same method can be used to calculate the constant energy 
surfaces in the vicinity of the bottom of the conduction band. As can 
be seen from a comparison of Figs 4 and 5, the conduction band edge 
occurs along the (lO O ) axis in Si (Ax point) and along the <(lll  ̂ axis 
in Ge (L x point). In both cases I?0 ^0. The non-degenerate pertur
bation calculus gives the following expression:

~Nu c 1Hfr lu ml?n X u mT;n [u c ]?„ У" Л К ч К К «  > : $ ? _ e (f,
m ĉ c 0 ш 0

( 2 3 )

Inserting H' from Eq.(19), e (k) can be rewritten as follows: 
I? c

(m )cij (ki-k0i) <kr k0j> 
ii

Here (l/m )cij is the inverse effective mass tensor given by

( А  + i _ V  pcm(1?0) Pmc(g0>
W d J " h 4 e ki3ki j t X  ‘i т 2Л  ec (50) - e m(K0)

m ĉ

(24)

(25)

For k0 parallel to [001] or [111] direction symmetry considerations 
show that the surfaces of constant energy in the neighbourhood of 
each of the conduction band minima are prolate ellipsoids of revolution. 
There are six ellipsoids of revolution in Si (oriented along the equivalent 
<(100/ directions) (see Fig. 6) and only four ellipsoids in Ge (oriented 
along the <̂ 111 )> directions), for the surfaces lying on opposite faces
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[o o t ] FIG. 6. The many-valley model o f the conduction band o f Si.

are equivalent since they are separated by a reciprocal lattice vector 
(see Fig. 7). The energy surfaces near the minimum energy are thus 
described as follows:

e ( k )  =e„(kn) + fr
2m. <kx-k0x} + 2 ^ [(V 4 )2+(V k0z>2] (26)

We have chosen the Cartesian co-ordinate axes with the x axis parallel 
to the crystal axis in Si and to the O i l  axis in Ge. тц and mj_ are 
the longitudinal and transverse masses, respectively. The actual 
values of Шц and mj_ in Si and Ge are given in Table I. We see that 
the conduction band in Ge (and in some other semiconductors as well) 
consists of several non-degenerate states giving rise to the so-called

TABLE I. ENERGY BAND DATA OF Si AND Ge AT HELIUM 
TEMPERATURE (REF. [3])

Quantity Si Ge

6g
1.165 eV 0.746 eV

m || 0.97 m 1.58 m

m l 0.19 m 0.082 m

tl2 „  л2A -4 .1  — -1 3 .0 ------
2m 2m

|B| l . e f2m 8 ,9 2m

„ b2
|C| 3.3  —  2m

10.3 —  
2m

A 0.044 eV 0.29 eV
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many-valley structure. In addition to these minima which define the 
band edge there exist additional minima with energies somewhat higher 
than the band edge (e.g . see Г2' with Ge or Lj with Si). Thus we see 
that the band structure of a semiconductor may be complicated not only 
by a complex (multiple) band edge but also by the presence of additional 
extrema lying very closely to the band edge energy but quite far apart 
in the Brillouin zone. This problem will be discussed in greater detail 
later.

Up to now we have not considered the spin of the electrons except 
the double degeneracy of the energy levels. In fact, the spin-orbit 
interaction produces significant effects in many solids, especially 
with heavy elements (Ge, InSb, etc.) where the splitting is one of the 
important factors determining the gap.

Spin-orbit interaction is an essentially relativistic effect and the 
Hamiltonian most commonly used is obtained as an approximation from 
Dirac's equation. Without entering into detail let us include it by adding 
to the Hamiltonian in Eq.(8) an extra term

where a is the Pauli spin vector. The solution of the Schrödinger 
equation is far more complicated now, as the wave functions are also 
spin-dependent. Moreover, the usual group analysis has to be extended, 
leading to double group representations, etc. Nevertheless, our 
analysis using к -p approximation can be performed in a very similar 
way as before, giving the modified band structure corresponding to 
reality.

It has been shown (see Ref. [3]) with Ge that the originally six-fold 
degenerate valence band splits into two higher-lying bands and a lower- 
lying band in the neighbourhood of the band edge, all bands being doubly 
degenerate (opposite spins). The к dependence of the energy surfaces 
of the higher two bands is given in a certain approximation (h2k2/2 m « A  ) 
by the following expression:

(27)

e(k) = Ak2± [B2k4 + C2(k2k2 +k2k2+k2k2H* (28)

where A, В and C are constants given by the following relations:

B = | (L -M )

C = | [N2-(L -M )2 ]

In writing this expression we have placed the zero of energy at the 
valence band edge. The constant energy surfaces for both these bands
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are warped surfaces, the surface of the highest band being to an 
appreciable extent anisotropic; the second highest band is nearly 
spherical. In spite of this fact it is sometimes desirable to neglect 
the warping and treat the surfaces as if they were spherical. In 
calculating the average curvature'of the warped surfaces we get

It should be added that this approximation introduces a significant error 
in the case of the highest valence band.

The third valence band is separated from the other ones by the 
effect of the spin-orbit interaction; denoting by Д this splitting at 
Й = 0, the split-off band is described by

The values of А, В, C, and Д , as determined by experiments with Ge 
and Si, are given in Table I.

FIG. 8. Band structure o f Ge including spin-orbit effects. (After Cardona, M ., Proceedings o f  the Int.
Conference on the Physics o f Semiconductors, Dunod, Paris (1964). 181).

So far we have discussed the spin-orbit splitting at the centre of 
the Brillouin zone and in the immediate neighbourhood of this point. We 
have already mentioned that since the diamond-type crystals have a 
centre of inversion, the spin-orbit interaction does not split the double 
spin degeneracy which exists at a general point of the Brillouin zone. 
However, the spin-orbit interaction does split certain spatial degeneracies 
which occur at particular symmetry points and along special symmetry 
axes. The general character of the spin-orbit splitting is shown in 
Fig. 8. Note, for example, that the spin-orbit interaction splits the 
A 3 level along the O i l  У axis in the Brillouin zone, the value of the

e(k) = -Д + A k2 (29)
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splitting being roughly equal to two-thirds of Д . This comes essentially 
from the fact that the spin-orbit Hamiltonian (27) acts at Г2'5 on a triply 
degenerate state while Л3 is only doubly degenerate.

Periodic table AI Si P s SI

Cu Zn Ga Ge As Se Br

Ag Cd In Sn Sb Те I

FIG. 9. A section o f the periodic table.

2.3. Semiconducting compounds with zinc-blende structure

So far we have studied the band structure of some diamond-type 
elements of the fourth column of the periodic table as e .g . Si, Ge, 
diamond (see Fig. 9). It has been shown that a series of semiconducting 
compounds can be formed between the elements of the third and fifth or 
second and sixth columns of the periodic table with properties very 
similar to the fourth-column elements. These semiconducting compounds 
crystallize in the cubic zinc-blende (or sphalerite) structure which is 
the same as the diamond form except that the two different kinds of 
atoms form two cubic face-centred sub-lattices displaced relatively 
to each other by one quarter of the body diagonal of the cube (see Fig. 10). 
The zinc-blende structure, like diamond, has face-centred cubic 
translational symmetry; therefore, the reduced Brillouin zone is the 
same as with the diamond structure. However, the zinc-blende lattice 
differs from that of diamond by not having a centre of inversion. This 
lower symmetry (the point group of the diamond lattice is the product 
group of the point group of the zinc-blende lattice times the parity 
group E, I) affects the band structure, removing some of the degeneracies
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which occur in diamond-type crystals (Fig. 11). Herman [4] has 
developed a semi-empirical perturbation scheme for the purpose of 
relating the energy band structures of diamond-type and zinc-blende- 
type crystals.

FIG. 11. Band structure o f GeAs including spin-orbit effects. After Cardona, M. Proceedings o f the Int. 
Conference on the Physics o f Semiconductors, Dunod, Paris (1964) 181.

It is well known that the diamond-type crystal is invariant under 
inversion about the point (a/8, a/8, a/8). If we choose the origin of 
co-ordinates at this point we may write

Vlv(r) = Vlv(-r) (30)

Although the potential for a zinc-blende-type crystal is not invariant 
under inversion r->-r such a potential can always be expressed as 
the sum of two partial potentials one of which is symmetric and the 
other anti-symmetric with respect to the inversion. In general, the 
crystal potential of any group IV, III-V, II-VI or I-VII semiconductor 
with diamond or zinc-blende structure can be written as

V = V ^ +V ^  + MVjT^+ViS013') (31)

v f T  are the perturbing terms for obtaining the potential of the polar 
compound -from the unperturbed group-IV potential, vj^ is zero both 
for horizontal sequences (e. g. Ge; GaAs, ZnSb, CuBr; Sn, InSb, CdTe, 
Agl) and non-horizontal sequences (e.g . GeSn, GaSb, ZnTe). X represents 
the strength of the perturbation and for the sake of simplicity is taken 
equal to 1, 2 and 3 for the III-V, II-VI and I-VII compounds, respectively. 
The effect of VPolar seems to be very small and, in general, it is assumed
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У  polar д  m o r e  detailed a n a ly s is  including even the sp in -o rb it
splitting sh o w s that the forbidden band width at high s y m m e t r y  points 
is  g iven  b y  s e c o n d -o r d e r  perturbation th eory:

Д ep = Д e +DX2 D > 0  (32)

w h e r e  Д е р and Д е  a r e  the e n e r g y  gap s of the p o lar  and n o n -p o lar  
m a te r ia l ,  r e s p e c t iv e ly .  T h is  can e a s i l y  be shown, fo r  exam p le, for  
the e n e r g y  gap between Г15 and Г^5, u sing the s y m m e t r y  of the relevant  
w a ve  functions. In the c a se  wh ere  DX2 « A e ,  the use of the sim ple  
p erturbation th e ory  is  not justified and a m o re  rig o r o u s  a n a ly s is  g iv e s

- г -  И г ) ‘ 1331

L a t e r  on, we sh all  c o m p are  these r e s u lts  with ex p e rim e n t.  This'  
a n a ly s is  h as been shown to hold also  fo r  non-horizontal sequ ences  
provided one takes fo r  the gap of the hypothetical m a t e r i a l  ( e . g .  GeSn)  
the a v e r a g e s  of the correspo n d in g two g r o u p -IV  m a t e r i a l s .

We have seen  that the sp in -o rb it  splitting p lays  a v e r y  important  
r o le  in the band s tru c tu re  of so m e h e a v ie r  se m ico n d u cto rs  of the fourth  
column of the perio d ic  table .  It can be shown with the I I I - V  (or II-VI)  
compounds that the sp in -o rb it  splitting in these c r y s t a l s  can  be estim ated  
fr o m  the f r e e - a t o m  splitting v alu e s of the constituent atom s of the 
compound, by taking into account som e c o r r e c t io n s  to be used when 
the atom s a r e  in co rp o rated  into a solid. S p in -o rb it  splitting of the 
o u term o st p o r b ita ls  estim ated  in this w ay fo r  e lem en ts given in F i g .  9 
a r e  p resen ted  in T a b le  II. M o r e o v e r ,  the splitting in I I I -V  o r  I I - V I  
compounds can be p redicted by av e ra g in g  between the splitting of the

T A B L E  II. A T O M I C  S P I N - O R B I T  S P L I T T I N G S  IN  e V  O F  
C O L U M N  II, III, IV ,  V  A N D  V I  E L E M E N T S
( A F T E R  F .  H E R M A N  et a l . ,  P H Y S .  R E V .  L E T T E R S  И  ( 1 9 6 3 )  5 4 1)

Mg AI Si P S

0.007 0.022 0.044 0.075 0.116

Zn Ga Ge As Se

0.074 0.171 0.290 0.426 0.582

Cd In Sn Sb Те

0.227 0.458 0.709 0.973 1.260
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two elem ents which m ake up the compound. Supposing that the c o r r e s p o n d 
ing contribution v a r i e s  l in e a r ly  a c r o s s  the perio d ic  table, we w r ite

Th e ex p e rim e n ta l evidence of e x p r e s sio n  (34) w ill  be d is c u s s e d  la te r .
In addition to the sem iconducting compounds mentioned above, there  

e x is ts  another v e r y  important group of se m ic o n d u cto rs,  n am ely  s e m i 
conducting a l lo y s ,  e . g .  G e xS i 1 . x , I n f A s - j ^ P ^ ,  etc.  T h e i r  p h ysical  
p a r a m e t e r s  change continuously with com position and this fact m akes  
it p o ssib le  to obtain sem iconducting m a t e r i a ls  with v e r y  in te re stin g  
p r o p e r t i e s .

2 . 4 .  E n e r g y  le v e ls  in a m agn etic  field

The stro n g influence of an e x te rn al m agn etic  field on^the band 
st r u c tu r e  of so lid s  has a lr e a d y  been d isc u ss e d  in detail during this 
c o u r s e  e s p e c i a l ly  with r e g a r d  to m e ta ls .  T h e r e fo r e  I sh all tr ea t  this  
problem  with se m ico n d u cto rs  v e r y  b r ie f ly .

If th ere  is  a m agn etic  field the S c h rö d in g e r  equation can be written  
as fo llow s:

h e r e  A  is  the v e c t o r  potential of the e x te rn al m agn etic  field which is  
supposed to be p a r a lle l  to the z directio n . Then A  m a y  be chosen in 
the following w a y :

When con sid erin g the motion of e le ctro n s and holes in a s e m i 
conductor we u su ally  use the e f f e c t i v e - m a s s  approxim ation (see  R ef .  [ 5 ] ) .  
F o r  sim p lic ity ,  let us suppose that the sim p le s t  p ara b o lic  band 
str u c tu r e  is  g ive n  by

(34)

(35)

A x= A z = 0 ,  A y =  + H x (36)

(37)

T h en  the S c h r ö d in g e r  equation (35)  fo r  e le ctro n s re d u ce s to

2m,
( 3 8 )
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and the c orrespo n d in g solutions a r e  found to be

F  oe exp [i к у + i k z z] <p{ ( x - x 0) (39)
kykzC У

<Pt being the o s c i l la t o r  w ave function fo r  the Landau le v e l  with index i  

taking on the v alu e s 0, 1 ,  2 . . . x Q= - k yft c / e H  denotes the x-com ponent  
o f the cen tre  of the m agn etic  o rbit.  In the lo w est approxim ation the 
solutions of the S c h rö d in g er  equation (35) a r e  given as

ф = uc (r) F  (r)
ckykz£ c ' kykz£

The e n e r g y  eigen valu es a r e

e “  =e„ + k 2 +htJ ( m + t:■ H 
ck,£ 2 m c

(40)

(41)

wh ere

wc
e H
m c c

S i m i l a r  equations can be w ritten  fo r  the v ale n c e  band (37) as w ell

(42)

e H
v k 2c

(43)

The g e n e r a l  c h a r a c t e r  of the e n e rg y  le v e ls  in a m agn etic  field is shown  
in F i g .  1 2 .

FIG. 12. Landau levels for simple parabolic bands.
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T h e  d e g e n e r a c y  of the Landau le v e ls  (41)  with r e s p e c t  to k y v alu es  
g i v e s  r i s e  to a v e r y  in te re stin g  beh aviou r of the d ensity  of sta te s .  If  
the e x te rn al m agn etic  field is  absent, the usual density of states  per  
unit e n e r g y  in te rv al and unit volume (including spin) is g iven by

w h e re  the integration is  p erform e d  o v e r  a s u r fa c e  given by f(it) = 0, 
w e e a s i l y  get

S i m i la r ly ,  in the p r e s e n c e  of a m agnetic  field E q .( 4 4 )  b ecom es

w h e re  the su m  is  understood to extend o v e r  all  in te g ers  i  fo r  which  
the summand is  r e a l .  Note that the s in g u la r  c h a r a c t e r  of the density  
of states is  c h a r a c t e r i s t ic  fo r  a o n e-d im en sion al band.

A  s i m i l a r  e x p r e s s io n  holds fo r  holes in the v ale n ce  band as  w ell .  
F i g u r e  1 3  shows the density of states both fo r  the v ale n ce  and con
duction bands, f o r  H = 0 and H f  0.

So f a r ,  we have c on sid ered  the sim ple  parabo lic  band stru c tu re  
of the v a le n c e  and conduction bands having th e ir  e x tr e m a  at к = 0. 
Unfortunately, in g e n e ra l  this proced u re  cannot be used with com plex  
o r  d egenerate bands; this problem  i s  f a r  m o r e  com plicated and cannot 
be d is c u s s e d  h ere  in detail (see  F i g .  1 4 ) .  The r e a d e r  is  r e f e r r e d  to 
the o rig in a l  a r t i c l e s  1 5 ]  .

T h e  influence of the e xtern al m agnetic  field on so m e  optical and 
tr a n sp o r t  phenomena in se m ico n d u cto rs  w ill  be d isc u ss e d  la te r .

( 4 4 )

к

U sin g  the w e ll-k n ow n  fo rm u la

(45)

3

(46)

(47)

givin g

3
•I

(48)
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i 3 2 i o  о  1 г  з  <

HG. 13. Density o f  states in the presence o f  a magnetic field for simple parabolic bands. The zero field 
case is also shown.

\
\

■1

V ,

2
4
6

3
5

2
4
6

3

5

FIG. 14. Landau levels (k = 0) in Ge (see R ef.[5] ).

2 . 5 .  E ff e c t  of homogeneous d eform ation on e n e r g y  le v e ls

We sh all  show p r e s e n tly  that the application of the e x te rn al s t r e s s  
on a se m ic o n d u cto r  h as a profound effect on its  band s t r u c tu r e .  T h e r e 
fo re  we can  expect that those p ro p e rt ie s  of se m ic o n d u cto rs  which a r e  
s e n s it iv e  to details  of the e n e r g y  bands w il l  change sig n ifica n tly  with  
e la s t ic  d eform ation. In fact ,  th ere  a r e  two types of e x p e rim e n ts  used  
in this field. The f i r s t  type of expe rim e n ts  u ses  iso tr o p ic  o r  h yd r o sta tic  
s t r e s s ,  the second an an isotro pic  s t r e s s .  While the e x p e rim e n ts  o f  the 
f i r s t  type g ive  r i s e  to the shift of the e n erg y  le v e l s ,  the u se of uniaxial  
c o m p r e s s io n  o r  tension in g e n e r a l  lo w e r s  the s y m m e t r y  p rese n t in the 
f r e e  sin gle  c r y s t a l  and c a u s e s  the splitting of degen erate  le v e l s .  We  
can h a rd ly  expect that the p r e s s u r e  dependence of the e n e rg y  le v e l s  will  
be the s a m e  fo r  all le v e ls ;  on the c o n tr a r y ,  the shifting of different  
le v e l s  is  v e r y  different ac c o r d in g  to the s y m m e t r y  of the w a v e  functions  
of the states  c o n sid ere d .  In what follow s we sh all  concentrate on the 
band edges which p la y  a dominant ro le  in both the optical  and tr an sp o rt  
phenomena in- se m ic o n d u cto rs.
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When calcu latin g the constant e n erg y  s u r f a c e s  in the v ic in ity  of the 
band edges we have used the perturbation th eory, n am ely  the к • p ap p ro x i
mation. It w ill  be shown p re s e n tly  that a s i m i l a r  approach can be used  
even with sem ico n d u cto rs under extern al s t r e s s .  H o w ever, one point 
should be em phasized in this connection. Sin ce  the deformed single  
c r y s t a l  has a different perio d icity  c o m p ared  to the fr e e  c r y s t a l ,  the 
perturbing te r m  cannot sim p ly  be defined as  the differen ce  between the 
Ham iltonians fo r  the d eform ed and undeformed c r y s t a l ,  and the usual  
perturbation approach cannot be d ir e c t ly  applied in this c a s e .  T o  o v e r 
com e this difficulty we have to introduce a tr an sfo rm atio n  which en su re s  
that the deform ed c r y s t a l  has the sa m e  p erio d icity  as the undeformed one.

We sh all  sta r t  with the Hamiltonian of the undeformed c r y s t a l ;  let  
us denote it H0(r,  p). Then we have

н 0(г + а ;, p) = H 0(r,  p) (49)

w h e re  a; a r e  the p rim itiv e  tran slatio n  v e c t o r s  as defined b y  E q . ( l ) .  
S i m i l a r l y  the Hamiltonian H (r,  p) of the deform ed c r y s t a l  is  invariant  
under tr an slatio n s a', g iven by

a! = ( l + e ) :  a ; (50)

l.  e.

H (r ,  p) = H ( r + a ' . , p ) (5 1)

e in E q . ( 5 0 )  is  the s t r a in  te n so r.
L e t  us introduce a tran sfo rm atio n  to a new co-o rd in a te  sy s te m  

in which the position v e c t o r  r '  i s  given as

r  = ( 1 + ? )  : ? '  (52)

S i m i la r ly ,  the momentum o pe ra to r p' = у  V  is  related to p by

p = (1 + e)"1 : p' (53)

The Hamiltonian ( 5 1 )  g iven  in the r 1 is  found to be

H ( r , p ) = H ( ( l + e ) :  r ' ,  ( 1 + e )  : p')

= H ' ( ? ' ,  p ' . c )
(54)

The strain  te n s o r  e is  contained in H' as a s m a ll  te n so r  p a r a m e te r .  
We sh all show now that H' as  a function of r 1 has the sa m e  p erio d icity  
as H 0:
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H '( r '  + a.,  p 'e) = H ( ( l + e )  : ( r '+ a . ) ,  p)

= H ( r + a ' .  , p) 

= H (r , p)

= H '( r ' ,  p ' , e )

(55)

U sin g  this fact we can expand H ' ^ p ' ^ e )  in t e r m s  of e

H ' ( r ' ,  p ',  e) = H0( r ' , p ' )  + ^  DjjCr'.pMeij + (56)

In substituting r ' , p '  b y  r ,  p the f i r s t  t e r m  on the right-hand side in 
e x p r e s s io n  (56) is  identical with the Ham iltonian of the undeformed  
c r y s t a l  given by e x p r e s s io n  (49). Th e second t e r m  m a y  be r e g a r d e d  
a s  a  s m a l l  perturbation.

L e t  us apply this p ro ce d u re  to the к -p approxim ation d isc u ss e d  
in sectio n  2 . 3 .  Th e unperturbed Ham iltonian is  identical with H k 
and the perturbation te r m  is  given  a s  fo llow s: 0

w h e re

H' = H'к m
) e.. (p. + h k  ) p.u i Oi ' *]

jh
-  m €ij(kr c0i) Pi<+I  v =»'

Vb  =
ЭУ ( ( 1 +  e) : r ' )

c = 0

(57)

(58)

B e f o r e  p ro ceed in g  fu rth e r  it should be noted that in calcu latin g the 
m a t r i x  elem en ts we sh all neglect h i g h e r - o r d e r  t e r m s  than e1;j , ( k j - k 0i)2 
and Су ( k j- k o i) b e cau se  th e ir  contribution is  r e la t i v e ly  s m a ll  c o m p ared  
to the rem ain in g  t e r m s .  At the sa m e  tim e we sh all a lso  neglect the 
d isp la ce m e n t of the band edge in the к s p a ce  due to the third t e r m  in 
E q . ( 5 7 ) .  F i r s t  w e sh all  d i s c u s s  the n o n -d egen erate  c a s e  a s ,  for  
exam p le, the conduction band of Ge o r  S i .  Then the e n e rg y  ec (k) can  
be w ritten  as  fo llow s:

£cW=£c^o) + y ^  (m)cij (ki'k0i><kr k0j) 
ij

(59)

+ <Uci?0 lDij lUcT̂> eij
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T h e  m a t r i x  elem ent <(u D.. u i s  called  the deform ation potential
_  , . , c k  I i] I c k /  ^
Hy and is  given  by 0 0

n  /—  <u  
m ck 3 x .  Эх. 

i J
H:T( У  +  ^ u c k .  l V ij I U c k . ^

m k 0i k 0j

(60)

T h is  can be w ritten , in g e n e ra l ,  as  follows:

k0i k0jE = E 6 + -----E
ij d ij k 2

(61)

T h e  shift  in e n e r g y  of the conduction band edge of the r - t h  v a l l e y  is  
thus given by

6 e k ri k ri (62)

Note that E d+ - |  E u is the deform ation potential f o r  pure dilatation, E u

is  the deform ation  potential fo r  pure s h e a r .  T y p i c a l  v a lu e s  fo r  Ge ar-e 
as fo llo w s:  E d “  -  7 e V ,  Hura1 8  e V .

A s  an exam p le, let us c o n sid er  the conduction band of S i .  In this  
c a s e  the v e c t o r s  kr lie  along the c r y s t a l lo g r a p h ic  a x i s .  Supposing that 
a s t r e s s  is  applied in the (100) direction, e 22 = e33 ^ eH > е 12 = e i3 = e 23 
T h en  the shift in e n e rg y  of the conduction band m in im a is  given as  
f o l l o w s :

k r = ( ± k t, 0 ,0)

6ec = S d(e1i + e22 + e 3 3 ) + E u
(63)

k r = ( 0 , ± k r,0 ) ,  ( 0 ,0 ,  ± k t)

6ec = E d (Ец  + e 22  + езз ) + Hu е2г
(64)

Without entering into detail we se e  that in g e n e r a l  different v a l l e y s  a r e  
shifted in different w a y s  acco r d in g  to th e ir  positions with r e g a r d  to the 
e x te rn al s t r e s s .  Of c o u r s e ,  s i m i l a r  con sid eratio n s a r e  valid  fo r  the 
conduction band of G e and fo r  oth er se m ic o n d u cto rs  as w ell .

