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FOREWORD

The International Centre for Theoretical Physics has maintained an
interdisciplinary character in its research and training program as far as
different branches of theoretical physics are concerned. In pursuance of
this aim the Centre has organized extended research courses with a com-
prehensive and synoptic coverage in varying disciplines. The first of
these — on plasma physics - was held in 1964; the second, in 1965, was
concerned with the physics of particles; the third, in 1966, covered nuclear
theory; the fourth, in 1967, dealt with condensed matter; the fifth, in 1969,
was a course on nuclear structure; the sixth, in 1970, concerned imper-
fect crystalline solids. The proceedings of all these courses were pub-
lished by the International Atomic Energy Agency. The present volume
records the proceedings of the seventh course, held from 13 January to
12 March 1971, which dealt with the study of nuclear structure. A grant
from the Swedish International Development Authority, which made it
possible to increase the participation of physicists from Africa, India and
Pakistan, is gratefully acknowledged.

The program of lectures was organized by Professors L. Fonda
(Trieste, Italy) and G. Ripka (Saclay, France).

Abdus Salam
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NUCLEAR SPECTROSCOPY
WITH DIRECT REACTIONS
INDUCED BY HEAVY IONS

W. VON OERTZEN

Max-Planck-Institut fur Kernphysik,
- Heidelberg,

Federal Republic of Germany

Abstract

NUCLEAR SPECTROSCOPY WITH DIRECT REACTIONS INDUCED BY HEAVY IONS,
1. Introduction; 2. One-nucleon transfer reactions; 3, Multi-nucleon transfer reactions; 4. Nuclear-
structure effects in the elastic scattering of nuclei on nuclei.

1. INTRODUCTION

The study of the direct interactions of complex nuclei with nuclei
was started more than ten years ago. The development of this field of
nuclear physics was rather slow, because of both experimental and
theoretical problems. In recent years, more efforts have been devoted
to this field. The main motivations which were put forward for the use
of heavy ions as particularly interesting probes for the study of nuclear
properties may be listed as follows:

(1) The large mass of the projectile introduces large angular mo-
menta and high recbil velocities to the residual nuclei. The small value
of the ratio (nucleon mass/nuclear mass) can be used to introduce specific
approximations in the analysis.

(2) The high charge of the projectile makes the Coulomb interaction
the dominating feature at lower energies. Effects observed below or at
the Coulomb barrier can be treated quantitatively; for large values of the
Coulomb parameter semi-classical models can be used.

(3) Transfer reactions involving many nucleons are possible, and
it is expected to obtain information on states with many-particle excitations.

(4) The strong absorption of the projectile in the target nucleus for
small impact parameters (strong absorption of the lower partial waves)
gives to the direct reactions the character of surface reactions.

However, the theoretical complications in the quantitative inter-
pretation of direct reactions above the Coulomb barrier is still one of the
main obstacles in the application of the heavy-ion-induced direct reaction to
quantitative studies of nuclear structure. In the three sections, three sub-
jects will be discussed for which a satisfactory analysis of the data can
be given or the information can be extracted qualitatively with a high degree
of confidence.
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2. ONE-NUCLEON TRANSFER REACTIONS

One-nucleon transfer reactions induced by light ions have been used
extensively as a spectroscopic tool. The methods of analysis are well
developed for these reactions and it is possible to extract rather reliable
spectroscopic information from the experiments. The use of the heavy-
ion reaction for the study of single-particle properties can be motivated
by the following aspects: (a) transfer reactions below the Coulomb barrier
can be subjected to rigorous quantitative analysis [1 - 3] (mostly restricted
to ground-state transitions); (b) at energies well above the Coulomb
barrier the single-nucleon transfer reaction is also only sensitive to the
nuclear surface, because of the strong absorption of the scattering waves.
The calculated cross-sections therefore become independent of the nuclear
interiors, i.e. much more independent of the choice of the scattering

reaction:
A+d=(A«n)+p

1475 MPI H

Zero-range approximation in deuteron stripping,
transferred particle in relative S-state

reaction:
(bsc)sA=-b+(A+C)

- o mg -

rr=re

! My + Mg 2

- m -

i=F- < L}
mpem,

Heavy-ion approximation m¢ << mp, my, leading
to zero-range equivalent condition T; = Fy

FIG,1, Co-ordinates and mass relations in one-nucleon transfer reactions with light projectiles and
with heavy ions,
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potential parameters than in reactions with light ions. The absolute cross-
sections, as a rule, are difficult to reproduce quantitatively, whereas the
relative spectroscopic information for different nuclear levels is obtained
rather accurately. Furthermore, the analysis of the single-nucleon
transfer reaction gives insight into the problems of the multi-nucleon
transfers reaction.

The analysis of the sub-Coulomb transfer reactions on the basis of
the DWBA has been extensively discussed by Buttle and Goldfarb [2, 3].
Their method of calculating the transition amplitude will be sketched in
the following. Under certain conditions, the same approach can then be
used for reactions above the Coulomb barrier.

For a reaction A(a,b)B with a = (b+c), ¢ being a nucleon, the DWBA
transition amplitude reads

- - (-) d g e d - - (+)—> -
Tif =/drf dry x (kg ) Wz,j, (rg) V (rz)d/hjl (ry) x (kg r;)

Here y (Ej;i) are the scattering wave-functions in the initial and final
channels (pure Coulomb wave-functions for energies up to 2/3 of the
Coulomb barrier). The interaction V (ry), in the representation chosen
here, is the potential which binds the transferred particle in the final
nucleus, and ¢ (¥{) are the bound-state wave-functions of the transferred
particle in the initial and final nuclei.

The six-dimensional integral can be reduced to a three-dimensional
integral by using approximations which are specific to the properties of
heavy ions. A complete integration of the integral has been done by
Yoshida [4]. The first approximation is to neglect terms of the order
(nucleon mass/nuclear mass) in the co-ordinates of the scattering wave-
functions (see Fig.l). The neglect of these terms (together with the
second approximation) makes it possible to separate the integration over
the variables Ty (or T'y) and T, the latter variable being the argument
common to both scattering wave-functions. The second approximation
rests on the fact that only the tails of the bound-state wave-functions are
involved in the reaction, because of the large distances between the two
nuclei at energies below the Coulomb barrier. For energies above the
Coulomb barrier the same approximations may be used. . The bound-
state wave-functions are approximated by equivalent spherical Hankel
functions (for bound states of charged particles reasonable descriptions
by Hankel functions can be obtained using an effective binding energy [2]).

- 1 .
VGRS A hh) (ayry) Y3 (6,)

where N; is the normalization constant and a = ./ 2m_ E; n2.
" The DWBA-cross-section becomes, under these conditions,

. . 2
g_gz~ Saiy Stppy 180, Ne | Z (1% 20|32 92| Tym (8)
fm
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With

’ - -y -, 1 . -, - -
Ti 0) = [ 4F 1 g, B 8 (i) YR () 1 i, D

This integral is equivalent to those integrals obtained in the zero-range
approximation for light ions where the nucleons in the projectile are in
an S-state. This fact is illustrated in Fig.l, where the co-ordinates used in
the formulas are defined.
The normalization factor Ay is an integral over the variable r; and
can be expressed analytically (for a; =ay)
n? alb
Ay, () 3 N oD
Two facts, which give a certain distinction to transfer reactions induced
by light ions, have to be noted. The absolute cross-section depends on
the product of two unknown spectroscopic factors Sy;, and Sy,;, for the
two nuclei involved. In reactions with light ions the factor for the light
projectile is usually assumed to be unity. The absolute cross-section
further depends on the normalization constants N; of the single-particle
-wave-functions in the outer region of the nuclei, This circumstance is due
to the restriction of the interaction region to the very surface of the

I _ , MN (MN |3N |5N aftm) .

Lo LIS 1.20 1.25 .30
ro(tm)

FIG.2, Normalization of the neutron bound-state wave-functions in their dependence on shell-model
parameters (Ref.[5] ).
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FIG.3. Excitation functions of neutron transfer reactions and their comparison with DWBA calculations (Ref.[5]),

nuclei. In reactions with light ions the integration in the transition matrix
element gives contributions from all parts of the nucleus because the
scattering wave-functions still have appreciable amplitudes in the interior
of the nuclei. .

The sub-Coulomb transfer reaction, as well as the heavy-ion trans-
fer reaction dominated by strong absorption, are only sensitive to the .
tails of the wave-functions and therefore indirectly sensitive to the choice
of the shell-model potential used to calculate the single-particle wave-
function and their asymptotic normalization. As an example, Fig.2
(Ref.[5]) shows the normalization constant N in its dependence on the
parameters of the Woods -Saxon well for nitrogen. The parameters ry
and a are defined in the usual way. Assuming that the spectroscopic factors
are well known from other sources, for example Ref.[6], the experimental
quantity obtained in the analysis of the data can be defined to be the norma-
lization constant N. Using this approach a determination of the shell-
model-potential parameters can be obtained as has been done, for example,
with the sub-Coulomb (d, p)-reaction on lead [7].
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FIG.4. Elastic scattering of '°B, B and '°F on > C at small angles. Optical-model calculations with
the parameters given in Fig. 21; they are the same in all three cases.

Figure 3 gives an impression of the quality of the fits obtained to ex-
citation functions of neutron transfer reactions. Here the shell-model
parameters of the single-particle wave-functions were adjusted for fixed
values of the spectroscopic factors.

For the description of the one-nucleon transfer reactions above the
Coulomb barrier the same formulas as discussed for the sub-Coulomb
region can be applied if there are no contributions from small internuclear
distances. This is guaranteed if the wave-functions of relative motion are
generated by strongly absorbing optical potentials which give negligible
contributions from small internuclear distances and small partial waves.
Figure 4 shows that a good description of elastic scattering is obtained
with these potentials. The use of strongly absorbing potentials is important
for two reasons. First, the optical-model wave-functions are always
poorly determined for small internuclear distances. The optical model is
only able to calculate correctly the asymptotic phases if no further in-
formation is available. The second reason comes from the derivation of
the transition amplitude as discussed above.

Further, it has been pointed out by Dar [8] that the DWBA is not ex-
pected to be valid for strongly absorbed partial waves. The elastic
scattering of heavy ions is mainly determined by the relatively weakly
absorbed partial waves, at least in the forward hemisphere (see also
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FIG.5. DWBA-calculations for the reaction 2c(''s, 2c)'' leading to excited states of U5 and 2C (Ref.[ ).

section 3), and the same partial waves determine the features of the
transfer reactions if the reaction is localized in angular momentum space.
To achieve localization of the reaction, it is required that the partial
waves at the surface, L; and L; for the initial and final channels, respec-
tively, be matched by the angular momentum transfer £ given by selection
rules contained in the vector coupling coefficients:

|1y - Ly =2

This well known angular momentum matching condition can be put into the

form Rint|ki - kf| 2 g. Here R;; is the interaction radius defined by the

values of L; and L¢ for which the reflection coefficient in the elastic
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FIG.6. Dependence of the 'calculated cross-section on the lower cut-off radius (Ref.[91).

TABLE I. SPECTROSCOPIC FACTORS FROM THE ANALYSIS OF THE
REACTION 12¢C(11B, 12C)11B

Energy {MeV) of final states Angular momentum Relative spectroscopic factors
¢ U ransfer this experiment  Ref.[6]
0 0 0 and 2 1 1
0 2.14 2 0,27 0,263
4,43 0 2 0.1 0,19

scattering is |ﬂi| = 0.5, and L; = k; «- Rjy¢ « If the angular momentum
matching condition is fulfilled within the limit of approximately one to
two units of angular momenta, the reaction usually shows pronounced
diffraction oscillations in the angular distributions (for small Coulomb
parameter). '

Figure 5 shows angular distributions of the proton transfer
12c(11B, 12C)11B (from Ref.[9]). The diffraction pattern shows that the
reaction is well localized in angular momentum space.. The use of strongly
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FIG.7. Angular distributions of the proton transfer 0, "Ny C at several energies and their

comparison with DWBA~calculations (Ref.[201).

absorbing optical potentials also ascertains that the reaction is localized
- in configuration space. In Fig.6 the dependence on the lower limit of
integration in the transition amplitude is shown for the calculated cross-
sections. A lower cut-off radius of 7 fm changes the cross-section in the
maximum at 18° by only 10%. A distance of 7 fm between the two nuclei
corresponds to a nuclear radius parameter ry = 1.55 fm. At this radius,
the single-particle wave-function has already good asymptotic behaviour.
For the determination of relative spectroscopic factors the accurate
description of the wave-function in this region is not important.

The relative spectroscopic factors corresponding to the calculations
shown in Fig.5 are given in Table I.
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FIG.8. Angular distributions of the proton transfer "'B('®0, ** N*)"*C at several energies and their
comparison with DWBA-calculations (Ref.[20]).

As another example the proton transfer reaction 1B(160, 15 N)12C
which has been studied at several energies is shown in Figs 7 and 8 (Ref.[10]).
Strong transitions are observed for the single-particle states, the ground
state and the 6.33 MeV state in 15N. The first transition is a pure £ = 2
transition, the pg, hole state at 6.33 MeV is populated by £ = 0 and £ = 2.
The angular distributions clearly show that the reaction is strongly loca-
lized, at the higher energy (Fig.7) where the Coulomb parameter is small,
very strong diffraction structures are observed. At the lower energies,
irregularities arise in the angular regions shown, because of the inter-
ference with the four nucleon transfer 11B(16Q, 12C)15N. The structures
around 60° to 90° at 27 MeV until 32.5 MeV are not produced by the proton
transfer alone. .

The relative normalization of the calculations shown, to the experi-
ment, is the same for the five energies, within 15%, which is in the
limits of the experimental errors for the absolute cross-sections. The
relative spectroscopic factors for the two transitions shown in Fig.8 are
(ground state)/(6.33 MeV state) = 2./3.9. This value is again in excellent
agreement with expectations from shell-model calculations and other
determinations.
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Instead of giving more examples on the extraction of relative spectro-
scopic factors from heavy ion reactions, it is more apropos to discuss the
effects which arise from the neglect of the terms of the order (nucleon
mass/nuclear mass) in the co-ordinates of the transition amplitude
(recoil effects). These effects will be particularly important for trans-
fer reactions at high energies and for multi-nucleon transfer reactions
discussed in the next section. For the illustration of these recoil effects
it is useful to follow the approach of Greider [11].

The distorted waves are approximated for this purpose by a phase
and amplitude function:

-) - - _ -> - e m -> m ->
x (k¢ rp) = By (kg, rp) exp [1kf . —IE: r +5: r1>]

L]

X(+) (k. ry) = By (k;, 1y) exp[ r___g r :'
The amplitudes B; are slowly varying functions, which modulate the plane
waves exp (i kj rj). For the transition amplitude one obtains

% o - - ig. v - ip
Ty ~fo (kg 1) B (k;, T) €' ¢ 'fdrl 'G(ry)dr

with §=k; - (m,/my)K; and p=- (K;/A; + K¢/A;); the mass ratios are
defined as A; = m,/m, and A; = mg/m,. The two momenta q and p give
two sources of angular momentum transfer in the reaction. The first is
related to the distance vector ¥ between the two colliding nuclear cores
and is determined by the change in the wave numbers due to Q-values
and changes in mass. It is the well known difference of the angular
momenta in the grazing collisions. The second momenturmn is connected
with the radius vector r;, the co-ordinate of the transferred particle,
and gives an additional angular momentum transfer only for reactions in
which the transferred particle comes from the surface of the projectile
(this angular momentum transfer does not occur in (d, p) reactions, see
Fig.l). The momentum p is the difference in linear  momentum per
transferred particle between the incoming particle ki/A and the linear
momentum per transferred partlcle of the final nucleus which recoils
1nto the opposite direction - kf/ A¢. The angular momentum connected with
P and r:l can be estimated by assuming that the transferred particle is
transferred on the interconnection line between the two nuclear cores.
Then we obtain Z ||F; and |7, | is approximately |7|/2. With A;= A; we
obtain

L, = (L + Ly) /24,

i.e. the angular momentum transfer L, is given roughly by the angular
momentum per nucleon (or per transferred particle) in the grazing
collision averaged over the initial and final channels.

The angular momentum L is zero for the trivial case, m_ = 0
(inelastic scattering) and is very small for transferred partlcles origi-
nating from states with very small values of r1 like (®He, 4He) or (6 Li, d).
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d@/7dn (mb/ sr)

FIG.9. Damping of the structure in the angular distributions of the reaction g N, By C with increasing
energy. The curves represent DWBA-calculations with neglect of recoil terms (Ref.[18]).

The two angular momenta Lg,and L, are perpendicular to the reaction
plane defined by ¥ and k j~ The value of L. will be appreciable at high
energies in heavy-ion reactions where the angular momenta of grazing
collision attain values of 30 to 50 units of h. This fact can lead to a pre-
ferential population of single-particle states with orbital quantum numbers
equal to L, as for example observed in high energy 11B induced reac-
tions [12].  The presence of the angular momentum L  can further lead

to an increased mismatch in angular momentum space and thus lead to a
damping of structures in angular distributions. This effect is shown for
the reaction MB(1*N, 13C)12C in Fig.9 (Ref.[13]). The diffraction structure
observed in the angular distributions at lower energies for the ground-state
transition disappears at higher energies.
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In heavy-ion-induced transfer reactions, L  can be the more im-
portant source of angular momentum transfer; especially, at smaller
scattering angles where the kinematical momentum transfer is small,
L attains its maximum value and can give rise to strong populations of
high-spin states.

3. MULTI-NUCLEON TRANSFER REACTIONS

In a reaction in which several nucleons are transferred from one
nucleus to the other, the structure of the initial and final state has equal
influence on the reaction process. This fact is, of course, true for any
transfer reaction. However, for a multi-nucleon transfer reaction it is
desirable that, at least, one of the states involved in the transition has
a simple structure in order to extract information without too much com-
plication. One can therefore try to deduce some general rules which
help in the interpretation of the data. Following Rotter [14] the structural
factors of the reaction will be discussed.

In a reaction A +B - (A-k)+(B+k), the transfer of k particles is
adequately classified by the intermediate states of the k particles, with
quantum numbers which are compatible with the quantum numbers of the
initial and final states. The cross-section of the multi-nucleon transfer
reaction can be written in terms of a structural part AN and a dynamical

N'L
part By |
- AN pN'L 2
o (6) NL Byi

NIN'L

The sum is taken over all possible intermediate states of the k particles.
The structural part consists of the overlap of the wave-function ¢, of the
nucleus A with the wave-function of the nucleus (A-K) and the k particles
da-k O ¥nm and corresponding for the system (B+k), ¢g,, and .

¢p 0x¥nm- The wave-~function ¢y describes the relative motion in the
CM-system of the combined systems. Generally, the structural overlap
can not be split into parts which depend independently on the initial and
final system. The overlap can be factored in the following way to illustirate
the appearance of the symmetry properties of the intermediate states

(Ag L corresponds in a certain way to the product of spectroscopic factors
in one-nucleon transfer reactions):

N'v
ANL ~<XA|XA-|( Xk>< XB+kIXB Xk>

X K;(ng, NL, L) K; (ng, N'L', L)

The first two integrals are overlaps of the shell-model wave-functions
with the k particles being in a state specified by inner quantum numbers
(n, £) with definite values of spin, isospin and symmetry (S, Ty and [f,]).
These two intergals represent the fractional parentage coefficients, The
other two factors K; and K¢ give the probability of the formation of the
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state of the k nucleons with the given inner quantum numbers: overlap of
the k separated particles with the wave-function of these particles in the
intermediate state specified above

K{ng NL, L) = uf X: (9 Ynim )::

The fractional parentage coefficients contain the nuclear-structure in-
formation and primarily determine the strength of a transition. How-
ever, also the factors K; and Ky have substantial influence on the value
of the cross-section. From a discussion of these factors [14] important
predictions related to features of experimental spectra can be derived.

(2) The values of K; and K¢, when summed over all intermediate
states, involving a change of internal quantum numbers (n, 1) in the
transition are as a rule much smaller (factor 10 to 100) than those which
involve no change. Therefore, one can expect that for strong transitions
always (n,£) = (n',£2"). This fact immediately reduces the number of
possible values of N, L and N',L'.

(b) If the Young scheme of the particles is changed during the
transfer process, the cross-section is either zero or very small. This
corresponds to-a Young-tableau selection rule.

(c) The cross-section is maximum if the angular-momentum
quantum numbers of the transferred nucleons are identical in the initial
and final state (L' = Ly). The cross-section is maximum if L, and L',
have maximum values.

(d) Transitions with pronounced structures in the angular distribu-
tions as a rule will be the result of only very few amplitudes in the sum
for the differential cross-section. These transitions then correspond
to transfer reactions where the internal quantum numbers and the Young
scheme have not changed during the transfer, and both states have unique
and simple structure (only one Ly and [fy], for example).

A few experimental examples will be given below which either prove
these rules through known structure of the states involved, or examples
which give qualitative structural information by application of these
rules. )

The absolute cross-section depends also on the radial form factor
of the transferred nucleons, so the relation between reduced width and
absolute intensity of a transition can not be put into a rule.

The choice of the projectile for a specific transfer reaction involves
also the choice of the outgoing particle and can thus have considerable
influence on the information obtainable from the experiment. In the reac-
tions induced by 6Li and 7Li, the outgoing particles are very light
particles (p, d, t, 3He, 4He) which often have large cross-sections for
compound-nucleus emission. The use of heavier ions as projectiles
often gives more confidence to a direct discussion of experimental spectra,
especially for the weaker transitions because the reactions have negligible .
contributions from compound nuclear processes.

In the following discussion a few examples of three-nucleon and four-
nucleon transfer reactions are given. The four-nucleon transfer has been
studied with very high resolution by Middleton et al. [15] with the (7Li, t)
and the (6Li, d) reactions. In the 80(7Li, t)2Ne reaction, the ground-
state four-particle-zero-hole (4p-0h) band of 20Ne is selectively populated
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(Fig.10). The corresponding four-nucleon reaction on 15N populates many
states in 19F (Fig.10). It is, however, possible to select from the ex-
periment the states which correspond to the coupling of the p1/2 hole (15N
ground state) to the rotational band in 2'Ne. Because of the identical
structure of the wave function of the last four nucleons the angular distri-
butions of corresponding transitions have the same shape (Fig.11). The
correspondence of the states in 20Ne and 19F is shown in Fig.12 and has
been drawn assuming weak coupling of holes and particles to the rotational
band in 2°Ne (and 160). )

This example clearly illustrates the mechanism of the four-nucleon
transfer reaction (71Li, t). In strong transitions the four nucleons are
transferred into one shell preserving the initial configuration which they
had in the projectile (the hole in the target nucleus 15N is not filled in the
reaction).

The four-nucleon transfer reaction on 12C has been extensively
studied with many projectiles [16 - 19]. It is well established that the
rotational band in 1860 (starting at 6.06 MeV, O*) has large 4p-4h com-
ponents. Using this knowledge, one can try to discuss the structure of
15N in terms of holes weakly (or less weakly) coupled to states in 160.

The correspondence of states emerging from this suggestion (weak
coupling) is also shown in Fig.12.

Negative-parity states are obtained by removal of py/g particles
(if possible) and pg/y particles. The positive-parity states are obtained
if one particle is removed from the s-d shell. This classification of
states also gives suggestions in which reactions these states should be
_populated, as indicated on top of Fig.12.

As a test of these suggestions, the relevant transfer reactions can be
studied. Figure 13 shows a comparison of a four-nucleon transfer reac-
tion [23] (160, 12C) and a three-nucleon transfer reaction ("Li,e) (Ref.[19])
on 12C, The spacing of the strongly excited levels indeed seems to be
rather similar in both reactions and may be taken as an indication that
the states populated in 15N are indeed the positive parity states as sug-
gested in Fig.12. The states can mix with states of simpler 1p-2h
structure and experiments with higher resolution are necessary to test
the weak coupling assumption. The ground-state rotational band of 20Ne
being very similar to the rotational band of 160, the correspondence
between states in 19F and 15N should be rather close. Indeed, in the reac-
tion 12C(19F, 16 Q)15N an extremely strong transition to the states at
5.3 MeV in 15N is observed (Fig.14) from Ref.[20]). The angular distri-
butions of this reaction are shown in Fig.15 and give a nice example for
the application of the rules for multi-nucleon transfer reactions mentioned
before. The transitions are very strong if the angular momenta Ly and L',
are the same in the initial and final channel. The transition to the two
states at 5.3 MeV (1/2* and 5/2*) has the unusually high cross-section
of 10 mb at forward angles, suggesting that indeed the initial and final
state have identical structure. This result, as well as the correspondence
to the rotational band in 180 (and ?°Ne for 19F) is strongly supported by
the wave-functions obtained by Zuker et al. [21] for the states in 15N and
160, Table II gives the wave-functions of the first states (0* and 2*) of the
180 rotational band of the states at 5.3 MeV in 1°N. The removal of d,
or syyp particle from the states of 10 leads to configurations which are
listed for the 15N states. The ground-state transition in the reaction
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TABLE II. WAVE-FUNCTIONS OF 60 AND 5N (Ref.[21]).
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12¢(18F, 16 0)15N shown in Fig.15 shows also pronounced structure in the
angular distribution suggesting that the three nucleons are transferred in
one amplitude from the s-d shell to the p-shell with a corresponding small
cross-section.

For the population of the negative-parity states in 15N one sees in
Fig.14 that the four-nucleon reaction 1!B(160, 12C)15N gives strong transi-
tions only for excitation energies larger than 9 MeV. This observation
is in very good agreement with the suggestion of Fig.12 for the structure
of the negative-parity states in 15N, The (7Li, t) reaction [22] indeed
gives a very strong transition to the 3/27 level at 9.16 MeV as well
(Fig.16). Thus this state will be the first of the states which correspond
to the 180 rotational band with a pa/e hole coupled.

In many transfer reactions information is precluded because of the
complex structure of the projectile or target nucleus. As an example of
a three-nucleon transfer reaction in which the structure of the target
nucleus plays an important role, the reaction *C(*2C, °Be)160 (Ref.[23])
can be quoted. This reaction can be used to excite 3p-3h states in 180,
However, the 13C ground state has no pure configuration. The three-
nucleon transfer reaction therefore populates not only states with 3p-3h
structure but also those with 2p-2h and 1p-1h components (Fig.17). The
reaction is not very selective because of the structure of the target
nucleus and a still perceptible cross-section for the transitions with
complex final structure.

Using the 1B nucleus as projectile for four-nucleon transfer, the
structure of the complex initial state is again reflected in spectra with
small selectivity [24]. Figure 18 shows the spectrum of the 12C (2B, 8Li)60
reaction. The 2~ state at 8.88 MeV can only be excited by four nucleons
in the {3, 1]-symmetry, because this state has predominant 1p-1h struc-
ture. The cross-section for this transition being comparable with the

1 | | T 1 { I 1 |

2 1°B, ®Li) o Li-Spectrum

100

®0,7Li

20N 8Li

counts

O 20 40 60 80 100
channel number

FIG,18, Population of states in 80 in the four-nucleon transfer reaction (B, ®Li) (Ref.[241).
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’

transitions leading to the states of the rotational band in 80 (which is
populated by four nucleons in the [4]-symmetry) one can immediately
conclude that the 19B nucleus must contain large components with the
[3,1]-symmetry simultaneously with components of the [4]-symmetry.
This statement is confirmed by shell-model calculations [25].
The examples discussed in this section show that the multi-nucleon

transfer reactions yield interesting information on nuclear structure
even in the present stage of development of our theoretical knowledge.
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FIG,19, Comparison of the elastic scattering of "’B, l50, 19 on 12 C.
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4. NUCLEAR-STRUCTURE EFFECTS IN THE ELASTIC
SCATTERING OF NUCLEI ON NUCLEI

Elastic scattering of nuclei on nuclei enables us to study special
effects connected with the shell structure of nuclei. In the scattering
process, the two colliding nuclei can exchange a certain number of
nucleons, the probability of the exchange being related to the structure
of the nuclei. As a result of these rearrangement processes, the elastic
scattering of heavy ions in many cases consists not just of potential
scattering (the two nuclei retain there identity microscopically) but of
other events which add coherently to the final channel. For a reasonable
discussion of the rearrangement processes, it is necessary to have good
knowledge of the pure potential scattering.

For the study of potential scattering it is necessary either to find
systems in which contributions from re-arrangements are negligible,
or to restrict the analysis of the data to angular regions in which the
interference with other processes is small. '

As an example for the differences which can occur in the scattering
of heavy ions, Fig.19 shows the elastic scattering of 1°B, 10 and 1%
on 12C at comparable energies above the Coulomb barrier [26]. The
angular distributions of the three cases are very similar at small angles.

transfer process
A(B,A)B

FIG.20. Kinematic relation between elastic scattering and elastic transfer.
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At angles larger than 90°, however, differences are observed because
of the exchange of nucleons between the two colliding nuclei. The elastic-
exchange process leads to the same final channel but with a maximum at
backward angles in elastic scattering for energies above the Coulomb
barrier. The kinematical relation between the potential scattering and
the elastic transfer is illustrated in Fig.20. The recoil events can be
due to potential scattering (target nuclei) or, for systems in which
elastic transfer of the difference ¢ occurs, more probably, due to the
rest of the incoming particle after the transfer process. For the scat-
tering of 19F on 12C the exchange of seven nucleons becomes rather im-
probable and a very small cross-section at large angles results. This
system can be used to study the properties of potential scattering. The
Coulomb interaction is still strong at 60 MeV and only slight oscillations
are observed at smaller angles as shown in Fig.21 from Ref.[27].

The strong absorption in the scattering process is reflected in the
potential parameters given in the figure and gives rise to the pronounced
decrease of the cross-section below the Rutherford scattering cross-
section. The small cross-section observed experimentally at large
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angles exceeds slightly the value predicted by the optical model calcula-
tion and can be due to contributions from compound nucleus decay and
from seven-nucleon transfer. Using the strongly absorbing optical poten-
tial for the description of the elastic scattering of heavy ions (see also
section 2) a very consistent description of many scattering systems has
been obtained [27] using the parameter set given in Fig.21. As a conse-
quence of strong absorption the parametrization of the complex potential
by Woods-Saxon form factors becomes redundant,
f(r) = Vi (1 +exp ((r-R)/a))!, because only the surface of the potential
enters into the calculation (and into the scattering process). This fact
is illustrated for the real potential in Fig.22 where different calcula-
tions which yield the same differential cross-sections are given. The
three cases correspond tothe same potential surface [27]. ’
For the description of adiabatic re-arrangement processes occurring
in collisions at energies in the vicinity of the Coulomb barrier the system
can be adequately described by adiabatic wave-functions [28] (also
molecular wave-functions or method of perturbed stationary states).
There are several reasons for the use of this method. The atomic nuclei
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are successfully described by the shell model. Therefore in systems of
appropriate structure (nuclei not far from closed shells) the nucleons
outside the closed shells can be treated as valence nucleons and can be
arranged into molecular orbitals. The collision time of the two nuclei
at the Coulomb barrier is comparable to or usually shorter than the
typical re-arrangement time of the outer nucleons. Furthermore, the
mass of the valence particles is small compared to the mass of the cores.

In the method of adiabatic functions the total wave-function is sepa-
rated into a part depending on the distance of the inert cores alone
(co-ordinate R) and another part describing the motion of the valence
particles and depending on R. Both parts of the total wave-function are
antisymmetrized (A) independently:

(R~ AE x' ®)A v (R, 1))
i

This description suggests that the motion of the cores is slow relative
to the motion of the valence nucleons and that the wave-functions of the
valence nucleons arrange themselves adiabatically for everydistance R.
The energies of the molecular states described by the wave functions add
adiabatically to the potential to which the two cores are submitted. In
the adiabatic approximation the scattering of nuclei on nuclei reduces to
" a central-field problem with symmetry restrictions on the adiabatic
potential. The potential-energy curves of the whole system could be
obtained in a most'complete way by two-centre shell-model theory [29],
or in a corresponding Hartree-Fock calculation.

In the following an approach will be given, in which the core-core
potential is taken to be the empirically determined complex potential and
the adiabatic energies of the molecular states are obtained by using the
method of linear combination of nuclear shell-model orbitals [28], LCNO,
corresponding to the LCAO approach in atomic physics [30]. The number
of nucleons which have to be separated out into molecular orbitals.can
be chosen corresponding to the incident energy and the spacing between the
orbitals in the nucleus. A brief discussion of systems with one valence
particle is given below.

In the method of LCNO, the adiabatic wave function is obtained by
a linear combination

- g ->
¥ (R, ry) = —l\ﬁ:l{) (Cl $ajim; (Fac) + C29p5m, (rA'c)>

Here ¢ () are single-particle wave-functions for particle c with core

Aor A'.

In the following, only cases with identical cores will be discussed [28].
These cases give |C1| = |C2| =1/J2. The molecular orbits are classified
corresponding to their behaviour relative to the interchange of the cores
as even (g) or odd (u) for C; > 0 or C, <0, respectively (this correspondence
depends on £!). Furthermore, because of the axial symmetry of the
system, the molecular states have to be classified corresponding to the
projections of angular momenta on the molecular axis: A for orbital
angular momentum, J for total spin of the valence particle.
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Using this method for the construction of the wave-function, all the
valence particles can be filled into orbitals taking into account the Pauli
principle. For the assembly of all valence particles then the same
classification as for single orbitals has to be used. A schematic re-
presentation of the classification of the orbitals and their splitting
(energy of the molecular states) is given in Fig.23 for p,/9 and pga/e
nucleons.

The molecular wave function is a function of the internuclear
distance through the normalization N(R) : N(R) = / 1+ S(ﬁ) with

AT _ % - - -
S (R) = f 9 0imy (Tac) @ ay5ym, (Farc) dTsc

being the overlap integral between the two separated orbitals. The
energy of the molecular orbitals becomes

AJ -
+H,, (R)

' H
AP 2 -
W (R) = T (R
with

A _ s - -> -
Hie _f¢lijimi (Tie) HO pjom, (P ) AT

2

R < G A A
He-go V24 VA, + VA (r

ac)

Molecular orbitals can only be constructed from separated orbitals

with the same symmetry behaviour with respect to the molecular axis
(otherwise SA = 0). This fact implies that the orientations of the over-
lapping orbitals are always the same and m; = mgy; = A. The evaluation

of the energy as a function of the core-core distance R for large distances
can be made analytically [28]. One obtains a Yukawa form factor for the
interaction energy induced by the exchange of the particle:

2,j,ic1 Ep (SN2 e™™R
JMN(R) ~ C (A, J)Z (L02,0][2,0) {J;};Jﬁ:} e = R ®
L

The decay constant o is related to the effective binding energy Ep and the
reduced mass of the exchanged particle m. by

a =:\, 2mcEBh'2

The overlap integral sM (E) becomes (for large E)
Al By - 7AT B
§™ (R) = J7 (R)/Ey

For the asymptotic region the correction due to S(R) is rather negligible.
For smaller internuclear distances the overlap integrals and the energies
have to be calculated numerically as discussed for example by Pruess
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and Greiner [29]. Figure 24 gives an example of the dependence of the
energy of the molecular orbitals on the internuclear distance (from
Ref.{29b]). For many cases the asymptotic values will be sufficiently -
well determined by using the methods of atomic physics [31].

For the description of the scattering processes it is useful to apply
the two-state approximation. As the two basis states of the systems,
the g(even) and u(odd) states of the molecular system are taken which
are obtained from a linear combination consisting of the ground states of
the nuclei involved. As a result for each set of orbital quantum numbers
A and J two equations are obtained [32] which are decoupled due to the
orthogonality of the basis states

{v,f +k% -V, (R) + 3V (R)} Xxp (R)=0, P=gu

Depending on the g and u properties of the molecular states and on the
properties of the total wave-function, the scattering wave-functions

X {,U(R) will contain only even or odd partial waves respectively. Thus
the even and odd partial waves will be connected in the scattering process
with different adiabatic potentials.

For the simplest case, for cores with spin zero and with one particle
in the molecular orbits (12C - 13C scattering), the total wave-function is
even under the interchange of the cores (the total wave-function always
reflects the symmetry properties of the core structure):

w!'(R, r;) = ¥t(-R, r;), forJ, =0

-

v = R) ¥ (R, r.) +X R) ¥ (R, r,
x§ (B w R T +xy (R wNR 7))
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and the total scattering amplitude becomes

thA=0 () = 21k {Z (2¢+1)ak P, (s)+z (2¢+1)al P, (e)}

Leven £ odd

As an example, in Fig.25 the scattering of 2C on !3C is shown [33].
In the calculation shown in the figure the classification corresponding to
A and J has not yet been taken into account. Therefore the strength of
the splitting of the g and u states is not given quantitatively from this
calculation (in Ref.[28] the strength SN is further by a factor 10 too small,
because of an error in the program). The strength SN in formula JA (F()

" is adjusted unt11 a fit is obtained to the data. For the core-core inter-
action V,,, (R) the optical-model potential as discussed before has been
used.

The sign of the splitting of the g and u state is determined uniquely
by the experiment as illustrated in Fig.26. The sign of the splitting is
strongly connected to the quantum numbers of the separated orbitals.

The structure of the angular distributions as shown in Figs 25 and 26 ,
can also be influenced in the phase by the symmetry properties of the
total wave-function. For systems with a core spin of 1/2 the total wave-
function has to be odd under the interchange of the cores:

> - -

r,)=-v¢'(-R, 1) forJ,=1/2

The total wave-function which is correctly antisymmetrized becomes

- -

t _ s=1 - AJ e u - Aj—’ ->
V' (R, 1) = @ (1/2, 1/2) {x %M(R)\Izg (R, rj) + LT (R) ¥, (R, rj )}

+2*0(1/2, 1/2){“ (Bw ', ])+x,d(R)wu"’(f€,ﬁ)}

Here &% (1/2, 1/2) represents the spin wave-function of the cores. In the
total scattering amplitude, the role of the even and odd partial waves is
interchanged relative to the g and u adiabatic states (with weights which
correspond to the Clebsch-Gordan coefficients):

ffA=1,2 (6) = 21k{ z (20+1)a8 P, () +— z (2£+1)a% B ()

£ odd odd

= Z(Zzﬂ)a;Pc (e)+% Z (2£+1)aB P, (9)}

2 [}

even even

As an illustration of this case, Fig.27 shows the elastic scattering of
14N on 12C and 13C at the same CM energy [34]. The energy is very near
to the Coulomb barrier. In the first case the core is 12C with spin zero,
and the molecular orbits are filled with two different particles — a
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proton and a neutron. In the second case, we define as a core the 13C
nucleus which is possible as long as the energy in the collision is not too
high. The core has spin 1/2 and the molecular orbits are filled with one
proton. The two angular distributions are out of phase as is predicted
by the theory.

These two examples show that the adiabatic approach gives a good
description of the effects observed in the elastic scattering of nuclei on
nuclei. It is expected that the experimental determination of the adiabatic
potential energy curves (energies of molecular states as function of inter-
nuclear distance) and their comparison with theory will yield interesting
information on nuclear structure. '

As a last point, the semi-classical aspects of the re-arrangement
processes in the elastic scattering will be discussed. In the two-state
system consisting of two nuclei A and (A' +c), in a scattering event, the
initial condition is

t _ 3 — > —
YT =0, R, ) = ¢, (Fp0) = 9y

For a given distance R of the two identical cores A and A', the system
is in a state which corresponds to linear combination of the two.basis
states as discussed above. The system is split into two states which
are odd or even with respect to the interchange of the cores, and their
time dependence for a given distance is given by their energy:

¥(T) = {i[/g exp (1J(R) T/h) +¢" exp (-iJ(R)T/‘h)}

Because of the relations

1 w1
ye = Tz (6, t940)s Vo= 5 (94 -9a)

C%(t)10 - ?:Ltlgm
before 2,

collision - c(::,z(( °°:

2{+00
ciwo. 0:
e time +o0

di: stllnco
between cores
L]
\1

moment of minimum distance

FIG. 28, Idealized picture of a multiple exchange of a particle between two identical cores moving on
scattering orbits,
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exchange of an electron (Ref.[35]).

we obtain

¥(T) = ¢Acos<J (R) %) + ¢,.18in <J (R)%) = C1(T) 9§, + 1Cy(T) 9,

39

The system is flipping from state ¢, to state ¢,. with a frequency J(R)/h.
The larger the splitting between the g and u state, the higher is the

frequency with whichthe particles outside the cores are exchanged. This

is the well known ""resonance effect' which leads to the molecular binding
in atomic physics. °

In the scattering process one can imagine that the frequency of the
exchange changes adiabatically as the two cores move on Rutherford-
orbits as suggested in Fig.28. The system starts with probabilities 0
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A

and 1 for the attachment of the particles to the cores. During the col-
lision the distance diminishes as the particles pass each other and the
frequency of exchange goes through a maximum at the minimum distance.
Finally, certain probabilities CI(T* o) and C%(T* o) are observed at
asymptotic d1stances. These probabilities can be calculated using the
integral
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+00
A =f J-(R(T)) dT

This is the total action on the system along the scattering path. Changing
the energy or the scattering angle (and thus the minimum distance in

the scattering orbit) the probabilities Cf (+ %9 and c';’ (+ 9 change their
value from 0 to 1 or vice versa. This classical behaviour of the dif-
ferential cross-section as a function of energy or scattering angle has
been observed in atomic systems. Figure 29 shows as an illustration the
scattering of He' ions on neutral He-gas [35]. The intensity of He' ions
as.function of - scattering angle clearly shows the features predicted by
the classical picture. The irregularities at larger angles are due to
interference effects, which come from the indistinguishability of the
identical cores. )

In nuclear physics these interference effects are the dominating
features observed in the angular distributions. To obtain the intensities
which can be submitted to classical interpretation, the interference has
to be separated out [28]. Figure 30 illustrates the situation in the 12C
on 13C scattering. The upper half of the figure shows that the structures
in the angular distributions are strongly damped by the presence of the
imaginary potential. Therefore, in the lower part of the figure calculations
with no absorption are shown. The two cross-sections corresponding to
|Cl|2 and |C2|2 as they emerge from a quantum-mechanical calculation are
shown separately (no interference). The oscillations can, in this case,
be submitted to the classical interpretation. The figure tells us that the
neutron is exchanged four times in the collision leading to a scattering
with 90° deflection. This effect is precluded in the real experimental data
by the presence of the strong absorption. The multiple exchange of the
neutron is damped because of the imaginary part of the scattering
potential.

The possibility of a multiple exchange in the collision process shows
that the adiabatic condition is indeed satisfactorily fulfilled in the case
discussed above and will be fulfilled in many other cases. The classifica-
tions of molecular states which are determined by projections on the
adiabatic molecular symmetry axis are expected to be relevant for many
systems in which nucleons are exchanged between two identical cores.
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Abstract

NUCLEAR SPECTROSCOPY IN THE 1f-2p SHELL WITH HEA VY -ION REACTIONS.
1. Existence of four-nucleon correlations; 2. Experimental techniques; 3. Reaction mechanism;
4. Nuclear spectroscopy with heavy-ion experiments; 5. Summary.

Direct transfer reactions induced by light projectiles have long been
established as a powerful tool in nuclear-spectroscopy studies. In par-
ticular, one-nucleon transfer reactions such as (d, p) or (3He, d) have been
commonly used to investigate single-particle states in nuclei. In a similar
way, information about pairing correlations in vibrational nuclei has been
collected from two-like-particle transfer reactions such as (t, p) and
(p,t). More recently, important information about four-nucleon correla-
tions has been provided by alpha transfer experiments which have become
possible with the advent of heavy ions or Li beams, To emphasize the role
played by the alpha transfer reactions, we shall give here a brief review
of the work which has pointed out the existence of four-nucleon correlations.
First, we shall briefly review some of the theoretical calculations suggest-
ing four -nucleon correlations and then discuss the experimental evidence.

1. EXISTENCE OF FOUR-NUCLEON CORRELATIONS

1.1, Calculations for even-even N =Z nuclei

It is well known that for doubly closed shell nuclei such as 160 and 40Ca,
low-lying deformed states co-exist with spherical ones, Let us consider
the 160 nucleus which has 8 protons and 8 neutrons. In a simple shell-
model picture, the 1s and 1p shells are filled and the 2s-1d shell is empty.
The ground state corresponds to a Op-0h configuration. The description of
the first excited states requires particle-hole configurations of higher
order (1p-l1h, 2p-2h, 3p-3h, 4p-4h...). From Fig.1 it can be seen that
all these configurations lie in the same energy region [1].

As far as the low-lying positive-parity states of 180 are concerned,
the most striking evidence relating to the structure of these states is
given by the alpha elastic-scattering excitation function for 12C, due to
Carter et al. [2]. They have shown that the set of strongly excited states
0+(6.06 MeV), 2+(6.92 MeV), 4*(10.36 MeV) and 6*(16.2 MeV) can be
approximately fitted by the J(J+1) energy law typical of the rotational
spectrum of a deformed nucleus. The collective nature of these states is

43
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FIG.1. Particle-hole configurations in 160. The energy levels are taken from Refs [1, 4, 6].

further supported l;y the large B(EZ2) reduced transition probabilities
between these levels:

] - = 2004
B(E2; 2% gomev = 0%.06 Mev ) =40 e*fm

. + - ot = 2 4
B(E2 4% s5mev ™ 2 602 mev ) =117 €°fm

Important theoretical work has been performed to explain the
existence of such deformed states in doubly closed shell nuclei.

1.1.1, Calculations with deformed orbits

The first attempt to explain the low-lying positive parity states of 160
was made by Morinaga [3], and Brown and Green {4] who assumed that the
nucleus was deformed. If onelooks atthe Nilssondiagram inthe 160 region
it can be seen that for large prolate deformation (8 = 0. 3) it costs rela-
tively little energy to lift two or four particles from the 1p shell to the
2s-1d shell.

This suggests that the low-lying positive-parity states of 160 can be
described in terms of 2p-2h and 4p-4h excitations. Hartree-Fock cal-
culations performed by Bassichis and Ripka [5], in the framework of the
deformed-orbital method, have shown that the 4p-4h states of €O can be
lower than the 2p-2h ones. These results strongly suggested that the 160
rotational band based on the first 0* excited state is well described by
configurations with four particles in the k=1/2* Nilsson orbital number 6
and with four holes in the k=1/2" orbital number 4. With such a deforma-
tion, the energy lost by exciting the particles is partly compensated by the
large spatial-symmetry energy of the four excited particles. These
four nucleons with a high permutation symmetry in their spatial wave-
functions look like an alpha-particle,
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FIG.2. Comparison of experimental and theoretical energies of the first rotational band levels. The

16.30 MeV and 20.88 MeV excitation energy levels reported in the experimental spectrum have been seen

in the 12C (6Li, d) 160 reacrion (Ref. [7]). The comparison with the microscopic calculations of Zuker et al.
[6] strongly suggests that the state at 20, 88 MeV is the J™ = 8" member of the 4p-4h rotational band.

1.1.2, "Exact' shell-model calculations

Shell-model calculations have been performed in the 60 region by
Zuker, Buck and McGrory [6]. They assume a !2C inert core and four
particles moving in the 1p;/9, 25179 and ldjs/p orbitals. By diagonalizing
the residual interaction between all the two-neutron and two-proton con-
figurations which can be constructed with the four particles in these three
sub-ghells, they obtain all the.observed states of 160 up to 13 MeV, The
wave-functions of these states confirm the many-particle-many-hole
description mentioned above. In addition, they calculate the mixing of the
p-h configurations of different order. Such calculations show clearly that
the 160 rotational band based on the 0* first excited state is strongly
dominated by 4p-4h components (Fig.2). These shell-model calculations
are only well suited for nuclei in the neighbourhood of closed shells, where
the configuration space which must be taken into account is not too large.

1.1.3. The alpha-cluster model

The alpha clustering of the four nucleons in the 4p-4h deformed states
of 160 is pointed out by the calculations of Brink, Friedrich, Weinguny
and Wong [7] who use the alpha-particle model. These authors describe
the 160 nucleus by means of four alpha-particles. For the ground state,
they consider a tetrahedron configuration and minimize the energy to get
the equilibrium shape, They found that, when the distance between two
alpha-particles goes to zero, the wave-function becomes that of a closed
shell, The description of the deformed states requires mixing of rhombic
and square configurations. It can be seen from Fig. 2 that the energy
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spectrum obtained by angular momentum projection of such a configura-
tion shows a rather good agreement with the 6 MeV first rotational band of
160. The most striking feature of these calculations is that the head of

the rotational band is given at 6.6 MeV without any fitting. Moreover,
Hartree-Fock calculations including projection procedure performed by
Bouten [8] confirm that the 0* (6. 05 MeV) level is the band.head of a K=0
rotational band. With the use of a Brink effective interaction, the alpha-
particle configurations appear to be a good description of nuclei up to #Mg.

1.1.4. The stretch scheme

Another description of nuclear rotations for medium-weight nuclei is
provided by the stretch model of Danos and Gillet [9].

This model is based on the j-j coupling of the nucleons. Let us con-
sider the simplest case of two protons in a shell of angular momentum j and
two neutrons in a shell of angular momentum k and vice-versa. The
stretched wave-function is constructed in the following way: each proton-
neutron pair is coupled to maximum angular momentum c =j+k. The two
stretched pairs are then coupled to the angular-momentum I-spin of the
four-nucleon state. They form a ''quartet'. It is for I=0 that the overlap
between the wave-functions of the two aligned pairs is maximum; this
gives then the lowest state. The rotational excitations of the nuclei are
obtained by coupling the two stretched pairs of the quartet to angular
momentum I different from zero. The maximum overlap between a quarter
configuration and an alpha-particle wave-function is obtained when the
protons and the neutrons are in the same orbit j=k and for I,,, =4j- 2.

It is the high spatial symmetry of the quartet wave-function which gives a
large intrinsic binding energy for these configurations,

In this quartet scheme, the 0* 4p-4h state is described by means of a
quartet of particles and a quartet of holes coupled together. Diagonaliza-
tions of several residual interactions in this model have shown that the 0*
state can be very low [10].

1.2, Calculations for N> Z-nuclei

The quartet scheme has also been extended to single-open-shell nuclei
[10]. Let us consider the nickel isotopes. The structure of the nickel
isotopes has recently been the subject of many investigations. Calcula-
tions of these nuclei [11] based on an inert %Ni core have been very success-
ful in reproducing the low-lying energy spectra. In contrast, such a de-
scription is incompatible with the strong E2-transitions observed between
low-lying energy levels in these isotopes. Furthermore, there is clear
evidence [12] from stripping and pick-up experiments that even the lowest
levels in the Ni isotopes involve core excitation. Calculations of Wong,
Davis [13] and Jaffrin [10] suggest that 4p-4h configurations lie low in the
56Ni energy spectrum. Thus, 4p-2h configurations will be important in the
structure of the low-lying positive-parity states of 58Ni, Because of the
high symmetry of the two-proton-two-neutron quartet configuration, the
stretch model suggests that in 58Nj the configurations involving a quartet
and two 1f7/5 proton holes is competitive with the lowest excited two-neutron
configurations. Each two-proton two-neutron quartet configuration
constructed in the 2pg/e, 1f5/2 and 2p1/2 sub-shells gives rise to a multiplet
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of positive-parity states. Each multiplet of states having mainly the same
configurations forms a ''quasi-rotational band" [14].

