
Lectures presented 
at a Seminar , 
Trieste, 

6 -31 October 1964, 
organized by the 

International 
Centre 
for 

Theoretical Physics I 

1 
T 

Contributions by: 

U.Ascoli-Bartoli , R.Balescu, J .E.Drummond, W . E . D r u m m o n d . J.W.Dungey 

S.F.Ed wards, G.Francis , H.P.Furth, M.S. Ioffe. J.D.Jukes, B.B.Kadomtsev, 

M.Kruskal . C.Obcrman. H.E.Petschek, M.N.Rosenbiuth, R.Z.Sagdeev. 

A .Simon. J.B.Taylor. W . B . T h o m p s o n , S.K.Trehan. M.Vui i iemin 

Directors: 
B.B.Kadomtsev. M.N.Rosenbiuth , W.B.Thompson 





PLASMA PHYSICS 



The following States are Members of the International Atomic Energy Agency: 

AFGHANISTAN FEDERAL REPUBLIC OF NIGERIA 
ALBANIA GERMANY NORWAY 
ALGERIA GABON PAKISTAN 
ARGENTINA GHANA PARAGUAY 
AUSTRALIA GREECE PERU 
AUSTRIA GUATEMALA PHILIPPINES 
BELGIUM HAITI POLAND 
BOLIVIA HOLY SEE PORTUGAL 
BRAZIL HONDURAS ROMANIA 
BULGARIA HUNGARY SAUDI ARABIA 
BURMA ICELAND SENEGAL 
BYELORUSSIAN SOVIET INDIA SOUTH AFRICA 

SOCIALIST REPUBLIC INDONESIA SPAIN 
CAMBODIA IRAN SUDAN 
CAMEROON IRAQ SWEDEN 
CANADA ISRAEL SWITZERLAND 
CEYLON ITALY SYRIA 
CHILE IVORY COAST THAILAND 
CHINA JAPAN TUNISIA 
COLOMBIA REPUBLIC OF KOREA TURKEY 
CONGO, DEMOCRATIC KUWAIT UKRAINIAN SOVIET SOCIALIST 

REPUBLIC OF LEBANON REPUBLIC 
COSTA RICA LIBERIA UNION OF SOVIET SOCIALIST 
CUBA LIBYA REPUBLICS 
CZECHOSLOVAK SOCIALIST LUXEMBOURG UNITED ARAB REPUBLIC 

REPUBLIC MADAGASCAR UNITED KINGDOM OF GREAT 
DENMARK MALI BRITAIN AND NORTHERN 
DOMINICAN REPUBLIC MEXICO IRELAND 
ECUADOR MONACO UNITED STATES OF AMERICA 
EL SALVADOR MOROCCO URUGUAY 
ETHIOPIA NETHERLANDS VENEZUELA 
FINLAND NEW ZEALAND VIET-NAM 
FRANCE NICARAGUA YUGOSLAVIA 

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the 
IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The 
Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge 
the contribution of atomic energy to peace, health and prosperity throughout the world". 

Printed by the IAEA in Austria 
June 1965 



PLASMA PHYSICS 

LECTURES PRESENTED A T THE SEMINAR ON 
P L A S M A PHYSICS ORGANIZED BY AND HELD AT THE 

INTERNATIONAL CENTRE FOR 
THEORETICAL PHYSICS, TRIESTE 

FROM 5 - 31 OCTOBER 1964 

Contributions by: 

U. ASCOLI -BARTOLI , R. BALESCU, J . E . DRUMMOND, 
W . E . DRUMMOND, J . W . DUNGEY, S . F . EDWARDS, 

G. FRANCIS, H . P . FURTH, M . S . IOFFE, J . D . JUKES, 
B . B . KADOMTSEV, M. KRUSKAL, C. OBERMAN, 

H . E . PETSCHEK, M . N . ROSENBLUTH, 
R . Z . SAGDEEV, A . SIMON, J . B . TAYLOR, 

W. B. THOMPSON, S. K. TREHAN, M. VUILLEMIN 

DIRECTORS: B . B . KADOMTSEV, M . N . ROSENBLUTH 
W . B . THOMPSON 

INTERNATIONAL ATOMIC ENERGY AGENCY 
VIENNA, 1965 



International A t o m i c Energy A g e n c y . International 
Centre f o r T h e o r e t i c a l P h y s i c s , T r i e s t e . 

Seminar on P l a s m a P h y s i c s , o rgan ized by and 
held at the Centre , 5 - 31 O c t . 1964. Vienna, the 
A g e n c y , 1965. 

649 pp. 

533. 9 

PLASMA PHYSICS, IAEA, VIENNA, 1965 
S T I / P U B / 8 9 



FOREWORD 

The International Seminar on P lasma Phys i cs held in T r i e s t e during 
5 - 3 1 October 1964 was the f irst major activity of the International Atomic 
Energy Agency ' s new International Centre f o r Theoret i ca l Phys i c s . In 
bringing together plasma physicists belonging to three distinct schools , the 
Amer ican , West European and the Soviet schoo ls , the Seminar provided a 
unique opportunity f o r extended contacts between phys i c i s ts in this f ie ld . 
It is hoped that thes.e Proceedings will be of permanent value in the literature 
of the subject. 



EDITORIAL NOTE 

The papers incorporated in this volume published by the International 
Atomic Energy Agency are edited by the Agency's editorial staff to the extent 
considered necessary for the reader's assistance. The views expressed and 
the general style adopted remain, however, the responsibility of the named 
authors or participants. 

For the sake of speed of publication the present book has been printed 
by composition typing and photo-offset lithography. Within the limitations 
imposed by this method, every effort has been made to maintain a high edi-
torial standard; in particular, the units and symbols employed are to the 
fullest practicable extent those standardized or recommended by the compe-
tent international scientific bodies. 

The affiliations of authors are those given at the time of nomination. 
The use in this book of particular designations of countries or terri-

tories does not imply any judgment by the Agency as to the legal status of 
such countries or territories, of their authorities and institutions or of the 
delimitation of their boundaries. 

The mention of specific companies or of their products or brand-names 
does not imply any endorsement or recommendation on the part of the Intel— 
national Atomic Energy Agency. 
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INTRODUCTION 

In an attempt to be true to the principles upon which the International 
Atomic Energy Agency ' s new International Centre f or Theoret ical Phys ics 
at Trieste is founded, the Seminar programme was ambitiously designed to 
se rve three purposes : (a) to introduce the subject to students, pr imar i ly 
from developing countries, who, while scientifically skilled, lacked previous 
specialized experience in plasma physics; (b) to introduce young researchers 
in this field to the paramount problems and the techniques proposed for their 
solution; and (c) to provide an opportunity for colloquy among the experts. 

To meet these needs, the first part of this material is primarily didactic 
and attempts to give the reader an adequate introduction to bas i c p lasma 
phys i cs . This sect ion includes an introduction to the bas i c concepts and 
fundamental p rocesses in a plasma^ the theory of plasma waves both in the 
m a c r o s c o p i c , o r magnetohydrodynamic (MHD) approximation, and in the 
m o r e fundamental, se l f - cons is tent Vlasov approximation, and a detailed 
description of the motion of a charged particle in an electromagnetic f ie ld. 
With this as a basis, the theory of plasma equilibrium and stability is formu-
lated. Several lectures are devoted to experimental and observational aspects 
of laboratory and astrophysical plasmas. The topics of synchrotron radiation 
and bremsstrahlung, and MHD flow are treated. 

The rest of the material is concerned principally with two topics of out-
standing interest, a recently discovered class of highly stabilizing magnetic 
f ield configurations and the subject of turbulence in p lasmas . The latter 
includes such topics as the quasi- l inear theory of weakly turbulent systems 
and its application to enhanced diffusion and to coll isionless shock structure, 
the kinetic theory of weakly unstable systems, as well as a novel approach 
to the problem of fully developed turbulence. 

In addition, there are d iscuss ions on the generalizations of ideal ized 
descriptions of the plasma, including the effects of dissipation and of velocity-
space iristabilities. 

It is hoped that this work will serve its intended purpose, providing a 
rapid, but fairly comprehensive introduction to the«field of plasma theory, as 
well as exposing some of the important and unsolved problems and the tech-
niques developed in attempting their solution. 

INTRODUCTION 

Le programme ambitieux de ces semaines d'études était fidèle à l 'esprit 
qui a présidé à la création du nouveau Centre international de physique théo-
rique de l 'Agence internationale de l ' énergie atomique à Trieste , puisqu'il 
visait les trois objecti fs suivants: a) initier à la physique des plasmas les 
étudiants venus principalement des pays en voie de développement e+ qui, 
tout en possédant les bases scienti f iques nécessa i res , étaient dépourvues 
d'expérience spécialisée dans ce domaine; b) présenter les problèmes fonda-
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mentaux aux jeunes chercheurs et leur décrire les méthodes proposées pour 
leurs solutions; c) fournir l ' o ccas ion d'échanges de vue entre spécialistes. 

A ces fins, la première partie du présent ouvrage est essentiellement 
didactique et a pour objet d'initier le lecteur à la physique fondamentale des 
plasmas. Elle expose succinctement les notions sur les concepts fondamen-
taux et les p r o c e s s u s essentie ls qui interviennent dans un plasma, sur la 
théorie des ondes du plasma selon l 'approximation macroscopique, ou mag-
nétohydrodynamique (MHD), et l 'approximation plus cohérente et plus fonda-
mentale encore de Vlassov, et donne une description détaillée du mouvement 
d'une particule chargée dans un champ magnétique. En prenant ces notions 
pour base, on formule la théorie de l 'équil ibre et de la stabilité du plasma. 
Plus ieurs chapitres sont c o n s a c r é s aux expér iences et aux observat ions 
fondées sur les plasmas de laboratoire et les plasmas astrophysiques. On 
expose ensuite la théorie du rayonnement de synchrotron, du rayonnement 
de freinage et du flux MHD. 

Le reste de l 'ouvrage est consacré principalement à deux sujets d ' in-
térêt capital : une catégor ie r é cemment découverte de conf igurations de 
champs magnétiques qui ont un fort effet stabilisateur, et la turbulence dans 
le plasma. Ce dernier sujet englobe la théorie quasi linéaire des systèmes 
faiblement turbulents et son application à la diffusion accrue et à la structure 
de choc sans collision, la théorie cinétique des systèmes faiblement instables 
et une nouvelle manière d'aborder le problème de la turbulence complètement 
développée. 

En outre, on trouvera une étude critique des généralisations des des-
criptions idéalisées du plasma, notamment sur les effets de la dissipation et 
des instabilités v i tesse -espace . 

On espère que cet ouvrage répondra à ses fins, car i l o f fre une intro-
duction succincte mais assez complète à la théorie des plasmas, et en ex -
pose certains des problèmes les plus importants non encore résolus ainsi 
que les méthodes imaginées pour tenter de leur t rouver une solution. 

ВВЕДЕНИЕ 

В соблюдение принципов, на которых был создан Международный центр 
теоретической физики Агентства в Триесте , программа семинара была 
построена таким образом, чтобы служить трем целям: а) довести предмет 
до студентов главным образом из развивающихся стран, которые, хотя 
и имеют научную подготовку, испытывают недостаток в специальном опыте 
по физике плазмы; б) ввести молодых исследователей в эту область боль-
ших проблем и способов их решения; и в) предоставить возможность про-
вести коллоквиум среди экспертов. 

Вследствие этого первая часть настоящего материала является глав-
ным образом дидактической и представляет собой попытку ввести чита-
теля в курс вопросов по основам физики плазмы. Этот раздел включает 
введение в основные концепции и фундаментальные процессы по плазме, 
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теории волн плазмы как в макроскопическом или магнитогидродинамичес-
ком приближении, так и в наиболее фундаментальном, самосогласующемся 
приближении Власова, а также детальное описание движения заряженных 
частиц в электромагнитном поле. На основе этого формулируется теория 
равновесия плазмы и стабильности. Несколько лекций посвящено экспери-
ментальным и обзорным аспектам лаборатории и астрофизических плазм. 
Трактуются вопросы синхротронной радиации и тормозного излучения и 
потока М Г Д . 

Остальной материал касается главным образом двух вопросов, пред-
ставляющих наибольший интерес , а именно — недавно открытого класса 
магнитного поля, обладающего высокостабилизованной конфигурацией,и 
турбулентности в плазме. Последний включает такие вопросы, как квази-
линейная теория слабо турбулентных систем и ее применение к усиленной 
диффузии и к ударным структурам, не имеющим коллизий, кинетической 
теории слегка нестабильных систем., а также новый подход к проблеме пол-
ностью развитой турбулентности. 

Кроме т о г о , помещены дискуссии по вопросам обобщения идеальных 
описаний плазмы, в том числе эффектов диссипации и неустойчивостей за 
счет скоростей и пространственного распределения. 

Выражается надежда, что данная работа послужит намеченным целям, 
обеспечив наиболее полную информацию по введению в область теории плаз-
мы, а также укажет на некоторые наиболее важные проблемы, а также на 
методы, разрабатываемые с целью их решения. 

INTRODUCCION 

El extenso programa del Seminario correspondía fielmente a los princi-
pios que rigieron la fundación del nuevo Centro Internacional de Fís ica Teórica 
de Trieste, del Organismo Internacional de Energía Atómica, ya que sus tres 
principales objetivos eran los siguientes: a) iniciar en la f ís ica del plasma 
a estudiantes, principalmente de países en desarrol lo , que habían recibido 
una buena f o rmac ión c ient í f i ca p e r o que carec ían de conoc imientos e s p e -
cial izados en esta materia; b) exponer los problemas fundamentales de la 
f í s i ca del plasma a los jóvenes investigadores y descr ib i r l es los métodos 
propuestos para reso lver los ; y c) dar a los especialistas la oportunidad de 
cambiar impresiones . 

La pr imera parte de esta obra es esencialmente didáctica y su finalidad 
es iniciar al lector en los fundamentos de la f ís ica del plasma. Expone bre -
vemente nociones sobre los conceptos básicos y los procesos fundamentales 
que se producen en un plasma, sobre la teoría de las ondas del plasma según 
la aproximación macroscóp ica o magnetohidrodinámica (MHD), y la aproxi-
mación aún más coherente y fundamental de Vlasov, y descr ibe detallada-
mente el movimiento de una partícula cargada en un campo magnético. Ba-
sándose en esas nociones se formula la teoría del equilibrio y de la estabili-
dad del plasma. Varios capítulos están dedicados a las experiencias y a las 
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observaciones fundadas en los plasmas de laboratorio y en los plasmas as -
tro f ís i cos . A continuación se expone la teoría de la radiación sincrotrónica, 
de la de frenado y del flujo MHD. 

El resto de la obra trata principalmente de dos temas de interés excep-
cional: una nueva clase de configuraciones de campos magnéticos con efectos 
estabilizadores muy pronunciados, descubierta recientemente, y la turbulen-
cia en el plasma. Este último tema engloba la teoría cuasilineal de los s i s -
temas de poca turbulencia y su aplicación a la difusión incrementada y a la 
estructura de choque sin co l is iones , la teoría cinética de sistemas de poca 
inestabilidad, y una nueva manera de abordar el problema de la turbulencia 
totalmente desarrol lada. 

También se hace un análisis de las generalizaciones de las descripciones 
idealizadas del plasma, y muy especialmente de los efectos de la disipación 
y de las inestabilidades veloc idad-espacio . 

Se confía eh que la obra resulte de gran utilidad, pues constituye una 
introducción breve pero bastante completa a la teor ía de los p lasmas , de 
la cual se exponen algunos de los problemas más importantes que están aún 
sin r e s o l v e r , as í c o m o los métodos ideados para tratar de so luc ionar los . 
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INTRODUCTION TO PLASMA PHYSICS 

W.B. THOMPSON 
DEPARTMENT OF THEORETICAL PHYSICS 

CLARENDON LABORATORY 
OXFORD UNIVERSITY, ENGLAND 

I. DEFINITION 

1. Plasma physics 

Study of the property of matter so highly ionized that the dynamical b e -
haviour of f ree charges dominates its behaviour usually r e f e r s to c lass ica l 
p lasmas , in which ionization is due to high temperature and low density, 
and where partic les behave c lass ical ly , although the study of quantum p las -
mas in sol ids (metals , semi -conductors ) is also important. In charac te r -
ist ic p lasma sys tems ionization may often be assumed comple te , so that 
inelastic co l l i s i ons are unimportant. 

II. RANGE OF APPLICATION 

1. Natural plasmas 

Ionized gases are found naturally throughout most of the universe except 
on the surface of cold planets, such as the earth. Ionization, however, b e -
gins in the upper l a y e r s of the earth 's atmosphere where ionization p r o -
duced by so lar radiation was f i rs t detected by its e f f e c t s on radio t r a n s -
m i s s i o n and has since been intensively studied — this is the i onosphere . 
Above the ionosphere is a layer of diffuse ionized gas which can be studied 
through its e f fec ts on the earth 's magnetic f ie ld , a study which has been 
supplemented by direct investigation by rocket and satellite fl ights. In the 
magnetosphere , satell ite and rocket observat ions have revealed belts of 
high-energy part ic les (the van Allen belts) trapped in the earth 's magnetic 
f ie ld . 

Beyond the earth 's environment, which might best be defined by the 
geometry of the magnetic f ield, satellite observations have conf irmed what 
had been inferred from the occurrence of the aurora, that streams of plasma 
f r o m the sun are impinging upon the magnetosphere . What was perhaps 
l e s s expected is the presence of a small (10" 4 -10-5 Gauss) magnetic f ie ld 
in interplanetary space, a field with s m a l l - s c a l e variations which require 
a current carry ing p lasma stretching between the sun and the earth. On 
the sun itself temperatures are so high that throughout most of its volume 
matter is complete ly ionized, the m a j o r exception being the photosphere , 
where the principal constituent, hydrogen, has recombined . On the other 
hand, l ow- f requency e lectromagnetic interactions are unimportant except 
in sun-spots of magnetically active regions. Magnetic interactions appear 
to be responsible for solar f lares of prominence — vast storms on the sun's 
surface — and determine many of the propert ies of the di f fuse hot corona . 
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8 W.B.THOMPSON 

Magnetic f ields have been detected on certain stars, but it is f rom radio 
astronomica l observat ions that plasma behaviour has been revealed on a 
wide scale in the universe. Many strong radio sources have spectra char -
acter ist ics , not of atomic transitions, but of magnetic bremsstrahlung, the 
radiation emitted by energetic electrons moving in a magnetic f ield.* Such 
radiation appears to c o m e f r o m interste l lar reg ions in our galaxy, f r o m 
neighbouring galaxies. It also c o m e s strongly f rom gaseous nebulae which 
represent the residue of supernovae explosions, and finally, most strongly 
of all , f r o m those remarkable and m y s t e r i o u s ob j e c t s , the quas i - s te l lar 
radio s o u r c e s . 

2. Technological plasmas 

P l a s m a physics is c lear ly essential f o r anything other than the most 
parochial understanding of nature, and must be central to any study of natural 
philosophy. Does it, on the other hand have any re levance to applied 
sc ience? Here we must confess that promise has not yet been matched by 
fulfillment and that most of the spectacular applications seem to l ie in the 
future. 

Present applications of ionized gases depend simply on the fact that, 
when ionized, the gas will conduct electricity, and that ionization is produced 
rapidly once a cr i t i ca l e lec tr i c field is exceeded. Major applications are 
in lighting where coll isions between atoms and electrons provide an efficient 
method of converting e lectr ical energy into light, in switching and voltage 
stabilization, where the breakdown of a gas when a critical field is exceeded 
is important, and in rectifying alternating current which depends on the same 
phenomenon. 

One possible application of the character ist ic dynamical propert ies of 
p lasma is in the d irect convers ion of kinetic into e lec t r i ca l energy. This 
possibi l ity ar i ses , since an attempt to f o r c e a_movmgconductor through a 
magnetic f ield g ives r i se to an e lec tr i c f ield E = - v X B / c , and if suitable 
contacts are provided this is capable of driving a current. If the conductor 
takes the f o rm of a long wire wound on an armature, this is the familiar dy-
namo, but if it is a hot partially-ionized gas or flame flowing between electrodes, 
it is a magnetohydrodynamic generator which, in principle, should extract 
power f rom a high-temperature gas, hence at high thermodynamic efficiency. 

Much research has gone into devices intended to exploit this principle, 
experimental devices using shock tubes have shown high ef f ic iency, and g e n e r -
ators producing large powers f o r short per iods (a few minutes) have been 
developed. 

A second poss ib l e application i s in the prov i s i on of dr ive f o r i n t e r -
planetary vehic les . Once c lear of the earth's atmosphere the f o r ce needed 
to propel a vehicle through space becomes small, but the ultimate attainable 
ve loc i ty increases only logarithmical ly with the amount of propellant e jected, 
but l inearly with its ve loc i ty of expulsion. Since chemica l ve l o c i t i e s are 
limited it seems practical to think of acquiring energy f rom the sun and a c -

* This radiation forms a continuum and most important is polarized with its electric vector- per-
pendicular to the magnetic field. 
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celerating the propellant to high velocities by electromagnetic forces . This 
makes sense only if the energy of ejection greatly exceeds the energy r e -
quired to ionize the fluid. None the less , the advantage of high ejection v e -
locity (specif ic impulse) seems to outweigh these difficulties and much study 
of plasma propulsion systems has been made. There is no doubt that speci -
fic impulse in the correct range can be fairly easily reached in plasma de -
v i ces , but questions of weight, e f f ic iency and above all, reliability, must 
be answered before any such device is flown. 

Finally, the most spectacular and important application of plasma 
physics , and a major stimulus to its study, is the possibi l i ty of the c o n -
trolled release of thermonuclear energy in a magnetically confined deuterium 
plasma. It seems, in principle, possible to confine a plasma by inducing 
currents in it, and allowing these currents to interact with a magnetic field 
in such a way that a pressure gradient is balanced by a gradient in magnetic 
energy, and the plasma is confined. When so confined by a non-material 
wall, the plasma can be heated by induced currents, and since the only m e -
chanism for heat loss is radiation, which is inefficient f r om a transparent, 
fully ionized gas, the gas can be expected to reach temperatures of the order 
of 10 7°K. At such high temperatures the energy of inter-particle collisions 
is sufficient to overcome the Coulomb barr ier so that a significant nuclear 
reaction rate can be expected. At low energies the D-D reactions are exo -
thermic and, if conditions are right, there may be a net energy gain. A 
thermonuclear reactor would differ significantly f rom most energy sources, 
since the energy circulating through the reactor is comparable to the energy 
produced, and such a device is a power source only if l o s ses of the c i r c u -
lating energy can be held down and the device operated at high ef f ic iency. 

III. BASIC PROPERTIES OF PLASMA AND METHODS OF INVESTIGATION 

1. Electrical properties of plasma 

(a) Screening 

Since a plasma contains f ree charges one expects it to act as a c o n -
ductor and screen electr ic f ie lds f r om its interior . Consider the plasma 
as two inter-penetrating gases of ions and electrons, and think of their equi-
librium in a potential ç . 

For electrons, 

Vp_ = kTVn. = ( n e ) . Ê = - n |e|Ê = n| e| V(p. (1) 
F o r ions, 

Vp+ = kTVn+ = (ne ) + E = -neV<p (2) 

for singly charged ions. Hence, the electron and the ion densities are given 
by the Boltzmann distribution law: 

n . = n 0 e x p e<p/kT ( 3 ) 
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and 

n+= n 0 exp-е<р/kT . (4) 

The potential is determined by Poisson1 s equation 

V2<p = -47rq = -47r(n+e+ - n.e. ) 

= 4тг nQe[exp(eip/kT) - exp(-ecp/kT)] (5) 
or 

V2<pe/kT = (8 7rnQe2/kT) sinh (e^>/kT) = kg sinh(e<p/kT) (6) 

where 

ко = 8тгп0е2/кТ . (7) 

For small e<p/kT 

e<p/kT к2 sinh e<p/kT = k2e<p/kT (8) 

and for a point source Ze, the solution of Eq.(6) is given by 

Ze -knt 
c p - ~ e 0 . ( 9 ) 

If r » Ze2/kT charge is screened in distance of order X0= (кТ/8яп0е2)* where 
Xo= 740(W/n)i is the Debye screening length, W = temperature (in eV), n = 
density (in cm - 3 ). 

(b) Langmuir Probe 

Suppose a cold probe, i. e. an absorbing plate, is immersed in plasma, 
then ions and electrons will recombine on it. If there are no electric fields 
and the plasma is uncharged, n + = n. then a net current will flow to the plate 
given by 

If the plate draws no current, it must sit at some negative potential -Vq with 
respect to the neutral plasma. All ions entering a region of thickness ~Xo 
about the plate will reach it, and if the plate width is much greater than 
Xo, the current density due to ions is = n+(kT/27rm+)í Electrons must be held 
back by the potential and their density at the probe reduced to give the same 
flux as the ions, i. e . , 

j . = ne(kT/27rm_)* exp(-eV0 /kT) (11) 
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Therefore , we must have 

е х р ( - е У 0 / к Т ) = ( - ^ У or V0 = \ ^ log ^ . (12) 

This means that in a narrow region X0 about the plate, there is a strong 
electric field, к 0V0 such that E2/8ÎT = nQkT log2(m+ /m.) in which there moves 
a stream of ions to the w a l l . 

If now the potential of the wall is altered f rom -VQ , a current will be 
drawn of density 

j = - п е ( к Т / 2 т г т . ) * [exp ( eV /kT) - exp ( - e V 0 / k T ) ] 

= пе(кТ/2тгт_)* exp (eV0 /kT) [ 1 - exp ДУ/кТ ]; (13) 

hence log (1 - j / j s ) = e Д У / к Т , and the slope of a semi - l ogar i thmic plot of 
the current drawn versus the applied voltage yields the electron tempera-
ture T . This semi- logarithmic plot will be straight only until all particles 
striking the wall are col lected, when j = js and the current saturates. The 
saturation current gives an estimate of the electron density n. 

(c) Plasma conductivity 

If the plasma is not in thermal equilibrium, the two component gases 
may move with respect to one another, and a current will flow. The simplest 
case occurs if the field is uniform and steady, for then the relative velocity 
is determined by the collisional interchange of momentum between the two 
species: 

nm.v (v. - v + ) = (ne) .E, 
—> —» > 

j = ne .v + + ne + v+ = ( n e ) . ( v . - v + ) 

= « L g = u 2 Ê . ( i 4 ) 

nm.v ia_v 4îr v P 

Here, ¡/ i s a coll ision frequency for momentum interchange 

v =ncr0v_ = n a 0 ( k T _ / m _ ) i , (15) 
where cr0 is the effective momentum transfer c ross - sec t i on . Hence if the 
important col l is ions are between electrons and ions 

e2 , * -
j = — — I k T / m _ ) * E . ( 1 6 ) 

m - ° o 

Thus in a fully ionized plasma the conductivity is (to a fair approximation) 
a function of temperature alone. In a slightly ionized gas where coll isions 
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are between electrons and neutrals this is not true, j - (n_e^/nQO"Q)(kT_/m 
is a function of the fractional ionization (n_/n0). The quantity up, cj2 =(4ine2/m) 
is the Langmuir plasma frequency. vp = up /2 it- 8920 nl . 

(d) High frequency response of plasma 

Consider the response of a plasma to a field varying slowly in space, 
but rapidly in time, and suppose the temporal variation to be sinusoidal, 
and the fields small, then the motion of electrons is given by -» » 

9v — •* nm-r— :=-Vp +(ne) E + nm i / ( v . - v ) . (17) dt ~ " - + -
—> 

If v+ and the pressure gradient may be neglected, we obtain 

(ico + i/)nev. = (ne 2 /m)Ê, (18) 

where w is the frequency of variation of the electric field. We thus obtain 
for the current density 

j = —~— —— E ; (19) 
J ш - iv m 

and from this, the polarization of the plasma 

P = Д - = ( 2 0 ) 

i u m u (w - НУ ) 

Writing D = E + 4ÎTP = eE, we obtain for the dielectric constant 
e = l - • . • ( 2 1 ) (J (w - I V ) 

If the frequency u « v , the plasma is resistive, with a conductivity given 
by the d . c . value, but if the frequency is high, u » v , the plasma is reactive 
and 

By considering the behaviour of a plane parallel capacitor of area A, and 
plate separation L, for which dV/dt = 47rLI/Ae, we see that the resistivity 
and reactivity are - I m e/uee* and Re e / u e e * respectively . T o study 
wave propagation, start f rom Maxwell 's equations 

and 
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VXE 1 ЭВ 
с at (24) 

Assuming the space-time dependence of all quantities to be of the f o rm 
exp i(ut + lc • r) , we obtain 

ik X В = — + — Ê 
с с 

(25) 

and 

ikXE = - — В . 
с 

(26) 

From these equations one readily obtains: 

4 7 T Í U - » (к - к k- )E 5 E = 5- i = — » . , , 
v ' c 2 c 2 J с ( 1 — I I / j w) 

E (27) 

For a solution и and к must satisfy a dispersion relation. This is easily 
found by taking the scalar and vector products of Eq. (27) with к . For longi-
tudinal waves 

u2 (k-E) 

hence 

u 2 / c 2 

This leads to, if v/u)< 1, 

C2 C 2 ( L - I L / / U ) 

U p 
u ( u - i v ) 

к E = 0, i . e e = 0 

(28) 

2 2 if ы - u „ ( l + — ) and e = 0. (29) 

For transverse waves 

Гк2-
2 i> U " p 

— 2 " 1 "5 ( 1 - iv/u ) _ (kXE) = 0 (30) 

and we obtain 

с 2 ^ ^ U + i v / u ) (31) 

If i/-» 0 and и>Ыр transverse waves propagate with a phase velocity 

(32) 
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and a group velocity 

If u< Up , transverse waves are damped in a distance of order (1/k) where 

I - , 2 C a u = 1 • = 6.6X105n"^ , (34) к (u f -u^Ji u. \4тгпе2/ (4я-пг )i • v ' 
p p e 

where re = e 2 /mc 2 is the classical electron radius. This is the collisionless 
screen length. 

If w < v the usual screening formula becomes valid. If и =up the plas-
ma will sustain longitudinal oscillations; these are Langmuir's plasma os -
cillations . 

The plasma transmission characteristics, in particular the cut-off at 
io=up, provides a method of measuring electron density, and is so employed 
in the ionosonde which, by measuring the reflectivity of the ionosphere as 
a function of frequency, determines the increase of electron density with 
height. 

IV. PLASMA PRODUCTION 

1. Thermal equilibrium of ionized gases 

Using the methods of statistical mechanics, it is possible to determine 
the degree of ionization in a gas in thermal equilibrium without considering 
the details of the ionization process , simply by observing that the proba-
bility of finding a configuration in a state i, in equilibrium at temperature 
T, is proportional to 

P¡ =gj е х р - Е ; / к Т , (35) 

where Ei is the energy of the state i and gi is the statistical weight of that 
state. We can then discover the fraction of the atoms which are ionized 
by using Eq. (35) to compare the probability of an electron and an ion existing 
as an independent pair with the probability of their existing as an atom. 

The number of free particle states in the momentum range d3p and con-
figuration range d3x is given by 

dN = d 3 xd 3 p/h 3 . (36) 

To get the effective statistical weight of a free particle of any momentum 
p we write 

gi = ( exp - p2 / 2mkT)d3 p . (37) 
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Integrating over all p, we obtain the partition function for a free particle 
in a volume V 

g i = - p - J ( exp -p 2 / 2mkT)d 3 p = (2jrmkT/h2)3^V. (38) 

Now, if we neglect the small interaction potential between the free ion and 
electron, the difference in potential energy between the ion-electron pair 
and the atom is just the ionization energy eV¡ . If the effective weights as -
sociated with internal degrees of freedom for the electron, ion, and neutral 
atoms are g_, g+ and g 0 , and the ratio g.g+/go = g(T), then the ratio of the 
probability per unit volume of finding an electron and an ion to that of finding 
a neutral atom, which is equal to the ratio of the product of ion and electron 
density n+ and n. to the neutral density n0 , becomes 

n*n- / г тгт+кТ^Угтгт .кТ^УгтгтоктЛ" 3 7 2 f eV¡ , 
— I h2 ; I h2 ; v - g e x p v " ( 3 9 ) 

Since the ion and atomic masses are almost equal, we may write 

Equation (40) is a simple form of Saha's equation. If we express the tem-
perature in electron volts and number densities in c m - 3 , we may write this 
as 

= T i = 3 > 1 1 0 ü T 3 / 2 g e x p ( _ V i / T ) . ( 4 1 ) 

For example, for caesium V¡ = 3. 9 V, it is not difficult to get a reasonable 
degree of ionization by heating caesium vapour to temperatures of the order 
of 2000°K. 

2. Ionization behind shock waves 

A shock tube is a device in which two parts of a long tube are separated 
by a diaphragm. On one side of the diaphragm is a hot compressed gas, 
and on the other side a diffuse gas. When the diaphragm is broken, the com-
pressed gas expands with a speed Vj- 2c1/y1 - 1), where Cj is the sound 
speed, ef = 7ipi /p i = y i k T i / m i , у being the ratio of specific heats, mi the 
molecular weight, p i , p\ , T;i, the pressure, density and temperature in 
the compressed gas. The expanding compressed gas pushes the rarified 
gas ahead of it with a velocity close to vi, and ahead of the contact surface 
between the two gases runs a hydrodynamic discontinuity, a shock wave with 
speed v2 = (7г + l ) y i » where y2 is the ratio of specific heats in the rarified 
gas. The temperature jump across the shock is such that the thermal speed 
behind it is of the order v 2 , which is in term of order vj , hence the t em-
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perature T2 of the shocked gas is increased until T2 / T i ^ m j / m i . In fact, 
it may be shown that 

+ 1 V m a ( 4 9 , 
Т Г 2T 2 W i - i y m , ' ( 4 2 ) 

where m 2 is the molecular weight of the driver gas. If the driver gas is 
light, e. g. hydrogen, and the driven gas heavy, e . g . argon, then T 2 / T j may 
be large, e . g . - 250, and hydrogen at 1000°K would in the absence of ioni-
zation produce argon at 250 000°K, will above the ionization energy, hence 
the gas becomes fully ionized. 

3. The positive column 

If an electric current is passed through a gas confined to a tube, then 
ionization is produced in the body of the gas. The ions and electrons then 
diffuse to the walls and recombine thereon. Since the l i fet ime of the ion 
pairs is fairly short, the electrons which gain energy by falling in the e lec -
tr ic field do not have time to share energy with the heavy ions. Diffusion 
rates are then determined by the electron temperature and the ion m a s s , 
While in a Steady state the electron temperature is determined by the ioni-
zation rate. 

Consider ions and e lectrons diffusing through a neutral gas, then if 
птг/ is the momentum transfer rate, and É is the electric field in plasma, 

(nmvv). = - k T . V n . + (ne) .E (43) 

and 

(nmi/v)t = - kT+Vn+ + (ne) + E. (44) 

Since the plasma is quasi neutral, i. e. (ne).+ (ne) + - 0, we may add (43) and 
(44), and for singly charged ions n+ = n_, hence 

(nmvv).+ (nmvv] t = - k ( T . + T + ) Vn. (45) 

In most discharges ionization is produced by col l is ions between e l e c -
trons and neutrals, and if Oi is the ionization c r o s s - s e c t i o n proceeds at 
a rate given by 

00 

^ n . ^ / a U M e x p - c / k T K d ^ X(n g ,T . )n_ . (46) 
ei 

In a steady state, the equation of continuity reads 

V-nv = Xn, (47) 

and taking the divergence of (45) yields 
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X n = ц т . + т , ) y 2 n ( 4 8 ) 
(my)_ + (my)+ 

DV2n = Xn, (49) 

where D is the ambipolar diffusion coefficient. 

D = к(Т. + Т + ) / [ (тк)_ + ( т у ) + ]. (50) 

If (49) is solved subject to suitable boundary conditions, i . e . n> 0, n = 0 on 
the walls of a containing vessel , then an eigenvalue problem is posed and 
the ratio X/D determined by purely geometric conditions. The eigenvalue 
then determines the electron temperature as a function of neutral gas pres -
sure and the size and shape of the containing vessel . This is the plasma 
balance equation; physically it implies that in a steady state the electron 
temperature must have that value which will produce ions fast enough to r e -
place the diffusion loss to the walls of the containing vessel. 

V. THE MAGNETIZED PLASMA 

A plasma immersed in a magnetic field has much more complex p r o -
perties than an unmagnetized plasma, e . g . it is anisotropic and has many 
resonant frequencies. For a brief survey of these phenomena let us first 
consider the motion of particles in a uniform magnetic f ield. We have 

v = ———vXB . (51) 
m c 

Since there is no force along the magnetic field, 
—» —> 

v y = constant, v y = v - b , (52) 

where b = в / | В |. We use a subscript ^ to denote the component of a vector 
perpendicular to the field lines. Then 

Vj_= vJ_[cos(iît+ <p), sin(f2t+ç>)]. (53) 

Further integrations of Eqs.(52) and (53) give 

Xy = V||t • (54) 

and 

Xjl^'q [sin(S2t+ <p), - cos (m+<p) ] (55) 

2 
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where the constants of integration have been set equal to zero. The motion 
of the particle is a helix with radius v^/iî . 

The motion of each particle gives rise to a current loop with an a s -
sociated dipole moment 

, 2 • 
t a e v 2 1 mv i 

M = I A = — nr¿ ( 5 6 ) 

1 mv. 
2 В 

•b. (57) 

Now, if the field is effectively uniform and the density varies with position, 
there is a variation in the magnetic moment density: 

M = - | m n v i b . ( 5 8 ) 

The corresponding current density is given by 

T = V X M = | ^ X V ( | n m v ^ _ ) . ( 5 9 ) 

Therefore 

1 X B = V J _ ( - i n m v ^ ) = V j D ^ , ( 6 0 ) 

1 2 where Pj_ = 2 nmvL and V^ = V-b b• V. 

The pressure along the lines of force is given by p у = mv2 у. Thus the pres-
sure is a tensor 

P = pybb + p j _ ( l - b b ) . (61) 

The condition of equilibrium is then given by 

J X B = V - I P . ( 6 2 ) 

If now a steady electric field is applied to a plasma, the component of 
the electric field along S will accelerate particles along B. The component 
of Ë normal to S will produce a drift velocity 

Consequently E + ( v X B ) / c = 0. This drift speed is shared by both ions and 
electrons, hence, is the velocity of the plasma as a whole. The relation 
S + ( v x S ) / c = 0 which demands that the force on a charge having velocity 
v shall vanish, is that held between fields in a perfect conductor. If the 
field E varies with time, VE is not constant and contributes a term to the 
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acceleration. This term may be annihilated by a further added velocity vD 

such that 

v E = _ v D X B , (64) 

This drift velocity gives rise to a current 

2 • -> - * n m c - * 

j =EnevD= E E , ; . (66) 

The resulting polarization is given by rj c 2 -* 

Hence, for the low frequency fields directed across the magnetic field, the 
plasma has an effective dielectric constant 

+ (68) 

Thus, at low frequencies, a transverse wave propagates along the magnetic 
field with a phase velocity 

с _ / 4тгрс2У1/г 

В 2 \ 1 / 2 

If 4 я- рс2 /В2 » 1, we get 

= С А ' ( 7 0 ) 

called the Alfvén speed. These slow waves may be thought of as vibrations 
of lines of magnetic force weighted by plasma. At higher frequencies, 
the propagation of transverse waves alter but is simply understood by 
considering the equation for transverse motion: 

and 

v y = ¿ E y - í í v x . (72) 

If E = E0 exp iut, then 
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vv ± iv„ =— ., 1 (E ± iE ), У m i(u ± Q) (73) 

and the polarization 

E 
4 7гР = - u, 

P u ( u ± £2) 
(74) 

Since the two circularly polarized components induce different polarization, 
the plasma is birefringent and Faraday rotation should be expected. Taking 
into account the contributions of both the ions and electrons, the polarization 
may be written 

4 7Г P, = -LT 
1 P u(u ± M u(u ± Q+) E . (75) 

= - U P + ( - ! ) ' П.] M u t u i t - l ) 1 ^ ] E¡. (76) 

where i = +1, -1 , 0 corresponds to right, left circularly polarized waves, and 
to polarization along B . 'From this, the dielectric coefficient may be readily 
obtained as a Hermitian tensor with three independent components. Taking 
the magnetic field along Oz 

• - • ' - ^ ( • • i i . (77) 

= 1 - 2 Í 1 i m 1 

yy 1 и Р ^ ы 2 _ П 2 + M U 2 - a 2 (78) 

- • 2 ( , m_ ^ xy - e y x " ^ P ^ w U ^ - Q 2 . ) M u ( u 2 - Q \ ) J - (79) 

To discuss wave propagation, this may be used in Maxwell's equations, in 
their reduced form 

( к - к • k ) E : Г - Е . (80) 
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MACROSCOPIC THEORY OF PLASMA WAVES 

S. K . T R E H A N 

D E P A R T M E N T O F P H Y S I C S A N D A S T R O P H Y S I C S , 

U N I V E R S I T Y O F D E L H I , I N D I A 

It is of historical interest to note that the problem of plasma osc i l la -
tions was f irst considered by Lord Rayleigh in 1906 [1] in connection with 
the e lectr i ca l vibrations and the constitution of the atom. Rayleigh's 
formulation of the problem was in the following terms: "The cloud of elec-
trons may then be assimilated to a fluid whose properties, however, must 
differ in many respects f rom those with which we are most familiar. We 
suppose that the whole quantities of positive and negative charges are equal. 
The difference between them is that the positive are constrained to remain 
undisplaced while the negative are free to move. In equilibrium, the nega-
tive distributes itself with uniformity throughout the sphere occupied by the 
positive so that the total density is everywhere zero. There is then no force 
at any point; but if the negative be displaced, a force is usually called into 
existence " . 

We then use these concepts to consider the simplest case of e lectron 
oscillations in a uniform plasma neglecting in the first instance the thermal 
motions of the part ic les . The ions are assumed to f o rm a uniform fluid 
providing the neutralizing background for the electron fluid in equilibrium. 
Let N denote the electron density (which is equal to the ion density) in equi-
l ibrium. In the perturbed state let the density be denoted by N + n,where 
n / N « l . The fluctuations in the particle density satisfy the continuity equation 

Э n —> —> | 2 + N V - V = 0; (1) 

while v is given by the equation of motion 

m f f = - e É ? , (2) 

where - e and m denote the charge and mass of the electron respect ively . 
The electric field E which results due to the displacement of the particles, 
for longitudinal oscillations, is given by 

V • E = - 4 ^ en. (3) 

We thus have three equations describing the behaviour of the three unknowns 
n, v and HÍ from which two of the variables can be eliminated to obtain for 
the equation governing the density fluctuations in the plasma: 

21 
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Э2п f4jrNe2 Л о = ) n = - w í n , (4) 

where 

Up = (47rNe2/m)^, (5) 

is the so-called plasma frequency. It follows from Eq. (4) that 

n(t) = п ( 0 ) е ± ш Р £ . (6 ) 

Thus the density fluctuates sinusoidally with the characteristic frequency 
Up. The absence of space co-ordinates in Eq. (4) shows that these waves 
are non-dispersive — their group velocity vanishes — and there is no ten-
dency for a wave packet of this type to propagate through the plasma. As 
a result we can specify the phases of the electron displacement in such a 
way as to obtain a travelling wave — a wave, however, which moves con-
tinuously through a fixed region without ever progressing beyond like the 
familiar barbar pole. Values of the plasma frequency for several plasmas 
of astronomical and laboratory interest are given in Table I. For compari-
son, the free space wavelengths of electromagnetic oscillations of the same 
frequency are given and it will be noted that electron plasma oscillations 
are a high frequency phenomenon. 

1. EXPERIMENTAL EVIDENCE FOR PLASMA OSCILLATIONS 

The theory of plasma oscillations was first given by Langmuir in 1929 
who in the same paper presented experimental evidence for the occurrence 
of these oscillations in electric discharges. His measurements were made 
on a hot cathode mercury arc containing a rather complex electrode struc-
ture and designed for a survey of the possible oscillations of a plasma. In 
arc discharges, the electron density is lOU-lOi2 cm-з and the plasma f re -
quency ~ 100 Mc / s , so the high frequency signals were picked up on resonant 
Lecher wires, rectified by a crystal and detected by a galvanometer. Un-
fortunately, in the discharge used, it was not possible to make reliable 
measurements of the electron density, which had to be inferred f rom 
measurements of the gas pressure and the electric current, making use of 
a theory of the arc discharge; thus the published results while exhibiting 
oscillations in the correct range with roughly the correct relation between 
frequency and density, do not permit quantitative comparison between theory 
and experiment. 

A later series of experiments by Merr i l and Webb (1939) were per -
formed using a long mercury arc in which the electron density could 
be measured by the Langmuir probe technique. The oscillating signal was 
again detected by Lecher wires, crystal rectifier and galvanometer. Their 
results are presented in Table II. 



TABLE I 

P L A S M A FREQUENCIES (1/ = ир/2тг= 8920 N 1 / 2 ) 

Plasma 
Density 

(N) 
Plasma frequency 

M 
(sec" 1 ) 

Corresponding free space 
wavelength 

Location in the 
electromagnetic spectrum 

1. Interstellar gas 1 - 100 0. 89X10 4 - 105 3 x 1 0 s - 106 c m long wave h. f. 

2. Dense ionosphere, upper 
stellar atmosphere, tenuous 
laboratory plasma 1 0 1 0 - 1 0 " 109 - 1010 3 - 30 c m u. h. f. (j- waves 

3. Lower stellar atmosphere, 
laboratory plasma 1 0 " - 1016 1 0 " - 1 0 " 0. 03 - 0 . 3 c m ji- waves, far infra-red 

4. Dense laboratory plasma 1 0 " . - 1018 1 0 " - 1013 0. 003 - 0 . 0 3 c m infra-red 

5. Stellar interiors, metals 1022 - 1025 1015 - 1016 300 - 3000 A visible, far ultra-violet 
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TABLE И 

RESULTS OF PLASMA OSCILLATION MEASUREMENTS 

Theoretical V 

N(probe) v = 8920 N 1 / 2 measured 
(sec"1) (sec"1) 

1. 77X1010 1.2X109 1.18 x 10® 

2. 56 1.44 1.44 

3. 33 1.64 1. 50 

1.93 1.25 1.17 

3. 09 1. 58 1. 34 

2. EFFECT OF THERMAL MOTIONS 

We now consider the effect of the finite temperature of the plasma on 
the electron oscillations. We'shall assume that the electrons form a charged 
fluid obeying the basic hydrodynamical equations (cf. Réf. [2] ): 

9N -» -> ^ + V • (Nv) = 0, (7) 

Q * 1 

p + p ( v - ^ ) v = - I P + - j x ë + e Ë ? , ( 8 ) 
ОТ с 

where p = mn, j = -Nev, e = -Ne and E and В are the electromagnetic fields 
which are, of course, governed by Maxwell's equations: 

V xlS = Nev + — (9) с с 9t 

and 

с 9 t (10) 

We need not consider the divergence equation for 5 as this is now a conse-
quence of (7) and (9). The stress tensor IP in the adiabatic approximation 
is governed by the equation: 

(vIP) + IP- ^ v + (IP- ^ v ) T = 0. ( И ) 
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We use the generalized equation of state instead of the usual adiabatic r e -
lation in the theory of neutral gases: 

¿ ( P P "
,

' ) = 0 . ( 1 2 ) 

The relation (11) reduces to (12) in case the pressure tensor is i sotropic , 
i . e . it has the f o rm 

Р у = Р « ц . (13) 

with у = 5 / 3 . The reason f o r the use of relation (11) instead of (12) in a 
plasma is that usually in most of the physical plasmas that one encounters, the 
densities are rather low. Thus while there maybe some justification toàssume 
the pressure to be a scalar in the initial state one must allow for the aniso-
tropies in the pressure during the oscillations. 

The equilibrium state is taken to be characterized by 

v = 0, N, IP = p i , (14) 

where p = N0, © being the kinetic temperature of the plasma measured in 
ergs . Let the perturbed state be character ized by 

v , N + n, IP = p ' l + p i , (15) 

where v , n andpx are all considered to be small so "that terms quadratic in 
them may be neglected. The equations governing these quantities are the 
l inearized f o rms of Eqs. (7 ) - (11). These are: 

^ + N ^ • v = 0 , ( 1 6 ) 

3 v -> m N — = - V - P l - N e E , (17) 

| f P i = - p { 9 - v ) I - p + (3v ) T b (18) 

= + ( 1 9 ) С С dt 

and 

& i э ё V x E = - - — . С dt 
(20) 

Introducing i f , the Lagrangian displacement of an element of the e lectron 
fluid f r o m its equilibrium position, to a f i rst approximation we can write 
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Eqs. (16) and (18) can then be readily integrated to give 

n = - N ^ • Ç , (22) 

and 

P i = - p t f * f>ïï - + (23) 

where the constants of integration have, by definition, been set equal to zero. 
Since the coef f i c ients of the l inearized equations do not depend explicitly 
on time and space co-ordinates, one can carry out the normal mode analysis 
and,assuming the space time behaviour of all quantities to be of the f o r m 
exp i ( -ut + Ic • rO, the foregoing equations then lead to: 

u2ç = 2— k k - — k2if + — E (24) 
m m m v ' 

and 

C 2 ï x ( S x Ë) = 4 f f N e u 2 f - u 2 ^ . (25) 

For longitudinal oscillations TcXÊÎ = 0 and Eqs. (24) and (25) lead to the d is -
persion relation: 

w 2 = u 2 + 3 0 k 2 ( 2 6 ) 

p m 

while for transverse oscillations le • Ëf vanishes and we obtain 

( и 2 - c 2 k 2 ) ( u 2 - - ^ k 2 ) - u 2 u 2 = 0. (27) 4 m J P 

This equation leads to the following quadratic f or и 

u4 - u 2 ( u 2 + c 2 k 2 + — k 2 ) + — c 2 k 4 = 0. (28) * P m У m 

The roots are given by 
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u2 + c 2 k 2 + — k 2 ) ± l ( u 2 + c 2 k 2 + —k 2 
V P m / \ P m 

Г _ 4 (8 /m)c 2 k 4 1* (29) 
I [ u 2 + c 2 k 2 + 8k 2 /m] 2 J 

It is to be noted that if we neglect the temperature of the plasma, we obtain 
for transverse oscillations: 

w2 = u2 + c 2 k 2 . (30) 

If we make the plausible assumption that 

u 2 » k 2 . ® , (31) 
m 

then to the lowest significant order, we obtain for the two transverse modes 
of oscillation (distinguished by the subscripts 1 and 2): 

2 
u2 = u 2 + c 2 k 2 + к 2 - "P о (32) 1 P m w2 + c2k2 

a I l d 2 к 2 © 1 
U 2 = m 1 + (w 2 j c 2 k 2 ) • 

The root Uj corresponds to the transverse oscillation, however, the root 
u2 is incompatible with our basic approximation (31) and, therefore, must 
be discarded. 

It may be remarked here that if , instead of using the equation for the 
stress tensor,we had used the classical adiabatic relation given by Eq. (12), 
we would have obtained for longitudinal oscillations the dispersion relation 

u2 = w2 + у— k2 (34) 

instead of the relation (26). However, in a dilute plasma, as we can show 
f rom the use of the kinetic equation, i . e . a Maxwellian plasma, the real 
part of the frequency is indeed given by Eq. (26). However, an essential 
consequence of the treatment f rom the kinetic equation in the absence of 
collisions, which is not recovered on using the truncated set of moment equa-
tions devoid of collision terms, is the phenomena of Landau damping. That 
is , the kinetic equation yields for isotropic equilibria a negative imaginary 
part effectively proportional to the number of particles moving with the phase 
velocity of the wave. This number, of course , tends to be exponentially 
small since, by assumption, the mean thermal speed is much less than the 
phase velocity of the wave. 
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It must be emphasized here that the longitudinal and transverse oscilla-
tions are strictly uncoupled only in the case of a non-relativistic plasma 
and in the absence of any external magnetic fields, temperature or density 
gradients. The presence of an external magnetic field or inhomogeneities 
in plasma density and/or temperature result in the coupling of longitudinal 
and transverse modes and the behaviour of the plasmas is, in general, quite 
complex. 

3. ION OSCILLATIONS 

So far we have considered only electron plasma oscillations on the as-
sumption that these oscillations are too rapid for the heavy ions to follow, 
which implies that the ions, therefore, may be considered at rest. Another 
class of oscillations which are possible in a co l l is ion- free plasma is the 
so-cal led ion oscillations. These are so slow that electrons see them as 
quasi-static and consequently are distributed according to the Boltzmann 
distribution. During the oscillations it is appropriate to treat the ions and 
electrons as having different temperatures. We shall restrict here to the 
case of longitudinal oscillations only. 

The linearized equations of motion now are: 

3n¡ -» -> 
-r-L + N V • v = 0, (35) 

3 v - » - » MN— = - V -p. + NeE, (36) 

| jP t = -p¡ V • - Pj [Vv + (V^F], (37) 

^ -E = 4Tre(n¡ - n e ) (38) 
and 

n e = N(exp - l ) , (39) 

where n¡ and ne denote the perturbation in the ion and electron equilibrium 
densities (assumed equal) respectively, 0 e is the electron temperature; 
Pi = N©¡, where 0¡ is the ion temperature, p i is the perturbation in the ion 
material stress tensor, and M is the ion mass, ф denotes the electrostatic 
potential defined as Î? = -

Introducing the Lagrangian displacement^, we can integrate Eqs. (35) 
and (37) to obtain 

n¡ = - N ^ • f (40) 
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and 

IPi = - P i V - 1 I - P i [ V | + ( v f ) T ] ; (41) 

Eq. (38) can now be written as 

у2ф = - (n¡ - n e ) . (42) 

If we assume that еф/&&<С 1 (which is certainly true f o r smaH amplitude 
osc i l lat ions) then Eq. (39) can be written as 

Assuming the space time dependence to be of the f o rm exp i ( -u , t+k- r ) we 
obtain f rom (42) and (43) 

к2ф = 4тгеп; - . (44) 
e 

Introduce the Debye shielding distance as 

= ( ï â p ) ( « ) 

Eq. (44) can then be solved for ф to obtain 

4 « n , { 4 6 ) 

k2[ l+ (kXD)-2] ' 

Eliminating n ¡ , p ¡ and S f rom Eqs. (36), (40), (41) and (46), we obtain the 
dispersion relation: 

= "pi 3k2 m ' (47) 

where wPi, the ion plasma frequency, is given by 

A i r N e ^ Y / m V 
4 - м - ; ~Лм) wP- ( 4 8 ) 
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If the wavelength of the disturbance is large compared to the Debye length, 
formula (47) reduces to 

These low frequency ion oscillations differ from the sound waves in the me-
chanism responsible for the organized motion. Ion oscillations are produced 
by long range Coulomb forces whereas sound waves are produced by short 
range collisions between the particles. 

4. PLASMA IN AN EXTERNAL MAGNETIC FIELD 

In the presence of an external magnetic field, the behaviour of a plasma, 
in general, is quite complex. There exist several resonance frequencies 
in the system. One can get a good physical picture of the various processes 
by neglecting the thermal motions of the particles, i . e . , considering the 
case of a cold plasma. The motion of the constituents of the plasma, in 
general, will give rise to a current distribution J. We shall, however, as-
sume that the magnetic field which results from J is negligibly small com-
pared with the external magnetic field 3 0 . 

With the neglect of the particle pressure, the linearized equations of 
motion are: 

u2 = w2. k2X 2 + 3 k 2 f f pi D M 

(49) 

¿ ( 0 e + З в ^ к 2 . 

(50) 

^ + (Nv) = 0, (51) 

where the perturbations in the electric and magnetic (Й) fields are given 
by the Maxwell equations 

(52) 

(53) 

and 

(64) 
+ , -
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The summation in Eq. (54) is to be carried over both the species of the plas-
ma. We define the cyclotron frequency to be 

uc = e B 0 / m c ; (55) 

the cyclotron frequency referring to the ions and electrons will be denoted 
by u¡ and we = -(m/M)Ui, respectively. We shall now assume that all quan-
tities have space time dependence of the form exp i(-wt+lc •"?). Eqs. (50) 
and (51) then give 

N ,т> - » . . - » e •=» - » - » , _ „ . n = — (k • v),-itov = — E - wc X v. (56) 
u m 

From the equation for v, one obtains 

-no ц. • v e u c • Й (57) m 

and 

-lto wc Xv = — uc XË - u c (uc • v) + u^v . (58) 

From Eqs. (56), (57) and (58), we then obtain 

+ (59) m u 2 - c w c J с 

From Eqs. (52)-(54), we obtain 

( u 2 - c ^ l f - h с 2 1 с ( Т с - Ê ) + 4 f f i u ^ e N v = 0 , ( 6 0 ) 

where v is given by Eq. (59). On substituting for v in accordance with Eq.(59) 
into Eq. (60), we obtain 

I R - Ê = 0 , ( 6 1 ) 

where IR is a 3X3 Hermitian matrix whose elements are given by 



3 2 S. К . TREHAN 

С 

R - о У . о c o s e 
«12 - ~ 21 -¿_,1ир u2 . u2 ' 

R - R - V , , 2 U c s i n e c o s e 
1 3 - R S 1 - ¿ " P U 2 - U 2 ' 

2 2 

B.23 — Rg 2 - l ^ U p u 2 . u 2 > 
с 

2 V 2 Л u i s i n 2 e \ 

where Up = 4ffNe2 / m . In writing the foregoing expressions, we have taken 
ïc to be along the z-axis of a cartesian system of co-ordinates and we have 
assumed that the magnetic field lies in the xz-plane making an angle в with 
the z-axis . In order that Eq. (31) has a non-trivial solution, we must de-
mand that the secular equation 

j |mf I = о ( 6 3 ) 

be satisfied. This results in the required dispersion relation. 
For any arbitrary direction of propagation vector I?with respect to the 

magnetic field, the solutions of the dispersion relation are rather unwieldy 
and are given in [2]. The essential features of the problem can be obtained 
by considering the special cases of propagation along magnetic field and 
propagation transverse to the field. 

4.1. Propagation along the magnetic field 

For propagation along the magnetic field, 0 = 0 and Eq. (63) takes the 
particularly simple form 

Yw ? w 2 
— £ — 

L p и2 -u2 

Z2 U U , 

с 

u 2 - c 2 k 2 + у ц 9 . to2 

Ex 

E„ У 

Ez 

= 0 . 

(64) 
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It is clear that one of the roots of Eqs. (64) is 

u 2 - ^ W 2 ) e z = 0 . (65) 

This corresponds to the longitudinal oscillations; and for these the frequency 
of oscillation is given by 

( 6 6 ) 

where upe denotes the electron plasma frequency. 
The transverse oscillations are circulary polarized and are described 

by the equation 

where 

E ± = E x ± i E y , (68) 

the plus or minus sign corresponding to the right- or left-handed circularly 
polarized waves, respectively. We shall henceforth consider only right-
handed circularly polarized waves. It is clear that similar results will apply 
to the left-hand polarized waves also. 

The oscillations are, therefore, governed by the dispersion relation 

u 2 . c 2 k 2 . u 2 U u 2 = 0 . ( 6 9 ) 
Pe w + w e P1 U - Uj 

Here the electron and the ion plasma frequencies are denoted by upe and 
Upi respectively, while the electron and the ion cyclotron frequencies are de-
noted by - ue and +u¡ respectively. We now consider the following special cases. 

(a) High frequency oscillations 

Let us first consider the case when u » ue i . Then equation (69) yields, 
correct to the lowest significant order in u e /u : 

U 2 = c 2 k 2 + U 2 Л . ME \ ( 7 0 ) 
p ev ( u ^ t c V ) V 

The necessary condition for the validity of this result is that u|«(u^e + c2k2). 
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The term containing ue on the right-hand side of Eq. (70) represents the cor -
rection term to the dispersion relation for transverse oscillations in a cold 
plasma in the weak magnetic field approximation. 

(b) Oscillations near the electron cyclotron frequency 

Another case of interest is the one when the frequency of oscillation 
is close to the electron cyclotron frequency, i. е. и we » u¡. Firstly we 
observe here that when w » Uj Eq. (69) can be written as 

U 2 . C 2 k 2 - U 2 — У u 2 = 0 ( 7 1 ) 
Vе U + P1 

For the root near и = -we, Eq. (71) yields 

+ ( 7 2 ) 

It is c lear that the necessary condition for this approximation to be valid 
is that 

< £ < | u * - (C*k2 + U 2 )|. (73) 

(c) Oscillations near the ion cyclotron frequency 

Let us now consider the case when и =¡ u¡. This implies that и < ue and 
the dispersion relation (69) reduces to 

u 2 . c 2 k 2 . U 2 — - — = o . ( 7 4 ) 
P1 u) - w¡ 

This leads to the frequency of oscillation 

( 7 5 ) 

The condition for the validity of this approximation is that wf » c2k2. 

(d) Oscillations much below the ion cyclotron frequency 

We now consider the low frequency oscillations such that the condition 
u < Ui is satisfied. Then to the lowest significant order, we can write 
Eq. (69) as 
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u 2 _ c 2k 2 + w2¡ — ( l + - ) - w 2 ^ - ( l - - ) = 0. (76) 
P ' u i \ U¡ J • Pe We V we / 

We now observe that w2¡ ¡u i = w^ /we and 

9 w2 4jrNe2 w 2 M 2 c 2 4JTNMC2W2 
t 

(77) 
P¡ to? ~ M e 2 B 2 B 2 

i о о 

9 u2 47rNmc2w2 
w P< 

Thus Eq. (76) leads to 

V u 2 - Щ 

p2k2 

where A = В0/(4згр)^, p =N(M + m) the mass density, denotes the Alfvén speed. 
Eq. (78) is the dispersion relation of AstrÔm for the extraordinary hydro-
magnetic wave. It must be emphasized here that the hydromagnetic wave, 
in principle, is just a special case , in the appropriate frequency region,' 
of the well-known transverse electromagnetic waves. 

In the limit when с / А » 1 Eq. (78) reduces to 

© 2 - A , (79) 

that is, the phase velocity of the wave is just the Alfvén speed. In the other 
limit when с / A « 1 we get 

w = ck (80) 

which corresponds to the usual electromagnetic modes. 

4.2. Propagation transverse to the magnetic field 

For propagation perpendicular to the magnetic field, в = ж/2 and the 
secular equation (63) reduces to 

w2 - c2k2 - ) w2 
U P 

Z_J U^ - U¡¿ [_, PTR - U¿ 

Z_i u ; - tí¿ 

= 0. (81) 

. V 9 W WC - l ) U>; - Я 
L, p o r - W с 
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One of the modes of oscillation corresponds to the usual transverse 
oscillation with electric field along í 0 and satisfies the dispersion relation 

W2 = c 2 k 2 + I " p 

= c 2 k 2 + u 2 . 
P e 

(82) 

The other two modes of oscillation are determined as roots of the equation 

• V 2 И Ц : 
L -

u¿ - и Z2 n i l . 
Un ~~ 9 H р и 2 - и 2 

с 

/ j u ¿ • u ¿ 

( 8 3 ) 

= 0 . 

Consider first the case when и <K ck. Then Eq. (83) requires that 

This leads to the dispersion relation 

w 2 i u 2 
о о + о о — 0 • 

uf - и1 u | -

(a) In the limit when Uj < и < u e < u ^ j , Eq. (85) reduces to 

U>2 U2 
e 

(84) 

(85) 

( 8 6 ) 

The frequency of oscillation is then determined by 

" = >*• ( 8 7 ) 

Thus the frequency of oscillation turns out to be the geometric mean of the 
electron and ion cyclotron frequencies. This frequency of oscillation is 
re ferred to as the lower hybrid frequency. 

(b) Next we consider the other limiting case where the conditions u2 » w? 
and w2 » u2¡ are satisfied. Then Eq. (85) reduces to 
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u ' -e 

This yields the dispersion relation 

u = (wf+wpe)1 . (89) 

This frequency of oscillation is referred to as the upper hybrid frequency. 
Several other cases can be discussed from the dispersion relation (63), 

e .g . waves propagating at any arbitrary angle with respect to the magnetic 
field or the coupling of the longitudinal and transverse oscil lations. The 
essential resonances are, however, given by sections 4.1 (a) to (d) and4.2(a) 
and (b). 

5. HYDROMAGNETIC WAVES IN A DISSIPATIVE MEDIUM 

We have studied earl ier the phenomena of wave propagation in a 
magnetized plasma neglecting the thermal motions of the particles. We 
shall now consider the plasma to be a hydromagnetic fluid characterized 
by a finite pressure p, viscosity v and conductivity <j. The equations basic 
to our problem now are: 

Э v - > - » - » -» 1 -» —» —* 1 - » - > - » 
p f t + p ( v ' V ) v = " V p + Ï Ï ( V X B ) X B + + з v V ( V ' v ) ' ( 9 0 ) 

^ = V X ( v X B ) + f - V 2 B , (91) 
o t 47ГСГ 

| ^ + V - ( p 7 ) = 0 . ( 9 2 ) 

For the equation of state we shaH assume the validity of the classical adia-
batic law: 

4; (РР-У) = 0 . ( 93 ) 

The steady state is" characterized by p = constant, p = constant, 
В = B{)lzand the mean fluid velocity is assumed to vanish everywhere. 
Let the various fluctuating quantities be denoted by 6p, óp, v and b*. The 
equations governing these are the linearized forms of Eqs. (90)-(93), and 
these are: 

p = " + ^ ( V X b J X B + vV2v + I v V ^ - v , (94) 

o t 47Г d 

91) —> —í —> ü ^ x ( v X B ) + ¿ - v 2 b , (95) 
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|r bp + p V • v = О, (96) 

and 
óp= s 2 ôp , (97) 

where s 2 = т р / р , denoting the sound speed in the medium. If we introduce 
the Lagrangian displacement f then to first order v '= 9^/9t and Eq. (96) can 
be integrated to give 

&p=-pV-t, (98) 
where the constant of integration has, by definition, been set equal to zero. 
We shall now assume, that all fluctuating quantities have space time depen-
dence of the form 

exp (-iut + i S • r) . (99) 

Equation (95) then leads to 

Is = / 3 i l c X ( | > x ' S ) , ( 1 0 0 ) 

where 

0 = l + i c t / 4 я и и • ( 1 0 1 ) 

Using the foregoing results in Eq. (94), we obtain 

pu2f = s 2 p £ ï - î + {ТсХ[1сХ ( Î x 3 ) ] } x 3 - i u v k 2 f - i u | l c l c - f , (102) 

or 
(pw2 + i i ^ k 2 ) ? = p ( s 2 - ( S . f ) + ^ { k x [ k x ( f x ^ ) ] } X g . (103) 

We have assumed the magnetic field to be along the z - a x i s . We take К to 
be in the xz -plane making an angle 0 with the z -axis . Eq. (103) then leads to 

u)2fx = ( s 2 - n^jk2sin0^sin0f x + cos0ÇzJ + j3k2A2 Çx - ци»к?|х, (Ю4) 

u2|y = 0k 2 A 2 cos 2 0 ? y - n k2iuf y, (105) 

w2Çz = (s2 - y ^)k2cos0 ( s in0? x + cos0? z ^- i^uk 2 i z , (106) 

where we have put ju = v/p and A2 = B 2 /4irp, A being the Alfvén speed. It 
is c lear from Eqs. (104)-(106) that the Çx and f z equations are coupled while 
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the equation for f y gives 

u)2 = k2A2Cos2e ( l + - A<k2iu. (107) 

If с 2k? /4ггаи « 1 the damping is small — a condition necessary for wave 
propagation to be physically meaningful in a dissipative medium — we obtain 
from Eq. (107): 

(j2 = k2A2cos20 ( l - - Mk2ito (108) 

= k2A2 cos2 6 - 1к2(м+ ^ k 2 A 2 c o s 2 e ^ ( 1 0 9 ) 

This equation can be iterated to give for the frequency of oscillation: 

ik2 f c2 \ 
(110) 

We now consider Eqs. (104) and (106). F o r these equations to p o s s e s s a 
non-trivial solution, we must have 

us - /Зк2А2 + iMk2u-(s2 - y m) k W O - ( s 2 - k2sin0cos6 

= 0 . 

- ^ s 2 - ^ m) k2sinfl cos0 u2 + v<k2u - (в2 - vu^j k2cos20 

( H I ) 

We may here first consider the ideal case wheno- -> 00 and 0. Eq.( 111) 
then leads to the quadratic: 

u4 - w 2k 2 (A 2+ s 2 ) + k 4 A 2 s 2 cos 2 0 = 0. (112) 

We now distinguish the two cases according to whether A is greater than 
or less than s , i . e . the strong field and the weak field cases , respectively. 
In the first case we get the two roots (distinguished by the subscripts 1 and 2) 

u° = kA(l + | ^ sin20) (113a) 

and 

u ° = k s c o s 0 , (113b) 

while in the weak field case we obtain 

A 2 

= k s ( l + | - p - s i n 2 0 ) (114a) 
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and 

)% = kAcosS, (114b) 

where we have here distinguished the two roots by the subscripts 3 and 4. 
The superscript "0" has been added to indicate that these roots are in the 
zero'th approximation, namely when м-» 0 and a -> oo. 

Now we proceed to solve Eq. ( I l l ) under the condition that c2k2/4?rcrw0 

and мк2 /и°аге both small, i . e . < 1. This enables us to replace и by uO in 
all terms which appear in the terms containing the transport coefficients 
and we carry out the calculations consistently up to the f irst order in the 
small parameter. First we note that 

1 -
ic2k2 

4jtctu0 ' (115) 

Eq. ( I l l ) now leads to the quadratic: 

,,4 . k2 (A2 + s2) - ik2u° \3 4JTCT 

+ k4A2s2cos2 0 - ik^u0 i ц [A2( 1 + cos 2 0)+ s: 

с2k2 A2s2 2 o \ „ + -. ss- cos20 V = 0. 47ГСГ u02 J (116) 

Solving this equation and retaining terms up to the first order , we obtain 
for the four cases : 

U l = k A ( i + ! ^ s i n 2 e ) - ^ 

ik2 
u2 = sk cos0 - 2 H(1+ c o s 2 0 ) + 4 ira 

(117a) 

(117b) 

, Л 1 A 2 • 9 Л 2 i k 2 , , , o V u3 = ks [1 + - s m 2 6 j - —g-M, (U8a) 

ik2 Í с 2 \ w4= k A c o s e + (118b) 

We thus find that the presence of finite conductivity and viscosity leads 
to the damping of the hydromagnetic waves. It follows from Eqs. (117) and 
(11.8) that the time required for the wave amplitude to be reduced to a value 
1/e of its initial amplitude is given by 
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The distance travelled by the wave during this interval of time is 

L = A k 2 ( c 2 

2 V47TCT 

- l 
(120) 

For these disturbances to be of any physical interest, it is c lear that we 
must have 

L » A. = 
2n 
к " 

(121) 

This condition requires that X » Xc ,where 

2 n ¿ 

A \47TCT + M . (122) 

6. THE EFFECT OF THERMAL CONDUCTIVITY 

In our earl ier discussion we have ignored the effect of finite thermal 
conductivity of the medium. If we take this into account, the general energy 
equation is given by 

^ (PPT) = | V ( K V T ) + | J J, (123) 

where rj is the resistivity tensor, and к is the coefficient of thermometric 
conductivity. We shall restrict ourselves to the case when к is a constant 
and the resistivity tensor a scalar. 
Since 

we can write (123) as 

^(PP-*) = k v 2 £ + ! <i25> 

dt p o o 

The linearized form of Eq. (125) is: 
^ = S 2 ^ + K p r l ( v 2 % . £ v 4 ) , ( 1 2 6 ) 

where we have now written pj and px for the perturbations in p and p, r e -
spectively. Proceeding as before, we now obtain instead of (97): 

Р 1 = <t>s*pl, (127) 
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where 

= 1 + i ) c k 2 p y - ^ / u s 2 

1 + i K k 2 р П / ш 
(128) 

Having obtained pj in this form, we need only replace s 2 by s20 in our preceding 
discussion. If we assume that кк2рУ'1 « 1 we obtain 

0 = 1 - i/ck2pr-i „ 1 / 2 P S z - -

• i -

In the strong field case (A /s » 1) we have 

w2 = k2A2 -11 + j - 2 sin20 + ik 
A 

с 
i ira + ju(l + sin2Q) + крУ'1 ^ 

while f or the weak field case we get 

и 2 = k2s2 ' A 2 . 2 o ik / 4 v-17-1 
i s l n 2 e + - i - M + < c р У 1 7 - — 

(129) 

(130) 

(131) 

7. HYDROMAGNETIC WAVES FROM THE CGL THEORY 

We now discuss the phenomena of wave propagation using the one fluid 
equations of Chew, Goldberger and Low. The basic assumptions under-
lying this approximation are: 

(a) The magnetic field in the plasma is sufficiently strong so that the ion 
L a r m o r frequency is much larger than any other frequency; 
(b) The heat flow along the lines of f o rce is negligible; and 
(c) The conductivity of the plasma is very high so that the simplified Ohms 
law can be used. 

Under these circumstances, the pressure tensor is given by 

IP = 
P x 0 0 

0 Px 0 

,0 0 

(132) 

where we assume the magnetic field to be along the z -ax i s . The variations 
of P± and P are governed by the two adiabatic relations: 

= 0 . (133) 

The system is now governed by the closed set of moment equations: 
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and 

§ f + V : (pv) = 0 , (134) 

dv Э v - * - » - » - » 1 —> -» 
Р Ж = p at + p ( v ' V ) v = " v '1 3 3 + è в ) x в ' ( 1 3 5 ) 

эв -r± -» -> ' ^ = (136) 

IP = PAn + (P„ - PJnn, (137) 

where n = Í?/ | . 

Consider, then, a spatially homogeneous plasma in static equilibrium 
in a uniform magnetic field which we take to be along the z - axis of a carte-
sian system of co-ordinates. In the perturbed state let the various quan-
tities be denoted by 

v, p+ bp, P x + 6PX , P„ t б ^ , Й+бё'. (138) 

The equations governing the perturbed quantities are obtained by linearizing 
Eqs. (133)-(137). These are 

p = - V • б IP (VXÔB)XB, (139) 

|jTÔp = - p V - v , -(140) 

ô f = ̂ X ( v X B ) , (141) 

6 Р ± = Р , ^ - + Р Х ^ , (142) 

and 

5Р„ = -2Р„ ^+ЗРН f , (143) 

where 6В = í • 6Ê/B. Introducing the Lagrangian displacement f*, v = tit/dt 
and Eqs. (140) and (141) can now be integrated to give 

бp = - • f (144) 

and 

6Й =VX(?XB). (145) 
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It follows readily from Eq. (145) that 

6 B = - V X - 1 X , (146) 

where = ̂  - nn • As in the preceding discussion, we assume the space-
time dependence of all the quantities to be of the form exp i(-ut + к • r). Using 
the foregoing results, Eqs. (142) and (143) reduce to 

6P X = - P j l ( 2 Vi. • |j_ + ik Ç ) 

and 
(147) 

(148) SP„ = + Sik,,?,,). 

From Eq. (137), we obtain 

V • Ó1P = VXÔPX - i ( P x - P )kuôn + n [(P - P x ) V • §n] + ik^ôp,,. (149) 

The change 6n in the unit vector along the lines of force-is obtained readily 
from Eq. (145): 

6n = n - v T ± + [ ( n . V ) n n ] . î . (150) 

We thus obtain 

V • ÔJP = ( P x - P„)k2|>x+ ik„ [(P„ - P x ) ^ x - ? x + i],]n. (151) 

From Equation (145) it readily follows that 

- » - » — > о > - » - » о - » , (VXÔB) X в = В (VXVX • ? х - к2| х ) . (152) 

On using the foregoing relations we find that the equation of motion (139) 
splits up into the two equations: 

P U 2 - k?,( 5 - + P x - P„ 4Я" £ = 2 ( к j . ' J + ^ P J , , 

and 

(pU2 - З Р к 2 ) ^ k , P x ( k x . f x ) . 

From these equations we obtain the relation 

P " 2 - < g + p . - 0 - 8ir J p u 2 - 3 P k 2 

(153) 

(154) 

. (155) 

If в denotes the angle which the propagation vector makes with the z -ax is , 
then 

к = kcos0 , k x = к sin0. (156) 
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After,some reductions, Eq. (155) reduces to the following quadratic for u2 

u4 - — k 2 ( ^ + P , + 2P cos 2 0 + P± sin20 p \47T х И 

+ - ^ r P cos20 p 2 m 47Г + Px ( 1+ s in 0 ) - P^cos2© 

k 4 
P. sin 2e cos20 = o. (157) 

The roots of this equation are given by 

k 2 / R 2 

u2 = — { = - + P ± + 2P. cos2 0 + P±sin2 
2p \47T " 

k 2 

2 p 
5 ! 
4ж 

+ p± (i + sin2e) - 4P cos2e + 4Pj2sin20 cos 20 (158) 

For propagation along the lines of force , 0 = 0 and Eq. (158) leads to 
the following two modes of oscillation (distinguished by the subscripts land 2): 

9 к2 / В 2 
(159) 

and 

2 3k2 D 
u 2 = ' — • (160) 

It is clear that the mode of oscillation given by Eq. (159) is unstable if 

B 2 

47Г (161) 

That is, if the distribution function for the ions and/or electrons is strongly 
peaked along the lines of force, the hydromagnetic waves propagating along 
the field lines are ùnstable. 

For propagation transverse to the field lines 0 = тг/ 2 and we obtain 

2 . 2 k 2 ( B 2 
(162) 

The corresponding phase velocity of the wave is given by 

( j / 9 P \1 
VP = к = V p J ' 

2P\ (163) 

where P = P ± + B2/8TT denotes the total transverse pressure. 
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MAGNETOHYDRODYNA MICS 

J . D . J U K E S 

U N I T E D K I N G D O M A T O M I C E N E R G Y A U T H O R I T Y 

T H E C U L H A M L A B O R A T O R Y , 

A B I N G D O N , B E R K S , E N G L A N D 

I. INTRODUCTION 

If a conducting fluid moves in a magnetic field, electric fields are in-
duced in the fluid and electric currents will flow. The magnetic field exerts 
forces ón these currents which can modify the flow, at the same time the 
currents may substantially alter the magnetic field. The study of these 
complicated interactions is the science of MHD (magnetohydrodynamics) 
which combines the electromagnetic field equations of Maxwell with the 
equations of fluid dynamics. 

MHD in its widest sense has relevant applications in applied science, 
geophysics and cosmic physics. In these cases the fluid media may be a 
conducting liquid metal (earth's core, electro-magnetic pumps), or a weakly 
ionized gas (MHD generators, upper atmosphere), or a highly ionized gas, 
or plasma (laboratory systems and cosmic physics). The approximations 
used in the fluid equations depend very much on the problem át hand, but 
the regimes can be conveniently discussed in terms of dimensionless 
numbers. 

First I shall revise some basic electromagnetic concepts; I shall then 
derive the dimensional análysis in a simple physical way and, finally, I shall 
give the basic MHD equations in various approximations, and the boundary 
conditions. 

Secondly I shall consider certain solutions of the equations which are 
relevant to laboratory plasma physics, i.e. I shall talk about the equilibrium 
and dynamics of highly conducting plasma in magnetic fields from an e le -
mentary point of view. 

Thirdly I consider MHD wave propagation and high speed MHD flows. 
These include phenomena in which small perturbations are propagated a c -
cording to linearized approximate theories and also phenomena in which 
finite amplitude, quasi discontinuities, occur . 

II. MOTION OF A CONDUCTOR IN A MAGNETIC FIELD 

We start with either of two experimental laws. 

1. Faraday's law 

The change of flux ф through a circuit is given by 

( 1 ) 

47 
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where E1 is the electric field in the circuit which may be in motion, and 

ф= J B - d l , (2) 

the integral being taken over the surface and £ is the EMF around the loop. 
If the circuit is a wire loop, then ¿ = JR, where R is the resistance and 

J the current in the loop. 

Since 

then by Stokes1 theorem we get 

where" 

V X E . = - § | (4) 

^ I r - M v - V ) . (5) 

Or for a stationary loop, 

where E is now the field in the laboratory frame. Let us^compute DB/Dt. 
For a moving loop, d^/dt arises due to (a) the change of В (t) within the loop, 
(b) the motion of the boundary. Consider a loop moving from 1 to 2 in time 
At, then 

U = l i m ¿ - | I B(t + A t ) - d s 2 - / B( t ) -d S l |. ' (7) 

- > > 

Since V-B = 0 (Maxwell's equations), 

Jv-Bdr= J B ( t ) .dV^B(t ) -d1 1 + J B(t ) -ds w , (8) 
Vol. 1 -2 Wall 

where the volume is the small element swept out by the moving loop and the 
integrals are carried out over this element (Fig. 1). 

Using a Taylor's expansion, 

B ( t + A t ) = B(t)+-|5 At+ . . . (9) dt 

* D / D t is c a l l e d the c o n v e c t i v e d e r i v a t i v e and m e a s u r e s t h e rate o f c h a n g e f o r a m o v i n g observer : 
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Fig . l 

Element swept out by the moving loop 

Consequently, 

Ж =Jït • \ ! s dl -J f •d1 •dl • ^ 
Wall 

Comparing (3) with (10) we get 

Consequently 

= / ( Ё + ^ В , - . < А . ( I D 

Ê . = Ë + ^ . ( 1 2 ) 

2. Lorentz's law 

The expression (12) for the transformed field E' could be derived also 
f rom Lorentz 's law for a moving observer. The force exerted on a charge 
q is given by 

F = q(^E+ ^ ^ j = qE' . (13) 

(Note that to order v / c , B' = B. ) 
Ohms' law for a moving conductor is 

j )= стЕ'. (14) 

/ v X B \ F o r a highly conducting fluid a->°o, therefore ( EH ) -* 0, and 

ЭВ V X [ v X E ) = ^ . (15) 

4 
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Otherwise 

V X ( V X B ) = ~ H + V X ( v X B ) . (16) 

In a highly conducting fluid let us consider a ring of fluid particles enclosing 
a surface E moving with the fluid motion. Then, 

D Г - -
Dt J В • ds = 0 , (17) 

z 

i . e . the flux through. L is conserved. Thus, the field and the fluid are frozen 
together. 

By combining, 
—> 

Ц = V X (vX В) = (B • V)v - (v • V)B - В (V - v) (18) dt 

with the continuity equation 

^ - + p ( V " v ) = 0 , (19) 

and writing it as 

DB - - -» - -» -» 

— - ( B V)v = B ( V - v ) , (20) 

it can be shown that, for an incompressible fluid with V - v = 0, 

Consider a line element 61 joining two particles initially very close together 
(Fig. 2). Then, 

D ô î - » - > - . 
- ¿ f " = (51-V)v. (22) 

> 

If two particles are close together on a field line then 61 is parallel to 
B a n d 161 | o c | B / p fi a r t i c 

- I S / 

Fig. 2 

Line element joining two particles 

4* 
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If the fluid is incompressible, increasing | 6Î | increases |в|. Stretch-
ing the magnetic field lines increases the field strength and may be a means 
of energy equipartition between a turbulent fluid and a field. 

Magnetic energy (В2/8тг)«afluid turbulent energy (pv2/2). 

3. Conditions for the validity of Ohms' law 

The Ohms' law is valid if: 
(a) The period of the field variation t » t e , where te is the coll ision 

times of the electrons; 
(b) The electron mean f ree path « gyro radius, or equivalently if, 

t e O e « l . (23) 
» -> 

where s еВ/mc. Otherwise j is not parallel to E ( i . e . a has tensor proper-
ties) and the Hall current must be included in Ohm's law. In fact, the Ohms' 
law can be modified for the range when ííete> 1, but then 

E + ^ = T / a , (24) 

where ve is the electrons' velocity considering the ions and electrons as 
two fluids. Equation (24) is the equation of motion for the electron fluid 
neglecting the electron inertia. 

There is then the supplementary equation 

T = n e ( v - v e ) , ' (25) 

where v = v< . 1 -* 
Hence, eliminating v e , we get 

Ё Д х в = T x ! + i 
с пес a 

where the third term represents the Hall effect. The ratio of the magnitude 
of the third to the fourth term is ~ |í2ete|> 1. 

So this equation extends, in an approximate fashion at least, the realm 
of the validity of MHD into a regime where fie1e > 1 

4. Conditions for MHD behaviour 

Let us consider a conducting fluid moving across a magnetic field (Fig.3). 
The induced current is 

j = crE'= CTVB/C. (27) 

The force on the unit area over an interaction length L is 

L - ^ v B 2 L . (28) С С2 



Fig.3 

Conducting fluid moving across a magnetic field 

The ratio to the dynamic pressure (which is ~ p v 2 ) g ives the interaction 

B2 — = M. (29) 

C¿ V 

The magnetic field ДВ induced is given by ДВ/L ~ 4ÎT j / c , hence, 

ДВ 4 л- a vL - В " - - ! * — = R M . < 3 0 > 

where RM is the magnetic Reynolds number. 
If Rm> 1» the magnetic field is strongly perturbed, whereas if M> 1, 

the fluid is strongly perturbed. 
Combining these conditions so as to eliminate v, one obtains 

^ • • • Ч ^ С л г Г 
If both RM and M > 1, then S » 1. 

Some examples in the laboratory (B = 1 kG, L = 10 cm) are: 
(1) F o r a liquid sodium experiment, ст/с2 10-3 t p i g cm"3 then S = 40. 
(2) For a hot plasma, T = 106K, n= 1015 cm" 3 , p ~ 10-19 g cm*3 , cr/c2 == 10-6 , 
then S 104. 

III. EQUATIONS OF MOTION OF A FLUID IN A MAGNETIC FIELD 

We shall assume that the magnetic permeability ц = 1, and we shall not 
distinguish (numerically) between 3 and Й. Then 

V B = 0 , 
^ (32) 

| = V x f v X B ) + ¿ V ^ B , 

where often the la^t term is neglected ( i . e . ст=оо). 
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The general equations b e c o m e v e r y compl i ca ted when v i s c o s i t y and 
compress ib i l i ty are considered'' ' and it is s impler to consider approximate 
equations suitable for each problem as it a r i ses . We give two representa^ 
tive cases . 

1. Incompressible flow 

The equations describing such a flow are 

V - B = 0, V - v = 0, = 

+ l v - V ) B - ( B - V ) v = j 4 - V 2 B , (33) dt 47Г cr 

The energy equation is not needed. 

2. Isentropic, inviscid flow 

The equations ' 

V - B = 0, 

+ ( v - V ) p + p V - v = 0 , ( 3 4 ) 

plus the Ohms' law and the momentum equation with /и = 0, are needed to 
descr ibe an isentropic and inviscid f low. 

To c lose the system of equations, we need the conservation of entropy 
s = const, log p р"У (where у is the ratio of the speci f ic heats), namely 

§ T = ° ' (35) 

or equivalently to (35) 

D p _ Y P D p 

D T " 7 d F - ( 3 6 ) 

We have neglected electr ical dissipation. Let us suppose that 

L is a character ist ic length, 
U is a character ist ic velocity, 
a is a characterist ic sound speed (а2 = т р / р ) 
A is a characterist ic speed (A2 = В2/4тгр) 

* LANDAU, L.D. and LIFSHITZ, E . M . , Electrodynamics of Continuous Media, Pergamon Press, 
London (1960) . 



54 J . D . JUKES 

If U « a or A, the fluid is incompressible. 
If R = ULp/ju » 1 , the fluid is inviscid. 
If R m = 4ir ULCT/c2 » 1 , the fluid is a good conductor. 
This dimensional approach has to be applied with care and experimental 
insight (cf . boundary layers in fluids and resistive layers in resistive in-
stabilities) . 

Generally, the great difficulty in solving these equations is their non-
linearity, in contrast to Maxwell's equations by themselves. They can be 
linearized to discuss such questions as (a) 'small perturbations of f lows, 
(b) waves and (c) stability. Non-linearity is essential to discussions of tur-
bulence and large amplitude waves (shocks etc.). If the solutions remain well 
behaved (single-valued, finite, etc.) then computational procedures are pos-
sible. But it is important to remember that the final appeal is always to 
experiment. 

IV. BOUNDARY CONDITIONS FOR A PERFECT CONDUCTOR 

Let us now discuss the boundary conditions at fluid-fluid-wall or at fluid-
.vacuum-wall interfaces. If fl is the outward pointing unit normal, [G] the 
increment in any quantity G across a surface and J* the surface current on 
a conductor, then by using Maxwell 's equations across the surface of the 
conductor one obtains 

n- [В] = 0 (37) 
and 

n X [B] = 
с 

(38) 

At a fluid-vacuum interface with ст = oo 

n X [ E + — X B ] = 0 
с 

(39) 
gives 

nX [Ê] = n - - [B] . (40) 

At a fluid-fluid interface, 

(41) 
and 

( 42 ) 

At a perfectly conducting wall, 

E у =0, nXE = 0, 
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If В = 0 in the wall at t = 0, 

n B = 0. (44) 

The boundary conditions can be obtained by integrating the original 
equations across a finite discontinuity e and then letting e -» 0 using Stokes' 
and Gauss' theorems to do the integration. Let us now apply the equations 
and boundary conditions to some simple (in principle'.) experiments. 

V. THE DYNAMIC PINCH 

This experiment has demonstrated the validity of the MHD equations 
in the a=oo approximation. A simple theory (by M. Rosenbluth) is as follows: 
an e lectr ic field Ez is applied to a conducting cylindrical plasma density 
p0 at time t = 0. A skin current Jz and a magnetic field Be occur, where 
Be = 4ttJz / с = 2IZ / r c , Iz being the'total axial current. Since a = oo in the skin, 

Ez Be = 0. (45) 

We now suppose the skin collapses uniformly inwards sweeping up the gas 
within as it goes . The col lapse velocity of the skin ( - r ) depends on the 
magnetic pressure as follows: 

P o ( - r ) 2 = Кв|/8тг, (46) 

where K ~ 1 is a constant depending on the precise mechanism of the collapse. 
If the potential V across the tube remains constant then 

d ,T T , d /211, , R\ , 

where 1 is the tube length, L(t) the inductance of the collapsing plasma 
column in the tube. (The current returns immediately outside the wall. ) 
Hence 

<?V • r • R = - ] , - + t l o g j . (48) 

Now 

- г = ( К / 8 т г ( 4 9 ) 

Hence we can solve numerically for I z and r as functions of z. However, 
the scaling laws are evident immediately. When r ~ R 

c2V R_ 
21 I, 

cV 
21 

К 
2 т р о 

,1/2 
(50) 
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Hence 

k M X (5i) 

where E0 is the applied electric field. Because the collapse time is so rapid, 
instabilities play little part. The same principles of MHD acceleration have 
been used in different geometries, for example the co-axial plasma gun (see 
Pig. 4). Here current flows radially from a central electrode along the z -
axis, the magnetic field is in the 0-direction and the plasma is accelerated 
along the z-direction, being swept up just ahead of the advancing radial cur-
rent sheet. 

VI. STATIC EQUILIBRIUM WITH CYLINDRICAL. SYMMETRY 

Consider a constricted or "pinched" plasma where B = B e (r ) and p = p(r) 
satisfy 

¥ = (52) dr Jz с ' v ' 

I d _ . 4тг . 
7 d 7 ( r B e ) = T ^ 

(53) 

with the boundary condition p^-0 as r^-oo, B e r = 2IZ /c-»f inite value. The 
variations along z are neglected. 

At constant temperature T, line density N length"1 and particle density 
n volume-i, 

00 00 

r nTdr = NT = J2 î r prdr 
о n 

Hence 

[ 7 ф Г 2 ] - 7Г J*J 

• i i ^ l " . ! * 

[rBe ; at r = oo 

CO 

' ¡ 2 , r j z dr /2c 2 = I2 /2c2 

2 2 I z = 2NTc , (54) 
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© ACCELERATED PLASMA 

- к . 

О 

•CENTRAL ELECTRODE 

MAGNETIC FIELD 

F i g . 4 

C o - a x i a l p l a s m a g u n 

which is Bennett's relation for so-cal led "z -p inch" . In experiments this 
equilibrium is highly unstable and is readily destroyed. 

VII. HYDROMAGNETIC WAVES 

Consider a uniform plasma of density po , pressure p0 in a uniform field 
B 0 . In this paragraph we only consider small amplitude waves propagating 
as exp i(Ic- r - wt) . 

Let us substitute the quantities v = v , В = Bo+ b and p = po + p into the 
basic equations 

B = V X(vX B) 

p + V- (pv) = 0 

p v- -Vp+ -f- (V X B ) X B , 
4 7 г 

Ф = 7 P i = a 2 

d p P o 

(55) 

The linearized equations are 

-ub = к X( vX B). 

up = p (k- v ), 

+ = - B X ( k X b ) 
47ГР 

(56) 

P = a2p . 

If ú = u/k= phase velocity and А2 =Во/47гро then the solutions separate into 
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two types, the first being an effectively incompressible shearing motion 
(see Fig . 5). 

Fig. 5 

k-vector direction versus magnetic field direction 

1. Type I 

p = 0 (a shear Alfven wave) with b, v | B 0 , k. 

I u/kI = u = A cos 6. (57) 

The group velocity 9w/3k = АВ/|В | is always directed along the field. 

2. Type II 

J 2 , 3 ' [(a2 +A2+2aA cos 0)1/2±(a2 + A2 - 2 a A cos 0)1/2]. (58) 

in which compressibility is important. 
Note that u 2 >uj> u3 and that Ju1= A cos 0, % Ï max (a, A), min (A, a)^-u3. 

ui = shear Alfvén wave speed, effectively incompressible and therefore in-
dependent of a. 

иг = compressional Alfvén wave speed 1 , ^ , , , f .. , rfast and slow magnetosonic waves, из = electro acoustic wave speed J ° 
If A » a, U2 — A, из = a cos в 
The phase velocity diagrams are shown in Fig. 6 (for A> a) and Fig. 7 for 
(A<a). Really, they are sections cut through three-dimensional f igures. 
The line a|3 is the normal at P to the phase velocity vector ÔP and repre-
sents the direction of the wave front. Group velocity diagrams (envelopes 
of lines a/3 ) are the surfaces of maximum interference of the wave fronts 
and surfaces of the propagating disturbance. A typical group velocity dia-
gram is Fig. 8. The velocities corresponding to QRST are 

OQ : larger (A, a), OR : smaller (a, A) 

O S : ( a " + T ) " 1 ' ОТ: (a 2 +A 2 ) 1 / 2 

The construction of the wave cones for a body moving with velocity Ü 
(corresponding to a vector OU) is to drop tangents from the tip U to the group 
velocity surfaces. If U lies outside the surface corresponding to иг we have 
a familiar swept-back cone projecting from the body. However, if U l ies 
inside one of the small ogival surfaces corresponding to из one finds a swept-: 
forward cone (see Fig. 9). Notice that the surfaces of из correspond to a 
small lateral disturbance perpendicular to So while the surfaces c o r r e s -
ponding to ui degenerate to two points moving with velocity ±A along So. 
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Fig. 6 

Phase velocity diagram (A > a) 

Fig. 7 

Phase velocity diagram (A< a) 
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Fig. 8 

Typical group velocity diagram 

Fig- 9 

Construction of the wave cone if U lies inside one of the small ogival surfaces corresponding to u3 

3. Non-linear waves (finite amplitude) 

In an incompressible fluid the plane MHD Alfvén wave is an exact sol-
ution with the phase velocity 

Vn = - b - (59) 
В 

regardless of amplitude. Large amplitude waves in a compressible gas 
have a more complicated behaviour. 
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I f к J_ В , и г = ( a 2 + A 2 ) 1 / 2 

61 

B + | - ( v x B ) = p + - | - ( v x p ) = 0 
Э х 
Э 

Э х 

(60) 

Thus 

and 

P Dt Эх 
Dvx _ Э 

(61) 

,2 
Replace p(p )+ — = p*(p), since В « p. oír 

These equations are equivalent to a one-dimensional motion of an ordinary 
compressible gas with pv(p) replacing p(p). Thus we can apply Riemann's 
method of solution using a pseudo velocity of "sound" a* = (A2 + a2)l/2. For 
large amplitude perturbations one. is led often to discontinuities, which 
physically occur as shock waves. 

VIII. DISCONTINUITIES 

We shall consider possible discontinuities without regard to their struc-
ture or their physical stability. 

Let us choose co-ordinates in which the discontinuity is at rest. n = 
normal to surface, p vn : the continuity of mass gives 

l p v n ] = 0 . (62) 

The continuity of momentum gives 

[П1к nk] = 0 and [ п ' П ' ф О , 

where П is the momentum-stress tensor (neglecting v 2 / c 2 ) , 

(63) 

n i k = p v ¡ v k + p ó i k - ( B ¡ B k - 5 Ó i k В 2 ) / 4 ж . (64) 

Thus (63) gives 

[р+ру2 + (В 2 -В 2 ) /8тг ] = 0, 

and 
[ p v n v , - B n B t / 4 7 r ] = 0 . 

( 6 5 ) 
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The continuity of energy gives 

[ q j = [pvn (|v +e + ̂ ) +S-n] = 0. (66) 

where S is the energy flux of the electromagnetic field (Poynting vector) . 

( 6 7 ) 
I _ c E X В _ ( v X B ) X B 

4тг 47г 

(neglecting resistivity) 

hence 

S - n = — [ B ^ - i B - v J B j - n 
4 IT 

B2 _ ( B - v ) B n ^ 
" " 47T 

e = p / (7~ 1)P is the internal energy of the fluid. Thus 

t P V n ^ v 2 ^ £ . ) + i - ( v n B 2 - ( B - v ) B n ) ] = 0 . (69) 

Finally, 

thus 

c [ E t ] = - [ ( v X B ) t ] = 0, (70) 

[ B n v t - B t v n ] = 0. (71) 

We summarize four possible discontinuities as follows: 
(1) Contact discontinuity (plasma A in contact with plasma B) 

3=0, [vt] = 0, [p] f 0, [p] = 0 

[Bt] = 0, B „ / 0 

(2) Tangential discontinuity (sharp plasma boundary; plasma jet a c ross 
a magnetic field) 

j = 0, [ v t ] / 0 , [p ]^0 , [p + В2 / 8тг] = 0 
[ B t ] / 0 , B n = 0 

(3) Rotational discontinuities (e .g . large amplitude Alfven wave) 

j=/0, [ v t ] / 0 , [p] = 0, [p] = 0, B n / 0 

B u — * ~ B t 2 
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(4) Shock waves (e.g. large amplitude magneto-sonic compression) 

j i 0, [p ] / 0, B i , B2 and n coplanar. 

The diagram 

gives possible transitions between the four discontinuous states. 

IX. SHOCK WAVES 

Since 

and 

These are discontinuities in which j= pvn ^ 0 and [p ] f 0 . 

j [ v t ] = | M B t ] 

Bn[v t ] = j l i 

(72) 

(73) 

it follows that the three vectors B t 2 - Bti , В t2/p2 _ B t i / p 2 and v2t - vit are 
all parallel, and hence Bti is parallel to St2 from which it follows that fli, 
@2 and n be all coplanar. Since (vt2 - vti) lies in this plane vi and v2 can 
also lie in this plane, i.e. the shock is two-dimensional. 

Two special cases arise if Вг1 E 0 • 
Then 

В t2 - j Bn [vt ] = Bt2 (74) 

and it follows that either (i) Bt2 = 0 or (ii) j2 = Bn p2 /47r. In the second case, 
B t 2 can take any value, i . e . field changes direction and is propagated with 
velocity vn2 = j / p 2 = Вп/(47гр2 ) i / 2 relative to gas behind it. This case has 
been investigated experimentally by using an annular electromagnetic shock 
tube which initially contains an axial magnetic field. The shock wave is 
then driven down the tube in the axial direction, the field taking on a 
0-component behind the shock front. 

However, most experiments to date have concentrated on the simpler, 
normal shock geometry in which Bn = 0, and Bt f 0. This geometry arises 
naturally in the cylindrical imploding pinch,for example where the unshocked 
gas initially contains a magnetic field in the z-direction. 
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ELEMENTARY ORBIT AND DRIFT THEORY* 

M . K R U S K A L 

P L A S M A P H Y S I C S L A B O R A T O R Y , P R I N C E T O N U N I V E R S I T Y , 

P R I N C E T O N , N E W J E R S E Y , U N I T E D S T A T E S O F A M E R I C A 

A. GENERAL EQUATIONS OF CLASSICAL PLASMA 

A completely ionized p lasma consists of a large number of charged 
partic les moving in an electromagnetic field consistent with their own 
presence . Given the e lec t r i c f ield ËÎ(rtt) and the magnetic f ield B^r^t), 
the motion of the i - th part ic le is determined by the equations 

r ' = v , ( 1 ) 
i l ' K ' 

miVi = q i [ E ( ^ , t ) X B ( r t t ) ] , (2) 

where r^, ^ , mi and qi are the position, velocity, mass and charge of the 
partic le . On the other hand, given the motions of all the part ic les , the 
e l e c t r i c charge amd current densi t ies erf?, t) and t) are g iven b y : 

a = f q j 6 ( ? - i f ) , (3) 

j*= rt), (4) 

where 5 denotes the Dirac delta function; and then the fields are determined 
by (boundary and initial conditions and) Maxwell's equations: 

V X В = Ц 0 Г + P 0 / C 0 E T . ( 5 ) 

VX E = - B t , (6) 

V . B = Q (7) 

-* — > a 
V - E = - T ( 8 ) 

K0 

where /UQ and к0 are the permeability and permittivity of free space. (We 
use MKS units throughout). Of these last four equations, only (5) and (6) 
are needed to advance Ё? and in time, while (7) and (8) are consistent side 

* The material of this Paper is substantially that contained in the Lecture "Notes onOrbit Theory" 
by E . A . Frieman, Summer Institute on Plasma Physics, Princeton.University, 25 June - 3 August 1962, 
which in turn followed C . Longmire (LA - 2055) closely, and C. Longmire, Elementary Plasma Physics,' 
Interscience, New-York (1963). 
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conditions, remaining valid by virtue of the other equations if they are valid 
at some initial time. ' 

Because of the non-linearity of these equations, the coupling between 
the particles and the fields, the large number of particles, and the singu-
larities of the fields (at the particle positions), it is hopeless to try to solve 
them without considerable approximation. The first approximation is the 
usual one of statistical mechanics, treating the particles as infinitely but 
smoothly dense - instead of individual particles we then have (usually 
several) density distribution functions, with the sums replaced by density-
weighted integrals, whilé the fields become smooth in the limit. Although 
the ordinary differential equations for the particle motions are replaced 
by partial differential equations for the distribution functions, this represents 
a tremendous simplification. The resulting system consists of what are 
called the Vlasov equations. 

B. SINGLE PARTICLE MOTION 

In this limit no one particle has any influence on the fields. It is there-
fore all the more worthwhile to study the motion of a single particle in given 
(smooth) fields S and 3?. Dropping the indices, (1) and (2) may be written 

r = v, (9) 

€V = E(r, t) + v X B(r, t), (10) 

where we have introduced the ratio 

(ID 

as the one combination of the two particle parameters which really enters. 
The only Maxwell equations which we must keep in mind (because they hold 
independently of the distribution of particles) are (6) and (7). 

(We may note parenthetically that all our equations can be transformed 
to emu by formally replacing § by c"1 Ŝ  /uo by 4irc2, and к0 by (4л-)"1, where 
с is the speed of light in vacuum. Our results can therefore be easily re-
written in emu). 

1. Constant uniform fields 

We start by studying the motion of a particle in the important special 
case of (temporally) constant (spatially) uniform fields. The uniformity in 
particular means that S and В are independent of r*, so (10) decouples from 
(9) and can be solved for v by itself, with r* then obtained from (9). 

(a) Only electric field 

If 1?= 0, then changes linearly with time, and ? quadratically. The 
particle accelerates freely under a constant force. 
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(b) Only magnetic field 

If, instead, É*= 0, then the component of v* parallel to В*remains con-
stant. For taking the inner product of (10) with B'gives 

t v . B*= (v X 3) • В = 0, (12) 

since a triple scalar product of three vectors vanishes if two of them are 
equal (or even merely parallel). Since we will have much occasion to 
separate vectors into components parallel and perpendicular to Swe intro-
duce the notations 

S I - » . в = |в I , 

n ' 4 (13) 

v„ = v . n n, Vj_ s v - v„ = n X (v X n), (14) 

-R.I v X (15) 

and similarly with other vectors (notably E). From (12) we therefore have 

v„ =0 , = constant. (16) 

Substituting v = v,, + into (10) then gives 

evx = vx X i t (17) 

From (17), "dotting" with (i .e. taking the inner product w i t h ^ ) we have 

4 r v ( V i X Í = 0 , ( 1 8 ) 

= o, v̂ 2= constant. (19) 

It follows that remains on a sphere with centre at the origin. Since Vx 
also lies on the plane through the origin perpendicular to B' (since ÊT-Vi = 0), 
y£ actually remains on a circle centred at the origin. 

Because the operation of "crossing" with S (taking the cross-product 
with Й) is a rotation around the axis Й, (17) indeed says that rotates 
around Й, and in fact uniformly. To veri fy this and obtain the frequency 
we use (17) twice to obtain 
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€ 2 V L = e ( v l X I ? ) ' = 

= (v^XB)XB= B v x - B - v x B - B (20) 

= - B2vx . 

Thus each component of satisfies the equation of a simple harmonic 
oscillator. Introducing co-ordinates x, y, z with the z axis in the direction 
of I?, we have 

vx = acos t + cp), (21) 

where the amplitude a and initial phase ф are arbitrary constants. We could 
write a similar result for vy , but vx and vy are not independent: Taking say 
the x component of (17) gives 

e v x = V Y B Z = v y B , ( 2 2 ) 

where we have taken B z = В ( i .e . Bz > 0). Thus 

vv = - a sin (Д; + Ф). ( 2 3 ) 
' e 

Together (21) and (23) give 

YL = (V2 + v2)* = [a2 (cos2 +. sin2)]* = a. (24) 

We see that the motion of ^ is indeed uniformly circular, with angular or 
"Larmor" frequency 

Я = ( 2 5 ) 

and period 

_ 2g|e| _ 2ятп . . 
T " В "|q|B- ( 2 6 ) 

From (9) it now follows that also undergoes uniform circular motion 
perpendicular to i f , but about an arbitrary centre R : 

x = Rx + sin (^t +ф), (27) 
В e 

R y + ^ - c o s f f t + ф ) . ( 2 8 ) 
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The frequency and period of this "gyration" are also given by (25) and (26), 
while the radius of gyration, the "Larmor" radius, is 

(To obtain formulas (25), (26), and (29) in emu, merely replace В by с"1 B). 
It should be noted that the direction^of rotation (of both ? and v'), or 

equivalently the sign of Q, depends on the sign of q, the charge of the particle. 
With B z > 0, a positive particle ( i . e . , a positively charged one) gyrates 
clockwise in the xy plane. More generally, we have a "left-hand rule": with 
the left thumb in the direction of Й, the left fingers curl in the direction of 
gyration of a positive particle. For negative particles the corresponding 
right-hand rule applies. In both cases the gyrating particle constitutes a 
circulating electric current in the same direction, given by the left-hand 
rule. 

Now the direction of the magnetic field produced by a current is given 
by a right-hand rule, as may be verified from (5): right thumb along current, 
fingers curl in direction of f? produced. Using both hands we see that a 
gyrating particle tends to produce a magnetic field contrary to the field in 
which it is gyrating. So a collection of many charged particles (a plasma) 
is diamagnetic. This may bethought of as an exemplification of Le Chatelier's 
Principle: if we increase the pressure of a plasma in a magnetic field by 
adding more (gyrating) particles, these decrease the magnetic field and 
hence the magnetic pressure B2/2^o, s o that the (total fluid and magnetic) 
pressure increases less than would be naively expected. 

(c) Both electric and magnetic fields 

Even with both Ë and Ëfpresent (constant and uniform) the parallel and 
perpendicular velocity components still decouple. The parallel part of (10) 
gives 

e v „ = E „ , ( 3 0 ) 

representing free acceleration as in sub-section B. 1(a). 
The perpendicular part gives 

ev^ = + v ± X Bi. ( 3 1 ) 

Now vj undergoes simultaneous translation and rotation, the superposition 
of which amounts to rotation about a shifted centre. To show this we first 
express as a cross-product by j?. 

^ = - a X B; (32) 

assuming that <?и = 0 this requires 
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E j . X B = B 2 » , ( 3 3 ) 

and if we use this to define <?, 

-> E X В , v 
a s B 2 . ( 3 4 ) 

then (32) does indeed hold. Using (32) in (31) gives what may be written 

e ( V l - a ) ' = (yí. - <*) X B , ( 3 5 ) 

since = 0. We see that - ~<$ rotates uniformly about the origin just as 
vf was found to do in sub-section В. 1 (b). 

Denoting the average over one gyration period by angle brackets we 
have 

< v x - 5 > 0 , > = ( 3 6 ) 

+ a . ( 3 7 ) 

Thus a is the average perpendicular velocity, called the (perpendicular) 
"drift velocity". 

Assuming for the rest of this lecture that E„ = 0, the motion of the 
particle itself is the superposition of a uniform gyration on a rectilinear 
motion of its average position 

<r*> = (v„+a)t + constant. (38) 

This average position is called the "guiding centre". If we think of a disk 
(or wheel) always perpendicular to Й and rotating uniformly about the 
(moving) guiding centre, the trajectory (in space-time) of any point on the 
disk gives a possible particle trajectory. If in particular <7 = 0, i. e. ËÎ= 0, 
then the locus of the trajectory is a helix, with axis parallel to £?- unless 

= 0, in which case the locus is a c irc l^ (as in any case the projection of 
the locus onto a plane perpendicular to В is). 

If ~a j 0 but = 0, the locus is a generalized cycloid (as in any case 
the projection of the locus is). Several possible çycloidal trajectories of 
positive particles are shown in Fig. 1. We take В as pointing out of the page 
towards the viewer and Ëf as pointing downward. To understand the motion 
we introduce the electric potential cp, satisfying 

E = -^tp , (39) 

and take the equipotentials to be horizontal lines in thè figure. Particle (a) 
starts from rest and so is subject to no v X ^ force initially; it starts to 
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DIRECTION VECTOR 

( a ) 0 6 

1 p 

( c ) 

( b ) v À Â J L U X ( b ) 

F i g . l 

Possible cyc lo idal trajectories of positive particles 

"fal l" in the potential field and so picks up kinetic energy at the expense of 
potential energy (since the total energy 

is conserved). As v increases, the v* X 5 force term becomes more im-
portant and increasingly curves the tra jectory toward the left, until the 
partic le starts to r i se , slowing up and moving straighter and eventually 
coming momentari ly to rest , before beginning another cyc lo idal a r c . 
Particle (b) has initially just the right velocity (a) so that E and v^X 3? cancel; 
thus it neither falls nor r ises , but moves uniformly leftward (the direction 
of c?) on a horizontal straight line. Particle (c) has initially a leftward velo-
city intermediate between zero and t? and alternately falls and r i ses back 
to its initial level, while always moving leftward. Particle (d) has initially 
a leftward velocity numerically greater than a, and alternately r i ses and 
falls back to its initial level, actually going rightward on the higher levels 
of its orbit, though drifting systematically leftward and forming a string of 
loops. A still faster particle would form overlapping loops, while apart ide 
moving initially rightward would be just like (d), but starting from a highest 
point of the orbit instead of a lowest point. 

(d) Non-electromagnetic force 

If some additional previously unmentioned force ï? ( for instance a gravi-
tational force ) acts on the particle, we must modify (10) by including the 
additional term q_1 F on the right. So long as this additional force is curl -
free it can be absorbed into Ë? without affecting (6). So far as this section 
В. 1 is concerned, F is uniform (and constant), hence c u r l - f r e e , and so 
produces the drift velocity 

corresponding to (34). 

2. Slightly varying fields 

The importance of understanding the motion in constant, uniform fields 
(section B. 1) is that in a very wide variety of cases of interest the f ields 
are approximately constant and uniform, at least on the distance and time 
scales seen by the particle during one gyration. This is so not only for 

£ = \ m v 2 + qcp = q ( ? e v 2 + ф ) (40) 

F X B/q B; (41) 
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many laboratory plasmas, including almost all those of relevance to the 
problem of controlled thermonuclear reactions, but for a great number of 
astrophysical and space-physical applications. In this section (B. 2) we will 
discuss the elementary picture of some of the effects of slight variations of 
the fields. The systematic formal theory of the gyrating particle will be 
given later. 