Th e influence of the e xtern al s t r e s s  on a degen erate  band, for  
exam p le  the v a le n c e  band of Ge, is  f a r  m o r e  com p licated  and we shall  
not d i s c u s s  it in detail h e r e  [6] . N e v e r t h e le s s ,  the calcu latio n  p ro ce e d s  
in a v e r y  s i m i l a r  w a y  as  with the If • p ap p ro xim atio n . If spin is
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neglected, the relevan t s e c u la r  equation has the sa m e  fo rm  as  E q . ( 2 1 ) ,  
only the m a tr ix  elem ents include additional te r m s  correspo n d in g to the 
perturbation Hamiltonian (5 7 ) .  F o r  e xam ple, the m a tr ix  element  
< 1  |H ^11> correspo n d in g to the m a tr ix  element 0 | H ' | 0  is  now given by

L k 2 + M ( k y+ k 2 ) + .£exx + m ( e yy + e2 2 ) (65)

w h e re  i  and m a r e  defined by

* = < i h x |i>-, rn = < i | ü yy 1 1 >  (66)

A  s i m i l a r  method of calculation can be used even if  we take the spin  
into account. In this c a s e ,  instead of e x p r e s sio n  (28), we get the 
following e x p r e s s io n :

e(k) = A k 2 + |  ( i  + 2 m ) ( c u  + 6a2 + c33 ) ±  J E | + E ^ . +  E 2  (67)

H e r e  E ^  is  the s a m e  e x p r e s sio n  as  in E q . ( 2 8 ) .  E f includes te r m s  
depending on depends both on and ki. In the absence of
s t r a in  E q . ( 6 7 )  re d u ce s to E q . ( 2 8 ) .  O therw ise  uniaxial s t r e s s  d e stro y s  
the cubic s y m m e t r y  of the c r y s t a l  and r e m o v e s  the d e g e n e ra c y  of the 
bands, at ic = 0 by an amount of 2 E e . It should be noted that h ydrostatic  
p r e s s u r e  g iv e s  r i s e  to the shift of the bands only.

3 .  T H E  O P T I C A L  P R O P E R T I E S  O F  S E M IC O N D U C T O R S

It is  w e ll  known that o ptics played a dominant role  in the study of 
the e le ctro n ic  stru c tu re  of atoms and m o le c u le s .  S i m i l a r l y  the study  
of the optical p ro p e rt ie s  of sem ico n d u cto rs is one of the m o st powerful  
methods p roviding a g r e a t  deal of information about their band stru c tu re .  
T h e r e f o r e  this section  w ill  be m a in ly  devoted to a d isc u ssio n  of the 
optical p ro p e rt ie s  of se m ico n d u cto rs,  e s p e c ia l ly  of those with diamond  
and zin c -b len d e  st r u c tu r e s ,  and th e ir  relationship  to the band stru ctu re  
o f these m a t e r i a ls  as re vie w e d  in section  2.

3 . 1 .  Optical constants

When d isc u ss in g  the optical p r o p e r t ie s  of sem ico n d u cto rs we  
u s u a lly  start.th e  m a c r o s c o p i c  d escription  of these phenomena based  
on M a x w e ll 's  equations fo r  an uncharged medium

V X H  = i | ^  V • D = 0
C dt

V X E  = - i —  V ‘ B = 0 
c at

(68)
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Denoting P  the p olarization  of the medium we can w rite

D = E  + 4 ttP  (69)

T h e  p r o p e r t ie s  of m a tte r  a r e  introduced into E q .( 6 8 )  phenom enologically
a s  re p r e s e n te d  by a d ie le c tr ic  constant e and a p e rm ea b ility  ju, without
taking into account the m e ch a n ism  of the interaction of m a tt e r  and
e x te rn a l  f ie ld s .  Th e m i c r o s c o p ic  q u an tu m -m ech an ical d e scrip tion  of
th e se  phenomena w il l  be given  la te r .  Now we sh all t r y  to obtain some
g e n e r a l  inform ation which can  be draw n fr o m  m a c r o s c o p i c  con sid eration s
and which a r e  independent of sp e cia l  m i c r o s c o p ic  m odels.

A s  we a r e  in terested  in n on-m agnetic  m a t e r i a ls  (q = 1 ) ,  only the
d i e l e c t r ic  constant e needs to be c o n sid ere d .  We sh all lim it o u r s e lv e s^  —>
below  to the l in e a r  relation s between D and E  so that we have in g en eral

D i ( ? , t )  = Y j f  d t  ' J  d3 ? ' e iS (r ,  ? ' . t . t ' )  E , ( r ' . t * )

Note that, following the p rincip le  of ca u s a lity ,  the e le c t r ic  d isp lacem en t D 
at a tim e t is  determ ined b y  all  e le c t r ic  field s at all  t im e s  p revio u s to t.
It can e a s i l y  be seen  that ey can be in terpreted as  the e le c t r i c  d is p la c e 
m ent r e sp o n se  in r  at tim e t to a  unit delta-function e le c t r i c  field pulse  
e6 (t ') 6 ( r ') ,  |eI = 1 .

Supposing that the p ro p e rt ie s  of the m a te r ia l  do not change with 
tim e (time uniform ity), we can write

r ' , t - t ' ) (70)

It is  w ell  known that c r y s t a l s  a r e  not sp a tia lly  homogeneous and in fact  
it holds that

e . (r ,  r 1, t - t 1) 
и

e.. ( r + a ,  r '  + a ,  t - t '  
ij

(7 1)

w h e re  a is  any tr an slatio n  of the tran slation  group. Fo rtu n ately,  it can  
be shown that with m o st hom opolar se m ico n d u cto rs,  the sp atial  inhomo
gen e ity  does not p la y  any se r io u s  ro le  so that we can w r ite  to a good 
approxim ation

e.. (r ,  r ' , t,  t ')  = e.. ( r - r 1, t - t ' )  l] и
(72)

U sin g the F o u r i e r  expansion fo r  E ,  D and e

Ej(r,t) = Ej(k , u) exp [i(k • r -u t)]  d3 k dw (73)
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w e get

wh ere

0 ;(к,и) = >̂ ejj (k, w )E j(k ,u ) (74)

e ij(k .u )  = d j d3 R exp [ - i( к • R- ' w T)]€jj  (Rt ) (75)

is  the te n s o r  of the com p lex d ie le c tr ic  constant. In these fo r m u la s  к 
and и a r e  taken to be r e a l  quantities. Se p a ra tin g  the r e a l  and com p lex  
part of the d ie le c tr ic  constant we can w r ite

€ij (k, u) = e l i j (k1 u) + ie2ij (k,u) (76)

B e c a u s e  o f  the fact that a r e a l  D has to co r resp o n d  to a r e a l  E ,  it 
holds that

<4 j (k, u) = e | ( - k ,  -u) (77)

M o r e o v e r ,  it can be shown that with c r y s t a l s  (or o ther su bstances)  
having a s y m m e t r y  centre

ejj (k,u) = £ji (k,u) (78)

Th e two p a r ts  of the co m p le x  d ie le c tr ic  te n so r  e-^ (k, u) and e 2ij (к, u) 
a r e  related to one another by the K r a m e r s - K r o n i g  relations

e (£,u ) -6.. = -  & > f  * du'
l l j  * 1J 7Г , U '- U

e 2ij ( k - u ) = -  -
1 _  r  eiij ( ^ u ') - 6i

u'-w
du'

(79)

H e r e  stands fo r  the p r in cip al v a lu e s .  The d erivation  of the d isp e rsio n  
re lation s contains only  th ree  m a jo r  assu m ption s: c au sality ,  l in e a r ity  
and bondedness of the left-hand side quantities. I do not intend to d is c u s s  
them in detail b e cau se  this has been done by des C lo ize au x  in this book [7] .

We have shown that in g e n e r a l  the d ie le c tr ic  constant is  a te n s o r ia l  
quantity having different n u m bers of components in different c r y s t a l  
l a t t ic e s .  It r e d u ce s to a s c a l a r  quantity fo r  c r y s t a l s  having cubic s y m m e t r y  
(o r  fo r  iso trop ic  m a te r ia ls ) .
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We have also seen that in g en e ral the d ie le c tr ic  constant depends 
on the w ave v e c to r  k. H ow ever, it can be shown that this dependence  
can be neglected in the ca se  when the wavelengths of photons in the 
medium a r e  much lon ger than the atom ic d istan ces, i . e .

X > >  a (80)m

T h is  condition is  fulfilled up to the wavelength in the X - r a y  range;  
n e ve rth e le ss  there exist som e optical phenomena ( e . g .  optical activity)  
in which the spatial d isp e rsio n  plays a fundamental ro le .  Supposing  
that condition (80) is  fulfilled and denoting e(0,u) =e(u), it follow s fro m  
E q .  (77) that

e ^ w )  = e 1 (-u>)

е2 И  = -е2 (-и)
(81)

Э DNote that when using in (1) (4тг/сЬ-instead of ( l / c )  —  it can be
J ot

shown that the p ro p e rtie s  of the medium can be d e scrib e d  by a com p lex  
conductivity te n so r  (w) =0Tij (ш) + 1ст2ц (и). B y  com p arin g the relevant  
e x p r e s sio n  we can e a s i ly  get the following relations for our sp e cia l  case:

4 7Г e 2 CT2 = 4 n
d - e a ) (82)

L e t us r e v e r t  to the optical p ro perties of so lid s .  When d isc u ssin g  
the propagation of e lectro m agn etic  plane w a v e s  in c r y s t a l s  it is  well  
known that instead of using e-^  and e 2ij which are  not d ir e c t ly  determined  
by optical m e a s u r e m e n ts ,  new quantities, the princip al indices of 
re fra c tio n  N j , a r e  introduced. With cubic c r y s t a l s  o r  iso trop ic  m a te r ia ls  
there e x is ts  only one (complex) index of re fra c tio n  N defined by the 
following relation:

N(u) = n(u) + i k(w) = ( e 1 + i  e g )
i

(83)

h ere  n is  the o r d in a r y  (real) r e fr a c t iv e  index and к is  the extinction  
coefficient; both quantities are re a l  and p ositive. The relation between  
C j ,  e 2 and n, к m a y  be deduced at once from E q .( 8 3 )

e; l = n 2 -k 2 , e2 = 2 n k  (84)

M o r e o v e r ,  in p r a c tic e  one often u ses the absorption coefficient a  

defined as follows:

_ 2 kto _ 4 г к  _ 4 tct1 _ ше2 
с X nc nc

The p h y s ic a l  m eaning of these quantities is  e a s i l y  seen  fro m  the 
following e x p r e s sio n  d e sc rib in g  the propagation of an electro m ag n e tic

(85)
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plane w a v e  along the x  a x is  in a c r y s t a l

= E 0 exp (86)

T h is  e x p r e s sio n  r e p r e s e n t s  a w ave tr a v e llin g  with v e lo c ity  c / n  and 
su fferin g  attenuation c h a r a c te r iz e d  by the extinction coefficient к 
(provided that attenuation is  not too g re at) .  Th e absorption coefficient  
a  i s  defined in t e r m s  of the exponential f a l l - o f f  in intensity b y  m ean s  
of the equation

T h e  rate of lo s s  of e n e rg y  p e r  unit volum e due to Jo u le  heating is  given  
b y  the e x p r e s sio n

T h e  functions n(u) and k(u) a r e ,  of c o u r se ,  again related  to each other  
by K r a m e r s - K r o n i g  re latio n s.  T h is  m ean s that if we m e a s u r e  n and к 
at one fre q u en c y  we can find a r b i t r a r y  v alu e s fo r  them. H ow ever, if  
w e c o n s id e r  n(u) and k(u) as  functions of u in the in te r v a l  (Q,oo), we 
need to know only one of these functions b e cau se  the second quantity is  
d eterm ined using the K r a m e r s - K r o n i g  relation s.

Note that, following E q . ( 8 4 ) ,  i f  к = 0, n =  i . e .  the propagation
of e le ctro m ag n e tic  w a v e s  is  not damped. On the other hand, if  
e^ < 0, n = 0, k =  n/ this m ean s that the wave is  damped but this 
dam ping is  not accom panied by absorption. T h e s e  conditions correspo n d  
to the total r e fle c tio n  (se e  E q . (91) b e lo w ).

We sh all be in terested  below in the optical p ro p e rt ie s  of s e m i 
conductors in the v is ib le  and u ltravio let region . H o w ever, in this region  
the d ire ct  estim ation of n and к is  not p ossib le  and we have to use  
r e f le c t iv it y  m e a s u r e m e n ts .  It is w e ll  known that at n o rm a l incidence the 
co m p le x  constant of reflection  r  is  g iven as

N - l
r = N T l  (8!

r  can be written in the form

|e |2 = N 2 e x p ( -  ox) (87)

(88)

r  = ^pR exp (icp) (90)

w h e re  R is  the reflection  constant

.  ( n - l ) 2 + k 2 

( n + l ) 2 + k 2
(91)

and cp is  the phase angle. Pro v id ed  that we know the reflection  constant R 
in the whole fre q u en c y  range we can find the phase angle using the
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K r a m e r s - K r o n i g  relations

ф И  = '  £  f  “ 2 ~ T  i g R t O d ?  * J  I  -Ш
( 9 2 )

T h is  is  the w a y  in which the optical constants n and к a r e  u su ally  determined  
in p r a c t i c e .  In fact, we alw a ys  know an optical constant only in a lim ited  
ran ge of fre q u e n c ie s .  F o rtu n ately ,  the fo rm  of the d isp e rsio n  relation  
is  such that e . g .  the v alu e s of R (§)  in E q .( 9 2 )  fo r  f  v e r y  distant fro m  и 
a r e  of little  im p ortance  and can thus be ap p ro x im ately  estim ated using  
an extrapolation p ro ce d u re .

3 . 2 .  Optical tran sitio n s

In this section  we shall deal with the quantum m e c h a n ic al  calculation  
of the s p e c t r a l  dependence of the d ie le c tr ic  constant. In doing this we 
can use different methods c orrespo n d in g to different points of v ie w .  A  
v e r y  g e n e ra l  and elegant approach w a s  used by des C lo izeau x in his 
le c tu r e  in this book. It might be useful to su m m a r iz e  b r ie f ly  the m ain  
points of this g en e ral form ulation.

In this c a s e  we a r e  studying the d ie le c tr ic  re sp o n se  of a solid to 
a s m a ll  e x te rn al perturbation re p r esen ted  by a m o n o chro m atic  light 
w ave; let us denote the perturbing Hamiltonian H 1 . Then the total 
Ham iltonian is  given by

H = H0 + H ' (93)

and the correspo n d in g  density  m a tr ix  p obeys the following equation!

i h  p = [H, p] (94)

Now the e le c t r ic  cu rren t induced by the light w a v e  is  given as

j = T r < p j  >  (95)op

w h e r e  j op is  the cu rre n t o p e r a to r .  In calcu latin g the density m a tr ix  
p = pQ +p^ , a lin e arizatio n  p ro ce d u re  is  u sed to sim p lify  E q .  (94)

1 Ь р г = [ H 0, Pl] + [ H ' , p 0] (96)

Substituting the solution of E q .( 9 6 )  into (95) we find a fte r  som e fu rther  
a lg e b r a ic  r e a r r a n g e m e n t that the e x p r e s sio n  fo r  the cu rren t density has  
the s a m e  fo r m  as the c orrespo n d in g m a c r o s c o p i c  equation. B y  com p arin g  
the relevan t p arts  we get an explicit  e x p r e s sio n  fo r  the com plex  
d ie le c tr ic  constant.

N a tu ra lly ,  th ere  is  no sen se  in going into detail h ere  and thus 
repeating the le c tu r e  by des C lo ize au x .  On the c o n t r a r y ,  it s e e m s  to 
m e  of in te re st  and useful to tr e a t  the sa m e  p ro b le m s fr o m  a som ewhat  
different point of v ie w  by using a s im p le r  form ulation.
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3 . 2 . 1 .  D ir e c t  (vertical)  interband transitions

In fact we have to calcu late  only either the r e a l  part e^u )  o r  the 
im a g in a r y  part e2 (w), b e cau se  the other quantity -  as we have shown 
in the p rev io u s section -  can be determ ined by using the K r a m e r s - K r o n i g  
re latio n s.  A s  usual, we shall choose e2 d e sc rib in g  absorption (one-photon) 
p r o c e s s e s  in solids while d e scrib in g  d isp e rsio n  (two-photon p r o c e s s e s )  
is  m o re  com p licated . M o r e o v e r ,  we shall see that the s p e c t r a l  dependence 
of e 2 is  v e r y  c lo s e ly  related to the band stru c tu re ,  providing much  
valu able  inform ation about the form  of the e n ergy  bands.

In g en e ral,  the total Hamiltonian d escribin g the solid and the 
radiation as  a whole can be written as  follow s:

^  ~ ^ e l"^ ^ ra d  rad ^"^phon +  ^ e l .  phon + ^phon.rad (97)

A s  we a r e  not d ir e c t ly  interested in lattice  vibration  effects  fo r  the time  
being, we shall not con sid er the la st  three te r m s  in e x p r e s sio n  (97). 
M o r e o v e r ,  fo r  s m a ll  perturbations represen ted  by the light w ave, we 
even do not have to con sid er the term  Hrad d e scrib in g  the p ro perties  
of the radiation field in the sem icon d u ctor and thus we can lim it o u r s e lv e s  
to the s e m i - c l a s s i c a l  form ulation treating Hel as  the unperturbed  
Hamiltonian and Hel_ rad as a s m a ll  perturbation. U su ally,  the one-  
e le ctro n  approxim ation is used

Hel z
1

2 m P( + V (r .) (98)

H.Lel. rad = 1
—  ■ £(? ) • P i + - ^ - 2  A 2( ? ; ) 
me 1 2m c2 1

(99)

p ; being the momentum o p e ra to r  of the i-th  electron, V  {rd) the c r y s t a l  
potential,  X  the v e c to r  potential of the radiation field, e the electronic  
c h a r g e ,  m the fr e e  electron m a s s ,  and c the v e lo city  of light. Note that 
we a r e  working in the t r a n s v e r s e  gauge

V -  A =  0

and taking the s c a l a r  potential of the electro m ag n e tic  field as ze ro .  
Th e v e c to r  potential is g iven by

A(r)  = A 0e exp [i (q • r  - ut)] + c . c . (100)

w h e re  q is  the w a ve  v e c to r  of the photon and e is the polarization v e c to r  
in the direction of the e le c t r ic  field. It can also  be shown that the second  
te r m  in Hel  ̂ rad (99) is a s m a ll  quantity of higher o r d e r  and can thus be 
neglected.

The p ro bability  of the optical tran sition s, i . e .  the absorption or  
induced e m iss io n  of photons, can be calculated in the usual w a y  by
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u sing the o r d in a r y  tim e-dependent perturbation th e ory. The w ave function 
of the initial ground state ф1 is  represen ted  by a S la t e r  determinant of 
o n e -e le c t r o n  Bloch  w ave functions of the valen ce  e le ctro n s.  Th e w ave  
function of the final excited state ф{ contains a definite num ber of wave  
functions of the conduction band states .  Th e transition rate fro m  an 
initial state to a final state is  given by the w ell  known fo rm u la  (golden  
rule)

Pfi = T  |< f |H el. radio f  6 (E f - E i ) ( 1 0 1 )

w h e re  E f and E ; denote the total e n e r g y  of the sy s te m  of e le ctro n s in 
the final and initial s tates ,  r e s p e c t iv e ly .

Sin ce  H el rad is  given as the sum of o n e -e le c tr o n  o p e r a to r s ,  only  
o n e -e le c t r o n  tran sitio n s a r e  induced. When con sid erin g only the 
absorption p r o c e s s  the correspon din g m a tr ix  elem ents a r e  given as  
follows:

<^n' k 1 e
m c

A 0e x p ( i q  • r) e • p n k )

and

E f - E i  = en. ( k ' ) - e „ ( k ) - h u

B e a r in g  in mind that |nk)> is  a o n e-elec tro n  Bloch  function

(//_,= exp(ilc • r) u J r )  
nk nk

w h e re

u _ ( r )  = u J r  + a) 
nk nk

(10 2 )

(103)

the m a tr ix  element can e a s i l y  be shown to be different from  zero  only if

k' = k + q + K (104)

w h e r e  К is  a  r e c i p r o c a l  lattice  v e c to r  appearing in E q . ( 1 0 4 )  to guarantee  
that К',  к and q all  lie  in the reduced B rillo u in  zone. Sin ce  the wavelength  
of a v is ib le  o r  u ltravio let photon is  v e r y  la r g e  com pared with the lattice  
constant, the photon momentum q is  a negligible quantity, thus К = 0, and 
we can r e w r it e  E q . ( 1 0 4 )  as follows:

k ' = k  ( 10 4 ')

On multiplying E q . ( 10 4 ')  by ft, this equation m a y  be con sid ered  as  the 
q u asi-m o m en tu m  con se rva tio n  rule analogous to the selectio n  ru les  
governing optical  tran sitio n s with ato m s. Th e second selection rule,
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n am ely  the e n e r g y  con se rva tio n  condition, is  a s s u r e d  by the 6-function  
f a c t o r  in E q . ( l O l )  givin g (se e  E q s  (103)  and ( 1 0 4 ') ) :

e (k) = e OO+ftu (105)

M o r e o v e r ,  it holds that n' f n ,  i . e .  no intraband tran sitio n s are  allowed.  
T h is  can be shown as  follow s:

Д e = h u

ft  Д к  = ft
ftwn

c

(106)

U sin g both th ese  equations we get that the m ean  value of the v e lo c ity  of  
an e le ctro n  should be equal to

i  A  e _ c
ft Д к n

A s  the v e lo c ity  of e le ctro n s is ,  in fact,  f a r  lo w e r  than the v e lo c ity  of 
light in the m edium , conditions (106) cannot be fulfilled sim ultan eously  
and th e r e fo r e  intraband optical tran sitio n s a r e  not allowed (at le a s t ,  in 
the f i r s t - o r d e r  approxim ation of perturbation theory).

To sum up, we have seen  that optical tran sitio n s involving the 
absorption (or em ission) of photons a r e  v e r t i c a l  (the line connecting the 
initial and the final states on an e n e rg y  band d ia g ra m  is  a v e r t i c a l  line) 
interband tran sitio n s (see  F i g .  1 5 ) .

FIG. 15. Direct (vertical) transitions.

L e t  us r e v e r t  to the calculation of the transition rate. When con 
sid e rin g,  fo r  s im p lic ity ,  optical tran sitio n s between each p a ir  of bands 
s e p a r a te ly ,  one band fu lly  occupied and the other empty, E q . ( l O l )  can  
be re w ritte n  in the following way:

P(nk; n'k; w) = ( 1 0 7 )

P ro v id ed  that all  v a le n c e  bands a r e  full and all conduction bands are  
empty, the total num ber of tran sitio n s p e r  unit volume (this is
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accom plish ed  by norm alizin g the Bloch w ave functions for unit volume)  
and time is  th e refo re  given by

— ri® к _> _>
— -  P(n k; n'k; u) (108)
4 tt3

n ', n

integration being o v e r  the f ir s t  Brillo u in  zone taking into account the 
two spin states  of the e lectro n . It can im m ed iately  be shown that the 
optical constants due to d ire ct  interband tran sition s can be obtained from  
this fo rm u la. If we con sid er the radiation in the fo rm  of a beam n orm al  
to the s u r fa c e  of the sem iconductor,  then the absorption coefficient a  is  
defined as the ratio of the e n erg y  absorbed fro m  the incident beam per  
unit tim e and unit volume to the incident flux

ft и X num ber of tran sition s p er unit time and volume  
incident flux (109)

The incident flux is  given as the product of the e n e rg y  density and the 
propagation v e lo c ity  of the beam in the medium c / n .  The e n erg y  density  
in the medium a v e rag e d  o v e r  a c y c le  is g iven by

n2 u2 Ap 

2ir c 2
( 1 10 )

Th e absorption coefficient a  i s  th erefore  given by

“ = 47r2(|) Ü  / 0  P(n?;n'5;U)) (111)
nn'

Note that the im a g in a r y  part of the d ie le c tr ic  constant e2 is  related to the 
absorption coefficient a  by

e 2 (u )  =
n c o (u )

и
( 1 1 2 )

B e fo r e  proceeding fu rther let us r e w r ite  the integration in E q . ( l l l )  
using the w ell-k n ow n  p ro pe rty  of the 6 -function

J g(k)6[f(k)]d3 k =  J  g(k)

f(k) = o
e2 can be thus written as

^  J |<n'k I e • p |nk>|
dS_____
( k ) - e n(k)]|

( 1 1 3 )

( 1 1 4 )
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w h e re  dS r e p r e s e n t s  a  su r fa c e  element in к sp a ce  on the s u r f a c e s  
defined by

e n. ( £ ) - e n( S ) = t i u  ( 1 1 5 )

e 2 (u) thus depends on two f a c t o r s :  the f i r s t  is  the sq u a re  of the m a tr ix
elem en ts,  the second is c lo s e ly  related  to the e n e rg y  bands. D ire c t  
calcu latio n s of the m a tr ix  elem en ts throughout the B r il lo u in  zone have  
shown that they a r e  not v e r y  к dependent fo r  a given set of bands. In 
a good approxim ation one m a y  c o n s id e r  them constant so that E q . ( 1 1 4 )  
m a y  be re w ritte n  as fo llow s:

e • p|n
I V Cn*

_dS_________

(P)- e n(p)l|
( 1 1 6 )

Th e in te g ral on the right-hand side of E q . ( 1 1 6 )  multiplied by 1 / 87t3 is  
called  the joint d ensity  of states fo r  interband tran sitio n s and the s p e c t r a l  
dependence of e2(u) i s p r i m a r i l y  determ ined by this function showing  
stro n g va ria t io n s n e a r  sp e c ia l  points in the B ril lo u in  zone. F r o m  E q . ( 1 1 6 )  
we se e  that th ese  s o - c a l le d  c r i t i c a l  points a r e  those points in the 
B r illo u in  zone at which the analytic  c h a r a c t e r  of the joint d ensity  of  
states  is  sin g u la r

V j e .  ( k ) - e n(k)l = 0к n n

e , ( k ) - c  (k) =hwП ' ' IT '

( 1 1 7 )

U su a lly  we distinguish between s y m m e t r y  interband points fo r  which

V_,e . (к) = V  e (k) = 0 
к " к

and g e n e ra l  interband points fo r  which

V_>e , (k) = V_»e (k) /  0 
к n к "

While the f o r m e r  o c c u r  only  at highly s y m m e t r i c a l  points of the 
B rillo u in  zone, the la tte r  m a y  o c c u r  on s y m m e t r y  planes, lin es o r  
even at g e n e ra l  p o in ts.