1.3. Experimental investigation of four-nucleon correlations

In light nuclei, the alpha structure of the deformed states suggests
that these levels should be strongly excited by alpha transfer experiments.
The (6Li, d) and (7Li, t) four-nucleon transfer reactions have been used to
a great extent [15]. As is shown in Von Oertzen's contribution [16], the
ground-state 4-particle-0-hole band of ?*Ne is selectively populated by
the 160(7Li, t)20Ne reaction. A strong excitation of the 4p-4h rotational
band of 160 is also obtained by means of (7Li, t),(6Li, d) and (160, 12C) four-
nucleon-transfer reactions performed on a 12C target (15,17,18]. The
most prominent peaks in the 12C (6Li, d)16 O energy spectra obtained by
Bassani et al. [17] correspond to levels of the (4p-4h) rotational band k=0:
6.91 MeV 2%, 10.35 MeV 4%, 16.36 MeV 6* and 20.88 MeV 8*., In this
experiment, the cross-section of the 0* state at 6.06 MeV, the band-head
level, appears to be small. A comparison of the excitation energies of
the 160 states strongly populated by the 2C(fLi, d) reaction with the results
of the microscopic calculations of Zuker et al. [6] is also given in Fig. 2.
It suggests that the states at 16.30 MeV and 20.88 MeV excitation energies
are probably the J=6* and 8* members of the first rotational band.

Although alpha transfer reactions were quite successful in 1p and
2s-1d shell nuclei by means of the (8Li, d) and {7Li, t) reactions, it was
found that the cross-sections of these reactions for targets heavier than
A =40 were too small to be measured. In medium-weight nuclei, the alpha
transfer experiments have first been performed successfully by means of
the (180, !12C) reaction. We present here a survey of several (180, 2()
reactions studied with calcium, titanium, iron and nickel isotopes as
targets. In a few casés, we are able to collect simultaneously the spectra
corresponding to the (160, 14C) and (160, 12C) reactions. The (160, 14C)
two-proton transfer reaction should give the same kind of spectroscopic
information about the proton pairing correlation as the (3He, n) reaction;
experimentally, the (80, 14C) reaction has definite advantages over
(3He,n). The (160, 4C) results obtained for some Ca and Ti target iso-
topes will be discussed later,

2, EXPERIMENTAL TECHNIQUES

The experiments were performed with the 160 beam of Saclay's
F.N. Tandem by Faivre, Faraggi, Gastebois, Harvey, Lemaire, Loiseaux,
Mermaz, and Papineau. The incident-energy range was from 42 to
56 MeV. In these-experiments, the main difficulty was heavy-fragment
identification. The telescope used to detect the reaction products was
made of two ORTEC surface-barrier detectors, a thin one giving the energy
loss AE and a thicker one in which the particles are stopped. A two-
dimensional analysis of the AE versus AE+E signals gave siraight lines
for carbon, nitrogen and oxygen in the energy range from 15 to 50 MeV,
These results are in good agreement with the range-energy loss given by
the Northcliff tables. A simple idenfitication function is obtained with the
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FIG.4. 12C(1%0, 12C)160 reaction energy spectrum,

relationship I{Z) =AE (Z) +E(Z)/a where o depends essentially on the thick-
ness of the first detector (for example, a =6 for AE = 13um). An identifi¢a-
tion spectrum is shown in Fig.3, It was obtained by bombarding a '2C
target with the 160 beam at 48-MeV incident energy. Good separation
between different Z-nuclei was achieved. The energy spectrum corres-
ponding to the 12C identification peak is shown Fig.4. The overall experi~
mental resolution was about 450 keV due to kinematic broadening; the
angular aperture of the telescope in the reaction plane was around

1/3 degree in the reaction plane. The first level corresponds to the 2C
detected and the 180 recoil nucleus both in their ground state, the second
peak is due to the detection of the 12C nucleus in its first 2+ excited state
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at 4.43 MeV. Experimentally, we are not able to resolve the doublet
containing the 6.06 MeV 0* and 6.13 MeV 3 states, and the doublet con-
taining the 7.11 MeV 1- and 6;92 MeV 2* states in 160. We note the weak
intensity of the excitation of both 12C and 160, Generally, the Q-values
of the (180, 12C) reactions are close to zero; this results from the similar
binding energies of the a-particle in the 16O projectile and in the residual
nuclei. In contrast to this, the (160, 13.14C) and (160, 4.15N) reactions
have negative Q-values varying from few MeV to more than 10 MeV,

Most of our experiments were performed in the vicinity of the 160
Coulomb barrier and just a few MeV above the barrier for 12C. Thus
only reactions with Q values a few MeV negative are competitive with
(160, 12C) reaction. For these reasons, in our experiments performed
between 48 to 56 MeV incident energy on 5456 Fe and 58.60Ni targets, only
the 12C channel can be observed, and a separation of the heavy ions based
on the nuclear charge Z is sufficient. Figure 5 shows a % Fe (160, 12C) 58Ni
energy spectrum. The experimental resolution is about 250 keV. The
cut-off in the energy spectrum above ten MeV excitation is due to the
Coulomb barrier of the 12C channel, On the left -hand side of the spectrum,
the strongly excited peaks come from the (160, 12C) reaction on the 12C
target backing. In contrast to this fact, at 48 MeV incident energy and
for 44,48 Ca and 48,50Ti targets the detection of 13C, 14C and 14.15N becomes
possible. Figure 6 shows that there is a considerable separation between
122C and #¥C. The spectra of the reactions 30 Ti (160, 12C) %Cr and
50Ti (160, 14C) 52Cr are presented in Fig,7. In the spectrum of the
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(160, 14C) reaction, we can see that the (160, 13C) reaction appears only
as a tiny contamination. The energy spectrum related to the nitrogen
identification peak clearly shows that only 15N is observed.

3. REACTION MECHANISM

3.1. Elastic scattering

Information important for the understanding of the transfer-reaction
mechanism is given by elastic-scattering data. Thus, we have measured
the 180 elastic scattering on *Fe at two incident energies 48 MeV and
52 MeV. The corresponding angular distributions are shown in Fig.8.
They deviate from pure Coulomb scattering, respectively, at50° centre-of-
mass and 45° centre-of-mass; the exponential decrease which follows is
characteristic of strong absorption.

In the case of strong absorption Blair's sharp cut-off model predicts
that the angle 8, where the cross-section ratio between elastic scattering
and Coulomb scattering is 0. 25, corresponds to the "grazing'' angle where °
the minimal distance of approach D is equal to the sum R; +Rqg of the
nuclear radii,

This hypothesis leads to the following relationship

Z1Zge® 1
D= Z142e 1+ — =r0(Ai/3+A12/3)
centreof-mass sin 3
AL 54z 16n 16 54 ]
3 5%Fe (10 '%0) >*Fe
1 Y l
8 I
. 6 1
x
£4 E,60=52Mel\l
e
X 2t |
[os) 4 ¢
— g b -
b 6
g"E160=48Me
2
A
.08
06
30 60
Bcm. (deg)

FIG.8. 54Fe(160, 160)354Fe elastic-scattering angular distributions,
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FIG.9. Optical-model parameters for the 4Fe (160, 160) 54Fe elastic scattering.

Knowing 6, we can then extract r, . In our experiments, we have in this way
obtained the value ry =1,55 fm which is typical for heavy-ion scattering.

For the incident energies considered, the total kinetic energy available in
- the centre-of-mass system is then just a few MeV above the Coulomb-
barrier energy calculated with this radius,

The fits shown have been obtained from an optical-model analysis

using Raynal's Saclay code Magali. Wood-Saxon form factors were used

for therealand imaginary part of the potential. The interactionradius was taken
to be the sum of the radii of the two scattered nuclei. The different

families of parameters are given in Fig. 9., They present the common
features encountered in heavy-ion analyses, i.e. small depth for both real
and imaginary parts of the potential.

3.2. Selectivity of transfer reactions

It is well-known that one-particle-transfer reactions occurring through
direct processes strongly excite states in the residual nucleus which are
well described by the coupling of a one-nucleon wave-function to the target
ground-state wave-function, Using this feature, important information on
the reaction mechanism can be obtained by studying the selectivity of the
reactions induced by heavy ions which lead to well-known state configurations,
In Fig.10 we compare the results obtained for one-proton transfer
reactions (160, 15N) and (3He, d) leading to the same residual nuclei. For
(3He, d) reactions we list the single-particle strength deduced from DWBA
analyses of angular distributions. In the case of the (160, 15N) reaction,
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FIG.11. Comparison between 4 T{(160, 12C)52Cr and 50Ti(160, 14C) %2Cr energy spectra obtained at 40°
laboratory system and 48 MeV incident beam energy.

we give for each spectrum the relative intensities of the levels observed
at 40 degrees; this corresponds to the grazing angle where the (160, 15N)
cross-section reaches its maximum value. The general picture is that the
(180, 15N) reactions excite fewer levels than (3He, d) reactions {19]. In
heavy-ion experiments, the Coulomb-barrier energy limits the observable
excitation energy, additionally the experimental resolution does notallowas
many levels to be distinguished as the (3He, d) reactions do. However, the
observed levels in (%0, 15N) reactions are those which have the largest
single-particle strength. This result supports the idea that in the vicinity
of the Coulomb barrier the (160, 15N) reaction takes place through a direct
process.

Figure 11 gives a comparison of the (160, 12C) and (160, 14C) spectra
leading to the same residual nuclei 52Cr. As is expected in a direct
process, strong differences are observed between the selectivity of the
two- and four-nucleon transfer reactions. The first levels strongly ex-
cited by the two-proton-transfer reactions have very weak 1ntens1t1es in
(180, 12C) reaction.
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ing incident energies: 48, 52 and 56 MeV.
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Finally, let us recall the %#Fe (160, 12C)58Ni energy spectrum (Fig.5).
The first few levels, well known to be vibrational states, are weakly
excited by the o-transfer reaction. In contrast to this, strong peaks appear
between 4 and 10 MeV of excitation energy. Although more than 80 levels
have been seen in this region by means of (p, p'y) experiments, the
(180, 12C) reaction appears to be very selective for a small number of
them. The widths of the strongly excited peaks are the same as those of
the well separated levels. Thus, most of them should correspond to the
excitation of a single level.

Some of the peaks observed might result from the emission of a 12C
excited nucleus, in the 4.43 MeV 2* state. In fact, no systematic 4.4 MeV
interval can be observed between the strongest peaks. A better proof
would be obtained by comparing the (60, 12C) and the (2°Ne, 160) specira
for the same residual nuclei. Such an experiment is planned at Saclay
as soon as the cyclotron is able to deliver a 2'Ne beam.

3.3. Energy dependence of the spectra

The #Fe (0, 12C) %Ni reaction has been performed at 42, 48, 52
and 56 MeV incident energies. At 42 MeV, the cross-section was too small
to be measured. Great similarity is observed in the three other spectra
(Fig.12). There appears to be some background under the peaks at the
highest energy of excitation, the intensity of which increases as the incident

MICROBARNS/CHANNEL

™ - 80
CHANNEL NUMBER

‘FIG.13. The 42Ca(160, 2C)4Ti energy spectra obtained at 40° laboratory system for two different
incident energies (40 and 48 MeV).
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energy becomes higher. The nature of this background remains an open
problem. It may come from the break-up of the 0 into a 12C +¢ in the
target field or from a kind of compound-nucleus process resulting in the
emission of 12C. The break-up process is expected to be low because of
the 7.2 MeV alpha-binding energy in 80 compared with 1,47 MeV in 8Li
and 2.46 MeV in "Li., For the Fe (180, 12C)*8Ni energy spectrum obtained
at 48-MeV incident energy, the upper kinematic energy limit of the break-up
is under the 6.1 MeV excitation energy peak. However, looking back to
the 12C (160, 12C)160 energy spectrum, the upper limit of the break-up
process lies below the doublet 1" 7,14 MeV and 2* 6.92 MeV and in fact
there is no background at all. At Berkeley, Québert et al. {20] have
studied the 8Li, 12C, 160 break-up on gold target; they do not observe any
break-up for 180, Moreover, we have observed that the intensity of the
background varies from one nucleus to another. For example, the energy
spectrum of the 40Ca (160, 12C)#4Ti does not show any background. In
contrast to this, the energy spectra of the 42Ca (160, 12 C)46Ti reaction
(Fig.13) obtained at 40 and 48 MeV show that the strongly excited levels

in 48 Ti observed in the 40 MeV spectrum have almost disappeared in the
48 MeV spectrum. For the different cases studied we have calculated the
ratio between the distance of closest approach D of the nuclei and the
interaction radius R (Table I).

TABLE I. RATIO BETWEEN D AND R

Exso (MeV)
40 48 52 56
targets
“2Ca 1.11 0.94
54Fe 1.11 1.02 0.95

An important background is observed whenever the two nuclei inter-
penetrate each other. Thus, it is possible that a kind of compound-nucleus
process occurs when D/R <1, To avoid this effect, we have chosen the
incident energy so as to have the total centre-of-mass kinetic energy
available in the entrance channel close to the Coulomb barrier energy:

BC =1.44 (Zl ZZ)/(RI +-R2).

3.4. Angular distributions

The angular distributions of one and two proton transfer reactions on
the 50Ti target are simultaneously measured using a 48 MeV 60 beam,
On Fig.14 are plotted the 50Ti (160, 15N)5!V angular distributions. Each
of them has a maximum at 50° centre-of-mass which corresponds to the
grazing angle in the elastic scattering 50 Ti (160, 180)50Ti, The shape of
the angular distributions can be well described by a tunnelling process with
nuclear absorption. At small angles where the impact parameters are
large, the increase of the cross-sections may be described by the proton
tunnelling process. We assume that nucleon transfer occurs when the
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projectile and the target are at their closest distance. For larger angles,
the impact parameter is smaller than R; +Rj, and then the decrease of the
cross-section reflects the influence of nuclear absorption. Nevertheless,
at 25° centre-of-mass the experimental points seem to be too high to be
explained by a simple tunnelling process.

The 50 T§ (160, 14 ) 52Cr two-proton-transfer angular distributions are
shown in Fig.15. All exhibit the same exponential decrease of the cross-
sections for backward angles. Similar shapes are obtained for the
% Fe (160, 12 C) 58Ni angular distributions measured with a 52 MeV 160 beam
(Fig.16). At 80 and 120 degrees laboratory angle, the cross-section of
the 5#Fe (160, 12C) 58Ni reaction is too small to be measured. The expo-
nential decrease observed for the angular distribution is described by the
Dodd and Greider [21] DWBA stripping model for heavy ions. Using a
sharp cut-off model to generate the so-called elastic distorted wave-
functions for the entrance and the exit channel, including finite-range
interaction for the transferred cluster and taking into account the recoil
terms, these authors give the following approximate expression for the
cross-section:

2
do | 3 < 2a_>
an SXP\~P B
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where p is the target recoil parameter, a the range of the bound state
wave-functions of the transferred cluster and q the transferred momentum.
This model predicts well an exponential decrease of the cross-section for
increasing transferred momenta. A more elaborate distorted-wave ana-
lysis isnowin progress at Saclay [22]. The shape of the angular distri-
butions does not allow spins to be agsigned. All the nuclear spectroscopy
is included in the comparison of the relative intensities, '

4. NUCLEAR SPECTROSCOPY WITH HEAVY-ION EXPERIMENTS

This section is essentially devoted to the experimental investigation of
four-nucleon correlations in medium-weight nuclei by means of alpha
transfer experiments. But, first of all, a short summary is given on the
experimental results obtained with the (160,%C) two-proton-transfer
reaction.

4.1, Two-proton-iransfer reactions

As was mentioned previously, the (180, 14C) reaction is a very easy
technique for obtaining two-proton transfer. Thus we have studied the
44,48 Cg (160, 14C) 46, 50T] ang 50. 52T (160, 14 C) 52. #Cr reactions at 48 MeV
incident energy. .

The simultaneous collection of the o- and two-proton-transfer data on
Ca and Ti isotopes is very interesting: the comparison of the states excited
on the same residual nuclei by a- or two-proton transfer exhibits distinct
differences. A typical example was given previously with the
48T (160, 12C)52Cr and %9Ti (160, #C) 5% Cr spectra (Fig.11). The dominant
two-nucleon or dominant four-nucleon configurations are easy to identify
and discriminate without ambiguity. Again, all the spectroscopic informa-
tion is contained in the cross-section intensities. Figure 17 summarizes
the two-proton-transfer results obtained for 48.50Ti and 52.54Cr residual
nuclei. The intensities of the two-proton transitions are stronger in the
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FIG.17. A summary of the (160, 14C) two-proton-transfer experiments.
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TABLE II. B(E2) TRANSITION PROBABILITIES
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Cr than in the Ti isotopes. The 5°Ti isotope exhibits a singular behaviour
with a very weak excitation of its ground state. The states populated by
the (160, 4 C) reaction are those excited by (e, o') inelastic scattering.
These results show the importance of vibrational states in the two-proton
configurations. For the residual nuclei obtained by (160, 14 C) reactions,
the B(E2) transition probabilities are given in Table II.

These B(E2)t values show that the smallest B(E2) value observed
corresponds to the smallest two-proton transition intensity.

4.2. Experimental evidence for four-nucleon correlations in Ni, Zn, Ti
and Cr isotopes

The (160,12C)a transfer reaction has been performed on several iso-
topes of calcium, titanium, iron and nickel. The 4 Fe (160, 12C) 58Ni
angular distributions being structureless and having similar shapes for
all the 58Nij excited states, we can obtain relevant data with only a few
angle measurements. To avoid the contamination of the 12C spectra by -
the 12C (160, 12C) 180 reaction from the target backing we have generally
chosen angles between 35° and 50° in the laboratory system. The two
incident energies 48 and 40 MeV respectively used for Fe, Ni and Ca,

Ti targets, correspond to a total kinetic energy available in the centre-of-
mass system equal to the Coulomb barrier. The states strongly excited
by means of the (180, 12 C) reaction are discussed here in terms of quartet
states, i.e. two protons and two neutrons in a highly symmetric
configuration.

The first reaction studied was 3Fe (160, 12C)58Ni [23]. In a single-
shell-model picture, the %Fe ground state is described by two proton
" holes in the 1fq/2 shell (Fig.18). The first levels of 58Ni have essentially
two-neutron configurations. The excitation of these states by the (160, 12(C)
reaction is expected to be weak since it requires the breaking of the quartet
corresponding to the a transferred. In contrast to this, the excitation of
4p-2h states in 98Ni can be reached leaving the four nucleons highly corre-
lated in the 2pg3/p shell, for example. Thus in a-transfer experiments
these transitions are expected to be strong. The lowest part of Fig.19
shows the 58Ni energy spectrum from the Fe (160, 12C)58Ni reaction.
The first levels of 58 Ni which are vibrational states are weakly excited;
the strong peaks appear between 4 and 10 MeV excitation energy.

Then, it seems interesting to study the behaviour of these states in
neighbouring residual nuclei, with different numbers of protons and
neutrons, Figure 19 shows the comparison between the energy spectra of
the 54.56Fe (60, 12C) 58, 60Ni and 58Ni (160, 12C) 62Zn reactions. The
gimilarity between the 5% Ni and 8Ni spectra indicates that the addition of
two neutrons to % Fe plays a little role only.

A phenomenological estimate of the energy of the lowest quartet state
80Ni can be made by considering binding energies according to the following
relation:

60Ni (. gny = (82Zn - 58Ni) - (%8Ni - %6Fe) +8x +2A¢,

XX ‘ ‘
XX XX _ xx|xx } ‘xx XX XX
00 | | | 00
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FIG.19. Three energy spectra corresponding to the reactions 54, 56 Fe (160, 12C) 58,60Nj and 60Ni (160, 12C) 2Zn
studied at 48 MeV incident energy.

where y is the average particle-hole repulsive interaction energy and Ae,
is the attractive Coulomb particle-hole interaction. With the reasonable
estimates: x~ 0.5 to 1 MeV and Aec ~0.5 MeV [23], the first quartet
state in 60Ni might appear between 2 and 6 MeV excitation energy. Rela-
tively strongly excited groups are observed in 0 Ni above 3 MeV excitation
energy.

On the other hand, the 62Zn energy spectrum shows a different
behaviour: the ground state and the 2* first excited state are strongly
populated by the (160, 12C) reaction. 3§Nig, differs from 35Feg by the
filling of the two 1f7/; proton holes. Starting from a %8Ni target the trans-
fer of the four nucleons in the 2pg3/2 shell can give directly a relatively
strong excitation of the first levels of 62Zn (Fig.18).
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FIG.21. Survey of the Ca (260, 12C) Ti reactions studied at 48 MeV incident energy. These spectra are
obtained at 40° laboratory system.

We have studied the behaviour of the main peaks when the number of
neutrons is increasing., The four stable even isotopes of nickel were
chosen for this purpose. The energy spectra of the reactions
58, 60, 62, B4)yj (160, 12()62, 64,668,687 are shown in Fig.20. The data were
taken at 48 MeV incident energy, and 40 degrees in the laboratory system.
The most striking features of these spectra are the following:

The ground state and the first 2* excited states are strongly populated
in 62 Zn and 64 Zn, weakly populated in 66Zn and very weakly populated in
88Zn. This feature supports the idea that the 0* and 2* states of 52Zn and
64Zn are mainly excited by the transfer of the four nucleons in the 2pg,
shell. This is easy to achieve when the targets have only a few nucleons in
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FIG.22. The 48,50Ti (160, 12C)52,54Cr energy spectra measured at 40 MeV incident energy.

the 2p3/2 shell, One observes a neutron blocking effect, in the excitation
of the first levels, which corresponds to filling in neutrons of the 2p3/s
shell,

In 82Zn, a clean quartet structure is observed up to 6 MeV excitation
energy. Itis tempting to try to correlate this structure with the one ob-
served previously in 50Ni between 4 and 10 MeV excitation energy. In the
other Zn isotopes, the quartet structure is gradually washed out as the
neutron shell is filled.

The strongest peaks observed in the §2.64Ni (160, 12C) 66.68 zn energy
spectra correspond to 62.64Ni (160, 14C) 64,66 Zn two proton transfer
reactions.

A natural extension of these experiments is the study of the blocking
effect due to the gradual filling of the neutron shells in the even
Ca-isotopes.

The energy spectra of the Ca (160, 12C) Ti reactions are shown in Fig, 21,
They are obtained at 48 MeV incident energy and at 40° in the laboratory
system. The alpha transfer on the doubly closed shell nucleus ‘égCazo
strongly and selectively excites several states of the ¥ Ti residual nucleus.
A drastic decrease of the cross-sections is observed between the first
excited levels of 44Tiandthose of 46Ti. From 46Ti to 48Ti, the levels below
4 MeV excitation energy are very weakly excited. The general behaviour
in titanium isotopes is very similar to that previously observed in the
zinc isotopes.
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FIG.23. The first-2%-excited-state absolute cross-sections for various residual nuclei obtained by (180, 12C)
transfer reactions. The spectra were taken at 40° laboratory system and 48 MeV 160 incident energy
respectively on Ca, Ti, Fe and Ni isotopes. There is a large discontinuity in the cross-sections at the
neutron-shell closure N =28,

In a similar way, the 4850 Tj (180, 12C)52 5 Cr reactions studied at
48 MeV incident energy show a weak population of the first excited levels.
This shows clearly that the target neutron pair excess results in a decrease
of the cross-section to the first levels (neutron blocking effect). In
contrast to this, strong excitation of the 46Ti, 0Ti and 52Cr states below
5 MeV is observed by means of the (160, 14C) two-proton-transfer reaction.
These results indicate that the wave-functions of the first levels of 46Ti
and 52Cr have weak quartet components.

At 48 MeV 80 incident energy, titanium and chromium states above
6 MeV excitation energy are obscured by a large background (this is not
the case for #Ti), From Fig, 22 it can be seen that at 40 MeV 180 incident
energy there is a strong and selective excitation of the states above 4 MeV
excitation for the ¢8,50Tj (160, 12C)52, 5 Cr reactions,

The behaviour of the cross-sections of the (10, !2C) transfer reaction
leading to the first 2* excited states of all the residual nuclei studied are
presented in Fig.23. The neutron blocking effect within each set of
isotopes is clearly seen, together with the rather sharp discontinuity at
N=28. The 0* ground state cross-sections display the same features.

4,3, Comparison of experimental data with theoretical 58Ni, 6°Ni and
62Zn energy spectra calculated in the stretch scheme

A calculation of 58Ni, 60Ni and 62Zn energy levels has been performed
by Jaffrin using the stretch scheme of Danos and Gillet [9]. The details
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FIG.24. Comparison between the experimental spectra of the 54, 5 Fe (160, 12C) 58, 60Ni and 58Ni (160, 12C)62zn
reactions and the 58,50Ni and theoretical energies calculated in the stretched scheme.

of calculations will be published in the de-Shalit Memorial Book of Annals
of Physics [24]. Here only the principal points are presented. Let us
consider, for example, the 4p-2h state of 58Ni described by two protons

in a shell of angular momentum j, two neutrons in the shell of angular
momentum k and two proton holes in the shell of angular momentum j.

The stretch wave-function has to satisfy the following rules: i) maximum
proton-neutron overlap; ii) minimum alignment between the angular
momentum of particles and holes. The wave-function which satisfies these
properties can be expressed in terms of a Slater determinant correspond-
ing to an oblate shape:

¥ =Det[¢° (i, ) 6 (i -3) " (k, -k) ¢ (k. -k) ¢ (7, 1/2)¢F (7, -1/2)]
and another with a prolate shape:
' =Det [¢P (3, 1/2) &° (J, -1/2) $7(k, 1/2) ¢"(k, -1/2) ¢7 (4, T) ¢° (3, -

In 98Ni, Jaffrin has shown, using a phenomenological force (which has
a Gaussian radial dependence, spin and isospin admixture parameters
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determined from 1qp and 2qp calculations in the Ni-region) that the
prolate shape is more strongly bound than the oblate one.

In the nickel region, the calculations have been performed with all the
prolate 4p-2h configurations constructed with j and k for any of the 2pg/y,
1fs/o and 2py1/e orbits and j restricted to the 1f7/9 orbit. The y-wave-
functions do not have a good angular momentum. Thus it was necessary
to project each configuration on the space of angular momentum I before
diagonalizing the residual interaction.

The results of the calculations are presented in Fig. 24. The dashed
lines correspond to two-neutron configurations and the solid lines indicate
4p-2h states; they are grouped into ''quasi-rotational bands'. A 'band"
is a group of levels in which the wave-functions are dominated by the same
configuration. In each band the states have the spin sequence 0%, 2%, 4*
but their energies do not satisfy the J(J +1) law because of the relatively
small intrinsic angular momentum j and the small number of nucleons
involved in each configuration.

Similar calculations were performed for 60Ni and 62Zn. In 60Ni the
two extra neutrons were regarded as ''spectators'. For 62Zn, the wave-
function was constructed with two protons and four neutrons aligned. In
58Ni and 60 Ni the 4p-2h states are competitive in energy with two neutron
configurations. In the case of 62Zn, the ground state and first excited
states could be the first members of the "band' dominated by the following
configuration (2p3/2)2P - (2pg/g )4". At this stage it would be difficult to
identify the other states as definite members of the ''bands",

5. SUMMARY

Alpha transfer experiments on medium-mass nuclei with the (60, 1%C)
reaction provide a powerful tool for investigating four-nucleon correlations
in these nuclei. In a similar way, the (!0, %C) reactions provide a
spectroscopic tool for studying two-proton correlations in nuclei. This
reaction is in many respects more convenient to perform than the
(3He, n) reaction.

Although more investigations into the reaction mechanism are required
to explain the heavy-ion experiments, the selectivity of the reactions studied,
the energy independence of this selectivity and the angular distributions
show that these reactions proceed via a direct process in the vicinity of
the Coulomb barrier,

The most striking features of the (160, 12C) spectra between 4°Ca and
64Ni can be summarized as follows:

In the close vicinity of N = Z-doubly-closed-shell nuclei, such as 40Ca
and %Ni, alpha transfer is allowed for the first ground-state band.

For all other targets with a neutron excess, the cross-sections of the
excited states below 4 MeV are weak, Moreover, the intensity of the
cross-sections of these states decreases as the number of neutrons of the
target increases. This clearly establishes the excess-neutron pair-
blocking effect.

The complete pattern observed in 2% Cr and 580 Nj re51dua1 nuclei
is shifted by about 4 MeV when the 1f7/o shell is filled with both protons
and neutrons.
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The very different selectivity of the a- and two-proton transfer reac-
tions leading to the same residual nuclei $§Tiy, and §2Cryg gives us a good
discrimination between two- and four-nucleon configuration states.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. G. Ripka for valuable discussions and
Dr. M. C. Mermaz for his fruitful collaboration in all phases of this work.
For helpful collaboration and many comments sincere thanks are also due
to Dr. H. Faraggi and my colleagues J. C. Faivre, J. Gastebois,
B.G. Harvey, J.M. Loiseaux and A. Papineau. I am also very grateful
to Dr. V. Gillet and A. Jaffrin for their guidance and continued interest
in this work,

REFERENCES

[1] GREEN, A.M., Rep. Progr. Physics 28 (1965) 113 and Ref.[4].

[2] CARTER, E.B., MITCHELL, G.E., DAVIS, R.H., Phys. Rev. 133 (1964) B 1421.

[3] MORINAGA, H., Phys. Rev. 101 (1956) 254.

[4] BROWN, G.E., GREEN. A.M., Nucl. Phys. 75 (1966) 40, Nucl. Phys. 85 (1966) 87.

[5] BASSICHIS, W.H., RIPKA, G., Physics Letts 15 (1965) 320.

[6] ZUKER, A.P., BUCK, B., McGRORY, J.B., Phys. Rev, Letts 21 (1968) 39.

[7] BRINK, D.M., FIEDRICH, H., WEINGUNY, A., WONG, C.W., Physics Letts ﬁB_(lQ’lO) 143 and
private communication.

[8] BOUTEN, M., (private communication).

[9] DANOS, M., GILLET, V., Phys. Rev. 161 (1967) 1034.

[10] JAFFRIN, A., "Proceedings of the Intemational Conference on Properties of Nuclear States”, Montreal
(1969) 338, 340.

[11] AUERBACH, N., Phys. Rev. 163 (1967) 1208,
COHEN, §., LAWSON, R.D., MacFARLANE, M.M., PANDYA, §.P., SOGA, M., Phys. Rev.160
(1967) 903, .

[12] HIEBERT, J.C., NEWMAN, E., BASSEL, R.H., Physics Letts 15 (1965) 160.

[18] WONG, §.5.M., DAVIS, W.G., Physics Letts 77 (1968) 77.

[14] JAFFRIN, A., Physics Letts 328 (1970) 448.

[15) Nuclear reactions induced by heavy ions (Heidelberg International Conference,1969) OGLOBIN, A.A.,
231, MIDDLETON, R., 263, BETHGE, K., 277, COTTON, E., 289.

{16] VON OERTZEN, W., these Proceedings.

[17] BASSANI, G., SAUNIER, N., TRAORE, B.M., PAPPALARDO, G., Physics Letts (to be published).

[18] ROYNETTE, J.C., Nucl. Phys. A155 (1970) 548.

[19] Nuclear Data Sheets, Section B vol.4 (1970), Section B vol. 3 (1970).

[20] QUEBERT, J., (pdvate communication).

[21] DODD, L.R., GREIDER, K.R., Phys. Rev. Letts 14 (1965) 959.

[22] GIRAUD, B., BONCHE, P., in Nuclear Physics Problems, (Proc. 2nd Symp. 12-19 June 1970,
Novosibirsk) (to be published).

{23] FAIVRE, J.C., FARAGGI, H., GASTEBOIS, J., HARVEY, B.G., LEMAIRE, M.C., LOISEAUX, J.M.,
MERMAZ, M.C., PAPINEAU, A., Phys. Rev. Letts 24 (1970) 1188.

[24] FARAGGI, H., JAFFRIN, A., LEMAIRE, M.C., MERMAZ, M.C., FAIVRE, J.C., GASTEBOIS, L,
HARVEY, B.G., LOISEAUX, J.M., PAPINEAU, A., de-SHALIT Memorial Book, Annals of Physics
(to be published). :







PART I: NUCLEAR REACTIONS

2. Low-energy nuclear reactions
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Abstract
SPIN-ORBIT INTERACTION IN INELASTIC NUCLEON SCATTERING.

1. Introduction: 1.1. Polarization measurements; 1.2. Inelastic scartering: 1.3. Macroscopic models;
1.4, Microscopic models; 2. Macroscopic description; 2.1. The rotational model; 2.2. Deformed L-S
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3.2. Application to nuclear reactions; 3.3. Two-body spin-orbit interaction; 3.4. Shell effects;
3.5. Results; 4. Conclusion. )

1, INTRODUCTION

L.3 coupling was introduced into the optical model in order to describe
the polarization phenomena in the elastic scattering of particies with spin,
Its need was obvious even when no precise polarization measurement had
yet been performed. At firstoneusedan L. S potential of which the form
factor was deduced from the central one as shown by the formulae obtained
when the small components are eliminated from Dirac's equation. The
strength of this potential was obtained phenomenologically; it is of opposite
sign and far larger than the one obtained from Dirac's equation.

1,1. Polarization measurements

We have only in mind some particular polarization measurements, the
ones for which it was decided, at the Symposium of Madison [1] to use the
words of ''analysing-power' measurement or "efficiency tensor'. The
word polarization has a general meaning and the particular one of describing
the outgoing particle, The effects of the polarization of the ingoing particle
on the cross-section are these "analysing powers' (of the polarization of
the ingoing particle), In spite of the Madison convention, we shall use for
"efficiency tensors' the name of 'asymmetries' which was used in the
publication of almost 21l the experimental results,

Let us consider only spin-1/2 particles, In the earliest experiments,
a beam polarized by a first reaction is sent on a target. The polarization p
is transverse. The cross-section of a second reaction is given by

do(6, ) _ [ do(8, :p)]
dQ aQ np

(1 +pA(8)cos ¢)

where ¢ is the angle between the reaction plane and the plane orthogonal
to the polarization. The "asymmetry' measurement

do (6, 0) - do(0,7)

21 _da dQ
Al8) p do(6, 0)+d0(6,7r)
aq daQ

75
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needs the use of two detectors, symmetric with respect to the direction of
the beam, Geometrical errors are important limitations of the precision
of these experiments,

These geometrical errors were eliminated when polarized beams be~
came available. The particles are polarized before acceleration [2-4]
upward or downward, The absolute value of the polarization of the beam
and its intensity are independent of the sign of the polarization (anyway,
these quantities are monitored by a known reaction during the experiment).
If [do(8)/dR], is the cross~section given by a detector in the plane ortho-
gonal to the polarization, while the polarization is positive and [do(8)/dQ].
is the cross-section given by the same detector when the polarization is

negative, we obtain
[do(ﬂ)] ) [dc(e)]
dae . aQ |.

[

The sign of the polarization is changed several times a second and p can
be greater than 80%. By this method the asymmetries can be measured
with the precision usual for cross-section measurements,

For elastic scattering, the polarization measurements with polarized
beams have shown that the .3 potential must be used with a radius and a
diffuseness smaller than the ones of the central potential. '

A(0) =

o=

1.2, Inelastic scattering

The outgoing particles go through two junctions, one thin and the
other sufficiently thick to stop it; the detector, which consists in these
two junctions, identifies the particle as a proton and measures its energy.
A spectrum is obtained for each sign of the polarization; their comparison
gives at the same time the polarization of the elastic scattering and the
analysing power of each reaction which can be seen,

One of the earliest experiments of this kind was performed with the
cyclotron of Saclay at the end of 1965 on %*Fe at 18.6 MeV [5). This energy
was chosen because the cross-section was already measured with precision
[6]. Large values were obtained for the first 2* at 1,41 MeV (see Fig. 4).
A second 2* has similar angular distribution but smaller values, chiefly
forwards, Results for *Fe are intermediate.

Measurements done with targets ranging from Ti to Sn were classified
by the experimentalists into two groups:

(a) "large asymmetries' whichare the first 2* of %Fe, 52Cr, %0Ti,
92Mo, 9°Zr and ¥sr;

(b) "small asymmetries' as the second 2* of %Fe and 5*Cr and the
first 2* of Ni, %'Ni, 2Ni, ®Ni, In this group there are also *Fe, *zr,
%Mo of which the values are somewhat larger,

Note that the nuclei of which the first 2* shows a large asymmetry
have 28 or 50 neutrons and an open shell of protons, Small asymmetries
are obtained for nuclei with an open shell of neutrons, The division into
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two groups was essentially due to the difficulties encountered when trying
to explain the experimental results of the first group [7, 8].

There are also some difficulties to explain the 3° and 4' results, but
less than for the 2*. Generally, they are some details of the form. Some
other targets have also been used and have shown their own problems: for
example, targets of the s-d shell with 20Ne, 22Ne, 2¢Mg, 26Mg, 28Si
~ete, [T]. .

Thus we have experimental results related to the nuclear structure of
the target and of which the mechanism must be understood.

1.3. Macroscopic models

The optical model obtained for elastic scattering is also used to study
the reactions in coupled-channel [9] or DWBA calculations. The r.§ po-
tential is used to describe the ingoing and the outgoing waves.

In the rotational model, a deformed optical model describes all the
states of the target; in the earliest calculations, only the central potential was
deformed, the imaginary and L. S potentials were included only into the dia-
gonal couplings, Later on, the imaginary potential was also deformed in
order to obtain better fits for the inelastic cross-sections. When precise
polarization measurements became available for these reactions, the deforma-
tion of .. 8 coupling seemed necessary, At first, the simple expression of
the optical model was used, in its Hermitian form. The results were
frustrating for the large asymmetries, This method is not valid because [10]:

(a) The obtained expression is not a vector;

(b) from the macroscopic point of view, the analogy with the elimination
of small components of Dirac's equation does not remain;

(c) from the microscopic point of view, it is very different from a
mucleon-nucleon I, S interaction,

Sherif and Blair {11,12] proposed to maintain the analogy with Dirac's
equation. The expression they must use is more complicated than the pre-
ceding one. Nevertheless, a sufficiently simple form can be obtained, which
can be used in coupled-channel calculations and allows some discussion of
the results, The good fits obtained in DWBA [ 11-14] are found also in
coupled-~channel calculations and generalized to some cases out of the scope
of DWBA as the 0*- 2%- 4" excitations of the s-d shell. These improvements
are chiefly forwards, in an angular region which decreases when the inci-
dent energy and the mass of the target increase, They are coherent ef-
fects, In the other angular regions, it was never very difficult to obtain a fit.

In these calculations, the L, 3 potential must be often more deformed
than the central one, If this multiplying factor were always the same, it
could be considered to be a phenomenological result. But this factor which
is 1.5 in almost all the calculations of Blair and Sherif, must be increased
up to 2.5 or 3 for ¥Zr and decreased to 0 for the second 2* of *Fe, Thus,
we found an effect which is strongly dependent upon the structure of the
target.

1,4. Microscopic models

The reaction can be studied with a more detailed description of the
initial and the final states of the target and a nucleon-nucleon interaction.
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With a zero-range nucleon-nucleon interaction or no antisymmetrization
of the incident nucleon with those of the farget, the description of the
reaction is very similar io the macroscopic models. Coupled channels
can be used, With antisymmetrization, the computations are heavier and
we shall use only DWBA.,

The helicity.formalism [15] gives a form somewhat easy to handle for
the nucleon-nucleon L., § interaction [16]. As the L.S interaction is known
to have a smaller range than the central interaction [17,18], the zero-range
limit can be used. In this limit, the L..8 interaction acts only for a relative
angular momentum of the two nucleons £=1; as S is necessarily 1, T
must be 1, too, So, this interaction is twice stronger between two protons
than between a proton and a neutron, Furthermore, it is strongly dependent
upon the quantum numbers of the nucleons of the target. When all the terms
without macroscopic equivalents are neglected in the expression obtained at
the zero-range limit, and when the remaining part is made Hermitian, an
expression very similar to the one of the macroscopic description is ob-
tained, This approximation is macroscopic as long as the excitation of
the target can be described as a coherent sum of many particle-hole exci-
tations; it is also a high-energy approximation as long as the values of the
quantum numbers of the bound nucleons can be neglected compared to the
ones of the free nucleon. :

In these conditions, one can understand why the deformation of the
r.s potential used by Blair and Sherif must be increased or not, according
to the structure of the excited state and also why the experimental results
are more difficult to fit at low energy than at high energy. Good fits are
more usual at 150 MeV than at 20 MeV,

From now on, we shall consider only diffusion of spin-1/2 particles.
Formulae are not always valid for larger spins.

2, MACROSCOPIC DESCRIPTION

By macroscopic description, we mean a description of the target
nucleus in which the individual orbits of nucleons do not matter. The target
is known by a mass density p(i"). With a zero-range nucleon-nucleon inter-
action, a potential V(¥) which is proportional to it is obtained. With a finite-
range interaction and without antisymmetrization, a potential is obtained by
a convolution with p(;); its form is quite the same.

The macroscopic models [9] are the rotational and the vibrational
models, We shall take the rotational model as an example; we shall re-
member briefly how a coupled-channel calculation occurs for this model
and then show how to introduce the deformed L.,$ coupling and discuss its
effects,

2,1, The rotational model

The interaction between the particle and the target is some potential
V(r,?') where #' is the intrinsic axis of the nucleus. This potential is para=
metrized by quadrupole and hexadecupole deformations 8, and B4, using a
radius R(6)

R(8) = Ro(1+B,Y5(8) +B,Y4(8)) (1)
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where 6 is the angle between T and ¥'. This radius is used instead of Ry
in the usual expressions of the optical model, The potential can be ex~
panded into multipoles:

V(F, 8') =47 va(r)Yg(f)Y*{*(f ") (2)
. .

There are only even values of A. A siate of the target, member of
a rotational spectrum starting with a 0%, is described by [19]

21 +1
> = ==

=3 Rl (2) x(x")

v, o

where x(r') is the intrinsic wave-function, The nuclear part of the problem
is eliminated by .

e g (V(?,i“)WILMi > = JZEva(r)Y';(r)
? A

M. L I L L A
x(=) "R D2 +1)(ZA+1) (3)
0 0 0f\M -M u

The potential between an ingoing wave I‘//IiMi > |!li jjm; > coupled to J, M
and an outgoing wave lef Mg Dl Lejemy > also coupled to J and M, is

Z v, (o)) "M (@ 1) ST FOEE, T 005, 7005, 7 1)
A

L Iy a ¥ A 3 Ii Iy A
x (4)
0 0 of |-i-0 '
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This expression has a part which depends only upon the target and a part
which depends only upon the nucleon, the two of them related by a 6j-
coefficient., When I; is 0, this coupling is only:

e+ I Is Ji
(<)t Vi, (r)f(21,+1)(2jf+1>( (5)

1 L
=2 0 2

For a 0" » 2" excitation and for an ingoing wave of given £;, j;, the
total spin J of the system is j; and its parity 7 = (-)li. For a sufficiently
large J and a given 7 there are five outgoing waves ¢, j;; j§ ranges from
jj=2 to j; +2 and £ is the value jf+ 7 of parity 7 (see Table I). A set of
six coupled equations is obtained; it is

y;' +Z'Vij ¥; = E 5 (6)
i
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where

Vi = Z(”;}j’ V,(r) (7)
A

Let us denote the ingoing partial wave by the index i =0 and the outgoing
ones by i=1to 5, The interaction V,, includes only the multipole A =0,
which is an optical potential, The Vy and Vjy for i # 0 include only A =2,
The V;; for i ¥ 0 and j ¥ 0 include the optical potential and the multipoles
A=2 and A =4 (it is the mean difference with the vibrational model in which
Vy; is usually diagonal); the optical model is diagonal, the multipole A =2

is there only when the difference between the j; is not greater than 2 and

the multipole A =4 is always there, The set (6) must be solved numerically

in order to find the solution of which y, is a plane wave plus an outgoing

wave and the y; are pure outgoing waves at large distances, The coefficients
of the outgoing waves are used to compute reaction amplitudes, cross-sections
and asymmetries,

This set of equations can be solved to the first order for the multipoles
V,(r). This apprommatlon is called DWBA and uses the coup].m§ (7) only
between the 0* and the 2* states. The geometrical coefficient Gj; is almost
the one which will be called GrlJ in the helicity formahsm and of whlch the
values are given in Table I,

2.2, Deformed I..§ coupling

The optical model includes a spin-orbit potential

=

L virn Loo) (®)

where V(r) is a potential of which the form factor is similar to the one of
the real potential. For a state of a given parity and angular momentum,
the operator (L. o) has the eigenvalue which we shall denote by v:

if jeo+3 v=142
if j=a-% v=-2-1
2.2.a. Incomplete Thomas term

If the potential (8) is not isotropic but has some angular dependence
which can be described by expression (2), it can be expanded into multipoles

4 Z =L v, (o} Y"(r)Y"* (#1) !

A
'

Some versions of this operation [20] were tried, without noticeable results.
The elimination of the nuclear part of the problem leads to the same result
as Eq.(3). In the following step, (. c) obtains its eigenvalue v¥; and the
total result is not Hermitian,
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To avoid this difficulty, one can use the well-known recipe which is
to write it as follows:

LEL war @+l L i)
Then, the coupling becomes
Gl 2 vy UL (9)

This term has been largely used. It is often called Oak-Ridge term.
It is included in Tamura's and Hill's codes.

2.2.b. Full Thomas term

It is the term used by Blair and Sherif in DWBA computation.s.:
- V -
V{V(r)}xi—-o (10)

Substituting the gradient by its expression:

-

V= r xL (11)

CICE
gle

-i 1
Py

expression (8) is obtained when V(;) is isotropic, By elementary manipula-

tions, the term (10) can be changed into a form similar to (9), i. e, the geo-

metry of a central interaction can be factorized. To show that, let us con-
sider a single multipole of V(r) and use the formula:

@-R):(@-B)= R.B)+i(c-A xB)

so that we obtain
V{V,(r) Y} (£)} xiz.?y = = (@ - V{V (YK (ED (O V) +V{V ()Y ()} V

Again ‘with the same formula and expression (11) for the gradient, we get:

As (i '_(;) anticommutes with (¢ -7) and (@ - ;)2 = r2, we have

VA ()Y E(E) x 12 <— +=L- G>{Vx(r)Y“(r)} (__ L. U)
+ Vx(r)Y'i'(?)}% - ) T DAy - g (7L
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The terms with two derivatives cancel. In the last term, the first-I acts
only on the spherical harmonic; it can be simplified to

FxD{YLER T xT=r? DAYh(#) - L.
There remains

H,a V -
V{Vx(r)Y)‘(r)} X170

% % V, (e} YHANT-3)- Lr(rl (LAYL(F) - 3) %

v

AE) (7, gk (23} - 1)

+ D0 Eovien-a)-(£.5)- 2

In the first of these four terms, (f. -;), being on the righ~hand side obtains
its eigenvalue v;. In the second term, acting only on the spherical harmonic,
it gets the same value as if it were acting on the whole, minus vy; toact

on the whole means to act on the left, hence the value Y¢-vY;- In the third
term, these operators can bé replaced by (y;=-v,)v;. In the last term, the
angular momentum operators are equivalent to the scalar product X - i,

which is easily evaluated with ;= 7;+X. As a matter of fact, the rélation

2R T, = FE-RE- 12

corresponds term by term to

2T (AN - T =L2YY(F) - D2{YE(F)} - YE(F) L2

Furthermore, as
-2 - - - -
L°=(L-0)® +(L-0)
we have _]:;2 =q(y+1). Gathering all these results, we obtain
Boana V> i,a |1 d Va(r) d
V{Vx(l")Y )‘(1‘)} Xi—‘O" Y)‘(r) [;E {V,\(r)}'yi+ 5 (‘Yi = 'Yf) ar

Va(r)

+—2—2r {X(X'I'l)'('Yf"Yi)(‘Yf"Yi"'l)}J

In almost all the computations, the wave-function is multiplied by r.
Taking this fact into account, 2(7{ - v;) must be added into the parenthesis
of the last term because the preceding one includes d/dr. Therefore, for
this interaction we have obtained an expression which can be easily compared
with expression (9) and is given by

& {2 & v, 0mm+ B -y &+ RO+ 1)- (e v, 211}

(12)

with +1 or -1 when the radial wave function is not or is multiplied by r.
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2.2.¢c. Comparison of the two deformed L-S potentials

Table I gives the quantum numbers of the equations coupled for a
0%+ 2* reaction. One can note at first sight a large difference in the be-
haviour of potentials {9) and (12), When angular momenta are large, term (9)
is predominant for j; - £;=j;- 1; and increases linearly with £. On the con-
trary, the potential (12) is predominant when j; - £; F jf- 4; and increases
quadratically with £, However one must take into account the geometrical
coefficient

A i +1/2 i AR Tt
Gy = (-) V(23 + 125 + 1)

1 1
-z 0 2

given in the last but one column. This coefficient is larger when j; - £;
= jg- 2¢. The asymptotic values are given in the last column,

For large values of £ and with respect to the deformed central potential
for j; - £; =j - £; as a unit:

— the deformed central potential is of the order 1/2 when j;- &, F & - j¢;

— the deformed L - S potential (9) is of the order £ when j; - £;=j,- £;
and 1/4 in the other case;

— the deformed L - S potential (12) is of the order £ when j;- £; #j¢= £¢
and remain constant in the other case.

The behaviour of expression (12) is a vector behaviour: the difference
vYi- s is also found to be the ratio of the geometries for a transfer of spin
and a scalar interaction:

li lf J ﬂi ﬂf J
1 1 - Yi=Yf 1 1
2 2 2 2
. . J3T0+1) . .
Woie  J o J

However, the transfer of spin does not increase linearly with the angular
momentum as the expression (12) does.

The consequences of these two deformed L- S potentials on the reaction
amplitudes will be very different, chiefly in the angular region where co-
herence effects can occur, that is forwards. In the first approximation
these potentials act on the polarization and not on the cross-section.

In the diagonal potentials the derivative term disappears in expression (12).
It remains:

&b 1L wyeny + B (13)

The difference between the two deformed L - § potentials is only a constant
term which vanishes when A =0 (the two of them give back the I.. 8 potential
of the optical model).
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2.3. E.C.IL.S.