(a) Time-varying electric field 

We assume first that J? is constant and uniform-, while Ë? is (spatially) 
uniform but varies in time (slowly compared to Í2). The parallel motion 
gives nothing of special interest - we again have (30), but there is nothing 
much more to be said. 

For the perpendicular motion we again have (31). Introducing a by (34), 
instead of (35) we now obtain (35) with an additional term, 

e (^ - » ) • + £ a= (vj - a) X B, (42) 

since É? (hence a) is no longer constant. Absorbing the new term ec* into 
the cross-prodùct with as we did with the E term before, we have 

S(VL-2)* - ( v x - ? + t % # ) X B , (43) 

since В • a = 0. To exhibit the gyration we write this as 
A —> 'A 

,-> - » аX В , . о o X В 
e ( Y l - о + e — - r - ) - e ¿ g— 

B 2 ' " В 2 

(44) 
о Х В , = (v± - а + e ) X В. 

To say that Ё? varies slowly is to imply that its higher time derivatives are 
of successively smaller orders of magnitude, so we may neglect the a term 
and conclude that the expression in parentheses gyrates in the familiar way. 
Averaging over a period gives 

< v x > - a = - - 2 a X В = X B = p Ej. (45) 

as a small drift velocity in addition to the main drift a and parallel velo-
city v ,̂. 

To understand this drift velocity in physical terms, let E average to 
zero over one gyration period, so Ё? points in one direction at the start of 
the period and in the opposite direction at the finish, vanishing halfway along. 
In Fig. 2(a), the positive particle starts at the bottom of its orbit, is de-
celerated as it rises in the first half of its gyration period because È? points 
downward, and is also decelerated as it falls in the second half of the period 
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О в 

INSTANTANEOUS E ALONG ORBIT 
I N D I C A T E D BY NEARBY H E A V Y 
ARROWS 

Fig . 2 

Drift ve loc i ty o f a positive partic le due to i f 

because I?then points upward; evidently the guiding centre is moving up-
ward, which is the direction of É?. In Fig. 2(b), a positive particle starts 
at the top of its orbit instead and so is accelerated throughout, but again 
finishes higher than it started. 

(b) Space-varying electric field and time-varying magnetic field 

Spatial variation of Ё? is associated with temporal variation of Bf by (6). 
If Ë? has a curl it tends to act on the particle the same way all around its 
orbit and systematically accelerate or decelerate it, changing.the gyrational 
energy, and this is the effect we wish to calculate. 

In constant fields the velocity is the sum of three terms, 

v = v,, + a + Vgyr, (46) 

where Vgyr is the part of v* which gyrates in a circle around the origin. The 
kinetic energy of the particle has the average value 

m_ ( v2 + ^2 + v2yr ) = W|1 + W d r ¡ f t + W g y r J ( 4 7 ) 

where each cross term obtained in squaring (46) drops out either by ortho-
gonality or upon averaging; here vgyr is what was called ain sub-section'B.l(b). 
We denote Wdrift and Wgyr taken together as Wx, 

W A = W j r i f t + W g y r = f " < v i > , ( 4 8 ) 

but note that in the literature W± usually denotes just Wgyr. 
Let 1? be constant in time and Й uniform in space, and let ÊfM = 0. Let 

= 0 at the guiding centre, so <? = 0. From (31) we obtain 

( f v 8 ) ' = c v x - v x = E - v x . ( 4 9 ) 

Therefore the change in Wgyr = Wx in one period is 
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5 Wx = 6 (Imv2 ) = qj>E • vx dt = q^E • dr, (50) 

where the loop integral is taken around the gyration orbit. Using Stoke's 
theorem, with ds the vector element of area, this can be written as a surface 
integral over the circular area bounded by the orbit: 

à Wj. = qJJ fix E) • ds = - qffïïf ds 

(51) 

= - q B f / / ds. 

where we have used (6) and then used the fact that I?t is uniform. The 
magnitude of the area integral is 7rR£ and its direction is opposite to 3? (by 
the right-hand rule for Stoke's theorem and the left-hand rule for gyration, 
see sub-section B. 1(b)), so 

6 Wx = - q B f (-li 7Г R2 ) = 7Г q Bt R2 

(52) 
- -Q rn2v2 _ 27rm = тг Bt = ô- Bt Wj. , 

q B2 q B2 

where we have used (29). Now the change in В over one period is just 

6 B = B t T = B t ^ f (53) 

by (26), so we have 

W, = SB. (54) 
•D 

This states that W± varies proportionally to B, 

б (Wx/B) = 0 , (55) 

W 
ц = ¿y r = constant. (56) 

в 

This quantity ц which is conserved as В changes is actually the magnetic 
moment of the electric current constituted by the gyrating charged particle. 
For the magnetic moment of a planar current loop is the product of the 
current by the area enclosed, while the current itself is the quotient of the 
charge by the period. The (scalar) magnetic moment is therefore given by 
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k l 
T R L 

q2B m2vf _ m v f _ W ± 
= 2wm ~2B~ =B~ = ^ ' 

(57) 

There is also a simple relationship between ц and the magnetic flux encircled 
by the gyration orbit. This (scalar) flux is the product of the field strength 
by the area, 

(58) 

Thus, as В increases , say, and the lines of f o rce crowd c l o s e r together, 
the orbit shrinks so as to enc lose always the " same number" of l ines of 
f o r c e . 

(c) Space-varying magnetic f ield 

Let Ё? - 0 and let !Bbe in the z direction at the guiding centre of the 
particle. The spatial variation of Î? locally is given by the dyadic VBl i. e. 
the matrix 

twist 

X / 
I а в , \ / Э В , , 

X X 
> X 

Э By s X _ 
1 Эх X \ 9 y 

4 

curvature 

I 3 B x i 
——— I 

a z i 

9 В 
I 

s 
/ \ 

\ t a z / 
\ \ / 

\ \ 

- N \ \ 

Эх 

а в \ \ 
— 5 1 a y J \ 

9 B Z \ 

x 9 z ) 
gradient В d ivergence 

(59) 

The terms split into four kinds as indicated. We will interpret the physical 
significance of the terms by examining the corresponding behaviours of the 
lines of magnetic f o r ce . Actually all the terms are present at once, 
in general , and their e f fects add. 

A magnetic line of f o r ce , by definition, is a line (i. e. curve) every -
where tangent to the magnetic field there. If dr is the differential of position 
vector along a magnetic line, then dr must be parallel to ё , 
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- » dr X В = 0 , (60) 

so that dr is an (infinitesimal) scalar multiple of B, i. e. 

d x = d Z = d z ^ 
Bx By Bz 

Since Î? is mainly in the z direction it is most convenient to describe a line 
of f o rce by giving x and y as functions of z: the equations these functions 
satisfy are 

dz B z ' dz Bz ' v ' 

Divergence terms. It is the diagonal terms of (59) which contribute to the 
divergence of 3 , and we have 

Эх 3y 9z 

To see the significance of these terms for the magnetic line geometry we 
assume that they are the only non-vanishing terms and write Bx = (ЭВх/Эх)х, 
e t c . , by a Taylor expansion, remember ing that B x = 0 at the origin (the 
guiding centre) and keeping only the next (f irst-order) term. The line of force 
crossing the z = 0 plane at x0 and yo approximately satisfies 

dz Bz Эх X ° ' dz Bz Эу У о ' ( Ь 4 ) 

, 1 ЭВХ , 1 ЭВу , „ е . 
Х = + у = У о + в ; ^ 7 У о z • ( 6 5 ) 

Thus the lines diverge (or converge) in the xz plane as in Fig. 3, and s imi-
larly in the yz plane. 

Taking the z ( i .e . parallel) component of (10) gives 

„ 9 & L Э В х . evz = v x B y - v y B x = v x - ^ L y - v y — x 

, ,3By , . ЭВХ ¡evj. . . = ( a c o s ) - g ^ ( e ^ - c o s ) - ( - a s i n j - g ^ f g - s m ) , 

(66) 

where we have used (21), (23), (27), and (28). Averaging over a per iod 
and using (24) and (63) gives 
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Fig .3 

Magnetic line geometry corresponding to divergence terms of matrix (59) 

K v z > 
i CVJL Э В у i e v j Э В Х 

В Эу В Э х 

Wl Э В г 
qB 9z 

eví ЭВг 
2B Э z 

(67) 

Since there is no electric field, the total (kinetic) energy of the partic le 
is constant (because the í X S always acts perpendicular to the velocity and 
hence does no work on the particle), so 

W x = - W „ = - < f - v ' y = - m v z < v z > 

Wx 9BZ 

В 9z Vz 
Wj. 9BZ dz 

= В 9zT dt 
Wx dB 

: В dt 

(68) 

Thus we find that 

so that the magnetic moment is again a constant. 
Generalizing (67) from the particular choice of co-ordinate system, we 

obtain 

mvM = - ^ n - V B = (70) 

Since ï i - ^ i s the spatial derivative along a line of force , the particle, in 
moving as if it were constrained along the line, feels juB as if it were a 
potential. This is the basis of the well known "magnetic m i r r o r " effect . 

Curvature terms. The terms ЭВх/Эг and 9By/9z have similar effects. Taking 
only the former we have, from (62), 
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X 

Fig. 4 

Curvature of lines of force corresponding to curvature terms in matrix (59) 

so that the lines of force curve in the xz plane as shown in Fig. 4. 
Along the line of force through the origin, we see from similarity of tr i -
angles (Fig. 5) that 

Bx z 
В R „ 

(73) 

where Rc is the radius of curvature; from differential geometry the vector 
radius of curvature R*c is determined by 

= (74) 
n c 

Fig. 5 

Showing relation of radius o f curvature R c to Bx and B2 

The guiding centre of the particle moves along the line of force through 
the origin and so feels a centrifugal force 
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2 1 Rr (75) 

This force is perpendicular to В and can be thought of as an extraneous 
force as discussed in sub-section B. 1(d). By (41) we expect it to produce 
the drift velocity 

-» -» 9 FX В _ mvji 
qB2 qB2R< S c X â (76) 

Note that this drift depends on q, so that positive and negative particles 
drift oppositely, making an electric current. 

О в 

Fig. 6 
ÔB Gyration of particle corresponding to term of matrix (59) 

Gradient of field strength terms. The terms 9B z / 9x and ЭВ2/Эу have 
similar effects, and we take only the former. The field В has only a z com-
ponent, wjhich varies with x. If 9B z /9x > 0, the particle gyrates in atighter 
orbit on the right than on the left (Fig. 6) and so drifts upward, i. e. in the 
positive у direction. It is evident that the orbit is symmetric about a point 
of vertical velocity (vx = 0), hence there is no drift in the x direction - the 
x motion is periodic, the у motion periodic and uniform rectilinear super-
imposed. Denoting change over one gyration period by 6, we have 

0 = 5vv = ф dvv = ф vv dt 

(v X BL dt = vyBzdt = | j B z d y , 

(77) 

and a Taylor expansion gives 

В = В + 
9BZ 

Эх 
x, (78) 

where В means the (constant) value of В at the guiding centre. Thus we 
have 

6 
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О = ф ( В + ^ х ) с ! у 

Bfdy+-||- z Jxdy (79) 

since xdy is the negative of the element of area. We can now use (26) to 
compute the drift velocity 

Í Z = 1 1 ® ? _ m v | _ ЭВг 
T В Эх 12тгт 2q В2 Эх 

(80) 

; и ав 
qB Эх " 

Generalizing to vector form we find the drift velocity 

qB B X (81) 

This can be interpreted in accordance with (41) as the drift velocity resulting 
from a force 

F = - ц VB = - ^((iB), (82) 

so that again we find /uB acting as a kind of potential. 

Field twist terms. The remaining terms ЭВх/Эу and ЭВу/Эх enter into the 
z component of V X ll, i . e . into Ëf- ( ^ x l l ) . These terms represent twisting 
of the lines of force about each other. They have no particular interest for 
particle motion. 

C. MOTION OF LINES OF MAGNETIC FORCE 

It is often said that particles drift in such a way as to stay on a line of 
magnetic force. What amounts to the same thing but from a different point 
of view, it is said that lines of magnetic force are " frozen into" an ideal 
plasma, being carried along by the fluid motion. These motions were clari-
fied by W. Newcomb in a basic work. 

In classical electromagnetism lines of force are defined instant by in-
stant, as discussed in sub-section B- 2 (c). No meaning is attached to the identity 
of a line of force as persisting throughout an interval of time, nor can be in 
any natural way. Any velocity field v* ( f î t ) such that points on a common 
line of force flow always into points which are still on a common line of 
force may be called " l ine-preserving" , and it is permissible to think of 
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each line of force as a curve with an identity in time, each point of the curve 
moving with velocity v̂ . This is even more the case if the velocity field 
is " f lux-preserving" as well, i . e . , if the "density" of lines of force 
is correctly represented by the flow, so that we do not have to think of lines 
of force as being created or destroyed during the motion. 

The main theorem is the following: any velocity f ield v* satisfying 

Й + v X В = 0 (83) 

is both line-preserving and flux-preserving. This equation is the well known 
"Ohm's Law with infinite conductivity" of ideal magnetohydrodynamics. 

The theorem may equivalently be stated: if 

Ё? • В = 0, (84) 

then the velocity field 

v г E X B/B2 (85) 

(previously called <?), indeed any velocity field whose perpendicular part 
is given by (85) and whose parallel part is arbitrary, is both line-preserving 
and flux-preserving. Condition (84) is generally satisfied to good approxi-
mation for hydromagnetic flows because any parallel electric field which 
tends to develop is neutralized by parallel flow of the electrons, which are 
relatively mobile compared to the heavier ions which carry the main mass. 

We will prove this theorem in several different ways. 

1. First proof of line preservation 

To prove that lines of force are preserved, let f be any function such 
that 

B . V f = 0 (86) 

at some initial time; this means that f is constant on each line of force , 
since Й - ^ i s a tangential differential operator. Let f be "carried along" 
by the velocity field v11, i. e. let f be constant on any trajectory moving with 
velocity v; this is expressed mathematically by 

df/dt = 0 , (87) 

where 

We wish to prove that (86) remains valid. 
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We start by obtaining the commutation law for the operators d/dt and 
Vas applied to any function f, not necessarily satisfying (86) and (87). Since 
t and r̂  are independent variables, 8/9t and v'commute, so 

Э —» -»-» ' -» - » - » - » = - Vf + V v . V f + V V V f (89) dt 

dt 

V . (90) dt dt 

For f satisfying (87), (89) becomes 

d - » - » - » -» , „ . , j Vf = - Vv • Vf . (91) 

We next compute the derivative of Й, using ( 6 ) and (83): 

f B = - ^ X E = ^ X ( v X B ) 
ot 

—> —> —> —» = В • Vv + (V. B) v - v . VB - (V- v )B, 
(92) 

where the expansion of the triple cross-product gives two terms, each of 
which itself consists of two termsjpecause ^acts on v* and S in its capacity 
as a differential operator. Since V . 3 = 0 we obtain 

- ¿ B = ¿ В + v - ^ B = B-^v* - B ^ - v . (93) at dt 

Together (91) and (93) give 

^r ( B . ^ f ) = (B-^v*- B ^ - v ) - ^ f - B - ^ v - V f 
d t (94) 

= - (V-v)B-Vf . 

Thus if vanishes at one time, it also vanishes a small time At later, 
at least to first order in At. From this it follows that (86) remains exactly 
valid for all time. In fact, (94) is a regular linear homogeneous first order 
differential equation for and has therefore a unique solution for any 
given initial condition, and if vanishes initially, that unique solution 
is obviously (86) for all t. 
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Since any function f constant on a line of force remains constant on a 
line of force as it is convected with the flow v, it follows that the lines of 
force are preserved under the flow. 

2. Second proof of line preservation 

Let 5 be a differential operator representing differencing of neighbouring 
points. Then the condition that neighbouring points lie on a common line 
of force is that 6"? be parallel to Êt, 

6 г х ё = 0 . (95) 

Since б commutes with d/dt, we have 

| - 6 ? = 6 ^ = 6 ? = 6 ? . $ ? . (96) dt dt \ ' 

where the last step is an application of the chain rule of differentiation. By 
(93) we have 

(бг X B) = S r . ^ v X ES - В • ^ v X 6 r*- 6r X В v. (97) 

If (95) holds at one time, then the last term vanishes and also 6r*= аЙ, where 
a is an infinitesimal scalar, so that the first two terms on the right cancel. 
Thus (95) continues to hold if it holds initially. 

We can actually put (97) into the form of a regular linear homogeneous 
equation for 5г* X Й, as (94) was for For this we need an identity 
which we will have further use for later, and which it is perhaps simpler 
to write down directly and verify rather than to obtain by successively trans-
forming one side till it becomes the other. The identity is 

A-ГО X B - В-ГОХ A = ГО: ÏÏ A X B - ® . ( A X B), (98) 

where Ж and В are arbitrary vectors, 3 is an arbitrary dyadic, and Ш is 
the unit dyadic; here Ï is just the trace of ID . To prove (98) it suffices 
to prove that its inner product with each of Ж, Й and Ж X Й is an identity, 
for these three vectors are independent (unless É X Ê = 0, in which case 
the right side vanishes, and so does the left side because Ж or 5 is a scalar 
multiple of the other). 

Dotting (98) with Í or gives an obvious identity. To prove the third 
identity, we start from the dyadic formula. 

—к —> —» —» —> I (AX B) • С = A B X С + В CX A +C A X В , (99) 

which is immediately verified by dotting on the right by Ê, and (5 in turn. 
Taking the double inner product of (99) with I?gives 
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(AXB) • (5 = 1 - ( S x S) • (5 - В • (ï> X A) • <î 

(100) 
+ C? - D- ( 1 x 5 ) , 

and now taking (? = ^ X î? gives a trivial rearrangement of the formula 
obtained by dotting (98) with Í X S. 

Having proved (98) in general, we now specialize it by taking ©to be 
first ^ v and second the transpose of to obtain the two formulas 

— > > > >—> —> '—> —> 

A • v v X В - B ' V v X A = V ' v A X B - v y . (AX B), (101) 

I x ^ V ' B - B X ^ v . A = ^ . v Î X B - ( Ï X B ) ^ v . ( 1 0 2 ) 

The latter will be used later; taking It = 6 ? in the former enables us to 
write (97) as 

^ ( 5 r X B ) = - W - (6rX B). (103) 

This is the desired linear differential equation for ô ? X 5?, showing that 
(95) remains valid if valid initially. Therefore two neighbouring points on 
a line of force stay on the same line of force in the course of time. Inte-
grating along the line, the same is true also for non-neighbouring points. 

3. Proof of flux conservation 

Let c? be an element of surface, so that the corresponding magnetic flux 
is Й- cf. The logarithmic rate of change of the volume element ôr^-ô^is 
given by the divergence of the velocity field, 

i (ór . ст) ;= S r - c t ^ . v ; (104) dt 

this is what the divergence means. (The formula follows immediately from 
the possibly more familiar equation of continuity of a field, dp/dt = - p ^ - v , 
where p is the mass density, together with the law of conservation of mass 
d/dt (рбг^-с?) = 0). Expanding and using (96) gives 

6r . Vv .a + бг . = бг . a V • v . (105) 

Since 6 ? is arbitrary we have 

(106) 
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It is now simple to compute that the rate of change of flux is 

(B-a) = ( B - ^ v - В V • v ) • a + В • (ст ^ - v - ^ v - с т ) = 0, (107) at 

which shows that flux is conserved. 

4. Simultaneous proof of line preservation and flux conservation 

A frequently useful representation of a magnetic field 1§ is 

B = ^ f X V g . (108) 

One immediate advantage of this form is that it implies 

В = (V X V f ) . Vg - V f • (VX Vg) = 0, (109) 

since the divergence of a curl vanishes; the divergence-free character of 
ï l is implicit in (108). Further, we have 

= 0 , B - ^ g = 0 , ( 1 1 0 ) 

which state that f and g are constant along lines of force, or, in other words, 
that a line of force lies in a surface of constant f as well as in one of constant 
g, hence is the intersection of such surfaces. Evidently a line of force is 
specified by giving a pair of values for f and g, so that f and g serve as co-
ordinates for the family of lines of force. 

In fact f and g are a pair of flux functions. By this we mean that the 
magnetic flux of the tube of lines with f between fo and f i , and g between g0 
and g b is ( f j - f0) (gi - go); the magnetic flux of a tube is the flux through 
any cross section of the tube, all cross sections having the same fluxthrough 
them because Й = 0. To show that f and g are a pair of flux functions it 
suffices to show that the flux of an elementary tube df dg ( i .e . of lines 
between f and f + df and between g and g + dg) is just df dg itself. To see this 
we introduce an arbitrary function h (not constant on lines) to serve as a 
third co-ordinate in space. We first observe that the volume element in 
physical space is 

df dg dh 
( ^ f X ^ g ) ^ h ' 

where the denominator is just the Jacobian of f, g, h. Now the orthogonal 
distance between two neighbouring surfaces of constant h is dh/|^h|, so 
if c? is the element of area on such a surface, then the volume element is 

' A t ( i m 
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Equating this to (111) and using (108) gives 

= df dg. (113) 

Since is the unit normal to the surface of constant h, we have 

(114) 
[ Vh[ 

В - a = df dg, (115) 

whence df dg is indeed the element of flux. 
It is instructive to see how to construct flux functions for a given 

field Ê, and how much freedom is involved. First take an arbitrary surface 
cutting across the lines of force (which could be thought of as a surface of 
constant h, though we do not use h any more) . On this surface take an 
arbitrary (smooth) function f (see Fig. 7). Draw a single arbitrary curve 
cutting across the curves of constant f, and on that curve assign g arbitrarily, 
say g = 0. Along each curve of constant f, assign g so that gdf is the flux 
through an infinitesimal strip df from the g = 0 curve to the point of assign-
ment. It is clear that d fdgis the element of flux on the surface chosen. 
Finally, extend f and g throughout space as constants on each line of force 
in accord with (110). 

CURVES OF CONSTANT f 

F i g . 7 

F l u x e l e m e n t g d f 

To show that f and g as so constructed do satisfy (108), we observe 
that Й is orthogonal to both and ^g, by (110), hence parallel to X ^g, 
so that 

X ^ g = a ( 1 1 6 ) 

where a is a scalar function. Then 
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0 = V . (Vf X V g ) = V . ( a B ) 

- » —> - » - » 
= В . Va + aV- В = В • Va, 

(117) 

whence a is constant on lines of force . But a = 1 on the chosen surface, 
since f and g were chosen to be a pair of flux functions on that surface, i. e. 
to satisfy (115) there. It follows that a = 1 everywhere, and so (116) reduces 
to (108). 

We now prove that if (108) is satisfied at one instant of time and if f and 
g are carried along by v*, then it remains satisfied for all time. By (91) 
and the same equation for, g, 

^ - ( V f X V g ) = - ( V v - V f ) X Vg - Vf X (Vv. Vg) 

= ^ g X ^ v ^ f - ^ f X ^ V ' ^ g 
(118) 

= ^ . v f g X ^ I - ( ^ g X ^ f ) . ^ v 

= ( ^ f X ^ g ) - ^ v - ^ f X ^ g V . v , 

where we have applied (102) with Â* = ^g and 3 = ^ f (here В is not to be 
confused with the magnetic field). We observe that (118) is precisely the 
same first order differential equation for ft X ft* as (93) is for the magnetic 
field Therefore if В and ft X are equal initially, they remain equal. 

D. MOTION OF PARTICLES WITH LINES OF FORCE 

To lowest order the velocity of the guiding centre of a particle is 
v = v„ + <?. Since this velocity satisfies (83), we may ascribe it as the 
velocity of lines of force consistently with line preservation and flux conser-
vation. Now a is given, by (34), in terms of the electromagnetic fields alone, 
but v„ varies from particle to particle. However, in thinking of the motion 
of a geometric entity such as a line (of force), only the perpendicular velo-
city is significant; the parallel velocity component moves the line into itself, 
i. e . , does not change the line at all. This is because we have assigned an 
identity to a line of force as a whole, but not to points on a line. Any parti-
cular ^satisfying (83) does of course lead to an assignment of identity to 
points, but many different velocity fields are consistent with (83) for a given 
electromagnetic field, and they identify points differently, but lines in the 
same way. 

Since the perpendicular velocity of the guiding centre is for all 
particles whose guiding centres are at the same place, and ? i s a preserving 
and conserving velocity field, we always choose <?to be the (perpendicular) 
velocity of lines of force (so long as Й . S vanishes, at least approximately) 
and have the result that (the guiding centres of) all particles move (approxi-
mately) with the lines of force, i. e. in such a way as to stay always on the 
same line of force. 
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This statement has implications that do not involve the arbitrary and 
unobservable assignment of identity of lines. In particular, it implies that 
any two particles on a common line of force at one time are also on acommon 
line of force at another time, even if we do not choose to think of it as the 
"same" line. But in fact we do so choose. 

It should be noted that this "locking-together" of particles and lines is 
valid only in the leading approximation. The small (next order) drifts in 
general depend both on the particle parameter e and on the velocity of the 
particle, so that no assignment of motion to lines could follow all particles 
at once. 

This state of affairs is in contrast to that for the adiabatic invariant ц, 
which is constant not only to dominant order but, as we shall see, to all 
orders in the appropriate expansion. Even so, ц is not exactly constant, 
since the constancy is to all orders of what is not in general a convergent 
series, but rather an asymptotic series. 



ADVANCED THEORY OF GYRATING PARTICLES* 

M . K R U S K A L 

P L A S M A P H Y S I C S L A B O R A T O R Y , P R I N C E T O N U N I V E R S I T Y , 

P R I N C E T O N , N E W J E R S E Y , U N I T E D S T A T E S O F A M E R I C A 

Let a magnetic field 3 and an electric field Й be given as functions of 
position r and time t. We are interested in the non-relativistic motion of 
a charged "test" particle in the familiar "guiding-centre" approximation [1]. 
This applies when the motion of the particle may be treated approximately 
as a gyration (uniform circular motion) orthogonal to B, of small radius 
but finite velocity (hence large frequency), superimposed on the finite ve-
locity motion of a so-called guiding-centre. The electromagnetic fields 
at the position of the particle change only a little during one gyration period. 

Let the mass of the particle be m and its charge e. The guiding-centre 
approximation may be formalized by considering the ratio e = m / e to be 
numerically small, but the velocity of the particle and the electromagnetic 
fields to be finite. We are, therefore, interested in analysing the solution 
of the equation of motion of the particle, namely 

e r*= E(r)t )+rX B(rtt), (119)+ 

in the limit as e approaches zero. 
Because the order of (119) is reduced by formally going to the limit 

e =0, it is clear that simply a representation of ? by a power series in e 
is inappropriate. Instead, an asymptotic analysis is called for . It turns 
out to be appropriate to write 

c o 

e|n|sn(t) exp[n C(t)/e ] , (120) 
n= - OO 

where each vector function Én(t) is itself a power series in e, starting with 
a term of zero'th order . The characteristic function C(t) can be chosen 
independent of e, but it may (as we shall see) be convenient to choose it 
to be a power series in e . The functions Й„ and С may be complex but г 
must be real. 

—» 

The conditions on the Rn and_C are_found by substituting (120) and its 
derivatives into (119), expanding E and В in Taylor series around Йо (note 
that ? - Йо = O(e)), and separately equating the corresponding coefficients 
of each exponential exp[nC/e] . These coefficients are themselves power 
series in e, of course. 

* Based on KRUSKAL, M . , "The gyration of a charged particle", PM-S-33, NYO-7903 (1958). 
The Appendix, which is new, serves to fill several gaps in the treatment. 

t Numbering continued frcro KRUSKAL, M. , Elementary orbit and drift theory, these Proceedings. 
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For n = 0 this leads to 

e R ^ E + ^ X B + e C l R i X t K j ^ t - B t i X i R ^ - V B Î Î + O i e 2 ) ( 1 2 1 ) 

where here and later through (142) E and В and their derivatives are under-
stood to have the arguments t. The physical content of (121) to lowest 
order is that the velocity of the guiding centre Й0 orthogonal to 3 is (Й X B)/B2, 
which is well known. 

From Eq. (121) trivially follows 

Й : Й = 0 ( е ) (122) 

which is a condition not so much on the trajectory as on the given f ields. 
Since physically Ё? and Й seem independent of e , this would appear to re-
quireE-B = 0. However, we certainly do not wish to be so severely restricted. 
The way out is to let the original fields E?(rj t) and t) be given as 
power series in e . Mathematically this is an entirely natural and almost 
trivial generalization, but it permits us to treat physical situations where 
the field vectors are not strictly orthogonal (though they must be so approxi-
mately; this will often be the case in plasmas of high electrical conductivity, 
for instance). We assume that ë fO(e) at any ooint on the trajectory. 

The physical significance of (122) is that E can have no component along 
â to lowest order, because if it did, it would give the particle a large ac-
celeration and hence a large velocity (of order 1/e) . This would contradict 
the condition that the fields seen by the particle be nearly constant during 
one gyration period. 

Only the components of orthogonal to В are determined directly from 
(121); information on the parallel component is hidden. The information 
may be uncovered by dotting with Й and dividing through by e, which yield 

R 0 - В = Е " 1 Й : B + C [ R J X (R.JT V B ) - R . J X ( R J - V B ) ] - B + 0 ( E ) . ( 1 2 3 ) 

This is the desired condition. It determines the parallel component 
of the acceleration, rather than of the velocity. 

Returning to the substitution of (120) into (119), from the terms involving 
exp [C/e] ( i .e . n = l ) we obtain 

C 2R!= CRiX B+CXe). (124) 

Now we do not permit С to be O(e), as this would vitiate the whole point of 
the representation (120). Hence we may divide through by С o r by C 2 . 

Taken to lowest order, (124) may be construed as a homogeneous linear 
equation for Й1. Indeed, we are presented with an eigen-value problem, 
for T !̂ is not generally O(e). Since 

B-ñ j=0 (e ) (125) 

(as seen by dotting (124) with by using (124) twice we obtain 
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C 2Ri= (RjX В) X B+0(e) 
(126) 

= - B 2 R 1 + 0(e) . 

Thus we have determined the eigen-values С = ± i|é| + 0 (e ) , and if С were 
not permitted tô depend on e this would determine it completely (except for 
the trivial choice of sign). It greatly simplifies the formalism, however, 
to choose 

C - i | B | , (127) 

which is a series in e not only because É(r,t) is, but also because so is R*o» 
the argument of B*in (127). 

We pause to point out that although from (124), by dotting with R b we 
deduce that Й j =0(e), this does not imply Hj =0(e). For R^ may be (indeed 
must be) a complex vector . 

A further point to notice is that since С is purely imaginary, the con-
dition we must impose to insure that r as given by (120) be real is 

R - n = R £ . ( 1 2 8 ) 

where the asterisk indicates the complex conjugate. We may, therefore, 
restrict ourselves to the determination of Йп f o r n g 0. 

Returning to (124), it is easily seen that the eigen-vector to lowest 
order is uniquely determined up to an arbitrary multiplicative complex 
scalar. For by (125) its component along S vanishes, while its components 
in any two mutually orthogonal directions both orthogonal to 3 are determin-
able from each other by (124) itself. 

Let e F denote the O(e) terms in (124), so that 

C 2 R 1 - C R 1 x 3 = e F . (129) 

Viewing this as a linear system of algebraic equátions for R?i, we have 
determined С so as to make the system degenerate (which ensures that the 
corresponding homogeneous system has a non-trivial solution). It follows 
that there is a linear condition on the non-homogeneous terms e F ' for (129) 
to have a solution R^ It is easily verified that the necessary and sufficient 
condition is 

C ^ + C Í X B + Í . B B ^ . (130) 

Carrying out the derivation of (124) to the next order gives 

F = R r VE + RjX B + RqX ( R r V B ) - C R X - 2 CRj+Ofe). (131) 

This together with (130) gives to lowest order a first order differential 
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equation for Si . Since Й1 has already been determined up to a complex 
multiplier, this amounts to a first order differential equation for the de-
pendence of the multiplier on t. 

Returning once again to the substitution of (120)' into (119), from the 
terms involving exp[nC/e] (n Ш 2) we obtain 

n 2 C 2 É n = nC:&nxâ+C?n, (132) 

where to lowest order (zero'th) Cin is a polynomial in the ( lápsn-1) with 
space derivatives of l l as coefficients. Since С as previously determined 
is not an eigen-value of the homogeneous equation for R¡, obtained from (132) 
by deleting Gra, it follows that is determined algebraically by (132). 

We now have a complete set of recursion relations determining the 
Rn to every order (with respect to expansion in powers of e) in terms of the 
lower order Йп. The original exact equation (119), formally an ordinary 
vector differential equation of second order, constitutes a sixth order 
system of ordinary scalar differential equations. In our recursion relations 
these orders re-appear as follows: Two orders from the two components 
of Ко (which is real) orthogonal to 3? as determined by (121). Another two 
orders from the single component of Ко the direction of Й as determined 
by (123). None from (124) which determines Ri up to a complex scalar 
multiplicative function. Finally, two more from the first order complex 
scalar differential equation for that function. 

Although our procedure has been entirely formal, it has been proved 
by BERKOWITZ and GARDNER [2] that the series (120) which we finally 
obtain really is an asymptotic series to all orders in e for the exact so -
lution of (119). 

Incidentally, it turns out that by using (124) and (128) it is possible to 
write (123) in the form (see Appendix) 

R0 • В = e"1 E - B - i | ft/^-VB^+Oie). (133) 

Since the only way f?! (with two degrees of freedom) enters this equation is 
through its absolute value (with one degree of freedom), it is suggested that 
we examine how | Ki| varies. From our differential equation for Si, i . e . 
(130) with (131), we can compute With the help of the Maxwell 
equations 

- v 

vxS+|f = o, V-B = 0, (134) dt 

we can reduce the resulting expression to 

|Ri|' = - | 3 i | - ^ + 0 ( e ) . (135) 2|в| 

In view of this, í?o and | satisfy at each step of the recursion a system 
of differential equations of fifth order. The one remaining degree of free-
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dom in lli then satisfies a first order differential equation involving Йо and 
I . (See Appendix f o r relation between and the gyration radius. ) 

It may be noted that (135) can be integrated explicitly to lowest order, 
yielding 

I Ri|2 |3|=k+0(e), (136) 

where к is a constant. This exhibits the well-known lowest order constancy 
of the "magnetic moment" of the particle [1], although in the form written 
it more obviously exhibits the equivalent lowest order constancy of the mag-
netic flux enclosed by the gyration of the particle, as viewed from the 
Galilean frame of reference in which the guiding centre is instantaneously 
at rest. 

Having completed the expansion of the equations of motion, we now claim 
that there is an adiabatic invariant which is constant to all orders in e, and 
which is given by (136) to lowest order. (This has already been shown to 
the next order by HELLWIG [3] ). It must be emphasized that this result 
is only asymptotic, i . e . that constancy to all orders does not mean exact 
constancy, but merely that the deviation from constancy goes to zero faster 
than any power_£>f e . The adiabatic invariant, furthermore, is in general 
not just I ífj|2 I B|, but an infinite series whose leading term is | ïti|2 | á| . 
However, if the particle is in a region of space-t ime where the e lec t ro -
magnetic field is constant (both spatially and temporally), then the higher 
order terms vanish and the invariant is just | Ri|2 | . 

The method of proof was suggested by KULSRUD's proof of an analogous 
statement for the harmonic oscil lator [4] . If in (120) we replace the 
bracketed exponent by n i б and specify that 

0 = |3|/e, (137) 

we have in view of (127) an equivalent representation, in which ? appears 
as a series of (non-negative) powers of с with coefficients which are 
functions of 0 and t, periodic in 0 with period 2jr. From here on the argu-
ment proceeds quite generally for any system describable by a Hamiltonian; 
it is well known that a particle moving in a given electromagnetic field consti-
tutes such a system (see Appendix). 

Let <J and p be canonical variables and H(<j, p, t) the Hamiltonian. Sup-
pose q and p can be written as functions of two independent variables t and 
0, periodic in 0 with period 2т, in such a way that there is a similar function 
a of t and в with the property that if 0 is made any function of t satisfying 
0 =a (independently of the initial value of 0), then q and"p constitute a trajec-
tory. (In our particular application here a is a function of t only, given by 
(137).) Using subscripts to denote partial derivatives, we have Hamilton's 
equations of motion / 

H-> = dq/dt = qt +q eo, 
(138) 

-Hq»=dj?/dt = p t + p e * . 
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Taking the inner product of these with pe and qe respectively and subtracting 
gives 

P e ' < ? t - q e - P t = H p > - P e + H f ( 1 3 9 ) 

Remembering that в and t are independent variables, we integrate with re-
spect to в from 0 to 2тг. The right-hand side then obviously vanishes, and 
if the first term on the left-hand side is integrated by parts the result can 
be written 

2ir 

- / ( p - q e t + q ^ - P , ) d e = 0 . ( 1 4 0 ) 

But this is a perfect derivative with respect to t, whence 
2ir 

K=Jp-qedQ = j f p . d q . (141) 
0 

Thus the usual "adiabatic invariant" or action integral^"p-dq is indeed a 

constant К whenever and to whatever extent one can introduce an auxiliary 
variable в with the properties specified. 

In the application to the gyrating particle, it may be noted that in regions 
where the fields if and В are constant (spatially and temporally) and are 
orthogonal to all orders, it can be easily proved that î?0 is a linear function 

o f t , is independent of t, and ^2» Й3, ••• all vanish. W h e n ^ p - d c j i s 

evaluated in such a region, it turns out that К is given there (except for a 
trivial numerical factor) by | | . To compute the higher order terms 
at a general point is in principle straight-forward but quickly becomes rather 
lengthy. To the next order above the lowest, however, it is not yet by any 
means prohibitive. (See Appendix. ) 

Actually, it is more useful to write the invariant in terms of familiar 
dynamical variables, h e r e ? and v, where 

- I 
e'" '(n С 1?п/е + Йп) exp (n C/e) . (142) 

It is convenient to introduce 

v ^ v - l ^ v B + E X ^ / ^ ; ^ (143) 

in (143) and the following equations Ëf and 3 and their derivatives are to be 
evaluated at 7, and not at Йо as in the preceding formulas. Note that %is 
the component of the velocity v perpendicular to 3 in á frame of reference 
in which ^ vanishes instantaneously at 

Without giving any details or indications of the method of calculation, 
we merely state that the constant of motion written explicitly to the first 
two orders turns out to be 
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I ЗГ1 vL2 +e I i f 5 { 4 vx2 v r ( 3 X ^ ) 

+ ( 1 3 2 £ ^ + f v x X 3 3 ) : - ^ X t o ) ( 1 4 4 ) 

here 

R
0
= v - v

1
+ O ( e ) = ( B - v B + E X B ) / B 2 + o ( e ) . ( 1 4 5 ) 

The first term of (144) is the well-known lowest order invariant [1] . If Ëf 
vanishes identically the constant of motion can be simplified considerably 
and written 

I B|-l ^2 _e|3|-6 [ ( v X B ) . ( V ^ ( ^ B + B - v v 1 

(146) 
+ É- v (VX g) - ( I Ê + 2 3 - v v j ] + 0(e2). 

Similar methods can be used to prove that the adiabatic invariant for 
the anharmonic oscillator is constant to all orders. The same result holds 
for a large number of systems (at least when only one frequency is involved). 
(See end of Appendix for reference and for explanation of how the general 
theory applies to the gyrating particle. ) 

A P P E N D I X 

We solve Eqs. (9) and (10) systematically to all orders in the limit e-> 0, 
keeping ЁГ, arçd v finite, and the characteristic distances and times of 
change of В and E also finite. The limit e -» 0 is appropriate because, by 
Eqs. (26) and (29), the period and radius of gyration are proportional to e, 
so that the fields experienced by the particle are in fact then nearly constant 
during one gyration. [Eqs. (9, 10, 26 and 29) are on pp. 68, 70 and 71]. 

The derivation of (133) from (123) is based on (101). The expression 
in square brackets in (123) equals 

— > — » — > —> —» —» - > —> —> —> —> —» 

R 1 -VBXR. 1 -R. 1rVBXR 1 =V-BR!X R_i-VB- (Rj X R-i), (A. 1) 

and of course V-В = 0. By (124) we have 

С Ü X i?.! X gli = Щ • í t r & Йа ~I Ü |21 Ё], (А. 2) 
in view of (128) and (the complex conjugate) of (125). Since 
we immediately obtain (133). More generally, we can write (121) as 

e R 0 = E + R 0XB-e|Ri| 2BVB+O(e) . (A.3) 
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In order to interpret | Rj|2 we compute the gyration radius. From (120), 

? = Й 0 + е Й 1 е с / б t e l j e - c / £+0(e 2 ) , (A. 4) 

so the square of the gyration radius is 

R2 = ( r - S 0 ) 2 = г е ^ - ^ + С К е 3 ) =2e2| Rjp+Ofe3), (A.5) 

since ïtf =0(e) and it 2 =0(e ) , as pointed out in the paragraph between (127) 
and (128). Thus | Rj| is approximately the gyration radius up to a simple 
factor. Note that we must write | Ri| rather than Ri because Ri is a com-
plex vector, so that Ri s (í?i2)* could be zero (as it is , approximately) or 
even negative, whereas | = {Ri • R * ï = (R^ • RT-I is necessari ly non-
negative and vanishes only if Si =0. 

The velocity of the particle is 

v = ? = R 0 + C R i e C / £ - CR. ie ' C / c +0 (e ) . (A. 6) 

The guiding-centre velocity Ro consists of what we previously called VH+CC, 
and the gyration is in the exponential terms. Evidently 

v ^ = ( v - S 0 f « - 2 C 2 R 1 - C 1 = 2B2lRi|2. (A. 7) 

The construction of the adiabatic invariant is based on the Hamiltonian 
character of the equations of motion of the particle. Let A and ф be the 
electromagnetic vector and scalar potentials, so that 

VX A = B, (A. 8) 

- § f - V 4 > = E. (A. 9) 

С 
The Hamiltonian of a particle of mass m and charge q is 

H = ¿ ( ? - q á ) 2 + q ? , ( A . 1 0 ) 

) —* 

where p is the canonical momentum conjugate to r (the argument of A and 
ф). To see this we write Hamilton's equations 

-» ЭН 1 .-» Т», , Л 11\ 
V 5 r = ^ = m ( P - q A ) < ( А Л 1 ) 

p = E - V H ^ v í ' l p - q í l - q V ? = q ^ - V - ^ ) . (A.12) 

7* 



GYRATING PARTICLES 99 

Eliminating p in favour of v by (A. 11) we have 

p = mv+qA = mv+q( ), (A.13) 

so (A. 12) becomes 

— v = VA- v - v VA-q 
m -* -» ЭА => — v= V A - v - v VA- — - Уф 

(A. 14) 
- » 

= v . X (VX^Í+Й =vX 

which is indeed just the equation of motion of a particle we have been dis-
cussing throughout. 

The series (120) represents the position of the particle to all orders 
in e, assuming the fields are differentiable to all orders. (Higher andhigher 
derivatives of the fields occur in working to higher and higher terms in the 
series for each í?m. ) In (120) we replace С by e i0 . In the series for v ob-
tained by differentiating (120), we first replace Ô by iB in accord with (127), 
and then replace С (now appearing only in the exponents) by e i6 . We intend 
to treat в as an independent variable, but to obtain the correct motion of the 
particle в cannot be independent but must vary according to (137). At any 
time the values of ? f o r different values of 6 are the positions of particles 
with entirely similar behaviour (to all orders), whose guiding centres are 
all at the same place and move together, and which differ from each other 
only in gyration phase. 

The integration over в in obtaining the adiabatically invariant action 
integral may be thought of as an integration over a "ring" of such associated 
particles. The invariant obtained is nevertheless an invariant of each par-
ticle separately, because the ring of associated particles is determined when 
the position and velocity of any one of them is given. 

To compute the constant of motion (adiabatic invariant) К given by 
(141), we write 

(A. 15) 

by (A. 11). By (A. 6) and (A. 4) the first term gives 
2ir 

0 
2ir 

e j ( R 0 + c 3 i e i e - СiLj e"10): (i e l ^ e 1 6 - i e R . j e ' ^ d e 
о 

- 4îrie2 C| R-J2 = 4л1 e2 в[ ^ ^ ^ T r B R g , (A. 16) 
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where we have used (127) and (A. 5). By Stoke's theorem the second term 
gives 

/
' - » - > Г Г , -» - » . ' - » ^ Г-+ -» 
A- dr = / / (VX A) • ds - / / В • ds, (A. 17) 

where the surface integral is taken over a c i rcu lar disk spanning the 
"gyrat ion .c i rc le" , i . e . spanning the ring of associated particle positions. 
Actually (A. 17) is just the flux through the ring, the field times the area, so, 

j ( j ? - d r « - B j t R I , (A. 18) 

the minus sign arising as discussed after (51). Thus the second term is 
half the f irst and of opposite sign, so 

K=«7rqBR2; (A.19) 

the conserved quantity is approximately the flux through the gyration ring. 
Using (A. 5), (A. 7) and (56), we can also write 

K « ! r q B 2 e 2 | R i l^Tqe 2 B; 1 v^ r r « 2 тге В"1 W_ = 2тгец. (A. 20) 

In'carrying out the evaluation of К to higher orders, no difficulty arises 
with the f i rst t e rm on the right in (A. 15); evidently we need only retain 
the higher order terms neglected in (A. 16). With the second term on the 
right in (A. 15), however, our evaluation (A. 18) was conceptual rather than 
formal, hence not easily extended to higher order . An obvious formal pro-
cedure we could use is to Taylor-expand A ( r ) , in the closed line integral, 
around its value at the guiding centre, 

A(r) = A + ( r - R 0 ) - V A + | ( r - R 0 ) ( r - R 0 ) : V VA+ (A. 21) 

where A and its derivatives, on the right side, are evaluated at Ro. The 
2Л -» -л -» integral J A ( r ) - r e d 0 is then easily evaluated. The result would come out 

in terms of derivatives of A, however, and ïî is not a local physical quantity. 
The result would have to be expressible in terms of Î? and its derivatives, 
but the task of so expressing it would involve somewhat awkward vector and 
dyadic manipulations. 

It seems preferable to work f rom the surface integral on the right of 
(A. 17), in which A no longer appears. We need to choose some (any) par-
ticular surface spanning the gyration ring. A natural choice is to replace 
e by ф in our formula f o r ~r, 

? = ^ + ф ( Й , в 1 в + а . 1 e ' i 0 ) + ç 2 ( R 2 e 2 i e + R . 2 e - 2 l e ) + . . . , (A.22) 
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and view this as the parametric formula of a surface, with the parameters 
Ф and в satisfying 

0^ф<е , 0<:е<27г. (A.23) 

The boundary of this disk-like surface, Ф = e , is indeed just the gyration 
ring. We now expand Ët(r), for r on the surface (A. 22), around its value 
at Ro, much as we did with A in (A. 21). The vector surface element of the 
parametric surface ?(ф, 6) is 

ds = Ту X re dф d e , (A. 24) 

so we obtain 

€ 2ir 

Í ? . d s = J d y j d e [ 3 + Ф (R*! e ¡ 0 + R _ ! e _ i ® ) • V 3 + 0 ( ф 2 ) ] 

0 0 1 (A.25) 

je . rf v r „ i; D j e j n » i e • { [Rj e +R_! e" +0(ф)] X [ф (i Rj e ie - i R.j е'1Н)+0(ф2) I}. 

It is trivial to carry out both integrations explicitly to however high an 
order we care to write out the expansions, and although vector manipulations 
are needed to simplify the result, they are much easier than those needed 
in the other procedure to make A* appear only in the combination VX A. To 
dominant order, for instance, (A. 25) gives 

£ 
ГГ-* -* Г -* . -». -» tí -» , / / В ^ в г М ф 2irB'(-i<pRiXR-i+i<PR-i x Kl) 

о 

^2 7 r ( l e2 ) ( -2 i )B . (R 1 XR. 1 ) 

~2;r ie 2 (R 1 X B) -R . 1 ~2jr ie 2 (CR 1 ) -R . 1 

~ -27ге2 в| R j
2

, 

(A. 26) 

of course agreeing with (A. 18). 
It may be mentioned that a vast generalization of the gyrating particle 

theory is presented in my paper "Asymptotic Theory of Hamiltonian and 
Other Systems with All Solutions Nearly Periodic" (J. Math Phys. 3^(1962) 
806). What is studied there is an abstract system of ordinary differential 
equations 

xE=?(x,e) , (A. 27) 

where x is a vector of any number of dimensions and f* a corresponding 



102 M. KRUSKAL 

vector function of x , independent of s but depending on a small parameter e 
in such a way that the solutions of the lowest order system, 

* ,=?(*. 0), (A. 28) 
—) 

are all periodic in s no matter what initial value for x i s chosen. In appli-
cation to the gyrating particle "x is the seven-dimensional phase-space vector 

x = (r ,v , t ) (A. 29) 

and the time-like variable s is not actually the time, but rather 

s E e"1t. (A. 30) 

The equations of motion of the particle may be written 

r = r t , = e v , s s ' 

= v t . = e v = S ( r , t ) + v x 3 ( r , t ) , (A. 31) 

ts =6, 

which give (A. 27) with 

? ( r , v , t , e ) =(ev, 2 + v X É , e). (A. 32) 

To lowest order (A. 31) implies 

rs =0, t s =0, (A. 33) 

whence ? and t are constant, so that the fields in the equation are constant 
and v undergoes the usual circular motion (as always Ëf- 0 to lowest order 
is required). Any solution of the lowest order equation is therefore 
periodic . Note that the significant gyration is not in physical space but 
rather velocity space. 
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DERIVATION OF MACROSCOPIC EQUATIONS 

С . O B E R M A N * 

I N T E R N A T I O N A L C E N T R E F O R T H E O R E T I C A L P H Y S I C S , 

T R I E S T E , I T A L Y 

Since we shall be concerned with col lections of large numbers of 
particles interacting with their se l f -created and/or externally imposed 
electromagnetic f ie lds and since it is in general a problem of prohibitive 
difficulty to follow the detailed motion of all the particles we must rest con-
tent to descr ibe the behaviour of the plasma system in some average o r 
statistical sense. 

It is often desirable to be content to describe the plasma in terms of the 
crudest of statistical theories, essentially a hydrodynamic description in 
terms of mean number density, mean velocity, pressure, e tc . , modified to 
include electromagnetic effects. 

The value of working at this low level of description is that one can 
quickly get an insight into the behaviour of the plasma and obtain a large 
body of qualitative results which are, in general, only somewhat modified 
by more complete (and thus complex) statistical theories. 

We shall now suppose the totally ionized plasma to consist of electrons 
and positive ions (of one species), masses m- and m+, and charges e - ( = - e ) 
and e + , respectively. The generalization to more complex systems with 
ions in various stages of ionization is straightforward as long as the internal 
dynamics of an ion is negligible. 

For each particle of our system we have an equation of motion 

Ê(r n , + ^ X B(rn , t) , ( la) 

rn = vn . ( lb) 

(We have written down the non-relativistic equation of motion and indeed 
for most cases of interest this description is adequate. In some problems, 
however, e. g. synchrotron radiation, the relativistic description must be 
invoked and we shall write down f o r completeness the equation of motion 
of a single particle in relativistic f o r m : 

(M | ( 7 m v ) = e ( E + f X B ) , (2) 

where 7 = (1 - v2/c2)'1^2 and m is the rest mass, but we shall not pursue this 
equation further at this time. ) 

* Permanent address: Plasma Physics Laboratory, Princeton University, Princeton, N. J., United 
States of America. 
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The equations of motion for the electromagnetic field, Maxwell 's 
equations, are 

^ ( î , t ) = - c V X E ( ï , t ) , (3) 

cVX B-4irJ(r,t) , . (4) 

V - B = 0 , (5) 

V* E = 4тгсг(г, t). (6) 

These equations relate the development of the electromagnetic field intensi-
ties Ë, S in terms of the sources, charge density a and current density 
Notice that we have made no distinction between Й and 6 , S and Й since we 
shall keep full track of our internal sources. It is only when one abandons 
some of the sources appearing in Eqs. (4) and (6) that the distinction must 
arise. 

We now must relate the sources a, "f to the dynamical motion of the 
plasma. Now instead of relating the electromagnetic f ields to the exact 
dynamical motion of the particles, 

<r(?,t)= £ e n ó [ ? - ? n ( t ) ] , (7) 
П 

J ( r , t ) = £ e n v n 6 [ ? - Ï n ( t ) ] (8) 
n 

we shall embark on the statistical description. 
We presuppose the existence of a distribution function for each species 

f + C?, v, t) and f" (r, v, t). The distribution function has the meaning that 
f(r, v, t)d3rd3v (d3r = dxdydz and d3v= dv x dv v dv z ) represents the probable 
number of particles of each type in the volume element d3rd3v at the point 
(r, v) in the six-dimensional phase space (/u-space). The particle mean num-
ber density and mean velocity of each type are defined by the zero'th and 
first moment of these distribution functions with respect to velocity: 

n ± ( î , t ) = J î ^ r . v . ^ v , О ) 

u ± ( ? , t ) = -T^-Tx /vf * d3v. (10) n*(r, t) 

We now take the sources a, J*to be given by 
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cr(r, t) = ) en, (И) 

105 

enu . ( 1 2 ) 

The fields Ê and S computed from these averages a, T are called the self -
consistent, or average internal fields. Any sample particle is subject not 
only to the self-consistent and/or external fields but also to rapidly fluctuat-
ing micro-fields, i . e . forces due to encounters with neighbouring particles 
in the configuration space. Let us for the time being ignore these mic ro -
fields and determine the laws of motion for f i f ? J v, t). 

Consider a small element of volume 6П = d 3 r d 3v in the phase space 
(Fig. 1). The number of phase points associated with particles of either 
species in this element is f (r, v, t)6i2. During the course of time the par-
ticles corresponding to these phase points move over the phase space but at 
all times keeping the same number of particles in ÓÍ2, in virtue of the fact 
that neighbouring particles execute neighbouring motions. (The external 
and/or self-consistent fields are "smooth" over &CI.) Thus, 

v 

Fig. l 

Motion of volume element in phase space 

dt •jj- [ f ^ . ^ . t j e n ] = 0 (13) 

or 

= 0 . (13a) 

We shall now show d/dt(6i2)= 0. 
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We shall give this derivation of the law of conservation of extension in 
phase in more general terms, applicable also to the Liouville equation. 

Consider the laws of motion for a system of n degrees of f reedom in 
their f irst order form 

= gi(zx, z 2 , . . , z n ) , 

where zj may be a co-ordinate or a velocity. Consider the extension in phase 

6П = П Óz.. 

Then 

i 

= J W , . . . . Z j + Ô Z i , . . . , z n ) - g ¡ ( . . . , z ¡ , . . . ) ] / 6 z 1 

i 

= higher order terms 

= ^n" S + higher order terms. —• 
For Hamiltonian systems Vn- g= 0. 

e /-* Ъ \ In our present case, since r=v , v = — ( E + — X B ) , 

9 - - n a ' 
у 

E + - X B 
с 

= V V - E + I § - ( V V X V ) - I V - V V X B = 0 , 

where the three terms of the last expression are equal to zero. We thus 
have 

df 9f - 8f - df n l 1 A . 
dt= 9t Г l)r V ' 9v = ( 1 4 ) 

or 

If we now reconsider the fluctuating micro-f ields, i. e. collisions be -
tween particles, then particles are continually transferred from one element 
бх б v to another element in the same strip 5x, so that a term must be added 
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to the right-hand side of Eq. (15) to record the balance between part ic les 
entering and leaving a given volume element of the phase space because of 
coll isions. We then write our kinetic equation for either species as 

. (16) 9t Эг m V с J 8v \ 6 t / c 

The detailed structure and properties of the collision term is discussed in 
other lectures and we shall merely posit at this time any properties of this 
term that we shall need. 

Let us now take moments of this equation with respect to velocity, i. e. 
multiply by 1, v, v v , v v v , e t c . , and integrate over velocity space. For the 
zero'th moment 

/ d 3 v f ( x , v . t ) = ^ / d 3 v f = f ( î , t ) , (17) 

yd3vv --JI = |=ç -Jd3vvf = V • (nu), (18) 

/ d 3 v ¿ (E + | x b ) ¿ / d 3 v V r ( E + | x B ) = 0 , (19) 

where we have assumed f vanishes sufficiently strongly for large velocities 
so that all surface integrals in velocity space vanish. Since individual c o l -
lisions conserve number, the collision term has no zero'th moment. 

We thus arrive at the equation of number continuity f o r each species 

§ f \ У - ( п ^ ) = 0 . ( 2 0 ) 

The equation of charge continuity, 

f + V - J = 0 ( 2 1 ) 

and mass continuity. 

| ^ + V . ( p U 0 ) = 0 (22) 

fol low f rom Eq. (20) by multiplying by the charge of each species and summing 
over species, and by multiplying by the mass of each species and summing 
over species, respectively. Here 

p = > mn ( 2 3 ) 
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ИХ U0 = - > mnu (24) 

are the mass density and velocity of centre of mass, respectively. 
To arrive at the macroscopic equations of motion we take the first m o -

ment, i. e. multiply by and integrate over velocities: 

m j t f v v ^ = | t (mnu), (25) 

m /d3v v v • J* = V- ( m | d 3 v v v f ) , (26) 

/ d 3 v v 
m V с J 8 v 

= -ejTdSv^E + ̂ XB^) f 

= - e n ^ E + ^ X B ^ (27) 

m А 3 у у ( т 0 = Pss' » momentum transferred per unit time by 
c collisions with opposite species. (28) 

(Like-like collisions produce no net momentum change in virtue of Newton's 
third law. ) 

If we now define the stress dyadic (or tensor) for each species as 

Pi = ra±Jd3v(v-U0)(v- U0)f * 

= m ± y ' d 3 v v v f ± - m ± n ± u ± U 0 - m1 n*Uou* + m* n* U0U0 (29) 

we then have 
3 , T t , , f * r _ ± „ ± , ^ ± í í . Г т Г ! * . S T M l i f ? . ^ . . ' . ! / ' í t x ^- (mnu)+ V- [m n (u Uo + Uou - U 0 U 0 ) ]+V-P*= e ' n 1 ^E + - X B j . (30) 

If we sum over both species we have, using Eq. (24), and with ? = P + + P " , 

| t (pU 0 )+V-P+V-(pÜ 0 U 0 ) = CTE + ¿ X B , (31) 

where again we have used the third law, pSS' = -Ps's . If we note 

V - ( p U 0 U 0 ) = U 0 V - ( p U o ) + p U o - V U o ( 3 2 ) 

and employ the equation of mass continuity (22), we have 
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d U p = 
' dt - V - P + a E + - X B , 

с 
(33) 

where 

! = l r + V V . (34) 

If there are external body forces , or other average internal f orces (e. g. 
gravity), they appear naturally on the right-hand side of Eq. (33). 

(The definition (29) of the stress tensor is not universal, but is a p -
propriate when both species are very closely Maxwellian relative to the 
centre of mass velocity and at the same temperature.) Often in plasmas 
macroscopic phenomena take place on a time scale fast compared to that on 
which any significant alteration of the distribution function due to collisions 
can take place and another definition of pressure is often appropriate. 

P1 = m ± y d 3 v ( v - u ) ( v - u ) f . (35) 

The analogue of Eq. (30) with this definition of the stress tensor is 

m±n*( -§ÏUu.Vu)=e*n* (E + ̂ X B ) - V - P 1 + pSS' . (36) 

We now notice that 

¿P 1 : != ^Trace P ± = | mj^d3 v(v - U0)(v - U0)f * (37) 

represents the mean kinetic energy of the system relative to the centre of 
mass and may be referred to as the internal energy of the system or the 
thermal energy of the gas. We may define a generalized temperature through 

¿ T r a c e P * = IN 1 ©, (38) 

where ©= kT (к is here Boltzmann's constant). Again, it is possible and 
sometimes desirable to use two separate temperatures f o r the separate 
species. 

There are two important points to notice at this stage. Equations (22) and (33) 
together with Maxwell's Eqs. (3)-(6), although in some sense exact,' do not form a 
closed set of macroscopic equations. The Maxwell equations governing the 
time evolution of the electromagnetic fields involve the charge and current 
densities. To find the time evolution of these quantities we could use 
Eqs. (20) and (30) for each species but Eq. (30) involves the knowledge of pss- , 
i . e . properties of the collision term. Equations (21), (22), and (33) are not 
enough since we are still one vector equation short. We could write an 
equation for dT/dt (the so-called generalized Ohm's law) but this involves 
the pss. again. 
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The second point is that we still have no equations for P. If we compute 
the equation of motion for P by ascending the moment ladder further we find 
for each species 

V- (Q+ UqP) + P • VU0 + (P • VU0) + m n ^ U+ m n U ^ 

+ | ( B X P - P X B ) - e n U ( E + - ^ X B j - e ( E + X BjnU= ( J f J . (39) 

where 

Q= m j G 3 v ( v - U0)(v- U0Hv- U0)f (40) 

is the heat flow triadic, and 

U = i / d 3 v ( v - U 0 ) f (41) 

is the mean velocity of each species relative to the centre of mass, and 

(P- VU0)T 

is the transpose of the dyadic (P -^U0). In this last equation we have omitted 
the species label + or - . If we now sum over species we have 

§ f + V • (Q + U0P)+ P • VU0+ (P • VU„)T 

+ У ^ ( B X P - P X B ) + ( J - C T U 0 ) ( J S + ^ X B V (42) 
\ ^ / 

where we have made use of the fact that 

^ mnU = 0 (43) 

and i 

^enÜ=J-arÜ 0 . (43a) 

By taking one-half the trace of Eq. (42) we obtain the equation of energy 
balance 

-||Г n e ) + V - ( Q + ! Ñ©UO) + P : V U 0 - ( J - C 7 Ü 0 ) ( E + ^ ! X B ^ ) = 0 . ( 4 4 ) 
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Here 

m /d3y (v -U 0 f ( v -U 0 ) f (45) 

is the heat flow vector and represents the flow of internal energy relative 
to the centre of mass. The term involving (ЙХ has zero trace. 
Here n is the sum of the number densities. The collision term gives no 
contribution because collisions preserve energy. 

We see from Eq. (42) that the equation governing the time rate of change 
involves the heat flow tensor. There is no rigorous way to close the Yno-
ment hierarchy. 

There are two important limiting situations where the moment scheme 
may be closed: 

(a) The first is where collisions dominate. This situation is most often 
realized in weakly ionized gases, where collisions with neutrals dominate, 
but sometimes even in totally ionized gas this situation obtains. Here one 
can make a development along the lines of the Chapman-Enskog theory. One 
arrives at a set of transport coefficients, resistivity coefficients, coefficient 
of thermal conductivity, coefficient of viscosity, e t c . , which relate the 
fluxes such as current field, thermal gradients and mass velocity gradients. 
This will be discussed in other papers. 

(b) In these situations where to lowest approximation collisions are 
negligible (see chart), and if the characteristic frequencies are high and/or 

'wave numbers are small such that, crudely, L / T ^u/k »v t h (the so-called 
"Low Temperature Approximation"), then to lowest approximation the 
pressure may be dropped from the equation of motion. The next approxi-
mation taking into account thermal corrections consists in dropping the heat 
flow term from the equation for the pressure development (Eq. (42)) which 
leads in interesting situations to certain adiabatic laws for the pressure 
development. 

There is one additional comment preparatory to the mutilation of these 
equations as we begin our study of plasma properties, that is their non-
linearity. A few idealized situations have been studied which capture this 
feature. The usual procedure is to examine small departures from some 
known equilibrium or steady flow. Unfortunately, far too often these situ-
ations prove to be unstable, and to examine their fate (turbulence of "hash") 
the non-linearity must be invoked. Only very recently have we come to get 
even the slightest grip on these problems, and finding suitable techniques 
for handling them is one of the outstanding current problems in plasma phy-
sics and will be discussed later. 

We have just outlined the two essential difficulties in closing the macro-
scopic moment equations: 

(a) If we think in terms of the-two macroscopic velocities u+ , u" or 
equivalently in terms of J, Üo, there remains something to do with the term 
pSS' , the momentum transferred per unit time by collisions with opposite 
species. 

(b) How shall the pressure be determined, when, perhaps, neither the 
"Low-Temperature" nor collision-dominated situation prevails? 
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Let us return to Eq. (36) for each species, divide by m*, multiply by 
е±, and sum over species. With e+= Ze, e " = - e , we then have, utilizing 
Eqs. (11), (12), (23), and (24), 

8 J . V r t î S . V Z z n + + ) [ u SV • (nsesus)+ esnsus • VuJ = e ot ¿_¡ \ mT m 

+ • p Í - + + - - H х в + — - 2 - : ) j х в c(m t Z m r v m та / u c ( m + + Z m ) \ i " m / 

- e( —+ V • P , + - — . V • P ' " ) + e (—++—. )p. . (46) \m m J \m m v 

Now, under the assumptions (1) m"«m+, (2) all terms quadratic in the us and 
their derivatives maybe neglected (generally valid if |us|« (p/p)i/2, (B2/47rp)i/2, 
i . e . if macroscopic velocities are « sound speed or hydromagnetic speed), 
(3) n+«n" /Z, and (4) P ' "~ P l + , then this equation reduces to 

+ . 4 7 ) e2n 8t с en en" en + 

The real difficulties are now concentrated on the last two terms on the right-
hand side of Eq. (47). The term involving p+_, if the deformations of the 
distributionfunctionfrom local Maxwellian are small, should be proportional 
to the relative velocity of the two types of particles. We shall take this 
term equal to - r j j where г/ is defined by 

1 = IP+-I /eñ" IJI. (48) 

Actually T] is frequency and magnetic field dependent, and not even scalar, 
effects which will be discussed in other papers. 

The term involving the stress tensor is troublesome. We may take 
this scalar and isotropic only in a collision dominated theory, where there 
are many collisions during a characteristic time, in which case 

P = pi (49) 
and 

^ ( p p " 5 / 3 ) = 0 . (50) 

For rapid changes in which the internal kinetic energy changes in only 
one or two directions the appropriate 7 is 3 or 2, respectively. Actually 
in the presence of thermal gradients heat flow terms appear in Eq. (47) but 
this point will not be discussed further at this time. 

The equation of motion under these approximations is 

d|p = J x B - V . p . (51) dt с 
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(The charge neutrality condition n. ~ Zn+ has been invoked to throw out the 
term fffi that should appear in Eq. (51). ) 

Let us now try to estimate the size of the terms appearing in the 
generalized Ohm's law, to see under what situation certain terms or another 
might be omitted from these equations. 

If we let L and T measure typical spatial and temporal variations, 
then 

Í £ J Uo х 5 ч в Г J X B _ j 
upT с eL 1 en" 

We can simplify this equation further by eliminating the term involving J x S 
in Eq. (47) via the equation of motion. This yields 

(53) 

u*eT с eL e T 

In terms of characteristic frequencies and speeds this becomes 
+ (54) м ' Т r> r>T n i.\ ГГ /л* 4 ' WpeT с cL с uciT 

where 

cs = sound speed ~ (0 /m+ ) 1 / 2 , (55) 

u c i = ion gyro-frequency = eB /m + c , (56) 

ac i = ion gyro-radius = (©/m+)1 / ,2 /uc i . (57) 

In Eq. (54) we have performed a very dangerous simplification in annihi-
lating the vectorial nature of the equation. It so often happens, especially 
in the presence of a strong magnetic field, that terms which are large in 
one direction may vanish in another, so that for every particular problem 
one must respect the vectorial character in performing estimates on the 
size of the various terms. 
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E Q U I L I B R I U M O F A M A G N E T I C A L L Y C O N F I N E D 
P L A S M A IN A T O R O I D * 

M . K R U S K A L 

P L A S M A P H Y S I C S L A B O R A T O R Y , P R I N C E T O N U N I V E R S I T Y , 

P R I N C E T O N , N E W J E R S E Y , U N I T E D S T A T E S O F A M E R I C A 

A. INTRODUCTION 

A static equilibrium of plasma (or of conducting fluid) with scalar 
pressure p and magnetic field S is often described by the so-called 
"magnetostatic equations", 

Vp = j X B , , (1) 

v X В = j, (2) 

V. В = 0, (3) 

where ~f is the electric current density. In particular, these equations apply 
to many proposed controlled thermonuclear reactors and their prototypes, 
especially the stellarator [1] and the recently much discussed stabilized 
pinch effect. In sections В, C, and D are derived a variety of properties 
possessed by solutions of Eq. (1-3). 

One of these properties is that if p is constant on the boundary of its 
region of definition, then under some mild additional assumptions that 
boundary must be topologically toroidal. However, prescribing ëuch a 
boundary surface and the value of p on it by no means determines a unique 
solution, even though there are as many equations as unknowns (two vector 
and one scalar). One of our objects is to establish the additional conditions 
which together with the magnetostatic equations (and the boundary pre-
scription) do determine a unique solution. This is achieved in several 
different ways, the additional conditions always amounting to the specif i -
cation of two numbers for each surface of constant p. 

An experiment is imagined (section E) in which an ideal viscous hydro-
magnetic fluid exhibits a damped motion until coming to rest in an equilibrium 
configuration. A number of invariants with respect to any such motion are 
described in section F. These lead to constraints on the admissible trial 
states in a variational principle (sections G, H, and J) suggested by the 
experiment. The quantity varied is the potential energy, the sum of the 
magnetic and the internal fluid energies. The variational principle provides 
a potentially powerful tool for proving the existence of solutions of the 
magnetostatic equations and for obtaining them numerically. It also provides 
a characterization of solutions by their values of the invariants. 

* Thisisbasedonthearticle by M.D. Ktuskal and R. M. Kulsrud in The Physics of Fluids 1 4 (1958) 
265. The work was supported by the USAEC under contract AT (30-1) - 1238 with Princeton University. 
The sections and equations have been relabelled, and the last section is new. 
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In section К equations governing a steady state of magnetic field and 
slowly diffusing plasma are introduced. These amount to-the magnetostatic 
equations together with two auxiliary conditions (73, 77) for each surface 
of constant pressure (section L). The system of equations obtained is e'x-
pected to have a solution which is unique, and this is verified in section M 
for the limiting case of low pressure*. 

B. MAGNETIC SURFACES 

The magnetostatic Eqs. (1-3) have the simple consequences 

^•f=0, (4) 

3 - ^ p = 0 , (5) 

f . Vp = 0, (6) 

B. V B = V(p + IB 2 ) , (7) 

V. ( B X V p ) = 0 , (8) 

B-Vj = j . V B , (9) 

B - ^ ( B . t ) d o ) 

Here (4) follows from (2), (5, 6) from (1), (7) from (1, 2), (8) from (2) and 
(6), (9) from the curl of (1) in view of (3) and (4), and finally (10) from (1) 
and (8) in view of (3) and (4). 

If p is reasonably smooth and not constant in any (small) region, the 
equation p = P determines a family of surfaces characterized by their values 
of the parameter P. By (5) they are "magnetic surfaces", in the sense that 
they are made up of lines of magnetic force, and similarly by (6) they are 
"current surfaces" . If such a surface lies in a bounded volume of space 
and has no edges (because of not intersecting the edge of the region of defi-
nition of p), and if either 3 or ~f nowhere varnishes on it, then by a well-
known theorem [2] it must be either a toroid (by which we mean a topological 
torus) or a Klein bottle. The latter, however, is not realizable in physical 
space. 

Under normal circumstances each surface p = P (excepting a set of 
values of P of measure zero) is traversed ergodically and consequently 

* Sections K-M form a somewhat revised version of a previous work: M. D. Kruskal, U.S. Atomic 
Energy Commission Report No. NYO-7307, (PM-S-17), 1955. Except for the two auxiliary conditions, 
which were new, this was largely a more mathematical version of an earlier theory: L. Spitzer, Jr., 
U.S. Atomic Energy Commission Report No. NYO-997 (PM-S-4), 1952. 
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determined by any line of force contained in it. Even when this is not so, 
however, we shall call it a magnetic surface. 

As suggested by the foregoing discussion, we now explicitly assume 
that the magnetic surfaces form a family of nested toroids. The innermost 
toroid is degenerate, consisting of a single closed curve called the (magnetic) 
axis. We shall usually also assume that p increases monotonically going 
inward (as is proved for steady diffusing plasmas in section L) and indeed 
that ^p ^ 0 except on the axis. 

C. SURFACE QUANTITIES 

We now introduce two co-ordinate functions r) and 0. Each is to be 
multiple-valued, its values at any point differing by integers. The function rj 
is to be continuous everywhere and to increase by unity during one traversal 
of the magnetic axis. The function 0 is to be continuous everywhere except 
at the axis and is to.increase by unity during one small loop around the axis. 
Finally, a pair of values of r¡ and 0 is to determine a unique point on each 
magnetic surface. For definiteness we assume that -rj, 0, p form a left-
handed co-ordinate system. 

For each particular magnetic surface we now define 

V = / dr , (11) 

U ^ / d r B 2 , (12) 

K ^ / d r B - 7 , (13) 

ф — f drB • V p, (14) 

X = / d-гВ- V0, (15) 

I — / d r f - V r ) , ( 1 6 ) 

J = / dr j - V 0 , (17) 

where dr is the volume element and the region of integration is always the 
interior .of the particular surface. (The integrals are well defined, since 
Vn and are single-valued). We note that V is the enclosed volume and 
U is twice the enclosed magnetic energy. There seems to be no simple 
physical interpretation of K, but its vanishing will be seen to be significant 
(section L). The integrands of (14-17) can be written as divergences by 
(3) and (4), so we may apply Gauss' theorem; however, since rj and 0 are 
not single-valued, it is necessary first to cut the region of integration, say 
at 17 = 0 or at 0 = 0 as appropriate. Since by (5) or (6) the boundary contri-
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bution vanishes except for the double boundary at the cut, we then obtain, 
for example, 

where dS is the area element and the integrations are over those parts of 
the indicated surfaces of constant rj which are interior to the particular 
magnetic surface. Thus ф is the longitudinal magnetic flux inside the 
magnetic surface, i. ё. the magnetic flux through any cross section of the 
interior. Similarly, I is the longitudinal current inside the particular sur-
face. On the other hand, X is what may be called the azimuthal magnetic 
flux inside the magnetic surface, since it is the flux through any ribbon-
like surface of constant 0 of which one edge is the magnetic axis and the 
other lies on the particular surface. Similarly, J is the azimuthal current 
inside the particular surface. 

Functions of position which, like p, are constant on magnetic surfaces 
will be called surface quantities. The quantities defined by (11-17) may be 
interpreted as functions of position in an obvious way and are then surface 
quantities. Any surface quantity may be considered as a function of any 
other, and derivatives of one with respect to another are meaningful and 
are themselves surface quantities. 

It may be noted that definitions (14-17) are invariant under continuous 
deformation of the co-ordinate functions 17 and 0. All functions 17 with the 
same direction of increase along the axis are deformable into each other. 
The analogous statement does not hold for 0, however; two functions 0 are 
continuously deformable into one another if, and only if, their ribbons of 
constancy wind around the axis the same number of times. Two functions 0 
differ by an integral multiple of an acceptable function 17, the integral multi-
plier being the difference of the winding numbers. If 0 is increased by an 
integral multiple of r), then X and J are increased by the corresponding 
integral multiples of ф and I, respectively. The results of the next section 
are manifestly invariant under these changes. 

D. RELATIONS AMONG SURFACE QUANTITIES 

Let w be any single-valued vector field satisfying 

(18) 

Vp . (V X w) = 0 . (19) 

Let "3 (P) be a particular point on each surface p 
space define 

= P. For each point 5? in 
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' ? ( p) 
d x • w , (20) 

where the path of integration lies on the surface: in view of (19) it follows 
from Stokes' theorem that the value of i/(x*) is independent of the path joining 

to for all paths continuously deformable into each other. However, not 
all paths are deformable into each other, so v is multiple-valued. It can 
clearly be written 

where X is some single-valued function and the loop integrals are taken in 
the direction of increasing rj and 0 respectively. 

If it were not for the variability of the lower limit in (20), we would 

(21) 

have ^v = as it is we have 

^ p X ( V y - w ) = 0 (22) 

or equivalently 

В • (Vv - w) = 0, j • (Vi/ - w) = 0. (23) 

Now introduce two general surface quantities 

(24) 

By (23, 21) and (14-17) we then obtain 

(25) 

e = o n = o 

(26) 

e = o 4 = 0 

We are now in a position to obtain various relations among the surface 
quantities by special choices of ^ satisfying (19). In view of (2) and (6) we 
are justified in choosing ^ = In this case F = U and G = К, while by 
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Stokes1 theorem applied to that part of the respective surface rj = 0 or в - 0 
which lies inside the magnetic surface we have 

j> àx-È= - I , (27) 

11 = 0 

В = J +j) dx • В , (28) 
e = o # = o 

where the last integral is taken around the magnetic axis (tp = 0) in the 
direction of increasing r¡. From (25, 26) we therefore obtain 

dU = ^ J + j ) d x - ^ j йф - IdX, (29) 
i/i = 0 

dK = Ç J dx-в) dl - IdJ. (30) 
1/1 = 0 

Another choice for w is the vector potential S (with ^ x í = В), justified 
by (5). This leads analogously to 

d У dTB • A = ^X + j ) dx • A j dф - ф dx, 
« = o 

(31) 

d I d T j • A = ( X + j ) dx*. A ) dl - ф d j . 
«=0 

(32) 

Our next choice is 

w = (BX^) ) / (Vp f , (33) 

which may be justified by observing that 

^ p X w = B , (34) 

in view of (5) and then using (3). In this case we have F = 0 and G = V in 
view of (1). Also, 
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j> d í - w = j) di?- wr) - j) dx- wn 
T) = 0 17 = 1 т]= 0 

= -jT • [ V x (wn)] 

(35) 

• 1 
dS R - . Èk 

where the first step is trivial, the second follows from Stokes' theorem 
applied to the cut magnetic surface, the third follows from (19), the fourth 
from (34), and the last from (14) and the fact that dT = -dS dp/|^p| (since 
|dp|/|^p| is the distance between two neighbouring magnetic surfaces) . 
Similarly 

f 
>dx-w = ^ . (36) 

8 = 0 

Thus (25) is tautological, but (26) gives 

dp dV = dx dl - dtp dJ. (37) 

Another possibility is to choose w to be a gradient, thus satisfying (19) 
trivially. Indeed, let v? = ^cfbe a gradient of a vector field and therefore 
a dyadic, and note that nothing in the derivation of (25, 26) is invalidated. 
If q is single-valued the loop integrals in (25, 26) vanish and we may conclude 
that F and G themselves (now vectors) vanish, which is also obvious from 
Gauss' theorem. Since ^ x is the unit dyadic, taking If = x gives 

drB = 0, / drj = 0. (38) 

Taking cf = Í? instead and using (7) gives 

0 = / dr^(p + |B2) 
—7 

= ' f P P d S í í r ( p + ^ 2 ) ' (39) 
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and since the first term of the integrand contributes nothing (take p outside 
the integral and convert back to a volume integral), 

- > 

Г dS r ^ - i B2 = 0. (40) 
Jp=P I V p I 

E. AN IMAGINED EXPERIMENT 

Suppose that everywhere in a given rigid toroidal tube T with perfectly 
conducting walls there is a viscous perfectly conducting fluid with an adia-
batic equation of state, and also a magnetic field tangential to the tube walls 
at the walls. Suppose that any heat generated by the viscosity is somehow 
magically removed, so that each element of fluid is isentropic. The system 
can then lose energy but not gain it, since there can be no energy fluxthrough 
the walls. 

Let the fluid be initially at rest. In general, -it will not be in equilibrium 
and will start to move. As long as it moves it loses energy, so it must 
eventually come to rest in a state of less energy than its initial state. 
Clearly an initially resting state of minimum energy cannot start moving 
at all, and so must be in equilibrium, i . e . satisfy the magnetostatic equations. 

Since we are comparing resting states, we are interested in the non-
kinetic (i. e. potential) energy W, 

W = X d T ( 2 3 2 + 7^l) (41) 

where the first and second terms of the integrand are the energy densities 
of the magnetic field and of the fluid respectively, у being the ratio of specific 
heats of the fluid. (If 7 = 1 the second term should be p log p). 

F. INVARIANTS 

It now appears that minimizing W should provide equilibrium solutions. 
However, we must be careful. If we minimize W outright we obtain if = 0, 
p = 0, which, though certainly an equilibrium solution, is of no interest, 
and is clearly not a state which will be reached eventually by every initial 
state. We have neglected to observe that any motion of our fluid is subject 
to certain constraints. By a constraint here is meant a condition that some 
quantity be an invariant during any motion, an invariant being a constant 
of motion which depends only on the instantaneous state, not on the velocity. 
(All constraints here are holonomic). Only states with the same invariants 
can possibly be transformed into each other by a motion. We should there-
fore not minimize W among all states, but only among states with the same 
values of the invariants as the initial state. 

We must therefore find invariants. Since the fluid is a perfect con-
ductor, it carr ies lines of force with it [3] . Therefore, any topological 
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property of the lines of force is an invariant. For instance, if in the initial 
state there were a line of force ergodic in T, then this would have to be 
carried into a similarly ergodic line in the final state. But the final state 
has to satisfy (5), so that p will be constant on the line and hence constant 
everywhere (if it is to be continuous). Such a state is not of interest. This 
example shows that we must choose the initial magnetic field to have pre-
c isely those topological properties possessed by equilibria of interest. 

Accordingly, we choose an initial magnetic field which has a family 
of nested toroidal magnetic surfaces, which are, however, not necessarily 
surfaces of constant p. The quantities ф and X are then defined, and since 
the lines of force are carried with the fluid, ф and X for the magnetic surface 
formed by some definite set of fluid particles are invariant during amotion. 
The quantities V, U, К, I, and J are also defined, but need not be invariant. 

The way in which a line of force intertwines with itself as it is con-
tinued around its magnetic surface many times is a topological property 
and therefore another invariant, but it turns out to be describable in terms 
of ф and X, and therefore does not provide an independent constraint. Indeed, 
this intertwining is characterized by the limit of the ratio of the number 
of loops around the magnetic axis to the number of traversais around the 
length of the toroid made by a line of force indefinitely prolonged, i. e. the 
limit of в/n following the line. This limit is usually denoted by t/2?г and 
is equal to dx/d ф. (See section N. ) 

Let p be the mass density of the fluid. Then p dr is the mass of an 
element of fluid, and is therefore invariant during a motion. Furthermore, 
the adiabatic law assumed amounts to requiring that p/py be invariant for 
a fluid element. We thus have two purely hydrodynamic constraints. But 
p is of no interest, since it enters neither into the magnetostatic equations 
nor into the potential energy W. Eliminating p we have only one invariant 
p i/y dr for each element of fluid. 

The invariants we have found (ф and X for magnetic surfaces, pi/y dT 
for fluid elements) apply if we know which fluid element in the final state 
corresponds to each element in the initial state. However, there is no 
reference to this correspondence in (41). We wish to minimize W for all 
states p, ^ which could possibly be reached by a motion from the initial 
state, i. e. for which there exists some correspondence preserving the 
values of the invariants. The correspondence not being known ahead of 
time, it now makes no sense to require that ф and X are individually pre -
served. Nevertheless, the correspondence must be chosen to preserve ф 
and that same correspondence must preserve X. Then X considered as a 
function of ф (for example) must be the same in the final state as in the 
initial state. In short, the functional relationship between X and ф is an 
invariant which can be specified without knowing the correspondence ahead 
of time. What has been done, in effect, is to label the surfaces with their 
values of ф, after which the only magnetic invariant left is X, now as a 
function of the label ф. 

We have now eliminated consideration of the correspondence of surfaces 
as a whole. To eliminate consideration of the correspondence of fluid 
elements within a given magnetic surface, w.e must use the invariant p!/r dT 
to form a label. Assuming that lines of force are ergodic on almost all 
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surfaces, and choosing the correspondence for one particular fluid element 
as a reference point arbitrarily, we may use the integral of p!/y dr along a 
little flux tube going from some point on the surface to the reference point 
as a label for that point. This label is clearly invariant and hence extends 
the correspondence from the arbitrary reference point to the whole surface 
(since the line of force through the reference point is assumed ergodic on 
the surface and hence covers a dense set of points). 

However, in establishing this labelling we have not exhausted the infor-
mation available from the invariance of pi/y dT. There remains the condition 
that the integral of pVy dT over the shell-like volume bounded by two neigh-
bouring surfaces must obviously be invariant. Introducing the surface 
quantity 

(the integral being taken over the interior of the surface), we may require 
equivalently that M be invariant. (It may be observed that M is just pro -
portional to the mass contained within the surface if p happens to be such 
that the fluid is isentropic, i. e. if p/рУ is the same for all fluid elements. 
The invariance of M then represents conservation of mass) . As with X, 
by considering M now to be a function of ф we eliminate any reference to 
the correspondence. 

G. STATEMENT OF VARIATIONAL PRINCIPLE 

The preceding considerations suggest the following variational principle: 
A function p and a solenoidal magnetic vector field S'in T, forming nested 
toroidal magnetic surfaces and having a fixed total longitudinal flux and no 
normal component at the walls, make W stationary among all such pairs 
with the same invariant functions X (ф) and M (ф) if , and only if, 
^p = (^ X 3 ) X B. 

Before proving this it is desirable to reformulate it so as to include ф 
explicitly in the characterization of a state, since otherwise it is difficult 
to tell whether a neighbouring field B; has nested toroidal surfaces.. Corres-
pondingly we have an additional constraint and an additional variational con-
dition. Thus we propose the following variational principle: consider all 
triples p, Ш, and ф in T satisfying the constraints 

(а) ф has toroidal level surfaces, ф = С at the walls, min ф = 0, max ф = С, 

(42) 

(b) V. В = О, (43) 

(с) В -Уф = о, (44) 

drB • V г) = с, (45) 
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(e) / drB-V0 = x (с), (46) 
J¡p se 

(f) Г drp1^ = M (с); (47) 
"(К s с 

here С is a constant and х(с) and М(с) are arbitrary fixed functions defined 
for 0 < с < С, which is also the range of the last three conditions. Then 
a particular triple makes W stationary among all such triples if, and only 
if, it satisfies the variational conditions 

(y) p is a function of ф alone, 

(z) Vp = ( V X B ) X B . (48) 

It should be noted that in non-degenerate cases, in which (almost) any 
magnetic line of force covers a complete magnetic surface ergodically, 
(z) implies (y) in view of (5) and (44). In degenerate cases (y) is (partly) 
independent. But in these cases ф is not itself physically significant, only 
p and â which are consistent with a variety of functions ф. Just in these 
degenerate cases we could have found additional constraints in our imagined 
experiment (the integral of pi/У dr in each thin c losed flux tube), and by 
omitting these from our formulation of the variational principle we force 
upon ф a physical significance (the only constraint on the flow of fluid elements 
is that they stay on surfaces of constant ф) which is reflected in the variational 
condition (y). 

H. PROOF 

Given a function ф satisfying (a), it is easily seen by the method used 
at the beginning of section D that the most general field 5 satisfying (b) and 
(c) is given by 

B = (49) 

where v is a multiple-valued function such that (49) determines В uniquely, 
i. e. such that on each surface of constant ф the various branches of v differ 
only by constants. Furthermore, (d) and (e) are then satisfied if and only 
if v can be written 

v = X + nX'(^) - в , (50) 

with X single-valued, as can be seen upon comparing (49) with (34, 22) and 
referring to (21, 35, 36). 

Let us first assume that W is stationary and derive (y) and (z). For 
the moment hold ф and X fixed and vary only p. Then 
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О = ôW ^Т l dTÔ? 

7 - 1 de dS 
Щ] 

(51) 

бр 

for any perturbation бр satisfying 

и ' = C 

dS 
w 

p i / r i 6 p = 0 , (52) 

which is obtained from (f) by varying p and also differentiating with respect 
to c. Picking 6p so that the integrand of (52) approximates to the difference 
of two Dirac delta functions with peaks at two points of the same surface, 
we satisfy (52) and see from (51) that p must have the same value at the two 
points. Thus (y) is established. We now have p =. P(ф), where by (f) 

P(c) = (53) 

Next we vary only A, obtaining 

0 = 5W = Г drB- 5B= Г drB-(V(//X ^6A) 
d^ df 

= - j dr (BX 
d^ 

(V X В) • Зф = 0. 

(54) 

(55) 

Finally we wish to vary only ф. When we do so, p = P(ф) varies at a 
fixed point not only on account of the argument ф but also because P(c) does. 
To compute the contribution of 6P(c) to 6W, we note that 

d S , d Г 
1 ¥ 7 Г 6 I d T с 1 Уф 1 

(56) 

d _ 
de / d S ñ ' Ji> = с IУф I 
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f dT ÔP(^) = f drP б log P 
\Jrri U f-p 

ds P 7 ( ¿ X - c d s r W 
Jo — с Iv0 I Г dS ' / V 

Jl)=c I V ^ 
(57) 

г Г dcP' Г dS 
Jn Jill - r 

-y d r P ' б ф, 

Ьф 

in which we have used the fact that 6^ = 0 at the walls in view of (a). Accor-
dingly we have 

0 = 6W = j dT [ S - ô f ? + ( P ' Ьф + б Р ) / ( т - 1)] 

= Г dr [В - $6ф X^v + Х ^ 5i/ ) - Р ' б^] (58) 

= Г dr 6 ( В X^v) - Р'], 

iji which we have used (55); there is no trouble with the discontinuity of 
at the magnetic axis because бф vanishes there (since ф and Щ/ both do). 

Thus we obtain 

( V X B ) - W = P\ (59) 

Taking the c r o s s product of (49) with ^ X B and using the variational 
conditions (55, 59) gives 

= = (60) 

which establishes (z). 
It is c lear that all the steps can be reversed to show that (y) and (z) 

imply that 5W = 0 for all perturbations. 
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J. REMARKS 

There is a noteworthy modification of the variational principle. Suppose 
we omit condition (e). We are then free to vary X(c), so we obtain an addi-
tional variational condition from 

That is, we obtain just the additional condition appropriate for the steady 
state of a diffusing plasma (see section L). 

Our variational principle characterizes equilibria as stationary states 
of the potential energy W, i. e. states for which the first variation of W 
vanishes. The stability of such equilibria has been investigated elsewhere 
[ 4] by examining the positive-definiteness of the second variation of W. 

Two limiting choices of y are particularly simple. The first is y -> oo 
(incompressibility), for which M -» V, so that we prescribe the volume to 
be enclosed by each surface and vary the magnetic energy alone. The second 
is 7 -» 0 (pressure completely independent of density), for which М'У 
approaches the maximum value of p on the surface, so that we prescribe 
p(ф) and vary the integral* of ^ Й 2 - p. 

K. STEADY SLOWLY DIFFUSING PLASMA 

We now wish to obtain a complete set of equations governing a steady 
state plasma slowly diffusing through a magnetic field to the containing walls 
of the toroidal tube T. We assume that the walls are perfect electric con-
ductors with purely tangential magnetic field and also perfect plasma ab-
sorbers (p = 0 there), and that new plasma in somehow introduced or injected 
into T (necessary to maintain a steady state) at the source density rate Q, 
which may depend on position. We assume that there is no temperature 
gradient and ignore a variety of complicating factors, such as nuclear 
reactions and radiation, which might occur in applications of interest. 

* A variational principle for simply connected regions based on this integral was formulated by 
H. Grad in a talk at Princeton, October, 1954. 

'T 
(61) 

(62) 
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Our steady state is almost static, so to zeroth order in the diffusion 
velocity ? we have the magnetostatic equations (1-3). We also have the 
(first order) equation of continuity 

Ü (pv) = Q, (63) 

where we have taken the plasma density to be p in view of the assumed iso-
thermality. In addition we have Maxwell's equation 

^ X E = 0 ( 6 4 ) 

and Ohm's law [5] which we take in the form 

- * —» —* 1 ГУ z l E + vX В = - j + - V p , (65) 
CJ p 

where E is the electric field, ex the conductivity (assumed constant and scalar), 
and a a physical constant. 

Now (64) holds everywhere in space (not just in T), so É is the gradient 
of a single-valued scalar. Since ^p/p is also such a gradient, we can intro-
duce a single-valued scalar ф in T satisfying 

E = ^ ф + ^ ^ p , ( 6 6 ) 

so that ,(65) becomes 

V0 + v X В = - j. (67) 
cr 

Let us consider (67) as an equation for v. The condition that it have 
a solution is 

B-V0 = ^ B - j , (68) 

and if this is satisfied the general solution of (67) is 

v S + a B , (69) 

where a is an arbitrary scalar function. Eliminating v by (69) and using (1), 
we have for (63) 

V- (paB) = Q + V- Ï 2 ( B X V<¿+- Vp ( 7 0 ) 
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which may be viewed as a diffusion equation of sorts for p, the diffusion 
coefficient being p/T§2 <r. 

L. THE TWO AUXILIARY CONDITIONS 

By (3) and (5) the left-hand side of (70) may be written рЙ-^а . Thus 
(70) as well as (68) are what we may call "magnetic differential equations", 
namely equations of the type 

^ r = s (71) 

with scalar r and s. Viewed as an equation for r with s given, (71) deter-
mines how r varies along a magnetic line of force. In the non-degenerate 
case that the line covers a magnetic surface ergodically, (71) and the assign-
ment of a value to r at one point détermine r at a set of points dense in the 
surface. A necessary condition that the values of r so obtained be extendable 
to a continuous single-valued function over the whole surface is easily 
derived by integrating (71) over the shell volume between two neighbouring 
magnetic surfaces p = P and p = P + dP. By (3), Gauss' theorem, and (5) 
the left-hand side then vanishes, while after dividing by dP the right-hand 
side becomes 

d S - = 0. (72) 
p I V p 

It is plausible to assume (and we shall) that, in the non-degenerate case, 
(72) is 'also a sufficient condition for (71) to have a continuous single-valued 
solution r. It is then clear that (71) determines r up to a surface quantity. 

In accordance with the foregoing paragraph, the conditions that (68) 
permit a solution ф and (70) a solution a are 

d S B - T = 0 , (73) 
p=p J%\ 

dS 
= P Iv^T 

Q + 
a P 

= 0. (74) 

The latter may be considerably simplified by multiplying by dP and inte-
grating over all magnetic surfaces interior to a particular one; using Gauss' 
theorem then leads to 

J W / d S ^ I ( 7 5 ) 

7* 
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where the minus or plus sign is to be adopted accordingly as p decreases 
or increases going outward (so thatT^p/|^p| is the unit outward normal 
to the magnetic surface). Eliminating Vp by (1) except in the denominator, 
expanding out the inner products of the cross products, and using (68) give 

By (4, 6) the term involving ф can be written as a divergence; converting 
the surface integral to a shell volume integral, we see by Gauss' theorem 
and (6) that the contribution of that term is zero. Since Q, a, and p are 
essentially positive, we must take the minus sign.. Thus p decreases going 
outward (as assumed at the end of sect ion B) and (76) may be written 

Our system of equations now consists of the magnetostatic equations 
(1-3) together with the auxiliary conditions (73, 77). For any solution p, 

j of this system we can find ф and a and therefore É and v', which to -
gether with the 'solution represent a slowly diffusing equilibrium. (The 
arbitrariness of a surface quantity each in a and ф corresponds to a physical 
arbitrariness in the total fluid flow along lines of force and in the total 
charge on a magnetic surface respectively). 

Condition (77) can be shown to be equivalent to the energy balance 
equation, which could have been written down a priori. Condition (73) may 
be written -dK/dp = 0 or, integrating, К = 0. When (73) holds, (30) can 
be integrated to show that I is proportional to J + ф d5?- Í?. Since I and J, 
but not the loop integral, vanish at the axis, the constant of proportionality 
vanishes and 1 = 0 . (Conversely the vanishing of I for all surfaces entails 
that of K). 

Thus (73) is equivalent to (62), the extra variational condition obtained 
by minimizing W without prescribing X. In other words, in the diffusing 
plasma the azimuthal magnetic flux adjusts to give the lowest energy; the 
lines of force associated with the longitudinal magnetic flux are permanently 
trapped by the perfectly conducting walls, but "untwist" themselves locally 
as much as possible. 

It is not hard to see that the vanishing of dl at a particular magnetic 
surface implies that the lines of electric current there are closed curves, 
and indeed closed curves topologically like (deformable into) curves of 
constant rj. The converse is even easier to see (choose rj to be constant on 
the current lines). 

M. THE LOW PRESSURE LIMIT 

It is physically quite plausible to suppose that our system of equations 
has a solution p, B, j! and a unique one for any reasonable general pre -
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scription of the tube T, the source function Q, the conductivity a, and the 
total trapped longitudinal magnetic flux C. This supposition is further borne 
out by the variational principle, which shows that two auxiliary conditions 
for each magnetic surface are just the appropriate number. We now proceed 
to prove the supposition in the limiting case of low pressure under an 
assumption on the geometry of T which is apparently necessary if the solution 
is to behave regularly in the limit. This assumption is that the unique 
vacuum magnetic field which is purely tangential at the walls and has a 
prescribed total longitudinal flux С vanishes nowhere and determines a non-
degenerate family of nested toroids. (For a wide class of toroidal geo-
metries this is assured to a high approximation by rotational transform 
theory [6] ). 

—» A For p small (1) becomes, in the limit, j X В = 0, or 

(78) 

with g a scalar function. From (3) and (4) we obtain the magnetic differential 
equation 

i f . ^ g = 0, (79) 

which implies that g is a surface quantity. But then using (78) in (73) and 
taking g out of the integral gives g = 0 and therefore j*= 0. Thus ^must be 
small if p is. 

Starting over now with p and ]*both small, we see from (2,3) that to 
lowest order ï?must be the unique magnetic field of our assumption. Now 
(1) is equivalent to the pair of equations obtained by taking the inner and 
the cross products with namely (5) and 

1 = В X ^p + hB, (80) 

with h a scalar function. The only restriction (2) places on our remaining 
unknowns p and " f i s (4). We now adopt the point of view that (80), (4), and 
(73) are conditions on jt while (5) and (77) are conditions on p. 

Now (80) expresses j*in terms of what we may consider a new scalar 
unknown h. But then (4) is equivalent to the magnetic differential equation 

(81) 
•R2 

by (3) and (8), while (73) becomes 

Г r ^ h Ê ' - O (82) 
= P I V p I 

and may be viewed as determining the additive surface quantity left arbitrary 
in h by (81). 
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Of course, by (5) p is a surface quantity of the magnetic surfaces of 
the vacuum field and is therefore a function of ф only. It is now obvious 
from (81, 82) that h is determined completely independently of p except for 
being proportional to p'(^b and by (80) the same is true for j. Indeed, 
setting 

l = p ' y , h = p'k, (83) 

we see that y and к are uniquely determined independently of p by the three 
equations obtained from (80-82) by replacing p , j ! and h everywhere by ф, у', 
and к, respectively. 

We can now write (77) in the form 

f drQ + i p p - Г [ 4 ^ ? 2 = 0 . (84) 
Jips с CT J^ = C IV(¿/ I 

(Note that Q is of the second order of smallness compared to p and J). Thus 
(p2)' is determined, and since p vanishes at the wall p is determined, where-
upon j is determined by (83). This completes the proof. 

It may be noted that (p2)1 remains finite at the walls. Thus p1 becomes 
infinite there, p varying as the square root of the distance to the walls. 

N. COMMENT 

There is one point in section F of this paper which needs further comment, 
namely the remark that the rotational transform angle i (in radians) is given 
bv 

t - S '85> 
The transform angle i is defined by 

¿ - = l i m f (86) 

where the limit is taken moving infinitely along a line of force, in other 
words asrj-»± oo. Here 0 and r) are to be thought of as varying continuously 
as one moves along the line of force, so they do not remain between 0 and 1; 
in fact, to say that r) -» ± oo is to say that one follows the line of force around 
and around the toroidal surface the "long way", and i then measures a sort 
of average rate at which one is going around the "short way". It so happens 
that this limit always exists and has the same value for every line of force 
on a given surface of constant pressure and whichever direction one goes 
to infinity along it. 

In order to obtain (85) we consider the n, 0 plane imag.e of the magnetic 
surface of interest, as shown in Fig. 1. It is a square with opposite sides 
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Flg.l 
\ il,e plane image of the magnetic surface 

identified (in physical space), therefore topologically a torus. Suppose, for 
example, that a line of force goes exactly once around the short way as it 
goes once around the long way, thus closing upon itself as pictured. Then в 
increases by unity whenever 17 does, and L /2тг = 1 by (86). 

Consider a closed loop of ribbon-like surface one edge of which is the 
indicated line of force and the other edge of which is on an extremely close 
neighbouring magnetic surface. This other edge should run along a line 
of force as nearly as possible; in general it cannot do so exactly because 
no line of force on the neighbouring surface need close on itself after going 
once around the torus, but this produces a negligible (higher order) error 
which we may and do ignore. Thus we may think of the ribbon as made up 
of lines of force, and there is no magnetic flux through the ribbon. 

Fig. 2 

Different positions of the ribbons 

We now deform the ribbon continuously, moving each edgë (and similar 
internal line) from its initial position along a line of force to a final position 
running first horizontally along the 17 axis and then vertically along the в 
axis, as in Fig. 2. The flux through the ribbon remains constant during the 
deformation, by Gauss' theorem applied to the volume swept out by the ribbon 
during the deformation; we see this by integrating = 0 over the volume 
swept out and noting that there is no flux through the areas swept out by the 
edges since they are pieces of magnetic surfaces (on which 5 has no normal 
component). 

Measuring the flux through the ribbon in the upper leftward direction 
in the figures, we see that the flux through the part of the ribbon along the rç 
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Fig.3 

Flux measurement 

axis (0 = 0) counts positively and that through the part along the 0 axis 
(actually 17 = 1) counts negatively (Fig. 3). This latter flux would be just ф 
if taken all the way down to the magnetic axis, as shown by (18); since we 
take it only between two neighbouring surfaces it is Аф instead. Similarly 
the flux through the rj axis part of the ribbon is dx. We therefore have 

dx - д.ф = 0, (87) 

so that 

d x . 
d ф ' 1 = 7Г-2 it 

(88) 

in accord with (85). 
Now suppose, more generally, that the line of force goes m times around 

the short way wljile going n times around the long way and then closes on 
itself. Since 0 increases by m as r¡ increases by n, we now have i./2jr = m / n 
by (86). 

The flux through the ribbon of lines of force is again zero. The de-
formed ribbon now runs n times along the r¡ axis (0 = 0) and m times along 
the 0 axis (rj = 1), so 

ndx - m # = 0, (89) 

— = — . (90) d ф n 2jt {i)U) 

again in accord with (85). 
If the line of force does not close on itself after going any finite number 

of times around then l/2-п is irrational. We do not have m and n to work 
with, so (90) is meaningless. But (85) is still valid, by continuity. In fact, 
to within any prescribed accuracy, the line approximately closes after some 
sufficiently large number of times around. Then (90) holds approximately, 
and going to the limit we obtain (85). 
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HYDROMAGNETIC STABILITY THEORY 

C . O B E R M A N * 

I N T E R N A T I O N A L C E N T R E F O R T H E O R E T I C A L P H Y S I C S , 

T R I E S T E , I T A L Y 

1. IDEAL HYDROMAGNETICS 

If we are concerned with phenomena for which uc¡T, upeT » 1 then, to 
a good approximation, the inertial terms may be neglected in the generalized 
Ohm's law. If, in addition, ( c s /ü) (a c i /L) « 1 (take Ü ~ c H or cs) then the 
term involving the ion pressure may be dropped. (If we are involved, as 
we shall be, with studying the stability of systems in which there is no mass 
flow in equilibrium (u0= 0) then certainly this criterion cannot be satisfied 
in the equilibrium. However, it can be shown that the stability criteria are 
not affected by its omission.) We shall for simplicity omit body forces such 
as gravity from discussion but they may be readily included. We are thus 
left with the situation 

E+ £ X 5 =n J. (1) с 

If the time т « 4jrL2/ric2 » T, 

( j 2 T 2 

( Э Д - ^ Г » ! . 

then the collisional term can be neglected. (Here uc¡is the ion gyrofrequency, 
Upe is the electron plasma frequency, ü is the average mass flow, and cs 

and с are sound and hydromagnetic speed respectively. Characteristic 
length and time are denoted by L and T respectively. ) However, one must 
reconcile this approximation with vc Т » 1, in order to maintain the pressure 
isotropy during the motion and thus have 

¿-(P/Р5 / 3) = 0. (2) 

We shall assume such conditions to obtain and shall write down the equations 
of ideal hydrodynamics: 

P ^ f = - ^ P + J X B . (3) 

* Permanent address : Plasma Physics Lab., Princeton University, Princeton, N. t . , United States 
of America. 
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Эр 
at + V - ( p u ) = о . (4) 

f + u x 2 = о. 

( f ^ + î - V ) ( p / p ï ) = 0. 

(5) 

(6) 

V X Ê = - ^ f . (7) 

= (8) 

Although one might argue, and quite rightfully, that this set of equations 
has a rather limited regime of approximate applicability for most plasma 
situations, their simplicity allows us to handle, say, more complicated 
geometrical situations. A more solid reason is that this set of equations 
leads to a pessimistic appraisal of stability as we shall see later. 

This set of differential equations must be supplemented by a set of 
boundary conditions, obtained by integrating these equations across a region 
of sharp variation. 

For a plasma-plasma interface, 

= o . 

n • [u] = 0. 

(9) 

(10) 

n X [E] =n- u[B] (11) 

ft - [B] = 0, n X [B] = K. ( 1 2 ) 

Here B i s a unit vector normal to the interface. 1? is.any surface current 
(idealization) which might exist at the interface. 

At a fluid vacuum interface, Eq.(10) is-meaningless, but the other 
equations are valid. 

A region of interest is obtained by considering the situation at rigid 
perfectly conducting walls. The appropriate boundary conditions here are 

ïî X È = 0. (13) 

a - ^ - o . ( i 4 ) 
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n • u = 0. (15) 

A further condition which must be satisfied at an interface carrying a sheet 
current but no sheet mass is that the lines of force of the magnetic field 
lie in the surface. If it were not so the refraction of lines of force would 
yield infinite accelerations to the surface. We shall restrict ourselves to 
situations where the statement Eq.(14) is strengthened to rt- Êf=0. 

It can be shown that this dissipationless system has an energy integral 

At present we shall be concerned with the stability of those hydrodynamic 
equilibria in which ïî vanishes. The "normal mode" technique is the usual 
one for investigating the stability of such systems. It consists in solving 
the linearized equations of motion for small perturbations around the equili-
brium state. The system is said to be unstable if any solution increases 
indefinitely in time; if no such solution exists , the system is stable. 

There exists an energy principle technique [1, 2, 3], on the other hand, 
which depends on a variational formulation of the equation of motion. This 
was first formulated by Rayleigh for calculation of the normal frequencies 
of vibrating systems. The power of this method lies in the fact that if one 
is concerned with determining only if the system is stable, and not with 
actual frequencies or growth rates, then we need only discover whether there 
exists any perturbation which decreases the potential energy from its equili-
brium value. This makes practicable the stability analysis of more com-
plicated equilibria than the normal mode method. 

It is convenient at this time to adopt a Lagrangian description pf the 
"fluid" motion. Here we consider all quantities to be functions of ?0 , the 
initial location of a fluid mass element, and of time. Let the displacement 
vector T(?o. t) be determined by 

? = ?o+Ç(?o,t) (17) 

where r is the location of the 
mass velocity u is given by 

If we now treat t as a small quantity, we shall derive the time evolution of 
all the field quantities in terms of £ and then determine the law of motion 
for f . 

A basic relation we need is the following: By the chain rule for dif-
ferentiation we have 

element at time. Clearly f (r0, t = 0) = 0. The 

u = § . ( 1 8 ) 

,rf Э Эг„ Э л-* л 
(19) 
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Now from (17) 

V r - f ( r 0 , t ) = r - î ( r - f , t ) ( 2 0 ) 

so that 

V r 0 = S r -

= V r - ^ 0 f + O ( f 2 ) . ( 2 1 ) 

~> —» 

Since Vr = I, we have 

v=v 0 -v 0? . v0. 

From the equation of continuity we have 

(22) 

( 2 3 ) 

Consequently 

^ l n ( p / p . ) = - $ . § ( ? , t ) . ( 2 4 ) 

If we now work out an expression for the commutator of V and d/dt, it is 
readily found that 

• dt = S i ? . ( 2 5 ) 

Thus, correct to first order i n f , 

J - l n ( p / p 0 ) = - £ ( V . f ) (26) 

and thus 

p = p 0 ( l - S 0 . | ) + O ( ? 2 ) . ( 2 7 ) 
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It follows at once that 

p 0 / p = l + v 0 - | + e ( ? 2 ) . ( 2 8 ) 

Now, 'since 

p d T = p Q d T 0 , 

then 

V 1 vo 

Likewise, 

d T = d r „ [ l + V N - | ] + 0 ( ? 2 ) . ( 2 9 ) 

¿ ( 7 ) = ( p S - B p ) / p 2 = ( S + B V - u / p ) 

В д - В d f% 
f - ^ - f - v ? = ^ - v i j + o ( ? 2 ) . (30) 

Consequently 

Thus 

Г* П —> —> 

fi=#0<Bo + V % ? ) 

= Bg + Bq • VQ| - B0 V • f . 
( 3 2 ) 

The perturbations in p and J are easily found from the above equations and 
expanding out 

9 x 3 = j 

dT <P0-y> = 

In summary with Q0 = X (£0 X B0) and if we keep only terms to first order 
in I , we have: 

p = p0 -TP 09 • f . (34) 



142 С. OBERMAN 

У = Г о - f f o f - ^ о Х ^ + ^ о X ( f • ^ о В о ) (35) 

B = S 0 + 5 + f • V0B0 . (36) 

The equation of motion for f ( r 0 , t ) is found to be 

(37) 

with 

Í T P o 4 +Ç • ^ p 0 ] + ? 0 x 5 - s 0 x <3. (38) 

Note that 3? depends only on f and not on f . At a perfectly conducting fixed 
boundary the condition on Ç is 

Let us confine ourselves, for simplicity, to cases where plasma is confined 
by such a boundary, with no intervening vacuum region. Results for the 
case where there is an intervening vacuum region shall merely be stated 
with their derivation left as an exercise. 

It is now within our power, in principle, to follow in time any small 
motion about an equilibrium state in which u0= 0. The central problem is to 
determine for a given equilibrium whether such a small motion grows in 
time. Again, if we confine ourselves just to a determination of stability, 
and do not inquire into the details of the motion, we have only to examine the 
sign of the change in potential energy. We shall prove that the system is 
unstable, if, and only if, there exists some If which makes this change in 
energy negative. 

This demonstration requires the proof of self-adjointness of the operator 
That is, given any two arbitrary vector fields ?(r0»t), il(r0, t), we 

must show 

This self-adjointness can be proved directly, but tediously, by integrating 
by parts, and using the equilibrium conditions 

- > 
I • n = 0 . (39) 

(40) 

(41) 
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$ Х Й 0 = Т . (42) 

$ • S 0 = 0 . ( 4 3 ) 

We shall give here a simple direct proof, which depends only on the existence 
of the energy integral of the linearized system in which terms of the form 
of the product £ and £ do not appear. 

AU = U(t) - U(0) = const. 

( 4 4 ) 
= A K ( f , ? ) + A W ( f . f ) . 

Here 

A K ( f , f ) 4 / d T 0 p 0 ( f f ) 2 (45) 

and A W { f ^ f } is arrived at by inserting Eqs.(33), (34), (35), (36) into (16). 
Thus 

Д К = Jdr0 £ • F [ ? ] = - A W 

(46) 

= A W { f , 1 } - A W { f , f } 

where we have used the equation of motion Eq. (38). From Eq. (46) it follows 
that 

f d % t - F [ f ] = J d T o ? • F [ f ] (47) 

Since £ satisfies the same boundary as f and may be chosen arbitrarily 
initially to be rf, we have the self-adjointness. Further, from Eq. ( 4 6 ) 

A W { ? , ? } = - f j d - ç f • F [ f ] . ( 4 8 ) 

Since the time does not appear explicitly in Eq. (38), we may seek normal 
mode solutions of the form 

Г к ( ? 0 Л ) = г , к ( ? 0 ) е ^ . (49) 
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The corresponding characteristic value equation is 

-4p0Hk = F [nk] . (50) 

Since F is self-adjoint and real, the ifk can be chosen real and to satisfy the 
orthonormality condition 

jfdT0Mí ' ^m = V ( 5 1 ) 

Further, 

о 
uk is real (52) 

and the phenomenon of "over-stability" (w is pure real or pure imaginary) 
cannot occur. Any normal-mode with positive is stable. Thus the neces-
sary and sufficient condition for stability is that there must be at least one 
negative . 