B e f o r e  p roceedin g fu rth e r  let us c o n s id e r  an in stru ctive  exam ple  
u sing a sim ple  two-band (n = v, n' = c) p ara b o lic  m odel of a s e m i 
conductor having e x tr e m a  at к = 0

£c ( ? ) = V 2 ^ k2 (118)

m v and m c a r e  effective  m a s s e s  of the v a le n c e  band and conduction  
band, r e s p e c t iv e ly ,  e is  the correspo n d in g e n e r g y  gap between the two 
ban d s. When evaluating the m a t r i x  element <^cic|e -p |vlt^ we can
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p r o ce e d  in the fo llow in g  m an n er. S ince we a re  in terested  in sm a ll w ave
v e c t o r s  к in the v ic in ity  o f  the band ex trem a , le t us expand the m a tr ix
e lem en t in the fo llow in g  way:

<(ck|e • p|vk^> = <(ck|e-p|vk^ )> + к
k = 0

■ pi v k \ »  I +
1 K=0j

( 1 19 )

retaining only the f i r s t  n o n -ze ro  te r m . Two se p a r a te  c a s e s  must be 
con sid ere d :

(a) Allo w ed  tr an sit io n s:  <[c0|e ■ p| v0)> f  0. In this c a s e  the second te rm  
can be u s u a lly  taken as van ish ingly  s m a ll  and can be neglected. In the 
v ic in ity  of the absorption edge we have

e ( k ) -e  (k )= h u  r =e  
L v cvk £

+ f ^ k *2rrij (120)

wh ere  пТ.1 = m /  + ПГ1 . Using fo rm u las  ( 1 1 4 )  and ( 1 1 6 ) ,  r e s p e c t iv e ly ,  
we get

e2 °ck

which g iv e s ,  following E q .  (120 )

e2 »(Tiu - eg )4

Note that there e x is ts  a threshold with e2 given by h u  = eg .

(b) F o rb id d e n  tr an sit io n s:  <(c0 |e • p|v0^> = 0,
Э к 4 ' ' ‘ ^ o

f o

( 1 2 1 )

It can be im m e d ia te ly  seen  that in this c a s e  the re le va n t m a tr ix  element  
is  proportional to k2 and th e refo re

givin g

3 /2
e2 » ( h u - e g) ( 12 2 )

Of c o u r s e ,  the g e n e r a l  le v e l  of e2 is  lo w e r  than in the c a s e  of allowed  
tr a n s it io n s .  It is  quite c l e a r  that the shape of e 2 (u) o r  absorption
coefficient а(ш) is  different accord in g to whether the tran sitio n s are  
allowed o r  forbidden. H o w e v er ,  in m ost c a s e s  the w ave functions are  
not e x p lic itly  known and the relevant m a t r i x  elem en ts cannot be 
d eterm ined d ir e c t ly .  F o rtu n ately ,  we u su ally  know the s y m m e t r y  
p r o p e r t ie s  of these functions and this enables us to calcu late  the selectio n  
ru le s  u sing group th e o r e tic a l  a n a ly sis ,  i . e .  to determ ine whether the 
m a t r i x  element <^п'К|е -p|nlt)> has zero  o r  finite v a lu e s .  Note that a 
detailed d isc u ss io n  of the m a t r i x  element <Cik|e -p|vk^> shows that the 
u se  of plane w a v e s  instead of Bloch  functions m a y  not be a good a p p ro x i
m ation fo r  this calculation.
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We have seen  that by c a r r y i n g  out the m e asu re m e n t of the sp e c tr a l  
dependence of e2 and a> r e sp e ctiv e ly ,  n e ar the absorption edge we could 
obtain inform ation about the (direct) e n erg y  gap eg and the joint density  
of states ,  and distinguish between allowed and forbidden tran sition s at 
the c r i t i c a l  point k = 0. S im i la r ly ,  we can expect that analogous c o r r e 
lations between the band stru c tu re  and appropriate m e a s u re m e n ts  
e x ist  fo r  o ther c r i t i c a l  points as  w ell .

To get som e idea of the other c r i t i c a l  points let us con sid er the 
an alytic  behaviour of е п,(Ё)- е п(Й) in the vic in ity  of a c r i t i c a l  point. 
Supposing that the m a tr ix  element is  a constant different fro m  zero  we 
can expand [en,(k )- en(k)] in relation ( 1 1 6 )  in a T a y l o r  s e r i e s  about the 
c r i t i c a l  point (kQ)

If the three coefficien ts a r e  positive ( i . e .  we a r e  dealing with a minimum)  
the behaviour of the joint density of states (and th e refo re  of e2 and a , 
r e s p e c t iv e ly ,  as  well) is  proportional to ( h u - e ^ ) 2. A  s i m i l a r  result holds 
f o r  a m axim u m  having all a; negative; the joint density of states is  
proportional to (e^-hu)^ fo r  h u  < e 0 . Such points are  denoted by M0 and 
M3 , r e s p e c t iv e ly .

FIG. 16. Schematic representation o f the joint density o f states (After Bassani, F ., in The Optical Properties 
o f  Solids (TAUC, J.f Ed. \ Academic Press, New York, (1966)33).

If one coefficient is  negative and two positive o r  if two coefficients  
a r e  negative and one positive we have to deal with saddle points JMj and 
M 2 , r e s p e c t i v e l y . The sc h e m a tic  behaviour of the correspon din g joint 
density  of states is given in F i g .  1 6 .

In fact, we can h ard ly  expect that the experim en tal c u r v e s  of e2 
w ill  a lw a ys  show such a sh arp  stru c tu re ;  e s p e c ia l ly  at higher e n erg ies  
the m ain  contributions to those peaks w ill  p robably o c c u r  at c lu s te r s  of 
c r i t i c a l  points r ath e r  than at one sp e cia l  point. M o re o v e r,  we have to 
add all other tran sitio n s o c c u r r in g  sim ultan eously  at m an y regions of the 
B rillo u in  zone and giving r i s e  to the sm oothly changing absorption  
" b a c k g r o u n d " .

3

i = l

E0 hw
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We sh all  now co m p are  the experim en tal and th e o r e tic a l  s p e c t r a l  
dependence of £г(ш) with Ge given in F i g .  1 7  [2] . The low est d irect  
edge (Г^5~*Г15) is  seen to be n e a r ly  p ara b o lic .  Unfortunately, the p resent  
band stru c tu re  calculation s neglect the sp in -o rb it  splitting which is  of 
g r e a t  im p o rtance  in G e as  has been shown p r e v io u sly .  T h e r e f o r e  I 
sh all  pay no attention to sp in -o rb it  splitting fo r  the time being and we 
sh all  d is c u s s  this effect la te r .

FIG. 17. Calculated and experimental values o f the imaginary part o f the dielectric constant (e2) o f  Ge 
(see Ref. [8] ).

We can se e  that the beginning of the steep r i s e  of the e2 c u rv e  is  due 
to tran sitio n s which correspon d  to the M 0 c r it ic a l  point. The
following peak, which c o r resp o n d s to an Mj c r i t i c a l  point, is  m ain ly  
due to (Ag-UYjJ tr a n sit io n s.  The sm a ll  shoulder between 3 . 1  and 3 . 8 e V ,  
which r e p r o d u c e s the experim en tal line shape quite a c c u ra te ly ,  sta rts  
with an M 0 c r i t i c a l  point ( Г 25^ Г 1 5 ) and includes also an M 1 c r i t i c a l  point 
in the [100] d irectio n s clo se  to K = 0. The second peak, while r e p r o 
ducing w ell  the expe rim e n ta l line shape, is shifted to w ard s higher  
e n e r g ie s .  T h is  is  m a in ly  due to the choice of som e e m p ir ic a l  p a r a m e te r s  
used in calculating the band stru ctu re  at the X  point. It is  seen that 
this peak c o r re s p o n d s to c lu s te r s  of c r i t i c a l  points near X  and £ ( £ 2-»E3).
It is probable that a slight low erin g of the X 4-*Xj gap in these calculations  
would give  a better  fit to the experim en tal data. Sum m ing up we can sa y  
that the ag re e m e n t between the th eoretical and experim en tal v alu es of 
the im a g in a r y  part of the d ie le c tr ic  constant of g erm an ium  is  reason ably  
good. A  s i m i l a r  a n a ly s is  has also been given fo r  S i .  It should be noted 
that the r e a l  and im a g in a r y  p arts  of the d ie le c tr ic  constant w e re  
d eterm ined using r e f le c t iv it y  m e a s u re m e n ts  as mentioned in the 
p revio u s section . F i g u r e  18  shows the expe rim e n ta l v alu es of  
and e2 with G e as  functions of photon e n e rg y .

L e t  us retu rn  to the sp in -o rb it  splitting pro blem . When d iscu ssin g  
the band s tru c tu re  of Ge we mentioned that the sp lit -o ff  valen ce  band 
should be se p arated  fro m  the two higher v alen ce  bands by the sp in -o rb it  
splitting Д . Д has been determined ex p e rim e n ta lly  as 0 . 2 9  eV  in Ge 
and 0 .0 4 4  e V  in S i .  Takin g into account the com plex stru c tu re  of the
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FIG. 18. Reflection spectrum and e „  e 2 o f Ge (after Phillip, H .R ., Ehrenreich, H ., Phys. Rev. 129 
(1963) 1550).

FIG. 19. Absorption constant o f Ge (after Antoncfk, E ., Klima, J., Czech. J. Phys. B15 (1965) 937).

v ale n c e  bands in the v ic in ity  of the cen tre  of the B rillo u in  zone, the 
absorption edge can be calculated in a s i m i l a r  w ay as p r e v io u sly .
F i g u r e  1 9  shows the th e o r e tic a l  v a lu e s  of the absorption coefficient  
and c o m p ariso n  with e x perim en t. Optical m e a s u r e m e n ts  of this type  
p erm it d ir e ct  determ ination of the spin-orbit splitting Д . Unfortunately,
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the corresponding tran sition s at the Г  point a r e  r ath e r  weak in com p ariso n  
with the A 3-»Aj transition. Fo llow in g group th e o r etical  a n a ly sis ,  
including sp in -o rb it  interaction, the double degenerate A 3 le v e l  is  
split into two le v e ls  and this splitting is roughly equal to tw o -th ird s  Д . 
F i g u r e  20 shows this doublet in the reflection  sp ectru m  due to sp in -o rb it  
interaction with G a A s ,  InAs, GaSb, and InSb. A  com p ariso n  between  
the sp in -o rb it  splitting estim ate s , using E q . ( 3 4 ) ,  and experim en tal  
v alu e s is  given in T a b le  III. We can see  that the agreem en t with 
experim ent is  re la t iv e ly  v e r y  good. A  s i m il a r  a n a ly sis  can be given fo r  
o ther peaks (transitions) as  well.

FIG. 20. Reflection spectra o f some A ®  Bv  compounds (after Taue, J ., AbrahSm, A ., Proceedings o f the 
Int. Conference on Physics o f  Semiconductors, Prague (1960) 371).

T A B L E  III. S P I N - O R B I T  S P L I T T I N G  (IN eV) O F  S O M E  A lnB v A N D  
A " B VI C O M P O U N D S.

( A F T E R  F .  H E R M A N  E T  A L . ,  P H Y S . R E V .  L E T T E R S  LI ( 1 9 6 3 )  5 4 1)

Compound Calculated Experimental

GaAs 0.34 0.35

GaSb 0.71 0.70

InAs 0.44 0.43

InSb 0.80 0.81

ZnSe 0.50 0.44

CdTe 1.09 0.86
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In g en e ral,  the identification of peaks in the re fle ctio n  o r  absorption  
s p e c t r a  of se m ico n d u cto rs  is  by no m ean s a sim ple  p ro ce d u re  e s p e c ia l ly  
with m a t e r i a ls  with not v e r y  w ell  known band s t r u c tu r e .  We have seen  
that the o bservation  of the sp in -o rb it  splitting is  a v e r y  u seful m ean s  
o f identifying the type of the peak (transition). F o rtu n a te ly ,  there exist  
o ther p os sib il it ie s  (methods) as well and I shall mention them b r ie f ly .

One of the m o st u seful methods is  based on an e m p ir ic a l  rule  
concerning the shift of different peaks due to e xtern al h yd rostatic  
p r e s s u r e .  T h is  rule  has been form ulated by Paul in the following way:  
The p r e s s u r e  coefficient of the e n erg y  d iffe ren ce  between two states  
of given s y m m e t r y  in different m a t e r i a ls  is  ap p ro x im ately  equal.  T h is  
e m p ir ic a l  rule  p robably c o m es fro m  a v e r y  b a sic  s i m il a r i t y  in the 
p r o p e r t ie s  of w ave functions of a given s y m m e t r y  and the s e n s it iv ity  of 
the correspo n d in g  le v e l s .  It can provide c r i t e r i a  fo r  identifying the 
tr an sitio n  a s so c ia te d  with a p a r t ic u la r  e n e rg y  gap. It should be noted 
that the te m p e ratu re  shift of th ese  peaks pro vid es a s i m i l a r  test.

FIG. 21. Energy gaps o f the non-horizontal sequence od-Sn-Ge, GaSb, Zn-Te, Cu-I (After Cardona, M ., 
Greenaway, D. L ., Phys. Rev. 131 (1963) 98).

Another method is  based on the H e r m a n 's  relations d e rive d  in the 
p rev io u s le c tu r e  (see  E q s  (32) o r  (33 )) .  T h e s e  relation s c o r r e la te d  
the e n e rg ie s  of correspo n d in g  tr an sitio n s in is o e le ctr o n ic  s e r i e s .
F i g u r e  21  shows the shift  of the peaks in the reflection  s p e c t r a  c o r r e 
sponding to the sa m e  tran sitio n s in the following non-horizontal i s o 
e le ctro n ic  s e r i e s :  a - S n G e ,  GaSb, Z n T e ,  Cul.

V e r y  in te re stin g  inform ation can also  be obtained by c o r r e la tin g  
r e fle c tio n  s p e c t r a  of both zin c-b len d e  and w u rtzite  se m ico n d u cto rs  in 
the sa m e  is o e le ctr o n ic  s e r i e s .  The c r y s t a l  str u c tu r e  of w u rtzite  is  
hexagonal but can also  be re g a r d e d  as  a cubic lattice  sligh tly  deform ed  
along the body diagonal. In the c a s e  of ZnS we can d ir e c t ly  com p are  
the r e f le c t iv it y  s p e c t r a  of the cubic and hexagonal m o difications (see  
F i g .  2 2) .  Th e th ree  s p e c t r a  a r e  e s s e n t ia l ly  the s a m e  except fo r  a few  
d iffe r e n c e s .  A  qu alitatively  v e r y  s i m i l a r  sp e ctru m  to that of ZnS  
(hexagonal) h as been found with CdS and C d Se. A n y w a y  we have seen  
that m o st of the re fle ctio n  str u c tu r e  can be in terp reted  q u alitatively  using  
e n e rg y  band sch em e  and selectio n  r u le s .
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F i n a l ly ,  let us note that som e conclusions can also  be drawn by  
studying sem iconducting allo ys,  e . g .  G e - S i  o r  even t e r n a r y  compounds, 
re p r esen ted  by fo r m u la s  In (A sl xP x ), (In1 _xG a x ) Sb, e t c . wh ere  x  
r e p r e s e n t s  the m ole fra ctio n  of the second group III o r  V  element in 
the allo y. T h e s e  m ixed c r y s t a l s  can be thought of s im p ly  as an additional  
group of se m ico n d u cto rs  in which the v a r io u s  e n e rg y  band p a r a m e te r s  
a r e  continuously v a r ia b le  with composition giving r is e  to continuous 
chan ges in optical  p r o p e r t ie s .

FIG. 22. Reflection spectrum of cubic and hexagonal ZnS. (After Cardona, M ., Harbeke, G ., Proceedings 
o f  the Int. Conference on Physics o f Semiconductors, Paris (1364) 217).

T o  sum up, we have found that the interpretation of the sp e c tr a l  
dependence of e 2 d is c u s s e d  so fa r  is based on the e xisten ce  of the 
c r i t i c a l  points in the joint density of sta te s .  A s  the concept of the wave  
v e c t o r  K, the B r il lo u in  zo n e ,etc.  is  stro n g ly  connected with the t r a n s 
lational s y m m e t r y  of the c r y s t a l ,  one should expect that the sh arp  fine 
str u c tu r e  of e2 , due to the existen ce  of c r i t i c a l  points, will  d isapp ear  
i f  the lo n g -r a n g e  o r d e r  is  lo st.  T h is  conclusion can be e a s i ly  proved  
by m e a s u r in g  the optical p ro p e rt ie s  of som e am orphous se m ico n d u cto rs,  
e . g .  G e .  It is  known that amorphous Ge has the sa m e  s h o r t-r a n g e  
o r d e r  as  c r y s t a l l in e  G e ,  while there is  no lo n g -r a n g e  o r d e r .  F i g u r e  23  
shows the re fle ctio n  s p e c t r a  of Ge in the c r y s t a l l in e ,  p o ly c r y s ta llin e  and 
am orphous state.  We can se e  indeed that the fine str u c tu r e  in the 
re fle c tio n  s p e c t r a  has disappeared.

3 . 2 . 2 .  Indirect interband tran sition s

Up to now we have d isc u ss e d  d irect  (v ertica l)  optical tran sitio n s  
only. In m a n y se m ico n d u cto rs  and, in p a r t ic u la r ,  in G e and Si, as has  
been shown in the f i r s t  le c tu re ,  the bottom of the conduction band lie s  
in a part of the B ril lo u in  zone different fr o m  the top of the v ale n c e  band.
In this c a s e  the threshold photon e n erg y  fo r  d ire ct  tran sitio n s is  l a r g e r  
than the m inim um  e n e rg y  gap eg sin ce  the d irect  tr an sitio n s with photon 
e n e r g y  c lo se  to eg a r e  forbidden. N e v e r t h e le s s ,  a f a i r l y  strong absorption  
m a y  begin at about tiu = eg due to a violation of the se le ctio n  rule  (105)  
in in d irect tr an sitio n s which m a y  resu lt fro m  sim u ltan eo u s.in teractio n  
of e le ctro n s  with photons and phonons, holes and other la ttice  i m p e r -
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fection s, r e s p e c t iv e ly .  In fact, this additional interaction m akes possible  
la r g e  changes of the q u asi-m om en tu m  of electro n s without ap p reciab ly  
changing th e ir  e n e rg y .  In what follows we sh all  be interested in indirect  
tr an sitio n s due to lattice  v ib ratio n s.

FIG. 23. Comparison o f the reflection spectra o f Ge: curve 1) single crystal, curve 2) polycrystalline layer, 
curve 3) amorphus layer. (After Taue, J., e t a l . ,  Proc. Int. Conference on Physics o f Noncrystalline Solids, 
Delft (1964) 606).

The th e o r e tic a l  d escription  of the indirect tran sition s is based on 
the assum ption that the electron-phonon interaction, H el phon is sm all,  
and thus can be treated  togeth er with the radiation field interaction, Hel rad , 
as p ertu rbatio n s. The correspo n d in g e x p r e s sio n  for the transition  
p ro bab ility  Pfi analogous to E q . ( l O l )  is  given in the sam e form  as E q . ( l O l ) ,  
but the m a tr ix  element < f  |Hgl rad|i^>has to be replaced  by a se c o n d -o r d e r  
e x p r e s sio n

I
<f|Hel. phon + ^ e l .  rad I m / > ‘x 1"0  I E el. phon + ^ e l .  rad I О

E, - E „
( 1 2 3 )

w h e re  only te r m s  involving both photon and phonon m a tr ix  elements  
a r e  considered; the index.m r e f e r s  to the interm ediate states.

We sh all  not attempt a com pletely  rig orou s treatm ent of the 
p roblem  but sh all  t r y  to d eterm ine the dependence of the absorption  
coefficient fo r  a s im ple  model shown in F i g .  24, being analogous to 
the tw o-band parabo lic  m odels con sid ered  p re v io u sly  and having a 
m inim um  of the conduction band at k c f  0. The absorption m a y  be 
acco m p lish ed  by two v ir tu al  p r o c e s s e s :  1) The electro n  is o p tic a lly
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excited fro m  the top of the v alen ce  band to the interm ediate state in 
the conduction band (v, k)->(c,k) and then s c a tte r e d  by a phonon fro m  
(CjK) into the final state in the conduction band minimum (c, k ') .  2) An
e le ctro n  is  excited fro m  (v, k') to (c, k') followed by the tran sitio n  of the 
e le ctro n  (v, k) to the hole at (v, к ') due to the electron-phonon interaction.  
E i th e r  of the p r o c e s s e s  1) and 2) m a y  involve either the absorption o r  
the e m iss io n  of a phonon. Note that if excited states in higher and/or  
lo w e r  bands w e r e  taken into account as well,  we could get additional  
tr an sitio n s;  unfortunately, this p ro ced u re  would r a th e r  com plicate  
o u r calculation and th e refo re  we shall r e s t r i c t  o u r s e lv e s  to the sim plest  
c a s e .

FIG. 24. Phonon-assisted (indirect) interband transitions.

We sh all now proceed  in a s i m il a r  w ay as with d irect  tr an sitio n s.  
Supposing that we a r e  dealing with allowed optical tran sitio n s, this 
m ean s that the correspo n d in g m a tr ix  elem ents do not vanish at the band 
e x tr e m a , all the m a tr ix  elem ents becom e constant if  each state is  taken  
to be either к = 0 o r  kc. F o r  exam ple, the correspon d in g m a tr ix  elem ents  
in e x p r e s sio n  ( 1 2 3 )  can be written ap p ro xim ately  as follow s:

<0; N .  | H ,  , I cO, vO; N-> >  < c 0 ,  vO; N-, |h . h, J c £ , v O ;  N_» ± 1 > ( 1 2 4 )
N t c i '  el. rad I kc j 4  kc  j* ehphonl c -  * t 0 ) '

w h e re  N-> . is  the a v e r a g e  number of phonons with wave v e c to r  kc , j being 
«С J

the index denoting different phonon bran ch es and |0, .)> denotes the
initial unperturbed state; N-j. . is  g iven by c

kc j

N exp
■ flld

k cj

к вТ
- 1 (125)

t u o , is  the e n e r g y  of the phonon c on sid ered . Note that the m a tr ix  
kcJ

element fo r  the absorption of a phonon is  proportional to

the m a tr ix  element fo r  phonon e m iss io n  is  proportional to «/N,. . + 1 .
kcJ

while
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A s s u m in g  that e x p r e s sio n  ( 12 4 )  can be taken as a constant except fo r  
the te m p e r a tu r e  dependence, e2 is  thus e x p r e s s ib le  in the fo rm  (analogous  
to E q . ( 1 1 6 ) )

d3 k' 6 Ееc(к ' )̂ - ev(k)-hu ± h u k.j (126)

w h e re  the integration is  o v e r  a ran ge of initial and final sta t e s .  Since  
the d en sities of sta te s  in the conduction and valen ce  bands a r e  p r o 
portional to J  - evdev and J~ec -  eg d e c, r e s p e c t iv e ly ,  the following  
i n te g r a ls  have to be evaluated

J e  - e * ( e - e  -luo±'hu-» ) d e  dev a ' r \r TT ' vkcj

Th e in te g ral o v e r  ev g iv e s

f  J ( e  - e  ) (ftw T h u  - e ) de
J  c 8 kc j c c

When integrating this in te g ral within the lim its e and hu Thu.»  
we obtain S kcJ

| ( h U + h ^ c j - e g )2

w h e re  the +hu-£cj c o r r e s p o n d s  to the e m issio n  o r  absorption of the 
phonon. Combining this e x p r e s sio n  with the f a c t o r s  involving E q . ( 1 2 5 )  
we get

e2 » V  { c*. N_* [h u -(e  - f i u ,  )]2 + c ‘ (Nr> . + 1) [tiu-(e +hwf  , ) ] 2 } ( 1 2 7 )
i  L a 1 kcj g kc] 1 kc] g kc]

j

in which c|,  c? a r e  constants containing the rem aining f a c t o r s .  When
con sid erin g  only one branch of the phonon sp ectru m  and plotting J e 2
again st Tuo, the c u rv e  l ie s  c lo se  to the straight line for
e„ -ÜWt? i < hu < e„ + hU-> . and clo se  to a s te e p e r  line fo r  hu > e„ + h u _  . g qc J g r  g qc j
givin g r i s e  to two th re sh o ld s.  H ow ever, it is  n e c e s s a r y  to b e a r  in mind
that the threshold correspo n d in g  to the phonon absorption p r o c e s s
b e c o m e s negligibly  s m a l l  as №* . ap p ro aches ze ro  fo r  T -*0.

Kq j

If  the tran sitio n s a r e  forbidden at the band e x tre m a  we can proceed  
in a s i m i l a r  w a y  as with the d ire ct  tran sitio n s in the previou s section.  
Supposing that the correspo n d in g  m a t r i x  elem ents a r e  proportional to 
к and к - kc, r e s p e c t iv e ly ,  we can d e rive  e x p r e s sio n s  s i m il a r  to 
e x p r e s s io n  ( 1 2 7 )  which d iffe r  in the exponent only.

In p r a c t ic e  we a r e  dealing with s e v e r a l  bra n ch e s of the phonon 
sp e ctru m  and the correspo n d in g  a n a ly s is  is th e r e fo r e  f a r  m o r e  c o m p li
cated. F i g u r e  25 shows the absorption edge in G e .



916 a n t o n &'k

It should be noted that from  such an a n a ly s is  of the experim en tal  
c u r v e s  we are  able to estim ate  not only the te m p e ratu re  dependence of  
the e n erg y  gap eg but even the value of the w ave v e c to r  kc . F i g u r e  26 
shows the te m p e ratu re  dependence of the gap eg in G e .  T h is  dependence  
is  quadratic at v e r y  low te m p e r a tu r e s  while at higher te m p e r a tu r e s  it 
is  l in e a r .  F r o m  the th e o r etical  point of v ie w  the te m p e ratu re  dependence  
of the gap o r ,  better, of the correspon d in g le v e ls  m a y  be calculated using  
the s e c o n d -o r d e r  perturbation th eory taking into account the e m iss io n  and 
r e -a b so r p tio n  of v ir tu al  phonons. In con sid erin g the sim ple  two-band  
m odel of a sem icon ductor it can e a s i l y  be shown that the shift of the 
e n e rg y  le v e l  is  given by

Z_i L e ( k ) -e f k + q l+ h u -j

j < £  N? l H el. phoning. ! > 1 2

e(k)- e(k-q)--hw^

PHOTON ENERGY h* (eV)

FIG. 25. Absorption curves for Ge. (After G. Macfarlane et a l . , Phys. Rev. 108 (1957? 1377).