The full Thomas term has been introduced into a coupled-channel code
which uses the sequential iteration method [21], The derivative term would
be quite a difficulty for the usual coupled-channel codes as the most effi-
cient numerical methods are valid only because there is no first derivative
in the set of Eqs (6).. Our method is to write the set of equations as follows:

y(')l +(V00 - Eo)Yo = 'Z ng ¥; (14)
. Jj#o
YV, - By =—ZVij ¥ iF0 (15)
J#i

Equation (14) holds for the ground state and Eqs (15) for the excited states.
One must find a solution which has only outgoing waves for Egs (15). The

starting point of the iterative process is yi(o) , normalized solution of

Eq. (14) without second number for i=0 and y{¥ =0 for i#0. The current

equations of the iteration are ’

n
y(()n) +(Voo_ E)y(()n) = _Z VOJ Y§n)
j¥o

yi(n) ¥ HVy -E +Q)y(in) == Z Vi yg_n) 'Z Vi y§"'1’ = Vu yo
j<i j>1

This method is a '"'sequential iteration' because, for any order n of iteration,
the wave-functions are obtained for increasing values of index i and are
used for the wave-functions of greater value of i, the value i =0 being the
last one, We call this method E.C.1.S.: '"équations couplées en itérations
séquentielles",

In the first step, one has to obtain the solutions of the equations without
second member which are normalized o a plane wave plus an outgoing
wave, as

§ (r) —> F, +¢{? (G, +iF))

where F; and G; are the regular and irregular Coulomb functions for
equation i. The starting point being y{® = §, and y1(°) =0, the first equation
is:

" I3 0
¥y $ (V11-E+Q)y1)=-V01 y(o)

A numerical solution is ny. The sought solution is

= 1 s
y® = 0, + af —— CP (G, +E)
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]

The value of « is the Wronskian of the solution n, with G; +iF; and C{)
is the sum of «C{® with the Wronskian of n, and F,;. Then, the same method
must be used to solve the equation

Hn 1. 0 1
y(z) +(V22-E+Q)y(2)—-V02y(o) "V12y(1)

The end of the first iteration is the solution of

m" -EWD 2. (1)
Yo *(Vg-Elyg va i
170

but now we must add (1 +e)§, to the numerical solution 1, (a being obtained
in the same way as above), in order that

Y =ngt(l+a)g, —=> F, +CP) (G, +iFy)

The first iteration is then finished. One can now proceed to the second
iteration. If the differences C(il - C(iz) are not small enough the iterations
are followed until the differences C{™1 - C{" can be neglected for any
value of i, )

The convergence is faster if the energy is increased, It can be
accelerated by Padé approximants. The convergence is easier when the
total angular momentum increases, As the convergence test needs, at
least, two iterations, one can limit them to one as soon as two of them
are sufficient for the last value of the angular momentum.

The advantages of this method are:

(a) Animportant reduction of computation time, The time needed
increases as the square of the number of equations instead of its cube. It
needs more storage in the computer but this disadvantage can be limited
if large steps of integration are used. For 20 MeV protons, our methods
allow steps of 0.4 fermis without spoiling the results.

(b) A very convenient comparison with DWBA. One can consider results
with one, two, three iterations. Furthermore, the first iteration leads to
already good results for a double excitation, which cannot be studied by
DWBA.,

‘(¢) It is specially fitted for the integro-differential coupled equations
which are obtained with non-local potentials or a finite-range interaction
with antisymmetrization.

However, for usual coupled equations, it is advantageous only when the
number of equations for the ground state is small with respect to the total
number of equations. :

To use the full Thomas term, we only had to add the derivative term
to the second member., The first derivatives of the wave-functions are
obtained by a seven-point numerical derivation,
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“Mg (p,p’)
49.5 MeV
2% 1.37 MeV

— L Sdeformed)

——_ L Snon-deformed)

FIG.1. Coupled-channel calculations for *Mg(p.p') (rot. model).

The deformed L S potential (12) has been parametrized as follows:

d v
Glf{(zl+z3'yl+Z4‘Yf)——{vx}+zs(‘yl ) 2 gy

x[ZogAA+1) = (yp = vy Hovg =v; - 1)]’} (16)
The full Thomas term is obtained, by putting
z,=2,=0 Zg=zg=Zg=2zg=1

The coupling (9), is obtained by setting

S0

Z,=2,=25=24=0 2g R, =
In the rotational model, the interaction can be increased by
Zq=Z,=0 zg =1 Z3 =Z5=2g%A (17)

which 11as about the same effect as the multiplication of the deformation of
the L. S potential by A.

2.4. Resulis

The first coupled-channel calculation was performed for the inelastic
scattering of 49.5 MeV protons on the first 2* of Mg, These experimental
results were studied with the potential (9) by Rush and Ganguly [22]. Using
the DWBA parameters of these authors, Sherif [12] obtained a much better
fit, With their coupled channels parameters, the solid curve of Fig. 1 is
obtained., Both in coupled channels and in DWBA, the deformation of 3
potential must be 1,5 to 2 times greater than the one of central potential
in order to fit the data, We used the rotational model with 8=0.489.
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2.4.a. The large asymmetries

Let us consider a parameter A, the ratio of the deformation of the spin-
orbit potential to that of the central potential (it is the parameter of Eq. (17)).
If we assume that the deformation of the spin-orbit potential depends upon
nuclear structure, the nuclear structure is parametrized by A. Figure 2
shows that this parameter is about one for a nucleus with a closed shell for
protons and an open shell for neutrons as 62Ni. However, for a nucleus
with an open shell for protons as 9Zr (Fig. 3) or the first 2* of %Fe (Fig. 4),
A must be of the order of 2.5 to 3. Figure 5 is the cross-section of the first
2* of %¥Fe, For the neighbouring nuclei, with an open shell of protons and
only two external neutrons, the experimental results are similar, but the
amplitudes of asymmetries are smaller. So, the experimental results for
92Zr or 56 Fe are fitted with the same potentials and A=1,5, On the contrary,
for the second 2* of ™ Fe, A is smaller than one (Fig.6). The spin-orbit
effects are smaller because its wave function is orthogonal to the one of
the first 2*, which increases them. All these computations use the vibra-
tional model with B =0, 1 for 99Zr, 1.4 and 1,3 for the two 2* of 54¥e,

Figures 4 and 6 are obiained with the potential a of Table II. Figures 7
and 8 show results for the potential b given by the same authors [7], These
results are clearly worse and show the importance of the optical model,

The curves of Figs 2 to 8 could have been obtained in DWBA, However,
they are more conclusive as they show that there is no special effect due
to coupled channels, For 62Ni, the incomplete Thomas term gives exactly .
the same result if its deformation is multiplied by 2. For the first 2* of
54 Fe, with the potential a and A multiplied by 2, there are some differences
on the first bump of the asymmetry.

In this region of intermediate mass and for this energy, from the
three parts of the interaction (12), the first one is equivalent to the inter-
action (9), the second one doubles the effects of the first and the last one

;:Z t Ni (p,p’)
E 2+Q =117 MeV
< Ep =18.6MeV
05
0
— LS x0
-0.5
| I | 1 1 |
30° 60° 90° 120° 150° 180°
: Bem

FIG.2, Asymmetry for Ni(p,p') (vib. model).
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FIG.3. Asymmetry for 9Zr(p,p') (vib. model).

S4Fe(p,¢)
2%Q=-141Mev

Asymmetry c
p =18.6Mev

ec.m
Il A 1 A 1 ] >

30° 60° 90° 120° 150° 180°

FIG.4. Asymmetry for first 2* of #Fe with potential a (vib. model).

r Cross - section (mb) 5l'Fe(p,p’) - LSx0
2%Q=-141Mev m—- LSx3
" Ep =186 Mev

FIG.5. Cross-section of first 2* of *Fe with potential a (vib. model).



TABLE II. OPTICAL-MODEL PARAMETERS

. v r a wV rv LAy WD ) ap VLS s a g

Ozr 1.25 48.2 1.238 0.618 0 0 0 8.05 1.288 0.638 5.75 1.07 0.526
2Ni 1.10 62.07 1.100 0.75 0 0 0 9.00 1.300 0.55 1.14 0.98 0.55
SFe a) 1.00 61.44 1.100 0.75 0 0 0 9.80 1.300 . 0.55 5.94 1,04 0.55

b) 1.25 50.5 1.25 0.65 0 0 0 11.6 1.25 0.47 5.2 1.16 0.417

Hmg 1.1 46.1 1.09 0.67 5.52 1.4 0.35 4.11 1.40 0.35 6.47 0.96 0.58
2Ne 57.0 1.05 0.75 0 0 6.3 1.33 0.55 3.95 0.88 0.31

% Ne 59.0 1.01 0.75 0 0 0 6.5 1.26 0.55 3.97 0.90 0.33

06
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FIG.6. Asymmetuy for second 2* of *Fe with potential a (vib. model),
Y/ Ty P
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FIG.7. Asymmetry for first 2% of #Fe with potential b (vib. model).

does not contribute, 2#Mg at 49.5 MeV is different: all the parts are needed
for a good fit and only the complete interaction (12) leads to an agreement,

2.4.b., The s-d shell

The first calculations, presented in Ref.[10). and continued by Miss
Lombard, concerned the experiments performed at Saclay on some nuclei
of the s-d shell, with 20,3 MeV protons. These nuclei have quite large .
deformations and coupled channels are needed. The drawback of large de-
formations is the difficulty which one encounters in obtaining good optical-
model parameters from elastic scattering. These parameters must be modi-
fied when used for the rotational model. So, when the fit is slightly better
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5 Fe (p,p)
- 2t 0=-2.96 MeV
& 'y
: Ep =18.6 MeV
g
0.5
0
N — _L._S- x0
—_—— -L.§.-1
0.5 =
L 1 L Lo
30° 60° 90° 120° 150° 1§0°
. 8c.m.

FIG.8. Asymmetry for second 2* of *Fe with potential b (vib. model).

with a negative deformation or an asymmetric one, we cannot take-these
conclusions about the form of the target as very sure, Nevertheless, fits
obtained for 26Mg or 28Si are very good [23].

Up to now, resulis obtained by de Swiniarsky for his experimental
results 0*- 2% - 4* on 20Ne and 22Ne at 24.5 MeV are the best [24]. The
data on 2'Ne were already analysed without the full Thomas term, The
cross~-sections are fitted with well defined values of By and 8;, but the
asymmetries do not agree, as shown in Fig, 9, With a spin-orbit deforma-
tion twice greater than the central one (which seems to be a general rule
in the s-d shell), the asymmetries are reproduced and the calculations
confirm the B8, and B, already obtained. Data for 22Ne were analysed direct-
ly with interaction (12) and a good fit was obtained for cross-sections and
asymmetries (Fig, 10). The results of a large B, for 20Ne and a small one
for ?2Ne are in agreement with theoretical predictions.

3. MICROSCOPIC DESCRIPTION

The microscopic description takes into account each nucleon of the
target. A more precise nuclear model than for the macroscopic descrip-
tion and a two-body interaction between the projectile and a nucleon of the
target are ' needed, The interaction behaves as a one-body operator for
the target and can be expanded into multipoles. With a complete set of
creation and annjhilation operators aj, and ajp, , the reduced matrix
elements

po_ 1 t
Z, = ——1 AT, N1 (18)
ii m f §§t s pall i
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1 —CC. Calculations with full Thomas term
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FIG.9. Elastic polarization and asymmetries for 2Ne (rot. model).
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are the only elements of nuclear description which matter for the reaction.
How to obtain the amplitudes z!, will vary with the nuclear model (quasi-
particles, recoupling of particies or holes outside closed shells, etc.).
For each model, there is an expression of the Zgj. with the parameters of
this model. '

When the state |Ii> is a core, A; M 18 a creation operator of a

particle-hole state on this core,

are very important: the description of any reaction is reduced to them,
However, the notion of particle~hole excitation used here is more general

Therefore, the particle-hole excitations
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FIG.10. Elastic polarization and asymmetries for 2Ne (rot. model).

than the one of nuclear spectroscopy: it is more formal and includes chiefly
geometrical informations about the coupling, For example, let us consider
a target described by two identical particles in a shell j, coupled to initial
spin I; or final spin Iy, The particle-hole excitations to be used are quite
special since the particle and the hole are in the same shell:

I; J 1
1+J+L° f i
Z‘:J =2(-)++1 '(21f+1)(211+1){ ] . }
i3
. R J -
Especially, when I, is zero, Zj; = 2/J25+1.

For the microscopic description of reactions, we shall-only consider
DWBA-calculations (the only one we can present here), The computation
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of the matrix elements of the interaction is the same as for nuclear spectro-
scopy, excepl that two wave-functions are in the continuum, known numerical-
ly and with large quantum number. Therefore, the use of relative co-
ordinates is more difficult than the use of multipole expansions. A realistic
interaction cannot be expanded into multipoles, and we must use some ef-
fective force with zero or finite range. A finite-range interaction is a func-
tion of the distance betweén the two nucleons with a form factor which can be
the sum of several Yukawa form factors. One can separate Vo interaction
of the incoming proton with a proton of the target from V , the one with a
neutron; both interactions include a scalar, a (c:1 2), a sp1n-orb1t and a
tensor part [25].

The use of these interactions is simplified in the helicity formalism
for multipole expansions [15], First, this formalism will be presented;
almost all the geometry can be expressed in terms of the eigenvalues
of the (£+c) operator on the single-particle wave-functions., The generalized
notion of particle-hole excitation is needed.

3.1. The helicity formalism

The helicity formalism which we use here is very different from the
helicity formalism of Jacob and Wick [26, 27], although there are many
similarities, The Jacob-and-Wick formalism applies to the scattering
matrix and is the projection of the spin of the particle on its momentum,
The helicity formalism for the multipole expansion of an interaction needs
the choice of some point origin in the space, around which a multipole ex-
pansion can be performed; the spins are projected on the position vectors
of the particles with respect:to the chosen origin. For a reaction, both
helicity formalisms can be useéd at the same time.

In these two formalisms the more complicated problems are simplified,
but the simplest ones are complicated. For example, for the Jacob-and-
Wick formalism, there is no important difference in the scattering matrix,
when it is spin-dependent or when it is not. In the two formalisms one
can define a scattering matrix or an interaction which depends upon angles
between some helicity states, which are sums of rotation-matrix elements
multiplied by scattering-matrix elements for a given total spin or by a
multipole of the interaction. Parity invariance leads to the same require-
ments in the two cases; time reversal is not exactly the same. In each
formalism, the number of elements is greater than the number of inde-
pendent ones; but they are related by very simple equalities or changes

of sign. Here also, we shall only consider spin j-particles.

3.1.a, Description of a bound state

The multipole expansion in the helicity formalism starts with a some-
what peculiar description of the state of a particle with spin. In the usual
description

[4jm> = 1,(r) Z< 23 uo|jm >Y4(6, )0 >

o
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the spherical harmonic can be replaced by.a rotation-matrix element and
the spin |c> can be projected on the direction r. Then

Yz(e,qa)*,/“” B0 *(0,0,0)

o> = ) RD* (5,0,0) 2

1S

(19)

The angle ¢ is related to some origin around r as a reference frame, This
angle is arbitrary and can be introduced into the wave-function if the function
is divided by J2r to maintain its normalization. The product of the two
rotation-matrix elements can be reduced and the wave-function becomes:

1/2
. 20+1 . .
lggm> = (=) 1y (r)Z(z 1ol > RY ¥ (g 0,90 |0>
A

The Clebsch~Gordon coefficient which remains must be replaced by its
explicit value, The final result is

/
tim> = 25+ 1y0) ) ;B9 % (g, 0, 0) A (20)
A

with

2+i-1/2
€qs0=1 €1/2= (=) (21}

All references to the orbital quantum number £ have disappeared from the
description of the wave function, but there is, now, a parity €3, For a
given value of j and € ;. there is only one possible value of £, Such a
description has been used by Bohr and Mottelson [28] for the computation
of the mairix elements of a zero-range interaction,

It should be noted that there are now two radial functions which are equal
within the sign. A state described by a single radial function (a pure helicity
state) has no direct physical significance. This is because it would be the
superposition of an odd- and an even-parity state and wave-functions of
different angular momentum cannot have the same behaviour around the
origin,

3.1.b. Two-body interaction

Any nucleon-nucleon interaction is a 4 x4 matrix on the helicity basis.
Each of these matrix elements can be expanded into multipoles, The follow-
ing form can be used:

V(1,2)= Z @7 +1) D 1D Vi an <A1|<A2](-)x‘- M

oA M A
(J
xRY)ia-a W10 0:9) (22)
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where ¢, and ¢, are arbitrary angles around _f'l and ?2 and 0 the angle
between these two directions. This description is symmetrical with respect
toco-ordinates 1and 2, If ¢, 8, ¥; describes a co-ordinate system with
its z-axis along r; and ¢y, 03, Yy another one with its z-axis along ry in an
arbitrary reference frame,

A2 a
(=) TR a0t 0, W) = Z (‘)pRu,))\l-)\i(‘Pla 81, ¢1)
P

[6)) <
x R_M!_le (g, 65, 0,) (23)

The scalar-product form comes from the-independence of the total ex=-
pression with respect to the reference frame and the second magnetic quan-
tum number of the rotation-matrix elements, from the invariance with respect
to the choice of the azimuthal origin around ¥, and %,.

Parity invariance leads to the same conditions as in the Jacob-and-Wick
formalism because T and 5 behave in the same way., Therefore:

VJ

<]
)‘ixz'xl)\z (1:2)'V -)‘l-)\z (1:2)

XXy,

When studying time-reversal invariance, something must be known
about the multipoles v!. For a scalar interaction, they can only be func-
tions of r; and ry; for an L -8 interaction they can have derivative terms
and antisymmetric expressions of the quantum numbers. If n is the parity
of the multipole, time reversal invariance leads to

J _ J
Vi, T Vo

Note that there is no-change of sign of the helicity in the corresponding
relation of the Jacob-and-Wick formalism.,

For a given values of J, the matrix V{i A A, C€an be written on the
basis of Kronecker products of 2x2 matrices. There are two even matrices:

1 0 0 1 (24)
0 1 1 0
and two odd ones
-1 0 0o -1 (25)
0 1 1 0

If parity conservation applies, the two-body interaction can be separated
into an even part

ot ool fo 1
+bJ(1,2)‘0 1’®|1 0

+b-’(2,1)|(1’ é’@ll 0‘

. 1 0ol |1 o
a’(1,2) |4 1|®l0 1 0 1

I 0o 1] _[o 1
el |0 Yol (26)
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and an odd part

0 -1|

] -1 o]l l-1 o] -1 0
d(1,2)|0 1|®‘01+e(1.2) o 1@l o

0 -1 -1 0 0 -1 0 -1
+e'J(2,1)'1 0(@.10 1+f1(1,2)11 o’@’l 0’ 27)

For two identical particles a,c,d,f, are invariant when variables 1 and 2
are permuted, b’ (1,2)=b'7(2,1)and e’(1,2)=e"(2,1). Time-reversal inva- -
riance requires that a, c, d, e, f are expressed in terms of time-invariant
operators and b must change sign.

When the usual multipole expansion of the form factor of the interaction
is given by

V(|r, - 5,) =-z (2L +1)V, (r,,r,)P, (cos 8)
L

we get

(a) for an interaction which does not depend upon the spins:

J ==V (ry, ry)

1

d = ST U Vyalry T )+ +1)Vy (ry L
_JI@ 1)

T 2T+ Vg (Fp o Tp) =V, (b

=t

= 57 WV, (2], 1p) +3V,, (ry, 7y )

(c) for a tensor interaction, a’ =b’=0 and the other ones are given in
Ref.{15]. Therefore, there is no fundamental difference between a tensor
and a (@, -9y ) interaction;

{d) the L.+ S interaction will be discussed in more detail.
Between given helicity states, the ;1 -;2 or the tensor operators are

functions of the angle between r; and r, ; this angular dependence is combined
with that of the usual expansion to get the above expressions.
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3.1.c. Matrix elements between bound states

The non-antisymmietrized particle~-hoje matrix element

hi-mytjp-my

I /i - )

i = CEEIMIVEL D |Gy 3g M, = ) ()
my m, mim;

x<ijymy-m | IM >{Gpihmy - my |IMD<jimy | (pmy |
xV(1,2) ligmy > [;m; > . (28)

is the basic element of the computation of an antisymmetrized matrix
element in particle-hole:

<uufwivu,m|uggHJ>=ﬂmhh_E}_ﬁﬁnnr@y+l)
e
" s (29)

Stk

as well as particle-particle coupling:

. . T4+ v g r
VLG = ) )R @) ' .
7 iy u o
A PO B
- Z(ZJ'+1) £ : (30)
o g 2kl )
I 1 2 ;

The geometrical coefficients of these two formulae do not depend upon the
spins of the particles but only on the total angular momenta, The helicity
formalism can only simplify the computation of the £,

Let us introduce into definition (28) the description (20) for the states
and (22) for the interaction. Taking into account relation (23), we get a
product of three rotation-matrix elements of argument (¢, 8;,¢,) and three
other ones of argument (¢,, 8,,¢, ). After integration over the angles we
obtain:

I 1 RS e . .
=37 Z T e €y 6y 6, V(23 1021 +1)(25,+ 1)(255+1)

133 i1
A A A,
. 3 . 4L .
N I I I . J2 [[VJ . 0)
, ' ' ' AALA AT T
Al M=M=y K2 L

x 5, (0 )iy (v} (vy ) (v Tirodr, dr, (31)
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Let us perform the integration over r; and the summation on A; and 7\.:'[ , in
order to define form-factors for the nucleon 2:

. j' J jl
Fo@=x ) "M e JEGF0E+1)
iy 2 AL TN 1 1 ' Al -
A2, AN TNy
I
vakkz}‘)\( r)f (r)f (r)rdr (32)

This one-body form factor can be written by using the elementary matrices
(24) and (25):

i -1 0
+CJlJ (2)} 0 1!

, (2)=A; (@) LIJ S| +Bl, (2)'2

(33)

0 -1
1 0

J
+ Djijl ‘

With expressions (26) and (27) of the most general interaction, we

can see that only al and b'J matter for AJ, bJ and ¢/ for BJ, & and eV

for CJ, ! and £! for D!, Each contribution is the sum of two terms with
opposite helicities, With the parity n of the matrix, this sum in equation (32)
leads to

1 M L+ 2+l [ !
5 (=) [1 +n{-) ] (23, +1)(2j}+1) ( (34)
A=A

The matrix element is a natural parity one if 2, +4{+J is even, an "un-
natural parity' one if 4L+2]+J is odd. The even part (26) of the interaction
contributes only to natural—parlty matrix elements and the odd part (27)
for the unnatural-parity ones. The choice A! = -1/2 eliminates e)‘. from
expression (34). When the matrix for the particle 1 is diagonal in ‘the
helicity space, this geometrical coefficient becomes

_ . P I ]
] j+1/2 _ _ 4 1
Gy = () T NE I+ (35)
-3 .0 %
instead of
. 9 8 2, & 3
171/2 e - 1 1"
Gglj.l = (=)' V@i F1)2i #1228+ 1)(2 0] 1)
0o 0 o i

in the usual formalism. This coefficient is given by the simplified formula
which holds for 3-j coefficients of which the magnetic quantum numbers are
ZEeros:
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I+_J'"J'+2}
G, = (-)Irl ? Uty +Tl) (36)
i g(J +j-j"glJ +3* - e +3' - T)
where
D2 [2x4 ]
g(n)= (n;n?! = [ x3xx5.x....x'(:n ):I when n is odd

1/2
2X4X... X0 R
= Ix6%. . xn-L when n is even.

3%5X, .. x N-

and In{p} is the integer part of p. For integer values of j and j*, formula (36)

is (-')jﬂ(jI ! j) .
0 0 0

When the matrix is non diagonal in the helicity space of particle 1, the
geometry is:

Ty
=) NELFDEED | I R

il i
1 -3 !

| ]
N

Recurrence relations between Clebsh-Gordon coefficients gives:

i
J 4+5; -2 (jl"'%)"’(')hﬂl (:ll1+%)

@5 = (1)
JIG+D)

which can be expressed with the eigenvalues of -5 as follows:

!
oy T for a natural parity matrix element

1
ntnt2

NI(J +1)

for an unnatural parity one

Using these notations, we get two form factors for a natural-parity matrix
element:

J
ik

Ay (2) =G f[a’(l,z)m;lji b-’(2,1)] f, (ry ) (v, )rydry
(37)

I .| I I I 2
Bi,i (2) = Gi it f’:b _(1’2)+“i11‘i c (1'2)]fj1(r1 )fj,(r1 Jrydr

For an unnatural parity one, we get Cixii (2) and D}Ij. (2), with 4, e, 1,
instead of a, b, c. The unusual choice of matrices (24) and (25) was done
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in order to get similar formulae for all the form factors., Bringing back
the form factors (33) into the matrix element (31), we get:

I o oyt L] I . 2
Fing = GV 7 Gig f[Am; (2)*ej,; By (2)ij; (ry )iy, (ry Jra dry (38)

for the natural-parity case. For the unnatural-parity case, A and B must
be replaced by C and D,

The nucleon-nucleon interaction is often written in the isotopic spin
formalism:

V=Vy +V,(0,+09) +(V, +V, . (0,+05)) (T, * T5) (39)
There is a proton-proton interaction, T =1:
Vp = (V(.J +VT)+(VO +V0T)(01 ' 0'2 )

and a proton-neutron interaction, half-sum of T=1 and T =0:
Vn = (VO' Vr ) +(V°- VcT )(31 .32 )

In the exchange term, the helicity formalism takes into account the permu-
tation of space and spin co-ordinates. Permutation of isotopic-spin co-
ordinates must be done:

Vech =V Vech =V -V
P P n P n

3.2. Application to nuclear reactions

The application of the helicity formalism to DWBA is almost the same
as to bound states: two wave-functions are in the continuum., We shall first
consider the simplest case: the inelastic scattering of a nucleon on a spin-
zero target with a residual nucleus which can be described by a single
particle-hole state.

The expansion of the distorted wave is usually written as [29]

XY &7) = o= Z 11X, (kr) < £1/2 uo|im D 2 1/2 wo'|jm >

jmpp’ o’
xY9¥ (8 ) YL (6., ¢) 0D (40)

where o is the spin projection of the incoming plane wave on an arbitrary
axis and ¢' is the projection at the point r on the same axis, If we choose
this arbitrary axis along k, we introduce the Jacob-and-Wick helicity A
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instead of . Then, transformation (19) can be performed for |a' >, in-
troducing the helicities |>U>. The wave-function (40) is now given by

X9 &, 7) = —t— Z(zm)x” (e )ED % (g, 6,4, 10> (a1)
N T
where
;i ERVY
X)‘)\-= T Xl=]"1/2.j (kr)+1(-) g X2=j+1/2,j (kr) (42)

With the same transformation, the outgoing wave is given by

=1 z (i) *
=—— ), Gi+DE,RD Mo, 0,0 ) 1 (43)
2k 27 e

x{ ¥k, )
where X}, is X),. with -i instead of i.
The reaction is described by the helicity amplitudes

1
- - - m _V—f_ =) - If +) - Ii
Lo ugio Ki o Kp) = = 5opm vi> CK,) e, Pl VIO &L Fw > ae)

for an incoming nucleon in the direction k with the helicity o; and an out-
going nucleon in the direction kf with the hel1c1ty og . The nucleus initially
in a state x/xll is left in a final state r[z (with helicity u¢) described by a
particle Jp and a hole jp; m is the reduced mass of the nucleon, v; and Ve
its velocity in the initial and the final state, The normalization has been
chosgen in such a way that:

o,»> = . _1
S5 ki ke ) =5 Z |25 cl(kl,kf)l
o1 Ogky

The asymmetry is related to the non-diagonal elements of the 2x2 matrix:

_ do » -1 . - - % - o
Fouop = [zﬁ(ki’kf)] Z fotng oi(ki’kf)fof.pf; o; Ky, K¢)
ofbf :

The amphtude (44) is easily calculated if the axis of quantization is

along k;, ¢ and'y being zero and 6 the angle between kl and kf. The onl;
difference between free waves and bound ones is a factor (l/k)J(ZJ +1)/2m,

The rotation-matrix element of equation (41) becomes:

Gy 2 2 yull) %3 2
zRMf (k; ke JR') *(ky,r)
1
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and all that is needed in order to use formula (28) is to couple j; and j¢
to Iy. The result is:

r

ofuf_a(e) = - <_L> E; k Z (- ) J(zji+1)(2jf+1)(21f+1)
Jj gy
o If 0
X Tm; o4 (B)f] (chf) Iyl o) (45)

mj =0f M

" If a normal-parity state has been excited, integration over the particle-
hole variable gives the two one-body form factors AJ (2) and B (2)
for J =1;. The second integration becomes:

I = (i 1 f _ygript]
Eitigop. iytyop = ) G” AJJ @)% o126 g1 M

~Jf is (i + 1) +(=)1* I Gr+%)t
xxofl/ZXc:.l/2]- —= =2'5; i (2)
1 JIT+1) P
Ji*tigtls 3 2
[Xofl/z Xop1/2 = 1(-) x¢ ¢ 1/2 x! 1/2} } rgdry (46)

with n=1., For an unnatural parity excitation, A and B must be replaced
by C and D and n=-1. Changing the signs of o; and o;, the matrix element
(46) is multiplied by - n{-)/i*J*lf and the parlty relations are fulfilled for
the helicity amplitudes (45). The amplitudes are only needed for o; = 3.
Going back to the usual wave-functions and with the notations

=fF(2)le=if11/2.if (r)X¢i=ji*1/2-1'i (r)dr (47)

where the first sign is related to the outgoing wave and the second to the
incoming one, the following expressions are obtained: for a natural-parity
transition

I + - ;-

ot - it g {<A+ 7 'YfB> <A+Yl ¥e B)}
VRN (48)
Tpliel /B, fylig 2172 i (T +1) @ +1) -

when j; +j,+J is even and

I icm i . -

£ . L. = ih If G_J {(A-M. B> <A. Yi- Yg ]3> }
§(3g1/2), ip G + 172, (49)
PG v JI+1) Teas IT+T)
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when j; +j1+J is odd. The = sign refers to the sign of o;. For an unnatural
parity transition A and B must be replaced by C and D, v, ~v;- by vty t2
and the parity condition on j; +j;+J inverted,

Antisymmetrization is obtained with

T T A
fjp(jfof)- (3; o)y,

] - —y tintiig g 4
fjp(jfof). ipGy op) 2 =) @Jt+l)y
r b I

instead of £ in Eq.(45). The same calculation is needed with the initial
distorted wave instead of the hole function, for all the J! values consistent
with the entering angular momenta., For a given J, the matrix elements
are natural parity ones or not according to the angular momentum of the in-
coming particle. It is more difficult to foresee the effect of a given inter-
action, !

In a more complete description of the nucleus, the components (18) of
the excitation must be summed. Expressions (48) and (49) are indication of
the geometry needed in a coupled-channel calculation.

3.3. Two-body spin-orbit interaction

The relative spin-orbit interaction is
V(|r1 -rzl)l:(rl rz)x I V2 (01 +02)] +L2 +1(r1 xrz)

1. d 1 d> 1> -
Ta dr2 -r_ldrl +¥r1x(r2xL2)+

P x(;lxﬁl)]-(&’l +a,)  (50)

"SIH
- o

This expression is simple in relative co-ordinates. The multipole expansion
is much more complicated, as indicated by formula (50). When looking how
to replace a soft-core r-§ potential [18] by the sum of two Yukawa form-
factors, the ranges are 0,55 and 0, 325 fermis, the depth 156 and - 4400 for
Vo, 116 and - 2200 MeV for V. This potential is negative at small distahces
and positive at’large ones, These small ranges allow the use of a zero
range limit, However, if the form-factor is a § function, the matrix ele-
ments vanish. Thus, the zero range limit corresponds to a ' form-factor.

3.3.a. Finite range

The multipoles for the helicity formalism are listed in Appendix B of
reference 10, They are used in the code DWBA 70 [25].

There are five one-body form-factors for a natural parity excitation.
In the code notation, they are

Fi(r) = A(r)+B(r) =Y 4 A (r) M+A2(r) = e on +ys+2)

«/—J(J_+i-) J(J+1) J(J+1)
+ By(r)(y; +y +2)+ {Aa(r)+Bs(r)L—1—- (51)

NI +1)
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For an unnatural-parity excitation, thére are only three-of them

- yitye+2 (vi +ye +2)°
Fs (r) = C(r)+D(r) o +Cu(r) Ty (52)

Each of these one-body form-factors dependé on the multipoles of V( lrl- I‘z')
in such a complicated way that no relation between them can be seen,

For a natural parity excitation, the interaction (51) includes a deriva-
tive term as the collective interaction (12) did. In the limit of large angular
momentum £, the microscopic interaction (51) exhibits the same structure
as the collective interaction.

In an interaction V,+V (01 -02), V, leads to an A type form-factor
and V, to a B type one. Taking into account the geometry (36), the complete
interaction is:

A(r)+B(r)+FLs(I‘) when -ji-zizjf-lf
%A(r)+B(r) +IF g (r) when §i- & Fie- g

For an unnatural-parity state, the interaction (52) does not include
derivative terms, In contrast to the natural-parity case, the interaction is
stronger when j; - £; =js- £f. Including an interaction V, (61+03) which gives
C and D type form-factors, the total interaction is:

1 . T .
IC(I‘)"'D(I')"'!FLS(T) if Ji= 4 =i 4
C(r)+D(r) +F4 (r) if Ji- LiFie- &

The antisymmetrization effects are more complex than for a central
interaction. It is not possible to discuss the complete expression for a
finite range.

3.3.b., Expansion for small ranges

The zero range limit of the helicity multipoles is obtained when all
the Vj(r;,rp) are replaced by 6(r;-rg )/rf. For an interaction
{Vy+V, 3, -G} 6(, - 7;), one gets:

AT VIRY2 = V2l y i
(- )]1 iz GJ, i GJ " {Vo 4 .;Y(J)fi-‘yl) v3) } natural parity

(53)

i) +y1+2 +yo+2
el 6l V1{1+(71 Y1+2)(ya+ya+2)

T0 +1) unnatural pax:lty

The exchange term includes sums of products of a 6j coefficient and l
(=)¥%h G’ it G]l j - This geometry can be reduced to the one of formulae (53).
If the mteractmn is defined by its intensity for each set of values (S, T),
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only the components $=0, T=1and S=1, T=0 remain when direct and ex-
change terms have been summed. N

Using this approximation, the multipoles of a tensor or an LS inter-
action disappear. An expansion of the interaction with respect to its range
must be performed:

V(r) = Z Cn6(2n) (r) ) (54)
n=0

To define the coefficients C,, let us consider the Fourier transform of V(r)

W) = [ewvieyar- ic,, Jetor smieyar - i (-)"Cog®
n=0 n=0

Thus, the C, are the coefficients of the expansion into powers of g2 of the
Fourier transform of V(r). They are also related to the moments of V(r),
which are integrals of V(r)r®®, Integrating by parts, the interaction (54)
is changed into

6(!'1 I‘2) Z C Al

where Aj acts on all functions of r; in the radial integral. In peculiar, for
n=1, V; must be replaced by

5(ry-rg) [ a2 J(T+1)
-T-[wrl-T fjl.(rl)fjl(rl)

with the notations of Eq. (31).

"An interaction of range u and intensity V corresponds to a zero-range
interaction of intensity Vu8, When the zero-range mterac’uon does not exist,
the related zero-range limit interaction has an intensity Vu®. The proton-
proton L3 interaction has a zero-range limit of -8 MeV, including the part
of range 0,325 fm corresponding to - 16 MeV and the 0,55 one corresponding
to 8 MeV,

For the zero-range tensor interaction [15], the term n =1 also vanishes,
The limit is obtained with n =2,

3.3.c., Zero-range limit LS interaction
.. . This approximation can be applied to the one-body form-factors of the

LS interaction. Let us consider a particle-hole excitation with radial
functions fp(r) and f,(r). Setting

Vy(r) =Glp 1, (r) £(r)
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we obtain

[J(J+1)(a‘;’ +al-2)- 1]VJ [1 (o)l i 0102][- S V:.(zr)
+ (’YP +‘Yh =Y~ 'Yf) o dI‘ —{V. (r)}:l [1 +(_)lp+ﬂh+]i|

« [ +7,+0 T o) (AL Lo nd 4 600)] 59)

with @, =al; and a, = of;.

This formula includes natural-parity as well as unnatural-parity exci-
tations. The expression [1+(=)%*™h*]] is a 2 for natural parity and vanishes
for unnatural parity. Thus, there is a derivative term only for natural panty
excitation,

The interaction (55) is invariant under antisymmetrization. Direct and
exchange terms add for T =1 and cancel each other for T=0. This result was
a priori evident: the LS interaction exists only for S=1 and the relative
angular momentum is conserved. The zero-range limit selects the smaller
relative angular momentum which is 1. In the isospin formalism, £=1, §=1
involves T'=1, So, the depths are -16 for Vp (twice the direct term) and
-8 for V.

When the excited state is a collective one, there are many nucleons
which take part in the excitation a.nd it seems that the terms with Yp OF W

must cancel each other and, also, f (r) {fh(r)} The interaction (55)
becomes

[ - ¥y, = v + 1= 233 +1)] B -y y) L v (o + 20y, -9 p DL

This expressibn is not Hermitian. Its Hermitian part is:

[y = )y =7 +1) - 23T +1)] =~ - 2y, r dr

(56)

It is expression (12) multiplied by - 2, within a factOr 2 before J(J +1).
Note that expressmn (56) is obtained by using — 2 ar {V (r)} as an approxima-
tion for = fp(r)d {f,(r)} and the factor 2 before J(J +1) disappears if u is

replaced by 1. The same expression is obtained at the high energy limit,
when Tp and v, are small with respect to v, and ;. For an unnatural
parity excitation, the same approximation leads to:

VJ(r)

[y Fp +2)y; +yp +1) = 23(T +1)] —5= - (v, +7f) {V (r}
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In the peculiar case J =0 and natural parity, summation over all the
nucleons must lead to the optical model, Interaction (55) becomes:

2y, 2o 4ty v )L L v (o)

The factors v, disappear after summation on two complete shells
(2,j=2 +1/2) and (4,j=£~1/2) with the same radial functions, For a
mirror nucleus, the I *S interaction with a depth of - 16 MeV is equivalent
to 12 MeV multiplied by the nuclear density, that is 9 MeV if ry =1.1 or
7MeViir,=1.2, : .

Keeping Vu’5 constant, the matrix elements increase very quickly when
p decreases, Although they are still smaller than their zero-range limit for
a Yukawa form-factor with range u =0, 5, the results of a DWBA calculation
for an inelastic scattering is almost the same as with interaction (51). Thus,
the use of this limit is fully justified.

3.4. Shell effects

In all the expressions obtained, the eigenvalues of (f:';) have a primary
importance., There are two limiting cases:

(1) recoupling in a single shell: vp =vy =v
(2) anucleon £,j=4+1/2 is excited into £,j=4£-1/2 (Yp= T =24+1

Amongst the other possible excitations, the one with jp - £, =jp ~ & is
quite similar to the first case and the one with j, - £, #jy - £, to the second
case. Let us consider only a natural parity excitation and the zero-range

2
£
Ed
g 52y (p,p)
05 2% Q =317 MV {
Ep =18.6 MeV }

=05 | | ———Vig= 6
—_— VLS = 0

1 i . ! I I -
30° 60°  90°  120° s w0t g

FIG.11. Asymmetry for BN in the microscopic model. The mixed curve is obtained with V, =0, the
dashed oge with V; 5=6 and the full one with V| g=12 MeV, where V| g Is twice the direct term.
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—
»

o
* — V= 12
5l -—=-Vig= 6
< Zr(p,p') {i ———— VLs =0
05

I~ 2% Q=-218MeV
Ep = 20.3 MeV

| ] 1 | 1 [
30°  80°  90°  20°  150°  180°
Scm.

FIG.12. Asymmeuy for *'Zr. Same notations as for Fig.11.

limit. In the first case, th_e;re is no contribution coming from a (& *&) or
a tensor interaction. The L -8 interaction is

Vi(r)

[ - ¥o) - 7 +1) - 2303 +1) +27] 54 2 (- ) L)

r

£ +2y-2m)2 19y (o))

It is almost the macroscopic interaction, In the second case, the geometrical
coefficient of Vj(r) is smaller and the (31 -32) interaction is more important
since it is multiplied by (2£+1)(y; = v¢)/J(J +1). The effects of the .- 8
interaction is steeped in those of the other parts of the interaction,

3.5. Results

The target is described by the wave function obtained by Gillet
et al. [30] for nuclei with a closed shell, The open shell is described by
quasi-particle excitations and the closed shell by particle-hole excitations.
Schaeffer [31] has shown that, 'when the proton components are multiplied
by some factor in order to fit the B(E2), and the neutron component by
another factor such that proton and neutron deformations are the same, the
‘cross-section of inelastic scattering is reproduced by a DWBA calculation
including antisymmetrization. But asymmetries are not fitted,

3.5,a. Closed-shell effects

The zero-range limit of the L.°38 interaction was used in the first cal-
culations [32]. Figure 11 shows results obtained for 82Ni, in the same
conditions as for Schaeffer calculations. The three curves are no spin-
orbit, - 6 MeV and - 12 MeV respectively., The fit is definitely better at
forward angles, including -8 interaction, but the discrepancy remains at
backward angles, Around 100° the agreement is worse,
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a(8) mb/ sr

N

90Zr (p,p)

2*0=-218 MV
Ep = 203 Mev

-
T

05 |-

02

01 F

1 [ I | Ly
60° 90° 120° B0°  1.0°
8cM,

FIG.13, Cross-section for ®*Zr. Same notations as for Fig.11.

Figure 12 shows results for %Zr in the same conditions. An L .S inter-
action of - 12 MeV gives a good amplitude for the asymmetry around 70° but
no agreement is obtained above 90°, The oscillations of the calculated curve
are slightly at smaller angles than the experimental ones, and the first
bump is weakened. Effects on cross-section (Fig.13) are greater than for
2Ni, but quite similar to the ones in the macroscopic model,

For Ni, the amplitudes of proton configurations were multiplied by 2.
The main contribution is (2p; 5, f.,'/lz). The neutron configurations are
numerous and emerge from the shells 2pg/p, 2Py1/p, f5/0 and gqjp. For *Zr
the main proton configuration is a recoupling in gg/9; the neutron amplitudes
were multiplied by 2. 75 and the most important configuration is (2d;/, - g;}z )
Results are not very sensitive to the neutron-proton ratio, However, a
calculation with protons only leads to a cross-section which depends drastic-
ally upon the f.-§ interaction and an asymmetry which does not agree with
the experiment,

As shown on Fig.14, differences between finite range and zero-range
limit for the I.*S interaction are small,

3.5.b. The two 2% states of *Fe

The first two 2* states of **Fe are described mainly by a recoupling in
fq/9 shell and (2pg/; - f.',}z) for protons, (2pg - f:,}z) for neutrons. The first
2* is mainly the recoupling in the f; s2 shell and the second one, the excita-
tion, of a proton into the {43 shell,

Figures 15 and 16 show the asymmetries and cross-sections obtained
without L« S interaction, with a zero-range one of intensity - 16 MeV and a
finite-range one, The agreement is worse than for %°Zr because the maxi-
mum of the asymmetry is found at 80° instead of 90°, Backward values are
too small, Fit is better without antisymmetrization. Almost always the
-asymmetry is more negative at backward angles when one takes into account
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FIG.15. Cross-section for first 2* of *Fe in the microscopic model.



IAEA-SMR-8/8 113

*“Fe(p,p’)

z + -
£ 2%vQ = -1.41 MeV
€
€
& Ep = 18.6 MeV
<
0.5
0
—=—= Z&ro range
—..= finite range
R “ .  without exchange
-0.5 —
| | | ] ] |
30° 60° 90° 120° 150° 180°
c.m.

FIG.16. Asymmetry for first 2" of %Fe in the microscopic model.
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FIG,17. Asymmetry for second 2* of Fe in the microscopic model.

antisymmetrization than without, The Serber force used here can be inap-
propriate when an I..3 interaction is addéd. As shown in Fig. 17, the effects
of L+ S interaction are not so clear for the second 2* state. These'curves
are obtained with the potential a. Results with potential b are worse: for
example, the second 2% is affected more by the L* S interaction than the
first one, but the oscillations are opposite to the experimental ones. - The
angle of the maximum for the first 2* changes slightly with the potential.
The bad fit can come from the description of neutrons by only one im-
portant configuration. Figure 18 shows results obtained without antisym-
metrization when the first 2* state is described by a recoupling in the fas0
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FIG.18. Results for *Fe(p, p*) obtained with a single configuration,

shell and the second one by 2pg, - f7/2 ; the central interaction is :
-10[1- (d; -6y )] with a Yukawa form-factor of range 1.4 fm, The curves
are obtained without and with one fourth of the I.- S interaction in order to
simulate the effects of other configurations by the relative enhancement of
the central interaction., There is a large.effect on the first 2+ state with

a maximum of asymmetry at 75° instead of the eéxperimental 90°,

The two 2% states of % Fe can be interpreted as mixing of these two
‘configurations for protons and many configurations for neutrons, our de-
scription being too poor for neutrons. The asymmetry is dominated by the
re-coupling in £, /5 shell, This configuration is the main one for the first:
2* state and is weak for the second one, but its effects are clearly seen.

If the computations of Fig,.18 are completed with antisymmetrization,
asymmetries become negative,

3.5,¢c., Use of cut-off

Fits with the macroscopic model are far better than those of the micro-
scopic model. In the macroscopic model, form-factors are placed at the
surface of the nucleus, while in the microscopic model they are pushed more
inside, With a finite-range interaction there is almost no difference between
the use of harmonic-oscillator wave-functions or solutions in a Saxon poten-
tial for the bound states, The microscopic description is insufficient (for
example, for B(E2)). This description seems to neglect certain components
and a better description should give form-factors more at the surface,

_ Furthermore, a local potential is used for the unbound functions, but
antisymmetrization corresponds to a non-local effect for the transition.
A non-local potential is known to reduce the wave-function inside the nucleus.

For these two reasons, we have multiplied bound functions or free waves
by a damping factor, Sometimes, a better fit is obtained at backward angles
but we did not find a systematic effect. Although the use of a cut-off is fully
justified, it does not seem to be the solution,



IAEA-SMR-~8/8 115
3.5.d. Unnatural parity states

Only one case has been studied up to now: the excitation of the 0* state
in *N of which the ground state is 1*. For unnatural-parity states, the
tensor interaction is important as was shown with the cross-section of
this inelastic scattering [33]. With an L*S interaction, the oscillations
of the asymmetry are, at least, 20° in advance compared to the experimental
ones [34].

4. CONCLUSION

When the asymmetry of the inelastic scattering is taken into account, the
microscopic model yields information on the structure of the excited state,

A nucleon-nucleon LS interaction must be included. Studies on nuclei with
a closed shell show that, for a natural-parity state, there are not only simple
excitations of the open shell, but also polarization of the closed shell, Equal
excitations of neutron and proton shells seem to be a good assumption. Large
asymmetries are related to a simple excitation of the proton shell with many
components for the neutron shell.

Besides a microscopic description which is perhaps not valid, a nucleon-
nucleon interaction is necessary for these calculations. As is usual, we
used a Serber force of range 1,4 fermi which leads to good fits for the in-
elastic cross-section. This forceisonly T=1, S=0and T= 0, S=1. From
the studies of the nucleon-nucleon interaction, we derived an L *$§ interac-
tion with so small a range that it is alinost only T =1, S=1, This force
is similar to a T=1, S=1 central interaction with a very small range. The
Hamada-and-Johnson T =1, S=1 central force has the same strength as
the T.-§ interaction for the range u /2, but with a change of sign and is much
smaller for the range 1 /3. There is no complete justification for the inter-
action which was used.

By comparison of microscopic calculations with and without spin-orbit
coupling, some parameter A can be defined, which ranges from 0 (no effect)
to 3 (%°Zr) and characterizes the nuclear structure, For example, A=3
corresponds to a recoupling of two protons in a shell and a collective neutron
structure. A macroscopic calculation with ;5= A, gives good fits.
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NOTE ADDED IN PROOF

Since the lecture given at Trieste, a difference of a factor 4 has been
pointed out between my own notation of two-body spin-orbit interaction and
the Hamada and Johnson one, Consequently, I overestimated this inter-
action by a factor four, After correction the two-body spin-orbit inter-
action is much smaller than the optical-model one and not slightly stronger.

In fact, the value used here seemed quite too large, but the Hamada
and Johnson value, after correction, seems to be too small.
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A UNIFIED THEORY OF NUCLEAR REACTIONS AND BOUND STRUCTURES AND CLUSTER REPRESEN‘I.'ATIONS.
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quantitative considerations; 5. Discussion of some general properties of the unified theory of nuclei;

6. Conclusions.

1. INTRODUCTION.
As a starting point for a quantum-mechanical description of a many-

particle system one can use the time-dependent Schrddinger equation for
the many particle wave-function ¥

- ho .-
HY = £ ¥ . (1)
where
A p'z A
H=z I‘VI+ZV(i,k)-Tcm (2)
i=1 i>k=1

is the Hamiltonian of the system where the kinetic energy of the centre of
mass T, is subtracted.

Usually, one. tries to solve Eq.(1) by expanding ¥ into a complete ortho-
gonal set of eigenfunctions belonging to a certain Hamiltonian Hy. In nuclear
physics, very often products of single-particle shell-model wave-functions
are used. However, in this way, it is practically impossible to treat nuclear
reactions of complex nuclei as, e. g. the scattering of deuterons or a-particles
on other nuclei. This is because the expansion of the pertinent scattering
wave functions having the correct boundary conditions into a fixed set of
single-particle shell-model wave-functions becomes very complicated.
Therefore, one has to look for a method which allows from the beginning
the boundary conditions which belong to the considered reaction process to be

* These lecture notes were rewritten by D. Clement, University of Tiibingen, Federal Republic of
Germany.
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introduced into the ansatz for ¥, This can be done in a basically very simple
way by formulating the Schrédinger equation (1) as a projection equation!:

h
<a\I:]H-i—5%—]\1r>=o (3)

As usual, the Dirac brackets indicate that one has to integrate and to sum
over the whole range of space- and spin-isospin co-ordinates, respectively.
If 67 describes a completely arbitrary variation of ¥ at a given'instant t in
the function space which belongs to the above co-ordinates then Eq.(3)

means that
h 3
< i at> v

must be orthogonal to any arbitrary function in this function space. This will
evidently be the case only if ¥ obeys the Schrédinger equation (1). Therefore
Eq.(3) is just another formulation of Eq.(1) if 6% describes a completely
arbitrary variation of ¥. However, as we shall see later on, Eq.(3) allows
us to introduce from the beginning the correct boundary conditions into the
wave-function .

If we make for ¥ the ansatz

¥ = | exp [% Et:| (4)

and insert it into Eq.(3) we obtain the reformulated stationary Schrédinger
equation

sy|H-E|yp =0 ) (5)

In the same way as for the usual time-dependent Schrédinger equation any
time-dependent solution of Eq.(3) can be represented as a linear super-
position of stationary solutions of Eq.(5). Therefore, in our further con-
siderations we shall stick to the more simple Eq.(5).