To show this (assuming completeness of щ), let 

R J = ^ A K R ) K ( 5 3 ) 

then 

A W R . тП = - " g ^ a n a m Jdr0\ • f ] 
n m 

( 5 4 ) 

n 

Thus AW can be negative if, and only if, there exists at least one negative y2 

These conditions are closely related to Rayleigh's principle, namely, 
that the Euler-Lagrange equation of the variational principle 

u« = A W i L l L ( 5 5 ) 

A K{¡¡, Ç } 

ôu2 = 0 (56) 

gives just Eq. (50). 
The utility of the Rayleigh-Ritz procedure is that when the ratio Eq. (55) 

has a minimum, we may estimate the eigenvalues (oscillation frequencies 
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and growth rates). Even if u2 is not bounded from below it can still be em-
ployed for information on the structure of the eigenmodes. 

The power of the energy principle over both normal mode or, equi-
valently, the Rayleigh-Ritz procedure is that one can abandon the norma-
lizing condition AK{if, ?} = 1, especially if p0 is complicated, and preferably 
use any convenient one to keep the energy inflated (bounded from below). 
One, of course, loses precise knowledge of the exact eigenfrequencies but 
often gains great analytical simplification. 

Let us now illustrate these ideas with a simple example. Consider a 
plasma in which the magnetic field vanishes and the pressure is constant 
and outside which there is a vacuum region with a magnetic field. (We shall 
now suppress the subscript 0 on equilibrium quantities). 

One has, in general, using Eqs. (38) and (48), and after integrating by 
parts, 

A W = | Jdr{G? + J - I X Q + TP ( S - ? f + f - V ^ S - f } 
p 

+ | J d r ( V X A)2 + | j/dCT(n-|fn-[V(p + B2] . (57) 
V I 

where the integrations are over the interior of the plasma, the vacuum region, 
and along the plasma-vacuum interface, respectively. The unit normal n 
points out of the plasma. At the interface the boundary condition is 

n X A = - (Й • I ) Вvac (58) 

In our present problem we take in the plasma S = 0, p = constant. Thus 

A W = | /dr(VXA) 2 + | ^ a ( n - ? f n - S | B 2 | +|JdTYp($-?)? (59) 

v I p 

Clearly AW is only lowered by choosing f such that V- f = 0, and we shall 
do so. 

Denote by Й the vector from a point on the line of force to the local 
centre of curvature. Then 

v|B|2 =ñ-RB2 /|S|2 . (60) 

Clearly, if S everywhere points away from the plasma AW is positive for 
all ^ and is stable. This is the principle of cusped geometries for obtaining 
stable MHD equilibria. 

10 
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Consider situations where there is some region where ft is directed 
into the plasma. Construct a local Cartesian co-ordinate system in a small 
region about such a point, with the z-axis normal to the surface and pointing 
into the vacuum, and the x-axis in the local direction of S. Choose a dis-
placement f such that 

?z (x, y, o) = ÇQ f(x) sin ky 

which falls to zero in a small distance a «R but such that ka2»R. Choose 
for the perturbed vector potential Ж 

A = f(x) cos ky e t e ) (61) 

which satisfies the boundary condition Eq. (60). It is clear that the vacuum 
contribution 

dT I V X АГ = / d T - l V f X V (-Ц^-cosky e"kz 

Г , - > . 2 2 2 -2kz 
- J d r H € 0 В e 

f 0 2 B 2 / 2 к ( 6 2 ) 

while the surface contribution, 

Jda(if - f ) i i - r M ~ | c 2 B 2 a 2 . (63) 
|R| 

Thus the system is unstable. 
These "flute instabilities" or "interchange instabilities" tend to move 

magnetic lines of force into a region previously occupied by matter, thus 
shortening them while only slightly bending them. The net result is a de-
crease in magnetic energy with no change in gas energy (V-Ç =0). 

To estimate the growth rate choose 

?x = 0, ?y = Ç0 f cos ky e"te, Çz = ?o zu ky e ' K (64) 
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Then 

V - f = 0 + o f ¿ \ № 5 ) 

Then 

ДК=|^с1тр|€|2 = p ^ (66) 

and thus 

AW Bf k_ 
ДК p R' (67) 

This is unbounded as к goes to infinity. It is true that this simple problem 
could be treated as well using normal modes or the Rayleigh-Ritz procedure, 
but had the geometry been more complicated, had there been no sharp sepa-
ration, and had the equilibrium been spatially dependent, then the power of 
the energy principle would come to the fore. 

2. DOUBLE ADIABATIC THEORY 

If collisions are rare, ¡/CT« 1, then the assumption of the isotropy of the 
stress tensor becomes untenable and it is best to abandon the effect of col-
lisions. In the presence of a strong magnetic field it is still possible to 
obtain essentially a hydrodynamic description under certain conditions. 

The magnetic field sérves to keep particles together, but only for the 
directions perpendicular to the magnetic lines. The magnetic field forces 
each charged particle to gyrate around a guiding centre which sticks to and 
moves along a line of force. As a result the particles cannot disperse in 
any direction perpendicular to the magnetic field but only among the field 
lines. In this case the pressure is no longer isotropic but different for the 
directions parallel and perpendicular to the magnetic field lines. 

CHEW, LOW and GOLDBERGER [4] have given a fluid description in 
terms of a few macroscopic moments "Й, p, S and the two pressures p± and 
p„. The difficulty in this procedure is the truncation of the moment system. 
If one simply throws away the heat flow term, and collisions, in the moment 
equation for the time development of the stress tensor, one finds 

P = p x ( T - ' 5 ? ) + p l , I ë > ( 6 8 ) 

where e is a unit vector along S. 
(This form for the stress tensor can be arrived at directly as a property of 
the distribution function in the large magnetic field limit or by taking our 
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moment equation (without collisions), and letting В be large forces 

P X B - B X ? = 0 (69) 

Eq. (68) then follows. ) 

There are two situations when this neglect of heat flow along the lines 
is a meaningful approximation: (a) when the longitudinal invariant exists, 
and (b) when the "low-temperature" approximation is valid. It is instructive 
to derive these laws from rather elementary thermodynamic arguments as 
follows : 

The internal energy per unit volume is given by half the trace of the 
stress tensor 

E = E„+E X (70) 

with 
E„ = P „ / 2 p 

E, = рх /2р (71) 

In the absence of collisions E„ and E± are independent, except for the magnetic 
field constraint. Consider an element of volume dr = dlds where dl is an 
element of length along б and ds an element of area orthogonal to Й. 

Under a ^ displacement, you have seen that 

= (72) 

and since 

M U - g ^ . V . r ( 7 3 . 

then 

^ = ( e - v f ) - e . ( 7 4 ) ds 

Thus from the First Law of Thermodynamics 

6(E„ pdr) = 6 0 P|id^ = - PMds ôdl ( 7 5 ) 
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and 

б (E x pdr ) = 6 (pxdT) = - P j d l ó d s . (76) 

It then follows at once that 

— = * P „ V . u - 2p„ (e • 9 u ) • e (77) 
dt 

dt " ' 
Jx= - 2p± V - u + px(e • Vu) • e. (78) 

These may be written in a suggestive form 

(79) 

à_ 
dt = 0 . (80) 

This latter formula is equivalent to the constancy of the magnetic moment 
and these two latter laws replace the single adiabatic law 

Because of the holonomic nature of these equations we can repeatthe arguments 
which lead to the previous energy principle and arrive at the form which 
will be written down in the following section. 

3. ADIABATIC (PARTICLE) THEORY 

3.1. Introduction 

Our purpose now is to derive, from the kinetic, equation in the small 
m / e limit, criteria Useful in the discussion of stability of plasmas in static 
equilibrium [5] . At first we ignore collisions but later show how their effects 
may be taken into account. Our approach yields a generalization of the afore-
mentioned energy principles for investigating the stability of hydromagnetic 
systems to situations where the effect of heat flow along magnetic lines of 
force is not negligible, and hence to situations where the strictly hydro-
dynamic approach is inapplicable. 

In section 3 . 2 . we characterize our general method of approach. In 
section 3 .3 . we delineate the properties of the small m / e limit of which we 

(81) 
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make use in the present problem, the constants of the motion, and the 
condition for static equilibrium. (We omit, for simplicity, the possibility of 
an electric field along the lines of force (but О (m/e) !) in the equilibrium we 
consider, but this is readily included. See [6] ). In sections 3 .4 . and 3 .5 . 
we calculate the first and second variations of the energy and conclude with 
a statement of the general stability criterion. 

In section 3 . 6 . we state several theorems which relate the stability 
criterion to those of ordinary hydromagnetic theory, while in section 3 . 7 . 
we show how to incorporate (at least a particular model of) collisions into 
the theory. Finally, we touch upon the problem of incorporating the charge 
neutrality condition into the theory. 

3. 2. General method 

Our method consists of writing down the energy of the system to second 
order in the perturbation fields of f and S, where f is the distribution function 
in 3!, Ъ space and 8 is the magnetic field intensity. We eliminate the terms 
involving the second-order perturbation f** by employing certain constraints, 
namely that certain constants of the motion have their equilibrium values. 
(This method was suggested by a technique used by W . A . Newcomb to show 
stability in the much simpler case of a plasma with a Maxwellian equilibrium 
distribution. ) The constants of the motion we employ are time-independent 
and are functionals of f and S which are regular at (permit expansion about) 
their equilibrium values. 

The resulting expression for the energy is a quadratic form in the first-
order perturbation f* and f jointly (we have seen that f describes the dis-
placement of magnetic lines of force away from their equilibrium positions) 
whose positive-definiteness provides a sufficient condition for stability. 
We rid ourselves of the dependence on f* by minimizing the energy with 
respect to it, subject to the constraint that all constants of the aforementioned 
type have their equilibrium values. We then have a sufficient condition for 
stability involving f alone. 

Generally, the constants of the motion of the type we employ do not 
specify the motion completely, so that there exist many motions evolving 
from the same equilibrium (at t = - oo ). By restricting these constants of 
motion to their equilibrium values, the only possible motions other than the 
equilibrium are instabilities (the pure modes of which have an exponential 
time behaviour and hence vanish at t = -

To illustrate the method we consider the simplest of examples, the 
equation of motion 

x = - X x . (82) 

This system has one time-independent constant, the energy 

(83) 

There exists another constant (the initial phase) of more complicated be-
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haviour and involving the time explicitly. We do not employ this latter 
constant. 

The first-order variation of the energy vanishes, since in static equili-
brium x(t) vanishes. The second-order variation leads to the form 

0 = < ? * * = ( ^ j / 2 + A ( x * ) 2 / 2 ( 8 4 ) 

for the perturbation. Clearly if A> 0 then the energy is a positive-definite 
form, and the system is stable, for there exist no motions away from equili-
brium. The stable (oscillatory) motions must necessarily increase the energy 
from its equilibrium value and hence are disregarded. If X<0 , however, 
the form is indefinite, Eq.(84) can be satisfied non-trivially, and there exist 
(exponential) motions away from equilibrium. 

3.3. Small m/e limit 

In the present investigation we examine the second-order variation of 
the energy 

* = J d 3 x i (B2+ Ê2) 

+ I / / / № > < ^ e d 3 x [ m f ( i / 2 + a « / 2 + ^ ) ] (85) 

from its equilibrium value. Here Й and S are the electromagnetic field 
intensities, f is the distribution function in 3, space of a particular species 
of charged particles, the summation is over all species, and 

v = 3 + vL + qn. (86) 

B(x, t) = I B(x, t) I n(J, t) = 0n. (87) 

а = E X B / B 2 . ( 8 8 ) 

q = v • n. (89) 

l / = v x / 2 0. (90) 

e=q 2 / 2+ i / jS . (91) 

The quantity 0 /q)dfde represents the volume element in velocity space. We 
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assume for simplicity that any boundaries present are such as to present no 
complications, e . g . , rigid and perfectly conducting walls with entirely 
tangential. The properties of the small m / e limit we employ are 

(a) v is constant following a particle motion. 
(b) f is rotationally symmetric in velocity space about a line parallel 

to S and passing through the point a. 
(c) <? is the common perpendicular drift velocity of all particles. This 

last fact, as is well known, is what permits the introduction into the forma-
lism of a displacement vector 1 (x, t) which governs not only the development 
of the field quantities but also the transverse motion of the particles. There 
is an additional property, charge neutrality (see section 3 . 8 . ) , which we 
do not employ, but we remark at this time that in contradistinction to the 
Chew, Goldberger and Low ( C . G . L . ) theory where one particle species is 
taken of much smaller mass than another in order to satisfy the condition 
that Й • ff vanish, we treat all particle species on an equal footing, regard 
E and S as participants in the m / e expansion, and find that Ë • n is indeed 
zero to lowest order in m / e , which is all that is necessary for the evolution 
of the expansion. It can be shown that the stability criterion to be obtained 
is not affected by not employing this property in many cases, including that 
of isotropic equilibrium distribution functions. 

The equilibrium distribution function we denote by g(i/, e, L) where L 
labels the line of force passing through a point in space. We take g mono-
tonic in e with 

g £ < 0 (92) 

for reasons we shall see later. The equilibrium condition is 

0 = P + (^X Ë) X S 

= (p+I + p _ n n ) - - l ^ + fi-(93) 

where p is the stress dyadic, Î is the unit dyadic, 

P+ = Pi- P- = Pu - Pi < 9 4 ) 

with p± and pM given by 

. pn =m J J()3/q)di/deq2g (95) 

and 

Pl = m J J(j3/q) dvdev/3g (96) 
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3. 4. First-order variation of energy 

The first-order change in S is given by 

= / d 3 x ( j B 2 9 | + B - B * V m FFFdvded3 x [(g + eg e)№q^-| 

+ (/3q)* + /3q( f*+ef* )] . (97) 

Here we take for convenience the change following the displacement rather 
than at a fixed point, and we now take equilibrium quantities without special 
designation and denote perturbation quantities with starts. (We shall frequently 
perform an integration by fjarts with respect to e, as we have in arriving at 
Eq. (97), by making use of the fact that l / q equals qe, which follows i m -
mediately from Eq. (88). We do this in order to avoid the appearance of 
non-integrable integrands like l /q 3 ) . The perturbed magnetic field intensity 
at the new position x + f is given up to second order in f by 

S(x) + 3* (x) + 3* * (x) = 3 + [В • V| - В V • U 

( 9 8 ) 
1 

+ 2 
B ( ( V - | ) 2 + v | : v f ) - 2 V - f В - V ? 

and the perturbed volume element at the new position is given by 

(99) 

However, we find that 3 * vanishes trivially when we make use of the general 
constraint condition that all constants of the motion have their equilibrium 
values, as we shall now see. 

The general constant of motion of our system constructed from individual 
particle constants may be written 

(/3/q) dvdecíx G (f, v, L) (100) 

since the volume element in phase space is constant and so is G, which is 
an arbitrary function of the distribution function f (remember f = 0), v, and L 
where again L labels a line of force passing through a point in space. That 
magnetic lines of force maintain their identity during a displacement is a 
consequence of the fact that È • n is zero (to lowest order in m/e) ; thatparti-
cles stick to magnetic lines of force is a consequence of (c). 
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The condition that Eq. (100) vanish to first order yields 

0 = - f f f d v d e J x G f (g(v. e , L), v . L)[0q V - f g e + g£(j3q)* - | f * ] . (101) 

We may now regard Gf, as an arbitrary function of e,v, L because,by Eq. (92), 
g is monotonie in e . Accordingly we may strip Eq. (101) to the basic con-
straint condition 

0= Jd3x[|3qV.|g£ + (|3/q)(- V . | + níT:VÍ)(q2-V|3)g£-(|3/q)f*l (102) 
T 

« 

where the integration is over a thin tube of force T. (We may, in general, 
translate integrals over thin tubes of force of flux dep to those along lines of 
force according to the prescription 

/d 3 x 0A(x)=dqpJdlA(x) (ЮЗ) 
L 

for arbitrary A. ) 

We now make the particular choice 

Gf (g(f, e, L), v, L) = - m e (104) 

for G f , in Eq.( lOl) , add the resulting expression to Eq. (97) in order to 
eliminate f* . and obtain 

t* = Гd3x B 2 V - f + B - B * ) - m / I /dKdedd3xXg |3qV.Ç+Oq)* . (105) 

The right-hand side of Eq. (105) now vanishes identically as stated when use 
is made of Eqs. (91), (98), (93), (95) and (96). 
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3. 5. Second-order variation of energy 

The second-order change in energy is given by 

g * * = /d 3 x { i [ f t f )2 - V? : V|] 3 2 + ( V-|)B • В* + 

+ § . ; § * * + I E * 2 + I 3 2 

+ f Iffdvd^x Ki•?)2 - f f : ^ 
+ V-|(/3q3)* + (|3q3)**y)(eg££ + 2g£) 

+ ((0q3)* + 3 . f p q 3 V f * + 2 f * ) 

+ j3q3(ef^* + (106) 

Here p is the mass density. If we write the constraint condition Eq. (100) to 
second order, 

d^decfx (G"f? + G'f, 

/di/de dJ x ^G Г ' (Pq% G 

+ (G't*)ti(Pq3)* + G'f*V.f(0q3)££ 

("9-íf- vf:v| 

+ (pq3)**) ( c Y e + G ' g £ £ ) } 

p q 3 + ( v - i m 3 f 

(107) 

and make the same choice Eq.(104) for Gf( =G ), we can eliminate f * * in 
the same way that f * was eliminated in first order, and <$** then becomes 
a quadratic form i n ? and f * jointly. (We have not explicitly introduced the 
next-order correction to the displacement? since its contribution to $ * * 
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vanishes in this second order, as the contribution of f to 
first order. ) We now have 

vanished in the 

1 Г,з 
?*•" = ± J d \ (E*'+p3 2 ) + óW (108) 

with 6W defined by 

ÔW = ! /d3x | $ 2 + S x S - r x 3 + 1 - S r - tf-P) 

- ( m / 2 ) j j y d y d e d 3 x 0 / q ) f * 2 / g e 

+ ( m / 3 ) J J J d v d e d 3 x g £ { - | [ ( S - | ) 2 - S f : S | 

+ ( V . ? ) ( p q 3 ) * + ( / 3 q 3 ) * * j - (109) 

and 

3 = S X (f X S) . ( 1 1 0 ) 

We find after using Eqs. (91), (98), (95) and (96) that Eq. (109) becomes 

6 W ï M Q + (V X B ) X Q + (V-f )f • Vp + 

+ 2p+ [ V - f - n í : V?]2 

+ p [ - Й - V f • VÇ • n - n n f • VVf 

- ( n . S f ) 2 - f ( n S : v f ) 2 

- (m/2)fff(p/q)dvdeàx\î*2/g 

g / f 3 2 ( - ? - t + n n : v f f ( 1 1 1 ) 
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We are now prepared to state our stability criterion: 6W is a quadratic 
form i n ? and f* jointly, otherwise depending only on equilibrium quantities. 
If this form is positive-definite (i .e. positive for all non-trivial permissible 
f and f* ) , then our system is stable. Indeed, the only? and f * for which 

can vanish (as it must since S is a constant of the motion) are the trivial 
ones and hence no instability can develop. 

Let us now hold fixed and minimize this expression with respect to 
f * (find the worst f * from the point of view of stability), subjecttothe general 
constraint condition Eq.( 102). To do this we multiply Eq. (102) by the Lagrange 
multiplier X(e,i / ,L), integrate over v and e, and then integrate (sum) over 
tubes of force to obtain 

0 = / / /dvded x X(i/,e,L) |3qg£V-f 

+ ( /3 /q)g £ ( -V-? + n n : v f ) ( q 2 - i / 0 ) - (j3 /q)f*J. (112) 

We now add this expression to Eq. ( I l l ) and then vary with respect to f * , 
obtaining the Euler equation 

- f * / g e + X = 0 . (113) 

If we now use this to eliminate f * in Eq. (102), we find 

r d 3 x ( | 3 / q ) q V -1 + ( - V - f + n n : VÇ )(q - v¡3) [/ J dJx(P/q). 

T (114) 

These give the minimizing f * in terms o f f , so E q . ( l l l ) now represents a 
quadratic form on ? alone, otherwise involving only equilibrium quantities. 
In the hydromagnetic fluid theory where the pressure develops according to 
the adiabatic laws 

the corresponding expression 6WD is 

6 W D = | J T ( Í X | Q 2 + ( V X B ) - | X Q + | p + ( V - ? ) 2 + (Ç. Vp+)V-F . 

+ P+ (V-?) 2 - 2 ( v - ? ) n n : v ? + 3 ( n n : v ? ) 2 

+ P. [ - f ' V ( n n : Vf j+4(nn : Vf f - n • V ? • Щ • n 

+ Ç • Vn • VÇ • n - (n -Vf )¿ + n -V? • (f • Vn)] (116 ) 
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We can now write Eq. ( H I ) as 

ÓW = Ó W D + I - J d 3 x n n : ^ f - j p + ( 2 V - | + n n : v f ) + 3p_ n n : V | | (117) 

where 

1 = - (m/2)JJJ(p/q)dvdeSxgc-^ - v 2 / 3 2 ( - V - f + n n : V ? ) 2 } ( 1 1 8 ) 

(This expression for 6W can be shown to be independent of the component 
o f ? parallel to B, as it should be on physical grounds. ) 

3. 6. Comparison theorems 

The condition 6W> 0 can be shown to be a necessary as well as sufficient 
condition for stability once self-adjointness has been established. The neces-
sity of the principle was first shown directly by Newcomb (unpublished) and, 
with a technique that employed a shorter proof along the lines indicated in 
Part I, Ideal Hydromagnetics, was given by KULSRUD [6] . This proof 
of s elf - ad j ointne s s is intimately tied to the monotonicity condition g £ < 0 . 
This condition eliminates the possibility of over stable low frequency oscil-
lations along the lines of force. Overstability (complex eigenfrequencies) 
implies lack of self-adjointness. Nevertheless there is strong indication 
that it is possible to form an energy principle even if g e < 0 , by using only 
first-order perturbations and not relying on the technique employed in 
section 3. 5. 17] . 

We shall now show that stability under the presently considered adiabatic 
(particle) theory implies stability under the Double Adiabatic Theory. For, 
by means of Schwarz's inequality 

J d3x 0 3 / q ) [ v 2 p V . f - n n = W ) 2 

í 

+ 2 v f 3 q 2 ( n n : ^ ? ) ô M - n n : ^ î ) 

+ (nn: ?f) 2q 41/^(0/q)d 3x (119) 
T 

If we now insert this inequality into Eq. (118) we find 

I * ( m / 2 ) JJJ^/q)dvde<^x g[2vj3(n n :V|)(V-1 - n n : V ? ) 

+ 3 q2(nn: W ) 2 ! - (120) 
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When the right-hand side of Eq. (120) is expressed in terms of p. and p+, it 
becomes precisely the last integral on the right-hand side of Eq. (117). Hence 

6W s 6Wr D ' (121 ) 

We can obtain an important inequality in the opposite direction when 
the equilibrium distribution functions are isotropic (gu = 0). In this case 

c o 

p = px = p„= (m/3)y^de (2e)3^g (e, L) (122) 

and we may write 

X = 2e ^ t ? x ( l - y 0 ) " * t t - f y | 3 y - 0 ) n n : $ f + f y | 3 t f - 1 /fe d3 x ( 1 -y j3 ) " i 
T T 

(123) 

where 

y = v / e (124) 

If we now take y and e as variables in velocity space rather than v and e, 
we find we may write I in terms of the moment p after an integration by parts 
in e and obtain 

l /B 

1 = ^+12 = ( 1 5 / 4 ) / / dyd x |3p(l - yP) 

0d3x (1 - y(3)! ( l - f y i 3 ) n n : W + f y / 3 f t 1 фй3х(1-уР) 

i / < d
3x 2 p ( - ^ - 1 + n n : ^ f ) 2 (125) 

For this isotropic case we now have 

ifi-6 W = ^ / d x - j Q + ( V X B ) - ? X Q + ? - V p V - l f- + I . (126) 

This result has been also obtained independently by M. Rosenbluth using 
another method. Since the integrand in Ii is positive, we may take Schwarz's 
inequality in the opposite direction, perform the integration, and obtain 
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5 W * ÓW H { q 2 + ( V X B ) - I x 5 + 1 - S p ( V - 1 ) + | ( S - l f } ( 1 2 7 ) 

where 

V - ? V - t / J d 3 x . ( 1 2 8 ) 

Thus if for a 7 = 5 /3 hydromagnetic fluid we can show stability 6WH > 0, then 
we may conclude that the system will indeed be stable under our more re-
fined particle picture. 

3. 7. Collisions 

In case collisions are not negligible, the situation is somewhat altered 
in that we lose most of the constants of the motion. Those of the type in 
Eq.(lOO), for which G is independent of f and v, remain. However, the 
fact that the equilibrium distribution function is now locally Maxwellian, with 
modulus ©(L), (as it must be for static equilibrium under collisions) enables 
us to proceed with the argument. We do not lose the property that particles 
stick to magnetic lines of force, however, since the size of step away from 
a magnetic line of force after a collision goes to zero with m / e . 

The Boltzmann function per tube 

/ / /(/3/q)di/dedJx©(L)f logf = • • • ( 1 2 9 ) 

has the well-known property 

d^f/dt ^ 0 (130) 

because to lowest order in m / e there is no heat flow across lines of force. 
We now assume that all regular, time-independent, phase functions 

have their equilibrium values at t = - oo and in particular obtain 

^ ( t = -oo) (131) 

Now 

d ^ / d t = 0 (132) 

and, therefore, 

d^f*/dt s о . ( 1 3 3 ) 
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But g f * is linear in f * and f and hence a reversal in the sign of f * and f 
leads to d £ f * / d t ^0. We conclude, therefore, that d ^ / d t equals zero and 
so 

= 0 ( 1 3 4 ) 

and finally obtain 

* 0. (135) 

Now é is still a constant of the motion and we may use the expression for 
g f * * to eliminate f * * from Eq.(106) obtaining the expression Eq.(109) for 
this Maxwellian case with the additional positive t e r m - ^ * * on the right-
hand side. We could have used the theorem which states that <£ + has its 
minimum for the Maxwellian distribution with modulus © , to arrive at this 
result. We minimize this expression with respect to f * now with the con-
straints that the ^"function for each tube of force is constant to first order 
(see Eq. (134)) and the number of particles in each tube is constant. That is, 
using Eqs . (134) and (101) we may minimize subject to the constraints 

0 =J I I d 3 x d v e ( / 3 / q ) e 
T 

q ^ - l g , ' + ( " + n n : ^ f ) ( q 2 - ф)ge - f t (136) 

and 

0 = j 7 j d 3 x d v d e ( 0 / q ) q 2 V . f g £ + ( - ^ - f + n n : W ) ( q 2 - * 0 ) g £ - f * ( 1 3 7 ) 

This leads to 

f / d 3 x p ? . f (138) 

for the value of the integral involving f * . It follows at once that 

e W C o U * S W H (139) 

i . e . , stability is not destroyed by the occurence of collisions. (This model 
of collisions is a "weaker" model than that giving rise to Ideal Hydromagnetics. 
We could make this statement more precise in terms of inequalities involving 
characteristic frequencies, but we shall not do so here. ) 

11 
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3. 8. Charge neutrality 

We conclude our presentation with a few remarks on the charge neutrality 
condition which is also a consequence of the small m/e limit. This condition is 

0 =YeJi\P /q)dvde . (140) 
i 

We must now minimize Eq. (106) with respect to f * subject to the present 
constraint as well as to Eq. (101). This leads to a coupled set of linear 
integral equations for the multipliers with which the constraints are intro-
duced. We have not solved these equations and defer further discussion to 
further work. It is clear, however, that since we are now minimizing under 
an additional constraint, the formula for 6W in terms of Ç alone can only be 
increased from Eq. (117). Elementary physical arguments can be adduced to 
show that 5W still remains bounded above by 6WD. 
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1. APPROXIMATE DERIVATIONS OF THE VLASOV EQUATION 

(a) Introduction 

In ordinary neutral gas theory, one uses the Boltzmann equation to de-
termine the oscillations occurring in a gas. This equation assumes that 
particles suffer binary collisions only, and that in between these collisions 
they move freely under the influence of external forces only. An extremely 
useful additional approximation is to assume that the collision terms are 
very large in magnitude compared to the "streaming" terms. In this case 
the distribution function is very close to a Maxwell-Boltzmann and one can 
take moments of the Boltzmann equation and obtain the considerably more 
convenient hydrodynamic equations. 

A hot, fully ionized plasma does not allow us these luxuries. Because 
of the long range nature of the coulomb force, the assumption of binary col-
lisions is clearly inadequate. Even more important, the collision terms are 
now considerably smaller than the "streaming" terms. 

To compare these quantities, we now calculate the approximate oscil-
lation frequency of a plasma (since this is a measure of the "streaming" 
terms) and the corresponding collision frequency. 

(b) Oscillation frequency versus collision frequency 

We estimate the oscillation frequency by considering the case of a cold 
but collisionless plasma. Now the velocity of the particles is a unique 
function of position 5? and we can write 

§- — ' ( U ) dt m 

where e is the particle's charge, m its mass and E the electric field. The 
conservation equation for each species is 

^ + n ( S - v ) = 0 , ( 1 . 2 ) dt 

where n is the number density. 

* Presently Guggenheim Fellow at the Research Establishment Ristf, Danish Atomic Enery Comission, 
Roskilde, Denmark. 
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If we now linearize about an initial uniform state in which there are 
equal numbers of electrons and ions at a density n0 and with no mass velo-
city (vfl = 0) and no electric field (i?0 = 0) we have: 

^ L + n 0 V - v 1 = " o . (1.3) 

Now by Poisson's equation, we have 

^ • = 4я- je|(n1£ - n l e ) . (1.4) 

Taking the second time derivative and using Eqs. (1.1) and (1.3) we have 

dt2 0 V m i m e / 1 

Hence we see that the charge fluctuates with a natural frequency given by 

u 2 = u 2 + u 2 (1.5) pe pi ' * ' 

where the usual plasma frequencies have been introduced. 
We must compare this with the coulomb collision rate. The cross -

section for a coulomb collision is of the order of 

<7 s ( e 2 / m v 2 ) 2 , 

and the corresponding collision frequency is of the order of 

u c ~ n a c v . 

Assume typical plasma parameters, such as 

n = 1 0 1 2 c m " 3 

T = 100 eV 

then the electrons, which collide most frequently, yield such values as 

u c s 6X 103 s " 1 , 

while the electron plasma frequency is 

up s 5X 101 0 s " 1 . 

We see that the collision terms can be ignored safely. 
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(с) What is a collision ? 

165 

The estimate just given assumed that a "collision" was a coulomb scat-
tering of one charged particle on another. It is important to distinguish 
between this "collision" and the motion of the particle under the influence 
of the averaged electric field of all the other particles. In fact, our estimate 
of the oscillation frequency tacitly assumed the existence of a smoothly vary-
ing electric field depending only on the co-ordinates of our particle and not 
on the precise location of the other particles in the plasma. 

Thus, we define "collisions" to be due to large fluctuations of the elec-
tric field about a smoothly varying average electric field. This is the es-
sential feature of the Vlasov equation in that we neglect the "collisions" and 
allow the particle's behaviour to be governed only by electric fields produced 
by the averages over the positions of the others. This is quite akin to the 
self-consistant field approximations used in atomic theory. It should also 
be noted that in a strict sense it is incorrect to call the Vlasov equation the 
"Collisionless Boltzmann Equation", as is often done, since this would imply 
neglect of the averaged field effects as well. 

(d) Criterion for validity of Vlasov equation 

It is conveniervt to have a numerical parameter available which tells 
us to what extent the use of the Vlasov equation for a plasma is justified. 
This is obtained by comparing the number of particles which make up the 
averaged field with those contributing to the field fluctuations. 

At first glance we might think that the Vlasov equation is actually an 
exact description of a plasma. This is because there are an infinite number 
of particles contributing to the average field while only a finite number pro-
duce large fluctuations. However, the existence of a shielding limit on dis-
tant interactions makes this statement untrue and enables us to obtain our 
estimate. Let us estimate the shielding distance. 

Assume that we have a potential field produced by ions and electrons. 
Assume the ions uniformly distributed and infinitely massive and that the 
electrons respond to the potential fluctuations as if they instantly relaxed 
to a Maxwell-Boltzmann distribution (we will make this implausible assump-
tion somewhat more palatable in a few moments). Then Poisson's equation 
is (in one dimension) 

- 1 1 = 4 , | e j ( N o - N o e x p | e | ¿ ) 

and for small fluctuations, we have 

d2<ft 4 ffN0e2 

dx2 kT Ф ' 

Hence the fluctuation dies out exponentially with an e-folding length XD 
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* = ( а У 2 Y (1-6) D \47rN0eV 

which is the familiar Debye length. 
Even when we do not make the assumption that the electrons are in equi-

librium we still get a similar result. Suppose the electrons in a volume 
of radius r happen to be moving in such a way that a charge excess would 
occur. The time for buildup of this charge excess (and of the resultant elec-
tric field) is 

T 2 r / v , 

where v is the average electron velocity. On the other hand, the plasma's 
response to this field occurs in a time of the order of 

Tres 2 X / V 

Hence if the buildup time is short compared to the response we can create 
the charge excess. This condition is 

= < — 
V Wp 

or 
r < I m v

 2 V _ ^ 
ч 4 7 г п е 2 / D" 

Now we can obtain a numerical estimate for the rate of the fluctuating 
field to the average field. We expect all particles which can cause appreci-
able coulomb deflection to contribute to large field fluctuations and that im-
plies all particles within a distance d 

d= e 2 / k T . 

Comparing this to the Debye shielding distance XD we have 

R fluctuation E ^ j L _ 1 
R a v e r a g e E ~ X D ~ 

which is equal to the reciprocal of the number of particles in a Debye sphere. 
In usual practice this ratio is a very small number and hence we can use 
the Vlasov equation with good assurance. 

(e) Derivation from the Liouville equation 

Let us consider the statistics of a gas of N charged particles. We can 
describe the probability of finding our N particles with certain positions 
and velocities by the distribution function f N ( x , , v', xMvM, t). As we 
have just noted, when the number of particles in a Debye sphere is large we 
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expect the particles to respond only to the averaged electric (and magnetic) 
fields of the other particles which, in turn, depend only on certain averages 
over the probability distribution of the other particles. In this first approxi-
mation we expect no dependence on the details of where the other particles 
actually are. Hence in first approximation we expect the individual particle 
probabilities to be independent or 

N 

fNfxjVj, x ,̂v2 xNvNt) = v l t t ) . (1.7) 
i=l 

To next order in (4irnX3 )_1 we would expect the occurrence of terms involving 
correlations between a particle and the location of another, such as 
gfíjXg, , t ) but we shall not consider these here. 

If we now make the assumption implied by Eq. (1. 7) we can immediately 
derive the Vlasov equation [1] . Start with the Liouville equation 

f N = 0 

and substitute Eq. (1. 7). Now integrate over the co-ordinates of all but the 
j-th particle. We find at once 

к 

dxkdvk • Sv.fMxj Vjt) = 0, 

where we have denoted "a^ as the acceleration of particle j due to its inter-
action with particle k. The quantity a* 

4 ( ? k f y ) d x k d v k к 

к 

is recognizable as simply the acceleration of the j -th particle due to the 
averaged fields produced by all the others. To within a term of higher order 
this is precisely the averaged electric and magnetic fields due to all 
particles. 

The entire set of Vlasov equations can be written as: 

/ Э -» - » - » - » Л + v • V + a • Vvyf = 0, (1.8) 

where 

and 
V - E = é T T ^ e ^ f j d 3 ^ , (1.10) 

a = — ( E + - v X B (1. 9) m V с ' 
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-» -> V Г -» з-> 1 ЭБ? V X B = 4 ^ e J f i V i d 3 V i + - | f • (1.11) 

V • H =- 0, (1. 13) 

and f has been normalized so that its integral over all positions and velo-
cities is unity. Further details on this type of derivation can be found in 
Ref. [1]. 

(f) Entropy conservation 

Before turning to consideration of linearized oscillations, we should 
point out an essential feature of the Vlasov equation. If we define a Boltz-
mann H-function in the usual fashion 

H = ^ y < f i l n f¿ d ^ d 3 * (1.14) 
í 

and take its time derivative, we have 

dH ^ YJÇÉÊL , „s-j 
dt / J V dt + l n f ^ ) d x d v -

By conservation of probability, the first term vanishes. Substituting from 
Eq. (1. 8) for the time derivative in the second term and integrating by parts, 
we obtain 

dH 
dt U - y j l n f ^ ^ a ^ v i H i d ^ d 3 ? 

i 

= У У (V, . 3 + a¡Vvi ) f ¡d3x d3 V = 0. 
i 

Thus the entropy of our system is conserved. 

2. LINEAR OSCILLATIONS 

(a) Longitudinal waves 

Since the mass of the ions is so much larger than the electrons, their 
intrinsic plasma frequency is much lower and in a mixture this usually re-
presents a small correction to the dispersion relation. Furthermore, Ed-
most all of the interesting features in the dispersion relation are already 
present in the behaviour of the electrons themselves. Hence, in the follow-
ing we shall assume that the ions are infinitely massive, at rest, and uni-
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formly distributed. We also no longer distinguish between individual par-
ticles of the same species (electrons, ions, etc. ) and now write the Vlasov 
equations in the form 

9f -» -* e f v | f + v - Vf + — ( e + -9t m \ с ^f - + v • Vf + ( E + r X H j -Vv f = 0 , (2.1) 

V • E = 4jre( / fd3v - n¡J , (2.2) 

V X E = - i § , (2.3) с ot 

^ - H = 0 , (2.4) 

V X H = — + — e Г v f d3v, (2.5) с 9t с J 

where f is normalized to the number of particles in a given species and now 
refers to the electron distribution only; n¡ is the fixed ion number density 
and e is the electron charge. 

Let us assume that the actual electron distribution function f departs 
only slightly from a zero-order distribution f 0 which is uniform in space 
and time and which corresponds to an electron density equal in number to 
that of the fixed ion background. Furthermore, it is also assumed that there 
is no net electric or magnetic field in the plasma in zero-order. This im-
plies no externally applied electric or magnetic fields as well as the re -
quirement that 

/ v' f 0 (v)d 3 v = 0. (2 .6) 

With these assumptions it is clear that- Eqs. (2.1) through (2.5) are identi-
cally zero in zero'th order. If we write 

f = f 0 t f ) + f jôc .v . t ) (2.7) 

the first-order equations become: 

M l + ^ . ^ + JL ( Ë i + l x H i ) - v v f 0 = 0 . (2.8) 

V • Ex = 4тге J \ d 3 v , (2.9) 

-» -» 1 9H, 

V • H! = 0 , (2. 11) 
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=» т» 1 ЭЕ-i 4тге [-> ч-» 
V X H l = c 8t1 + T S J v f l d v - ( 2 Л 2 ) 

We now specialize to the case of purely longitudinal oscillations by as-
suming that ^ X Ë j = 0, ïîj = 0 and hence that 

(2.13) 

(This decomposition of oscillations into purely longitudinal and transverse 
modes is exact only if the distribution function f o(v) is isotropic.) Our equa-
tions now become: 

I f + v - V f ! - J ^ V ^ ! - V v f 0 = 0, (2.14) 

V 2 ^ = -4TreJ ,f1d3v. (2.15) 

We now solve by a Fourier expansion in both space and time. Let 

/
- > - » 

f 1(^,"v,u) e' k Х~ШД d3lcdu, (2.16) 

Г 
<^(x,t) = фг(к,ш)е1]1'х'ш d3îc du, (2.17) 

then by Eq. (2. 14) we have 

„ ,t> . (e/m)lt • Vyfp (v) , . . . fi(k,v,u) = —'-=;—^ <Mk,u) (2. 18) 
к • v - и 

and substituting into Eq. (2. 15) we find the relation: 

(2.19) mk2 J к . v - u 

This can always be reduced to a one-dimensional integral by choosing the 
z-axis in the Tc direction. Let us denote the z-component of v by u and the 
partial integral of f over the two directions of velocity perpendicular 
to T? by Fo (u). Thus 

ku , 

J f0(v)dvxdvy = FQ(U) 

and Eq. (2. 19) becomes: 
+ CO 

l ^ f y 8 " du. (2.20) mk J ku - и 
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Equation (2. 20) is the dispersion relation first given by Vlasov. Note 
however that the integral is not well defined since the integrand is singular 
for velocities such that u = u /k . The resolution of this uncertainty will be 
discussed immediately below. For a zero-temperature plasma, however, 
there is no singularity for any finite frequency и and the integral can be 
evaluated. Let us assume then that 

F0 (u) = nó (u). 

We then integrate by parts and find that 

1 = 4тгпе2 /ти2 

or 
u>2 = 4;rne2/m e w .̂ 

Thus a perturbation in a zero-temperature electron gas oscillates with a 
frequency which is independent of wavelength. There is no propagation 
of the perturbation since the group velocity du/dk = 0. 

Returning to the case of a finite temperature plasma we are faced with 
the question of what to do about the singular integrand in Eq. (2. 20). Vlasov 
arbitrarily decreed that the principle value of the integral was to be used. 
LANDAU [2] then showed that this result was incorrect; although in the case 
of long wavelengths, Vlasov's prescription does yield the principle frequency 
with which the plasma oscillates. Landau's method is to use complex values 
of u, and hence Laplace transforms, to solve Eqs. (2.14) and (2.15). 

Let us follow Landau's treatment. We define the spatial Fourier trans-
forms 

f^lc, v, t) = J f j d , v, t) e Ü-l d3x , (2. 21) 

ф^Тс.Ц = J ф^х, t )e i k " x d=£ , (2.22) 

(2. 23) 

(2. 24) 

where фх and f i àre assumed to be of order e*»1 for t > 0. A Laplace-Fourier 
transform of Eq. (2. 14) then yields: 

(s + it • v) fx [t, v, s) - g(£/v) = g ¿fc • V f 0 ( v ) . (2. 25) 

and then their Laplace transforms as 
oo 

f j & v . s ) = J*e"st fa(lc,v,t)dt (Re s > x 0 ) , 
о 

0x(k, s) = Je* ф x (k, t) dt (Re s > x0 ) , 

Here 
g ( £ , v ) = f ^ . v . t = 0 ) (2.26) 
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is the Fourier transform of the initial perturbation. Upon substitution of 
Eq. (2. 25) in the transform of Eq. (2. 15) we obtain: 

4 f f e Г g ( î ? , v ) 

4ffe2i Г It • ^ f p 
m k 2 J S T T K ^ V 

Once again, this can be simplified by choosing the z-axis in the direction 

-> - > - > _ f Г - » 
of к and defining к • v = ku, g (к, u) = / g(k, v)dvxdvy and Fo(u) = / f0 (v) dvxdvy. 

Hence we obtain: 

zjXui d u 

^ ( k , s ) = k - : w k U " 1 S . (2.27) 

! _ 1 I Ê ? Г 9 F Q ( U ) / 3 U D U 
mk J ku - is 

This is the Laplace-Fourier transform of the perturbed scalar potential. 
The corresponding transform of the perturbed distribution function is found 
by substituting Eq. (2. 27) in Eq. (2. 25) which yields: 

f 1 = ( 2 . 2 8 ) 1 s + i k - v m s + i к • v 1 

Note that in Eq. (2. 27) is composed of two parts. The integral in the nu-
merator is dependent only on details of the initial perturbation g(k, u) while 
the denominator depends only on details of the zero'th-order velocity 
distribution. 

The actual variation of the perturbation in time is obtained from the 
inverse Laplace transform. 

(k.t) = ¿ - y \ ( k , s ) e s t d s , (2.29) 

where the integral is taken along the Bromwich path in the complex s-plane, 
which is a contour parallel to the imaginary axis and to the right of all 
singularities of фт, including the imaginary axis itself. Eq. (2.29), after 
Fourier inversion, represents a complete solution to the initial value prob-
lem. There are now no singularities associated with the ku-is term in the 
integrals of Eq. (2. 27) since the inverse transform uses values of s which 
are to the right of the imaginary axis in the complex s-plane. 

Although Eq. (2. 29) represents a complete solution to the problem, it 
is not in a convenient form. We would prefer to deform the integral along 
the Bromwich path into the equivalent contour shown in Fig. 1(a) and then 
pass to the limit where the vertical part of the contour moves toward - м. 
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Landau contour 

In this case the contributions from all parts of the contour vanish, for any 
finite time, except for the integrals around the poles of фi in the s-plane. 
These last contributions are just the residues at these poles (denoted by a) 
and the result is 

* i (k , t ) = y e a t R e s J ^ k . s ) ] . (2.30) 
a 

In order that the integral of ф-, (к, s) be the same along either of these 
contours, it is necessary that ф-, (Й, s) be analytic everywhere in the region 
between the two contours. This requires that we define ф1 (E, s) for Re s< xo 
such that it is the proper analytic continuation of the function 0i (k, s) defined 
so far only for Re s > x 0 . This can be accomplished by deforming the con-
tour in the u-plane as shown in Fig. 1(b). When Re s > 0, the u-integral 
is taken along the real axis, as before. Assuming к > 0, there is a pole 
in the upper u-plane at u = i s /k . Now, as s moves to the left of the imagi-
nary axis in the s-plane, the corresponding pole in u-space moves across 
the real u-axis . If we deform the contour as indicated, the new function 
ф (k, s) is automatically the proper analytic continuation of the function in the 
right-hand plane. It is assumed in all this that g(k, u) and 3F0 (u)/3u are 
themselves analytic functions in the complex u-plane (or more generally, 
are such that itself is analytic except at isolated poles). 
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Let us denote the contour indicated in Fig. 1(b) by the subscript c. We 
can now write 

i i | i [S&vï d u 
kz J ku-ií 

" W f'aFn(u)/au d u 

mk J . ku - is 

and the time variation of фг is entirely determined by its poles in the entire 
complex s-plane. 

(b) Some properties of the dispersion equation 

Consider first the numerator in Eq. (2. 31). If we assume that the initial 
perturbation is a non-singular function on the real axis then it is easy to 
show that this numerator can only contribute poles which are decaying in 
time. For , if Re s > 0, we can properly take the integral along the real 
axis only. The numerator becomes (for s = a + ib) 

i L _ d u 
J ku + b - la 

and thus obviously cannot be singular. Even if Re s = 0, we can show the 
non-existence of a solution. In this case let s = ib . Now we can write the 
numerator as 

where P denotes the principal part of the integral. Since g(k,u) is non-
singular on the real axis the principal part integral can be no worse than 
logarithmically infinite. Hence the numerator can only contribute poles 
corresponding to time-decaying solutions. 

We now turn to poles contributed by the denominator. These roots are 
in a sense the "natural frequencies" of the system since they do not depend 
on the details of the initial perturbations (except in so far as their amplitude 
is concerned). These poles of Eq. (2. 31) occur when the denominator va-
nishes, or when 

( 2 . 3 3 ) mk2J u - i s / k 
с ' 

We shall call this our dispersion equation. 
One important property of this dispersion equation can be readily 

derived. This is the demonstration that the Maxwell-Boltzmann distribution 
and more generally "single-humped" distributions have only time-decaying 
roots. 
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Let us assume that a pole does exist on the right-hand side of the com-
plex s-plane. This implies then that for some s = x + iy, with x> 0, 

^ ( 2 - 3 4 ) 
mk J ku + у - lx 

"во 

where it is now legitimate to take the integral along the real axis. Separat-
ing this into real and imaginary parts, we have: 

+00 

w r a S t o ü l 5 ) 

mk J (ku + y) + x 2 

O ^ Î j f r d . ; ( 2 . 3 6 ) mk _J (ku + y ) 2 + x 2 

Suppose now that F0 (u) is a "single-humped" distribution, peaked at u = U, 
as shown in Fig. 2. By a "single-humped" distribution we mean that 
9 F 0 / a u > 0 for u < U and 3 F 0 / a u < 0 for u > U. Now, since Eq. (2.36) is 
zero, we can multiply it by (kU + у) /x and subtract it from Eq. (2. 35). The 
result is: 

too 
4тге2 Г (U-U )3FQ /8U du 

!>• / ». « О . О ' \ • / mk J (ku + y)2 + x 2 

Note, however, that the numerator of the integrand is positive definite by 
virtue of being "single-humped" . Hence the right-hand side is negative 
definite and the equality cannot occur. This proof is not valid when s lies 
to the left of the imaginary axis in s -space, since then the integral in 
Eq. (2.34) cannot be confined entirely to the real axis. 

(c) Landau damping 

We now specialize to the case where f 0 is a Maxwell-Boltzmann dis-
tribution, 

F0 exp - (u/c)2 
s/ 7Г а 

Eq. (2. 33) can be written as 

1 " p Г- 2t exp -t 2dt 
^ r k s f f 2 J t - is/ko* I 

which can easily be put in the form 

k 2 X p + 1 + i ^ ï z W ( z ) = 0 , (2. 38) 
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Fig. 2 

"Single-humped" distribution function 

where z = i s / к a and 
* 

с ; 
\ 

The W-function defined above has been extensively tabulated [3]. 
Let us solve Eq. (2. 38) above in the limit of very long wavelengths. If 

we assume that s does not vanish as rapidly as k, when к -» 0, we then must 
assume that as 

к -» 0, z —> oo. 

This leads us to consider asymptotic expansions of the W-function. First 
suppose that z, although large, is real. In this case we have 

+CO 

W(z) P J e *P t " t 2 dt + exp - z 2 . 
-oo 

Performing a Taylor series expansion of the denominator of the integral, 
we obtain : 

The series just given is an asymptotic one, which means that it is only 
unique to within exponentially small quantities. Since the residue term itself 
is exponentially small, it is often nonsense to include this contribution. How-
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ever, there are some special regions of the z-plane in which keeping the 
added term makes sense. Right on the real axis, of course, we note that 
the residue term is purely real while the series is purely imaginary. Hence, 
any exponentially small terms in the series do not contribute to the real 
part of W and it makes sense to include this residue as long as we stay in 
the immediate vicinity of the real axis and are interested in the exponentially 
small real part of the function. 

The only other regions of the z-plane where inclusion of such a term 
makes sense are when ] lm z|>|Re z |. In this case, the exponential term 
is no longer exponentially small, but exponentially large. For Im z> 0, how-
ever, there is no such term since the contour goes along the real axis only. 
For Im z < 0, we pick up а 2я1 from the residue. Summarizing we have 
the following expansions: 

W ( z ) ^ ( z + ¿ r + - - - 0 I m z > l R e z l 

W(z) -> 2 exp - z 2 + - ^ = + ^ 3 - . . . Im z < - | Re z | (2.40) 

W (z) -> exp - z 2 + Q + + ^ Im z = 0 . 

Now let us return to our long wavelength limit. Eq. (2. 38) goes into 

к 2 X¿+ 1 - + + . . + iô -Jîr z exp - z 2 = 0, 

where the value of ô depends on Im z. We note that if we ignore the expo-
nential term, then the series itself can only yield real values of z 2 . This 
would not be consistent with assuming Im z > | Re z |. If instead we assume 
Imz < - I Re z|, we have a term 2 . / S z exp - z 2 which becomes infinite with 
z while all other terms remain finite. Hence our only possible solution is 
for j lmz|<|Rez| and in this case, by the nature of our expansion we see 
that the imaginary part of z will be exponentially small . Thus a proper 
expansion is 

к 2 XI, - 2%2 + * "J* z e x P ~ z 2 = 

To lowest order z 2 = l /2k 2Xg = Wp/k2a2 the usual result. The small imagi-
nary contribution z¡ is found by iteration 

k 2 X n " ¿ ( Í ' - T ^ O e x p - z 2 = 0 (2.41) " Z Z 0 V Z 0 s 

or 

z. = z* exp - z 2 . 
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We note at once that this result corresponds to damping, since the value 
of s is 

is 
= z o + l z i ' 

consequently 

s = ka z^ exp - z 2 - ikff z 0 . 

In more familiar units we have 

• Sreal = exP - f e ) 

or, in terms of the Debye length 

J* UP ( 1 V 
S real - - 8 (kXp)3 e x P * \ 2kX D / 

while further iteration provides the imaginary part as : 

. ± y . 

The result we have just obtained can also be found without using the 
asymptotic representations of the W-function [4] . An alternative procedure 
as well as further details on Landau damping can be found in Ref. [4]. 

Next we turn to the short wavelength limit. Again we assume that s 
stays finite or does not blow up as rapidly as k. Then as k-^oo, z -» 0. Using 
a power series expansion for W(z) 

W(z) = 1 + — z - z2 - z3 + . . . (2.45) 
Л 

we see at once that Eq. (2.38) leads to a contradiction. Hence we must as-
sume that z ->oo as к -> oo. Using the asymptotic expansion we have: 

k2X2 + 1 - + + . . - У iô s/?z exp-z2 = 0. 

In this case, since the first term becomes infinite, we can only have a solu-
tion if I Im z |> I Re z | and indeed we must have Im z< - | Re z | since otherwise 
6 = 0. Thus our expansion is 

к2Х| + i2sfif z exp - z 2 = 0 

or 

к 2 Х 2 = 2 . / 7 (z¡ - i zr) exp (z? - 2 iz r z ; -

(2.42) 

(2.43) 

(2.44) 
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If we now assume that |z¡ | » |zr | this expression reduces to: 

2 
k2X2 = 2ir z. exp ( -Zj - 2i zr z¡ ). 

However, z¡ < 0. Hence we must also require that' 

2 zr z¡ = ж. (2.46) 

There are also solutions for higher odd multiples of n but these decay even 
more rapidly. Now we find 

verifying our assumptions. The result is a heavily damped mode. Thus 
we see that collective oscillations with wavelengths appreciably shorter than 
a Debye length cannot exist in a plasma. 

All the results we have obtained so far are for the root with the smallest 
damping. Of course, other roots exist, but these are more heavily damped. 

(d) The origins of Landau damping 

We have seen that small disturbances of the electrostatic field in 
a plasma having a Maxwell-Boltzmann distribution of velocities oscillate 
with a frequency close to the plasma frequency and also decay exponentially 
in time (for long wavelengths; short wavelengths decay very rapidly). What 
is the origin of this damping and how do we reconcile it with entropy con-
servation which must be present? 

Turning to the first question, we consider the form of the damping as 
shown in Eq. (2.42). The exponential arises from the distribution function 
F0 (u). The exponential's coefficient is up /ka. Since u p / k is the phase velo-
city of the oscillating part of the plasma disturbance, we see that the damp-
ing is proportional to the number of particles in the distribution function 
moving with the phase velocity of the wave. This can be made more precise 
by the following simplified derivation of the Landau damping. 

Consider the linearized Vlasov equation with our usual assumptions. 

k2X¿ = -2îrZj exp - z 2 . (2.47) 

Hence we see that roughly 

z ¡ -» (In k r -» oo 

at m 

We regain the "natural oscillations" result if we take Fourier transforms 
in time (remembering however to go around the pole in the proper Landau 
fashion). Thus taking transforms, we find 
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f - ( e / m ) E 1 d f 0 / d u 
1 i (- u + ku) 

where our transform is exp[-i(wt - i?-~x)] . 
The perturbed current j i is euf i . Hence 

i = Í S ! E u d f j / d u 
1 m 1 -и + ku 

and the work done on the particles by the electrostatic field is 
I 

1 1 m 1 - u + ku 

Integrating over all velocities, we have 

w = i e ® 2 r u d F o / d u d u _ 
m i j -u + ku 

Assuming that our pole lies close to the real axis we see that the integral 
can be written as the sum of a real principal part and an imaginary contri-
bution from the residue. Comparing with Eq. (2 .48) we see that the only 
resulting real contribution to the work is provided by the residue term and is 

W = - я - — , (2.49) m|k| lV d U / ¿ = wA ' 

where the subscript denotes that the brackets are evaluated at u = u/k. Note 
that the work done is proportional to E 2 , the energy in the electrostatic field. 
The value of u comes out of the real part of the dispersion equation and has 
been shown to be in first approximation. In any event u /k is the phase 
velocity of the oscillating part of the wave. We see that the damping term 
is proportional to the slope of the distribution function at the phase velocity 
of the wave. 

For a Maxwell-Boltzmann distribution, we have 

dFn _ _ 2 / u 
du a \a 

and thus 

^ - E l i ^ - ) ' „ Л - V 

Hence the work done on the particles is positive (damping of the electro-
static field) and exactly of the form given in Eq. (2.42) . 
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The result in Eq. (2.49) also allows us a simple physical interpretation 
of the damping. Particles moving a little more slowly than the wave are 
pushed by the wave and gain energy. Those moving just a little faster give 
up energy to the wave. The net energy transfer is proportional to the dif-
ference, which is the slope of the distribution function at the phase velocity 
of the wave. 

Historically there have been a number of physical explanations of Landau 
damping starting from the observations above. One theory invoked electron 
trapping, since it is just those electrons moving nearly at the velocity of 
the wave which have very little energy in the wave frame and which can be 
trapped in the potential well' formed by E : . This mechanism is pretty well 
rejected by most people, today, since it requires non-linear effects for its 
operation and since we derive the Landau damping in a purely linear theory. 

Other theories have invoked "phase mixing" and "resonant transfer" . 
There are a number of special examples which are relevant to these theories 
and which may be found in Ref. [4]. We will not repeat them here except 
to note their results. One can show that a spread of velocities alone (phase 
mixing) will not give damping if there are no particles at the phase velocity 
of the wave. Similarly, if we have no spread of velocities there will be no 
damping (all particles move together and wave form persists). Hence one 
might say that some mixture of the "phase mixing" and "resonant transfer" 
produces the Landau damping since we do require some spread of velocities 
about the phase velocity of the wave. 

(e) Electron distribution function and entropy conservation 

/ 

Having found that the electrostatic potential фг damps away in time, we 
now turn to the long time behaviour of the perturbed distribution function 
fn itself. By Eq. (2. 38), we see that after a long time 

'.-s-fA^V •»•») 
and that a purely oscillating pole remains. Hence f j does not damp away. 

In fact, we can easily evaluate it. 

f ^ v . t ^ e - * ' - " g(£,v) . 

Inverting the Fourier transform, we have 

f j i x . v . t ) -» / e 1 k ' ~ vt> g(k, v)d k. 

But 

g(^»v) = J " e ^ ** f-^xjv, t = 0)d3x'. 
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Hence 

\ G?.?, t) --JJ e^'i*-?- t = 0) d3"x' d 

= Jô ( х - x 1 - v t j f ^ x ' . v . t = 0) d 3 x' . (2.51) 

Consequently 

f i ^ . v . t ) = %(х- v t ,^ , t = 0). 

Hence we see that, after a long time, the distribution function settles down 
to the value it would have if only free streaming of particles had occurred. 
Since the initial distribution function contained all the information on the 
problem (the electrostatic field is entirely determined by f j ) we see that 
information ( i .e . entropy) has been conserved. 

(f) Van Kampen modes and Fburier analysis 

Let us return again to the numerator in Eq. (2. 31). In section 2 (b) we 
noted that the numerator could contribute only decaying roots if g(k, u) was 
a non-singular function on the real axis. Suppose now that we allow g(k,u) 
to be singular on the real axis but, of course, insist that it be integrable. 
That is 

+CO 

J ' g(k,u)du = finite quantity. 

Again, if Re s > 0, we can integrate along the real axis and our numerator 
becomes 

Г g(k,u) du 
J ku + b - ia ' 

-co 

where s = a + bi. If g (ku) is singular at u = u 0 , we can approximate the 
integral near that point by 

^ r- / g (k, u)du ku0 + b - la J 6 v ' 

which remains finite. Hence we still cannot obtain a growing root from the 
numerator. 

However, an oscillating root is now possible. If a = 0, our numerator 
becomes 

0-
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Obviously if we choose our root at the singular point of g we can have a pole. 
Van KAMPEN [5] has gone further than this. He showed that it is in fact 
possible to choose the form of the initial perturbation such that the only solu-
tion is a purely oscillatory mode. In fact, one can obtain a solution which 
oscillates with any и for any given k. The perturbation which will do this 
is the following: 

where 
4эте2 

mk 

and ф0 (к) is the Fourier transform of the initial perturbation of the potential. 
Here с denotes the Landau contour which avoids the poles on the real axis. 
To verify this, let us substitute Eq. (2.52) into Eq. (2. 31). We have 

Г ( 3 F / 3 U ) du _ 1 Г 3 F / 1 1 d u _ 
' J (ku - u) (ku - is) i o - i s J 9 u \ k u - i o ku - is / 

Consequently 

4тге2 Г (3F/3u)du 1 . . . . , ,. .. 
J „1 /,,„ _ = i,/,, _ -iox (1S)1-m k 2 J (ku - w) (ku - i s ) k(u - i s ) 
с 

The second part of the right-hand side of Eq; (2. 52) yields 

/ [1 - ФШ ¿(ku - to) j u 1-ф(и) 
ku - is к (to - is) 

Hence the numerator of Eq. (2. 31) becomes: 

1 - Ф (is) 
к (to - is ) ' 

Now the denominator of Eq. (2. 31) is simply 1 - ф (is), hence we have: 

фл ( к , x ) Ц -
U - IS 

which has only a single pole corresponding to a solution which oscillates 
with frequency to. 

Of course, the perturbation used by Van Kampen must be carefully tai-
lored. It must have a singularity (the б-function) and must depend upon the 
details of the zero-order velocity distribution in such a manner that it 
cancels out the poles of the denominator and contributes in addition a pure 
oscillating solution. Nevertheless, the existence of these purely oscillating 
solutions enabled Van Kampen to define normal modes and to treat the plas-
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ma by Fourier analysis rather than as an initial value problem with Laplace 
transforms. Either the Landau or the Van Kampen treatment may be used, 
as taste dictates. The final result, of course, is always the same. 

(g) Transverse oscillations 

Let us return to Eqs. (2. 8) through (2.12) and obtain pure transverse 
oscillations by setting the scalar potential equal to zero. Now 

с 9t (2.54) 

H 1 = V X A 1 > (2.55) 

—> where A j is the perturbed vector potential and our basic equations become: 

M l 
6t + v J- m 

1 9 A i 

1 Э . V 2 » 4ffe Г-». dV. 

(2. 56) 

(2.57) 

It is also necessary that 

f f i d 3 v = (2. 58) 

Once again, we can solve Eq. (2. 56) by Laplace-Fourier transforms and sub-
stitute in Eq. (2. 57). To simplify matters, let us assume that f0(v) is an 
isotropic function. In this case v and the last term in Eq. (2. 56) va-
nishes. If we again let g(k, v) denote the Fourier transform of the initial 
perturbation, Tï(k) the Fourier transform of the initial vector potential and 
let f j and A j now represent the Fourier -Laplace transforms , we have 

(e /mc)s g(k ,7) - ( e / m c ) ! ? - ^ f 0 

s + i ПГ¥ + i k . v> 
(2. 59) 

Now let e denote a unit vector perpendicular to к and parallel to A j . We 
have 

fOt-litdrt^-Z-BAi f Ц^чЪ 
J mc 1 J s + i к • v 

+ П ( ? - V) g(k,v) + (e/mc)h(k)fn(v)] 
J s + iîc • v 

and since the left-hand side of Eq. (2. 57) becomes 
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, „ s 2\ . s , h 
"c^y 1 ~ "c2" " ~q2 

where h is the initial time derivative of A, we find that 

A 1 = " Ъ о r . ( 2 . 6 0 ) 

s 
C 2 

, , , s 2 4?re2s Г f0 ,Q-> k2 + - Ô + / -i d3 v 
m r - ¿ J s + 1 К • V 

Once again, we continue this into the left-hand side of the s-plane by 
using the Landau contour. Note also that as before the numerator in 
Eq. (2.60) depends on the initial perturbation while the denominator contains 
the "natural" frequencies. Let us concentrate our attention to these "na-
tural" frequencies. The "dispersion relation" becomes: 

_ 47re2s ГF0(u) du 
" m(s 2 + k2c2 ) J s + iku ' 1 ' ' 

If we now assume that F 0 is a Maxwell-Boltzmann distribution, we can 
readily write the above relation as 

S 2 + küc2 - i ^ u 2 z W ( z ) = 0, (2.62) 
P 

where W is the same function defined earlier and, as before, z = i s /ka . Now 
consider the long wavelength limit. Assume s remains finite as k->0. Then 
z -» oo. Neglecting the residue term for the moment we have 

s2 + k2c2 - i J ï u 2 - r - = 0 
P ф-

or 

consequently 

s2 = - (u2 + k2c2) . (2.63) 

s = ± i (u2 + к 2 с 2 )*. 
P 

But this first approximation to s says that 

I s|>kc 
which means 

| z | > - . i i a 

Hence, if we include the residue term, we are including a portion of the par-
ticle distribution function for which 

u с — = z> — 
a a 
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or 
u > c . 

If we had used a properly relativistic particle distribution function, there 
could be no contribution from such values of u. Hence it is entirely self -
consistent to drop the residue term and we have Eq. (2.63) as the proper 
result. There is no Landau damping. 

Turning next to the short wavelength limit assume first that s remains 
finite as к -> oo. Then z -» 0. This obviously leads to a contradiction in 
Eq. (2. 62). Hence we must assume that s -» oo. If we assume that s / k -» 0 
we still get a contradiction with Eq. (2. 62). Hence we must assume that 
s /k -> finite value or infinity. The second choice also leads to a contra-
diction. Hence we assume s /k remains finite and hence that z remains 
finite. Now the first approximation to s is: 

s 2 = - k 2 c 2 . 
о 

The next approximation gives 

( S 0 + S 1 ) 2 = - k 2 C 2 + £ ) W ( ± £ ) , 

where we have replaced z in the last term by 

But с/a » 1, hence 

( s 0 + s j ) 2 ^ - k2c2 - u 2 + . . . 

or 

s 2 ^ - (Up + к2 с 2 ) , 

which is the same result as for long wavelengths. Again there is no damping 
of a purely transverse mode. 

3. SOME EXAMPLES OF "VLASOV INSTABILITIES" 

We have noted that the Landau damping is proportional to the slope of 
the distribution function at the phase velocity of the wave. Obviously then 
if we can create distribution functions which are reversed in slope at the 
phase velocity of a possible wave we will have an unstable situation present. 
In this section we will consider some simple examples of this type of 
behaviour. 
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(a) Penrose criterion 

We shall consider purely electrostatic oscillations with our previous 
conditions (E g = 0, B 0 = 0, infinite uniform plasma) and ask for necessary 
and sufficient conditions for the existence of an unstable root [6]. We write 
the dispersion relation of Eq. (2. 33) in the form 

s - ш * » -
P ' с 

where t = i s / k and define the function 

Z ( t ) = /Sr d u - (3-2) 
с 

Suppose that an unstable root exists for some value of k. This means 
that there exists a t0 lying in the positive imaginary half-plane for which 
Eq. (3. 1) is satisfied, or that is, the function Z(t0) has a particular positive 
real value. Conversely, if the function Z(t) has a positive real value for 
some value of t in the positive imaginary t half-plane, then our system is 
unstable since we can always choose а к such that the left side of Eq. (3.1) 
equads that particular value. Hence a necessary and sufficient condition 
for instability is that the function Z(t) have a positive real value for some 
values of t lying in the positive imaginary t half-plane. 

One can readily test for the existence of such roots by the Nyquist 
method. We allow t to move around a contour in the t-plane which lies just 
above the real axis and then closes by a very large arc, as shown in Fig. 3. 
We then plot the corresponding contour of Z(t) in the Z-plane and observe 
whether or not any portion of the real z -axis is included in that contour. 

The general slope of the Z-contour is easily determined. The outer 
contour in Fig. 3, by Eq. (3.2) is seen to map into the origin in the Z-plane. 
At the point marked 1 in Fig. 3 the function Z(t) takes the value 

z ( V = 7 du ^ J u + a - îe 
~ oo 

= № [ u ) (u + a + ie) d u 

J (u + a)2 + e2 
- CO 

Since a is large and positive, e positive and since F0'(-a) is surely positive 
for large a, we can see that the region denoted by 1 maps into a portion 
of the Z-contour which begins at the origin and moves up into the first qua-
drant. Similarly the region denoted by 2 maps into a portion which begins 
at the origin and moves into the fourth quadrant. Hence the general form 
of the contour shown in Fig. 4. By the argument principle the phase of Z(t) 
must increase in the same sense as t. Hence the direction of the contour 
shown in Fig. 4. 

The example shown in Fig. 4 illustrates the case of a stable distribution, 
since no part of the positive real axis is included inside the contour. Two 
examples of unstable distributions are shown in Fig. 5. 
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Fig.3 

Contour in the t-plane 

Fig. 4 

Example of a contour in the Z-plane 

We now note an essential feature of these results. If there exists an 
unstable root t0 in the interior of the t-contour we will enclose a portion of 
the real axis in the Z-plane and some point on that axis corresponds to 
Z(t0). Figure 5 shows us that corresponding to the existence of any such 
root there must also exist a root corresponding to the point marked 3 in both 
diagrams in Fig. 5. This point has the property that the corresponding value 
of t lies.on the contour between points 1 and 2 in the t-plane. 

In other words, if there exists an unstable root with a finite imaginary 
value of t, there must also exist a root which is just marginally stable, and 
what is more, this root must be such that Im Z(t) changes from negative 
to positive as we move along the t-contour through that point. 

This result can be made reasonably plausible. We can rewrite Eq.(3. 1) 
in the form 

. hi Г (3.3) 
u2 J (u - i s / k r 

Now let к -> 0. The singularity in the denominator is moved out so far along 
the real axis that F0 (u) is negligible there and we can ignore the residue. 
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The remaining term can be written as 

F0 (u) du isi ~ (iL 
u2 = Vis 

P 
or 

s 2 = - w2 

which corresponds to a stable root. Hence our system is always stable for 
sufficiently long wavelengths and it seems plausible that one can find inter-
mediate wavelengths for which an unstable system becomes marginally 
unstable. 

Now suppose that t has the value corresponding to point 3 in Fig. 5. Since 
this is a marginally unstable root we can evaluate Eq. (3.1) by the usual re-
sidue method and obtain 

is! u ? = p / f ^ - d u + Í7TF¿(tR). (3.4) 

In order that this equation be satisfied it is necessary that the imaginary 
part vanish or 

F¿(tR) = 0 (3.5) 

and furthermore since the imaginary part of Z goes from negative to positive 
around this point, we also require 

F ; ' ( t R )>0 . (3.6) 

Hence a necessary condition for the existence of an unstable root is the pre-
sence of a minimum point in the distribution function. 

The complete condition also requires that the real part of Eq. (3.4) be 
satisfied. Since F¿ (u) vanishes at tR , we can drop the principal part re-
quirement, and integrating by parts, we can write 

+«o 

р . Ы - F f „ J u > 0 . ( 3 7 , 

- 0 0 

Eqs. (3. 5 ) , (3. 6) and (3. 7) constitute a necessary and sufficient criterion 
for the existence of an unstable root and are known as the Penrose criterion. 

(b) Two-stream instability 

We will illustrate a Vlasov instability by the two-stream instability. 
However, we shall only deal with one special case and this only approxi-
mately. Consider two equal streams of electrons having the same density 
and temperature but displaced in average velocity by V. The distribution 
function is 
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F0(u) exp JJ + e x p - ( ^ -

By symmetry we see that this function is flat at u = V / 2 . Under what con-
ditions is this a minimum in the distribution function? 

The second derivative is 

~4u2 
F ¿ ' ( U ) • a 2 e x P - Г5 - + 

u2 , 4 ( u - У Г exp ( u - V ) 2 

u 2 (u - V) 2 

- 2 E X P - * 2 E X P ¿2. 

and at u = V / 2 this is 

having omitted sill positive coefficients. Hence we obtain a minimum in the 
distribution function only if 

V > s/2 a 

or, in terms of the thermal velocity in this direction 

V > J R ^ T H -

This is , of course, only a necessary condition. We must also satisfy 
Eq. (3.7) and more careful work shows that the two-stream instability actu-
ally sets in at 

V > 2 v _ , . (3.8) 

This is a rather rigid requirement, but under certain circumstances 
the condition for instability is considerably relaxed. Consider the ex-
treme case of zero temperature ions and electrons moving with an average 
velocity V. The ion distribution function is 

F0 i = 6(u) 

and that of the electrons 

(3.9) 

(3.10) 
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The dispersion equation becomes 

uje Г Fp'p (U) du 
k 2 S 2 к 2 J U + s / ik 

Assuming a marginally unstable root at s = e - ibk we have 

pe 

Comparing with Eq. (3.10), we see that we must choose b = V in order that 
the imaginary part vanish. The real part becomes: 

J _ + +fFûêÎH) d u (3 i2) 
u2 m V2 + J u - V d U 

pe 

м у з " ^ 

or, in terms of the average velocity in the k-direction 

v-visffîv!-

Equation (3. 13) gives the boundary between stable and unstable solutions 
for a given k. Obviously since there will be only a single humped distribu-
tion if V = 0, the instability region lies at the upper values of V. 

For к = 0, the instability velocity is 

V > # e = J 5 ( 3 . 1 4 ) 

while for larger values of к it goes to V 2 = u|i /k 2 which goes to zero with 
k. Note that the electron mass drops out in this limit (hence ihe name ion 
wave instability). Thus a system with zero-temperature ions is actually 
unstable for any electron streaming velocity. For finite ion temperatures 
it goes over smoothly to the result in Eq. (3. 8) when the temperatures of 
ions and electrons are comparable. When T e /T , > 10, we have instability 
conditions closer to that of Eq. (3. 14). 

(c) Inclusion of a magnetic field 

In this section we shall make an extension of the previous results to'the 
case of a plasma immersed in a uniform magnetic field. This requires a 
formal proof which we give in a very brief manner. Details can be found 
in THOMPSON'S book [7] and an extension to the finite Larmor radius case 
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in a paper by ROSENBLUTH and SIMON [8]. We shall assume that the uni-
form field is in the z-direction and that our plasma is low (3 which implies 
Bj = 0. Also we restrict ourselves to purely electrostatic waves, ^ X ËÎ = 0. 
Consider the VlasoV equation 

+ + ( 3 . 1 5 ) at \ m mc / v 

The first term is of order w, which in the hydrodynamic limit is usually 

u S o ( ¿ n ¡ j s o ( e f i i ) , 

where a is the ion Larmor radius, L a characteristic length in the gas (den-
sity variation distance, k"1 etc. ) and Í2¡ is the ion cyclotron frequency, e is 
generally a small quantity. The second term is of order 

—EH = i - n . = € n -
L L 1 1 

The third term is of order 

eE 1 cE„_ 
mvT H v T H B « 

and since the drift velocity is of order Vi^this term is of order Í2t. The 
last term is obviously of order . 

If we now transform to the drift frame, let 

V = ( 3 . 1 6 ) 

and v' = v - V*. In this frame our equation becomes 

3t m av2 mc v 

(V- = 0 . ( 3 . 1 7 ) 

If we now restrict c E z / B to be of order evT H , then it is easy to show that 
all terms are of order ei^i or smaller except for the term 

which is still of order fi¡ . 
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This now permits us to iterate our solution in powers of e. To lowest 
order we have 

v Х Й - % î 0 = 0 . 

Changing to cylindrical co-ordinates in velocity space this is 

f f U o , (3.18) 

where ф is the azimuthal angle. The general solution of Eq. (3. 18) is 

f 0 = M Y ? - v Z . * . * > • < 3 - 1 9 > 

The next order equation is obtained by replacing f by f 0 in all terms 
in Eq. (3. 17) except for the large term which takes the form Э£,/Эф. Now 
however, we average this equation over the phase angle ф. This last term 
vanishes. Remembering that vz = 0 and that rf • V>= 0 for an electrostatic 
wave we find that our equation reduces to: 

f f + v z f + = 0 . (3.20) dt dz m dvz 

Now we linearize about an unperturbed state which is uniform in space 
and with l?0 = 0. Taking transforms of Eq. (3. 20) we find at once that 

= (ie/m) E z 3f /3v z , 
1 ~ - u + k v „ ' z z 

where the transform was of the form exp(-iwt + i к • x). Substituting this 
in the Poisson equation, we at once obtain 

k 2 = u 2 f ^ E ü l É l z . ¿ y ( 3 . 2 1 ) 
P J v z - w / k z z 

which is seen to have exactly the same form as the dispersion relation 
[Eq. (2.33)] for the zero magnetic field case except that k z appears instead 
of к on the right-hand side. 

All of our previous considerations in this chapter (Penrose criterion, 
Two-stream instability) go through as before. The important point is that 
we can have an instability in which kA / 0. Hence there can exist an un-
stable wave with E perpendicular to В which may cause large particle drifts 
and anomalous diffusion. There has been some attempt to use the two-
stream instability for T¡ « Te (Ion wave instability) to explain pumpout in 
the stellarator. 
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(d) Drift-wave (universal) instability 

Again we just briefly touch on a topic which will be covered in detail 
by other speakers. Return to Eq. (3. 20) and linearize about an unperturbed 
state which has ЁГ0 = 0 but now has a density varying in the x-direction. Our 
equation becomes 

1 Í L + V U l + V i í ^ + e b l i í o = 0 > 
8t z 9z 1* Эх m 9V 7 

Now 

Consequently 

f. 

Ely ic ckv _ 

. с & М д _e И Л 
В kz Эх m ЭуJ l z 

i - u + k.v„ 

Hence the perturbed current in the z-direction is 

Л = 
m ук̂ ЛТ Эх 9vJ 12 

• u + k z v z , 

and the work done on the electrons by the electrostatic field is 

W ~ j E = i—- E 2 
Jz z m iz 

z \9v z kzf2 Эх 
- u + k z v 7 

The only real part of this comes from the residue, hence 

W p = - — п г т e L 

If we now approximate F0 as 

/ 9F 0 k y 9F[ 
zV9v, k,n Эх v 

this can be written as 

W„ 

F0 = n,, (*) exp - ( -

o n0 0kzi2 2vz v, = w/K 

where n¿ is the x-derivative of n0 . Hence 
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(3. 22) 

Actually there are two such expressions as Eq. (3. 22), one for each of the 
species (ions and electrons) and the total work done is the sum of the two. 
Assuming equal densities in the unperturbed state we have 

w R ~ 4 i r exp 
к a z e 

1 + cKTky np 
I e I Bio n i 

exp 
M 

2-1 
1 . с К Т к У 

e Вы 
(3.23) 

The first terms in each of the brackets represents the usual Landau damping. 
The second term can sometimes dominate, leading to an instability which is 
caused by a density gradient. 

Before ending we note some qualitative features of this instability. If 

» a.. 

i. e. : if the phase velocity is large compared to the electron thermal ve lo -
city, then instability, even if it occurs, is very small due to the exponential 
factor. On the other hand, if 

и 

the exponential factors vanish and the destabilizing terms cancel . Hence 
this instability is most dangerous for 

a e > U / k z > a i • 

We obviously would also like a large value of k y / k z , but not oo, since k z = 0 
would be damped by the exponential factor. 

Further details of this instability requires evaluation of the real part 
of the dispersion equation and will be treated in other papers. , 

R E F E R E N C E S 

[1] HAREIS, E. G. , US Naval Research Laboratory Report, NRL-4944 (1957). 
[2] LANDAU, L., J. Phys. USSR 10 25(1946). 
[3] FRIED, B.D. and CONTE, S. D. , The Plasma Dispersion Function, Academic Press, New York (1961). 
[4] SIMON, A . , Proceedings of the International Summer School in Plasma Physics, Risfj Laboratory Report 

No. 18 (1960) 61. 
[5] VanKAMPEN, N. G. , Physica l (1955) 949. 
[6] PENROSE, O. , Phys. Fluids 3 (1960) 258. 
[7] THOMPSON, W. B., Introduction to Plasma Physics, Pergamon Press, New York (1962). 
[8] ROSENBLUTH, M. N. and SIMON, A . , Phys. Fluids (in press). 





B I N A R Y P R O C E S S E S I N P L A S M A 

W . B . T H O M P S O N 

DEPARTMENT OF THEORETICAL PHYSICS 
CLARENDON LABORATORY 

OXFORD UNIVERSITY. ENGLAND 

F o r many aspects of plasma physics it is sufficient to cons ider only 
the interaction between partic les and electromagnetic f ie lds ; but certain 
fundamental processes do require a knowledge of the effects of particle co l -
lisions. In particular, to establish a plasma it is usually necessary to ion-
ize a neutral gas, which is most easily done by bombarding it with electrons. 
Once a plasma has been formed col l isions between electrons and ions lead 
to an equipartition of energy, while co l l i s ions with ions, espec ia l ly with 
partially- stripped ions, lead to energy radiation. Finally, when a plasma 
decays , it usually does so by the recombination of ions and e lectrons . 

I. INELASTIC COLLISIONS BETWEEN ELECTRONS AND ATOMS 

(a) Ionization 

The cross-sect ion for ionization is zero until the electron energy reaches 
the ionization energy <#¡. It then increases rapidly reaching a value of the 
order of 10"16 cm2 at 4-5X<f,, then falls slowly with increasing energy. Very 
roughly 

where ?ra$^10"16 cm 2 , é is the energy of the incident electron. This f o rm 
of the c ross - sec t i on has two consequences. If an electron field is used to 
accelerate electrons to the ionization energy, then the field must be strong 
enough to supply this energy in an electron mean free path, i. e. eEA > S^ = eV¿, 
where V¡ is the ionization potential. Since X= l / ( n a e l ) is proportional to 
inverse of gas pressure, E / p must exceed some critical value depending on 
the ionization potential, before the gas starts to ionize. If the electric field 
is increased above this level, the ionization rate at f irst increases, but be-
cause of the decrease in c r o s s - s e c t i o n at high energies ( > 8 0 eV) begins 
to drop again, and the maximum possible ionization rate depends only on 
the number density of the gas. F o r hydrogen 

=,2X10"8 n V 1 cm" 3 . (2) 
Qt may 

and 

197 
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1. d n 
n dt ng<<rVmax >~10"8 n. ' g ' (3) 

where ng is the number density of gas atoms. 

(b) Excitation 

If an electron does not strip an electron from an atom, it may knock it 
into a higher energy state, thus exciting the atom. The cross-sect ion for 
the process is often larger than the maximum ionization cross-section, 
and depends on the energy of the state excited, (measured by the wave-length 
X in microns of the emitted radiation for the inverse process) , and on the 
oscillator strength f for the transition. Roughly 

b is a numerical factor increasing from 0 at S=S* to a maximum of ~ 1 . 3 
at S = 5 S*, and g* is the excitation energy. This cross-section in plasmas 
containing incompletely stripped atomic systems, can be responsible for 
most of the energy radiated. 

It is sometimes important to observe that an excited atom, instead of 
emitting its energy as a photon, can give it up to an electron on collision, 
thus increasing the electron kinetic energy. In cool plasmas such collisions 
of the second kind may be important in raising the electric temperature. 

(c) Recombination 

The simplest recombination process, radiative recombination in which 
an electron is captured by an ion, emitting its energy as a photon, has a 
very small cross -sect ion . Indeed for recombination into any particular 
state of the atom cr~ 10"2U cm2 at low energy ( « 1 eV) and decreases rapidly 
as the electron energy is increased. The sum over all possible states still 
has a low value of the order of 10 "1Э cm2 and only in pure systems at low 
pressures is radiative recombination significant. 

If molecular ions, or partially stripped atoms, are present in the sys-
tem, an electron can recombine and release its energy not by producing a 
photon but by exciting an internal electron, or by dissociating the molecule. 
Dissociative recombination, in particular, has a high cross-section ~ 10"16 cm2 

and is important in cool plasmas. 
At high density the most probable type of recombination involves an 

interaction between three particles and is inverse to the ionization by elec-
trons. It proceeds, therefore, at a rate proportional to the cube of the elec-
tron density and, if characterized by a cross-section, must have a c ross -
section proportional to the density. For low-energy electrons 

and for densities greater than 1014 cm"3 , three-body recombination is more 
important than radiative recombination. 

(4) 

O-M10"33 n)cm2, (5) 
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(d) Bremsstrahlung 

When an electron collides with an atom it is accelerated and emits radi-
ation, bremsstrahlung, which is an important way in which a plasma can 
lose energy. The rate of energy loss can be roughly estimated by the fo l -
lowing argument. The dipole radiation field produced by a particle is pro-
portional to its acceleration; hence, that produced by an electron at point Tt¡ 

j 

and the total field 

V ei ei 3?j-5?j . . 

i.j 
From this sum, contributions f rom like particles disappear for , if x 2 - x j 
appears in the sum, so does -3?2; the sum need be taken only over ions. 
The radiated power is proportional to the square of the field strength, hence 
to the square of the acceleration, i. e. 

Ж & т Ш г Ь -
i к j 1 

and if particle positions are uncorrelated, and the only terms surviving in 
the sum are those for which i = k, j = 1 and if r¡j = |5?¡ - 3?j| , the sum becomes 

i . j 

This may be written in terms of the electron number N and the ion number 
density n as 

1 1 0 1 

l/rmín here may in turn be identified with the de Broglie wave number к = mve/h 
of the electron, and the power loss per unit volume of plasma written 

_ V 2 e ' 2 2 e i о niVe 

Зтг / е 2 \ 2 /e 2X 2 2 ve 3 \m_c2y \hcy1 с ) m _ c z n z c ^ . ( 1 2 ) 

where we have used the fact that e+= e. and n+= N. 
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An integration of the low-energy cross-section given by Heitler over a 
Maxwellian distribution leads to a slightly different numerical factor. The 
power radiated, with T measured in keV is 

Рс=4Х10'31 n2T* W / c m 3 s . (13) 

II. INELASTIC COLLISIONS BETWEEN IONS AND ATOMS 

(a) Ionization 

To a large extent the stripping of an electron from an atom is produced 
by the electric field at the atom, and since an ion travelling with the same 
velocity will produce roughly the same field at an atom as would an electron, 
it is not surprising that the c ross - sec t i on for ionization by a fast ion is, 
when large, c lose to that for ionization by an electron of the same speed, 
and indeed the ionization cross-sect ion for atoms by ions reaches a value 
of the order of 10 ~16 cm2 f o r ions of energy of the order of 20 keV. 

(b) Charge exchange 

A second phenomenon when an ion strikes an atom is the transfer of a 
bound electron from the atom to the ion. This too has a huge cross-section, 
~10"1 6 cm2, when the ion energy is ~100keV. The effect of charge exchange 
when a fast ion strikes a slow atom is that the fast ion becomes neutralized, 
and the slow atom ionized, and in magnetically-trapped hot ion plasmas the 
presence of a small amount of neutral gas can lead to catastrophic energy 
losses, the energy being carried away by fast neutrals produced by charge 
exchange. 

The charge exchange process can also be used for filling magnetic traps 
with energetic ions, for a beam of fast ions can be passed through a region 
in which a high pressure of gas is maintained, whereupon many ions will 
charge exchange with gas atoms, and a beam of fast neutrals will be pro-
duced. The neutrals can then pass into a region of high magnetic field where 
they may be ionized. 

A useful method of ionizing such a beam employs the Lorentz f orce 
For energetic particles moving across a strong magnetic field 

this can be equivalent to a very strong electric field ~ 0 . В vol ts /cm, 
where S is the atom's energy in keV, and В the field in Gauss; =^0. 16X106 

volts per centimetre for 40 keV ions in an 80-kG field; this can give r ise 
to a significant potential drop across an atom. If the atom is in a highly 
excited state with quantum number n>, 7, the disturbing field is strong enough 
to remove the electron, and ionize the atom. Since the charge exchange 
process has a reasonably high chance of producing a highly excited atom, 
the Lorentz trapping process is quite efficient. 
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III. ELASTIC COLLISION BETWEEN CHARGED PARTICLES 

(a) Scattering cross-section 

If two charged particles of masses m1# m2, and charges ех, e2, approach 
one another along a pair of straight lines with minimum separation b, then 
as they approach, the Coulomb interaction between them will cause their 
orbits to be deflected. In the centre of mass system, the angle of deflection 
0 satisfies 

where m is the reduced mass mim2/(mi+ mj), and g the relative velocity 
of approach, g = | - V2I. 

The rate at which particles pass one another with an impact parameter 
between b and b+db is 2 îrgbdb and in any azimuthal range dcp is gbdbdcp, 
hence the differential scattering cross-section стс in the centre of mass sys-
tem defined in terms of the frequency v (в) of collision resulting in a deflection 0 is 

s i n f = l + m 2 g 4 b 2 / ( W » (14) 

u(0)df2 = n2gcrc(0)di2 (15) 

becomes 

o-c(0)d«=crc(0) sin 0d0dcp = b(0)dbdcp: (16) 

hence 

b i 0 L d b 
W c i n Я не -sin 0 d0 (17) 

but 

(18) 

and 

(19) 

(20) 

which is Rutherford1 s cross-section, 
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(b) Kinematics of a collision 

On a. coll ision the incident and final energies and momenta must be un-
changed, hence the centre of mass velocity 

Tt _ mivi+ m2V2 . 
m i + т г 

must be constant, and the entire change occurs in the relative velocity, so 
that on coll ision 

v i - v 2 = é b g ' = v i - v ¿ , (22) 

Vj and v¿ being the final ve loc i t ies of part ic les 1 and 2. vx and v 2 can be 
expressed in t e rms of ^ and §f as 

~> , m 2 - » r i m i . „ „ . v, = V + — g , Vo = V ^ g, (23) 1 m1 + m 2 & ¿ mi + m 2 & 4 1 

while v¡ and v¿ aré the same functions of ^ and j?'. The change in momen-
tum and energy of each particle are thus 

~~* —> m i m o —> — » — > A P l = m l V ' - mjVj = ^ (g1 - g) = - Др2= mr Ag, (24) 

_ mim2 т> -» , mim¿ , ,„ „. 
1 - ( ^ T ^ V - - g ) + 2(m1+m2)a (g'2 - S2). (25) 

and 

A é = . m i m 2 - - j _ ^ m i m 2 2 _ 2 

2 (mj+ m2) ё ' 2 ( т 1 + т 2 ) 2 Kë g v ; 

Since Д(#1 + Д^ 2 = 0, g12 = g2 and the length of g does not change, hence 

A á ' 1 = - A á , 2 = m I V - A g , (27) 
mr = m 1 m 2 / ( m 1 + m ^ , the reduced mass. 

Since gf changes only in direction (Fig. 1), not in magnitude, g1 expres-
sed as its projection on an orthogonal triplet of unit vectors , one along the 
original direction g , g , m, ñ is 

— » л л л gi = g(g cos 0 + m sin 0 cos ф + n sin 0 sin <p) (28) 

- » - » - » Д ^ \ 
A g = g' " g = g( g(cos 0 - 1) + m sin 0 eos cp + n sin 0 sin cp ] 

0 í А. 0 Л 0 A. 6 * \ = 2g sin —(- I sin —+ m sin — eos cp + n sin — sin cp j (29) 
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F i g . l 

D i r e c t i o n o f g ' versus j 

(c) Energy and momentum transfer on collision 

If we ask f o r the transfer of energy and momentum on a col l ision bet-
ween two particles at fixed relative velocity g, scattering angle 0, we must 
average over cp 

hence 

and 

J Q 0 -•> 
<Ag> = - 2g sin2 - g = - 2 sin2 - g 

Q —> 0 - ' 
<Дрх > = - 2mr sin2 — g = - 2mr sin2 - ( v x - v2) 

<Д^!>= m t Ag= - 2m, s i n 2 | ^ . g 

(30) 

(31) 

(32) 

= - 4 sin2 — m i m 2 
4 S m 2 ( m 1 + m 2 ) 2 

= - 4 s i n 2 | / _ m ^ m 2 . 2 

- » - » 1 

2 (mj + m2)2 

- m l V í + (ma - m i ) v r v2 - - m 2 v ^ 

? 1 - # 2 + ( m 2 - m 1 ) v r v 2 

(33) 

Now, we may average these quantities over all scattering angles, holding g 
fixed. Then 

П ( g ) g Др (g. в) sin 0d0dcp 

/ e i e 4 2 2 

% S l n 2 

4 , r n ( 2 S 7 F 2 ) 2 m < g g 4 l o g s i n I 

i r /2 

вя 

(34) 
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If Go is allowed to vanish here, the momentum loss rate will appear infinite. 
Note, however, that 

• log sin = - l o g l + mVb z / (e ie 2 ) 2 (35) 

hence, the infinity arises from infinite values of the impact parameter b. 
In any physical system of interacting particles the maximum possible b will 
be limited in some way. In most plasmas this occurs at b = = v/u>p and 
approximating m r g 2 ^by kT yields 

2 g 4 b 2 2 rnvl 1 (kT)3 xft " _(kT) _ ' ¿ 
e2e2 mne2 /m e4 ne° (36) 

- log sin 0O = log (kT)3 / 2n"1 / 2 e"3 = logA (37) 

log Л= 22. 3 - 1 . 1 5 log,0 n + 3. 5 log,0 W, (38) 

n being in cm'3 and W in eV. Л2/3 = kT/n1/3 e 2 ^ ratio of mean kinetic energy/ 
mean potential between nearest neighbours. 

For some purposes it is necessary to observe the relative importance 
of contributions from ^mall and large b to the scattering process. The inte-
gral over в which reduces to 

"/2 cos I d I * /2d(sinf) 

Jo S l n 2 о 

n2CT4 

s i n -

•ma 

I 
bdb 

(1 + m2g4b2/ e4) (39) 

and if one is interested in the contributions from various ranges of b, / , 
0 

Щах 
f , these become 

~ l o g ( l t m V ^ / e 4 ) , (40) 

and the ratio 

[log (1 + m2g4bLx/e4)/log (1 + m2g4b2/e4) - 1]> 1, (41) 

hence, contributions to scattering for large b always exceed those due to 
small b, and for a Coulomb interaction, a particle changes its direction 
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principally because of the cumulative effect of many small angle scatterings. 
To a good approximation, for large bmax , 

log (1 + m V ^ e 4 ) 2 log ( m g \ a ] [ / e 2 ) . (42) 

Now the scattering angle в, may be approximated, f o r smal l values , by 
using the impulse approximation, in which a l inear approximation to the 
ef fect of the f ie lds is used. The scattering angle then b e c o m e s 

s i n 0 = ^ i A d t = k ^ d _ ? ' ( 4 3 ) 

the integral being carried along the unperturbed trajectory, a straight line 
passing the target at a distance b. Since 

El = e b / 7 3 = e b / ( b 2 + x 2 ) 3 / 2 , 

• fl 1 e2 Г bdx 1 e2 P dt 2 e2 

S l n g2mr J ( t f+x 2 )^ 2 b m r g2 J (l + b 2 F 2 " b i^Tg5 (44) 
-CO -OO 

and sin e/2=ü0/2 = e 2 / ( b m y g a ) . If we were to use this value in the integral 
we would need the dif ference 

l o g ( b m a x m r g 2 / e 2 ) - l o g ( b m i n m r g 2 / e 2 ) (45) 

which would agree with the exact result ( for b ^ * » mr g 2 / e2) if bmin w e r e 
selected as e 2 / m r g 2 . 

Hence we have shown that if the maximum impact parameter bmax» mr g2 /e2 , 
then the actual scattering is well approximated by a calculation linearized 
in the interaction, provided that the latter is cut off at an impact parameter 
bmin = e 2 /m r g2. 

(d) The Boltzman collision integral 

If the particle distribution function -f (\?) is given, it is sometimes im-
portant to ask how rapidly this is changed by collisions. It is clear that the 
rate at which particles are knocked out of a range d^v about V is equal to the 
rate at which part ic les in that range make co l l i s ions , i. e. the sum of all 
co l l i s ions , at any scattering angle with part ic les having any veloc ity , i. e. 

(46) 

(47) 

hence, f o r a given value of scattering angle, and relative velocity , there 
exists a pair of velocities v1 such that a collision between these will leave 

J d П J d3 g f (v+ g) g a (g, 0) f (v). 

After such a collision, the particles will have velocities 
—> -» —> —> —» v - » v - A g ; v + g-> v + g + Ag, 
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one of the particles in the velocity range d3\? about л?. These are just the 
final velocities, with the relative velocity changed in sign, hence, the net 
rate of increase of particles is the velocity range d3v about is 

( f í ) c o l l = J d U J d 3 v g a (g, б )t f (v) i ( v ' ) - i (v) f (v' )]. (48) 

This is Boltzmann1 s collision integral. 
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I. TRANSPORT EQUATIONS, TEST PARTICLES AND PARTICLE 
CORRELATION IN PLASMA 

If the distribution function f (x , v, t), for each species in a plasma is 
known, the macroscopic properties of the plasma may be easily calculated. 
Since f is so defined that f(x, v, t)d3vd3x represents the number of particles 
to be found at time t in the volume element d3x about x having velocities in 
the range d 3v about v, the macroscopic quantities, which are just mean 
values, are represented by moments over f, e . g . the mass density 

P= Y, / m i f i d 3 v , (1) 
species 

and the charge density 

q = £ / e i f i d 3 7 . ( 2 ) 

The mass velocity V is given by 

pV = ̂  J m i vf ¡d 3v, (3) 

and the current [ 1 ] by 

Т = £ / е ^ 3 ? . (4) 

A question of fundamental importance then is that of how the distribution 
function is determined. It may be deduced from an exact description of the 
plasma, given by an N body distribution function, the Liouville function 
F(xj, X2, . . . xn , v i , V2, . . . vN , t) which gives the probability of finding the 
whole plasma in a given configuration, i . e . with the first particle at xi with 
velocity v i , the second at хг with velocity v2 etc. The function F develops 
because of the motion of the individual particles and if the plasma is at some 
t ime in a definite configuration xi(0). . . x N ( 0 ) , vi (0). . . "vN(0) so that 

F (x j . . . x N , v j . . -v̂ j Q) =П 6 [x j -x ¡ (0 ) ] б[v*j - v¡(0)] (5) 
i . —t ^ then at a later time t the i-th particle will have moved to X¡[t, x¡(0), v¡(0)] 

and have a velocity ^ [t, x^O), v¡(0)] and F = П ó t ^ - J ^ t ) ] - ^ ( t ) ] . If 

207 
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the configuration is unknown, but the probability of each configuration is 
given at some time, i. e . , F(jT0 . . . , v0 . . . ) then F propagates just as before 
and 

F (x^ . . . x N , v 0 . . . vN ) = F ( ï i . . . , V . .mótéi-XiCtHób^-vju)] . (6) 

Clearly 

9F 
8t Í S ' * 1 

i 

V - 3F 3F 
1 1 1 1 

- V " 9 F - V " 2EL 
~LVi"sïï[ L&í' э^ 

avi Vl 

(7) 

since F is a function of x ^ X i , v¡ - Vi . Hence F satisfies Liouville's 
equation 

3 F V - 9 F x V - 9 F n 
at~ Z_,Vi" Щ" ZJ a r afj" (8) 

To get an expression for f, which is approximately the probability of 
finding some particle at a point x, v we can form the sum over all the par-
ticles of the probability of finding any one at x, v, that is 

^ F d3Xjd3 Vj. . . d 3 ^ 3 ^ , d3x i + 1d3v i + 1 . . ,d3xNd3vN 

= 2 j F n ( d 3 2 d 3 v . . . ) n o t ¡ (9) 

If all particles are equivalent this is N ¡F d 3 xd 3 v . To normalize f to the 
density / f d3 v = n 

FII(d 3 xd 3 v) not l (10). 

To get an expression for the rate of change of f we can perform a similar 
operation on the Liouville equation and write 

I I t J F п ( d 3 Î d 3 ^ not i + Ï ^ t - J F n ^ * d 4 o t i 
i i 

+ j f a r | p П d3 x d3v=0 - (11) 
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The first terms here become just V(9/9t + v9/9x)f but the last presents 
a problem, since in general a¡ will depend on the position of all the particles, 
because of particle interaction. The macroscopic part of á i. e. that de -
pending only on external forces , and on gross interactions, may indeed be 
written like the first terms as Va¡- 9f/9v but the particle interaction requires 
knowledge of the position of the remaining particles. For two body forces, 
the only knowledge required is that of the correlation between pairs of par-
ticles, i . e . if a¡ = £ a i (Xj -Xj ) , the last integral becomes Е/а,(х,-Х:)(9/Эу;) 

-» * ij 
F n (d 3xd 3v) and if all particles are equivalent: 

N(N-l) Г а ( Х ! - х 2 ) - - 4 - F ( x i , x 2 , Vi, V2) П (d3x)(d3v).. (12) 
J not 1 

Introducing the pair correlation function, f 2 = [(N-1)/V]/F(X!, x2, П d W v 
enables the equation for f 2 to be written: not 1 

f 9 T f + * M ' W " + f w f t { 1 - 2 ) f 2 ( 1 ' 2 ) V o. (13) 

To determine f then, calls for a knowledge of particle correlation f 2 . 
A similar equation may be written for f 2 , but it requires a knowledge of 
f 3 , and a hierarchy of exact equations is obtained closing only at the original 
Liouville equation for F N . 

It is not to be expected that any simple exact equation for f should be 
obtained in this way, since, throughout, an exact mechanical description 
has been used. Instead, an approximate description of f is required. This 
can be obtained by coarse graining, i. e. by forcing f to vary smoothly on 
some time scale r , an operation which can be performed by replacing f by 
its mean value over some small volume of phase space and some short time 
т. For some systems, this time scale may be so selected that during т, f 2 
changes rapidly, but reaches some mean value which depends only on f. We 
shall present a physical argument, which shows how this might happen and 
how a closed, though approximate equation for the coarse-grained f can be 
obtained. An alternative method of approaching the problem is to assume 
that the f 2 , Í3. . . depend only on f, then to terminate the hierarchy in some 
way, often by finding an expansion parameter which orders the terms so 
that a closed approximation can be found to some order. This leads to an 
equation for f2 (f), hence to one for f. 

Under some circumstances the obtaining of a transport equation can be 
much simplified. For example, if the plasma is so diffuse that the particle 
interactions may be neglected, and only aM retained in the transport equation, 
it becomes 
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and E satisfies Poisson's equation 

V' E = 4ïrq = 4ít e¡f d3 v. (15) 

This is the collisionless Boltzmann or Vlasov equation [2]. 
On the other hand, it is possible to use the Boltzman collision integral 

to describe particle interactions, but its use runs into trouble because of 
the long range of the Coulomb force. One consequence of this is that par-
ticles do not interact just a pair at a time, but that many interactions occur 
simultaneously. However, as we have shown, the effect of the interaction 
can be well represented by a suitably interpreted form of the impact ap-
proximation. In this, the interaction occurs linearly, and if particle c o r -
relation is neglected, except insofar as it determines the effective minimum 
impact parameter, the effects may be summed, as though they occurred 
separately. 

A second consequence is more serious, for the long range of the inter-
action leads to a singularity in the effective cross-sect ion; a consequence 
of the neglect of a long range correlation between particles. This difficulty 
is often glossed over by the introduction of a more or.less arbitrary cut-off 
in the range. Our main object will be to discuss these long range c o r r e -
lations, and show how they affect the transport equation. 

Before proceeding to do that, we will make use of the dominance in the 
momentum change of multiple small angle scattering to reduce the Boltzmann 
equation to a simpler form, at least for continuous distribution functions. 

II. LANDAU'S FORM FOR THE COLLISION INTEGRAL 

Consider the Boltzmann collision integral for an ionized gas of like par-
ticles (for the moment). Using 

where Ag is the change in g on collision, enables this to be written 

(16) 

since, for like particles m r =m/2, g = v' - v and using the result 

(17) 

(18) 

14' 
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We may write for Ag (See Eq. (29) of [3]). 

-* 0 л 0 * 0 * 0 

Ag = 2g sin — - g sin — + m cos — cos <p + n cos - sin <p 

Now we may expand the quantity within the- square brackets, thus: 

(19) 

8f(v') f(v"+-±Ag Ji ( j - i A g j - f ( v ' ) f ( v ) 

• 92f(v') ? ôPf(v) 3f(7') 9f (v) 

9f(v) 
И 

(20) 

If we are interested only in scattering at small Ag, i . e . small angle 
scattering, this Taylor expansion may be substituted in the collision integral 
(18) and if the series is cut off at the second term, the expansion (19) used 
for Ag and the integral over cp performed, there results: 

e 2 Y , ,з: 1 = 8тг( — ] I d v 
ir/2 

2 J\ g3sin4(6/2) 

9 v 

f(v) 9 f ( v ' ) 
9v' 9v' 

) i f , r , M 9f(v) o9f(v') 9f(v) 
9v' 9v 

gg . fl 1 , . * 1 . 0 - i ? s i n - + - ( m m + n n ) ( 4 s i n ( 9 / 2 ) - sin ^ 

In this integral 

ff/2 

¡ 4 0 . 6 . cos - sin - =1 

(21) 

(22) 

while 
я/2 

M i 
0 1 n . . „ и cos 7; , n ,nx = - log ( Sin -=p 2 sin (0/2) (23) 

diverges; however we may, as before, cut this off at a maximum impact 
parameter bmax = v/wq = XD and write '' 

log (n 1 / 3e 2 /kT) 3 / 2 =log A. (24) 



212 W.B . THOMPSON 

Eq.(21) may now be reduced to 

2 \2 

I = 4 4 m j l ° g A • M - g . , af(V) 
3 v ' 

4 
jjfov') , g 3f(v1 ) 8f(v) 

f l ( V ) Э ? ^ + f l l v ] Ш Г 2 

9f(v) 
df 

n n ) j - . (25) 

Note that m m + ñ ñ is the unit tensor normal to gg, i . e . m m + ñ ñ = E - g g . If 

й Л ( Н - | ё ) = Н % п п . ( 2 6 ) 

and 

лГ, э 3 i -
Щ âg к 

-• W= - 2 -Щ .̂ 

(27) 

(28) 

In Eq.(26) the second quantity in square brackets may be split up as follows: 

f + f ,Z, A w o a^v') 9f (v)' 

1 a 

2ÔV1" 1 ' I j v ^ V ' Э ? 
1 Э_ 

' 2 3 v 
9f(v1) 

Э У 1 3 v 
(29) 

where 

¿ Г Л 9 f ( v ' ) ^ , 8 f (v ) 
a ? 

The integral now becomes 

(30) 

and on performing a partial integration the third term becomes 

(32) 
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Hence 

a 
dT 3v 

, , - . . 9f - 3f 
~~ 3 v ^ j 

(33) 

This is the Landau's form for the coll ision integral. This may also be 
written as 

where 

Э 
3v. Ц- N i ' i 

(34) 

D ¡ j = Л J d 3 v ' f ( v ' ) W j j . (35) 

III. THE FOKKER - PLANCK EQUATION 

The form of the collision integral given by Eq.(33) may be approached 
by a somewhat different route and arises from a study of the rate of change 
of a Markovian probability distribution. Suppose that P(x , t) represents the 
distribution function for a quantity x at time t : and suppose moreover, that 
during the interval t-»t+ 6t, x changes to x' with a probability W(x, x' - x). 
Then, P (x, t + 6t) may be expressed in terms of P (x1, t) as 

P ( x , t + 6 t ) = J dx' W(x\ x - x ' ) P ( x ' , t ) 

= J d . ! W ( x - ? , ? ) P ( x - | , t ) . (36) 
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If W is a rapidly decreasing function of Ç, i. e. if P develops by small steps, 
then we may use a Taylor1 s expansion on the right hand side, so that 

P ( x , t + 6t) =J"d?W(x,?)P(x,t) 

Now, the first integral here = 1, since 

y\v(x ,C)dC = 1, (38) 

the second the third ÇÇ thus 

ЭР P(x , t + 6 t ) - P ( x , t) 
at 6t 

2 

= - ¿ [ D 1 P ( x . t ) ] 4 ¿ 5 ; [ D 2 P ( x , t ) ] + . . . . (39) 

where 

For I(f , f) we may now write 

I И. П = - & • Dxf (v) 4 g ^ - : D2f (v), (41) 

where 

= r=6t . (40) 

D ! = i < A v > , D 2 = i < A v A v > . (42) 

For an unmagnetized plasma the quantities Dj and D2 can be expressed in 
terms of the fluctuating microfield within the plasma, i . e . the change in 
velocity in a time т of a particle initially at x0 having velocity v0 is 

t 

Av =— / E ( x \ t ' )dt ' , (43) m J 
t - T 

where 

x > = x 0 + / v ( ' X - , f ) d f (44) 
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and 

; ( x , t ) = v 0 + ¿ ^ E ( x ' , t ' ) d f . (45) 

If ( e /m)E is small, we may expand Av thus 

t t' t" 

A v ' = ¿ / d t ' [ E i l W ' . t ' i + l f 1 f d t " f ¿EjUo + V-.t-Jdt-
t - T 1 t-T t - r ( 4 6 ) 

while to the same order in (eE/m) 

t t 
„2 

AvAv = / dt'EtXo+Vot'.t ') / dt" E (x0+ v0t", t") 
2t - r t-r 

t T 

= J dt1 J d s Ê ( x 0 + v 0 t \ t ' ) E [ x 0 + v 0 ( t ' - s ) , f - s ] • (47) 
t-r 0 

This equation may be derived in an alternative way which requires, however, 
a return to the Liouville equation 

9F -* 9F e 8F 

Now the Liouville function F can be written as 

F = F 1 ( X 1 ) * ( X 2 , X3 . . . xN;Xj) (49) 
—» 

and by integrating over x 2 . . . xN an equation for Fj (x i ) may be deduced. 
Since 

е ' - Я 7 ( « о ) 

depends upon the Xj, however, the integration cannot be carried out expli-
citly, but involves a term of the form 

9 V f e 2 9 , - - - -
~9v Z J т Щ ф { Х ъ х 1 ) ф ( х 2 " • •xN ;x1 )F1 (x1 )dx2 . . . dxN . (51) 

i 

For any given complexion 

F = П ó(x¡ - X ¡(t))<5(v¡ - Vj (t)) (52) 

is a rapidly varying function and we prefer to work with a smoothly varying 
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quantity, f i , which represents the probability of a particle being at xx, v1( 
given some initial probability distribution p ^ x , , ^ . . . x N , v-,, v2 . . ,vN ) f or 
the entire distribution. 