Although the te m p e ra tu re  dependence of the gap and even of som e higher  
absorption peaks based on fo rm u la  ( 12 8 )  is  in sem i-qu an titative  a g r e e 
ment with experim en t, the g e n e r a l  form ulation of this r ath e r  com plex  
p roblem  is  not yet s a t i s f a c t o r y  and w il l  not be d isc u ss e d  h e re .

We have seen that the sim ultaneous interaction of e lectro n s with 
photons and phonons, giving r i s e  to in direct tran sition , m a k e s it possible  
to produce absorption at e n e rg ie s  lo w e r  than the d ire ct  e n e rg y  gap. A  
s i m i l a r  effect can take place  if  we con sid er,  instead of the e le ctro n -  
phonon interaction, another interaction, nam ely  the e le ctro n -h o le  in te r 
action. It can be shown that the mutual Coulomb attraction of the e le ctro n -  
hole p air  allow s bound states -  excitonic states -  with e n e rg ie s  l e s s  
than those of the fr e e  p air  of p a r t ic le s .  Abso rp tio n  can take place  
into these excitonic  states at e n e rg ie s  lo w e r  than the gap and, m o r e o v e r ,
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О 100 200 300
т <°К)

FIG. 26. Variation o f energy gap £g with temperature for Ge. (After G. Macfarlane et a l., Phys. Rev. 
108 (1957) 1377).

the continuous absorption beginning at the gap is  modified in shape fro m  
that given  by E q s  (54) and ( 5 5 ) .  Unfortunately, th e re  is  no tim e left fo r  
this r a th e r  c om p lex problem , being beyond the o n e -e le c t r o n  a p p r o x i
mation, and we sh all  not d is c u s s  it in detail h e re .

3 . 2 . 3 .  D ir e c t  intraband tran sitio n s

T r a n s it io n s  of this type take p lace  in a com p lex band c on sistin g of 
s e v e r a l  o v erlap p in g  bands as  fo r  exam ple the v a le n c e  band in S i ,  Ge,
A 111 B v compounds, etc.  ( F i g .  2 7 ) .  In fact, e le ctro n s in a fu lly  occupied  
v a le n c e  band do not contribute to intraband tran sitio n s b e c a u s e  of the 
P a u li  e xclu sio n  p rin cip le .  T h u s,  th ese  tr an sitio n s o c c u r  b e c a u s e  there  
a r e  holes in the v ale n ce  band, and we m a y  expect that the whole effect  
w ill  be str o n g ly  dependent on te m p e ra tu re .

FIG. 27. Direct intraband transitions near the top o f  a com plex valence band.
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In calcu latin g the absorption coefficient o r  e2 (w) we have to 
g e n e r a liz e  fo rm u la  ( 10 7 )  fo r  this c a s e .  Denoting the e le ctro n  d i s t r i 
bution function f(en(k)), the right-hand side of E q .  ( 10 7 )  has to be multiplied by  
the following fac to r:

{ f ( c n( k ) ) [ l - f ( 6 n. ( k ) ) ] - f ( c n. ( k ) ) [ l - f ( e n(k))]}  

= { f ( e n( k ) ) - f ( e n.(k))}
(129 )

T h e  f i r s t  te rm  in ( 129 )  co r re s p o n d s to the absorption p r o c e s s  (n, k)->(n', k), 
while the second te r m  c o r r e s p o n d s  to the induced e m iss io n  fo r  the 
(n1, k) ->(n, k) tran sitio n . When dealing with interband tr an sitio n s we 
u s u a lly  c o n sid er  com p letely  filled o r  com p le te ly  em pty bands. T h e r e 
fo re  e x p r e s sio n  (129 )  m a y  be re p laced  by unity as  has been done 
p r e v io u sly .

L e t  us a ssu m e  that the к dependence of the th ree  e n e rg y  bands of 
the v a le n c e  band con sid ered  can be written as (se e  F i g .  27 :  т а > m3 > m 2)

-* h2 2
£i (k) = A i ~ 2 ^ k i = 1 - 2 - 3 <1 3 °)

H ere  Л 1 = Д 2 = 0, Д 3 = - Д  . A n  equation analogous to E q .  (120 )  g ive s

h u- •“  ij = A i - A j  + 2 m i
( 1 3 1 )

w h e re  m " 1 =m "1 -m".1 .
ij J 1

It can be shown that, owing to the s y m m e t r y  of the w ave functions,  
optical tran sitio n s between these bands a r e  forbidden at k = 0. A s  in 
the c a s e  of forbidden tr an sitio n s (see  E q . ( 1 1 9 ) ) ,  this selectio n  rule  
b r e a k s  down aw ay  fro m  к = 0, and dipole tran sitio n s can o c c u r .

We sh all  now c o n s id e r  the distribution functions fo r  different bands.  
It is  w ell  known that the distribution function fo r  e le ctro n s in the con
duction band is  given by

f(e) exp
-1-1

+ 1 ( 1 3 2 )

If it is a ssu m ed  that e -  eF> >  k BT 4 the t e r m  with 1 can be neglected and 
we get the c l a s s i c a l  e x p r e s sio n

f ( e ) = exp ( 1 3 3 )

A c c o r d in g ly ,  the c l a s s i c a l  distribution functions fo r  holes in the valen ce  
band a r e  given by

e F - 6i
l - f i ( q )  = exp e, SO ( 1 34)
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except for band 3 where, owing to the fact that A>> kßT, holes can be 
neglected. As in general the concentration of holes given by Eq.(134) 
is small, the distribution functions for electrons in the valence bands 
are assumed to be equal to unity.

The Fermi level eF in Eqs (133) and (134) is estimated using the 
fact that the number of electrons Ne in the conduction band must be 
equal to the number of holes Nh in the valence bands. Taking into 
account the corresponding densities of states we can easily obtain

(*!>" ( m f ^ m f ) 2(2л,т 1к вТ)
3/2 exp

ei(it)- д г
kBT (135)

A similar expression holds for band 2 as well.
Let us consider 2->l interband transition. In this case expression(1 29) 

can be simplified as follows:

{ } = [l-f1(e1(k))] - [ 1 - f2(e2(k))] 

Using relation (131) we get

(136)

2 2ml2 ,  
к = —  ft to

n
(137)

Substituting this expression in Eq.(136) we get

{ } « exp hu
m-2-m 1 kBT - exp 11 ft to

[m2 -mj kBT (138)

Taking into account all the necessary quantities, the absorption 
coefficient for (2 -1 ) transition is proportional to

a21
Nh(hu)1/2
(kBT)3/2 exp hu)

k BT - exp^ (139)

Similar expressions can be given for the transitions (3-*l) and (3-*2), 
respectively

~ Nh(hu) -A)3/2 Г m3 ft to- a  " 
ftio(kBT )3/2 eXP [m 3-m ! kBT hw > A

a32  w

Nh (A -ft io)3/2 
hto(kBT)3/2

exp
m 3 Д - h u

(140)

m2-m3 ft io < Д
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Note that owing to the inequality A > > k fiT no induced emission occurs 
into band 3.

Taking into account the corresponding matrix elements, effective 
masses etc., we can compare the calculated absorption coefficients 
with experimental data. This has been done both for the simple 
parabolic bands given by Eq.(130) and also for more realistic energy 
bands as calculated by Kahn [9] who used the к -p method. Figure 28 
shows the calculated and measured absorption coefficients for 
Nh= 6X 1015 holes at 300°K. Without going into details we can say that 
the agreement between theory and experiment is reasonably good.

0.1 02 03 04 05 06 07 0.8
ENERGY (e V)
(300 °K)

F IG .2 8 . A b sorp tion  sp ectra  o f  p - t y p e  G e . (A fte r  K ane, E .O . ,  J. Phys. C h e m . S o lid s  1 (1 9 5 6 )8 2 ) .

It should be noted-that the a12 peak is overlapped on the low-energy 
side by another absorption process due to the absorption of free 
electrons in the conduction band. Absorption of this type is identical 
with that occurring with metals. In this case, we are dealing with 
indirect intraband transitions; absorption arises through the inter
action of electrons with phonons (or impurities) just as the indirect 
intraband transitions discussed previously. We shall not discuss this 
problem in detail here.

3 .2 .4 . Interband transitions in a magnetic field

We have shown previously that the external magnetic field gives 
rise to significant changes in the band structure of semiconductors.
For example, this fact reflects very radically on the density of states 
as can be seen from Fig. 13. On the other hand, we have seen that the 
density of states -  or more accurately, the joint density of states -  
determines to a great extent the spectral dependence of the absorption 
constant. Thus, we can expect a considerable effect of a magnetic field 
on the optical absorption in semiconductors as developed previously.
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If we take into account both the external magnetic field and the 
radiation field the complete one-electron Hamiltonian (remember that 
we have to deal with one-electron transitions) is

2 ^ ( p + f A e x t  + f  A ) 2 + V ( ? )  ( 1 4 1 )

where Aext is the vector potential of the external magnetic field, and Ä 
is given by Eq.(lOO). As the radiation field is small we can proceed in 
the same way as in previous sections and use the perturbation theory.
The perturbing Hamiltonian is now

H' = ̂ ( p +! M  <142>
and the zero-order Hamiltonian is the same as in Eq.(98).

Hence the matrix element which appears in the calculation of the 
transition probability (see Eq.(102)) is given by

<u .F ,,.,,, —  A„ n kJJ 1 me 0 У z
P + - Ä  , ̂ c ext lUnFkyV > (143)

where the space variation of A has been neglected (q = 0).
Since the F and Aext are slowly varying functions compared to the 

periodic functions un, , un, and can thus be treated as constants over 
the unit cell, the matrix element (76) can be split into two integrals

^F I A e • (p + — A If  )> <u I u > 
k ' k ^ r l m c  о у c  extj I ky k z r  4  n n

(144)

while the matrix elements involving un-, un are integrals over a unit 
cell only, matrix elements involving F are evaluated over the whole 
crystal.

When considering the usual interband transitions the u for two
different bands are assumed to be orthogonal to one another. In this
case the first term in expression (143) vanishes. Supposing that we
are dealing with allowed transitions, the selection rules are determined
by the matrix element <(F If  ~> which must be non-zero:

J  k i k ’ t ' l  k „ k , r

Д kz - Д ky= 0; A£ =0 (145)

Transitions of this type are shown in Fig. 29.
Let us return to the spectral dependence of the absorption coefficient 

or of e2 for the two-hand parabolic model (see Eq.(37)). In the presence 
of the magnetic field we have an absorption edge corresponding to each
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FIG . 2 9 . D ir e ct  transitions b e tw e e n  Landau le v e ls .

FIG . 3 0 . A b sorp tion  c o e f f i c ie n t  co rresp on d in g  to  the transitions b e tw e e n  Landau le v e ls .  (A fte r  Roth, L. M . 
et a l . .  Phys. R ev . U 4  (1 9 5 9 )  9 0 ).

FIG. 3 1 . P hoton en erg y  o f  transm ission  m in im a  versus m a g n e t ic  f i e ld  fo r  G e . (T  = 2 98 ° K ). (A fte r  Z w e d lin g , S. 
et a l . ,  Phys. R ev . 108 (1 9 5 7 ) 1 4 0 2 ).
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pair of Landau levels. On the same assumption as in relation (116) -  
that the matrix element is a constant -  we can write

I 6 (h  id -  e c M +eH ) vk л
C ky kz

£ eH
2Hc

2 7Г 6 ( lu o -e
H +  и .
c  kz fi C v k z fi

(146)

Here the limits of the integral over ky are given by the fact that the x 
component of the centre of the magnetic orbit has to lie inside the 
crystal (see Eq.(39)). Calculation of the integrations lead to the result

__ 1_ eH
4jt2 he

d (e H - eHdkz ckz£ vkz£
ec k z £ £ v k z C

eH
as — —

h e
(hu -h u ( )

(147)

where hid{ = eg + (^+ l/2 )h  (idc +idv) . Equation (147) shows that e2(id) will 
always be singular when id =io£ for each Landau level. The spectral 
dependence of e2 has an oscillatory character showing peaks changing 
linearly with magnetic field. In fact, these peaks are broadened by 
collisions and this is shown in Fig. 30. The experimental dependence 
of different peaks on the magnetic field in Ge is shown in Fig. 31. Note 
that this dependence gives not only the experimental value of the energy 
gap Cg but the slopes of the lines enable us to evaluate the reduced 
effective mass given by (m"1 н-m"1 )-1.

V
\■0\\

/ m = ♦ 1/2

An = 0 An = - 2

2
A
6

m# = ♦ 3/2*-1/2 ----------3 m#s ♦ 1/2' -3 / 2

FIG. 3 2 . D ir e ct  transitions b e tw e e n  Landau le v e ls  in  G e  (k z  = 0 )  a l lo w e d  fo r  E H . (A fte r  Roth. L. M .e t  a l . ,  

Phys. R ev . 1 14  (1 9 5 9 )9 0 ) .
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So far we have discussed the simple two-band model. Unfortunately, 
because of the complexity of valence bands in most semiconductors, the 
real situation is far more complex, as can be seen e.g . from Fig. 32.
We shall not discuss this problem in detail here. Similarly, no attempt 
will be made to deal here with the influence of a magnetic field on 
absorption due to indirect interband or intraband transitions (the latter 
transitions are due to the first term in expression (144) giving the 
following selection rule:

and are observed in cyclotron resonance experiments). The reader is 
referred to the review article by Lax [10] .

4. ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS

In this section no attempt will be made to review the present stage 
of transport phenomena in semiconductors because this would require 
far more space. As this course is devoted to simple homogeneous 
materials containing no defects I shall not deal with effects due to 
impurities, thermal gradients, etc. In what follows I shall limit myself 
to some conduction and galvanomagnetic phenomena and related problems 
observable at low electric and magnetic fields. At the same time I shall 
try to emphasize such aspects of these phenomena which are closely 
related to the complex band structure of semiconductors.

When one begins to investigate a semiconductor without any precise 
information about the band structure the only reasonable procedure 
seems to be to assume the form of the energy bands, to calculate the 
parameters needed and to compare them with experimental values. 
Agreement or disagreement between theory and experiment indicate 
whether our suppositions concerning the band structure are at least 
approximately correct.

It is shown in lectures given by Garcia-Moliner in this book [11] 
how these calculations proceed in practice provided that we are dealing 
with a simple form of the energy bands. Before proceeding further let 
us briefly summarize some results we shall use in our lecture.

4 .1 . Electrical conductivity

In order to find the electrical conductivity we usually start with 
the solution of the Boltzmann equation which can be written for a 
homogeneous n-type semiconductor at constant temperature as follows:

Here f(k) is the non-equilibrium distribution function which specifies 
the probability that a state with wave vector к is occupied.

Дку=Дк2=0, A£ = ±1

(148)
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The collision term in Eq.(148) is generally a complicated integral. 
Fortunately, in many cases of physical interest it may be expressed 
in the following way:

Here f0 is the thermal equilibrium distribution function and т(к) is 
referred to as the relaxation time. This approximation is thoroughly 
discussed by Garcia-Moliner in this book. It is well known that in 
general a relaxation time does not exist for some types of scattering; 
in this case an assumption of type (149) cannot be used and one has to 
perform the analysis using the Boltzmann integral equation. Never
theless, we shall use the relaxation-time approximation to get a greater 
insight into the nature of transport processes without being very 
interested in precise numerical results which are not necessary for 
a general discussion.

4 .1 .1 . Simple parabolic band

Substituting expression (149) in (148) we get

Assuming that the non-equilibrium distribution is near the equilibrium 
dsitribution f0 for the field E normally of interest, we may replace 
f(k) on the right-hand side of Eq.(150) by f0(k). In general the thermal 
equilibrium distribution is given by the Fermi-Dirac distribution function. 
However, in contrast to metals, the Fermi level in a non-degenerate 
semiconductor lies in the energy gap. Supposing that we are dealing with 
a non-degenerate semiconductor, f0 can be equated to the classical 
Maxwell distribution function (see Eq.(65)). For simplicity, let us 
assume that 151

(149)

f(k)=f0(k) + | т(к)Е- V f(k) 
И к

(150)

(151)

then fc(ec(k)) is given by

(152)
3 /2

exp

A similar expression holds for holes in the valence band as well (see 
Eq. (67)).
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The current density due to conduction electrons is given by

47r
f d3k (153)

where

v = t ¥ c W (154)

writing

j. = У  a . .  E .  
1 Л  ч J i, j = x, y, z (155)

J

the (ij) component of the electrical conductivity tensor is given by

(156)

We shall now make a further approximation

т ( к )  =  т ( е )

Then Eq.(156) can be written as
Ne2 . s

ач - ^  <T> 6Ü

where the following notation has been introduced:

(157)

(158)

тпеэ/2 exp (.

<т"> (159)

/ e 3/2 exp de
о

We see that cr̂  is in fact a scalar quantity сте . It is convenient to 
introduce a quantity це called the electron mobility defined by means 
of the equation

e  x n -
(160)

so that

сте = N e p, (161)
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Similar expressions hold for holes as well.

4 .1 .2 . Simple ellipsoidal band

Let us consider a more general case of a single ellipsoidal band 
in its principal-axis co-ordinate system2

|2 ь-2 u2
ma m2 m3 (162)

On the assumption that the relaxation time is a function of energy only 
we can proceed in a similar way as in A by introducing the following 
transformation of co-ordinates:

-  ,
К  : = I -----  K.1 \j m. 1 (163)

Then we can still use expression (156) bearing in mind that

(164)

Expression (158) can be rewritten as follows:

a.. i] — Ч т >  6..m,- x '  4

Similarly the mobility tensor is defined by

(165)

—  < t >  6..ГП; U (166)

The foregoing expressions have been obtained on the assumption 
that the relaxation time т is isotropic. However, this assumption may 
be generalized by using a tensor form for т which takes into account 
the variation of т with direction. Herring and Vogt [12] have shown 
that for transport processes in steady fields the effect of the anisotropy 
in t  is to weight each component of the reciprocal mass tensor with the 
corresponding component of the relaxation time tensor, namely,

< t )  t < t { >
m. m. (167)

For simplicity, we shall not use this approximation in our calculations. 
Nevertheless, all formulas based on the isotropic relaxation time approxi
mation (e.g . Eqs (165) and (166)) can easily be generalized by the simple 
prescription given above.

2 It sh ou ld  b e  re m e m b e re d , h o w e v e r , that b e ca u se  o f  th e  sy m m e try  o f  c u b ic  crysta ls  con stan t en ergy  
su rfa ces o f  this ty p e  ca n n o t  e x is t  in  th e  ce n tre  o f  the B r illou in  z o n e .
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4 .1 .3 . Many-valley band

We have shown in the first lecture that the conduction band of Ge and 
Si consists of several ellipsoidal constant energy surfaces with their

spectively (see Figs 6 and 7). Of course, this fact rather complicates 
the evaluation of the conductivity tensor (in effect it is a scalar quantity 
because of the symmetry of the cubic lattice). Up to now, when con
sidering the relaxation time, we had to take into account the intravalley 
scattering only. Now another type of scattering takes place simultaneously, 
namely the intervalley scattering (Fig. 33). Herring and Vogt [12] have 
shown that under certain conditions a separate Boltzmann equation can 
be written for each valley and that even in this case the relaxation-time

tivity reduces to summation over all the ellipsoids in the conduction 
band. Of course, the contribution of each ellipsoid must be trans
formed to a common co-ordinate system.

FIG. 3 3 . T h e  types o f  sca tte r in g  p rocesses in  th e  m a n y -v a lr e y  m o d e l .  (A fte r  Z im a n , J., E lectron s  and 
Phonons, O x ford  ( I 9 6 0 ) ) .

Let us denote the matrix which transforms the principal-axis 
system, say of the r-th ellipsoid, to the crystallographic co-ordinate 
system, by . Then the contribution of this ellipsoid to the conduc
tivity in the new system is given by

which is, in general, markedly anisotropic.
Using expressions (165) and (168) the overall conductivity tensor 

can be written as follows:

major axes colinear with one of the <[lll)> and O00/> directions, re

approximation can be used3. Accordingly, the evaluation of the conduc

e s )

s

a ß

(169)

T h o se  in terested  m ig h t co n su lt  the o r ig in a l p a per b y  H erring and V o g t  fo r  d e ta ils .
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Here s is the number of ellipsoids (Ge : s = 4, S i: s = 6) and N is now the 
total number of electrons per unit volume. T.^ can be easily found; 
e .g . when considering the [111] valley and choosing the y- and z-axis 
in the [TlO] and [112] direction, respectively, a simple calculation gives

'A /2

Tj[111] 1
/3

1
/2

1
'7 6

(170)

K ß 7ё/

Similarly we can get Т(г̂ for all valleys. Substituting them into Eq.(169) 
we obtain

c m  = Ne2 < t >
1

mi. *1 J
(171)

When considering the set of ellipsoids in the <100> directions we find 
the same expression as can be obtained by simple consideration. Hence 
we may conclude that by measuring the conductivity we are not able to 
decide whether the ellipsoids are oriented along the < 111 > and <100> 
directions respectively. This results from the fact that the set of 
ellipsoids is arranged symmetrically in к space and this is due to the 
symmetry of the diamond lattice. It is quite clear that when an external 
magnetic field or an uniaxial stress is applied, this symmetry is lost 
and different configurations of ellipsoids will give different results. We 
shall discuss both these problems later.

When calculating the contribution of holes in a degenerate valence band 
as in Ge to the conductivity the situation is considerably more complex.
We have here two types of holes, namely light and heavy holes; moreover, 
the constant energy surfaces are warped surfaces. Finally, we have to 
consider both intraband and interband transitions in calculating the 
relaxation time. Unfortunately, the general treatment of this phenomenon 
is rather complicated and I am not going to enter into detail here (see 
R ef.[13]).

4 .2 . Piezoresistance

We shall show presently that the application of an appropriate uniaxial 
stress gives rise to a large change in resistivity, and that this effect is 
very sensitive to certain details of the energy band structure. It is thus 
clear that a study of the resistivity change as a function of the crystallo
graphic orientation of the stress can be used to determine the location 
of the band extrema in the Brillouin zone. To be specific, I shall discuss 
in this section the many-valley conduction band of semiconductors typified 
by Ge and Si.

As a matter of fact, I shall not be interested in the piezoresistance 
effect, i .e . in the study of the resistivity change as a function of the 
applied stress which is usually measured. From the theoretical point
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of view it seems to be more convenient to deal with the elastoresistance 
tensor т ^ к{ which relates the strain tensor ekc to the change in conduc
tivity; for cubic crystals we can write

CTij -ffo I6 *ij ‘  mijkI ek)! 
kt

The tensor т ^ кс is thus defined as follows:

1 ijkfi*
J_ ЭсГц
CTo 9ew

(172)

(173)

It should be noted that the strains usually employed in experiments are 
of the order of lO'3 so that the linear dependence of on ek{ in Eq.(172) 
is quite satisfactory.

FIG . 3 4 . T h e  sh ift o f  th e  v a l le y s  d u e  t o  th e  e x te rn a l stress. (A fte r  Z im a n , J , E lectron s  and Phonons, 
O x fo rd  ( I 9 6 0 ) ) .

We have shown at the beginning that in general a uniaxial stress can 
remove the degeneracy of some extrema in a many-valley model according 
to their orientation with respect to the applied stress. If the relative 
shift of different extrema is comparable with kBT the electron population 
will be re-distributed: electrons migrate from the higher-energy to the 
lower-energy valleys. This is schematically shown in Fig. 34. Although 
this electron transfer is not the only effect due to the applied stress in 
this case, it is shown to be the most important at moderately low tempera
tures (see Ref. [14]).

We shall start with the conductivity tensor of a single valley as given 
for the unstrained crystal by Eq.(21).

cr(.r) = N(r) e *£? , N(r) = -  N (174)1J * 4  9 s

Then the change in conductivity produced by the strain is given by

6 ст(г) = 6 N(r) e /J(r)u ч (175)
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where, following Eq. (152), the thermal distribution function fW becomes

f (r) _ f (r) exp
r, (r)6 6 П 6 eM-

квТ
(176)

here 6 is the change of eF due to the strain and 6 e ̂  is the shift of 
the extremum given by expression (62). As the exponential 
factor in Eq.(176) does not depend on the energy of electrons, 6N^ can 
be easily evaluated

AO

6N(r) : N(r) exp
6 e(Fr) - 6 e

Ч Т -
(r)

• 1 (177)

In fact, the shift of the Fermi level must be independent of the valley; 
moreover it holds that

This gives

Г

(178)

(179)

The total change in conductivity is

6 a.. = eij (180)

Substituting expressions (177) and (179) into Eq.(180) we get

6 - CTo 6ij (181)

Supposing that we are interested in small strains such that the exponential 
in Eq.(181) can be replaced by terms linear in 6 /к ßT, we get

г

(182)

[ kl г
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By comparing this expression with Eq.(172) we can immediately get the 
coefficients of the elastoresistance tensor. As an example let us consider 
two many-valley models as typified by the conduction band of Si and Ge.
In fact, there would be no sense in calculating all the components of the 
elastoresistance tensor m ^ , (there are only three independent components 
with cubic lattices, namely т Ш1> m1122 and m1212) so I shall discuss 
only one or two of them.