We shall now briefly discuss some general properties of the solutions
of Eq.(5) which we shall need at a later stage.

Let us make for ¢ the ansatz

v=2aq +fak¢kdk Eggakcpk (6)

.

where a, and a, are discrete and continuous linear variational parameters?.

1 Why we prefer to call Eq.(3) a projection equation and not a variational equation will be discussed later.
% How one chooses the functions ¢; and ¢, for a given problem will be discussed in section 2 by means of
some special examples.
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By inserting this ansatz into Eq.(5) we obtain a coupled sét of integral
equations of the form

______________________ (7)

where k! can assume discrete and continuous values. The set of Eqs (7)
follows from the fact that the variation 6y is obtained by any arbitrary vari-
ation of the discrete and continuous linear amplitudes a,

.1 =gll§6 a; Py (8)

If the ¢, form a complete set of functions of the co-ordinates of the many-
particle system considered then the eigensolutions of the coupled Eqs (7)
are equal to the time-independent solutions of Eq.(1). We wish to emphasize
that the functions ¢, need not be orthogonal to each other but only linearly
independent.

When all degeneracies are removed then the eigensolutions of Eqs (7)
are mutually orthogonal. This will be the case even if we restrict the
number of variational parameters in the ansatz (6). To prove these ortho-
gonality relations we consider the two normalized solutions ¢, and ¢p:

Y= ﬂfa';cpk (9a)

Uy = gé Lo, (9b)

which belong to the sets of equations

o |H-E [y >=0 (102)

<':pkl H - En" wn' >=0 (10b)

After multiplying all Eqs (10a) by (a{:')"< and (10b) by (a:)* we obtain by
summing or integrating all equations over k:

(wn,|H-En|'([/n>=0 (11a)

<y |H-E,|¢,>=0 (11b)
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When we subtract the complex conjugate of Eq.(11b) from Eq.(11a) then due
to the hermiticity of H we get

e |y > = 8(n, ') (12)

<y [H]y,> =<v,

(13)

where the symbol &(n, n*) means the Kronecker symbol é,,» in the case of
discrete n and the Dirac §-function §(n-n') for continuous values of n.

Equations (12) and (13) show that even if we restrict the number of linear
variational parameters to some finite value, i.e. we only work in a sub-
space of the Hilbert space, then we have the result, that 1) any two solutions
Yn and Yy are orthonormalized, and that 2)inthis sub-space the Hamiltonian H
can be represented by a real diagonal matrix. This corresponds completely
to the behaviour of the usual Schrédinger equation.

In a practical calculation one has to restrict the number of the linear
variational parameters, i.e. the number of trial functions ¢, in the ansatz (6)
for the wave function y. It is quite reasonable to neglect in expression (6)
all those terms ¢, which can be expected to have a very small amplitude a;
in the final stationary solution of Eq.(5). Anindication for this is the following.
Suppose, in a first approximation, that there is a given set of functions ¢,
which have energy expectation values(cpk |H|cpk> near to the considered energy
value E of the system. Then it can be shown that any function ¢, for which

o |H[o0,>

—_— 1 14
E - <{o,H|o,> (4

will have a relatively small amphtude a,. In other words, a function @,
which has a small overlap <cpk|H| :pu and whose expectation value of the
energy <{9,|H|9,> lies far away from the energy E of the system, will give
only a small contribution to the wave function . For a more detailed dis-
cussion of condition (14) we refer to Ref.[1].

In the following parts of this paper, we shall first consider some special
examples which will show how the correct boundary conditions are introduced
into the ansatz for the wave-function ¢ of a given reaction process or bound
state problem. By virtue of these examples we shall discuss also how one
can approximately solve Eq.(5) and the coupled Eqs (7), respectively.

After this we shall discuss how one can make use of Eq.(5) in order to
investigate the general features of a unified theory of nuclear reactions and
bound structures. By this we shall see how one can formulate such a unified
theory.

2. SPECIAL EXAMPLES

a) Scattering of neutrons on o-particles

The Hamiltonian for the n-o-system is of the form

" 5 . 5 o 5
H=-§-ﬁ[2vi2-g<zvi>]+2wi,k) (15)
i=1 i=1

i>k=1
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The first part in expression (15) contains the kinetic energy of the five
nucleons in the centre of mass system. The potentials V(i, k) are supposed
to be 2-nucleon-potentials chosen in such a way that they describe approxi-
mately the low-energy two-nucleon scattering data as well as the two-nucleon
bound-state data. A simple potential of that kind is, for example,

. > = 2
V(i, k)=-V, expl:—nc(ri -rk):l- {w +m By +bE, —h-lﬁ} (186)

where Vo = 72.98 MeV; & = 0.46 X 10-26 cm ™2

W =m = 0.41; b=h=0.09

and w, m, b, h as usually stand for the amplitudes of the Wigner, Majorana,
Bartlett and Heisenberg forces.

Additional terms describing spin-orbit, tensor and Coulomb interactions
have to be added. In general, these terms do not substantially influence our
fundamental considerations. Therefore, these terms will not be taken into
account explicitly, but we shall mentlon when their influence plays an im-
portant role.

Now, the a-particle has a very tightly bound structure. Therefore, any
configuration ¢,,. of the n-g-system where the a-particle is in an internally
excited state has a large energy distance from the low-energy n-qo-scattering
configuration. Furthermore, the overlap {@g|H |y o is relatively small,
too. Therefore, having in mind formula (14), for low n-o-scattering energies
(E « 20 MeV), we can approximately neglect configurations of the above kind
in the pertinent wave-function ¢. In other words, we neglect distortioneffects
on the a-particle (except those due to the Pauli principle). Therefore the
following ansatz for { seems to be justified:

v=4 cP(‘l’)')((i:s - ﬁ‘x.)'f(tir Si)} (17)

Here and in the following & means the antisymmetrizer. The function
@(a) describes the internal spatial structure of the a-cluster. We assume the
following simple form of a product of Gaussians

- e B e B v
®(@) = ®Ty, 0., T,) =exp[-§ (1 -R,) .(18)
- 1/, - - > 26 -2
Ra=z<r1+r2+r3+r4>; B =0.5X 10" cm

The parameter 8 was chosen in such a way that cp(a) yields the experimental
mean-square-radius of the o-particle.
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The function
f(ti, 5;) = (as(l) a.,.(l))(BS(Z) 01(2)><as(3)[3.‘,(3)> (19)

x (8,418, (4))a,(51-8,5))

describes the spin- and isospin configuration. The o, B,, o, B; are the
well known Pauli spin- and isospin functions, respectively. Their product is
written in such a way that f(t;, s;) is an eigenfunction of the third component
of spin and isospin:

5 5

SZ=ZSZi; T, =z Tas (20)

i=1 i=1

with quantum numbers S; =3; Tg=- 3. Moreover, after antisymmetrization
¢ should be an eigenfunction of the total spin $2and isospin T

5 2 5 2 5 2
.(F o (o ()
i=1 i= i= :
5, 51 . 51 5
(B - (B
i=1 i=1 1=1

The required quantum numbers are S=1/2 and T=1/2. That this comes out
by using the product (19) is due to the fact that the function ¢(«) is a com-
pletely symmetric function of all four spatial co-ordinates.

The function y (%5 - ﬁa) describes the relative motion between the neutron
and the o-particle and represents the continuous variational amplitudes which
are varied arbitrarily. In order to make this point clear in more detail we
write down the wave function ¢ as

v =fd {cp(‘fi,'ﬁa)- x(R')ys(B-R") f(ti,si)}df{'
(23)

= =
R=_I:5'Ra

'

Obviously, integrating over the parameter co-ordinate BR' one regains the
wave function in the form (17), We want to point out that the antisymmetrizer
A acts merely on the (physical) nucleon co-ordinates, i.e. ¥, %,.., Ty
(and by this also on the relative vector R), but not on the parameter co-
ordinates, i.e. here R'.

The wave-function ¢, as it is written in expression (23), represents a
continuous linear superposition of trial functions of the form

-ﬂ{cp(}'i,ﬁa)a(ﬁ-ﬁ') f(ti,si)} (24)
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which describe the n- o clusters having a relative distance R'. The continu-
ous amplitude of each _gf these trial functions which ha_s> to be varied -arbi-
trarily at every point R' is now given by the factor x (R')., Therefore we
have

sy = [6x(R') A {0 (F, R )Lt si)a(_ﬁ-ﬁ')}dﬁ' (25)

We see from this that the ansatz (17) or (23) for the wave-function § corres-
ponds to the term [a, ¢,dk in Eq.(6).

Going now into more details on antisymmetrization we first note that
after inserting Eq.(17) or (23) into Eq.(7) we must antisymmetrize on one
side of the expression only, i.e. either 6y or . Namely, because of the
hermiticity of & and the symmetry of H with respect to all nucleon co-
ordinates we can put both & on one side. Having done this we can use the
property &2 = A'&f. This reduces the amount of calculations quite con-
siderably. Normally it is more practical if one antisymmetrizes the wave
function y standing on the right side. In low-energy problems the wave-
function y often has a simple structure. This results in many exchange
terms due to antisymmetrization being either equal to each other or not
contributing to Eq.(7), at all; i.e. in our example, because of the symmetry
of the .ansatz (17) and the fact that in the potentials V(i, k) in Eq.(16) the spin
exchange (Bartlett) force and the charge-exchange (Heisenberg) force -
appear with exactly the same factors but opposite signs, the contributions of
these forces cancel each other. Furthermore, the Wigner force having no
exchange character, as well as the space exchange (Majorana) force do not
change the spin and isospin configuration. Therefore, only those terms of
the antisymmetrized wave-function ¥ contribute which have the same spin and
isospin configuration as §y. By this the number of terms in the wave function
¢ which contribute in our special example to Eq.(7) is reduced to only two
terms, the 'direct' term

T SCEE PR
i=1

=D _ 1 -> - - -
R, = 2 ry+ry+r; +r,

and the so-called !one-particle-exchange term!?

5
2 .
Y =- exp-[- §2<Fi - ﬁi) ]x x(f«; - R:>Xf(ti, 5,)
i=1

i#3

. (27)
=1 _ l - - - -
Ra =2 T, +ry +T, + T,

The minus sign in front of the right-hand side of Eq.(27) appears because
this term represents a one-particle (odd) permutation of the original ('direct')
order of nucleons. .
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The calculations are simplified further because again due to the sym-
metrical structure of the wave function many terms in the sum '

5
Z V(i, k)
i>k=1
turn out to be equal to each other or cancel each other. For further dis-
cussions of this point we refer to [1].
For practical calculations it is usually not necessary to decompose the

wave function ¢ as it was done in Eq.(23)%. This means that in Eq.(7) we
can write 6 which needs not be antisymmetrized any more as

8¢ = 8x (R) 9 (a) f(t,, 5,) (28)

If in Eq.(7) we carry out all summations over spin and isospin co-ordinates
as was pointed out above4 and all 1ntegrat1ons over the space co-ordinates
except that over the relative co-ordinate R= r5 , and if we set the factor
by which the arbitrary varlatlon SX(R) is multiplied equal to zero we obtain a
definitive equation for x (R) which is, in fact, an integro-differential equation
of the following form:

{- 215&2 R (_,)} L(—){) f (_’I{ I_I' x(_ft. ) df{' =E - X(I_’{
red ’ ) k )
(29)

M

red

In case of scattering processes, Ejis the relative kinetic energy of the two
fragments, here the g-particle and the neutiron, for IR l - w. The potential
V(R) which describes the effective local n-a-interaction stems essentially
from the direct term (26) in (2 The effective non-local n-o-potential which
is expressed by the kernel K(R g’ ) stems essentially from the exchange
terms in ¢ (here y, of Eq.(27)) and from the exchange forces (here Majorana
forces). It should be mentioned that K(R R ) depends explicitly on the total
energy E. Because of the hermiticity of the Hamijltonian (15), the direct
potential V(R) turns out to be real whereas K(R R ) will be Hermitian which
means that

K(R,R') = KR', B) (30)

Furthermore, because of the rotational invariance of the Hamiltonian (15)
and the neglect of spin-orbit as well as tensor forces (by this, no spin-orbit
effects are taken into account), the direct potential V(R) is, in fact, a

? The main advantage of such a decomposition will be evident, especially if one deals with basic
investigations, as e.g. the general behaviour of rotational states.

4 Because of the normalization of f(t;, 5;) in expression (19) the summation over spin and isospin co-
ordinates yields a factor of 1.
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function of R = |R‘ only, and the kernel K(R, R*) depends onR=|R|, R' = |R"|
as well as (RR'). Therefore one can expand K(R R ) in the following way:

K(R,R') =ZI—(2(R,R')YL0(cos ¥)
' (31)

'
=ZR¢(R, R')[Z Yy (9, 0) Y (0 cp')}
[

m=-{

where y stands for the angle between R and R' whereas (9, ¢) and (U, @')
denote the directions of R and R' respectively, in spherical co-ordinates.
If we consider scattering processes which are rotationally symmetric around
the z-axis, and expand also x(ﬁ) into spherical harmonics we obtain

- u (R
x(R) z—‘R—) .0(2: @) (32)
]

After inserting Eqs (31) and (32) into Eq.(29) and using the or:thogonality
relations for the spherical harmonics we are left with the following set of
(uncoupled) integro-differential equations for the radial functions ué(R):

2 g 1
[ Sa— d-<——dR2 e >+V(R)]u¢(R)
re

(33)

+fK2(R,R')u¢(R')dR' =Eu,(R) £=0,1,2,...

where we have substituted K,(R, R') =R-K (R, R')'R".

The fact that we obtain a separate integrodifferential equiation for each
partial wave with angular momentum £h is a consequence of the rotational
invariance of the Hamiltonian (15) and expresses the conservation of angular
momentum. Thereby, we derived a non-local Hermitian potential KR, R')
which depends explicitly on the quantum number £ and the energy E. Already
in this rather simple example the analytic expressions for the direct and
non-local potentials are rather complicated. The direct potential V(R), for
example, is of the form

V(Ry - - Vycawomy (1435 ) exp[ g Rﬂ (34)
0 48 14 3 3k

48

For the non-local part K,(R,R') which is much more comphcated we refer
to Ref.[2].

In principle, equations of the form (29) or (33) are able to describe bound
states — if the potentials V(i, k) are sufficiently attractive — as well as
elastic-scatiering states. For bound states besides the boundary condition,
which states that u,(R) must tend to zero for R~ 0, we have to require that
u,(R) tend to zero for R » w, too. This leads to an eigenvalue equation for
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FIG.1. s-wave phase shift of elastic n-a-scattering. Experimental curve: [3], thearetical curve see,
e.g. Ref. [4].

the bound-state energies E;. For scattering states, E, is given, and one
has the boundary condition that for R~ wthere are incoming and outgoing
waves, This is completely analogous to the boundary conditions of the simple
one-particle Schrédinger equation.

In Fig.1 both the experimental and the calculated phase shifts for the
S-wave elastic scattering of neutrons on o-particles are plotted>.

Going up to scattering energies of 15 to 20 MeV Ey, it becomes now
energetically possible for the o-cluster to be broken up. Therefore, ac-
cording to our considerations in section 1, one has to take into account, at
least, the next energetically favoured cluster configuration which is, in
fact, a deuteron-triton configuration where the deuteron cluster is contained
in a triplet state. That this can be expected is due to the fact that the two-
nucleon forces between a proton and a neutron are more attractive in the

5 As to the derivation of the phase shift from the asymptotic behaviour of u!(R). see e.g. Ref. [15].



IAEA-SMR-8/25 127

case of a 35- than in the case of a !S-configuration. Furthermore, owing to
the same argument, in the case of an L.=0 relative motion between d and t,
the parallel alignment of the two spins of the clusters is energetically more
favourable than the antiparallel one. Summarizing, we can say that we can
expect the lowest-lying n- a-configuration to be followed energetically by a
t-d-configuration having a total spin S=3/2 and a relative orbital angular
momentum L = 0,

As an extension of the n- o-scattering as considered above we are now
going to discuss briefly the coupling between the n- o-channel and the
t-d-configuration just mentioned. Rotational invariance of the Hamiltonian
and its invariance under space reflection lead to conservation of total angular
momentum J and parity », respectively. This means, in our example, that
only the n- o-configuration with J =3%/2 (relative orbital momentum L =2,
neutron spin antiparallel) can be coupled with the t-d-configuration having
also the quantum numbers J = 3*/2 (with L=0 and S=3/2). In this case, a
proper ansatz for the wave-function should comprise the partial waves of the
configurations which are coupled with each other. In contrast to the choice.
in Eq.(17) we now choose

v=A w(a)xI(RI)['\/%_' Ym(o‘,cpx)as(s)+\/%_- Yn(ﬂ,.'cp,)as(s)]

X (a,(1)a (1) (B,(2)a(2)) (,(3)8, (3))(B, (4)8,(4)) B, (5)
(35)
+o(t)o(d) x(Byp) YO.O(QII‘ P

X (a,(1)a, (1)) (B,(2) 8,(2)) (a,(3) B(3)) (a,(4)a,(4))(0:5(5)8,(5))}

where subscript I refers £° t}Le relative vector ﬁl = ;5 - ﬁq, and subscript II
refers to the vector ﬁn =Ry - R,;. The functions x;(R;) and x;(Ry) are the
radial functions of the relative motion of the n-o-clusters and the t-d-clusters,
respectively. The expression in square brackets in relation (35) denotes a
state with the quantum numbers J=3/2, Jz=3/2 and L =2, S=1/2. In analogy
to the previous case, the products of spin and isospin spinors lead, after
antisymmetrization, to channel spin and isospin quantum numbers S=1/2 and
T =1/2 in the n-o-channel, and S=3/2, T=1/2 in the d-t-channel.

This time both radial functions yx (R;) and x(Ry;) have to be varied
arbitrarily. We insert Eq.(35) into Eq.(5), carry out all summations over
the spin and isospin co-ordinates as well as integrations over the space co-
ordinates — except R; and R; — and set all factors équal to zero by which
the arbitrary variations éx;(R;) and éxj(Ry ) are multiplied. Then we obtain
a set of two coupled integro-differential equations® for u;(R;) =x;(R;)/R; and

uy(Ry) =xqp(Ryy)/ By

& Note that to obtain these equations it is necessary that in expression (35) the functions ¢(a), ¢(t) and
¢(d) contain factors normalizing these internal functions together with their spin-isospin parts after anti-
symmetrization to 1.
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B (& 8 ) ev ()l (r )+ [K (R, R!)u(Rr)dR!
ZMI dRZI R? l( I)ul( I) I( 1’ I)ul( I) 1
red

+ 16, n(Ry, Riguy (R Ry = B, uy(Ry)
(36)

n2
[ 2Mn (RH)] I(Rn)+fKH(Ru, U (RE)dRY

+fK1LI(Rn‘ R Ju (R )dR} = EJ m V(B

In addition to Eq.(33), kernels K. and Ky ; are contained now in Eq. (36).
These kernels will describe transitions from channel I (n-a-configuration)
to channel II (d-t-configuration) and vice versa. Because of the hermiticity
of the original Hamiltonian, also K;y; and Ky ; obey a hermiticity relation

K n(Bp Ry = KTI.I(RII’ R)) . (37)

We mention here that, to obtain non-vanishing transition kernels K, ;; and
Kni ‘in our example, one must include two-nucleon-tensor forces [5] in the
Hamiltonian (15).

By means of Eq.(36) it is easy to show that the following equation holds
(if Ry and Ry; tend to infinity):

ih d d

;BZT—[UI(RI)EH:((RI) - u](Ry) EUI(RI{’

red (38)

toME [uII(RII) ar_"n(Rw - ¥n (Ry) 3R un(Rn)} =0
2Meq n 1

This is simply a consequence of the reality of the local potentials and the
hermiticity as well as the finite-range property of the kernels. The physical
interpretation of Eq.(38) is just the conservation of current in the asymptotic
region (R, Ry~ ). Equation (38) states that for any time interval At the
number of incoming particles in the n-o-entrance-channel is equal to the sum
of outgoing particles in the n-o-exit-channel and the d-t-channel. In a
region where the clusters penetrate each other strongly, it is meaningless to
speak of currents made of n-o-clusters or d-t-clusters, respectively. This
is because here the Pauli principle destroys any resemblance of the clusters
to the corresponding free particles. The considerable influence of the Pauli
principle on our considerations will be dealt with again later on.

Equation (36) allows us to describe quite different problems such as
reactions or bound states simply by choosing the appropriate boundary
conditions as:

1) [Elastic scattering of neutrons on o-particles together with transitions to
the t-d-channel. Here one has incoming and outgoing waves in the
n-g-~channel and only outgoing waves in the d-t-channel.
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2) Triton-deuteron elastic scattering together with transitions to the
n-g-channel. In this case, there are incoming and outgoing waves in the
t-d-channel and only outgoing waves in the n-a-channel.

3) Bound states (if present) havinga t-d- and an a-n-cluster structure have
to fulfil the conditions that for R;, Ry~ «othe corresponding relative-
motion functions tend to zero.

Figure 2 shows the results of calculations made by Hackenbroich and
Heiss [5]. They investigated the influence of the 3*/2-d-t-structure on
p-a-scattering (which is, in fact, the mirror reaction of the a-n-scattering
process) in a region between 15- and 25-MeV centre-of-mass scattering
energy. The resonance behaviour of the p-a-cross-section at about 17 MeV
is due to a resonance state having essentially a d-3He-cluster structure.

If one looks only for the influence of the t-d-channel on the elastic
n-o-channel one can simplify the calculations considerably, bearing in mind
that the 17-MeV state is deeply embedded in the Coulomb barrier. There-
fore, to a large extent, it can be treated as a bound state. Its coupling to
the n-o-channel- is relatively weak. These arguments give rise to the
following idea. First, we determine the 3 /2-state separately using a
bound-state variational (e.g. Ritz's) procedure. Adding this state
afterwards with an (energy-dependent) linear variational amplitude a(E) to
the pure n-a-channel wave function we obtain the following ansatz:

Y= o {9(a)x (R)) &(T) +a(E)q)I(,t)cp(d)F(Rn)@(II)} ' (39)

The functions &(I) and &(II) denote the spin-isospin as well as the orbital
momentum parts of the corresponding cluster structures. They look exactly

deg.

% 20 24 28
i MeV

+
FIG.2. ’T - 4He-p-scattering phase shift versus Ecme Theoretical curve (solid line)s [5], experimental data

(das.hed line): [6] . Expel_'lmental curve is shiftéd to calculated threshold energy.
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as those in Eq. (35). The function F(R;) now stands for a given function
which is part of the result of the preceding bound-state calculation. In-
serting Eq. (39) into Eq.(5) we obtain two equations, one linear integro-
differential equation arising from the arbitrary variation of x;(R;) =uy(R;)/R;
and one linear integral equation arising from the variation of the amplitude
a(E). Thus we obtain

R? /4%
[’21\/{1 <_dR2 - R_2>+V1 (RI):Iu (R)) +fKI(R1, R/ )u(R})dR!
red 1 I

+ i, y(R,. RY)F (RYRYIRY = By (Ry)
(40)

a(E) Z ﬁ*(t)¢*(d)F*(Rll) (LI H-E)o (t)o(d) (II)F(Ry)dR |

581

+ [F*(Ry) Ry (R, R )y (Rp) dRY = 0

b) Elastic scattering of deuterons on o-particles (L = 0)

The simplified approach as it was described just above can be used in
describing such effects as, e.g. distortion and polarization in reactions. As
an example, we shall briefly discuss the inclusion of distortion effects in the
calculation of s-wave elastic d-g-scattering as it was done by Jacobs et al.[7].

10—+
4 ) g
Elastic ~-d-Scattering
L L=0 i
200\ | 1
L x — — — without distortion
A ———  with distortion .
A < -
AN ]
[} N X
[ \ .
1 \ *xx
60" N ]
F+ x 4
I AN
M x * E
) Sx ¢
[} ~ ~ -]
] R 4
~
1 ~
| S~ °
T T S S S P
/] 5 10 E/MevV —= 15

FI1G.3. s-wave phase shift of elastic o-d-scattering versus Ecm'. Theoretical curves: [7], experimental datas
8} (full dots), [9] (open circles), [10] (crosses).
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In a first approximation, one could think of writing down such a simple
ansatz similarly to that in Eq.(17) for the n-o-scattering, containing now one
given internal cluster wave-function for each one of the two clusters o and d,
the parameters of which are chosen such as for the corresponding free
particles, whereas the relative-motion function is considered to be varied
arbitrarily. It turns out, however, that the s-wave phase shift obtained in
this way differs quite appreciably from the experimental data (see the broken
line in Fig.3). Moreover, one knows from calculations in the 6Li compound
system that an ansatz containing these !'free-particle parameters! is not
able to describe a bound state of the ¢-d-system (with the boundary condition
that u,(R) tends to zero for R~ w). Obviously, this simple trial wave-function
is not flexible enough to describe the a-d-system adequately.

Because of the attractive character of nuclear forces two clusters
approaching one another could be expected to tend to increase their overlap,
This effect will mainly lead to a distortion of the deuteron inside the region
of interaction. Although, because of the Pauli principle, the situation
certainly is more complex, this simple picture is a guide for how one might
construct a better trial wave-function. The distortion may be taken into
account explicitly by adding some bound-state cluster functions to the scattering
channel each one of them coupled by a free variable linear amplitude. The
deuteron cluster in these functions may be expanded or contracted. Thus we
write the ansatz

v = A oA (R) + Z ai(E)cp(a)cpi(d)F‘(R)} (41)

i=1,..

For simplicitly, we think the spin-isospin functions in expression (41) to be
included in the internal cluster functions. Since we consider purely elastic
s-wave scattering, no orbital angular part appears in the ansatz (41). As
in the example above the given internal wave-functions as well as the given
relative motion functions Fi(R) are described by superpositions of functions
of the Gaussian type (this has the advantage that all integrations leading to
the coupled equations can be carried out analytically).

After inserting Eq.(41) into Eq.(5) we obtain a coupled set of equations
comprising one linear integro-differential equation and several linear integral
equations of the same kind as discussed just above (Eq. 40)).

The result of the calculations was that, by adding a certain bound struc-
ture which contains a considerably contracted deuteron cluster compared to
the free deuteron, the phase shift obtained agrees quite well with the experi-
mental data (see solid line in Fig.3). Moreover, taking into account more
bound structures differing from one another in the size of the deuteron
cluster the result was almost the same curve in all cases as long as the
abovementioned contracted deuteron-cluster wave-function was present.

The variational amplitudes of the additional terms turned out to be very
small. This stability of the result shows an intrinsic consistency of our
approach which is free of data fitting.

3. GENERALIZATION OF THEORY AND INFLUENCE OF
PAULI PRINCIPLE

It will be clear by now in which way one can extend and refine these
calculations in order to describe any kind of nuclear reactions and bound
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states, namely, by introducing more and more channel wave-functions whose
relative-motion functions are free variational functions, as well as bound-
state wave-functions coupled by linear variational amplitudes. The most
general ansatz for a trial function comprising linear variational functions
and variational amplitudes will be of the form [4]

v = d{z P(A,)9(B,)x (R,) +Zq>(A,.)cp(Bj)cp(cj)x(§,.1, i)
‘ : (42)

+ Zcp(Ak)cp(Bk)cp(Ck)(p(Dk)x(ﬁkl, ReLRD) +.. +Z aﬂF!}
k ]

The spin and isospin functions are thought to be included in the internal
cluster functions ¢. The cluster terms containing relative-motion functions
x(R]?, ﬁjz),x(ﬁl, ﬁﬁﬁf) etc., are responsible for three-, four-, etc.particle
"decays. The given functions F, describe bound structures which vanish for
large relative distances. For the sake of simplicity, we shall confine our-
selves, for the present, to reactions where three or more particle decays
do not occur. Therefore, the terms which would describe decays into three
" and more particles can be included in the sum of the bound structures. To
obtain the corresponding set of linear integro-differential as well as linear
integral equations Eq.(42) is again inserted into our fundamental Eq.(5). The
coupled set of equations which is a generalization of Eqs (29), (33), (36) and
(40) is of the form

Z@(Am)me (R, - RL ) |H-E| & cp(Ai)cp(Bi)x<ﬁi)}>

-

+Zaﬂ<cp(Am)cp(Bm )6 (R_-K! )|H-E| AF, >=0
)
(43)

Z{Fm |H-E | d{cp(Ai)cp(Bi)x(ﬁi)} >+Z §<F, |H-E| &F, >=0
i 2
m=1,2,...

Because of the rotational, translational and reflectional invariance of
the Hamiltonian (15) and since the cluster wave-functions are constructed so
as to depend on the relative co-ordinates between the clusters, the wave-
function § can be split into wave-functions of given total momentum, total
angular momentum and parity.

If we restrict the number of variational functions and amplitudes in
Eq.(42) (as we did in the examples of section 2) we project, by our variational
procedure, a certain sub-space in which our coupled equations are defined
out of the complete Hilbert space. This is the reason why Eqs (3) and (5)
are called projection equations. As was pointed out in section 1 neither the
general structure of the set of coupled equations nor the general properties of
the corresponding solutions depend on the size of this sub-space,
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We want to emphasize three essential points which have already been
discussed in section 1 and 2:

1) Although normally the different cluster trial functions are not orthogonal
to each other the solutions y; to Eq.(5) form an orthonormalized basis
of this sub-space. This behaviour of our linear variational procedure
is most valuable because by this an orthonormalized set of solutions is
generated which have the correctboundaries appropriate to the considered
problem. Of course, alldegeneracies are supposed to be removed so that
the solutions ¥y, have well defined total angular momentum, parity etc.

2) On the basis of these solutions ¢, , the Hamiltonian H can be represented
as a real diagonal matrix in such a sub-space.

3) The law of current conservation in the asymptotic region or, in other
words, the unitarity of the S-matrix is always exactly fulfilled in such a
sub-space.

These properties of the solutions of the coupled equations belonging to a
sub-space of the Hilbert space allow general features of the unified theory
as discussed here to be studied, even by means of simple examples.

Up to now we have not yet discussed the question of how the saturation
character of nuclear forces which is essentially due to their short-range
repulsive core (r;~0.4 X 10-18 cm) will influence our considerations.

If, in contrast to the forces of Eq.(16), we use more realistic nuclear
forces containing a repulsive core, then certain two-nucleon correlations
must be introduced into the trial functions by multiplying the different cluster
terms in the wave-function y by suitably chosen short-range correlations
known as Jastrow factors? which prevent any two nucleons from approaching
each other too closely. As an example, they can be of the form

= £ -)

all pairs .

with . (44)
_ -»_—> n. "

Bik(|l'i rkl) ik

¢c orr

By~ 0.4% 10" Pem™?

f(|3 -F)=1-e
For ry, = |T; - | = 0 also f(r;,) tends to zero with a power (ry)%k, whereas
for rj, -« the functions f(r;, ) tend to unity very rapidly. To refine the calcu-
lations one can introduce additional variational terms in ¢ with different
correlation functions f(r;, ), differing, e.g. in their width parameter §;, or
their power n;, , all of them added to ¢ with linear variational amplitudes as
it should be. Even if for all (i, k) we assume that n; equals two, by which
we obtain analytically integrable Gaussians, these correlation factors
seriously complicate the calculations of the integrals leading to the coupled
equation as well as the final numerical work in solving these equations.
However, they neither influence the general structure of the coupled set of
equations nor the general properties of their solutions. Therefore, they do
not cause a fundamental change in our considerations. This is why in our
further considerations we shall not explicitly take the short-range correlations
into account,

T See Ripka's contribution to these Proceedings.
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As the next step,- we shall discuss the influence of the Pauli principle on
our unified nuclear theory. It will turn out to be a most fundamental point.
We mainly want to stress two aspects. The first is that the Pauli principle
resolves the contradictions between the different single-particle and collec-
tive models used in nuclear physics. Secondly, it also considerably reduces
the number of terms in a clustering ansatz to be taken into account in practi-
cal calculations. The common reason for both effects lies in the fact that the
differences between wave-functions describing, before antisymmetrization,
quite different nuclear correlations are substantially reduced by the anti-
symmetrization procedure. Sometimes these differences even vanish.

To understand this, let us consider, as a simple example, an ensemble
of a large number of fermions being contained in a square well potential,
without any mutual interaction. Take for this, say, the electrons of a
conductor. In the ground state all single-particle states which have momenta -
lying inside the Fermi sphere (see Fig. 4A) are filled. If this system as a
whole is now given a small velocity AV, the Fermi sphere is shifted so that
its centre is no longer at the origin (see Fig.4B). The change relative to the
situation of Fig. 4A is a collective_gxcitation in which each fermion receives
a small change in momentum mAV., Now let us instead start with the Fermi
sphere at the origin (as in Fig.4A) and impart various large amounts of
momentum to a few of the fermions (all those in states in region 1 of Fig.4C)
at the left of the sphere so as to excite them into states just to the right of the
sphere (filling the states in regions 3 of Fig.4C). Because of the in-
distinguishability of the fermions, corresponding to the antisymmetrization
of the wave-function, the situation in Fig. 4C is completely equivalent to that
in Fig.4B. This shows how under antisymmetrization a large excitation
imparted to a few fermions can be equivalent to a collective excitation of all
the fermions as a whole. :

Another example is that of a collective dipole oscillation of fermions
against each other. That this can be exactly equivalent to a one-particle
excitation if antisymmetrization of the wave-functions is carried out was
shown by Brink [11].

A third example is the ®Li ground state. One can show that, in this case, |
the shell-model representation, the o-d-cluster representation and the
t-3He- cluster representation after antisymmetrization, give the same wave-
function if in all three cases one uses oscillator wave-functions with' the
same frequency for the internal wave-functions and for the relative-motion
functions [1]. '

A

FIG.4. Equivalence under antisymmetrization. A: ground state, B: collective excitation, C: single-particle
excitation.
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As an explanation of this effect, we note that many terms appearing in
the non-antisymmetrized wave-function will vanish after antisymmetrization.
By this procedure, the differences between different nuclear correlations
(which are expressed by different cluster representations) are reduced. If,
e.g. two nucleons are in the same single-particle state then through anti-
symmetrization the corresponding terms of the wave-function are cancelled
completely. Forexplicit calculations concerning this point see the references
given above.

The influence of the Pauli principle is especially effective if the clusters
penetrate each other strongly. Very often this has the consequence that any
resemblance of the clusters with the corresponding free particles is com-
pletely destroyed. On the other side, as soon as the mutual penetration of
the clusters decreases, the influence of the Pauli principle decreases, too.
That is why clusters inthe nuclear surface region behave approximately like
the corresponding free particles.

In practice, for the wave-function ¢ in Eq.({41), this influence of the
Pauli principle means that many terms in the expansion (41), especially the
different bound structures ., overlap to a larger extent after antisymmetri-
zation. This is most valuable for practical calculations since it quite ap-
preciably reduces the number of terms to be taken into account for ensuring
enough flexibility of the wave-function; in addition; it allows the combination
of calculations which have been carried out in the framework of different
nuclear models. In section 4, we shall discuss the combination of shell-
model and cluster reaction calculations as an example for this statement.

4. COMBINATION OF SHELL-MODEL AND OTHER BOUND-STATE
CALCULATIONS WITH CLUSTER REACTION CALCULATIONS.
* SEMIQUANTITATIVE CONSIDERATIONS

The practical calculations can be simplified considerably first by using
the fact that, because of the weakness of the Coulomb force as compared to
the nuclear forces, one can, to a very good approximation, neglect all
polarization effects as soon as the reaction products are separated (which
is not true for atomic and molecular reactions, of course). This fact was
first used systematically for nuclear reaction calculations by Hackenbroich
[12]. Secondly, owing to the influence of the Pauli principle just discussed,
one can couple in a very simple way cluster wave-functions with shell-model
and also other bound-state wave-functions which are especially suited for
describing the interior of a nucleus. We shall discuss these simplifications
by means of o-160 scattering. To simplify notation we neglect Coulomb inter-
action. We consider elastic s-wave scattering and neglect any other reaction.
processes, such as inelastic-scattering processes. We split the wave-
function ¢ into two parts: ’

v= lIjinside + 'Iloutside |
with . . |
winside : JZ({Z alF!l} (45)
2 t
l in KR KR
buuze = {1 (%00 (@) Z2EE 4 5 1m)0 (%0) o () KR |
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where K denotes the wave number of the o-10 relative motion in the asymp-
totic region; b is a variational parameter. Its magnitude determines the
elastic-scattering phase shift. The function f{R) is a cut-off function, for
example, of the form f(R) =1 - exp [—Rn/Rg] which cuts off the o-60-channel
wave-function near the nuclear surface (R~ Ry ) and approacheé unity for
R— w. For y; ;4 Which describes the interior of the compound nucleus
(**Ne) one can use the most convenient representation. For heavier nuclei
the most convenient representation is very often a superposition of shell-
model wave-functions with linear variational parameters as factors. To im-
prove the flexibility of ;4. , it is sometimes useful to add cluster terms
which are only appreciably different from zero at the nuclear surface and
which can describe energetically favoured cluster structures in the nuclear
surface. The terms F,, with factors a, being linear variational parameters,
in expression (45) have then to be chosen so as to describe such a mixture of
shell-model wave-functions and bound-cluster wave-functions.

For the determination of the variational amplitudes in the Hulthén-Kohn
ansatz (45) one again uses Eq.(5). By doing this, we automatically obtain a
coupling between 4o and the elastic-channel terms:

sin KR

RO () =R [H-E ¥4 (46)

inside

If one constructs Y44 in such a way that it describes the compound nucleus
state ina sphere of a relatively large radius R, which is at the same time the
cut-off radius of the elastic-channel function, then one has essentially to
consider only the coupling of the elastic~channel terms with the nucleons
inside the surface region of ¢ 4.. This means, for eaxmple, that in such
coupling terms one only has to carry out the antisymmetrization with the
nucleons in the nuclear surface. Sometimes even this can be neglected.
Such simplifications could be very important in calculating heavy-ion reac-
tions which otherwise might not be feasible. Another.advantage of the above
separation into an inside and an outside region of the nucleus is that the
overlap between different terms in the trial function is strongly reduced and
this reduces both computer memory and computing time.

If one has to take into consideration, in addition to the elastic channel,
other reaction channels — as, e.g. in case of n-a-scattering the d-t-channel
— then one has to add outgoing waves with the correct asymptotic behaviour
belonging to the different open channels. These waves also contain linear
variational amplitudes as factors and they are also cut off near the nuclear
surface. :

Since in the method sketched above the trial function ¢ now contains an
inhomogeneous term the solutions of the projection equation (5) do not auto-
matically fulfil the law of current conservation. However, there are methods
(e.g. Kato's condition) that show how one can correct this point afterwards
such that one ends up with a unitary S-matrix, too®. From this discussion
we see that it is necessary to choose the term in the trial function ¢ in such
a way that, in particular, the variational calculation gives a good description
of the transition region near the nuclear surface. Especially here in the

8 See, e.g. the book of Wu and Ohmura [15] p.76.
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transition region, the Pauli principle plays an important role because — as
we have pointed out before — it smooths out the differences between different
structures as e.g. between y, ... and Youside -

To test the convergence of the method the n-a-scattering and the ¢-a-scattering
have been calculated. Even with a relatively small number of variational
terms in ¢ one obtains for different choices of the trial functions in ¢ pgqe
and for different cut-off functions in ¥ gygge Practically the same result[13,14]
On the other hand, these results also fit the corresponding resonating group
calculations where the relative-motion functions of the clusters are used as
variational functions which are varied arbitrarily as discussed in section 2.

The method sketched here can be considered to be a quantitative formu-
lation of the R-matrix theory where one splits the wave functlon in an (un-
known) inside and an outside region.

The amount of numerical work increases exponentially with the in-
creasing number of nucleons even if the simplifications discussed above are
used. Therefore, it is important to apply semi-quantitative considerations
by using the physical ideas which we can gain from the general structure of
our theory. In this respect, it is especially important to obtain some insight
into the influence of the Pauli principle without carrying out the antisymme-
trization of the wave functions explicitly.

To see how this works we shall discuss a specific example. We discuss
the electric quadrupole transition probability Tg(2) of the first excited 2* state
of ®Ne to its 0* ground state and its connection to the energy distance
AE (2*- 07) of these two levels. Because of the very rigid structure of the
a-cluster and the doubly closed shell cluster 10 one can consider these two
states, to a good approximation, to be the lowest states of a rotational band
where the o-cluster rotates around the 150-cluster. This rotation takes
place essentially in the surface of the 160-cluster because, owing to the
closed shell structures of the o- and the 160-clusters they do not penetrate
each other to a large extent. This has the consequence that for the calcu-
lation of the rotational energy of the 2*-20Ne-state {energy distance
AE (2*-+0%) to the 0" ground state) one can neglect the antisymmetrization be-
tween the o- and the 160-cluster approximately. This is even more the case
for the electricquadrupele transition probability Tg(2) because the corres-
pcnding transition operator is a long-range operator. Under these ¢ircum-
stances, a very simple relation between AE (2%~ 0%) and T;(2) exists. One
can easily check that this relation is of the form9. '

3
T (2) * 7o M 5h2 (47)
For the derivation of this formula it was assumed that
1 1 :
—) = 48
<R2 < R 2 > ( )

This will be approximately true if the centre of the a-cluster has a relatively
constant distance from the centre of the 160-cluster. Because of the Pauli

9 Because of the spherical structure of %0 and the a-cluster one can consider the masses and the charges
of the clusters to be concentrated at their centres of mass.
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principle which, as has just been mentioned, prevents the two clusters from
penetrating each other to a large extent, this is approximately true.

If in expression (47) we insert the experimental energy distance AE(2*-0%)
we obtain Tg(2) = 1.6 X 10'%2 s~ which has to be compared to the experimental
Tg(2)-value (1.6%+0.7) 1012 ™1, Evidently, the theoretical value for Ty(2)
lies within the limits of the experimental errors.

Similar semiquantitative considerations can be applied to numerous
other cases, see e.g. Refs [14,16]. \

5. DISCUSSION OF SOME GENERAL PROPERTIES OF THE UNIFIED
THEORY OF NUCLEI

Up to now, we have been discussing how, in the framework of the
unified nuclear theory presented here a general basis for carrying out
nuclear-structure and reaction calculations can be obtained. But we have
not yet discussed problems of a more general character as, e.g., in which
way the general description of resonances, the optical-model description, the
direct-reaction descriptions, the description of collective states, etc. are
contained in this unified theory.

Since we have to restrict ourselves, we shall only consider elastic
resonance scattering in the vicinity of an isolated level in greater detail
(single-level resonance formula). We shall further assume that only the
elastic channel is open. After wards we shall briefly discuss how these
considerations can be extended to a derivation of other resonance formulas,
the optical model etc. in the framework of this theory.

The fundamental equation for our investigation is again Eq.(5). We split
the wave-function y into two parts: .

Y = yYptie (49)

with

Uy = {cp(A)cp(B)x(ﬁAB)}

and
vo = {) 2w }
4

We do not need the other terms appearing in ansatz (42) for ¢, since we
assume that only the elastic channel is open. With ansatz (49) we obtain
the following coupled equations from Eq.(5):

<syp |H-Efy >+ sy  [H-E [y > =0 (50a)
{8y |H-E |y, > +<oy.|H-E|y) =0 (50b)

where 6y is an arbitrary variation in the sub-space of the bound structures
F,, and 6y an arbitrary variation in the sub-space of the elastic-channel
functions. We mention that the two sub-spaces are normally not orthogonal
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to each other. The fact that the bound structures ¥, can introduce resonance
structures into the scattering wave functions can be seen from a derivation
of the Breit-Wigner resonance formula. To do this, in Eq.(50a) we introduce
the resolvent G belonging to Eq.(50b). This resolvent is defined by the
equation

{8y |H-E| Gg = <oy | © o (51)

and can be represented by means of the solutions of the homogeneous
equation

sy [H-Ely > =0 (52)

If we denote by Eg the discrete energy eigenvalues of Eq.(52) we can write

|ve > <vé]
Gc-'Z E -E (53)

For Eq.(53) to be a solution of Eq.(51), the Y must be orthonormalized,
i.e.

n' n _
U |¥e 2 = 8,0 (54)
If'we further bear in mind that <‘5'/’c | can be represented as

{8y = Z PR . (55)
n

we immediately see that ansatz (53) for the resolvent G with the ortho-
normalization (54) is a solution of Eq.(51). By introducing G¢ in Eq.(50b)
we obtain for Izpc):

YR H-E|yp D
Eg-E

wn
|¢C>=-c;CIH-Ele>=-Zl = (56)

Substituting this in Eq. (50a) provides the following reduced equation for
the open channel part Yp of the wave-function:

oy |H-E[y2> W H-E|y >
{swp|H-Ely,> = Z D c ¢ D (57)
B E¢-E

We have thus derived an effective non-local but Hermitian optical potential
for ¢, which depends on the resonance structures y¢ and is further an explicit
function of the energy E. Because of the singularities in the denominators
EL-E this potential gives rise to more or less narrow resonances.
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:

For the derivation of the single-level resonance formula for elastic
scattering around E}:we write expression (57) in the following form:

sup |H-E [ue> <ve |H-Elyp>
<6!//D|H'(E)-E|II/D>=< ol |1c c| L (58a)
EC—E

with

H-E|y. )<y |H-E
e |c_;| A

(58b)
n¥1

Equation (582a) can be solved formally by means of the resolvent G;;(E) for
H' in the sub-space of the open (elastic) channel with outgoing-wave boundary
conditions. In the same way as Ge. G]')"(E) is defined by the equation

<oy [H' -E[GY(E) = <oy, [ (59)

and can be represented by the solutions of the homogeneous equation
8|, B -
<oy |H'(E) - B [yf(®)> = 0 (60)

EB denotes the energy eigenvalues of Eq (60& in contrast to the fixed total
energy E of the reaction process. p and yp (E) are functions of E.

If the (//D(E) with discrete and contmuous eigenvalues EB are ortho-
normalized

uplep> =6(8.8") ' (61)
then the spectral representation of Gp' (E) becomes

e R B EDEE) ]
GD(E)-gg—l’——D—— (62)

Eg-E -i-e

The term (-ie) guarantees that the coupling between the bound state t//c1 and the
elastic channel produces only an outgoing wave.
We need GD (E) in an energy region where the energy spectrum of the
(E) in contrast to the EE, is continuous, i.e. where the channel in
GD (E) (elastic channel) is open. In this energy region, GH (E) is non-
Hermitian due to the contlnuous Ef and the term (-i€) in the denominator.
With the resolvent GD (E), we obtain from Eq.(58a);

Gp(E) [H- E|ue><ye|H-E|yp

Ei-E-ie

[, >= 1650m)> + (63)
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|¢'1;'(E)> is a purely elastic scattering solution of the homogeneous Eq.(60)
with Ef =E and it is matched to the incoming wave of the bombarding
paf‘ticles. ) .

Equation (63) can be solved immediately and one obtains

| B-E |y(E
EL-E-{y}|H-E| G}(E)[H-E[yD>

14> = |43(ED +GF(E) [H-E 42D (64)

Before we derive from the asymptotic behaviour of Eq.(64) the single level
Breit-Wigner formula for elastic scattering we have to add some remarks
abolt the validity of the solution (64) of Eq.(5).

At a first glance it looks as if the ansatz (49) for ¥ does no more allow
to represent the exact solution of our problem because this ansatz already
selects a subspace of the complete Hilbert space for our A-particle system.
But this is not the case if one demands that the F; in y¢ form a complete set
of wave functions in a finite volume which is larger than the volume of the
compound nucleus. Because of the completeness of the ¥, they can together
with ¢ therefore describe the exact wave-function inside and inthe surface
region of the finite volume just mentioned. -Therefore by the ansatz (49) for
¥ the exact wave function of our system can be described in the whole space
as long as no other but the elastic channel is open. Thus Eq. (64)
represents an exact solution with the correct boundary conditions of the
Hamiltonian which governs our many particle systemsi0,

We shall now derive the single-level Breit-Wigner formula. For this
purpose, we consider a resonance state of given total spin J and parity,
expand the elastic-scattering wave and G,'; (E) into waves of given J and
parity and select the wave which has the same spin and parity as the reso-
nance state. Furthermore, by usingthe integral identity

1

1
' =P
B_Rp-j B .
ES-E-ic ES-E

+iré (E8 - E) (65)

we can split the non-Hermitian operator G'J’j into a Hermitian and an anti-
Hermitian part and obtain '

1 . (X3 \ +
GpE) = gép om0 B (B il <y, (B | (66)
= GIE(E)+ iré]')'j(E)

where G};j(E) is the principal value of the resolvent Gl';j (E).

B The difficulty which is due to the fact that some of the Fy in § are not linearly independent of ¥p

is not discussed here, for the sake of brevity. It can be avoided easily by means of a projection method without
changing any essential result (see Ref. [4]).
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Using relation (66) we obtain from the asymptotic behaviour of Eq.(64)
for the phase factor Ay which multiplies the outgoing partial wave of total
spin j1L

2iaJ!(E)
A _{ 2i6 (E) iL(E)e } 67
i=1e EL-E-A(E)-}iL(E) (672)
1 1
o6}0) E - E-4,(E) + $1L(E)
I mo _1
E_-E-A(E)- }T(E)
with
=1 P 1
Ay(E) =y |H-E| 6 (E) [H-E[y >
(67b)

I (E) = 27Ky} |H-E |y @D |

where exp (2i6# (E)) is the phase factor of the outgoing asymptotic wave
x//f,f’;-“(E)asympt witout resonance scattering, i.e. that phase factor which near
the resonance considered belongs to the potential or background scattering.
Relation (67a) is exact and valid for any scattering energy provided that only
the elastic-scattering channel is open, i.e. also for scattering energies far
away from any resonance. Egquation (67a) looks already like the single-level
Breit-Wigner resonance formula where only the elastic channel is open. The
only but essential difference to this formula‘is that A (E) and I}(E) are
energy-dependent, To get rid of this difference we have to make an approxi-
mation. We have to use here, for the first time, the fact that we want to
consider an isolated resonance level. For an isolated resonance level all
other resonance levels lie energetically so far away that 6{ (E) and I3(E) are
approximately energy-independent over the energy width of a sharp resonance
level. Furthermore, near sharp resonances A;(E) can be expanded in a
Taylor series around the resonance energy and cut off after the linear term.
With this we obtain the following Breit-Wigner resonance formula from

expression (67):
A~ e™i® (1 T S— >
Ee-E-2iL

jres

(68a)
. 1
- e2i6;(E) (Eres - E) + EII-J:res)
- I ]
(E:es E) - 71 I,‘ires)
with
T = ————-I;(E) (68b)
j 1+ {E)/2E
Jres BA(E)/3E |p.p

11 The relation between the scattering amplitude J;and Aj is given by J; = 2% (Aj-l).



TAEA-SMR-8/25 143

E . is defined by the enérgy E for which the real part of the denominator in
expression (67a) becomes zero, i.e. by the equation

Ec-E-A(E) =0 (68¢c)

The energy shift A;(E) which is due to the coupling of the compound nucleus
state zpé with the elastic channel and which corrects E}: can be quite large.
This is the case if lﬁé does not describe the compound-nucleus state very
exactly. Also the "correct” energy width I, canbe quite different from
T:(E). This is, for example, the case if the extension of xpé is much larger
than the volume of the compound nucleus because then 8A(E)/3E becomes
negative and of the order of one. We state this here without proof. Ana-
logously, we can derive the Breit-Wigner-many-level formula, the optical-
model approximation, the different direct-reaction approximations, etc.