Then, F has the f o r m 

P 0 í 1 . . . x ; j v 1 . . . v ; ) n 6 [ x - X i ( t ) ] 6 [ v - V i ( t ) ] (53) 
i 

where 

X(t) = x\+J V¡<t')dt' (54) 

and 

V(t) = v , 1 + ~ ^ E (X (t1), t ' ) dt1. (55) 

From this we may form Fj , again by integrating over dx2 . . . dxN and noting 
that if p0 is smooth, we expect Fi to be a slowly varying function. In fact 
we expect Fj to satisfy an equation of the Boltzmann type, and to change 
significantly in t imes of order r ¡ , the col l is ion period. This means that 
instead of considering the equation of motion for Fj we obtain an adequate 
description by considering the motion of the coarse -gra ined distribution 

t 

t - r 

where т « . This satisfies 

i 

+ d t ' E W ' L t M F ^ t M d t ^ o ( 5 7 ) 
3f 
at 

t - T 

t 

+ ^ 'H" + m W " -^r f dVÊ(x(V) ,V) б[х - X ( t' )] Ô [v - V(t" )] Fa(t' - r ) = 0 
t - T 

where the last term is explicitly 

t - T j 

•SH^. • • x N , v2. . . vN; x ^ F ^ . v ^ t - r J Ó [ ^ - X ^ n H t v j - V ^ t ' ) ] . (59) 

Now the e lec tr i c f ield may contain some mean part Eo , independent 
of particle positions, a part Ei, depending on particle position and velocity, 
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and a rapidly fluctuating part ЁрЙ0 and Sj are easily handled, contributing 
terms 

H - e T ' ^ o + ^ i . ( 6 0 ) 

To treat Ef we may observe that for most plasmas, where the ratio of ki-
netic to potential energy is small, the field dependent quantities 5Ê and If 
may be calculated in perturbation theory. Thus 

(61) 

(62) 

and the б-functions appearing in Eq.(58) may be similarly expanded, thus 

ô [x -X( t ' ) ] ô [v - V(t')] = 6 ( x - x 0 - v 0 t ' ) 6 { v - v 0 ) 

t " 

- ó ( x - x 0 - v 0 t ' ) - J U ( v - v 0 t ' , t E (x0+v0t" , t") dt" 

t ' t " 

- Ô ( V - V 0 ) ^ - 6 (x - V V 0 t ' d t / E (x0 + v0t'", t™) dt™ . (63) 

These may be handled, as usual, by a partial integration, and use máde of . 
the fact that F, is slowly varying so that F(t - T , v) = f (t, v) 

whereupon Eq. (58) becomes 

B . ^ ^ i b l Г d t i 3 E - -
3t Эх m u 3v m 9v m 9v¡4r J 9xj ü u 

t - r 

t" t" 

X J dt" J dt1" Ej(x0+v0t , n , t"1) ^>f(v) 
t - T t - T 

¿ ¿ ^ / d t ' E i l X o + V o t ' . t ' ) J d t " E j ( x 0 + v 0 t » , t » ) > f ( v ) = O (64) 
t - T t - T 

and equation of the Fokker - Planck form with the coefficients given by Eqs. 
(46) and (47). These expanded forms may be written exactly as those in Eq. 
(59), i . e . -

V(t) = V 0 + - | I E ( x 0 + v 0 t \ f ) d t ' , 

and 
t t ' 

X(t) = x 0 + V d t ' / d t " E(x0 + v0t", t"), 
0 0 
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t 

<E J Edt'> = f d % . . . <^„<?у2 . . . d ^ f i , 

t-r u ' 1 

t 

• • • X N , V 2 . . . V N . Ï ! ) , . (65) 
t-T 

i . e . as mean values<(E¡Ej>. 
Now, the correlation functions 

t T 
<<Ht) J <t>( t ' )dt'>=<y> 0Ct) ф ( t - s ) d s > (66) 

t-T 0 

may be simplified somewhat by assuming a property of <(E(t)E(t-s)> which 
we will be able to demonstrate, namely, that the fields are strongly corre -
lated for small times, but that the product ËË becomes small and fluctuates 
about zero for long times; indeed, in time of order l /uo the correlation is 
already small. This suggests that if the upper limit of integration is taken 
as т » uo"1, which implies те » Ш51 , a condition which is usually satisfied, 
then the upper limit of integration in Eq. (66) may be extended to infinity 
and the reqùired quantities become 

oe 

< J ф ( t ) ф ( t - s ) d s > , (67) 
0 

and if the field is derivable from a potential 

The correlation function may be expressed in terms of the spectrum of ф, 
for if 

i(x,t)= ^d3kdu exp[i(wt + k-x)]<Mk,u), (69) 

then 

00 

<( ~J<£(x,t)$(x-vs, t - s ) d s 
0 

ее во - , 

= R e j ¿ y s <Jd3kdu J r f » k > d u > J d s e ^ ' " 
cut) 
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X e ф(к, и)ф(к 'и ' )> 

. 1 Г Г 3 - - i ( k - v + w)s 
= R e < ( 2 7 F J d s J d k d u e 

X ^ J d3k-d и ' е 1 ^ ' * ^ ^ * , ( 7 0 ) 

The inner integral however is the energy spectrum, <Сф*(к, u) ф(к, ы)Х hence, 
the correlation function is 

^ ф(х, - vs, t - s) У 

1 - i f k ' v + ш) s 
= Re J d к с!шф (к, u )ф(к, u)e 

^-rx < [d3k du^*(k, и ) ф (к, u ) cos ( u +k-v )> (71) ¿тгр J 2(2тг) 

the cosine transform of the energy spectrum (the Wiener-Kinchin theorem). 
It follows that 

ds ф(х, t) ф (x - vs, t - s) У 
о 

= / d3kdu ф(к,и)ф(к,и) ô(u + k-v) . (72) [¿7Г 

IV. CALCULATION OF THE SPECTRUM 

To calculate the spectrum we can again assume that the electric field 
within the plasma is weak, and the interactions are small . At the same 
time, the effect of the field on the distribution function must be retained in 
any calculation of the field, which otherwise diverges. Our first object then 
must be to calculate the response of the plasma to a field in that approxi -
mation in which the partic le interaction is neglected. This however , r e -
quires a solution to the Vlasov equation, 

0. (73) 9t Эх m 9v v 

and since the fields are assumed small, we may use a perturbation solution 
of this about some distribution f 0 , assumed known — whereupon, on Fourier 
transforming 

« 
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0 ' m i(u + k-v) 

or [2], if E is derivable f rom a potential E = -ik<£, 

(74) 

f l = J L k _ ( 8 W 3 v ) 
m (u+k-v) v ' 

The charge induced by a potential <j>, then b e c o m e s , if f 0 , f j are the u n -
perturbed distributions of e lectrons and ions, 

, i \ f , 3 1 r 8 r 2 2 

7) 8 v — t'o+^l m . u m+ u 

= -к 2 К(и,к)ф(ш, к). (76) 

If now, a test charge e1 is introduced into a plasma, the charge produced is 
i 

q*(u, к) = e i f e x p [-i(ut +k"x)]6(x-vt)d 3xdt = ег б (u + k - v ) , (77) 

and the induced potential may be written, f rom 

к2ф =4îrq = 4Tr(qind + q*) =-4тге16(и+к-v)-4тгк2К</| (78) 

whence 

. ei¿(u + k-v) _ ei6(u + k-v) 

ka(l+4,rK) k ' - W S ) ' ( 7 9 ) 

introducing the dielectric coefficient, 

e(k, и) = 1 + 4тг Щк, u) (80) 

where 

- v p = u /k , u2 = 4тгп_e2/m., u2 = 4îrn+e2 /m+ (82) 

6 * 4 / d 2 y X ( v ) , • VL = V-V||Ê, V|| = k-V. (83) 

To handle the singular integrals in Eq. (81) requires some care; however 
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several different arguments, e . g . solving an initial value problem, con -
sidering a perturbation which is adiabatically switched on, or considering 
a model of residual collision process , all lead to the conclusion that the 
Landau value sould be used, with PJ meaning the Cauchy principle value [2], 

hence e is complex. In normal systems an imaginary part to e represents 
the loss due to collisions; here the loss process is Landau damping. 

The field at a charge e¡ introduced by its own presence is 

E(vt,t) = R e j T 2 ^ r 4 T e 1 i k e x p [ i k . x + U t ] ^ J - i r 

= ̂ е т Г к 1 т { k 2 g ( " ' k ) } 6(uj + k-v)d3kdto . (85) 
|k2e(u,k)|2 

Using the definition of e(k, u) and of the singular integrals given above, this 
may be written 

e _ n 

m - ч 4 т г " m ' ' J J 1 , 2 ,7» J 2 |k e(k-u)p 

X k ' - ^ - f (v>) б (ш+к-v') б (u + k-v) (86) 

The fluctuating field in the plasma may be calculated by noting that each 
charge in the plasma itself produces a polarization, like that of a test charge; 
hence, if particles are distributed at points 3£i(t): 

q ( Í , t ) = ^ e i 6 ( x - Í Q ( t ) ) (87) 

q(io,k) ^ e ^ d t exp[-ik-X¡ (t) - iwt], (88) 
i 

А, Гч И V exp[- i (k-Xj(t ) + ut] , o m ф « о . = dt k S e ( | j i l . ¡ . (89) 
i 

The motion of each particle is approximately constant, for times of order 
r c , provided the mean field is small, i . e . ni/з e2 « kT, and provided no 
c lose collision occurs; hence if 

t ' = t + s , x(t') = x(t) + vs, (90) 
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and 

ф(и ,к )ф(и ' ,к ' )=^ — У / d t Fds exp [i(k • Xj(t) + ut)] 
к e(u, k)k' e (u ' ,k ' ) f - ' J J 

• e x p [ i k ' - X j ( t ) + v s ] exp [iw1 ( t + s ) ] . (91) 

Further, because the correlation between any pair of particles is small the 
random phase approximation may be used to reduce the double sum to a 
single one: 

<^e-xp[Hk' + k)-x I(t)]>> (92) 
i 

and the mean value of this (only quantity involving x¡) is equal to 

d3x¡exp [i(k' + k)-Xj] = (2тг )3ó(k+k'). (93) 

Further 

while 

< У exp [ - i(u + u1 )t] dt = 2тг 6(u + со1 ) , (94) 

J ds exp[i(u' + k-v)s]= 27r6(u+k'v), (95) 

X * ( v i } = J d 3 vf (v )* (v ) . (96) 

Therefore 

<ф(к,Ц)ф(к-,1о')> = (2 7 г ) 5 ( 4 7 г ) 2 б ( к + к ' ) б ( Ц + 10') e 8 f « f v 6 ( U + k -v ) f (v ) • (97) 
|k2e(w,k)|2 J 

The power spectrum is then 

J d3k'du<«*>(k,u)<Mk\u')> 

J d3v6(io + k - v ) ^ e 2 f ± ( v ) , (98) З2тг3 

I 2 |2 I к e(k, u>) I 
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and the diffusion coefficient, using Eqs. (64) and (72) becomes 

e ^ 
m ° r d < E i E i > 

З2тг3е2 
A ^ ' f ^ t y 4 6(ь) + k- v' ) V e2 f t ( v1 ). (99) J J (2тг)4 j к €(k, u)| V 

The friction involves a term of the form 

e 
i 

< - k i E i / d t - / d t - . E j ( t » ) > , (100) 

in using the property that the quantity under the first integral sign, e = 
function of t - s, we may write this as 

- ^ < j T d s E j ( x , t ) s - ^ - E 1 ( î - v s , t - s ) > 

• c j d s Е̂  (x, t) E . (x - vs, t - s ) > = ^ D i r £1 _L 
m2 3v (.101) 

V. THE DOMINANT APPROXIMATION 

The integrals required to evaluate the D¡j take the form 

6(u + k" v) / d 3 g / d W 6 ( k - g ) k - ^ - f ( v + g ) , 
I к e(kj u)| 

from Eq. (85) and 

|k2e(k;u)p 

( 1 0 2 ) 

kdukk 6 ( " + k - v ) 6(k-g)f (v + g ) . (103) 

from Eq. (99), where g = v' - v . 
The integral over du is trivial, and on splitting d3k = k2dkdi2 these become 

J d 3 g J d f 2 6(k- g)k кJ"dk • 
k2e(k, -k -v )P 

Now 

к'-Цк.ш) = k2 + •4 dv,. 
( v - v p ) 9V| 

9 + 

(104) 

(105) 

= k2+k2D 
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Г dkk3 _ / к щах Л . l . a f [ l + (kg/k2max)X]2+Y21 
J (k 2+k 2X) 2+k*Y 2 g \ k0 / 4 \ X2 + Y2 J 

- ! { t a n " M | | - l } U06) 

In this integral km a x is an upper limit which is forced upon us by the 
existence of close encounters, for which the field strength becomes large 
and which may be identified with the inverse of the minimum impact para-
meter e2 /mv02 , needed to make the linearized approximation agree with the 
exact treatment. 
Since 

Г Л ' - W m v « _ 1 I m v l _ 1 T 
\ k D y 4îtne2 2тг nV3 e2 2тг V ' v " 

the large value of the ratio T/V insures that (kmax/k) is large. In the domi-
nant approximation only this term is retained; and the integrals become 

(108) 

(109) 

Note that (108) = 9/9v (109), consequently ( e i / m J E = - 9 / 9 v - D , while in (108) 
the angular integration merely selects those parts of kk orthogonal to g i. е. 

log Л • ы 
. , at -» dnkÓ(k-g )k 'g^(V+g) , 

log ЛJ d3g J df2 к к 6(k- g) f (v + g) . 

I dííkkó(k-g) = — ( 1 - g g ) = TTW, (110) 

cf. .Eq. (26), hence 

D ; i = 2тг ( ̂  J l o g Л Jd^v'Wijf (v1). i) (111) 

Now collecting the terms in the fluctuating field, the Fokker-Planck equation 
becomes 

9f - e 8f 9 — + v Vf + — E0--r- --r=s 9t m u 9v 9v¡ V " ) 

9vj \9v vj 
D Û f + 9v¡ 9vj (Dijf) = 0. ( 1 1 2 ) 
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Using the symmetry of D¡; , the last terms here may be written as: 

9v. - 2 ¿ ® L о Л f+ Í-^-dA f + D - Í Í - 1 = - 2 - Í d f 
. \9Vj D V f + \9vj D V f + D'J 9V j . 9v; 9vj V 9Vj ) . ( И З ) 

This however is Landau's form Eq. (33), which thus represents the dominant 
approximation to a kinetic equation which includes both the static c o r r e -
lation effects which produce screening with the dynamic effects that repre-
sent the production of plasma oscillations. It is of particular interest to 
observe that our approach to this has required that f0 be substantially uni-
form over times » u0-i; thus, if we wish to discuss the attenuation of radio-
frequency oscillations propagating through the plasma, the usual Boltzmann 
treatment is inadequate; instead correlation effects must be determined for 
the distribution function perturbed by the incident r - f field [1]. 

VI. CORRELATION FUNCTIONS AND SCATTERING OF RADIATION FROM 
A PLASMA 

1. The correlation functions in a plasma 

Since our procedure has given a value for the potential produced by a 
particle in a plasma, namely (in the absence of a magnetic field) 

ф(к, u) = fc'J e x P - (114) 

we may now use the Vlasov equation to calculate the disturbance that this 
produces in the distribution function, i. e. 

... о 2 6(U> + к-v) г -Г - 1 e2 k-(9f0 /9v) f , 1 C 4 f' = 8ir e, , 2 >T*—j- exp l - ik -x , — \ + (115) 1 k-'etk.u) 1 raj u +k-v x 

—» -» —» 

Now the probability of finding a particle at (Xj, Vj, t j ) and a particle at (x2 , 
V2, t 2 ) is clearly 

0 ( l ,2 ) = f - (v 1 ,x 1 , t 1 ) f (v 2 , x2, 0) + f (Xj, v2, 0) f ( 1, 2, xj, Vj, t j ) . (116) 

However, the last term is just (115); i. e. f' thë change in f (1) produced 
by a particle at 2, hence 

f & X t b = f d^kdu x 1 mi 2Л-2 J k¿e(k, u ) (u+k- Vi) 

exp [iut] k- . (117) dVj 

Having the (space-dependent) perturbation induced in the distribution function 

15 
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by the potential of a charged particle-, it is possible to calculate the spatial 
distribution of electrons and ions in a plasma, in this approximation. If 
the zero-order positions of electrons and ions are x¡ and X ¡ , then the plas-
ma potential is 

ф = 8тг' б(ш + к- vj) exp [ - ik- xj] + + к- vQ exp [ - ik-Xj] 
k2e(k,u) (118) 

and 

n_(k ,u )=£ exp ( - ik- Xj) - á(tü+ к- v¡ ) 

m. J k2e(k, u)(u + k-v) 3v ( 1 1 9 ) 

From this, the charge density is 
—* » 

qi= e.n^k.uj + e+njk, u) 

e_exp [ - i k - x J б(ш + k-vt ) + e+exp [ - i k - X J S(u + k-V¡ 

But 

1 + d3v 3f. , 2 
u + k- v 3v ^ 

Г d3y 
J (u + Tc-

г s t . ] 

к e(k,u) 

d3v - 3f rk • (u + k-v) 3Â? 

(120) 

(121) 

hence 

47rq _ 8тг2̂ Г |"e- б(ш+ k- Vj) exp ( - i k- x¡) + е+6(ц+ к- Vj ) exp ( - ik- XQ "j 
e(k,u) J 

( 1 2 2 ) 

and the calculation is self-consistent. 

2. Scattering of radiation from a plasma 

It is of interest to note an observable phenomenon which depends on the 
details of the electron correlation function; this is the scattering of radiation 
by a plasma. To treat this, we .consider a plasma in which the distribution 

15' 
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function may be written fo(v) + fi(x, v, t) and consider the effect on this of an 
electric field E(x, t). After Fourier-transforming we obtain the induced 
currents 

, T\ e2 Г , ÍE(u, к) • (9fn/3v)v+ EE(fi, K) • (Э/ 9v)f (u-íí, K-k)v"l Jind (u. к) = - - J d v i(U + K.v) J 

(123) 

If the phase velocity is high u/k » ve; then 

1 — ' 
Ímd(W.k) = 

, 2 1 Up 
47Г iu E ( u , k ) + — ) Auo (Ы-Г2, к-К)Е(Г2, K) (124) 

Maxwell' s equations for this field become 

2 - 1 _ 4» 8j - - -
v "at* a t + V ( V E ) ' (125) 

or, on Fourier-transforming, and using the equation of continuity 

(126) 

Ы2 +Up ^ - k 2 E ( u , k ) ^ ( u - i 2 , K - k ) E ( f i , K ) . (127) 

Fig. 1 
Scattering of radiation from a plasma: form of 61 versus uj. 

Now, if there is incident on the plasma a field of frequency Í2 and wave 
number ft (К2 = П 2 / с2) , a scattered wave will be produced given by 

E(u, к) _ (ц 2 - с 2 кк)Аио(ц -П,к -К)Е(П,К) 
(u2 +u2)/с2 - k2 (128) 

For scattered and incident waves well above the plasma frequency, this 
yields an expression for the intensity at large distances in the form 
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d2I (и' kM - / e2 V i - i2 
dudó 1 Л п ^ ' к ) 1 t ! - ( s i n 0 c o s Ф) ] > (129) 

where в, tp are the scattering angles, with respect to incident direction and 
polarization and the last factor = i ( l + c o s 2 0 ) for an unpolarized incident 
beam. If the only polarization of the electron density is that produced by 
random fluctuations An is given by Eq. (119), i. e. 

Дп(и, к) = 

£ ( l + G-)exp( - ik-Xj ) 6(u + k- + 6 (u + k- V¡ ) exp ( - ik-X¡ ) 

1 - G _ - G + 
(130) 

where 

(131, * \m Jk к 2 J u + k-v k 2 ' 

Now, to form (Дп)2, the random phase approximation may be invoked where-
upon 

exp (-ik-Xj)6(u+k'Vj)!2 = J d3vf (v) 6 (u + k-v) (132) 

and 

I Дп_(и, k)|2 = N I 11 ° I 2J<?v f_(v) 6(u + k- v) 

+ 1 I - g ' - G / J d 3 v f t ( v ) é ( u + k - v ) | . (133) 

The scattered radiation is then given by Eqs. (129) and (133). If ( k D / k ) 2 » 1 
several interesting features appear. Since f+ is much narrower than f_ , 
the second term dominates near Ди = 0; but since G. increases With u, the 
scattered wave first increases, then decreases, with a half-width deter-
mined by f+(u/d); however, at large frequency shifts the first term dominates. 
When Ди = uo the dielectric coefficient ( 1 - G - - G + ) becomes small over a 
narrow region and a sharp narrow peak corresponding to the emission of 
plasma oscillation appears. 

If T_ » T+, ion sound waves may appear, and a sharp peak appears at 
( Ди/Дк)~(КТ. /m+ ) from the centre. If K D « k the G's are small, and only 
the first terms persist. 

The interest in this process lies in the possibility of exploring the co r -
relation function directly; the difficulty l ies in the small value of the 
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Thomson cross - section 8гг (e2/mc2)2 10"26 cm2 which determines the scale 
of the phenomenon. If because of an instability An(u, k) becomes very large 
for some narrow range of u,lc a much more spectacular effect would be 
expected. 
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H I G H - F R E Q U E N C Y C O N D U C T I V I T Y A N D 
T H E EMISSION A N D A B S O R P T I O N C O E F F I C I E N T S 

O F A F U L L Y I O N I Z E D P L A S M A 

C . O B E R M A N * 

I N T E R N A T I O N A L C E N T R E FOR T H E O R E T I C A L P H Y S I C S , 

TRIESTE, I T A L Y 

1. INTRODUCTION 

Most previous computations of the resistivity of a fully ionized plasma 
assume the duration of a two-particle encounter to be shorter than any other 
time in the problem, and, in particular, shorter than any macroscopic time 
variation. In a plasma this assumption is often violated because the dominant 
collisional process arises from distant collisions where the encounter dur-
ation time can be of the order of the reciprocal plasma frequency, whereas 
the plasma is capable of sustaining macroscopic oscillations at and above 
the plasma frequency. 

It is the purpose of this paper to investigate by means of a simple model 
[1, 2] the frequency dependence of the resistivity, and the associated p r o -
cesses of absorption and emission of radiation, for frequencies greater than 
vc =27r/to (to is the cumulative 90° deflection time [3] ). 

The validity of this simple treatment in a large part rests upon the fact 
that the electron motion is inertia dominated, or in other words, to lowest 
approximation the current response to the driving Ë field is mainly reactive. 
Collective effects are properly included and so our results should be valid 
for all frequencies greater than ~v c (including the vicinity of the plasma 
frequency) for which a classical treatment is valid. Most previous results 
have not treated the collective aspects consistently and so are incorrect 
particularly near the plasma frequency. 

Indeed the validity of this model is borne out by an exact treatment (in 
the limit of infinite ion mass) stemming from the BBGKY (Bogoliubov, Born, 
Green, Kirkwood and Yvon) hierarchy [4] . Further, the model has been 
generalized to include a uniform magnetic field [5] and quantum effects [6], 
but these generalizations will not be discussed here. 

2. PLASMA MODEL AND DERIVATION OF BASIC EQUATIONS 

We begin by adopting the Vlasov set of equations to describe the electron 
dynamics, while the ions are regarded as fixed point scatterers (but not 
necessarily randomly distributed!). There is, in addition to the sel f -
consistent field, a prevailing spatially uniform electric field oscillating in 
time at frequency u. (We take these uniform-field results to apply for long 

* Permanent address: Plasma Physics Laboratory, Princeton University, Princeton, N. J. , United 
States of America. 
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wavelength, k<u p /uo , transverse or longitudinal waves in the dipole ap-
proximation [7]). In the rest frame of the ions the equations read 

3F . 9F e ¡ojt . 9F n , — ( r , v , t ) + v . ^ - - - ( E 0 e - v * ) . w = Q , (1) 

У2Ф = 4тг [ e / d 3 v F - Z e E ô ( r - r j ) ] . (2) 
j 

Under the transformation 

p = r + eeiwt , u = v + iweei<Jt , t = t, 

Eqs . ( l ) and (2) become 

9F , - 9F , e ЭФ 9F _ . 

^ " I J = 4 w [ e / d 3 u F - Z e E 6 ( ^ - ? e ^ - I* ) ] , (4) 

where £>=еЙ0 /ти2 . 
We shall linearize these equations about a spatially uniform Maxwell 

distribution 

fo = (27r)"5 u"o3 exp (-u2/2u|), (5) 

under the assumption that the discrete nature of the ions causes a small 
perturbation in the electron distribution. The resultant equations for the 
f i rs t -order quantities f, ф are 

9t 9jlï m dp SU ° lb) 

and 

^ • | t = 47re [no/dSuf + no -ZEô i j i f - t e^ (7) 

In reality, Eq.(7) contains only f i rst -order quantities, since we take 
the average ion density to cancel the average electron density no-

Upon Fourier analysis of the spatial variable we have 

+
 (8) 

and 

0 ï r = - ^ W d 3 u f i - ( 2 t t ) - 3 Z E exp [-iE • + ее'ш1 (9) 
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where k = |Й|. Since we are interested only in the long-time steady-state 
behaviour, we shall solve these equations under the assumption of vanishing 
perturbations in the remote past. These equations can be formally inte-
grated to yield 

t 

f k = ~ S C ' f ? / d r f c ( T ) exp [ - iS - ï î ( t -T ) ] (10) -во 

and 

¿iT=<<l i d r ( T - t ) exp [ -¿k2u§(T-t)2 ] fe(T)+S3?(t) , (11) 

where Up = 4îrne2/m and Sk(t) is the last term on the right-hand side ofEq.(9). 
In obtaining Eq. (11) we have substituted Eq. (10) into Eq.(9) and made use 
of Eq.(5) to explicitly carry out the velocity integration. 

We are interested in the solution of these equations in the limit 
indeed it is only in this limit that the usual concept of resistivity is defined. 
However, we must make sure, because of the singular nature of the ion 
potential.,to have properly included the effects for large 1c. This large Ж 
contribution has been investigated and it has been shown that Eq.(16) for 
the electron-ion interaction, which is derived from the assumption Е - e < 1, 
is actually valid to lowest order in ? for all îc. 

Correspondingly we expand the source term, 

S 7 ( t ) ? 2 á s 8 ( 1 _ l S ' ? e M ) ( 1 2 ) 

and then solve E q . ( l l ) . This integral equation is readily solved to yield 

1 . . . . 4jrZe ik 
D(k, 0) D(k 

• ее"*1 ] „ i ? ? 
k.u) J ? 6 ' ' (13) 

where D(k, u) is the dielectric function 

D(k,u) = 1 +(jpJd66 exp ( - i u 6 - l ^ u g e 2 ) . (14) 

The static term gives the usual Debye shielding while the oscillating term 
gives the dynamic collective response of electrons to the oscillations of the 
ions (since we are in the co-ordinate frame oscillating with the electrons). 

We have now to compute the average electric field which an ion feels 
due to the electrons. 

= + ? е ' ш 1 h ( 1 5 ) 1 l 

or 

® i e = " í r l / d 3 k ^ k e x P [ik • (?i + eeiu" )]. (16) 
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If now the expression (13) for ф is inserted in (16), and again the fact 
that Й - е < 1 is utilized, there results (after dropping terms of quadratic 
degree or higher in <?) 

Eie = ~ 47rZe2 Г Г . Йк Г 1 1 I V r - - - Л - • , 
(2^)3NimU2 { J d 3 k Й [5(k7Ô) - D ( k ^ ) ] ¿ e x P [ik • (Г! -1) ) ]| • Е 0 е ^ . 

( 1 7 ) 

The purely static term (independent of e ) gives no contribution, as it should 
not, since there can be no net force on the ions due to the electrons, 
in equilibrium. 

Equation (1.7) applies to a definite ion configuration. We have yet to 
take the ensemble average of (18) (denoted by <,>) over a distribution of con-
figurations. Let us assume for the moment that this has been done. Now, 
so far we have worked in the oscillating-ion frame, since the ion-electron 
interaction is most easily computed in this frame. However, the impedance 
(or conductivity) is most straightforwardly calculated in the ion rest frame. 
From the equation of motion for the electrons it follows at once that 

where is the average current density and is the average total force 
density on the electrons and is given by 

<Ü e>=-noe(E0e^ +<l l e >) , (19) 

where the term <(É¡e^ arising from the ion-electron interaction follows from 
Newton's third law and the invariance of this quantity under the co-ordinate 
transformation ?-*7>. We may thus write for the average current density 

'J(u)=(u^/47riu)(r+?1) = (?o+31)-fi , (20) 

or, since cÇ is small, for the specific impedance 

2 ( U ) = ( 4 t t í u / I ^ ) ( Í ( 2 1 ) 

We shall treat now only those situations where the ion distribution is 

isotropic hence is a scalar times the unit dyadic I. In particular we shall 
deal now with situations where the ions are in thermal equilibrium. 

3. THERMAL EQUILIBRIUM ION CORRELATIONS 

For thermal equilibrium we can evaluate the ion density spectrum. That 
is, we wish to find 
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(2тг)6< I n(k) |2> = E< exp [iS •(?,-?,)]>. (22) 

The terms for 1 = j sum to Nj, the total number of ions. There are N¡(N¡ - 1 ) 
terms for 1 f j and they all have the same ensemble average since the ions 
are identical. We can evaluate one of these terms by making use of 
the probability of finding ion j at a distance r from ion 1. 

< exp [ ik - ( ? i - ? j ) ]> = /й3гР(г)е-^-" (23) 

It is well known that in equilibrium the probability of finding a particular 
ion in a volume element d3r at a distance r from a given ion is 

P ( r ) d 3 r = exp (~геф/@) ~ ^ (1 -геф/в), (24) 

where V is the plasma volume. Here ф is the shielded potential of an ion 
and is given by 

ф = (Ze/r)e"KTr, (25) 

where Kx is the Debye number for both ions and electrons, K2 = (Z + 1)4тгпе2/© 
= (Z + 1)K2, and © is the temperature in energy units. If we now substitute 
Eq. (25) in Eq. (24) and Eq.(24) in Eq.(23) we find 

Hence 

/ - 4 -27rZ2e2 
\ exp lk • r> = V© 

-47rZ2e2 1 

drde sinee"( ikrcose+KTr) 

V© k2+K| 

(26) 

4?rZe2 /\Ч1 kk 
D(k, 0) D(k, u) 

K2 + k2 

( l + Z)K2 + k2 (27) 

For this isotropic situation the angular integrations are readily performed 
to obtain 

3ir 
Ze2 - Г 

9 I / < my2 J dkk4 k2+K2 / 1_ 
k2 + (1 + Z)K2 \D(k, 0) D(k,u). (28) 

4. LIMITING FORMS 

We shall now write down and discuss the limiting forms for u2« ug and 
ы2»ы||. Since in this limit, u » v c , the large reactive term dominates the 
small reactive collisional correction, it is the small (~l/nX.^) resistive 
piece we shall discuss. 
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For u 2 « u>|, and only to dominant order, 

_ . 4жо -г ReZ(u) = —5- I 
Up 

2\i ZeM М 4 - Ш 
6 mugid 

k m a x 
(1+Z)K2 (29) 

This result is in agreement, as it should be, with the largeu limit of 
"conventional" kinetic theory ( i . e . that derived f rom Guernsey-Balescu-
Lenard kinetic equation [8] undeij the "Bogoliubov Ansatz" that the d e -
correlation time for the pair correlation function ( ~ l / u p ) is short compared 
to that time, 1/u, in which f changes). 

For b&>Up 

Re2(U) = ^ T (30) 

Notice that the upper effective impact parameter cut-off has changed from 
~ X D to ~uo/u, showing that collisions at large distances take too long a time 
compared to the time of oscillation of the field and are hence rendered in-
effective. This result (30) leads to the spatial coefficient of energy absorp-
tion for transverse waves as given by SCHEUER [9] . 

For frequencies near the plasma frequency the ion graininess gives rise 
to the generation of long wavelength longitudinal oscillations. Part of the 
resistance is due to this effect. For frequencies slightly exceeding the plas-
ma frequency the imaginary part of the integrand, as shown in Fig. 1, e x -
hibits a spike at k0 due to the excitation of these longitudinal excitations. 
The value ко at which the spike occurs is determined by the vanishing of 
ReD(k, и). For id c lose to Up , D(k, id) is given approximately by 

D(k, u) = 

Hence ко is given by 

1 f l + 3 ^ a ) ] - i ( | ) 4 ^ 3 e x p (nd2/2k2u§). (31) 

kg~(u z -idp )/3uo. (32) 

The plot of the resistivity versus frequency in Fig. 2 reflects this contri -
bution as a bump just above the plasma frequency. For this problem, where 
the ion density spectrum is thermal the contribution to the resistance is 
small . But, if for some reason non-thermal ion correlations exist the 
wave resistance may be increased many times. See Ref. [2] for a more 
detailed discussion of this point. 

5. EMISSIVITY 

The power radiated per unit volume can be computed from the time rate 
of absorption of transverse wave energy making use of Kirchhoff's law. To 
do this we find the energy density in transverse waves for thermal equi-
librium. We then equate the time rate of absorption to the power emitted. 
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Fig. l 

Imaginary part of integrand Eq. (28) 

Fig. 2 

Resistivity versus frequency 

To find the energy density in transverse waves we imagine the plasma 
enclosed in a volume V. The number of modes in a shell between к and 
k + dk, when both polarizations are taken into account, is given by 

dn = — k2d k. 712 (33) 

In terms of и we have 

dn = ^k2(u)(dk/du)duEp(u)dw. (34) 

Now the dispersion relation for transverse waves neglecting absorption is 

^ S O . - á H S Í ) ( 3 5 ) 
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Neglecting the relativistic corrections we find 

dn = ^ [ (u 2 -u 2 ) ± / c 3 ]udu . (36) 

To compute the rate of energy absorption we must now include the effect 
of the resistance. That is, from Maxwell's equations and the relation 
3 = CT-Ê it follows that 

k 2 = ^ [ l - 4 И с т ( и ) / и ] . (37) 

Using (20), we find 

u) = ±(u2 + c2k2)i 
2-1 i Цр ój 

1 + 2(с Ь к 2 +ш 2 ) (38) 

Now twice the imaginary part of (38) gives the reciprocal of the decay time, 
t(u), for the energy density in modes with frequency w. 

(39) 

This must just balance the power emitted. Thus 

P(u)du =©u2 Imffj (u) [ (u 2 -u 2 ) i /T 2 c 3 ]du. (40) 

This formula agrees with Scheuer's result [9] f o r u » u p . Notice the cut-
off at the plasma frequency. 

In closing we must say that,although we have computed the power emitted, 
not all this energy may escape from the plasma. Aside from internal ab-
sorption much of the energy may be reflected f rom the surface. This is 
particularly true near the plasma frequency. However, if the plasma den-
sity goes to zero slowly as one approaches the boundary, one may expect 
that reflection can be neglected and the total radiation computed f rom (40) 
and the absorption coefficient per unit length. 
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C Y C L O T R O N R A D I A T I O N 

W. E. DRUMMOND 
GENERAL A T O M I C , SAN DIEGO, CALIF. , 

UNITED STATES OF AMERICA 

I. INTRODUCTION 

The problem of cyclotron radiation from a thermonuclear reactor can 
be divided into two parts. First, we leave the question of how much energy 
is radiated in cyclotron radiation from a reactor of a given geometry and 
electron temperature. This is basically a physics question and can be ob-
tained directly. Second, we have the question of how large a reactor must 
be in order that the radiation loss , which is essentially a surface loss, be 
no bigger than the thermonuclear energy production which is a volume effect. 
This second question involves assumptions about how a thermonuclear re -
actor could be operated which are somewhat "economic" in character. The 
best we can do at this time is to make estimates based upon a set of "opti-
mistic" assumptions and upon a set of "pessimistic" assumptions and thus 
try to bracket the actual results. 

The radiation from a single electron moving in its cyclotron orbit around 
the magnetic field can be obtained by calculating the vector potential, Жш (r). 

Fig. 1 

Geometry for calculation of radiation of an electron moving in a Larmor orbit 

Referring to Fig. 1 we have 
00 

Аш (r) x^Jdt e ^ e^'^'W у й (1) 
-oo 

where Аш(г) is the vector potential at r for radiation at frequency, u, Tí is 
the propagation vector in the direction of r, 7'(t) is the position of the elec-
tron in its orbit at time, t, and V^t) is the velocity of the electron, e. g. , 

r '(t) = ̂  (?x cosÍ2t + t y siníít) 

(2) 

v(t) = v ( - f x sinfit + t y cosŒt) 

where is the electron cyclotron frequency, and V is the electron velocity. 
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In the dipole approximation к • r' « 1 is neglected and we see fromEq.(l) 
that we only have radiation at the cyclotron frequency, Г2. However, if we 
keep the term exp [il? • 7(t')] we can expand it in multiples of the cyclotron 
frequency, e . g . , 

n = -co 
and we have radiation at all harmonics of the cyclotron frequency. However, 
the amplitude of the nth harmonic is of the order of Jn (uv/f2c) oc (v/c)n « 1 
so that the energy drops off radically with increasing harmonic number. 

If we now have a Maxwellian distribution of electrons the total energy 
radiated per unit volume, S(w), can be found by integrating the energy radi-
ated by a single electron of velocity ^ over the Maxwellian distribution. 

TRUBNIKOV [1] was the first to point out that this total energy radiated 
per unit volume, S(u), was greater than the expected energy production per 
unit volume by D-D (deuterium-deuterium) thermonuclear reactions. He 
further pointed out that since the expected electron temperatures were in the 
range of 50-100 keV the cyclotron frequency of the electrons would be shifted 
by the relativistic change in mass so that after averaging over a distribution 
of electron velocities the radiated energy would not be simply at multiples 
of the cyclotron frequency but, at the higher multiples, would be smeared 
out into a continuum. 

The only way that a thermonuclear reactor can thus produce more ener-
gy than is lost by cyclotron radiation is for the reactor to be big enough so 
that most of the cyclotron radiation is absorbed within the plasma, i . e . , 
"he plasma must be at least as thick as the mean free path for the absorption 
of the cyclotron radiation. Thus the essential result that is to be obtained 
is the 11 critical size" of a reactor which is the size at which the cyclotron 
radiation loss is just balanced by the thermonuclear energy production. 

II. RADIATION LOSS 

In deriving the radiation loss , Trubnikov and Kudryavtsev assumed 
that the electrons in the plasma radiate as though they were in a vacuum; 
this assumption has been the subject of some controversy. In this paper 
we examine this question by solving the relativistic Boltzmann equation and 
conclude that for the frequency range of interest, i. e. for frequencies large 
compared to the plasma frequency, the electrons do indeed radiate as though 
they were in a vacuum. 

In the plasmas of interest the quantity 

nK(Te + Tj) 

o' 
( 3 ) 

is a number which varies f rom 0. 1 to 1. Here n is the electron (or ion) 
density, К is the Boltzmann constant, Te and T¡ are the electron and ion 
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temperatures, respectively, and B^ is the static magnetic field. This can 
be re-written as 

m2 2 ÏE - « E £ ! (4) 
U 2 Н 2 K ( T E + TJ ) ' ( > 

where Up = 4jrne2/m is the electron plasma frequency, e is the electronic 
charge, m is the electronic mass, с is the speed of light, and u c = eBo/mc 
is the electron cyclotron frequency. We shall be interested in radiation 
at harmonics of the cyclotron frequency, i. е . , и = mu c ; thus, 

о mc 2 up „ f[-. 
2 K ( T E + T I ) M 2 ' ( 5 ) 

In situations of interest, the left-hand side of Eq. (5) is usually less than 
1, and thus the inequality 

(6) 

is satisfied for all but the lowest harmonics. As will be seen below, this 
materially simplifies the calculation of the cyclotron radiation. 

The collisionless Boltzmann equation is an exact result of the Liouville 
theorem in the limit that e = m = 1/n = KT = 0, with e / m , ne, and nKT re -
maining infinite. This is the fluid limit and there can be no individual-
particle radiation in this limit. If one regards e , m , l / n , and KT as small 
quantities of the same order (we denote the order of any of these by g), in-
dividual-particle effects such as cyclotron radiation enter when we consider 
quantities of first order in g. 

The straightforward way to calculate the cyclotron radiation from an 
individual particle in a plasma is to introduce the concept of a test charge. 
The test charge is considered to move with a prescribed orbit in the plasma, 
and thus it provides a current source for radiation. However, there will 
be an additional current due to the reaction of the plasma to the test charge. 
This reaction current includes two-particle correlations as well as the fluid 
response of the plasma. The test charge will be surrounded by a co-moving 
current cloud of opposite sign, and the radiation may be considerably re -
duced. However, we shall show below that radiation at harmonics for which 
the inequality (6) is satisfied is essentially unaltered. The reason for this 
is that the radius of the transverse shielding current is of the order of c /up 
and thus will not materially affect radiation at wave-lengths, X , that are 
much less than c / u p . 

The source function, S(u,Q), is defined as the energy radiated per unit 
solid angle per unit frequency, per unit volume, per second. To obtain this, 
one simply calculates the energy radiated by a test charge and averages 
over a Maxwellian distribution of test charges. In terms of our small quan-
tities, this is of order ne2 = g. However, the same results can be ac-
complished in a simpler way by calculating the absorption length, <*(u,£2), 
to zero order in g from the collisionless Boltzmann equation. Then S(w,f2) 
is obtained from Kirchoff's law.S(u,S2) = I w a (u,fi), where IRJ = KTw2/87r3c2 
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(the Rayleigh-Jeans distribution) is of first order in g. This is the procedure 
we use to obtain S(u,f2). 

To obtain the radiation intensity in a given direction with a given polarity 
in an infinite slab of thickness L we need only solve 

dl_ 
ds = - a l + S = - e ( I - I R J ) ( 7 ) 

subject to the boundary conditions 1(1) = 0, see Figs. 2a and 2b. 

Fig. 2a 

Geometry of slab 

Fig. 2b 

Co-ordinate system showing the propagation vector at angle 6 relative to the magnetic field 

Here s is a co-ordinate along the direction of propagation, s (x) = x 
/sin0cos0. S(0,u) is the source function for the frequency u and is related 
to the absorption coefficient а(в,ы) by Kirchoff 's law S (в) = a(0)IRj , 
(I R j = (КТ)Ы2 /87Г 3 С2 ), which is valid provided that the polarization we are 
considering is an eigenmode for propagation at this angle. Integrating Eq. (7), 
we obtain for x = L 

Цш.в.р) = IRJ { 1 - e x p [ - o s ( L ) ] } . (8) 

The total radiation/unit area leaving the slab in the polarization is thus 
given by 

CO 
W = J du J d f i i c • ñl (u,e , p) (9) 

0 
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where íc and n are unit vectors in the direction of propagation and normal 
to the surface respectively, and the integration is carried over all outwardly 
directed k. 

Now <*(u) turns out to be a rapidly varying function of u which is large 
for small и and very small for large и . Thus as a function of и , 
exp[-a(u)S]= 0 for all и up to some critical frequency, w*, and then rises 
immediately to 1 for w > u*. Thus, as Trubnikov has pointed out 

I(u) = IRJ for u < u* 

^ 0 for w > u* 

and the critical frequency u* is defined by 

o(u*)L 1. 

The problem is thus to'find cc(w). This is done as follows. From Max-
well's equations we have, for the propagation of waves, 

|(s2 + c 2 k 2 ) f - с2Йс + 4?rsa| = 0. (10) 

Here s = -iu-y,u is the frequency of the wave, y is the damping constant 

(in time), ? is the unit dyadic, к is the propagation vector of the wave, с 

is the velocity of light, and ^ is the conductivity tensor of the plasma and 
is obtained from the relativistic Vlasov equation 

о 
«Гц = - e 2 J d3p J dt' exp [ s f + it • fQ (p2(t-)) (11) 

where is the electron momentum, f 0 (p 2 ) is the relativistic distribution 
function f 0 = (мп/4тгК2(м)) exp -/л(1 + р2)£ with /л = mc2 /КТ , K 2 is the usual 
Bessel function and 

p ( f ) = p (ф - u0t«) 

0 ^ P 2 . 
and for convenience we have set m = с = 1 in a . 

u>0 = г - * 1 — (12) 
v 1 + p2 

mc 

? ( f ) = f I 
X VI 
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It is convenient to express the dispersion relation, Eq. (10), in a c o -
ordinate system the axes of which are along îc, îc X 3 , and £ X (le X ï?). S is 
assumed to lie along the z axis and without loss of generality we take к to 
lie in the x, z plane with k„ = kcos0, k^ = ksin0 (see Fig. 3). 

Fig.3 

Co-ordinate system showing the propagation vector at angle 9 relative to the magnetic field 

In the 1c-co-ordinate system Eq. (10) becomes 

s 2 + 4ffsa 11 Ansa. 12 4 j r s a 13 

4ÎTSCT, 21 s 2 + c 2 k 2 + 4JTS<T 
22 

47TSCT 23 

47TS<7 31 47TSCT 32 S 2 + C ^ 2 + 47TSCT 33 

= 0 ( 1 3 ) 

As discussed in [3] , 42rs<7ü = 0(u|) and s 2 + c 2 k 2 = 0(u^). Thus the 11 
element of Eq. (13) is of order c2k2 while all other elements are of order u|. 
We are interested only in c 2 k 2 » Thus neglecting io2 /c2k2 « 1, Eq. (13) 
becomes 

(s 2 + 4JTS<Jn) [ ( s 2 + c % 2 + 4irs<722) (S 2 + C 2 ^ + 47rscr33)-(4TTS)2СТ23СГ32] = 0. 

(14) 

The term in square brackets is associated with the transverse waves while 
s 2 + 47TSCT!-! is associated with longitudinal waves. The dispersion relation 
for transverse waves is thus 

(s2 + c 2 K 2 + 4 T T S C T 2 2 ) (S2 + c2k2 + 4 F F S C T 3 3 ) - ( 4 J T S ) 2 CF23C732 = 0 ( 1 5 ) 

and thus s = ± ick + 0(ш2). 
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Since 47rsCT¡j = 0(и$) we can obtain 4!rsay correct to first order in (Wp/c2k^ 
by using s = s 0 = - i k wherever s appears in 47rsay . Eq. (15) can then be 
so lved f o r s c o r r e c t to f i r s t o r d e r in ( u g / c 2 k 2 ) . We obtain 

( S 2 + c2k2 ) = - 2 T T S 0 [ ( C R 2 2 + CT33) ± -J ( 0 2 2 - стзз)2 + 4 < 7 2 3 A 3 2 ] . 

Now ce ± = 2yjc and thus 

« ± = — R e [ ( C T 2 2 + ° 3 3 > ± J ( C T 2 2 - CT33>2 + 4 c r 2 3 C T 3 2 1 ( 1 6 > 

where ajj = o-ij (s0). 
The integrals defining a are extremely complex numerical ly and we 

will not carry them out here. However the dependence of a on the parameters, 
|3e and В is easy to obtain. 

From Eq. (16) we have 

ne2 Д) КТеЛ , , „ . 

where g (m, Te ) is numerically obtained. As a function of the harmonic 
number, m = u/í2, and the electron temperature, T e . In what follows here 
the notation g(m, Te ) will be used for any function of the variables m and Te . 

The condition a(u*)L = i is thus of the form 

ne2 
а(Ш*, T e ) L = — Lg (m* , Te) (18) 

= /3eBL g(m*, T e ) = 1. 

Solving this f or m* thus yields the fact that m* is a function of Te and the 
combination /3eBL 

m* = m* (Te , j3e BL). (19) 

Numerical ly for e lectron temperatures of interest , i . e . , approximately 
50 keV 

m* = 0. 5 BL . (20) 

Thus we are able fairly easily to determine the parameter dependence of 
the crit ical frequency and thus the cyclotron radiation loss /unit area, 
R = W+ + W. 

u' 
R = 2 7 r J l R j d u = T ^ 2 п з т ^ з . ( 2 1 ) 

0 
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III. THERMONUCLEAR ENERGY PRODUCTION 

To determine the net thermonuclear energy production in a thermo-
nuclear reactor requires some essentially " e c o n o m i c " assumption. 

For a D-D reactor we first note that approximately half of the D-D re-
actions lead to the production of T and approximately half lead to the pro-
duction of He3 . The T, because of the large D-T cross-section reacts im-
mediately while the He3 , since the D-He3 cross-section is only moderate, 
will not react immediately. For continuous operation, an equilibrium 
amount of He3 will be present. This will also happen for pulsed operation 
if the He3 is separated from the exhaust products and re-injected. 

The rate at which thermonuclear energy is released is given by 

Qdd = I n D [ £ i ( E i + E3) + £2E2] + nDnHe3E4E4 

(22) 

= i n 2 J E l ( E l + E 3 ) + E 2 ( E 2 + E 4 » 

where 1/2 n ^ I ^ is the D-D reaction rate to produce T, Ei is the energy 
released in charged particles by this reaction, E 3 is the energy released 
in charged particles by the almost instantaneous subsequent D-T reaction, 
and E 2 and E 4 are the energies released in charged particles by the D-D 
reaction producing He3 and by the D-He3 reaction respectively. 

We shall assume that a certain fraction, f, of the total energy loss , 
L, from the machine, i . e . , bremsstrahlung, cyclotron radiation, and neu-
tron energy, is returned to the machine and further we shall assume that 
it is all returned to the ions. This seems quite possible. 

In the simplest case where f = 0 the energy balance for the ions yields 

Q D D f g - Q i e = 0 ( 2 3 ) 

where fg is the fraction of Q ÜDwhich is given directly to the ions, Q;e is 
the energy transfer /vol f rom ions to electrons by elastic col l isions. 

Since Qjjj) and Q i e are both proportional to n2 , and since QDD is a func-
tion only of T¡ and Q i e is a function of Te and T¡, Eq. (23) yields the equili-
brium ion temperature, T¡ , for a given electron temperature, T e . 

For the electrons the energy balance equation is 

Qjjod - f g ) + Q i e - S R / V - Q B = 0 (24) 

where S is the surface area of the reactor, V is the reactor volume, i. e . , 
L = V /S , and Q B is the bremsstrahlung radiation loss . 

Since f rom Eq. (23) we can obtain T¡ for a given Te , Eq. (24) can be 
written as 

R = L n 2 g ( T e ) . (25) 
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Equating this to the R obtained from Eq. (21) yields 

Ln2 = £23m*3 g(T£ ) (26) 

which can be written as 

^ = <
2 7 ) 

This is the critical equation for the reactor. The function g(Te) has a rather 
sharp minimum for T e = 50 keV and so to minimize L one should choose 
to operate the reactor in this range of Te . Using Eq. (20) for ra*3 we thus 
obtain 

0.25 g2 (Te ) 
L - j33B ( 2 8 ) 

^ e 

We note the very strong dependence of L on (3e and thus from the point 
of view of cyclotron radiation, we would like to keep 0e as high as possible. 
On the other hand, in many confinement schemes the total /3 = |3e + ¡3i plays 
a critical role in stability considerations and there is often a critical 0 which 
must not be exceeded if stability is to be maintained. Thus we are limited 
to rather small (3. 

To illustrate the results, we shall calculate L for a slab, Te = 50 keV, 
В = 105 G, a total ¡3 of 0.10 and 0.40, f = 1/3, 0 and (case I) including the 
He3 reactions and (case II) omitting the He3 reactions. 

It thus appears that for /3 = 0.40 that the critical size is quite reasonable 
for all cases except II 0, and that even for j3 = 0. 10 case I a / 3 yields a 
reasonable critical size without a reflector. If reflectors are used at the 
plasma surface the critical L is reduced by a factor of 1 -R , where R is 
the reflectivity of the surface. It seems quite possible to build reflectors 
with a reflectivity R of between 0.90 and 0.99. For R = 0.90, the critical 

TABLE I 

I L L U S T R A T I O N O F R E S U L T S 

e = 0 .10 6 = 0 .40 

Case I 
L 1 / 3 = 141 cm 

L f l = 1 068 c m 

2. 20 c m 

16. 7 c m 

Case II 
L, .„ = 776 c m 

1 /3 

L q = 20 500 c m 

12.1 c m 

320 c m 
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size is reduced by a factor of 10, and this appears to be more than adequate 
for all cases except II 0, which would require a reflectivity of 0.99 to yield 
a reasonable critical size. The critical sizes for cylinders are larger by 
a factor of about 2.5. 

A C K N O W L E D G E M E N T S 

The pioneer work in this field was done by TRUBNIKOV [1, 2] . The deri-
vation given in the present paper follows the later work of DRUMMOND 
and ROSENBLUTH [3]. 
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Magnetohydrodynamic (MHD) generators [1, 2] may be regarded as an 
attempt to find practical applications of magnetic forces on ionized gases 
at the lowest possible temperatures. A sketch of one elementary MHD ge-
nerator configuration is shown in Fig. 1. Heated gas flows through the 
channel across magnetic field lines which are perpendicular to the plane of 
the drawing. A vertical EMF is induced which causes current to flow b e -
tween the electrodes and through the load. Thus, as the gas expands through 
the channel, it does work on the magnetic field and produces electric power. 

The primary energy source for heating the gas may be either ordinary 
combustion or fission. For central power station using combustion the e f -
ficiency of a conventional steam cycle is limited by the upper temperature 
at which rotating machinery can operate. MHD offers the advantage that 
energy can be extracted from the gas at temperatures above those which 
can be withstood by solids. The chamber walls may always be cooled below 
the gas temperature, as is done in a conventional rocket. Suggested d e -
signs use an MHD generator for the upper part of the temperature range, 
i . e . f rom the combustion temperature down to the temperature at which 
the conductivity becomes too low for effective interaction with the magnetic 
field. At this temperature there is still significant heat energy in the gas 
so that a steam cycle is used to extract the remaining energy. 

For the case of a fission reactor as the prime energy source it seems 
possible to develop solid fuel elements which can have a long life time at 
temperatures greater than those at which rotating machinery can operate. 
Thus the MHD generator can again raise the upper cycle temperature. The 
temperatures in this case are lower than for combustion; however, some-
what higher gas conductivities can be achieved at any given temperature 
since it is possible to choose a working gas such as argon which has a much 
lower elastic collision cross -sect ion for electrons than combustion p r o -
ducts do. An'interesting possibility, which will be discussed a little more 
fully below, is the question of achieving greater than equilibrium ionization 
in the gas. This would allow higher electrical conductivities at the same 
gas temperature and thus decrease the temperature requirements on the 
fuel elements. 

It has also been suggested that the solid temperature limit might be 
avoided entirely if the fissionable material were used in a gaseous state. While 
this is certainly a highly speculative suggestion, the plasma physics prob-
lems related to such a device would still be much simpler than those a s -
sociated with fusion. The gas would be primarily contained by cooled walls 
and would simply expand through a magnetic field to extract energy. 

A rather gross piGture of progress in the development of MHD gene-
rators can be obtained from the following history. In 1959 ROSA [3] was 

253 
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able to obtain 11 kW of electrical power f rom a small generator channel 
using a gas heated by an electric arc . The efficiency of this channel was 
extremely low due to wall losses; however, the performance was in agree-
ment with theoretical calculations. Since wall losses increase roughly as 
the wall area but MHD power extracted goes as the volume of the channel,v 

the efficiency should increase with increasing size and high efficiency is 
only expected at large sizes. In 1962 LOUIS et al. [,4] were able to produce 
1.5 MW of electrical power from a generator channel using combustion gasea 
Again operation in agreement with theoretical prediction was achieved not 
only in terms of gross power output but also for pressure, voltage and 
current distribution within the channel. This experiment still did not p r o -
duce net power since the power required for the magnetic field was greater 
than the power produced in the channel. During 1964 a self-excited ( i . e . 
the power for the magnetic field was provided by the generator itself) g e -
neretor operation has been achieved with a gross output of 11 MW by MATTSON 
et al. [5]. 

For simplicity in design all of the above experiments were run only 
for short times of 3 min or less . Concurrently work on the development 
of both insulating walls and electrodes with long endurance timesjias been 
carried out. So far endurance times in excess of one week have been 
achieved and further development looks promising [1]. 

The above brief summary of the technical development suggests that 
the prospects for solution of the scientific and development problems are 
very promising. Evaluation of the economic potential therefore has been 
considered appropriate. Full scale power plants using combustion are ex-
pected to obtain efficiencies greater than 50% as compared to the maximum 
of 42% which has been achieved after many years of development of.steam 
cycles. Overall cost estimates appear to be competitive with steam cycles 
and, because of the increased efficiency, are particularly attractive in the 
high-fuel-cost areas of the world. It should be borne in mind that fuel 
and capital costs are usually comparable and thus order-of-magnitude de -
creases in power costs would seem improbable with any system. 

In addition to direct competition with steam cycles for central station 
power sources, the MHD generator appears attractive for cases when short 
duration pulses of high power are of interest. In this situation efficiency 
is not of prime importance, and thus the MHD generator can be used without 
the steam cycle for the lower temperature range. The capital costs for the 
MHD channel are considerably lower than those of turbines, so considerable 
cost reduction seems possible. The prospects in conjunction with fission 
are still hard to estimate. 

Let us turn now to a discussion of some of the physics associated with 
MHD generators. It should be apparent from the success of the experiments 
mentioned above that the basic physical principles are much more clearly 
understood in this case than they are in the higher temperature plasmas 
which are of interest for fusion and in space. In what follows we shall d is -
cuss some aspects of the basic plasma physics with particular emphasis 
on those areas in which problems still remain. In a very gross sense these 
problems arise when the product of electron cyclotron frequency and mean 
free time exceeds unity by some factor. This might be regarded as the be -
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Fig . l 

Line diagram showing principal elements of the basic 
DC MHD-generator configuration 

ginning of a collision-free regime in that magnetic effects have become com-
parable with collisional effects. It is, however, not clear whether the di f -
ficulties are associated with inherent instabilities or merely with great sen-
sitivity to small non-uniformities in the flow. 

The basic operation of a channel such as the one sketched in Fig. 1 can 
be analysed by using the scalar Ohm's law: 

J = < x ( E + f ) = a ( l - r , ) f , (1) 

where we have written the electric field which results from the voltage 
across the load as -rjvB. rj may be regarded as an electrical eff iciency 
since it is the ratio of the power delivered to the load to the work 
done by the gas v - ( ? x ê / c ) = ? ( v X B / c ) . Since the gas conductivity, and there-
fore the gas currents, are low the magnetic field may be regarded as that 
determined by the external field coil and is not affected by the gas currents. 
The velocity of the flow in the channel can vary however; for a rough estimate of 
the operation, we will assume it a constant. In order to extract a significant 
fraction of the energy the total magnetic force along the length L of the 
channel must be comparable to the pressure: 

( 2 ) 

Since wall losses increase with L, high conductivities, flow velocities and 
magnetic field strengths are desirable. The product ov has a maximum for 
a given stagnation temperature since it is zero at zero velocity and at high v e -
locities. (The gas temperature, and therefore the conductivity, are sharply 
reduced since the sum of the thermal and kinetic flow energies remains con-
stant. ) The optimum product generally occurs in the neighbourhood of a 
flow speed comparable to the speed of sound. 

Electrical conductivity at low temperature is attained by the addition 
of small amounts of seed elements such as potassium or caesium which 
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have low ionization potentials. At equilibrium the degree of ionization can 
be calculated f rom the Saha equation and is typically less than 0.1%. The 
conductivity can then be calculated in terms of collision cross-sections for 
the various species in the gas. For seeded combustion gases conductivities 
of 3 m h o s / m at 2400°K and 100 m h o s / m at 3000°К havebeen obtained and 
are in agreement with prediction [6] . At a conductivity of 100 mhos /m, a 
velocity of 105 c m / s , a magnetic field of 3X104 G and r? = 0.75, a pressure 
change of about one atmosphere is obtained in a length of about one metre, 
Eq. (2 ) . 

The desirability of high magnetic field strengths indicated by Eq . (2^ 
leads to interest in values of the product of electron cyclotron frequency 
П and mean free time т greater than unity. In this case the Hall effect be -
comes significant and the tensor form of Ohm's law must be used. If one 
considers only cases with Г2т<10 one may assume that the ion and neutral 
velocities are equal and Ohm's law takes the form 

where ¿t has the magnitude of the cyclotron frequency and the direction of 
the magnetic f ield. If we now require that the current flow only ac ross 
the channel and has no component in the flow direction Eq. (3) shows that 
the current across the channel is still given by Eq. ( l ) but an electric field 
in the flow direction is required whose magnitude is 

For values of С2т in the neighbourhood of unity and bearing in mind that the 
channel is larger than it is wide, this field results in potentials along the 
channel which are significantly larger than those across the channel. If 
the electrodes were made of continuous conductors as indicated in the sketch 
in Fig. 1, they would short-c ircuit this potential, resulting in a decrease 
in current across the channel. In actual practice, therefore, electrodes are 
made of strips which go across the channel but are electrically isolated from 
one another in the flow direction. Each anode-cathode pair has its own load. 
Some local shorting of the axial field still exists over a region whose size 
is of the order of the width of the individual electrode strips. 

The existence of this axial field leads to another possible generator 
configuration, which is commonly called a Hall current generator as o p -
posed to the configuration in Fig. 1- which is referred to as a conduction cur -
rent generator. In a Hall generator the load shown in F i g . l is short-
circuited and additional electrodes are inserted at the upstream and down-
stream ends of the channel. These electrodes are then connected through 
the load. The generator then works on the axial potential developed by the 
Hall effect. A disc geometry is sometimes convenient for a Hall generator 
in order to avoid electrode e f fects . In this case a radial flow a c r o s s an 
axial magnetic field is used. The required shorting in the v X Ë direction 
is then achieved by symmetry and does not require e lectrodes. The load 
is connected between electrodes that are separated radially. 

(3) 

EHall = -Пт(1 -r7)vB. (4) 
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Considerable improvement in generator performance could be achieved 
if the electrical conductivity could be raised above thermodynamic equi-
librium values. This could be accomplished if the electron temperature 
were raised above the gas temperatùre. The degree of ionization would then 
tend to be in equilibrium with the electron temperature rather than with the 
gas temperature since ionization and recombination are determined predo-
minantly by electron-atom collisions. A crude estimate of the conditions 
required can be obtained by matching the rate at which electrons are heated 
by joule dissipation to the rate at which they loose energy to atoms by c o l -
lisions: 

J? = N e S L e k (Te^Tn) _ 
cr m¡ T 

The energy loss has been written assuming elastic collisions, i .e. the energy 
transfer per collision is equal to the mass ratio between electrons and ions. 
This is only applicable in a monatomic gas. For a diatomic gas or c o m -
bustion products the energy transfer is much more rapid due to excitation 
of rotational and vibrational degrees of freedom. As a result raising the 
electron temperature significantly only seems feasible in a monatomic gas. 
Using E q . ( l ) and the kinetic theory expression for a , Eq. (5) can be r e -
written 

T e - T n m n v 2 M l , 2 , 0 . 2 , r . 

The ratio of flow energy per particle mnv'2 to thermal energy kTn cannot 
greatly exceed unity without decreasing the temperature of the neutrals ex-
cessively. Eq.(6) therefore requires that Qt be somewhat above unity if 
noticeable departures of electron temperature f rom neutral temperature 
are to be achieved at reasonably high values of e lectr ical e f f i c iency r¡. 

Recent experiments [7] suggest that significant non-equilibrium con-
ductivity has been achieved although the interpretation is not entirely un-
ambiguous. They used seeded argon gas heated in a graphite heater to about 
2000°K flowing through the disc geometry indicated above. They were then 
able to obtain a voltage/current curve by varying the load. If the conduct-
ivity in the channel were independent of the current flowing the voltage/cur-
rent curve should be linear, corresponding to an ordinary load line with 
the generator - a fixed circuit parameter. However, the observed load line 
was curved, corresponding to a higher conductivity when the current was 
highest, as expected. The slope of the curves would indicate increases in 
conductivity up to a factor of ten. However, oscillations which were o b -
served to occur at the high conductivities may invalidate the quantitative 
estimate. 

The performance of generator channels sometimes appears to be de -
graded [31 at large values of f ir . Whether this is due to instabilities or 
to extreme sensitivity to non-uniformities already present in the flow is 
not clear. It was observed by ROSA [3] that non-uniformities in the plane 
defined by the magnetic field and the electric field (as seen in a coordinate 

17 
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system moving with the gas) could lead to a factor of two change in joule 
dissipation when the fractional change in conductivity was of the order of 
(Í2T)"2. Thus, at high Пт, extreme uniformity is required to obtain p r e -
dicted per formance . It is interesting to note that a s imilar p r o c e s s was 
suggested under considerably different conditions as a partial explanation 
of anomalous diffusion in a low density discharge by ROSE and YOSHIKAWA [8] . 
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I. INTRODUCTION 

The greatest stimulus to the study of plasmas has been given by the hope 
of controlling the release of nuclear energy by the fusion of light nuclei. Both 
light and heavy nuclei are rich in energy, as compared to those of inter-
mediate mass, and it is energetically as possible to tap the potential energy 
available in light nuclei by fusing them as to tap that of heavy nuclei 
by splitting them. Furthermore, the maximum cross-sections for the exo-
thermic reactions between the isotopes of hydrogen'are high: 

D+ D -» He3+ n+ 4. 03 MeV 

D+D - T + p + 3. 27 MeV, 

°dd~ 2 barns at 1 MeV. 

D+ T - He4+ n+ 17. 6 MeV, 

crDT = 4 barns at 100 keV. 
Nuclear fusion has two advantages over f ission as an energy source: 

firstly, the fuel is universally available and effectively inexhaustible, since 
D forms 10*4 of natural hydrogen and its separation presents no serious 
problems; secondly, a fusion reactor should be safe. Although fairly large 
amounts of energy would be stored in such a device, the hazard presented 
by long-life radioactive and chemically poisonous fission fragments is absent 
and a D-D reactor could be made completely free of radioactive risk. 

A thermonuclear reactor based on D - T is somewhat less attractive, 
since it would burn lithium as well as deuterium and supplies of the former, 
while plentiful, are not so much more so than are those of uranium. At the 
same time, some neutron multiplying system is needed (which could be be -
ryllium), tritium would need to be produced, and the neutron engineering 
might be complicated. On the other hand, the required charge of radioactive 
material in a thermonuclear reactor could scarcely exceed a few grams, 
and the hazards would be slight. 

This paper will discuss in a simple, approximate, semi-quantitative, 
"back-of-envelope" way some of the requirements for a thermonuclear r e -
actor. Many of th ooints are dealt with in greater detail by other authors, 
(see Bibliography) 

259 
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И. ENERGETIC CONSIDERATIONS 

The low energy cross -sect ion for interaction between electrically 
charged particles is determined, in form, by the barrier penetration factor, 

•J 2m, Г ÍZ1Z2 , •J 2m, ZiZ2e2 зг 
e X P Ü J \ r ~ J d r e x P « 

r = 0 

For D, this becomes exp(44. 2 E1/2 ) where E= deuteron energy in keV and 
the total cross-sect ion becomes 

a — AE_1exp (BE"1''2). (2) 

For D-D, A= 1. 8X 10"22 cm 2 /kV and f o r D - T , A 3 2. 2X 10"21 cm 2 / kV . 
The Coulomb scattering c ross - sec t i on is 

~ ( Z i Z a ^ l O - ^ E ^ l o g A - (Z1Z2)24X10"19 Er"2, (3) 

and for relative energies < 500 keV, elastic cross-section exceeds the in-
elastic cross-section. The larger value of the elastic cross-section means 
that there is no hope of obtaining significant amounts of energy either by 
sending beams into a cold target, or by letting two highly ordered beams 
collide. In either case, the dominant process is the disorganizing of the 
energy in the beams. This need not imply that the distributions are c o m -
pletely Maxwellian, since relaxation times are long. 

For disordered systems, the particle distribution function may, how-
ever, be approximated by a Maxwellian, and the thermonuclear reaction rate 
calculated, by forming the average at <̂ 0 v > . The integral required can 
be reduced 

I = (irPi^JA (exp - ВД/^Мехр - (4) 

which may be approximated by using the method of steepest descents, i. e. 
writing 

Jex p - f ( x ) d x = Jex p - [f(x)+|(x - x0)2f»(x0) + . . . ] dx (5) 
о 0 

= ^ [ f " ] 1 / 2 exp- f (x 0 ) , (6) 
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where f ' ( x o ) = 0 . With f = B # " i / 2 + , f« = - Í B < ¡ ? - 3 / 2 + f " = | в # " 5 / 2 and 
<#0= В / 2 Э , « * „ ) = [21/3 +2-2 /3 ] B* /3p i /3 ; fil = j4)1/2 2-5/бВ1/зр-5/б . Consequently 

< C T V > = А Т - 2 / З Е Х Р - Ь Т " 1 / 3 . (7) 

Using the value of the cross-section and of the energy released by the nuclear 
reactions, we can calculate the rate at which nuclear energy is re leased, 

dt DD 
1. 3 X10-26n2T-2/3 exp - 18. 8T-1/3 W/cm3 (8) 

dt TT 
1 0 - 2 3 n 2 T - 2 / 3 e x p _ 1 9 9 T - l / 3 W / c m 3 , (9) 

where n is in cm"3 and T is in keV. 
Because of the exponential dependence on temperature here, the power 

release is small until T s l keV. At such high temperatures, the possible 
densities will be limited by the maximum permissible pressure. (At n= 1016 
and T= 1 keV, the pressure =105 atmospheres. Under such conditions, the 
power release is 0.1 W/cm 3 f o r D-D and 10 W/cm3 for D-T . ) 

To be useful, the nuclear energy released must exceed that needed to 
heat the plasma, for although the energy stored in the plasma is recoverable 
at the end of a cycle , it must be returned to the hot gas, and can be c i r c u -
lated only with some finite efficiency r); hence the nuclear energy released in 
a cycle must exceed ~ (1 -r])3NkT. This in turn implies that the fractional 
burn-up during a cyc le , dn/n, must be of order ЗкТ /#н where <#n is the 
energy released per reaction. With T = 1 keV, S - 4 MeV,dn/n= 10%. Since 
the fractional burn-up 

— = n<(7v>r= n < f f v ( T ) > r > 4 i F ( l - n ) n 0 N 

this yields a constraint on the product nr as a function of temperature. 

пт = 4(1 - r))10l°T5/3exp 18. 8T-1/3 f o r D-D, (11) 

and 

пт = 5(1-rj)107 T 5 / 3 exp 19. 9T-1/3 for D -T . (12) 

At such high temperatures, the plasma must loose energy by radiation, 
as well as .by the l oss of part ic les . In a hot solid radiation is ос T 4 , but 
a diffuse plasma is transparent. Indeed, the radiation mean-free-path, 
which at high frequency is determined by the collision between photons and 
electrons, with a total c r oss - se c t i on of the order of (e^/mc2) = 10~25 c m 2 , 
must be approximately 109 cm. At low frequencies , i. e. when u< up or 
и « Q . , the propagation becomes more complex, but these regions are not 
important for high frequency losses, i. e. those which are determined entire-
ly by the radiation source . (Here up is the plasma frequency and the 
electron gyro- frequency . ) 
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An inevitable radiation loss is bremsstrahlung, the radiation released 
when an electron is accelerated in the field of an ion. This is, as we have 
shown, of the order of 

l ' r n + n - ( " ^ ) ' i x ( i t e ) 1 1 1 0 2 ^ " 5 , 3 X 1 31 w / c m 2 - U 3 ) 

At n= 1016, т = 1 keV this is about 53 W / c m 2 , which is much greater than 
the rate of release of nuclear energy. However, since the latter increases 
rapidly with temperature, the radiation loss is eventually exceeded by the 
nuclear energy release. This happens at about 40 keV f o r D-D, and about 
4 keV f o r D - T . At these temperatures the values of пт become: 

п т > 3X 1015 s cm"3 f o r D-D, 

пт = 1 .3Х10 1 4 s cm"3 f o r D - T . 

To ensure the long ion life time needed, the plasma must be confined 
in some way. In nature confinement is by a gravitational f ield, but in the 
laboratory either inertial effects, or electromagnetic f ields, are required. 
Of these, inertial confinement is suitable for large sudden release of energy; 
f o r a controlled release electromagnetic f o r c e s must be used. The f o r c e s 
required are considerable, and the quasi-neutrality of the plasma renders 
electric fields relatively ineffective. On the other hand, a magnetic field, S, 
acting on a current density, Ogives rise to a force density f X B and can balance 
a pressure of approximately B2/8pr. F o r B ^ 5 0 kG this is a pressure of 
about 108 dyn/cm 2 = 100 atm. 

When a plasma is confined by a magnetic field a further radiation loss 
o c curs , f o r electrons are accelerated continuously by the magnetic f ield. 
The energy radiated 

- ¥ ( £ ) " i l 

The ratio of this to the bremsstrahlung loss is 

1 2 B¿ 

3 n m r с 
ve (fte) ~ 1IXS. B2 

87rn(mv|)_ 
ftc 
e2 

и i i n / z j l Y / 2 -
~ 3 j3 V500/ 

л 3/2 
0.05- (15) 

F o r the 4 keV temperature needed f o r T - D the ratio is - 0. 4//3, but at the 
40 keV temperature needed to produce a net gain in energy f r o m D-D, the 
magnetic bremsstrahlung is approximately nine times the normal b r e m s -
strahlung. The radiation emitted here is not in a transmitting band, since 
it appears at the e lec t ron -cyc lo t ron frequency, but detailed calculations 
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show that enough radiation does escape, to leave the result not seriously 
altered. 

Energy is radiated by electrons, but sometimes the energy put into the 
plasma may be given to the ions. The elastic cross -sect ion, however, is 
fairly small, and there may be a considerable difference between ion and 
electron temperature. The transfer of energy between ions at a temperature 
T+ and electrons at T. is given by (cf. Spitzer) 

3 
ЦkT+-kT] dt m A m c¿ 

kT+ | kT. 

. 4 ( 2 ^ 1 п А п ^ ( ^ с ( ^ ) 1 к Т + - к Т ) , (16) 

if T+ / Т. « m + /m_ 
If the electron temperature is determined by the magnetic radiation, and 

the ion temperature is fixed, in a steady state T_ is determined by balancing 
the magnetic radiation loss to the rate of energy transfer f r o m the ions. 

! ( С е Л 2 п 4 2 п к х Л е Л 2 2 

3 \mc2 / с 2 a c 3 mc 2 \mc2/ И (17) 

16 (nkT.)2 / e 2 V 
" 3 71 В - mc z Vmc 2 / ° 

and if T. « T + 

T = 500 -3 In Л m. T , 
2 (2я-)1/2 m+ 500 1 (19) 

- 1 О ( Т + 0 . ) 2 / 7 

= 50 keV (when 1пЛ= 10). 

The rate of loss of energy from the ions is then approximately 

^ = ! Ш P ? ' * " ' ™ * з ^ г - 6 X 10-30n2T+ W/сшЗ. (20) 

The actual loss in a thick plasma is significantly reduced by self-screening 
(cf. Drummond). 

Thus, although magnetic bremsstrahlung increases the radiation loss, 
in a low-£ plasma the electron temperature is kept low, but although the 
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radiation increases not at T i / 2 but as T + , the losses need not be too 
severe. 

III. THE GEOMETRY OF MAGNETIC CONFINEMENT 

1. Magnetohydrostatic approximation 

In a plasma the collision frequency is given by 

I/-47гпс ( ^ У ю ё Л = 2 Х 1 0 - 9 п Т - 3 / 2 , (21) 

and for n^lOis, T = 10 keV this is of order 106 s- i ; hence for systems last-
ing for about 1 s, the distribution of particle velocities will be roughly i so -
tropic anda magnetohydrodynamic description is appropriate. The equi-
librium can then be described by the balance between electromagnetic and 
hydrostatic forces , i. e. 

VP = TXB. (22) 

The immediate consequences of this are 

T-Vp= B-Vp= 0, (23) 

hence current and magnetic field both lie in surfaces of constant pressure. 
These are the magnetic surfaces. If the system is to be confining, then the 
surfaces in which â lies must be closed and nested. The requirement that 
$ • B= 0 then demands either that these surfaces have singular points, or 
that they be at least as complicated, topologically, as toroids. The magnetic 
surfaces can be characterized by the flux threading them, and hence may 
be described by the flux q>, as well as by the pressure p. On a toroidal sur-
face it is often useful to characterize the field lines by the number of turns 
made about the small circle for one turn about the large one. This topological 
quantity is a constant on any given surface. Expressed as an angle it is 
called the rotational transform. Help in finding equilibria is provided by an 
analogy with hydrodynamics, for the magnetic hydrostatic equation may be 
written 

with the condition 

V - B = 0 . (25) 

The equation for steady flow of an incompressible fluid of uniform density 
reads 
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( v - V ) v = - ^ V p , (26) 

V•v = 0. (27) 

hence by identifying v with B/(4^p)1/2, and p+B2/8jr with - p , a complete 
analogy is formed between incompressible steady hydrodynamics and 
magnetohydrostatics. From this analogy many useful results follow; for 
example, corresponding to cavitating flow there exists a magnetic surface 
confining an unmagnetized plasma, pressure balance being secured by a 
surface current. Corresponding to the vortex ring, is a toroidal con f i -
guration of equilibrium in which a torus of plasma is confined by an external 
field, or by the field produced by currents flowing in the plasma. Corres-
ponding to the Hill spherical vortèx is a spherical plasmoid distribution held 
in a spherical bulge in an otherwise uniform magnetic field. 

If a field is to contain a plasma, clearly 

V X V ( P + | ^ = ¿ V X ( B - V ) B = B - V ] M Í - V ) B = 0, (28) 

a relation which cannot be satisfied by a purely azimuthal field on a toroidal 
surface. 

The magnetohydrostatic equation may be solved to express the current 
in terms of the pressure of the magnetic fields as 

1=^-2 (BXVp)+XB, (29) 

whereupon the continuity condition on the current demands 

B g = ^ . i B | v E ) = | _ . | B | . ( g x ^ p b ( 3 0 ) 

Clearly X must be a single valued function of space, hence 

y d X | V l B l B ( B X V p ) Ж 0 ( 3 1 ) 

is a constraint on the pressure gradient. 
This, subject is, however, treated in some detail in another paper by 

Taylor. 

2. Low-^ systems 

If the temperature is high and the density low, the distribution of parti-
cle velocity need not be isotropic; but the helical nature of the orbits r e -
quires that it be characterized by the component of velocity perpendicular 
and parallel to the magnetic field. It follows that the stress tensor, rather 
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than being isotropic and characterized by a scalar p, is a tensor with two 
independent components p„ , p x ; 

P = P x ? + ( P „ - P ± ) b b . (32) 

The equilibrium then becomes 

З х В = V • p = V±Px+ (P., ~ Px)n/R, (33) 

ft 1 AR 
0 = Эх^Р|,~В ô x i , < 3 4 > 

In these low pressure conditions, the anisotropy in the pressure can 
maintain a pressure gradient along a field line in a direction of decreasing 
I В I, and magnetic field lines can leave the plasma. There are still, how-
ever, magnetic surfaces within the plasma. 

A more detailed understanding of this type of confinement can be o b -
tained by studying the motion of individual particles. In a steady state, the 
kinetic energy S= i m ( v 2 +v£ ) is a constant of motion, as is the magnetic 
moment 

hence v„ must satisfy 

f = i m v 2 / B ; (35) 

|mv2 = <#-iiB(x), (36) 

and the magnetic field acts as a potential keeping particles with finite ц near 
the regions of minimum B. This is the principal of m i r r o r confinement. 
If at minimum-B B= B(0), then v¡, = 0 at <#-/uB(x) = 0, but we can define ц 
and В in terms of the angle в of the orbit with respect to the magnetic field 
on the minimum-B surface: 

_ sin2в . „ „ . 
M = — 5 — > ( 3 7 ) Bo 

hence the turning point for a particle is defined by x 0 , where 

(38) 

If В r ises to some maximum value B m a x we can define the ratio 
В шах/В min = R the mirror ratio, which is greater than unity; all these parti-
c les will be trapped f o r which sin2 в ^ R" 1 . The cone of lost particles 
(sin2 в s R _ 1 ) is described as the loss cone, and is f i l led only by col l is ion 
p r o c e s s e s . 
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3. Stability 

It is not enough to produce a configuration of equilibrium; if it is to be 
preserved it must be stable against small disturbances. To understand the 
stability of complex systems one may notice that disturbances must occur 
at constant total energy. The energy consists of both potential and kinetic 
energy, and if there exist displacements which will cause the potential 
energy to decrease, then kinetic energy can increase and motion away f rom 
the static equilibrium is possible. The potential energy in a fluid system is 

<S= /d3T 87Г 7 - 1 (39) 

the sum of the magnetic and the thermal energy of the gas. In a perfectly 
conducting fluid, where 

Ë+ — vX В = 0 , с (40) 

a reasonable model f o r a plasma, the magnetic flux must be conserved on 
all motions. 

If a displacement in the fluid is made, and flux conserved, we can then 
ask whether or not the energy is increased. An important type of displace-
ment is one in which flux tubes are just interchanged- An important quantity 
then is the volume associated with a tube of flux. Since a flux tube is d e -
fined by field lines so that the flux BA= <p is constant, as one moves along 
a line of f o r c e the volume of a flux tube <p is 

dlA = <p 
Ш 
В (41) 

and the energy 

fdtpjdl В 
8тг B(7 - 1) (42) 

Suppose we p e r f o r m an interchange f o r which the volume of the two flux 
tubes is the same, but the flux is not. Then the change in energy will be 

bS = J d l 2 A 2 

+fdl1A1 

' h { f < 

BV2 + _pj_ 
87Г 7 - 1 

8ît 7 - 1 

_ (Ш 
\ 8тг 7 - 1 

M + J £ L 
87т 7 - 1 

dl2A2 \A 
„2 " 

(£2 / d l i A j \d .A] 
Л A l . 

/ d l i A j 
Л 4-

+ 0(p). 

(43) 

+ 0(p) 

(44) 
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But / A 2 d l 2 = /A i d l 1 ; since the volume, and hence the thermal energy, is 
conserved. Thus 

M - •] 

hence if tpz> <pг and d l 2 /d l i > 1, the system is unstable. Since the plasma 
is confined by the field, В usually increases outward, and if the length of 
a field line also increases , i . e . its centre of curvature l ies inside the 
plasma, the system is unstable. If, on the other hand, the magnetic field 
lines curve away f r o m the plasma surface, the system is stable. 

If, on the other hand, the field strength is high compared to the thermal 
energy, i. e. ¡3 = 87гр/В2 <K 1, then the field is nearly a vacuum field and is 
already in a state of minimum energy. The only decrease in energy, then, 
must be obtained at the price of the thermal energy of the gas. Suppose then, 
an interchange occurs between two'tubes of equal flux. If this happens adia-
batically, so that pîvi ' ' = p1v^, i . e . p[= p1(v1/v2)r', 

- ^ [ p . v ^ v J - y - v î - ^ + p ^ l v î - ï - v l ^ ] 

^ ^ ^ ( P i V Í - P . v D 

(46) 

= v" y 6vó(pv y ) . (47) 

= ^ [ v ô p + y p ô v ] (48) 

Now the plasma surface p > 0 and this reduces to á é ~ b p b v ¡ but 6v is the 
gradient with respect to the flux surface ф of the flux tube volume v= <p[dl/B. 
Hence, f or instability 

(49) Ъф дфJ В к ' 

but since Эр/3ф <0 near the surface stability requires that д/дф$<11/В > 0, 
and / d l / В must decrease outward f o r stability. 

To defeat the interchange instability, one may introduce in a toroidal 
system a shear in the magnetic field. In that case, the winding number or 
rotational transform may vary with flux surface; hence neighbouring flux 
tubes may be topologically inequivalent and flux tubes on neighbouring sur -
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faces cannot be interchanged without being broken. This means that an ideal 
hydrodynamic configuration may be stabilized by magnetic shear. 

To produce magnetic shear, however, larger currents are required 
and the dangerous instabilities are localized about the flux surface on which 
the perturbation does not vary along the magnetic field. Attempts to de -
monstrate stability in systems which have sheared fields have been un-
successful, and it is easy to see how their failure can be understood by con-
sidering the effects of finite resistivity. The actual current equation is 

rjT= nVXB=ff (E + ̂ v X B ) , (50) 

and the left hand side is negligible if 17/L « v / c . The scale length L entering 
here may be determined by the perturbation itself and, in fact, there exist 
oscillations for which the wavelength 1 ;?> rçc/v. For such oscillations the 
effect of finite resistivity is important and the flux is not accurately p r e -
served. Motions are then possible, in which field lines break and rejoin, 
and in a highly sheared plasma these are important and lead to new instabilities. 

A crucial experiment on plasma instability was the hard core, or un-
pinch experiment, in which a theoretically stable configuration was produced 
by excluding a plasma from the centre of a cylinder by the field of an axial 
current flowing in a rigid conductor. This configuration, stable for a per -
fectly conducting plasma proved, in fact, to be unstable. This instability 
arises because magnetic flux tubes can be cut in a plasma of finite conducti-
vity. i n systems stabilized by shear produced by currents flowing in the 
plasma, basket-weave devices, magnetic energy can be released by the cutting 
of flux tubes and so-called tearing instabilities grow rapidly. 

Since shear stabilization has been shown unsatisfactory, one must try 
systems which do not depend on topological prohibitions, but in which Jdl/B 
increases on leaving the plasma surface. In such systems, the centre of 
curvature of field lines lies outside the plasma, hence any confining surface 

F i g . l 

A cusp- f ie ld configuration. 
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must have singular points. The simplest of such systems is the cusp, in 
which the field is produced by two opposing current loops, see Fig. 1. At 
the singular points, the real fluid properties of the plasma result in losses, 
and there is a leak of size (г£г£)1 / 2Ь, where the r£ are electron and ion 
Larmor radii and L is the length of the ring cusp. In a large enough system 
this loss is tolerable. In many high density experiments, the plasma is 
cool and the loss is determined by resistive diffusion which causes the leak 
to widen at a rate determined by conductivity. 

In a mirror, plasma is confined because the magnetic field increases as 
one goes along field lines away f rom the plasma. It is unstably confined 
because the magnetic field decreases as one goes away f r o m the plasma 
across the magnetic field. In the cusp the magnetic field increases in all 
directions as one leaves the plasma, hence J"dl/B decreases outward and 
the plasma is stably confined in a region of minimum B. 

In a cusp, the central magnetic field is zero, hence the magnetic m o -
ment, ¡л, which is approximately constant only in strong magnetic f ields, 
no longer defines a potential цВ(х) in which particles move; and unlike a 
mirror , the motion along the field line is not limited. 

This defect, however, can be overcome by putting in an axial conductor 
carrying a current along the axis of the cusp, whereupon a toroidal region 
appears in which В is a minimum, but still large so that particle motion is 
adiabatic and particles are confined on the field line by increasing field 
strength. 

The minimum В configurations can be exploited if the pressure is made 
a function of the magnetic field strength. Then, for example, transverse 
current alone is divergence free for 

V - ^ ( B X V P ) = - | З У | В | - ( В Х У Р ) = - | З ^ V | B | - B X V | B | 

«B-V|B| XV|B| = o. (5i) 

The minimum В configurations have been elegantly treated by J. В. Taylor 
in his paper (these Proceedings). 

Many configurations of this type have been studied and stable confine-
ment has been achieved in the hybrid mirror by M. Ioffe. At present, these 
seem the 'white hope' of thermonuclear research, but since experiments are 
limited to very low values of ¡3, much more knowledge is required before 
the high-|3 systems needed for energy producing systems are in sight. 
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E X P E R I M E N T S O N P L A S M A 

G . F R A N C I S 

U N I T E D K I N G D O M A T O M I C E N E R G Y A U T H O R I T Y , 

T H E C U L H A M L A B O R A T O R Y , 

A B I N G D O N , B E R K S . , E N G L A N D 

I. METHODS OF MEASUREMENT 

1. Total currents 

The total currents, either in circuits or in the bulk of plasma are 
measured by a Rogowski coil (sometimes called a magnetic potentiometer 
or current transformer). This consists of a long solenoid, usually of fine 
wire, wrapped on a flexible tube, see Fig. 1, which is then curved to form 

a closed loop enclosing the current to be measured. Let there be n turns 
per centimetre length, the turns being of area A. 

If the current produces a magnetic field, whose value at some point 
coincident with a section of the coil is B, then if this field is varying intime, 
the EMF de induced in a short length dl of the coil is 

Thus integrating around the whole loop, the total EMF (e) generated is 

ELEMENTARY LENGTH d l 
DEVELOPS POTENTIAL d« 

POTENTIAL 

F i g . l 

A Rogowski co i l . 
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But /Bdl= 4тгХ total current looped. Hence 

e = 4irnA—. 

This EMF is usually fed on to an oscilloscope through an integrating circuit 
(resistance in series with a capacitor), giving a potential V on the terminals 
such that 

Provided the major radius of the loop greatly exceeds the minor radius 
of the turns of wire (so that В can be regarded as constant across the area A) 
the actual path of the loop does not matter. Essential refinements and pre-
cautions are: 
(a) an electrostatic screen (not completely closed of course, otherwise the 

magnetic field would not penetrate) 
(b) one long thread of wire is taken back along the path of the major loop to 

balance out any flux linked by this loop. 

2. Local current density 

The local current density is deduced from local magnetic field measure-
ments, made with very small pick-up coils consisting of many turns of fine 
wire ("magnetic probes" ) . Here again only time varying magnetic f ie lds 
generate an EMF, but the largest signals come from the most rapidly vary-
ing fields. Thus these small coils are especially useful in identifying and 
measuring rapidly fluctuating local fields in pulsed discharges (e. g. pinch 
discharges). The EMF generated is proportional to 3B/3t; here again an 
integrating circuit is usually used to give a signal directly proportional to B. 
The time constant CR is at least ten times longer than the duration of the 
fluctuation being examined. Much longer time constants reduce the ampli-
tude of the final signal. 

Desirable properties in a magnetic probe are a high sensitivity and a 
fast time response: these are to some extent contradictory requirements. 
A high sensitivity is achieved by winding many turns, but this increases the 
inductance of the coil and lowers the frequency at which a fluctuating mag-
netic field will be in resonance with the natural frequency of the coil , set 
by its own inductance and capacity of the associated circuits. Useful com-
promises are however possible, and probes with frequency responses up to, 
say, 5 Mc /s are common: some have been used up to nearly 50 Mc /s . The 
flattest response is achieved by making the circuit critically damped. A 
typical circuit is shown in Fig. 2. It can be stated that this circuit has the 
flattest response ( i . e . is critically damped) when 

V = ~ J edt, thus V ос I. 

ie' 
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Fig. 2 

C i r cu i t and equ iva lent c i r c u i t o f m a g n e t i c probe 

Typical values are as follows: Ь = 1 - 5 д Н , R= 1-30 fi, C = 2 0 - 50pF, and 
Cs = 35 pF. 

Take for example L as 5 ц H, C= 40 pF; in this case Rtotal - 183 ohms. 
Most co-axial cables have characteristic impedances in the range 100- 500 Q 
so generally critical damping and proper termination of the cable (to avoid 
reflections) is possible. 

An electrostatic screen is also necessary to ensure that only magnetic 
effects are measured. Magnetic probes are often used in thin stainless steel 
tubes: the frequency response is then determined by the penetration time of 
the magnetic field through this tube. 

The local current density J i s deduced from the magnetic traces, using 
the component of 

VX B= 4TTj. 

Thus one frequently needs to measure a gradient of the magnetic field: 
for this purpose a tube is poked into the plasma carrying a spaced array of 
these probes. 

3. Electric field 

The electric field in the plasma can be measured by inserting into the 
plasma small metal plates, each connected through a very high impedance to 
some point at common potential (usually earth). 

A plate immersed in a plasma in this way is said to be approximately 
floating - i. e. it takes up a potential which is close to the local potential 

* e . g. see SEGRÉ, S. E. and ALLEN, J. E . , M a g n e t i c probes o f high f requency response, 

J. s c i . Instrum. 37 (1960 ) 369 . . 
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in the plasma. Usually it becomes a few volts (AV) negative with respect to 
the plasma because of the greater mobility of electrons - these charge up 
the plate negatively until an a'mbipolar potential is set up which equalizes 
the flow of ions and electrons. (If, however, the ions have greater random 
velocity than the electrons this ambipolar potential will be reversed. ) 

Such electric field measurements are accurate only if this ambipolar 
potential AY is much less than the potential difference between the probes, 
because it cannot be assumed that ДУ is the same for both probes. (This 
would be true only if there were no spatial variations in electron or ion 
temperature: it is clearly not possible to assume this in general. ) 

4. Electron density and temperature 

The electron density and temperature can, using a probe technique, be 
deduced (making certain assumptions) by measuring the current drawn to a 
metal plate immersed in the plasma, and varying the potential on the probe. 
The theory and technique is due to LANGMUIR [1] . 

4.1. Floating probe. Suppose that a potential Vs (the "sheath" potential) is 
set up between the plasma and the surface of the probe. Then on the 
simplest assumption the flux of ions to the probe is injv¡ per cm2 and the 
flux of electrons is 

1 ( eV, - n e v e e x p ^ 

The assumptions implicit here are that the electrons have a Maxwellian 
distribution corresponding to a temperature Te, and that no ionization occurs 
within the sheath. 

Equating these two fluxes gives 

k T e . Vg V, = log . s e ° v. i 

At first sight it would appear that ve and v¡ are the random velocities 
of electrons and ions respectively: ve certainly is the random velocity of the 
electrons, but v¡ is somewhat larger than the random velocity of the ions, 
because the electric field penetrates f r o m the sheath some distance into 
the plasma and accelerates the ions. The ratio v e /v ¡ in most discharges 
in light gases is such that Vs is typically 3 to 5 times kT e / e , i. е. 3 to 5 
times the mean electron energy. 

4 .2 . Fixed potential probe. Suppose that now the probe is not allowed to 
float, but connected to a source of potential V with respect to the plasma, 
and the current drawn is measured. Both electron and ion currents will 
vary: however the electron current will vary very rapidly, being proportional 
to exp(-eV/kT e ) , whereas the ion current varies only very slowly. Thus 
if l o g j is plotted against V, a straight line results with a slope of - e /kT e 
f rom which the electron temperature can be deduced. 
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Now if the probe is made more positive, so that it reaches the same 
potential as the plasma, then both ions and electrons diffuse f ree ly to it: 

1 

3i = 4 n i e v i 

J e ^ V ^ e -
If the probe is made slightly more positive then, assuming the ion tempera-
ture to be rather small, all ions are repelled and a space-charge limited 
current of electrons is collected. The l og j against V curve shows a sharp 
change of slope (in practice not all that sharp, but extrapolation allows the 
point to be reasonably well defined). The current density at which this 
happens is given by in¿eve; since ve (the electron thermal speed) has already 
been found ne can be determined. 

Consider the reverse situation, when all electrons are repelled and a 
saturation ion current is collected. Then for a plane probe 

1 Í2e\\ V f 1 

Disregarding for the moment actual numerical values, we should expect for 
a given plasma d ос V3/2, and for V = const., d oc 

Both have been veri-
fied (provided V is sufficiently strongly negative, and provided the size of 
the probe, and the thickness of the sheath is less than Xe or X t , the mean 
free path of the electrons or ions). v¡ deduced from this saturation current 
is however absurdly high to be ascribed to the random motion of the ions. 
Bohm has shown that, due to acceleration of the ions V! is c loser to 
(2kTe/M)1/ '2 than to (2kT¿/М)1 /2 . 

II. PROBES IN A MAGNETIC FIELD 

Probes placed perpendicular to В are unaffected (except that they measure 
only T,,). Probes collecting across magnetic field lines are affected due 
mainly to the curvature of the electron paths, the ion paths being much 
less curved. 

If the electron orbit (radius p e ) is much bigger than the thickness d of 
the sheath, then it can be shown [2] that the probe current is 

j e = | n e e v e ( - ^ ) e x p ( - f ^ ) , 

where u= еВ/mc (the gyro frequency) and т is the mean collision time for elec-
trons. The electron flux to the probe is thus much reduced, the ion flux 
much less so (since UTions « "i"electrons ): thus the potential across the sheath 
is much reduced also. 



278 G. FRANCIS 

A plot of log je against V should still give a straight line enabling Te 
to be deduced. (For example if p= 1 0 ' 3 torr , T e = 2 X 1 0 4 ° к , В = 240 G, 
UT= 10 3 f o r electrons. ) 

At the other extreme suppose p e « d and the electrons make so many 
collisions within the sheath that their motion is controlled by collisional 
diffusion in the presence of the electric field of the sheath. Detailed theory 
shows that the sheath potential is reduced to 

. . kTe, Ve , , 16 Xe f e V s \ 

The main disadvantage of the simple Langmuir probe is that a large 
electron current can be drawn from the plasma, thereby seriously changing 
the very properties being measured. Also the probe has to be connected to some 
external potential source. This can be overcome by using a double probe. 

1. Double probe 

Two equal area probes (JOHNSON and MALTER [3] ) are inserted into 
plasma as close together as possible, consistent with their sheaths not over-
lapping. A potential Vd is applied between them, and there is no connection 
to any external absolute potential. Now they take up potentials Vj and V2 
with respect to the plasma, one moving nearer to, the other further f rom 
plasma potential - the f irst collects more electrons, the other c o r r e s -
pondingly fewer, the net current taken f r o m the plasma being zero. If V¿ 
is sufficiently large all the electrons that were collected on one probe are 
repelled, and that probe collects a saturation ion current. (Reversal of Vd 
merely reverses the roles of the two probes. ) Saturation ion current occurs 
at points A and В shown in Fig. 3. The total current from the plasma to the 
two probes is zero: therefore 

Ejions = (ii)l + (ji) 2 = Ue)l+ Ueb 

= (jeo )i exp (-eVi /kT e)+ (je0)2 exp (-eV2 /kT e) , 

where (jeo)i means the electron current to the probe 1 when V = 0 , etc. 
Putting Vd = V2 - V 2 , then 

ions 
„(Va +Vd) 

кТР + Ueo)2exP •eV2/kTe 

Therefore 

•Щ*- - 1 = exp(-eV d /kT e ) 

and hence by plotting log S l - i 
. Je2 

, we can obtain - e V j / k T e . Ejj and je2 



EXPERIMENTS ON PLASMA 279 

are shown on the graph. je2 is the sum of the electron current to probe 2 with 
Vd = 0 (i. e. je02) and the extra electron current repelled f rom probe 1 and 
collected by probe 2. 

F i g . 3 

Current c o l l e c t e d by the d o u b l e p robe . 

The electron density cannot be deduced from double probe traces, but 
since the saturation ion current is measured we may take the theoretical 
flux of ions f rom the plasma into the sheath: 

3 i = C n i e v i 

= Cnje^kTe/M)4 , 

where С is a constant which, according to various authors, varies f r o m 
0.4 to 1. 0. 

A fundamental disadvantage of the double probe method as compared 
with the single Langmuir probe is the very small fraction of the electron 
energy distribution that is sampled. When the probes are unbiased and float-
ing each receives only the electrons able to overcome the sheath potential 
1.e. the fraction exp(-eVs/kTe). We have already shown that eVs/kTe is about 
3 to 5, which means that fewer than one tenth of the electrons - those at 
the tail of the distribution - reach the probe surface. Now when a potential 
Va is applied these energetic electrons are repelled f rom one probe until, 
when Vd is large enough, they are all repelled. It can easily be shown, since 
the maximum electron current cannot exceed the saturation ion current, that 
the entire probe trace arises by adjustment of the flow of energetic electrons 
only. 

To overcome this it is possible to use probes of unequal areas, A!and 
A 2 . Then 

AJi -Aj jeoexpl -eVj /kTJ + Aaji -A 2 j e 0 exp( -eV 2 /kT e ) = 0. (1) 

To sample the whole distribution we need to make one sheath disappear, i. e. 
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the total electf-on current to the large probe at floating potential must equal 
the saturation ion current to the small probe when it is biased to plasma 
potential. (The saturation ion current to one probe is 

The electron current to the other probe in the presence of a sheath of 
potential Vs is 

A2 j e = A2neeve exp(-eV s /kT e) 

when A 2= A 2and, assuming n^n, , , then clearly the saturation ion current 
is (m/M)1 /2 times the electron current. 

To make the sheath potential negligible and sample the whole electron 
distribution: 

A

l j ¡ =
 A

P e
e v

e ' 

i. е. 

A l - А а . 
•JM Jrñ 

or 

Ai_ ÍM 
A2 " V m ' 

More precisely, from Eq. (1), if Aj is the large probe and A2 the smallprobe, 
we can assume that, when the small probe is saturated with electron current 
(V2 = 0), and also nearly all electrons are repelled from the big probe, 
j eoexp(-eVi/kT e) is negligible. Thus 

Aiii + A j i i i - je0)= 0, 

and therefore 

A l
 =
 jeO - ji 

A 2 ii ' 

which, using the above substitutions, is approximately (M/m) 1 / 2 . 
Any ratio of areas greater than this allows the whole electron energy 

distribution to be sampled. Now the plot log je against V is distorted and Te 
can be found only for small variations in V close to the plasma potential. 

As a rough guide we can construct the following table, comparing the 
Debye length XD (which is roughly equal to the thickness of the sheath) with 
the Larmor radius of the electrons. The number given is the ratio p e /XD . 

For values above the line electron collisions in the sheath are important. 
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TABLE I 

VALUES OF p e /X D F O R VARIOUS VALUES OF MAGNETIC F I E L D H 
AND E L E C T R O N DENSITY n e 

m e A 8 k T g N l / 2 
L a r m o r radius p. = —— I 5 

e eH m e 

Debye "distance XD = 6. 9 I 

n e 
H 

n e (G) 
( c m - 3 ) 

100 200 300 400 500 1000 1500 2000 

10® 0. 51 0 .255 0.17 0 .13 0.102 0 .051 0. 034 0. 0255 

109 1. 61 0 .805 0 .54 0 . 4 0. 32 0.161 0.107 0. 0805 

1 0 " 5 . 1 2. 55 1 .7 1 .3 1. 02 0 .51 0 .34 0. 255 

1 0 " 16 .1 8. 05 5 . 4 4 3 . 2 1. 61 1. 07 0 .805 

10 1 2 61 2 5 . 5 17 13 10 .2 5 . 1 3 . 4 2. 55 

1 0 " 161 8 0 . 5 54 40 32 16 .1 10 .7 8. 05 

10 14 510 255 170 130 102 51 34 2 5 . 5 

10 1 5 1610 805 540 400 320 161 107 8 0 . 5 

10 16 5100 2550 1700 1300 1020 510 340 255 

III. RANGE OF USE OF PROBES 

The lowest density is given by the physical size. For example the Debye 
length sheath thickness) f o r a plasma of density 10 8 / cm 3 and electron 
temperature 20 eV is about 3 -5 mm. Thus a probe would have to be about 
3 - 5 cm in linear dimensions to approximate to a plane probe. Thus den-
sities of 108- 109 / стЗ are the usual lower l imits. The upper limit is set 
by the tendency of the probe surface to become the cathode of an arc when 
subjected to intense bombardment. This usually occurs when n 10i 4 / cm 2 . 
Arcs f o r m less readily in short pulsed discharges ( ~ a few microseconds) . 

IV. CONSTRUCTION OF PROBES 

Choice of Materials. The probe materials should have a high work function, 
and a high melting point is also desirable. Platinum is satisfactory, whereas 
tungsten has proved unsatisfactory at high densities. 
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Choice of Size. The size depends on the plasma to be examined; it should be 
as small as possible consistent with its linear dimensions being appreciably 
greater than the sheath thickness. When unequal area probes are used the 
area of the larger one should not exceed 1 cm2. 

Mechanical Design. Arcs tend to form at the junction between plasma and 
insulator. A gap must therefore be left, see Fig. 4. The probes must be 
set close together to avoid picking up any stray electric field. The design 
and use of such probes has been summarized by JONES and SAUNDERS [4]. 

V. MEASUREMENTS ON MOVING PLASMA 

Plasma guns are a convenient and widely used source of energetic 
plasma. Such plasmas have directed velocity v, in addition to their thermal 
motion. Let us assume that such a plasma is guided by a magnetic field: 
then we should like to know the density, directed velocity, electron and ion 
temperatures, and composition of the plasma. The following techniques 
are used. 

1. Ion col lector 

Since ions and electrons travel with the same directed velocity, electrons 
have much less energy and can be easily repelled by the bias potential, see 
Fig. 5. The flux of ions through the hole is nAv, where v is the directed 
velocity of the ions. 

2. Electrostatic particle-energy analyser 

The electrostatic particle-energy analyser is usually to be preferred 
to a magnetic-momentum analyser since it does not require collimated 
beams nor precise magnetic fields. The design of the instrument (see Fig. 6) 

Fig . 4 

Cons t ruc t i on o f e q u a l area d o u b l e p r o b e . 
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E n e r g y s e l e c t i v e i o n a n a l y s e r . 

described here is due to MASON [5]. Ions of energy between V and V + 6V 
are repelled f rom G4, strike the back of Geand emit secondary electrons 
which are accelerated through about 6 kV to penetrate the aluminium film 
and activate the scintillator. 

The main ion is that of the gas used to fill the gun: correlation of energy 
with time of flight identifies the ion. 

3. Diamagnetic loop 

A single loop of wire (electrostatically screened) placed around the 
guiding field has an EMF generated in it as the plasma passes because the 
plasma pressure pushes out the magnetic flux. Let us assume that the area 
of the loop is A and the static magnetic field is Bo, reduced to Bi when the 
plasma passes. Then the change of flux 4 
= p = /ЗВ§/8тг, by the definition of /3. Now if j 
to 

B o 
and 

_ 8ф_ АЭВ 
6 at at 

= A ( B 0 - B i ) . But Bg/8îr-В2/8ТГ 
! is small these equations reduce 

where e is the EMF generated. 
If this is fed via an integrating circuit to the measuring oscil loscope, 

a signal V appears, where 

v = c k / e d t = â A B -

Hence 0 can be derived. 
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If the loop is much bigger than the cross-section of the plasma, the 
latter being of aréa Ai, then the change in flux due to the passage of 
the plasma is 

¡3 can now be derived only if the radial distribution of the plasma is known. 
Since j8 measures, in this instance, px we derive nk(Tej+ Tix): n is known 
f rom the ion collector measurements. 

Now some indication of Te can be obtained provided kTe»|mv2, where 
v is the directed velocity. This is frequently true (for example T e ^ 20 eV, 
|mv2 s 0. 5 eV are typical figures). Then the ion collector biased to different 
small potentials will collect different currents, the differences being due to 
collection of electrons in the tail of the distribution. Thus using standard 
double probe theory Te along the field lines can be found. Usually Te i and 
Teil are not significantly different, due to the short electron-electron collision 
time. 

VI. EXPERIMENTS ON MAGNETIC WELLS 

The techniques of measurement described in the earlier sections have 
been used in studying the behaviour of plasma in a hybrid trap ("magnetic 
well") consisting of a conventional magnetic mirror with a hexapole cusp 
field imposed orthogonally [6] . 

Plasma is produced in a coaxial gun, the performance of the gun being 
monitored by measuring the current waveform using a Rogowski coil. The 
ejected plasma is guided along a static magnetic field which converges gently 
f rom 450 G at the gun to 4 kG at a point 3.5 m distant: it remains constant 
over a length of about two metres, and thereafter diverges symmetrically. 
Pulsed coils produce mirror fields (an additional 3. 6 kG) at points disposed 
70 cm apart about the middle.of the central region. Plasma is trapped by 
first energizing the far mirror, firing the gun and then energizing the nearer 
mirror before the reflected plasma can escape. 

The properties of the injected plasma are measured with ion probes, 
particle detectors, and diamagnetic loops: the results are: 

Mean directed energy - 1 keV 
n = 3.1012 ions /cm3. 

Perpendicular energy (of ions) - 60 eV (at gun) 
Te ^ 12 eV. 

The density of the plasma trapped in a simple mirror, as measured by a 
microwave interferometer (X = 3 cm), is 4 X ЮЮрег cm3. Its lifetime is 
measured by the flux of neutral particles resulting from charge exchange. 
These are converted back into ions by a water vapour cell, and the resulting 
ion flux in a given energy interval (1.6 keV ± 200 eV) measured by the 
particle detector. The lifetime is 5 0 - 80 /us: this is of course the lifetime 
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of energetic ions in the magnetic mirror . Double probes are used to detect 
the presence of plasma. They are disposed close to the walls and arranged 
both parallel to the f ield lines and azimuthally around the c i rcumference . 
They show the growth of a rotating flute which drives the plasma into the 
walls, and makes one complete revolution in 64 /us. 

In subsequent experiments a hexapole stabilizing field was established 
within 50 /us during the trapping process . Although some plasma was in -
evitably spilt into the walls, the density of that remaining was comparable 
with that in the simple mir ror , but it decayed much more smoothly with a 
a 1 /e decay time of 250 to 400 /us. All trace of the rotating flute disappeared, 
and plasma was observed by probes only where the lines of force of the hexa-
pole field cut the walls. 

These experiments show that the plasma contained in a magnetic well 
is much m o r e stable than that contained in a s imple magnetic m i r r o r . 
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The idea of using a beam of light as a plasma probe occurs as soon as 
the need arises to diagnose a discharge without introducing large p e r -
turbations. In an attempt to classify the phenomena involved when an e x -
ternally produced beam of light c rosses a plasma, one has to distinguish 
between absorption, transmission and reflection. 

Let us disregard the absorption which would lead us away from the main 
purpose of this paper. The elementary mechanism underlying the trans-
mission of radiation being that of the scattering of a photon by a free e l ec -
tron, the different aspects of refraction, diffusion and diffraction with which 
transmission manifests itself are characterized by the behaviour of the 
phase cancellation relationship of the scattered photons. In this discussion 
we limit ourselves to the refractivity and this implies that the spatial densi-
ty distribution of plasma - and hence the refractive index - does not undergo 
abrupt variations within distances of many light wave-lengths. 

1. REFRACTIVITY OF PLASMA 

Quite a good deal of work has been done to date on this subject but we 
mention here only those items which are strictly related to our diagnostic 
aim. Considering the plasma as a mixture of electrons, ions and residual 
gas atoms, the refractivity n - 1 of the mixture can be expressed by 

n - 1 = ( n - D a t o m s + ( n - 1)electrons = / K¡Ni, (1.1) 

K¡ being the specific refractivity and Ni the number density of the i-th com-
ponent (atoms in the various excited states, ions, electrons) of the mixture. 
The contribution given by the atoms of the residual gas in various states of 
excitation can be of some importance in the case of low-energy discharge 
or, in any discharge, during the breakdown and the afterglow. 

Both classical and quantum theories yield the well-known formula for 
refractivity 

n - 1 = — Y n i Y - ^ - t , (1.2) m Z_i L uJK 

which holds, provided that ы / ШЖ • Here UIK is the angular frequency of the 
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line arising from the jump between the К and 1 states and fix. is the c o r r e s -
ponding osci l lator strength. This can be calculated by means of quantum 
mechanics, degeneracy being taken into account. In applying the dispersion 
formula the difficulty ar ises of including the transitions to the continuum, 
as well as to the d iscrete energy states. This sometimes turns out to be 
of some importance [1]. 

The population of the energy levels of the atoms depends upon the d i s -
charge: the refract ivity of a discharge in thermal equilibrium was f i rst 
studied by KRAMERS [2] but no information can be given for other cases'. 
Generally one could avoid the difficulty arising from the lack of information 
on the population of the excited levels by simply using a probe light beam of 
much lower frequency than that of the resonance lines. However, owing 
to the very large effects to be expected in a wave-length region where ano-
malous dispersion occurs , it seems reasonable to believe that the study of 
low energy discharges - the so-cal led "gaseous electronics" - could benefit 
f rom this rather neglected field of research [3, 4]. 

TABLE I 

REFRACTIVITIES OF GASES (0°C, 760 torr) 
REFERRED TO CAUCHY'S FORMULA 

A B( cm ! ) 

He 3.48 X Ю - 5 0.08 X 10~
1 4 

Ne 6,66 X 10"
5 

0.16 X 10~
1 4 

A 27. 97 X 10"
5 

1.56 X 1 0
J 4 

Kr 41.89 X 10~
5 

2. 92 X 10~
1 4 

X e 68.23 X 10"
5 

6. 92 X Ю - 1 4 

H 13.58 X 10"
5 

1. 02 X 10"
1 4 

N 29.06 X 10"
5 

2.24 X 1 0
J 4 

Hg 87.8 X 1 0 "
s 

19.8 X 10"
1 4 

If we consider only wave-lengths far enough f rom the resonance lines 
which, for the most usual gases are given in Table I, we can develop Eq. (1. 2) 
in a series of powers of X"1 which, stopped at X"2, gives Cauchy's formula 

n - l = A + ^ - (1.3) 

in terms of which refractivities (or polarizabilities) of most gases are tab-
ulated [5]. In so doing one d isregards the contribution of excited states. 
This is still a rather questionable point because, whilst on the one hand p o -
larizabil ity is proportional to the fourth power of the mean radius of the 
outermost electron [6], on the other, the number density of excited atoms 
remains rather low because of the rather low temperature or because of the 
decrease of neutral atoms available in the case of hot plasmas. 
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A worse situation occurs in considering the ion refractivity. In this 
case it seems hard to admit a low contribution of excited ions, at least in the 
vicinity of their resonance levels. In this case Cauchy's formula is meaning-
less . Methods are known for estimating the order of magnitude of ion 
polarizabilities [7, 8]. Generally speaking it turns out that the refractivity 
of ions can be considered - apart from resonances - to be the same as that 
of the corresponding atoms, but of course a better knowledge of this field 
would be helpful. These considerations naturally do not apply to proton and 
deuteron gases, whose refractivity can be obtained by using the formula for 
an electron gas. 

Let us now turn to the electron gas refractivity. A very simple 
approach to its evaluation is obtained [7] by dropping out the frequencies 
of bound states юцс : 

2 ?re2 Ne n - l = 1 , 1 . 4 m 

n - 1 = - 4 . 4 6 X 10"1 4NeX2 , ( I - 4 ' ) 

(Ne in cm"3 , X in cm). 