Firstly, let us calculate the component mini with Si. We have shown 
in the previous section that the contributions of different valleys to the 
total mobility are as follows:

[± 1, 0, 0] [0, ±1, 0] [0, 0, ±1]

2 M|| 2pj_ 2

The corresponding expressions H ĵ1 in (35) are given by (Eq.(63))

and the square bracket in Eq.(182) can be written as follows: 

2_  1 _
З " “ 3 ÄU '  3 ~ u

mllll ta^es the form

_ 2 a u |̂|-Mi 
1111111 '  9 kBT q

where, according to Eq.(171), q = e^T/1 m„

(183)

Similarly

1 nn - ЙХ
mll22 9 kDT qD

while

m1212 ~ 0

(184)

(185)

The latter value results from Eq.(171).
On the other hand, when calculating the contributions of ellipsoids 

oriented in the < 111 > direction we get the same result from all valleys 
(see Eq. (24)): (1/3) (qy+2 q^). Accordingly when evaluating the sum
mation in Eq.(182) we find that the (11) component is equal to zero for 
all ellipsoids. We can thus write

m n u = 0 (186)
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and similarly

m 1122 - 0 (187)

while the third component can be shown to be

X1212 9 kBT
M ll-Mj (188)

From the foregoing analysis it is clear that a large elastoresistance 
effect is produced if the applied stress destroys the symmetry of the set 
of ellipsoids because the transfer effect implies unequal weighting of the 
contribution of individual ellipsoids. If, for example, a silicon crystal 
is extended along, say, the [100] axis, then the degeneracy of the [±1,0 ,0] 
valleys with the [0, ±1, 0] and [0, 0, ±1] valleys is removed and this 
gives rise to a large effect. On the other hand, if Ge is extended in 
the same direction, the configuration of ellipsoids does not change and 
there is also no change in resistivity. Similarly, the extension of both 
crystals along the [111] direction gives rise to an opposite effect: There 
is a large change in conductivity with Ge but a negligible change with Si.
As the components of the elastoresistance tensor т ^ м are of the order of 
102, relatively large changes in resistivity can be expected. This is 
shown in Fig. 35. Note that experimental measurements of this type 
enable us to estimate the value of the deformation potential Eu if the 
ratio of Ml and рц is known. On the other hand, the deformation potential 
constant H(j(or better Tr E) can be estimated by experiments using 
hydrostatic pressure.

F IG .3 5 . T h e  ro o m  te m p e r a tu r e p ie z o ie s is ta n c e  e f f e c t .  (A fte rK e y e s , R .W . ,  S o lid  S ta te  P hysics 11 (1 9 6 0 )1 4 9 ).

It should be added that it is possible, in principle, to apply such 
large strains of proper symmetry as to transfer electrons from several 
equivalent valleys into one or two valleys only; in this case the conduc
tivity anisotropy and other quantities can be measured directly.

The above discussion can be extended to holes as well but we shall 
not deal with this problem here. Those interested are referred to the 
original article by Picus and Bir [15] .
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4.3. Magnetoresistance

Another method which enables us to obtain considerable information 
about the band structure of semiconductors is the study of the magneto
resistance effect. In fact, the many-valley structure of Si and Ge has 
been deduced in this way (Meiboom and Abeles, 1954). The formal 
treatment of this effect is very similar to that used with metals. First, 
I shall briefly summarize some well-known results.

As in the previous section I shall discuss the conductivity 
tensor. In the presence of a low magnetic field we can expand ст (̂Н) 
in a Taylor series up to the second order in the components of the 
magnetic field

here

a..(H)= o.^O) + ^ a ijk Нк+ ^ т ,ilk« HkH£ (189)
k£

a.ijk
Г Эст1((н г , O' 1= ст = — "Э2 CTi j  (H) ~|

э н,L к - * ukfi
Н = 0

ijfik 2 L ö iy j hJ (190)

CTjj (0) is the usual conductivity tensor (see Eq.(171)). is the (third- 
rank) Hall effect tensor which defines the Hall constant

R = ^ (191)

CT;jk{ is the (fourth-rank) magnetoconductivity tensor (in fact in cubic 
crystals only the components ст^^к , ст.ш , а..^ and а.^ are in general 
different from zero).

Supposing that the collision term in the Boltzman equation is 
unaffected by the magnetic field and using the usual relaxation-time 
approximation (149), Eq.(148) can be rewritten as follows:

e
h E + t̂ - V A X H  he u V-. f(k) к

fi(k)
т(е)

where fj is defined by

(192)

f(k)=f0(k)+f1(k) (193)

Substituting expression (193) into (192) we get the following equation to 
the first order in E:
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Note the correction function fj in the magnetic term. This is due to the 
fact that the corresponding term involving fQ is identically equal to zero. 
Equation (194) can be rewritten as

1 -T — (V->e X H) • V->
L h2c k k. V f r E - V ^ o (195)

This equation is usually solved for f2 using the inverse operator

Г e V 11-T - 5-  (Vf eXH) • V-*
L ti2 c k k J

(196)

Expanding this inverse operator in a power series and retaining only 
terms up to the second order in components of the magnetic field we get

f t= 1+t T27 'V X H ) v f - t - 5-  (Vf eXH )Vf  h2c k k h T E -V t e f0j (197)

Following Eq. (153), j is given by

i f s / v f i d ' k (198)

In calculating СТу(Н) and using definitions (190) we get after a simple but 
tedious calculation

СТ‘*  4тг3сП
у  r ^ TV. v J L
L  J Эе 1 m 9knT ViVm a ^ ( Tvj ) d k - 5mnk (199)

ijk£ 4тг3с2 h2 П
о э— t v. v —— i m 8kr TVP

^kmn ^Cpq +  ^kpq1̂ Cmnd к
mnpq

(200)

Here Sjjjj is the Levi-Civith tensor (бу  ̂ vanishes if any of two subscripts 
are equal, and is +1  or - 1  for even and odd permutations of the subscripts, 
respectively). Note that if т depends on the energy only, then the relaxation 
times can be grouped together outside the differentials in Eqs (52) and (53). 
This is due to the fact that the operator

(V-*e X H) • V-> (201)к к
applied to a function of e only is zero.

To proceed further we have to choose some special types of energy 
bands.
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4 .3 .1 . Simple parabolic band

Let us discuss the simple parabolic band. Substituting expression (151) 
into Eqs (199) and (200) we get after a simple calculation (see also Eq.(158))

Jijk < ^ Чкm4 c 1)K
(202)

_ Ne4 /  з\ у  5pki5pjl +5pjk5pti 
ijkC " m 3 c 2 4  '  2

e
P

(203)

Note that owing to the properties of the Levi-Civith tensor the longitudinal 
magnetoconductivity corresponding to the a.... components of (56) always 
vanishes.

4 .3 .2 . Single ellipsoidal band

In this case we can proceed in a similar way as in section 4 .1 .2 . 
Substituting expression (162) into Eqs (199) and (200) and using transfor
mation (163) we get

aijk Nü! < t2> J « l
c nijirij (204)

a Ö p k i^ p jj j  +  Öpji< 6 p £ i

2mimjmP
(205)

In this case, too, all components стш; are equal to zero. Note that both 
these expressions can be generalized if we are dealing with an unisotropic 
relaxation time. In this case we simply use relation (167).

4 .3 .3 . Many-valley band

To obtain the Hall effect tensor and the magnetoconductivity tensor 
for a many-valley band we have to sum all the contributions from all 
equivalent ellipsoids. Using the same method as in section 4.3 we can 
immediately write

Ne3
‘ ijk

s

<т2 > — У  У  T(t) T(0 T, 
s  L  L  la JB 1

otSy

(Г) a & y

^  m̂ r) m^а Б
(206)

N e4 <T3)> i  У  у  T«  X W т (г
X '  S Z-J Z-J l e t  j B  kJijM

г a & y X v

(r) ^.(r) ^ v y n  ^ v BX  +  ^ v By  6iiXa

? U 2 m « m « m «
a  В  v

(207)
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As we are dealing with cubic crystals only, the components a123 , olln  , 
°1122 an  ̂CT1212 have t0 be calculated. After straightforward but tedious 
calculations we obtain for the <100> ellipsoids

Ne3 <t2> 3 К (2 + K)
c m 2 (1 + 2 K)2

(208)

Jm i

a1122 "
Ne4 < t  3> 9 K(1 +K + K2)

2 2 c mn (1 + 2K)‘

CT1212
N e 4 < T 3 >

c2m3
' 27 K2 
2(1 + 2 K)3

(209)

H ereK =m 1/m 2 and m0 is defined by Eq. (171). Similarly, for the < 111 > 
ellipsoids one gets

Ne3 <( t 2  )> 3 К (2 + K)
c m2 (1 + 2 K)2

Ne4 < t  3  > 6K (K - 1)

О
CO (1 + 2 K)3

Ne4 < T 3 > 3 K(2 + K)
c2m3 (1+2 K)2

Ne4 < t 3 > 3 K(2 + K)
c2m̂ 2(1 + 2 K)2

(210)

(211)

When comparing the results for <100> and < 111 > ellipsoids we see that 
the Hall effect tensor is the same in both cases. Hence by measuring R 
we are not able to determine the orientation of the ellipsoids. On the 
other hand, following Eqs (209) and (211), measurements of the magneto
conductivity (or better magnetoresistance) coefficients make it possible 
to distinguish between the various arrangements of ellipsoids in the 
Brillouin zone. Figure 36 shows a typical variation of the magneto
resistance of n-type Si with the angle between j and H. We can see that 
Si has a negligibly small longitudinal magneto resistance for current flow 
in the <100> directions. This fact implies that the principal axes of 
the ellipsoids are colinear with this direction and this condition is ful
filled for the set of <100> ellipsoids. On the other hand, similar measure
ment for Ge shows that сг-ц-ц has quite a large value in this case. A more 
detailed analysis leads to the conclusion that the magnetoresistance 
measurements are in accordance with the model of < 111 > ellipsoids.

Finally, one can estimate the anisotropy coefficient К using the ratio 
of different tensor components (209) or (211). The values of К thus
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estimated (being 20 for n-type Ge and 5 for n-type Si) are in good agree
ment with the values determined from other experiments (e.g. cyclotron 
resonance).

FIG. 3 6 . V a ria tio n  o f  m a g n e to re s is ta n ce  o f  n -ty p e s  S i w ith  a n g le  b e tw e e n  j and H . (A fte r  Pearson, G . L . , 
H erring, C . ,  P h y s i c a l  (1 9 5 4 ) 9 7 5 ).

Naturally, a similar analysis has been performed with different 
materials and under different conditions. Those interested are referred 
to the book by Beer [16] for further information.
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Abstract

1 . D e r iv a t io n  o f  the m e th o d  fo r  s im p le  B ravais la t t ic e s .  2 .  E v a lu a tion  o f  structure con stan ts . 
3 .  K oh n -R o s to k e r  m e th o d  fo r  c o m p le x  la t t ic e s .

1. DERIVATION OF THE METHOD FOR SIMPLE BRAVAIS LATTICES

To find the electronic band structure of a solid, we have to solve a 
one-electron Schrödinger equation where the potential is a suitably deter
mined periodic potential V(r) of the lattice. The equation to be solved is

- V -  V2 ^ ( r )  + V (r )^ (r )  = E (k )^ (r) (1)
2m t Tt t

—> —̂
where к is the propagation vector of the electron and E(k) the corresponding
value of the one-electron energy. For the sake of convenience we shall 
drop the suffix к from wave function and energy, but shall always understand 
that these energies pertain to certain values of ic. We shall also drop 
ft2/2m either by choosing a proper unit of energy or by assuming that the 
new V(r) and E(k) are 2m /h2 times the old ones. Thus, we write E q.(l) as

- V2(//(r) + V(r)tf/(r) = E(//(r) (2)

This equation, along with its boundary conditions, can be converted into 
an integral equation

ф{ r) = / G (r, r')V(r')tp (r') dr'
a

(3a)

where Q is the volume of the lattice unit cell and G(r, r ') is the Green's 
function which depends on the chosen к and E; it obeys the differential 
equation

(V + E) G(r, r') = 6 (r -  r' (3b)

941
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The Green's function can be written in reciprocal-space representation 
as

G“(E, r -  r') = G(r, r') к

Q l  —>
i ( k + K n ) ’ ( r - r ’ )

e
о

(k + Kn) -E
(4)

if plane Bloch waves normalized in the unit cell volume i.e .

1 i (k + Kn) • г ----- e n
n/T2

(5)

are used to expand the wave function ф{г) in Eq.(2). The Green's function 
defined in Eq.(4) has the properties

G(r, r ') = G*(r', r) (6)

and

G (r+ S .) = e‘ kRiG (r,r ') (7)

The Kn are the lattice vectors of the reciprocal space and the R; those 
of the crystal lattice. Integrating the right-hand side of Eq. (4) we obtain 
what is called the structural Green's function

G_( k, r - x 'к

iK f ? - ?  + SJ|

r - r ' +R; I

ik • R.e (8)

where к = \ГЁ if E is positive and i «J-E if E is negative. This is the direct- 
space representation of the Green's function used in Eq.(3) where the 
integration has been reduced to one over the unit cell only. Ziman [1] 
calls it a complete Greenian.

The method given by Kohn and Rostoker [2] is a variational method. 
They define a variational functional Л whose variation gives the integral 
of Eq. (За). Л is given by

Л = J  dn^'"(r)V(r) 
st

ф( r) - J  G(r, r')V(r')(// (r')dr' 
o’

0 )

For 6Л to be zero the variation with respect to ф* (r) will yield the 
condition

ф(r) = / G(r, r ') V(r') i//(r') dr'
si

(10)
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which is Eq.(3a). It can be seen that Л = 0 if in Eq.(9) ф (r) is the exact 
solution of the Schrödinger equation (2).

We have indicated that if ф( r) is the exact solution of the Schrödinger 
equation, then

Л(ф (г), it, E(it)) = 0 (11)

On the other hand, if we have a trial function ф̂ given by

Фх = ф(г) + eX (г) (12)

where e is a small real parameter, then

A(^t,k, Et) = J d r  ( ф+ e x f  V(r) (ф + eX)
Q

- J J  drdr1 (ф + eX )vV(r) G(r, r') V(r')(0 + eX) 
0 q'

- J  dr^'1' (г) У(г)ф(г) -  J  J  drdr* ф* (r) V(r) G(r, r ’ )V (r ’ )t// (r1)
Q Q'

+ € J d?x * (r)V(?) Ф(г) - J  dr1 G(r, r1) V (r’ ) ф (r ') dr1 
n'

A
+ e /  dr'V (r') X (? ') (//*(?) - / G* (r1, r)V(r)(// (?) dr

+ e I J x ’ (r)V(r)X(r)dr 
n

X* (r)V(r) G(r, г') V (r')X (r1) drdr'
&

(13)

In Eq,(13) the first term is zero as Л is zero for exact Ф(r). The 
second and third terms are zero by virtue of Eq.(3)andits complex con
jugate. Thus we have A ( фх, к, Et) = 0 (e2) and for the eigenvalue Et we have, 
obviously:

E t - E = 0 ( e 2 ) (14)
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Thus the error in energy is of the second order as compared to the error 
in the trial function. Similarly, if for a given E we calculate kt from the 
trial function by the condition Л(фи kt, E) = 0 we have

kt * к = 0(e2) (15)

Having now set up the variational principle 6Л = 0 we can use the 
Rayleigh-Ritz method. For this, we use a trial function of the form

П
^ ( r )  =Ypj<Pj (r) (16)

j=0
to calculate Л. Thus,

Л = J ф'[ (r)V(r)ipt (r) dr - J J  drdr'<//t!,s (г) V (r) G(r, г ') V (r1) 0t(r1)
£2 Q

■ Ic* cj [ / cdr cpT’ (r) V(r) qx (r) - / dr dr' cpj1' (r)V(r) G(r, r f)
Q Q*

X cp. ( r ') V ( r ') Х СГ С;Л , (17)

The expansion coefficients in Eq.(17) may, in general, be complex. 
Now the variation of A with respect to one of the coefficients C* yields 
the condition

6Л=^ЛцС; (18)
j

We have such a condition for each i and so we obtain n linear equations in 
Cj where the coefficients are Aij. For a non-trivial solution of these 
equations to exist we must have

К  I = 0 (19)

Since for a given set of functions cp; the are functions of к and E 
only, the solution of Eq.(19) with the required stationary connection 
between E and Й, thus, solves the problem we are faced with. Further, if 
one obtains the coefficients C; after having found the eigenvalues of the 
matrix Ajj , the wave function becomes known and can be used wherever 
required. The usefulness of the Kohn-Rostoker method depends upon how 
easily the Ay can be calculated.

One way in which the form of the coefficients Ajj can be easily deter
mined is to use plane Bloch waves of the form
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Using these B loch  waves we obtain:

V  * f l  Г -* -i(k + Ki)-r' i(T< + it)-r
A = L c i c { ä J d r e  v(r)e

1 ГГ  . ifc+fj)-?— / / d rd r1 e 1 V(r)G(r, r 1) e J
Q n'

Since V(r) is periodic in the lattice it can be expanded in the

V (r) = ^ V (K m)e ‘

"̂ m

If we now use Eq. (21) for V(r) and Eq. (4) for G(r, r 1) in Eq. (20),

I C? C! Г -  ГQ J
"i(k+ Kj)dre г У  v(Km)

i. j a
L_i—*Кm

-i(k+Kj)-T ̂ V(K )e lKmm'
Cl Cl -*

Km

Y~'e^k+Kn' 'fr‘ r') ^
i l H F i  L
Km K,

V (К )e b es ' 1 i ( k + K j ) - r '
P J

■Iе* cjEv(*",a/d" ЦКт -(КГ Кр]т

:.] к

V ^ V ( K m) V ( K s) i  ГбТе1^ - 1̂ 1(k + Kn) - E  m s О

rd?.ei[K̂ (K" - ^ ' r'

E V(K )6 Km - CKt-K .)
Km

(20)

form

(21)

we obtain
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(k + KJ

^ c f c ,  [vtK i-K j) +^T

* 1 1
кп 4  *.

v (S r i^ )v ( t n-Kj)

Km -(Ki - Kn)

(Й + Йп)2 - E - Iе?c.

К - (К -К.) 
s n у

Aa ( 2 2 )

where

Л..ц V(K. Ä ,  T  v ( K i ' K n ) v ( K n ' K j )

J У  (k + KJ -E  
Kn

(23)

The secular equation to be solved in order to obtain a relation between k 
and E is

VfKj-Kj)
y V(Ki-K,)V(Kn-Kj )
/  —*2, 
fe (k + Kn) - E

= 0 (24)

The secular equation of the form given by Eq.(24) may look very 
simple but in practice it is difficult to evaluate Ajj . This has two reasons: 
first, one must know the Fourier coefficients of the potential V{r), which 
is not exactly known, and, secondly, one has to sum over Kn which is not 
easy to carry out and yields an infinite sum. But the secular equation has 
one major role to play and this is that we can show that the Kohn-Rostoker 
method will fulfil the requirement of the empty-lattice test. We have seen 
before that Л is zero for the exact solution. It can be seen that for V(?) 
having a constant value over the lattice, the matrix element V(0) is the 
only one to survive. In this case the determinant jЛ£j | has only diagonal 
terms

A.. = V(0) + V (0)
( М У

(25)

Then the solution of the scalar equation requires each Ajjto be zero, 
giving

E(l) = (5 + Й;)2 + V(0)

If V(0) = 0, the eigenvalues are

E(S) = (£+ к /

(26)

(27)

In general, it is a formidable task to calculate Ajj as this involves 
first the calculation of the Green's function for various values of E and £ 
and then the evaluation of 6-dimensional integral occurring in

Ay = J drep* (r)V(r) q>j(r) - J  J  dr dr' cp* (r) V(r) G(r, r') V(r') cp2(r')
ft

(28)
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The integration is complicated by the fact that the Green's function is 
singular for equal arguments r and r' and the region of integration is a 
complex atomic polyhedron.

A great simplification was achieved by Kohn and Rostoker [2] by using 
a "muffin tin" potential with

V (r) = V (r) r < rj

V (r) = V0 r l r ;  (29)

One can choose the zero of the energy scale such that V(r) can be taken 
as zero for г Ш rj. In this case the domain of integration is r < r and the 
contribution to Л comes from r < r. and r' < r;. With the above form of 
potential chosen which means angular average in the domain of r  < r; and 
space average in the domain of r § r; the solution inside the domain of 
r < r ; can be written as

^(r) = ) C Y (r)R (E, r)
L, lTn Im l
Cm

(30)

The choice of a potential of this kind makes it possible to convert the 
expression for Л into a form which does not depend explicitly on the 
potential but involves surface integrals over the sphere inscribed. In 
order to avoid trouble due to the singularity of the Green's function, the 
following procedure is adopted.

FIG . 1 . D o m a in s  o f  in teg ration  o v e r  г and r ' .

For the integration over r and r* new domains are defined as shown in 
Fig. 1. One, for the integration over r ', a sphere of radius Г; -e , and 
another one, for the integration over r, a sphere of radius rt - 2e. Here e 
is a small number which can be allowed to tend to zero after the final 
expression is obtained. Thus,

A = lim A 
£-►0

(31)
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where

Л. dr ip*{ r)V(r)i// (r)
r’<r, -2e

ф'''( r)V(r)G(r, r ')V (r ')0 (r ')  dr dr' (32)
r'< Ц - e r<rj-2e

We shall now convert the integration over the volume to an integration 
over the surfaces of two spheres, one of a radius of r; -2e and the other 
one of r j-e . In this way, r and r' are different and so the singularity of the 
Green's function does not give rise to any difficulties. The limit e -» 0 is 
then taken in order to obtain Л.

To do so, we use the Schrödinger equation

(V2+ E )0(r) = У (гЖ г) (33)

and replace VC?1) (Иг') in the expression

0 (r ) - J  dr'G (r, r ')V (r ')iM r ') (34)
Г' < r j - €

by (V,2+E)0 (r') to get a new expression

0 (7 ) -  / G (7 ,7 ’ ) ( v '2 + E) (H ?')d?' (35)
Г’ < r j -  €

If we now use Green's theorem we have

Г
J

r’ <r. -€
G(r, г ') (V 2 +E) ф (? ') - ф (r) (v '2 +E) G(r, r ') dr'

G(r, r ' ) y '2ip(r>) - ф(r^)V2G(r,r^) dr1
r* <r,--e

dS' G (r, r ' ) Э ф(г’ ) 
dn Ф(г') 9G(r, ? ') 

Эп

(36)

(37)

where Э/Эп denotes the normal derivative over the surface S' of the sphere 
of radius Г; - e . In Eq. (37) we can put

(v '2 + E)G(r, r') = (V12 + E) G*(r', r) = b{r '-r)
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and, thus.

/ G(r, r 1) V(r') ф (г1) dr' - / dr' ф (? ') 6 (r1 r)
r’ < r . - e  1 r* < r . - el

■ /  dS' G (r, r') дф ( r 1)
9n 0 (?') 9G(?,?')

9n

which gives

ф{ г) - У  dr1 G(r, ? ')  V (r ') ф (г1)

G (r, r') 9Ф (?') 
9n ф(г') 9G(r, r') 

9n (38)
S’

We now introduce the right-hand side of Eq. (38) into Eq. (32) and obtain

Л£ ■ J  dr i/Л (r)V(r)
г < Г ; -2 е  S’

dS' G(r, r') 9 0 (r1) 
9r' Ф (?') 9G(r, r1) 

9r' (39)

where we have put 9 /9r' for 9/9n. 
Л£сап be written as

Л е = - J dS1 J  d r V ( r ) ф* ( r )G( r ,  г 1) "Э ^
S’ г < г ; - 2 с

+ jTdS' dr V(г) ф~ (г) ЭСдУ  Г ф̂ (г') (40)
S' г < Г | -2 е

Using Eq. (38) we can write Eq. (40) in the form

Л£- У  dS1 У  dr(V2 + E) I//* (r) G(r, r 1) " g'j f '^
S’ (r ’ = г4 - e )  г < г ( -  2 e

+ У  ds' У  dr(V2 + E)^*(?) — 3̂ ; r ' V (?') (41)
S' (r* = -  с ) г < г ; - 2 е
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We again use Green's theorem for the two integrals in Eq.(40). The first 
integral over r is obtained by making use of

r dr
j

Г < Г; -€
(V2 + E)*//* (r) G(r, r') - (V2 + E) G(r, г') ф''~ (r)

dr v V  (r)G(r, ? ') - V2G(r, г')</Л(г)

dS
S ( r = r j - 2 e )

dr^v (r)V(r)G(r, r') - 0"'- (r')
r < r ; - 2 e

dS
S(r = r - 2 e )

which yields

J ' dr ф" (r) V(r) G(r, r')

Ф* (r ') + dS Эг (42)
S (r  = q - 2 e )

The first integral in Eq. (40) thus becomes 

f  dS1 \ ф* (r1) + / dS ->.* Ъф* (?) 9G(r, г')~П 3ii(r')
G(r, r ')—^  L - Ф (r) 9r j j  _ Эг'

r = r: -  2 e

dS' ф*{?) + dS dS
r' = r  -  e r = г, -  2 1

G(? M ill)  M i l 'J + ф* (?) M iU D  M i l !)
’ ’  Эг Эг'  v  К )  Эг Эг, (43)
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In the same manner, the second integral in Eq. (40) can be shown to be 

r'-rj-e r = Tj-2e

■ f

dSdS 9G (r,?') 9<//*(r) ?  92G (?,? ')
Эг' Эг ’ ЭгЭг' <//(?') (44)

Putting Eqs (43) and (44) together, we obtain

л , -  /  i s ' [«* (? ')

+ I I dS dS
r' = Tj -£ r = q  - 2e

дф"‘( г )  9~э^-ф {r)Tr

Ф ( г ' ) ~ с ( ? ,? ')  - G ( ? , ? ' ) ^ f ^ ] (45)

In this equation the first term vanishes as the radial parts of ^ (r1) 
and i//v(r') are identical. This reduces Л£ to

Л, = / dS' / dS
r'=q-€ Г - Tj - £

G ( r,  r ') - G ( r ,  r ' ) - ^ 7  (//(?') (46)

To be able to use Eq. (46) we must have an expansion of the Green's 
function in terms of spherical harmonics. For r < r' this expansion is 
well known:

G(r, r') 4tt
eil<|r~r' 1

I - »  -*  -
r - r'

jt(Kr) П{ ( к г ' )  -  i  j  ( к г 1) V (?) Y* , (?') 
£m  Ä m*

fim

( 4 7 )
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In the evaluation of Л£ we shall use the Green's function expansion in 
the form

G(r,r')=  £  A ta ,r m ,V Kr) M K r')
Cm, C’m'

+  к 6 йп, б л ( к г ) п й( к г ’ ) 
££' mmJt  ’ t  > (57)

We have now to substitute the above expansion for G(r, ? ') and ф( r) in 
the form

I^(r) = ) C|mR((E.r)Y(m(r) (58)
f , m

and carry out the integration over the surfaces in Eq. (46) and obtain after 
letting e -*■ 0

A = У  У  с *  с  Лl_̂  Cm l 'm ' im, Г т '
£, т  £’,т '

where

Л£т, Г т ' R cR { ' ( L{i{  ■ 3 {) ( j j ' '  •)

А + кб 6 nr ~ nr Li-
Ст.С’т* it  mm’ i ' - i LJ t  JC t  -1

(59)

where all the functions have their values for r' = r = r; , and L,t and Lj. 
are the logarithmic derivatives of the radial functions Rj and R^ on the 
surface of the sphere of radius rs. Our problem to be solved is

I A 1 = 0  (60)
tm, {'m

which can be further simplified by noticing that the expression

RjRj.tLjjj - jjMj'j, - j{.L (.)

depends only on functions and their derivatives at r; so that the secular 
equation reduces to

I A «m, £'m* + KÖe r  6mm'
Пп* La
j L V  t .