The guiding idea for all these derivations is always that one splits, in
analogy to the case dealth with above, the wave function ¢ into different parts
¥; in such a way that this splitting, andthe non-orthogonal sub-spaces of the
Hilbert space which are defined by the éy;, are especially suited for a
theoretical derivation of the different phenomenological nuclear models.

For the derivation of the optical model, for example, one splits ¢ into two
parts ¢, and y,, where &y, defines the elastic-channel subspace, and 6y,

the rest of the Hilbert space which contains, e.g. all inelastic channels and
all open reaction channels. For a more detailed discussion of these problems
the reader is referred to Ref.[4].

6. CONCLUSIONS

In the preceding sections, we have discussed a method which opens a
way to a unified nuclear theory which covers, in principle, all nuclear
phenomena, i.e. huclear-structure problems as well as all kinds of reac-
tions, e.g. fission, etc. The central part of our considerations was the re-
formulation of the many-particle Schrédinger equationinthe form of Eqgs (3)
and (5), respectively, i,e. as a projection (or variational) equation. The
most striking advantage of this is the fact that one does not have to stick to
any special kind of representation, as e.g. the shell-model representation,
but that one is free to choose, for any given problem, the most suitable re-
presentation or even mixture of representations which will, in particular,
allow the introduction of the correct boundary conditions from the very
beginning. This is a similar situation to that which we know from analytical
mechanics. There, the Lagrangian variational principle also has the ad-
vantage of allowing the most convenient co-ordinates appropriate to a
description of the mechanical problem considered to be introduced from the
start. It was shown that as long as we deal with linear homogeneous vari-
ational functions the solutions of Eq.(5) automatically form anorthonormalized
set of functions. Thus we can say that by the ansatz for the variational proce-
dure we automatically choose the most convenient basis system appropriate
for the description of the system under consideration.

Particularly useful for such a unified description of all nuclear phenoména
are the cluster representations because they allow even complicated many-
particle correlations with a relatively small number of parameters and
functions to be described.



144 WILDERMUTH

In many cases it will be convenient to combine the cluster representations
with other kinds of representations, say e.g. the shell-model representation.
This is made possible by the strong influence of the Pauli principle which can
very often reduce the difference between different nuclear wave-functions
drastically. By this procedure, e.g. the contradictions between different
nuclear models are resolved. Together withthe formulationofthe Schr&dinger
equation as projection equation, the Pauli principle makes it possible to
couple all different kinds of nuclear-model wave-functions with each other
as was discussed in sections 4 and 5.

Finally, we want to emphasize that the derivation of a unified theory of
bound states and reactions with the help of the projection method discussed
here is certainly not restricted to low-energy nuclear physics. It can be
applied, in a very similar way, to the construction of a reaction theory for
atomic physics and.solid-state physics. Very probably, such considerations
might also be helpful to describe reactions in high-energy physics. The
properties of the reactions in high-energy physics should resemble in many
respects (e.g. the correlations) the properties of the reactions in low-
energy nuclear physics because in both cases the main interactions are of
short-range character.
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Abstract

OPTICAL POTENTIAL FOR DEUTERON SCATTERING.
In the paper the optical potential for the scattering of composite nuclear projectiles is discussed.

The optical-model description of elastic scaitering is one of the
simplest and most successful phenomenological models of nuclear reac-
tions. It works exceedingly well for single-nucleon scattering and also
in the case of composite projectiles [1]. The phenomenological approach
produces, however, a number of definitely distinct sets of optical-potential
parameters that give equally good fits to the data. This is immediately
understandable from the fact that in elastic scattering only the asymptotic
part of the wave function (phase shifts) intervenes [1]. But once one starts
using these optical potentials in DWBA-calculations of other nuclear reac-
tions (inelastic scattering, particle transfers, etc.), where knowledge of
the complete wave function is necessary, the ambiguity must be resolved
as different potentials will give rise to different wave functions in the
internal region. ’ ’

In fact, the qualitative aspects of the phenomenological optical potentials
(real, imaginary and spin-orbit terms, radial dependence, energy depen-
dence, etc.) have been justified from a theoretical point of view [2, 3],
However, calculations using ''realistic' two-body forces and Hartree-Fock
theory (it is reasonable to think that there is a connection between the opti-
cal potential and the self-consistent single-particle well in which the bound
particles move) do not produce a unique answer-[4]. Therefore, resolving
the ambiguities is still an open problem,

In-the cdse of composite projectiles, one has so far attempted to express
the phenomenological optical potentials in terms of the corresponding single-
nucleon ones, General expressions have been derived by several authors
[5]. In a first approximation, the potential is given by the sum of the single-
nucleon potentials folded over the matter distribution in the projectile. For
deuterons, for example, we obtain

i

VR, Ey) = f &r | o) |2{ng<§ * 37, B+ VPR - 47, E, )} (1)

in self-explanatory notation.Obviously, such an expression does not contain
the contribution of processes in which the projectile undergoes excitation

\
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or breaks up, but this should reflect more on the imaginary part than on

the real part of the potential. Calculations of V{ along these lines have
reproduced well the shape but not the depth of the real part of the potential
[6]. The values of the well depth obtained fall consistently half way between
two of the phenomenological best-fit values. Estimates of additional terms
give too small a contribution to resolve the ambiguity [7]

Now, in all calculations so far, the assumption E (1/ 2) E4q has
been made, A careful analysis [8] of the scattering process shows that
this approximation is only justified for high bombarding energies (E4 > T4
where T, is the internal kinetic energy of the deuteron), in which the scat-
tering is in the forward direction. In fact, the single-nucleon energy
(relative to the target nucleus) which is involved in the scattering of the
deuteron through an angle 8, depends on this angle through the relation

_A+1_ 5-3cosf .
BRI e R 2)

where A is the mass number of the target. Therefore one gets (for large A)
E,,p~ 2 Eqfor 6 = 0°but Ey ;™ 2E4 for 6= 180°, The use of relation (2),

or of some average value Ep,ps in expression (1) will produce a decrease

in the values of ReV; obtained so far. This is because, for the single-
nucleon potential,

ReVn'p(rn'p= 0)= Uﬁ'p- aEn,p, a>0 _ (3)

If we use E, = E(9) = (5/4)Ed instead of B = 3+ E;, the reduction in
the value of Re Vd (R=0)is given by

-Rev,|, =32 am,

AEReVd -;Ed 2

l%sd

For the usually accepted value of @ ® 0.3 and a deuteron energy of

Eq = 21.5 MeV, we obtain A= 9,4 MeV, in good agreement with the
A= 10 MeV of Johnson and Soper (Ref.[7], footnote 51). This change
is sufficient to resolve.the ambiguity in Perey and Satchler's work [6].

"FIRST PRINCIPLES" (H-F', NUCLEAR FORCES)

s

27 2?22

\

, COMPOSITE- PROJECTILE
SINGLE-NUCLEON 7~ ' ~——7 OPTICAL POTENTIAL

OPTICAL POTENTIAL

FIG.1. State-of-the art in optical-model nuclear scattering.
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It is felt that this angular dependence of the relation between energies
should play an important role in establishing the connection between the
optical potentials for heavier projectiles and the single-nucleon ones:
especially in clarifying why one is obtaining, from the phenomenological
analysis, rather shallow potentials, i, e. compared to the result of multi-
plying the single-nucleon potential by the number of particles in the
projectile,

Finally, Fig. 1 below attempts to give an idea of the state of affairs
in the problem of understanding the optical model of nuclear scattering,

APPENDIX

We give here the corresponding relations to Eq. (2) for the case of
8He, t and o's (in all cases s-wave internal relative motion is assumed):

+ -
for t and *He Bnp =2 ts B o 2o2cos? (A.1)
A+1 _ 17-15cos 8
for o En.p=A+4 E, 5 (A. 2)

We can see that the ranges of variation are appreciable. Combined with
Eq. (3), they can give rise to important changes in the evaluation of the
optical potentials,

REFERENCES

[1] HODGSON, P.E., The Optical Model of Elastic Scattering, Oxford University Press (1963);
HODGSON, P.E., Adv. in Phys. l@ (1966) 329;

BECCHETTI, F.D., GREENLESS, G.W., Phys, Rev, 1_82 (1969) 1190;
WATSON,. B,A., SINGH, R.P., SEGEL, R.E., Phys, Rev, 182 (1969) 977;
HALBERT, E.C,, Nucl, Phys, 50 (1964) 353; -

WEISSER, D.C. et al., Phys, Rev. CZ (1970) 544,

[2] FESHBACH, H., Ann, Rev, nucl. Sci. §(1958) 49,

[3] PEREY, F.G,, BUCK, B., Nucl. Phys, 32 (1962) 353,

[4] COZ, M. et al., Ann. Phys. (NY) 58 (1970) 504. I am grateful to Prof. F. Stancu for pointing
out this paper. Earlier work like that of SLAMINA, D., McMANUS, H., Nucl. Phys, A116
(1968) 271 had seemed to settle the question; they used "effective” forces but an ad-hoc matter
density, not one obtained self-consistently.

[5] SAWADA, T., Nucl. Phys. 74 (1965) 289;

JUNKIN, W.F., VILLARS, F., Ann. Phys, (NY) 45 (1967) 93;
MUKHERJEE, S., Nucl, Phys, A118 (1968) 423;
SUZUKI, T., Progr, theor. Phys, 42 (1969) 732,
[6] WATANABE, S., Nucl. Phys. 8 (1958) 484;
PEREY, F.G,, SATCHLER, G.R., Nucl, Phys. A97(1967) 515;
ABUL MAGD, A.Y., EL NADI, M., Progr. Theor. Phys. (Kyoto) 35 (1966) 798,
[7] TESTONIL, J., GOMEZ, L.C., Nucl. Phys, 89 (1966) 288;
JOHNSON, R.C., SOPER, P.J.R., Phys. Rev, C1 (1970) 976,
[8] BLOCH, C., BAUER, M., Phys. Letts 33B (1970) 155.







IAEA -SMR-8/41
DIRECT METHODS IN SCATTERING THEORY

B.N. ZAKHARIEV

Laboratory for Theoretical Physics,
JINR, Dubna,

Union of Soviet Socialist Republics

Abstract
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INTRODU CTION

The most general and correct approach to the description of non-
relativistic quantum mechanical scattering processes for many-body
systems is realized by methods taking into account close multi-channel
coupling, It is possible in this approach to minimize the number of pheno-
menological assumptions. Thus, for example, it is often only necessary
to take fundamental two-body interactions in order to calculate the wave
function of a system.

Considerable progress was achieved in this field of theory in recent
years, Many different algorithms of treating the reactions of the most
general type have been developed, e.g. rearrangement collisions and the
reactions with more than two free particles in the initial or in the final
state (see, for example, review article [1]).

The Schrbddinger equation is, in the general case, a differential equa-
tion in partial derivatives in which the variables cannot be separated. And
the present computers are most effective in solving equations with a single
variable. So we use the direct methods of mathematical physics to reduce
approximately the problem to the solution of a system of ordinary dif-
ferential equations.

If we decompose the wave function ¥ into a complete set of known
functions &, and, as an approximation, take into account only a finite
number of terms in this expansion:

N
T \I:N=2~F @ (1)
a
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then, according to Galerkin's principle, we obtain from the Schrédinger
equation (H-E) ¥= 0 a system of equations

U]
[y
-

N
<q>a|(H-E)Z Fg@a »=0 (@ .. N) (2)
[}

for the unknown coefficients Fg .

Almost all methods of the so-called unified theory of nuclear reactions °
are a particular realization of this simple scheme.

Before proceeding to consider the methods by which the most complex
general reactions can be treated, let us recall some simple information
about the formalism of multichannel scattering.

One of the simplest examples of multi-channel scattering is the motion
of a particle in a field V(¥) without spherical symmetry,

/

1. ONE PARTICLE IN AN EXTERNAL FIELD V(r, 0, ¢)

Let V(_r") have a finite range: V(r< rg, 08, ¢)=0.
We have to solve the wave equation (m =1, h=1):

-AU(F)+V (T) T (F) = k2 ¥ (T) (3)

with boundary conditions:
1 . W g eikr
¥(r>ry,0, (p)=z N, (El-/'i' ]a(kr)+ fomh (kr))Ym(e, ®) g +£(0, ‘P)T
fm . (4)
where f,;, are the partial'scattering amplitudes, and N, =[41r(21+1)]V2i“.
To reduce the problem to the solution of differential equations with a

single variable, it is natural, according to Eq. (4), to choose as the basis
_ functions @, (Eq. (1)) spherical harmonies Y, (6¢) divided by r:

o) L=l v 6o, (1a)
£'m*

It is a good approximation to neglect in expression (l1a) the terms with
2> kry. So, for unknown coefficients F;, we have a system of a finite
number of ordinary differential equations (see Eq. (2)):

42 2(4+1
- 35 m (1‘)+Jr—2'l Fam(r)"'z Vimerm' (T)Fprme (T) =k2Flm(r)(2 )
g'm* - a

where V, v (r)= [ Y*, V(F)Y,, dQ are the elements of the interaction
matrix which realize the coupling of the equations in the system (2a)l,

1 V(@) hasa spherical symmetry, V(£)=V(1), we have Wom g'm* =8¢ ¢8mm V (1), and the
system (2a) becomes decoupled.
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The scheme of numerical solution of Eq. (2a)

The interaction matrix " Vime'm' (r)n vanishes at r > ro together with
V(r) and Eqs (2a) become decoupled. According to Eq.(4) E, (r) must
satisfy the following conditions:

-0N. _r . 1,
F,o (0)=0; F, (r>r)=p7 j,(kr)+, b or (5)

Hence we must integrate the system (2a) numerically in the interval
0<r<ry.

It is important to note that the boundary conditions (5) are given at both
ends of this interval and the systems of ordinary differential equations could
be solved by the computer directly only if all the conditions are formulated
at the same point. Since, however, the system of N simple differential
equations (2a) has only N linearly independent solutions with F,(0)=0, and
since the required solution of Eq. (2a) could be constructed as a linear
combination of N such solutions, we can proceed in the following way:

"The system (2a) is solved N times with N linearly independent
auxiliary boundary conditions at r =0 (e.g., F(S) (0)=0;

((d/dr)FS) Jra0™~0gg r!, wheres=1,2,..., N) Then a linear combination
of these solutions is constructed:

F, (r){ C,FY (r) (6)

which is a general solution of Eq.(2a) satisfying the conditions F, (0)=0.
Finally, we choose the coefficients C; to satisfy the boundary conditions
at r=r; also:

r .
Z CFY (ro) = grfr dg(kro) + fymro b (kry)

1 d o)
@), e (), m (B,
I=r =[o

(M

The second moment to be noted is that the coefficients £(2 +1)/r2 increase
infinitely for r ~ 0, and computers can operate only with finite values.
But for small values of r, Eq.(2a) can be approximately solved by use of
the expansion of F{) (r) in powers of r. .

The constants F(S) (ro) and ((d/dr)F® )r =r, in expressions (7) are
known from the numemcal integration of Eqs (2) (auxiliary solutions).

From the 2N algebraic Eqs (7) we obtain 2N unknown constants C, and

fym, which determine the wave function ¥ = Z C F(S) (PY(1/r) Yy (6, 9IN,

' . s, im
and the scattering cross-sections,
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It is also useful to mention that the error of numerical integration of
(2a) can be estimated by checking the violation of the conservation law:

©® 4 o6 e 4 (s)>=
Z <Fa ir F, F, T F const. (8)
o

2. FORMULATION OF THE THREE-BODY SCATTERING PROBLEM

It is convenient to investigate the principal problems of scattering
theory for many-particle systems in the particular case of the three-body
system. The appearance of many important qualitative properties charac-
teristic of complex systems begins from just this simplest system
(addition of fourth, fifth, etc., particles does not introduce anything very
new). Beginning from the three-particle systems, there appear the
inelastic scattering (with excitation of sub-systems), reactions with
rearrangement of particles, threshold effects, processes with more than two
free particles in initial and final states, etc.

The Schréddinger equation for three particles (in ¢.m.s.) is given by

= > h2 h2
HY (R, ry)= <— oM AR - 5— A?'k
i

+ Vg + Vog+ =
i 2Mjk f Vig+Vog V13>\II Ev

(itifk) (9)

where R and ¥ are Jacobi co-ordinates: the ﬁi -vector, characterizing the
relat_iye position of i-th particle and the centre of mass of the pair (jk);
?]k = rj - ? k-

The boundary (asymptotic) conditions on ¥ can be formulated in terms
of eigenfunctions of the asymptotic form of the Hamiltonian H. There are
several such asymptotic Hamiltonians:

2
B - lim H=- 555 AR *hu (10)
according to the variety of ways of grouping the particles 1, 2, 3. This
is one of the most important new properties of the three-body in comparison
with the two-body system.

The Hamiltonian hy, of relative 1nterna1 motion of particles jand k

has eigenfunctions ¢, and eigenvalues ¢,

hjo (v )= €, 0, (7)) : (11)

According to Eqs (10) and (11)., the solution of Eq.(9) has the following
_ general form for R; - w:

R —>
T (R ~o; 1y < w)~z ﬂ—‘l Yom (@), (N, (12)

afm

For a particular choice of potentials Vi; in Eq. (9) and energy values E,
there can be several types of boundary conditions.
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1) Let Vy; and E be chosen so that scattering is only possible in
channels with a single grouping of particles, This situation is realized,
for example, if one particle is scattered on a pair of other particles,
which are coupled by an infinitely deep potential well, In this case, only
such asymptotic states exist which differ from the entrance state by the *
excitation of the target pair. Only a single asymptotic Hamiltonian corres-
ponds to the initial and final states in this case, as in the two-body
problem. So we have:

1
sin (k R; - (27/2))
Z { kE/ZRi Bt m0 ™t Togm R, N,

1

10, Ry - (om/2)
€

= - afm

\Il(Ri, I‘jk)"' —_ Ri"w
X Y,n(S2g,) @y (T ) for

ImA**Ry/ Yo" 'y <o

0 for Ri<co, r., - o

T (13)

The summation in expression (13) is limited only by the states for which
E-¢,20, ands,, corresponds tothe condition that incoming waves are
only in the entrance channels « .

2) The boundary conditions will be more complex if rearrangement of
particles is possible:

1+(23) scattering without rearrangement,

1+(23)= | 2+(13) . :
3+(12) reactions with rearrangement.
In this case, the asymptotic form of the wave function ¢ must describe
all the possible final states, which correspond to several asymptotic
Hamiltonians in different directions of configuration space (R; ~ o,
ry -finite; ifjfk=1, 2, 3):

r

o Ry ~Com/2D)

' | sin(k R, - (£7/2)) o
Z [ SR e, S e, | Yem( e, ) 2 ()T

ofm for Ry 2o

' ei(kﬂkz-(n'wﬂ)) )
T < Z faa'm"—ﬁz_—Ye'm' (QRz )(pﬂ (r)3 )N, for R, > (14)

ge'm’

' ik Ry -(2"7/2)
e . -
Z fyﬂ"m" ___Ra—_— Yyumn (QRs )(py (T1g)Ngafor Ry oo

~ y2"'m"

3) So far, we have considered only the reactions with two free frag-
ments in initial and final states: A+B-+ C+D,

Above the threshold of the division of the system into three parts there
appears in the asymptotics of ¥ besides the two-fragment components (14)
also the term which corresponds to the Hamiltonian Hy = lim H of free
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R«

motion of particles. It is convenient to write the boundar;']kconditions for
such states in new hyperspherical variables, [6]: the radius p; =vR] +ri
and five angular variables (e.g. three Euletrian angles, characterizing the
orientation of the triangle (123) in space, and two angles determining the
form of this triangle).

The divergent wave in the disintegration channel has the following form

in these variables:

ikpsps
e 2 2 2
\Ilp—_:: f(QFe)_WE_ ; kps=kr+kR (15)
5

3. SCATTERING WITHOUT REARRANGEMENT OF PARTICLES [2]

According to the form of asymptotic conditions for scattering without
rearrangement of particles (jk) it is natural to take as a basis function
in this case &,,, =Y (QRi )og :

27 m

™ =Z EA%—?MN Y (QRi)%(?ijf.... (1b)

So the boundary conditions for T jk would be satisfied before the solution
of the Schrddinger equation. The integral part of expansion (1b) is usually
neglected (if h; has a continuous spectrum).

Equation (2) in this case has the form:

h2  d2 | g(e+1
[' M, dRY & 2MR} —(E_Eq)]Faﬂm(Ri)+ Z < @opml Vis + Vil g g >
a'i'm

X F (R,)=0 : ) (2b)

a' ¢'m’
The main difference between this system and that for the two-body
system (2a) is in the fact that here the energy term (E-¢,) is not a
constant for all the channels.
For the target states @, whose excitation energy is less than the
energy of the incident particle (E = €, ; open channels), the boundary
condition for F are:

ofm
1 . e 1(k Ry -(om/2))
Faﬂm(Ri)R_'i_.m T sm(kaRi- —2> 6mn +faﬂme ;
[«]
k? =o2M (E-¢,) . (16)

For closed channels (E < € ) it is required that ¥, decreases expo-
nentially with R; (the i-th particle cannot leave the target with negative
energy):

kg Ry

Fm = Ane ; &2 =2M, (e, -E) (17)
i—»oo
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The scheme of numerical solution of Eq.(2b) is very similar to that
for the system (2a). It is only necessary to take into account new boundary
conditions (16) and (17) instead of (5).

4, REACTIONS WITH REARRANGEMENT OF PARTICLES [3]

The method described above is not valid for re-arrangement collisions
because the set of basic functions, corresponding to a single asymptotic
Hamiltonian H , is too poor to satisfy the complex boundary conditions (14).
In principle, the continuous spectrum of H; is connected with the channels
of different grouping of particles. But if the integral part of the expansion
(1b) is taken into account, Eq.(2b) becomes a very complex system of
integro-differential equations, and it is not clear how to formulate by
means of the functions F,,(R;), which depend on one variable, the
boundary conditions for the'channels described in terms of quite different
variables.

It seems rather natural to try to expand ¥ by utilizing simultaneously
the basic functions corresponding to all the asymptotic Hamiltonians:

z atm (Rl) Mm( . 1‘23)"'2 Fﬁz m (Ra) o °

Be'm’ (QR'rsl)

aﬂm Be'm'
Fypom- (R3) . f
+ z R, <I>7 gom® (QRs 3 rpp)t . (lc)
ye"m® )

But in this case we get the integro-differential equations for F_, Fa, F
even if we neglect the continuous part of expansion (1c) due to the non-
orthogonality of the basic functions for channels with different grouping of
particles. The difficulty of solving integro-differential equations is the
main defect of this method, In addition, the question of the overcomplete-
ness of the system of basic functions &, ym, ®gyrm' , ®ygmm= is not suf-
ficiently clear. .

As mentioned above, the main cause of the special difficulty of reaction
with rearrangement of particles consists in the presence of components
with different grouping of particles in the asymptotic behaviour of ¥. But
we can utilize the fact that the asymptotic part of ¥ is the best known (there
are only undetermined constants — partial reaction amplitudes)., If we
separate the asymptotic components in ¥ which prevent us from using the
expansion (1b) (see Eq. (14)):

' i(kgR - (2'1/2)) N
¥ = z foprme —R®, Yoom €g, )0, (T13)5(Ry)N,,
8 2'm*

' i(k,Ry -(2"1/2))
* z f e R, Yoorme (S, )o@, (F1 )S(Rs)Na-"‘X(Rp(i‘%;))

yi"m*®
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the remaining part of ¥ can be expanded in the set of basic functions of a
single asymptotic Hamiltonian H,:

5= F Rl -
X Z ——mi—lRl Y @ )0, Fg)N, (19)
oalm

The factors S(R) are introduced in the expansion (18) to remove the singu-
larity of separated terms at Rg(3) =0 (they can be chosen in a form
S(R)=1- exp-aR). Inserting (19) in (18) we get an expression for ¥ which
can be considered as an expansion of ¥ with coefficients fg e, fypupye
and F_, ., (Ry):

- Fomp, (Ry) o .2 ~ =
¥ z R, cI’ou g, m, (QRl’r23)+ foprm 2(Rgiryg)

oy ,m, Bo'm’

+ Z f”.m. d?y gome (Bgilyg) (1d)

ye4"m"”

The Galerkin principle gives a system of differential and algebraic equations
for the unknown coefficients:

h2 dz2 £ (£+1)
|} 2M1 m-'- ZMIR% -(E-ea) Fuﬂm(Rl)

+ Z <<I>a. ¢, m IV12 +V13 I Qal,ﬂl ,my >Fu1 ¢, m, (R)

oy £, My
>

= Z foprm <yom (P, } Tog) [ (BE-H) S, (Ryi70)>
Be'm*

* z fﬂl"m"<§aﬂm (QRl;r23)|(E-H)§72,m, (Rs;?12)>

y4*m"

Z <Eﬁﬂ'm' I(H'E) Qﬁlﬂim; >f511{m{ + z<§6l'm' |(H'E)¢Yﬂnmn>f72-m-

8,4 my ye"m"

+ z <$Ba'm' |(H_E)F;uﬂ%xl_(ﬂ >=0

afm

o f,my

Z <<Py 2" m* |@-E) Fopm 2 Tgpme * Z <‘I’ya-m- |(H'E)<I’yl 29 m] >fy 2ym}

1711
8 fm’ y ¢rmyp
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o Foyo,m, (R1) _
+Z <<r“.m..|(H-E) “1‘R"‘1 (1 2, 4,m, >=0 (2d)

afm

The differential equations (2d) differ from Egs 625) only by terms on
the right-hand side, which can be considered as ''sources'' providing the
connection of direct channels with rearrangement channels.

The system (2d) can be solved in the following way. First, the general
solution F (R ) of the differential equations is constructed by using the fact
that the sources depend linearly on unknown partial amplitudes2. This
solution depends linearly on unknown amplitudes f and arbitrary constants
C; of the general solution of the homogeneous equation. We put this solu-
tion into the system of algebraic equations (2d) and add the algebraic
equations which we obtain from the boundary conditions for F (R1). Thus
we derive the system for the partial amplitudes f and constants C; and
obtain the wave function ¥ and the reaction amplitudes.

Recently, a description of the rearrangement collisions by a method
without separation of asymptotic components in ¢ was proposed (see
section 8),

5. METHOD OF HYPER-SPHERICAL HARMONICS IN SCATTERING
PROBLEMS

For a system of identical particles, it is convenient to use the
expansion of ¥ which has exactly the required symmetry properties with
respect to particle permutation. But how shall we choose a single
variable to reduce the problem to simple differential equations, thereby
. not violating the symmetry of ¥? It is possible if this single variable is
an invariant of the particle permutation. In the two-body problem such
an invariant is the absolute value of the vector pis =7, -?2, and the
spherical harmonics are chosen as basic functions.

For the three-body system the situation is more complex. Now we
need two vectors to describe the system: R; and 'fjk . Neither |Ri |
nor |¥ ik | is the required invariant, But if we introduce the hyper- °
spher1ca1 co- ordlnates (see sub-section 2. 3), the absolute value of the
vector pg =1 R1 )] Jk} will be the invariant which we need. In analogy
with the three-dimensional case we introduce the generalized spherical
(hyper-spherical)l functions Y (25), where K is a set of five quantum
numbers. The unusual six- dlmensmnal space and new quantum numbers
should not confuse those who meet them for the first time. They are
handled in the san:ae way as the usual spherical functions.

When a function localized in a finite region (bound-state problems)
is expanded in the set [4]

¥ Z Fg (pg) Yz (@) (le)

K

2 The general solution of the inhomogeneous equation f.F= }i:fi M; is: F= o)+ }i:fi Fi, where F®)

is a general solution of the homogeneous equation and F; are partial solutions of the equations L Fi=M;j.
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the boundary conditions for Fg are simple:Fg (pg) o 0. The number of
6

K-harmonics necessary for a satisfactory description of the function
depends on the angular velocity of their variation (as in the case of Y;).

It is therefore advisable to expand in the set of Y (Q;) in the scatter-
ing problems only that part of the wave function which has no two-fragment
asymptotic components [5]:

¥ = Z fa1m§a2m+z foorm ®pprm * Z fy!l"m"@yﬂ'm" +ZFK(PS)Yf (?lsf;

olm ge'm' y&"m" K

The solution of a proper system for coefficients f and Fg (pg) proceeds as
in the case of Eq.(2d). The main difference is that it is required that
F2 (pg) vanish for p; » .

6. REACTIONS OF THE TYPE 1 +(23)~1+2+3

Let us now consider the reactions above the threshold of division of
the system into three parts. Below this threshold, there is a discrete
number of open channels, because the energy E is divided between the
quantized inner motion of fragments and their relative motion. Above
the threshold, the energy of the system is divided in a continuous way
between three particles. It seems that in this case there is no possi-
bility of avoiding the basic set with continuously varying quantum numbers
for expansion of ¥. But, as in the two-body problem, the continuous
angular distribution of scattering products is described by means of a dis-
crete set of spherical functions Y, , so the angular and energy distribution
of three (and more) free particles can be described by a discrete set of
hyper-spherical functions Yg. And for free motion of particles, K are
good quantum numbers. Therefore, there is no need to separate in ¥ the
asymptotic components corresponding to the disintegration of the system.
The expansion of ¥ coincides in this case with the expansion (1f)., The
equations for f and Fg (pg) are also the same. The difference is only in
new boundary conditions for Fx (pg). In accordance with relation (15) [6]:

ikpps
Fleg) 7= &% epsfz (20)
§ 6

where fg are the partial amplitudes of disintegration.

7. VARIATIONAL BOUNDS FOR SCATTERING PARAMETERS

So far, the problem of estimating errors due to neglecting an infinite
number of terms in expansion (1) is poorly investigated.

There is a well-known example in quantum mechanics when such
errors can be controlled exactly. The calculations of eigenvalues of
energy in the bound-state problem by means of variational methods give
strict upper bounds for energy levels, This is widely used because in
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many cases it allows definite conclusions to be made from the comparison
of theoretical results with experiment, in spite of the fact that calculations
may be very rough, If the theoretical value is below the experimentally
measured energy level, it means quite certainly that the initial theoretical
assumptions are wrong — more precise calculations would increase the
discrepancy with experiment.

The situation for the scattering problem is much more complicated.
This is because, in this case, the variational principle is no minimization
problem, but only provides the condition 6f=0 of the functional which
gives the reaction amplitude. ]

Nevertheless, Hahn, O'Malley and Spruch [7], have shown that in
multi-channel formalism it is possible to obtain the strict bounds for the
reaction matrix K (for processes without rearrangement) below the
threshold of division of the system into three parts. In the paper [8] the
results of Spruch were applied to the reactions with the rearrangement of
particles using the method of separation of asymptotic components in @.
Lkhagva [9] has proved the same theorem for the expansion of ¥ in a set of
hyperharmonics. Recently, the theorem on upper bounds for the K-matrix
was proved for reactions above the threshold of three-fragment reactions:
A+B-a+b+c [10], '

8. TREATMENT OF REACTIONS OF GENERAL TYPE WITHOUT
SEPARATING ASYMPTOTIC COMPONENTS IN ¥ [11]

The general expression for the reaction amplitude is
£, =f 8, V, ¥dr (21)

where &, is the wave function of free relative motion of fragments in the
channel @, V, is the interaction neglected in &, . It is evident from (21)
that the non-zero contribution to f, is produced by the integrand in a
localized region of configuration space, because the overlap of &, and V,
at large distances in configuration space tends to zero.

This fact makes it desirable to search for ¥ in the form of a'linear
combination of quadratically integrable functions (&l €L,), since every
function in a restricted region can be represented with any degree of
accuracy by the basic functions in L. But here we meet a difficulty which
seems to be insuperable at first sight. The Schrodinger equation in partial
derivatives has an infinite number of linearly independent solutions if the
boundary conditions are not fixed and the trial function

N
oN = Z F, o} (1g)
i

with the coefficients F; determined from the usual requirement (2) seems
to be a linear combination of all these non-physical solutions to which the
required solution gives a small contribution.

In the first section of this we used the fact that the ordinary differential
equations have a finite complete set of linearly independent solutions. One
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would think that for differential equations in partial derivatives, it is im-
possible to construct the proper solution from a finite number of

auxiliary solutions. However, it is a remarkable property of the
Schrédinger equation that in the class of non-increasing functions it has
only as many linearly independent solutions as the number of open channels
[11]. In some problems, this number is strictly finite; and in the general
case, it often turns out that in a good approximation one can limit oneself
to a finite number of open channels (e.g. neglect the higher orbital
moments). Therefore, it is sufficient for us to find the necessary number
of linearly independent solutions.

It will be convenient for the following to transform the wave equation
and boundary conditions for the scattering problem, so that the inhomo-
geneity from asymptotic conditions is transferred into the equation. To do
this, let us assume the following separation (®;, is the incoming wave):

T=a, +X (22)
Then the Schrddinger equation can be written in the form:
(H-E)X, =(E-H)&,, =J, (29

where J  is a known function (source).

Equation (23) can be solved by means of the standard Galerkin proce-
dure, if we expand X, using &} as the basic functions.

The wave function for the process under consideration could be
constructed as a linear combination:

\1:=Zaa(xa+¢>0a ) (24)

o

where the summation goes over all open channels taken into account, The
constants a, are determined by the values of amplitudes of incoming
waves A :

B

where @l is a free divergent wave in the partial channel a. S, is the surface
term due to the singularity of &} at R=0 where R is the co-ordinate of the
relative distance of fragment in channel o, Thus we have the wave function
(24), and can calculate the reaction amplitudes £, (21),

9, CONCLUDING REMARK (COMBINATION OF DIFFERENT METHODS)

If we take into account more and more terms in the expansion of ¥
in order to achieve a better approximation, we must solve a system with
more and more equations. So that, at a definite moment, the additional
accuracy due to new terms in the expansion of ¥ will be reduced by the
growth of errors of numerical calculations of a larger number of
equations. '
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There is, however, a trivial way of improving the results by using a
combination of different methods.
- Let (D denote the approximate wave function of a many-body system
obtained by one method. It can be regarded as an exact solution ¥ with an
error function AT

¥ = g+ Ag®? (26)

Let another method, for the same system, give an error AT of the same
order as AT ;

@ =g+ a0® (27)

If these resulis are averaged, we obtain a2 new wave function

N
ae,...) 1

R W
T -\1:+NZM/ (28)

i

which, in general, is a better approximation because the errors in the
different methods are independent (to some extent), and interference will
lead to their mutual suppression. -
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1. INTRODUCTION

One of the basic problems of non-relativistic quantum scattering
theory is the development of effective methods to solve the Schr8dinger
equation for different many-particle systems. This development has been
hindered for a long time by the fact that there was no general theory of
differential equations in partial derivatives which could serve as a foundation
for constructing the algorithms of their approximate solution. True, there
has been great progress in this field of mathematics in recent years closely
connected with the successes of functional analysis and of the theory of
generalized functions (distributions (see, e.g. Ref.[ 1])) Physicists still have
to take full advantage of the potentialities of this new mathematical tool.

The solution of the Schr8dinger equation for the many-body systems in
problems of continuous spectra is much more complex than the description
of bound states although the methods of the so-called unified theory of
nuclear reactions are rather close to the procedure of mixing configurations
widely used in the nuclear-structure investigations. The scatteringproblems
require the creation of computer routines of an entirely different type and
the experience accumulated in bound-state calculations (e. g. the technique of
evaluating matrix elements, etc.) cannot be used there immediately. This
is particularly the case in the treatment of multi-channel reactions of
general type — rearrangement collisions and processes above the threshold
of the division of the whole system into three parts [ 2]. So it would be
highly desirable to approach the calculation techniques for the problems of
continuous spectra to those of discrete spectra.

In this paper, a method is proposed in which the scattering wave function
is constructed by utilizing the expansion in the set of the same basic
functions as for the bound state problem (see section 4). This method has
definite advantages over that developed earlier for the description of multi-
channel processes of the most general type [ 3].

It is, however, advisable to consider first two principles concerning
the solution of differential equations in partial derivatives in an unrestricted
domain. This will clarify some interesting propertiés of the Schrddinger
equation, : '
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2. THE PRINCIPLE OF LIMIT ABSORPTION [ 4]

The Schrddinger equation transforms into an inhomogeneous equation
if we separate in the wave function ¥ an incident wave &j,in the partial
channel a:

¥ = By, + X, (1)
so that
(H-E)X_ = (E-H) &, = J, (2)

where J, is a known function (source). If a small additional imaginary
term +i€ is introduced into Eq. (2),

(H-E 2 ie)X\9 = 3, (3)

then Eq. (3) has a unique solution inh the space of quadratlcally integrable

functions (X(e) € L,). In the limit € » 0, the function X + &;, becomes

the required physical solution with divergent (convergent) waves,! Thig

principle can be used for the approximate solution of scattering problems.
If we expand X{9 in the set of bas_ic functions {¢}?} in Ly:

E: N) Z F(e \N) . (4)

we obtain a system of coupled equations for the coefficients F‘(fo) according
- to the Galerkin principle (see Eq. (2. 5)):

Colt | @Ex10) Fe® o> =Cd [ 1) (5)

It is necessary to mention that the passage to the limit € - 0 in expression (5)
is not allowed if the number of terms taken into account in expansion (4)

ig finite (I <N). For each N there exists the optimal value €y at which the
approximate solution has minimal deviation from the required one.?2

! This principle is not yet proved for the case of the Schrbdinger equation but there is no serious doubt of
it. The same is true for the principle of the limit absorption (see further).

2 The value of e determines the distance (Rg at which the solutmn of Eq.(3) decreases so that it becomes
negligible. And N must be large enough to describe the behaviour of x4 inside the domain of configuration
space with linear size€ ~R¢ rather well, If N is chosen so small that R¢ is greater than the distance RN at which
the basic.functions ¢l" with i < N become negligible, this will have such an effect on ng) as if an unphysical
barrier were erected at ~Ry. And it will lead to the appearance of undesirable waves in xa reflected from
this barrier. On the other hand, the value of € is to be taken as small as possible in order to diminish the
difference between Xs.f.) and the required solution X,
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3. THE PRINCIPLE OF LIMIT AMPLITUDE

Let us transform Eq. (2) in another way and introduce a supplementary
"time'" dependence

d? ;
S X Hx () = 5l & = 2ME (6)
Solving Eq, (6) with the initial conditions: x,(0) = 0; ((d/d’c))(m)t =0 =0, we
obtain for t — oo:

lim x4 (t) = X, ¥kt %))

t o0

where X, is the required solution of Eq. (2). :

The function x, (t) is distinguished from zero in the bounded domain of
configuration space fpr each fixed value of t because the wave x,(t), created
by the source J, exp**® beginning from t = 0, cannot propagate infinitely
far during the finite time interval. Therefore, we can construct the approxi-
mate solution of Eq. (6) in the form (expanding x, in the set of (p:'l ):

N

Yo (8 Z Foylt) o7 (8)

For coeificients F,; (), according to the Galerkin principle, we have the
system of ordinary differential equations which can easily be calculated by
the computer:

2 U i
<ot [(H+m)) Fuwel >= <ol 1,6 (9)

At sufficiently large t = t, in the bounded region of configuration space
where the reaction takesplace, the oscillations of Fqi(t) acquire a simple
exponential dependence on t: Fy (t) = Fy; expl1¥ | Separating this 'time"
dependence we obtain according to (7) and (8) the required function X4 (and
¥). As in the case of the principle of limit absorption, one must be careful
in the choice of t; and N. There is an optimal value t, for each N,3

The principles of limit absorption and limit amplitude permit an
approximation to the solution X, of the scattering problem from the class
of Ly functions. Let us now consider a more effective way of obtaining such
a solution. .

3 The value t, should not exceed the time which is necessary for the wave Xq(t) to reach the region where
all the «p}‘z(i <N) become negligible. This will lead to the appearance of reflected waves from the barrier
_ which is effectively erected by the neglect of terms with i > N in expansion (8).
The value N must be chosen large enough to ensure a sufficiently good description of x,, in the bounded
region where the reaction takes place (where all the interactions are acting),
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4, THE BASIC EQUATIONS

The following method is essentially based on the fact that the
Schrddinger equation has exactly as many linearly ihdependent solutions as
the number of open channels for the given value of energy E. The required
solution can be constructed as a linear combination of these solutions. As
these auxiliary solutions, we shall take

N
= N b Lo =
XE _Z io ‘Pi ’ ‘Ilot X(Nx + {)Oa . (10)
i
and equations for coefficients Fj, are: '
- N .
N Ly .
<o I(H-E)Z Fia o> = <o | T D = o (11a)
i

Equation (11a) can be rewritten in the explicit form
Z[ (€; = E) by + Wiyl Foyy = o (11b)
i

where € are eigenvalues of the model Hamiltonian Hmod:

Hinod 9%’ = €k fP{?

n
and W =< fpll(“ |<Z vy - Vm°d> (pi" >. To solve the system (11b) one has

1<j
to calculate Wy; and inverse the matrix M = " (g, -E) 6y + Wy " . This part
of the problem is almost the same as in nuclear structure calculations,

Then one multiplies the vector j, by the matrix M and gets the coefficients
F

ai*

The wave function which we need has the form
L4 =Z a5 (Xo+ Bgo) (12)
~ .

where the summation is over all the open channels. In a good approximation,
it is sufficient to take into account in expression (12) only a finite number of
terms giving a considerable contribution to ¥. The constants a, are defined
by the amplitudes A, of incident partial waves

A, =f<I>LVaZ ag(Xp + @gg) dT + S (13)
8

considering Eq. (13) as a system of algebraic equations for ag. S, is the
surface term due to the singularity of <I>L at R = 0 where R is the co-ordinate
of the relative distance of fragments in channel @. The function <I>L in Eq. (13)



IAEA-SMR-8/9 167

FIG.1. Closed region around source J,.

is a divergent wave in the partial channel @, and V_ is the interaction which
is neglected in @L. The formula (13) can easily be checked. Substituting

V, by Hy, - E because of the requirement that ¥ =z ag ¥p satisfies the

’ B
Schrddingér equation: (Hy, + V, = E) ¥ = 0, and shifting the action of the
operator (Hy, - E) to the left using Green's theorem we get Eq. (13). The
same formula is valid for reactions above the threshold of the system
divided into three parts [ 5]. Thus, we obtain the wave function ¥ according
to Eq. (12) and reaction amplitudes from the well-known general expression:

f, =f<1»,,v,, Tdr ' (14)

where @, is the wave function of free relative motion of fragments in
channel a, .

It is useful to consider the physical sense of the auxiliary solutions x;‘
If we choose as basic functions (p{‘l, the functions of independent motion of
particles in an infinitely deep potential well, which is usually utilized in
nuclear structure models (V,,,4), then the construction of the approximate
solution XI: in the form (10) as a linear combination of N functions fp%‘! (i <N),
disappearing at large distances (~Ry) in configuration space, is equivalent
to introducing effective potential walls (see sections 2 and 3). The wave X’:
generated by the source J, (which corresponds to the incident wave ®yq)
moves in the closed region, represented schematically in Fig, 1.
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The dashed line designates the effective potential barrier, and the tubes
symbolize the different channels (e. g. elastic, inelastic scattering, re-
arrangement of particles, etc.). Solution Xﬁ corresponds to the solution
of Eq. (2) with boundary conditions — standing waves in all channels;
divergent waves colliding with potential walls are completely reflected by
them (arrows in Fig. 1). The situation is very similar to the eigenvalue
problem, éxcept that due to the inhomogeneity of the system (11a), its
solution exists at any E above the threshold of elastic scattering,*

The linear combination (12) of such solutions ¥, (with different o)
permits one, by choosing the proper coefficients ay, to eliminate the
convergent (incident) waves in those channels where they should not exist
according to the boundary conditions of a given physical process.

The method described above can be slightly modified in order to use
the hyperspherical harmoniecs Yg (Q3,-4) (generalized spherical harmonics)|[ 6]
as basic functions in expansion {10). Here {23;-4 are 3n- 4 angular variables,
n is the number of particles in the system and K is a set of 3n- 4 quantum
numbers. In this case, the coefficients Fj, become the functions dependent
on collective co-ordinate p (see Ref.[ 5]):

- R S - _
Xa (pxnan-4) = 3n-4 Z FaK (p) YK (an_4) (15)
p T =
K
And instead of Eq.(11),we get a system of ordinary differential equations:

h? & 4’ Lk(Lg+i - e - s =
(-2 G+ 2L Ll D L p)pg o)+ ) Wi Fog = fole) (16

K

where

Lq=K+3 (a-2)

n
Wik =fYE (,Qan-4)<z Vij> Vi (Q37-4) €34

i<j

and
jai =fYI:( (QSn-4) Jot dQ3n-4

with the boundary condition that Fug does not increase at p » o,

* Far discrete values of E, correSponding to the eigenvalues of the homogeneous part of the system (11a),
there is no solution of Eq.(11a), The solution near these points can be obtained by solving instead of (11a)
the comresponding system of ordinary differential equations,
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5. CONCLUDING REMARK

It is proposed in this article to describe reactions of general type
(with rearrangement of particles and division of a system into three and
more parts) in a different way than was done by the method of separation of
asymptotics[3, 5]. According to the new procedure, it is not necessary
to subtract from ¥ divergent waves with unknown amplitudes; this was
equivalent to using a mixed basis and to introducing the truncation factors
in order to correct the singular behaviour of trial functions. It seems that
utilization only of completely orthonormalized basic functions tpil"‘ in the
proposed method will make the calculation procedure more stable with
respect to the errors in the trial function.
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1. INTRODUCTION

In this short paper, we shall discuss the predictions of the Kapur-
Peierls dispersion theory [1]. We shall consider simple systems to study
the properties of Kapur~Peierls eigenstates and eigenfunctions, The work
reported here has been done in collaboration with Lejeune [2]. For the
sake of completeness, we shall also present some of the calculations of
Gignoux (3] at the University of Grenoble,

For details of the formalism, we refer to the original paper of Kapur
and Peierls [1] and the review by Brown [4]. This formalism has been
applied to the study of resonant electron scattering by atoms and molecules
by Herzenberg, Mandl and co-workers [5].

We shall be interested in the study of the energy dependence and
radius dependence of the complex eigenvalues, as well as in the suitability
of one-level approximation to the S-matrix in the analysis of isolated
resonances. The relation between the Kapur-Peierls formalism and the
pole expansion of the S-matrix by Humblet and Rosenfeld [6] has been
studied by Minelli and Zardi [7].

2. SCATTERING OF A PARTICLE BY A SPHERICAL POTENTIAL

The first simple model we consider is that of the scattering of a
particle by a spherical potential. The Kapur-Peierls eigenstates are
solutions of the equation

2 .
[dg2 —%-—1) 'ﬂ(r) + k%'n(k, ao):l U!,I‘Ir-' k, ao) =0 (2. 1)

satisfying the boundary conditions

Up,n(0, k, 29) =0,§yf“ﬂ=Lf(k, a9)U,,natr =a,

(2.2)
Lk, ag) =[kaght® (k, ag)™] aﬁ; [ kaohD (k, ag)]
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where hf¥ (kr) is a spherical Hankel function of the first kind and order
£ and

K =2mE/f’
#(r)= 2mV(r) /h° (2. 3)

ktlz,n = 2m Jﬂ,n/'r12

In Eq. (2. 3), E is the projectile energy, V(r) is the spherical potential
and &y, is the Kapur-Peierls eigenvalue.

In view of the boundary conditions, Eq. (2.2), we can show that the
eigenvalues and eigenstates of Eq. (2. 1) are energy-dependent and, in
general, complex. They also depend upon the matching radius ag. To
be consistent with the assumption made by Kapur and Peierls, one should
choose ay such that for r >a; the potentlal V(r) is very weak.

The trajectory of the eigenvalue kl n as a function of k is given by
the equation [3]

0 (K,
Lalk, 29) 21k, ag) (2. 4)

ak n(k) = ag

aonr Uf'n(r, k, ag)

Calculations for these trajectories have been made for a square-well
potential [2] and for a Saxon-Woods potential [3]. In Fig.1 the energy
dependence of the eigenvalues for scattering by a Saxon-Woods potential
are shown. The intersection of the line k? = real part of kn p With the
trajectory defines the resonance energy.

We shall consider two cases where one could fit the exact cross-
section by a one-level approximation. The S-matrix can be expressed in
terms of the Kapur-Peierls eigenstates and eigenvalues in the form:

Lik,ag ikh? UZ ok, ay)
Ou(k, ap) m A&y nlk, ag) - E) Oy(k, ag)
m

S = (2. 5)

where

I(k,ay) = kagh!? (k, a,)
and
Oylk,aq) = kaght® (k, ao)

In Fig. 2, we show the comparison between the exact s-wave cross-section
and a one-level approximation. The parameters of the square well are
shown in the figure. The square well is slightly weaker than one needed
to bind a particle. There exists a virtual state of a small positive energy
which dominates the zero-energy cross-section. The corresponding state
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FIG.2. s-wave scattering by a square well potential,

FIG. 1. Energy dependence of the real part of K% - as a fiinction of %, The Saxon-Woods potential has
a radius. of 1; diffusiveness of 0-1 and a depth of 1'290 in appropriate units, The figure is taken from Ref. [3].
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FIG. 4. Energy dependence of the resonant eigenstate in p-wave scattering.
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in the Kapur-Peierls theory has an eigenvalue in the complex plane very
close to zero energy. One can notice that the agreement is very good at
very low energies and begins to become worse with increase in energy.
We shall return to this point later.

In Fig. 3 we show a similar comparison for the case of p-wave
scattering. The complex eigenvalue of the state included in the calculation
of the S-matrix is (0.25-(i/2) 0. 50) MeV. The value quoted is at resonance.
The eigenvalue is, however, energy-dependent. The energy dependence
is shown in Fig, 4. The energy denominator appearing in the S-matrix is
of the form (E -E-if /2). If

E,=E;-oE

I‘n = Fo +BE

the correct resonance eigenvalue is given by
(Eg - (i/2)I3) /(1 + a+ (iB)/2)

which gives us the value (0,29 -0, 152(i/2)) MeV. The resonance occurs
at an energy of 290 keV witha widthof152keV. One also notices that the
energy dependence of the real part E; has a negative slope. " This seems
to be a characteristic feature of scattering resonances.