For protons one has: 

n - 1 = - 2 . 4 2 X 10"17 NeA2 , (1.4'-') 

and for deuterons 

n - 1 =1.21X 10" i 7 N e A 2 . (1. 4m ) 

These formulae hold well only for a gas of free charged particles for f r e -
quencies at which they can be considered independent. 

In the plasma approach to the problem different assumptions can be 
made and, accordingly, one finds in the literature a large number of d i s -
persion laws [9, 10, 11], the one quoted in Eq. (1 .4) being the limiting case. 
We refer here to a rather general one [12], which reads 

2 
„ 2 _ 1 ~Цр Ц Ц ,, 

It takes into account the presence of a magnetic field parallel to the light 
path by means of the Larmor frequency wL and the electron collision f r e -
quency v . 

The ± signs take into account the two circularly polarized waves which 
propagate with different phase velocities (Faraday effect). 

)9 
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This formula coincides with that of BUKKHARDT and SCHLÜTER [13] 
if one disregards the effect of the magnetic-field: 

n z - i = - 4 r - Ч - . u - 6 ) 1-11//Ш 

The collision frequency v can be evaluated by means of 

_ N e_l бтг3 Ni e4 
V Зч/ïhu (2тгкТ)^ 

and the result is that in the optical region, even with the largest range of 
parameters, collisions cannot have any practical effect on the refractivity. 

Therefore Eq. (1. 6) reduces to the well-known expression 

n = (1.7) 

and, to a first approximation 

1 uS 2тге2 N e t 1 -"e 11 et \ n - 1 . - - - f 2 ' (1.8) 2 u2 m 

(cf. Eq. (1. 4), since 

/4?rNee2 V 

Summarizing, the refractivity of a plasma is the result of the following 
contributions: electron gas; ion gas; atoms, excited or not; molecules; 
collisions; and the magnetic field. 

Thus, in planning an experiment based on refractivity, a good rule is 
to evaluate the relative importance of these contributions [14]. Nothing can 
be said a priori for a general discharge, whereas in a high temperature 
plasma in hydrogen or deuterium the electron gas contribution predominates. 

2. REVIEW OF METHODS AND TECHNIQUES IN REFRACTIVITY 
DIAGNOSIS 

Let us consider a plasma contained in a vessel of suitable shape in order 
to allow electromagnetic waves, at least in the UV - IR wave-length interval, 
to cross the plasma without being deflected by irregularities in the trans-
parent walls. The problem is that of observing what happens to the rays of 
the beam of light sent through the plasma and predicting what can be inferred 
from these observations about the plasma itself. Here as a first approach 
the light illuminating the density inhomogeneities of the plasma is taken to 
consist of rays whose course is determined by Fermât 's law. Lèt us now 
consider an individual light ray which in the absence of any disturbance would 

19' 
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s 

Fig . i 

Pattern o f a l i gh t ray through a dens i ty i n h o m o g e n e i t y 

have reached the registering screen S at the point Q frotó the direction в 
at the time t, but which actually reaches it at a point Q* from the direction 
в* and at time t* (Fig. 1). The insertion of appropriate optical equipment 
into the light path will furnish on S a record of one of the following: 

The phase lag . т = t* - t; 
The deflection e = 0* - в; 
The displacement d = Q* - Q; 

or a function of two or all of them. The task of the experiment is: 
(a) To reconstruct from records т, e, d; 
(b) To then deduce the values of n(x, y, z); and 
(c) To calculate local values of the density from the law which relates 

the density and the refractivity. 
An interferometer is a device which is able to record time lags, a 

schlieren is that which records deflections, and a shadowgraph records 
displacements. 

Since a change in travelling time means a change in refractive index 
and hence, by (1. 3) and (1.4) a change in atom or electron density, an inter-
ferometric measurement gives the value of the mean density of particles 
along the light path. As may be anticipated, the schlieren method depends 
upon the first derivative while the shadow method depends upon the second 
derivative of the refractive index. 

Although these methods apply in principle to any density distribution -
a review of the method for evaluating the results being given, for instance, 
in [15, 16, 17, 18] - we here refer only to a two-dimensional n(x, y) and 
consider a light beam travelling in the z-direction. 

In the literature the subject of how a beam of light is deflected in the 
presence of a spatial change of the refractive index has been extensively dis -
cussed. We quote here the book by MASCART [19], part of which is devoted 
to the study of light patterns in the atmosphere, the article by WOLTER [20] 
and the book by TATARSKY [21]. 

The following considerations are based on the hypothesis that the total 
amount of deflection suffered by a light beam is small. We only need to 
remember that the trajectory of a thin beam of light which, in a given point 
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of the propagating medium (plasma) makes an angle /3 with the direction 
of the density gradient, has a radius of curvature R given by 

1 __ sin ¡3 
R n Vn. ( 2 . 1 ) 

When a ray enters the discharge tube in a region where there is a constant 
gradient perpendicular to the ray, it suffers a deviation along an arc of a 
c i rc le . Thus the trajectory remains roughly straight since the bending is 
an effect of the second order caused by the density distribution. In the 
mean-time the velocity of propagation of the light ray changes as it enters 
the vessel and the same occurs for the related phase т as compared to that 
of a ray travelling in vacuo. This gives an instructive explanation of the 
difference in behaviour between the interferometer and schlieren methods; 
in both cases the rays are bent but, whilst in the schlieren this is a required 
feature, in the case of the interferometer this is something which is only 
a nuisance, 

The shadowgraph shows the difference in displacement suffered by one 
ray with respect to that of an adjacent one, so that the net record will be 
zero if the displacements are equal, that is if the transverse refractive index 
gradient (and consequently the transverse density gradient) is constant (Fig. 2). 

S P A C E C O - O R D I N A T E S 

Fig. 2 

Pattern o f a l ight ray through a constant transverse density gradient. 

A characteristic feature of the shadowgraph method is that a ripple in 
the space density distribution focuses a set of rays (Fig.3) so that on a screen 
interposed for instance at A, the presence of a ripple is marked by a bright 
spot. With reference to the applications we quote here the measurement of 
the thickness of shock waves and the mapping of turbulent regions. 

It is clear that generally it is preferable to measure a quantity directly 
instead of obtaining it by integration, and thus schlieren and shadow methods 
are to be supplemented by the interferometric method. But each of these 
methods has its own field of application where it is particularly suitable: 
interferometry in cases where the refractivity is slowly varying in space, 
the schlieren when the value of gradients is needed, and the shadowgraph 
when rapid (even if small) changes in refractivity occur (as ripples) and 
are of interest. 
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SPACE CO-ORDINATES 

F i g . 3 

T h e w a y the shadowgraph m e t h o d works 

3. SOME LIMITS TO THE METHODS 

Each of the methods already mentioned requires an appropriate optical 
arrangement which will be examined in the following paragraphs; these ar -
rangements have, however, some features in common which can be described 
immediately. First of all, the exploring rays which are sent through the 
discharge chamber are generally parallel. This requires a light source 
(extended or not) at the focus of a lens or mirror . The receiver , for in-
stance, a photographic plate, is intended to take a picture of the c ross -
section of the tube. Therefore, on the side of the receiver there is an ob -
jective which focuses the mid-plane of the discharge orparto f i t , for example, 
a diametrical slab, after the rays have passed the particular device (beam 
splitters, knife edges, rulings and so on) which distinguish the method. In 
the case of the shadowgraph the objective is missing and the representation 
is left to the parallel rays which now must emerge f rom a point source . 
Let us consider the following optical arrangement in order to show some 
characteristic limits of the methods. It does not detect any particular effect, 
but it is the common part of the devices we are going to study (Fig. 4). 

A beam of parallel light is sent by the extended source through the d is -
charge tube by means of the lens L i . The objective L 2 images the m i d -
plane of the discharge on the photographic plate w . Owing to the finite size 
of the source the rays entering the discharge tube form, at each point, a 
bundle of rays with an angle Г, given by 

Clearly on the geometrical optics approximation all the information belong-
ing to the cone a b e d is recorded at the point P*, the image of P. Two image 
points Pj* and Pf record completely different information provided that they 
are images produced by two non-overlapping cones. As a consequence of 
this, along the diameter of the discharge tube only D / ( T L / 2 ) pieces of in -
formation are completely independent of each other. 

A slightly more careful evaluation [22] leads to the conclusion that as a 
first approximation the above quantity might be increased to D / ( T L / 6 ) . 

Г - tg Г = — . 
11 

(3.1) 
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L L К T n 

S 

p q 

F i g . 4 

O p t i c a l a r r a n g e m e n t 

But in principle we cannot rule out the possibility that some localized 
plasma disturbances inside the cone (shock wave, turbulence) produce some 
diffracted light. Let us therefore suppose that an inhomogeneity of size d 
is present along the pattern of the rays; the order of magnitude of the d i f -
fraction angle is Г ' =X/d. The cone containing "mixed" information is 
Г1' = Г ' +Г and in the worst situation, when the disturbance is near the sur-
face where the rays enter into the tube, the size of the base of the cone of 
diffracted light on the other surface of the tube is LX/d . If we want to have 
a record of the inhomogeneity d we need а Г" such that 

As a consequence of the above discussion we find that one could make use 
of two different criteria for designing the optical equipment according to 
whether one wants to collect information on very small regions (diffraction 
limited) or whether one is satisfied with the geometrical optics approxi -
mation. In the first case Г is established by the formula in Eq. (3. 2). This 
has» to be taken into consideration in deciding the parameters of the optical 
device, where one chooses that set of components which achieves the highest 
value of some "quality" of the instrument, for example the resolution or the 
"speed" (which is proportional to the light flux per unit area of the receiver). 
It is immediately seen that an increase of Г diminishes the spatial resolution 
but increases the speed. The latter could also be improved independently 
by diminishing the size of the image, but at a certain point one hits the finite 
resolving power of the receiver itself (e. g. about 20 lines/mm on a photographic 
plate). Generally one comes to some compromise between the conflicting 
requirements of the instrument. In the field of time-resolved plasma diag-
nostics a very strong requirement is that of the amount of light needed in 
order to obtain pictures with a very short exposure time. In order to obtain 
useful photographs with a photographic density of about one the necessary 
illumination flux generally quoted [23] is 0. 2 erg /cm 2 of blue light. It is 
rather easy to supply such an amount of light either in steady conditions or 

r " L LX 
6 d 

and thus 

r = 5 ( ¿ r . (3.2) 
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in a pulsed flash. In fact, even in the worst of these cases, when the r e -
quired duration of the flash is of the order of 10"7 s and the dimensions are 
very small (e .g . a circular hole of 0. 5-mm diam. ) many methods have suc-
cessfully developed. But a very different problem occurs if the requisite 
amount of light has to be at longer wave-lengths. Here one faces at the same 
time both the problem of the source and of the receiver; however a set of 
methods, though not so useful as before, can be used [24, 25, 26, 27, 28]. The 
situation worsens if one requires a narrow wave-length interval for inter-
ferometric purposes, owing to the condition 

n Д X - X/2, (3.3) 

which gives the highest number n of fringes which can be produced in an 
interval ДХ around the central wave-length X. In this case, which of course 
can still be solved within certain limits, one is forced to make the most 
sparing use of the light at one's disposal. Let us evaluate the orders of 
magnitude of the parameters involved with the problem of the light source. 

Let us call L the sensitivity of a photographic plate, defining 1/E as 
the luminous energy per cm2 necessary to get a photographic density of one, 
and let E be the illumination of the plate, that is the light energy per second 
per unit area reaching the plate. 

If R takes into account the reciprocity failure of the plate and т is the 
exposure time, then 

E R T > i ( 3 . 4 ) 

is the required condition in order to get a photographic density which is not 
less than unity. By definition 

da' 

where the flux ф is given by Lambert's law: 

7Г ~ ,9 . oU В 6 , ¿ sin • 

Here a and a' are corresponding surfaces in the image and object planes, 
that is at it and T respectively, В is the brightness of the source, and 6' is 
the size of the image of the source at T (referring to Fig. 4). Since 

с i t f 2 j cï j. 2 u 

6'= 6 — and a = irí2tg ¿ —, 

calling G the magnification (G = q/P) , we get, for small values of u>: 
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By means of Eqs. (3.4) and (3. 5) we get 

(3.6) 

where the ratio Г / q has to be decided in order to suit the requirements of 
the experiment. Let nr be the number of resolved lines per centimetre of 
the photographic plate and let us assume that for each piece of information 
we assign К lines on the plate, that is , the point P* is represented by К 
l ines. 

The resolving power of the optical arrangement is 

N " 4 ^ (3.7) 

at the discharge tube and therefore GN"1 = G r L / 6 at the plate. 
Matching the two resolving powers gives 

G . G T L . K . 

N " 6 " n , ' ( 3 > 8 ) 

Making use of this, Eq. (3. 6) becomes 

9 N4L2K2 1 (3.9) 

If one wants to choose a value of Г satisfying Eq. (3. 2), since by Eqs. (3. 2), 
(3. 7) and (3. 9) one has 

( з л о ) 

the following condition results: 

which, being related by the above discussion to the resolution limit given 
by the wave optics, is much harder to fulfil than Eq. (3. 9). Equations (3. 9) 
and (3.11) are equations to be satisfied between the parameters of the light 
source and the photographic plate (B, n r , £ , R) in order to record within 
an exposure time т a picture with a photographic density of unity. Asimilar 
relationship can be written for photocathode devices. The survey of light 
sources and rece ivers in terms of these constants is a matter for more 
specialized literature; some references will be briefly discussed here. Dis-
regarding stationary sources, photographic flashes and related commercially 
available sources, the following rough classification can be given for very 
fast, high brightness sources: 

(a) Free sparks in air or in xenon; 
(b) Guided discharges (Wood's magnesium slabs, capillary discharges); 
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(c) End-on viewed discharge channels; and 
(d) Exploding wires. 
All of these make use of high voltage, fairly low capacitance condensers; 

the duration of spark light and its brightness depends upon the inductance of 
the circuit and special care must be taken to reduce this. Probably the 
minimum time of duration of such light sources is due to the decay time of 
the excitation. The most advanced spark light sources are generally 
obtained by matching the impedance of the source to the spark gap, s ome-
times a low impedance transmission line being used. Also barium titanate 
transmission lines have been employed with considerable advantage. 

When referring to data on the brightness of their sources most authors 
use the photometric unit system and since this is related to the emitted 
spectrum it is often difficult to obtain a useful figure. Fortunately one of 
the most interesting light sources which simply makes use of an extremely 
fast condenser and of a very low inductance circuit, due to FISHER [29], is 
calibrated in MKS units. He quotes brightness of B = 1 0 4 W / c m 2 sr at 
A. = 5500 Â during a time T = 2X 10"8 s. 

Very different from the above mentioned sources, the ruby laser light 
source constitues the most singular light source ever known. Its brightness 
strongly depends upon exactly how it is excited, but it is yet too soon to be 
in a position to predict ultimate values or limits to its performance. Owing 
to the exceedingly small angular spread (less than 20" ) its beam can be 
very precisely focused to give a point source. The brightness can be estim-
ated by the formula 

В = У ^ р , (3.12) 

where the symbols are explained in Fig. 5 and P is the power in watts. In 
the case of a coherent light source 5 is of the order of the Airy disc . 

= N = 4 = = 

RUBY T V 

Fig. 5 
Quantities appearing in the evaluation of the ruby laser performances 

Using the usual figures, for a medium-powered monopulsed ruby laser 
the brightness given by Eq. (3.12) ranges f rom 107 to 1011 W / c m 2 s r . 

We wish now to make a comparison between F ischer ' s source and a 
mid-powered ruby laser light source from the point of view of Eq. (3.11), 
assuming the following typical case: 
R = 1 

erg"1 cm 2 (for instance polaroid 3000 ASA) 

nr ~300 l ines / cm 
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10 

1. 7X 104 W / c m 2 s r (Fisher 's source X ^ 5500A) 

B ~ 109 W / c m 2 s r (ruby laser Хси 6940А) 

T ~ 2 X 1 0 " 8 s (Fisher ' s source) 

T ~ 5 X 1 0 " 8 S (ruby laser) 

We get, f o r the right hand side of (3,11) 

/ б\ 4 1 К2 1 c l . 2 X 1 0 1 7 s"1 cm"2 (Fisher 's source) 

\5y 9jt r X2 l 3 X 1 0 l 6 s - i c m - 2 (ruby l a s e r ) , 

and f o r the left side of (3 .11) : 

С5X I0 1 5 s _ 1 cm" 2 (Fisher 's source) 
B R E n , 4 

"•ЗХ 1020 s"1 cm" 2 (ruby laser) . 

We see that a ruby laser, even of a modest performance, is able to give 
pictures of the best resolution, i . e . up to the limit set by wave optics, 
whereas one of the best known conventional light sources cannot reach this 
goal. About the colour composition of the light source, taking into account 
Eqs . (1 .3 ) and (1.4) one realizes that the refractivity of atoms is larger in 
the violet region, whereas electrons can be better measured by using 
red-infrared light and that, in order to be able to distinguish between e l e c -
trons and atoms, both colours are necessary, so that a pair of equations of 
the kind (1.1) can be written, one for each colour. For each colour, mono-
chromaticity is not strictly needed. Also f rom this point of view the ruby 
laser turns out to be the best suited, owing to the well-known characteristic 
(due to the high power level) of being able to excite the second harmonic 
wave-length, X = 3471 Â, when pulsing a suitable crystal ( e . g . ADP) [30,31, 
32, 33]. 

In so doing, that is , making use of the fundamental and of the second 
harmonic at the same time, one gets both colours needed for analysing a 
plasma in the presence of neutral gas. On the receiver side one can simply 
make usé of the fact that the two radiations, by the mechanism of generation, 
are polarized at 90° . 

By using Eqs. (1 .4 ' ) and (1. 3) in connection with the values given from 
Table I, for the sensitivity, evaluated as 

a t 

one obtains the following values: 
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For electrons 

CTe =2.15X 10'22 

at X= 6943 Â and four times less at X = 3471 Â. 

For atoms 

стн2 ~ 4 .5X 10"24 

independent of the wave-length all along the visible spectrum [ 22 ]. 

Thus Се. _ Г 48 (on the red) 
fa 1.12 (in the violet). 

This means that refractivity is always favourable to the electron density 
measurements such that they can be measured even in discharges where 
very low ionization is present. 

4. INTERFEROMETRIC MEASUREMENTS 

The interferometric method is a very old established technique for meas-
uring densities of any transparent material and I report here only those 
items which are more strictly related to plasma. 

The common idea underlying all interferometric work is that of produc-
ing fringes by interference of two coherent beams of light. 

The coherency is obtained by splitting the beam of light (e .g . by means 
of a semi-reflecting mirror) or by dividing the wave front issuing from a 
point source of light by using a mirror or a prism. Once these coherent 
beams of light are obtained they can have quite different histories. For 
example, one can- travel in the air the other one being inside the discharge 
tube. If not exactly parallel, these two beams cross somewhere, in a real 
or virtual position, and interference fringes appear there. 

Assuming, for simplicity, that indices of refraction ni and пг are con-
stant over each path, whose geometrical lengths are l j and 12 respectively, 
the places where the maxima of fringes occur satisfy the condition 

n 1 l 1 - n 2 l 2 = N X , (4.1) 

whereas for the minima of the fringes the above difference must be an odd 
multiple: (2N + 1) X/2. A change in refractivity of the medium of one beam 
carries a change in the place where Eq. (4.1) is satisfied, that is a shift in 
the fringe system in one or the other direction depending on whether the 
refractivity increases or decreases. The fringe shift expressed in number 
of fringes is proportional to the variation in the optical path 

As LA (n -1 ) 
S = T = x ' (4.2) 
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where L is the thickness of the plasma crossed by the light and Д(п -1 ) is 
the variation in refractivity. In a discharge tube the change of refractivity 
due to the introduction of the plasma is 

Д (n - 1) = (n - 1) Plasma " ( n - l ) G a s . (4.3) 

The fringes are said to be localized at the place where the two beams 
intersect. The usual way of using the interferometer with a plasma is to 
let one beam travel along the axis of the discharge tube, the other one cros -
sing the f ormer virtually at the mid plane of the tube itself. In this case 
there is a correspondence between the points of the mid plane P of the dis -
charge tube and the fringes. To each point on P there corresponds a par -
ticular point on one fringe. A displacement of the fringe following a change 
in refractivity changes the correspondence. 

Permanent correspondence between the points of P and the plane at which 
the fringes are formed is easily established by forming the image of a wire 
grating on the plane P. Thus on the photographic plate which records the 
fringes the pattern of the wire grating is superimposed. The evaluation of 
densities (fringe shifts) is carried out for each point of the plane P simply 
by measuring the change in phase between the two fringe patterns taken be -
fore and during the discharge at the relevant points. This implies that the 
photometric shape of the fringe must be accurately known, but this require-
ment is very difficult to meet for various practical reasons. One should 
perhaps be satisfied with a measurement of the fringe shift made at one point 
per fringe. The most sensitive points on a fringe are of course those where 
the change in photographic density is the fastest - in practice they are the 
only useful points of a fringe. Therefore we see that each fringe can give 
only the value of density regarding two points in the plane P. Thus the 
number of the measured points in the mid plane of the discharge tube in the 
direction of the fringe shift is twice the number of fringes; in the direction 
perpendicular to this, the spatial resolution is that allowed by the optical 
device. Unfortunately this is not useful for recording by means of a 
rotating mir ror camera. 

It is not the purpose of this article to review all the instruments. We 
limit ourselves here to some features of those which have been most used. 
The Jamin interferometer is relatively easy to use but suffers f rom two 
great drawbacks: the fringe localization is at infinity and the two beams 
travel very close to one another. In the Michelson interferometer, because 
of the double transit, the localization occurs at one end of the discharge tube 
and the sensitivity is twice that of a single transit interferometer. The 
Mach-Zehnder interferometer is in most use today owing to its very peculiar 
characteristic of being able to give fringes which can be localized in any 
plane along the discharge tube. 

A very extensive literature has been written on the Mach-Zehnder, its 
history, properties and applications [34, 35, 36, 37, 38, 39, 40, 41, 42, 14]. 

As far as we are concerned here the effect of the instrument can be 
described as that of producing on a plane M, considered as the locus 
of an infinite number of light sources, an image M1 slightly tilted with respect 
to the former. Each pair of light sources, like points P and P1, represent 
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acoherentpair of sources (see Fig.6). Q is aplane where interference fringes 
result. In the absence of the discharge tube, fringes of order К and wave-length Л 
are related to the ambient refractive index no and the geometric quantities 
e and r by the relation: 

KX = n 0 e r . (4.4) 

Disregarding the possibility of having a three-dimensional distribution 
of refractivity as requiring too long a mathematical treatment to be presented 
here, we confine our discussion to the problems arising from a two-
dimensional density distribution. In this case the light is sent along the third 
axis. 

A one-to-one correspondence between the geometrical space inside the 
tube and the plane of the fringes being assumed, variation in density in a 
given region of the discharge tube is noticed by displacement of the corres -
ponding fringes. Considering the interferometric procedure, let us assume 
for a moment that the variation in density is constant across the discharge 
tube. The condition of interference, Eq. (4 .4 ) , in the case where a tube 1 
in length containing a gas of refractive index ni is placed in the path P ' 
P" , is ' 

l(nQ - n j ) - er n 0 =KX. 

Therefore r = ' K X . (4.5) en0 

Calling nf the refractive index of the subsequently formed plasma and r* 
the corresponding distance according to Eq. (4. 5), we find the fringe dis-
placement due to the plasma 

Дг = г * - г = - ~ ( n i - n f ) . (4.6) 

Going f rom the kth to the (k + l ) t h fringe one travels the thickness of one 
fringe and f rom Eq. (4. 5) this turns out to be 

(4.7) 
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From Eqs(4. 6) and (4. 7) we obtain in the usual formula (cf. 4. 2) 

M n i z n Î K A r . ( 4 8 ) 
Л о 

But if we now suppose that the density (or refractive index) varies across 
the tube and repeat the above calculation, supposing that 

п*(г + Дг) =nj(r) + ^ f Дг (4.9) 

but still with the hypothesis of negligible bending of the rays, we obtain for 
the fringe shift 

A r ^ J ' - f ] (4.10) l(dn*/dr) + en0 

and for the fringe thickness 

5 * = en0 +l(dn*/dr)r* ' (4.11) 

From Eq. (4. 10) and for Eq. (4. 11) we thus obtain 

_ A r l ( n i - n f ) eno +l (dnf /dr)r* 
S ~ ô * ~ X en 0 +l (dn* /dr )r • 

This enables us to use the same' method of measuring n^ -n^ , even in the 
presence of constant gradients, provided that the fringe thickness is that 
of the fringes of the plasma interferogram and the density (and hence refrac-
tivity) gradient is unchanged in the space r* -r r. 

From Eqs. (4.7) and (4.11) one obtains a method for measuring gradients, 
which can be used as a check of the results: 

1 

But if the gradient produces a large variation across the field of one fringe 
so that one can no longer grant the hypothesis underlying Eq. (4.12) the use-
fulness of interferometry is reduced. In order to discuss this point let us 
distinguish between extended and point light sources. In the latter case the 
following facts occur: 

(a) A bent ray travels across regions of different refractivity, this 
giving rise to an additional phase change whose value can only be estimated 
on the basis of some assumption. 

IGENBERG [14] has evaluated this phase shift A<p on a first but largely 
valid approximation, using the hypothesis of a constant value of density (or 
refractivity) gradient. The result is 

Л d n V l 3 1 .. , .. 
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(b) Still as a consequence of the bending, the magnification of the image 
of the cross-section of the tube is no longer constant across the field itself 
as shown in Fig. 7. Let us now go to the extended source. Using a 
point source the fringes of monochromatic light can be observed inside all 
the region where the beams intersect; so the focal depth of the fringe images 
is as long as this region. 

Displacement of the point source across the focal plane of the entering 
lens produces rotation of the planes of the fringes. Thus each point of an 
extended source of diameter d in the focus f of the collimator gives a set of 
fringes whose plane is rotated with respect to that belonging to the on-axis 
light point. This rotation entails a maximum value of e' = d / f . As a conse-
quence of this, the focal depth is reduced; it can be seen that now the focal 
depth is 

1. 22X _1 .22Xf 
е е 1 ed (4.15) 

с being the usual angle between the two beams. 
The bending of rays adds a rotation a to € ' and consequently T 

decreases to 

T - ^ v (4.16) 

The evaluation of a can be made by integrating the equations of the trajectory 
of a light ray on the basis of some assumption about the density distribution 
(e.g. constant gradient). 

But this is not the only drawback which occurs in the presence of 
gradients. A beam of light issuing f rom an extended light source makes 
cones with their apex at P (referring to Fig . 4) inside the discharge tube. 
Rays belonging to a given cone can experience different patterns and d i f -
ferent phase shifts because of the possible different gradients along their 
trajectories . But since the c ross - sec t ion T is focused on the recording 
plate, all rays belonging to the cone contribute to the same image point. 

But the superposition of different phases gives as the result a blurring 
or diminution of contrast of fringes and may even cause their disappearance. 
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Summarizing, we notice that the difficulties arising from the presence 
of gradients can be reduced by the use of a point source (e.g. from a laser) 
but of course one cannot go beyond the limit given by Eq. (4.14). 

Turning to the practical use of the interferometer, we now deal with its 
potentiality, which can be evaluated in terms of its sensitivity and the amount 
of information it is able to measure. Let us first consider the measurement 
of uniform density. The amount of information which can be measured po -
tentially is given by the inverse of the least fringe shift which can be d e -
tected or, supposing that the fringe is not altered in shape during the shift, 
the number of parts in which a fringe can be meaningfully divided by the 
receiver (e .g . photographic plate plus microdensitometer). If the thickness 
6* of the fringe can be analysed by steps of size Д1 the number of pieces of 
information contained in one fringe shift is 5*/ Д1 and the sensitivity is 

s min=-§ (4.17) 

whence, because of Eqs. (1. 4') and (4.2) 

s = -4 .46X 10"14NeXl, (4.18) 

we can evaluate (Nel)min . 

Where the density is not uniform and ^ f r i n g e s are needed, the total 
information is ^ (б* /Д1) or Eq. ( 4 . s m i n . Now Д1/6* depends upon the 
manner in which the receiving system is used; two typical cases can be 
proposed according to whether the light for recording the fringes is energy 
(or time) limited or not. 

If d is the dimension of the used part of the photographic plate, 

d (4.19) 

thus 

d Jf 
Д1 (4. 20) 

In the first of the two cases mentioned above d is limited by the energy 
and in principle could be estimated on the basis of the condition in Eq. (3. 9). 
But let us assume for the sake of brevity that d^ 5 cm, Al^ 1/200 cm as a 
typical case. By means of Eq. (4.18), Eq. (4. 20) becomes 

1 .Ж 
5 X 2ÔÔ = 4 . 4 6 X 10-14 X ( N e l ) m l n ( 4 , 2 1 ) 

that is, at X = 7000 Â the relationship for the minimum perceptible plasma 
density is 

(N.l)m i n =3 .2NX 1014 . (4.22) 
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In doing this we have assumed, as is true in practice, that the limitation in 
the energy of the light source consequently limits the size of the plate. 

In the other case, the size of the fringes can be made larger and their 
evaluation is only limited by the microphotometer, the number of fringes 
being irrelevant. Therefore in Eq. (4.17) one could introduce for 6*/Д1 a 
value which, for a high-quality microphotometer, is of the order of 104 ob -
taining, at X = 7000 Â 

( N e « min = 3 . 2 X 1 0 1 3 . 

Apart from the requirements on the optical devices, it seems to be very 
doubtful if one could reach such high sensitivity because, with conventional 
sources, the necessary amount of light can only be delivered in fairly long 
exposure times and even in steady plasma the fluctuations in density could 
diminish the contrast of the fringes. 

Practical values of Д1/6* quoted in the literature range between 1/10 
and l / lOO and only à very accurate measurement obtained by KENNEDY 
and cited in [43] reaches 1/1000. Satisfactory measurements of density 
distributions within low density shock wave fronts up to 1 / 500 fringe have 
been obtained by very sophisticated methods [44, 45]. 

A few words and references on other kinds of interferometers that may be 
useful in plasma physics. The diffraction grating interferometer based on 
the Ronchi method of optical testing is capable of giving fringes whose d is -
placements are proportional either to the density [46] or to the density 
gradient [47], depending upon the set-up used. 

In plasma research the region surrounding the discharge tube is often 
occupied by coils, vacuum facilities, etc. and cannot therefore be used for 
the reference beam needed in interferometry. Clearly one possibility is that 
of using the so-cal led "ser ies interferometer", the first application of 
which was in 1950 by Saunders and is mentioned in [48, 49] in more general 
papers by POST. It consists of three partial mirrors arranged one behind 
the other with approximately equal optical separation. Apart from the ad-
vantage of exhibiting a very simple mechanical mount, because of its 
multiple-beam character, it is able to produce sharpened fringes (roughly 
6-shaped) without any stringent restriction on mirror separation and mono-
chromatic purity. This allows observations to be made in the 1/1000 fringe 
range [50]. A questionable point could be that of having a strong localization 
of its fringes. If the light source is a laser, because of its very high c o -
herence length, one mirror could be removed [51]. 

5. THE SCHLIEREN METHOD 

The word schliere is often used to indicate inhomogeneous regions in 
optical glasses which appear as streaks. Here, as in many other cases of 
a similar nature, the underlying phenomenon involves small changes of the 
refractive index of the transparent material, so that direct visual observation 
of the refractive index is difficult. Schlieren is the name given to optical 
methods which are based on the refractive index change (or gradient) and are 
able to show such inhomogeneities. Extensive use is being made of this 

20 
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method in its various forms [52, 20], but here it is only necessary to recall 
their general outlines, emphasis being placed on their use for plasma 
problems. 

Regarding a discharge tube, whose geometrical disposition is shown in 
Fig. 8, it can be shown easily that the deflection suffered by the beam of 
light travelling through a refractivity gradient Эп/Эх, Эп/Эу is, for small 
angles, 

< n0J 
9n 
Эх dz; 

' n0 J Эу 
dz, (5.1) 

no being the ambient refractivity. 
The schlieren techniques are able to detect these small angles. To 

describe these methods we choose Topler 's method, which translates this 
deviation into a variation of luminous intensity. The set-up is given inFig.8. 

-ЛТ \ 
•t 

Fig. 8 

Optical arrangement and quantities of a Toepler's schlieren 

The light source is an extended one, but still of small size - its d i -
mensions are estimated later in this paper. The discharge tube is crossed 
by a set of parallel beams, as in Fig. 4. The image of the source is o b -
tained at K, L j and L2 being placed at their focal distances from S and К 
respectively. A third lens forms the image of the test section T on 
the screen ж. The same result can be obtained by using two concave 
mirrors in the places of the first two lenses. If now part of the image of 
the light source is intercepted by a partial screen (knife edge) placed at K, 
the illumination of the screen diminishes, each pencil of light being subjected 
to the action of thè knife edge to the same extent; each point on the screen 
is darkened to the same degree. Let us now suppose that the knife edge 
is placed along the x direction. When optical disturbance is present in the 
test section at a given luminous pencil P, the latter suffers a deviation given 
by e x , e y. At the knife êdge the deviation of this bundle of rays is given by 

ДЬ = ex f; Д a = e y f. (5.2) 

The deviation ДЬ displaces the image of the source along the knife edge and 
thus does not produce any change in the amount of light transmitted past the 
knife edge. The contrary happens for the Да deviation, which produces on 
the image point of P on the screen, a change in intensity which is pro-

19' 
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portional to ey f . In this connection two parameters of the method are of 
interest - the sensitivity and the range. 

In order to get the first we must have an expression for the illumination 
E of the screen. In the same way as in section 3, but making use of a 
rectangular-shaped light source, we have the following expression: 

, (f + r ) 2 a b c o s 2 p / 2 
t 2 f ' E - В ' ' Г Г (5.3) 

where В is the brightness of the light source and a and b are the dimensions 
of the part of the image formed by rays which pass the plane of the knife. 
The other quantities are shown in Fig .4 . This expression is derived from 
the definition of illumination E =d<^/dcr. Lambert's law ф= TrBabsin2 w/2, 
the magnification ст'/ст = [t/(f + r)]2 and the geometrical relation a= -î'2tg2u/2. 
For small angles and with Г « f we have: 

E = (5.4) 

The optical disturbance at P changes the illumination of its image by 

Д Е = В ^ - Л а (5.5) 

with Aa given by (5. 2). 
Thus for the relative sensitivity ДЕ/Е the following relationship holds: 

This gives the constant to be expected between background intensity of image 
of non-perturbed points and intensity of perturbed points. 

One could also define a sensitivity per unit deflection: 

8 я Л № Ш Л . (5.7) 
d €y a 

With reference to the range, let us suppose, as is usually the case, that the 
light source is imaged half on the knife and half on the free part. Then the 
possible range of displacement is 2a and the corresponding angle € is 

(5.8) 

As a consequence the sensitivity, after establishing a range that is the size 
of the source, turns out to be independent of the properties of the optical 
system, and the product of sensitivity and range is a constant: 

S ? = 2. (5.9) 
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This description based on the geometrical optics of the Toepler schlieren 
arrangement is seen to be not completely valid when one considers the limi-
tations due to wave optics. The first difference is that the useful part of 
the optical device is limited in extent, since the image of the source on the 
knife is altered by the diffraction with an indétermination of the order 
of Xf/D, D being the inner diameter of the discharge tube. This may be 
expressed in terms of a spurious effect of deviation of magnitude 

e u = £ , (5.10) 

so that 

A*=e u f . (5.11) 

This is present even in the absence of perturbations and adds a blurring 
halo of size 

Д* a * = y - (5.12) 

to the contours of the image of the light source. 
The same occurs if, instead of being limited by the finite size of the 

tube the plane wave is limited to a size D* by some variation in refractivity. 
Consequently, if the highest sensitivity is to be reached one cannot go to 
sizes of a smaller than a*. Therefore the minimum observable deviation 
is, by Eq. (5. 6) 

and depends on the spatial resolution (through D*) and the minimum variation 
of the illumination resolvable (ДЕ/Е) т щ . Indicating N =D/D* the spatial 
resolution, we obtain from Eqs. (5.10) and (5. 13) 

e m i n = i e u N r , , (5.14) 

where r} = (AE/E)mjn is a characteristic feature of the receiver (photographic 
plate, image converter used as shutter or intensifier or both). It is a meas-
ure of the smallest percentage of brightness which can be perceived by the 
receiving device and is generally a function of the brightness itself and thus 
of the quality of the source. 

Now e mm can be written in terms of the minimum resolvable plasma 
gradient. Supposing that the plasma density is uniform in the z-direction we 
get from Eq. (5.1) 

e v = — l V n , (5.15) 
У n0 
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and from Eq. (1.4 ' ) 

ev = - 4 . 4 6 X 10'14X2 1 VN (5.16) y c 

with the usual units. 
Thus the minimum resolvable gradient of electron ( = plasma) density 

is, f rom Eqs. (5.14) and (5. 16) 

VN g u N r l . (S n ) VJNe 2X4 .46X 10-14 x2 1 

It might be worth while pointing out that this result is an aspect of the un-
certainty principle for optics which is contained in Eq. (5.10). 

Amuch better method for examining the theory of the schlieren effect can 
be followed by using Abbe's procedure for the theory of images. 

This has been done by Zernike and one of the results was the phase con-
trast method which can be thought as an improvement of the usual schlieren 
method. The starting point lies in the statement that the distribution of the light 
just leaving the discharge tube and that at the plane of the knife edge are complex 
Fourier transforms of each other. The effects of the knife edge, or which-
ever screening device is employed, or of a phase plate in the case of the 
phase contrast method, are described by dropping out or modifying the c o r -
responding terms in the transform. In so doing one reaches a unified 
representation of the various different forms of the schlieren method. By 
working out some particular case mathematically a set of relationships is 
obtained which must be satisfied in order to optimize the quality of the in-
formation received. For the Toepler system this has been done by 
H.J. SHAFER [53]. We quote here some of his conclusions. 

A large aperture gives a high (aperture)/(disturbance-size) ratio with 
consequent high contrast and density; 

A large light source will give high density and low contrast; 

The optimum-size light source is one whose geometrical image in the 
focal plane of the objective is equal to the width of the Airy disc of the 
objective; and 

The minimum-size light source is one whose half width is equal to the 
distance from the central maxima of the diffraction pattern of the 
disturbance under study to the optical axis in the focal plane of the 
objective. 

Hitherto we have dealt with the Toepler arrangement. It is the only 
one capable of giving information in a pictorial, intuitive form, but the results 
of various experiments made on plasma suggest that this arrangement cannot 
be used as a quantitative tool. Of the various practical reasons for the above 
assertion it will be sufficient to remark that in most cases, wherever the 
ionization process is developing, it is necessary to have, for each instant 
of interest, two photographs taken at different wave-lengths (violet and red) 
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to be able to distinguish between atoms and electrons. Therefore a dichroic 
beam-splitter is required and a pair of interferential f i lters. Generally 
for fast discharges requiring very short exposure times it is necessary 
either to make use of very fast photographic plates or of image-converter 
intensifiers [54]. In most cases these receivers do not reach a range of 
two decades of linear response and the overall accuracy is very poor . 

A slight improvement can be obtained, stillusingphotographic densito-
metry, by including in the field of the test object a glass wedge or a lens of 
known characteristics (standard schlieren) and thus making comparisons 
and interpolations between the observed darkenings of the plate. This is 
the hypothesis that the deflection produced by a thin wedge is equivalent to 
that of a thick layer if 

( l / n 0 ) J (Эп/ 9x)dz 

is the same in the two cases. It can be shown that this holds exactly only 
within the limit of geometrical optics. 

In deriving Eq. (5.17) we assumed that the field of the discharge tube 
was divided into parts of extension D* supposing tacitly that inside this field 
the value of the density gradient was constant. 

This allowed for the hypothesis that the plane of the knife edge was the 
focal plane of the lens L2 (Fig. 8), whence Eq. (5 .10) and the subsequent 
development. But this could not be so, for example, where the plasma has 
a bell-shaped density distribution. In this case the plasma behaves like a 
lens and one is no longer allowed to take a constant value for f . Here the 
knife edge is no longer at the right setting and Fresnel diffraction fringes 
occur, as is demonstrated in Fig. 9 [20]. This effect of course can be seen 
particularly in the case where, with the aim of increasing sensitivity, one 
makes use of very small a - Eq.(5.7) - as in the case of ruby laser point 
sources. A theta-pinch schlieren photograph showing this effect is given 
in Fig. 10. It can be demonstrated [51] that, in the case of a point source 
of light, in order that the change in light intensity due to this de-focusing 
effect be a small percentage с of the change due to true deflection, the f o l -
lowing relationships must hold between the second and the first derivative 
of the density distribution: 

(S.18, 

This is generally a more stringent condition on (^Nel)min than Eq. (5.17). 
It is therefore essential to look for other ways of recording the de-

flections experienced by a beam of light in the presence of density gradients. 
The most spontaneous method is due to LAMM [551 and is mentioned in [56]. 
The optical arrangement is that of Fig. 11 a point light source being 
necessary. Near the entrance window a transparent scale is added. The 
lens gives an image of the scale on the plate. In the absence of disturbance 
the image of the scale is reproduced without any distortion. An optical d i -
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F i g . 10 

A s c h l i e r e n T o e p l e r p i c t u r e taken w i t h a ruby laser dur ing a 9 - p i n c h e x p e r i m e n t 

s h o w i n g t h e o u t - o f - f o c u s e f f e c t re ferred t o in the t e x t 

sturbance bends the pattern of the ray inside the tube and the image of the 
scale becomes distorted. In Fig. 11 the disturbance displaces the point A1 

image of A to A'1 which, in turn, in the absence of disturbance, is the image 
of A i . The displacement AA i = Д i can be written in terms of e : 

A l = a e , (5.19) 
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Fig . 11 

L a m m ' s o p t i c a l a r r a n g e m e n t 

and that of A 'A" = Д1 is evaluated in terms of Aiand of the magnification G: 

Since from 

i 
1 Г On , 1 , ¿4 , ¿ e = — / —- dz = -— lVn = lVn, n0 J Эх n 0 " 

0 

e-- IVn, 

we have 

1 al a G1 

This displacement occurs at a value of x given by 

Д1 z ' - A ' x = z - Д x = z - — = Q - • 

It can be seen that the relationship holds exactly, provided that the trajec-
tory is a parabola, because only a parabola among the elementary curves has 
the property that the tangent at с crosses parallel to the optical axis of the 
device at BP = ВС/2 (Fig. 12). This requires that the ray travels inside a 
constant gradient density field. 

This method is very accurate but requires a lengthy evaluation of the 
recording plate. 

If the discharge has axial symmetry measurements can be limited to 
those made along one diameter. In this case the focal shift of the line with 
respect to the straight diametrical line gives only the azimuthal component; 
if the scale is dotted, one also obtains the radial component by measuring 
the spacing between the projections of the dots on the straight line. A dif -
ferent method [57] of recording has been studied by the author and co-workers. 
The optical arrangement is shown in Fig. 13. Here W is a point source of 
light (a ruby laser light beam focused by means of a lens whose focus is 
at W). The light is made parallel by means of a collimator, C. The image 

(5.20) 

(5.21) 

(5.22) 

(5. 23) 

(5.24) 
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F i g . 12 

T h e b e n d i n g o f the ray re ferred t o in the t e x t 

W 

F i g . 13 

O p t i c a l a r r a n g e m e n t o f a d i r e c t r e a d i n g s ch l i e ren system 

of the source, formed by L, is altered by means of a cylindrical lens L, 
into a straight line (in the absence of disturbances) focused at ж. The ob -
jective О focuses at ж an image of the slit S which is placéd in front of the 
discharge tube in order to restrict the observed region to a thin slab through 
the diameter of the tube. The lens L c has no focusing effect on light in the 
x-direction so that each co-ordinate corresponds to a given point of the tube 
diameter. In the presence of an optical disturbance the angular deviation 
is recorded on ж with a displacement s such that 

s = G e f , (5. 25) 

f s being the focal length of L s and G the magnification of the cylindrical 
lens. 

The effect of the objective О can be neglected. From Eqs. (5. 15) and 
(5.16) it follows that 

Vn 
G i f . (5.26) 

and 

V N e = Gf 1X2X 4.46X10"1 4 ' (5.27) 

It can be seen that is the azimuthal component of the refractivity 
gradient. To measure at the same time both radial and azimuthal compo-
nents at each point of the slab of the discharge tube defined by the slit abeam 
splitter and two cylindrical lenses are used. Their axes are perpendicular 
to each other and are inclined at 45° with respect to the slit S. In this a r -
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rangement the radial component causes displacements equal but in opposite 
directions in the two records , whereas the displacements resulting f rom 
the azimuthal component are equal and in the same direction. In the photo-
graphs the records are taken together with a zero line. For each value of 
r the azimuthal and radial components are thus obtained simply by sum-
ming or subtracting the corresponding displacements of the two records . 
A substantial improvement in the quality of the pictures can be obtained by 
adding the Minimumstrahlbe zeichnung method [20]. 

All schlieren systems employing a parallel beam of light are unable 
to distinguish between the density gradients occurring at various positions 
along the light path. In many cases it would be desirable to obtain an image 
in which density gradients in a given plane determine the image obtained. 
A schlieren system with multiple sources and corresponding knife-edge 
has sharp-focusing properties. It is based on the principle that for planes 
out of focus, superposition of the images blurs out the effects of density 
gradients not in the focal plane. 

IT' 
IMAGE OF T 

F i g . 1 4 

T h e p r i n c i p l e o f the focus schl ieren 

Shock waves in a nozzle have been successfully studied with such a 
device. 

In plasma research a great deal of work could be done with such an 
arrangement and the study of tearing modes and of end effects of the d i s -
charge tubes could greatly benefit. 

It is now worth recording some more methods which appear to have 
rather high performances in the case of plasma diagnostics. One is that 
called interferential strioscopy, based on the theory given by Francon. By 
this method the entering window б (Fig. 4) and the knife edge are replaced 
by two Savart plates.or Wollaston prisms and a couple of polarizers. 

Fringes are obtained on i as a result of interference between two ad-
jacent beams. These fringes are thus sensitive to density gradients. The 
advantage of this method over the classical Toepler's is that of easily getting 
figures by means of the fringe shift; a disadvantage could be that of giving 
smaller spatial resolution, as in every fringe recording. 

Another method which could to be some interest is the one based on an 
observation by Gayhart and Prescott and theoretically described by 
TEMPLE [33]. 

According to these authors, interference fringes are observed in the 
schlieren system, which makes possible a quantitative evaluation of the 
starting constant needed when one wants to obtain a density profile by inte-
grating the schlieren working equations. 

TEST REGION " T " KNIFE E D G E FOCUSING LENS 
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6. THE SHADOWGRAPH 

Referring back to the presentation of section 2, the shadowgraph is 
a method which uses only the inhomogeneity of the plasma and no further 
optical equipment to obtain a record. The information is given by the map-
ping Q-» Q* and is of an implicit nature. A complex analysis would be r e -
quired in order to go back from a shadowgraphic picture to the density distri-
bution of the inhomogeneities. 

Up to now very little use has been made of the shadowgraph in plasma 
physics, the reason being the strong requirement on point light sources, as 
is clear from the following. This method is quoted here and deserves par-
ticular mention because of the peculiar (potential) quality of the available 
information. 

The underlying idea having been already presented in para. 2, we need 
only mention here the most important features with application to plasma 
diagnostics. 

Referring to the Fig. 15(a), let us introduce a rectangular system (xy)(âO 
in the plane it of the discharge tube. In the absence of disturbances the beam 

F i g . 15 (a ) 

Q u a n t i t i e s r e la ted t o the d e f l e c t i o n o f a b e a m 

F ig . 1 5 ( b ) 

F o c u s i n g e f f e c t o f a shadowgraph 

of parallel light issuing from S will project another system of rectangular 
co-ordinates (x1 y ' ) (5^) equal to the former on the photographic plate IT, 
whose distance from it is L . Disturbances in the plasma change the c o -
ordinate system in shape and position. Let us call (x*, y*) (</*) the new 
co-ordinate system superposed on x ' y ' . The correspondance between 5"and 
9* is given by a relationship of the form 
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x * = 0 i ( x , y ) (6.1) 

у*=Ф2Ы,у), (6.2) 

where and ф2 depend on the disturbance. 
Let I(x, y) be the light intensity distribution at ж in the absence of 

disturbances in the plasma, and I*(x*, y*) the corresponding one at тг when 
disturbances are present. Then we have 

I*dx*dy* = > Idxdy, ъ (6.3) 

where ^ is extended to all area elements dxdy which contribute to I* by 
col lapsing into dx*dy* . Since 

dx* dy* = dx dy 
д(ф1,ф2)/д{х, у) (6.4) 

Eq. (6. 3) gives 

I* ; I: 
д(ф1:ф2)/д{х, у) (6.5) 

In general all these relationships are useless if one does not stipulate the 
very strong limitation that the displacements must be infinitesimal both in-
side the tube and along the entire path f rom the tube as far as the plate. 
This is verified in practice by testing at different distances L ' , L ' , L1 and 
checking that a crossing of rays as shown in Fig. 15(b) does occur . Under 
this hypothesis 

and 
x* =x + Д х ( х , у), 

у* = y + Д у ( х , у). 

where Дх , Ду are small quantities. Since 

(6.6) 

(6.7) 

and 

{ 

Эх* Эх* ЭДх 
Эх* dy Эу 

Эу* Эу* ЭАу 
9У Эх dy Эх 9У 

Ax =Ltge x = L ex 

Ду = Ltg Cy Ç! L €y 

1 + ( 6 . 8 ) 
OX О у 

(6.9) 
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substitution into Eq. (6. 5) gives the result 

I (x .v ) - I * (x ,y ) , / Э е х + Э е Л 
I*(x ,y ) \ Эх Эу J ' (6.10) 

Now, since 

I. (x ,y ) - I* (x , у) I (x. y) ~I*(x, t) AI 
I*(x,y) I (x ,y ) I 1 - 1 1 ' 

using Eqs. (5 .1) and (6.10) we get, finally, 

P / 2 2 AI L / V a n , Э n 

0 
or 

I ( 6 Л 2 ) 

1 2 , T . 2 , a i .. ,2' / V U f e , 3 ü t - - 4.46 X 10 L X / )dz. (6.13) 

This is thé working equation for the shadowgraph, in the same sense 
that Eqs. (4. 18) and (5.16) are for interferometry and the schlieren method re-
spectively. In this case the sensitivity - once the length of the discharge 
tube 1 is given - is proportional to L. Once the measurement of AI /I has 
been made point-by-point across the shadowgraph field it is possible, in 
principle, to go back to the number density by making a double integration. 
Apart from the possible errors, the two integration constants involved must 
be obtained' from other experiments, one from a schlieren method and 
the other from an interferometric measurement. This is a disadvantage 
of the method but it is not its purpose. 

Before, reviewing the possible application, let us first consider some 
limitations of the method. By its very nature a shadow picture involves 
uncertainty in the contour lines due to Fresnel diffraction. The size Ax 
of the minimum resolvable region can be evaluated by means of the un-
certainty principle*: 

Ax > (XL)2, 

so that, for example, for X = 6943 Â (ruby laser) and L = 1 m. Ax = 0. 83 mm-
This applies not only to the contours of the discharge tube, a picture 

of this phenomenon being given in Fig. 16, but also to those images arising 
from the focusing effect of the plasma distribution, as seen in Fig. 17, which 
shows a shadowgraph taken at the maximum compression of a 0 pinch at 
0.1 torr [58]. 

In this latter case one can no longer speak about pure Fresnel diffraction, 
but one is still concerned with the uncertainty principle. Of course, one 

* WOLTER [ 2 0 ] p . 587 . 



318 U. ASCOLI-BARTOLI 

F i g . 16 

D i f f r a c t i o n e f f e c t o f a laser b e a m 

F ig . 17 

Shadowgraphs o f a p i n c h e x p e r i m e n t o f instants near the m a x i m u m c o m p r e s s i o n 

way of reducing this inconvenience is to reduce either X or L as far as is 
compatible with the necessity of distinguishing between atoms and electrons 
(in the case of X), and with the required sensitivity (in the case of L ) . . 

Reducing L has the drawback of very much increasing the amount of 
(unwanted) plasma light on the recorder; this can be avoided by using (Fig. 18) 
the optical arrangement where T1 is the image of T made by the lens L1 . 
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1 

T ¡Tl it 

RUBY 1 ' —__ 
LASER 

1 _i — - — - i L» 1 

LARGE STOP 

Fig.18 

A single improvement in the shadowgraph technique 

F i g . 19 

T h e e f f e c t o f c h a n g i n g t h e t o p o l o g y o f a shadowgraph p i c t u r e 

Another feature has to be considered, especially when the shadowgraph 
is applied to gas discharges. The beam of rays is not only "focused" by the 
presence of small density ripples, but it is also deflected by the mean 
density distribution acting as a lens or wedge. 

This effect is capable of changing the topology of the representation, 
as indicated in Fig. 19. 

Applications of the shadowgraph are all related to the above-mentioned 
property of being sensitive to sudden changes in the refractive index. In 
plasma physics these occur in the case of shock-waves, instabilities and other 
"peculiar events", like the turbulent behaviour of plasma. But this is up 
to now only a list of applications which are possible in principle, because, 
in spite of the relative ease of this method, especially when use is made of 
a monopulsed ruby laser arranged to give a point source, only a few e x -
ploratory experiments by the author and his co -worker are known to the 
author. 

In aerodynamics extensive use has been made of shadowgraphs in the 
study of shock-waves (thickness, shape of the shock front and its velocity, 
Mach-number). All this can be translated into the field of plasma physics 
without any great effort. 

The possible application of the shadowgraph method to the analysis of 
turbulent density fluctuations was first discussed by KOVASZNAY and c o -
workers [27, 59, 60, 61]; see also Bibliography (UBEROI, U.S. ) . 

In fact they have shown that, with the assumption of homogeneity and 
isotropy, the three-dimensional spectrum of the turbulent density fluctuations 
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is a Fourier—Bes sel transform of the measured correlation function of the 
shadow picture. This is only a rather limited application of a wider treat-
ment, due to the same authors, of the problem of obtaining statistical 
properties, like correlation and spectra of random fields, from measure-
ments obtained using averaging methods. 

Unfortunately these random fields are supposed to be statistically homo-
geneous and isotropic. 

It is unlikely that these hypotheses can be accepted in the case of plasma 
and thus the method cannot be directly translated from aerodynamics to 
plasma physics without substantial revision. 
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S O M E R E L A T E D P H E N O M E N A IN P L A S M A S , 
IN SOLIDS A N D IN GASES 

J . E. D R U M M O N D 

B O E I N G S C I E N T I F I C R E S E A R C H L A B O R A T O R I E S , 

S E A T T L E , W A S H . , U N I T E D S T A T E S O F A M E R I C A 

The purpose of this paper is to acquaint you with some examples 
of plasma phenomena in solids which are related to those you have been 
studying in fusion research and to show how noting the relationship has ex -
tended plasma research and enlarged its area of application. 

1. THE SCREW INSTABILITY 

In 1958 two apparently unrelated discoveries were made, one by 
LEHNERT [1] in Sweden on electrical discharges in gases and the other by 
IVANOV and RYVKIN [2] in the USSR on electrical conduction in a s e m i -
conductor. The basic circuits used in these two experiments are shown 
side-by-side in. Fig. 1(a) and (b). Though the circuits are quite similar 
the kinds of observations made were quite different as shown in Fig. 2 (a) 
and (b). Lehnert observed the static electric field necessary to maintain 
the discharge as a function of the static magnetic field. Ivanov and Ryvkin 
observed a small oscillating electric field across the sample. These e x -
periments were important because of the unexpected and striking phenomena 
observed (the sudden increase in Eo versus В in one case, and the o s c i l -
lations in the other case) and because of their utter simplicity. 

LOW PRESSURE 
GAS AT ROOM 
TEMPERATURE 

Fig. 1(a) 

Basic circuit of Lehnert's experiment 

n - G « ; 1.5 x 1.5 x8mm 
AT ROOM 
TEMPERATURE 

E В x 
b 

Fig. 1(b) 

Basic circuit of Ivanov and Ryvkin's experiment [2] 

3 2 3 



324 J. E. DRUMMOND 

в 

Fig. 2 (a ) 

Nature of Lehnert's observations (p represents gas pressure) 

Е ш ЛААЛЛЛЛ— t-0.1 v/cm : lOkc/scc 

b) 

Fig. 2 (b ) 

Nature of Ivanov and Ryvkin's observations [2 ] 

Let us examine Lehnert 's experiment f irst . Why should Eo decrease 
as В increases? In a magnetic field, electron and ion orbits are curled into 
spiralis along the magnetic field l ines. Collisions with neutral gas atoms 
cause sudden displacements of the axis of these orbits. The average d i s -
placement is about equal to the radius of the orbit and so decreases as the 
magnetic field increases . The frequency of col l is ions is proportional to 
the neutral gas pressure, p. The ions and electrons execute a random walk 
motion from the volume of the plasma out to the walls where they recombine. 
Thus at large magnetic fields or low pressure recombination is slower, so 
the rate at which the electric field must cause new ion pairs to be produced 
in order to sustain the discharge is smaller. The equations governing this 
steady state situation are 

V • (nv±) = i/¡ n . (1.1) 
(particle balance) 

v ± = ± M ± ( E + v t X B ) - ^ Vti, (1.2) 
(momentum balance) 

eE(v+ - v.) = K+T+14 +К-Т-И., 
(energy balance) 

(1.3) 



PLASMAS IN SOLIDS AND IN GASES 325 

where n is the concentration of electrons (assumed approximately equal to 
the concentration of ions), v± is the macroscopic velocity of ions/electrons, 
Hi, D± are the mobility and diffusion constants of ions/electrons, Ê, S aré 
the macroscopic electric and magnetic field strengths, K± is the fraction 
of the kinetic energy of an ion/electron given up in an inelastic collision; 
T± is the mean kinetic energy of an ion/ electron and v± is the frequency of 
inelastic collisions of an ion/electron. The solution for n is of the f o rm 
J0(2.4 r /R) , R being the radius of the tube. The dashed lines in Fig.2(a) show 
that this steady state theory predicts the continued decrease of Eo with B. 

Because of the importance of these two experiments, they were each 
repeated at several laboratories throughout the world. For instance, in 
1960 Paulikas and Pyle at the University of California confirmed the Lehnert 
discovery and were carefully extending the range of their measurements. 
To certify the uniformity of the discharges they were using, they employed 
a streak camera to observe a section of the column. To their dismay, they 
found that the discharges were far from homogeneous at large magnetic field; 
the discharges seemed to twist and writhe despite continuing efforts to con-
trol them. 

The following year KADOMTZEV and NEDOSPASOV [3] published their 
theory of this state. They added small time-dependent terms to the functions 
n and the electric potential, V, both of the form 

J^/3 jjQ exp i (kz + 0 - u t + ô), (1.4) 

where к and u are unknown constants, and в is the angle around the tube, 
and t is time. They also added a term Эп/ 9t to the left side of Eq. (1.1) . 
The result of their calculation was a complicated dispersion relation with 
many paramenters: 

и =u(k;B, E, p, R). (1.5) 

A typical form for the imaginary part of и versus к for fixed values of the 
parameters is given in Fig. 3. The system becomes unstable when the para-
meters are adjusted so that the peak of the curve in Fig.3 pokes above the 
k-axis. Thus the critical conditions for marginal stability are 

Imu = 0 = | - I m u . (1.6) 
o k 

From the two Eqs. (1.6) the value of к and E at criticality can be determined 
as functions of the remaining parameters, В, p and R. A typical plot of 
the resulting critical value of E versus В for fixed values of p and R is given 
in Fig. 4. Also plotted on Fig. 4 is the corresponding electric field, Eo, r e -
quired by the previous theory to maintain a static discharge. The critical 
value of magnetic field strength, B, at which these curves cross is de-
termined as a function of p and R by the Kadomtzev-Nedospasov instability 
theory. It agreed quite well with the Lehnert experiments and with many 
others that were subsequently conducted. 
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dm « 
B,E,p,R 

Fig.3 

A typical plot of the imaginary part of uVsk for fixed B, E, p, R 
from the Kadomtsev-Nedospasov [3] dispersion law, Eq. (L 5) 

Fig. 4 

Plots of critical axial electric field strength [ 3 ] , Ec , and the required field, E0, 
for maintainance of a static discharge versus magnetic field strength, В 

When PAULIKAS and PYLE [4] became aware of the instability theory 
they measured the frequencies of rotation of their discharges and found fair 
agreement with the real part of the Kadomtzev-Nedospasov dispersion law 
at the crit ical conditions. Because the rotating column is like the shape 
of the threads of a machine screw, this has become known as the helical 
or screw instability. 

Thus we see that later theory and observation was showing the gaseous 
plasma experiment to have oscillations like those observed in the s e m i -
conductor experiment. Another clue to the connection between these pheno-
mena was the demonstration in 1960 by LARABEE and STEELE [5] that a 
necessary condition for these oscillations to occur in semiconductors is the 
existence of an electron-hole plasma within the solid. An oscillator based 
upon the phenomenon in solids they named the oscillistor. GLICKSMAN [6] 
recognized the similarity of the phenomenon in solid state plasmas to that 
in gaseous plasmas and in 1961 adapted the Kadomtzev-Nedospasov theory 
to electron-hole plasmas in insulators. Observations by ANCKER-JOHNSON [7] 
of Eo versus В electron-hole plasmas injected into semi-conductors showed 
a striking similarity to Lehnert's measurements in gases. 

The only dissident experiments at this time were those conducted by 
R .R. Johnson. He found excellent agreement [8] with the old static theory 



PLASMAS IN SOLIDS AND IN GASES 327 

H A L O N G T U B E A X I S 

Fig . 5 

Drawing o f d i s c h a r g e tube used by R. R. Johnson [ 8 ] 

P R E S S U R E = 0 . 7 8 m m O F H g 
1 D I S K = 2 0 0 m a / c m 
1 R I N G = 1 0 0 т а / с m 
В = 1 Л 0 0 G A U S S / c m 
I = 2 M I L U S E C O N D S / c m 

Fig . 6 

O s c i l l o g r a m o f da ta o b t a i n e d b y R. R. Johnson [ 8 ] using d i s c h a r g e tube o f Fig. 5 . 

Both disk and r ing currents are m e a s u r e d d o w n w a r d f r o m base l ines shown at the right 

of plasma conduction in a magnetic field for values of the field as much as 
three to four times the critical field required for outbreak of the screw in-
stability. In order to test the classical theory more severely, he used a 
discharge tube with anode separated into inner disk and concentric ring 
electrode as shown in Fig. 5. A typical oscillogram of the data he obtained 
with this tube is shown in Fig. 6. After the discharge through the tube had 
begun (as shown by the values of disk and ring current at the left side of 
Fig. 6) the applied magnetic field was made to increase slowly from zero. 
Very quickly the disk current increased and the ring current decreased 
showing confinement of the plasma column which persisted until the maxi-
mum field strength was reached. The data obtained in this way during the 
rising portion of the magnetic field variation are plotted in Fig. 7. The solid 
curve is JOHNSON and JERDE's extension [8] of quiescent plasma diffusion-
conduction theory in a magnetic field. The value of magnetic field at which 
98% confinement (as measured by the ring current) was reached is plotted 
against gas pressure in Fig. 8. As you can see, the data show somewhat 
more confinement than predicted by Johnson and Jerde's extension of c las -
sical static diffusion-conduction theory. This is in spite of the fact that the 
Kadomtzev-Nedospasov theory predicts instability over most of the range 
of these data. 

The Kadomtzev-Nedospasov theory might be wrong. Their assumed 
radial factor in the form of the time-dependent perturbation (1.4) seemed 
suspect. JOHNSON and JERDE [9] considerably improved upon the mathe-
matical basis of the theory but over the range of the existing experirrçents 
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Fig. 7 

Plot o f c o n f i n e m e n t data obtained b y R. R. Johnson [ 8 ] 
f r o m (expanded ) o s c i l l ograms o f ring current (Fig. 5) in s lowly rising m a g n e t i c f i e ld . 

T h e solid curve is f r o m his and Jerde 's extension o f static plasma d i f f u s i o n - c o n d u c t i o n theory [ 8 ] 
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Fig. 8 

Gas pressure versus m a g n e t i c f i e ld produc ing 98% c o n f i n e m e n t [ 8 ] . 

T h e sol id curve is f r o m Johnson and Jerde 's [ 8 ] extension o f quiescent plasma d i f fus i on - conduc t i on theory. 

the resulting change in the form of the eigenfunctions did not change the c r i -
tical value of the magnetic field much. However, RUGGEE [10] found ex -
perimentally that the Johnson-Jerde theory accounted for growth rates of 
the instability better than the Kadomtzev-Nedospasov theory did. HOLTE R [ 11 ] 
adapted the Johnson-Jerde theory to electron-hole plasmas in semi-conductors 
obtaining good agreement with experiment. 
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Fig. 9 

Plot o f the q u a s i - s t a t i c part o f the rad ia l dens i ty d istr ibut ion in the pos i t i ve c o l u m n 
o f an ar c d i s c h a r g e in s l o w l y r is ing ( W 0 ) and s tat ionary (J0) m a g n e t i c f ie lds 

f r o m the t h e o r y o f Johnson and Jerde [ 1 2 ] 

But the mystery still remained. Why did Johnson's experiments show 
a stable plasma where theory and other experiments showed instability? 
The major difference between Johnson's experiments and others was that 
he used a pulsed magnetic field to avoid overheating his magnet. It is true 
that a changing magnetic field produces an electric field Eg, and that for 
an increasing field l ^ x l ^ / B l is an inward radial drift but it seemed so 
small that it had been neglected at f irst . Now it was incorporated in the 
JOHNSON-JERDE theory [12] with the surprising result that more of the 
E versus В plane was unstable. The reason for this is that the inward 
ÊeXf î z /B i drift causes the steady state part of the density distribution to 
be more sharply peaked in the centre of the tube than the previous J0(2.4 г /R) 
had been. This is shown in Fig. 9. The steeper density gradient is the 
driving force for the more unstable plasma. However, the greater c on -
finement of the plasma away from the walls with the rising magnetic field 
caused a smaller axial electric field to be needed in the discharge. So even 
though the electric field required for instability was made smaller, the 
electric field required to maintain the discharge was made even smaller. 
The net result was stabilizing.* Both curves on Fig. 4 were lowered; but 
the Eo curve was lowered more than the E c curve. Thus.the magnetic field, 
B c , of the intersection was moved to the right. In fact the Johnson-Jerde 
theory [12] shows that for fixed values of pR stabilization can be achieved 
to arbitrarily large magnetic fields. For instance, a discharge tube of 
radius 10 cm with a neutral gas pressure of 2.4X10"3 mm Hg pressure of 
helium ca'n be stably confined by an applied magnetic field rising at the rate 
of 2.2 kG/ms. After 50 G has been reached the rise rate can be reduced 
to 0.5 kG/ms without lessening the confinement. 

Because of the basic and possibly technological importance of Johnson's 
stabilization principle, it seemed desirable to considerably extend the range 
of his measurements. Such an extension has evidently been carried out by 
Prof. Saitsev at Moscow State University who was kind enough to describe 

* This has b e e n shown e x p e r i m e n t a l l y t o b e true a l so for p lasmas in sol ids b y A n c k e r - J o h n s o n , B o e i n g S c i e n -

t i f i c Research L a b s . , Progress Report ( A u g . 1964) . 
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his work to Dr. Ancker-Johnson when she visited Moscow in 1962. Thus 
R.R. Johnson, when he learned of this from his colleague, Ancker-Johnson, 
was freed from the need to extend these measurements himself. Instead 
he devoted himself to testing another interesting consequence of the theory; 
that the unstable plasma should have the macroscopic property of para-
magnetism. 

As we all know, plasma is supposed to be diamagnetic. But the 
time-dependent theory of the oscillations of a positive column showed 
that the unstable " s c rew" was "right handed" or "left handed" depending 
on whether the axial current flow was in the direction of Êz or opposite to 
it. This current flowing through the helical form of the perturbed plasma 
would thus produce a magnetic field within the helix of the same sign as the 
applied Sz. As Furth has' pointed out, this augmented magnetic pressure 
on the axis is precisely what makes a perturbation of this form expand 
against diffusion forces which would restore the unperturbed state. R.JOHNSON 
has carried out a non-linear analysis [13] of the oscillating state and found 
among other things that this relation remains valid for finite amplitude. He 
conducted an experiment [14] in which he measured the diamagnetism of the 
stable plasma (B <BC) and then noted the sudden nearly complete reversal 
in phase and increase in amplitude of his sensing signal as the plasma was 
run into the unstable region (B> B c ) . This confirmed theoretical expec -
tation. The size of the effect was, however, very small - the internal 
magnetic field jumps by only a few tenths of a milligauss in the change from 
diamagnetism to pàramagnetism. However, since the internal magnetic 
field is a little larger, the externally supplied field can be reduced slightly 
before the critical induction is reached within the plasma. Thus small dis-
placed hysteresis loops would be generated as shown in Fig. 10. J. DRUMMOND 
[15] predicted this on the basis of R.Johnson's measurements and the above 
argument in June 1963. Within a few weeks hysteresis loops had been found 
by ANCKER-JOHNSON [16] experimentally in electron-hole plasmas in a 
semi-conductor. But instead of being a few tenths of a milligauss in magni-
tude, they were over 100 G in magnitude [17], as shown in Fig. 11. In 
addition, they are electronically adjustable by means of the current through 
the semi-conductor. In some ways these ferromagnetic-l ike loops make 
desirable digital computer elements for associative type memories . Not 
only can their location be adjusted electronically, but they signal their "on" 
condition by continuous, adjustable oscillations. The hysteresis loops are 
so large in the Еш versus E0 plane [17], as obtained from data like Fig. 12, 
that in principle hundreds of such elements could be selectively and rapidly 
(<l/us) turned on and off and "read" by a single wire [18] . 

This example shows the extension of plasma physics into a whole new 
area of applications. It came about by the scaling of a small effect in alarge 
gas chamber into a large effect in a tiny crystal. But this is only the 
beginning of the interaction. The stabilization schemes for plasmas such 
as the use of wall mir rors introduced by Ioffe can be tested on plasmas 
in solids much more easily than on the large fusion machines. In particular, 
Furth pointed out that Ioffe bars ought to stabilize the helical instability. 
On the other hand, Dr. Velikhov pointed out that a steady symmetrical flow 
of current along the conduction column would be destabilized by attraction 
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Predicted [ 1 5 ] hysteresis o f p lasma. 
T h e dotted l ine is free space response 
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EXTERNAL MAGNET IC FIELD-OERSTEDS 

Fig. 11 

Hysteresis loops inferred f r o m e x p e r i m e n t a l data taken on e l e c t r o n - h o l e plasmas in InSb at 7 7 ' K . 

Af ter Ancker -Johnson [ 1 7 ] 

to a parallel current flow in one of the Ioffe bars. So the experiment was 
conducted. Ancker-Johnson used quadrupole Ioffe bars as shown in Pig. 13. 
As the current in the Ioffe bars increased, the instability was usually sur-
pressed as measured both by oscillation amplitude and "DC" voltage level 
necessary to maintain the steady plasma current flow. Then a new form 
of instability showing a small amplitude incoherent oscillation and higher 
"DC" voltages developed at larger Ioffe currents. This is shown in Fig. 14. 
Many such data are plotted in Fig. 15. In addition to stabilization of the 
helical instability, ANCKER-JOHNSON and BERG 119] have shown that Ioffe 
bars significantly increase the lifetime of free electrons and holes in s e m i -
significantly increase the lifetime of free electrons and holes in semi -
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Fig . 12 

Osc i l l ogram o f v o l t a g e across a s m a l l s a m p l e o f p - t y p e InSb at 77° К as a function o f t i m e 

showing the outbreak o f o s c i l l a t i on at large v o l t a g e and its persistence to low v o l t a g e : 

a h igh ly r eproduc ib l e e f f e c t . 

Af ter Ancker-Johnson [ 1 7 ] 
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E N D V I E W 

Fig. 13 

Quadrupo le Toffe bars p l a c e d around p - t y p e InSb at 7 7 ° К 

conductors with zero "DC" current. All this was accomplished within 
a few months because of the small magnitude and extent of the magnetic field 
and plasma currents that were required for the tests on plasmas in solids. 
Extensive work is continuing. 

2. HELICONS 

Spies discovered a natural phenomenon during the first world war. The 
German scientist, Barkhausen, was tapping ground return currents of allied 
phones. He used an audio-amplifier with unusually long input leads and 
heard occasionally descending "whistles". He recognized this as a natural 
phenomenon, named them "whistlers" and published his findings shortly 
after the war [20] . Nine years later ECKERSLEY [21] noted correlation of 
whistlers with solar activity and that the whistlers often occurred in trains 
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T i m e - 0 . 5 fx s e c / l a r g e d iv is ion 

Fig. 14 

Mul t ip le exposure o f o s c i l l ograms showing progressive e f f e c t s 
o f increas ing ly large I o f f e bar currents (measured downwards) l abe l l ed 1, 2 , 3 and 4. 

These currents were pulsed on after the screw instabil ity had fu l ly d e v e l o p e d 
as shown by the corresponding p lasma v o l t a g e traces l abe l l ed l ' , 2 ' , 3 ' , and 4 ' . 
T h e I o f f e bar currents a l l have the same " 0 " l e v e l (the top l ine o f the graph) 

but the " O ' S " o f the v o l t a g e traces have b e e n d isp laced to prevent overlapping o f their traces. 
Traces 1 and 1' show z e r o I o f f e bar current and the undisturbed v o l t a g e osc i l lat ions. 

As the I o f f e bar current is increased (traces 2 , 3 and 4) , 
the osc i l la t ions are surpressed (traces 2 ' , 3 ' , and 4 ' ) and the " D C " v o l t a g e l e v e l first reduced 

( trace 2 ' ) and f inal ly increased ( trace 4 ' ) . 
After Ancker-Johnson [ 1 9 ] 

I „ ( A ) 
0 0 .3 0 .6 0 .9 

Fig. 15 

Graph o f the c h a n g e o f " D C " v o l t a g e / c m (curves 1 , 2 and 3 ) ДЕ versus " D C " 
I o f f e bar current I g ç and graph o f p e r c e n t a g e decrease o f osc i l la t i on ampl i tude 

( curves 1 ' , 2 ' , and 4 ' ) , A , versus I q c ° r versus "RF" I o f f e bar current ( curve 4 ' ) , iRp, 
Note h o w r e l a t i v e l y very smal l the required "RF" current 

(84 M c / s ) was for r e m o v i n g the natural screw osci l lat ions. 
Af ter Ancker-Johnson [ 1 9 ] 
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preceded by " c l i cks" with about 3 sec . spacing. In 1931 Tremellen [22] 
correlated the "c l icks" with local lightening flashes. Two years later 
BURTON and BOARDMAN [23] measured the frequency of whistlers as 
a function of time. In 1935 ECKERSLEY [24] derived a dispersion law for 
electromagnetic waves in a plasma in a magnetic field from the APPLETON-
HARTREE "magnetoionic" theory [25]. We shall use instead the standard 
reference text book by STRATTON [26] who gives for the index of refraction 
N, for left/right hand circularly polarized high-frequency radio waves in 
an ionized gas 

N ^ ^ e , ( l > (2.1) ii£±FeBoio/m~ uçq̂ QHO 

for — r r » er and — « 1, Ш€0д0Н0 uc 

where с is the speed of light in a vacuum, er is the relative dielectric con-
stant of the gas, Bo=jUoHois the magnetic induction, m the electronic mass, 
and Uc = eBo/m. Ions have been regarded as held fixed by collisions with 
neutrals. The validity of this dispersion law has been tested and confirmed 
in laboratory gas plasmas by GALLET et al. and by CONSOLI et al. [27], 
MAHAFFEY [28] and by DELLIS and WEAVER and most recently byLEHANE 
and THONEMANN [29] who obtained propagation in plasmas whose densities 
were more than 50 times the cut-off density. 

n = m€oú2/ e2. 

Retaining only the first term in the expansion of the right side of Eq. (2.1), 
we have 

кЧ1о ( 2 2 ) 

which results in a group velocity 

Thus the time required for a wave group to travel over a fixed distance is 
proportional to u'i which agrees with BURTON and BOARDMANN's data [23]. 
Inl953STORY [30] made use of this fact to obtain an estimate of the average 
electron density experienced by the waves in following the earth's magnetic 
field through the outer atmosphere: ~ 600 cm"3. 

The directly related effect in solids was also discovered by accident. 
In 1961 BOWERS, LEGENDY and ROSE [31] were attempting to measure 
the effective resistivity of sodium at 4.2°K in a magnetic field. Their ex -
perimental arrangement is shown in Fig. 16. Typical results are shown 
in Fig. 17. What was expected was a series of curves like the top one, but 
with different decay rates at different values of magnetic field strength, Ho. 
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Primory 

Fig. 16 

S c h e m a t i c d i a g r a m o f the Bowers, Legundy and Rose [ 3 1 ] 

e x p e r i m e n t o n s o d i u m at 4 .20* К 
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Fig . 17 

O s c i l l o g r a m s o f v o l t a g e d e v e l o p e d across s e c o n d a r y c o i l o f F i g . 16 versus t i m e a f ter o p e n i n g pr imary c i r c u i t . 

T h e t o p t r a c e is for H 0 = 0 , t h e s e c o n d f o r H 0 = 3 600 G , the third f o r H 0 = 7200 G and the last for H 0 = 10 8 0 0 G . 

Abscissa is 50 ms per l a r g e d i v i s i o n . 

S p e c i m e n proper t i e s : res is t iv i ty at 300* К = 7 5 0 0 X resist ivity at 4 . 1 * К 

' шст at 4 . 2 " К Я 4 0 f o r H 0 = 1 0 0 0 0 G. 

A f t e r Bowers , Legundy and Rose [ 3 1 ] 

What was found was a series of oscillations which decayed much more slowly 
than the expected e_t/T (with т the mean free time of electrons against m o -
mentum transfer 'coll isions) and had a frequency directly proportional to 
magnetic field strength. It was found that the proportionality constant was 
k2/ne with к » 2 7r/(diameter of samples) in agreement with Eq. (2 .2) for a 
standing "whistler" in the metal. 

As it happened, KONSTANTINOV and PEREL [32] had predicted the 
existence of such waves in metals the preceding year and AIGRAIN [33] in-
dependently predicted for semi-conductors that the damping time should be 

n--n+ 
П. + П+ T + T , (2.4) 

where n± is the concentration of positive/negative charge carriers . Since 
in solid sodium there are no positive charge carriers , the damping time 
becomes (1 + Uc /U)T which agrees roughly with the Bowers, Legundy and Rose 
data. 
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Aigraingave the name "Helicon" to such a wave because it had a cha -
racteristic mass . The plane wave solution exp i (К- r - ut) of the Schródinger 
equation has the same dispersion law as Eq. (2. 2) if-the mass of the f ree 
"part i c le " i s taken as íine/2Ho. For sodium in a thousand gauss field the 
" m a s s " of a helicon is about equal to the mass of an electron. 

.ÂSTROM [34] f irst noted that if both positive and negative carriers are 
free to move then the first term in Eq. (2.1) will cancel with an equal magni-
tude but opposite sign term that comes from the positive carriers not allowed 
for in E q . ( 2 . 1 ) . Thus the second term of the expansion, which is in -
dependent of sign, will dominate. In this case the dispersion law becomes 

where vA is the velocity f irst deduced by ALFVIÍN [35J in 1942 to explain 
some features of sun spots. 

In 1951 LUNDQUIST [36] published measurements of the phase velocity 
and damping of Alfvén type waves in liquid mercury. He obtained only fair 
agreement with theory probably because of the low conductivity of mercury. 
In 1954 LEHNERT 137] approached the problem differently: in an asbestos 
suit. He obtained a little better results with liquid sodium. BOSTHÍ and 
LEVINE [38] in 1952 had used an ionized gas toroid but had conditions such 
that the sound velocity exceeded the Alfvén velocity and somewhat obscured 
the results. 

In fact the experimental situation seemed so hopeless that in 1957 
COWLING [39] stated: " . . . A wide gap must persist between the best that 
laboratory experiments can provide and the almost perfect M.H. waves be -
lieved to be possible in the sun and stars. Extrapolation across so wide a 
gap is almost impossible; in cosmic work one must normally be guided by 
theory and hope that the theory overlooks no essential features" . 

But only two years later a good experimental measurement was made 
of the velocity of Alfvén waves in a most unexpected way. GALT, YAGER, 
MERRITT, CETLIN and BRADFORD [40] were measuring the absorption 
coefficient of micro-waves incident on the semimetal pure bismuth. At the 
time, the authors were unaware of it, but as BUCHSBAUM and GALT 141] 
pointed out two years later, this is equivalent to measuring the velocity of 
Alfvén waves in the bismuth. The reflection coefficient for waves incident 
on a medium of relatively very high refractive index N, is 

Since in pure bismuth there is an equal concentration of electrons and holes, 
Eq. (2. 5) applies and Eq. (2. 6) becomes 

u = kvA; vA = НОЫО/р)*; P = n(m. + m+), (2.5) 

(2.7) 

In the experiment of Gait, Yager, Merritt, Cetlin and Brai ls ford, lack of 
reflection was measured as absorption. So the absorption coefficient should 
be proportional to the applied magnetic field. Their results given in Fig. 18 
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Fig . 18 

Graphs o f absorpt i on c o e f f i c i e n t o f c i r c u l a r l y p o l a r i z e d e l e c t r o m a g n e t i c 

m i c r o w a v e s n o r m a l l y i n c i d e n t on pure b i s m u t h versus H, the m a g n e t i c f i e l d n o r m a l t o the b i smuth . 

T h e l i n e a r r e l a t i o n s h i p shows A l f v é n w a v e s are b e i n g e x c i t e d in Bi 4 1 sur face a f ter Gait et al [ 4 ] . 

T h e " О " l e v e l o f the e x p e r i m e n t a l c u r v e has b e e n e l e v a t e d 

so that the e x p e r i m e n t a l and t h e o r e t i c a l curves c a n b e d is t inguished . 

Th is n e c e s s i t y is r e m a r k a b l e in a f i e l d so noted p r e v i o u s l y 

for l i t t l e c o m p a r i s o n b e t w e e n t h e o r y and e x p e r i m e n t [ 3 9 ] 

Fig. 19 

Graph o f B= . ^ " я ^ Т versus f r a c t i o n a l shift in c y c l o t r o n absorpt ion e d g e [ 4 2 ] H 
show this. The little "pips" just to the right of "O" on the curves represent 
cyclotron absorption Doppler shifted by about a factor of two. Such had been 
calculated by J. DRUMMOND [42] in 1958 for gaseous plasmas. One of his 
results is shown in Fig. 19. Two somewhat surprising things that may be 
seen from this curve are that the shift is many orders of magnitude larger 
than the diamagnetic shift in the cyclotron frequency, and is only a function 
of the ratio of electron pressure to magnetic pressure.MAHAFFEY[28] semi-
quantitatively confirmed these results by experiments in gaseous plasmas. 
STERN [43] has pointed out that for most metals, the Fermi energy, fmvjj!, 
of conduction electrons would be so great that the Doppler shifted frequency 
would be much greater than the helicon frequency, 
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u c ^ v F k » u (2.8) 

and that this could be used to produce a point-by-point map of the curvature 
of a convex Fermi surface. Using Eq.(2.2) in Eq.(2.8) it can easily be seen 
that 

B = Cu*, (2.9) 

where the С involves the Fermi velocity. Eq. (2 .9 ) has been tested by 
TAYLOR [44] for the spherical Fermi surface of sodium with results shown 
in Fig. 20. The slope of this line yields a Fermi velocity only 1% different 
from the theoretical value. 

This example shows how plasmas in solids have removed the "wide gap" 
between the best that laboratory experiments could otherwise provide and 
the theory of magnetohydrodynamic waves. Again, of course, it opens a new 
field of applications for the ingenuity of plasma physicists and engineers. 

F i g . 2 0 

M a g n e t i c f i e l d o f D o p p l e r sh i f t ed c y c l o t r o n absorpt ion e d g e 

versus the o n e third p o w e r o f t h e f r e q u e n c y o f h e l i c o n s e x c i t e d in s o d i u m at 4 ' K . 

A f t e r T a y l o r [ 4 4 ] 

3. SUMMARY 

We have followed here in some detail two examples of the development 
of related phenomena in plasmas in gases and in solids. There are other 
examples of phenomena in electron-hole plasmas that have bearing on fusion 
research. One of these is the pinch effect. Extremely high non-equilibrium 
concentrations of plasma (>1018/cma) have been obtained [45] with a relatively 
small, inexpensive apparatus. The fact that this state is so highly c on -
stricted implies that it could be used (probably in a toroidal geometry) for 
an initial filling of a solid state model of a shear stabilized machine or of 
the several new Jdl/B stabilized configurations which are being proposed 
[46]. It is, of course, desirable to test theory against experiment in a suf-
ficiently large machine. But would it not be desirable to select the design 
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to be built by means of preliminary tests on small model plasmas in semi -
conductors? There the small extent and small magnitude of the required 
magnetic fields (mass of positive carrier 1/2000 of H+ mass) contribute 
to making the experiments quick and inexpensive. An objection to this is the 
small mean free time т of carriers in solids. However, ыст can be made 
» 1. As shown in section 1, the effects of instabilities and the stabilizing 
effects of the proper sign of magnetic field curvature can easily be detected 
for plasmas in solids. 

Time does not permit an extended survey of the other significant r e -
lated phenomena such as injection and electron-plasmon scattering. Instead, 
let me re fer you to anexhausive survey of the current state of research 
on plasmas in semi-conductors by Dr. Ancker-Johnson to appear shortly [46]. 
At the same time, I would like to thank her for her many helpful discussions 
of this and related material. 

The most exciting vista has opened up to plasma physics: that a single 
theoretical concept such as Alfvén waves can correlate phenomena in tiny 
solids at 4°K and in sun"spots at millions of degrees. 
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IMPERIAL COLLEGE OF SCIENCE A N D T E C H N O L O G Y , 

L O N D O N , E N G L A N D 

The subject of space physics is distinct from astrophysics and everybody 
knows what space physics is. 

This introduction concerns the magnetosphere, a volume surrounding 
the earth which will gradually be defined. Its lower boundary is the iono-
sphere in which incoming particles and photons make collisions. The collision 
physics occurs in the ionosphere and also chemistry because the composition 
is still similar to air and the dominant positive ion is 0 + . In the magneto-
sphere we have collision-free plasma physics and the positive ions are protons. 
Most collisions occur below 200 km altitude. The altitude where protons 
begin to dominate depends sensitively on the temperature and varies from 
500 to 2000 km. 

Certain American satellites have made particularly important discoveries 
and three are listed: 

Launched Apogee 

Explorer XII 1961 12 RE 

Mariner II 1962 Venus 
Imp 1 9 6 3 3 0 R E 

The measurements made in space are utterly different from those in 
the laboratory. The magnetic field is easy to measure, the electric field 
difficult, but the most remarkable are the measurements of the particles 
which constitute the plasma. This book cannot fail to demonstrate how all 
plasma theory flows from either the Vlasov equation, the Boltzmann equation, 
or the Fokker-Planck equation, each of which has for its dependent variable 
the velocity distribution function f, defined so that fdSd^is the number of 
particles in the element of phase space dxdv. Now the instruments used in 
space essentially measure f. Some detectors accept particles from only a 
small cone of directions and only in a small range of energy. Others are 
not so simple, but f has been measured already by several different instru-
ments and in different energy ranges. 

Starting now from outside the magnetosphere all we need to know about 
the sun is that it continually pours out a stream of plasma. This was pre-
dicted by PARKER [1], is known as the solar wind, and was found by 
Mariner II [2], the observations of course being confined to the neighbourhood 
of the ecliptic plane. Parker predicted that the wind would be hypersonic and 
consequently would flow almost radially away from the sun. Mariner did 
not spin so the plasma probe was aimed at the sun. Measurements were 
made in several'narrow energy ranges, giving f for protons. The wind was 
found to be hypersonic, so that good values were obtained for the mean speed 
and, by fitting a Maxwellian, a rough temperature. The Mach number ranged 
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Fig . 1 

M e a s u r e m e n t s with M a r i n e r 

f rom 5 to 10. Figure 1 shows the mean speed, the time scale being day 
numbers of the year (365 = Dec 31). 
The density is not shown, but is typically a few protons per cubic centimetre 
occasionally rising by an order of magnitude. The speed is seen to vary by 
only a factor of 2. Kp plotted in the lower curves is a logarithmic measure 
of magnetic disturbance at the ground, obtained by combining the records of 
all observatories. The correlation is seen to be good. The nature of the 
phenomenon is like wind meeting an obstacle, but it is remarkable that the 
range of variation in Kp represents two orders of magnitude in the amplitude 
for only a factor of 2 in the wind. 

The solar wind carries out a magnetic field, whose energy density is 
comparable to the thermal energy density. Parker predicted that the lines 
of force would be wound into spirals by the combination of the solar rotation 
and the wind. The equation 

Й + vX"ê = 0 (1) 

should be true when ^ is the actual plasma velocity which is approximately 
radial. If further the pattern of magnetic field rotates with the sun, (1) must 
be true when ^ i s the velocity corresponding to rigid rotation of the sun. If 
(1) is simultaneously true for two different velocities, В must be parallel 
to their difference, and, since the speeds happen to be nearly equal, В should 
be at about 45° to the radial direction, with either sign possible. The Imp 
data [3] shows that on about half of the days observed the field lies quietly 
near one of these directions, apart from a component perpendicular to the 
ecliptic. On other days the field jitters about continually. Several times 
when the field was quiet its direction suddenly reversed and this was followed 
by quiet field in the opposite direction. Mariner also found sudden changes 
which were clearly travelling shocks that had originated from the sun. Sudden 



OBSERVATIONS IN SPACE 343 

increases were observed on the plasma probe and sudden changes in the 
magnetic field. 

Coming now to the magnetosphere it is helpful to recall the classic theory 
of Chapman and Ferraro which omitted any interplanetary magnetic field. 
They found that the earth's field would be confined to the interior of a "cavity", 
from which the solar plasma would be excluded. This model is sufficient to 
show that the wind finds an obstacle whose dimensions are an order of magni-
tude bigger than the solid earth. Because the flow is hypersonic a stand-off 
shock is then expected upstream from the effective boundary where there 
is a stagnation point. Figure 2 shows a model f or the case of southward 

interplanetary field. The importance of this case will be discussed later. 
The boundary is found on the day-side at 8 to 13 RE and the shock standing 
off about a further 5 RE . Some properties of the shock have been obtained 
from theMIT*plasma probe [4] on Imp. 

One.energy range of electrons was observed. The flow energy of elec-
trons in the solar wind is of course small, and electrons are observed only 
when they have picked up energy comparable to the protons. Imp was spinning 
and in the solar wind the proton record showed a spike when the detector was 
aimed near the sun. Isotropization- by the shock would be revealed as a 
steady response with little spin modulation. NOERDLINGER [5] predicted 
that the electrons would appear rapidly behind the shock, while the random-
ization of protons would be relatively slow, and Imp found the sudden 
appearance of electrons, while the randomization of protons was gradual 
over a distance ~1R E . 

Olbert (private communication) at MIT has also been able to study 
the energy distribution of protons after averaging some of the data. The 
quantity actually measured is .v®f at five energies, and the middle energy is 
just where v3f has a maximum. Comparing with a Maxwellian whose maximum 
is adjusted to that observed, Olbert finds a significant suprathermal tail. 
The shock can also be detected by the magnetometer. The variance of a 
number of successive measurements is high behind the shock and drops 

LINE Of MAGNETIC FORCE 
PLASMA WIND 

Fig . 2 

M o d e l for the c a s e o f southward interp lanetary f i e l d 

* Massachusetts Institute o f T e c h n o l o g y . 
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abruptly at the front. Collision-free shocks then are one basic phenomenon 
available for study in space and another is the current sheet at the boundary. 
InFig.2 the day-side boundary occurs at those lines of force which are shown. 

UT h 

F i g . 3 

M a g n e t i c f i e l d on the d a y - s i d e measured by Explorer X I I 

Figure 3 shows the magnetic field on the day-side measured by Explorer XII 
[6] . The angles are like latitude and longitude for the spacecraft . The 
strength of the field exceeds the dipole value just inside the boundary, agree-
ing with the crude theory which predicts a factor of 2. Note that the unit of 
field strength is the gamma = 10"5 G. At the boundary the magnitude drops 
in agreement with the known increase of plasma pressure . In Fig . 3 the 
change of ф by about 180° shows that the direction nearly r everses , and 
this is found on more occasions than not. Figure 2 with its southward inter-
planetary field has such a reversal , but it is not c lear why the field just 
outside the boundary is so often near southward. The mean interplanetary 
fields observed by both Mariner and Imp were significantly southward, but 
the southward predominance is much greater just outside the boundary. 

On the day-side it seems that the magnetic field is not very important 
for the flow or at least the shape of the boundary. The boundary shape has 
been computed ignoring the interplanetary field and rough shapes for the 
shock also. The interior field and the shapes of the boundary and shock fit 
the computations reasonably well on the day-side, but not at all on the night-
side. Observations on the night-side show greater resemblance to Fig. 2. 
This is based on a process of reconnection of lines of force at a hyperbolic 
null as in the boundary current sheet. This process has been described 
before by DUNGEY [7], and PETSCHEK [8] has recently made further pro-
gress with the theory. The essential of the reconnection is that E Ф 0 at the 
null (where É = 0). In Fig . 2 a southward line of force comes up to the 
boundary and then breaks, the two halves becoming attached to the appro-
priate polar lines from the earth. The outer part of the line continues to 
move with the wind while the inner part moves at ~10"3 of the wind velocity 
over the polar cap. Thus the polar lines are stretched back in the anti-
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Fig . 4 

N i g h t - s i d e observat ions b y Explorer X I V 

solar direction like a comet's tail. Figure 4 shows night-side observations 
by Explorer XIV [6] south of the equatorial plane. 

The steady field at > 1 0 % points away from the sun as in Fig. 2. Eventu-
ally the polar lines meet up and are reconnected and dash off to catch up 
with the solar wind. The parts attached to the poles move towards the sun. 
In this model the definition of the magnetosphere is not obvious. The inte-
rior of the lines shown in Fig. 2 are included, but the north and south bounda-
ries over the polar caps will not be discussed here. 

The electric field is difficult to measure in space unless one can mea-
sure V and use equation (1). Indirect observations do however confirm the 
pattern of flow shown in Fig. 2. This is supposed to be a steady state, so 
that curl i?is taken to vanish, but in any case curl Й can in principle be obtained 
by measuring aS/9t. Now on the basis of (1) 3 may be assumed to be per-
pendicular to Ô s o that the lines of force are equipotentials. Then, if the 
electric field in the ionosphere were known, the electric field could be de-
duced on any line of force connected to the earth. Several different pheno-
mena at high latitudes all show the same pattern. These are the motion of 
ionospheric irregularities deduced from radio observations, the motion of 
auroral features and magnetic disturbances. The latter can be represented 
by equivalent overhead currents, which are obtained simply by rotating the 
magnetic disturbance vector through a right angle. The currents found show 
the same pattern as the ionospheric motions, but flow in the opposite di-
rection. Now each of these phenomena could be caused in more than one 
way, but, the fact that they show a common pattern is good justification for 
seeking a common cause. In 1961 five workers independently suggested 
that the common cause was an electric field given by (1) for the motions. 
The currents are explained by the Hall effect or by saying that the electrons 
move with the velocity giyen by (1) while the positive ions in the lower part 
of the ionosphere are kept almost still by collisions with neutral molecules. 
Hence the currents flow in the opposite direction to Part of the flow 
pattern, known to geophysicists as DS, is shown in Fig. 5 which shows 
auroral motions. 
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In the complete pattern the two eddies c lose and the motion is away 
from the sun over the pole and back round the sides. According to the inter-
pretation the flow lines are equipotentials. The potential is positive on the 
morning side and negative on the evening side, the total potential difference 
amounting at times to tens of kilovolts. The DS disturbances are detectable 
down to about 60° geomagnetic latitude. The variation with time is not too 
clearly known. The DS pattern is commonly present and no radically different 
pattern has been found. Sometimes one eddy is much stronger than the other. 
Sometimes no significant magnetic disturbance is detected. About 10Y is 
needed to show a systematic pattern and up to 10007 is observed, so that 
the strength of the electric field probably varies by an order of magnitude, 
though variations in ionospheric conductivity account for some variations 
in the magnetic disturbance seen. Slow variations in the strength of the 
disturbance are common and so are sudden enhancements known as bays. 
Very Recently Fairfield (private communication) has correlated the strength 
of the magnetic disturbance at a station at very high magnetic latitude with 
the direction of the field outside the magnetosphere observed by Explorer XII 
at the same time. He found that the disturbance was strong when there was 
a definite southward component at Explorer XII, and that when there was 
a definite northward component at Explorer XII the high latitude disturbance 
died away. This result tends to support the model of Fig. 2. 

The observations discussed so far concern mainly rather turbulent high 
^-plasmas. The interior of the magnetosphere, in which the radiation belts 
are situated, provides a quiescent plasma with (3~0.1. This is discussed in 
chapter II, but one kind of phenomenon observed from the ground may be 
added here. Observations are made at frequencies of ~ l c / s (ULF) and a 
few Kc /s (VLF) at "conjugate points", that is opposite ends of a line of force. 
Sometimes bursts of emission are observed alternately at the conjugate 
points. The ULF could be emitted by protons at gyro- resonance, the modu-
lation resulting from the bouncing [9] . The VLF could be the same pheno-
menon with electrons. A satellite could be designed to look for bounce vari-
ations in the particles, an identical pair of detectors pointing in opposite 
directions being required. 
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1 . I N T R O D U C T I O N 

Since the radiation belts were discovered by Van Allen in 1958, o b -
servations of trapped particles have rapidly built up a large body of in for -
mation. Knowledge of the neutral atmosphere as well as the ionosphere 
shows that for energetic particles the probable time before colliding with 
another particle of any kind may be extremely long. Then the only feature 
known to affect the motion of the particle is the electromagnetic field and, 
conversely, over a long time even weak electromagnetic disturbances can be 
important. Consequently, electromagnetic disturbances should be important 
in determining the form of the radiation belts, and it will be seen that certain 
features encourage an interpretation of this kind. 

The physics of the radiation belts may be regarded as a part of plasma 
physics, namely the realm in which collisions are negligible. This needs 
qualifying in that there is a boundary layer (the ionosphere) where collisions 
are important, and this is analogous to laboratory plasma containment de -
vices. The energy range of trapped particles is wide, but includes the energy 
range required for fusion reactors . The mean free time in the radiation 
belts is extreme, but the neglect of collisions yields a great simplification 
in theoretical work, and an understanding of coll ision-free plasmas is e x -
pected to be useful. Observations in space have great advantages. The 
quantity measured by a particle-detector sensitive to a limited range of 
energy and with a limited cone of acceptance is the velocity distribution 
function, which is fundamental in theoretical work. Local electric and mag-
netic measurements are also made with very little disturbance by the space-
craft. The disadvantage is that simultaneous measurements cannot be made 
at many different points. 

Another advantage of the radiation belts to the theoretician is that the 
magnetic disturbances are in fact weak compared with the undisturbed field, 
except near the outer boundary of the magnetosphere. Then the disturbance 
can be treated as a perturbation and need only be calculated on the undisturbed 
trajectory of the particle, as will be done in most of this article. Also, the 
undisturbed trajectory is adequately described by the well-known adiabatic 
theory, which is summarized below. 

2. ADIABATIC THEORY OF TRAJECTORIES 

Relativistic corrections will be omitted. The particle ve loc i ty^ has 
components v„, parallel to the magnetic field Й, and*v± , a two-dimensional 
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vector perpendicular to B . Magnitudes of vec tors will be denoted by the 
same symbol in normal type. The pitch angle a is defined by tano = vx/v l l 

with 0< a < ir/2. In a uniform magnetic field and no electric field, vM and a 
remain constant while rotates with angular velocity i î = e B / m c , where e 
and m are the charge and mass of the particle and с is the velocity of light. 
The L a r m o r o r gyro frequency is Çî/2tt, the gyro radius is vx /fJ, and the 
pitch length of the helical trajectory is 27TV,; /Г2, 

The adiabatic theory (ALFVÉN and FALTHAMMAR [1]) uses "adiabatic 
invariants", which are quantities that remain approximately constant p r o -
vided the field "seen" by the particle does not vary too rapidly in t ime. In 
this article the objective is to estimate changes in these invariants, and their 
smallness can then be verif ied a poster ior i . Proo fs of their approximate 
invariance are well-known and will be referenced. The first invariant, due 
to Alfvén and named the "magnetic moment invariant", will be taken as 

M = v ? / B = v 2 sin2 а / В . (1) 

The reason for the name is that the equivalent magnetic moment due to the 
gyration of the particle is m v f / 2 В , but the mass is omitted in this non-
relativistic treatment. The invariance of ц determines the "bouncing" of a 
particle at a "magnetic m i r r o r " . This is a region in which В varies along 
a line of force and the particle approaches, spiralling around the line in the 
direction of increasing B. It is assumed that v remains constant. As В 
increases, (1) shows that a must increase, and bouncing occurs when a 
reaches it¡2. Then vn is zero and the trajectory reverses, spiralling back 
into the region of weaker B. This argument has assumed that v or the par -
ticle energy is constant. The energy of radiation belt particles is believed 
to vary only slowly with time, depending on the electric field. The high con-
ductivity probably prevents any important steady electric field parallel to fi, 
and the other possible electric components will be treated later as perturb-
ations. Returning to bouncing, the "mirror field", B m at the "mirror point" 
where the particle bounces is determined by (1) as 

B m = v 2 / M . (2) 

For a dipole field and spherical co-ordinates with axis parallel to the 
dipole, в being co-latitude and r measured in earth radii 

Br = 2 B 0 cos 0 / r 3 , (3) 

Be = В osin б / г 3 , (4) 

B = B 0 ( l + 3 c o s z 0 ) V r 3 , (5) 

where Bo is the field at the ground at the equator. The equation of a line of 
force is 

r = L sin2 0, (6) 

where L is the distance of the equatorial point. When expressed in earth 
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radii, L is the standard labelling parameter for magnetic shells. From (5) 
and (6) 

В = B e q ( l + 3 c o s 2 e^ f s ine ) " 6 , 

where Beq = Bo/L3 is the magnetic field at the equatorial point of the shell. 
Then from (1), when м and v are constant 

sin2» = sin2 o e q ( l + 3 cos2 в ) i (sin вf 6, 

where aeq is similarly the equatorial value. On a line of force В has a mini-
mum on the equator and a trapped particle has mirror points at symmetrical 
positions in the northern and southern hemispheres. The particle bounces 
alternately at these two points or equivalently oscillates between them. Then 
it has a second natural period, the "bounce period", given by 

MN 

т . = 2 f ( 7 ) 
Ь J V „ 

Ms 

where ds is the element of length along the line of force and MN and Ms are 
the northern and southern mirror points. 

The applicability of adiabatic theory requires that the average motion of 
the particle be nearly parallel to the magnetic field as so far assumed, but 
adiabatic theory includes to first order the drift motion perpendicular to Й, 
which has three parts. Assuming the electric field Ё is perpendicular to 
B, A velocity VB can be defined by 

Ê + vB X Й/с = 0 (8) 

and it is well-known that the temporal variation of S is then given correctly 
by the description in which the lines of force move with velocity VB (DUNGE Y [2]). 

Equation (8) also shows how Ê depends on the frame of reference, and 
it follows that the part of the drift velocity which depends on the frame of 
reference is VB , independent of the charge or mass of the particle. The 
consequence of an electric field then is a drift vB . The other two components 
of drift result from non-uniformity of the magnetic field. A gradient of field 
strength normal to 3 gives a component 

(9) 

Curvature of the field lines gives a component vc determined by 

e vc X В = m с v2 К (10) 

where it is the curvature vector . The motion as described so far is well 
explained by ALFVEN and FALTHAMMAR [1]. In the dipole geomagnetic 
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field, both vy and vc are westward for positive particles and eastward for 
negative particles. 

It.is necessary to discuss the displacement of a particle due to drift 
motion integrated over a bounce period. It is convenient to introduce label-
ling parameters a, fi for the lines of force. These could be the latitude and 
longitude of, say, the northern feet of the lines of force, but any a, /3 such 
that the surfaces of constant a and constant /3 are independent and contain 
the lines of force are sufficient for the present purpose. Then the drift can 
be represented by da/dt and d£/dt. For a particle starting at P and bouncing 
at M N then at Ms and returning almost to P 

Mn ms p 

- s 
P M N M s 

It is now assumed that the local drift velocity at any point does not change 
appreciably in the time ть , the effects of such changes being discussed at 
some length below. Then, since the drift is independent of the sign of v„ , 

M S 

è a - 2 l Ë d t ( 1 1 ) 
M N 

and similarly for 6/3. With the same assumption, then 6a and 6/3 are the 
same for any point P on the same line of force . 

For trapped particles of more than about 10 keV the drift due to non-
uniformity of the geomagnetic field generally dominates over that due to 
electric fields. Protons then drift round the earth westward and electrons 
eastward. If the field is static and provided they are not too near the mag-
netospheric boundary they return to the same line of force on which they 
started, and hence there is a third period of their motion t¿, the time for 
drift round the earth. 

Thus the motion has three periods and it can be deduced from Hamil-
tonian theory that there is an adiabatic invariant associated with each, and 
having the form of an action. The validity of each invariant requires that the 
field should not change appreciably in a time equal to the associated period, 
so the stringency of the condition increases in the order in which the i n -
variants are discussed. The magnetic moment invariant, already discussed, 
is associated with the gy roperiod and the other two are derived by NORTHROP 
and TELLER [3J. The second invariant, associated with ть , is called the 
"longitudinal invariant" and is 

M N M N 

I = J vn d s = v J cos ads, (12) 
Mg Mg 

the second form in (12) being valid if Ê is perpendicular to Ë. This is i m -
portant because I has to be computed, and, with this proviso, computation 
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is necessary for a range of pitch angles, but not for a double array of pitch 
angles and energies, It may be noted that, if ju/v2 is known, this deter -
mines B m from (2), and if also I / v is known this determines the magnetic 
shell on which the particle must be. It should be noted that the term "mag-
netic shell" here means the surface generated by the lines of force on which 
the guiding centre of the particle moves in its drift round the earth. This is 
whjr a particle returns to the same line of force after drifting round the earth, 
if the field is static, even when the field is not symmetrical. The third in-
variant, associated with Td, is called the "flux invariant" and is the magnetic 
flux linked by the magnetic shell determined by м/v2 and I /v. This invariant 
determines how the shell moves if the field varies in a time long compared 
with r ¿ , but will be little used in this paper. 

With each period of the motion is associated a phase variable as well as 
an adiabatic invariant. For the bounce and drift motions the phase variables 
may be taken as latitude \ and longitude ф. For the gyration the phase vari-
able is an angle ф describing the direction of Vx and may be referred to any 
plane containing В such as the meridian plane, but a precise specification 
will not be needed. The adiabatic invariants and phase variables are sum-
marized in Table I. These six variables provide an alternative co-ordinate 
system instead of the position and velocity vectors r and v for the particle, 
and it will be found that various mixtures of co-ordinates are useful, a total 
of six co-ordinates apart from time being needed. 

TABLE I 

ADIABATIC INVARIANTS AND PHASE VARIABLES 

N a m e P e r i o d A d i a b a t i c i n v a r i a n t P h a s e v a r i a b l e 

G y r a t i o n 2ir/Ci M a g n e t i c m o m e n t ji Ф 

B o u n c e L o n g i t u d i n a l I L a t i t u d e \ 

D r i f t T d F l u x L o n g i t u d e © 

3. NUMERICAL VALUES 

It is standard practice, following McILWAIN [4], to label magnetic 
shells by the parameter L, which for a dipole field is the distance of an 
equatorial point on the shell from the centre of the earth as in (6) measured 
in earth radii. Values of L in the radiation belts range up to 10. For a 
dipole field the flux invariant is a function of L only. The flux invariant is 
the flux linked by the magnetic shell and it is simplest to calculate the flux 
outside the shell. From 

oo 
J BoL"32 JTR| LdL 

L 

one finds that the flux invariant is proportional to L . Also, L and ф can 
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be used as labels for lines of force, such as those called a and /3 in the last 
section. For the actual geomagnetic field L is re-defined in terms of the longi-
tudinal invariant, as the L of the magnetic shell in a dipole field on which a 
particle with the same value of I would be. Then the value of L differs 
slightly for different particles on the same line of force. Here, however, 
in discussing the effects of disturbances, nothing is lost by idealizing the 
geomagnetic field as a dipole field. A consequent simplification is that I/vL 
is then a function of only one variable, which may be taken as pitch angle or 
the latitude of the mirror points. 

From (5) 
Г2 = r~3 (1 + 3 cos20 =Ц)Ь"3 sin"60 (1 +3 cos20)* (13) 

where, with Bo =0.32 G, = eBo/mc = 5. 7X10 6rad/s for electrons and 
3. lX10 3 rad/s for protons. Thus П depends on the mass, but not the veloci-
ty, of the particles, and the value on a given line of force varies consider-
ably with latitude. 

The values of ть and r¿ have been computed by HAMLIN et al. [5], 
who found that good approximations are obtained from some simple formulae. 
Their approximations give 

Tb = (1. 3 0 - 0 . 5 6 s i n o e q ) (14) 

= 3.3X109 (L/v)( l - 0 . 4 3 sina eq)s 

where v is in c m / s , and 

27Г npRj 
^ 3v2L(0.35 + 0.15sinoeq) 

3. 9 X109 ( 1 5 ) 

" WL(1+ 0.29 sin Qeq)S 

where W is the energy of the particle in eV. It may be noted that Ть involves 
the particle velocity while r¿ involves the energy. It is seen from (14) and 
(15) that Td / т ь is roughly v /WL 2 , which is about 6X107 W~i L"'2 for electrons 
and 1.4X106 W"i L~2 for protons. The value of fîeqTb /2л- is the same as 
та / ть within a factor of 2. The values of these ratios must be large for 
adiabatic theory to be valid, and this is true over most of the interesting 
range. For L = 10 and W = 106 eV, we have 600 for electrons, which is ade-
quate, but 14 for protons may not be. However, the energies of interest 
tend to vary like L"" with 2< y<3, and at L = 10 the interesting energies are 
less than 1 MeV. 

4. CHANGE OF THE MAGNETIC MOMENT INVARIANT BY 
DISTURBANCES 

Only weak disturbances will be considered and it will be assumed that 
the undisturbed field satisfies the condition for adiabatic theory - that the 
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change in the field in one pitch length of the particle 's trajectory is small . 
Then we may use a constant field fio as a f irst approximation and assume 
that the perturbation of this field over many pitch lengths is small. To study 
the change of v we use 

m ^ f = e ( Ë + v X B / c ) (16) dt 

and obtain 

- g ^ ( v X B 0 ) 2 = E - ( B 0 X ? X B 0 ) + ( v - B 0 ) B - ( v X B 0 ) / c . (17) 

The component of 1? on the right-hand side of (17) is perpendicular to 
"to in the plane of v and fi0 and the component of Ê is perpendicular to t o and 
v . Both of these directions rotate with the gyration of the particle . Now, 
since the disturbance is weak, an appreciable change in|vX fi0| can result only 
if the contributions f r om many success ive gyrations re inforce each other, 
so that only special components of the disturbance need be considered, name-
ly those such that the field at the particle rotates at the gyrofrequency. It 
is convenient to distinguish between changes of the field with t ime and in 
space, along and a c r o s s the field line. 

A particle with vx = 0 moves precisely along a field line and the changes 
it sees in the field are due to variations with time and along the field line. 
Particles with vx f 0 see these changes and additional changes due to var i -
ation of the field across the field lines. Because the particle is gyrating across 
the field lines, the latter variation as seen by the particle is generally periodic 
with the gyroperiod and includes components rotating at the gyro frequency . 
When the adiabatic conditions are satisfied the effect of variations across 
the field lines is well approximated by working to the first order in the gyro-
radius vL /Q , and then the change in v¿ is just such as to keep м constant. 