= 0 (61)
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From scattering theory we know that phase shift 6£. is defined by

ny - nj-Lj'
cot 6,

L £,
(62)

such that Eq.(61) can be written in the form

lA£m,rm' +KCOt 6r  Sl l ' Smm' (63)

This is the Korringa form which he derived earlier. It can also be 
written in terms of Bfmjrm. defined in Eq. (60) as

B. , + к6пс, 6 ,1 Cm, C m CC mm' sin  0 = 0 (64)

The solution of the secular Eq. (61) depends on the evaluation of the 
structure constants A jmi£-m- which depend on chosen values of E and к and 
also on the logarithmic derivative of the radial function on the spherical 
boundary of the muffin-tin potential. The A£m>f.m. are not all independent. 
Firstly they satisfy the relation

A£m, £'m’ £’m\ Cm (65)

2. EVALUATION OF STRUCTURE CONSTANTS

Apart from the Hermitian relation (65), the structure constants 
Acm.cm' are n°i all independent but can be derived from a smaller number 
of independent constants. We can write G(r, ? ')  as a function of a single 
vector Й = r -  r ' . Thus

G(r, r>) =G(R) - i l
i(k + K  ) ■ R

(к + КпГ - E

iKR1 e__
4 7Г R

which we put again in terms of real and imaginary parts. Thus

G (R) = G0(R) + D(R) for R < R$

(66)

The function G0(R) - - (1/4?г)[ (cos kR)/R] and is singular at R = Owhile 
D(R) is regular. We can again expand D(R) in the following form:

D<R> = I Dl, A ' kR>Ylm(R>
L, M

(67)
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where ft indicates the (0,cp) polar angles of R. Making use of the above 
forms of G0(R) and D(R) the Green's function can be written as

G « " ' I
к
4ж

cos kR 
kR 6L0 6M0 DLMjL(KR)YLM(R)

L,M

(68)

It can also be written as
i(k+Kn)' R

G(R) =
К

(k + Kn) -E

- и ?  I
L, M

4* V  -L jLf|k + K jR ) 
(5 + Kn)* -E YLm(R) ^ m <k> (69)

Comparing Eqs (68) and (69) we obtain

4жD,LM n
■ L rn j.(  k + K R 1 V JL  ̂ y* (ki2 „  *LMW
i L y h l l  

Jl (kR) У (к  +. К ) - E i? nn

к  c o s k R 6 64?T KR j (icR)Y (R) LO MO 
L LM

(70)

4 ж L 
U 1 iL(KR) I

jL( |k + Kn|R) (R) 
(k + Kn)2- E

+ -------- 7 C O tK R  6 6
(4w)* L0 M0

(71)

where the last term in Eq. (71) is obtained by replacing j l(kR) by j0(KR) 
= (sin kR )/kR and YLM(ft) by Y00 (ft) = (1/4jr)i.

A relation between the coefficients A{m {,m, and DLM can be derived 
the equation

У  У  A„ , 1 ( к г )  j J / c r ' )  Y„  ( r ) Y *  , ( ? ' )/  /  { m ,  { m '  Jr  '  l m '  '  t m '

t , m  t ’ m '

= У  D j (k R ) Y  (R)
/_> LM L LM
L, M

(72)
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by making use of the well-known formulae

j L(KR)YLM(R) = ^тг- eiK'R YLM(K )d ^

1 / i K 'r - iK 'r ' ,Л .—  / e YLM(K) d07
4 i r i

We can thus write

£m I 'm 1

У  У  A j (#сг)з (fcr')Y (? )Y* (?')
Äm.Ä’ m ' V  /J £’ v £m 1 Г т '  ’

= 1  к м / 1
LM £m £'m '

X 4 '  (? ' ) Y£‘m(K)Y{,m,(g )dO

£-£
1 C L M .Jm .riA ^M K 1’')

LM £m £ 'm ’

X Y. (r)Y* , (r')£ m ' ' £ m ’

where

C = / Y (K)Y (R)Y (K)dfU
LM, £m, £ 'm ' J  LM £m £ 'm ' К

(73)

(74)

Equation (74) gives

£m, £ 'm ' = 4я1{ rXrLD,L, m - m ' L, m~m', £m, £’m'
(75)

L

because CLM £m {,m, are zero unless M = m - m'. The sum over L runs only 
over the values

L  = \ i  - £ '  I , \si - V  I + 2 , .........

and the C vanish for all other L. In this way, we must calculate a smaller 
number of constants DLM from Eq.(70) and then use Eq.(75) to obtain 
A  £m, £ ’ m'- The C coefficients are well-known Wigner coefficients.
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It is possible to obtain another form of the structure constant DLM by 
using the equivalent form of the Green's function

G(R) 1 V
’  4тг L  ®

i K |R -  R j

R - R„

1 i x R  -1 e__  J_
4ж R 4тг

ik-Rn

*п*°

к cos к R in sin kR

i k |R -  R l

R - R.

4 7Г kR 47tkR к £  elk'«n

R„+°

X ^  Jl (k R)

LM
nL (KRn > - « L ^ V Y LM<R > Y LM<R n>

к
4ж

cos kR 
kR

IK . /—  1„(kR) 4ж V  ’ + к X  jL(KR)
LM

n L( K R n)

- ^ L ^ J W R >Y l A >

к cos kR 
4тг nR ♦ I

LM

1 i r  j (kR) 6 64тг V  '  LO MO «I
«„t0

ik -R„ Jl(kR)

n  ( k R  ) 
L n Ч,(к1ПL n

(R) Y (R ) 
LM LM n

К
4ж

cos kR 
k R I D j (kR) Y (R) 

LM L LM
(76)

Hence

D
LM

V ”

LM <R n
i< 

4 7Г 6 6 LO MO (77)
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This form demonstrates that for E < 0 the series rapidly converges 
since

nJiicR) - i jL(ifcR) = - (78)

for large R.

The calculation of structure constants by Ewald's method has been 
formulated by Ham and Segall [3] for simple monatomic lattices. The 
number of the DLMcan be reduced further by symmetry considerations for 
G(R) for a given Й. [G(SR) = G(R) where S is any symmetry operation 
belonging to the group of wave vector k] .

3. KOHN-ROSTOKER METHOD FOR COMPLEX LATTICES [4]

In a complex lattice the unit cell contains more than one atom; these 
atoms may be either of the same kind, as in pure elemental solids, or of 
different kinds, as in compound solids. In this situation we again prescribe 
a muffin-tin form of the potential where the potential is spherically sym
metric in each muffin-tin and zero outside owing to a suitable choice of the 
energy scale. Thus, we write the form of potential as

V(r)
v(i> ( l - V ^ I )

0 elsewhere
for I r - Rn - Tj I < R; (79)

where Rj is the radius of i th muffin tin and V w ( |r - Än- т; |) is the potential 
inside this muffin tin; Tj is the vector position of the ith atom in the unit 
cell with Rn = 0. For beryllium we have i = 0 and 1.

We again write down the Kohn-Rostoker variational principle 6A= 0
with

Л ‘
a

ipv (r) V(r)dr 0(r) J  G(r, г')Ч(т')ф(т') dr
S3’

where the integration is over only the unit cell with R„ = 0.

The term / G(r, r') V (r ') ф (? ') dr' in Eq. (80)
S3’

can be written as

(80)

^  J  G(r, r') V (i) (r.1) 0 <j) (rj) drj
i Oj

where integral is over volume f2j of the jth muffin tin. The potentials of 
different muffin tins are assumed not to overlap. In the j*  muffin tin we



960 SINGH

define the p o s itio n  as ?j = ? ' - T j . So w e have

J  G(r, r') V ( r ' ) ^ ( r ' ) d r '  = ^  J  G(r, r ')V ( | г! | )ф(г')&г'^. (81)
П j O'

Again ф( r'j ) satisfies the Schrödinger equation

(V1 + E) ф(г< ) = У (г.'Ж г')
So we have

^  J  G(r, rp V(r!) i//(r!) dr'.
J Oj(ri<Rr c)

I  / G(r, rp(V'^ + E )ф(г!) dr'.
j 0j(rj<-Rj '0

= ф(г) + ds:
■ _  9(MrJ) ^ 9G( r, n')
G(r, r.')------- L -^ (r /)

> s. 9r' 3 9r'j

Thus

^ (r )-^ T  J  G(r, r?) V( г! )ф{г!) drl
> r' < R J ]

j S

We substitute Eq.(83) into Eq.(8) and obtain:

G( r, r

(83)

Л£ = J  ф'" (r) V(r) dr ^  - J '  dSj 
ß j s:j

- i n  
1 s;

I / - ;
1 Sj

^*(r)V(r)G(r, rp dr
дф(г’ )

9 r'j

i//‘‘ (r) V(r)
9G(r, гЯ

9r!j
dr Ф( г!) (84)

We again replace the integration over fl by an integration over the 
muffin tins. Thus

V (r )^ * (r )  G (r , r p  dr = ̂ T J V* \ г ) ф '  (r )G (r , r p d r  (85)
к n.
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If we again indicate the position in each muffin tin relative to its own 
centre we have

J  V{r)ip*(r)G(r, rj)dr = V(k̂ r k)i//,'<(rk)G(rk, ^Mdr,,
Я к Q

where rk = r - тк . As before,

V(k)(? k) ^ ( ? k)G(?k,?.')d?k

^ " ( r P 6 kj  +  J d S k

3^"'(r I 3G(r r )
G(rk*rj ) - a i r "  ‘  ф (Гк)--------------k 3ru (86)

This gives

ф*(г) V(r)G(r, r !) dr

Y  6,., +У  f  dSik j  J k
k Sk

G(r ,r ')
Э(Йг. )

к ’ j Э г ,

-  ^ 3G(r, , r')
- Г ( ? к) k 1

3r.
(87)

and, similarly,

dr

V  э^ л(гЛ v -1 г
+ L J

dS,
к S,

ЭО(гк,г ')  Э ^ (гк) 
3r'. Эг,

,*Г  / G f r ^ r - )
~ Ф (Гк> Эг, 9r'.к ]

(88)

Now substitute Eqs (87) and (88) into (84) and obtain:

A dSb
J s к S,

3 ^ (r  )
Gfrk , r .') ------- k-‘ к ’ Ч ' Эг,
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- <Пг. )
9G(r , г') к j

к 9r.
Эф'  ( r ')

9r'.j

dSL
ГЭС(гк ,? -) Э^*(?к)

J S( 9rj 9rk

Ф"{r, )
9^G(r r')к 3

к 9r, 9r'.к J
ф(г\)J

j  s.J

и

9(//*{r!) дф(г<)

1 ф{г,') - Ф"{г\)  19r! ^ 'зJ г  Эг'.

+ U dS
к S,

- +i t ^ !(?k)к к

x T f ds' i[-
3 s.

(89)

Again, since ф(гр  has real radial part the first term on the right- 
hand side of Eq.(89) is zero, such that

П
к Sb

dS, 9r̂ ~ - ^ {V i ;

I f
J Sj'

dS1, 0 {r!)—  G(rk.r j) - G(rk,r j )— ^(r!) (90)

We have two kinds of terms in Eq. (90). The first kind is the same for 
a simple lattice and the integration goes over the spherical surfaces centred 
at one muffin tin. In addition, we have terms where one integration is 
carried out over the surface centred at one muffin tin and the other one 
centred at the other muffin tin. Thus we have what we call diagonal and 
non-diagonal terms.

For the case of spherical surfaces centred at the same nucleus or 
muffin tin the Green's function can be written as before for r < r' < Rj

«(3.3) . , . . , .,A l ( к г . ) j.  к гfm, C m ' J F j ' V  ]'

£m I ' m '

+ Кб 6 j (кг.)п (кг!) 
S i '  m m ’ J£ у  l  J Y (r .) Y , (r.M£m j Fm' J

(91)
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If we substitute the above expression for G (rj , rj) and 
* шах + {

^ ) = L '  I  C> f<E ’ r ;>Y{rn(?i> (92)
£ - 0 m=-£

we obtain after integration over the surfaces the diagonal terms at the 
centres in Eq. (90) in the following form:

У  У  C*(j)C(j)l_j /_j im £'m' 
fm  £’ m'

(J)
J2

X
(j.j)
£m,£ m*

, O') (j) \
M Krj>Rr  - )

+ kS 6 ££’ mm
,0)

n£.Rr  -  n'».R
(j)

} (93)

where
d Rj]) 

dr' and j' = dr i (кг.1' V  J

The terms which are off-diagonal in the centres involving products of 
surface integrals over different spheres are somewhat more complicated 
because the natural co-ordinate systems for r k and rj have their origins at 
different points. But in our final form for the Green's function these non
diagonal terms are no more difficult to evaluate than the diagonal ones.
The Green's function G(rk, rj) satisfies the homogeneous equation

(V2 + E)G(rk, rj) = 6 (rk~ rf). (94)

both in r k and rj since G(rkJ rj) is finite about both the origins тк and tj . 
Thus it must be expressible in the form of a series:

I I
£,m  £’ m'

(k, j) * ^
Ä j (к г , )i ( к г ' ) У  ( r  ) Y  (r.1)

£m,£*m' J Г  к /J £ '  X£ m V к ' £’ m '  v ] '
(95)

for (rk + rj) < |rk -  t . I . The contribution to A of the term with rk centred 
about ktfl nucleus ana r'j centred about jth nucleus can be shown to be

I I£m fi'm'

(k. j) (k) (j)
A , CT C„, ,£m,£ m £m £ m

(k) (i)
j£ R£ “  Rfl

Гк = Кк

j£.Rr  -  j;.r £.
r’. = R. 
3 3

(96)
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The quantity A which is the sum of all the diagonal terms (93) and all 
the non diagonal terms (96) is

A
■ I I I

k, j £, m £’ m'

0,(10 (j) Г (к, j)
С C i A8m fi'm 1 £m, £ m

,(k)(k)

j'tR£
Гк =К к

■i-'l

+ k6„„, 6 ,6..,££' mm' ]]'
(k) (k) .№  (j)

nf R |- '  nr R£'
г = R 
к к

Jfr Ri
(97)

By taking the variation of A with respect to the variational coefficient 
and putting it equal to zero we obtain the equations

у  ( а г :. ./  , (_ £m,£ m
Ji) (j)

ir  Rc. j VR«■
f *m*j r’. = R. 

3 J

+ /c6 6 6
££’ mm* kj

n R,(j) - n' Rt £ £ £ £
(j)

c r . = 0 (98)
r = Rj

For a non trivial solution of Eq.(98) we must have the condition

(k, j) ,(j) (J) '
A

i r R r  - ^ 'R£' _£m,£'m = R. j

+ к 6 6 A -mm' kj
„ , ( »  , (j)

П£' R £' " n £, R £'
r< = D

or, dividing each column by

(99)

j Rl(i) - j- R(j)J£' £' V  £

we obtain the secular equation 

(k, j)
A , + k6 6 ,6 X

£m, £ 'm  ££ mm kj

I rtnn' - П L£' £' £'
j' - j L0)Jr  V  £’

( 1 0 0 )

r'. = R. 
J J

where
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In general, the calculation of the diagonal structure constants in 
muffin tin centres A ^ k){,m, is identical with those for simple lattices with 
the same translational symmetry. We shall here discuss the off-diagonal 
structure constants А ({̂ Гт, . One important property of these constants 
results from the hermiticity of the Green's function, i. e . ,

G(k’ J) (r r') = G*0’ k)(r.', r. ) (101)
К J J К

which leads to
(k, j) $ (j. k)A = a
£ m , £ 'm ’ e 'm ' . e m

if one uses the expansion for the Green's function

(102)

G<k' j) (r , r') к ] V V A (k’ ^  j  (к г  )j  (к г ' ) Y  ( r  )Y ( r  ) Z_, L  k'V j £m' к ' £'m' V V
£m C m ’

for (k=)= j)
as given in Eq. (95). The Green's function can also be written as

G(k' J)(?k,?p 1  V  1 ‘ (■‘ ♦ K n W ' k - V

n L  (k + Kn)2 -E  6 
к

n

X e
‘ (к + К ) - ( г . (103)

Expansion of exp [i(k  + Kn) -(r^- rj)l in spherical harmonics and 
comparison with Eq.(95) gives the structure constant's:

^(k.i)
£m, C m ’

(47t) 2 i f ' r  у

n 3{(Krk)it.(Kr') L
Kn

3i(k+V (Tk 'Tj ) 

(U + Kn)2 - E

X V  lk + K|rk) jr (|k + Kn|r')

X Y  (fi)Y (k) (104)
£m £ m

where к has now been used to indicate the directional angles of the vector 
k + K„.

We can also write the Green's function in the form

■ i t . i b - i v v  , i b i ^ |
G i  r  , r ' )  =

k ’ j ' 1  Уn L (к + К )2 -E



966 SINGH

V 1
L j  (S+icn )2 
t n

- E

X X iLjL<lM j R k.)
LM

x ylm( V  W * ) (105)

itfa
rJtf

tbо (106)
LM

D

Comparing Eqs (105) and (106) we have 

(k. i)
LM

4tr V  -L i
(k + KJ2 -E

i (k + K ) - ( T  - T )  ^ ~
e n k J Y* (k) 

LM (107)

It can be shown, as in the case of simple lattices, that the structure
fk fk i)constants A are related to the D by the relation

(k. j)A
tm, J 'm ’

4  7ri I r  (k,j )
^L , Ш-Ш'; tm ; S 'm 'D Lj m . n

where

(108)

^L, m -m ’ ; jBm; i*m' Y LM( k ) Y tm (k)y8,m. iUdSlf

Except when the maximum number of t chosen is small the number of 
the D required in a particular calculation is considerably smaller than the 
number of the A .

(k i)Another representation for the structure constants DL̂  can be 
obtained by starting with the Green's function in the form

1 V -1 ik-G(r , r ') = - —  > e
к j 47Г

R

-* iK (r -(R  - r - >*'r,)| e kj n к j

|R - (R - г  *t .)\ 
1 kj n к j 1

iK^kj‘ Skj.nl

skj,n
R, . - s, .

1 kj kj.n

4tt

(109)

The sum s, . runs over the whole lattice.k, j ,  n
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Using this form it can be easily shown, as before, that

(k ,j)
D lm

к e ik- (Tk -T j)

I
sk j, n

X nL(< 'k j, n ' ^ k j . n » Y *
LM

(110)

The Ewald method again enables us to calculate D 
parts for better convergence. Thus, we write

(k .j)
LM in the three

D<k,J) = D(k’ J) (1) + D(k’ J) (2) + D(k,J) (3)6 6
LM LM LM 00 L0 MO

where
(k. j)

Dl m  ( 1 > П
4тг l \ e

(k + K ) - Eк n

(k + К ) + E 4 n
L

X \Z + *n\ < M (^ + K„)e (111)

I  e“ ' 1” I V ^ . r  V V V Vo “  (2) ■ - - p  2 l“  V
LM Nf i r  ----

"ft ±0n *

X / e 46 |2L (112)

Ü2
D (3) ■Jr)
00

Л V  l ? _ Z _
Tt L  n! (2n - 1)!

n = 0

(113)

In the above denote the hexagonal harmonics. The parameter rj can 
be chosen for reasonable convergence of Eqs (111), (112), and (113).

For the case of beryllium, in particular, we shall have the structure 
constants of the type D ^ 1̂ and which are to be com
puted by using Eqs (111), (112) and (113). For the diagonal structure 
constants these equations reduce to those for simple lattices.

The space group of beryllium is P(63/m)mc. The lattice parameters 
for beryllium are the following:

a = 4.32109 Bohr units 
b = 6.77152 Bohr units
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The volume of the unit cell is

4з 2 
T a c = 109.5 aо

As we have indicated earlier, a considerable amount of computation 
time can be saved if the wave function in Eq. (92) is expanded in hexagonal 
harmonics 3 ,̂m (r) rather than spherical harmonics. This helps us to 
reduce the number of C{m for the same number of i  values taken. In the 
evaluation of structure constants, again the number of DLM can be reduced 
by using hexagonal harmonics in Eqs (111), (112) and (113) as we have done. 
The construction of hexagonal harmonics has been discussed by several 
workers [5-9] using the necessary group-theoretical considerations (see 
also Ref. [12]).

The energy band structure of beryllium has been calculated by 
Herring [5] (OPW), Loucks and Cutler [10] (OPW) and Terrell [11] (APW) 
besides a few other calculations which are not so extensive. It is proposed 
to make use of some of the quantities used in the calculation given above 
in order to carry out Kohn-Rostoker type calculations.
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Abstract

1. Introduction. 2. General theory. 3. Electric field effect at a point kc  o f  the Brillouin zone. 
4. Electric field effect at a critical point. 5. Critical point at kc ^ 0 . Effect o f  the direction o f the 
electric field and o f  the polarization o f light.

1. INTRODUCTION

From a historical point of view, the first effect of an electric field 
on interband transitions which was investigated both theoretically and 
experimentally is the well known Franz-Keldysh effect. Franz [1] and 
Keldysh [2] in 1958 independently showed that the absorption coefficient 
of a semiconductor, in the region of the fundamental edge, is shifted 
by an electric field toward lower energies. In the following years this 
theoretical prediction was confirmed by experimental measurements 
performed by many authors [3], on various semiconductors.

In 1965 Seraphin [4] found that an external electric field strongly 
modifies the reflectivity of a semiconductor also at energies higher 
than the energy gap. In the last years this effect, which is of the 
same nature as the Franz-Keldysh effect, helped us to study the energy 
levels of an electron in a crystal. A number of theoretical [5] and 
experimental [6] papers have recently been published on the effect of 
an electric field on interband transitions. We recall the papers by 
Aspnes [7,8] who has shown, in the effective-mass approximation, 
how to compute the dielectric function due to direct interband transitions 
at a critical point in presence of an electric field.

We shall give here the main steps of a general treatment of the 
effect of an electric field on direct interband transitions at every point 
of the Brillouin Zone, by following an approach used in a previous paper 
by Bassani and myself [9] .

2. GENERAL THEORY

To study the influence of an electric field on optical properties we 
must calculate the imaginary part of the dielectric function. From 
e2(u) we obtain all the optical constants.

The imaginary part of the dielectric function due to the optical 
transitions from an initial state i to a final state f is given, in the 
dipole approximation [10], by:

969
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e2(u) =
X

I  т/Ч dr ф*(г, t) e-V cp. (r, t)
all  states in 

the unit vo lume
V«

In our case ф(г, t) is a solution of the time-dependent Schrödinger 
equation:

h2 2
2m V +V(r) + e • F • r ф(r* t) = -ih — ? (r,t)

(1)

(2)

We can obtain the time-dependent wave functions by solving the stationary 
problem associated with this equation. This approach was followed 
previously by Callaway[11 ], who obtained the absorption coefficient near 
the fundamental edge, and more recently by Aspnes, Handler and 
Blossey [12] who obtained e2(w) at any point of the Brillouin Zone.

We follow here the approach developed by Franz and Keldysh and 
used in Reference [9] . As the time-dependent wave functions we take 
the Houston [13] wave functions:

t

ф(г, t) = b(r, k) exp
o

_  ̂  ̂ >
where b( r, k) is a Bloch function of wave vector k, E(k) is the dispersion law
of the energy band which we are considering, and к is a time-dependent vector. 
The reason for which к can be regarded as a time-dependent wave vector 
is that the translation operators of the lattice are no longer constants 
of motion of our problem, but the time derivatives of these operators are 
diagonal in a representation in which these operators are diagonal. The 
function (3) is written in this representation and the time dependence of 
к is given by (see Ref. [ 14]):

- jr / E(k')dt' (3)

e F t
k=ko+ B

We notice that the original wave vector is restored after a time

■ft a*T = eF

(4)

(5)

where a* is the dimensionof the Brillouin Zone in the directionof the external 
electric field. It has been shown by Callaway [11 ] that the Stark effect of Bloch 
electrons is very small compared to the Franz-Keldysh effect, and we 
shall neglect the Stark effect by taking the following approximate wave 
function:

ф(г, t) = b(r, к ) exp Ti, E ( k ' ) d t ' (3a)
0
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By substituting this function into Eq.(9) we obtain an expression for 
e2(u) which is valid at every point of the Brillouin Zone.

In the case of allowed transition between a fully occupied valence 
band1 and an empty conduction band, we obtain from Eqs (1) and (3a):

К  F)
B.Z. 0

-E v(k') -hu] dt1

о
2

(6)

where we have used the usual approximation of taking constant the 
dipole matrix element between Bloch states, and we have chosen T 
given by expression (5).

If we know the band structure of a semiconductor, we can evaluate the 
effect of an external electric field on interband transitions by performing 
the integrals in Eq.(6).