One more comment has to be made at this stage. A one-level approxi-
mation to the S-matrix in the framework of the Kapur-Peierls theory is
non-unitary. It is this lack of unifarity that causes a discrepancy between
the exact cross-section and the one-level cross-section as the energy is
increased. An estimate of the lack of unitary, 1 - |SQ|2, shows that in
the above two cases, it is less than one per cent in the s-wave case and
less than about ten per cent in the p-wave case.

3. MANY-CHANNEL CALCULATIONS

The resonances which we have encountered in the previous section
are single-particle resonances.” One might feel that the one-level formula
will be more suitable in the case of a "compound resonance''. We shall
therefore consider a soluble coupled square-well model which has been
studied by Newton and Fonda [8], Weidenmiller [9] and others [10], The
model is the following; the exact scattering wave function satisfies the
equation

h2 g2 )
((imaem )iy [meo .

where 1 is a unit matrix, g is a diagonal matrix with

e =& & (3.2)
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where ¢ is thethreshold energyfor thei-th channel and Y is a real
symmetric square matrix., We assume that

Vj; =constant (r=R)

(3.3) °
VI'.] =0 (r>R)
In Eq.{3. 1) % is a column matrix given by
#Y (r)
¥ (2) = | 2 (r) (3.4)
~E - E o :
d¥(x)

where gl/g) (r) are regular at the origin and satisfy the boundary conditions
that

wéi) (r) = (Agi)-l/z[exp'(--ik-l.r) 8i1 - Si1 exp (ikjr)] (3.5)
for ¥2R and where #; is the velocity in the i-th ¢hannel,

‘The Kapur-Pelerls eigenstates are solutions of the ‘'same Hamiltonian
but satisfy the boundary conditions that

i _.

=ik (r) at T = 3 (3. 6)

where kf =2m (E=-e;)/1%, and &; are the channel radii. One can show that
the functlons cp(‘) satisfy the orthogonality relations ’

N a5 ’
Zfdrcp,‘,"'(r)&:ﬁi,’ (r) =0 n¢m (3.7)

=10

and we choose to normalize them such that

N a

Zf dro(r) = 1 (3.8)

i=10
Theeigenvaluesd, are compléx and energy-dependent. If we write

&, =E,-iLy/2 - (3.9)

‘it can be shown that

-1
-—-Z i, o® (ay) [ [Zfdr ol (r)2] (3. 10)

i=10

where M is the number of open channels.
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The S-matrix elements are given by the relation

. CEVOCANES .
Sy =e (au + iz M) e-tkiai (3.11)
8, -E
n
where
. 2K \V/2
P = <T> oD (a) (3.12)

We considered a model with one open channel and one closed channel.
The potential matrix was of the form

-31 -0.1
Z'(-o.l -41 )Mer?rrélfifm
l/' =0 forr>6fm

The threshold energies were e; =0 and e; = 6 MeV. The exact pole of the
S-matrix occurs at an energy of (3. 05-(i/2)0. 00388) MeV. When the two-
channel radii a; and ag were both chosen equal to the range of the potentials,
one of the Kapur-Peierls eigenvalues occurred at an energy (3.05
-(i/2)0. 00542) MeV, which is very close to the exact pole energy. This
eigenvalue is, however, energy-dependent. Once again, we obtain a linear
dependence with negative slope. As in the previous section, if we re-
normalize the width due to the energy dependence, we obtain a width of
3. 88 keV which agrees with the exact width. Next, we studied the dependence
of the eigenvalue on the channel radii. It was found to be independent of
the open channel radius. Its dependence on the closed channel radius is
shown in Fig. 5. It is seen that for a closed-channel radius larger than
10 fermi, I becomes constant and equal to 3,88 keV. This effect is well
known in R-matrix theory and corresponds to the fact that the main part
of the closed channel wave function is confined in that region. The fact
that the eigenvalue only depends on the closed-channel radius indicates
that the resonant state corresponds to a state which was a bound state in
the closed channel in the absence of coupling. Following up the argument
about the renormalization of the width due to energy dependence of the
eigenvalue, we anticipate that the energy dependence should be closely
linked with the choice of the closed channel radius. .This is shown in Fig, 6,
It is seen that, for a, larger than 10 fermi, the éigenvalue is independent
of energy. It is thus seen that one has a very simple method of extracting
the exact resonance energy from the Kapur-Peierls theory, particularly -
for narrow resonances., This is easy to understand frofm the projection
operator formalism as shown below.

If we call the projection operators for the open and closed channels P
and Q, one can show [11] that the resonance energy is an eigenvalue of
the equation .

1 : ;
(Jn-QHQ-QHPmPHQ)CDn=O (3.13)
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FIG.5. Dependence of the Kapur-Peierls eigenvalue on the closed-channel radius.
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FIG. 6. Variation of the energy dependence of the eigenvalue with the closed-channel radius. 1 corresponds
to a radius of 6 fermis, 2 to B fermis and 3 to 10 fermis,

The solution of the above equation is equivalent to solving the coupled
equations (3.1) with purely outgoing boundary conditions and no incoming
waves in any channel. This is exactly what is done in Kapur-Peierls
theory and hence the predicted Kapur-Peierls eigenvalues are close to
that of the exact pole energies in the case of narrow resonances.

The comparison between the exact cross-section and the one-level
approximation is shown in Fig.7. The full line curve is the exact cross-
section and the dotted one is the one-level approximation. The one-level
approximation overestimates the peak cross-section. The reason is the
lack of unitarity of the corresponding S-matrix. If we examine the ex-
pression for the S-matrix, Eq. (3. 11), we see that the partial width is
given by
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which is a complex quantity. For narrbw resonances, the Kapur-Peierls
eigenfunction has a large amplitude in the closed channel and a negligible
amplitude in the open channel. One can thus write

WO WAL (3.14)

The fact that the phase ¢, is non-zero is what accounts for thé lack of
unitarity of the S-matrix. Using the above expression (Eq. (3. 14)), one
could unitarize the S-matrix and obtain

; I
_ o 2i(ka+ap) : n
Sep=¢€ [1+1E———————-n_E_irn/2J (3.15)

The cross-section with the unitarized one-level approximation is shown
in Fig. 7 as a dot-dashed curve. The agreement with the exact cross-
section is remarkable. We studied the dependence of the phase on the
channel radii. It was found to be independent of the closed-channel radius
and its dependence on the open-channel radius is shown in Fig, 8. This
dependence indicated that there is a large contribution to the background
from the elastic scattering channel. We looked again at the next nearest
eigenstate, which was found to be at resonance at an energy of 4. 68 MeV
with a width of 6.83 MeV, This is associated with a very broad resonance
in the open channel. We calculated the contribution of this state to the
S-matrix. This gave rise to a phase which agreed very well with ¢,.
This feature is similar to the phenomenon discussed by McVoy [12] where
there is a collision of poles of the S-matrix, the two poles belonging to
different Riemann sheets. In the above case the two poles are necessary
for the unitarity of the S-matrix.

Before concluding, we should comment about some calculations of
Gignoux who has utilized the Kapur-Peierls formalism from a different
point of view. One could start from the Lippmann-Schwinger equation

¥ 2o+ 6 v

where ® is the eigenstate of an unperturbed Hamiltonian, V is the residual
interaction and G{*) ig the outgoing boundary condition Green's function.
One could expand G{+) as
<
G Z Jn><n]| n|

where |n>are Kapur-Peierls state vectors and &, their eigenvalues. A
few-level approximation to the Green function leads to an expression for
the S-matrix that differs from the Kapur-Peierls expression only in the

)
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background. Comparing the results of Gignoux with ours, we could draw

the following conclusions. In the case of reactions with isolated resonances,
a unitarized S-matrix of the form of Eq. (3.15) seems very suitable where-
as in the region of energies without resonances or with overlapping resonances,
the method of Gignoux seems superior, and the convergence of the ex-
pansion for the Green function seems fairly rapid. In particular, one

could calculate the optical potential [4] by using the Green fucntion method.
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Abstract
SCATTERING OF HIGH-ENERGY PARTICLES ON LIGHT NUCLEI.
The elastic and inelastic scattering of high-energy particles on light nuclei is studied by means of

Glauber' s multiple-scattering theory, in order to obtain information on the structure of the nuclear wave
functions,

1. INTRODUCTION
The scattering amplitude of the ""elastic" process
a+N; ~a+N; ' (1)
is given, in the framéwork of Glauber'_s theory [1], by the formula

A
F._(a) =%fe“‘" a®b <Ny [1- ][ {1- I, (B- 8, N, > (2)

if
2=1

where |N > and |Nf > are-the internal wave functions of the initial and

final nuclear systems, b is the 1mpact parameter vector, s ¢ is the pro-
jection of the nucleon co-ordinate rl on the plane perpendlcular to the dlrec-
tion of the projectile (see Fig. 1) and the so-called "profile function" I'(b)

is the two-dimensional Fourier transform of the a-nucleon scattering
amplitude

r@) - gie [atar@e ™ (3)

As is well known, expression (2) includes multiple-scattering contri-
butions, with the restriction that the projectile cannot scatter twice on the
same nucleon, The subindex £ in the profile function takes into account
the fact that the interaction of the external particle with the nucleons can
be spin- and/or isospin-dependent. This fact is incorporated in actual

-calculations by putting in expressmn (3) the complete sp1n—1sosp1n dependence
of the amplitude and considering r(b) as an operator in spin-isospin space.
However, when the operator form is used for I'(b), expression (2) is not,
in general, valid, and it is necessary to introduce a time ordering of the
individual interactions, To clarify this point, we shall consider a simple

* On leave of absence from Departamento de Fisica Tedrica, Facultad de Ciencias, Valencia, Spain.
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FIG.1. Variables appearing in Eq.(2); the vector_;l is in the plane perpendicular to the direction of the
projectile a.

example, the r-nucleus interaction, and only the isospin structure of the
amplitude will be considered, i.e.

£_(q) =£(q) +(67) gla) (4)

This amplitude includes not only the elastic scattering of 7, 7% and n ",
but also inelastic processes like 7" p —» 7%n, for instance. Now, if the in-
cident particle is a 77, it is no longer possible to consider the scattering
of a 70 if that 7% has not already been produced. The time ordering of the
events can very easily be introduced into the Glauber theory: as long as,
in this theory, we consider only very small angles, the time ordering coin-
cides with the ordering of the z co~ordinates of the nucleons (we are con-
sidering the z~axis in the direction of the incident partile) and in Eq. (2)
we make the substitution

A
[[a-r)- z (L-T,)(1-T,)... (1-T,)0(z,-2 ) u. Oz, =2, ;) (5)
£=1 permutations

However, the dependence on the z's of this expression makes its evalua-
tion very lengthy, and in actual calculations one uses the approximate form

£\~ £(a) + 6,7, - g(a) (6)

for expression (4) because, as long as the commutation relation [T}, I 1=0
is satisfied, the right-hand side of Eq. (5) is equal to the left-hand side.
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This approximation is equivalent to discarding the inelastic intermediate
states but takes into account the difference between the 7”'p and 7 n scatter-
ing amplitudes.

In what follows we are going to work with scalar amplitudes and only
corrections of the type of Eq, (6) will be included.

2, CALCULATION METHOD [2]

We are going to start with the simplest problem: elastic scattering on
doubly closed shell nuclei, in particular 120(15‘11/2, lpg/z) and 160(153‘/2 s
lpg /20 1p41 /2). The nuclear wave function is given by the Slater determinant

1

Al

IND -

det{v, (—f'j ) (7)

where the v; are the normalized one-particle wave functions (i=(n, £, j, js)).
It is possible to compute the complete multiple scattering series (2) using
the simple rule

(NI ][ {1-T@B- 5N = det [<v, (1) |1 - (- 8) | v; (2} (8)
i=1

i.e. the problem is reduced to the evaluation of the matrix of the right-hand
side of expression (8). These one-body matrix elements have very simple
expressions when harmonic oscillator radial functions and Gaussian ampli~
tudes are used., In the Appendix A we present the form of the matrix (8)
for A =16; only the 8x 8 block matrix corresponding to proton (or neutron)
states is written because, as long as the amplitude is isospin independent,
all matrix elements between a proton and a neutron state are zero. If we
had retained a part of the isospin dependence in the form given by Eq. (6)
the two 8x8 blocks of the matrix would have the same analytic form, but
different numerical values,

The determinant (8) is only a function of b= (b, ¢, } and the dependence
on ¢, of each matrix element is of the gimple form

(00, |T(b-8)|[(n'21§%} > ~ expli(} - i) 9, ) (9)

and the dependence of the whole determinant on ¢, is going to be exp(i(M'-M)q;b),
M' and M being the third component of the angular momentum of the final

and injtial states, (They are zero for the case presented here, that is, for
doubly closed shells, However, the same method can be used for more

general configurations with the difference that the wave functions will not

be so simple as Eq.(7), but a linear combination of Slater determinants, )

Then the integration on ¢, in Eq.(2) is very easily carried out using the
relation

or . Mm

. : i—
fexqb cos ¢ elMtP do=2me 2 JM(qb) ‘ (10)
0 .
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Another feature of this mairix is that, since we have eliminated the
spin dependence of the amplitude, it reduces to two 4x4 blocks. Note,
however, that the simplicity of the ¢, dependence and the reduction to two
blocks arises from the choice of a particular quantization axis which is the
direction of the incident particle (this must be taken into account when com-
paring our matrix with that of Bassel and Wilkin {2]: even if their matrix
seems to be very different from ours, the matrix elements are related by
simple linear combinations).

When the nuclear states have a non-zero angular momentum we have
to compute the amplitudes Fyy,. , square and sum on M' and average on M,
However, when the interaction is spin-independent it can be shown [3] that
the only amplitudes F,,,. different from zero are those which fulfil the
relationship

™M =p.p (11)

where P, and P; are the parities of the nuclear states,

3. HIGH-ENERGY SCATTERING ON !2C AND !¢0

At present the only high-energy éxperiments of elastic scattering are
those of the Brookhaven group [4]. In Figs 2 and 3 we have plotted the
differential cross~sections for these two nuclei and the prediction of the .

(e

107! 1 | 1
00 0.1 0.2 03 0.4

-t (Gev)’

FIG.2. Differential cross-section for the elastic scattering of 1 GeV protons on *0, Data are from Ref.[4].
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FIG.3. Differential cross-section for the elastic scattering of 1 GeV protons on C. Dataare from Ref. [4].

Glauber theory with simple shell model wave functions [5]. As we see, we
have very good agreement between theory and experiment for the case of
160, except for high momentum transfer where, however, the experimental
data are not very reliable, On the contrary, in the case of 2¢ only the
very-small-angle part of the angular distribution shows a good agreement
with the calculation, and in the region of the first diffraction maximum the
difference between theory and experiment amounts to 50%. A similar situa-
tion happens in m2C and 7160 scattering at lower energies, as can be seen
from the papers quoted in Ref.[6].

That we obtain good agreement with experiment for the case of 160
and not for 12C may be due to the fact that the former, being a magic nucleus,
can be well described by the simple shell-model wave function and this is
not the case for the latter (at this point it is interesting to remember the
history of the high-energy proton and pion scattering on deuterons, where
the small admixture of the D-wave solved a simijlar problem; see, for
example, the lectures of Prof, Gillespie).

A first attempt towards the solution of this question has been presented
in Ref.[7]: the wave function of '2C was written as the most general configura-
tion mixing of the lpy; and 1p,s shells, but still no sizable effects were
produced. It is worth noting that with this wave function the nuclear density

A
plr) =71;<12clz 5@ -#)] ") (12)

i=1
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is the same as the one corresponding to the simple shell model. This
puzzling situation has recently been solved by Lesniak and Lesniak [8] using
for 12C the projected wave function of the deformed oscillator, although one
might object to the many approximations they have used.

Another similar problem in the same energy range of the elastic pro-
cesses which we have discussed before is met in the inelastic scattering
712C - 712C%(2%), n12C » x12C*(37) and p!2C - p12C*(2*). The first two
cases have been studied in Ref,.[3] with different wave functions for the
final state, i.e. the simple shell-model configuration and the Tamm-
Dancoff wave functions of Ref,[9]. The cross-sgection evaluated with
the simple shell-model wave functions has very small.values, roughly an
order of magnitude smaller than the experimental measurements and a much
better agreement is obtained with the Tamm-Dancoff wave functions (see
Fig.4). To analyse the origin of that enormous enhancement, we have
plotted in Fig. 5 the contribution of the nuclear profile of the different com-
ponents of the 2* wave function, We see that the curves corresponding to
particles on the shells 1p1/2 ) 1f7/2, 1d3/2 and 1d;,, have the same shape,
so that if we mix shells with the same n we produce only enhancements of
a multiplicative nature, This is not the case for the 2p,,, and 2p 4, shells;

10

10°

(&)

10

1 l
010 012 014 016

FIG.4. Differential cross-section for the reaction n"C »n C*2%) at 200 MeV. Dashed line: single
shell model wave function (1pg /,)" (1p, /1). Continuous line: Tamm-Dancoff wave function of Ref.[9].
Experimental data are from Ref.[10].
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FIG.5. Contribution to the real part of the profile for the process v !°C » »'C¥*(2%), J;=0ara laboratory
energy of 230 MeV with particle-hole wave functions for the final state:

1. (1pgsr) (1pyys) .

3. (Ipy) (Ufyz) 4. (1pys2)” (2p1/2)

5. (1ps/2)™ (2paye) 6. (15)71(1d s/2)

7. (157 (1dg ).

The conwribution of (1p 3/5)™ (1f5/s) is negligible.

in fact, the presence of these shells changes the form of the angular distri-
bution (in our case, because they tend to cancel each other, we do not
observe essential changes in the angular distribution, and the calculations
for simple shell-model and Tamm-Dancoff wave functions are almost
parallel),

APPENDIX
THE ONE-PARTICLE MATRIX ELEMENTS
We are interested in the evaluation of the matrix elements
(n0)ji 4T (® - 8)|(n'2nj1jL > (A.1)

and we consider the simple case of harmonic-oscillator radial functions
and Gaussian amplitudes:

tta) =100) exp (-1 6" ) (A.2)
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Then the profile function is given by

I(b)= £ (1~ ip) 77 exp(-b?/26?) (8.3)
(the optical theorem has been used to express f{0) in terms of the total
cross-section, and p is the ratio of the real and imaginary parts of the

forward amplitude).
The one-particle wave functions are constructed in the form

moiy> = ) < (edilm,i,- m)x//n,,m(?)x,.,_m (A.4)

where the g, are the usual harmonic oscillator wave functions. Since

the z-co-ordinate plays a very special role in the Glauber theory, it is
convenient to express y  m(r) as a product of the one-dimensional harmonic~
oscillator wave function ¢nz(z) and the two-dimensional ones ¢$1':'5) (s,¢). In
particular, we obtain for the first shells

Vigp = ¢0(z) ‘I’%(E)
Wy = 94(2) 24(3) (A.5)

Uy, =9, (2) 8D (8)

$o(z) = <-\/i:—>i exp'(- %azzz>
L

¢,(z) = ( 3_)9 20z exp (- %azzz>

2NT

0,2y . _@ 1 o o

®,(s) =— exp{-~7a’s

2
\I1r

where

(A.8)

@(1*1)(;) = T2 g6l exp<- % a2s2>
T

The z-integral needed to compute (A, 1) is simply carried out using the
orthogonality of the ¢,,(z)-functions; the integration over ¢ is easily
evaluated by using formula (10) and we end up with integrals of the form

© bn.l_‘(m+n>
a2 - b%/4a? -
fe g I (bx)dx f— 2 7 . /4 g (R-m

1 b2 )
+ .n+1-

? E ] 2

b 27 MR 1 1) 2 a

(A, 7)
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where & (a, B,x) is the confluent hypergeometric function which, given
that in all cases of our interest o is zero or a negative integer, degenerates
into a polynomial in b2/4a2,

The matrix (A, 1) has then the following form:

<ty 1- T{B-8) iy -

[10,001/2>  [1p0ps3/2> D1pgme-1/2>  Dpim-1/2>  |18yp-1/2>  ipapa=3/2>  Digmetf2d  hippu1fad

Cmyp1fa] | 1m0 wge™ -E we ™ \Eu,e"‘ E
Kipaadfzl | wpe™ 1-uy J} ™ ‘J%_ ot
. - : 0
Qpgaam2 /2] -\Eu,e“ . \E-u,."' 1- (20, +ug) ::f;(.,, --‘a,)'
py-1/3] | [ ope '\E . .—-st(“: Suy) 1-legezey) : . s
ol | g- lew g™ %Hn'l' \E“l'“ .
ipssa-3/2] g - wyelr 1-wy %u‘e”" \Eu.e"'
arpf2] o e e adoses Fecw
e 1f2] : : \Eu,."’ : \lg-u‘e-“‘ B oy -0 1- 3ty +20g)

where a particular ordering of rows and columns has been chosen to show
the block structure, The functions Wyseans w4' are given by

! o2

Tor 1 +202B82 E

Wy

_a!' o®
W2 = or T+2a?pn)T O F
(A. 9)
232014

_o! b
Y3 " 37 (1+222B7)2 {1 * 2B2(1 +2a72§§)} E

_o! ot 2
Wy =37 Tr2aprz P & '

where o'=0(1-ip) and E= exp(-azbz/(l +2a%B?)).
The elastic scattering on 160 and 12C are given by the simple formula

F(q) = ik fbdeo (qb)(1-T,) (A, 10)

where I'y is given, for 160, by the square of determinant (A. 8):

r o ={(1- wl)(l- Wy +w4){(1 +w (1 - wg ~ w,)- 2(92}]4 (A.11)

16
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and for 2C by the square of determinant (A. 8) suppressing the rows and
columns labelled 1p, /2

_12 -9 1 2 4
I"IZC = §-((1-(.)1)(1-wa)-m2)(2-w1-(,J3 +w4)-§ (1-w)(1-wgtuw,) }

(A.12)

In such a form the calculations of Figs 2 and 3 involve only a very simple
numerical integration over b,
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HIGH-ENERGY SCATTERING OF HADRONS FROM NUCLEI
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1. INTRODUCTION

The study of high-energy scattering from nuclei has undergone ex-
tensive development in the last five years - on both theoretical and ex-
perimental fronts. The theoretical models evolve from the theory of
Glauber; recent interest in the subject followed from the achievement
of high-energy accelerator beams with energy resolutions typical of
nuclear structure, and from the development of high-resolution neutron
beams. The eikonal approximation, which underlies the theory, has
recently been the subject of intensive investigation in all domains of
scattering theory.

In this paper, we shall develop a strictly qualitative perspective of
this field, its recent evolution, and its many interesting future prospects.
A thorough exposition of the basic theory is to be found in Glauber's
lectures at Boulder [1]; a compendium of recent theoretical and experi-
mental developments are contained inthe lectures of Glauber and others
in the proceedings of the Rehovot-[2] and Columbia [3] conferences on
High Energy Physics and Nuclear Structure.

The recent development in this field has, in fact, been so extensive
that even review articles have become somewhat encyclopedic and over-
whelming. For this reason we shall highlight only those aspects which
provide essential background and which we believe to be most relevant for
future developments. For details, one may consult the comprehensive
bibliography of Ref.[3].

2. MOTIVATION

It might at first seem surprising that hadron-nucleus scattering at
GeV energies would be interesting for either nuclear physics or for
elementary-particle physics since such energies are well beyond those
characteristic of nuclear structure and well below thoge of greatest
interest to current particle research. We list briefly some of the
questions arising at this interface between the two fields which might
be answered by such experiments. Some are obviously speculative.

195
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2.1, Nuclear physics

(1) Possible microscopic derivation of macroscopic models
(e.g. the optical model).
(2) Experiments complementing electron scattering at comparable
energies and momentum transfers.
(3) A supplementary tool for investigating correlations in nuclei,
as well as concepts such as quasi-deuterons, impulse approximations, etc.
(4) Detailed studies of the structure of light nuclei; in particular,
a unique probe of the deuteron.

2.2. Particle physics

(a) At present our knowledge of n-n and n-p scattering is obtained
from the analysis of proton-deuteron scattering (neutron beam develop-
ments will soon change this situation).

(b) The nucleus provides a dense target, thereby enhancing rare
events,

(c) The phenomenon of compositeness may be investigated - this is
of relevance to concepts such as partons, quarks, etc.

(d) Multiple-scattering theories are very sensitive to small effects
such as the ratio of the real to the imaginary parts of high-energy
hadrom amplitudes which is important for testing dispersion relations
and Regge theory.

(c) Resonance-particle cross-sections (e.g. o (p°n)) may be deter-
mined — or bounded - by such experiments. Short life-times preclude
direct measurements of these cross-sections, which are predicted by
certain symmetry schemes. Thus the nucleus may be considered to
provide a '""beam of resonances''.

3. NEW EXPERIMENTS

The great interest in this subject in recent years actually stems
from two experimental developments:

(1) high energy (E = GeV) beams with nuclear resolutions (AE = MeV).
(2) high-resolution neutron beams.

For many years, both CERN and Brookhaven have carried dut ex-
tensive programs of very-high-energy (E = 20 GeV) scattering of pions
and protons from nuclei such'as 2H, 4He, 12C, 160, etc. with resolutions
of the order of 50 MeV. (For references, consult the bibliography of
Ref.[3].) Such resolutions obviously preclude distinguishing between
elastic and inelastic final states. Beginning with the experiments of
Palevsky et al. at Brookhaven {4], resolutions of several MeV were ob-
tained. Thus these 'high-energy' experiments became genuinely 'nuclear!'
in that elastic events could be distinguished; with further refinement it
will be possible eventually to identify some low-lying excited final states.
Energy resolution, presently AE/E =~ 1073, is expected to reach 1074 in the
near future. Thus the structure of the nuclear targets becomes increasingly
important for such high-energy experiments.
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The advent of high-precision neutron beams is of special interest to
the theorist. To date, our knowledge of n-p and n-n amplitudes has been
obtained from p-d scattering analysed by Glauber's theory for the 'shadow
term'. Neutron-beam experiments will provide us with n-p amplitudes,
and thus we will have the shadow term [o (pd) - o (pp) - o (np)], determined
experimentally — leaving to the theorists the explanation of any anomalous
behaviour. '

4. GLAUBER'S MODEL

Leaving detailed derivation to later sections and previous exposi-
tions {1, 5], we summarize here the qualitative ingredients of the Glauber
theory: ’

(1) Scattering is limited to high energy and small angles, where
amplitudes are well approximated by their eikonal form (see next section).

(2) Multiple scattering of the projectile on the nucleons of the
nucleus is included but re-scattering (of the projectile on the same
nucleon) is excluded.

(3) There is no longitudinal component of the momentum transfer,

(4) Nucleus motion is 'frozen' during the passage of the projectile.

(5) It is usually assumed (but, surprisingly, not always necessary)
that between successive scatterings the projectile is freely propagating
(see section 5 and Refs [6, 7]).

(6) The projectile-nucleon amplitude is known (only the on-shell
amplitude contributes).

Inelasticity in the form of nuclear excitation is included in the model,
but not particle production.

For those more familiar with the language of field theory, the above
model is equivalent to assuming that only a finite number of Feynman
graphs contribute to the scattering, that only on-shell propagation is
important, that re-scattering is excluded, and that two-particle unitarity
is sufficient.

In general, relativistic effects other than kinematical ones are
ignored. There do exist, however, relativistic eikonal formalisms |7].
These are particularly interesting in that they enable summation of
important classes of diagrams.

5. EIKONAL THEQRY

The fundamental approximation underlying models related to Glauber's
is the eikonal representation of the two-particle scattéring amplitude..
The characteristic feature of the eikonal representation is the "exponentia-
tion of the dynamics'. That is, the potential (in non-relativistic theories)
or the diagrams representing the forces (in relativistic theory) enter the
scattering amplitude only in the form exp iX, where X is calculated from
the interaction. The central role played by this feature is often obscured.
As we shall see later, this form of the amplitude is responsible for the
multiple-scattering series for particle-nucleus scattering.
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We shall first remark on the classical origins of eikonal theory;
then we will consider the more interesting method of directionally

approximating the Green's function.

5.1. Wave-function approximation

Historically, the eikonal approximation arose from classical optics,
where a light wave travelling through an optical medium acquires a phase
depending on the index of refraction along its trajectory. The eikonal
formalism takes, as a first approximation, the phase to be equal to that
of the undeflected trajectory through the medium in the incident direction.
JFor such plane waves, the wave function is given by

v = el¥

X

E-F+f[n(r-)-1]dz' (5.1)

= (x,, 2')

where n(r) is. the index of refraction of the optical medium.
The analogous approximation for the Schrddinger equation

1 22 .2 -
<—2§V +k -V)\L—O (5.2)
consists of assuming a solution of the form
¥(r) = etk T ¢ (7) (5.3)

for which V¢ is slowly varying in a Compton wavelength. The solution,
issuming an undeflected trajectory (e.g. along the z-axis), is, for
=(x,y,2); v=mlk,

6 () = eXO
(5.4)
X(r) = —1; f Vi(x,y, z')dz'

.Equivalent solutions may be obtained by approximating the Green's
function [1]. This method, although less intuitive, is formally more
useful, as we shall see below.

The amphtude for scattering from dlrectlon k to k' , with momentum
transfer q K-k is given by

2m P vging - -
f(q) = "o J Erettr V) ep(n) (5.5)
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If we now limit ourselves to high-energy, small-angle (forward) scat-
tering, we see from Fig.l that, to a good approximation, the momentum
transfer q has no longitudinal component, i.e. q is normal to both k and
k'. If we insert the approx1mate ¥ of Egs (5. 3) and (5.4) into the amplitude
(5.9), and decompose T into components B in the plane normal to k and

z along k we obtain

o0 2
£(q) = - le' fdzb eic'l'-?f dz V(b2 +22) exp [ i f dz' V(b2 + z'2)]

! (5.6)
We should emphasize that it is the physical assumption q, & 0 which

reduces Eq.(5.6) to a two-dimensional Fourier transform (d2b) in which
the z-integration may be completed to yield the eikonal structure:

- ik fd2b 1T (e21X0) . 1]
27

f(q)
(5.7)

X(b) V (b2 +2'2) dz’

T4k

As remarked above, the dynamics (here the potential V) occurs only
in the exponential phase function X.

5.2. Green's function approximation

The more formal and general approach to the eikonal approximation
is via the "linearization" [1, 6] of the free Green's function

Gk, p) = —l— [k2- p+ie] (5.8)

appearlng in the Schrddinger equatlon (5.2) or in the Llppman Schwinger
equation

T=V+VGT (5.9)

- -
The incident momentum is given by k; p represents the intermediate
momentum.

FIG.1. Scattering for impact parameter b, momentum transfer 4,
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If we reflect on the foregoing eikonal theory we realize that we are
in essence selecting a preferred direction for the scattering. There is
nothing sacred or unique about the forward direction we selected pre-
viously; any direction may be used. The ideal of an approximation scheme
is to maximize the convergence rate - i.e. to maximize the relative im-
portance of the leading terms. Both Glauber [1] and Sugar and
Blankenbecler [6] have noted that symmetrizing the approximation in the
initial and final directions improves the eikonal amphtude

With this perspective, let us choose a vector k havmg magnitude

Ik | Ikl and arbitrary direction k and then expand P about this
direction:

This gives us for G a natural decomposition into a "linearized" term G
and a perturbation term Nj:-

- 1 - - 1 - -
G = — [k?-k; *ptie] +5= (p - k;)*
(5.11)
=G+ N,

The motivations for such a perturbation are threefold: (1) to maxi-
mize the importance of the lowest-order terms, (2) to obtain explicit
and systematic corrections, and (3) to obtain closed-form expressions
if possible.

The approximate, eikonal Green's function of Eq.(5.11) may be found
explicitly [1, 6]; in configuration space it takes the form

Gy (v, T3 k) = 10 6D (b-B") 6 (z-2') elkiz) (5.12)

where we decompose the vectors into components in the plane b and the
z-direction of the incident beam. Moreover, unlike the solution for the
full Green's function of Eq.(5.8), the linearized function gives us a
closed form for the amplitude of Eq.(5.9):

T; (&, §) =fd3r it V (r) eXi® (5.13)

which we see to be precisely the eikonal amplitude of Eq.(5.6).

As we shall see in section 13, consideration of the correction term
in Eq.(5.11) enables us to estimate and improve the simple eikonal
amplitudes.

As a final observation, we note that, independently of the dynamics,
the eikonal representation of the amplitude, Eq.(5.7) arises naturally at
high energies out of the partial-wave representation of the scattering
amplitude,

f(a) = Eﬁ Z (22+1) (e!® - 1) P, (cos 6) (5.14)
2
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Referring to Fig.l, we see that the maximum angular momentum for a
given momentum k and scattering system of dimension R is £,,. =~ kR.
Thus, in the high-energy limit, where £ ,, will be very large, it is
natural to go from the discrete summation over ¢ to a continuous integra-
tion over the impact parameter b using the transformation

kb =20 +1/2 (5.15)

The discrete phase shift 6, now becomes the continuous function X(b).
The amplitude is then

f(q) = -ik-fbdb [e21X®) - 1] Py 1/ (cos 6) (5.16)
In the limit of large k, we obtain
f(q) = ikfbdb [e2iX®) - 1] Jy (2kb sin6/2) (5.17)

The same result may be obtained by carrying out the azimuthal integration
of Eq.(5.7). '

6. MULTIPLE SCATTERING

For a target such as a nucleus consisting of multiple scattering
centres located at Fl s ees FA, the interaction potential is given by

V(1) =Z'vi (r-1,) (6.1)

For this interaction, the eikonal formalism of section 5 gives us the
composite eikonal phase function

Xp (85 P, conee , Ta) = Z X, (b - 7;) (6.2)

In fact, this relation is usually postulated from analogy with the phase
accumulated from a succession of independent scattering on passage
through a sequence of diffractive media. It is interesting to note, how-
ever, that the additivity of the eikonal phase is more general than the
distinct scattering model and, infact, remains valid in some cases for over-
lapping interaction regions; Osborn[8] has investigated this featureina
variety of contexts.

Since the eikonal formalism (see Eq.(5.6)) effectively reduces the
target to two dimensions (in the b plane), the r; appearing in Eq.(6.2)
are in practice the b-plane projections of the nuclear co-ordinates.

.We now illustrate that the eikonal additivity relation (6.2) is sufficient
to give the multiple-scattering interpretation to the model. The eikonal
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amplitude (5.7) is the two-dimensional Fourier transform of the ""profile
function"
]

21 Xj (b)

T, (b)=1-e (6.3)
Thus f_gr the composite system the profile function is given by
Tu(b; Ty, veeee , T,), where
L, =1- o21%a
21z Xj 21X
=1-e °’ =1-[ T (6.4)
i
=1-][[1-Ty(b-1)]
i
Expanding this product, we obtain
A A terms
t —A—
PA:ZP]-Z O 4 e, +Zl’i‘ ....... Tj ceeneane (6.5)

where I' implies all summation indices are distinct. (We have obviously
neglected the commutation properties of the I} which would arise from
the introduction of spin- and isospin-dependent amplitudes.)

The multiple-scattering interpretation of the series (5.5) is im-
mediately evident: the first term corresponds to the coherent scattering
from A distinct nucleons; the second from two successive scatterings,
etc. The absence of repeated indices in any term corresponds to the
absence of re-scattering in the model. Thus we see that the "exponentiation
of the dynamics'" characteristic of eikonal representations gives us directly
the multiple scattering structure for the amplitude.

Finally, we construct the complete scattering amplitude from the
profile function (6.4) and the initial and final state nuclear (target)
wavefunctions:

A
Tq (9) =f...fd2b eidBadr, ... d®r, 5 (IKZ ;-J‘I:>(;1 e Ty)
- i1 -

(6.6)

X T, (b;ry coor,) lr, ... r,)

We note here an important feature of the eikonal model. From
Eq.(6.6) we note that the amplitude is composed of three parts: the nuclear
physics contained in the wavefunctions ¥, the elementary-particle physics
contained in the profile function I', and the eikonal structure of that function.
To the extent that the parameters of the nuclear and particle physics are
independently determined, the theory is seen to be parameter-free. That
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is, in its domain of validity the eikonal model follows directly from the
Schrédinger or Lippman-Schwinger equations with no parameters
introduced. '

In our concluding section we shall see that this feature is lost as we
go beyond the small-angle region.

7. ELASTIC AND INELASTIC SCATTERING

AS noted in section I, the major development which led to the recent
interest in multi-particle scattering was the achievement of nuclear resolu-
tions at very high energies, enabling the experimenter to distinguish
between elastic and inelastic events.

From the scattering amplitude (6.6), the differential cross-section
is proportional to

do -+
oncT T

« <i|T|& <f|T]i> (7.1)

for particular initial and final states, |i> and |f>, respectively. When
resolution is sufficient to determine that the scattering is elastic, i.e. the
final state is the ground state |0>, we have

do 2
a,, © |<o|r|o>| (7.2)

In contrast, for experiments with low resolution (e.g. those at
20 GeV with AE = 50 MeV), the final state of the target is undetermined
and thus we sum over the possible final states,

do

a—ﬁecz <o|r|&><flr|o> (7.3)

f

When the resolution is such that a large part of the target's possible
spectrum of final states is included in the sum over |f>, it is appropriate
to use closure,

Z [£><£| =1 (7.4)
f
to approximate the summation:

d .
% « <0|r*r|o> (7.5)

The inelastic cross-section is obtained by subtracting the elastic term
from the expression (7.5). ’
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FIG. 2, Typical high-resolution cross-section (solid curve) and predictions of single~-scattering (impulse)
approximation.(dashed curve) for p-‘Hc scattering.

The functions (7.3 and 7.4) are very different. For illustration we
consider model curves for high-resolution (Fig.2) and low-resolution
(Fig.3) experiments. For the low-resolution curve the elastic and in-
elastic contributions are shown. Actual data and calculations may be
found in the proceedings of the Columbia Conference [3].

We shall be able to consider particular excited states in the sum of
Eq.(7.3) as experimentalists further improve the resolution in the de-
tection of the scattered projectile or residual nucleus.

8. NUCLEAR PHYSICS

The nuclear physics of the theory is contained in the wave-functions
¥; and ¥;. These may be analytical expressions with parameters fit to
the particular target nucleus or may be numerical, obtained from shell-
model calculations or derived from phenomenological potentials. The
analytic forms have the obvious advantage of facilitating a study of the
general structure of the resulting amplitudes.
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FIG, 3. Typical low=resolution cross-section, showing elastic and inelastic contributions for p - Pb
scatterng, '

Typically, a very simple structure is assumed for the ground-state
density, such as an uncorrelated harmonic-oscillator density:

A
¥ = p(ry o) =]] pilry)
=1
plr) = e | (8.1)

Correlations are introduced in such models in three forms:

1. Pauli correlations. This is merely the imposition of the Pauli
principle on the states ¢;: ¥(F; ... T,) = det |¢,(r;)].

2. Short-range correlations. These are usually expressed with a
phenomenological correlation function g:

v - H ¢j [-1-g(rij)] . (8.2)

i<j
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Asymptotically, g~ 0 for large ry;; for hard-core models, g=1 for ry
smaller than the core radius. .

3. Centre-of-mass correlation. This is merely the momentum-
conserving delta function & (A™! Z‘,,- Fj) in the amplitude of Eq.(6.6). In
general, this function causes serious technical difficulties for the calcula-

"tions; it is often approximated by a distribution peaked at the zero of the
argument. ’

One may, of course, escalate the sophistication of the nuclear
structure. As both theory and experiments become more refined further
nuclear properties may be introduced: deformations, hard cores, spin
and isospin effects, particular excitations, Coulomb effects, etc. It is
wise, however, to keep in perspective the elementary nature of the
model which we have developed and the long sequence of approximations
leading to it. The most impressive aspect of these models is that in
their simplest form they fit so much so well.

The tough question is to decide if a correction introduced to improve
a phenomenological fit is unique in the physics it represents. For example,
both hard cores in nuclear densities and improvements in the eikonal.
phase function have been used to obtain equivalent improvement in the
fit ‘°of Glauber-model calculations to experimental data.

It is important to distinguish the nuclear physics introduced via the
¥'s from the details of the Glauber model itself, and its underlying
eikonal approximation.

9. TWO-PARTICLE AMPLI;I‘UDES

The elementary particle physics enters the theory via the profile
function I'(b) of Eq.(6.3). - The two-particle scattering amplitude f(q) and
the profile function I(b) are mutual (2-dimensional) Fourier transforms:

Pnd

a1 > 2iX(®
1@ =3 [a% #3F MOy

P

2\ L o 21X®) _ =i_f 2, -id-B >
T(b) = e 1=5— [ d%e £(a) (9.1)

Since our eikonal formalism involves only on-shell amplitudes, the
f(q) are taken from the elastic-scattering experiments, e.g. =p, pp, etc.
In many calculations, spin and isospin details are approximated; often
they are simply ignored.
The parametrization of the two-particle hadron amplitudes arises
from two characteristic features of high-energy, small-angle scattering:
the exponential fall-off of the forward diffraction peak, and the predominantly
imaginary nature of the amplitude. These two properties, together with the
optical theorem for the total cross-section,

or =¥' Im£(0) (9.2)
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lead naturally to the amplitude

f(q) = %“’TT (i+a) ™3¢ : (9.3)

where o is the ratip of the real to the imaginary part of the amplitude
(usually a few per cent at GeV energies).

The amplitude (9.3) may be viewed as a purely phenomenological fit
to the data, or the functions o and a may express energy- and momentum-
transfer behaviour explicitly predicted by Regge-pole theory or other
models.

10. PREDICTIONS OF THE THEORY

Having now considered the scattering formalism, the nuclear model,
and the particle physics, we can assemble the final amplitude from
Egs (6.4, 6). We again consider the model curves of Fig.2.

We wish to analyse the features common to all such cross-sections.
We begin with Eq.(6.5), the multiple-scattering decomposition of the
amplitude. In Fig.4 we plot the contribution of successive terms. Note
that we plot the log of the contribution versus the scattering angle 6 (or,
equivalently, the momentum fransfer q). ‘

q

FIG.4. Contributions of multiplesscattering terms to differential cross-section.
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FIG. 5. Effect of a#0 on minimum of diffraction pattern.

We note the following features:
1.

Successive terms have decreasing amplitude in the forward
direction but their fall-off with angle is progressively slower.
2. The terms contribute to the amplitude with alternating signs.

The summed amplitude for elastic scattering shows a characteristic

diffraction as in Fig.5. For amplitudes [see Eq.(9.3)] that are purely
imaginary, the alternating sign in successive terms give a polynomial
with A zeros; for @ # 0, the zeros become merely minima as shown by
the dashed curve in Fig.5.

Characteristic of such interference effects is a great sensitivity to
perturbations. Since the unperturbed contributions completely cancel
at these zeros, any derivation of the cross-section from zero at the
minima is due to the perturbations. This property of effectively
"amplifying" the effects of perturbations is the most interesting feature
of the theory, apart from the generally successful prediction of the ob-
served diffractive structure of measured cross-sections.

The location and depth of the minimum are extrémely sensitive to

effects such as nucleon correlations (see Eq.(8.2)) or the real components
of the amplitudes. However, these effects are seldom unique in their
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influence on the predicted cross-section. As we have mentioned pre-
viously, equivalent fits of the theory to experimental data have been ob-
tained using modified eikonal phase functions as well as by modifications
of the nuclear densities. To ascertain which of several possible perturba-
tions is responsible for deviations from the simple model is usually
difficult and frequently impossible. Ideally, such effects are corroborated
by other experiments.

11. COMPARISON WITH EXPERIMENT

Rather than produce another compendium of experiments fit by
eikonal models, we shall 1imit ourselves to drawing some generaliza-
tions from the range of experiments and calculations to date. Our interest
is in assessing the success of the theory and in indicating the direction of
future developments.

We again consider the cross-section curves for high- and low-
resolution experiments in Figs 2 and’'3, respectively.

Typically, the diffraction pattern features of high-resolution (elastic)
scattering can be fit as far as the second minimum. (In judging the fit
to experiment, one must keep in mind the logarithmic scale of the plots.)
One observes that the low-resolution curves have significantly less
-structure than the elastic curves.

From such results we make two observations:

1. The more complex the structure of the predicted cross-section
curves, the greater the physical information contained in a successful
fit. In section 12 we shall see that the deuteron is an especially interesting
illustration of this phenomena. As we noted, curves for low-resolution
experiments are less complex and provide less critical tests of the theory
or less precise determination of the parameters.

2. Many "successful" fits of theory to data extend beyond the range
of energy and angle expected of the high-energy, small-angle eikonal
theory [1]. For example, experiments fit by the theory [3] have ranged
in energy from 20 GeV to less than 500 MeV, and in angle as far as 40°.

In planning future experiments it is important to determine which
domains of energy and angle as well as which targets maximize the
physics to be learned from the experiment. The general qualitative
success is now well established, it is now appropriate to concentrate on
the detailed fits.

An interesting question arises from the fits to date, which, as we
have remarked, often succeed at larger momentum transfers than would
be expected from simple estimates for the validity of the eikonal approxi-
mation. Is there some physics to be learned from the 'too successful'
model, or, on the contrary, should we conclude that the ensemble of
nuclear, particle and eikonal approximations, together with the un-
certainty in the parameters provides an extremely flexible phenomenology?
In section 13, we shall indicate some interesting possibilities for the
former point of view.

To maintain our sense of perspective, we remark that the multiple-
scattering model is by no means unique in fitting hadron-nucleus
scattering. For heavy nuclei, equivalent results may be obtained from
the optical model [3].
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12. "DEUTERONOMY"

The deuteron, the simplest composite target, should provide the
obvious first test of the theory. Surprisingly, it has been one of the most
difficult — and interesting - applications in the history of the subject.

Since its inception, Glauber's model has been used to determine
the 'shadow term' for proton-deuteron scattering. The expression
arises from the intuitive notion thatone nucleon partially eclipses the
second as seen by the incident projectile. If we apply Eqgs (6.5, 6) to the
deuteron, we obtain :

£0(@) = 1, (@S(1/20) +£_(@)S(1/2q)
(12.1)

1

t ok fd2‘1' £ ((1/2) 4 +d") £, ((1/2) 4-3") S (@)

where S (a) is the deuteron form factor calculated from the wave-function ¢q:

S () =fd3r el d7 g, A (12.2)

In practice, the result (10.1) is used to determine the n-p amplitude
(otherwise unobtainable without adequate neutron beams) from the
directly measured p-p and p-d scattering. If we consider forward
scattering (q=0) and use the optical theorem (Eq.(9.2)), we obtain the
relation for the total cross-sections from Eq.(7.1):
Opd = Opp + Opn +{"shadow" > (12.3)

It is the angular or momentum transfer dependence of Eq.(12.1) that
has caused considerable confusion and difficulty.

From Eq.(6.5) and from our remarks in section 10, we would expect
a double diffraction peak with a single zero as shown by the dashed line
of Fig.6. However, the experimental data, represented by the solid line,
shows merely a shoulder with little structure. Although, as we shall see
later, predictions for more complex systems such as 4He, 12C, and 160
were quite successful, the theory seems to fail conspicuously for the
simplest application, the deuteron.

A possible explanation follows from the observation that the success-
ful applications, 4He, 12C, 160 all have spin 0; the deuteron has spin 1.
Various authors [9] developed spin analyses of nucleon-deuteron and
pion-deuteron scattering, incorporating the detailed spin dependence of
the two-particle amplitudes. This is a substantial undertaking; for
example, there are five nucleon-nucleon amplitudes, each usually
determined by two complex parameters, not all of which are well known.

In brief, this impressive effort produced no compelling resolution
of the problem of the missing minimum.

Returning to the data, we find that an important clue comes from
the observation that pions as well as protons produced the same absence
of a minimum, which suggests the possibility that the difficulty lies in
the deuteron target and not in the two-particle amplitudes and their spin
dependence. .
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FIG,6. Proton-deuteron cross-section (solid curve) and curve calculated without d-wave component
(dashed curve).

Harrington [10] was the first to discover the simple resolution of
the problem. The deuteron has a d-wave component, although its ampli-
tude is only a few percent of the dominant s-wave component. We recall
our remarks in section 10 where it was seen that the theory has the
special feature of "amplifying'' perturbations in those regions where
the dominant amplitude cancels due to interference. The small d-wave
component provides an excellent example of this effect.

In Fig.7 we see the form factors for the deuteron's s- and d-wave
components, as well as their sum. It is this small d-wave effect, else-
where unimportant, which produces the shoulder of the curve where one
would expect a minimum or a zero.

A pessimist might at this point conclude that the formalism is not
well tested by deuterons, and that we shall learn nothing of the deuteron
from such analyses of experiments. Not so. Although the experiments
just discussed yield too little structure in their angular dependence to
be very informative, the deuteron spin may be exploitated to recover
the "lost" information by using polarized deuteron beams or targets.

Franco.and Glauber [9] developed the formalism; experiments are
now in the planning stages. For protons scattered from a polarized
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FIG,1. Deuteron s- and d-wave form factors.

deuterium target, the predicted cross-section will have a structure
. depending on the direction of polarization. Of the obvious "physical"
choices for the direction of polarization (incident momentum, momentum
transfer, normal to the scattering plane), the second produces a dif-
ferential cross-section with a particularly sharp dip [3, 9]. As alter-
native experiments [3] one may employ polarized deuteron beams on
proton targets or measure the alignment of deuterons produced by
scattering from unpolarized targets.

Thus the deuteron (with no small effort) becomes again an interesting
target.

13. THE FUTURE

Being physicists rather than historians, it is now appropriate to ask
what are the interesting remaining problems in the field.

The experimental future is clear. Improved resolution at the highest
energies will provide increasingly rigorous challenge to the theory (or
phenomenology). High-precision neutron beams as well as polarized
targets and beams will significantly extend our knowledge of the nucleus
with high-energy experiments.
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For the theory, the future is interesting and complex. On the more
technical level, there is the systematic inclusion in the models of details
such as spin, isospin, Coulomb scattering, particle production, off-
shell effects, nuclear deformations, three-body forces, etc. etc. To
some extent, each of these effects has already been considered [3].

Of more fundamental interest is the validity of the model and its
relation to other formalisms such as many-body theory and the optical
model. Although these aspects of the problem have been studied to a
limited extent [1, 3, 8], our understanding is very far from complete.
We shall briefly consider a few topics under investigation, at present,-
and which seem most promising subjects for future development.

If we look at Fig.8 we see the angular range of an idealized experiment
divided into three regions. In region I we see the forward diffraction
peak. Since all reasonable theories predict such a peak — and fit it with
one parameter (e.g. the nuclear radius), we learn little from this region.
Likewise region III provides us with little that is new: at very high
momentum transfers (large angles), the high-energy projectile tends to
scatter from single nucleons, yielding merely the same information we
obtain from two-particle scattering.