Both terms on the right-hand side of (17) involve the vector vX Й0, which 
gyrates and may be represented by a complex number which var ies like 
e x p i / f2dt, f2 being a slowly varying function of time such that dfi /dt « П 2 . 
Then the integral of the right-hand side of (17) with respect to time is like 
a Fourier integral, with expi / f2dt instead of only e i n t . This suggests that 
over a period of several gyrations at least the change in vx depends on a 
narrow band in the spectrum of the disturbance and l inear the gyrofrequency 
as seen by the particle. This was first pointed out by Welch and Whitaker 
and investigated by DRAGT [6]. PARKER [7] also discussed acceleration 
of electrons involving this resonance. Consequently, it is useful to make a 
thorough study of the effect of sinusoidal waves on a particle in a uniform 
magnetic field, as a guide to the more general problem. 

Let the z -axis be parallel toï?o. and consider waves whose components 
vary sinusoidally with z-wt, w being the phase speed parallel to Êç>. P r o -
vided w < c , a frame exists in which the wave is static, its components being 
independent of time. If w> c, there is a frame in which the wave components 
are independent of z, but here attention is confined to the former case c . 
F o r a static wave the e lectr i c field has a potential, and the energy of the 
particle including the potential energy is conserved. It is convenient to work 
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in this frame and to calculate the change in v„, the change in |vx | then being 
determined by the conservation of energy. 

The effect of the wave will be approximated by integrating along the un-
perturbed trajectory specified by 

x = a c o s f 2 t , y=as inf2t , z=v„t 

where a is the gyroradius vA /Í2 . The components which cause changes in 
vn are E z , Bx and By, and the most general forms for these in the frame in 
which the wave is static are • 

E z = Ecos(|3 + kz), Bx = bx cos(|3x+kz), By =by cos (j3y +kz) (18) 

where E, b x , by, fi, fix and j3y can vary with x and y. The rate of change 
of v„ is given f rom (16) by 

(m/e) dv„ /dt = Ez - (vx / с ) (By sin Q t - Bx cos П t). (19) 

It is seen that the magnetic term involves gyration, but the term in E z does 
not. If a wave has a longitudinal electric component it is effective when the 
particle sees zero frequency, but the change is in vN, not v¿ . 

In one gyroperiod the phase of the wave at the position of the particle 
changes by 27rkvN/fi. Consider then the changes in v„ in successive gyro -
periods. Since these differ only in the phase of the wave, they must be pro -
portional to C O S ( Y + 2 Î T nkv„/fi), where 7 is some constant and n refers to the 
nth gyroperiod. On summation of a large number of successive gyroperiods, 
these changes in v„ will tend to cancel out unless kv„/Í2 is nearly an integer. 
If kv„/f2 is nearly an integer, on the other hand, the contributions from suc-
cessive gyroperiods will reinforce each other because they are in phase, 
and this will be called a resonance. It is of interest to calculate the change 
of vM in one gyroperiod at a resonance and we put kv„ = NÍ2, N being an integer 
for resonance. 

First assume the wave components do not vary with x or y. Then sub-
stituting (18) into (19), integrating over a gyroperiod, and writing ^ = Г21 gives 

2tt 

В о б vn = J [ cE cos (/3+N0)-VX (b ycos( /3 y+N<// )s in0-b x cos {$Х + Щ) совф)]йф 
о 

= 2ж сЕ cos fi, if N = О 
= 7TV1 (bx cos fix +by sin|3y), if N = 1 
= ir v¿ (bv cos fix ~b y sin|3 y ), i f N = - l 
= 0, if |N| > 1. (20) 

It should be emphasized that 6v„ is not particularly big at a resonance 
and that the resonance depends on reinforcement from many gyroperiods. 
In the simple case of no variation with x or y, (20) shows that 6v„ vanishes 
except for particular values of N. The combinations of bx and b y occurring 
in (20) for N =± 1 are circularly polarized components, such that the particle 
sees the magnetic disturbance vector gyrating in the same direction as the 



ELECTROMAGNETIC PERTURBATIONS 3 5 7 

particle itself gyrates and remaining perpendicular to the particle velocity. 
The cases of N = + 1 are called "gyroresonance" and the three resonances 
shown by (20) are likely to be the most important. When variation with x 
and y is included resonance can occur at any N. The occurrence of resonances 
with quite large values of N has been observed in the inverse phenomenon, 
which is the effect of the plasma on the wave. This is expressed by a d i s -
persion equation, which is found to involve an integral over velocity space 
of a series of terms with denominators u + kv„ -NÎÎ, the vanishing of which 
is the resonance condition. If low energy particles are important, the wave 
is strongly affected near и =Nf2. The Alouette satellite carried an ionosonde, 
i . e . a pulse transmitter and receiver, and the plasma was found to resonate 
at multiplies of the electron-gyrofrequency - sometimes up to the fifteenth 
(JOHNSTON and NUTTALL [8]). 

Consider the term involving E in the integral in (20), when the variation 
of E and (3 with x and y becomes a variation with ф through (17), and for 
simplicity consider variations in E and ¡3 separately. If /3 is independent 
of ф, but E is a polynomial in x and у of order v, 6vtl vanishes when N>v . 
If E is independent of ф but /3 is linear in x and y, the formulae for integral N 

2ir 
J c o s ( N 0 - S S I N 0 ) D ^ = 2TTJ N ( ? ) ( 2 1 ) 
о 

and 

2ir 
J sin(Ni// - f s in^)d^ = 0 
о 

show that 6v„ contains a factor JN (Ka) where К is of the order of the rate 
of change of phase |3 across the lines of force. If Ka is small JN (Ka) » 
(Ka)N / 2 N N! showing that the resonance with N = 0 is likely to be most i m -
portant. Thus, in general, if E and (3 do not vary much in a gyro-radius, 
only a few resonances are important. The effect on 6v„ of variations of 
Bx and By with x and у is similar. Since the principal resonance is N = 1 
or N = -1 , the order of the Bessel function in (21) becomes N - 1 or N + 1 
(DUNGEY [9]). 

In the frame of the wave, as used so far, the electric field has a p o -
tential which limits the possible change in the particle energy and at 
resonance the particle energy returns to its original value exactly after a 
gyration. Consequently 6v = 0, then 6v„ = -v sino 6a and 

6 « = -6v„ /v , . (22) 

This is the change in one gyration in the frame of the wave. In another frame 
moving relative to this in the direction of ¿>vM, and 6Vj_ are the same, 
but in general the energy changes. If w is the phase speed of the wave in 
the direction of So, the energy changes by w 6v„. It may be noted thatN =0 
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implies that v„ vanishes in the frame of the wave and hence that ó v¿ =0 and 
6ц = 0 . 

In a uniform So and a wave field given by (18), the change in v„ and hence 
z would eventually become important, and then the approximation of inte-
grating along the unperturbed trajectory would be invalid. For very small 
amplitudes the change in z remains unimportant for many gyroperiods and 
then it is found that "particle trapping" occurs, such that v„ oscillates about 
the resonant value (DUNGEY [9]). In practice, in the magnetosphere only 
low energy particles are likely to resonate with a wave for long enough for 
this trapping effect to be important. Because fi and v„ change with time in 
a non-uniform field, the particle just passes through resonance, and it is 
important to estimate the changes in v„ and v, resulting from such a passage 
through resonance or equivalently the number of gyrations the resonance is 
effective. 

Since the phase velocity w may vary with z, it is best to work in an a r -
bitrary frame. The condition for resonance is 

where u is the angular velocity of the wave. . At any point let ktes be the 
value of к determined by (23), so that (k-kres ) passes through zero at a 
resonance at say z = zres . Both к and kres vary with z, and it will be a s -
sumed that a linear expression gives an adequate description, written as 

When (18) is substituted into (19) the right-hand side varies sinusoidally 
with kz and the part belonging to each resonance N varies sinusoidally with 
(u-NÍ2)t, which is equivalent to -k r e s z. When к and k^ vary, the resonant 
part of the right-hand side can adequately be taken to vary sinusoidally with 
/(k-kres)dz. Using (24) and integrating over time gives 

the part with sine instead of cosine not contributing. 
The main contribution to this integral comes from small values of 

z-zres and the limits may therefore be taken as ± <x>. Its value is then 
(7Г/к ' /v M showing that the number of gyrations of effective resonance is 
(f2/vM )(2тгк')"5 . If this number is not larg^ compared to one, the resonance 
is not sharp and the perturbation of the resonant particles is not much greater 
than that of the other particles. If k1 ~k /RE, as it may well be, this number 
is (f2/vll)(RE/27rkres )i . This will be used as a rough guide, though it should 
be checked for particular instances. 

Finally, it must be recognized that a trapped particle will pass through 
resonance many times, either because there is a series of short-lived 
disturbances or because the disturbance has a fixed frequency and the reso -
nant frequency varies as the particle moves, in which case there are two 
resonances in each bounce period. It will be assumed and is usually plausible 

kv„ +w=NS2 (23) 

к. л res - k ' ( z - zres ) (24) 
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that the phase factors in the values of б a for successive resonances are 
uncorrelated, and then successive changes must be added as in a random 
walk to give a probable change of (£(6а)2)|. The individual changes in a 
are small and the effect on the velocity distribution may then be described 
as a diffusion in pitch angle. This may be described mathematically by 
adding a diiiusion term to Liouville's equation (BORN [10]), as will be discussed 
in detail in section 8. Loss and injection are neglected entirely in this paper. 
Liouville's equation 

af/at + vj af/axj + tdvj/dtiaf/avj =o 

states that, if one follows a particle in phase space, f remains constant. Any 
diffusion term representing diffusion in pitch angle will have the form 
F3/a<*(G9/Э cc(Hf)), where the product FGH is the diffusion coefficient D and only 
an estimation of the order of magnitude of D is of interest here. The distinctions 
between F, G and H need some care and will be considered in section 8. 

Another possible form of disturbance is noise specified onlyby a spectrum. 
The particle then behaves as a resonator and 6a depends on the amplitude 
of the noise in a certain bandwidth centred on the resonant frequency. The 
value of б a over a long time may be obtained by combining the values for 
segments of time according to a random walk, but if the change in the reso -
nant frequency is small in relation to the spectrum of the noise the same 
result is obtained by treating the resonant frequency as fixed. Taking the 
phase as coherent over time t the bandwidth is proportional to t - i , hence 
b a t - i and ôo-orti as before . 

5. APPLICATIONS OF THE CHANGE IN MAGNETIC MOMENT INVARIANT 

To apply the results of the previous section to the radiation belts, some 
knowledge of waves in the magnetosphere is required. RAO and BOOKER 
[11] give an extensive survey, but here a greatly simplified picture will be 
used. For frequencies below the proton gyrofrequency iîp/2ж the phase 
speed will be taken as the Alfvén speed VA = (4тгрН В. For frequencies b e -
tween f2p / 2JT and about one-third of the electron gyrofrequency П е /6 T the 
simple whistler dispersion equation 

(w/V A ) 2 =u/n p (25) 

will be used. Higher frequencies will not be considered, nor will the very 
slow waves near the proton gyrofrequency. Very slow waves resonate with 
many particles and may be heavily damped in consequence. From (13) with 
fio = 3.1X103 rad/s for protons, fip/2ж ranges from 1 kc /s to about l c / s , 
and the spectrum in this range in the magnetosphere is practically unknown. 
The value of VA in the magnetosphere is typically between 1000 and 3000 km/s. 

Investigations to date have been concerned mainly with gyroresonance. 
The resonance with N = 0 may be important, but, though it was convenient to 
include N = 0 in the previous section, it was seen there that resonance with 
N = 0 does not change ц., and so it will be excluded from this section. DRAGT 
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[6] considered gyroresonance for protons. He considered frequencies much 
less than fip so that the resonance condition is approximately 

u = nvA7v„ . (26) 

To be consistent v„ » VA and it may be noted that a proton with a speed 
of 104 k m / s has an energy of 520 keV. Also, when vn = 104 k m / s , 2jr/kres = 
2 i s about 10L3km, and the corresponding number of gyrations of e f -
fective resonance about 25L~3/2. Thus for high energy protons the resonance 
is generally not very sharp. F r o m (22) and (20) 6a ~2it b / B o . The value 
of b is not expected to vary greatly with L . For b = 1 gamma, б 10~Ч_,3 

degrees . DRAGT [6] suggested that scattering by hydromagnetic waves 
leads to the loss of trapped protons and, assuming the hydromagnetic 
spectrum cuts off above a few c / s , found a maximum energy of trapping 
which decreases rapidly with L. Further progress requires a better know-
ledge of the wave spectrum. 

DUNGEY [10] and CORNWALL [12] have discussed the effect of whistlers 
on energetic electrons. The approximate resonance condition corresponding 
to (26) combined with (25) gives 

u = (m p /me) (VA/v„ ) 2 n e . (27) 

Unless v„ is comparable to the speed of light this gives a value at least as 
big as Í2e in which case (25) is invalid, and in fact less energetic electrons 
resonate with frequencies near f2e/2ir, but here we consider v„ ~ c and и is 
then an order of magnitude less than £2e and (25) is adequate. The number 
of gyrations of effective resonance is about 200 L"3^. The largest amplitude 
expected is about 1 gamma and then 6£ Ï~0.3 L 3 / 2 degrees . Combined with 
whistler statistics a random walk as described at the end of section 4 gives 
the right order of magnitude for the lifetime of f ission electrons (BROWN 
and GABBE [13]), and both DUNGEY [9] and CORNWALL [12] account for 
the rapid variation of lifetime with L in the neighbourhood of L = 2 in terms 
of the spectrum of whistlers. Fission electrons have energies ~ 1 MeV, and 
in the resonance condition (23) kv„ is typically a few times u, so that u / Q < j . 
The wave frequency w in the frame of the earth is then determined by the 
dispersion, which is known empirically from whistler studies. In the neigh-
bourhood of L = 2 it is found that the frequency required for resonance is 
proportional to L"6 and so varies rapidly with L. At L = 2 the resonant f r e -
quency is between 10 and 20 k c / s , and for the higher frequencies required 
f or resonance at L < 2 the spectrum of shistlers shows quite a rapid fall 
approximated by amplitude ocf"1. With f «L~6 this then leads to a rapid in -
crease in lifetime with increasing L, similar to the behaviour observed. 
The main consequence of whistlers then is the short l ifetime (a few days) 
for electrons of ~ 1 MeV in the region 2 < L < 3, known as the " s l o t " . 

The same mechanism for 40 keV electrons in the outer belt (L > 3) has 
been studied by Kennel (private communication) and found to be important, 
but no details can be included here though some information on the outer 
belt is now added. Whistler studies by CARPENTER [14] show that the 
electron density suddenly drops by an order of magnitude between L = 3 and 
L = 4, the relevant consequence of which is that the Alfvén speed at L = 4 is 
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about the same as at L = 2, so that the ratio of the resonant frequencies at 
fixed particle energy at L = 4 and L = 2 is 2 - 3 rather than 2 ~6. A more i m -
portant qualitative di f ference is that in the outer belt disturbances in the 
relevant frequency range are emitted by the trapped particles themselves, 
presumably due to instability involving the inverse of the phenomenon d i s -
cussed here. These emissions form an interesting subject of their own, and 
have considerable variety. There are many types with a relatively narrow 
instantaneous spectrum which glissando up or down in frequency, but also 
hiss of relatively broad band, which is used by Kennel. Observations of 
40 keV electrons on the Injun satellite (O'BRIEN [15]) show two phenomena 
which need explaining: a steady background, in which the flux of dumped 
part ic les is substantially l ess than the flux of part ic les m i r r o r i n g at the 
altitude of the satellite, and "splashes" in which both these fluxes increase 
to the same value. Assuming that splashes are due to a true time variation 
rather than to the satellite passing through an arc, they could be caused by 
a rapid randomization of pitch angles, while the background could be a c -
counted for by a modest steady hiss . Measurements of the hiss were also 
made by the Injun satellite and Kennel has compared the observations with 
the requirements, and concluded that they were compatible. 

6. CHANGE OF THE LONGITUDINAL INVARIANT BY DISTURBANCES 

Disturbances which change the longitudinal invariant have not yet been 
extensively investigated, and this section will be little more than a list of 
mechanisms. The problem is similar to that of the magnetic moment i n -
variant, but there is a greater variety of geometr ies and the disturbances 
cannot be adequately approximated by plane waves. It is now assumed that 
H remains constant and then, if L and W are calculated, I may be deduced, 
and it is most convenient to consider changes in L and W. Thus, while it is 
useful to classify disturbances by the adiabatic invariants which are changed 
or preserved, the adiabatic invariants are not the easiest variables to work 
with. Here it may be recalled that the N = 0 resonance (see section 4) does 
not change Ц, and it does change W but not L, so that I changes and this is 
one mechanism for the list. This mechanism is unlikely to be coherent for 
more than a fraction of a bounce period, however, and it may well be that 
the other mechanisms, which involve resonances with a multiple of the bounce 
period, are more important, though of course this depends on the amplitude 
of different disturbances, which are not well known. 

F o r resonances with multiples of the bounce frequency, as in the r e -
sonances of section 4, the frequency seen by the particle is not in general 
the same as the frequency seen in the frame of the earth, this time because 
of the east-west drift . Although the disturbances cannot be represented by 
plane waves they may be Fourier-expanded in time and longitude, varying 
as e x p i ( u t - m ^ ) where m is an integer. They then have an east-west angular 
phase velocity u /m and the resonance condition analogous to (23) is 

u - 2 j r m / T d = 27rN/rb . (28) 

The bounce motion of the particles is not sinusoidal nor is the variation of 
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the disturbance along a line of force , so that the value of N may not be par -
ticularly significant. The distinction between odd and even N is important 
and it may be generally expected that low values of N are most important. 
In this section the possible electric and magnetic polarizations will be con -
sidered. The changes in W and L are integrals over a bounce period, and 
it will be found that for several components they are just weighted means, 
but for two the weighting factor changes sign with vn, and then odd harmonics 
are required. 

Just as waves wfith N = 0 in section 4 did not alter ju, it may be asked 
whether disturbances with N = 0 according to (28) will alter I. The proof of 
the longitudinal invariant (NORTHROP and TELLER [3]) assumes that at a 
fixed point the field does not change appreciably in a bounce period, or 
ыть « 1 which together with N = 0 requires 2 г г т « t<¡/TI>. The values of 
T D / r b "given in section 3 show that this condition may well be met when m 
is a small integer. A further argument suggests that this condition is not 
needed, however. In a frame rotating with the disturbance at angular v e -
locity u / m the disturbance is static, and the fact that such a frame is not an 
inertial frame is probably unimportant, so the transformation will be treated 
as Newtonian. The electric field then has a potential, partly due to the d i s -
turbance, but this is of f irst order and the important part is a steady I? in 
the direction of the principal normal to the lines of f o rce due to the trans-
formation. The transformation must here be treated as a rotation so that 
the velocity of the frame <x L, and, with В oc L"3 , the electric field ocL,'2 and 
the potential <x L" 1 . For a given u /m the change in W is then in a fixed ratio 
to the change in L . Now the preservation of I determines this ratio 6W/6L 
and the required value must correspond to N = 0 or u /m = 2JT/T<I . But we now 
see that, for any disturbance with N = 0, ôW/6L must have this same value, 
and then I is preserved . This additional situation in which I is preserved 
depends on the existence of a frame in which the disturbance is static. Given 
this, I is preserved for any disturbance with N = 0. 

A simple effect requiring odd harmonics is that due to an electric c o m -
ponent E„ parallel to Й, which changes W and is effective if Еи is directed 
oppositely during the northward and southward passages of the particle. This 
has been proposed by CHAMBERLAIN [16] to explain aurorae, the disturb-
ance being provided by an instability discovered by KRALL and ROSENBLUTH 
[17], and this will be further discussed after some other components have 
been introduced. The only other effect which resonates at odd harmonics 
is due to a magnetic component bn in the direction of the principal normal 
to the line of f orce . This tilts the line of force in the meridian plane so that 
the mean velocity of the particle is also tilted and, if bn reverses sign when 
the particle bounces, the particle zigzags, as shown in Fig . l , projected on 
to a meridian plane. The mean velocity is obtained assuming that the lati -
tude does not change appreciably in many gyroperiods. The component of 
this mean velocity in the direction of the principal normal is b n v„ /В and the 
rate of change of L is obtained by multiplying this by |VL |, which conser -
vation of flux shows to be BL 3 sin3 0 / B o R E . Then 

dL/dt =bnv„ L3 sin30/BoRE (29) 
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and this must be averaged over a bounce period to give the result of a motion 
such as that shown in Fig. 1. 

Fig-1 
P r o j e c t i o n o f the p a r t i c l e t r a j e c t o r y 

The component bn must be related to fi by the Maxwell equation 

9b/3t = - c curl E (30) 

and curl ë may arise from ЭЕИ/Э0 or â - The effect of E„ on the par-
ticle has already been discussed but not that of E 0 . It has been implicitly 
assumed that E„ and bn are even functions of latitude, but then the E„ r e -
quired in (30) will be an odd function of latitude. Then for odd harmonics 
the particle will see E0 as even harmonics, and E® also has resonant effects. 
There is a change in W due to the particle 's drift and a change in L given 
by (29) with bnVii replaced by c E 0 . 

It has been seen that (30) relates components bn , E„ and E 0 , E0 being 
an odd function of latitude, if bn and E„ are even. Consequently a disturbance 
involving one of these components must involve one of the others and usually 
both. When there is a disturbance involving bn a change of frame in an east-
west direction changes E„ but not (to first order) bn or E 0 . In a frame in 
which the disturbance is static, E„ and E e must be derived from a potential 
and a change in W arises f rom the steady E n . The change in L is deter -
mined by (29) for the effect of bn and the corresponding equation involving E0. 
One may expect a tendency for these effects to cancel out, but no more than 
a tendency. Chamberlain's mechanism is of the kind discussed here, but 
he emphasizes E n , and Krall and Rosenbluth's stability study uses a plane 
stratified model and considers waves travelling strictly perpendicular to 
â . The results are so interesting that investigation of a more realistic 
model should be worthwhile, and the other effects listed here would probably 
then need to be taken into account. Chamberlain's acceleration arises from 
a finite first order part of Î? • a quantity which tends to be small in a 
plasma. It may be noted that Ê • Й is independent of the frame of reference, 
and the f irst order part is of interest and is EM B + E n b n . In Krall and 
Rosenbluth's model En is due to a gradient of plasma pressure and it may 
be questioned whether the perturbation in plasma pressure is adequately 
taken into account in their treatment, there being some ambiguity when there 
is no spatial variation parallel to fi. It may be that E„B+E n bn is o v e r -
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estimated by Chamberlain, but even, so there would still in general be a 
change in L and W when bn and E a are included. 

The remaining effects involve components seen as even harmonics. Pre -
viously E0 was considered as an odd function of latitude, but it is noted here 
that if ~Еф is an even function of latitude there is still a resonance when the 
particle sees E® with the same sign at both equatorial crossings. Similar 
considerations apply to the remaining components to be discussed. An equa-
torial perturbation Еф is likely to be associated with a varying field strength 
or perturbation component bu. The betatron effect must then be included 
by a contribution to dW/dt of |тмЭЬ„/at. PARKER [18] discussed the beta-
tron mechanism, acting near the mirror point. A likely concomitant is an 
east-west gradient of b„ , which leads to a contribution to dL/dt due to v v 
given by (9) with v bu substituted for 

The final component b® causes drifts in two different ways. Including 
b® in the Ô preceding the vector product sign in^(9) gives a v v which changes 
L, and b0 gives a component of curvature Й- V(b®/B) which gives a vc a c -
cording to (10) in the direction of V L . These two effects may tend to cancel, 
and must do so if I is preserved, as for instance if the disturbance is static 
and axially symmetric such that ЭЬ /̂Э® = 0. 

Hardly any numerical estimates of these effects have been made. The 
values of тъ range from a fraction of a second to a few minutes, thus falling 
in the ULF fange in which micropulsations are observed at the ground. Some 
micropulsations may themselves be due to the dumping of trapped particles, 
in which case the field at the ground is not simply related to that in the mag-
netosphere, but some may have their sources further out in which case the 
relation between the disturbances at the ground and in the magnetosphere 
depends only on their propagation through the ionosphere. There is good 
hope that this question will soon be clarified by better observations on the 
ground and by satellite observations. At present one may very crudely a s -
sume an amplitude of ~ l y independent of L . Equation (29) gives a typical 
rate of change of L as (Ь п /В 0 ) (Ь 4 / ть ) showing that it increases rapidly with 
L . For bn bn /Во ~3X10-5, so that the characteristic time is always 
many bounce periods, but disturbances of this amplitude are not negligible. 

7. DISTURBANCES WHICH CHANGE ONLY THE THIRD INVARIANT 

In the last section we have worked with changes in W and L and now, if 
I is preserved, it is necessary only to consider changes in one of these and 
W is most convenient. The causes of changes in W are electric components 
as discussed in the last section, but E„ can be omitted because it required 
the particle to see odd harmonics of the bounce frequency, which implies 
a change of I. There remain the betatron effect and E 0 . It may well be that 
non-linear effects are important in this case, for instance if the disturbance 
is a storm which moves the boundary in from L = 1 0 t o L = 8. Then a particle 
at large L may suffer a large change in energy and hence a large change in 
the particle 's L, if м and I are preserved. Non-linear discussions of the 
effects of storms have been given (PARKER [19], DAVIS and CHANG [20]) 
but it is useful to consider the simpler linear situation analogous to sections 
4 and 6. Now since the undisturbed motion is simply a drift with constant 
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d<£/dt, the only resonance corresponds to N = 0 of the last section. The rate 
of change of W must be averaged over a bounce, but then simply integrated 
over time with ф increasing by 2Trt/Td. Disturbances which resonate in this 
way, with periods as seen at the ground of minutes and fairly large values 
of m, may be important, but more is known of impulsive disturbances for 
which resonance is not important. We therefore consider large-scale 
disturbances with a time-scale not many times less than Td. The importance 
of such disturbances was first suggested by KELLOGG [21]. 

- щ ^ / 
F i g . 2 

DS pattern 

The contributions to dW/dt from the betatron effect and E0 are c o m -
parable if curl Й is comparable to E0 / L R E , and this may well be the case 
for disturbances due to motion of the boundary, for instance. There is also 
evidence for disturbances in which curl Ё may be negligible, namely bays. 
Most of the disturbances on high latitude magnetograms are bays, if the term 
"bay" is not defined to require a sudden beginning. There is a great range 
of variation in their forms as they appear on magnetograms, but they nearly 
all conform to the DS pattern shown in Fig. 2 when the disturbance vectors 
at the different stations are plotted on a map (FAIRFIELD [22]). Many workers 
(AXFORD and HINES [23], CHAMBERLAIN [24], DUNGEY [25], FEJER [26], 
KERN [27]) have interpreted bays as being due to an electr ic field in the 
ionosphere, normal to the flow lines of both ionospheric movements and 
electric currents, which both have the DS pattern as shown in Fig. 2. This 
figure shows the ionospheric movements, the electric currents flow in the 
opposite direction, causing magnetic disturbance at the ground in the d i -
rection obtained by rotating the movement vector 90° clockwise, and the 
postulated electric field also has the latter direction. The pattern is gener-
ally interpreted as being due to the flow of the solar wind past the earth, 
and it can occur in a steady state, though the onset of a bay must involve 
some change, if only an intensification of the flow. At the ionospheric level 
curl ÍÍ must be small, and this may well be true far out in the magnetosphere 
also, though this has not been investigated. Figure 2 also shows that the 
Еф of the DS pattern is westward on the nightside and hence increases W 
there, and on the dayside E</> is eastward and decreases W. Thus a bay is 
most effective if its duration is ~Td/2 which is a possible value since bays 
last 1 0 - 3 0 min. In this case, at large L, 6W may be as much as 20 keV 
and certainly several keV. If Td/2 is smaller than the duration of the bay 
all particles will drift more than 180° in longitude during the course of the 
bay and cannot then gain energy all through the bay, but 6W will still be of 
the same order. If Td/2 is larger the particles drift less than 180° and the 
magnitude of 6W is correspondingly decreased. The potential of the DS field 
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decreases rapidly as L decreases, and is undetectable for L less than about 
4, except for very strong bays. This mechanism is being investigated 
further by the author. 

The betatron effect is likely to be important for sudden impulses which 
occur at a rate of several a day (NISHIDA and CAHILL [28]). The value of 
6W/W should be comparable to 6B/B, and ÔB probably varies much less 
with distance from the earth than В does. Consequently, this effect also in-
creases rapidly with L and should be substantial at large L . Sudden i m -
pulses grow in a few minutes, decáy much more slowly, and are seen all 
over the earth with the same sign. It is possible that the 6W of the decay 
cancels most of that of the growth phase, but it need not be so, for instance 
if the magnitude varies with longitude. This mechanism has been investi-
gated by Mead and Nakada using Parker 's non-linear formulation. 

Observations of protons in the outer belt by DAVIS, HOFFMAN and 
WILLIAMSON [29] suggest that disturbances which change only the third 
invariant are important. These protons have an exponential spectrum r e -
presented by -e"w /woand the variation of Wo with L shows a strikingly good 
fit to the variation for an individual particle with ju and I constant. The value 
of W0 is not very different for different values of a e q , but the slight 
differences in 9Wo/9L for different values of o-eq agree with the pre -
servation of ¡л and I. Because the intensity of these protons varies very 
little with time it has been possible to study their distribution function f 
(NAKADA, DUNGEY and HESS [30]).. It is found that 9f/9L at fixed ц and 
I is always positive, which will be found on the basis of a diffusive mechanism 
to indicate an external source. Also (9f/9L)jj,i is small for L > 5, which will 
be found to suggest that the distribution is dominated at L > 5 by disturbances 
which preserve ju and I. Provided the individual disturbances are not too 
strong their effect can be represented by a diffusion term as in section 4, 
and it will be shown in the next section that this has the form 3"19/ 9L(3D9f/ 9L), 
where the derivatives are taken at constant ц and I, D is the diffusion coe f -
ficient, and Э is the Jacobian such that Э6Ц61 6L is the volume of phase space 
corresponding to the range of values 6/u, 61, 6L, and is L~2 apart f rom a 
constant factor (see Appendix). Then 3D9f/9L represents the inward flow 
of particles corresponding to the diffusion and, if the source is at the out-
side, this must increase monotonically with L. Now 9f /9L is observed to 
be much smaller at L = 6 than at L = 4 and hence D must be much larger at 
L = 6. Estimates of D have been obtained from rough statistics of both i m -
pulses and bays. Both yield values of D which increase rapidly with L, as 
required, and both suggest characteristic times of diffusion at L = 6 of the 
order of one week. 

Assuming this interpretation, impulses and bays have important effects 
on protons of 10 to 1000 keV in a t ime-scale of days, and they must affect 
electrons of the same energy in the same way, since r¿ depends on energy 
but not mass. Observations show that the electron distribution is much more 
variable in both space and time, so that disturbances which change /u and I 
for electrons must be relatively rapid. The energy spectrum of electrons 
has not been measured in the same way as for protons, but the overall p i c -
ture obtained from observations at different energies shows a softening of 
the spectrum with increasing L, which again suggests an external source. 
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8. THE FORM OF THE DIFFUSION TERMS 

At present the precision of this subject is little better than orders of 
magnitude but, anticipating improvement, it is worth considering the form 
of the diffusion terms. Following the argument in terms of a random walk, 
as in section 4 or BORN [10], the diffusion terms should have a Fokker-
Planck form. Microscopic consideration to be described in this section, 
on the other hand, shows that the phenomena are more akin to stirring and 
it will be shown here that this approach determines the form of the diffusion 
terms, the statistical properties of the disturbances being represented by 
a single coefficient. Now the Fokker-Planck equation contains1 two c o e f -
ficients representing the disturbances, one involving the mean square d is -
placement and the other the mean displacement. Then the Fokker-Planck 
equation can agree with our single coefficient equation only if the two Fokker-
Planck coefficients are related in a particular way. Leverett Davis (pr i -
vate communication) has shown that the coefficients obtained by DAVIS and 
CHANG [20] are so related and hence that both approaches are valid, and 
only one coefficient needs to be computed for any species of disturbance. 
The reason for this simplification will now be described. 

The equation to which the diffusion terms are to be added is Liouville's 
equation, and the objective may therefore be regarded as finding an i m -
provement to Liouville's equation. Now the disturbances, which have been 
discussed, have been quite specific , only the frequency of occurrence of 
disturbances of different kinds and different amplitudes being treated sta-
tistically. Consequently, in treating the effect of a single disturbance, with 
the fields completely specified, the trajectories of particles could be c o m -
puted and Liouville's equation used to find the effect on the distribution exact-
ly. Liouville's equation states that f remains constant following a particle 
trajectory in phase space, that is f is convected in phase space, and hence 
the effect is like stirring. Now in all the cases discussed the changes suf-
fered by an individual particle depend critically on the relevant phase vari -
able, with the result that after the disturbance f varies with this phase vari-
able, whereas it has been generally assumed that the undisturbed f does not 
vary with any of the phase variables. The stirring occurs after the disturb-
ance simply from the undisturbed motion and is due to the variation of the 
natural periods with the adiabatic invariants. For example, consider the 
disturbances of section 7, where only particles with given values of /u and I 
need be considered. The disturbance makes f longitude-dependent and, im-
mediately after the disturbance, it is likely that the longitude-dependence 
will have some similarity on different shells. The drift motion, however, 
rotates the distribution on each shell at angular velocity 2tt/t¿, which varies 
with L. The result is that the contours of f are wound into a spiral. The 
resonances with the Larmor and bounce periods lead to stirring in a closely 
analogous way. 

To derive the diffusion terms it will be assumed that the contours of f 
are wound into a tight spiral or analogous fine structure, the validity of this 
assumption being briefly discussed later. It is then assumed that the fine 
structure is smoothed out in a particular way. The effect of stirring in -
creases the fineness of the fine structure indefinitely and there is clearly a 
limit to the smallness of detail which can be meaningful, since f is a sta-
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tistical description of particles and is not meaningful if applied to volumes 
of phase space so small as to contain only a few particles. Thus the use of 
Liouville's theorem, which conserves entropy, has the consequence, as soon 
as there is any disturbance, that smoothing is required, which increases 
the entropy. In fact there is a physical mechanism, which probably causes 
smoothing before the fine structure becomes meaningless, and is r e p r e -
sented by a true Fokker-Planck term. This is due to noise at higher 
frequencies than those included before, which causes a random change in 
the velocity of a particle. For example, noise from the sun at ~10 M c / s 
would contribute, and, possibly, noise generated by the trapped particles 
themselves. This true Fokker-Planck term must be small enough to allow 
the long lifetime observed for some particles. 

The mechanism of stirring may be illustrated by considering f to be a 
function of L and ф, and the undisturbed motion to be given by dL/dt =0 and 
d<£/dt = ud , which is dependent on L. A diffusion equation will be written 
for f as 

af/9t + ud3f/8<i>=KV2f. (31) 

The right-hand side is inserted to do the smoothing, К being a small d i f -
fusion constant and the detailed form of the term being unimportant. The 
Fokker-Planck term would have the Laplacian in velocity space, but this 
discussion is only an illustration and the variables chosen are unimportant. 
The fine structure set up always involves a rapid variation in velocity space, 
so that the Fokker-Planck term is always effective in smoothing. 

Let f be expanded as a Fourier series in ф 

f= E f n e i n o . 

Then (31) gives separate equations for each fn 

9fn /9t + i n u d f n =Ke" i n®V2(e i n 0fn). (32) 

The first approximation, neglecting К altogether, is 

fn •*> f n(0) e"in Wdt (33) 

which represents the rotation of the distribution at angular velocity ua . The 
approximation (33) gives 

9fn /9L яа (9fn(0)/9L - i n t fn(0) d /dL) e"in "d1, (34) 

and the term linear in t represents the steady increase in | 9fn/9L, j due to 
the winding of the spiral. Now |9fn/9<£| is constant in this approximation 
and it is therefore the derivatives with respect to L which represent the 
growth of fine structure. It is assumed that К is very small, sothat KV2f(0) is 
negligible, and that the only part of the diffusion term to be included is that 
which represents the fine structure. Then the dominant term in V 2 f n is 
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~(nt dUd/dL)2 f n and using this approximation in (32) gives 

fn =t¡fn(0) exp [ - i n u j t - } K (n<l ud /dL) 2t 3 ] , (35) 

which shows how fn decays. Although the diffusion involves derivatives with 
respect to L, the result of this smoothing is a decay of all f n ' s except fo, so 
that, as t-» » , f tends to the average over ф of its value at t = 0. The higher 
Fourier components decay first, the decay becoming very rapid when 
t~K"!(ndUd/dL)"s . The numerical values will not be discussed here and 
in the following it will be assumed that f is replaced by its average over the 
phase variables after each disturbance. It is clear, however, that the time 
required for stirring must be many times the relevant natural period, and, 
while this is not long in the case of the gyroperiod, it is doubtful whether 
thorough smoothing would occur between disturbances which preserve /uandl. 
It should be emphasized that a lack of thorough smoothing between disturb-
ances does not affect the main discussion of the representation of the effects 
of disturbances. What the rate of smoothing controls is the amount of d e -
pendence of f on the phase variables, and this can be measured, though not 
easily. 

The form of the diffusion terms can now be deduced on the assumptions 
that during the disturbances Liouville's theorem is valid and that afterwards 
f is replaced by its average over the phase variables. It should be mentioned 
that in the averaging process the number of particles was conserved, though 
this was trivial in our example. Now in the notation introduced in section 4, 
the product FGH is the diffusion coefficient, but here we wish tó obtain F, 
G and H separately. This will be done by consideration of special cases . 

Suppose that a disturbance disturbs particles in a limited region and 
that in this region f is a constant, so that all its partial derivatives vanish. 
Applying Liouville's theorem to the disturbance f remains the same constant 
and then, since f has no variation, no fine structure can develop. Thus no 
change results from the disturbance and this tells us that the diffusion term 
must vanish when all the derivatives of f vanish. This requires that H be a 
constant and allows us to put H = 1. It also leads to the relation previously 
mentioned between the two Fokker-Planck coefficients. Clearly the effect 
of the diffusion terms is to reduce the derivatives of f, and if the diffusion 
effects alone operate for a long time f will tend to become a constant, as in 
a perfectly stirred state, though of course f must decrease with energy at 
high energies in any practical situation. 

The coefficient F is determined by conservation of particles. As an 
illustration consider the diffusion term F 9/9L(G9f/9L). Crudely, G9d/9L 
represents a rate of flow of particles across a surface of constant L, but 
the Jacobian must be considered. If 3 is the Jacobian as in section 7, the 
rate of change of the number of particles between Li and L 2 resulting from 
the diffusion is 

L2 L 2 

J F 9 /ôL(G3f /9L)3dL = [3FG9f /9L G(3f /9L)8/9L(3F)dL. (36) 
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Suppose now that initially all the particles were confined to a small range 
of L well inside the range between L j and L 2 . The total number of p a r -
ticles must not change and the f irst term on the right-hand side of (36) 
vanishes, so the other term must also vanish. For this to vanish for any f 
satisfying the mild restr i c t ion that the part ic les are confined to a smal l 
range of L, 9 ( 3 F ) / 9 L must vanish and so we may put F =3"1 . 

The f o r m of the diffusion t e rms has now been shown to be like 

9 / 9 L ( 3 D 9 f / 9 L ) 

where D is the diffusion coefficient. If the disturbances give a mean square 
step (5L)2 and have a frequency v, random walk theory (BORN [10]) shows 
that D - ii / (ôL)2 . The Jacobian takes a simple f o rm when the co-ordinates 
are и, I and L and the element of phase space is integrated over the phase 
variables, as shown in the Appendix. 
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APPENDIX 

The Jacobian 

If co -ordinates a, fi, like those introduced in section 2, but with the 
additional requirement that ^ « X =fl are used, a Hamiltonian formulation 
can be set up, and the Jacobian for a Hamiltonian system of co-ordination 
is always unity. This is the underlying reason why the Jacobian is simple, 
but the Jacobian can also be derived in an elementary way as follows. 

The volume element in ordinary space is taken for a section of . a 
magnetic tube and is dSds, where ds is the element of length along a line 
of f orce and dS the cross -sect ion of the tube is Beq dSeq / В or dod^/B, where 
B e q and d S e q refer to the same tube at the equator. The volume element in 
velocity space is Vj_ dip dv± dvM, which can be written îr Bd^d/^dv,,. The volume 
element of phase space given by the product is then i Beq dSeq dt/zd^d v„ d s. Now 
this is to be integrated between m i r r o r points and it is necessary to check 
that the plausible relation 

м2 

J 6v„ds = 61 (37) 
Mi 

is true. To make this c lear we should consider the prec i se meanings of 
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61 and of the element of volume in phase space required. The meaning of 
61 is the difference in I for two particles of the same ju and L, but slightly-
different VN, each particle moving according to adiabatic theory. This 61 is 
given by (37), if 6V|| is the difference in vn of the two particles when they 
are at the same point on the line of force . The motion of the particles is 
determined by conservation of ц and W, and then mv« 6vn = 6W is constant 
along the line of force (even if there is a static electric field parallel to tí) 
and 

м2 

61 = 6W/m J ds/v„ =èrb 6W/m. 
Mt 

Now the element of phase space required is that which lies between the tra-
jectories of two particles with the same ц and L, but slightly different I, and 
so is the integral in (37) with 6vn varying in the same way again. Thus the 
volume element integrated over the bounce phase is i BeqdSeqd^dAidI. 

If L is always defined as Г / R E in the equatorial plane, dSeq = RELdLd^. 
Then the Jacobian for ф, ф, L, ц, I is i R|LBe q . If one integrates over ф a 
factor of 2ir should be inserted, and similarly if one integrates over ф in 
the case of a symmetrical field. For a dipole field 3 is ¿R|B0L"2 . In the 
diffusion terms constant factors in 3 are not involved and so for a dipole 
field one may use simply L - 2 . 
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A S Y M P T O T O L O G Y * 

M . K R U S K A L 

P L A S M A P H Y S I C S L A B O R A T O R Y , P R I N C E T O N U N I V E R S I T Y , 

P R I N C E T O N , N E W J E R S E Y , U N I T E D S T A T E S O F A M E R I C A 

Asymptotics is the science which deals with such questions as the 
asymptotic evaluation of integrals, of solutions of differential equations, 
etc . , in various limiting cases. Elements of this science may be learned 
from the works of VAN DER CORPUT [2], ERDËLYI [3] and DE BRUIJN [4] 
and advanced aspects from the numerous references in FRIEDRICHS's ar -
ticle [1]. By asymptotology I mean something much broader than asymp-
totics, but including it; pending further elaboration, I would briefly define 
asymptotology as the art of dealing with applied mathematical systems in 
limiting cases . 

The first point to note here is that asymptotology is an art, at best a 
quasi-science, but not a science. Indeed, this explains much of my d i f f i -
culty both in expounding my material and in finding an appropriate occasion 
to do so. It explains, too, why I am unable to support the corpus of my 
dissertation with the hard bones of theorems but must be content with a car -
tilage of principles, into seven of which I have distilled whatever of 
asymptotology I have been able to formulate appropriately and sufficiently 
succinctly. 

The aspect of the definition of asymptotology just given which is most in 
need of explanation is the concept of applied mathematical system. An 
applied mathematical system is merely the mathematical description of a 
physical (or occasionally biological or other) system in which the variables 
expressing the state of the system are complete. The importance of f o r -
mulating problems in terms of complete state variables constitutes a pre -
liminary principle, not particularly of asymptotology but of applied mathe-
matics in general, the Principle of Classification (or, perhaps better, of 
Determinism). It is illustrated by the overpowering tendency, in treating 
classical mechanical problems, to enlarge the configuration space to a phase 
space, since the phase (configuration together with its rate of change), 
but not the configuration alone, constitutes a complete description of a classi-
cal mechanical system. Consider also the tendency, intreatingjirobabilistic 
mechanical problems, to switch over from this original description, which 
is incomplete because, for instance, the mechanical "state" at one time does 
not determine the "state" at another time, to a new description in terms of 
a probability distribution function of the old "states", which function evolves 
"deterministically" in time and is therefore preferable as a state description. 
This Principle is obviously closely related to the notion of a well posed prob-
lem emphasized by Hadamard. Its particular relevance to asymptotology 
comes about because only after one has singled out ("determined") anindi-

* T h i s w o r k w a s s u p p o r t e d u n d e r C o n t r a c t A T ( 3 0 - l ) - 1 2 3 8 w i t h the U . S . A t o m i c Energy C o m m i s s i o n . 

T h i s p a p e r is p u b l i s h e d in t h e o r i g i n a l in M a t h e m a t i c a l M o d e l s in P h y s i c a l S c i e n c e s ( D R O B O T S t e f a n , Ed. ) , 

P r e n t i c e - H a l l , E n g l e w o o d C l i f f s , N . J . , U S A ( 1 9 6 3 ) . 
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vidual solution (or completely "classif ied" the family of solutions) can one 
reasonably inquire into its asymptotic behaviour. 

Asymptotology is important because the examination of limiting cases 
seems to be the only satisfactory effective method of proceeding with the 
analysis of complicated problems (systems) when exact mathematical methods 
are of no (further) avail (and is often preferable even when they are). It is 
of value both for obtaining qualitative information (insight) about the behaviour 
of a system and its solutions and for obtaining detailed quantitative (numerical) 
results. Thus it is hardly surprising that examples, from trivial ones to 
the most profound, are found everywhere throughout the fields to which ana-
lysis (in the technical sense as a branch of mathematics) is applied. 

An excellent example of asymptotology is the familiar HILBERT [5] 
or CHAPMAN-ENSKOG [6] ("HCE" from now on) theory of a gas described 
by the Boltzmann equation 

in the limit of high density (f-^oo) or equivalently of frequent collisions (X-«oo). 
Another example is the CHEW-GOLDBERGER-LOW [7] theory of the s o -
called VLASOV [8] system of equations governing an ideal collisionless 
plasma and its electromagnetic field in what is often called the strong mag-
netic field (or small gyration radius) limit but is formally best treated [9] 
as the limit of large particle charges. In the general theory of relativity 
there is the fundamental EINSTEIN-INFELD-HOFFMAN [10] derivation 
of the equation of motion of a "test particle" (one not influencing the space-
time metric, i . e . , one of negligible mass) by treating it (its world-line, 
rather) as an appropriate singularity in the metric and letting the strength 
of the singularity approach zero. Hydrodynamics is rich in asymptotology 
(theory of shocks as arising in the limit of small viscosity and heat conduc-
tivity, theories of strong shocks and of weak shocks, shallow water theory, 
and so on) and so is elasticity. Kirchoff 's laws for electrical circuits can 
be properly derived from Maxwell's equations only by going to the limit of 
infinitely thin conductors (wires). Simple examples also abound and are 
encountered daily by the practising applied mathematician and theoretical 
physicist. Naturally it is not practical to discuss deep examples in detail 
here, so I shall have to confiné myself to brief remarks about them, relying 
for illustration mainly on simple and often trivial instances. 

It should now be apparent, I hope, that whatever features such i m -
portant, wide-spread, and diverse examples may have in common, and 
whatever lessons for future application may be gleaned from studying them, 
are well worth formulating and eventually standardizing. Even the many 
(most? far from all, as I know from my acquaintance) applied mathe-
maticians (etc.) who have become familiar by experience with asymptoto-
logical principles — at least in the sense of knowing how to apply them in 
practice — must inevitably benefit from the introduction of a standard t e r -
minology and of the clarity of expression it permits. Implicit knowledge, 
no matter how widely distributed, deserves explicit formulation, but I am 

(1) 
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aware of no efforts in this direction which attempt to go anything like so far 
as I am doing here, though there are some related suggestions in 
Friedrichs 's article. 

The final possible obscurity in our previous tentative definition of 
asymptotology is what it means to deal with a system. To clarify this we 
might alternatively define asymptotology as the art of describing the b e -
haviour of a specified solution (or family of solutions) of a system in a limit-
ing case. And the answer quite generally has the form of a new system (well 
posed problem) for the solution to satisfy, although this is sometimes obs -
cured because the new system is so easily solved that one is led directly 
to the solution without noticing the intermediate step.. 

To illustrate first by a trivial example: suppose it is desired to follow 
the (algebraically) largest root x of the simple polynomial equation 

Зе2хЭ+х2 - e x - 4 =0 (2) 

in the limit e-»0. There is one root of order e - 2 obtained by treating the 
first two terms as dominant, x<*< e~2, for which indeed the other two terms 
are relatively negligible (even though one of them is absolutely large, of 
the order e"1 ), but which is negative. The other two roots are finite, o b -
tained by neglecting the terms with e factors, x ~ ± 2, the one sought having 
the plus sign. If we desire it to higher order, incidentally, we may put (2) 
for this root in the "recursion" form 

••2(1 - J e V + l e x J , (3) 

expand out the right side in powers of e , and generate better and better ap-
proximations for x by continually substituting the previously best approxi-
mation into the right side. But this is irrelevant to the present point, which 
is that (the problem of the algebraically largest root of) the original cubic 
Eq.(2) has been replaced by (the problem of the algebraically largest root 
of) the quadratic equation x2 - 4 0, or more exactly x2 - (4 - 3e2x3 + ex) = 0, 
the quantity in parentheses being treated as known. 

In the HCE treatment of system (1) in the limit X-» 00, the original 
integro-differential equation in the seven independent variables t, к, v* gets 
replaced by the set of coupled partial differential (hydrodynamic) equations 

8t " Ü • ( P U ) ' 

9 , - , Э \ - 5 / 3 

9t Эх у 

in the four independent variables t, x; here, p, u, p are of course the usual 
velocity-space moments of f. 
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These examples clearly illustrate the first asymptotological principle, 
which is in fact largely the raison d'être of asymptotology. This Principle 
of Simplification states that an asymptotological (limiting) analysis tends to 
simplify the system considered. This can occur in at least three general 
ways. 

The basic way systems simplify is merely by the neglect of terms (or, 
in higher order analyses, at least treatment of small terms as if known, 
as in the case of the cubic equation earlier). Thus the polynomial equations 
x5 - ex + 1 =0 and x6 + ax4 + ex3 + 1 =0, without getting lower in degree as the 
cubic did, nevertheless become simple enough in the limit e->0 to be e x -
plicitly solvable algebraically. Differential equations in irregular domains 
approximating regular ones may in the limit become solvable by separation 
of variables. In other cases the coefficients may become so simple in the 
limit as to permit solution by Fourier or other transform. These are typical 
instances of perturbation theory; there are of course also many instances 
where the simplification which occurs does not appreciably facilitate the 
further analysis of the system. 

A derivative way in which systems simplify, sometimes striking in e f -
fect, is the decomposition of the system into two or more independent 
systems among which the solutions are divided, so that the particular s o -
lution of interest satisfies a system with fewer solutions and hence usually 
in some sense of lower order. Thus the cubic polynomial equation con -
sidered earlier split up into a quadratic equation and what is effectively a 
linear equation. That is, the root of order e '2 was obtained by neglecting 
the two last terms and writing Зе2х3 +X2 *»0, and although this is cubic it 
has two trivial unacceptable roots x ^ O (corresponding to the solutions of 
the quadratic for finite roots) and is therefore equivalent to the linear 
equation obtained by dividing through by x 2 . 

The third (also derivative) way systems simplify, often spectacularly, 
is through the splitting off of autonomous subsystems. By an autonomous 
subsystem of a system is meant a part of the system (part of the conditions 
together with part of the unknowns) which is complete in itself, i . e . , forms 
an applied mathematical system in its own right, so that it can (in principle, 
at least) be solved before the rest of the system is considered. The quali-
fier "autonomous" is by no means superfluous. Thus the system f (x, y) = 0, 
g(x) = 0 for the two va'riables x, y has the autonomous subsystem g(x) =0. 
It has also the non-autonomous subsystem f(x, у) = 0 for y, non-autonomous 
because it is not definite (well-posed) until x has been determined, which 
requires the other part of the system. 

Systems with autonomous subsystems occur much more often than one 
may at first realize, since there is an instinctive tendency to concentrate 
attention on the subsystem and forget that it is part of a larger problem. 
A particularly contemporaneous illustration of this is provided by the gravi-
tationally determined motion of the sun, a planet, and an artificial satellite; 
the subsystem of the sun and planet alone is autonomous, since their motions 
are unaffected by the satellite and are naturally considered to be given and 
definite when its motion is under consideration. But there is a very c o m -
mon special kind of system having autonomous subsystems which do not get 
overlooked just bécause there are too many of them for any one to be singled 
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out naturally. Such are the initial value problems, which, if well posed for 
t0< t < t j with initial conditions at to, are also well posed for to < t <L Í2 
for any tz between to and t i , so that the autonomous subsystems constitute 
a continuous one-parameter family. 

For an illustration of the third way of simplifying, note that in HCE 
theory the five moments p, u, p satisfy (in the limit, of course) the auto-
nomous subsystem (4), which is vastly simpler than (1) in having only four 
independent variables instead of seven. Similarly the "general" (for finite e) 
pair of simultaneous equations f(x, y) = 0, g(x) + eh(x, у) = 0 reduces for e -» 0 
to the system with an autonomous subsystem considered earlier. The sun-
planet subsystem split off only by virtue of the implied limit of (relatively) 
small satellite mass, as is apparent from the less extreme case of the earth 
and its natural (rather than artificial) satellite. 

The second and third ways both involve a reduction in the number of 
solutions from which the desired one must be singled out. This is a charac-
teristically asymptotic simplification and, as Friedrichs [1] has affirmed, 
it justifies the limiting process even though complications arise in other 
respects. For instance, a linear second order differential equation may 
reduce to one of first order but non-linear. The "number" of solutions must 
be counted in whatever way is appropriate to the instance: as an integer 
(e .g . , for the polynomial equation); as the dimensionality or number of para-
meters of a family of solutions (as for an ordinary differential equation); 
as the dimensionality of a parameter space, or number of independent 
variables of a function characterizing a solution (as with HCE, where seven 
reduces to four); etc. 

In carrying out asymptotic approximations to higher order terms we 
are aided by the (second) Principle of Recursion, which advises us to treat 
the non-dominant terms as if they were known (even though they involve the 
unknown solution). The simplified system then determines the unknown in 
terms of itself, but in an insensitive way suitable (in principle at least) for 
iterative generation of an asymptotic representation of the solution. This 
has already been illustrated for one of the finite roots of our cubic equation 
example. For the numerically large root of (2) we may obtain the recursion 
formula x = - (x2 - ex - 4) / (3e 2 x 2 ) . However, this is far f rom unique; by 
grouping the terms differently we obtain x = - (x2 - 4 ) / ( 3 e 2 x2 - e), which is 
equally suitable, since x has still been solved for from the dominant terms. 
It would be folly to solve for x from a small term such as ex; iteration on 
x = (3e 2 x 3 +x 2 - 4 ) / e merely produces wilder and wilder e behaviour. If one 
solves from the dominant terms inappropriately, namely in a way which does 
not give the solution explicitly outright when the small terms are neglected, 
then one has a scheme which may or may not converge, but which, even 
if it does, converges at a "finite" rate, not improving the asymptotic order 
of the solution in each iteration. This is illustrated by putting (2) in the 
convergent but asymptotically inappropriate recursion form x= - [ - (x 2 - ex - 4)/ 
(3e2x)]1 /2 , which is quité usable, however, f or numerical computation. 

This trivial example is so trivial that the emphasis on recursion f o r -
mulas seems forced. It is true that here and in many, many other cases 
one can simply write down an obvious power series in e and determine the 
terms order by order. This approach fails, however, whenever a more 
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general representation is required, as is by no means rare. For instance 
I recently encountered a case where the obvious series needed to be supple-
mented by a single logarithmic term (which was neither the dominant nor 
even the next-to-dominant term); the recursion relation generates all the 
right terms without prejudice as to their form. Generation of terms by 
recursion is often very clumsy for practical purposes, apart from leading 
to terms of unexpected form. However, it has a great theoretical advantage 
when properties of (all terms of) the series are to be derived, since the 
recursion relation is highly adapted naturally to the use of mathematical 
induction. (See the final reference for an example.) 

The limiting cases we keep referring to are conventionally, in asymp-
totics, formulated so as to be cases where a parameter (often denoted by X) 
approaches infinity. Since I intend asymptotology to embrace also situations 
where the limit system itself (not merely arbitrarily near ones) is meaning-
ful (perturbation problems), it is preferable now instead to use a small par-
ameter, conventionally denoted by e (= 1/X for conversion). In fact, it may 
not be known in advance whether the limit case is meaningful, and, whether 
or not it is meaningful physically, mathematically it may or may not be so 
depending on the description employed. This brings us to our third asymp-
totological principle, the Principle of Interpretation: it is a major task of 
asymptotological analysis to find variables in which the given problem b e -
comes a perturbation problem (has a meaningful limit situation). This may 
involve nothing more than recognizing that the original variables are such, 
as is the case for two roots of the cubic; for the third root, however, the 
formal limit of (2) is meaningless, but if transformation to the new variable 
y = e2 x is effected first, the equation obtained for y may be solved by per -
turbation analysis. 

The characteristic feature of asymptotic analyses proper, as opposed 
to perturbation analyses, is the appearance (in both senses) of o v e r -
determinism. Thus the cubic Eq. (2) with three roots apparently reduces 
in the limit to a quadratic with only two; the well behaved (for e f 0) pair of 
simultaneous linear equations x + y = 1, x + (l +e)y = 0 formally reduces to a 
mutually contradictory pair for e = 0; in the initial value problem 
e(d/dt)z + z = 0 (t > 0), z(0) =1, for the continuous function z(t), we seemingly 
have z(t) = 0 in the limit, contradicting the initial condition; and the same 
thing happens in many less trivial cases (such as the theories of shocks, 
of boundary layers, and of fast oscillations), as described in detail by 
Friedrichs [1]. In this connection we have the (fourth) Principle of Wild 
Behaviour, which tells us that apparent overdeterminism arises because 
(at least some of) the solutions behave wildly in the limit - wildly, that is, 
compared to our preconceptions, as embodied in the mathematical form of 
the expressions employed for representing the solutions. Thus in neglecting 
the cubic (in addition to the linear) term of (3) we have obviously made the 
implicit assumption that x is not too large (say bounded), which is correct 
for only two of the roots, while the third behaves "wildly" in becoming in-
finite (like e - 2 ); the solution of the simultaneous equations is similarly wild 
(like e"1 ); the solution of the initial value problem, z =exp(-t /e) , is wild 
in having a derivative which, though converging to zero for every fixed po -
sitive t, does so non-uniformly and actually becomes infinite for t approach-
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ing zero sufficiently rapidly; and similar wildnesses occur in the deeper 
examples mentioned. 

When overdeterminism occurs, if the solution we want is among those 
still permitted by the formal limit system, well and good: the loss of other 
solutions is our gain in simplicity (in the second way). If the solution we 
want is among those lost, then according to the Principle of Wild Behaviour 
we should allow for more general asymptotic behaviour of the solution. It 
is one of the most troublesome difficulties of asymptotological practice to 
find an appropriate asymptotic form. It is impossible to prescribe a priori 
all asymptotic representations that may ever prove useful, but among more 
general representations to try are two worth specific mention as frequently 
successful. The first is to supplement the originally expected series with 
new terms, such as smaller (more negative) powers, as in the case of the 
cubic equation, or logarithmic ones. The second, effective in many of the 
deeper problems, including those just referred to (see also a detailed 
example from my own experience [11], and illustrated by the initial value 
problem just exhibited (which may in fact be viewed as an elementary bound-
ary layer problem), is to write the unknown as the exponential of a new un-
known represented by a series, the dominant term of which must become 
infinite (at least somewhere) in the limit if anything is to be gained by so 
doing. 

If there can be overdeterminism there can also be underdeterminism, 
which means that the original well posed problem reduces formally in the 
limit to a problem with more than one solution. For instance, let A be a 
known j -by- j matrix, let b and x be j-by-1 matrices (vectors),respectively known 
and unknown, and consider the matrix equation Ax =b. Suppose that A and 
b depend on e and that the determinant of A is zero if and only if e = 0. Then 
the formal lowest order system A<°) x(°> =b(°> is certainly not well posed. 
Since A(°) is a singular matrix, there exists a 1-by- j matrix n ( / 0 ) such that 
nA(°) =0; for simplicity assume that n is unique (up to a constant factor). 
If nb(0) / 0 the limit system obviously has no solution (overdeterminism, as 
in the previous example of simultaneous linear equations), so assume nb(°)=0. 
Then x(°) is not completely determined by the limit system, and we have an 
example of underdeterminism. 

Another excellent and rather typical example of underdeterminism is 
again the HCE problem. Letting X -» oo in (1) (after dividing through by X) 
leads to the information that f(°) is invariant under collisions, i . e . locally 
Maxwellian in some (local Galilean) co-ordinate system, which is very far 
from determining f(°), since there are five parameters (p, ü, p) needed to 
specify such a distribution and we are left unprovided with information on 
how the parameters at different points of space-t ime are related. (The 
CHEW-GOLDBERGER-LOW [7] theory is another such example [9]. 

In such straits we are rescued by the (fifth) Principle of Annihilation, 
which instructs us to find a complete set of annihilators of the terms which 
persist in the limit, apply them to the original system, and then go to the 
limit after multiplying by an appropriate function of e so that the now domi-
nant terms persist in the limit. By an annihilator of a mathematical entity 
is meant an operator which results in zero when applied to the entity. (Of 
course there are complicated cases in which this produces only some of the 
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missing information, and the same procedure must be re-applied, perhaps 
repeatedly. ) 

In the matrix example, the terms A№ X<°) and b'0 ' which persist in the 
limit are annihilated by multiplication on the left by n. Applying this an-
nihilator to the original equation, dividing by e, and taking the limit gives 
what may be written 

lim { e"1 n [A - A'0) ]} x (0 ) = lim {e_1n[b "b ( 0 )]}, (5) 
e = 0 e=0 

or nA(D x<°) =nbW if A and b are expandable in integral powers of e. In the 
normal case this provides just the one extra condition needed to determine 
x<°), which by the condition A(°) x(°> =Ы°) was determined only up to a s o -
lution p of A(°)p = 0. In the abnormal case that (5) is not an independent con-
dition, there is a linear combination of AC'xC1' =b(0) and (5) which gives 0 =0. 
The formation of this linear combination is then our new annihilator, the 
application of which to Ax =b and e"1 n [A - A(°) ]x = e_1n[b -Ы°) ] leads to a 
new extra condition which will normally be independent and provide the mis-
sing piece of information. 

In the HCE problem there are five scalars (mass, three components 
of momentum, and energy) which are preserved by collisions, so that taking 
the corresponding moments of (1) annihilates the right side. These are 
therefore annihilators of the dominant terms, which is why they are applied 
to (1) to obtain the five hydrodynamic equations relating the values of p, u, 
p (and therefore f which is expressed in terms of them) at different points 
of space-time. 

It is through the application of the Principle of Annihilation that the 
Principle of Simplification is maintained. The loss of solutions in a limit 
simplifies a system, while the gain of solutions, or loss of information*, 
would "complicate" it if we were not able to recover sufficient additional 
conditions to make up for the information lost. 

The basic way systems simplify is by the neglect of terms, as stated 
earlier. But it commonly happens that the relative asymptotic magnitude 
of two terms to be compared depends upon some knowledge not yet available 
or on some assumption or decision not yet made. According to the (sixth) 
Principle of Maximal Balance (or of Maximal Complication**), for maximal 
flexibility and generality we should keep both terms, i . e . , we should allow 
for the possibility or assume that they are comparable. In the case of in-
complete knowledge this is mere prudence; any term in an equation definite-
ly smaller in order of magnitude than another term may be considered 
negligible, but no term should be neglected without a good reason. In the 
case of a pending assumption or decision, the desire to balance two such 
competing terms helps to determine the choice. 

The most widely applicable and hence most informative ordering is that 
which simplifies the least, maintaining a maximal set of comparable terms. 
Quite often there is more than one possible maximal set of terms, with no 

* Use o f this t e r m i n o l o g y is j u s t i f i e d e v e n f r o m t h e t e c h n i c a l v i e w p o i n t o f i n f o r m a t i o n t h e o r y , 

s u g g e s t i n g t h e p o s s i b i l i t y o f a s s i g n i n g a m e a s u r e t o t h e d e c r e a s e in t h e n u m b e r o f so lu t i ons o c c u r r i n g in a 

l i m i t . 

* * I n o w f e e l that " M i n i m a l S i m p l i f i c a t i o n " is m o r e a p p r o p r i a t e h e r e . 
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set including all terms of any other. (Sets of terms form a lattice ordered 
by inclusion.) Each maximal set corresponds to different asymptotic b e -
haviour. The solutions may split up according to which behaviour they have 
(second way of simplifying), as with the cubic, or each solution may exhibit 
a variety of different behaviours, in different regions, as with a boundary 
layer phenomenon. 

For instance in the case of the cubic equation, how could we know that 
two solutions are finite and one of order e~2 ? p u t another way, why did we 
not assume the first and third terms to be the dominant ones, or the second 
and third, or so on? In this particular case there is an easy answer: if we 
had, we would have obtained a "solution" for which the neglected terms were 
not in fact negligible compared to the supposed dominant terms, i . e . , the 
"solution" found would not have been self-consistent. But suppose there 
were several more terms, would we have had to try every pair? (Or suppose 
there were two independent small parameters 5 and e instead of only one.) 
Clearly, no matter which terms are dominant x will behave predominantly 
as some power of e. We therefore assume the general representation x = ae4 
and wonder what value of q to take. One might in fact choose arbitrarily 
any value for q but will then generally find that for finite a only one term 
of (2) dominates, which is nonsensical, so that a = oo (if it was the constant 
term), which is not legitimate, or else a = 0 (if it was one of the others), 
which, if more legitimate, is certainly no more useful. A value of q will 
only be "proper" if we end up with a representation which is "maximally 
complicated" in that it really consists of one term аеч instead of "no terms" 
such as 0 or oo. If we put x ^ a e i into (2) the successive terms vary as e 
to the respective powers 3q+2, 2q, q + 1, 0, and it is easy to see that only 
q = 0 or q = - 2 makes two (or more) powers equal minima. 

On the side it might be of interest to mention a graphical method of find-
ing the proper values of q which apparently goes back to Newton. It is hard-
ly needed in the present simple illustration but can be a great time-saver in 
more involved examples (also those of higher dimensionality). We plot each 
term of (2) as a point on a graph, the abscissa being the exponent of x and 
the ordinate that of e (see four heavy points in Fig. 1); the coefficient 
is ignored so long as it is not zero. The specification of a definite relation-
ship between x and e ( i .e . of a definite value of q) leads to the identification 
of the asymptotic behaviour of all terms (present or not) corresponding to 
points which are on a common line with a definite slope. Thus, for x ~ e 
all points on the same down-slanting (from left to right) 45° line correspond 
to a common asymptotic behaviour, while for x ~ e-i the same holds for 
up-slanting 45° lines (see light dashed lines). Since the smaller the power of e 
the larger the term, we seek lines passing through (at least) two graphed 
points and having no graphed points below them. We may think of finding 
the lower convex support lines of the set of graphed points, perhaps kin-
esthetically by imagining pushing a line up from below until it f irst hits a 
graphed point and then rotating it around that point until it next hits a second 
graphed point. It is immediately apparent from Fig. 1 that there are just 
two such lines and that they correspond to q = 0 and q = - 2 (see heavy dashed 
lines). It is also clear that the point (1, 1), like all points in a semi-infinite 
vertical strip (see horizontally shaded area), are "shielded" by the points 
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Power of € 

Fig. 1 
G r a p h i c a l m e t h o d s o f f i n d i n g t h e p r o p e r v a l u e s q 

(0, 0) and (2, 0) and can never be on a support line; it is indeed obvious that 
ex is negligible with respect to either x2 or 4 no matter how x varies with 
e. Similarly there is a semi-infinite vertical strip shielded by the points 
(2, 0) and (3, 2) (see diagonally-shaded area). In more complicated cases 
we can thus exclude terms wholesale f rom competition. 

To return to our proper business, illustration of the Principle of 
Maximal Complication, consider the problem of finding the lowest frequency 
of vibration and the corresponding form of vibration of a uniform membrane 
stretched between two close wires lying in a plane, one of which we take 
straight for simplicity. The equation for the standing vibration of a mem-
brane is 

32u 32u о 
9x2 (6) 

where u is the displacement normal to the (x, y) plane, which is the rest plane 
of the membrane (the plane containing the wires), and v is the frequency 
of vibration of the mode. Let the equations of the wires in the (x, y) plane 
be у = 0 and у = eY(x), where e of course is the small parameter of c l o se -
ness. We may suppose Y(xi ) =Y(x2) = 0 so as to have to consider only the 
finite region xx < x < x 2 ) 0 < y < e Y ( x ) . Imposing the condition u = 0 on the 
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boundary of this region and (6) inside the region, we have an eigenvalue 
problem for the lowest eigenvalue v and its corresponding eigenfunction u. 
This is one common type of asymptotic problem, asymptotic rather than 
"perturbational" in that there is no limit problem because the region of in-
terest disappears in the limit. The remedy for this is well known [1]; we 
re -scale the variables appropriately, in this case introducing r¡ = е - 1 y so 
that the region in the (x, 17) plane becomes Xj < х < х г , 0<T7<Y(x), and (6) 
becomes 

2 i^P V'u = 0 . (7) 

Taking the asymptotic behaviour of each term at its face value (but remem-
bering that v is not yet determined), we deem the first term negligible com-
pared to the second, and (by the Principle) assume v2 ~ e - 2 to balance the 
second and third terms. Introducing и = ev we write (7) as 

а2 я2 
9 U , 9. J O U 

9nz w " Эх (8) 

To lowest order we neglect the right side of (8), whereupon x degenerates 
from an independent variable to a mere parameter. The really proper treat-
ment at this point, by the Principle of Recursion, would be to treat the right 
side of (8) as known, solve for u on the left in the form of an integral r e -
presentation (involving the simple, well known, explicit Green's function), 
and try to obtain u iteratively. Instead we shall do something similar but 
simpler, more or less parallelling the lowest order version of the proper 
treatment. For each x we have, to lowest order, a simple eigenvalue 
problem with the lowest eigenstate u = A sin( wr¡ /Y ) and eigenvalue и = n /Y . 
But u so defined depends on x, which is impermissible, so we take A(x) 
to be a Dirac delta function, the location of whose singularity we take to be 
at the maximum of Y(x) in order to have the smallest u; for simplicity we 
assume the maximum of Y to be unique and to occur at x = 0. In a sense we 
have now solved the problem originally posed, but since our answer is sin-
gular it is not entirely satisfactory (see the next and final Principle to be 
formulated). Indeed, since our "solution" is singular in its x dependence, 
we ought to worry whether our earlier neglect of e2 (92u/9x2) was justified, 
and we might well be curious anyway about the true detailed x dependence 
which we have cavalierly expressed as a delta function. Since the significant 
behaviour occurs near x = 0 we introduce Ç= 6_1x, where б is a small para-
meter to be determined (related to e ) . We also write u = uo +Û, where 
Wo =-jt/Y(0) and û is small. Since 92u/9rj2»< -ж2 Y(x) - 2u, from (8) we obtain 

_2 
7Г 

T*r -U 2 Y(6Ç)Z 

Let Y(ÔÇ) =Y(0 )+ i Y" (0)62?2+ . . . with Y" (0)<0, whereupon this becomes 

7Г Y " ( 0 ) 2 2 . 
Y ( 0 ) 3 6 Ç 2 u 0 u 

Л e2 d2A (10) 
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According to the Principle of Maximal Complication we choose the as yet 
undetermined asymptotic behaviours so as to keep all the terms in the' 
equation and are thus led to take 5 = e1''2 and u = e _ 1û, obtaining 

d 2 A 
d? ¿ Y(0) 

tY"( o y 
Y(0)2 ?2 +2u A ^ O . ( 1 1 ) 

On the ? distance scale A must vanish at "infinity", and we have a well known 
eigenvalue problem arising in the quantum theory of the harmonic oscillator. 

The lowest eigenfunction is the Gaussian A = exp Y(0)'3^2[-Y , ,(0)]1 /2 Ç2j-
with real eigenvalue u =? [ -Y l ' ( 0 ) /Y (0 ) ] 1 / ? 

Incidentally, if we should be interested in the behaviour of u for |x| 
not very small, where u decreases rapidly, a different procedure must be 
used. The right side of (8) cannot be neglected there, since u&ir/Y{0) does 
not even approximate the local eigenvalue w/Y{x) for which the left side can 
vanish with u f 0. The device mentioned earlier of representing the unknown 
as an exponential works here; with u = exp v, (8) becomes 

32v J 3v V 2 У 9v Y 
. Э ? \ Э х У (12) 

We may assume that v is expandable as a series in e, v = e-i[v(°) +ev(D + . . . ] , 
where the leading term has been taken large of order e"1 to permit the right 
side of (12) to contribute. We must have 3v(°)/9r) = 0 or the left side will 
dominate again, so vW is a function of x only, and to dominant terms (12) 
becomes 

3 2v ( 1 ) 

Э rj2 
3v (l) 

ЭГ7 
Í 3v (0) 
v Эх 

Viewed as an equation for v'1 ' this can be linearized and "homogenized" by 
reversing the exponentiation procedure, namely by introducing w =expv(D, 
whence 

92w 
3 if 

w2 + 
3v№\sn 

Эх / w = 0. 

Together with the boundary conditions on w (that it vanish at 17 = 0, Y(x)) this 
is an eigenvalue problem which determines the variation of v 

<4 + 3y(°) 
Эх 

\2 2 
) = b / Y ( x ) ] , 

as well as the TJ dependence of w (sinusoidal). All that the device has 
amounted to in this case, of course, is factoring out (from u) a fast varying 
function of x, but the use of the exponential representation has led to that 
procedure in a natural and systematic way. 

We complete our list with the simple (seventh) Principle of Mathematical 
Nonsense: if, in the course of an asymptotological analysis, a mathemati-
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cally nonsensical expression appears, this indicates that the asymptotology 
has not been done correctly or at least not carried out fully (although even 
incomplete it may be satisfactory for one's purposes). One may come upon 
expressions such as 0/0, divergent sums or integrals, singular functions, 
etc . , and whether they are to be considered nonsensical sometimes depends 
on the use they are to be put to. In the membrane vibration problem just 
discussed the first instance of mathematical nonsense was the disappearance 
in the limit of the region over which the partial differential equation was to 
be solved, the second was perhaps the dependence of и on x, and the third 
was the response to this, the use of a singular (delta) function. 

Frequent in asymptotological analyses is the occurrence of pheno-
mena on different scales of distance or time. The HCE problem is a 
well-known case, since if if is not prescribed Maxwellian at the initial 
instant, there is a relatively short period of time (the order of a c o l -
lision time) during which f becomes Maxwellian, while the five moments 
remain approximately constant, and a relatively long period (of order 
X times as long) during which the five moments (hydrodynamic v a r i -
ables) vary but f maintains its Maxwellian form. For an extremely simple 
example of the same type, consider the familiar electric circuit equation 
V =RI + LÍ, where the voltage V(t) is an imposed function of time, the current 
I(t) is to be found, the resistance R and the inductance L are positive con-
stants, and we choose to examine the limit L-» 0. Treating LÍ as if it were 
known, we immediately obtain a recursion formula for I, 

I = | ( V - L I ) 
(13) 

2 , .3 

R VRy VR 

which is fine except for not in general satisfying the arbitrary initial con-
dition on I natural for the original first order differential equation. For 
short times (of order L) Í is large and V approximately constant, so that 
the difference of I f rom its quasi-equilibrium value V / R decays like 
exp( -Rt /L) ; after this transient has died out (13) holds. Incidentally, the 
expression in brackets in (13) is just like the Taylor expansion in powers 
of L of V evaluated at the argument t - L / R except for a factor of (n -1 ) ! in 
the denominator of the n-th term, which shows that the asymptotic series 
(13) for I cannot be expected to converge even if V is analytic (which does 
not stop it from being very useful). 

In phenomena with behaviour on two different time scales there is a 
widely pertinent distinction to be observed between finite conservative 
systems on the one hand and infinite or dissipative systems on the other. 
For instance, the well-known problem of the harmonic oscillator with slowly 
varying coefficient of restitution [12], x+k(et)x = 0, is an example of the first 
kind; on the short (finite) time scale к is approximately constant and the 
oscillator simply oscillates steadily, while on the long (~ e _ 1 ) time scale 
the frequency and amplitude of the oscillation vary in response to the 
variation in k. Contrast with this the behaviour of the dissipative electric 

25 
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circuit, where only initially the current I varies oi) the short time scale, 
swooping toward its quasi-steady value. The HCE example shows, that a 
conservative system can act the same way so long as it is infinite; in this 
case the decay comes about by a process of "phase mixing", and is possible 
because the Poincaré recurrence time is infinite. 

The asymptotic separation of time scales is the basis for an exciting 
recent approach in statistical mechanics [13]. Typically one obtains 
equations for the one-particle and the two-particle distribution functions f j 
and Í2 for a gas of appropriate characteristics, and finds that f i can vary 
only slowly, but that f2 can vary quickly so as to phase-mix towards a quasi-
steady distribution as t gets large on the short time scale while remaining 
small on the long time scale. The limiting distribution f2 is a functional of 
fj, which when substituted into the equationfor f г leads to an autonomous "kinetic 
equation" for f i . The irreversibil ity (timewise) of this kinetic equation 
comes about in a natural way, in that the limiting f 2 depends on which d i -
rection t is taken to the limit (on the short time scale), whether to plus or 
to minus infinity. It is a major triumph of this approach that the "Stoss-
zahlansatz" can for the first time be actually derived (under moderate 
smoothness assumptions). 

To return to the finite case, I am glad to take the opportunity of ad -
vertising a recent paper [14] in which I have elaborately worked out the 
asymptotic theory of finite systems of ordinary differential equations d e -
pending on a small parameter e which to lowest order have all solutions 
periodic. Applied to Hamiltonian systems the theory leads to the existence 
of adiabatic invariants which are constant (integrals) to all orders in e. 

We are all familiar with those rather unsatisfactory research papers 
in which the author makes a series of largely arbitrary ad hoc approxim-
ations throughout, often dubious without (sometimes even with) the author's 
intuitive grasp of the situation. These "ad-hoaxes" have their place and 
utility, but how much more desirable and convincing is a properly worked 
out and elegant asymptotological treatment, with any arbitrary assumptions 
(like remarkable coincidences in a well constructed mystery story) made 
openly and above board right at the beginning where anyone can assess their 
merits for himself, and with the later development unfolding naturally and 
inexorably once a definite problem and the limit in which it is to be c on -
sidered have been settled upon. 

The art of asymptotology lies partly in choosing fruitful limiting cases 
to examine - fruitful first in that the system is significantly simplified and 
second in that the results are qualitatively enlightening or quantitatively 
descriptive. It is also an art to construct an appropriate generic description 
for the asymptotic behaviour of the solution desired. The scientific element 
in asymptotology resides in the non-arbitrariness of the asymptotic be -
haviour and of its description, once the limiting case has been decided upon. 

One of Molière 's characters observes that for more than forty years 
he has been talking prose without knowing it. It is doubtful that he benefited 
from the discovery, but I hope that you will be more fortunate and not d is -
appointed in having by now discovered that asymptotology is what you have 
been practising all along. 

25* 
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TOROIDAL MAGNETIC FIELD CONFIGURATIONS 
AND FINITE RESISTIVITY 

H . P . F U R T H 

L A W R E N C E R A D I A T I O N L A B O R A T O R Y , 

L I V E R M O R E , C A L I F . , U N I T E D S T A T E S O F A M E R I C A 

The following paper discusses the confinement of low-0 plasma in 
closed vacuum-magnetic-field configurations, with particular reference to 
the finite-resistivity hydromagnetic stability problem. The configurational 
solutions and stability results given in Sections II and III are part of a c o l -
laborative effort with M.N. Rosenbluth. 

I. INTRODUCTION 
SHEAR-STABILIZATION AND MAXIMUM-Jdl/B-STABILIZATION 

A simple toroidal magnetic field does not afford an equilibrium solution 
for an isolated (toroidal) body of plasma. One solution of the toroidal equi-
librium problem was originally found by SPITZER [1], in terms of the 
rotational-transform technique,which insures infinite-conductivity equilibrium 
by causing (almost) every flux surface to be covered ergodically by a single 
field line. Rotational transform provides the basis for the confinement of 
low-j3 plasmas in the vacuum field of the stellarator. The variation of the 
rotational transform from one flux-surface to the next can be used to p r o -
vide stability against low-/3, infinite-conductivity hydromagnetic interchanges 
[1] ; this technique is known as shear-stabilization. 

Experimentally, little is known about the effectiveness of low-|3 shear-
stabilization in vacuum fields, since phenomena due to the plasma-heating 
method have always predominated in past experiments. Theoretically [2], 
a small but finite resistivity (in the sense of large but finite magnetic 
Reynold number S = TR/Th) permits ^-driven interchange modes to grow in 
spite of shear, but at a growth rate that is reduced from the shear-free rate 

uocGÍTHi,to the lower rate uocE'^G^th^ "П^к ;̂ where G= |a2Vp/Rc | measures 

the destabilizing force due to field-line curvature R^1, тн = i; (4îrp)i is the в 
Alfvén-wave transit time over a characteristic linear dimension, a, 
TR =4?ra2/r7 is the resistive-diffusion time at resistivity г), к is the wave 
number of the interchange, and L is a measure of the shear. (We can define 
E"^ loosely as the distance in the ф direction required for the magnetic field 
vector to turn through an angle 7г/2. ) The preceding results, derived in the 
hydromagnetic approximation, cast a gloomy light on the possibility of long-
t ime stable confinement; and the gloom appears to be lifted only partly by 
consideration of "finite Larmor-radius effects" [3]. 

Moreover, one fears that finite classical resistivity may be only one 
of a number of phenomena that can disrupt the perfect communication along 

391 
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the confined plasma body on which shear-stabilization depends. As long 
as the plasma resides in a gradient or at a maximum of B, the destabilizing 
force G, due to the plasma diamagnetism, is present, and one can never be 
certain that the associated "energy reservoir" can be prevented from driving 
actual dynamic modes. 

In open-ended geometry, the "Minimum-B" approach championed by 
IOFFE [4] and others [5] resolves this uncertainty by positively removing 
the energy reservoir that supports the interchange mode. In closed geo -
metry, topology prevents the placement of the plasma in a region of every-
where outwardly increasing magnetic field strength [6] . The most that can 
be done is to insure that В increases outwardly in some average sense, such 
as 

^ P 0, (1) 

where the integral U = Jdl/B is taken along a field line, and P is the plasma 
pressure, which we will consider to be isotropic. 

The criterion (1) is a familiarly sufficient condition for infinite-
conductivity l ow-0 stability [7], and at the edge of the plasma becomes also 
a necessary condition. A simple physical meaning can be given to (1), as 
well as to the associated equilibrium condition [8] . 

In equilibrium, we have ^ P ="jX S , so that P is constant along field 
l ines. In Fig. 1, a sector of a toroidal configuration is shown. We want 

n'=0 N 

F i g . l 

S e c t i o n o f f l u x - t u b e i l lustrat ing g e n e r a l i z e d c o - o r d i n a t e s 

to find the condition that the magnetic flux surfaces Фо and Фо-dijf can be 
constant-P surfaces. If a single field line covers the surface Фо on s u c -
cessive passes around the major circumference of the torus, thanks to r o -
tational transform, then automatically an equilibrium exists [1] . When 
there is no transform, we require that the pressure increment dP from 
surface фц to surface фа~0.ф should be constant and equal to 

dP = В dJx (2) 
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where dJx is the transverse current density per unit length along field. The 
surface current density dJx has no divergence, hence the total current 
cross ing a field line 

dl = /dldj x (3) 

is,, constant for all field lines in ф0. From (2) and (3) we then have that /d l /B 
must be constant on ф0 . The equilibrium condition is thus that constant-P 
surfaces must be constant-U surfaces [8] . The stability analysis fol lows 
the same approach. If the plasma surface lies on фц, then the outward d i s -
placement of a tube of plasma at initial pressure dP is accompanied by the 
appearance of a surface current 

dl = J dldJt = / dldJx, (4) 

where I2 is a field line on the outward side and li on the inward side of the 
tube, and where 

(5) 

holds on both l i and I2, with dP* representing the local pressure in the p e r -
turbed state. From (4) and (5) we have that the stability condition dPJ > dP^ 
corresponds to 

J" dl j- dl 
1, B 1, B 

in accordance with (1). An alternative physical interpretation of / d l / В is 
as the f lux-tube-volume per unit flux [7] ; and stability properties are then 
derived in terms of plasma expansion during interchange. For f inite-
resistivity interchanges in sheared fields, the interpretation given here is 
more niuminating. 

As we shall see later, the / d l / В stability cr iterion is applicable only 
when the magnetic scalar potential x is well-defined (as it may not be when 
there are internal floating conductors), in which case x = /dlB taken around 
a f ield line is the same f o r all l ines, and we may interpret the condition 

V / d l / B <0 

as 

V / d x / B 2 =<VB" 2 ><0. (6) 

Configurations that are /d l /B-stable evidently depend on communication 
along field lines to counterbalance regions of favourable and unfavourable 
local contributions to <VB-2_>. Thus one can say that finite resistivity i m -
pairs both shear and /dl /B-stabil ization; but stability analyses such as that 
given below, or in [19] show that in the limit of high conductivity (S->oo) the 
/dl/B-technique tends to become more effective, with a maximum instability 
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growth rate u oc G TR1^2 L2, where L is the distance between "good" and "bad" 
regions. If the correlation length of such modes in the direction of VP is 
of order k"1, then the resultant diffusion rate will exceed ordinary resistive 
diffusion only by some geometric factor ~ ( L / a ) 2 . As reference [19] points 
out, however, this correlation length may remain large for small k~i, and 
the prospects of effective /dl /B-stabi l ization then decline. The resolution 
of this uncertainty must be sought in non-linear analysis and in experiment. 

TABLE I 

H I G H - S I N S T A B I L I T I E S 

Shear-stabilized /dl /В-stabi l ized Approx. growth rate 

No No G l / 2 V 
Yes No g2/3 ,,-2/3 T - l / 3 £ -2/3 k2/3 

H R 

No Yes G k2 L2 

Yes Yes Smallest of above 

II. SOME /d l /B -STABLE CONFIGURATIONS 

Closed configurations satisfying the equilibrium condition on P and U 
(in the absence of rotational transform) are relatively easy to find [9]. The 
stability condition (1) can also be met readily in systems employing "floating" 
rigid conductors inside the plasma volume [10, 11] . During the past year, 
a considerable number of solutions to (1) have been found without resorting 
to floating conductors. In the latter category, which is probably of the main 
practical interest, there are two basic types of solution, corresponding to 
the use or non-use of rotational transform as a help in obtaining favourable 
VU (as distinct f r om its usual function of providing equilibrium and shear). 

A. Periodic multipole solutions 

We will treat a thin, straight flux tube about the z -ax is , keeping only 
lowest -order terms in r, and assuming that infinite periodic solutions with 
finite positive stability will go over smoothly into toroidal solutions of large 
aspect ratio. We use the scalar potential 

oo 

X = J f d z - | f ' r 2 + ^ r i g i r * c o s i e (7) 
1=1 

- » —* 

where В = Vx • We consider f and g to be arbitrary periodic functions of z. 
Various combinations of g j ' s can be used to obtain solutions where U is 
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m a x i m a l on axis o r at l eas t has a c l o s e d constant -U s u r f a c e on which the 
outward gradient of U i s negat ive . 

g . - f l 

П 
g » f ' 
П 

1 1 1 t 1 1 " K 

k i > 
I : \ ; _ _ 

тг 0 
2 

L 0 — 

7Г, 
*2 j 

• n i k 
I ; 

/ ! ? 
a = - e 0 ! I 

• 1 

Д. 
1 1 i 1 

gV- f 1 

Fig . 2 

I d e a l i z e d s o l u t i o n for p e r i o d i c q u a d r u p o l e c o n f i g u r a t i o n . Here g refers to g j 

We beg in with the s i m p l e quadrupo le c a s e [12] = 0 f o r SLf= 2, f ( z ) = 
f (z + t ) = f(7T - z ) , g2(z) = -g2(z +7г) = -g<¿(v - z ) , which i s i l lustrated in F i g s . 2 
and 3 . In C a r t e s i a n c o - o r d i n a t e s , the equat ions of the f i e l d - l i n e s a r e 

X = X 0 ( > y exp dzi Ê2 
(8) 

2 

Y = Y 0 ( ^ e x P ( - / d z ^ 

Using d l / B = d z / B z , we find 
2n 

ГНГ7 
и 

2ïï 

•_ Гй* dz 
f 

1 j. tj2 fo 1 + R o f L'-Si 
4 2 exp f 2 (9) 

w h e r e Rg = X § + Y $ . The equ i l i b r ium s u r f a c e s of constant P a r e thus s e e n 
to be f lux tubes having c i r c u l a r c r o s s - s e c t i o n in the z = 0, тг, 2ir . . . p lanes . 
The stability condition (1) can be met f o r a confined plasma if the coef f ic ient 
of R§ is negative, i . e . , if 

exp ( 2 (10) 
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F i g . 3 

M o d e l s c o r r e s p o n d i n g t o so lu t i on o f F ig . 2 . T o p m o d e l is o n a x i a l l y foreshortened s c a l e 

Stabilizing contributions arise only where g2 ~ f b u t the periodicity con-
ditions (designed to give X - Y symmetry in U) imply that for every such r e -
gion there is another where g 2 « : - f ' , tending to give a much larger de -
stabilizing contribution. The only solution is to weight the favourable con-
tributions heavily by means of the exponential factor, which implies a c e r -
tain minimum modulation Q = Xm ax/Xm in= Ymaj/Ynin. The lowest possible 
Q-value, namely is obtained for Li~>0 and g2 = ±a , f l , a being selected 
to minimize the integral in (10). For more "practical" solutions like that 
in Figs. 1 and 2, Q must be taken of order 20. Typical finite-R calculations, 
carried out numerically, show that the negative outward slope of U is main-
tained only out to Ro =0.1, and that the local peak in U at Ro= 0 is less than 1%. 

In the preceding example, the f and g2 fields have played two distinct 
roles: to control the shape of the basic flux surface (e.g. , set the magnitude 
of Q); and to determine the integral in (10). The first role is affected pr i -
marily by the behaviour of f and g2 in the intervals Lo. The second role is 
affected primarily by the magnitudes of f ' and g2 in the intervals La. A radi-
cal improvement can be introduced, following the suggestion of JOHNSON [13] 
by setting f1 = g2 = 0 in Li, and using gj and g3 instead. One can make 
gj follow the previous symmetry pattern of f ' , while g3 follows that of g2 . 
Calculating U, one obtains an integral analogous to that in (10); and in the 
limit of small Li the contribution comes exclusively from Li. The stability 
condition then is 

(n+LO/2 

(И) 
(ir*k)/2 
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Taking gxg3 <0 at z =ir ¡2, we now find that Q > 1 is sufficient to provide a 
maximum of U on the z -ax is . Finite-R calculations now also indicate much 
stronger maxima and wider regions of favourable VU. 

Another highly significant improvement on the original periodic-multipole 
concept was made by LENARD [14] . In place of the previous system of 
alternating "flux-shaping" regions Lo with "stability-contributing" regions 
Lj , he suggested continuous sequence of identical regions Li~ like that about 
z = 7r/2. In such a region, the field line 0 = 0, r = X is given a "good" c on -
tribution to and the line в = ir/2, r = Y is given a "bad" contribution. To 
obtain uniform stability properties , Lenard added a rotational transform, 
thus causing every line to pass through both X and Y-type regions. The r e -
sultant configurations have been more elegant in shape, and have also shown 
more favourable stability properties, because of the injection of a new 
effect - the rotational transform is typically weaker in the regions of favour-
able contribution to VU, so that the field lines tend to linger there, and the 
"good" contributions become more heavily weighted than the "bad". 

B. Stagnation-point solutions 

The use of rotational transform to improve Jdl/B-stabil ity can be e x -
ploited in its purest f o rm by causing séparatrices to appear, on which ^U 
is wholly favourable. If such a separatrix bounds a set of nested closed-flux 
surfaces, then, just within the separatrix, 

tends to be strongly favourable; 
while, just beyond, the f ield l ines go to the wall . This technique can be 
applied to Lenard's type of multipole torus, yielding very "fat" confinement 
regions. An even more powerful embodiment of the technique can be found 
by going to a new type of configuration. We will consider here a scalar potential 

X = z - 2 R d i ( k r ) sin ( 0 + k z ) + A k 0 (12) 

corresponding to a uniform Bz-field on which is superimposed a helical £= 1 
field and the field of a current kA/2 on a rigid conductor at r = 0. We will 
look for stable helical flux-tubes winding about the central conductor, but 
leaving it access ib le f o r current-input and mechanical support, so that it 
need not " f loat" . 

F o r simplicity, the case k R c « 1 will be treated here . The f i e l d -
line equations integrate to give 

R2 - R2 + 2RXRC + 2 A log ^ 
C O S ^ 2B¡H 1 ( 1 3 ) 

for a field line described by ф - 0 + kz, R = r . The individual field lines are 
characterized by the parameter R1; the smallest R for which ф = 0 on a given 
line. 

When A = 0, Eq.(13) describes c irc les in the r - 0 plane, of radius 
R c , and with their centres displaced f r o m r = 0 when Ri R c (see Fig . 4). 
In the г -ф co -ord inate system, the f ield line also desc r ibes c i r c l e s , 
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Fig . 4 

Behav iour o f f i e l d l ine R, ф for A = 0. 

centred on r = Rc, ф = 0, and of radius Ra = Rc - Rj. To order kRc, the c i r -
cular motion in the r-(//-system produces a line integral of 1/BZ that is inde-
pendent of Ri, so that VU 5 0. To higher order in kRc, one obtains c y -
lindrical constant-U surfaces with an unfavourable outward gradient. 

For A > 0, one obtains the field pattern sketched qualitatively in Fig. 5. 
Through the stagnation point at Rs passes the helical separatrix r = Rs, ф = 0, 
which bounds a set of nested, closed flux-surfaces surrounding the helical 
magnetic axis r = Rv, ф = 0. From (13) we have that 

d cos ф i _ R i ( R c - Ri) - A 
T dR % Щ ' 1 ' 

and a sketch of y as a function of is given in Fig. 5. The first null of у 
defines Rs, and the second defines Rv. We have 

R s = R c - ( R § - 4 A ) i ( 1 5 ) 

RV = R C - R S . (16) 

Thus the restriction on the central current is A < R§/4. For small A, giving 
small R s ,one can readily see from (13) that the flux-surface just within the 
stagnation point intercepts the ф = 0 line again at RS2 = 2RC - R s . A three -
dimensional sketch of the configuration is given in Fig. 6. 

We turn now to the evaluation of U. In a torus with rotational trans-
form, a typical field line will pass an infinite number of times around the 
major c ircumference before closing on itself, while in the present linear 
periodic approximation to a torus of large-aspect ratio the line simply 
passes f rom — oo to "1" oo. To obtain a finite integral, we must take / dz /Bz 
over an interval in z such that along the given field line the quantity 1 / Bz 
goes through a complete period. In the preceding section this was readily 
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Fig- 5 

S k e t c h o f t y p i c a l f lux sur faces in ¡¡i-R c o - o r d i n a t e s for A > 0 . 

CENTRE CONDUCTOR 

Fig. 6 

T h r e e - d i m e n s i o n a l v i e w o f c o n f i n e m e n t r e g i o n correspond ing t o Fig. 5. 
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done. In the presence of rotational transform, all the field lines on a given 
flux surface evidently still pass through a period of l / B z during the same z -
interval; but different flux surfaces generally require different z- intervals. 
For example, near the separatrix the intervals tend to infinity. One there-
fore uses the normalized form of U, 

where ¡pi means the integral taken over a period in l /Bz as seen along the 
field line, while $ d z re fers to the period as seen along the z - co -o rd inate 
(i . е . , 2тг/к). This definition is equivalent to that given by LENARD [14] : 

тт t • / d l / В 
U = L im — t í—, 

N->00 
where the field line is followed N times around the torus. (As will be shown 
below, we can also identify U, as defined in (17), with dV/d^ [15] , where 
V(^) is the volume enclosed by the flux surface ф. ) 

For present purposes, we can write (17) as 
R, 

„ J dR (BzdR/dz)"1 
_ ¿ti Rj 

U = к / dR (dR/dz)" 

к 
fdRRtan<// 

1 + R c k 2 | 
/ d R / s i n ф 

( 1 8 ) 

which can be evaluated with the aid of (13). 
The calculation of U on Rv and Rs is trivial, since ф = 0, and one obtains 

UÏ_ BZ(RS) _ 1 - RcRs к2 

Us " BZ(RV) " 1 -RcRvk 2 ' 
(19) 

which is maximal for small Rs , giving 

U v 

Us 
= 1 + (kRc) • (20) 

The finite-kRc analysis can be carried out analytically and gives a maximum 
of 1.23 f o r U v /Us. Inclusion of an £ = 2 f ield can ra ise this ratio to 1.33. 

The typical variation of U between Rs and Rv is sketched in Fig. 5. Near 
Rs it is helpful to write 

*» 
/dR(R cos ф - Ri ) /s in ф 

U = т ^ l + R c R i k U ^ 1 R- (21) 
2 it 

JdR/sin ф 
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The integral in the denominator diverges logarithmically as Ri-tR s , giving 
infinite positive (favourable) slope 3 U / 3 R : . Near Rv one obtains 

so that there is a maximum of U at Rv as long as A < R § / 4 . In the finite-kRc 
analysis, however, this maximum tends to disappear when A is small . 

A second type of stable solution can be obtained for A < 0 . The typical 
field-line pattern in the ф-R system is sketched in Fig. 7. The helical flux 

F i g . 1 

S k e t c h o f t y p i c a l f l u x s u r f a c e s in ф - R c o - o r d i n a t e s f o r A < 0 . 

tube in which the plasma is to be confined now tends to engulf the centre 
conductor; but access can be maintained through the ф = -1г plane by stopping 
the plasma somewhat short of the separatrix through the stagnation point 
R s . We now have 

R s = ( R g - 4 A ) i - R , ( 2 3 ) 

Rv = Rc+Rs (24) 

rr = 1 +RC(RC + 2Rs)k2. (25) us 

We note that small Rs (i. e . , small A) is no longer the best case, and that 
the "well" in U"1 is now greater than for A>0 . The finite-kRc analysis gives 
a maximum Uv/Us of 1.41, f or k2A 1; and this can be raised to 1.5 by 
inclusion of an Í = 2 field. Near Rv we see from (22) that A <0 is even better 
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than A > 0 . Moreover, the finite-kRc analysis shows that the occurrence of 
optimum Uv/Us for substantial values of A now permits the simultaneous 
maintenance of a maximum of U at Rv . 

C. Floating-ring solutions 

A number of solutions of this type are familiar by now. Two or more 
toroidal floating rings, carrying currents in the same direction, produce 
deep wells in U; a set of poloidal rings or a floating helix have a similar 
effect [16] . Likewise, the stellarator divertor coil produces a region of 
favourable VU, but only in the diverted part of the flux. 

YOSHIKAWA [17] has pointed out that the levitron [18] can also be given 
favourable essentially by the rotational transform technique: the 
poloidal field is weakened on the small-major-radius side of the floating ring, 
thus causing the (mainly toroidal) f ield-l ines to spend most of their time 
where the toroidal field strength increases away from the ring. In this way, 
a valid solution, in the "maximum-<B_2> " sense, can clearly be obtained, 
in the limit of the small poloidal field. One can also derive a paradox: U 
can be written 

where p is the major radius and ф the major toroidal angle. Thus, the po -
loidal field strength does not directly affect U at all (it affects only the 
transform of the field-lines) whereas we know well that its falling off, away 
from the floating ring, produces an adverse gradient of "(B2>. The paradox 
is resolved by noting that the helical field of the levitron does not allow a 
single-valued potential x , so that the Jdl/B criterion cannot be applied in 
its usual form. 

' III. / d l / В - STABILITY IN THE PRESENCE OF SHEAR AND FINITE 
RESISTIVITY 

Stability according to the /dl /B-criterion is loosely related to minimum-
B stability [2] (cf . Equation 6), but is much less reliable, since c o m -
munication between, "good" and "bad" regions is required. Even for perfect 
conductivity, this consideration sets an upper limit on p. In what follows 
we wül assume that j3 is very small, and make a general analysis of finite-
resistivity effects, allowing for the presence of shear. The intention is 
to estimate the low-/3 stability properties of the configuration discussed 
in the preceding section. 

We begin with the basic equation 

dl _ Грйф 
В J B0 ' 

(26) 
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where the quantities with subscript 1 refer to a perturbation 

Ei = V0i 

Ë I X В 
v l = B2 

(27) 

(28) 

3Pi 
at - V I • V P 0 . (23) 

It is readily verified by a slight variation of the present procedure that there 
are no overstable modes. Let the time-dependence of the perturbation be 
e u t , with real u. We multiply (26) by V<£ and integrate over the volume of 
the configuration. The left-hand side vanishes for V •ji = 0, and we obtain 

0 = ÔW = / dT 

(30) 

The first term on the right represents work against the plasma pressure; 
the second represents the work of decoupling magnetic field and fluid; the 
third represents the rate of increase of kinetic energy. Equation (30) sets 
an upper limit to u; and since 6W is stationary when conforms with (26 — 
29), the maximum u found for any trial function фх corresponds to a real 
dynamic mode. 

We now introduce co-ordinates in accordance with Fig. 1. Let ф be the 
flux between the magnetic axis and a given magnetic surface, which it labels. 
Let the magnetic potential x be the co-ordinate along field-lines. We will 
restrict ourselves here to configurations where x is single-valued. Let the 
third co-ordinate n be defined by 

dn = BdS BdS 
d ф /BdS ' (31) 

so that n measures the fraction of the flux dф passing between the line n = 0 
and n. We will choose Ë -^n = 0, so that n is a flux-preserving co-ordinate. 
For the volume element, we have 

dr = dSdl = ^ | f ^ . (32) 

When shear is present, the line n = 0 becomes distorted as one moves 
along x (see Fig. 1). It is then convenient to introduce a new co-ordinate 

n ' = n - n 0 ( x , Ф), 
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where the function no is such that on some chosen surface фо we have no = 0, 
while on the other (//-surfaces the points n'=0 lie (for each x~value) on 
the shortest line between the magnetic axis and the n = 0 line on the фо - surface . 
Since dn'=dn, the Jacobian in (32) is unchanged. 

We now choose a perturbation of the form 

Ф1 = ewt cos 2тгтп' e ^ ' M 2 / 2 ^ ) 2 g(x, n'). (33) 

(In a toroidal configuration, continuity round the major circumference then 
requires, strictly speaking, that we are dealing with a f lux-surface ф0 on 
which a field-line passes once round the minor circumference and returns 
on itself after N turns round the major c ircumference, and that m is an 
integral factor of N. ) Note that (33) does not describe an interchange of 
flux-tubes (which would be topologically impossible in a sheared toroidal 
field) but an interchange, about a field-line in фо, of fluid tubes having the 
same pitch about the magnetic axis. 

In (33) we take Ьф to be small, so that the perturbation is sharply 
localized in ф. The amplitude g is taken to be a relatively slowly varying 
function of x and n'. When communication along the field is weak, the 
fastest growing mode will have g such as to concentrate the perturbation 
in the "bad" regions. We will neglect (3g/3n')/g relative to 27rm. We now 
have 

2 . ' Z* 1 9 fЭф, 3 1 Эф, 3 1\ . . . . 
V ^ X B ' v P = # B * - Э ? Э ? P > ( 3 4 ) 

The second term on the right is relatively unimportant, since it tends to 
cancel in both the n'-integration and the ^/-integration (and indeed vanishes 
identically for the usual interchange mode, where g= 1). 

The first term on the right in (30), which corresponds to work against 
the plasma pressure, can now be written 

5Wp=(27rm)2jrd0 dn' dX e"i*"*»>'AW (sin 2тгтп')2 g2 J^ (35) 

Because we are here assuming a single-valued magnetic potential x (which 
is not always possible when there are floating conductors) we can rewrite 
(35) in the form 

ÓWp = (2тгт)2Гdip е -»-*»>'/(«« ' Г d n . dX(sin 2тгтп')2 Ê;, (36) 
J аф дфJ B 

where the x and n' integrations have been interchanged with 3/ 3tp, since 
ДЬе limits on the integrals do not depend on x-
1 Now the zero-order quantity 1/B2 may have some periodicity in x and 
n1; and if g varies , its periodicity will be related to this. The period of 
sin 2тгтп' is determined by the quantized f irst-order parameter m, and will ge-
nerally be incommensurate with the period of x and g. Thus we may set 
(sin 2тгтп')2 « i , and obtain 



TOROIDAL MAGNETIC FIELD CONFIGURATIONS 405 

6Wp = 2ж2т2Jйф e ' W W ^Jdn'd* ¿ i (37) 

For the special case g = 1, a sufficient condition for 6Wp> 0 is 

I < 3 8 > 

where we have replaced n1 by n, which leaves the Jacobian unchanged. We 
can identify 

Га a 1 /dS dl dV 
J d n d * 3 r = 7 B d s = d T ' ( 3 9 ) 

where У(ф) is the volume inside flux-surface ф. Since ôWp is the only c o m -
ponent of 6W that can be negative for и >0, a sufficient condition for stability 
is then (noting = Po {ф)) 

We can relate (40) to (1) and (17) in the following manner. In terms of the 
cylindrical co-ordinates, we have for (31) 

Щ(дг*/дф)йв 
d n / B z ( Эг2/ Ъф)йв (41) 

in the x = 0 plane, which we take to be the z = 0 plane. Then (39) gives us 

2ft z T 

¿ d e [B z Эг2/Э ф]г=й J dz /Вг 
HI/, " ®Г 
^ J d0 [Bz 9r2/3 (//]z=o 

where 1 / B z is to be evaluated along field lines through the points в, r, in 
the intersection of the z = 0 plane with the flux surface ф. At the point zT 

the configuration would be joined back on to itself if it were deformed into 
a torus. The length in z required to make 1/BZ go through a complete period 
as seen along a field line is $¡dz. An integral over this length in z will, by 
definition, yield the same value of /dz /Bz, no matter what the starting point 
on the ^-intersection with the z = 0 plane. Hence (42) reduces to 

dV = . dz 
d^ <&dz 9 fBz ' 

which differs from (17) only by a fixed number relating zT to the length Ф dz 
required for a period of Bz as one moves along the z - co -ord inate ( i . e . , 
kzT/2w). 

We must now consider interchanges for which g^fel ; in other words , 
we must study the problem of communication between "good" and "bad" r e -
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gions. Here we wül restrict ourselves to a rough calculation. Using (33) 
with the assumption of a slow variation in g, letting kx represent the wave 
number in the n1 direction, and with a small 6 representing the "radial e x -
tent" of the perturbation, we can approximate (30) as 

6W oc / dl k 2 g 2 V P V B2+ U C T { ( i 
| f ) 2 + k2 62E2g2 

p)1 (43) 

where the integral is taken in the ipo surface , with arbitrary g = g(l), and 
where L is the measure of shear. By and we mean the gradients 
norma] to % . The former is constant on фо, and for the latter we will adopt 
a simple behaviour: 

( 4 4 ) 

where Rc represents an effective radius of curvature, which is proportional 
to d 2 V / d ^ 2 in the sense defined by (39). In what follows we will treat both 
the predominantly favourable case V P 0 / R c > 0 and the predominantly u n -
favourable case'^Fb/Rc <0; and we will generally be interested in y 2> 1, so 
that both "good" and "bad" regions of curvature are present simultaneously. 

The choice of g that will maximize ÓW ( i . e . , will maximize w) is 
governed by 

d2g _ L? 
dx2 7Г2 

k2 52E2 + 1 i k 2 1 + 7 C O S 2 X 

^ u a B 2 1 k i V P ° Rc 

+u2p (k2 + p g = 0, 

where x = 7rl/L. Defining 

b = - L2 

(45) 

(46) 

2 _ L £ 2Tk|V3 
П ~~ 7Г2 UffB2Rc ' 

(47) 

we reduce (45) to the standard form of the Mathieu equation 

£ § + ( b - h 2 c o s 2 x) g = 0. (48) 



TOROIDAL MAGNETIC FIELD CONFIGURATIONS 407 

The sign of 7 in (44) depends only on the choice of 1 = 0, and should be chosen 
so that h2> 0. We will consider и and k̂  to be positive. 

We now solve (48) with the condition that g be regular, thus obtaining 
an eigenvalue condition relating b to h. This condition becomes simple in 
two limits: 

which Corresponds to g localized near x = 0, r , 2n There is no solution 
for b < 0 . The eigenvalue conditions (49) and (50) then give us the maximum 
possible u in their respective limits. 

There are two б-dependent "stabilizing terms" in (46), the shear term 
in I? and the inertial term in p. We maximize u by the choice 

which becomes small in the high-conductivity limit. Taking, therefore, 
к х б « 1 , we reduce (46) to 

2b = h2 for b < < 1, (49) 

which corresponds to a non-localized g, and 

b = h for b » 1, (50) 

(51) 

(52) 

We have then, for b « 1, 

(53) 

where 

(54) 

which is the usual finite-resistivity growth rate [2] . 
For b » 1, we have 

uo , (55) 

where 

(56) 
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A geometrical interpretation of L0 can be given in terms of (51): 

< 5 6 a > 

so that Lo is roughly the distance along the field required to make two field 
lines on flux surfaces with separation б diverge by a distance тг/к. We note 
also that 

. h = 2 M Ш - < 5 7 ) 

We now distinguish between two basic types of configuration: 

Type I, Jdl/B-stable, in the sense that the condition (40) is met! Then 
^ P 0 / R c > 0, and we select у > 0, so as to make h2 real. There is no small-b 
solution, as we have already noted in the b = 0 limit, which is g = 1. There 
are two cases of large-b (localized-g) solutions: 

(1) If L « L0, then (55) yields 

L Y ( Y - I ) 2 k2VPn 
•n) 2y crB2Rc' l b S ) 

which is much smaller than u0. The large-b (large-h) approximation is only 
roughly valid, as seen directly from (47). 

(2) If L » Lo, then 

u « ( T - l ) f u o . (59) 

From (57) we see that the large-b approximation holds well. In the present 
case, the advantage of meeting condition (40) is evidently lost. 

Type II, Jdl/B-unstable, so that VP 0 /R c <0, and т < 0 . 
(1) If L « L o , then the highest growth-rate is achieved for b « l , and we 

obtain from (53) 

u = u 0 . (60) 

(2) If L » Lo, we must go to the large -b limit of (55), and obtain 

u = ( l + Ы ) * и 0 . (61) 

In both cases (57) veri f ies the validity of the chosen b- l imit (h-l imit) . 
These results serve to document the remarks made in Section I on the 

relative utility of / d l /В and shear-stabilization. The condition LCLo, for 
which /dl /B-stabilization becomes advantageous, can be interpreted most 
conveniently in terms of (56a). We may regard L,yl and E"1 to be roughly 
comparable, so that the critical condition is кАб < 1 (the range in which we 
have carried out the present analysis). From (51) and (^4) we see that 
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kx6 > 1 is just the range where uo equals the rate of ordinary resistive d i f -
fusion over the dimension kl1 ; a range that is of little practical importance, 
unless as Reference [19] points out, the correlation length in the VP d i -
rection turns out to be much greater than kji . 
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EXPERIMENTS IN TOROIDAL 
PLASMA CONFINEMENT 

H . P . F U R T H 

L A W R E N C E R A D I A T I O N L A B O R A T O R Y , 

L I V E R M O R E , C A L I F . , U N I T E D S T A T E S O F A M E R I C A 

I. INTRODUCTION 

From the "c lass ica l " point of view, closed magnetic confinement 
schemes have an advantage in that a particle must undergo many collisions 
before it can escape across magnetic field (unlike the case of open-ended 
systems, where a single collision can permit escape). The "modern" point 
of view on the confinement problem tends to concentrate on the danger of 
co-operative rather than purely collisional loss-mechanisms; however, the 
conclusion with respect to the advantage of closed confinement remains the 
same: a level of turbulence that leads to prohibitive end-losses in an open 
system may be relatively unimportant in a closed one. 