3. ELECTRIC FIELD EFFECT AT A POINT kc OF THE 
BRILLOUIN ZONE

What we can do in general in order to evaluate expression (6) is to 
expand Ec- Ev in the time-dependent exponential in power terms of 
(k - kc), if kc is the value of к about which we consider the transitions.

Let us first consider the cases where the energy expansion contains 
one or more linear terms and then the case where the energy expansion 
contains only quadratic terms.
a) Three linear terms: If, in a volume -R Ш axkx, ky, az kz S R the
energy expansion contains three dominant linear terms, we can write:

E c ' E v = E 0 +Q,x k x + e y k y + “ z k z

By taking the electric field in the x direction, and recalling Eq.(4), 
we have:
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The integral over kx can be performed approximately by the saddle 
point method [see Appendix B, E q.(B l)], which yields:

e 2(u ,F ): 47ffi
, .2

e . M„
dkOx

dk0y dk0z
8  7Г2 av 0 )

where S is a surface E 0-ftu + ay к 0y +azk0z = const 
with

- R $ const S R (10)

By performing the integrals of Eq.(9) we obtain:

. :t. 4 7rhe2(u,F)= —5- 2 R
4:iraxayaz(2R- E,0 -flu (H)

which is just the same expression as is obtained without the electric 
field (see Appendix A, integral (I A l), Eqs (A7) and (A8)).

b) Two linear terms and one quadratic term: If, in a volume - RSo^ kx,
a yky, az k2 S R, the energy expression Ec -Ev contains two linear terms 
and one quadratic term, it can be written as:

Ec - Ey Eq t*£*x kx t'ö'y ky t-ö'z к z (12)

and we have two different cases:
i) if the electric field is in a direction at which expression (12) is linear, 
we obtain by using the same procedure as above:

„  I _> 12 a*

e2(u,F) = 4тгй
?)

e • M„
dk,Ox

d k 0y d k 0z 

8 7Г2 »X (13)

where S' is now a surface E0 -ftw+ay k0y +az k0z = const, with the 
condition (10). Equations (13) give the same result as is obtained 
without the electric field [see Appendix A, integral (IA2)[ .

ii) If the electric field has the direction at which expression (12) is 
quadratic, we have from Eqs (4) and (6):

e2(u,F) = i ^ — e • M„ eF
fia*

1 dk0
8  7Г3

B. z.

k0z+a*

dkẑ expfe (E0

Oz

-hu+o^ k0x+ay k0y)kz + ̂ k 3 (14)
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By assuming the arbitrary value k0z to have the limits -a*/2 and + a*/2, 
and then changing the integration variable, we obtain from Eq.(14):

, 77. 47rfi / e'e, u.F  = —2 u2
2 e • M„

m i .... „ Л / 3  2/3' a-(eF) az 8 л-3
B .z.

1/3af «z__
2 eF

du exp -( i

2 eF

ru3 (E0 -fiu+o?x k0x +ay k0y)u
.1/3, e/F) 2/3 (15)

For small electric field (|f |s 104 - 105 V/cm ) we can take the limits 
+ 00 and - 00 and write:

е2(ш, F) 4;rft
2

_e_\ I e ' Mvc I  ̂
m / a*(eF)1/3a273

Ai E 0 Ц)х +<*y ^Oy

a f  (eF)2/3

where:

Ai(ß) = _1_ 
2 7Г du exp

(16)

(17)

In Fig. 1 we show the behaviour of this mathematical function (see Ref.[15]). 
The integral over koz of equation [16] cancels the factor 1/a*; the 
integrals over k0x and k0y can be performed by changing the integration 
variables. We take as new integration variables:

42
s=^ - K k0x+QVk0y)

42
1 2 (**y ̂ 0y~ öx k()x)

(18)

Equation (16) becomes:

e2(u, F) = 2fi
.2 V m

e • Mv
(eF)173 a f  ax oy

dt / ds Ai2 E0-fiu+s 
a173 (eF)273

2fi2 /  e\2 Iе  • Mvc| (eF) 
ш2 \ m /  « У 3 a  a.

1/3

2 X у

R/473(eFl273

2R J  dqAi2

-R/<473(eF)2/ 3

E 0 -ftu
q.173 (eF)273 +q

(19)

( 2 0 )
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0.6

Ai(|?

-0.6

-10 -8 -6 -i -2 0 2 t, 6
ß

F1G.1. The function Ai(ß) versus 6 as given by Eq. (17).

The last integral can be performed with the aid of integral (1 В 2) in 
Appendix B. By using the asymptotic expansions (B6), (B7), and (B8) 
which are valid for sufficiently large R we obtain:

which is also the same expression as in the absence of the electric field.

c) One linear term and two quadratic terms: If the energy expansion
in a volume - R S ax kx § R, 0 +az k| § R2 , has two quadratic and one
linear term we can write:

and we have two different cases:
i) if the field is in the x direction-it is easy to see, by using the same 
approach as in cases (a) and (bi), that the electric field does not change 
е2(ш) [see Appendix A, integral (IA3)] .
ii) If the electric field is in a direction at which the expansion (22) is 
quadratic, for example in the z direction, by using the same approach 
as in case (bii), we obtain an equation equivalent to Eq.(16):

(21)

(22)

2 I e • Mvc I
,22

/
r E 0 - f iu i+ a x k l

m J a*(eF)1/3a?/3
x Ox

B.z.
, l / 3 ( e F )2/3
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By performing the integral over k0z, Eq.(23) becomes:

-> 2m
e2K  F) = -T -

e • Mu
(eF)1/3a2/3

dkOx dkOy

-R

Ai E0 -fuj+c?x
vV3

<0x + Q,y к 0уП

(eF) 2/3

(23a)

The integrals over k0x and k0y may be performed by changing the 
integration variables and by recalling some properties of the Airy functions, 
(see Appendix B, integrals (IB2) and (IB3), and the asymptotic expansions 
(B9), and (BIO) which are valid in the case of sufficiently large R. For 
e2(w, F) we obtain:

e2(u, F) = 2fi
-> I2

К  Mvc I

aJ ay az
[R '-(E 0-*u)J (24)

which is again the same result as in the absence of an electric field.
We can conclude from the previous analysis that an external electric 

field does not change the optical properties of a semiconductor due to 
interband transitions in the neighbourhood of a point kc about which the 
expansion in power terms of к of the energy difference Ec -E contains 
one or more dominant linear terms.

4. ELECTRIC FIELD EFFECT AT A CRITICAL POINT

Let us then consider transitions near a critical point, at which 
Vk(Ec-E y)£=£ =0. We can write:

Ec -E v = Eo+öi ki+a2k2+a3 k3 (25)

To evaluate the time integrals of Eq.(6) it is convenient to write down 
expression (25) in a new coordinate system so that the new kz axis is in 
the direction of the external field:

E -E =En+a„kz + 2bk +c (25a)

where:

»„ = a ii2+o'2m2+ö3 n2 (26)

£, m, n, being the direction cosines of the electric field with respect 
to the principal axes of the critical point, and the quantities b and c are 
functions of o1, ct2 , a3 and of the coordinates perpendicular to kz . By 
making use of expression (25a) and recalling expressions (4) and (5) we
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can perform the time integrals of Eq. (6). By using the same approach as 
was used to obtain Eq. (16) we obtain:

97 6

To perform the integrals inEq. (27) we must consider separately the different 
types of critical points. We give here only the results arising in different pos
sible cases. The calculation of the integrals over k0x and k0y aregivenin 
Reference [9] . We obtain:

a) For a point M0:

(27)
where A and В are constants which satisfy the relation:

AB  = oq oq а з <*„ (28)

(E0-tiaJ + R2)/a]j/3(eF)2/3

(29)

(E0-hw+ (E0-hw + R2)/aJ/3(eF)2/3

b) For a point Mj, with al( < 0:

2 (E0-hü, + R2)/|a|||1/:W /3
|l/6 1/3

(eF) (30)

(E0-haJ)/|a„l1'/3(eF)2'/3

c) For a point M-̂ , with a)( > 0:

}
2

X / dt ar cos h/ { jtay3(eF)z/3+E0-fiu|
A i(t) (31)
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where R2 is related to the dimension of the area in which expansion (25)
is taken to be valid and does not correspond to the same condition on 
kQx and kQyfor cases (b) and (c).
The results for a critical point of type M2 with > 0 and <а-н < 0 
are obtained from Eqs (30) and (31), respectively, by reversing the 
sign of E0-ftu . The result for a critical point of type M3 is obtained 
from Eq.(29). From Eqs (30) and (31) we see that when =0 there 
is no effect of an electric field on e2(u) because the limit u(l ->0 must 
give the same result as the limit F-*0. It is more convenient 
to put our results in another form by considering the expressions 
Д e2(w, F) =€2(w, ? )  -  lim e2(w, F).

F -*■ 0

We can write:

a„ 1/6 (eF)V3 F(g, R') (32)

where:

(33)

R'2 = R2/<*y3 (eF)2/3 (34)

and F(5, R') is given by:

a') For a point M0 :

(35)

where q(x) is the usual step function

0, x<0

1, x> 0

b') For a point Mj, withan<0:

(36)
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c') For a point , with aM > 0

F(5,R ')=  J
2

dt arcosh F?]j Ai,l)

( 3 7 )

We can perform the integrals of Eqs (35) and (36) by using Eqs (B 3) and 
(B 4) of Appendix В and we can see, by using the asymptotic expansions 
(B 6), (B 7), and (B 8) of Appendix B, that the quantity e2(u» F) does not 
depend on R when R is sufficiently large. We are then justified to take 
R as going to infinity in Eqs (35) and (36) which gives the results of 
Aspnes [7] in this limit. We obtain:

a") For a point M0

The function F(f) given in Eq.(35a) is equal to the function F(n) defined 
by Eq. (Ele) of Ref. [7] . The function F(rj) drawn in Fig. 1 of Ref. [7] is 
reported in Fig. 2.

b") For a point M1( with a„ <0

The function F(ij) given by Equation (36a) is equal to -F(-rj) as given 
in Table 1 of R ef.[7] . The function F(?) is drawn in Fig.3.
The integral of Eq.(37) may be calculated numerically with different 
values of R, and we can see that also in this case the quantity Де2(ш. F) 
does not depend on R when R is sufficiently large. By letting R go to 
infinity we can show that lim F(f, R) in case (c) is equal to the function 
G(?) defined by Eq.(Elf) of Ref. [7] .

c") For a point Мг, with a„ >0

F(5)= lim F(5,R')=»[A'i(5)Bi(f)-5Ai(C)Bi(5)]-r|(5)>rS (37a)

F(5)= lim F (f,R ')=  ir [A'i2(? )-?  A i(?)] -n(--5Kf-f (35a)

F(S)= lim F (?,R ') = -Jr[A'i2(- f )+ f  A i( -? ) ] -п (?)/? (36a)

where [15]:

( 3 8 )

0
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FIG.2, The function F(tj) versus tj given by Eq. (35a), describing the effect o f  an electric field at a point Mo. 
From Ref. [7 ], F ig .l.

FIG.3. The function F(£) versus £ given by Eq. (36a) describing the effect o f  an electric field at a point 
M j , with a M < 0.

In Fig. 4 the function G (f) given in Fig. 2 of Ref. [7] is shown.
We can conclude that an external electric field has an effect on e2(u) 
only in a small region near a critical point. This effect depends on 
the type of critical point, on the magnitude of the electric field, and 
on the value of the reduced effective mass in the direction of the electric 
field.
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FIG.4. The function F(E) versus £ given by Eq. (37a) describing the effect o f  an electric field at a point 
M i , with a M < 0. From Ref. [7 ] , F ig.2.

For a critical point of type Mq the external field produces an exponential 
tail on e2(u) at energies below the energy gap E0 (Franz-Keldysh effect), 
and gives oscillations of ег(ш, F) about the zero-field value at energies 
above Eq. The amount of the exponential shift and the period of the 
oscillations is proportional to F 2̂ 3 through the quantity a1̂ 3 . A 
number of experimental measurements with different magnitude 
and direction of F can give a good estimate of the a [16] .
For ^critical point of type Mj the field produces oscillations of 
ег(ш, F) about €2(w, 0) above or below E0 depending on whether that a„ 
is positive or negative. Also for a point the period of oscillations 
is proportional to (eF)2'*3 |o'„ j1̂3 ; we can obtain an estimate of the a 
by a number of measurements with different magnitude and direction of 
the electric field [17] .

5. CRITICAL POINT AT kc f  0. EFFECT OF THE DIRECTION OF 
THE ELECTRIC FIELD AND OF THE POLARIZATION OF LIGHT

The results we have obtained up to now are valid in the case of 
allowed transitions at a single critical point kc in the Brillouin Zone.
If kc /  0 we have to consider the effect arising from all equivalent critical 
points (which are obtained from one of them by applying the symmetry 
operations of the crystal) to evaluate the resulting £2(w,F). Equation (32) 
must be modified in the following way:

Ле2(ы, F) 2fi2 /e_\ 2 (eF)1/3
W (m j  si I £*2 I I I e • Mvc ! I«. ,cl

11/6
F(Cc (32)
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where f c is given by:

fc

E0-fiw
h . c|1/3(eF)2/3

(33)

1— I Оe • Mvc|c in Eq. (32a) may be different for every 
critical point of the star kc depending on the selection rule of the 
transition, on the direction of kc, and on the direction of the polarization 
of light with respect to the crystallographic axes. The quantity a„iC 
and consequently and F(fc) may be different for every critical point 
depending on the values of the effective masses on the direction of kc , 
and on the direction of the external electric field with respect to the 
crystallographic axes.

As an example illustrating how to take into account all these elements, 
we consider a critical point of type Mj in the Л direction corresponding 
to a transition between a A 3 state and a Â  state, as is the case for many 
cubic semiconductors (see the lectures given by Antoncfk [18]).

In the Brillouin zone there are eight equivalent critical points in 
the directions [111], [111], [ i l l ] ,  [111], [ I T T ] ,  [ I I I ] ,  [ I I I ] ,  [ П Т ] .
For each of them, we can write, for reasons of symmetry

. 2sin cpc 2cos фс (39)

where

2cos epc (40)

and, because the transitions Л3 -Л 1 are allowed only for light polarized 
perpendicular to the A direction:

e • M, .!}■
2 2 C cos 0C (41)

where

cos2 0C = 1 - (42)

From Eq.(39) we can see that for a given value of a tl  |ej|, a„tC may 
be positive for some critical points of the star of kc or negative for 
others of them, depending on the direction of the electric field with 
respect to the crystallographic axes. In Table 1 we give as an example 
the expression of u„ c for each point of the star A, when the electric field 
is in the direction [ 1 1 0 ] and in the direction [100 ] .

When F is parallel to [100] all critical points contribute to Де2(ш, F) 
with the same value of a„ which is positive if <*t/laj l > 1 / 2, or negative 
if Ot/lö£l< 1/2. The effect of the electric field is purely transverse
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TABLE I. WEIGHT FACTOR APPROPRIATE TO 
ALL EQUIVALENT CRITICAL POINTS AT A FOR 
DIFFERENT DIRECTIONS OF ELECTRIC FIELD AND 
POLARIZATION OF LIGHT

Critical
points

FlltlOO] F II [110] in the plane (111)

* ,c a „ c cos2 0
II. C

2cos e l , c

ш и
1 1 1 7
- ( 2 a t -|cc£ 1) - ( a t - 2 | a c |) 3 9

[ u i ]

t i n ]
1 1 I . 1 7
i (2cv |af  D g ( o t t - 2  |a{ |)

3 9
[ i n ]

a i l ] 1 1
“ t 1

9
[ i n ]

[ i n ]
— (2ctt - | a £|) “ t 1 1

t i l i ]

Note: The light is polarized in the same plane as the electric field F, perpendicular and 
parallel to the field. The angle <?c is defined by the directions o f  F and o f the 
principal axes o f  the critical point. The angles © () c  and ©  ̂ c are defined by the 
direction o f  polarization o f  light and by the normal to the principal axis o f  the 
critical point.

(cr„ > 0, oscillations at energies higher than E0), or purely longitudinal 
(o„ <0, oscillations at energies lower than E0).

When_the electric field is in the [110] direction the critical points 
[ i l l ] ,  [111], [ i l l ] ,  and [ i l l ]  contribute to Дб2 with a„ > 0 (transverse 
effect, oscillation at high energy side), while the critical points [ i l l ] ,  
[ i l l ] ,  [111], and [ i l l ]  contribute to Де 2 with a„ > 0 or a„ < 0 depending 
on the fact that at/|at|> 2. or at/|cr{ |<2, respectively.

The same kind of analysis may be performed when the electric field 
is in other directions. By a sufficient number of experimental measure
ments at different orientations of the electric field with respect to the 
crystallographic axes, the direction of the critical point responsible for 
the effect and the ratio at/|a£| may be determined in a rather good 
approximation. We recall here that the optical coefficients measured 
experimentally are functions of the real and imaginary parts of the
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dielectric constant, and to compare theory and experiments, we must 
take account of ex as well as of e2 • (this kind of analysis is done in 
Ref. [19]).

When the electric field introduces an anisotropy between the equivalent 
points of the star of Kc through a„ c the quantity Де2(ш, F) given by Eq.(32a) 
strongly depends on the polarization of light.

This is the case in our example when the electric field is in the
[110] direction. In Table 1 the values of cos2 вс when the light is 
polarized parallel and perpendicular to the electric field are given.
We can see that the weight factor (42) arising from the critical points
[111] , [111], [111], and [111] is 12/9 when the light is polarized 
parallel to the electric field and 28/9 when the light is polarized perpen
dicularly to the electri£ field, while the weight factor arising from the 
critical points [ i l l ] , [111], [111], and [ i l l ]  is 36/9 when the light is 
polarized parallel to the electric field and 20/9 when the light is polarized 
perpendicularly to the electric field. Consequently, the contribution of 
the first four critical points to Де2 is greater when e'lF than when e||F, 
the opposite being true for the contribution due to the last four critical 
points. If a^l\asi\<2, from the previous discussion we expect oscillations 
on both sides of the critical point energy, E0, and the oscillations above 
E0 are enhanced compared to the oscillations below E0 when e||F; the 
opposite situation occurs when e_]_F. This result seems to explain the 
dichroism recently found by Rehn and Kyser [20] on GaAs. (A detailed 
discussion on the effect of the direction of the electric field and of the 
polarization of light is given in Ref. [21]).

APPENDIX A

Integrals which occur in calculating е2(ш)

We have the following integral:

R R R

-R -R -R

(Al)

R R

/ dX/ dy on surfaces given by:
-R -R

fiu- E0-(x+y) = c (A2)

where:

- R S c s R (A3)
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By changing the integration variables:

s = ^ ( x + y )

(У- x)
(A4)

where:
- R S s s R

R St SR

with the supplementary condition:

(A5)

R+fiw-E0ä s ё -R+fiu-E0 (A6)

we obtain, if En -fiu > 0 :

R+fild- Eq

I Al = 2R Г ds = 2R[2R-(E0--fiw)]
-R

and if E0 -hu < 0 :

(A7)

IA1 = 2R J ds = 2R[2R-(-hu-E0)]
-R+fiüJ- Eq

R R R

IA2= J '  dx J" d у J  dz 6(E0-fiuH-x+y+z2 )
-R -R -R

,! L  L  *
2 J J 4/fiu-E0-(x + y)

-R -R

(A8)

(A9)

with the condition:

0 Sfiw- E0 - (x+y) S Rz (A10)
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By using the integration variables defined by Eq.(A4) with condition (A5), 
and recalling expression (A10), we obtain:

•fioj -  En

IA2 = R Г d s - - -  - -  =2R ./R -(E n-ftco)
J <s/fiu)-En-s
-R u

R 2 7Г Rz

IA3 = | J  dx J d e J d r 2 6{K0-bu + x + r 2) =

-R 0 0

= ir dx on lines
-R

ftu - Efl-x  = c

With the condition:

0 § c 5  R2

(A ll)

(A12)

(A13)

(A14)

we obtain

I A3 = 7r[R-(E0-fuo)] (A15)

APPENDIX В

Integrals which occur in calculating 62(b), F)

We have:

b
Г  i k f ( x )IB i = J  g(x) e • dx = g(x0) 

a

if к is large and f^Xg) = 0 for a S x Qsb. 

and:

1̂/2 gikf(xo)

IB2 = J  Ai2(x + t) = I  A i ^ 3 x)

(Bl)

(B2)
0
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where:

Ai1(x)
X

Ai (t) dt

[see Aspnes [7], Eq.(B27)] 

Furthermore,

IB3 = J  dt Aix(x+t) 
X1

= / du Ai^x+xj + u) - / dq Ai1(x+x2 + q)
0 0

= [Ai (q) + q Aij(q)] - [Ai(u) + u Aii(u)] x + x2 x HX1

[see Aspnes [7], Eq.(B14)]. 

and
X2 xlI B4 = J  dt AiV)= [Ai^tJ-t Ai2(t)]x̂

X1

[see Aspnes [7], Eq.(B21)] .

Asymptotic expansions of the Airy function and related functions

for x-*oo.

1 1/2 =(-4/3 x3/2)_  . f ix A i ( x ) ~ - ^ x  e Ai (x)

[see Aspnes [7], Eq.(C8a)] .

л • 2. . 1 , ,1/2 . 2x Ai (-x) (-x) sin
7Г

'2 3/2 TT ~

3 ( ' x) + 4

[see Aspnes [7], Eq.(C8b)] .

Ai2(-x) ~  — (-x)1̂2 cos2
7Г

| ( - x ) 3/2+ f

[see Aspnes [7], Eq.(C8c)] .

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)
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x A ii (x) ~ 27F  x1/4 e Ai'(x) (B9)

The last two equations are obtained from Ref. [15] .
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Abstract

1. Introduction.: specific features o f  the systems in question. 2. Density o f states and the local 
density o f  states. 3. Electrical conductivity. 4. Bands and effective levels.

1. INTRODUCTION: SPECIFIC FEATURES OF THE SYSTEMS IN
QUESTION

The electronic properties of disordered systems including liquids, 
amorphous or heavily doped semiconductors, etc. , has become of con
siderable interest in the last few years.

The theoretical papers on the subject are mostly based on the stand
ard band theory concepts. The same concepts are usually used to 
interpret the experimental results. However, the conventional band 
theory came out as a.result of studying the one-electron problem in a 
spatially periodic field of the perfect lattice. Therefore the problem of 
how to apply it to disordered systems is somewhat unclear. We shall 
attempt here to give an answer to this question.

A system will be called disordered if it does not posses any long- 
range order though a short-range one may exist. Certainly, this defini
tion is very broad since it covers everything except perfect crystals. 
Nevertheless, all the systems in question do possess some features in 
common. '

The first of these features is that, in contrast to the perfect crystal, 
the components of the crystal momentum are no longer good quantum 
numbers. The reason is obvious: no translational invariance of the 
Hamiltonian exists. In other words, the states with prescribed crystal 
momentum are non-stationary. Thus, the concept of a dispersion relation 
giving energy in terms of the crystal momentum, strictly speaking, does 
not make sense in this case. In particular, no notion of a Fermi surface 
exists in the case of degenerate systems. This result is well-known in 
the theory of heavily doped semiconductors (see R ef.[l] ). Note that the 
concept of a dispersion relation is one of the building stones of conventional 
band theory.

The second specific feature of the systems in question is the random 
nature of the force field in which the charge carriers move. The reasons 
for this are as various as they are obvious, including, say, the random 
distribution of the chains in glass over their dimensions, or the random 
distribution of impurities in a semiconductor sample, or just the heat 
motion of atoms in a liquid. The net result, however, is the same in all 
cases: the force field is randomly different ;n different samples and
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even in different parts of the same sample. On the other hand, most of 
the macroscopic experiments deal, as a rule, with the sample as a whole. 
This means that in a macroscopic experiment an automatic averaging 
is made over all the possible values of the random field. This has to be 
reflected in the theory. Note that the averaging procedure is alien to 
the conventional band theory. Moreover, it makes the very concept of 
the wave function a not very convenient one, persuading us to work 
preferably with some other quantities, which would allow the averaging 
process to be performed in a natural way. Such quantities are the Green's 
functions (or the spectral functions and reduced density matrices derived 
from them).

The third feature is the increased role of some many-body effects 
in degenerate systems as compared to the case of a perfect crystal.
There are generally three types of the many-body effects: screening, 
energy renormalization, and damping of the elementary excitations due 
to particle-particle scattering. In a perfect crystal,the third effect is 
known to be very small near the Fermi surface. The reason is that the 
exclusion principle combined with the energy and momentum conservation 
laws greatly restricts the volume of the phase space available for the 
process in question. For a disordered material the last factor drops 
out. Therefore, the conventional quasi-particle picture may become 
invalid if applied to such materials. Note that it was just this concept 
that made it possible to justify the standard band scheme when applied 
to many-electron systems.

The features just described may or may not be important quantitatively, 
depending upon the particular properties of the substance in question. It 
is not impossible that some models might be invented'that would for some 
reasons allow description in conventional terms. However, in such cases 
we never know which result reflects the nature of the things and which 
the nature of the model. Therefore, an attempt seems desirable to study 
the problem from a somewhat more general point of view. The first 
question that arises in this respect is the following: are there any band 
theory concepts that could be preserved in the general case of a dis
ordered system? In particular; what (if any) is the exact meaning of 
the very concept of a band? Evidently, to answer this question we have 
to find out what are the exact quantities that could effectively describe 
a many-body system of the general type.

2. DENSITY OF STATES AND THE LOCAL DENSITY OF STATES

The quantities in question are well known from the general many- 
body theory (see, e. g. Ref. [1] ). One of the most important of these 
quantities is the generalized density of states, p(E) (to be called just 
the density Of states in what follows). In the Fermi system it is defined 
by the relation

p(E) = у  Tr Im Gr(E) (2. 1)

Here E is the energy variable, V the volume of the system1, Gr(E) the

1 The right-hand side o f  E q .(2 .1) may be shown to be asymptotically volume-independent, if 
V -*• 00, the average particle concentration n being finite.
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Fourier-transform (with respect to time) of the one-particle retarded 
anticommutator Green's function. The latter is defined with the sign 
convention used in Ref. [2] :

Gr (X , X' ; t) = ifl (t) < [a (X ,x0), ä(X« , x ')] + > (2.2)

Here t = x Q - x '0 , xQ and x'0 are the time variables, X, X1 the arguments 
specifying the chosen representation, a, ä the annihilation and creation 
operators, respectively; the symbol\. . . ) means taking the usual ex
pectation value over the Gibbs ensemble and averaging over the random 
field. The particular choice of the variables is of course irrelevant when 
p(E) is calculated.