As we have seen, Glauber!'s eikonal theory leads us into the
interesting region II where we learn most from a nuclear target. The
first crucial question is how far into the region this theory is reliable
and how its domain of validity might be extended.

q——-

FIG. 8, - Regions of hadron-nucleus scattering: 1, Forward diffraction peak, II. multiple-scatterng
region, IIl, quasi-elastic region.
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In fact, some answers to this question are already available. When
we obtained the eikonal approximation by linearizing the Green's func-
tion in section 5, we neglected all but the lowest power of the intermediate
momentum. We can continue the perturbation to higher orders to extend
the angular range of our theory and to determine estimates of our errors.
We shall comment briefly on the work of Sugar and Blankenbecler [6]
who recently developed this method.

We saw in section 5 that the Green's function G may be separated
into its directional approximation G; and a perturbation N,. Maximum
accuracy and convergence is obtained by symmetrically approximating
about the initial and final momenta Ei and Ej . We can then develop the
symmetrized amplitude in the series

T=T +T G N; G T; +..oceens (13.1)
where for any Ej

T.

j =V(-G;N)? (13.2)

Explicit calculation gives

T (q) = fdar eid? y(r) i1
(13.3)
= b ¢ 1 P :
+fd3r el@T (et _g) ('E v2> ¥ -1y + ...
where
X; (%) EfdtV (r-m k) . (13.4)

0

The first term of Eq.(13.3) as remarked in section 5, is just the
original eikonal amplitude of Eq.(5.6) before the further approximation
that q, =0. The second term turns out to be the expression obtained with
quite different methods (stationary phase approximation to the Born
series) by Saxon and Schiff [11] for wide-angle scattering. Ross [12] has
recently investigated this term as a correction to the leading eikonal
term.

Experiments at large momentum transfer obviously probe the details
of the forces and the structure of the target more deeply. It is thus no
surprise that in continuing beyond the leading eikonal term we lose two
of the appealing features of the simple model (see section 11): the
parameter-free nature of the multiple-scattering formalism, and the on-
shell-only eikonal phase functions in which the potentials did not appear
explicitly.

One might object at this point that the calculation of terms beyond
the lowest-order (eikonal) expression involves no less effort than solving
the complete many-body Lippman-Schwinger equation. The value of such
a series is twofold. First it enables us to estimate the relative importance
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of successive terms as a function of momentum transfer or angle. Second,
from such bounds we gain insight into the mechanism of multiple scattering
from a nuclear target. Again quoting typical results of Sugar and
Blankenbecler, we find that for elastic scattering the leading terms of

the amplitude have the following relative magnitudes:

.siz_a.<q"‘-a2> v (3q?)
14— (T V(q2;\If(q2) (13.5)

where q is the momentum transfer, k the incident momentum, a the range
of the potential V, and ¥ the bound-state wave function. Relation (13.6) is
valid for potentials polynomially bounded in momentum space.

Clearly, such estimates are far from simple, depending on the
relative fall-off (in momentum space) of the potential and of the bound-
state wave-function. When both elastic and break-up reactions are
considered, such bounds provide interesting insight into how different
interactions favour multiple over single scattering for a given momentum
transfer. A

Obtaining such bounds is especially subtle for Gaussian potentials,
which are obviously of great interest to nuclear physicists. Sugar [13]
has recently obtained such bounds and found two interesting properties:

1. The Gaussian potential favours a maximally smooth scattering,
i.e. for a fixed total momentum transfer, this potential favours terms
corresponding to a large number of small scatterings on the nucleons of
the target, adding up to the total transfer. (In contrast, some non-
Gaussian interactions favour single (impulse) scattering from a single
nucleon.)

2. The angular range of validity for the leading eikonal term,
.generally of order q2 s a*2 is in the case of the Gaussian potential given
by q? 5 a™? k.

This latter result is most provocative since it may provide some
insight into the often surprising success of simple models over a wide
angular range. It suggests that for interactions typical of nuclear
physics the angular range may be 'stretched' at high energies.

To date, the studies of the validity of the theory have raised as many
questions as they have resolved. On the one hand, Ross [12] has found
that for some potentials the eikonal approximation could produce order-
of-magnitude errors at moderate angles; he subsequently developed
corrections based on the method of Saxon and Schiff [11]. Calculations
by Hiifner [14] have indicated that the eikonal approximation is least
accurate at the minima, where, as we have reinarked previously, the
model is most interesting.

On the other hand, Osborn {8], Sugar[13], and Hiifner [14] have
suggested aspects of multiple-scattering theory which may explain in
part the exceptional success of simple models. The complexity of the
process makes estimates rather subtle; for example, there are three
characteristic lengths to be considered: interaction range, nuclear size,
and correlation lengths. Furthermore, the eikonal phase by no means
uniquely determines the underlying potential, as seen from Eq.(5.7). As
we have seen above, some potentials produce exceptionally effective
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eikonal amplitudes. Wallace [15] has recently made an extremely
interesting and detailed analysis of the domain of validity of eikonal
amplitudes.

It is also becoming evident that many of the features of the original
Glauber model may be obtained without eikonal approximation. Osborn [8]
has investigated the relationships between impulse approximation,
unitarity, and eikonal formalism. The relation of the Glauber model to
the Faddeev theory has not yet been fully explored.

The subject is rich with interesting problems.
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Abstract

HIGH-ENERGY SCATTERING OF ELECTRONS FROM NUCLEI,
1, Intoduction; 2. Fundamentals of electron scattering; 3. Elastic electron scattering and nuclear
structure; 4. Quasi-elastic scattering and nuclear structure; 5. Summary and conclusions.

1. INTRODUCTION

The usefulness of electrons as probes of nuclear structure was first
demonstrated in 1950 in the pioneering work by Lyman et al, [1], who ob-
served, in elastic scattering by a nuclear target, the effects due to the finite
sizes of the nucleus,

In the fifties, a considerable amount of work was done at Stanford
University, where elastic electron-scattering experiments were systematical-
ly carried out on many nuclei (from proton up to uranium){2], The energy
of the bombarding electrons in these experiments was sufficiently high
(~(100-400) MeV) to allow the measurement of basic quantities such as the
size of the charge distribution and its surface thickness, but it was still
too low to reveal the details of the nuclear wave-function,

Recently, because of a rapid increase in experimental facilities,
electron-scattering experiments became feasible at very high energies
(~(500- 1000) MeV) and with great accuracy, which allowed fine nuclear
structure effects to be measured. At present, electron-scattering experi-
ments are used to investigate in detail the wave=-function of ground and ex-
cited states of nuclei, to measure nuclear separation energies, to produce
baryon resonances in nuclei, The resulis of these experiments set a series
of basic problems such as, for example, the origin of high-momentum com-
ponents in the nuclear wave-function, the values of the separation energies
of the deeply bound states, the width of baryon resonances in nuclear matter,
and so on,

Because of the accuracy in producing and analysing high-energy elec-
tron beams, on the one hand, and because of the theoretically rather well-
known nature of the electromagnetic interaction, on the other hand, high-
energy electron scattering became one of the most powerful tools for study-
ing nuclear structure,

In this paper the fundamentals of electron scattering will be briefly
reviewed and the latest experimental results and theoretical interpretations
presented, with particular emphasis on elastic and inelastic scattering in
the continuum (''quasi-elastic" scattering).

217
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2, FUNDAMENTALS OF ELECTRON SCATTERING
The formalism of electron-hucleus collisions is presented in detail in
Refs [3,4]. In this paper only some basic concepts of the problem will be

given,

2.1. Kinematics, energy spectra and angular distributions

The momenta and the energies of the electron before and after scattering
will be denoted, respectivelyl, by
k

e, and Kk, €, (1)

12 *1

During the scattering the nucleus will be given a three-momentum ("momen-
tum transfer'')

3=k -%y, |3 =(kZ+k2- 2k, k,cos 6)'/2 (2)
8 being the scattering angle, and an energy ("energy transfer'')

w=€.-€, =k, -k, (3)

There are, at present, two main classes of experiments with electrons:

the non-coincidence experiments, when only the scattered electron is de-
tected, and the coincidence experiments when, together with the scattered
electron, some other reaction products are detected. The coincidence
experiments, which are very difficult to carry out and therefore appeared
feasible only in recent years, will be discussed in chapter 4, Now we start
with the description of non-coincidence experiments, which is one of the
richest sources of information on nuclear structure. In these experiments
one usually measures the cross-section as a function of the energy transfer
(the energy spectrum), keeping €, constant, for example, and detecting for
fixed 9 (or fixed q) electrons with different €,. The behaviour of the cross-
section versus w, sketched in Fig. 1, shows (for more details, see Fig.1

of Ref, [4]):

(a) a peak at w = 0, corresponding to elastic scattering;

(b) several peaks in a region of w less than the particle emission
threshold, corresponding to the excitation of individual nuclear
levels;

(c) the giant resonance (GR) peak at w~20 MeV;

(d) a broad peak located well above the GR at (M is the nucleons mass)

qZ
(.)&2—1\-,-[+<B> (4)

! since high-energy electrons are considered, we setm, =0 so that €= €] =k.
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da
a0,de;

1 =—o<B>

FIG.1. Double differential cross-section ( "energy spectrum™) versus the energy transfer w, for different
values of the three-momentum transfer q.

{B) being the average separation energy of the bound nucleons,
This peak, called the ''quasi-elastic (or quasi-free)'" peak, is
mainly due to a direct knock-out of single nucleons bound with
momentum p, and emitted, after collision with the electron, with
momentum? k » =B+d. To have quasi-elastic (QE)-scattering, the
probability of collective excitation must be very low. This means
that the interaction of the projectile with the target has to be local-
ized in a region of space less than the nuclear sizes. In other
words, one has QE scattering only when the momentum transfer

is larger than the inverse of the nuclear radius; taking for the
latter the value R~3 fm, we have

q2(1-1.5)fm* (5)

(e) when w> m, one has, finally, electroproduction of pions, and at

higher w, production of nucleon resonances.

If the energy spectrum is measured at different values of q, and then
the various peaks are integrated over w, one obtains the form factors of the
different peaks appearing in the energy spectrum, With reference to the
gq-dependence of the cross-section, it should be noted that with increasing
momentum transfer, the elastic cross-section strongly decreases and that
at high momentum transfer the energy spectrum is dominated by the quasi-
elastic peak,

2,2, Cross-section in Born approximation

The first Born approximation is widely used when scattering from light
nuclei is considered, since the limits of its validity are fixed by the relation

Z « 137 (6)

which is quite a good approximation up to Z ~10,

 If the nucleons were at rest and unbound, the position of the quasi-elastic peak should occur at ¢*/2M.
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H [
a) 9,
A ANYTHING
b) * * [
A A A
A A A A A A
c) .
A*
A A

FIG.2. Feynman graphs corresponding to a) the first Bom approximation, b) the full Born series, and
c) "dispersive effects”.

In the first Born approximation the electron and nucleus are treated as
two sources of currents which interact via the exchange of a virtual photon
carrying a momentum equal to the 4-momentum momentum transferred to
the nucleus:

a?= q?- w? =4k, k, sin?J 1)

The process ("one-photon exchange') is described by the Feynman graph
of Fig.2a. The cross-section can be evaluated using electrodynamics.
Plane waves for the electron are used, and in the nuclear current the wave
function of the nucleus is taken to be a collection of non-relativistic nucleons
having the same sizes as the free ones; this means that the mesonic degrees
of freedom ("exchange currents') are neglected,

Within the above assumptions, the non-coincidence cross-section can
be written in the following form [3], whatever the final state is:

.
doe . __cu® _[(u,) (tg28+Lak }
ngdG 2k1 ) 2] q RL(q-‘ w) + tg 2 + 2 =9 RT (q: (n)) (8)
2 3 +T sin 27 q
T

2k; . 28
where 1+—MT sin 3

(with mass M) and

is the energy associated with the recoil of the target

2
_ Ze2> cos Ty
on(6) = o,/ 48 (9)
2
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is the Mott cross-section describing the elastic scattering from a point
nucleus. In Eg.(8), the two quantities R (q,w) and R (q,w), which contain
the information on nuclear structure, are called, respectively, the longi-
tudinal and transverse form factors (or "response functions'') since it can be
shown {3,4)] that the former results from the interaction between the nuclear
charge and the component of the electron current parallel to the vector g,
whereas the lattér resulis from the interaciion between the nuclear electric
and magnetization currents and the components of the electron current per-
pendicular to the vector q. The two form factors can be related to the Fourier
transform of the charge (C) operator and to the electric (E) and magnetic
(M) current operators

Ry (a,0) = £,(a%) Rq, 0)
. (10)
Rp(d,0) = f.(q?) " [R"(q,w) + RM(q,w)]

where f p(q?,) is the nucleoh form factor®, The charge (or Coulomb) response
function, which will be used in the following, is

W o o 2
Ra,0) = 77 s I, | ek-e * 6@ ) [y > | slute - €
M; Mg (11)

with ey = (1 +73)/2 and ¥ denoting the nuclear state, The form of RE and
RM ig given in Ref. [3].

Performing a multipole expansion of the response functions (by expanding
exp(iq * ¥)) and integrating over de,, we obtain the expression of the angular
distributions [3, 4]

o ,(8) -fJ<q§>2 {<%E>4 i K3 5 (@) 13 5)”

d92 B 2, +1

<2q2 +1g? e)z [ L<JfllTJ(q>llJ >, K IITJ (q)IIJ ¢J (12)

where < || |> denotes a reduced matrix element and M®, T, T™ are the
multipoles of the charge and current operators. Thus, by measuring the
angular distributions, one maps out the Fourier transform of the nuclear
charge and currents, The wider the range of momentum transfer explored,
the finer are the details that can be studied,

Note that because the longitudinal component of the virtual photon field
can carry zero angular momentum, the summation in the longitudinal term

3 In Eq.(10) there are some other multiplicative factors resulting from relativistic corrections [3].
For the sake of simplicity, they will be omitted.
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of Eq.(12) starts from J =0, The transverse sum starts instead from J =1,
because it results from the transverse field of the virtual photon. The trans-
verse matrix elements are thus identical, at q =w (which is the only possible
momentum transferred by a photon of energy w) to those appearing in photo-
induced reactions, On the other hand, the longitudinal term has no equivalent
in photon reactions and can induce (J =0) = (J = 0) transitions which are for-
bidden there,

2. '3. Selection rules and contribution of longitudinal and transverse

scattering

Selection rules on J; , Jf and J resulting from angular momentum and
parity conservation and invariance of the theory under time reversal are
summarized [3] in Table 1.

From Table I it is easy to see that in elastic scattering (J; = J;) all the
transverse electric multipoles are forbidden by parity conservation (A7 =+)
and time reversal invariance (AT =+) while parity conservation forbids
the odd Coulomb and the even magnetic multipoles.

Concerning the contribution of the various terms to the cross-section,
the transverse multipoles dominate at & =~ 0° and =180°, for at 8=0°

| (%&)4« <'2£<l"1§5 +1tg? §> (13)

as can easily be checked, while at 180°

4 2
,,(6) (%ﬁ) ~0  ay(6) (2%1%+tg2—g->-'oo (14)

At intermediate angles, 30° < 6 < 100°, the Coulomb multipoles are
always larger by about one order of magnitude than the transverse multi-
poles (the divergency in Eq, (14) is removed by taking into account the elec-
tron mass [4]).

TABLE I, SELECTION RULES ON J;, J; ANDJ

Conservation .
Angular . Invariance
law Parity
momentum . under
: conservation .
Type of conservation time reversal
muitipole
Coulomb multipoles CJ -3l =7 =5+ -1y (-1t
Electric transverse _ o L Jit IR il
multipoles EJ i-Jgl =7 =33+3 (-1 -1y
Magnetic multipoles MJ 15 _"f[ =I s+l (_1)J+1 (-1)Ji ~JgrI¥l
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2.4, Corrections to the first Born approximation

Although very cumbersome from a numerical point of view, it is
relatively easy to perform an exact calculation of the electron-nucleus
crogs-section [5]. '"Exact" calculation means the summation of the whole
Born series, as sketched in Fig.2b, or, in other words, an exact treat-
ment of the distortion of the electron waves by the static charge of the
nucleus, It is clear that the heavier the nucleus, the larger will be the
effect of the distortion. The exact calculation is accomplished by numerically
solving the Dirac equation for the electron moving in the potential

V(r) = - 4rZe* {% fp(r')r'2dr-'+fp(r')r'dr'}' (15)
0

r

generated by the assumed charge p(r).

The results of calculations [7] have shown that for light nuclei (Z =1Q)
the effect of the electron distortion reduces practically only to filling in
the zeros, which are always present in the cross-section do/dQ, calculated
in the first Born approximation, Thus, the information on the structure of

-3
10 T T T T

(fm?/sr)

do
dQ,

FIG.3. Comparison of the exact calculation (continuous line) with Born approximarion (dashed line) for 0,
The incident electron energy is 420 MeV (adapted from Ref.[7]). .
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light nuclei obtained by using the first Born approximation is quite reliable,
For heavy nuclei, on the contrary, not only are the diffraction zeros filled
in, but they are also shifted and, furthermore, the absolute value of the
cross-section is affected. For this reason any nuclear structure informa-
tion on heavy nuclei obtained by using the first Born approximation could be
doubtful. In Fig.3 the exact and Born approximation calculations for 160
are presented, The agreement for lighter nuclei is even better?,

In the Born series the intermediate nuclear state is always the initial
state, However, there could be processes, as those shown in Fig, 2c,
which correspond to the excitation of the nucleus to an excited state and its
decay again to the ground state (we consider for simplicity elastic-scattering
processes), Effects of this type ("dispersion effects'') have been considered
by several authors [8], For the scope of this paper, it is enough to say
that dispersion effects are extremely small (some per cent in the diffraction
minima) and can be neglected without any trouble,

3. ELASTIC ELECTRON SCATTERING AND NUCLEAR STRUCTURE

3.1, Introduction

Elastic electron scattering is defined by the following relations:

Ji= J¢ ki=kg=k q2=q?=4k®sin®

o

Since, as shown in section 2, 3, the only multipoles present in elastic
scattering are C0, C2, ..., M1, M3, ..., we shall write Eq, (12) in the
form .

(0
d‘:‘; = o (0) f.l(qz)z{cho(q2)'2+IFcz(q2)'2+"'
2 2k; . 26 .
1+m81n -5}
(Leegt ) Imy, @)l + 15, @012 + 16

The various form factors appearing in Eq, (16) are proportional to given
electric or magnetic moments and to the Fourier transform of their spatial

4 A simple way of going beyond the first Bom approximation is to use the high-energy approximation
(see, for example, Ref.[3]), which says that the distortion by the Coulomb field can be taken care of by
using an effective momentum transfer (R is the nuclear radius)

_ 3 Zé*
Geff=q [“ p RIRJ

Away from the diffraction minima, this approximation gives results very similar to the exact calculation.
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distribution, For example, the charge form factor F,(q) is proportional
to the charge of the nucleus and to its spatial distribution, Due to the angular
momentum conservation, it will be the only term present in the cross-section
in scattering by nuclei with J =0. The quadrupole form factor F5(q) is
proportional to the spectroscopic quadrupole moment @ and thus it will be
non-zero only for J21, Thé magnetic dipole moment form factor Fyyy (Q)
is’ proportional to the nuclear magnetic moment x4 and it will be present
only if J 24, The magnetic octupole moment form factor F\s(q) is pro-
portional to the nuclear octupole moment Q2 and will be present only for
Jz3/2, And soon.

In the following, we shall be mainly interested in scattering from zero-
spin nuclei, In this case the cross-section will be

-do oy (8) 2,2 2,12
- £,(a%)°|F,y, (@) : (17)
ds2,
1 +zﬁ sin22
M, 2
where
. A
2 1 - - "a'—’ — -
Fen (97) = Feola?) = Z<T(x; .0 )| Z ee W lw (.. %))
: k=1
1 . a2 - .
=z f Jolar)<0[A(x)|0>dr = 4x f Jolar) p(r)r®dr (18)

We see that elastic electron scattering experiments are connected in
a simple and direct way to the single-particle proton density in the nucleus
p(r)(4r [ pr2dr=1),

The usefulness of elastic electron-scattering in testing nuclear structure
strongly depends on the range of momentum transfer than can be explored,
By expanding the charge form factor in powers of g

Fch(q2)= 1-%<r2> q?+...<r2> = 41rfpr4dr (19)

it can be seen that in scattering at low-momentum transfer (q < 0.5 fm™})

the only parameter which matters is the nuclear mean square radius,
{r?>, which can be measured, however, in a model-independent way, that

is, without any assumption about p(r). It should be noted that elastic electron
scattering at low-momentum transfer is a powerful tool for obtaining a model-
independent determination of a series of characteristics of nuclei, For
example, the scattering from a J =3 or J =1 nucleus at' 180° gives, at low q,

a model-independent determination of the nuclear magnetic moment, since
only Ml-scattering is present, If higher multipoles are present, then even

at low-momentum transfer they will interfere and their model-independent
determination is impossible., However, the contribution from electric quadru-
. pole and magnetic octupole scattering is very small at low-momentum trans-
fer, becoming of the same order of the lower multipoles at higher (qx 1 fm™1)
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momentum transfer (see, for example, Figs 4 and 5 of Ref.[4]). For this
reason, at low-momentum transfer the Coulomb scattering is predominantly
charge scattering, while the magnetic scattering is mostly dipole. As the
momentum transfer increases, the details of the spatial distribution of the
various multipoles can be studied, In the last few years, the charge form
factor of light nuclei has been experimentally studied up to very high mo-
mentum transfer (<4 fm™!) [9-12]. In this way, experimental data on the
high-momentum components of the single-particle wave function became
available. This has stimulated a series of theoretical calculations, some
of which will be discussed in the next sections.

3.2, Flastic electron scattering and single-particle (s, p.)
wave functions

If the nucleus is described as a collection of particles moving in a
common potential, then the s.p. density appearing in Eq, (18) is

o) 5 ) Z R ) 2z, (20)

where the summation extends over single-particle occupied states o, We
see that elastic electron scattering is a powerful tool for studying the radial
part R, (r) of the s,p. wave functions. The latter can be generated either

in a model-dependent way or as the solution of a Hartree-Fock (HF)-like
calculation, The most common independent-particle model (IPM) is the
well-known harmonic oscillator model (HO)., This has proved very success-
ful in explaining the experimental data for light nuclei (A< 40) up to g=2 fm™!
[14]. However, the recently available data at high-momentum transfer show
the dramatic failure of this model, as shown in Figs 4 and 5, A more realis=
tic model is that of generating the s, p. wave functions in a finite well, for
example, in square or Woods-Saxon wells, The effect of the finite well, as
was first demonstrated in Ref.[15], is that of producing additional dif-
fraction zeros in the form factor, in rough qualitative agreement with the
experimental data, However, if a best-fit analysis is carried out, as in
Figs 4 and 5, large discrepancies are found at high-momentum transfer,
One can of course try to explain those discrepancies by inventing more
sophisticated s.p. wells, However, a more interesting approach is to see

if the discrepancies can be removed by taking into account higher-order
effects in the nuclear wave function, Indeed, we know that the IPM is only a
first approximation to the description of the nucleus, and it is reasonable

to think that it does not give a good description of the high-momentum com-
ponents, Several corrections to the IPM have been considered. Donnelly
and Walker [15] have studied the effect of configuration mixing (‘''long-

range correlations') which has been found to be very small, Elton and

Webb [16] have analysed non-locality effects of the s, p. potential, They

did not,however, give the results of the calculations for the high-momentum
part of the form factors of light nuclei, so that it is not yet known how well
their model works just in the most interesting region of momentum transfer,
Systematic work (see next section) has been done in order to study the effect
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FIG.§. The same as in Fig.4 for 0. (Experimental data from Ref.[12].) In the insert is shown the density
calculated with the two models.
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of short-range dynamic correlations [22-27], As for the calculations per-
formed with HF-like s.p. wave functions, the situation can be, very con-
cisely, summarized as follows: the s.p. wave functions obtained from HF-
like calculations are capable of giving a very good fit to the experimental
data up to intermediate-momentum transfer, but at high-momentum trans-
fers they do not seem to be very successful, Typical results are shown in
Fig, 6.

3.3. Elastic electron scattering_a_nd Jastrow correlations

We have seen in the previous section that the high-momentum part of
the charge form factors cannot be reproduced by reasonable phenomenological
1PM and HF-like wave functions., Thus it is natural to look for such eifects
which influence the high~-momentum components of the wave function, Ef-
fecis of this kind are certainly those due to a strong repulsion at short inter-
nucleon separations (''short-range correlation' (SRC) effects), From what
is known about the two-body potential one would expect SRC effects to be
present in nuclei, However, there are many equivalent two-body potentials

49 [ mb /sr]

daQ

19" | ! |
30° 40° 50° 60° 70°

FIG.6. Comparison with the 750 MeV data [12] of the 60 elastic cross-section'calculated with wave functions
resulting from density-dependent Hartree-Fock calculations [13] (private communication from J. Negele).



IAEA-SMR-8/31 229

which differ just in the short-range behaviour, and, besides, the experi-
mental study of the two-body relative wave function in nuclei is very diffi-
cult and, so far, very uncertain [17]. For these reasons, the real charac-
ter of SRC is completely unknown, It is therefore interesting to analyse
the effect of SRC on s, p. high-momentum components and to see if elastic
electron scattering experiments can furnish some information on SRC, It
is clear that such information (if any) will be indirect, since elastic scatter-
ing measures only the one-body density matrix; but still it will be useful,

A simple and straightforward way of studying SRC in electron scattering
is to use the Jastrow wave function [18]

A
Y(x;... x4) =NB(x;. .. x0) [[ fry)  N= Ko[[[e?]ap]? (21)

i<j

where & is any uncorrelated wave function and f(rij) is the Jastrow cor-
relation function (JCF) which introduces SRC since it differs from one only
for small internucleon separations, The JCF can be chosen at will providing
that it beals (f~1) sufficiently rapidly. Once @ and f have been chosen,

one has to calculate the form factor

Z
<al ) & 10ry) | 0>

k=1

< ‘1’|H f(rij)2|‘1’>

(22)

Ni=

F(q) =

which is a very difficult task, since one faces the evaluation of many-body

matrix elements., One is forced to develop cluster expansions and then to

calculate the leading terms, Therefore the prerequisites of a good cluster
expansion are the following:

(i) it must converge rapidly and must not contain terms which diverge

with the increase of the mass of the nucleus; :

(ii) it should be "summable" as much as possible; that is, the various

terms should contain the largest contribution from the correlation
of a given type; ’ ’ .
(iii) every term of the expansion should possibly have a direct physical
- interpretation, .

Several types of cluster expansions have been developed. An excellent
review about their use in electron scattering is given in Ref,[20]. A cluster
expansion satisfying the above conditions is the so-called factor cluster (or
Van Kampen) expansion [20]. This is an expansion of the type

F(q?) =F, (a®) +F, (4?) +F, (a®) +... (23)

where the indices refer to the number of correlated orbitals which are
present in a given term, The calculation of the term F, (q) of Eq.(23)
corresponds to the evaluation of n-body correlation effects, Calculations
with Eq. (23) have been ‘performed for “He in Ref,[22] through two-body
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terms, and in Ref.[23] exactly with all terms, The mosi frequently used
cluster expansion is, rowever, the Iwamoto-Yamada [21] (IY) which, in
the lowest order, yields for the form factor of a 1p shell nucleus with A =2Z

Fa2)= %4 ) <ale™ Jad + )<x e |y, D= ) <xglx, D<ale™ ™ |
A oB Xop a8 Xop
o of af

2 ) [ le™ ™ g = g lres Dale [2>] } )

of

where
Xas = $og = g (25)

and ¢,g is the antisymmetrized two-particle uncorrelated wave function,
Although the lowest order in the Iwamoto-Yamada expansion corresponds

to only a part of the two-body correlations given by Fp of Eq, (23), it can

be shown both formally [20] and numerically [22], that it gives similar
results as the lowest order of Eq. (23), providing that correlations are short-
range,

10 T T T T
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0 25

FIG.1. Form factor of 4He calculated using harmonic oscillator orbitals plus Gaussian (dashed line) and
oscillatory (dotted line) Jastrow correlation functions (JCF). The oscillator parameter is in both cases
a=fic/YMhw = 1.21 fm and the parameters of the two JCF's are b=0.95 fm and q=2.4 fm"!, respectively.
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FIG.8. The same as in Fig.7 for '® O (oscillator parameter a =1,64 fm), In the insert the best uncorrelated

density (continuous line from Fig. 5) is compared with the best correlated density (dashed line), The dot-
dashed line was obtained without correlations using the same oscillator parameter as for the correlated density.

Another type of expansion has occasionally beer used [19,28,57]. That
consists of expanding the numerator and denominator of Eq. (22) using

(26)
and retaining only

<d>| z ei;';l: <1 - Zh(ri,- )>| & ‘-
k

i<j

(27)
<@I 1 -Z h(ri]' ) | ¢>

i<j

It has been shown [20,22] that Eq. (27) satisfies none of the conditions
mentioned above. In particular, it contains divergent terms which contribute
even for A>4, Numerical calculations [22] for 4He and 80 using Eqs (23),
(24) and (27), show that all give very similar form factors but the correlation
parameter obtained using Eq, (27) differs by 20% from the values obtained
using Eqgs (23) and (24), which give very close results, For this reason

the value of the parameters found by using Eq. (27) are not reliable.
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Equation (24) has been fitted to the experimental data for 4He and 160
varying the correlation and IPM parameters. Two types of correlation
function have been used:

- 2
e 2/b }1/2

Gaussian f={1- (28)

1/2

Oscillatory [28]. £ ={1-j,(ar)} (29)

The results of calculations are shown in Figs 7 and 8.5 With reference
to these results the following remarks should be made:

(i) The introduction of JCF accounts very well for the experimental
data. It must be pointed out that the correlated and uncorrelated form fac-
tors strongly differ at 2 3 fm™! while the corresponding densities are al-
most the same (see Figs 5 and 8)., This is for the simple reason that even
extremely small differences in the charge density can have very large
effects in the region where the form factor is very small (1074-10"5), There-
fore, any conclusion on the effect of SRC based only on the calculation of
the density (see, for example, Ref.[29]) can be doubtful.

(ii) Elastic electron scattering is rather insensitive to the form of the
JCF. This was expected since only the one~body density matrix is measured,

(iii) The correlation parameters are independent of the mass number,
which is quite satisfactory.

(iv) Although insensitive to the JCF, the experlmental data are sensi-
tive to the value of the "wound volume" {yx> = {#(1-£)%4>. This is shown
in Fig. 9 for 60 [26], We have compared in Table II the values of the
wound volume corresponding to the fits of Figs 7 and 8 with the values ob-
tained in Brueckner theory by solving the Bethe-Goldstone equation [31].
The agreement between the two values should be noted,

Before drawing any general conclusion, two important problems should
be investigated: the dependence of the results on the s.p. basis and the
convergence of the expansion. As for the first problem, in Fig. 10 the
results [24] for 10 obtained with HO and Woods-Saxon orbitals are shown.,
It is encouraging to see that in both cases the best fitting correlation para-
meter is the same,

The problem of convergence has been studied in detail for 4He in
Ref.[23], In Fig.1l1, the results obtained with the Van Kampen expansion
(Eq. (23)) are shown, The effect of many~body correlations increases, as
expected, with the momentum transfer, It is, however, encouraging to see
that good convergence in a wide region of momentum transfer is reached
when three-body correlations are taken into account, Since it has been
found that the correlation parameter is the same in 4He and 160 and since
the terms of the expansion can be roughly classified in powers of w/Q
(0 is the total ''correlation volume' and Q the total volume of the system),
one expects the conclusions for 4He to be also valid for 160,

5 1t should be remarked that the calculation with the oscillatory ICF is not exactly a best fit to the data
but rather an attempt at selecting that value of q giving, with the same HO constant, results similar to those
of the Gaussian JCF (for which a best~fit analysis has been made). By using slightly different HO constants
one can probably match the two curves of Figs 7 and 8. It is interesting to note that § and b turned out to be
connected through q = v6/b, which follows from the relation between the Gaussian and the spherical Bessel
functions [30]. In Ref.[28] it-has been found that q ~1,5 fm™!, In this connection it must be emphasized
that there the not very reliable Eq.(27) has been used. :
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[Fen ()l

qlfm")

FIG.9. Dependence of the form factor upon the value of the Jastrow wound volume <°aB(1'f)z °c'c5> = <x x>
Continuous line: no correlations_. Dot-dashed line: XX> ~ 0,009, Dashed line: <XX> ~ 0,004,
The r.m.s. radius is the same for the three cases (from Ref.[26]).

TABLE II. COMPARISON OF "WOUND VOLUME'" VALUE OBTAINED
FROM ELECTRON SCATTERING BY JASTROW METHOD AND VALUE
OBTAINED FROM BRUECKNER THEORY USING A HARD-CORE
POTENTIAL WITH CORE RADIUS r, = 0,45 fm

Electron scattering

Method (Jastrow) Brueckner theory
Nucleus
*He ~0, 022 ~ 0,024
ble} ~ 0, 009 ~ 0,011

From the analysis of elastic electron scattering using Jastrow wave-

functions we learned that:

(i) the systematic deviations from the IPM can systematically be
removed by Jastrow correlations;

(ii) correlation effects seem to be independent of the mass number
and of the single-particle orbitals;

(iii) the charge form factors at high-momentum transfer are very
sensitive to the value of the wound volume, whose best fitting value turned
out to be very close to.that predicted by Brueckner theory. ’
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FIG.10. Dependence of the Jastrow form factor upon the single-parmicle basis. Dashed line: Woods- Saxon
orbitals. Dotted line: harmonic oscillator orbitals. The JCF is Gaussian and in both cases the correlation

parameter is the same (b=0.9 fm). When the dotted line is not shown, it coincides with the dashed line
(from Ref.[24].)

For the above reasons we think that elastic-electron-scattering experi-
ments at high momentum transfers ‘can help towards understanding the nature
of SRC in nuclei,

A final comment on the interesting problem [32] of the formal ‘compari-
son between Brueckner and Jastrow form factors., First of) all, we note
that Eq, (24) is usually written in the form

Flat)= 2 {) Cale™ ad 4 ) Cogle ¥Rt 1l >
a ab

- Z<a|e“"‘ la><b, | (12 - 1) 6 >} "~ (30)
oB

It is easy to see that Eqs (24) and (30) are identical, since t2-1= (£~ 1)2
+2(f-1).% However, Eq, (24) is formally more convenient for a comparison

¢ Remember that Eqs (24) and (30) have been written down for the case of p-shell nuclei. In the

general case one has to do the replacement 2 - E in the third term of Eq.(30).
o ofy
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FIG.11. Convergence of the 4He form factor calculated with the Van K'arﬁpen expansion. Curve 0: no
correlations, Curve 2: two-body correlations. Curve 3: three-body correlations. Curve 4: four-body
correlations (exact calculation). The oscillator parameter is a=1.21 fm and the Gaussian correlation para-
meter b=0,9 fm, (From Ref.[23].)

with Brueckner theory because it shows that the Jastrow correlation contri-
bution, like that of Brueckner contains one part proportional to the quantity
xx and one part which is due to 1p~ 1h excitations (we mean the term :

ple 47 |X> in Eq.(24) and the terms corresponding to the Goldstone graphs
(a)-(d) in Fig, 2 of Ref.[31]). The 1lp-1h contribution in Brueckner theory
is very important, at least in the calculation of radii and densities[31]. There-
fore, one has to take it into account when the comparison with Jastrow
method is carried out; it will be zero only if self-consistent orbitals are
used, in which case, however, the uncorrelated form factors in Brueckner
and Jastrow cases will be very different, and therefore one can compare
only the total form factors but not the correlation corrections (2p~2h plus
lp-1h corrections in the Jastrow method and only 2p-2h corrections in the
Brueckner method). A significant comparison between the two methods
can only be made by referring to some specific Brueckner calculations.

The only calculation’ we know about is that performed in Ref,[31], It
is interesting and promising to see that the net effect of 2p-2h plus 1p~1h
correlations on the radius of *He is the same as in the Jastrow case,
Namely, the (correct) value (~ 1.41 +0,05 fm) of the mass radius obtained
when 1p-1h and 2p-2h ecorrections are included, is ~ five per cent larger
than the uncorrelated value (see last column of Tables in Ref.[31]), The
same effect has been found in the Jastrow case for 4He and heavier nuclei
[24]. :
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4, QUASI-ELASTIC SCATTERING AND NUCLEAR STRUCTURE

4,1, Introduction

As was already mentioned in chapter I, for quasi-elastic (QE) scattering
we mean a direct knock-out of the bound nucleons by the incident particle,
occurring at high-energy and momentum transfers. QE scattering is one
of the most attractive and direct ways of studying nuclear structure. In
particular, if the emitted particle is detected in coincidence with the
scattered one (both particles can be of any type), then unique information
on momentum distribution and binding energy of bound nucleons and nucleon
clusters can be obtained. (For a review of coincidence quasi-elastic scatter-
ing see Ref,[33].)

The energy transfer in QE scattering should be high enough in order
-to avoid the coupling of collective excitations (giant resonance) with the
direct proc:ess7 , and in order to produce nucleons with high kinetic energy,
thus minimizing their absorption by the nuclear medium., However, it
should not be too high, otherwise pion production becomes dominant. Typical
values are

.5fm1 < g<2.5fm? 100 MeV SwS.250 MeV

How coincidence and non-coincidence QE scattering can be used to
get information on nuclear structure will be the subject of this chapter.
In the next section the elements of electron QE scattering will be worked
out using the Born approximation, As we know, this is quite a good approxi-
mation provided the target nucleus is not too massive, in which case dis-
tortion of electron waves should be taken into account,

4,2, Kinematic and cross-section

Energy and momentum conservation when a nucleon (we consider it
to be a proton) is ejected from the nucleus, reads -

a = Ep"‘fis
(31)
W= Bf:Tp +Ts

where f(B is the recoil momentum of the final nucleus B, Tp and T are
kinetic energies of the knocked-out proton and the residual nucleus and

By = EB*f'+ Mp+M= M, =Ej + AM (32)

is the energy (''separation energy') required to knock out the proton leaving
the residual nucleus in the excited state E’f;f.

" Effects of this type have been considered in Ref.[56]. At w=22.6 MeV, which is the position of
the main peak of Giant Resonance, collective excitations are dominant.
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If we suppose, for the sake of simplicity, that only Coulomb interaction

is present (it is in fact the dominant contribution except in the backward
direction), the cross-section will be (see Egs (8) and (10))

' 4
2
_Go _ <q > 2,2,C
dQ2d€2 O'M(G) 3{- f_,r(qu) R (q,w)dk'p (33)
with RC given by Eq. (11)
RC( U)= 1 Zl -(_'_k))lzél(u-B T - ) (34)
q, 2‘]l'+1 gild, P £ P B
MiMf

Here, the "QE form factor" is

A
B Ep) = T BN ) oo sE-F) w80 (35)
P k=1
where ¥,(B) and ¥(A) are the wave-funcﬁons of nuclei A and B and X(i:’)

is proton continuum wave-function. If the latter is approximated by
a plane wave :

X&) (B) we kpr (36)
k
P
we get
- - .
g5 (Kq) = f e P <w (B)|vy(A)) ¥ (37)
The importanf quantity entering Eq, (37) is the "overlap integral"
g @)% @)> (38)

which contains all the information on the structure of nuclei A and B. If

we consider the final nucleus to be a hole state of the farget, we obtain in
the simplest version of the shell model (independent particles without any

spin-orbit coupling)

<% (B, () >= ¢, (F) = 3, (09)R () (39)

and the QE form factor becomes the momentum distribution of protons bound
with momentum

p=-Ky (40)
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in the shell (ng)
- _ -i_l;.? - g
8 (p) = fe B (T} dr (41)

Performing the summation in Eq, (34) (we consider J; =0) and expanding
exp(-ip.r) in partial waves, we obtain for the cross-section

! 4
———2 —
gﬂzrge; oM(6)<%B-> f(qﬁ)zpu (p)6(w-B,,- T, - Ty )dkp (42)

where
p () =N | \/‘Z)ﬂfj,l(pr)Rn,l(r)rzdrl2 (43)

and N, is the number of protons in the shell. -

We see that QE reactions depend on the momentum distribution of
the knocked-out particle and, through the energy conservation é-function,
on its separation energy B,,. It is clear that a direct measurement of
these quantities is possible only in a coincidence experiment., However,
it is also important to study and to understand the real nature of the QE
peak appearing in the non-coincidence energy spectrum, which will be
done in the next section.

The approximations used to derive Eq,(42) have been made simply
in order to introduce the problem. In fact, there is no need of them in
actual calculations. First of all, one should introduce a more realistic
description of the nucleus. This is usually done [34] by taking into account
the residual interaction. The wave-function of the nucleus A can then be
expanded in the form

% (8) = ) CP0(0 + EX ) ¥((B) guan® | (44)
f

‘
where an ) (fractional parentage coefficient, f.p.c.) couples the ground
state of A with excited states of B, Inserting Eq. (44) in the overlap integral
(38), we get for the QE form factor (35)

(*§)=Zc“‘“’ (£, (2 )}f 70 Gy e (F)dr 45
gﬁ q. P f s L)y e Xi’P r)‘PMm(!‘ T ( )
f

where { }; is an algebraic factor coupling angular momenta,

As for the final state interaction, it has been shown [35] that at high
energies (TP 2 100 MeV) the interaction of the proton with the nucleus B
simply reduces to its absorption (the real part of the optical potential is
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very small at such energies), i.e. to a reduction of the momentum distri-
butions without significant changes of their form, . Thus the plane-wave
approximation can still be used in Eq.(42) provided a reduction factor is
used to take proton absorption into account,

The transverse interaction can be taken into account without any diffi-
culties. At high energies, a simple and accurate way to do that ("impulse
approximation') is to factorize the electron-nucleus cross-section into the
electron-proton free cross-section op(6) (Rosenbluth cross-section) and
the nuclear structure part. In doing that one neglects off-energy-shell
effects which, however, are very small at high energies. Anyway, if one
wants to avoid this minor approximation, one can directly calculate the
electron-nucleus cross-section in Born approximation taking into account
both longitudinal and transverse interactions [36].

With the refinements discussed, in impulse approximation, the cross-
section will be
2

2 _(nf) - > f -
d 0-& _ ki _(ng) felq o ( )(r) (p (r)dr 6(&)- Bnl- TP - TB )d-kp (46)

an,de, %O, O

where G(fnﬂ) is the "spectroscopic factor" defined by the square of the

f.p. c. and the vector coupling coefficient. - From Eq, (46) we see that QE
scattering is no longer proyortmnal to the momentum distribution of protons
having momentum p =K ~q. However, since, as mentioned, the distortion
can be factored out into a reduction factor, we can still claim that electron
QE scattering is proportional to the true proton momentum distribution,

The main approximation contained in Eq.(46), that is to consider the final
nucleus simply as a hole state of the initial one, will be discussed later on,

4.3. Non-coincidence quasi-elastic scattering

Here we have to consider that both proton and neutron emission can
contribute to the process. Moreover, smce the emitted particle is not
detected, we must 1ntegrate Eq (46) over k and sum it over the final

nuclear states; since Z} ef = 1, we have
f

2 ' : 5
do _ 2k; . 26 Q-7 () - 5
da,d¢, ={o, (6) + o, (6)} {1 +—M-l sin -Z-}Z f|f (r)<p _(x)dr

(ngm)

xé(w-Bnl-Tp-TB)dI;p (47)

which becomes [37] in plane-wave approximation and neglecting the small
quantity Ty (it is in practice not difficult to include the recoil),

ng n
d

o _ 2k; . 96| 27M
a0y, {cp(9)+on(6)} {1+T1 stE} 7:1 z fpnz(p)Pdp (48)

(ng) (M) (ng)
Pinin |q k l
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and

kl‘)"" = {2M(w- B_, "/ (49)
Because of the integration over p, one expects the shape of the QE peak

to be rather insensitive to the details of p,,. This is in fact the case, as
shown in Fig, 12, where the QE peak of 12C calculated [38] (with distorted
wave) using two very different momentum distributions giving, however,
similar nuclear radius, is compared with the experimental data [39]. From
Fig.12 we learn that the shape of the QE peak is not very sensitive to p,,
and that it can be satisfactorily reproduced by any IPM which gives the
correct sizes of the nucleus. The qualitative effect of SRC on the shape

of the QE peak of 12C has also been investigated [38], The momentum dis-
tributions have been calculated with Jastrow wave function (see Fig, 13)'and
then have been used to calculate the QE cross-section (Fig, 14), The effect
is very small, which is again due to the integration of p_,. In fact, typical
values in the experiment [39] are 0 fm™ < Pip $1.5 fm™ and 3.5 fm!

S Pmax & 7Tfm™"., Thus, the region where correlation affects the momentum
distributions is picked up by the integration, but the contribution of this
region (p~10"7 fm3) to the integral is insignificant. We see that the in-
formation obtainable from the shape of the QE peak is very scarce, How-
ever, the area of the QE peak, which almost exhausts the inelastic spectrum
at high q, might be a useful quantity since we need it when we want to com-~
pare with the experimental data the theoretical "'sum rule", i.e. the inelastic

16
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FIG.12. Comparison between the experimental [39] quasi-elastic peak of 12C and the theoretical calculation
based on the independent-particle model. Continuous line: oscillator parameters ag=ap =1.64 fm.

Dashed line: ag =1.2 fm. a,=1.8 fm. In this figure, as in Fig.14, E, is the incident electron energy

(k,) and @ the scattering angle. The value of the three-momentum transfer at the peak is g~ 2.25 fm.

(From Refs [ 27,38].)
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FIG.14. Effect of Jastrow correlations on the quasi-elastic peak of 2c [39]. Continuous line: no
correlations. Dashed line: Jastrow correlations. The value of the momentum transfer at the peak is
q~2.6fm™!, (From Refs [27,38].)

cross-section d2a/d§22doz2 integrated over the energy transfer w at fixed q
or 6 [3]. It can be shown [40] that'at 180°and 15q <2 fm™} the sum rule
("transverse sum rule'') is dominated by the term

2
2 2
oo (Zuy + Nug) (50)

where u is the magnetic momentum of the nucleon. Thus, by measuring the
area of the QE peak (inelastic cross-section) versus g% one could check the
value of u for bound nucleons; preliminary experimental results [41] show
that this value agrees with that of free nucleons,

The Coulomb (inelastic) sum rule gives [3]

d?o 1 _ P . )
f{dnzdez ’ cM(q"/qy}} dw=R(q)=2- 2%|F(q)|*+Z(2- 1)

xfeiq'(r—r') o(T, P1)dr ar! : (51)

that is, a quantity directly proportional to the two-body correlation function
p(_r'_f-'). Therefore, it would seem that one has a method for a direct study
of SRC. Actual calculations [42] (see Fig,15) show that the effect of SRC
on the integrated cross-section is very small. The reason is clear from
Eq. (51) (see also, in this connection, Fig, 14). At hi_gh_'q, where SRC are
important, both F(q) and the Fourier transform of p(r,r) are much less than -
Z, so that, at high q

R(q)/Z~1 (52)
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FIG.15. Coulomb sum rule calculated with the independent-particle model (continuous line) and with
short-range correlations included (dashed line). (Adapted from Ref.[42].)

It is now generally agfeed that no information on SRC can be obtained from
the Coulomb sum rule, Other applications of sum rules are discussed in
Ref, [43]. :

4.4, Coincidence quasi-elastic scattering

When the scattered electron 1s_)detected in coincidence with the emltted
proton, one is able, by measuring q, k ps W and T to determine By and KB.
The advantages over the non-coincidence exper1ments are clear: neither the
summation over the shells nor the integration over the recoil momentum
occurs, Therefore, one can study the excitation spectrum of the residual
nucleus and the momentum distributions p ,(p). Coincidence QE experi-
ments for studying these quantities were first carried out and are currently
performed [44] using protons as projectiles, The advantages of using protons
are due tothe high counting rate (cross~section) whichis par‘picﬁlarly important
in coincidence experiments, while the drawbacks are some theoretical diffi-.
culties connected with the interaction of strongly interacting particles and
the relevant absorption due to the presence of three distorted waves. This
last fact sets serious limitations on the study of inner shells in heavy nuclei,
The use of electrons as projectiles has therefore been proposed [35], since
in this case none of the above troubles is present, Unfortunately, the low
value of the electron-nucleon cross-section, resulting in rather poor count-
ing rates, makes the coincidence experiments with electrons very difficult,
since high-intensity beams and high-duty-cycle accelerators are required.
Nevertheless, coincidence (e, e'p) experiments have been shown to be feasible
[45,46] and are now in progress in several laboratories [47-49].

" The cross~-section for an (e, e'p) reaction will be given in plane-wave
approximation by Eq. (46):

a*oft® 2k,

— = 20 (ng) (ng)
S, de,dQ, de, Mkp{“M sin } (8)8; " py, (P)8(w- By

-T, - Ty)
(53)

The character of the energy spectrum is determined by the spectroscopic
factors 9 It will also depend, however, on the energy resolution of the
apparatus the better the resolution the clearer the structure of the spectrum.
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InFig, 16 we drew a sketch of the (e, e'p) process for the case of 1p-shell
nuclei. Figure 16aillustratesthe transitions occurring from the ground state
of nucleus A to the excited states of nucleus B, When nucleons are knocked
out from less bound-shell (1p in our case) quasi-stationary states of normal
parity are populated, whereas very short-lived highly excited states ofanomaly
parity are excited when knockout occurs in the deeply bound shell (1s shell).
The decay width of such states was found to be about 10-15 MeV (see, for
example, Ref.[33]). The possible effects of such very short-lived states on
the reaction mechanism will be briefly discussed later on. Figure 16b shows
the "theoretical' spectrum of the process, while in Fig. 16c is sketched the
experimental spectrum, where the levels populated in the final state are spread
out by the energy resolution, If thisisverypoor, then the position ofthe two
resulting broad peaks yields the separation energies of the two shells
(£=0, £=1), Indeed, the separation energy of a given state of the initial
nucleus can be defined as the weighted average of the separation energies
of all states of the final nucleus, coupled to the given state of the initial
one [50]. In a poor energy resolution experiment this averaging is auto-
matically guaranteed.