As has been mentioned in previous papers presented at this Seminar 
[1, 2], the simplest closed system, a pure toroidal vacuum field, does not 
provide a plasma equilibrium, and must therefore be modified by the ad-
dition of rotational transform or by some deformation so as to satisfy the 
constant-P-constant-Jdl/B condition. Historically, the major experiments 
have followed the first approach, because of its convenience. Three experi-
mental routes, in particular, have been favoured; namely, (1) the pinch, 
where a strong plasma current provides a principal part of the confinement 
field; (2) the Tokomak, where the plasma current provides a field thát is 
weak compared with the toroidal vacuum field, but retains an essential role 
in generating the rotational transform; and (3) the stellarator, where the 
vacuum field itself can provide an equilibrium. 

During the past ten years these experiments have been among the 
principal sources of plasma-physics results in the areas of stability, dif-
fusion theory, wave propagation, and spectroscopy, among others.. Plasmas 
of typical density 10i3-10i5 c m - 3 , and typical temperature 10 to 100 е . V . , 
have been produced and confined for times as great as 100 - 1000 /us. On 
the whole, however, these experiments cannot be considered to extend a 
promise of direct success as high-temperature plasma containers; and what 
is perhaps more important, they have contributed little definite information 
to the question of the feasibility of highly stable plasma confinement in closed 
systems. 

The object of the present lecture is to state and illustrate the nature 
of the stability problem, and to indicate a probable direction of experi-
mental progress . 

II. THE STABILITY PROBLEM 

The instabilities of closed configurations can be classified conveniently 
according to the "energy reservoirs" that drive them. (Here we follow the 
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concept, though not the exact categories, of Dr. Rosenbluth's paper in these 
Proceedings [3] .) 

1. The mere fact of localization of the plasma may permit universal [3] 
instabilities - as in every other confinement situation. 

2. Since in closed geometry the plasma cannot be placed in a perfect 
minimum-B position [2, 4] there is a tendency to flute instabilities. These 
can be counteracted by shear or /dl /В-stabilization, either of which will 
suffice when the electrical conductivity is perfect, and neither of which may 
suffice in the presence of finite resistivity [2] or other effects disrupting 
communication along the magnetic field. 

3. Anisotropic heating may create a non-thermal velocity distribution, 
which will support microinstabilities [3, 5] . 

4. A directed current along a magnetic field tends to support more serious 
microinstabilities [5]. 

5. When a substantial part of the confining magnetic field is based on 
plasma current, the magnetic energy content may be lowered by gross hydro-
magnetic modes. 

The actual non-linear results of instability are generally extremely 
difficult to diagnose and to trace back to known linear modes. A powerful 
and reliable approach to diagnosis, however, is available in those experi-
ments where the possible energy reservoirs for instability can be controlled 
by the experimenter. In open-ended configurations, we have the line of ex-
perimentation initiated by IOFFE [6], where the experimenter can turn on 
and off the energy reservoir associated in the magnetic field gradients, 
simply by switching between mirror and hybrid (minimum-B) geometry. At 
the same time the extraneous energy reservoirs associated with categories 
3-5, as given above, are kept sufficiently small so that they do not obscure 
the configurational effects that are intended for study. 

In closed configurations, no such experiment capable of clear diagnosis 
has been performed as yet. Inherently, toroidal pinches have every kind 
of energy reservoir, and exhibit a complex pattern of instabilities in practice, 
for which only a very partial explanation has been found in ten years of study. 
By largely empirical methods, certain specific regimes have been discovered 
that are substantially stable; but these results have not as yet furnished 
a useful basis for theory, or the means of extrapolating to more interesting 
high-temperature plasmas. Tokomaks have the great advantage of mini-
mizing the magnetic energy reservoir based on plasma current, but they 
have not been able to turn off the directed current to a sufficient extent to 
exclude the energy reservoir for microinstabilities, and they cannot vary 
their basic configuration. Stellarators could in principle provide a clear-
cut experiment of the Ioffe type by setting up a thermal plasma and then 
studying stability with shear on and off. In the past, however, the co -
operative effects of the directed Ohmic-heating current have dominated the 
situation, unless the Ohmic heating was turned off, in which case the rapid 
drop of the plasma temperature has led to conductivities insufficient for 
the maintenance of a credible plasma equilibrium. At present the Model-C 
stellarator is being heated by ion-cyclotron waves instead of by directed 
current. Again the heating method has dominated the pattern of co-operative 
effects, at least in the initial experiments, but now there is a much better pro-
spect of significant stability studies during the power-off phase. Toroidal 
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•experiments with directed current conducted at high density could ideally 
conform with the concept of making the electron streaming velocity negli-
gible, at least compared with electron and ion thermal veloc i t ies . This 
approach to the elimination of Class-4 instabilities, however, calls for ex-
tremely high confining fields, and its total effectiveness remains both theo-
retically and experimentally undemonstrated. 

Iof fe 's experiment has been regarded as giving open-ended configu-
rations a significant lead over closed ones, because of the topological im-
possibility of minimum-B in the latter case. It is far from clear, however, 
that shear-stabilization is an inadequate alternative to minimum-B; still 
less , that Jdl/B-stabilization is inadequate. The real lag of the toroidal 
configurations consists in the absence thus far of clear-cut experiments that 
test the theories of shear and /dl/В-stabilization. 

One might add parenthetically that there is some indirect evidence for 
/dl/В-stability, coming again from open-ended experiments. As Dr. IOFFE 
points out [6], mirror machines with substantial neutral-gas backgrounds 
and hot-electron plasmas are generally very stable, presumably because 
of "line-tying", that is, electrical conduction along field lines to solid sur-
faces. The stability problem here is essentially the same as in an / d l / B -
stable configuration with very strong favourable properties near one point 
( e .g . the stagnation point in the helical example given in [2] ) which corre -
sponds to the point at which the lines are tied. 

III. HARD-CORE CONFIGURATIONS 

To illustrate the above remarks with concrete material, a brief account 
will be given of toroidal-confinement research conducted at the Lawrence 
Radiation Laboratory (LRL) in collaboration with S.A. Colgate, D.H. Birdsall, 
and C.W. Hartman. 

By 1956 the deficiencies of the simple dynamic pinch had been noted 
and conditions for gross infinite-conductivity stability had been derived [7] . 
The "stabilized" pinch consists of an ordinary pinch with entrapped longi-
tudinal B z magnetic field, as in Fig. la. For stability, the radial com-
pression ratio must be kept small (always less than 5: 1), and the B z - f ield 
must be neatly entrapped within the pinch column. Plasma heating is Ohmic, 
and can be thought of as the gradual extraction of the energy of the magnetic-
field departure ДВ from vacuum field, on a time scale determined by the 
effective resistivity [8] . The hypothetical scheme for a hot-plasma con-
tainer thus called for the initial creation of a sharply defined "stabilized" 
pinch, which was then to diffuse toward an unstable field-distribution, heating 
the plasma in the process to a characteristic temperature Tc = <BAB>/4jm, 
where n is the plasma density. As the electron temperature rises, the dif-
fusion process becomes correspondingly slow, permitting long confinement 
times. 

Toroidal "stabilized"-pinch experiments [9] initiated at LRL and else-
where in 1956/58, exhibited a gross stability behaviour fairly consistent with 
theory. Small-scale turbulence was evident, however, from magnetic and 
electric probe measurements; and while the operating times of the experi-
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Fig. 1 

(a) Field configuration of "stabilized" pinch, showing B z - f i e ld entrapped in plasma column 
(b) Hard-core pinch with tubular plasma column compressed between regions of B z and Bg- f ie ld 
(c ) Hard-core configuration confining l o w - 6 plasma tube in strongly sheared vacuum field 

ments ranged up to several milliseconds, the time for leakage of the plasma-
energy content was typically much shorter. At moderate values of T c , the 
input power was being lost by impurity radiations. For T c -values in the 
kilovolt range, the actual plasma temperature remained moderate, and 
anomalous particle transport across magnetic field removed the surplus 
energy with great effectiveness. 

The cause of the difficulty remained uncertain, particularly since it 
was known that the infinite-conductivity condition against small-scale hydro-
magnetic instabilities [8] was fairly restrictive, and possibly was not being 
met with sufficient precision in the experiments. In order to test this point, 
we turned to the "hard-core pinch" (Fig. 1(b)), a configuration with a wide 
margin of infinite-conductivity stability, and an easily verified sufficient 
condition for stability: 

¿ ( r B S ) < 0 . (1) 

Linear pinch configurations were studied first [10], for reasons of con-
venience. In a typical operation an initial Bz-field was set up; nextaplasma 
current was drawn between the electrodes and returned on the inside con-
ductor (instead of on an outside return conductor, as in the usual case) . 
An outward pinch or "unpinch" resulted, and by virtue of the pressure -
balance equation 

one could be sure during the rise-time of the B e - f ield that condition (1) was 
being satisfied. 

Small-scale instability was still observed under some conditions, and 
we were thus able to conclude that the observed difficulty must lie outside 
the infinite-conductivity hydromagnetic theory. This conclusion was con-
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firmed by the experiments of BICKERTON and co-workers [11], who sug-
gested that finite plasma resistivity must be responsible for the discrepancy, 
and proposed a mode somewhat similar to the positive-column instability 
of KADOMTSEV and NEDOSPASOV [12] . Our own group performed some 
suggestive analogue experiments with sodium pinches and arrived at the 
theory of the "tearing mode" [13], a tearing of the tubular pinch-current 
layer into a helical filamentary pinch, involving a finite-resistivity mecha-
nism similar to the "neutral-point instability" of DUNGEY [14]. The same 
mode was discovered independently by REBUT and co-workers under the 
name of "neighbouringequilibrium" [15], and has been shown by them to be 
conclusively the cause of the "anomalous" turbulence in hard-core pinches. 
Specifically, the development of the helical mode causes condition (1) to-
become inapplicable, and secondary infinite-conductivity instabilities then 
lead to the observed turbulent regime. The same course of events [16] has 
been predicted and observed for the so-called reverse-field theta pinches. 

The complete theory of finite-resistivity hydromagnetic stability [17] 
contains a current-driven "rippling" mode analogous to the positive-column 
instability, and a plasma-pressure-driven interchange mode [2], as well 
as the tearing mode. The tearing mode is easily avoided [15, 17] in hard-
core configurations that do not depart strongly from the vacuum magnetic 
field. (Specifically, the current layer cannot tear into half-wave lengths 
shorter than the current-layer thickness 6. There results the stability con-
dition[17] Bq/Bz> r/26, or, with Rebut's model for the zero-order equilibrium, 
the condition I h a r d - c o r e / I p l a s m a Zr/26. This condition has been verified ex-
perimentally by REBUT and co-workers [15] . One asks next whether the 
other finite-resistivity hydromagnetic modes, or the current-driven non-
hydromagnetic modes, will still lead to enhanced plasma loss. 

Our linear hard-core pinch experiment was unable to answer this 
question neatly, and we turned to the toroidal hard-core configuration, or 
"levitron" (Figs. 2 and 3). Here, the typical operation is to supporta 
central ring core (a 300-lb copper conductor) on steel rods, which are with-
drawn and replaced by magnetic-pneumatic-driven pistons, leaving the ring 
freely floating for 40 ms, during which time the plasma experiment is con-
ducted. An initial B 0 - f ie ld is set up, and a rising B z-f ield (toroidal field) 
then induces a transient plasma current (Fig. 4). The resultant discharge 
appears highly stable at first sight, but sensitive magnetic probes detect 
a "magnetic flutter" at a few gauss, in the 100-kilocycle range. The onset 
of this flutter coincides with a rapid cross- f ie ld diffusion, as detected by 
Langmuir probes at the wall, and is followed by a sharp rise of impurity 
light. The effective plasma conductivity, as measured by the rate of com-
pression of the Be-field ( V t o r ' > V a c - Vtor in Fig. 4) also undergoes a sharp ad-
verse charge at the onset time of the flutter. Values of Tc as high as 4 keV 
are reached, while the electron temperature reaches the 100-eV mark at 
best. Thus the plasma-energy content is lost some 40 times during the dis-
charge - mostly by anomalous particle transport across magnetic field; i . e . 
by anomalously large effective r)x • The rj„ resistivity component, as esti-
mated from the Bg-field entrapment, is also somewhat low, corresponding 
to 20-30 eV electron temperature in a hydrogenous plasma. 
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Fig. 2 

Schematic of levitron 

Detailed probe measurements indicate that the magnetic perturbation 
has an auto-correlation distance of about 5 cm across magnetic field, and 
a 10 times longer distance along magnetic field. At high plasma currents, 
the frequency of the perturbation goes up and its auto-correlation distance 
goes down, maintaining a "phase velocity" of about 106 c m / s . The radial 
perturbation magnetic field is generally well correlated across the thickness 
of the tubular current layer, which is about 5 cm. This result is rather 
interesting if one interprets the instability as an interchange: only a finite-
resistivity interchange mode can have positive correlation of the B r - f ie ld 
across the к • В = 0 surface. 

As usual, the diagnosis of the observed small-scale turbulence in terms 
of specific linear modes is difficult and uncertain. Aside from finite-
resistivity hydromagnetic modes, one could appeal to Kadomtsev's direct-
current-driven form of the universal instability, and also to various infinite-
medium-type microinstabilities. Fortunately we have been able at least 
to establish that the directed (j„) current in the discharge is the cause of the 
observed instability. 

Figure 5 shows a type of operation where BQ and B Z rise slowly and 
simultaneously, so as to minimize the induced directed current. A weak 
Ohmic-heated discharge takes place, which ceases near the maximum field 



EXPERIMENTS IN TOROIDAL PLASMA CONFINEMENT 417 

F i g . 3 

F i e l d - c o n f i g u r a t i o n o f l e v i t r o n 

(near the null in induced electric field).. At this time, an RF 5-megacycle 
heating current is induced, reheating the plasma, but failing to rekindle the 
earlier instability - which resumes only during the decline of the magnetic 
field, when a directed current is again induced. In the case of Fig. 5 the 
RF was applied somewhat crudely by two conductors contacting the ring core 
at opposite ends. The same effect has been obtained with loops encircling 
the minor circumference. 

Another point on which good evidence has been obtained concerns the 
manner of the plasma-energy leakage. Linear-pinch experiments 118] with 
an end-injected electron beam and a fluorescent-screen detector have shown 
that in turbulent "stabilized" and hard-core pinches the electrons leak 
readily from one flux-surface to another, by following the "tangled" magnetic 
field lines that are evidenced by the B r-flutter. That this process occurs 
readily in the levitron is confirmed by the rise of a positive plasma potential 
(ф3 in Fig. 4) after the onset of the flutter, presumably owing to electron 
leakage. If one attempts to alter the plasma potential by means of a biased 
filament immersed in the plasma, hundreds of amperes can be drawn be-
tween plasma and liner, indicating a low-impedance path for the electrons. 
When this experiment is performed in conjunction with the RF-experiment 
of Fig. 5, the anomalously low impedance is seen to be correlated with the 
Br-flutter. 

27 
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Fig. 4 

Typical Ohmic-heating operation in levitron, showing onset of induced current at 300 (is and 
onset of instability at 500 JJS. Bgand B z fields are measured at tube wall. 

The disappearance of the B r-flutter during RF-heating is thus of con-
siderable diagnostic value, but the achievement of altogether stable con-
ditions remains in doubt. Preliminary Langmuir-probe studies indicate 
that with RF (5-megacycle) heating the plasma diffusion rate is in some cases 
even more severe than with Ohmie heating. At the present time, a 10 000-
megacycle heating source is being installed, which may provide results 
that can be more readily diagnosed. 

IV. CONCLUSION 

The principal problem in the experimental study of stable toroidal con-
finement has been the difficulty of reliable diagnosis, in the sense of the 
inability to interpret co-operative phenomena reliably and to prove points 
about the basic feasibility of the theoretical configurational stabilization 
techniques. The effects of the plasma-heating method have invariably ob-
scured the points of more basic interest, as well as remaining obscure on 
their own account. Much progress has been made in understanding and 
eliminating the gross hydromagnetic instabilities that occur when confine-
ment is based to a considerable extent on the self-field of plasma currents', 
but the non-vacuum-field containment configurations so arrived at are of 
secondary interest, since they appear neither sufficient nor necessary to 
obtain a hot plasma with a high degree of stability. 

If toroidal confinement experiments are to attain a level of clarity and 
significance similar to that which the open-ended experiments of Ioffe and 

27" 
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others have achieved, it seems probable that similar inherent advantages 
will have to be built into future toroidal apparatus: namely, we will require 
a non-disruptive method of plasma generation, and we will have to allow 
flexibility for configurational changes that test the stability theory in a clear-
cut way. 

Two promising methods for highly quiescent generation of plasma ap-
pear at the moment to be electron-cyclotron heating and injection of a low-
energy neutral atom beam. There would be some advantage in using these 
methods in conjunction. As for configurational flexibility, the stellarator 
and levitron are well suited to test the question of shear versus no-shear. 
Whether the addition of Jdl/B-stabilization is valuable, can be tested in a 
stellarator modified by application of the periodic-multipole concept, or in 
a helical-equilibrium configuration, as described in [2]. 
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MIRROR TRAPS 

M.S. IOFFE 
KURCHATOV ATOMIC ENERGY INSTITUTE, 

MOSCOW, USSR 

I. GENERAL INFORMATION ON MIRROR TRAPS 

The various magnetic configurations suggested as magnetic traps for 
plasma confinement can be divided into two c lasses of configurations. To 
one of them belong systems where plasma f i l ls a certain toroidal region 
bounded by a toroidal magnetic surface. The best known systems of this 
type are the stellarator and levitron. Another class covers open-end-systems, 
that is to say, systems in which plasma f i l ls a section of space which is 
limited along the lines of force of the magnetic field. In the first place, it 
pertains to simple adiabatic traps with magnetic m i r r o r s and picket fence 
traps with opposite fields, as well as more complex modifications of these 
systems. We shall consider below solely magnetic m i r r o r configurations. 

The concept of such traps was formulated independently by Budgker 
(USSR) and York and Post (USA). The basic physical principle is that charged 
particles placed in a longitudinal axially-symmetric magnetic field, bounded 
at both ends by sections with a stronger field, can be reflected f rom these 
sections of stronger f ield when moving along the l ines of f o r ce . Stronger 
field regions have therefore been called magnetic mirrors . The reflection 
from the mirrors is connected with the adiabatic invariance of the charged 
particles ' magnetic moment ц = Wj_/H. 

From constancy of ц it follows that only those particles can be reflected for 
which the angle (a) between the velocity direction and the magnetic field line 
of force is determined by the relation 

sin or„ > f ^ 0 ) , 
0 VHmy 

where H0 is the field strength between m i r r o r s and Hm is the field in the 
m i r r o r . The value Hm /H0 is called m i r r o r ratio R, so that the reflection 
condition is : 

sin a0 > (R)~*. 

Thus, if particles with isotropic velocity distribution were placed, at 
a given moment of time, in the region between the mir rors then, after an 
interval of time equal to the time of flight between mir rors , no partic les , 
the phase points of which are enclosed in a 2a0-angle cone in the velocity 
space, would remain in the trap. Such a cone in the velocity space is called 
a loss cone. 
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However, those particles, the phase points of which fall outside this 
cone, will not always move in the trap since there are two obvious sources 
of losses. One of them depends on the accuracy to which the magnetic moment 
ц is conserved during multiple reflection of the particles from the mirrors. 
It is known that conditions of adiabatic movement are fulfilled better the 
lower the changes in the magnetic field encountered by a particle (in space or 
in time) per one Larmor revolution, that is to say, the stronger the fulf i l -
ment of inequalities: 

H 
VH » p . 1 ¡IS 

H at » u . 

If the non-homogeneity of the field in the mirrors is not sufficiently small 
then, after a number of reflections, the magnetic moment may change to 
such a degree that the conditions for reflection will not be satisfied any longer 
and the particle will escape from the trap. 

The problem of the accuracy of the adiabatic invariant has been in-
vestigated theoretically and experimentally. The clearest results were ob-
tained in Gibson's et al. experiments which showed that, with the adiabatic 
parameter 

e = p m < 0 . 0 5 , 

the particles may have 1010 oscillations between the mirrors . This means 
that one can ensure an extremely long confinement of the particles (measured 
for example in minutes), i . e . one can practically fully eliminate losses due 
to non-adiabatic conditions. 

Another more important loss mechanism is connected with particle 
scattering during intercollisions. Due to scattering, particles may fall into 
the prohibited cone and escape from the trap. Since we are dealing with 
strongly ionized plasma, collisions between charged particles play an es -
sential ro le . In this case , due to the Coulomb interaction, scattering is 
defined not by c lose but by remote collisions with small angle deviations. 

The problem of particle losses due to Coulomb collisions was studied 
by a number of authors (Budgker, Rosenbluth, Judd et al. ) and the main 
results are as follows. The ion flux flowing from a unit plasma volume into 
the loss cone, in the case of hydrogen plasma, is equal to 

n2 e4 Lk 1 
•Jm"; T?^ In R ' ( 1 ) 

where К is numerical coefficient of the order of a unit depending on the shape 
of the magnetic field and the initial distribution of ions over the angles during 
injection and Lk is the Coulomb logarithm. 

In this formula it is assumed that the m i r r o r ratio R is sufficiently 
high. According to (1) the mean ion scattering time with incidence in the 
prohibited cone is defined by the following expression: 
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. ^ т р 
К n e 4 L k 111 R" (2) 

With an accuracy up to 1/k, т и differs from the known expression for the 
angular relaxation time merely by the factor In R. Hence it appears that 
the magnitude of the mirror ratio R has a very weak effect on the loss 
velocity. 

The unavoidable character of the Coulomb losses is ah essential draw-
back of mirror traps and the only means of reducing these losses is to in-
crease the ion temperature. We shall give a numerical example to illustrate 
the case. At a deuterium plasma density of n= 1014 cm"3 and ion tempera-
ture T¡ = 30 keV, the mean ion life time before scattering and incidence in 
the loss cone (ти ) is = 0.1 s. 

Electron losses are defined by the same relations (1 and 2) by sub-
stituting «/m~i T ^ for *Уте Tg3/2 . As in normal scattering 

/ m e f / T e \ 3 / 2 

From equation (3) one may see that the rate of losses conditioned by the 
Coulomb scattering, generally speaking, is not the same for ions and electrons. 
At T e /T ¡ > (m¡/me)i/3 the ion flux prevails over the electron flux. With a 
different inequality sign, the electron flux, on the contrary, exceeds the ion 
flux. 

On the other hand, in the steady state, both fluxes must be equal. That 
is why an equilibrium is reached due to the formation of an ambipolar electric 
field in the plasma, which prevents the escape of particles with a smaller т. 
At the same time such a field accelerates particles of the opposite sign in the 
direction of the mirrors and thus confinement is affected. 

In this connection, let us consider in more detail the effect of the 
electric field on the confining properties of the magnetic mirror . Let us 
assume that Te /T¿ < (m¡/me)i/3 so that positive ions are accelerated in the 
direction of the mirrors . The change of the longitudinal ion velocity com-
ponent v„ under the effect of the electric field E is defined by: 

d v " ¡ ^ ЭН 
m i ~ d T = 6 ЭР ( 4 ) 

where E, is the projection E on the direction of the magnetic line of force. 
After integration of (4) along the line of force from the minimum field point 
up to the maximum field point in the mirror Hm we obtain 

w„ i - w0i c ° s Ч = е(Ф0 - ф т ) - (R - 1) W0. sin2a0, (5) 

where (cp0- cpm) is the difference of the ambipolar field potentials along the 
magnetic mirror. Introducing into (5)thatW„¡ = 0, we find that in the presence 
of an electric field the reflection condition is: 
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The potential difference regulating the electron flux from the trap is deter-
mined by the electron temperature 

е ( ф 0 - ф т ) = 7 Т е . , (6') 

(7 is a numerical coefficient of the order of unity). Substituting Tj for Woi 
one can rewrite (6) in the form: 

«о > ( 1 + T T j T j l (6«) 

From the comparison of (6) o r (6n) with (1), it follows that the longitudinal 
e lectr ic field increases the angle of the loss cone. This new cone can be 
compared with the effective m i r r o r ratio Re f f which is connected with the 
real m i r r o r ratio R by: 

R, 
R 

e f f 

1 +7 • 
(7) 

As may easily be seen, the ambipolar field is the greatest danger for the 
confinement of plasma in the case when Te approaches T¡ and R exceeds only 
slightly the value of unity. 

This gives in brief the essential features of the confining propert ies 
of m i r r o r traps if they are considered f rom the point of view of the kine-
matics of the individual charged particles and pair co l l is ions. 

II. PLASMA INSTABILITIES IN MIRROR TRAPS 

The main problem, however, for plasma confinement in mirror traps is 
plasma stability, or rather instability, and their influence on particle con-
finement. A survey of various instabilities occurring in plasma was given 
in a number of other papers. It only remains therefore to recal l the 
main results concerning m i r r o r ef fects . 

Various plasma instabilities in a magnetic field are generally differen-
tiated by their physical natures into three types: hydromagnetic, kinetic and 
drift instabilities. In a magnetic field of the usual mirror trap the hydro-
magnetic interchange (flute) instability is revealed most clearly. Its elemen-
tary mechanism is connected with an opposite drift of ions and electrons in 
á radially decreasing magnetic field. Due to this instability any plasma can 
move radially across the magnetic field. 



MIRROR TRAPS 425 

Flute instability starts developing at very low plasma densities. Ac -
cording to Kadomtsev, the instability criterion has the form: 

where XD j is the Debye ion radius, i . e . XD i=(TI /4jre2n)î, a is the trans-
verse plasma scale, and R is the mean curvature radius of the magnetic 
lines. 

On account of this instability, plasma should be ejected to the walls, 
with a velocity of the order of the ion thermal velocity, in the form of sepa-
rate "tongues" extending along the field lines. The flute instability is the 
crudest form of pla-sma instabilities in mirror traps. 

Subsequently ROSENBLUTH et al. modified the initial flute insta-
bility theory, taking into account the effect of the ion finite Larmor radius. 
In this case, they found that at sufficiently high plasma density (H2/47rnmiC2 « 1) 
the higher modes are stabilized on account of the difference of the 
drifts for ions and electrons. The stability criterion has the form 

where M is the perturbation harmonic number. 
Mikhailovski generalized these results to the case of lower densities. 

He showed that the stabilizing effect vanishes at that plasma density when 
the ion Debye radius becomes comparable to the Larmor ion radius. 

Among the instabilities of the kinetic type, two instabilities conditioned 
by the anisotropic particle distribution in the velocity space are directly 
connected with mirror traps. The first of them is the so-called mirror or 
diamagnetic instability. The very term explains up to a certain point the 
nature of its origin. If there is an initial density perturbation 6n then, due 
to plasma diamagnetism, the magnetic field where perturbed is either 
weakened (at 6n > 0 ), or strengthened (at 6n < 0). In other words, any such 
perturbation gives rise to local "valleys" in the field or to local "hills" -
i . e . "mirrors " . With anisotropic particle distribution the initial per-
turbation of the magnetic field will increase in time due to capture (or, 
on the contrary, due to the ejection) of new particles which leads to the 
development of instability. The criterion of mirror instability is given by 
the inequality: 

where T„ and Tx are the particle energies parallel and perpendicular to the 
field and 

XD ¡ < ( a R ) ' , 

(8) 

n(T¿ +Te) 
H2/8tt ' 



426 M . S . IOFFE• 

Another kinetic instability - the Harris instability - (or the ion-
cyclotron instability) has a resonance nature. It arises from the resonance 
coupling between the ion Larmor rotation and the longitudinal electron plasma 
oscillations. The minimum plasma density at which unstable electron oscil-
lations may start building up is defined by the obvious condition: 

where upe is the electron Langmuir frequency and uHi is the ion-cyclotron 
frequency. Actually it corresponds to densities of approximately 107cnr3 . 
Moreover the building up of instability requires a sufficiently high velocity 
anisotropy which, in its turn, depends on the ratio T e /T i . When T e /T ¡ in-
creases, the instability covers less anisotropic distributions up to 

Recently Mikhailovski developed a theory of a high-frequency drift in-
stability of non-homogeneous plasma which, under certain conditions, can 
become a potential threat for mirror traps. The physical meaning of this 
instability is the generation of unstable drift waves in the frequency range 
near the ion-cyclotron frequency wHi, 2um, . . . . The criterion of this in-
stability has the form: 

where CA is the Alfvén velocity, с is the velocity of light, n the number of 
the cyclotron harmonic. It should be noted that the condition of stabilizing 
the flute instability with the finite Larmor radius,Eq. (8),may in certain 
cases be incompatible with criterion (9). 

At the end of this brief survey of main instabilities which may occur 
in mirror traps, it should be pointed out that theory in many cases merely 
indicates the existence of certain instabilities, but does not make any definite 
quantitative conclusions on their actual effect on plasma confinement. 

At the same time one cannot but express satisfaction with the fact that 
the rapid stage of theory development, with a stream of new discoveries 
of instabilities, is drawing, I think, to its close. It is to be hoped that theory 
in this connection will make no new discoveries and that it will be possible 
now to elucidate experimentally the degree of danger presented by each of 
the predicted instabilities. 

Extensive experimental data have been collected to date with regard 
to plasma stability in mirror traps. Research work in this field is carried 
out in a number of laboratories using various experimental devices varying 
in their geometrical dimensions, strength of magnetic field, techniques of 
plasma formation and plasma parameters (see Table I). 

The great variety of experimental conditions gave rise in the beginning 
to nearly the same variety of contradictory results concerning plasma sta-
bility in a magnetic field of a mirror configuration. According to theory, 

" p e > " H i 

Hi 

(9) 
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flute instability should develop in such a type of field, which induces a rapid 
plasma ejection to the walls across the magnetic field. However, although 
this instability appeared distinctly in some of the experiments, it was not 
revealed at all in a number of others. 

Without proceeding into a detailed analysis of the peculiar features of 
each of these devices, we shall only mention that the essential difference 
between "stable" and "non-stable" devices is the difference in vacuum con-
ditions. All "non-stable" devices are those in which the highest possible 
vacuum during plasma injection is maintained, so that during operation the 
neutral gas pressure as a rule does not exceed 10"7torr. In "stable" instal-
lations the initial vacuum (before injection) is usually 10~6 to lCT5 torr and, 
what is much more important, during injection pressure falls sharply with-
out any means of control. 

In connection with this, a number of authors (Post, Rosenbluth, Velikhov) 
suggested the hypothesis that stable confinement regimes are reached in 
those cases when around the "hot" plasma confined between mirrors a suf-
ficiently dense cold plasma is present due to the ionization of the neutral 
gas. The cold plasma, being in contact with the conducting walls (in the 
region beyond the mirrors outside the trap), ensures good conductivity along 
the magnetic field lines and, therefore, prevents the formation of polarized 
electric fields in the "hot" plasma. The recent series of investigations 
carried out in Livermore with adiabatic plasma heating devices have proved 
convincingly the validity of this hypothesis. These experiments have directly 
proved the influence of vacuum conditions on plasma stability with regard to 
the lower modes of flute perturbations. 

To the family of "non-stable" experiments were added recently 
installations with plasma accumulation by injection of fast neutral beams. 
In these experiments with a simple geometry a flute type hydromagnetic 
instability has also been observed. This instability limits the plasma density 
accumulation. 

Thus, although specific features of the phenomena accompanying flute 
instability are not described in the initial hydromagnetic theory, a qualitative 
agreement between theory and experiment does exist. 

As to the other kinds of instabilities mentioned earlier, the ion-cyclotron 
instability (Harris) has been experimentally discovered in a number of insta-
lations. Its investigation has not yet developed to the extent which would en-
able us to draw a definite conclusion on the degree of its negative effect on 
the confining properties of the trap. 

III. METHODS OF INJECTING HIGH TEMPERATURE PLASMA INTO 
TRAPS 

Many different methods of injecting plasma into mirror traps have been 
proposed and are being developed at present. 

Since these traps have open ends there is scope for various inventions 
and suggestions, in contrast to closed traps where the possibilities ofplasma 
injection are much more limited. 

We shall give a brief survey of the existing methods, sub-dividing them 
into three groups: (a) methods of external injection of fast particles; (b) 
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adiabatic magnetic compression and heating of the already formed cold plasma; 
(c) methods of cold plasma heating based on the use of external high f re -
quency electromagnetic fields and beam instabilities. 
(a) The main problem in the generation of high temperature plasma through 
fast particle injection into the trap is the development of efficient methods 
of capturing the injected particles. Since the particle is introduced into 
the magnetic field from outside, it can remain in the space between the 
mirrors on the sole condition that during its movement a sharp (non-adiabatic) 
change would occur of those parameters which characterize its trajectory. 
This means that either the particle properties (velocity, mass or charge) 
or the magnetic field where the movement takes place will change. 

Those methods of capture which are based on abrupt change of the 
injected particles' mass or charge have found the most extensive application. 
In some cases beams of accelerated hydrogen molecular ions are used. 
Molecular ions are dissociated and atomic ions are formed through collision, 
either with residual gas particles or with the cold plasma specially injected 
for this purpose. In other cases, beams of fast neutral atoms are used 
which convert partly into ions in the magnetic field, due to the so-called 
Lorentz ionization, and also due to collisions with particles located in the 
trap. 

Independently of the injection method applied, the energy of the injected 
particles should be equal to some tens or hundreds ofkeV if the cross-sections 
of the dissociation and ionization processes are not to be too small. 

Let us consider as an example, the accumulation of plasma in the case 
of molecular ion injection. (A large part of the results obtained can also be 
applied to the injection of neutral atom beams. ) 

The accumulation process starts with the ion dissociation on the residual 
gas or on the specially generated plasma column. With the increase of the 
density of the captured atomic ions, the dissociation starts developing also 
on the accumulated particles of the plasma. 

Therefore the density of the atomic ions would grow almost exponen-
tially if there were no losses of the ions. Actually the main source of losses 
during the initial stage is the charge exchange on neutral gas, which limits 
density growth. 

On the other hand, at a sufficiently high density of charged particles, 
the neutral gas density can decrease due to ionization by ions and electrons 
of the accumulated plasma. This last process, called "burn-up", plays a 
determining role in the possibil ity of obtaining high plasma densit ies . 

In order to elucidate the relative value of each of these competing pro-
cesses, let us consider the simplest equation of the accumulation process 
during the dissociation on the residual gas. 

Let I be the injected current of molecular ions, L be the overall 
length of the path of the molecular ions in the trap until they come back to 
the injector, fi be the plasma volume, n¿, n0 be the ion and neutral gas 
densities, ad be molecular ion dissociation cross-section, acthe atomic ion 
charge-exchange cross-section and v¡ the ion velocity; then the initial stage 
of accumulation will be described by the following equations: 

dr^ 
dt 

IL n0CTd- п;ппсг„ v¡ . i 0 с v i • (10) 
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If the injected current I is so low that n0 remains practically unchanged 
during the accumulation process, then the obtained equilibrium concentration 
n¡ is equal to: 

IL CTd 

With the increase of I, n¡ increases; when n¡ becomes, to within an order of 
magnitude, comparable to n^ then the molecular ion dissociation in the gas 
is supplemented by the dissociation on atomic ions. 

That is why the equilibrium concentration of atomic ions will exceed 
the value defined in Eq.( 10'). In other words, with the increase of the injected 
current I, nt will grow more rapidly than I, and at a certain critical value 
of the current Ic, a sharp change will occurr in the regime. Equilibrium 
can no longer be maintained and n, will increase in time until other proces-
ses start intervening, limiting the value of n¡, for example the Coulomb 
scattering in the loss cone. As a result plasma concentration will increase 
very strongly and the neutral gas in the plasma region will be fully ionized. 

The critical current Ic depends in a complex way on a number of tech-
nical and physical factors characterizing the vacuum system of the experi-
mental device. For a rough evaluation of this current one may use the fol-
lowing conditions: 

n ^ L ^ l . 

The meaning of this condition is as follows. Due to dissociation of the mole-
cular ion beam on the atomic ions accumulated in the volume, the intensity 
of the beam coming back to the injector begins to decrease sharply. This 
leads to a decrease of nn and to a corresponding decrease of charge exchange 
losses. 

Introducing n¡ from Eq. (10) in Eq. (11) we obtain the following expression 
for the Ic value. 

r 2sl "Vi i c - CTd2 L2 • 

The plasma accumulation process during molecular ion dissociation 
was analysed in detail in a series of studies by Symon, Golovin et al. 
They showed that, depending on experimental conditions, the I c value can 
change within a wide range. For the OGRA device I c = l A at E¡ = 200 keV, 
L = 105 cm and П = 107cm3. 
(b) Another frequently used method of filling the trap with high temperature 
plasma consists in injecting not single particles but plasma clusters from 
outside. The plasma is captured and subsequently heated by a magnetic 
field slowly (adiabatically), increasing with time. The heating of 
plasma by this method is based on the acceleration of charged particles in 
electric fields, induced by the time varying magnetic field. 

There are two ways of heating plasma adiabatically, by radial com-
pression and by longitudinal compression. 
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Plasma is heated by radial compression. Due to the conservation of the 
adiabatic invariant connected with the transverse motion of particles 
M = Wj_/H = constant, we have: 

w±(t)= f ^ J Wj.(0) = a W±(0). 

The change of the plasma radius is inversely proportional to •Ja, so 
that plasma density is n(t) =an(0). 
Plasma is heated by converging mirrors (longitudinal compression). In this 
case the transverse energy remains unchanged and the longitudinal energy 
increases according to the conservation of the other adiabatic invariant: 
lÊPn d 1, connected with the motion of particles along the magnetic lines. 

The kinetic energy of the longitudinal motion increases in inverse pro-
portion to the square of the distance between the mirrors. 

2 
W„ (0) = k2W (0). 

Particle density increases in proportion to the first power of this distance: 

n(t) = kn(0). 

At simultaneous longitudinal and radial compression 

n(t) = ffkn(0) . 

(c) Apart from the methods of impeding fast charged and neutral particles 
and the method of adiabatic heating of plasma, the method of filling traps 
with high temperature plasma has been recently developing on the basis of 
various types of instabilities. In particular, the so-called turbulent heating 
method is being successfully developed in the Soviet Union although, as 
mentioned by Sagdeev, the accuracy of the term "turbulent heating" is not 
yet clear. These experiments are described in detail in Sagdeev's paper 
(these Proceedings). Successful experiments are being carried out in Oak 
Ridge (USA) for obtaining high temperature electron plasma using energetic 
electron beams. Besides these methods, plasma heating methods are being 
developed with ion-cyclotron waves where electromagnetic fields are used 
with a frequency close to the ion-cyclotron frequency. In other cases super-
high-frequency electromagnetic fields are being used with frequencies close 
to the electron-cyclotron frequency. In this last case too, one obtains high 
electron temperature plasma. 

This does not seem to exhaust the list of possible methods for obtaining 
high temperature plasma in traps, since there is no limit to the ingenuity of 
the human mind. In particular, experiments are being started at present in 
a number of laboratories for obtaining hot plasma in traps by heating the 
initially solid hydrogen with an intense laser beam, as was proposed by 
Dawson and Engelhardt. 

W„ (t) = L(0) 
L (t) 
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IV. THE HYBRID MAGNETIC FIELD EXPERIMENTS 

Before coming to the results of the hybrid magnetic field experiments, 
I should like to talk about the history of these experiments. When we started 
investigating plasma behaviour in an ordinary mirror trap in 1958, we soon 
faced the difficulty of poor confinement. Plasma lifetime was of the order 
of a few hundred microseconds for a plasma density of about 109 cm"3, 
Te - 20 eV, Ti =1.5 keV. This fact could not be explained either by charge 
exchange losses, nor by Coulomb scattering. A whole series of measure-
ments proved that these losses are conditioned by plasma effects . The 
greatest part of the plasma loss is due to plasma transfer across the magne-
tic field to the side-walls and not due to particle escape through the mirrors. 

Subsequently, it was found that plasma reaches the walls in the form 
of separate long "tongues" or plasma tubes which extend along the whole 
length of the trap. This pointed clearly to the fact that there was an instabi-
lity phenomenon externally similar to flute instability. We had, however, to 
provide an answer to the following question: if we truly have a case of flute 
instability, why is plasma lifetime so long? Indeed, according to the early 
Rosenbluth - Longmire theory, plasma lifetime would be defined in order 
of magnitude by the ion motion time towards the walls and the ion thermal 
velocities. Under our experimental conditions, plasma lifetime should have 
been of the order of some parts of a microsecond or, at least, of some 
microseconds, but not hundreds of microseconds. 

This question was answered by Kadomtsev later. He studied the problem 
of losses on the basis of a model of turbulent convection in rarefied plasma. 

According to this model, an intense mixing of the inner and outer regions, 
similar to the convection of a non-uniformly heated liquid in a field of gravity, 
occurs if the plasma is placed in a radially decreasing magnetic field and 
the vacuum chamber walls are metallic. Due to this mixing, there should be 
an almost uniform distribution of plasma over the entire trap cross-section 
up to the layer adjacent to the wall, where practically the whole density 
decrease is concentrated. The thickness of that layer is of the order of the 
ion Larmor rEftiius. Each contact with the wall causes the plasma tongue 
to lose only a part of the particles contained and, therefore, the mean loss 
rate is significantly lower than when there are no conducting walls. The 
theory of turbulent convection of rarefied plasma, leads to the following ex-
pression for plasma confinement time in the trap: 

where С is the factor depending on that part of particles lost by the plasma 
tube at contact with the wall, a is the trap radius, U>H and u0 the Larmor and 
Langmuir ion frequencies, R0 the mean curvature radius of the lines adjacent 
to the wall, and M and T¡ ion mass and temperature. 

According to the turbulent convection model, one should expect that the 
transverse dimensions of the plasma tongues should be limited in the lower 
part by a Larmor- ion-radius order-of-magnitudè and, in the upper part, 
by the transverse dimensions of the trap. Observations were made of the 

( И ) 

28 
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local pulsation of the plasma density using electric probes, so as to provide 
a qualitative verification of this model. 

In order to measure the transverse dimension of the plasma tongues, 
negative biased probes were placed close to the side-wall in different points 
along the azimuth of the central cross-section. The contact of each plasma 
tongue with the wall is marked by a peak of ion current on the corresponding 
probe. Taking simultaneous oscillograms of the ion currents on two probes 
placed at varying distances from each other in azimuthal direction, according 
to the degree of correlation of the peaks, one can estimate the transverse 
dimensions of the plasma tongues adjacent to the wall. 

The ion flux signal on one probe, placed close to the wall, consists of 
a large number of irregular peaks varying in duration and amplitude. The 
maximum duration of the peaks is 30 to 50 ¿is. These wide peaks are modu-
lated by higher frequency pulsations. The shortest peak time is of the order 
of 2 - 3jus. 

Fig. 1 gives pair oscillograms of the currents on two probes placed at 
varying distances from each other in the azimuthal direction. It can be seen 
that at 1 -cm interval between the probes the signal shapes nearly coincide. 

4 cm 

в с т 

— /АУ 

Fig. 1 

Ion current correlation for probes at different distances along the azimuth, 
(the upper and lower oscil loscope traces are deflected in opposite directions). 
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By increasing the distance, the correlation between the most short-lived 
peaks is f irst affected and then that of lower-frequency pulsations.. 

The analysis of a number of oscillograms shows that with 4 cm between 
the probes, the correlation of peaks lasting 2-3 цв is strongly affected; at 
a distance of 8 cm, the correlation of peaks lasting from 8-lO^is is affected; at 
12 cm distance, only the correlation between wide peaks, lasting more than lOjus, 
remains unaffected (Fig. 2). At a distance between the probes corresponding 
to a 180° azimuth angle, there is no correlation of signals in both probes. 

12 cm 

200 
' fIS 

Fig. 2 

Change of the signal shape of the ion current on a probe as a function of the distance 
from the wall (upper trace - accelerating pulse, lower trace - ion current) 

It follows that the transverse dimensions of plasma tongues vary in close 
connection with the lifetime of the tongue. The shortest lived tongues (2-3 jus) 
have the smallest dimensions. Their width amounts to 3-4 cm, i . e . c lose 
to the mean Larmor ion diameter which is about 2.5 cm. The tongues lasting 
up to 10 jus are about 10-cm wide; and the tongues lasting more than 10 /us 
exceed 12 cm in width, i . e . their dimensions are comparable with those 
of the trap cross-sect ion. 

The character of plasma pulsations was also investigated with probes at 
varying distances from the wall. Fig. 2 shows oscillograms of ion current 
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on a probe near the wall and at a distance of 4 to 12 cm from the wall. One 
can clearly see that the amplitude of high frequency pulsations sharply de-
creases in the deep plasma layers arid that the current in the probe is 
smoother than that which is near the wall. This shows that small pulsations 
(with the dimension of a few centimetres and a lifetime of 2-3 jus) develop 
mainly in the layer near the wall. A more uniform plasma background modu-
lated by large pulsations is found in the central regions of the trap. 

All these results show that the space structure and the time factors of 
the plasma irregularities observed correspond to the physical picture of the 
convective plasma transfer across the magnetic field towards the wall. 

Now, regarding the plasma lifetime, at a given magnetic field H and 
ion energy T, the expression (11) can be rewritten in the form o;f 

r . c o n s t a n t X ^ + l ) 2 , (12) 

where В = H2/47rmc2. This relation describes the dependence of the plasma 
escape rate on the density n and can be experimentally verif ied. In the 
experiments performed for this purpose, the natural decrease of plasma 
density with time during its decay was used. We measured the rate of the 
fast ion density decrease at various moments of time at the end of the injection 
impulse. The maximum density corresponded to zero delay and the minimum 
density to a 850 /JS delay. 

F i g . 3 

E x p e r i m e n t a l a n d t h e o r e t i c a l d e p e n d e n c e o f 

T o n t h e p l a s m a d e n s i t y 

Fig. 3 gives the results of the measurements of the r dependence on 
the density for a density range from 5 X 107 to 1.1 X 109 с т - з . The same 
figure gives, for comparison, the theoretical curve corresponding to ex-
pression (12). The constant is chosen so that the calculated curve would 
pass through one of the mean experimental points. It may be seen that the 
experimentally found r dependence on the density is in satisfactory agreement 
with the theoretical predictions. 

Unfortunately, the existence of plasma-flute instability was not con-
firmed in the other experiments at that time, in particular in the Livermore 
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devices with adiabatic magnetic compression. Long plasma confinement 
with hot electrons covering a number of milliseconds was observed without 
any visible signs of instability. This led them to the conclusion that flute 
instability is not dangerous for mirror devices. As was found later, plasma 
stability was apparently due to poor vacuum conditions and the presence 
of cold plasma, which was discussed last time. Since in our experiments 
the plasma continued to escape from the trap, we had no other choice than 
to try and seek means to overcome the instability. 

V. HYBRID TRAP WITH MINIMUM H 

Taking into account that plasma-flute instabilities in mirror traps are 
caused by the radially decreasing magnetic field strength, it was obvious 
to start by searching for such magnetic configurations in which the field 
strength increases in all directions from the central region of the trap. 
Several minimum-H field configurations were proposed recently by Andreoletti, 
Furth and Taylor. We shall discuss in detail only the one configuration 
which was realized in our laboratory. It is a hybrid m i r r o r trap with a 
magnetic field consisting of a combination of the usual field with a hyper-
bolic field generated by a system of straight currents. The basic principle 
of this system is shown in Fig. 4. 

F i g . 4 

S c h e m e o f a h y b r i d m a g n e t i c m i r r o r t r a p ( u s u a l f i e l d + h y p e r b o l i c f i e l d ) . 

Let us consider in the first place the field of a linear conductor system 
which we shall call the stabilizing field. 

Let this field be generated by currents flowing through n conductors in 
the form of long narrow bands distributed over the surface of a cylinder of 
unit radius. Each band occupies an arc of a c irc le subtending an angle a 
at the centre. The currents in the adjacent bands are directed in opposite 
directions (Fig. 5). The magnetic field of such a current system has only 
Hr and Hy, components, which are defined by the following express ions : 

пл 
о -г v^ sin — ( 2 k + l ) £(2k + l) 

T 7 Î 2k +1 ' ' 
k=0 

P = ÔF 2kTÏ r c o s - ^ ( 2 k + l ) , 
k = 0 
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where I is the total current through one band. An adequate degree of ac -
curacy may be obtained, for practical purposes, if we limit ourselves to 
the two first terms. With r = 0.8 the third terms will give the following 

y> =o 

Fig. 5 

Magnetic field lines of the stabilizing conductor system 

corrections: withn = 4 - 3.5%, with n = 6' - 1.5%; with n>6 the corrections 
will amount to even less. Taking into account the two first terms we obtain 
the expression for the absolute stabilizing field value 

n 3n -, ITT I /TT2 TT2.4 • 81 . W . na , 1 T"1 • 3nq . |HX| = ( H r + i y ! = — {r¿ sin — + - r ¿ sin—5- cos пф). 

It is important to note that with a = (2/3) (2тг/п), sin (3n<*/4) = 0 and the second 
term disappears. In this case one may consider that |H±| does not 
depend on ф. 

The hybrid field lines obtained from the sum of the basic mirror field 
and the stabilizing field have a complex space structure. The analytical 
consideration of the shape of these lines in a general form is very cumber-
some, that is why we shall not deal with them now. The total field radial 
distribution for n = 6 is shown in Fig. 6. 

The useful characteristic of the hybrid field of the type examined, is 
the so-called transverse mirror ratio which represents the relation between 
the maximum strength of the total field, close to the walls of the vacuum 
chamber (Йх) and the field in the centre of the trap(H0u ) . 

_ (H20„ + H±V 

The introduction of such a value is significant because the hybrid magne-
tic field lines, generally speaking, cross the side-walls of the vacuum 
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iu6 

Fig. 6 

Total field radial distribution 

chamber. Only a very narrow tube of magnetic lines, c lose to the axis, 
passes through the entire trap without intersecting the side walls. The 
longer the system, the narrower the dimensions of such a tube. Thus, the 
particles on the lines of force which are at a sufficient distance from the 
axis, could easily reach the side wall moving along the lines of force. How-
ever, due to the stronger field next to the wall, they will be reflected from 
the strong field region as they are reflected from the longitudinal mirrors 
at the ends of the trap. 

VI. THE STUDY OF PLASMA STABILITY IN THE PR5 DEVICE 

Description of the device 

The general view of the PR5 device is given in Fig. 7. The basic (longi-
tudinal) field, Constantin time, is generated by eight coils. The axial distri-
bution of the longitudinal field is given in Fig. 8. The region G is the trap 
proper. On the left-hand side from G, we have the injection part of the 
device in which the plasma source is placed, as is also a differential pumping 
system evacuating neutral hydrogen from the source. 

The maximum field strength in the centre of the trap (H0) is 5000 Oe, 
the longitudinal mirror ratio R„ is 1.7. The distance between the mirrors 
is 120 cm. 

Stabilizing windings are placed in the gap between the coils of the basic 
field and the vacuum chamber. 
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Fig. 7 

General view of the PR-5 

( 1) Coils of the main (longitudinal) field ; 
(2) stabilizing winding; 
(3) vacuum chamber ; 
(4) plasma source; 
(5) target electrode; 
(6) titanium evaporator; 
(7) diaphragms; 
(8) perforated screen; 
(9) liquid nitrogen-cooled screen; , 

( 10) pumps. 

8300 

5000- L (cm) 

F i g . 8 

D i s t r i b u t i o n o f t h e m a i n m a g n e t i c f i e l d a l o n g t h e a x i s o f t h e i n s t a l l a t i o n 
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The maximum strength of the stabilizing field at the vacuum chamber 
wall (HJ is 4500 Oe. The radial ("wall") mi r ror ratio R± in the central 
section of the trap for a maximum value for H0 is equal to 1.4. 

The 4 -m long vacuum chamber of 40-cm diameter is made of stainless 
steel. The chamber is initially evacuated to a pressure of 1 X 10"6 torr by 
two oil-vapour pumps with liquid nitrogen traps. Sorption pumping with 
evaporated titanium is used to ensure a considerably higher vacuum. A 
cold plasma column is injected along the axis from the plasma source which 
is situated at the left-hand side of the device. This 2. 0-cm diameter plasma 
column, passing through the trap, is neutralized on the receiving electrode 
which is at the same voltage as the anode of the plasma source. The plasma 
source works in a pulsed regime. Plasma density in the column: 
n 1012 c n r 3 i Te = 10 eV and T¡ =; 1 eV. Pulsed magnetron injection is 
used for filling the trap with fast ions. A positive potential which is applied 
to the plasma source and to the connected column has the form of a square 
pulse of 30 kV amplitude and a duration of 20 - 30 jus (the pulse of the ac -
celerating voltage). The radial electric field accelerates the ions from 
the column. 

The pulse of the accelerating voltage is synchronized with the discharge 
pulse in the source in such a way that they terminate at the same time. When 
operating with a stabilized field, the discharge pulse is switched near the 
maximum of the stabilizing field. The plasma which fills the trap at the end 
of the injection has the following parameters if a stabilizing field is present: 
n = l 0 9 - 1010 cm"3, TJ=Í 5 ke V, Te=;20eV. 

VII. PLASMA LIFE-TIME MEASUREMENTS 

The plasma life-time т was measured against the decrease of the fast 
neutral-charge exchange particle flux after injection. 

At constant pressure of neutral gas, the flux decrease rate is charac-
terized by the mean life-time of the fast ions. 

Fast neutral particles were detected by secondary electrons. 

(a) Plasma life-time and stabilizing field dependence 
The influence of the stabilizing field on the confinement properties of 

the trap can be observed very clearly if one measures plasma l i fe -t ime 
dependence on the value Hx at a constant basic field H0|I. Fig. 9 gives the 
results of these measurements at 1.5 X 10"7 torr pressure and with several 
values of H0|I. The radial mirror ratio Rx for each of the НПц values is 
plotted on the horizontal axis. 

These curves show that the superposition of field Hx induces a consider-
able increase of т . The characteristic feature of this increase is that it is 
abrupt once Hx reaches a given value. This value increases when Ном in-
creases; it also appears that the mirror ratio R± in the point of abrupt change 
remains the same for different values of H0M and is approximately equal 
to 1.1. 

The "abrupt" form of these curves allows us to distinguish between two 
confinement regimes: the regime with a large т (R±> 1.1), which we shall 
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F i g . 9 

D e p e n d e n c e o f t h e p l a s m a l i f e - t i m e o n t h e s t a b i l i z i n g f i e l d s t rength 

call stable, and a regime with a small т ( R x < 1.1), which we shall cal l 
unstable. 

In the series of measurements given in Fig. 9, т in the non-stabilized 
regime is within 0.05 - 0.1 ms, which is in agreement with the data obtained 
earlier in the case of the ordinary trap. As was shown, in this case the life-
time is defined by losses due to convective instability. In a stabilized regime, 
T is about 3.5 ms. According to the evaluation made for these experimental 
conditions, the life-time is close to the ion charge exchange time. 

Simultaneously with a rapid increase of т the form of the oscillograms 
of the neutral particle flux also changes. Fig. 10 shows two oscillograms, 
one for the non-stabilized regime, the second for the stabilized regime. The 
first shows strong disordered oscillations which represent the fluctuations 
of the plasma density due to instability. The second emphasizes not only the 
increase of the decay constant, but also the absence of noticeable fluctuations. 

The sharp transition in the confinement regimes is connected with the 
change of the radial distribution of the total magnetic field when Rx increases. 
Fig. 11 gives the dependence of the total field on the radius in three sections 
of the trap for different Rx. As may be seen from the figure, at Rx < 1.1 the 
decrease along the radius of the basic field is not yet fully compensated 
along the whole length of the trap by the stabilizing field. It is only with the 
values of Rx > 1.1 that a region with a positive radial gradient of field appears 
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Fig. 10 

Oscillograms of neutral particle current 

(1) scanning time 500 |js ; 
(2) RL = 1 .22 , t ime of scanning 10 ms; H = 3300 Oe; p = 10"7 torr 

Fig. 11 

Radial distribution of the total field in the three cross-sections of the 
PR-5 installation with different values of a 

(R ± =0 corresponds to trap central cross-section) 
(1) Rj_= 1 . 0 ; 
(2) Rj_= 1.07 ; 
(3) R x = 1 . 1 4 ; 
(4) R x = 1 . 2 2 ; 
(5) R j_= l .3 . 

everywhere near the wall. When Rj. begins to exceed 1.1, the boundary of 
this region shifts to the axis of the trap. 
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Thus, the transition from the non-stabilized regime to the stabilized 
regime happens precisely when a radially growing field settles around the 
plasma along the whole length of the trap, i . e . when conditions are created 
for the suppression of the convective instability. 

(b) Plasma life-time and pressure dependence 

To elucidate the extent to which plasma instability is suppressed in a 
stabilized regime, measurements were made of т in terms of the hydrogen 
pressure p in the trap. 

If there is no instability, then practically the sole source of fast ion 
losses is the charge exchange (at the considered ion energies and densities, 
one can neglect the ion escape through the mirrors due to Coulomb scattering 
in comparison with the loss through charge exchange). In this case 
T = l/n0<CTcv¡ ^>(n0is the density of the neutral hydrogen, o c the charge ex-
change cross-section, andv¡ the ion velocity) and consequently the dependence 
1/т = f(p) diagram will be a straight line" proceeding from the origin of the 
co-ordinates. If there are other losses in conjunction with charge exchange, 
those connected with plasma instability, then the straight line l / т = f(p) will 
intersect the axis of the ordinate above zero in a point 1 /T q , where Т0 is the 
characteristic time of losses due to instability. 

.. 1 < / 
H = 900 0« 

L« У 
•S> / // 
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Fig. 12 

Dependence of reciprocal fast ion l i fe-time on pressure 

H01l= 3000 Oe; 

(1) Hj. = 2300 Oe; 

a x = 1 .15 (stabilized regime) ; 

(2) Hx = 0. 

Fig. 12 gives the experimental dependence of l / т from p with R±='1.15 
for an interval of pressure from 6 X 10~8 to 1 X 10~5 torr ( curve 1). For 
comparison we give the 1 /т and p relationship, taken under the same con-
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ditions, but in the absence of a stabilizing field (curve 2). One may see 
from the figure that, in a stabilized regime, the experimental points are 
situated on a straight line which, after extrapolation to zero pressure,passes 
close to the origin of the co-ordinates. 

The accuracy of the measurements and, hence, the accuracy of the 
extrapolations, allow us to assert that the characteristic time of non-
charge-exchange losses, if such losses indeed occur, amounts to not less 
than 25 to 30 ms. The maximum value for т, obtained from this series of 
measurements, is equal to 6 ms at p = 6 X 10"8 torr. Certain measurements, 
carried out at lower pressure values, give correspondingly higher т values. 

Fig. 13 

Oscillogram of the re-charged neutral particle flux 

Fig. 13 gives the oscillogram of the neutral particle flux for p = 7X 10-9 torr, 
which is the lowest pressure obtainable in our device. In this case т is 
around 60 ms which is also in close correspondence to the charge exchange 
time. The interruption of the signal before the end of the scanning time 
is determined by a decrease in the stabilizing field down to a magnitude which 
is insufficient to stabilize plasma in the trap. It should be pointed out, that 
the attempts to compare accurately the observed life times with those of 
charge exchange at sufficiently low pressure values lose their significance 
to a certain extent. In the presence of strong sorbing walls, one cannot 
speak about uniform neutral gas density in the volume of the trap if there 
are local sources of gas formation, and still less can one rely on the indi-
cations of the ion gauge when it is not placed directly in the vacuum chamber. 
Therefore, the presence or absence of non-charge-exhange losses can be 
determined only with the accuracy determined by the truly measured life 
times. The very fact that these times continue to grow up to such values as 
60 ms with the decrease of pressure allows us to draw the conclusion that 
in a stabilized regime one observes in practice no plasma instability. 
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(с) The effect of the stabilizing field on the plasma density fluctuations 

In addition to the plasma stability characteristics such as life-time т, 
local plasma density fluctuations and the change in these fluctuations, due 
to the stabilizing field effect, are of interest. These data permit a more 
detailed picture to be obtained on the mechanism of the instabilities sup-
pressed by a radially growing field. 

The plasma density fluctuations were indicated by the change of ion 
current to the Langmuir probe placed in the plasma. The probe was located 
in the central cross-sect ion and could be placed at varying distances from 
the axis. Oscillograms were taken during the plasma decay period for dif-
ferent values of the stabilizing field. 

kA = 1.00 

k x = 1.04 

k x =1.22 

k 1 = 1.30 

18 c m 14 c m 10 c m 6 c m 

Fig. 14 

Oscillogram of the ion current to the Langmuir probe at 
different distances from the axis of the ion trap 

(The t ime(ms) of screening is indicated in the upper right corner 
of each oscillogram. ) 

Figure 14 gives four oscillogram series corresponding to the following 
distances between the probe and the axis: 18, 14, 10 and 6 cm (the signal 
amplitudes in the oscil lograms are given on an arbitrary scale). 

At Rj. < 1.1, strong fluctuations typical f or unstable plasma are ob-
served at all distances from the axis. 

At Rx > 1.1, the fluctuations in the periphery (18, 14 and 10 cm) start 
decreasing sharply and disappear completely with the increase of the stabi-
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lizing field. It should be noted that the fluctuations first disappear in the 
vicinity of the wall and then, gradually, in deeper layers of the plasma. Near 
the axis strong fluctuations remain even at R±= 1.3. 

Comparing the oscil lograms of Fig. 14 with the total magnetic field 
curves (Fig. 11) one may see that at a given Rx fluctuations, and hence insta-
bility, are observed at those distances from the axis where the field either 
decreases radially or increases to a very slight extent. Fluctuations are 
absent in those regions where the field grows at a sufficiently high rate. 

In this connection it is interesting to point out that a sharp increase of 
T at R± =! 1.1 and the transition to a stabilized regime are accompanied by 
a suppression of instability only in the external layer of the plasma. This 
alone is sufficient to eliminate entirely plasma escape from the trap. If 
Rx exceeds 1.1, the stable zone at the periphery extends to the axis. 

Thus, the experiment shows that the presence of instability in the inner 
regions of the trap does not prevent plasma confinement over a long period 
of time. The fact that at Rx > 1.1, the slowing down of the signal increases 
when the probe is removed from the wall, does not mean that plasma decays 
more rapidly in the inner regions than at the periphery. Simultaneous 
measurements of the neutral particle flux indicate that, by inserting the 
Langmuir probe into the trap, the life time of the entire plasma is decreased 
sharply. This is due to losses in the probe which are the greater, the deeper 
the insertion of the probe into the plasma. 

(d) Plasma density distribution along the radius of the trap 

The same Langmuir probe was used for measuring the density distri-
bution along the radius. The measurements were carried out in the central 
section of the trap on the radius passing through the middle of the gap be-
tween the conductors of the stabilizing coil. The value of the ion current to 
the probe at the end of the injection pulse was adopted as the value charac-
terizing plasma density. (The probe was biased to -80V with respect to the 
ground. ) 

Figure 15 gives the radial plasma density distribution for three values 
of the stabilizing field (Rx = 1.08, 1.15 and 1.3) and for distances from the 
axis starting at 5 cm. (Measurements could not be carried out at distances 
smaller than 5 cm due to probe breakdown. ) 

The curve taken in the absence of a stabilizing field reproduces satis-
factorily the results of similar measurements carried out earlier in an 
ordinary trap. The smooth plasma distribution in an ordinary mirror trap 
is conditioned by the intense convective transfer of plasma across the mag-
netic field. 

By introducing the stabilizing field, the radial density distribution is 
considerably deformed: plasma is "decompressed" from the wall and con-
centrates in the region of the trap near the axis; this "decompression" in-
creases with the increase of Hx. It is evident that such a density re -
distribution results from the variation of the radial distribution of the mag-
netic field. 

At the periphery, in those regions where the field increases radially, 
there is no longer any convective transfer. That is why plasma density de-
creases sharply there, and increases correspondingly in the region near 
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Radial distribution of the plasma density in the trap 

the axis. With the increase of Rx, the increasing field regions approach 
the axis and the radial density distribution narrows down. 

It should be stressed that the curves of Fig. 15 can only serve as a very 
approximate qualitative description of the real density distribution. In the 
first place, as has already been noted, even a small probe in long plasma-
confinement conditions causes a strong particle absorption. In the second 
place, the radial distribution in a trap with a combined field should not have 
a cylindrical symmetry. According to the structure of the combined field 
lines one can expect that the distribution will be more smeared at the azimuths 
corresponding to the centre of the gaps between the conductors of the stabi-
lizing coil than in other directions. Unfortunately, the existing structure 
of the stabilizing coil makes measurements at different azimuths very 
complex. 

Thus all results mentioned here show clearly enough that in a radially 
increasing magnetic field, plasma is confined for sufficiently long periods 
without any noticeable signs of instabilities. It should be stressed that these 

n(T¡ +Te) .л 
results concern only low density plasma with |3 = —д g/g^ = 10 . A further 

task should evidently be the carrying out of an investigation on the hybrid 
field properties at considerably stronger plasma densities. 
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T H E C U L H A M L A B O R A T O R Y , A B I N G D O N , B E R K S , , E N G L A N D 

I. SPECIAL EQUILIBRIA* 

1 . I N T R O D U C T I O N 

In these articles we shall discuss the problem of confinement and stabi-
lity of plasma in a special type of magnetic field. Fields of this type are 
variously known as "magnetic wells", "hybrid traps" or "minimum-B fields" 
They are of special interest because they combine the adiabatic containment 
properties of the simple mirror field with the stability of the cusp f ield. 

The stability of the cusp is related to the fact that its field strength in-
creases as one moves away from the centre, so that the class of fields we 
are interested in are those which have the basic feature that there is 
a region in which: 
(a) The field is nowhere zero, so that adiabatic containment is possible. 
(b) The magnetic field strength "increases outwards". 

By this second property of |B |, "increasing outwards", one means that 
there exists a point, or in some cases a closed curve, which is a local mini-
mum of B2. In the neighbourhood of this point, or curve, the contours de-
fined by B2 = const, form a set of closed, nested surfaces and a surface of 
larger B2 encloses those of smaller B2. Since these surfaces are closed one 
can unambiguously refer to inside and outside; then one can say that the 
magnetic pressure is lower inside any given surface than outside it and it is 
in a region such as this that one hopes for stable plasma confinement. We 
shall find that it is possible to discuss the containment and stability of a 
special class of equilibria by using only the two properties (a) and (b). This 
means that our results can be applied to any magnetic well irrespective of 
its geometrical form. 

It should f irst be emphasized that the surfaces of B2 = const, (which 
may be termed magnetic isobars) are not flux surfaces. A line of force will 
generally cut a magnetic isobar twice (or not at all) and the points of inter-
section could, for example, form the turning points of particles contained 
on that line by the mirror effect. 

2. MAGNETIC WELL CONFIGURATION - AN EXAMPLE 

As an example of the type of magnetic field under discussion we may 
consider the configuration employed by loffe. Our object is merely to indi-
cate some of the main features of this arrangement, particularly of its mag-
netic isobars. 

* This part is based upon the author's paper in Physics of Fluids 6 , see b ib l iography to Part I. 

4 4 9 
29 
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Near the centre of a m i r r o r machine the f ield strength increases as 
one moves along the axis toward either mirror , but decreases as one moves 
radially away from the axis. A method of creating a field having the proper-
ty that B 2 increases both axially and radially would therefore appear to be 
that one superimposes on the mir ror a second field which increases as one 
moves f r o m the axis but which is constant along the axis. Such a field is 
the "multipole" f ield provided by 2 1 straight rods parallel to the axis of 
the machine, adjacent rods carrying current in opposite directions. Near 
the axis the multipole field is approximately 

И* / г \ l-i 
b ' = - r t U ) c o s i e ' 

(2.1) 

II* f v \ 

where R is the distance of the rods f rom the axis and I* is a measure of the 
current in each rod. (The relationship of I* to the actual current I depends 
on the way that the current is distributed over the cross-section of the rods 
and on the shape of this cross-sect ion; f or thin rods I* = 21. ) The original 
m i r r o r field can be approximately represented by 

B z = B 0 [ l - e I 0 ( 2Trr /b ) c o s (2 î r z /L ) ] , 
(2.2) 

B r = -aBoIi(27rr/L)sin(27rz/L), 

where Io and Ii are modified Bessel functions. The m i r r o r s are situated 
at z = ± ^L and the m i r r o r ratio is 

R m = (l + o r ) / ( l - e ) . (2.3) 

The formation of c losed magnetic isobars of the required type can be 
illustrated easily when 1=2, f o r then near the centre of the machine, z= 0, 
r= 0, the field strength is given by 

= B»U - «Ï» + {or 11 - + f j - ^ Н Г 5 3 ] } * ( 2 " 4 ) 
-2]J 

!2оГ 

If the current in the multipole rods is small, so that 

I * 2 < (ÎT2R4 /2LV(1-£*)BS! (2.5) 

then the isobars f o r m a family of hyperboloids. However, as the current 
in the multipole rods is increased so that 

I* 2 > (7T2R4 /2L2 )a(l -a )B¿ (2.6) 

these magnetic isobars become closed (ellipsoidal) surfaces of the type we 
desire. 

29" 
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Before leaving this topic it is worth-while noting that the situation is 
not so simple when 1>2. If 1> 2 then sufficiently near the axis the multipole 
field is always too weak to compensate for the radial decrease in the basic 
mirror field. In this case closed magnetic isobars are still formed but in-
stead of a single minimum at r= 0, z= 0, there are 2 1 minima situated off 
the axis. 

3. LOW-0 EQUILIBRIA 

We now consider the problem of plasma equilibrium. For equilibrium 

the pressure tensor P must satisfy 

! X B = V . P , (3 .1) 
where j*and В are connected by 

V X B = 4 t t J (3 .2) 

V - B = 0. (3.3) 

A full solution to the problem of equilibrium would involve solving these 
equations subject to boundary conditions such as the given currents in the 
external conductors. However, apart f r om the impracticability of such a 
programme, it is our present aim to derive general results independent 
of the detailed arrangement of conductors, and so applicable to all fields 
possess ing propert ies (a) and (b) of sect ion 1. We therefore seek low-i3 
solutions (where /3 is the ratio of plasma pressure to magnetic pressure) . 

At zero 0 the magnetic field is the vacuum field due to external currents; 
this is easily calculated and will be considered as given. The f irst order 
perturbation in the field, due to plasma pressure , is given by: 

Ti X Bo = V • P , (3.4) 

VXB 1 = 4 f f j i . (3.5) 

V - B ^ O , (3 .6) 

where j i i s the plasma current density, B 0 the original vacuum field, and 
Bi the perturbation in this field due to the presence of plasma. 

Now it might appear that these equilibrium equations should have s o -
lutions j i and В if or any given plasma pressure P and that there is, there-
fore , no problem. Indeed in axisymmetric configurations such as m i r r o r 
or cusp this is true, but in general these equations will not possess a s o -
lution and our f irst task is to determine the conditions which P must satisfy 
in order that a solution should exist. 

This is perhaps most easily done as fo l lows: Eqs. (3. 5) and (3. 6) are 
simply the magnetostatic equations which are known to have a solution if 
Ji exists and ^ - T i = 0- O u r procedure therefore will be to solve Eq. (3. 4) 
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for and then to examine under what conditions ^ -j*! = 0. (As we shall be 
concerned only with j*i and Bo we may henceforth suppress all subscripts, 
provided we remember that В always denotes a vacuum field. ) 

To illustrate the argument consider the case of scalar pressure when 
Eq. (3 .4) reduces to 

j X B = V p . (3.7) 

The first necessary condition on p is clearly 

В • Vp = 0 or 9p/3S = 0, (3. 8) 

i. e. p is constant along a field line. Given that (3. 8) is satisfied we can 
then solve (3.7) for (the component of ]*perpendicular to 3), 

i 

M - V p X B) /B 2 , (3.9) 

and therefore 

T= (~VpX B) /B 2 + XB, (3.10) 

where X is an arbitrary scalar. 

The requirement • j = 0 then gives 

В • VX=V-(VpXB/B2), (3.11) 

or 

В ' VX= -2VB • (VpXB)/B3 . (3.12) 

Eq. (3. 12) can be written 

dX/dS = -2VB • (Vp XB) /B 4 , (3.13) 
where S is measured along the line of force. A necessary condition for this 
equation to possess a unique single valued solution for X is clearly 

y V B - ( V p X B ) d s = 0 j ( 3 1 4 ) 

where the integral is taken along any closed line of force . Newcomb has 
shown that this is also a sufficient condition. 

In the case of scalar pressure, then, Eqs. (3. 8) and (3. 14) are the 
necessary and sufficient conditions which the pressure must satisfy if the 
plasma is to be in equilibrium. We now turn to the situation of immediate 
interest, namely when the pressure is anisotropic, as it must be in any 
m i r r o r trap, and seek the analogous conditions on the pressure tensor. 
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Anisotropic pressure 

In a co-ordinate system with the principal axis along the magnetic field 
the pressure tensor can be written 

P= рхП+ (p„ - р ± ) м , (3.15) 

where n is a unit vector in direction of В and H is the unit tensor. 
The momentum balance equation is now 

j*XB=V-P (3.16) 

and, f rom the parallel component of this equation, the f irst condition on 
Px and p„ is obtained; 

n -Vp x + n- V • {(p„ -p ± )nn }= 0 , (3.17) 

where S is measured along the magnetic field. This condition specifies a 
relation between px and p„ along a field line, replacing the simpler condition 
3p/9S= 0 of the scalar pressure theory. However, if Eq. (3. 18) is satisfied 
then Eq. (3. 16) can be solved for as before, 

1 = " V p x X B / B 2 + B X V - [ ( р „ - р ± ) п п ] / В 2 , (3.19) 

and so 

V:Jx= 2Vpx- (BXVB) /B 3 +V- {BXV- [ (p „ - p x ) nn] /В 2 } . (3.20) 

It can be shown that because В is a vacuum magnetic field the last term can 
be transformed to give 

V-{BXV-[ (p , - pJnn]/B2 } = V(p„ - p±) • (ВXVB) /B 3 . (3.21) 

Therefore we finally obtain 

V- lx = V(px + pM) • (BX VB) /B 3 . (3.22) 

Then, just as in the case of scalar pressure, the vanishing of V • j requires 

V - Î „ = B - V X = - V - L , (3.23) 

so that 

В • VX= -V(p ± + p„) • (BXVB)/B 3. (3.24) 
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As before this can be written 

4^ = - V ( p ± + p „ ) - ( B X V B ) / B 4 (3. 25) 

and, if the lines of f orce were closed, this would lead to the condition 

In the systems we are considering the lines of force are not closed within the 
plasma volume but leave the region of interest. In this case, provided the 
plasma is surrounded by a region in which no current flows, we must have 

where the integral is taken from the point where the line of force first enters 
the plasma to the point where it first leaves it. (If this condition were not 
satisfied X would not be zero when the line of force left the plasma and there 
would be currents flowing in the plasma free region. ) Furthermore, it is 
clear that if this condition (3. 27) is satisfied, a unique X can always be con-
structed from (3. 25). The condition (3. 27) is therefore both necessary and 
sufficient. 

Given anisotropic pressure conditions, then the necessary and sufficient 
^ conditions for equilibrium are (3. 18) and (3. 27). Before discussing some 

distributions satisfying these conditions we will first interpret these equi-
librium constraints f r o m the point of view of individual particle motions. 

4. PARTICLE MOTION 

The first constraint (3. 18) is simply the requirement that the particles 
be in equilibrium along each field line considered individually. This is en-
tirely consistent with the basic idea of adiabatic mirror containment; for if 
the magnetic moment of a particle 

(3. 26) 

(3. 27) 

H = Vj2/ 2B (4.1) 

is constant as it moves along a field line then 

(4.2) ' 

(4.3) 

where p is the local density of particles of specified magnetic moment ц 
and energy e. This is proportional to (i) the number of such particles on 
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the line = f(pt, e, L), (ii) to the density of lines = B, (iii) to the fraction of the 
time each particle spends near the point of interest, 

dt oc dl / (e- /uB)i . (4.4) 

Therefore, for particles contained by the mirror effect, 

juB2 

p„ = L)B(e-pB)* dp de. (4.6) 

p± = Ji[ft, e . L ) d/u de , ( 4 . 5 ) 

It can be verified by direct substitution that these expressions satisfy (3.18). 
The second constraint (3. 27) may be interpreted in terms of the guiding 

centre drifts of the particles on a field line. As is well known, the f irst 
order guiding centre drift of a particle in an inhomogeneous magnetic field is 

mc (BXVB),i о, o. , , „ , 
VD = V B 3 v ' ' ^ ( 4 , 7 ) 

where vx is the'velocity perpendicular to the field and v , that along it. 
The total current associated with this drift is then 

TD= [ (BXVB) /B 3 ] (Pi + Ри), (4.8) 

and the divergence of this expression is 

V - b = V(px + pM) • (BXVB) /B 3 , (4.9) 

so that the second condition for equilibrium can be written 

/ ( v - T D ) ^ = o : (4.10) 
V 

The meaning of this is made clear if we consider not the integral along a 
field line but the integral over an infinitesimal flux tube. This can be ob-
tained by multiplying (4. 10) by BdA, when We have 

J (V-TD)dr=0, (4.11) 
Flux tube 

so that the condition found for the existence of a solution to the magneto-
static fluid equations is equivalent to the statement that the divergence of 
the current associated with the guiding centre drifts should vanish when 
averaged over any flux tube. Of course, the current due to the guiding centre 
drifts is not the total current, but the difference can be expressed as the 
curl of the magnetization per unit volume,' whose divergence vanishes identi-
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cally. The constraint might therefore equally well be applied to the total 
current or to the drift current. 

5. A CLASS OF EQUILIBRIA 

Now let us consider some particular solutions of the equilibrium con-
straints (3.18) and (3. 27), appropriate to the type of magnetic field under 
discussion. It should first be noted that the second constraint (3. 27) is not 
serious in systems of axial symmetry such as the mirror or the spindle' 
cusp. • For in these systems the symmetry ensures that ^p, ^S, and В are 
co-planar vectors (lying in the r, z, plane) so that the expression 

vanishes identically. Similarly, in any cylindrically symmetric system, 
Vp and VB are both radial and (5. 1) again vanishes. 

In other field configurations the constraint (3. 27) can be a severe r e -
striction; for example, the condition (3. 27) (or rather (3. 26) which is then 
the appropriate form) can never be satisfied by any confined plasma distri-
bution within a circular torus. For in such a configuration, symmetry en-
sures that the integral (3. 26) can only vanish if the integrand vanishes. As 
(^в xS) is in the direction parallel to the symmetry axis of the torus this 
means that p must be constant'in this direction, thus the plasma is not con-
fined. This, of course, is the well-known lack of equilibrium in a simple 
toroidal field. 

И we leave aside for the moment the question of whether it represents 
contained plasma or not, a restricted class of solutions to the equilibrium 
constraints can always be found by demanding that (5. 1) should vanish. This 
is certainly achieved if (px + P, ) is a function only of B, then, since the "paral-
lel" equilibrium equation (3.18) gives px in terms of pM, this will make px 
and p„ individually functions of В alone. Making px and p„ functions of B 
alone means the surfaces of constant B, the magnetic isobars, are also sur-
faces of constant px and p„. 

The significance of magnetic field configurations which possess closed 
magnetic isobars now becomes'apparent. Equilibria in which px and p„ are 
functions only of В exist in all field configurations, but only in those which 
possess closed magnetic isobars do these equilibria correspond to confined 
plasma configurations. 

This special class of low-|3 equilibria, which have 

V(px + p„) • VB XB (5.1) 

Px=Pi(B), pM = p„(B) (5.2) 

and, from (3. 18), 

Bp' = p„ - Px, (5.3) 

where the prime denotes differentiation with respect to B, is one whose 
stability will be proved in the next section. 
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An example of this c lass of equilibrium distribution is 

pM = C B ( B 0 - B ) " . 
V if В < В о . 

p± = nCB2(B0 - B)n_1 J (5.4) 

p± = p „ = 0 if В > В 0 , 

where n and B0 are arbitrary parameters. These equilibria correspond to 
plasma confined within the contour B= B0 which, by the basic property of our 
fields, can be a closed contour. 

Particle distribution functions corresponding to the equilibria (5.4) can 
also be written down in terms of the distribution in /и, e space (see section 4). 
A particle distribution function which leads to the pressure distributions 
(5. 4) is 

Ц1и,е)=(цВ0-е)п-т-ё(ц), e < M B 0 

(5. 5) 

f(iu,e)=0, е > ц В 0 

where g(ju) is an arbitrary function of the magnetic moment. 

6. STABILITY OF THE SPECIAL EQUILIBRIA 

To examine the stability of the equilibria described in the previous 
section let us first continue with a fluid description and consider the double 
adiabatic hydromagnetic energy principle derived by Bernstein et al. 

According to this, the stability of a plasma configuration with aniso-
tropic pressure is determined by the sign of the minimum of the energy 
integral. 

6WD = y d r j l Q l 2 Q x f + § P x ( V - f )2 + ( V - l )(I • Vpx) + |p x (V- S - 3q)2 

+ q v - [ f ( p l | - p x ) ] - ( p l l - p x ) [ n - ( l - v ) | + r - ( n - v ) f - 4 q 2 ] | l (6.1) 

where 

Q = V X ( f X B ) , q = n • (n • V)|, 
( 6 . 2 ) 

a = (n • V)? - (I • V) í , 

and ? is an arbitrary displacement vector. 6Wm¡n should be positive for 
stability. 

Examination of the energy integral shows that only the first term 
is independent of |3 so that at low /3 it must dominate (and so make 6W posi-
tive) except for those displacements which themselves make Q zero. Physically 
these displacements are those which do not change the vacuum magnetic 
field - the so-called interchange modes. 
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Hence, at sufficiently low |3 we can determine stability by examining 
6W for displacements which satisfy 

Q = V X ( ? X B ) = 0 (6.3) 

and, for these displacements, 

q= V - Î + ? - VB/B, a= (V-? + ? - V B / B ) n . (6.4) 

With the aid of (6. 3) and (6. 4) the energy integral can be greatly simpli-
fied. In fact 

6WD = Jdr{3pnd2 + dS(5pM -p x )+S 2 (p ±+ 2p„) 

+ d(f • Vp„)+ S[? • V(p „ - P ± ) ] } , (6.5) 

where, for brevity, we have written 

V - f ^ d , ? - V B / B = S. 

So far this is quite general. For the equilibria found in section 5, namely 
those which have the properties 

( 6 . 6 ) 

(6.7) 

The first term is clearly non-negative so a sufficient criterion for stability 
according to the double adiabatic principle is 

2 P 1 - ( P 2 / 3 P | | ) - B P ; > 0 . (6.8) 

Some explicit examples of equilibria were given by Eqs. (5. 4). For these 
examples 

B P ; = 2 P i - [ ( n - l ) / n ] P 2 / P i i (6.9) 

and a sufficient stability condition is n>|. (Note that this is also the con-
dition for f(ju, e) in Eq. (5. 5) to be continuous at e = ^BQ.) 

The small Larmor radius theory 

The double adiabatic energy principle is open to two objections; firstly, 
that it is based on the assumption that in the plasma motion there is no heat 

Р± = Р±(В)., pn = p„(B), Bp|, = p „ - P j _ , 

6WD reduces to 

6W, D = ydTj3±-[3P | | (d+S)-P xS] 2 + S2 
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f low along the lines of f o r c e , and secondly, that although a component of 
the displacement t along the lines of f o r c e is formally allowed, it is hard 
to see what is the real significance of this parallel displacement (since, in 
col l isionless plasma, motion arises f r om E X B drifts). 

An energy principle which is sufficient, though not necessary, for stabi-
lity and which overcomes these objections was given by Kruskal and Oberman. 
This is based on the Boltzmann equation in the limit of small Larmor radius. 
In this case the appropriate energy integral can be written 

6 W k 0 = 6 W D - J d T { 2 p ± q ( V - | ) + ( 3 P | i - 2 p x ) q 2 } + 1 , ( 6 . 1 0 ) 

where 

i = / d T { X m i / r i d M d e -

and 

|v,? = e - / i B . (6.12) 

In these expressions e and ц are again the energy and magnetic moment 
as in section 5 , and f* is the perturbation in the particle distribution function. 
The quantity fo(p, e, L) is the unperturbed particle distribution, and in their 
derivation of the energy principle Kruskal and Oberman require that 

3 f 0 / 9e< 0 . (6, t3) 
—• 

The minimization of 6Wk0 has to be carried out over ? and also over f* sub-
ject to certain constraints. The minimization over f* was carried out by 
Kruskal and Oberman but we will have no need of this in the present 
discussion. 

It can be shown that the minimum of ôW^o is independent of fM as it 
should be, so that f„ can be taken to be zero. 

As before , at sufficiently low )3 we need only consider displacements 
which satisfy 

V X ( | X B ) = 0 ( 6 . 1 4 ) 

so that Eqs. (6.4) are again valid. However as ? is now perpendicular to В 
a further simplification can also be obtained. For (6. 14) implies that 

f X B = ( 6 . 1 5 ) 

and so I can now be written 

( V - l - q ) 2 
f*2 

dfo/de ( 6 . 1 1 ) 

?=?x = BXVcp/B2, ( 6 . 1 6 ) 
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whence 

V-?= - 2 ? - V B / B . (6.17) 

With the aid of Eqs. (6. 4) and (6. 17) the energy integral may be reduced 
to 

6Wk0 =JdT{(2p± -Bp^S2 } + й ц й е 

X 
. B W 8f0/9e 

(6.18) 

This can be further simplified, for 

P x = Z f°dM de* ( 6 - 1 9 ) 

and since 
l / v „ = 8v„/8e, (6.20) 

a partial integration leads to 

- ^ m J / i B í v , ^ f j j d e d p . (6.21) 

Then if p = p±(B) differentiation with respect to В gives 

and, using this result, the energy integral is finally reduced to 

ô w k 0 = - / d T ) ™ i l l — à n à e i s r r r J - , (6-23) 

which is certainly positive if (9f0/9e) < 0, a condition which is in any case re -
quired for the present energy principle to be valid. 

According to the small Larmor radius theory, then, equilibria of the 
class (6. 6) are stable if their corresponding particle distributions satisfy 

9f0/Эе < 0 . (6.24) 

Now, the specific examples (5.4) correspond to the particle distributions 
(5. 5) and so are stable if 

O / 9 e ) ( / u B 0 - e ) n ^ < 0, (6.25) 

that is if n> In this case, therefore, the two energy principles lead to 
the same criterion. 
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7. DIRECT PROOF OF STABILITY 

A direct proof of the stability of these special equilibria with px = px(B) 
etc. can be developed by extending the "general ized entropy" arguments 
given in Dr. Rosenbluth's art ic le (these Proceedings ) . 

Let us consider a general particle motion in which the magnetic moment 
of a particle is invariant (as in small Larmor radius theory), then a general 
constant of the motion constructed f r o m individual part ic le constants is 

S=y^d /udedTG( f ,M) . (7.1) 

Now consider a distribution function f = f0 +6f , where fo is the initial equi-
librium whose stability we want to discuss. Then we can write 

6S= 0= J j - d/л de dT-^G'(fo, ц)М+ G"(fo, + • • • } . (7- 2) 

where 

G'(f, /и) = 3G/3f. 

Now the equilibria we are considering have the property that p± and p„ 
are functions of В only and satisfy the parallel equilibrium equation. It can 
be seen from Eqs. (4. 5) and (4. 6) that such equilibria correspond to particle 
distribution functions which depend only on ¡л and e (i. e. f (e,ju, L) is inde-
pendent of the particular flux line L). For these equilibria, therefore, the 
function G can be chosen so that 

G' ( f 0 ,p) = e (7.3) 

(at least if 3fo/3e is monotonie) and with this choice for G Eq. (7. 2) becomes 

£ dM de dr (e6f) = - [ Л - ф de dr g J j g j L + . . . , (7.4) 

which may be written 

where К is the total kinetic energy of the particles, 

K= d/u de dr (ef) . 
J vn 

If now 3fo/3e < 0, it is c lear that to second order in 6f, 6K>0 so that 
any change 6f in f around fo will increase the kinetic energy. Furthermore 
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if the equilibrium has no electric fields and is of such low /3 that the magnetic 
field is a vacuum field, then any perturbations can also only increase the 
field energies. As the total energy is constant it is clear that 6f cannot grow 
indefinitely and in particular cannot grow exponentially. Therefore the sys-
tem is stable. 

Thus it has been shown that any low-/3 equilibrium with f0 a function only 
of ц ande is stable against all perturbations in which the magnetic moment 
is an invariant. This is certainly sufficient to demonstrate stability against 
hydromagnetic motions, and may also ensure stability against certain micro-
instabilities. 

8. CONCLUSIONS 

The existence of a set of closed magnetic isobars in a "magnetic well" 
has enabled us to construct a special class of confined plasma distributions, 
those with p x and p„ functions of В alone, which satisfy the conditions for 
equilibrium. These equilibria are stable against interchanges according to 
both the double-adiabatic energy principle and the more complete smal l -
Larmor-radius theory. A direct proof of stability against all motions in 
which the magnetic moment of a particle is an invariant has also been given. 

It is easily shown that these equilibria have the property that j „ = 0, which 
ensures that they are also stable against several forms of "drift" instability. 
One concludes therefore that "magnetic wells" do indeed offer the possibility 
of stable plasma confinement. 
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II. GENERAL EQUILIBRIA* 

1. INTRODUCTION 

In the previous part we considered a special class of equilibria in mag-
netic wells; those with рх = р±(В), p„ н p„(B) and Bp,! = p„ - p ± . Alternatively 
we can say that these special equilibria are those which correspond to 
particle distribution functions f(ц, e, L) which are independent of L so that 

* T h i s part is based on the authors paper in Phys. Fluids 7 , see B ib l i ography to part II. 
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f = f(p, e). In this part we will examine the general equilibria in magnetic 
wells, or indeed in any mirror trap. For the discussion it is convenient to 
use the "guiding centre drift" description of a low-0 plasma instead of the 
fluid description which we used throughout much of the first part. 

First we note that in part I it was convenient to employ an approach 
in which equilibrium and stability could be discussed first; only later did one 
discuss confinement. In other words instead of taking a confined (localized) 
distribution and applying a stability criterion one considered stable distri-
butions, with p expressed as a function of |B|, and then applied a confinement 
criterion. The advantage of this approach is that the actual f o r m of the 
magnetic field only enters the problem through the confinement criterion, 
and furthermore it enters in a very simple way, e .g . in part I it reduced 
to the question "dothe surfaces |S|= constant f o rm a closed nested set?" . 
In the present lecture we adopt a similar viewpoint but we now employ the 
"particle-drift" description of a low-|3 plasma instead of a fluid description. 

The instantaneous drift velocity is well known, but a more relevant con-
cept is the average drift motion over several oscillations between mirrors. 
First we will show that the equations for this average motion can be put in 
a simple form if the appropriate coordinates are used; this is because the 
adiabatic invariants ¡л = m v f / В and J= ^v|,dS are constant during the drift 
motion. The key to the problem is to note that if one specifies the line of 
force on which the particle is moving (by coordinates a, and also specifies 
/u and J, then its energy is determined. This allows one to regard the energy 
of a particle, not as an independent variable but as a known function of /и, 
J, a and fi. Then this function K(¿u, J, a, /3) plays the role of a Hamiltonian. 

As a consequence of this, any equilibrium distribution can be expressed 
in the form 

where one is not regarding К as a variable but as a known function of a, fi, 
/л and J. 

Next we still study stability and show that once the general equilibrium 
has been expressed in the special form (1.1) we can obtain a simple criterion 
f o r stability against interchanges (i. e. motions in which flux tubes are 
interchanged and the magnetic field is unaltered - these are the most im-
portant of the possible instabilities at low-/3). In fact the system is stable 
against interchanges if 

2. AVERAGE GUIDING CENTRE DRIFT 

When the Larmor radius is small compared to the scale of the variations 
in magnetic field the motion of a particle can be regarded as a rapid gyration 
about a guiding centre. In the course of this motion the magnetic moment 
H = my?/В is a constant and as a result the particle is confined, between 
magnetic mirrors , to the region where цВ< E (where E is the particle 
energy). 

Fе ч / (м, J, a, |3) = F[M, J, K(tt, 0, ц, J)] , ( 1 . 1 ) 

9F(ju, J, К)/ЭК< 0. (1.2) 
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In this event the guiding centre itself oscillates rapidly along a line of 
force between the two mirror points and at the same time it "drifts" more 
slowly across the field. The instantaneous drift velocity is well known, being 
given by 

+ ( 2 . 1 ) 

where n is the unit vector along B. In view of the rapid oscillation along 
the line of force this instantaneous drift velocity is of less significance than 
the average guiding centre drift over a period of the oscillation between 
mirrors . The equations for this average drift can be put in a particularly 
simple (canonical) form which was first given by Northrop and Teller. They 
considered the drift process in detail and actually constructed the average 
of (2. 1) over the period of an oscillation between mirrors - a rather lengthy 
procedure. However, the canonical equations can be derived directly, with-
out recourse to (2. 1), by a canonical transformation. 

The simplicity of the final form of the drift equations is made possible 
by using a representation of the magnetic field which allows the field lines 
to be used as one element of a co-ordinate grid. One writes 

В = VaX^/3 , 

then clearly a and (3 are constant along a field line so that they can be r e -
garded as the co-ordinates of that field line. More specifically if we con-
sider any surface S cut by field lines and draw on this surface the lines 
a= const, /3= const, then these lines form a co-ordinate grid which the lines 
of f o r ce are located by the values of a and /3 at their intersection with S. 
The scale of the co-ordinates a and $ can be chosen so that the flux through 
any part AS of the surface S is numerically equal to 

ffteàfi. 
AS 

In terms of this representation of the field, the vector potential can be 
written 

A = aVl3. 

Once the field lines have been specified by the (a, ¡3) co-ordinate system, any 
point P in space can be located by coordinates (с*, Э.Х)> where a and 0 are 
the co-ordinates of the field line on which P lies and x is the magnetic 
potential along that field line f r o m P to the reference surface S, i . e . 

p 

X= / в - d S . 
s 
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We now return to the problem of describing the average guiding centre 
motion. As the magnetic moment of the particle is constant, the guiding centre 
moves as if it were a particle of charge e, mass m, and magnetic moment 
цп. The Lagrangian for such a particle is 

£ = -|-mv2+ Jv- А - е ф - ц В , (2 .2) 

and the total energy is 

E = | m v 2 + e<f>+ pB . (2 .3) 

We now express the Lagrangian in the (a, /3, x) co-ordinate system and use 
the corresponding aV/3 representation of A, then 

£ = e + J+ ( J ja0 -e i ( e ,J3 .X ) - / iB (e ,|3 ,x ) . (2 .4) 

where e is the kinetic energy associated with the transverse drift and is 
negligible compared to the other terms in (2 .4) when the drift velocity is 
small compared to the actual particle velocity. The conjugate momenta to 
to a, ¡3 and x are then 

Pa = o, p0 = f , px = , (2.5) 

and we note that there is , in fact , no momentum conjugate to a, instead 
ea/c i s itself conjugate to j3. The Hamiltonian function is then 

H= (B2 /2m)p2+ еф(а, 0, x)+^B(a, /3, x)- (2. 6) 

In order to obtain the equations of motion for the average drift we should 
solve the equations of motion in the x direction and then average the trans-
verse (á, fi) equations over this motion, as was done by Northrop and Teller. 
However, we can obtain the same result directly if we eliminate x f rom the 
Hamiltonian by an appropriate canonical transformation to action-angle 
variables. To do this we introduce as a co-ordinate the action conjugate to 
X, i - e . , 

p x dx = y [ 2 т ( Н - е ф - / и В ) ] * ds, (2 .7) 

where the integral is along a particular (a, /3) field line and is over one period 
of the oscillation between mirrors . 

This equation implicitly defines H as a function of the new variables 
a, (3, J and ц, and also preserves the form of Hamilton's equations of motion. 
When the Hamiltonian (energy) is expressed in terms of a,/3,J, and (u through 
(2.7) we denote it by K. Then recalling that ea/c is conjugate to /3 and that 
K(a, /3,J, /и) is now the Hamlltóhian function, we can'write 

30 
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c 8 K ( g , 0 , J , p ) , , 
Ü ~ e Э0 ' { ¿ - a > 

0 = ( 2 . 9 ) 

and 

J = 0. (2. 10) 

It is important to note that these simple equations are only true when 
the motion is expressed in the (a, 0) co-ordinate system and when К is ex -
pressed in terms of a, ¡i, ¡л and J by means of (2. 7), i. e. 

J = [2m{ К - еф(а, 0, s ) - рВ(о>, 0, s)}]4 ds. 

3. EQUILIBRIUM DISTRIBUTION 

Once the equations of motion have been put into the canonical form the 
construction of the equilibrium distribution is obvious. Let F[a, 0, J, p, t] 
be the particle density in (a, 0, J, p) space, then 

3F_ 3(F¿) 3(F0) 
9t ~ 3a 3/3 ' 

and, using the values of á and (3 given by (2. 8) and (2. 9), a stationary state 
exists if and only if 

3 K 3 F _ 3 K 3 F 
Э/3 3a da 30 U' ¿ ) 

that is if F is a function of a and 0 only through the quantity K(a, 0, J, ¡л). 
Any equilibrium can therefore be written 

Feq = F { p , J , K ( a , 0 , p , J ) } . (3.3) 

As p, J, and К are all constants of the motion this merely says that the equi-
librium distribution is a function of the constants of the motion - a well-
known result. It should be remembered that F{/u, J, K} is defined so that 

F { M , J , K ( £ » , 0 , J , / u ) } d p d J d o d 0 ( 3 . 4 ) 

is the number of particles in the element (dp d j dad0) and not as if 

F { ц, J, K} dp d j dK (3.5) 

were the number in (dpdJdK). The difference arises because of the 
existence of the surfaces of constant (p, J, K). The function F is constant 
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over such a surface so that one of the space co-ordinates does not really enter 
into the specification of F. (This is the general analogue of the fact that for 
equilibrium distributions in an axisymmetric system the azimuthal angle 
is redundant. ) 

4. STABILITY 

In a low-/3 system in which the magnetic field is the vacuum field due 
to external conductors, "interchanges" of flux tubes are the most important 
form of instability. Indeed these are the only quasi-hydrodynamic (i.e. adia-
batic) instabilities possible at low-j3. It is an important result therefore, 
that a very simple criterion can now be obtained for the stability of equilibria 
such as (3. 3) against these interchanges. 

We suppose that the equilibrium is stationary and that there is no 
electric field in the equilibrium state. Then К is defined as a function of 
J,ju, a and ¡3 by 

J=^[2m{K- /uB(a, /3 , s)} ]* ds. (4.1) 

An "interchange" motion is one in which particles initially on a given 
flux tube remain on that flux tube. Itresults from the "EX Ё" drift associated 
with an electric field transverse to the magnetic field. We will consider a 
possible interchange in which particles on a flux tube (o,i>/3i) are inter-
changed with those ón an equivalent flux tube (a-g ,^) . In this motion the 
invariants ц and J of each particle are conserved, but its energy may alter. 

The total energy of the particles on the two flux tubes concerned before 
the interchange was 

Wi = Jdi^dj{ F(1)K(1) + F(2)K(2)} , (4.2) 

where 

F( l ) = F{/u, J, K(ju, J , a v P 1 ) } (4.3) 

and 

К ( 1 ) Ъ К ( л . J . o n . j S i ) , ( 4 . 4 ) 

and K(2) and F(2) are similarly defined. 
After the interchange the particles which were on ( o ^ , ^ ) have moved 

to (a2 , /32) and so have energy K(2) and vice versa. The energy after the 
interchange is therefore 

W{ =Jd/u d j { F(1)K(2)+ F(2)K(1)}. (4. 5) 

The change in energy resulting from the interchange is thus 
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(Wf - W¡ )= -yd judJ{ [ F ( 2 ) - F ( l ) ] X [K(2) - K( l ) ] } . (4.6) 

It may be noted that we have so far made no restriction that the change 
[ F ( 2 ) - F ( l ) ] need be small but we now make the usual assumption that the 
displacements are infinitesimal and calculate the energy change to second 
order in displacement. If the displacement of the flux tubes is measured by 
6a and 5fi we have 

a 2 w = - / d M d j ( f f 6 * + f ^ ) x ( f б « + | | б / з ) . (4.7) 

However, since F depends on a and fi only through K, this becomes 

a 2 w = - / d , d J ( | f ô . + f a , ) 2 ( | | ^ . (4.8) 

It is now apparent that 62W must be positive for all 6a, 6/3 if 

aF/ЭК < 0 , 

therefore a criterion which is sufficient for stability against "interchanges" 
is 

(i)„<0 
for all 1Л, J, K. 

Criteria which are both necessary and sufficient can be obtained in 
terms of the appropriate averages of 9F/9K. Thus if 

ЭК\2 

да J VñKJ1 \ a a = I d M d J ( — H — ) , (4.10 ' ) 

X ^ j d M J ^ j [ ¿ ¿ J , (4. Ю- ) 

X ^ J W ¿J ( f f ) ( f j f ) ( H ) . (4.10".) 

then a necessary and sufficient set of conditions is 

*««< *S3 < ад2<Х«аХвв - • ( 4 Л 1 ) 

The simple condition (4. 9) demands that F should decrease with in -
creasing К while confinement of plasma requires that F should decrease 
toward the periphery of the system so that (4. 9) and confinement are c o m -
patible only if К has the general form of a "potential-well" in the (a, ft) space, 
that is if K(a, fi) possesses a minimum within the region of .interest. If the 



PART III, MAGNETIC WELLS 4 6 9 

magnetic field itself possesses a minimum then K(a, fl ) will possess a mini-
mum for a wide rangé of ¡л, J so that many classes of stable equilibria can 
be constructed in these "minimum-B" fields. Among these are the equilibria 
discussed in part I which do indeed satisfy (4. 9). In fact the special equi-
libria discussed then correspond to distribution functions F (fx, J, K) which 
are chosen to be independent of J and for which 9F/9K< 0. Such distributions 
represent confined plasma only in fields which possess a minimum in B. 

It must again be emphasized that the simplicity of the result (4. 9) arises 
solely f rom the correct choice of variables - it is only correct when F is 
expressed in the form 

F{/u, J, К (m, J, с , 13)} . 

No such simple expression could be obtained if, for example, one had ex-
pressed F in the more usual variables (д, К, x). 

5. EXAMPLE OF METHOD 

The actual f o rm of the magnetic field has not been mentioned in the 
theory given above. This is because it enters the problem only in the deter-
mination of K. As К is defined by the single integral (4.1) it is not difficult 
to compute К once the field is given, and an example is illustrated below. 
(This was compiled by F. M. Larkin at Culham Laboratory. ) In this example 
the field is an elementary form of the configuration used in Ioffe's stabilized 
mirror experiments and is produced by two circular coils and four infinite 
straight conductors, Fig. 1. The coils are of radius R and separation 2R 
and carry a current 1/2. The straight conductors are distant R«/2 from the 
common axis of the two circular coils and adjacent conductors carry a 
current I in opposite directions. The field is thus a superposition of an 
orthodox mir ror and an 1= 2 multipole cusp. 

i-' 
ы.,р P L A N E 

F i g . l 

C o i l a r rangement . 

The (or, J3 ) plane for this calculation was chosen to be the midplane of 
the system, perpendicular to the common axis of the circular coils; then, 
because of the symmetry of the conductors, the K(c, /3, J, ц) contours have 
eightfold symmetry (Fig. 2, Table I ; Figs. 3 and 4). Only one quadrant of the (a, |3) 
plane is shown. The figures cover only the central part of the a, |3 plane 
out to a radius of about -¿R. 
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Fig . 2 
C o n s t a n t K/|i c o n t o u r s for ( I / д ^ ) = 0 . 6 1 6 . 

( s e e T a b l e I) 

T A B L E I 

CONTOURS CORRESPONDING TO VALUES OF К/ц 
IN ARBITRARY UNITS 

C o n t o u r 1 3 5 7 

K / ( i 0 . 4 9 2 0 . 4 9 6 0 . 5 0 0 0 . 5 0 4 

C o n t o u r 9 1 1 13 1 5 

K / j i 0 . 508 0 . 5 1 2 0 . 5 1 6 0 . 5 2 0 

One may interpret these diagrams somewhat as one interprets contour 
heights on a geographic map. For example one may note such items as the 
following: (i) As the К surfaces are also particle drift surfaces one sees 
immediately where the partic les drift, but also f r o m Eqs. (1. 1) and (1. 2) 
one gets a picture of the speed of drift f rom the separation between contours 
(just as one pictures the gradient f r om the separation between height con-
tours on a map), (ii) As the К surfaces are surfaces of constant F e q they 
can also be visualized as density contours for this function. One can also 
see some more important points concerning stability. Thus (iii) the example 
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shown has a minimum in К at the centre of the system so that confined distri-
butions stable against interchange by (4. 9) can be set up in this region of 
the field. However one can also see that the region of such stable confine-
ment is smal l ( r e m e m b e r the diagram shows only the central part of the 
system out to about one third of a co i l radius), (iv) There are also other 
closed K-contours centred about a point X on the 45° axis (this is the axis 
passing through one of the straight conductors) so that other confined equi-
libria exist in this region. However, as the point X correponds to a maxi-
mum rather than a minumum in K, such equilibria cannot satisfy the 
criterion (4. 9). 

The existence of a minimum in K, which ensures the existence of stable 
confined equilibria, is a general feature of f ields in which |Й| itself possesses 
a minimum as in the present example. 

6. CONCLUSIONS 

It is clear from the example that the discussion of equilibrium, stability, 
and confinement of low-0 plasma in adiabatic m i r r o r traps, is , indeed, 
much simplified if the problem is approached in the way described in this 
part. Far reaching results can often be obtained with little e f fort . The 
method involves using the f ield lines themselves as co-ordinates (a, ¡3) and 
expressing the particle distribution function in the phase space of a,¡3,n, and 
J, where ¡л and J are the two adiabatic invariants. The energy К is not 
treated as an independent variable but is defined by 

J=j^[2m{K-pB(a,|3, s ) } ] 4 ds. (6 .1) 

(Note that this is the reverse of the usual procedure, in which К is regarded 
as a variable and J is defined by (6. 1). ) 

In terms of these variables the equilibrium distribution function is of 
the f o r m 

F = F{m, J, K(o,/3,M, J)} (6.2) 

and a sufficient condition for stability is 

Necessary and sufficient conditions are given by (4. 11). 
The confinement (localization) of the distribution is determined by the 

topology and location of the K= const, contours which are easily computed. 
Confined equilibria satisfying the stability criterion (6. 3) can always be found 
if the K{a, ¡3) function possesses a minimum in the region of interest. This 
is the case if |3j itself possesses a minimum. Thus in a "mihimum-B" field 
one always has "min imum-K" . However one can. have„al,miriimum,in К 
( for many values of J, /и) without having a minimum in B. 
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1. INTRODUCTION 

In the preceding parts we have discussed the stability of low-/3 
plasma in magnetic wells. Now we turn to the discussion of stability 
at finite-/3. That is to say: we know that plasma in magnetic wells is stable 
at low-|3, how far can we raise the plasma pressure and still retain stability? 

As in the low-j3 case it is convenient to discuss first the stability of the 
special class of equilibria with px = р±(В), pn = p„ (B), Bp' = p„ - p ± -

First we should note that we can have equilibria of this form at finite /3 
and not merely at low-/3 (see Bibliography to part III, paper by Northrop and 
Whiteman). Furthermore these equilibria retain the property that ju =0. 
Unlike the low 0 case, however, (when we could immediately construct the 
special equilibria merely by calculating the vacuum fields) we have still to 
solve a "self-consistent" problem in order to find the field. Nevertheless 
this is still much easier than the general equilibrium calculation. 

We shall discuss the question of stability by means of the (usual energy 
principle, that is we examine the sign of the potential energy 6W(f, ?) in-
volved in a small arbitrary displacement f . If this is negative for any f 
the system is unstable: if it is always positive the system is stable. 

2. THE ENERGY PRINCIPLE 

There are several possible forms for the energy integral 5W. The 
simplest of these, the scalar pressure MHD principle, is not applicable 
since there can be no equilibrium with scalar pressure in magnetic wells. 
The Double-Adiabatic (or Chew-Godlberger-Low) Energy principle can be 
used but a better form is that given by Kruskal and Oberman which is exact 
in the limit of small Larmor radius. This is the form we shall use in this 
lecture. 

The appropriate energy functional for the Kruskal-Oberman theory is 

III. STABILITY AT FINITE PRESSURE* 

T h i s part is based on work by R. J. Hastie and the author. 
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where 

6W = Q - 3 • QX f + (2px+ c)(V-1 - q f + (f • Vpx)(V- f -q ) 

+ ( I • Vp ,,)q - (p „ - p J [Й • (a • V)? + a • (n • V)? - q 2 - qV- ? ] 

~~ В 9f / 2 m ¡ / j йцйе, (2.1) 

where 

Q = V X ( ? X B ) , a = ( n - ^ ) l - ( f - V ) n , 
and (2.2) 

q= n•a. 

The displacement , parallel to 2, can be taken to be zero, since 6W can 
be shown to be independent of this component of Henceforth therefore f 
always denotes a vector which is perpendicular to B. The average appearing 
in (2.1) is defined by 

and 

||(MB)2dMde, (2.4) 

where f{U, e, x ) is the particle distribution expressed in terms of the mag-
netic moment ц, the energy e, and the parallel velocity vM is given by-
jv? = е~1лВ. We shall restrict ourselves to distributions for which 9f /9e<0; 
this is in any case necessary for the derivation of the energy principle given 
by Kruskal and Oberman. A great simplification of the ensuing algebra can 
be achieved if we f irst transform 6W into a new form. We introduce the 
notation 

? • VB = s В 

(because we know that ^B is an important factor in stability) and express as 
much as possible of 6W in terms of s. Then 6W becomes 
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+ q [ ? - V p „ + ( p x - p „ ) s ] - Ç - V P j . - ( 2 P x + C ) s 

(2 .5) 

We will also need two relations (derived f rom the equilibrium equations 
and the definition of C) for the gradients of p± and pM along the lines of force . 
From the earlier parts we know that in equilibrium 

9 f i . _ ( Р Х - Р И ) Э В 
3s В 3s (2.6) 

and by taking the derivative of p x along the l ines of f o r c e , (using the e x -
press ion given in the f i rst part f o r p± in t e r m s of f(/u, e, x)) we find 

3px _ (C+ 2px) 3B 
3 s в a s ' 

(2.7) 

3. STABILITY OF SPECIAL EQUILIBRIA 

Using the f o r m (2. 5) f o r 6W it is now easy to determine the stability 
of the special equilibria p x = Px(B), etc. F o r these equilibria it is easy to 
show that (2. 6) and (2. 7) lead to 

?• Vp„ + (Px-P»)s= ». 
and (3.1) 

| - V P ± - ( 2 P ± + C ) s = 0 , 

so that two of the terms in 6W vanish identically. Furthermore the special 
equilibria possess the property that ju = 0; hence 6W reduces to 

It is apparent that sufficient conditions for stability are 

1 + E ^ > o. (3.3) 
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and 

1 + 2 £ ^ Ç > 0 . ( 3 i 4 ) 

However these conditions are also necessary for stability because it 
is always possible to find a displacement i for which the term Q1 dominates 
all others and for this displacement 6W would be negative unless (3. 3) were 
satisfied. Similarly one can find another displacement for which Q2 is the 
dominant term and so (3.4) is also necessary. Hence (3. 3) and (3.4) are 
exact, necessary and sufficient conditions for the stability of the special 
equilibria. 

The f irst of these conditions is the " f i rehose" stability criterion and 
is rarely of interest in magnetic wells. We shall not consider it any further. 
The second condition (3. 4) is related to the "mirror " instability criterion 
but a more useful f o rm can be obtained by using (2. 7) to write it as 

B + ^ > 0 . (3.5) 

In this form it clearly represents a restriction on the maximum pressure 
gradient we are allowed in magnetic wells and so by integration we can find 
the maximum pressure we are allowed. This is 

p m a x = ( B b B l ) . ( 3 6 ) 

where Bx is the field strength on the plasma boundary and Bo the field 
strength at the "minimum-B" point of the well. In other words the maximum 
pressure is equal to the depth of the well if this is measured in terms of 
its magnetic pressure. 