Using the spectral representation of the Green1 s function (2) we see 
immediately that the argument E means the increase (or decrease) of the 
energy of the whole system when one of the particles is added to it (or 
removed). If there is a dispersion relation it is convenient to put 
X = X' = p, where p is the crystal momentum. Then

ImGr(p,E) ~ 6 (E -W p) (2.3)

where Wp is the single-particle energy expressed in terms of the crystal 
momentum and the definition (2.1) reduces exactly to the standard ex
pression used in the statistics of the perfect gas (band theory included); 
the argument E designates the single particle (or quasiparticle) energy, 
in this case.

In the general case, relation (2.3) does not hold. However, defini
tion (2.1) always has an exact meaning, irrespective of the nature of 
the interactions governiAg the behaviour of the system. Moreover, it 
is easily seen that the density of states, (2.1) contains all the information 
needed to establish the thermodynamic properties of the system. The 
average particle concentration n is, indeed, given by (see Refs [1-3]);

+ oo

n= J  [e ß(E"M)+ l]"1 p(E)dE (2.4)

where p is the chemical potential, and ß an inverse temperature (in energy 
units). Thus, if the function p(E) is known it is, in principle, possible to 
obtain an explicit relation between n and p from which all thermodynamic 
quantities can be calculated by the well known formal methods. In this 
way it was possible (see Refs [3,4]) to study some low-temperature 
thermodynamic properties of the Fermi system without making use of 
a dispersion-relation concept.

Moreover, according to the meaning of the argument E in Eq.(2. 1), 
there must still be a correlation between the density of states and the 
kinetic properties of the system -  such as conductivity, light absorption 
(or emission) coefficient, the I-V curve of the tunnelling system, etc.
Such a correlation was indeed shown to exist (see Refs [3 ,5 -7 ]) without 
any assumptions concerning the validity of the dispersion relation concept. 
However, up to now only the so-called macroscopically homogeneous
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systems were considered. By this we mean the systems in which the 
averaged electron concentration is either constant all over the sample 
(up to small surface terms) or is piece-wise constant (the tunnelling 
case). On the other hand, systems possessing not only a random spatial 
variation of the electron concentration but also a systematic one, may 
be of some interest. The last one is by definition preserved after 
averaging over the random field. In such cases the quantity (2. 1), while 
still preserving an exact meaning, gives too incomplete a description 
of the system: it determines just a spatial average value of the electron 
concentration, (2.4), but not the local one. In fact, using co-ordinate 
representation, Eq. (2.1) may be rewritten in the form

P(E) v dx Im Gr (x, x; E) (2.5)

where x means the three coordinates (and the spin quantum number if 
needed) and the integral is taken over the volume V. On the other hand, 
the local concentration is (see Ref. [ 2] ):

2 Im Gr(x, x; E) [eS(E‘ Ю+ lJ^dE (2.6)

It seems natural therefore to define a local density of states

p (x, E) = 2ImGr(x,x;E) (2.7)

of which p (E) is the spatially averaged value2:

P(E) = ^rJdlp{x,E)  (2.8)

Both quantities, p(E) and p(x, E), are non-negative. Note, however,that 
p(E) is obviously unitarily invariant while p (x, E) is by definition in 
terms of the co-ordinate representation only.

To establish the connection between the local density of states and 
the kinetic coefficients, it is convenient to use the mixed (Wigner) repre
sentation putting (h = 1)

Gr(x, x ' ;E) = G[ ( x -x ' , ; E ) = -> ip‘(x-x‘) U  x + x' dp e G{ (p,—t.—  ;E
(2. 9)

Then

P(x, E) = 2 / d p Im GJ (p, x;E) ( 2 . 7 ' )

The two quantities obviously coincide in the macroscopically homogeneous case, when 
G I (x ,'x t ; E) = G ( i t -  x4 ; E).



DISORDERED SYSTEMS 993

In a homogeneous system G' does not depend upon the second argument, 
G' (jp, E) becomes just a usual Fourier transform of the Green's function 
and the right-hand side of Eq. (2 .7 ')  reduces to a standard expression 
for the function p(E). Note, however, that the function ImGJ(p,x;E) is 
not generally positive-definite. This property is characteristic only of 
its integral over x.

The essence of the representation (2.9) lies in the fact that there is 
a certain class of macroscopically inhomogeneous systems that seems to 
be of a special interest. These are the systems where the systematic 
spatial variation of the electron concentration (and of other quantities of 
interest) is smooth enough: the function n(x), averaged over the random 
field, remains practically constant on the microscopic scale defined, say, 
by the length n or the mean free path (if it has any meaning). Such 
systems (to be called quasi-homogeneous and the only ones to be dealt 
with in what follows) possess, at least, two very different spatial scales. 
The Green's function of such a system, G '(p ,x ;E ), depends only weakly 
upon the second argument while it may depend upon the first one in an 
arbitrary fashion. It is just this fact that makes the representation 
(2. 9) especially convenient: the two types of the co-ordinate dependence 
are explicitly separated.

3. ELECTRICAL CONDUCTIVITY

Representation (2.9) is also convenient in the problem of electrical 
conductivity. We shall confine ourselves to the case of an electric field 
varying slowly in space (in a sense described above). Then the real part 
of the complex conductivity tensor at frequency и is (see Ref. [2] ):

CT;j (x,u) = Re |(- i) f  dy e l(K'X ^  X?(x,y; и)|?= Q (3. 1)

Here к is the wave vector of the electromagnetic wave, X?(x,y;u) is the 
Fourier transform with respect to time t = x0 - y0 of the quantity

X?(x,y) e*
2m„ lim 

x' -»x 
xj > x„

Э Э \ 
3Xj '  Эх!/

X Tr dy' dy" {Gc ( x ,  у' ) Г°(у' , y "  ; y) Gc(y", x ')} (3.2)

Here m0 is the true electron mass, x, y, y' , y" are the four-dimensional 
quantities (x = {x ,x 0} , etc.), the trace (in contrast to E q .(2 ,l)) is taken 
over the spin variables only, r ° is  the full scalar vertex part, Gc is the 
causal Green's function defined as an average over the Gibbs ensemble 
only, the curly brackets mean averaging over the random field3. The 
well-known "plasma" term is omitted on the right-hand side of Eq.(3.2)
since it contributes only to the imaginary part of the conductivity. 
___________  о

3 Note that it is just the product Gc r °G c as a whole that is to be averaged in this case, and not the 
various multipliers separately. This is a particular case o f  the general rule: the averaging procedure is 
applied to the observable quantity in question.
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It is convenient to write the vertex part in a form analogous to 
expression (2.9):

r ° (y ',y " ;y ) y' - У.

1
(2tt)8 dx 'die" Г'°(к', к" ; yl + У" )̂ e -1(к'.у'-у) + 1(к".у"- у)

(3.3)

where к' , к" are the four-dimensional variables.
Note that the third argument of the integrand contains only the 

spatial coordinates, (y' +y")/2 : we consider the thermodynamic system 
which is homogeneous with respect to time.

The function Gc is also written in a form analogous to expression 
(2. 9), the only difference being that, no averaging over the random field 
being implied, the dependence upon the second argument must not ne
cessarily be smooth. However, after the integrand of the integral in 
Eq.(3.2) is averaged in this sense only the smooth part of the dependence 
on y' +y", x + y' and y" +x survives. On the other hand, the relevant 
values of the wave vectors к' , к", p are not generally small. Thus, 
we may neglect the derivatives of Г '°  and G'c with respect to these spatial 
variables as compared to the products of the type к;Г '°  and PjG' . In this 
way one obtains:

(x, u) e2 ,---- (2ъ у  Re lim
mo t - + I

Tr _Э
Эк

dp

G'

dp0e Pot Pi j ptO ( г * !- Po - Р -  P ö ; 3 ) ( 3 . 4 )

Р + \> p j ; * K < vp - v р» : 5 ) Ь . .

Here Pg = p0 ± u/2.
In the case of the homogeneous system this equation reduces to the 

well-known result (see Ref. [2] , section 15). Note that the same spatial 
argument x enters both the left and right-hand sides of Eq.(3.4). This 
means that the quantity cr̂  is a local function of the local charge carrier 
concentration. This standard and very trivial result is a consequence 
of the quasi-homogeneous approximation. In the general case, it is, 
of course, incorrect, and the conductivity is non-locally expressed in 
terms of n(x).

It is a simple matter to write down the Ward identity for an inhomo
geneous system. Proceeding in the standard way we obtain

(K<5 ■к") Г '°  к
—** I■ п. У' +У

(*i к'.' ) Г '' к'

= (2 *> 4 Gt-i (3 .5 )



DISORDERED SYSTEMS 995

The argument (у1 + y")/2  enters this equation as a parameter. This 
makes it possible to transform Eq. (3. 5) in the same way as it was done 
in the case of a homogeneous system (see R ef.[3]), expressing Г '0 in 
terms of G'c (]5,x) and of its derivatives with respect to p and p0. Thus, 
the theorem on the correlation between the conductivity and the density 
of states proven previously for the macroscopically homogeneous systems 
is generalized to the quasi-homogeneous case, the local density of states 
p(x,E) replacing the function p(E). In particular, the following state
ments are valid:

(1) At zero temperature the static conductivity is non-zero if and 
only if the chemical potential lies in the region of the energy space where 
the local density of states is non-zero and continuous.

(2) Let the local density of states be effectively equal to zero at 
E s E0 (possibly E0 = E0(x)) and p < EQ, (3(EQ - p) »  1. Then the static 
conductivity contains an exponential factor

exp { -  )3(E0 -p )}

Its origin is obvious: according to expressions (2.6) and (2.7) under 
conditions stated above we have n(x) ~ ex p {-ß (E 0 -p )} .

(3) The frequencies of eventual optical transitions u must satisfy 
the condition hu = E j- E2, where Ej and E2 (both possibly functions of x) 
are some energy values at which the local density of states is non-zero

These statements would be completely trivial in the frame of the 
conventional band theory. The point is, however, that they turn out 
to be true also in the far more general case of any quasi-homogeneous 
disordered system irrespective, for instance, of whether there is or 
there is no dispersion relation. Thus, the local density of states 
correlates with practically all the kinetic properties of the system. 
Qualitatively, it may be used to predict them much in the same way as 
if we had to deal with a one-electron theory of the perfect crystal.

4. BANDS AND EFFECTIVE LEVELS

The correlation between the kinetic coefficients and the local density 
of states as well as the thermodynamic importance of the latter quantity 
enables us to give a precise definition of the concepts of allowed and for
bidden bands4. An allowed band is the energy range where the local 
density of states is non-zero and continuous, a forbidden band is the range 
where it is identically equal to zero. Note, however, that the last defini
tion is conditional to some extent: strictly speaking, the random nature 
of the force field makes the function p(x, E) unequal to zero at any finite 
E. In other words, the "edges" of an allowed band are always somewhat 
smeared off,thereby forming the so-called tails. However, a rather large

In case o f  the macroscopically homogeneous systems it has already been given in Ref. [1 ] .
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energy range may exist where the local density of states is negligibly 
small which justifies our definition5.

Note that this definition takes natural account of the systematic 
bending of the bands in some external fields.

There may be several regions of the energy space where the local 
density of states is non-zero, separated by the forbidden bands. Thus, 
we may speak of different allowed bands (possibly with different mobilities). 
Correspondingly, a concept of the density of states in a certain band be
comes meaningful in the general theory; it is especially useful in view 
of statement (2) of the preceding section.

In idealized systems the density of states may have discontinuities:
6-like peaks of the local density of states may arise in the forbidden band.
It is natural to call the relevant E values "the local levels". The random 
nature of the field leads to an unavoidable smearing-off of the peaks; so, 
strictly speaking, we should call them bands, too -  in the sense of the 
definition given above. However, the width of the peak Д (to be defined 
precisely in what follows) may be small compared to other relevant 
energies (in particular, compared to T = ß"1 and to the distance from the 
other peak or the effective edge of a band). This usually corresponds 
to the low d. c. mobility, and if this is really the case then it makes 
sense to preserve the concept of an "almost discrete" level. From a 
thermodynamic point of view, the peak in question behaves as if it were 
a single "effective level" possessing an energy Et defined by the relation

Nt nF(E*) = / p(J,E) nF(E)dE (4.1)

Here nF(E) = [expß(E - p) + l ] '1 is the Fermi function, Nt is the concen
tration of the peaks. The integral on the right-hand side of Eq.(4. 1) 
is, strictly speaking, taken about the centre of the peak, Et . However, 
under the conditions described above the function p(x, E) drops off quickly 
with the distance. |e - Et | ,- and we may effectively integrate within the 
infinite limits. The quantity E* is then easily expressed in terms of Et> 
and the moments of the local density of states; these may be regarded
just as some phenomenological quantities. Put

Д = J d ~ E \ E - e J n ^ pIx , E) (4.2)

mt= A'1JdE(E-Et)s Nj1 p (x, E), * = 1,2, ............  (4.3)

Neglecting quantities of the order of (Д/T)2 we obtain

E*  = Et + Д { m j + -^r (m i - m2) + h (4 - 4)

5 The definition adopted may seem to be somewhat incomplete since no assumptions are made 
concerning the m obility. Its values may be very different in different parts o f  the continuous spectrum. 
However, very low mobilities correspond most often to the narrow bands; in such cases, the,concept 
o f an effective level is introduced (see below).
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These are just the quantities E* that enter all the statistical equations. 
This is, in particular, valid for bent bands. Indeed, the electrostatic 
potential tp may be uniquely separated into a systematic (<ps) and a random 
(<Pr) part:

ф = Ts + фг; {ф} = ф8 , Чфг> = о (4.5)

The Poisson equation averaged over the random field takes the form

V%s = {p (x )-n (x )} (4.6)

where e is the electron charge, e the dielectric function of the material 
(assumed constant), p(x) the concentration of holes (both free and trapped, 
if any). To obtain n and p as some functionals of ф8 we note that the effective 
(in the sense of Ref. [2] ) Schroedinger equation determinating the E values 
contains the potential in the form

-ecp-E = -ecps -ecpr - E  (4.7)

The random part, -ecpr, contributes to the eigenvalues (providing, in fact, 
their random character). On the other hand, the systematic part, being 
smooth enough, may be taken account of by the standard method of the 
bent bands. Then the quantity /u + ecps will enter Eqs (2.4), (4.1), etc., 
instead o fp , or, equivalently, effective energy levels will always enter 
in the combination E* - ecps . Thus, when determining the shape of the 
bands, we have to deal with the averaged potential only, the latter being 
obtained in the standard self-consistent way from Eq.(5.6) containing just 
the effective levels.

Evidently, the activation energy determining the temperature de
pendence of the conductivity of an amorphous semiconductor is also given 
in terms of effective levels. Thus, it is seen that the smearing-off of 
the levels due to the fluctuations of the random field leads to a specific 
temperature dependence of the activation energy, given explicitly by 
E q.(4 .4)6. Note that this result is not due to any assumptions of the model
like nature and is therefore applicable to the levels of any nature, once 
they are narrow enough.

Thus, quite a number of conventional band theory concepts turn out to 
make sense under much broader conditions than those under which they 
were originally derived. Essentially all the phenomenological energy 
picture of the band theory is preserved in the general case (with the 
smeared-off band edges). Of course, this does not at all imply general 
validity of the calculational methods of the band theory. The only thing 
that was proven was that it is possible to obtain some band parameters 
in an empirical way since they were found to have an exact meaning.

6 The quantity Et may still contain the well-known term which is linear in temperature and due to the 
degeneracy o f the level in question. However, this term does not depend upon the position o f the peak relative 
to the Fermi level.
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This is, in fact, a justification of many attempts undertaken to apply 
band theory to disordered systems, but it is a justification of a rather 
special kind: it retains just the many-electron contents of the theory 
leaving out everything that was essentially based on the one-electron or 
periodic-field approximations. Thus, there is generally no justification 
for anything connected with the crystal momentum conservation and with 
the concept of a dispersion relation. There is, for example, no reason 
for introducing a single dynamical effective mass tensor: one can speak 
only of the "masses" entering various observed quantities (such as the 
optical mass, density-of-states mass, e t c .)7. Furthermore, no Van Hove 
singularities of the density of states are to be expected.

It is seen that one of the first theoretical problems of the disordered 
systems is that of calculating the generalized density of states. Numerous 
papers have been published on the subject; however, the extreme difficulty 
of the problem made it necessary to resort to rather drastic approximations 
or to confine the calculations to some specially adopted models. Therefore 
it might be of interest to invent some ways of determining the density of 
states directly from experimental data. This is a difficult matter since 
the kinetic coefficients being correlated with the density of states in the 
way described above may not generally be expressed explicitly in terms 
of it. There are two reasons for this, both of which are as obvious as 
they are of a principal nature: firstly, the trace of the Green's function 
contains less information than the function Gr itself; secondly, the kinetics 
is determined as well by the relevant transition probabilities. Therefore, 
some special situations have to be looked for to extract some reliable 
information on the density of states from experiment. It seems that such 
situations might, in fact, be realized in some cases, at least (see Ref. [6] ), 
but the problem as a whole deserves further study.
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Abstract

1. Introduction. 1 .1 . Analytic properties o f Bloch states. 1 .2 . Symmetry o f surface states. 
2 . The wave function o f the surface state. 3 . Numerical results.

1. INTRODUCTION

The states of an electron in a perfect crystal of infinite extension in 
three dimensions are Bloch functions of the form

^ (?)=eik' ru nt(7) (1)
where the function un-ß (r) is periodic, with the same translational sym
metry of the whole crystal lattice. Besides, the function (//^(r) trans
forms, under the symmetry operations contained in the group of the wave 
vector к -  i .e . that subgroup Gk of the lattice space group G which leaves 
t  invariant -  as one row of some definite irreducible representation of Gk 
(see Ref. [1]).

The permissible values of the components of к in an infinite crystal 
are real, since otherwise the norm of ^„^(rj would diverge at infinity.

Let us now consider an ideal case of a crystal with a plane boundary. 
In this case it is possible to consider complex values of the component of 
Й perpendicular to the boundary plane, as long as its sign is the appro
priate one to form an exponentially damped wave function (//„"£ within the 
crystal.

We shall assume, in our ideal model (Fig. 5), that the potential in the 
vacuum half-space is just a constant, positive if we take the top of the 
valence band as the origin of the energy scale, so that the wave function 
outside will be some linear combination of products of plane waves and 
possibly damped exponentials, depending on the energy eigenvalue of фn-£ .

We shall now look for electronic states with real energy E within the 
band gap, with a wave function damped toward both sides of the boundary 
plane in the direction perpendicular to it. These we shall call "surface 
states" [2]. Tamm [3] was the first to consider the existence of surface 
states in a one-dimensional model. Maue [4] has discussed surface states 
in one dimension and also established the basic formalism for their cal
culation in three dimensions which we shall apply in what follows. A simi
lar discussion was undertaken by Goodwin [5], with applications to some 
simple models, and, to a more realistic case, by Autoncik [6].
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The two main points to be kept in mind in any calculation of surface 
states are: (a) the analytic properties of the Bloch functions i ( r )  and of 
their eigenvalues En(k) and (b) the symmetry of the surface states.

1.1. Analytic properties of Bloch States

The periodic part of the Bloch function, unk(r), satisfies the equation 

[p2 +2k -p+k2 +V(?)]unt(?) =En(k)untM  (2a)

or

H(k) un-j(r) = En (k) u n£(r) (2b)

which is written in convenient atomic units.
It can be shown [7] that the function En(k) satisfies the condition:

En(k*)=[Em(k+K{)]* (3)

where m /n  only in case of degeneracy of the n and m bands, but other
wise m =n. The asterisk denotes complex conjugation, and is some 
reciprocal lattice vector, which, in particular, can be K j = 0.

We shall consider k =k„ + k±, where "и" means parallel and "x" per
pendicular to the boundary plane. In what follows, we assume that kM has 
any definite value, and we shall forget about it. It is, however, important 
to realize that k„ is the index of an irreducible representation of the two- 
dimensional translational symmetry which is not destroyed by the existence 
of the boundary and, therefore, must also label the wave function in the 
vacuum half-space and the surface-state wave function.

Let us write kx =kr +iq, where kr and q are real. Heine [8] shows 
that in the (kr, q) complex plane there are curves defined by the equations

Im {E n(kr, q) } =0 (4)

Besides, he shows that they must be normal to the kr axis at a point where 
En(kr) has an extremum. These curves are called "real energy lines". A 
real energy line can: (a) leave the kr axis and go to infinity (Fig. la);
(b) leave the kr axis at a point kj, go around one or more branch points in 
the (kt,q) complex plane and return to the kr axis at a point k2 (Fig. lb), 
thus joining a minimum/maximum to a maximum/minimum of the E (kr) 
curves; (c) it can leave the kr axis, reach a branch point and go back 
along the same path in the (kr, q) plane, as would be the case if kr = 0 and 
k„ =0 (Fig. lc ). Real energy lines such as (b) and (c) are called "loops".

Let us assume that we have obtained, through some band calculation, 
the function En(kr) and its analytic continuation in the complex kxplane, 
including branch points and real energy lines. We have now come to the 
question of symmetry.

1.2. Symmetry of surface states

Let us just remark that a crystal with_a boundary is less symmetric 
than an infinite one: its symmetry group G, contained in the space group
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of the crystal, cannot contain mirror or glide planes, nor axes, which 
are not perpendicular to the boundary. It cannot contain any translation 
not parallel to it either. This fact eliminates all screw axes.

Let us call G k and Gk the groups of the к vector in the unlimited and 
the bounded crystal, respectively. In general, unless they coincide,
Gkc  Gk. Thus, a given irreducible representation D“  of Gk will be in 
general reducible into a sum of several irreducible representations DJ of 
Gk. Namely,

D“ = c “ d ‘ (5)
i

where the C f are integers.
It could happen that two or more different representations Da and D® 

both contain a given D ‘ .

2. THE WAVE FUNCTION OF THE SURFACE STATE

This implies that we can make a linear combination of all those states 
with the same Tc„ and the same real energy E contained within the gap 
which, although belonging to different energy lines (e .g ., having, in 
general, different space symmetry), all belong to the same surface 
symmetry type. This linear combination is an acceptable wave function 
for a surface state, inside the crystal. For kM = 0 we can express it as

N N j j L
(?, E) = J  у.ф.  (?) y .  e (kl+14 )£ £  <*jmr m(?> П, П (6)

j=l j=l m=l

Here, j labels the N different degenerate analytically continued Bloch 
functions with real energy (e .g ., j labels the real energy line) which we 
consider, yj are arbitrary coefficients to be determined by the boundary 
conditions. The values of kj and qi are determined by the equations

Im {E  (k j, qJ )}  = 0, j = 1, . . ., N 

ReE(ki, q 1) = ReE(k2, q2) = .... = ReE(kN, qN) =e
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The functions Tm (r) are the solutions of Eq. (2) for К = 0. We express 
ф j kj + iqj ( r) in terms of these, and the expansion coefficients о̂ т  can be 
determined, for example, with the " k ' p "  method [9].

The coordinates (f, rj, £) express r in an orthogonal system where ? is 
normal to the boundary plane.

The wave function outside can be written

фот{т ,Щ - -^  Ch{e 
h, e

- 2iri (he + £tj) -q'h jUI 
1 e (7)

It is convenient to use a set of M linearly independent, two-dimensional 
symmetrized plane waves ф̂  (§, rj). In terms of these, we have

M
Гт (?) = X  /3„,(ПФЧ(?,Ь), m = l ....... L

X= 1
mX X

(8)

Therefore,

M

• I  V *
X = 1

ФХ(Ч, b) O)

We substitute also expression (8) into Eq. (6), and impose the boundary 
conditions that at f = £0, which is the co-ordinate of the boundary plane,

and

9</hn (S, П, »  
9?

_ 90out (f, b, £)
Э? e=Co

(10)

Therefore, solving the compatibility equation

det A(E) = 0

(ID

If N = M, we obtain, by eliminating { ß  ̂ } , the matrix equation

у ■ A = 0

where

V E> = £  el(kr + 14H° V ( E ) { ( i k j - q j - q. ) ß mx(?o) + ( ^ ) sJ  (12)
m=l

(13)

for E we obtain the energy eigenvalue and the wave function, by making use 
of Eqs (4) to (11).
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3. NUMERICAL RESULTS

We have solved the main problem of finding the eigenvectors and 
eigenvalues of H(k) by using the Й ■ p method [8] (Eq. (2)). We show the 
results for kr = 0, kM = 0 in the (100) direction in Si (Fig. 2). The dotted 
curves are plots of E (q) using Kane's two-band model. Figure 3 is a plot 
of Q'jm(q), i . e . ,  the different components of the eigenvectors in the basis 
system consisting of the 15 lowest (4 valence and 11 conduction) bands 
[9, 10].

-0.94

FIG.2. Real energy lines in Si calculated for kx  = iq (100) with the к *p method, using a 15-wave basis 
(see Ref. [10 ]).
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FIG.3. Eigenvector components for the same case as in F ig.2.

ak21Г
FIG.4 . Real к bands and surface states in Si (see R ef.flO ]).
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FIG.5. Sketch of the model potential used in the calculations.

Similar calculations have been made by Jones [11] and Bartos [12].
An approximate preliminary calculation has been made of surface 

states of Si (see Ref. [10]). The wave functions have been approximated 
by symmetrized plane waves. In Fig. 4 we plot the bands of Si for real kr 
and the positions of the surface states found. A more complete calculation 
is currently being performed. The model of the surface potential is the 
simplest possible; it is sketched in Fig. 5. The parameter W is the photo
emission threshold and has been taken from experiment (see Ref. [13]).
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