The shape of the energy spectrum is already in itself good evidence
of shell structure, However, more direct and stringent evidence can be ob~
tained by measuring the momentum distributions Pnl(P) This can be done,
for example, by fixing q and K at the values corresponding to the two peaks
and then varying the proton em1ss1on angle 6;. The expected results are
shown in Fig, 16d,

It should be clear that according to Eq. (53), the form of the energy
spectrum will depend on the values assumed by the momenium p, or, equi-
valently, by the bands of p,, (p) picked up during the measurement of the
energy spectrum, Indéed, if the energy spectrum is measured, say,
varying k, and keeping the other quantities fiXed_‘ there will be a variation
of p (hence of p,,(p)) which strongly depends on Kp. The energy spectrum
will, of course, depend on this variation, as 111ustrated in Fig. 17,
do/d 0, de, 40, e,

|
NI

P‘Is
II
] ‘ Pip
B
P
PR [P
kz kP 11 F
ll P’o B-
P

FIG.17. Sketch of the effects of the kinematics on the shape of the energy spectrum of the (e, e’ p) reaction.
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First experiments on (e, e'p) reactions were carried out [45,46] using
incident electrons of ~600 MeV and detecting in coincidence ~500 MeV
electrons and ~100- 200 MeV protons, Results for 12 are shown in Fig. 18
where k; ~500- 600 MeV, k, ~2.3 fm’l, 6=56°, q~2.5fm™}, w~150 MeV.
The poor energy resolution (AE ~ + 6 MeV) does not allow the contribution
from the two shells to be separated out in the energy spectrum (Fig. 18a),
The values of the B's agree, however, with the values found in (p, 2p) ex-
periments performed with beiter resolution (see, for example, Ref,[44]).
Furthermore, by looking at the shape of the angular distributions (Fig, 18b),
there cannot be doubts that the energy spectrum is due to knock-out of
£2=0 and £=1 particles.

There have been several calculations [51 - 54] trying to reproduce these
results, Most of them [51-53] were based on the impulse approximation
(Eq. (53)), while in Ref,[54] the total (longitudinal plus transverse) electron-
nucleus interaction was considered in Born approximation, The results in
both cases are very similar, The interaction of the outgoing proton with
the residual nucleus was taken care of [51-53] by means of the high-energy
approximation (WKB), which allows the proton continuum wave function to
be written in the form

X;?P(;) = exp {(iﬁp-¥)+i§:—fwt)dt} (54)

where V(r) is the complex optical model potential whose real part accounts
for elastic scattering (distortion) and the imaginary part for compound
nucleus processes (absorption), A direct partial-wave analysis of yp (7)
has also been performed [54]: P

- A 5 3
xl;;(r) = 4r Zi R, (k)Y ¥ (k) YA (E) (55)
Ay '

where & )(kpr) is the continuum radial wave-function generated in the optical

potential, Both Egs (54) and (55) yield, however, very similar results,

At Tp, ~100 MeV, the real part of the optical potential is very small [55],

which results in a negligible distortion of the momentum distributions, As

already mentioned, the only sizeable effect is. an overall reduction which is

larger for the inner shell, since in this case the path of the proton before

escaping the nucleus is longer., The effect of the distortion in (e, e'p) reac-
tions is shown in Fig, 19,

) If the single-particle wave functions are generated in a local well re-

producing the correct values of the separation energies (Bg ~36 MeV,

B, ~ 16 MeV), then a good fit to the data can only be obtained [51] if the

ls and the lp wells are very different from each other, For example,

agsuming a square-well shape, the Is well has ~ 70 MeV depth and ~2 fm

radius and the 1p ~35 MeV and ~4 fm, respectively. If the harmonic

oscillator is used, it turns out thata, ~1.2 fm and a;, ~1.8 fm. These

figures, although very indicative of the trend (state dependence of the po-

tential well), cannot be taken too literally since they have at least a ~20
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FIG,18. Energy spectrum (a) and angular distributions (b) of the ¢ (e.e p) ' B reaction,
(Experimental data from Ref,[45].)
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34

FIG.19. Effect of the distortion on the momentum distributions of C. Dashed line: undistorted momentum
distributions. Continuous line: distorted momenturn distribution calculated using the WKB approximation
and optical potential (Vr)=-~(23+i17) exp(-0.41 2y Mev [51].

per cent variation due to the experimental errors, Typical fits are shown
by the continuous line in Fig, 18. Here the energy spectrum has been cal-
culated [51] by replacing the energy conservation 6~function in Eq, (53) with
a Gaussian ‘ny.AB(B' B¢) defined by the relation

ﬁ(B-Bf)dB=f¢yf.AB (B-B;)dB (56)
0 0

thus taking into account the natural width of the level y; and the experi-
mental resolution AB on the experimentally measured quantity ('"'missing
energy'') B=w- T,. The nuclear model used is the same as in Ref. [34],
that is an intermediate~coupling model calculated with residual interaction
containing the well-known Rosenfeld mixture, The excitations of !B pre-
dicted by the model for the knockout from 1p-shell are shown in Table IIl.
It is clear the the poor experimental energy resolution does not allow the
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TABLE III. SPECTROSCOPIC FACTORS 6P FOR THE EXCITATION

" OF NORMAL~-PARITY STATES OF 1B IN THE REACTION 2C(e, e'p)!!B.
THE SPECTROSCOPIC FACTORS ARE NORMALIZED TO THE NUMBER
OF PROTONS IN THE 1p-SHELL, i.e. )6 = 4 (adapted from Ref, [4])

Residual nucleus !B
. (1p)

LT Eexp En o¢ P

(MeV) (MeV)
El 0 0 2.5
22

6.81 6.9 0.78
ll 2.13
23 . 1.9 0.66

predicted transitions to be seen (a pure IPM gives almost the same spectrum),
so that the correctness of the model remains to be checked in a good reso-
lution experiment [56],

The good fit to the experimental data shown in Fig, 18 is only apparently
satisfactory since the obtained parameter for the potential well (even with
errors included) do not fit elastic electron scattering data [51]. This is
illustrated in Fig,20, Responsible for this situation is the deep s-well
generating too high a central density. If parameters which fit the charge
form factor are used, the fit to the (e, e'p) reaction is completely spoiled
(see Fig.21 and, for more details, Ref,[51]).

This apparent contradiction between two experiments which must be
explained in a unified way might be ascribed to several reasons:

(a) not enough accuracy in the quasi-elastic experimental data;

(b) unrealistic wave-~functions used in the calculation;

(¢) more complicated reaction mechanism.

As for the first point, it is clear that, the analysed experiments being
the first, one should wait for other and better experimental data, However,
recent high-energy (~400 MeV) (p, 2p) experiments performed with very
good angular and energy resolution [44], fully confirm the state dependence
effects found in the (e, e'p) reaction,

In order to check point b, calculations have been performed with dif-
ferent types of wave functions: IPM Woods-Saxon [54], parity-mixed orbitals
[52], and projected Hartree-Fock wave-functions in a deformed basis [53].
No significant improvement with respect to Ref,[51] has been obtained. It
remains to be seen if Hartree-Fock-like calculations performed with
"realistic interaction" can give some improvement. One expects, however,
the single-particle wave functions obtained from such a calculation to over-
lap strongly with those of the harmonic oscillator or the Woods-Saxon,

A different approach for the solution of this puzzle has been suggested
in Ref.[51]. The quasi-elastic data should be fitted and then one has to
look for some effects which should affect the charge form factor, leaving
unaltered the fit to the quasi-elastic data. The effect of Jastrow correlations
goes just in that direction, since it decreases the central density (see Fig.8)
leaving unchanged the momentum distributions in the region of small single-
particle momentum measured in quasi-elastic processes (see Fig.13).
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FIG.20. Charge form factor of *C (full line) calculated with parameters which fit the (e,e'p) reaction

(as ~1.2 fm, a,~1.8 fm). The dashed line corresponds to the best IPM (ag =ap =1.64 fm). (Experimental
data from Ref. [}i2].)

Indeed, an at least qualitative, coherent interpretation of both processes
has been achieved [27,57]. Before drawing any conclusion from this result,
more and better experimental data are needed, in order to see how system-
atic is the trend of the state-dependence effect and to have more precise
determination of the parameters of the wave-functions,

Ag for the reaction mechanism, it seems rather unlikely, because of
the high energies both in the entrance and exist channels, that adding some
non-direct or multi-step contributions, or treating distortion effects in a
more sophisticated way, will change the character of the reaction®, There
is, however, one side of the reaction mechanism that has been so far over-
looked and which does deserve some attention [58-61]. We mean the com-
plete neglect of the effects of the finite life-time of the deep hole state,
created by knocking out the strongly bound protons, As a matter of fact,
the time corresponding to a width of ~20 MeV is almost the same as is

® Numerical results of Ref.[56] show that at energies of the outgoing proton higher than ~ 40 MeV,
resonant processes are negligible. As for the distortion, the mentioned (p, 2p) experiments [44] do not show,
unlike the case when distortion is present, any filling in of the zero of the 1p momentum distributions.
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FIG.21. -Angular distribution of the '*C(e,e’p)''B reaction calculated with parameters which fit the

charge form factor shown in Fig.20 (adapted from Ref.[51]),

needed for a 100 MeV proton to traverse an intermediate nucleus and it
could happen that the proton is still inside the nucleus when it decays [58].
Thus one is faced with the difficult problem of calculating continuum wave
functions of a decaying strong resonant state, There are no reasons to
think that the finite life-time will not affect the angular distributions [59].
Therefore, before drawing final conclusions on the values of the nuclear
model parameters, one has to estimate the effect of *he width of the hole
state on the momentum distributions. A first attempt has been presented in
Refs [59, 60], where the overlap integral (Eq. 38) has been approximated by
the solution of the Schr8dinger equation for a hole moving in a complex po-
tential, whose real part binds the hole in the shell-model potential and the
complex part determines its ''absorption", i.e. the decay width of the state.
Although an approach of this kind is only an approximation of the real situa-
tion, it will still help to estimate the size of the effect., The dependence of
the momentum distributions on the shape of the imaginary well has been in-
vestigated in Ref,[60]. The results for 180 show that for realistic shape,
i.e. proportional to the density of the 1p particles?, negligible effects are
obtained (~3%). On the other hand, extreme situations of absorption, either
on the surface or in the centre, give a 10% decrease of the width of the 1s
momentum distributions, If these results were a good approximation of the
real situation, we should conclude that the d1fflcu1ty in explaining in a uni-
fied way elastic and quasi-elastic scattering on 2C cannot be ascribed to

® Such a shape is called “realistic” because it is believed [33] that the decay of the hlghly excited
state is due to the filling in of 1s-hole by a 1p-particle.
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the effect of the finite life~-time, since (see Fig.21) they disagree more than
10% in the s shell and a strong disagreement is also present in the p-shell,
where no problems of finite life-time exist. In heavier nuclei, however, the
effect was found to be more sizeable, which casts a doubt on the validity and
the meaning of the usual identification of the single-particle energies found
in many-body calculations, with the separation energies measured in quasi-
elastic experiments [58,61]., It has already been pointed out that the separa-
tion energies are actually an averaging over several final states, so that
their comparison with the solution of the Hartree-Fock equations is not

very direct, If finite-life-time effects are going to modify the usual descrip-
tion of quasi-elastic processes, that comparison becomes even meaningless,

5. SUMMARY AND CONCLUSIONS

The most recent results on electron scattering at high energy and mo-
mentum transfers and the attempts to interpret them from the point of view
of nuclear structure have been reviewed. From this analysis the usefulness
of elastic scattering in checking different nuclear models (in particular, their
predictions for the high-momentum components) and the possibilities offered
by coincidence quasi-elastic scattering in directly measuring the proton
separation energies and momentum distributions came out. If we consider
the enormous quantity of information resulting from inelastic scattering
to discrete levels [3, 4], we clearly see the potentiality of high-~energy elec-
tron scattering in probing nuclear structure,

The theoretical attempts to interpret recent data on the form factors
of light nuclei have already provided interesting results, namely some in-
dications on short-range correlations and the failure of the available nuclear
models to reproduce the high-momentum transfer region. Whether or not
the successful Jastrow model will be confirmed by other experimental and
theoretical facts or whether new Hartree-Fock wave-functions will be found
which explain equally well the experimental data, useful information on the
structure of nuclei will be obtained in any case. .

The interpretation of the first experimental results on quasi-elastic
(e, e'p) reaction on 12C has also led to a remarkable result: the apparent
contradiction in explaining coherently this experiment and elastic scattering,
A possible solution to this puzzle has been given; its correctness will be
checked by new and better experimental data. From the theoretical pointof
view, much work remains to be done in order to understand better the role
played by the decay width of the deep hole state and the connection of its
separation energy with the single-particle energies calculated theoretically,
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Abstract

THEORY OF EFFECTIVE INTERACTIONS.

The paper concentrates on the many-body perturbation theory approach to the theory of effective
interactions. The emphasis is on the relative importance of various effects rather than on agreement with
experiment.

The riecessity for using effective operators in many-particle systems
arises from the suppression of available degrees. of freedom, When the
number of degrees of freedom of a system becomes unmanageably large,
it is necessary to abstract those which are most important for the process
of interest, and to absorb the effect of those ignored in a 'renormalization"
of the operators acting on the system. Physics abounds with examples of
this procedure. For example, mesonic degrees of freedom are suppressed
in nuclear physics, leading to the appearance of inter-nucleon potentials
and effective electromagnetic interactions (anomalous magnetic moments).
Similarly, elementary treatments of electron motion in metals ignore the
lattice degrees of freedom and compensate by the introduction of effective
inertial parameters (effective mass). Even within the more obvious limita-
tions, such as the exclusion of explicit mesons from non-relativistic nuclear
systems, the number of particles whose degrees of freedom are retained
is frequently too large to handle, and models must be constructed in which
only a few degrees of freedom are excited. This evidently applies to the
nuclear collective model, where collective coordinates are introduced at
the expense of unknown parameters characterizing the effective interplay
of these coordinates (mass and stiffness parameters); and to the nuclear
shell model, where only a few particles are free to change their state,
again at the cost of unknown parameters (effective interactions and
moments). The task of microscopic nuclear theory is to determine the
effective parameters, the range of applicability and the significant correc-
tions of nuclear models in terms of the phenomenological nucleon properties
and interactions obtained by ignoring mesonic degrees of freedom. Ata
yet more fundamental level, the aim is to construct these phenomenological
parameters from the mutual interactions of the elementary particles, a
program which is still in its infancy and will not be touched upon further
here.

The shell model, with residual interactions, could be regarded as the
first step in the construction of a microscopic theory. The prototype model’
operator is the effective interaction between a small number of active
nucleons in a limited space of single-particle states. The dramatic success
of the phenomenological shell model confirms the existence of two-body
effective-interaction matrix elements which fit observed nuclear spectra
[1]. Microscopic calculations must derive this effective interaction from
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the observed nucleon-nucleon interaction [2], as abstracted from nucleon-
nucleon scattering data and the bound-state properties of the two-nucleon
system, ’

Among the various approaches to this fundamental problem are the
following:

(i) Jastrow correlations [3] — This is a variational method, in which
the many-particle wave-function is approximated by a shell-model wave-
function multiplied by a factor which introduces two-body correlations.

The correlation factor is determined by minimizing the expectation value

of the Hamiltonian with this wave-function, Effective operators are defined
by (¥ | @ | ¥ >=(8| 0.5 | >, where ¥ is the correlated ard & the un-
correlated wave-function, In practice, cluster expansions are used and
truncated after a few terms. This method has the strengths and weaknesses
of variational calculations, as well as some approximations of its own to
make calculations tractable. Its connection with perturbation theory is a
subject of current investigation.

(ii) Unitary operators [4] — Like the Jastrow method, this one modifies
the wave-function, using ¥ =eif &, with Hermitian F (though the hermiticity
must be relaxed for hard-core potentials). Operators are modified by
© - eiFT peif | In practice, F is limited to two-body operators, variational
methods are used, and the calculations (but not necessarily the results)
are similar to the Jastrow ones.

(iii) Green's functions [5] — Perhaps the most powerful approach, it is
very useful for obtaining very general formal results. Practical applications
have been limited to a few selected areas of nuclear physics (random phase
approximation, in particular) and once perturbation techniques are intro-
duced, the method very closely resembles the pure perturbation theory
approach to be detailed below.

This paper will concentrate on the many-body perturbation theory
approach, which has the advantages that it is well understood, has, in
principle, no ad-hoc elements, is formulated in pictorial and intuitively
appealing form, and has been applied in very extensive calculations!, The
basic formalism may be derived by time-independent methods (mainly
Brandow [6]) or by time-dependent methods (Johnson and Baranger [7]),
and has been frequently discussed in the literature, at other courses and
in the earlier lectures of this course.

Many-body perturbation theory: A brief but clear derivation of the
fundamental equation is obtained by following Ldwdin [8]. The eigenvalues
and eigenstates of a given Hamiltonian H=H,+V can be obtained by
diagonalizing the (generally infinite) matrix of H in the basis defined by
the complete set of eigenstates of Hy. The space spanned by these eigen-
states may be split into two by dividing the eigenstates of H, into two sets,
labelled 1 and 2. Then the secular equation for H can be written

(Hu H12> <.<I>1> -E <‘I’1>
Ho; Hgp/ \ @y D)

L Many calculations have been performed of finite-nucleus reaction matrices and effective interactions.
Since the emphasis in this paper is on the relative importance of various effects, rather than on agreement
with experiment, almost all numerical results are quoted from the work of the lecturer and his cdllabora_-'
tors, This should not be construed as implying special merit to these results, nor any disparagement of the

work of others. Apologies are extended to all who feel that some particular efforts have been slighted or
ignored. No denigration was intended.
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]
in an obvious notation, where the H;; are matrices and the &; columns.
Writing this out in full, :

Hy; 2, +H;p®g =E®,
Hy @, +H 2, =E0,

The second equation is solved for &,, which is substituted into the first
equation, to obtain

By = - (Hog- E) ' Hy @,
[Hyp - Hip(Hgy -E)T Hy - E] 8 =0

The result resembles an eigenvalue equation in the space 1 alone, where
the eigenvalue is a true eigenvalue of H and the eigenstate is the ‘projection
onto space 1 of a true eigenstate of H. The effective Hamiltonian in the
space 1 is g =H,, - Hy,(Hyy - By} Hyy, which is explicitly dependent on
the eigenvalue E, and contains in the second term the effect of the neglected
degrees of freedom, those of space 2, It may be written et’(l) =Hy+%(E),
where the effective interaction ¥ (E)=V-VQ (Hy +Q VQ - E)'1 Q V, the
projection operator Q projecting onto the space 2. It is easy to show that
¥(E) satisfies the integral equation

Q
Hy-E

CYE)=V-V ¥ (E)

using the fact that Hy and Q commute.

The above.derivation has produced an effective Hamiltonian which,
acting only in the space 1, produces correct eigenvalues and (projections of)
correct eigenfunctions of H. It is thus precisely the kind of renormalized
operator desired, involving implicitly the degrees of freedom (space 2)
which have been suppressed. The energy-dependence of ¥(E) is important.
It has the consequence that the eigenvectors ®;(E) and @1 (E'), for E} E!,
are not orthogonal — they are projections on space 1 of mutually orthogonal
eigenvectors, but orthogonality is generally not preserved under projection.
Consider the eigenvalue equation [Hy +%(E()-E]&; =0. If space 1 is
n-dimensional, this equation has n real eigenvalues E (E;) for every E,,
with n corresponding mutually orthogonal eigenvectors, since #(E;) is
hermitian for fixed E,. However, for an arbitrary E;, none of these
eigenvalues is likely to satisfy [Hy +%(E)- E] #; =0. The solutions of this
equation are given by the intercepts of the line E =E( with the multivalued
function E (Ey). Since the intercepts will generally fall at different values
of Eg, the corresponding eigenvectors need not be orthogonal?,

The solution of the equation [Hy +%#°(E)- E] &; =0, with

- Q
‘)"(E)—V-VHO 5
equation., The iteration expansion is equivalent to the Brillouin-Wigner
perturbation expansion, to which it reduces for a one-dimensional space 1,

¥ (E), is equivalent to the solution of the Schrbddinger

2 The function E(E) is called the bracketing function by Ltwdin [8]. He shows that under certain
general conditions E, and E(E,) bracket a solution of the secular equation [Hy+9(E} -E] & =0. )
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B2 0

FIG.1. An effective interaction diagram with five valence particles. The two disconnected portions on
the right constitute "core parts”,

Although the degrees of freedom of space 2 have been absorbed in the
effective operator ¥'(E), thus truncating the space in which the effective
Hamiltonian acts, this has not yet produced the shell model — the inert
core has not been explicitly achieved. This was done by Bloch and
Horowitz [9], and rederived in the present formulation by Brandow [6],
as follows,

The space 1 is defined in terms of the eigenstates of Hy. Choosing
H, to be the shell-model Hamiltonian H = 5 (T; +U;), where T is the

1
kinetic energy operator and U the shell-model potential for an individual
nucleon, define space 1 to be that space spanned by the set of shell-model
states with a fully-occupied doubly-closed-shell core plus a number v of
"valence' particles in a few valence orbits outside the core. Examples
are: 80 — space 1 a closed 180 core plus two neutrons in the 1s-0d shell;
66Zn — space 1 a closed 56Ni core plus two protons and eight neutrons in
the 1p-0fg/y-0gq/y shell; or 116Sn— space 1 a closed !®8n core plus
sixteen neutrons in the 2s-1d-0gq/5-0Oh;1/o shell 3, A diagram representa-
tion is used for the perturbation expansion, with the vacuum being the
closed core, and lines representing particles outside the core (upgoing lines)
or holes in the core (downgoing lines). (Note that the formalism could
also be applied to a space 1 of closed core plus v valence holes or closed
core plus v; valence particles and vy valence holes.) The interaction V
is denoted by a black dot, the single-particle potential U by a cross. The
operator Q ensures that no intermediate state in the diagram will be in
space 1, that is, will have only v valence particles. Every diagram has
v valence lines entering the diagram from the bottom and leaving it at the
top. Among the diagrams obtained are some in which sequences of inter-
actions occur only in the core, with no connection to the valence lines
(see Fig.1). These "core parts' can be factorized, summed by a geo-
metric series formula and added to the energy denominators, which have
the form )¢ (particles) — ), e (holes) +E, - E, where € are the shell-model
single-particle energies and E, is the shell-model energy 2 € of the core.
After factorizing the core parts, the energy denominators become
2 e(particles) — ) e (holes) — E,, where E, =E-E; and E, is the meas-
ured energy of the core, considered as a separate physical system (e.g.
160, 56Ni or 1008n (!) in the examples above)., This follows because the

3 The definition of closed shells could be much less restrictive. and need not pay too much attention
to real physical shell-breaking. The aim is simply to obtain a well-defined tractable space 1. For instance,
1168n could have a closed 14Sn core plus two neutrons in the 2s-1d, /2-0hu /2 Shell.
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FIG.2. Example of a five-valence-line folded diagram. On the left, the diagram before folding has an
intermediate state of five valence particles (circled), which is forbidden. The diagram is folded on the

dotted lines, and the diagram on the right is one of the possible results. (Others will differ in the relative
order of interactjons originally above and originally below the folds.) Note the downgoing valence lines.

sum of the core parts is just the Goldstone expansion for the energy shift
Eo - E; of a non-degenerate system. At the same time, since some dia-
grams will have only core parts, ¥(E})=E,; - E,+¥,(E,) where¥ (E,) is
the sum of diagrams with no core parts unlinked from the valence lines

and with E, energy denominators. The secular equation can then be written
[Howy t75(Ey) -Ey]18;, =0, where Hy(,) ignores the core, i.e.

Hyy @1 = €; ®,. This is the Bloch-Horowitz equation [9), which refers
i=1

to a limited1 number of valence particles in a few active orbitals outside an

inert core, Except for the energy-dependence of %, (E,), this is a shell-

model equation.

Brandow [6] proceeded to eliminate the energy-dependence of ¥, (Ey)
by introducing a new kind of diagram, the "folded' diagram. These are
obtained by drawing diagrams with intermediate states which violate the
prohibition of Q, and then folding the diagram horizontally, as one would
fold a long strip of paper, on the interaction immediately preceding and
following the forbidden intermediate state (see Fig. 2). In the resulting
folded diagram, the following rules hold: (i) the top interaction of the
folded diagram must be the top interaction of the unfolded diagram; (ii) all
relative orders of interactions on the two sides of the fold must be allowed,
provided no Q-forbidden intermediate states arise; (iii) particle or hole
lines which bend around the fold without interacting may be straightened
out; (iv) any number of folds is permitted, but only one for each
Q-forbidden intermediate state; (v) valence lines reversing direction
because of the fold have the sign of their single-particle energy reversed
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FIG.8. A five-valence-line partially linked diagtam. There are no core parts, but the valence lines fall
into three independently interacting groups,

in energy denominators; (vi) each fold introduces a minus sign., (For
detailed rules, see Brandow [6], Revs. Mod. Phys.) In addition to eliminat-
ing the energy-dependence of ¥ (E ), the folded diagrams also eliminate
partially linked diagrams, where subsets of valence lines interact with one
another and the core but not with the other subsets of valence lines, so that
the diagram separates into independent parts (see Fig.3). Brandow calls
the folded diagram expansion totally linked.

Folded diagrams arise in the time-dependent perturbation theory of
Johnson and Baranger [8], where they are introduced to convert retarded
effective interactions into instantaneous ones. They are also hidden in
perturbation expansions of Green's functions [10]. That they are ''real"
diagrams and play a definite physical role can be demonstrated by the
following simple examples?.

(1) Consider a simple two-particle system having only two eigenstates
of H;. The spaces 1 and 2 are one-dimensional, each containing one of the
H, eigenstates. The operator Q excludes the state 1 as an intermediate
state. The Schrddinger equation is

(5"t
Vo1 Voo te-E

with eigenvalues Ejg =% [Vy; +Vyy +ex v/ (V11 - Vog - €)° +4 [ Vpy |2' In
the limit of no coupling (Vy; =0), E; =V;; and E5=Vy, +e, and it is assumed
that E; < E,. To lowest order in the coupling,

2 2 .
E1=V11‘—|hl—'+ =V - ‘V12L_ | Vi |2 Vi

Vgpte-Vy; 7777 Vop te (Vgg +e)2  "°°°°

The perturbation expansion contains the diagrams of Fig.4a, which contri-
bute to the effective interaction an amount

v~ VizVe1 | Vig Voo Vau -v Vi *

11° e-E  (e-®m)Z 't 1TV, +e-E

4 Both of these arguments arose in the course of discussions with Prof, L. Zamick.
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FIG.4. Diagrams contributing to the effective interaction in a two-level, no-core model. (a) is the set of
all non-folded diagrams, (b) a particular subset of once-folded diagrams.

The Bloch-Horowitz equation becomes E = Vu' - | Vig |2-(V22 te- E)'l, which
is just the Schrédinger secular equation in another form. However, with
energy-independent denominators (e - E —» e), the sum of this diagram
series is just E=Vq; - | Vg |2 (Vgg +e)-1, which is not even correct to lowest
order in Vip. Including the once-folded diagrams of Fig.4b, the sum of
the perturbation series ig increased by

VeV Vi L 2VipVaoVo1 Vi 3V Vs Vo1 Vi + = Vi P Vi
? 3 T (et V)

e e e4

which is the next term in the expansion of the correct result. More compli-
cated once-folded diagrams produce higher powers of Vip, while twice-
folded diagrams contribute terms of order zero, one and two in V;;. All
folded diagrams are required to get the exact result.

(ii) If the single-particle potential U in H, is changed by some constant
amount C (a shift in the zero of single-particle energy), the single-particle
wave-functions are unchanged, but every € becomes €' =e +C. In addition,
there occur single-particle potential insertions C on every line in every
diagram. For each intermediate state in a diagram, all possible
C-insertions produce a multinomial geometric¢ series which can be summed
to all orders. The effect is simply to add C to each €' (hole) and to subtract
C from each e'(particle), restoring the energy denominator to its old form,
except for €' (ingoing valence) (see below), since C-insertions on ingoing
valence lines produce Q-forbidden diagrams. This indicates that the folded
diagrams can save the day. Indeed, the use of C-insertions on folded
valence lines is just what is needed to restore all energy denominators to
the form without C. This is clearly necessary — a shift in the zero of the
arbitrary single-particle potential U should not affect the expansion. .

After including folded diagrams, the pertfurbation expansion is complete-
1y linked and the energy denominators are of the form e {upgoing) —

D € (downgoing)— 2} € (ingoing valence). The expansion contains diagrams
in which all but one of the valence lines are spectators, only the remaining
valence line experiencing any interactions (see Fig.5). The spectator
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FIG.5. A five-valence-line diagram belonging to the single-particle energy shift. Four of the valence
lines are simply spectators,

lines do not enter the analytic expression at all, since they cancel out of
all energy denominators and enter no interaction matrix elements. Thus
the set of diagrams in which one particular valence line is,the only one to
interact define the effective interaction for a space 1 of the form ''closed
shells plus the specific valence line considered', a one- d1men51ona1 space
in practice. The sum of this set of diagrams is just El - Eo - € (valence),
where Eo is again the measured physical core energy and ﬁl is the
measured physical energy of that state of the system core-plus-one-particle
having the quanturm numbers of the valence line considered. This is the
experimental single-particle energy (not weighted with spectroscopic
factors) relative to the core, The elimination of energy-dependent de-
nominators is essential for this identification.

The final form of the fundamental equation is

(Z} [E, (valence) - Eg] + ¥, - Ev> 8, =0

This looks just like a shell-model equation, except that %;, defined by the
totally linked perturbation series, is not Hermitian, .- The effective
Hamiltonian has real eigenvalues E, but non-orthogonal eigenfunctions &,.
It cannot be Hermitian, and the non-hermiticity must come from % . In
fact, it comes from the folded diagrams. In general, Hermitian conjugation
of a diagram produces the inverted diagram, with the particle and hole lines
not changing direction (see Fig.6). The perturbation expansion defines a
Hermitian operator if every diagram occurs togethér with its upside-down
partner., Because of the ''top-interaction'’ rule (i) for folded diagrams,
there are no upside-down partners for folded diagrams., (Warning: There
occur ordinary unfolded diagrams which look exactly like every folded
diagram, except that the downgoing folded valence lines of the folded dia-
gram are real downgoing hole lines in the non-folded diagram. Such non-
folded diagrams do have upside-down partners.) Johnson and Baranger [7]
show how to arrange that the energy-independent effective interaction be
Hermitian, while Brandow [6] has demonstrated a transformation to a
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FIG.6. Examples of Hermitian conjugation of diagrams. The first diagram is Hermitian; the next two-
are Hermitian conjugates of one another, The last two are Hermitian conjugates of one another if the
circled line is a hole line. The folded diagram in which the circled line is a downgoing valence line has
no Hermitian conjugate in the expansion.

Hermitian effective operator. Both of these methods lose the identification
of the eigenfunction with the projection on space 1 of the true eigenfunction,
but this is not so important, since perturbation expansions are available
for the true eigenfunction and for matrix elements of any operator between
true eigenfunctions. In practice, the non-hermiticity of ¥, is found to be
small, in low orders, so numerical work has concentrated on the
non-hermitian ¥, .

Structure of the perturbation expansion: The folded diagram perturba-
tion expansion for the effective interaction has counterpart expansions for
the true wave-function of the many-body system and for the matrix elements,
between eigenfunctions of the total Hamiltonian H, of any operator [6, 7].
Provided antisymmetrized states & are used (in practice, antisymmetrized
matrix elements of V and factors & for equivalent pairsS), the Pauli
principle is properly taken into account, This is generally achieved by
deriving the diagram expansion in the notation of second quantization,
However, the totally linked folded expansion contains many terms which
appear explicitly to violate the Pauli principle. Since antisymmetrization
has been properly handled, every such Pauli-violating diagram must have
in the expansion a partner which is also Pauli-violating and which cancels
it identically, Many of these compensating diagrams turn out to be unlinked
or partially linked. They have thus already been taken into account in the
partial summations leading to the totally linked form. The diagrams they
compensate must thus be included in the evaluation of %, — the Pauli
principle is respected only if all Pauli-violating terms are included in the
totally linked expansion!

It should be noted that, even when V is at most a two-body operator,

%, may contain effective three-, four- or many-body parts. As an effec-
tive operator in the valence space, ¥, contains parts which cannot be
broken up into parts involving only two bodies in the valence space, as

soon as the number of valence particles exceeds 2. Since it is known that
the phenomenological shell model requires only two-body effective forces

to fit spectra, it is to be expected that these many-body parts will either

be small, or will somehow average out to appear like two-body interactions,

5 Equivalent pairs are pairs of lines that start at the same interaction, end at the same interaction and
go in the same direction [6] .
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That these many-body forces may be significant is indicated by fits to
spectra which include them explicitly [11] and by the fact that the two-body
matrix elements which fit spectra are generally not the same as those that
fit relative binding energies. In the particular case of the calcium isotopes,
Bertsch [12] has traced this difference to effective three-body forces
arising from diagrams that compensate Pauli violations.

In principle, for sufficiently weak forces V, the totally linked folded
expansion is sufficient to calculate %, . But the phenomenological nucleon-
nucleon potentials obtained from scattering data are so strong that a simple
perturbation approach is unlikely to converge. This problem is hopefully
overcome by '"Bruecknerizing'' the expansion — all ladders of V's on
particle lines are summed® to produce Brueckner reaction matrices
G=v-v(q/e)G, which are finite even for singular potentials v. The so-
called Pauli operator g here restricts the intermediate two-body states to
be particle states, and is not the same as the Bloch-Horowitz operator Q.
Many methods are now available for computing G-matrix elements, some
of which are surveyed in Baranger's excellent review [14].

Although it does take care of singular potentials v, the G-matrix intro-
duces problems of its own. Those relevant to the present context are the .
following:

(i) ""Up-ladders'' — Since G sums ladders of v's, the resulting G-matrix
expansion should contain no ladders of G's between particle lines. How-
ever, some of the approximate methods of treating the Pauli operator q
in the evaluation of G are specifically designed to handle high-lying inter-
mediate states. There has been some discussion of whether these methods
do not leave out some of the contributions of the low-lying intermediate
states to the ladder. This would make it necessary to include G- matrix
ladders with low-lying intermediate states. Although this problem can be,
and is, avoided by proper calculation of G, it appears that even the
approximate methods do include the low-lying states satisfactorily [15],
so that '"up-ladders'' of G-matrices should be omitted.

(ii) Off-energy-shell effects — The value of the G-matrix depends on
the excitation energy of the system in the neighbouring intermediate state.
Most G-matrices should thus be evaluated off the energy shell — at non-
zero excitation energy. The factorization technique [6, 16, 18] used so
extensively in eliminating unlinked and partially linked diagrams (generalized
time ordering) is particularly valuable in that it allows many apparently
off-energy-shell G-matrices to be evaluated on the energy shell, For
example, all G-matrices between two hole lines can be put on the energy
shell. Unfortunately, not all G-matrices can be treated in this way, and
this feature should be taken into account. In addition, when folded dia-
grams are not introduced, so that the energy-dependence remains in the
denominators, every G-matrix element is a function of the energy. eigen-
value sought, which could severely complicate calculations. More recent
methods of computing G, allowing for a dependence on the starting energy,
make it possible to handle these complications, but they have been uni-
versally ignored in practice, so far. This is not as bad a procedure as it
might appear to be — because of effect (iii) below, the distance off the
energy shell is usually quite small.

& An excellent introduction to Brueckner theory is the review article by Day [13].
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(iiil) High-energy intermediate states — In evaluating perturbation
theory diagrams, practical limitations of time, complexity and computer
capacity require that only low-lying intermediate states be included in
the calculation. This can be justified by noting that high-energy inter-
mediate states can be reached only through the action of the very strong,
short-ranged part of the nucleon-nucleon interaction. The range of this
interaction is characterized by the hard-core radius ¢~ 0.5 fm. Since
nucleons at normal nuclear densities have an average separation of the
order of 2ry ~ 2 fm, the ratio of the ''strong interaction volume' to the
"occupation volume' of a nucleon is (¢/ry® ~1/8. Relative to the strong
short-range part of v, nuclei are low-density systems, and cluster
methods are appropriate — since the close approach of two nucleons is of
low probability, that of three is even less probable, and so on. The two-
body cluster is taken into account exactly by the use of the G-matrix.

The three- and four-body clusters have been computed in nuclear matter
[17] and found to be much less important than G. It is thus expected that
three- and more-body clusters should be negligible in computing effective
interactions — insofar as the high-energy intermediate states are concerned.
For low-lying states, where longer-range interactions of much less
strength are active, the cluster approach is not appropriate, but simple
perturbation theory, order by order in G, may well be satisfactory.

Hence only low-lying ‘intermediate states are included in the perturbation
theory calculations, -

(iv) Different q's — In calculating %, , the interaction between two
valence particles alone is commonly taken to be G, the core remaining
inert. However, in this case some of the intermediate states permitted
by q are forbidden by the Bloch-Horowitz operator Q, namely states with
only valence particles outside the core. Either q must be redefined, for
this particular case only, to be consistent with Q, or the G-matrix must
be corrected by the standard integral equation [16] G=G, +G, (q, -q) €™ G,
where the.subscript a means approximate, Once again, this requirement
has been neglected in practice. Although the effect of this error has not
been investigated numerically, it should be quite small, because the bulk
of G comes from high-energy states, where the effects of Q and q are the
same in this case.

(v) Single-particle potentials — The question of the cho1ce of the
"correct' single-particle potential has been discussed at great length
[18,19]. Many criteria, involving different types of self-consistency,
have been suggested for the shell-model potential, all of them reducing in
lowest order to Hartree-Fock. It should be noted that other single-particle
potentials and energies can be defined, - and need not be the same as, or
even similar to, the shell-model potential. The off-energy-shell proper-
ties of the perturbation expansion complicate the choice of potential
considerably, and are responsible for the present favoured definition —
Hartree-Fock (with G replacing v) for holes, no potential for particles.
The second part of the definition follows from the small three-body
correlations, and is thus most appropriate for the high-lying particle
states. The particle states near the Fermi surface should feel some
potential, perhaps Hartree-Fock averaged over off-energy-shell excitation.
This definition leads to a finite-depth potential [20], in which the continuum
wave-functions are determined completely by the bound-state wave-functions.
In practice, harmonic-oscillator wave-functions are used for all the states
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FIG.7. Fimst- and second-order contributions to the effective interaction for five valence particles outside
a core. The first, the only first-order diagram, is a simple G-matrix, The next two are lowest-order core
polarization and "deformed-state” contributions. The fourth diagram introduces three-body effective forces,
while the last four give some self-consistency corrections — their sum vanishes (by pairs) for a self-consistent
single-particle potential.

included in the folded diagram expansion, while continuum states are ap-
proximated by plane waves in some calculations of G. It should be observed
that the single-particle wave-functions could be approximated, e.g. by
harmonic oscillators, without approximating the single-particle energies.
Even if the latter are taken as harmonic oscillator energies, as is fre-
quently done, they need not have the same oscillator energy hw as the
single-particle wave-functions. This freedom has been little used in
practice. It is important that this discussion does not affect the single-
particle energies to be used in diagonalizing Hy +%, — as shown above,

these must be the experimental energies of the closed-shell-plus-one-nucleon
nuclei, while the single-particle energies in the energy denominators should
generally not be the experimental energies. The choice of single-particle
potential by some self-consistency criterion implies that all single-particle
potential insertions cancel all insertions of a particular kind in all dia-
grams. When the single-particle energies and wave-functions are chosen
for convenience, some check should be made on how close they come to
self-consistency and how much the lack of cancellation of insertions contri-

" butes to % . This is usually not done,

Identification of important renormalization effects: The simplest
approach is to apply the perturbation theory order by order in G. The
lowest order term is just G-itself. In second order, there are a number
of terms (see Fig.7), including core polarization, ''deformed' states,
three-body forces and self-consistency corrections., Since most efiort
to date has been concentrated on two-body effective forces, the three-body
diagrams have not been investigated in detail. In the same way, deviations
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" TABLE'I. LOWEST-ORDER CORE-POLARIZATION MATRIX ELEMENTS
COMPARED WITH G-MATRIX ELEMENTS

All entries are in MeV. The matrix elements considered are

(0ds/2)2| G(I=0, T=1)| (0dssg)2> for 180 [27],

{(Ofq7/2)2| G(J=0, T=1)| (0fq/2)2 > for 42Ca [22] and

{(1pgp)2|G(I=0, T=1)|(0fy),)2 > for S8Ni[22]

180 2Ca 58Ni
G . -1.236 -0.869 -0,56
Core polarization -0.785 -0.938 -0.70

from self-consistency have generally been ignored. However, considerable
attention has been paid to the other terms, which will now be taken one by
one for further discussion.

(i) Core polarization — The importance of this effect was first indicated
by Bertsch and confirmed by the pioneering calculation of Kuo and Brown
[21]. The diagram describes an excitation of the inert core by interaction
with a valence nucleon, the excitation then decaying by interaction with the
second valence nucleon. In this way, the two valence nucleons 'communi-
cate'' by way of the core, giving rise to an effective valence-nucleon inter-
action (through virtual excitation of the suppressed degrees of freedom of
the core) which could well be of much longer range than the "bare'
G-matrix interaction. The particular excitation of the core involved is a
particle-hole excitation, corresponding to a density fluctuation, or vibra-
tion, of the core. The term 'core polarization' will here be restricted to
such vibrational excitations of the core. The importance of these excita-
tions is well-known experimentally, from the occurrence of excited states
in the spectrum of the closed-shell nucleus at surprisingly low (or sur-
prisingly high) energies, with very large transition strengths. Well-known
examples are the octupole vibrations (3-, T =0) and giant dipole states
(1, T=1), Thus it is perhaps not surprising that core polarization, even
in lowest order in perturbation theory, gives rise to strong effects in the
effective interaction. These effects have been observed throughout the
periodic table [22]7, and include a dramatic lowering of the ground-state
energy and an increase in the energy of high-spin excited states — both
improving agreement with experiment (see Table I and Fig. 8).

However, the very identification of the physical mechanism (vibration
of the core) responsible for core polarization raises questions about the
validity of the calculation. It is well-known that the properties of vibra-
tional excitations.in closed-shell nuclei cannot be adequately explained by
a simple particle-hole shell-model excitation. Both energies and transition
strengths disagree greatly with experiment unless some residual inter-
action between the particle and the hole is introduced. This is done by
diagonalizing the particle-hole interaction (TDA method) or by allowing
for the presence of zero-point vibrations (ground-state correlations) in

7 Kuo has collaborated with many wotkers in extensively applying the Kuo-Brown techniques, and
many others have made similar calculations. An exhaustive list of references has not been given, but just
a few representative examples.
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FIG.8. Effect of lowest-order core polarization on nuclear spectra. For 58Ni the ground-state is set arbitrarily
at zero MeV, For.#2Ca:4Sc, the energy of the ground-state is significant. The effect of core polarization,
compared to the simple G -matrix result, is dramatic for T=1, considerably less so for T=0. (See also

Figs 16a and 16b.)

the core before diagonalizing (RPA method). Both of these improvements
lead to better agreement between theory and experiment, but neither is
taken into account in the simple second-order core polarization diagram.
The correction of this defect requires the introduction of selected higher-
order diagrams, '

To maintain the identification of the effect under consideration as core
polarization, it must consist of the excitation of a core vibration by a
valence nucleon, followed by the 'propagation' of the core vibration
independently of the valence nucleons, followed finally by de-excitation of
the core vibration by a different valence nucleon. (De-excitation by the
same valence nucleon which excited it contributes to the single-particle
energy of the nucleon and is already taken into account by the use of
experimental single-particle energies.) The TDA and RPA modifications
then involve a better ireatment of the propagation of the vibration?8,

If the propagating particle-hole pair are allowed to interact with one
another any number of times, a sequence of diagrams of increasing order
in G is generated (see Fig.9), which can be summed by a geometric series
formula. The effect is to replace the propagator [Hy (p-h)]"'l by
[Ho(p-h)+V (p-h)]!, which is clearly equivalent to TDA. So core polari-
zation can be treated in TDA by summing a suitable set of diagrams?®.

The results are predictable [23] — an enhancement of the core polarization
effect in the effective interaction (see Table V and Figs 16(a) and 16(b)).

It is very interesting to consider in this context the contribution to this
effect of the different vibrations JPT of the core (see Fig.17). These do

¢ The numerical results quoted from this point.on generally have the following features and approxi-
mations in common. The prototype system is 160 +two particles, i.e. 180 and !8F. Single-parricle wave-
functions and energies are those of 2 harmonic oscillator with =14 MeV, Hamada-Johnston G~matrix
elements were very kindly supplied by Dr. T.T.S. Kuo. Only lowest~energy excitations are included, and
all energy denominators are multiples of fw. All G-matrices are on the energy shell and no self-consistency
corrections are included.

9 All G-matrices in all V(p-h)’s should be, but are not in this calculation, off the energy shell
by 2tw.



IAEA -SMR-8/17 271

F1G.9. Diagrams summed in extending the core polarization to include particle-hole interactions in the
core. The number n of particle-hole bubbles is summed to all orders. Each order differs from the preceding
one by a factor -Vp.n/AEp-h, where Vp.p is the particle-hole interaction and A Ep-h the particle-hole

excitation energy.

FIG.10. Effect of ground-state correlations on core polarization. The basic correlation vertex, at left,
corresponds to spontaneous excitation of two paricle-hole pairs from the core, and can always be put on
the energy shell, Such excitations make possible core polarization contributions like that on the right,
which must be summed to all orders.

not interfere with one another, because of the conservation of angular
momentum, parity and isospin in each interaction, but propagate inde-
pendently, The multipole analysis of second-order core polarization
indicates that even-J multipoles play a dominant role, particularly the
2*0 vibration, which is equivalent to a quadrupole-quadrupole effective
interaction. In going to TDA, most multipoles are quite unaffected, the
exceptions being just those which are generally regarded as being
collective — the 070 and the 2*0. This tends to reinforce the 1dent1f1ca-
tion of core polarization with core vibrations.

It now becomes interesting to see what RPA would do.. This can also
be achieved by summing diagrams, by allowing for ground-state correla-
tions in the core (see Fig.10). Once again, this can be done by summing
geometric series. Factorization plays a vital role in allowing each
TDA -like sequence. to be summed independently. The identification of the
summed series with the use of RPA vibrations in the core can again be
confirmed algebraically, though it is somewhat more complicated than the
TDA case [23]. In somewhat schematic form, the propagator of the
vibration becomes [Ho(p-h)+V(p-h)-B[Hy(p-h)+V(p-h)+E]"TB]1,
where B is the usual ground-state correlation vertex of the RPA and E is
the RPA eigenvalue for the vibration. The effect on the core polarization
is dramatic [23, 24] (see Table V and Figs 16a, 16b and 17). The 0*0
and 2*0 vibrations are very strongly enhanced, the former by an order
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of magnitude over the second-order result, and although the other multi-
poles are unaffected the resulting core polarization is much too strong.
The suppression of the ground-state energy results in a mismatch with
experiment of almost 3 MeV and the pattern of the spectrum is radically
changed. There must clearly be other effects which counteract the
explosive tendencies of the RPA. This need arises also in the treatment
of vibrational excitations of closed-shell nuclei, where the RPA is too
strong and even leads to instabilities (the 0*0 excitation goes below the
ground state [25]).

(il) "Deformed' states — The second-order term with two particles
excited out of the core, leaving two holes, introduces a four-particle-two-
hole (4p-2h) intermediate state. Such states have been identified with
deformed states in several calculations [26], and have been found to play
an important role in explaining observed spectra. They might thus be
expected to be of some importance in obtaining the effective interaction.
In fact, the second-order 4p-2h diagram is quite important, though con-
siderably smaller than the core polarization term. It affects mainly 0*1
and 1*0 states, depressing the ground-state energy (see Table II). Since
deformation is a collective effect, it might be expected that the effect of
the 4p-2h states could also be enhanced by suitable summation of higher-
order diagrams. Although very little has yet been done in this direction,
preliminary indications are that there is no strong build-up of ''deformed'
contributions analogous to that for the core polarization.

(iii) Higher-order terms — The use of perturbation theory always
involves some anxiety concerning the convergence of the expansion, and
this anxiety is considerably greater than usual in the present case because
of the strong enhancements found in the RPA treatment of the core polariza-
tion term. Again the simplest path to follow is - to compare the total third-
order contribution with the total second-order contribution, in the hope that
the former will be much smaller than the latter. Such a result would give
some hope that the perturbation series converges, or is at least a useful
asymptotic series. However, it is not at all as easy to carry out this
proposal as it is to make it. There are a tremendous number of third-
order diagrams, even when attention is confined to two-body diagrams.
This number is greatly reduced by again ignoring the absence of self-
consistency and by limiting consideration to diagrams with only the lowest-
energy intermediate states. Even then there remain sixteen distinct third-
order diagrams, so that some care is needed in evaluating the results of
the calculation.

Stated baldly, the results are that the total third-order contribution is
comparable with the total second-order contribution [27], that it is

TABLE II. LOWEST EIGENVALUES FOR 180 (T =1) AND 18F (T =0)
WITH G ALONE COMPARED WITH G PLUS LOWEST-ORDER
"DEFORMED'" CONTRIBUTION. ALL ENERGIES ARE IN MeV

j=0, T=1" J=1, T=0

G -2.271 -3.973

G + "deformed" -2.575 -4,258
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TABLE III. FEATURES OF THE THIRD-ORDER PERTURBATION
THEORY CALCULATION [27]. THE MATRIX ELEMENTS, IN MeV ARE
{(0d,9)%| %, (320, T=1)|(0d,,)2> FOR 0

G -3.025
Total second order -0.7217
Total third order . 1.109
Second order core polarization -0.581
"Large" third order terms 1.161
First number-conserving set ' 0.242
Second number-conserving set 0,284

frequently even larger than second-order, and that it is opposite in sign —
repulsive, while second order is attractive (see Table III). This is clearly
a blow to expectations of rapid convergence, and a more detailed investiga-
tion of third order is warranted.

Of the sixteen third-order diagrams, eight fall into number -conserving
sets [27, 28]. These are sets of diagrams related by a type of Ward's
identity, as pointed out by Brandow, who predicted that such sets would
tend to cancel in effective interaction calculations. They are grouped
together because they correspond to diagrams in the expansion for the
single-particle density of the system which must be kept together if the
total number of particles is to be conserved in each order of perturbation
theory. The numerical calculations confirm that, -although not all indi-
vidual diagrams are small, the sum of the contributions of all diagrams in
any number-conserving set is small compared to G (see Table IlI), These
sets include folded diagrams, which enter for the first time in third
order. The folded diagrams play a role in the cancellation of the number-
conserving sets. They also make the effective interaction slightly
non-Hermitian, ’

Of the eight remaining third-order diagrams, six are themselves
individually small (though the second-order TDA diagram is quite sizeable),

" but the remaining two are comparable in size but opposite in sign to the
second-order diagrams (see Fig.11:and Table III). These are clearly the
ones responsible for the apparent divergence 'of the perturbation series.
Careful study of the structure of these large third-order terms led to the
identification of a suggestive classification of diagrams, according to
their degree of 'slashability' {27]. A diagram is not slashable (called
zero-slashable) if it cannot be separated into two parts by cutting one
internal particle line and one internal hole line, It is once slashable if it
can be so separated into two zero-slashable parts. An n-slashable dia-
gram can be successively divided, by cutting internal particle-hole lines,
into (n+1) zero-slashable parts (see Fig.12). It is observed that the set
of zero-slashable diagrams appears to converge rapidly order by order
in G, -and that the