4. STABILITY OF GENERAL EQUILIBRIA 

Now we turn to the stability of general equilibria at finite-|3. Here we 
cannot hope for exact results so we proceed immediately to an approxi-
mation - the "shallow-well" approximation. 

To explain the idea let us first suppose that we were to expand 6W in 
power of 0 as 

6W= 6W0 +|36Wi +/326W2 + . . . , (4.1) 

and then, if we examine the minimum of 5W, we find that min. óWo = 0 and 
min. 6Wi> 0. At sufficiently small J3, terms in /32 etc. are negligible and 
the system is stable. Instabilities can arise when ¡3 is large enough f o r 
succeeding terms 026W2 , etc. to become comparable with /JóWj, and one 
method of determining the critical j3 might be to evaluate ÔW2 . However, 
there are practical and logical objections to this. For example, if j326W2 is 
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comparable with j36W1( then one must expect that fi35W3 is also comparable 
with |3ôWi, a n d the /З-expansion is apparently invalid. 

This objection can be overcome, and the problem much simplified if the 
expansion of 6W is made not just in the single small quantity fi but in several 
small quantities, which are then grouped appropriately. One can then obtain 
an expansion of 6W in which stability is again determined by the sign of the 
first non-zero term in the expansion, rather than by comparison of several 
terms. 

To perform this sort of expansion we regard the magnetic field as being 
made up of a number of constituents. The basic zero-order magnetic field 
is a uniform field Й0 in the z-direction and a magnetic well is created by the 
addition of a " m i r r o r " component Ëm and a "stabilizing" component S s . 
This terminology is chosen because the superposition of a mirror field and 
a multipole (stabilizing) field is a well known way of producing the desired 
form of minimum-B field. However the significant properties of the com-
ponent which we call "mirror" and "stabilizing" are that the "mirror" com-
ponent is principally parallel to j§0 while the "stabilizing" component is 
purely perpendicular to So- A further contribution to the field is produced 
by the plasma itself and is denoted by 3 S so that 

B= B0 + B m + Bs + B e , (4.2) 

where S m , § s , §e a r e a 1 1 small compared to So- This approximation cor -
responds to considering the stability of plasma in a "shallow" magnetic well. 
The pressure tensor 

^=P±1+(P„ -Px)nn (4.3) 

is likewise treated as a small quantity compared to the magnetic pressure 
B%/2, and we therfore have to consider a number of small quantities 

= % = (4.4) B0 b 0 x í q -Bq .ts0 

In principle we should now expand 6W in powers of all these small quantities 
and then group terms together to obtain a stability criterion. However it 
is more convenient to do the grouping first, by attributing relative orders 
of magnitude to the small quantities а, ц, fi, fi±, fi „ in terms of a single ex-
pansion parameter X and then to expand in powers of this single quantity. 

Our f irst task is therefore to assign the relative orders of the small 
quantities. The appropriate ordering is that in which all the relevant quan-
tities appear in the eventual stability criterion, but one can anticipate this 
ordering as follows. The earlier work shows that ^ |Ô| plays an important 
role in determining stability at low fi, so that we want 5S , fim, ÔB all to 
contribute to |É| in the same order in X. Because Bg is perpendicular to 
â 0 it contributes to |g| only as В s and must therefore be chosen of lower 
order in X than â m or S e . In fact the appropriate ordering of the field com-
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ponents is 

B S ~ X B 0 , B m ~ X 2 B 0 , B e « X 2 B 0 . (4.5) 

The remainder of the ordering is determined by consideration of the 
equilibrium equations and one finds that 

j x ~ X 2 , jM~X4 , P x « X2, P „ - X 4 . (4.6) 

We also have to attribute an order to the non -fluid terms such as C. 
This can be done through Eq. (2.7) which indicates that as 9px/9s and 9B/9s 
are both of second order we must regard С as a zero-order quantity. Finally 
the displacement If which minimizes ÔW will depend on X so it too must 
be expanded in X and so 

? = ? o + >2?o + • (4. 7) 

All that remains to be done now is to expand all the equilibrium quanti-
ties which appear in 6W in powers of X, taking note of the orders of 
the various terms, and then to collect up terms in Xo, X1, X2 etc. We find 
that it is necessary to go to fourth order in X which leads to a large amount 
of algebra - that is why it is most important to start with the form (2.5) for 
6W rather than (2. 1). Using (2. 5) many terms do not contribute until X4 

order so the calculation of lower orders is greatly simplified. 
We find, f or example, that in zero order 

9f Because — < 0, this is certainly non-negative if 

However, even if this condition is satisfied 6W0 can still be minimized to 
zero by displacements such that, 

3o = ^X( foXB 0 )= 0 . (4.10) 

Hence (4. 9) is necessary for stability but it is not sufficient. To get 
sufficient conditions we must proceed to higher orders. We find then that 
бЛУг = 0 and 

6W2 = [QÍ]2+ ( l + ^ ) [ Q Í ] 2 (4.11) 
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Again, provided (4.9) is satisfied, this is non-negative, but it can still be 
made zero so we must continue further. Then 6W3 = 0 and 

6W4 = Q 2 - ("2 + s) ( ?o• VP±) + С + s ) ' 

(4.12) 

^ - ? • VB where the subscripts on Q 2 H Q and s2 = s =——— have been suppressed. Bo 
This expression (4. 12) leads to several sufficient criteria for stability 

which тап be obtained by writing it in the form 

Q + C s " ? 0 - VPx 
. 11 B ( L + C / B 2 ) 

ÔW4 = Q 2 + (1 + C/B2) 

(Cs - g 0 • Vpx) [go • V(P1 + ! B 2 ) ] 
в 2 + с (4.13) 

For example it is clearly sufficient for stability if the last term in (4. 13) 
is positive, i . e . if 

[?o • V(px + ïB2 ) ] [C(l0 • VB) - f 0 VpJ > 0. (4. 14) 

So that two sufficient conditions are (4.14) and 

( l + § ) > 0 . (4.15) 

For many equilibria these conditions can be further simplified. If we 
use (2. 7) we can write (4.15) as 

y , B - 4 ( P i + ¿B2) > 0, (4.16) 

while if we write the last factor in (4. 14) in terms of the distribution function 
the corresponding criterion can be reduced to the form 

k2VxB-Vx(p± + iB2 ) > 0 , (4.17) 

(where k2 is a quantity which depends on f(/u, e, x) and is positive for cases 
of interest). 

Hence for general equilibria we can regard (4. 16) and (4. 17) as r e -
placing the single condition we found f o r the special equilibria, namely 
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As before, (4.16) and (4.17) impose restrictions on the maximum per -
missible pressure gradient and by integration we can find the maximum 
pressure. F r o m (4.16) one finds 

р ™ х « Д „ ^ , (4.18) 

В2 

where Дм-^ measures the depth of the magnetic well in directions along the 

lines of force. From (4.17) one finds similarly 
B2 

B2 
where Дх— is the depth of the well in directions transverse to lines of force. 

We should also note that (4.17) has a simple interpretation in terms of 
the curvature of the lines of force for 

^ v x ( p ± + ! B 2 ) 

is just equal to the radius of curvature of the lines of force. Hence violation 
of (4. 17) occurs when the plasma diamagnetic currents have so modified the 
vacuum field that the relative signs of and the curvature have been re -
versed compared to the zero-j3 situation. In the low-j3 limit the lines of 
force in a minimum-|3 system are everywhere convex toward the plasma -
that is have "stable" curvature. If one now adds some plasma to the centre 
of the system then, being diamagnetic, it causes the lines of force to "bulge 
out", that is it tends to create an unstable curvature. 

5. SUMMARY 

To summarize then: at finite-|3 we have an exact calculation of the cr i -
tical pressure for the special equilibria. This critical pressure is equal 
to the depth of the well as measured by its magnetic pressure. We also 
have an approximate estimate of the critical pressure for more general equi-
libria namely that the maximum pressure is equal to the transverse depth 
of the well or to the longitudinal depth, which ever is least. 

As a final point we should note that the depth of the well is to be measured 
in the presence of the plasma. Because the plasma is diamagnetic its 
pressure increases the depth of the original vacuum well by an amount which 
depends on its shape. For a long (in the direction of the field), thin plasma 
this effect is large and this would appear to give an advantage to such system. 
However this advantage is offset by the difficulty of creating a significant 
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"transverse depth" in a long system before the plasma is added. In fact 
geometrical arguments, based upon the "field curvature" interpretation of 
the stability criteria, indicate that these two effects almost exactly c o m -
pensate one another with the result that there is no special advantage, from 
this point of view, in wells of any particular aspect ratio. 
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M I C R O I N S T A B I L I T I E S 

M . N . ROSENBLUTH 

GENERAL A T O M I C D I V I S I O N , GENERAL D Y N A M I C S C O R P O R A T I O N . 

A N D 

U N I V E R S I T Y OF C A L I F O R N I A , 

S A N D I E G O , C A L I F . , U N I T E D S T A T E S OF A M E R I C A 

I. GENERAL CONSIDERATIONS 

A confined plasma is of necessity a non-equilibrium plasma since the 
only equilibrium distribution is the well-known Maxwellian one. In the 
presence of static e lectr i c and magnetic f ie lds this has the f o r m 

f = е-Н/кТ^ (1) 

where H^mv'^+ecp. This depends on position only through the term ecp which, 
however, can be useful for confining either electrons or ions, but not both. 
Hence any system in which the plasma is confined away f r o m walls is out 
of equilibrium. The question of confinement is therefore the question of 
the rate at which equilibrium must be approached. One mechanism for the 
attainment of equilibrium is binary col l is ions which lead to a Maxwellian 
distribution and, more slowly, to a diffusion of plasma across the magnetic 
field. However, we know that these are relatively slow at high temperature, 
the rates being proportional to T"l ; and containment would be adequate for 
many purposes such as fusion if this were the only equilibration mechanism. 
However, one has to be a little careful here as it is not necessarily correct 
that growth rates in coll ision-dominated plasmas are proportional to c o l -
l ision frequency. F o r example, there exist some so-cal led resist ive in-
stabilities which grow like vi under certain circumstances, where v is the 
collision frequency [ 1 ] . These are discussed in the paper by Furth. Col -
lisions may also lead to instability of the drift mode as discussed bySagdeev. 

We will confine ourselves here to the collisionless situation and enquire 
as to the mechanism and rate at which a collisionless confined system would 
proceed towards equilibrium. Here it is customary to subdivide the problem 
into two parts — hydrodynamic instabilities and microinstabilities. Broadly 
speaking a hydrodynamic instability is one which is derived f rom the fluid 
equations and in which the plasma moves as a whole, f rozen to the f ie ld 
l ines by the well-known law 

—» 1 —> —» E +— v X B = 0, (2) с 

where ËÎ is the electr ic field, В the magnetic field and v the fluid velocity. 
In general such motions aré slow, having frequencies much smaller than 
the ion gyrofrequency and the plasma frequency up. These are also of 
relatively long wave length, k a ¡ « l , where к is the wave number and a¡ 
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the ion gyroradius. A distinguishing feature is that the plasma moves as 
a whole and we know by analogy to ordinary hydrodynamics that motions 
resulting from a hydrodynamic instability will be large scale, rapid and 
chaotic leading to swift destruction of confinement. This has been well veri-
fied in many experiments with pinches, mirror machines, etc. 

All other instabilities, npt derivable from the fluid equations but only 
from the microscopic equations, i. e. the collisionless Boltzmann equation, 
are referred to as microinstabilities. 

We know very well how to discuss the stability of a confined plasma 
in the hydromagnetic approximation from the energy principle [2, 3, 4] and 
we know that it is not so difficult to provide a macroscopically stable situ-
ation. In the f irst instance this arises f rom the requirement (2) i. e. the 
plasma is frozen to the magnetic field lines. This imposes great topological 
constraints on the possible plasma motions since the plasma and the field 
must move as a whole. In particular it makes for relatively simple hydro-
magnetic stabilization of the plasma by shear of the field lines so that sys-
tems like the stellarator and levitron, etc. are hydromagnetically stable. 

On the other hand, the perfect conductivity law (2) is a relatively weak 
one easily violated by such small effects as the finite Larmor radius, finite 
resistivity, the presence of a small electric field along the field lines, etc.; 
and while the experimental evidence is not absolutely conclusive one begins 
to feel quite uneasy about relying on this form of stabilization. Thus it is in 
fact necessary to examine more complex forms of motion, namely the micro-
instabilities. These are nluch more widespread and difficult to eliminate 
than the hydrodynamic instabilities, precisely because two powerful con-
straints on the motion are no longer present — the requirement (2) as dis-
cussed above and the much stronger constraint that the magnetic moment 
is an adiabatic invariant of the motion. This adiabatic invariance leads to 
the very strong result that all low frequency disturbances are stable in a 
minimum-B geometry as discussed by TAYLOR [5] . Thus we are led to 
a consideration of the microinstabilities. 

Here the subject again splits into two parts — (a) the question of the 
linear stability of a confined equilibrium, and (b) assuming that the plasma 
is unstable the question of the rapidity of the resulting motion of the plasma, 
i. e. the non-linear and turbulence problems. We shall here be concerned 
with the first question. 

To date we do not know for certain whether any confined plasma can 
be made linearly stable against all possible microinstabilities. Perhaps 
not, in which case the non-linear behaviour is of paramount interest. We 
will content ourselves here with the remark'that the non-linear behaviour 
of a microinstability must be quite different f rom that of a hydrodynamic 
instability. For example only a small group of resonant particles may be 
involved as compared to the whole plasma in the hydrodynamic case. Per-
haps only one or the other charged species is involved in the motion, leading 
rapidly to an imbalance of the charge, thereby modifying the motion. More-
over the microinstabilities are often of short wave-length so that the ampli-
tude of motion quickly exceeds the wave-length. Beyond this point we would 
expect the linear theory not to hold. Similarly at frequencies of order 
the velocity of the plasma =¡u a, where и is the frequency and a the amplitude 
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of the disturbance, and the kinetic energy of motion would be of order (u a)2 

so that at quite small amplitudes the energy of motion exceeds the available 
energy and one must expect a qualitative deviation from the linear behaviour, 
perhaps manifesting itself as a slow anomalous diffusion. In short, with 
hydrodynamic instabilities one may expect a rapid mass motion away from 
confinement; with microinstabilities, on the other hand, a rather complex 
turbulence and enhanced diffusion should result. In a few cases it has been 
possible to show that this diffusion must be quite small. In many cases no 
definite answer is available. Thus we cannot be sure whether all known 
microinstabilities may be avoided or whether we have catalogued all possi-
bilities, nor if the resultant effect is catastrophic. In some cases they may 
be even controllable and useful for such purposes as plasma heating. 

Now I would like to turn briefly to some general questions before dis-
cussing specific types of plasma instabilities. First we know there are many 
types of stable waves in plasmas — hydrodynamic, Alfvén, plasma osc i l -
lations, etc. These are always calculated, with some sort of idealizations 
or approximations, e. g. in a uniform infinite medium or using such ap-
proximations as small Larmor radius, E + v x l / c = 0, etc. Suppose that 
with these approximations we find the waves are stable, i.e. и is real, the 
time dependence of the wave being of the form exp iw°t. The exact calcu-
lation will give 

u = u° + £6u , (3) 

where |e 6u/u°| <¡C 1 if our-approximations are good. However, if ôu were 
complex then even a small change would imply instability in which case the 
approximate calculation would have given us no useful information regarding 
the stability of the system. 

A simple argument due to LOW 16] assures us that this cannot happen. 
There exists a constant of motion, namely the energy H, such that 

и , 

Suppose the system exists in an equilibrium state with energy Ho. We des-
cribe the perturbed motion by a displacement If. If in equilibrium a particle 
is at t, then after the perturbation, its co-ordinates would be 

- » - » - » d? r + f , t, (5) 

where f ( r , v, t) is the displacement. The energy of the system can be ex-
pressed completely in terms of If and dlffdt = iu^, . Note that if the particle 
displacements are given we can calculate the field energies. Thus, correct 
to second order, we can write 

H = H 0 + H 1 ( ? ) + H 2 ( Ç . Ç ) . ( 6 ) 
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Since we started from a state of equilibrium, Hj must vanish. For H2 we 
can write, quite generally 

d3rd3r'd vd3v' |(r, v, t)K(r, v, r ' , v' )|(r', v ' , t). (7) 

Such an H2 can be defined for the approximate system as well as the exact 
system. The approximate system was stable so that 

H°>0, (8) 

where we use a superscript to denote quantities referring to the approximate 
system. Further, since dH°/dt= 0, H2 must be a constant. Now we can 
write 

(9) 

and since H2 is constant and non-zero, this must mean that the time depen-
dence of in Eq. (7) cancels out. This is possible if и is real where 
the relative phases of the kinetic and potential energy are such as to keep 
the energy time independent. 

Now let us consider the exact system. The functions characterizing 
the exact system can be written in terms of those of the approximate system 

^='f°+ed|>, K ( ? , r 4 = K ° ( r , r ' ) + e<5K (10) 

.and 

to = w° + e 6u. (11) 

The second order energy is 

H2 = Jd3rd3r 'Ç(r)K(r, r' )f (r' ). (12) 

The perturbations in the ]? and dependence of and К will only make a 
change 0(e) in H2 but if бы were complex, then there would appear a factor 
exp(- 2 eôUjt) outside the integral on the right-hand side of Eq. (12), where 
ôu = 6ur + i 5u¡.. In that case 

( 1 3 ) dt 

which is incompatible with the fact that the energy is a constant of motion. 
Therefore u¡ must vanish, and must in fact vanish to all orders in e. 

Hence an instability can arise only if either: 
(a) the modifications are sufficiently large (e finite) so as to significantly alter 

^ so that the time independent part of H2 is reduced to zero. This im-
plies a finite threshold for instability. For example, in the two-stream 
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instability the current must exceed a threshold value to cause instabi-

(b) a completely new type of wave may arise. For example, in the case 
of inhomogeneous plasmas the drift mode or universal instability may 
arise which has no analogue for homogeneous plasmas. 
For the most part, in attacking the linear instability problem it has been 

necessary simply to hunt for various types of unstable modes which might 
arise in specific situations. It is easy to identify the potential sources of 
instability, namely different forms of deviation f rom equilibrium, and to 
study their effect on the known plasma waves, but by and large the procedure 
has been a matter of trial and error. It is often easy to find some unstable 
mode and calculate its properties. But if none is found it is very difficult 
to be sure that all possibilities have been examined and that some unthought-
of mode might not be unstable. In other words, it is hard to give a positive 
proof of stability, but this may be done in a particular case which we now 
describe. 

Let us consider a uniform plasma in a static externally-produced mag-
netic field В and assume that there are no electric fields present, Ё = 0, 
i. e. the fields are in the lowest possible energy state consistent with ex-
ternal coils. Moreover the velocity distribution of the plasma is assumed 
to be uniform isotropic and a monotonically decreasing function of v2, i. e. 

We do not assume f(v2) to be a Maxwellian distribution. 
In phase space all plasma motions are incompressible because they 

are governed by the Liouville equation. Hence we define a constant of motion 

with 9S/<H= 0, since the volume of phase space occupied by any value of f 
is not changed by the motion. G can be chosen to be any function of f and 
this leads to a class of constants of motion. We now wish to find the lowest 
possible energy 

lity; or 

f = f(v2), § ^ < 0 . (14) 

(15) 

H = mv2fd3xd3v + ¿ J B 2 d 3 x + ¿ J # 2 d 3 ? H = 'x + _1_ 
8тг (16) 

which a plasma can reach subject to the constraints 

(17) 

and 

(18) 
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For the moment we leave G undetermined. 
Using the Lagrangian multipliers a and fi, the variation of H leads to 

¿ m v 2 + a + | 3 ^ = 0 (19) 

or 

If 8f/9v2^ 0 and since f (v2) is a known function, one can solve Eq. (20) to obtain 
a G(f) which is appropriate to show that the state f (v2) is indeed the lowest 
accessible energy state. The positive proof of the stability of this distri-
bution demonstrates at least that this slightly non-equilibrium situation is 
stable and,that collective motions alone do not invariably proceed directly 
to equilibrium in such situations, for example, as a uniform plasma with 
T e / T i . 

So far it has not been possible to extend this line of reasoning very far 
into more complex situations. In particular, for non-uniform plasmas it is 
always possible to lower the energy by expanding the plasma towards uni-
formity. In order to proceed further, it would be necessary to find addi-
tional constants of the motion to restrict further the possible changes of 
energy. For some types of motions, particularly those at low frequencies, 
such constants do indeed exist. For example, if we assume particles frozen 
to the field lines together with the conservation of entropy we recover the 
results of Oberman and Kruskal on hydromagnetic stability; if we use the 
invariance of ц we recover Taylor 's proof of minimum-B stability. 

It is useful, however, even where this cannot be done, to proceed a 
little further and develop the notion of free energy. We may consider some 
equilibrium situation and calculate the lowest energy state which is available 
to it subject to the constancy of some /Gi f jd^d 3 ^ e. g. G = f Inf. Except for 
the special case outlined above this energy will be lower than that of the 
original state. The difference represents a free energy possibly available 
for driving an instability. Again we may emphasize that this does not neces-
sarily imply instability but only the possibility of it. Having identified the 
possible f ree energy for driving an instability, it remains to search for 
specific mechanisms for the motions which may ensue. We find the following 
main sources of free energy: 

1. Kinetic energy of drifts in the plasma. These might include particle 
beams, currents parallel to the magnetic field B, plasma mass motion in 
equilibrium, or diamagnetic currents which are always present in a plasma. 

2. Magnetic energy. The field energy itself may be raised well above the 
vacuum value and free energy may be gained by relaxing the field. For low 
values of fi, this free energy is of order fi

2

. 

3. Anisotropies in the distribution function. In confinement schemes in-
volving magnetic mirrors there must always exist anisotropy in the velocity 
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distribution perpendicular and parallel to the static magnetic field. For 
example, at the mirror point there is no parallel energy. Free energy may 
àlways be gained by relaxing towards isotropy. 

4. Expansion energy. By expanding the plasma towards uniformity, the 
energy will be lowered. The available energy E=s(V 0 /V) i , where V0 and 
V are the initial and final volumes respectively occupied by the plasma. 

Of these possible sources of free energy, the first type is usually quite 
small, since the energy of diamagnetic currents « m e , the second type is 
small at low fl, the third type is present in all open-ended confinements but 
not in toroidal systems, while the fourth type always represents a large 
source of f ree energy. It is the last source which, of course, feeds the 
hydrodynamic instability. However, it is an open question how much of 
this f ree energy is available in hydrodynamically stable situations where 
the plasma is unable to expand in a uniform way. 

II. LOSS-CONE INSTABILITY 

We wiU now discuss a specific calculation due to POST and ROSENBLUTH 
[8] in which instability feeds on the anisotropy of the distribution function. 
We will go through this in some detail both as an illustration of the methods 
involved and because of its intrinsic interest. We consider a case in which 
the ion distribution function is characterized by a loss cone as would be 
brought about by magnetic mirrors . Then 

f = f(V2,V2), (21) 

where 

f = 0 f o r v l < 7 V | ? , (22) 

where y is some constant which depends on the mirror ratio. We will now 
demonstrate that any such confinement is unstable. We make the following 
idealizations: 
1. We assume the plasma to be uniform and infinite immersed in a uniform 
magnetic field S = В 0êz. Later on we apply the results to finite geometry. 
2. For the sake of simplicity we assume the electrons are at zero tempera-
ture. The only important modification which results for finite electron 
temperature is the possibility of electron Landau damping if ш<кц v*h , where 
k|| =!c- bz and v * is the electron thermal velocity. It turns out that this does 
not occur for TE < TI. 
3; The ratio of plasma to magnetic pressure, fl, is small. For this case 
any unstable perturbation must be electrostatic i. e. 1? = - ^ф. This is true 
because a non-electrostatic disturbance would imply a perturbed magnetic 
field. This would change the magnetic field energy, in fact increase it, since 
the uniform field has the lowest possible field energy. Since fl is low, this 
would more than compensate any possible decrease in particle energy. 

We first give a physical argument as to why we expect such a distri-
bution to be unstable. From the Penrose criterion as discussed by Professor 
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Simon we know that a necessary condition for the 2-stream instability is that 

N ( V 2 ) = J f ( v 2 + v 2 , vi)dvxdv2 ( 2 3 ) 

be a non-monotonie function of v'j; i. e. the number of particles with a given 
component of velocity must increase somewhere with velocity. Now consider 

9N(vy) 
3v2 

3f 
Щ dVy dvx dvz 6 (Vy - v) 

f í v 2 dv£d<Pd^5(V|COS cp- v) 

I f i t . 
"2 J 8vî 

dvfdvz v x sin i 

• I ¡ ¿ ^ ¡ ¿ Щ - ф щ 

л ( v^V 2 ) * ' <24> 

For a fixed value of vz , the plot of f versus v j h a s the form shown in Fig. 1. 
In the integral over df in Eq. (24) note that since f must be zero both at 

v2 = у2у2 a n ( j df has both a positive range from 0 to v^max and a numeri-
cally equal negative range from vímax-* oo. If v>Vi_max then only the negative 
range is sampled and9N/9v 2 <0. F o r small v, however, the contribution 
from positive df will predominate as the square root is smaller for small 
Hence N versus v2 has the shape shown in Fig. 2. 

We shall now discuss this problem in detail by solving the Boltzmann 
and the Poisson equations: 

9f -> e / -» 1 -> -»\ -» (25) § + v - V f + — ( E + - v X B ) - V v f = 0 , K > 9t m \ с ' v 

and 

where 

V • E = 4îrp, (26) 

.= £ oj Jt¡ d='v. (27) 
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Fig. i 
Plot o f ion d i su ibut ion funct ion versus v|. 

In equilibrium, f = f0, Ê = 0, g= B0êz. In the perturbed state f = f0 + fx, EÎ = 
= - ^ ф р and ^ 4irp1. The linearized equations now are: 

9f i -» -» e —» —» —» e —» —» | l + v . v f i + _ ( v X B o ) . V v f i = . _ E . V v f o . ( 2 8 ) 

We solve this equation by the method of characteristics. Note that Eq. (28) 
can be written as 

i f i = - ¿ v v 0 . ( 2 9 ) 

where d/dt is the total time derivative as we follow the unperturbed trajec-
tory of the particle in the space of x and The formal solution of Eq. (29) 
can be written down readily: 

t 
f v ф 1 ( х ' Д ' ) . У у . f0dt\ (30) 
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Here ( x ' , v ' , f ) are the co-ordinates of a particle which at time t was a t ? , ^ . 
We now assume that 

(fi. <Pi) = (f, ф) exp i(wt + kzz + куу). 

Noting that 

k - Vv. f0= 2 к V' + к v' Т У 3vi2 ^ z dv¿2 j 

( 3 1 ) 

(32) 

Eq. (30) leads to 

t 
f ( v ) = ¿ ? J ^ d t ' ^ e x p i[U(f - t ) + k2(z' - z) + ky(y' - y ) ] | 

Note that as usual in such problems the integral converges if IP(u)<0. 
IP(u)>0 one must analytically continue. 

The particle trajectories are (putting т = t' - t): 

V ' = VJ^COS (SÎT + ¥ ) , 

which upon integration give 

. - v = У' "У Q siniiiT + y) - sin ¥ 

Z 1 - Z = V Z T . 

v2 and v2 are themselves constants of motion and, therefore, 

(33) 

For 

(34) 

(35) 

(36) 

(37) 

and <Mq 
9v? 

are constants of motion and can be taken out of the integral in (33). Making 
use of the identity 

i y sin 9 (38) 

Eq. (33) can be written as 
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n, m 

kzVz dw\ 9v2 Kj-Vj-

V 

^ ^ ( n - m)4> + i n f l f 

+ + е"ЧПт+*) ^ j eikzVzT . (39) 

The time integrations are now trivial and if we use the identity 

— JnW^n-iM+Jn+iÍT). (40) 7 

we obtain 

? ' - i Ë s i V Jntk^/^lJJkxV,/^) i (n .m)# 
т Ф Л U + k2v2 + nfi. 

n, m 

x [ k z v z f | + n ^ J . (41) 

The charge density is given by (cf. Eq. (27)): 

J f d 3 v = | J fd ïdy2dv z . (42) 

Substituting this into the Poisson equation (26), we obtain 

к2ф = 2 " Y , f (43> 
e . i 

Finally, on substituting for f f rom Eq. (41) into (43) and carrying out the ¥ 
integration, one gets the dispersion relation: 

j = e , i n 

At this point we must consider separately the evaluation of the ion and elec-
tron terms and make some further approximations appropriate to the speci-
fic case we are considering. 

For the electrons we have taken zero temperature so only the term 
n = 0 need be considered. Further, J§= 1 and we consider the case u » k z V z . 
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Thus 

•¡ы 

The first term vanishes by symmetry since fo is an even function of v| and 
the second term may be evaluated by parts, and using the fact that 

п0=тг J fo dv£dvz, (46) 

we obtain for the electron density 

e2 kg ~ .„„. 
? е = п 0 - ^ Ф - (47) 

Thus from Eqs. (44) and (47) we get 

M2 lr2 8тг' (к xVx/П) 
+ kzvz + n Q nil S 3v? (48) 

Now from the fact that the electron and ion contributions to the charge 
density are inversely proportional to the mass we may guess that at low 
number density the waves will be dominated by the electron contribution. 
We will, therefore, seek a solution of the form that the electrons determine 
the frequency of the wave while the "residue" from the ion term yields the 
imaginary part. From the electron term of (48) we obtain 

U = U p e ^ = UpeCOS 0, (49) 

where в is the angle which the propagation vector 1? makes with the direction 
of the magnetic field. To analyse the problem in general would require the 
details of the distribution function and would involve complicated analysis. 

However, to demonstrate the existence of instabilities and their general 
properties in such systems we note that to achieve a large ion residue term 
we would like to have u + nf2 =0. From Eq. (48) it is clear that this may only 
be achieved if 

Û e > n V , (50) 

since k£<k2. This provides a limiting density above which such resonances 
are possible. We now investigate the ion term in Eq. (48) under the condition 
that u + nf2 =0, choosing only the imaginary part arising f rom the pole of 
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the resonant term when the integration over vz is performed; and coming 
from vz = 0. We thus obtain for the imaginary part 

TD_ . 8jr2 e2 ni2 
1 Р = 1 Ж k^M"k¡T (51) 

8тг2 e2 ní2 
и Ж м ь J2(kxvx/n)df0 (52) 

We recall that (see Fig. 1) f must vanish at vx = yv§ and at infinity, so that df is 
positive for small values of vf and negative for large vf, while Jn has the 
form shown in Fig. 3 going asymptotically as ÍÍ/ 2JrkxvL. Thus in performing 

к. v./л 

F i g . 3 

Plot o f J* versus k x v ± / f ) . 

the integral in Eq. (52) we note that positive contributions come from small 
values of vf and negative contributions from large values. If kxvxmax/fi « n 
then most of the integral will occur on the rising portion of the curve and 
the integral (52) will be negative. Conversely for kxvxmax/f2 » n, the inte-
gral will be positive. Using (46), we may approximate 

IP «iff #n S 2 ¿ ( k j V u n a x / f l ) ~ 1кЛ • vf (53) 

where 6 is a function with properties sketched in Fig. 4, reaching a maximum 
of order of magnitude unity. 

F i g . 4 

Plot o f 6 versus kxVj J-max /0. 

32 
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Finally on substituting (53) into (48) and remembering that и 2 е Ц/к 2 = n2íí2 

find 

. - 2 . _ , 2 
n 2 n 2 + i ^ n ^ ( 5 4 ) 

_ i ufa ¿n2П2 

" " " " " " г k ^ " ' <55> 

Remembering that the time dependence of the waves is of the form e i l J t , it 
becomes apparent that for any positive 6 the system will be unstable. This 
means that for кдУцпах/iî > n, the waves will be unstable with a peak growth 
rate obtained by putting k±v±/Sl n, and roughly given by 

* <
5 6

> 

It is to be noted that in this entire discussion we have used no properties 
of the ion distribution function other than the fact that it contains a loss cone. 
It should be noted that oscillations near the ion cyclotron frequency have 
been observed in various experiments, e .g . ALICE, DCX-2, Phoenix etc., 
where sufficient densities were attained roughly as given by condition (50). 

Under conditions where the electron temperature does not strictly vanish, 
the density limitations are a bit more severe than those required in the ab-
sence of electron Landau damping. Thus 

~ , kííi Я,*!.) >k,v, >e = — ve •pe 

= n f v t k v L k > n ? ^ J L ( 5 7 ) 
Upe Vt Í2i Upe V i x 

Upe > ~ ~ ' (58) 
V iJ . 

If we examine the growth rate given by Eq. (56) we see that as the density 
increases such that UpeUpi > Q3 then the growth rate becomes comparable 
to the frequency. This implies of course that our selection of a single reso-
nant term in Eq. (48) is not valid and that instead many values of n will con-
tribute and then the series must be summed. 

The identification with the 2-stream instability [cf . Eq. (24)] is more 
evident at high densities where as already mentioned the growth rate ex-
ceeds the cyclotron frequency for the ions. So we proceed to the case 

I P ( u ) > i V (59) 

32* 
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In this case the gyration of the ions is not important and one could arr ive 
directly at the dispersion relation by using the rectilinear orbits of a freely 
moving particle in Eqs. (34) to (37). However, we may also proceed f r o m 
the general form of Eq. (48). At high densities, it turns out that k g / k f « l , 
since u2, / ш 2 » 1 and we may neglect kzvz in the ion term in Eq. (48). The 
ion term is proportional to 

n 

= - u f d v > 2 ^ Y n f f ' l t ' < s i n c e E = 1 ' d f = <60> 
n 

о 
= - iu Jdvf dv, Y J d r e * ^ ) T J ^ k ^ / f l ) (61) 

Г f ilk) Jdvldvz J dTei"Tj0 f ¿ ^ - cos S2r^ f l d T ' <62> 

where in writing the last equation use has been made of the addition rule 
f o r Besse l functions [9]. Since I P ( u ) » f i , we may expand 

l - c o s n r = - | n 2 T 2 , . (63) 

as the later cyc les of the ion oscillation will be suppressed by the factor 
eiwr. The right hand side of Eq. (62) now reduces to 

о 
- iu J^dvjtí^ J d r e ^ J o f k ^ r ) dr (64) 

-ее 

- - Ы / d v f d W ^ s . ^ j , ! ^ - (65) 

Note that the ion gyro-frequency has disappeared f rom this term and that 
we have recovered the form of Eq.(24). On substituting this into the disper-
sion relation (48) we obtain 

u ¡ e l | 8тг2е2 Г 1 3gp 
1 - " Ж ] (1 - а д и 2 ) 1 Щ ( 6 6 ) 

where g0(vf) =_ffo(vj;)dv2 and g0(0) = g0(oo) = 0, or 

u|e_k? 8 ir2e2 P dgp ( 6 7 ) 

u 2 - ^ " k ¥ J (1 - к£vf/u2)i ' 
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Again we argue as before that dg0 can be either positive or negative so that 
it is possible for the imaginary part of (67) to have either sign and that 
when k i v i / i o> l the sign is such as to cause instability (v±is the mean ion 
velocity. ) 

The basic wave involved is again an electrostatic plasma oscillation 
with u = Юре kz/k. Before proceeding further let us turn to consideration of, 
instead of an infinite medium, a confined plasma of finite length such as a 
mirror machine and see the effect of such instabilities. These plasma os-
cillations are running waves. If a wave packet at frequency u is launched 
at a point in the field the wave will run along the field lines with velocity 
du/dkz = Юре /к = w/kz either growing or decaying in amplitude depending on 
whether the time dependent problem is unstable or stable. When the wave 
reaches the end of the plasma Upe -» 0 and k„ tends to become quite large. 
This in turn means that Landau damping of electrons should occur. In gene-
ral when kz-> 0 reflection is implied, when kz-> oo absorption is implied. In 
our case the wave should be absorbed at the end of the plasma and hence 
the question of prime interest is how much it will have grown in travelling 
the length of the plasma. If it has e-folded by 10-20 times we may expect 
a serious disruption of the plasma with effective violent instability and scat-
tering of ions into the loss cone. 

It is thus appropriate instead of solving the dispersion relation for u 
to solve for kz, the spatial dependence of the wave. Thus consider again 
Eq. (67): 

+ (68) u^T T M J d v ? ( l - к Й д Ь ' 

Again using Eq. (46) we can write this roughly as 

. 2 lA>8 . m u2 / u \ . k„= —к l — ( 6 9 ) 
Upe M v z \ k ± v J 

where б will be positive so as to cause growing waves if kj\?/u> 1. Solving 
Eq. (69), we get 

. ku . ó Upe m u . ,7П , 
^ ¡ ¡ Г М 2 Т М Й ' ( 7 0 ) 

V is the mean thermal speed for the ions. 
Thus the most rapidly growing waves will occur for the maximum value 

of (u/kv*)(l/2)ô(u/kv) = y, a numerical constant depending on the details of 
the distribution function and of order of magnitude unity. For a distribution 
corresponding to collisional equilibrium in a mirror machine of mi r ror 
ratio 2, we have found 7 = 0.1. For very extreme distributions such as those 
resulting from б functions (as in a neutral injection mechanism), - y » l . Thus 
if L is the length of the plasma column, the effective growth of the wave is 
given by the number of e-foldings. 
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where XDii is the ion Debye length. Numerically, 

N=10"5 y ^ J b , (72) 

where T is the ion temperature in keV, n the ion density in cm"3 . At very 
high densities Upe >S2e this rate is reduced by a factor 1/( 1 +Upe /Г2|)г. This 
arises from the higher order Bessel functions in Eq. (44) for electrons which 
we have neglected. 

Since the cause of these instabilities is Sf™"5 /Эу£> 0, they may arise 
in other situations as well as from the loss-cone distribution. For example, 
a neutral injection system at a fixed non-zero energy will produce instability 
and even isotropic distributions peaked around non-zero energy may be quite 
unstable. 

Similar sorts of instabilities affect other waves, such as Alfven and 
whistler modes, but tend to be weaker effects in the limit of low Э, since 
resonance is only possible for very fast particles, and are not quite uni-
versal in the sense of applying to all l oss - cone distributions. 

III. DISPERSION RELATION FOR MICROINSTABILITIES OF 
• INHOMOGENEOUS PLASMA 

In this section we proceed essentially as before except that now we wish 
to consider the effects of a slight inhomogeneity on the plasma stability. We 
consider the following situation: a plasma of low j3, in a uniform field, B^ 
with gravitational potential gx has a Maxwellian velocity distribution with 
uniform temperature, T, and a spatial density which is weakly dependent 
on x and independent of y. The constants of particle motion in this system 
are 

E = —2~ + mgx 

and by symmetry 

Pz = mvz, = mVy + eAy/с, 

where A is the vector potential giving the constant Bz. Taking Ay= 0 atx = 0 
then allows ly to be written = mvy + £2mx. 

Then since any function of the constants of the motion is a steady state 
solution of the Vlasov equation we can take 

f0 = "0 
m V 

27гкТ J 1 + e exp mv mgx 
2kT kT (73) 
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where then — = e - will be taken to be small so that ( — ^ ) R . « 1. This n dx kT \n dx/ L 

is the simplest solution of the Vlasov equation that gives the desired density 

dependence. In order to have charge neutrality ~ must be the same for 

electrons and ions so that at least near x = 0 

Mg mg JL dn 
ei - k T = «e - k T = n d x • 

We now proceed as before. Assume a perturbation of the form 

E= - Vcp 
(74) 

9 = 9(x)eifKyY+Kzz+ljt]i 

solve the perturbed Vlasov equation by the method of characteristics as be-
fore and substitute into Poisson's equation. New terms of course arise due 
to the term evy /Q in f0, and moreover there is an essential complication 
due to the fact that ф is now also a function of x and hence appears as an 
unknown in the equation 

t 

t ^ - t f V9-V v f 0 dt . 

Thus strictly speaking we are left with an integral equation f o r ф(х). 
This may be reduced to a differential equation by expanding 

ф(х') = ф(х) + ф'(х)(х' - х ) + ф"(х)(х ' - x) 2 /2 + . . . , 

where (x1 - x)n is given simply in terms of the orbit of a spiralling particle 
in a constant magnetic field. In practice we will be concerned with 
sufficiently small that the terms in (x1 - x)n may by neglected. Later we 
refine the discussion to show how these terms may be included. For the 
moment we write down the dispersion relation for ф(х) = $ = constant. 

From (73) and (74) we find, dropping small terms of order e2 , 

Vvf0 = f0 - + - 9 kT П y (75) 

•vvf0 = 
m -» ^ eiKy 
кт v " V q ) + Q * (76) 

Then using 

*<p(r(t).t> 
Эф 

= at + v . Уф= Шф + v . Уф, ф^=-оо)=0 
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and the fact that f0 is a constant of the motion in the unperturbed f ields to 
integrate by parts gives 

t 
m r " n 

f i = — fo 1 m 0 : œ+ i kT y 
ш т eKy 
kT Í2 ç (r\t ' )dt ' (77) 

In the presence of a gravitational field there is a particle drift in the y direc-
tion of g/fi in addition to the uniform circular motion so that 

y1 - y = в т Ф , 

where ф is an initial phase. The orbits are otherwise the same as Eq. (34-37). 
Then from exp i-y sin Ф = £Jn(-y)exp in^ we write as before 

ф(г' (t1), t1) = ф exp i ^ K ^ t ' + K y ^ sin ( Q f + ^ + K y ^ - t 1 s i n Ф 

= { ф е х р ш ( к , п ) + К у - § + и ) } 

X X J n ( ^ ) e x p in(QV+Ф) X e x p ( - im*). (78) 

As usual, f j is assumed to have the same space-time dependence as ф, i. e < „ i 

f j = f j exp (iKyy + iKjZ + iut). 

After substituting (78) into (77) and doing the time integration and letting 
x= 0, 

fl = $n0 
^ е у m m 
\ т у \2тгкТJ \ кТ 

да еКу 
kT U 

у Л О 
Л и + КцУ» 

К у У х 

+ пП + Kyg/Q 
gi(ii - т)ф le~2kT 

v 2 r 

( 7 9 ) 

To obtain the dispersion relation we must first evaluate 

P = e J*¿Ф^&йу^. (80) 

Because of 
21Г 

J dфé^n-mW=2lгôm,a 
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the angle integration gives, after summing over m, 
2* 
J ^k -ф2я-п( my\2згкТJ \ kT • + 

№ Куе 
kT П 

I K < l f . 
u'+K„Vj|+nn+%g/n | e X p 

_m(v|+v|) 
2kT (81) 

For our purposes ( n e / K y ) « 1 in all applications and we neglect it henceforth. 
Integrating over dvf/2 and using the identity 

«Q 
J J l(ax) e'x2dx= e V / 2 In(a2/2), 
о 

where I„(x) = i^Jnfix), gives 

2ir 

о 0 

Г , кТКуб 
mí1 

У In(KykT/n2m) exp - (K^kT/Q2m)l mv¡,2 

Li w + KHv„+nQ+Kyg/n J 6 X p " 2kT 

or rearranging terms 

' 2* « 

2тгкТ - 1 + 1 + кТКуе 
пшП 

» 
' ¿Ды + пЛ + + Kyg/f2 exp 

x i f ï f e ^ 1 - Ким. 
u+nQ+Kyg/П+К v I exp mvf 

2kT ' 

The integration over v„ in equation (80) must still be performed and involves 
the function 

W(x) : J" (exp - y2)ydy = Ç (exp -y2 )dy_ 1 
T* x+y 2/jr 

Г (exp -
J (x + У)2 

Z ' ( - x ) . 

«о 2 
The function Z(x)=-^==. J" ^ ^ w a s discussed in paper by Dr. Simon 

"OO 
and has been tabulated by CONTE and FRIED [10]. 
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Fig . 5 

Properties o f W funct ion for real x . 

The properties of W are summarized in Fig. 5, f or real x. Thus we 
have 

¿и 2 °° 
^ e / d * № / d v / , 

0 0 -oo 

m y V2jrkT 1 + кТКуе] Уш exp - (K?kT/fl2m) 
1 + ш £ ) J ы + niî + Kyg/Í2 

n 

Then substituting in Poisson 's equation, 

К2ф = 4гг ^ Pi 
j = e , i 

gives the dispersion relation we have been seeking: 

К 1 + kT jKy /mjg , 1 dnj\ 
mfiu \kTj nj dxy_ 

• V " e ' Z j I n ( Z i ) 
• ^ w + nfíj +Kyg/í^ 1+W io + nflj + Kyg/П) 

K„(2kT, 
tKxEMXl l 

where 

(82) 

XD= (kT/4jrn0e2)^ and Z н K2<RL2> = К 2 кТ/тП 2 . 

In the absence of g, ekT/m£2 =<(R^)>ííe = Vdrift , where v<jrift istheaverage 
velocity determined by the diamagnetic current, and e =(l/n)(dn/dx). (Note 
Vde = - Vdj T e /T ¡ . ) In what follows, we sometimes use R¡, Re for the electron 
Larmor radii. 

This dispersion relation will be applied to the following cases: 
Case I - Ku= 0, и « П . 
This case gives the flute instability and the finite Larmor radius effects. 
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Case II - v t h > e >(u/K||)>v th|i , u « f i . 

This case gives the drift instability. 

Case III - =Kv d r i f t . 

This is the Mikhailovsky-Timofeev instability. 

Before proceeding further with the application of Eq. (82) to these speci-
fic cases I would like at this point to make a few remarks about how the pro-
cedure must be modified to consider the x-dependence of cp. To do that, as 
we have mentioned earlier, it would have been necessary to include <p(x') 
in the orbit integration. Using the appropriate orbital values for (x1 - x) and 
proceeding by expansion of tp, it is easily found that the only change in Eq.(82) 
is to replace Ky where it appears (on the left hand side, and in the expres-
sion for Z) by (Ky - d2 /dx2). Neglecting K2X% for simplicity we see that an 
infinite order differential equation for cp would result from expansion of 
e _ zIm(Z) . However, each factor (d2/dx2)n is multiplied by a factor (R?)". 
If the Larmor radius is small, in a sense to be discussed, we may keep 
only the lowest order term to obtain 

where D(x, 10) is, except for a possible multiplicative factor, the usual 
"localized" dispersion relation, Eq. (82). If the x-dependence of D is weak, 
i. e. if the equilibrium quantities which appear in D do not vary much over 
the distance R¡, we may expand around some value x0. For example in Eq.(82), 
since we have neglected K2A^, the only spatially varying term is (l/n)(dn/dx). 
Let x0 be a point where (l /n)(dn/dx) has an extremum, and let u0 be deter-
mined by D(x0, u0) = 0. Then we may expand ш =w0+ ôu, x= х0 + бх to find 

d?cp 1 f9D| , 1 32D + — ^ — бы + -zr dx2 R? Lau x=xo 2 Эх̂  (6х) 2 }ф=0. 
x=x0 J 

This is of course just Hermites equation permitting well behaved local-
ized solutions if 32D/3x2<0. Actually the question is not quite so simple 
since З^О/Эх2 is in general complex, not real. None the less, solutions may 

Г (6x)2 
be obtained which behave asymptotically as exp -1- —— so that 

if D varies over a scale large compared to R¡ (i. e. if R^D"<1), and if D" 
is not close to a positive real number, the eigenfunction cp will only be large 
in a small region close to xo where our expansion of D is valid. Note also 
that the higher order terms (R¡)2nd2ncp/dx2n will be small in this region. 

Using the well-known eigenvalues of Hermite's equation we may also 
determine the frequency shift of a spectrum of discrete eigenvalues (n= 0, 
1, 2 etc . ) 
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It will turn out that the cases we wish to consider all satisfy these con-
ditions so that the localized eigenvalues are a good approximation except 
for certain cases involving a sheared magnetic field in which case k(| de-
pends on x and as the dispersion relation is quite sensitive to k(( the approxi-
mation breaks down. We discuss these cases later. 

IV. SPECIAL CASES OF MICROINSTABILITIES OF HOMOGENEOUS 
PLASMAS 

The first application of our general dispersion relation Eq. (82) to be 
considered is the familiar flute or hydromagnetic interchange instability [11]. 
Properly speaking, this is not really a microinstability but a hydrodynamic 
one, since it involves mass motion of both electrons and ions frozen to mag-
netic field lines in the limit of zero Larmor radius. In this limit the in-
stability in fact reduces to the well-known Rayleigh-Taylor instability in-
duced by a density gradient in the presence of an unfavourable gravitational 
force. We discuss this case in order to show how these results are modified 
by microscopic effects. Needless to say the force mjf is really only a con-
venient representation of the forces which arise in an inhomogeneous mag-
netic field so that mjf= - /uVB + mvJ/R, where R is the radius of curvature 
of a field line and ц the particle magnetic moment. These forces give rise 
to guiding centre drifts which enter the equation in the same way as the 
gravitational drift we have used. 

The flute instability is characterized by the fact that the potential is 
constant along a magnetic field line. This means that in Eq. (82) we choose 
к,, = 0, W = 0. In distinction to the drift instability this implies that there 
is no finite length condition which must be met since no problem arises of 
fitting a wave-length of the instability into the plasma, unless the field line 
is shorted at the ends by conducting end plates. Such shorting would not 
occur in an open-ended system in the absence of cold isotropic plasma, as 
the hot plasma would then not be in electrical contact with the ends. We 
also consider that the frequency is very low compared to the cyclotron f re -
quency so that only the term n = 0 need be considered in Eq. (82). Making 
these approximations we find that the dispersion relation simpli f ies to 

We may now solve directly for id. To simplify this a bit further we 
assume n e =n t , ( l / n ^ d r ^ / d x ) = ( l /n^idnj /dx) , Z e = 0 , i . e . neglecting the 
electron Larmor radius, and putting meg¡. = migi (T e /T i ) , since the actual 
forces are proportional to particle energy. In what follows we omit the sub-

- 1 + 1 + KykT¡ 1 dnj 
m¡Q¡ n¡ dxu + К Й 7 5 Г ] e " Z i I ° ( z i ' } < 8 3 > 
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scripts, as all quantities refer to the ions. We write the dispersion realtion 
in dimensionless form introducing 

a n d 1 + f = T 

to obtain a quadratic equation for Y: 

Y 2 + Y [ T + « { 1 - e " Z I 0 ( Z ) } ] + A R = 0 , ( 8 4 ) 

where 
kT 1 dn l 

" " m g n dx + - e"zIo(Z)} ' ( S 5 ) 

Solving for Y we find 

v = - Í T + A[ 1 - e ' z I Q ( Z ) ] } ± J {T + a [ 1 - e ' z I 0 ( Z ) ] } 2 - 4 А Т 2 

Instability will obtain if the argument of the square root is negative. 
The most interesting case, and also the most unstable one, is the case of 
small Larmor radius, Z « l , in which case we may put 1 - e _ zI0 (Z) = K2R2 

and obtain for the growth rate 

= + ( 8 6 ) 

where, in this approximation, 

_ kT_ J. dn 1 1 
" " r n g n d x ^ X2 + R? 

The usual hydrodynamic result is obtained by neglecting the stabilizing 
term in ( 8 6 ) since 1 / K $ X | + R?) » 1 and putting R? » X& . Substituting R? = kT/mfi2, 

- we obtain directly the hydrodynamic result 

( 1 dn M 
" ' " V n d ï V -

In order to study the effect of the stabilizing terms let us apply Eq. (86) 
to the usual open-ended confinement (mirror) system. Since the longest 
wave lengths are most unstable we will set K Y ^ l / r = (l/n)(dn/dx), the smal-
lest possible wave number. Here r is the plasma radius. Similarly k T / m g » R 
where R is the radius of curvature of the magnetic field lines. Generally 
RJ&T and R > 0 for mirror-type fields, R < 0 for stabilized fields. 

For stability, we require from Eq. (86) 

T + ( 8 7 ) 

where e = 1 + 47rnMc2/B2, being the usual plasma dielectric constant. 
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We see that at high densities (e->oo) the equilibrium will be stable if 
R ¡ / r > 2ф- (r/R)i. This is the so-called finite Larmor radius stabilization [12] 
and shows that if the radius of curvature is quite large, as is usually the 
case, its destabilizing effect may be neutralized even by a Larmor radius 
considerably smaller than the plasma radius. The physical origin of this 
effect is that the EXB/B 2 drift which is characteristic of hydrodynamic motion 
must in fact be averaged over the orbit of a particle. Because of their finite 
Larmor radius the ions see a slightly different perturbed electric field than 
the electrons, causing a slight out of phase motion which may lead to stabi-
lization. Unfortunately, in a cylindrical system there is one possible un-
stable mode, the mode with azimuthal wave number m= 1, which corresponds 
to a uniform sideways displacement of the plasma (i. e. a constant electric 
field) and is not stabilized by this mechanism. However it does apply to 
higher modes of instability for which the stability condition may be seen to 
be (Rj /r )>(2ч/т /т ) ( r /R) l . 

At low densities the system also becomes stable, as seen from Eq.(87), 
at a density such that Adí > ( 2 / / T ) ( R r ) i [13]. This effect has been c lear ly 
observed in neutral-injection experiments where the density builds up smooth-
ly with time as more and more particles are injected until such time that 
the density is sufficient to violate the above condition. Af ter this, flutes 
are observed and the density is not able to increase above this critical value 
since the flutes carry plasma to the wall as rapidly as it is being injected. 
The physical mechanism for stabilization is simply that at very low densities 
the co l lect ive interactions become very weak, so that the character ist ic 
time f o r oscillation becomes longer than the drift time K y g/Q, after which 
stabilization occurs . It will be noted that if R¡< r , as we have assumed, 
then there is always an intermediate range of density which is unstable. 

Next we discuss the so-cal led drift instability [14, 15, 16, 17]. This is 
a low frequency mode with u « f 2 , so we need consider only n = 0 and we also 

choose vth>e = ( ~ - J > ¿¡Г > vth, i = W e t h u s s e t Wi = a n d w e W 

= - 1 + (i/ </тг)х. We will also set g s 0 for this application. It is seen there-
fore that the drift instability does not arise from gravitational destabilization 
but rather f r o m the diamagnetic currents inherent to a confined plasma. 
F o r this reason it has sometimes been called the "universal" instability, 
somewhat of a misnomer as we shall see. We will a lso neglect К^Лц and 
KyRl compared to unity, and put Te = T¿ for algebraic simplicity. With these 
approximations our basic dispersion relation Eq. (82) reduces to 

2 = i + ^ e a . 
и e ' z i l 0 (Z i ) + i KyVdl 1 U) 

W I k|| |(2T/mè)^ 
(88) 

where vD the diamagnetic drift velocity has been defined as 

= _1 dn kT_ j. dn 
Vd n dx шй * R l n dx Vth.i" 
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This may now be easily solved for и, regarding the imaginary terms as 
nail correction. We find a small correction. We find 

u = K v V , e-^IQ(Z) 2i (Kyvd e"zIp(Z)[l - e~zIp(Z)] 
y d 2 - e - z ^ Z ) J Ï u , [ГЦ {2 - e"zIo(Z)}3 

(89) 

so that the mode is always unstable. The basic frequency и = Kyvd can be 
seen to arise from the requirement of charge neutrality in a simple model 
where the ions move across the field with velocity E y /B while the electrons 
adjust their density along the lines according to exp ( - etp/kT). These dif-
ferent modes of behaviour arise f rom the different relationships between 
the phase velocity of the wave and the thermal velocities of the two species. 

The imaginary part of u arises from a competition between two Landau 
damping type terms — the ordinary stabilizing term arising from electron 
motion along field lines and a destabilizing term arising from the change in 
resonant electron density due to the initial density gradient, as discussed by 
Dr. Simon. 

A slight modification of these results is obtained if there exists in the 
equilibrium a drift velocity u[18], parallel to the magnetic field, between 
the electrons and ions. In this situation in the derivation и must be inter-
preted as the frequency in the rest frame of the species being considered. 
Thus in Eq. (88), in the imaginary term, which arose f rom the electrons, 
u should be replaced by u - k„u, giving r ise f o r Z¡ = 0 to the frequency 

u « Kyvd ( 1- - i — — ). Fairly large drifts may occur in such situations as Ohmic VT vbh.e/ 

heating and there appears to be good reason to suspect that these modes 
may be responsible for stellarator pump-out. Other modes would be ob-
tained if we had considered VT f 0 [14]. 

The growth rates determined f rom Eq. (88) are quite small except in 
the limit of very short wave length perpendicular to the magnetic field and 
very long wave length parallel to the magnetic field. 

We note in fact that the requirement u>k|,vth,t, necessary to avoid ion 
Landau dapaping, leads to a fairly severe critical length requirement since, 
for lengths less than 

L - J T Z t h ^ îXthJ (2-[exp -Kfe ' lUKyHi ) ) 
kH * u ^ _ 1 dn exp[- Itírtf] Io(KjfRjf) 

KyR i V«M ïïdï 

the instability cannot occur . For wave lengths long compared to the ion 

gyro radius this is quite restrictive while even in the limit KyR¡ -» oo we ob-

tain LCI « {2irf j-^ a fairly long thin plasma. Waves at the frequencies 

predicted for the drift instability, have been observed in С s plasmas. 
The drift instability may also be stabilized by a shear in the magnetic 

field. Thus if Bz = Bo, By = BoSx, where S"1 is the field shearing distance, we 
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have k„ = kySx. The requirement и = kyVd > k„Vth,i to avoid ion Landau damping 

over the entire plasma, i. e. for x « leads to the stability criterion 

a rather modest amount of shear. 
It should also be evident that, since this drift instability occurs at very 

low frequency and conserves the particle magnetic moment ц, it must also 
be stable for distributions of the f o rm fOu, e) (in the case of magnetic wells), 
as discussed by Dr. Taylor. A direct calculation starting with this type of 
distribution function shows in fact that this is so. 

We now turn to another type of instability characteristic of an inhomo-
geneous plasma — this t ime a high frequency instability in which partic le 
magnetic moment is not conserved [19]. Again we return to Eq. (82) under 
the c ircumstances that к,, = 0, g = 0 , Z l » l , Z e < 1 and u « Í 2 e , so only n = 0 
need be retained f o r electrons, and u ^ f i i , so only n = - 1 need be retained 
for ions. For simplicity we put Te = Tj , ne= n¡. Thus Eq. (82) reduces, using 

the asymptotic result, L i m e " Z I 0 ( Z ) = * , to 

The right hand side of Eq. (91) may be regarded as composed of small 
correction terms so that we might expect that for most choices of parameters 
the dispersion relation will yield two waves, a drift wave ш = - KyvD and an 
ion cyclotron wave и = Г2 / [ 1 - ( j2jr,|Ky | R¡)_1 ]. However in the event that Ky 

is chosen properly so that both requirements may be satisfied simultane-
ously, then it becomes possible to obtain complex roots . 

Reducing Eq. (91) to a quadratic we obtain 

(90) 

z-> » 

(91) 

+ u Ь Ч 1 " p À j O " Ч 1 -K yvDn = 0. 

Thus the stability condition is given by 

[ К У Ъ ( I - f s b ) * " С 1 + к 2 < ^ + r*>) 
12 

+ 4KvvnQI >0 

or 

V d ^ - ( ¿ j í ) + í i ( 1 + K ' (X2De + R | ) ) . 
2 
+ 4KyvDí2Ky2(X2D+ Rg) j ~ — r > 0. (92) 
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Since both K^Xp+Rg) and 1 / a r e small it is evident that the wave will 
be stable unless the f irst term almost vanishes, in which case the second 
term will permit an instability with growth rate ( s e t t i n g - s Г2 ) 

u ~ Ç>{ —1— к (*D+R2e)Y I ^ a S + R Í i V* 

'n¡dx 

However it is not possible in all cases to choose Ky so as to make the 
f irst term vanish and the condition that the f irst term does not vanish f o r 
any real Ky yields the final condition for stability 

X D + V 4 t f - 4 R i R i ^ n d x j -

or 

f B2 . „ 1 dn 
y > R i ñ d í - ( 9 4 ) 

Thus plasmas with a sufficiently gentle gradient R¡ ^ ^ < \j ( jü í ) o r 

low density with e « 1 are not affected by this mode. The experiments of 
Dr. Ioffe for example appear to be right at the borderline of predicted in-
stability. Since this mode has such an extremely short wave length one might 
hope it leads to rather small diffusion and perhaps also may be easily stabi-
lized by shear. 

I trust that it has at least become clear at this point that these micro -
instability calculations, even in their linear phase, are based on very highly 
idealized models and simplifications so that considerably more work is 
required to apply the results with confidence to inhomogeneous laboratory 
plasmas. Ultimately theory must depend on much detailed comparison with 
experiment, and experiments should be designed with regard to avoiding, if 
possible, and measuring, if necessary, the instabilities qualitatively predic-
ted by theory. 
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P L A S M A S T A B I L I T Y 

M . VUILLEMIN 

A S S O C I A T I O N E U R A T O M - C E A , 

F O N T E N A Y - A U - R O S E S (SEINE), FRANCE 

I . P R O B L E M S I N P L A S M A S T A B I L I T Y 

In plasma stability analysis, the energy principle of classical magneto-
hydrodynamics has been extensively used as a very powerful tool for in-
homogeneous plasmas in static equilibrium [1] . On the other hand, the 
microinstabilities of a homogeneous plasma can be found by solving a dis-
persion relation for a complex frequency и [2] . But, as soon as one becomes 
interested in inhomogeneoùs plasmas which are not in static">equilibrium, 
or if one wants to include such corrections as finite Larmor radius or finite 
conductivity effects, none of these methods can be used to solve the stability 
problem. 

So far no practical way of handling general stability problems has been 
made available, and convenient techniques for each particular case must 
always be sought. 

In this paper we will limit ourselves to conservative systems for which 
the linearized equations of the perturbed motion can be written in the compact 
form: 

H ( U ) ? = 0 , ( 1 ) 

in which Ç is a set of perturbed variables and H is an operator depending 
on the equilibrium quantities and function of и as a parameter. It has been 
assumed that Ç has the time dependence 

I ~ e i w t , (2) 

and H has the property 

H(u*) = eT(u) . (3) 

It is self-adjoint for и real. 
For the following discussion, we shall give a more explicit form to 

H, namely; 

H(u) = - u 2 N + 2iuJ + U (4) 

in which N, iJ, and U are hermitian operators and we assume (Ç, N?) to be 
positive definite. This is not a restriction but only an example to illustrate 
the method, and all the results can be readily extended to more general forms 
of H. This expression of H is actually the one we would get, for any conser-
vative system, from a Lagrangian formulation [3,4] . 

515. 
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Thus we have to solve the equation 

-U 2 N? +2iuJÇ +U? = 0 (5) 

with appropriate boundary conditions and find the corresponding e igenfre-
quencies w. If one of these values is complex, the system will be unstable. 

If Ç is a solution of the equation, 

- u 2 ( f , N f ) + 2 iu( f ,J? ) + (C,U?) = 0 (6) 

then и is given by a quadratic equation. We can state the two important 
conditions [5] : 

1. If ( f , Uf ) s 0 for any f which satisfies the boundary conditions, the 
system is stable. 

2. If I (?, J?) I2 + (?, NÇ) (С, U?) & 0 for any ? which satisfies the boundary 
conditions, the system is stable. 

These two conditions are sufficient for stability. The second one is less 
stringent than the first one but is more difficult to apply. In the case where 
J = 0, both of these conditions are equivalent and also necessary. 

The proof is straightforward and left to the reader [5] . 
These results are the only ones which are available without going to a 

detailed investigation of the equation, and that can only be done on specific 
problems. Fortunately, it frequently occurs that for a particular choice of 
parameters in the equilibrium and with some approximations, it is possible 
to solve the problem completely. The question is how to obtain more in-
formation on stability f o r other values of the parameters and in a more 
refined approximation. A partial answer is LOW'S theorem [6] . 

Low's Theorem 

Let Ho be the operator corresponding to an idealized system and 6H the 
small change in H due to a small variation of the system. f 0 is a solution of 
the unperturbed equation corresponding to the real frequency w0 . 

We shall look for a solution f in the form 

C=€o+€i 
and (7) 

U = UQ + U!, 

in which and are assumed to be of the samé order as 6H. Up to this 
order , Eq. (1) becomes 

HqÍUo)?! = 2(d! [ u 0 N 0 f 0 - i J0Ç0] -6H(U0)Ç0 . (8) 

Taking the scalar product of both sides by!|0 and using Eq. (1), we get 

• f é o . e H K l g p ) 
U l - 2u 0 (Ç f f .N 0 Ç 0 . ) - 2 i ( 5 0 , J 0 Ç o r (9) 
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Since 6H, N0, and iJ0 are hermitian operators, uj is real and the mode remains 
stable. The first part of the theorem can now be stated: 

Any stable mode of a system remains stable in a small change of the 
parameters of this system. 

However this result breaks down when the coefficient of vanishes, i .e . , 

2u0(?o,N0f0)-2i(Ç0 ,Jo|0) = = 0 . (10) 

This corresponds to a marginally stable mode in which ujq is a double root' 
of the dispersion relation. 

In this case, Eq.(8) cannot be solved for unless (Ç0, ôHf0) = 0. That 
means that our original assumption regarding the respective orders of magni-
tude of u1 , and 6H is not consistent. Let us write 

and 

u = u0+u1 + u2 

5 2" 

(И) 

ÔH is now assumed to be of second order in this expansion. 
The first order terms in Eq. (1) give 

H0?1 = 2u1[(j0N0?0-iJ0Ç0] 

and this equation has a solution since Eq.(10) holds true. 

f ^ U j X i 

and 

Н ° Х 1 = 9 Э ^ о . 

The second order terms give an equation for |2 , namely; 

X i + u 2 0 5 o + i d i 2 N ° 5 ° " 6 H K ) 5 ° -

Taking the scalar product by f 0 and using Eqs.(10) and (13) we get 

(12) 

(13) 

(14) 

, 2 = (15) 

The numerator and the denominator of this expression are still real 
quantities but the mode will be stable or unstable according to whether Uj2 is 
positive or negative. 
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The second part of the theorem is now achieved [7] . 
The only modes which can be made unstable by a small change in the 

parameters of the system are those which are marginally stable, and the 
perturbed frequency is given by Eq. (15). 

(1) All the preceding results remain valid for more general operators 
H(u); only N should be replaced by - f Э2Н/Эи2 in Eq. (15). 

(2) This method cannot take into account the existence of new modes 
which can appear if 6H changes the structure of the operator. This is the 
reason for stating that this theorem does not solve completely the stability 
problem. 

As an example, we have taken an equation which has been derived by 
ROSENBLUTH and SIMON [8] for a cylindrical low-0 plasma in a uniform 
magnetic field including finite Larmor radius effects, macroscopic rotation 
and a gravity equivalent to the effects of curvature. 

in which pis the density, P the plasma pressure m the azimuthal wave number, 
Г2 the ion cyclotron frequency, and E a radial electric field giving a macro-
scopic rotation. 

Remarks 

Example 

- H(U)e HF (T I ) + + + = 0 

and (16) 

T - (m2g + ru2)r ^ 52dr ( 1 7 ) 

Discussion 

i) m = 1. There is a marginally stable mode when g = 0: 

? Const., uQ = 0. (18) 

It exists for any density profile, macroscopic velocity and Larmor radius 
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size, all effects which appear only in T. The effect of a small gravity will 
thus be of very general interest. 

Since (9H0/9U0)|q= 0, we have Xj = 0 and Eq. (15) gives: 

! / g ( r ) ^ r d r . 

Ч2 = • (19) 
J*pr dr 

(1) If g > 0, dp /dr < 0 and ц2 < 0, then the configuration is unstable. 
(2) If g > 0 but p has a maximum outside the axis then the sign will be deter-
mined by a balance between bad and good regions. 
(3) For g = gr (g = const. ), we have uf = - g. An example of a configuration 
which can be stable is in a double cusp geometry. There cannot be any con-
finement on the axis where the field is decreasing, but only in a region, as 
in Fig. 1. g is always negative and the contribution of the region where 
the density gradient is negative can be made dominant. 

F i g . l 

E x a m p l e o f a f i e l d c o n f i g u r a t i o n 

ii) m ^2 . Equation (16) has been solved completely by making the fol -
lowing assumptions [9] : 

E 0 = E 0 r , P ~ p ~ e r « , and g = g r . 

It reduces to a Whittaker's equation and we can find the solutions which 
vanish at a boundary far enough f rom the axis . 
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The result for the lowest radial mode is 

(20) 
i 

u = (m-l)(u0 +v) ± (m-l)2(w0 +v)2 - m(m- l ) u0(u0 + 2v)-mg 

where u0 = E 0 /В and v = pi Vth,i /r02. 
If Uq = 0, all the modes m г 2 will be stable by finite Larmor radius effect 

if v2 > 2f 
The effect of the electric field depends on the sign of the quantity 

io0(i<})+2v). A stabilization effect is to be expected only when 

We would now be able to study the effects of a small change in density 
profi le, including temperature gradients and electric field gradient, the 
only condition being to start from a marginally stable mode where, 

II. INSTABILITIES OF A PLANE CURRENT SHEET 

It is well known from the Magnetohydrodynamics energy principle that 
a plane current sheet in equilibrium with its own magnetic field is stable. 
This is because of the constraint of the flux conservation. If we relax this 
constraint by taking into account additional terms in the Ohm's law, there 
can be perturbations which modify the magnetic field lines' topology. This 
can be done with a resistivity term in the Ohm's law. 

We shall show that another interesting result can be derived by taking 
into account the finite electron mass. 

In order to keep a symmetry between ions and electrons we shall use 
a two-fluid model with scalar pressure for simplicity. 

For each species, the equations of motion are thus; 

- 2v <u < 0. (21) 

(m-1 fv2 -т (т -1)Ц)(ы 0 + 2v) - mg = 0. (22) 

9n =• -> — + V • nv = 0, (23) 

nm — = nq (Ё + v X B)- Vp, (24) 

(25) 

and the Maxwell's equations are written down in the quasi neutrality condition; 
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n i = n e = n, (26)" 

| = - V X E , (27) at 

^ x S = n 0 n q ( ^ - % ) . (28) 

It is easy to confirm that the following quantities verify the Eqs.(23)to 
(28) with Э/at = 0. 

(29) Ch2 ax ' 

В = B0 thax ez, (30) 

v¡ = - Uj ey , ve = u e e y j (31) 

and 

Pi.e = n O 0 i . e ( 0 = к Т ) ' ( 3 2 > 

where u¡ and ue are positive constants and a, n0 ,B0 are related by: 

Bo =2^ono(0i + 0e), (33) 

й0п0д2 (Ui+uJ2 

"2 = — ¿ - 7 F e • ( 3 4 ) 

The electric field is determined by the quasi neutrality condition: 

We can always choose a reference system in which 

f - t ( 3 6> 

because the system is invariant under any Galilean transformation (in this 
non-relativistic approximation). 

n and Bz have the form shown in Fig. 2. 
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F i g . 2 

n and B z c u r v e s versus x 

Stability oí tearing modes perturbations 

We shall study the stability of this equilibrium against perturbations 
which are invariant along the current (9/9y = 0). 

Let us write the perturbed equations for the ions: 

2 2 / dAv\ H -nm¡u f i x = nq fex + óVyB - u¡ qUi B6n ¡ - - (6P¡) (37) 

óvy = - ^ - (A y +f i x B) (38) 

-nm¡u2?i2z = nq (Ez - iku¡ Ay) - ik óp¡ (39) 

where we have used §ix , f i z , Ay as new variables in term of which we have 

6vix = iu f i x 

6viz = iuÇi2 

Ey = - i u A y 

Bx = - i k Ay 

(40) 

(41) 

(42) 

(43) 

(44) 

ón¡ = - V-n?i 

«p, = - Bi 7П =± ^ » dn 

(45) 

(46) 
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A similar set of equations are derived for the electrons and the remaining 
conditions from Maxwell's equations give: 

¿ ( k 2 V ncl <6viy - Ч у ) " Ч К + ш ) 6n (47) 

k ( ^ - i k E x ) = i " 4 n q ( ^ -?ex) (48) 

V - n | ^ = V - n ? e (49) 

From this system we can form a variational principle for w2, which is 
a quadratic form in ?ix , , Çex , ?ez and Av subject to the constraint con-
dition given in Eq. (49). This is easily done by multiplying respectively 
Eqs. (37) and (39) by ?? and ?? , the corresponding equations for the electrons 
by ?ex and Eq. (47) by A* , and integrating over x. Using Eqs. (38), (48) 
and (49) to eliminate 6vy and the other electric field components we finally 
get after some integrations by parts: 

CO f n {пн Iff + me I & I2 + ^ |?ix - f e x I 2 } dx 

-Jdxjye^lv.l - ^ ( A y + ? i x B ) ! nq' mju2"1 

7 0 , K + ? i x B l 

+ T e e n | v . r e - ^ ( A y + ? e x B ) f + ^ l + ( 7 -
70i . ¡ V 5 e x B l 

Mo [ 6 & J ]} (50) 

We have put the problem into a variational form which gives at once a 
necessary and sufficient condition for stability. 

The only term which can be made negative in the right-hand side of 
Eq. (50) is the last one. Indeed we find that with the expression (29) for n 
we have: 

dAy 
dx + k2A2- 2a2n 

4 dxs k 2 - a' 
Mn J AydX' (51) 
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the minimum being obtained for 

Ay 1 . (52) ' cosh ax 

Any other function which vanishes at x = 0 gives a positive result when 
inserted in I. Thus all the modes with k>a are stable. If there is a margin-
ally stable mode for k = a w e shall be able to find the growth rate of the in-
stability by a perturbation method. That will occur if all the other terms 
which are positive can be made equal to zero. The only way to formulate it 
is to take: 

^• f i =0 (53) 

and 

Ay + Ç e xB=A y + Çix B = 0. 

This solution satisfies the constraint condition given in Eq. (49), but 
unfortunately gives a singular mode, since Ay / 0 at x = 0 when В = 0. We 
cannot calculate the perturbed u2 since the integral in the left-hand side of 
Eq. (50) diverges. 

However, let us assume that there exists a regular mode with u2< 0 for 
к <a. In order to get a negative value in the right-hand side, the positive 
terms must be made as small as possible. That can be achieved by taking 
-Ay+Cix В equal to zero everywhere except in a small layer around the point 
x= 0. Let 6j and ee respectively be the thickness of this layer for ions and 
electrons. 

V- f j and V- are also zero outside of this region. The dominant term 
in the left-hand side will come from ?i,ez — (1 /ik) (dÇi>ex/dx) and will be of 
the order 1/e s . 

We finally get: 

2 = 2 (к2- a2) + ( 5 4 ) 
V f e | A k 2 E ? / « f 0 ' 2 V m e m i / 

By minimizing that expression with respect to e¡ and ee , one finds that 
the ion contribution is negligible (e¡ / / m ¡ = ee/\[mt) and the maximum growth 
rate is: 

7 ~ (55) 
H 

in which pj and pe are the ion and electron Lamor radius in the external field 
and тн the usual MHD time scale. 
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The corresponding layer thickness is: 

(56) 

This is much smaller than the electron Larmor radius in the external field. 
But in the region where В = 0 the particles which carry the current are those 
which have an almost linear motion along 7-axis, and are very little affected 
by the magnetic field. A small displacement of these particles along the 
z-axis is sufficient to create local micro-pinches which modify the magnetic 
field lines around x = 0. 
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Q U A S I - L I N E A R T H E O R Y O F 
P L A S M A T U R B U L E N C E 

W . E . D R U M M O N D 

G E N E R A L A T O M I C , S A N D I E G O , C A L I F . , 

U N I T E D S T A T E S O F A M E R I C A 

I. INTRODUCTION 

In this paper we examine the dynamics of a low /3, collisionless, unstable 
plasma, from the time of the onset of the instability to the final quiescent, 
equilibrium state. The time development of this process can be roughly 
broken into four phases. During the f irst phase the " l inearized" theory 
applies and the unstable waves grow exponentially. In the second phase the 
so-called "quasi-linear" theory applies and the background particle distri-
bution diffuses in such a way as to bring the growth rate of the unstable waves 
to zero, leaving a quasi-stationary spectrum of waves. In the third phase 
the waves in the quasi-stationary spectrum interact in such a way as to dis-
tort the spectrum but to keep the energy in the spectrum roughly constant. 
In the fourth phase the waves interact to produce "virtual" waves which in 
turn lose energy to the bulk of the particles by Landau damping. This "non-
linear Landau damping" produces a slow decay of the wave energy (energy 
drops off roughly as 1/t) and a slow heating of the plasma, together with a 
diffusion of the plasma across the magnetic field until all of the wave energy 
has been given up to the particles and the plasma is in a quiescent, stable 
state. The first two phases of this process can be fairly well separated in 
time; however phase III and phase IV occur roughly simultaneously. 

We illustrate this process by considering unstable electron plasma os-
cillations in a low j3, collisionless plasma in a large magnetic field. 

II. PHASE I - LINEARIZED THEORY 

We begin with the Vlasov equation for electrons in a large magnetic 
field, 

where the distribution function is given by F0(v) + £e i k x fk(v, t), the other 

symbols have the usual definitions and since u p « i2 e = еВ/mc the distribution 
functions depend only on v, the velocity parallel to the magnetic field. The 
background distribution function, F0(v), is assumed to have a small bump 
on the tail, as shown in Fig. 1, and waves with phase velocities, u/k„ , for 
which v (3F 0 / 9v ) v = ^ > 0 will be unstable. 

In the "l inearized" theory the non-linear sum on the right-hand side 
of Eq. (1) is neglected and in the usual ща.у we find [1] 

(1) 

q 

527. 
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g ( v ) 

F i g . l 

Background distribution function F0(v) 

and 

fn = ~eJSL a 3Fo, 
í o m к ( s + ik|| v) 9v ш (2) 

( 3 ) 

For waves with phase velocity,, u / k » v, the mean thermal velocity, the 
velocity integration can be carried out in the usual way and we find 

км . 

7 = 
A 9 F I 

2 9v L, lv=wk/k M ( 4 ) 

and 

2 m к2 

We thus see that waves with phase velocities for which v(9Fo/9v)v=ui</k„ 
is positive will be unstable and grow exponentially in time, while those for 
which v(9Fo/9 v)v = wj,/k„< 0 will damp. 

In the "linearized" theory the unstable waves continueto grow indefinitely 
and we must proceed to the "quasi-linear" theory to see how the amplitude 
of these waves is limited. ' 
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III. PHASE II - QUASI-LINEAR THEORY 

The simplest non-linear correction to the "l inearized" theory is ob-
tained by considering only the term with q = 0 in the sum on the right hand 
side of Eq. (1). The remaining terms are the so-cal led "mode coupling" 
terms and by neglecting these we obtain the "quasi - l inear" theory [2, 3]. 

We thus have 

^ + l k , v f k = - S - ^ E k | a . (5) at 11 m к 9v 

where go= Fo(v) + fo(v, t). 
For k = 0 we include all the terms in the sum on the right-hand side of 

Eq. (1) and obtain 

3 g a _ M O . J l Y F K|L^ S . 
at at ~ m/_, 4 к av w 

Q 

For 7«шp, go(v, t) will vary slowly compared to Ek(t),and we may solve 
Eq. (5) in the adiabatic approximation, i. e. using time dependences of the 

form exp i /u(t')dt', to obtain 
о 

ago 

k m(s+ik„v)av [ J 

u(t)sUp^L+iY(t) 

y [ ' 2 dv (8) 
v = u k / k | | 

which is the same result as in the "linearized" theory except that F0(v) is 
replaced by the slowly varying background distribution function go(v, t). This 
simply means that the growth rate at time, t, depends on the slope of the 
distribution function at time t, rather than the slope of the initial distribution 
function. 

Using Eqs. (6) and (7) we have 

at V " У Л V V a v (sk + ik„v) av (9) 

For those velocities, v, for which кн v can be zero, the principal contri-
bution to 2 comes from those ïc for which ык - k|,vs 0, or using Eq. (8), from 
(kf + k^)*=Up/v. For these velocities we can write 1 / (sk+ ik|| v) = (я/k„ ) 6(v0 - v) 
where vq =и/кц. Thus for the resonant velocities we have 

34 
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where D ( v ) = ^ | E k | 2 6 ( v 0 - v ) (10) 
к 

We thus see that go(v, t) obeys a diffusion equation in velocity space and 
the diffusion coefficient for particles with velocity, v, is proportional to the 
energy in waves which have a phase velocity equal to v. This behaviour of 
go is simply due to the fact that the waves grow by extracting energy from 
the resonant particles and the distribution of these particles must change 
as they lose energy. Thé energy extracted from these particles is given by 

at J 2 at J 2 av
 { } av 

resonant 
part ic les 

к 

r e ^ V u |2kiL afo 

which, using Eq. (8), is 

dt ¿ d t ¿ 8» ( U ) 
к 

We see that the rate at which energy is extracted from the resonant particles 
is just twice the rate at which the potential energy of the waves increases. 
In addition to potential energy the waves also have kinetic energy and we 
shall show that this increases at the same rate as the potential energy, so 
that the rate at which energy is extracted from the resonant particles is just 
equal to the rate at which the total energy of the waves increases. 

To understand this we note that the bulk of the particles have velocities 
much slower than the waves and the kinetic energy of the waves is in the 
organized motion of the bulk of the particles. Thus although there is no 
resonant diffusion of the bulk of the particles, their distribution will appear 
to be broadened by the fact that they are "sloshing" back and forth with the 
kinetic energy of the waves. This "fake" diffusion can be obtained f r o m 
Eq. (9) by noting that for the bulk of the particles k„ v«W), and thus 

к 
Now Uk =up(k|| /к) + i-y and since the real part of Uk is an odd function of к the 
imaginary part of 3g0/9t is zero. The real part is given by 

34* 
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L 1 kl V V ^ ¡ ( V k ) 2 9v2 

and 
dUB 
dt 

4» / e \ 2 Э ^ y j _ э1ЕкР 

P 4 7 к 

= f i x a g e Т а 
J 2 3v ¿.at 8я" 

bulk к 

(12) 

Thus the "sloshing" energy of the particles increases at the same rate as 
the potential energy of the waves and the total rate of change of particle 
energy is 

dUT _ dUr | dUB 
dt " dt dt I 

a |Ekj2 

at ел-

We are now in a position to determine the time development of the un-
stable waves. Initially we imagine the distribution function g0(v, 0) = F0(v) 
near the bump on the tail tp be as shown in Fig. 2a and we assume the initial 

9. (v ) 

Fig. 2a 

Distribution function near the bump of the tail 

e (v) 

Fig. 2b 

Initial spectrum of plasma waves 

spectrum of plasma waves e(v) = E| EJJ б(ш/кц - v) to be some smooth function 

of phase velocity as shown in Fig. 2b. The waves which have phase veloci-
ties f or which af/3v> 0 will grow and after a few e-folding times the wave 
spectrum will be strongly peaked near the fastest growing wave, i. e. near 
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v 

£(v) 

Fig . 3 b 

P e a k e d w a v e s p e c t r u m 

v= v0, but the distribution function will be virtually unchanged, see Fig. 3a 
and 3b. At a later time e(v) will become large enough near v= vo so that 
the distribution function will begin to diffuse at particle velocities near v<>. 
This diffusion tends to flatten the distribution near vo and to steepen it on 
either side of vo. This is shown in Fig. 4a. This tends to decrease the 
growth rate of waves near v0 and to increase the growth rate of waves on 
either side of vo, thus widening the spectrum. This is shown in Fig. 4b. 
This process of flattening the particle distribution function and broadening 
the wave spectrum continues until the distribution function becomes flat over 
the region of the wave spectrum and the waves reach an asymptotic spectrum 
which neither grows nor damps since 3go/9v= 0 over the entire spectrum. 
This is shown in Fig. 5a and 5b. 

The asymptotic distribution function is uniquely defined by requiring that 

Ul u. 
J g.dv= J g(v, 0)dv. 

The asymptotic wave spectrum can be determined by using Eqs. (8) and (10). 
From Eq. (8) 

Ot ov|v = uyk|| 
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Fig. 4a 

Effects of the diffusion on the distribution 

Fig. 4b 

Widening of the spectrum 

Substituting this into Eq. (10) yields 

3t 3 v ¿_j a 3t 
к 

If the initial level of waves is so small that we can neglect it we obtain 

and as t-» oo 

^ I ! , E k | 2 < i - v ) = g o ( v ' t ) = g o ( v ' 0 ) ' к 

v 

I f ^ Х к Г v ) = g ° ( v ' ' 0 ) ] d v ' -
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g(v) 

Fig. 5a 

Flattening of the distribution function 

£(v) 

To estimate the size of this we set g g 0 a s (Ag/Av) Avg (1 /a)yAv where 
A v ^ u j - Uo^the width of the bump, and we have 

к 

Integrating over v we have approximately 

Y I EкГ = I r(Av)3 - ( ¡ У ( v j 4vr(nmvAv). 

We thus see that the "quasi-linear" theory leads to the development of 
a quasi-equilibrium spectrum which persists indefinitely, and that the energy 
in this spectrum is small in that it is proportional to - у / и « 1 . This is the 
essential feature of the quasi-linear theory for it shows that correction terms 
which are of higher order in E | Ek|2 will be smaller by a factor of *у/ш« 1 
and thus an expansion in powers of | EjJ2 should lead to reasonable results. 

The mode-coupling terms neglected in the "quasi-linear" lead to a slow 
distortion and damping of the "quasi-linear" equilibrium spectrum and these 
are considered in the following sections. 
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IV. PHASE III - RESONANT MODE COUPLING 

The "mode coupling" terms neglected in the quasi-linear theory may 
be evaluated by methods which are similar to the methods of quantum mecha-
nics. After factoring out the quasi-linear term, Eq. (1) can be written as 

(4Л, 
q 

• 

where the prime on E denotes that the term with q = 0 is to be deleted. 
Assuming the same type of time dependence as in the quasi-linear theory, 
Eq. (4. 1) can be integrated directly to give 

о (4.2) 

_ e k|| Ek(t) 3gn/av eV(k||-qi|) Ek-q(t) 3fq(t) . . . 
m к Sk(t) + ik||V m |k-q| Sk_q +Sq+ik„ v 9v 1 " ' 

q 
where we have neglected the slow dependence of g0(t) on t. To lowest order 

Í 4 ( t ) m q Sq+ iq|| v 8v ( 4 - 4 ) 

Inserting this into Eq. (4. 2), integrating the result over velocity and using 
Ek = ikEk= 4я-е/d3vfk we obtain 

e (Sk) Ek(t) = £ Mkq Ek .q (t) Eq(t), (4. 5) 
q 

where 

ago 
ik||V 9v 

Mk -q||)aL r cfv _ Э _ 1 Э а . 
kq ikm2 I к - q I q J Sk .q + Sq + ik„ v 9v (Sq+ iq„ v) 9v 

Now the quasi-linear dispersion solution is obtained by equating e(Sk) 
to zero. This determines the time dependence SÜ for no mode coupling. To 
determine the time dependence with mode coupling we expand e(Sk) about 
Sk= Sk. 

e(Sk)= c ( s£ )+ jg - ( s k - s£ ) 



536 W. E. DRUMMOND 

but 

and thus Eq. (4. 5) becomes 

, ( ^ t - S Î | E k ) = ^ M k q E k . q E < l 

S K + Е к - ч Е ч 

where 

(4.7) 

M ^ = M k q / € ' . 

Letting Ek(t) = Еке"1Ш^ where the amplitude Ek(t) is a slowly varying function 
of time we can re-write Eq. (4. 7) as 

í ü . v 
at ~ L M k q E k - q E q e (4.8) 

where 

Awq = iok .q+wq -uk . 

Neglecting (for the moment) the slow time variation of Êk-qÊq Eq. (4. 8) yields 

Ek(t) = Ек(0) + ^ Mb, Ek-qEq _ ^ 
q 

(4.9) 

Multiplying Eq. (4. 8) by Eq. (4. 9) then gives 

1 1 I EK|2 = I e - V ( ^ 1 ) . (4.10) 
q P 

We now wish to average over the initial phases of the waves. It can be 
easily shown that 

<E4(t)Ep(t)>= бщ, |Е„|2+о(|Е|4) , 

if <Eq(0)Ep(0)>= ôqp. Similarly 

. 1 i21 |2 
\Ek-pEpEk-qEq^> = | Ek-q | |Eq| 6pq + 6p, k-q + O(|E 6 ) 
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Inserting this into Eq. (4. 10) yields 

l ^ = ^ ( | M a ) | V M k q M k , k . q ) | E k , | 2 | E / ( i f 0 ) (4.11) 

For Ufct-» oo the function (1 - )/ - iAu q 7гб (Дыч) and we obtain 

kq(Mkq + Mk|k .q) I Ek.q |2|Eq|26(Auq), (4.12) 

which is just the usual form for time proportioned transitions. This c o r -
responds to the diagram in Fig.(6) in which the waves Ek-q and E q scatter 
to form the wave Ek. 

Fig. 6 

S c a t t e r i n g o f t h e w a v e s E k - q and Eq t o f o r m t h e w a v e Ek 

If we now take into account the time dependence of Êk-q and Eq we obtain 
in addition terms which account for the loss of energy by Ek as it scatters 
with other waves. The final result is thus of the form 

|Ek-qf|Eq|26(W k-q + loq-U k) 
q 

- |Ek.q|2|Ek|2ó(uk-q+Uk-W-q) (4.13) q 

- ^Hkq' |Eq|2|Ek|26(uk + U-q-Uk-q). q 

Thus resonant mode coupling leads to a distortion of the quasi-linear 
equilibrium spectrum and the time scale associated with this is of the order 
of | E | 2 ~ Y O SO that this process is on the same time scale as the quasi-linear 
terms. An essential feature of this resonant mode coupling is that it leaves 
the total energy in the wave spectrum virtually constant. In particular in 
the zero temperature limit 

к 
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It is true that the resonant mode coupling does put energy into waves 
which have phase velocities for which 9go/9v<0 and that these waves damp 
(i. e. waves are produced which are outside the region for which 9go/9v= 0), 
but this is a relatively slow process for the case at hand because it is fairly 
difficult to satisfy Awq = 0. 

Thus although the resonant mode coupling leads to some loss of wave 
energy we must look for further mechanisms which tend to thermalize the 
plasma. 

V. PHASE IV - NON-LINEAR LANDAU DAMPING 

To obtain resonant mode coupling the function e(Sk) in Eq. (4. 5) was 
expanded about Sk = S®. This was because for resonant mode coupling we 
are interested in small changes in the time behaviour of Ek(t). However 
from Eq. (4. 5) we see that .the driving term, Ek-q(t)Eq(t) has a time depend-
ence of exp[- i(Wk-q + (Jq)t] which may be very different from the natural time 
dependence of Ek(t) (goes as exp"lwl<t ), i. e. (ок-ч+ич in general is not close 
to ui,. This source thus forces Ek to have terms with the time dependence 
of the source rather than the natural time dependence of Ek. This is some-
what analogous to driving a harmonic oscillator with a non-resonant source. 
The result is that Ek must be divided into two parts, 

Ек=Е<Х) (t) + E<2)(t). (5.1) 

E^1' (t) is the part of Ek which oscillates with its natural frequency and for 
which the resonant mode coupling terms in the last section apply and (t) 
is the part of Ek which arises because of the non-resonant parts of the source. 
Eq. (4. 5) can be solved for E ^ to yield 

(2) (1) (1) 
E p ) ( t ) r M k q E k - q ( t ) E q (t) ( 5 > 2 ) 

L,' ek(bk-q + »q) 
4 

and Ek2) (t) does not grow "time proportionally" as does E ^ but comes to 
an equilibrium amplitude given by Eq. (5. 2), An important feature of these 
waves is that uk-q +Uq can be almost zero so that the phase velocity of these 
waves, (Uk-q +юч)/кц can be much smaller than the electron thermal velocity. 
In fact the phase velocity can be even smaller than the ion thermal velocity. 
This means that the E¿ ' waves can undergo Landau damping, giving their 
energy to both electrons and ions. 

The Ef^ waves can be viewed as virtual states in the "quantum mech-
anical" sense. The important difference is that these "virtual" waves can 
interact with the background particles and thus give up energy to the part-
icles. These waves come to a quasi-equilibrium in which they take energy 
from the E^1' waves and give energy at the same rate to the particles. Note 
that E ^ is of second order in E. 

Because these waves can have phase velocities comparable to the ion 
velocities we must include the ion terms in ek(Sk). Thus 
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j 
To calculate the rate at which energy is given to the particles by this 

process we must keep terms of third order in the Vlasov equation. If we 
iterate Eq. (4. 2) and then integrate over velocity we obtain (to third order) 
an equation of the form 

E k =( ) E k + Y ( ) E k . q E q + ^ ( )Ek.qEq.pEp. (5.4) 
V q , P 

Each Ek in this equation must now be replaced by Ek= E ^ +E(k^ . The 
equation then divides into two parts 

ч 
which yields Eq. (5. 2), and 

+ у ( 
q 

+ У ( + У ( Í E i V q X ' 
Ч q.P 

(5.6) 

Ч Ч'»" 
Expanding ек(Sк) in Eq. (5. 6) about Sk= Sk and multiplying by Ek(t) we obtain 
after averaging over the initial phases 

q 

+ К Е ( Д Е ^ E ^ > (5.7) 
q 

The first term on the right-hand side of Eq. (5. 7) is just the resonant 
mode coupling term discussed in section IV. The second and third terms 
on the right-hand side are associated with EC2) and lead to diagrams such 
as that in Fig. 7 where and El.q' interact to form the virtual state Ejf.^. 
E(t2Jq subsequently decays to E1^ and E ^ . This is similar to the "self energy" 

. Fig-7 
I n t e r a c t i o n o f E ^ ' a n d E Í q ) d e c a y i n g i n t o E ^ ' a n d E Ü ) t h r o u g h a v i r t u a l s t a t e 
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diagrams of field theory except that because of the Landau damping of 
which arises from the imaginary parts of e(Sk-q) the interaction is not herm-
ition. Thus not only is Rewk slightly changed but also this leads to an Imuk, 

The last term in Eq. (5. 7) leads to a 4-wave diagram such as shown in 
Fig. 8. This also has non-hermition parts and leads to a change in -yk. 

Fig. 8 

Four-wave diagram 

After averaging over the initial phases the last three terms in Eq. (5. 7) 
can be combined to give a contribution to 91E^1' |2/3t of 

at = - VHkq|Ek.qr|Eq|2 (5.8) 
4 - w a v e / 

q 

which is of the same order in | E |2 as the resonant scattering and the quasi-
linear terms. 

As might be expected Hkq is quite complicated and will not be given 
here. The essential point is that these 4-wave processes lead to a non-
linear Landau damping which transfers energy to both electrons and ions 
and this leads to a slow decay of the wave energy. 

Further, the energy is put into the slow particles rather than the part-
icles on the tail of the distribution and this leads to a "heating" of the bulk 
of the plasma. 

The decay rate can be estimated by summing Eq. (5. 8) over all k. Let-
ting E|Ek|'2= £, we obtain roughly 

which can be integrated to give 

£= ¿r0/(I + Hi 0 t ) , 

where £0 is the energy in the "quasi-linear equilibrium spectrum". We 
note that asymptotically С does not damp exponentially but as 1/t so that 
this non-linear Landau damping leads to only a rather slow decay of the 
wave energy. 

In closing, we note that the slow | E ^ | waves lead to a diffusion of the 
plasma (both ions and electrons) across magnetic field lines. The origin 
of this process is simply that particles drift across field lines with the 
velocity 
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-» CEXB 

and the mean square distance they go is 

< - г > - ( § Т « / Е ^ " > г > - ( § K I E « ' х р Л ? г ; , ~ - ' У ~ ' ) > 
0 q 

/C\2 Y"1 i i2 
q 

where 

D(V||) = ( i ) 2 I | E q | 2 , r 6 ( 4 | | V ' i " U q ) ' q 
For E 1̂) waves u q / q n » v and only the few particles on the tail of the 

distribution diffuse. However, for E^P waves (Jq/qn ^ v e , VÍ and the slow 
bulk of particles can diffuse. The dependence of the diffusion coefficient 
on В is determined in each case by the "quasi-linear equilibrium spectrum" 
which in general depends on B. 
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PLASMA TURBULENCE 
General topics 

В . В . K A D O M T S E V 
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T H E A C A D E M Y O F S C I E N C E S O F T H E U S S R , 

M O S C O W , U N I O N O F S O V I E T S O C I A L I S T R E P U B L I C S 

1, INTRODUCTION 

It is known that under experimental conditions plasma often shows chaotic 
motion. Such motion, when many degrees of freedom are excited to levels 
considerably above the thermal level, will be called turbulent. The proper-
ties of turbulent plasma in many respects differ from the properties of la-
minar plasma. It can be said that the appearance of various anomalies in plasma 
behaviour indicates the presence of turbulence in plasma. In order to verify 
directly the presence of turbulent motion in plasma we must, however, 
measure the. fluctuation of some microscopic parameters in plasma. Let 
us suppose that we introduce two electric probes in the plasma at ? and 
Then we can measure the fluctuation of the electric potential of these probes 
cp(í,t) and [ ( ? , t ' ) . Using special electronic devices we can average 
cp(ï?, t) cpf?1, t1) and determine the correlation function of the electric fields 
in two points at different moments of time. If plasma is stationary and 
homogeneous in the average, then this relation function depends only upon 
the differences ( j?- !*) and (t - t '). Instead of this correlation function it is 
more convenient to use its Fourier transform IküJ, so that 

<cp(?,t)cp(0, 0)>= Jfexp (- iwt+ik.?)]Ik(Jdrdu. 

It is this function that should be determined by the theory. 
By measuring the correlation function <(ф(?, t) ф(?", t'))> one can directly 

establish whether the turbulence is strong or weak. Weak turbulence re -
presents a group of weak interacting waves. In the case of weak turbulence, 
only one eigen-frequency corresponds to each wave number so that in the k,w 
space, the intensity of oscillation is located in the vicinity of u = wk, as shown 
in Fig. 1. In other words, 

1кш = 1 кб(ы-и к ) . 

Respectively, only one к corresponds to each given и and, therefore, if we 
measure the correlation function of the potential f o r a given frequency 
<фш(?)фш(?+х)> in relation to the distance between two probes we must obtain 
a nearly periodic function corresponding to one k. If the interaction between 
different waves increases, the dependence of 1шх on w spreads out and the 
turbulence tends to be strong, see Fig. 2. 

543. 
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к 
Fig . 1 

W e a k t u r b u l e n c e . 

T h e intensity o f o s c i l l a t i o n is l o c a t e d in the v i c i n i t y o f из = . 

Fig . 2 

T h e in te rac t i on b e t w e e n d i f f e rent waves increases , 
the d e p e n d e n c e o f 1 Ш Х on и spreads out . 

At present, we have a precise theory only for the weak turbulence of 
plasma, when perturbation methods can be used. A short survey of this 
theory will be given and then the strong turbulence will be d i s c u s s e d . 

II. THERMAL FLUCTUATIONS IN PLASMA 

The turbulent fluctuations develop only in plasma not in thermodynamic 
equilibrium. This non-equilibrium may be caused either by non-homogeneity 
of plasma or by distribution-function anisotropy in space velocity. In equi-
librium plasma these fluctuations cannot be distinguished f rom the usual 
thermal noises. It is therefore obvious that the complete theory should 
cover both the weak turbulence and thermal fluctuations. Let us first con-
sider the case of thermal fluctuations in stable plasma. It is known that 
the Vlasov kinetic equation 

is an exact equation for the microscopic distribution function 

Z — » —» ô ( r - r j ) ô ( v - V j ) . 
j 

The summation is made for the particles of a given species. 
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Let us split this function into two parts 

fm = fo + I. 

where fo is a function averaged over small macroscopic volumes and f is 
the fluctuating part. If we neglect the coll isions, then in the absence of 
external magnetic f ields the particles move freely under v*= const . , and 

+ Vt. Noting by ff the part of f, corresponding to non-interacting part-
icles, we shall obtain 

<f v, t) f ( r 1 , v1, t' )> = б(v - v' ) Ô(r - r' - v[t - t']) f0(v). (2) 

In Fourier representation this relation has the form 
— » 

(V) fgu. (v1 )> = б (к - к" ) б (и - И' ) б (v- V' ) Ô (и - к . V) ^ » (3) 

where f ^ is the Fourier component of 

f ( I = У f Ы e x p ( " i lJt + i k- r)dudk. (4) 

In addition to f the fluctuations of the distribution function contain that part 
which corresponds to the electric field fluctuations. If the magnitude of 
these fluctuations is small enough, we may linearize the kinetic equation (1), 
so that in the Fourier representation we obtain 

where 

I ^ u - k . ^ i v ) - 1 (6) 

Here the small positive quantity v is introduced to ensure a proper choice 
of integration contour. Inserting the expression (5) for in the Poisson 
equation 

к2ФТГш = ^ e j ^ d k d u (7) 

we obtain 

= -W J'l^^' (8) 

where e is the plasma dielectric constant 

e £ u ) = 1 + i 2 L f L 2 Г (3fo/egd7 . v "л • o ) 
и - К . V + 11/ 

35 
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Thus, in the case of small level fluctuations, when the linearization of the 
Vlasov equation is justified, the intensity of thermal fluctuations in plasma 
may be found by squaring and averaging the relation (8) using (3), namely 

^ = f j f f ( v ) 6 ( U ( 1 0 ) 

The quantity takes into account both the short-distance fluctuations 
(kD> 1) and the long-distance wave fluctuations (kD< 1). In the long wave 
length region ( k D « l ) the imaginary part e" = Ime is small, so that 

| e ( ¿ U ) p = I e' I2 Í | е " Г Т ^ Т » 6 < e , ) ' 

where e ' = R e e . In this region = I£ б (w - u^), where according to (10) the 
quantity lit is given by 

Ъ ' ш Ш j W f - b - v ) * - , (11) 

here у means the rate of plasma waves damping: 

- r - e » / f £ . (12) 

As we see f rom (11), when approaching unstable situations (y-*0) the in-
tensity of thermal fluctuations tends to infinity, and therefore weak turbulence 
must develop in plasma. 

III. KINETIC EQUATION FOR WAVES 

To describe the weak turbulent fluctuations, it is necessary to retain 
non-linear terms in the kinetic equations (1). Splitting these equations into 
two parts by using the averaging operation, for the case of stationary fluctu-
ations we obtain: 

| ? + ( ^ ) f 0 = S e f jrk<<p|.u.f i r ( j>dî?dl?.dUdU-, (13) 

Ч* - 1 + < 4 л + - W > > - < 1 4 > 

where й" = Íí - ïc1 and ы - u1 = u" . The term Sef may be considered as a co l -
lision term. 

If the amplitude of electrical potential oscillations is small enough 
we may use the series expansion for fftw. This series may be obtained by 
iteration of expression (14), namely 
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+ / 

d u d k i d « i . (15) 

Here R means the subtractions of averaged values, as shown below: 

If we now insert this expression f o r f j ^ in Eq. (7), then in addition to 
the terms written before we obtain non-linear t erms of the cpcp, cpcpcp type, 
namely 

—> 4 î r e Г u Г > e(ku) ф_, = - А - / » dk du + / V- , Rqv. . . dk' du1 
Т<ш к2 J to J кш, к и чГ'ш' М<"ш" 

+ / ш - <Pîrt «PjMrilW--Ul d u ' d u i - <16> 

where V and M are matrix elements of the interaction. 
If the amplitude of the oscillations is small, we can use the perturbation 

theory. Namely, in zero approximation we can neglect the wave interaction, 
and assume that waves are statistically independent. We note the zero ap-
proximation amplitude as cp(°> . If we insert this zero amplitude in the qua-
dratic term, then this non-linear term will act as a driving force . Thus, 
the amplitudes of f orced oscillations cp|»i) are given by the relation 

f V. - Rq¿°> ф!°> dk' du ' , кш e(¥u) J кш,kV T w ' Tk"uJ" 

Now let us multiply Eq. (16) by and average it over phases of free osci l -
lations Ф<°> . In the case of many excited degrees of freedom these phases 
may be considered as random phases. In the approximation which we need, 
we can substitute ф(°) f o r ф in the third right-hand term of Eq. (16). The 
second term, proportional to , disappears in the zero approximation 
so that it is necessary to take into account the corrections qtf1) in order to 
obtain the input of the same order of magnitude. Retaining only the linear 
and quadratic term in I and neglecting the difference between -(фcp)> and <̂ ф°ф°)> 
in non-linear terms we obtain the following equation for waves 

Чи = € * p ¿ 4 + iy) / 6 (w * к • v ) d v + J f u - dk' du' 

+ l t f 4 w , ï ' w ' v f u ' . t " к . . d k ' d u ' 
J e(u",w" + iv) 

+ 2 e * f c u + ii/) / I vku,. k ' I 2 W 4-u>- & du ' , (17) 
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where 

v r -». . = Г { ( I - k')(|>. . k»)+(|î> к")(ёт». , ï ' ) } f d v . (19) kw, k V к2 J kw ' v6ku> МБК'ш' v ' 

Integrating by parts we can show that к2лп?ш,]?"ш" = к"2 \п?-ш",Т<ш. Using this 
relation and introducing the "number of waves" (number of quasi-particles): 

for the case of weak turbulent state (у«ш), Eq.(17) can be rewritten as 

1 Э№? P -> 

2 l T = ^ N i î + J w M » N k N ¡ r - d k ' 

+ | / и t t - Nk- fi К - "ir- - "1Г" >dk ' . (21 ) 

where 
= 8 E ImR^ W i ^ t J . 8тг [у|„,,тГ-ш-

kk- к'2 9ei w ,2|Í£lÍ£| l e " 
'Эи'*Эи ' 'Эи' Эи 

(22) 

'Эй Эй' Эй" 1 

In Eq. (21) the last term and the contribution f rom the residue of the 
third term at e11 = 0 describe the wave decay processes whereas the other 
non-linear terms describe the scattering of waves by particles. 

In the expressions for R"i?w,T?Vi' and vfoj.Tfv we can neglect the expo-
nentially small contribution from residues at и =T? -~v and и1 = .v . In this 
approximation vft-^-.ifu = . Using this relation we can show that 
the wave scattering by particles does not change the net number of the quasi-
particles f N-jfdlc. As to the wave-wave scattering, on the other hand, it 
conserves the net energy f o r oscillations. 

Eq. (21) is valid only for electrons. In order to include the ion motion, 
it is sufficent to take into account the ion contribution to R, v and e. It is 
not difficult to generalize this equation for the case when the external 
magnetic field is present. For this purpose, it is sufficient to change the 
operator gjf^ in a proper way. 
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The second term in the right-hand side of Eq. (21) describes the thermal 
fluctuations. Thus, schematically, Eq. (21) can be written as 

1 BN о | ^ = 7 N + q - a N 2 , (23) 

where the first term describes the oscillation growth with the increment y, 
q is the source of thermal noise, and where the non-linear terms describe 
the interaction of waves. One sees, therefore, that in the turbulent steady-
state, when the increment is large, it is possible to neglect q and, conse-
quently, I = у /a . On the other hand, when у is negative and not very large 
in its absolute value, one can, in Eq. (23), neglect the non-linear term, thus 
I = q/| у I . In this case, the plasma has thermal noise only. When the in-
tensity of the thermal fluctuations tends to infinity, the non-linear term 
should be retained to define í¡* The real picture of weak turbulent steady-
state is, of course, more complicated because the non-linear terms are a 
form of diffusion nature in k-space. 

IV. INTERACTION OF PARTICLES WITH WAVES 

Let us consider now the equation for the averaged function (13). The 
expression on the right-hand side of this equation is denoted by Sef . As 
can be seen f rom Eq. (13) the term describing the coll isions of particles 
and waves may be written 

S * f = I m m a l / k P ^ M d k d u , (24) 

where the correlation function is defined by the relation 

Р ^ М б ( и - Ш ' ) 6 ( к - к - ) = < ч | . ш . » %ш>- (25) 

Using the expression for f ^ we obtain in the quasi-linear approximation 

(26) 

In this expression the f irst term describes the slowing down of particles 
due to the polarization of the medium and the Cerenkov radiation of the longi-
tudinal waves. 

Let us first consider the simplest case of a stationary stable plasma 
where we can neglect the quadratic terms in I. In this case the intensity 
of fluctuations I&j is given by (10). Substituting this value in the second 
term of Eq. (26) we find 

„ 2e4 p à ( k - v - k ' - v ' ) Г-г^т*9f(v') ^П ,-T» sef=^ J kW,£v)i2 |f(v)k~àr -f<v'>k dv • (27) 
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When k D > l (where D is the Debye radius), the dielectric constant e 
may be set equal to unity and the integral in Eq. (27), as can be easily shown, 
converts into the Landau collision term. (One should moreover cut off the 
integral in the upper limit at k ^ l/p0, where p0 is the minimum distance 
between particles at binary coll isions. ) 

When approaching instability the amplitude of thermal noises increases, 
in the expression (26) the second term prevails. By neglecting the f irst 
term we obtain the quasi-linear approximation treatment. In this case, and 
in the case of slightly unstable plasma, it is more convenient to consider 
a non-stationary problem with given initial conditions. In the wave kinetic 
equation we should, therefore, take into account a term with a time deriva-
tive, whereas in the expression for Sef we should consider I-fto be the time 
function. 

V. NON-LINEAR INTERACTION OF LANGMUIR AND ION-SOUND WAVES 

Let us now consider the simplest example of Langmuir oscillations. 
The Langmuir wave spectrum is non-decaying; hence, the scattering of 
waves by particles will be the main non-linear process. When k D X / m / M 
we may neglect the wave scattering by ions, and the kinetic equation (21) 
becomes: 

—> —> n 
i ^ N l , d k . . (28) 

From this relation, one sees that the total number of waves ¡ Щ cflc really 
remains constant. According to Eq. (28) the wave scattering process by 
electrons results in the diffusion of the wave packet in the I?-space towards 
small k. The characteristic damping rate of this diffusion is of the order of 
magnitude 

(29) 

where e is the energy of the Langmuir waves. 
When kD<«Jm/M the ion scattering prevails, and instead of Eq. (28) we 

obtain 

i i t r r / w « > (Te+T¡)2Mn2 J 

As we can see, the ion scattering also leads to the decrease of k. The 
oscillation energy e tends to a finite limit, and, consequently the process 
of scattering cannot by itself result in the complete relaxation of waves in 
homogeneous medium. 

35* 
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Let us now consider ion-sound waves. Such waves can be excited in 
a plasma with T¡ <K Te and in the presence of electric current, when the mean 
(drift) velocity of electrons is higher than the sound velocity cs =»J T e / M . 

In this case the scattering of waves by ions also results in a flux in the 
k-space towards small k. As can be shown, the wave kinetic equation becomes: 

| ® = 2 7 k N k + 2ANk (k6|K + 4k5Nk), (31) 

where A = f2^T¡ 02/2gT2n, Г22 = 47re2n/M, and 0 is the mean square root value of 
the angle between к and the z -ax is , which was supposed to be small. 

When ion-sound instability occurs yk=ak, where a is a constant, and 
f rom Eq. (31) we obtain 

( 3 2 ) 

We see that non-linear interaction leads to the spectrum sharply decreasing 
with k. 

Using the wave kinetic equation we can investigate various weak turbu-
lent states. Unfortunately, this kinetic equation cannot be applied to the 
cases when the interaction between waves is not small. For such strong 
turbulent states we have no suitable strict mathematical methods. We have, 
therefore, to use some approaches similar to the weak coupling approxi-
mation or semi-empirical theory based on the mixing length concept. 

VI. WEAK COUPLING APPROXIMATION 

Up to now, the wave interaction has .been considered to be very small. 
Let us see what happens when the matrix element increases. Let us con-
sider the model equation 

(u-u»)Off,,= ГV-» , C - . Q». . dk'du1, (33) 
V К ' кш J кш, k \ j ' к ' ш ' к " ш * 

where the eigen-frequency uk is a complex number. We assume that the 
matrix element of the interaction V increases approaching of the order 
of unity. It is clear that the interaction between waves results in the 
broadening of 1Ш as a function of u. Hence, in the case of strong turbulence, 
the dependence of 1^, upon the frequency cannot be approximated by 6(u-u£). 
We cannot therefore use the kinetic equation in f o rm (21). If the matrix 
element still remains lower than unity then, even in the case of stronger 
turbulence, one can use the weak coupling approximation. 

Note that according to Eq. (33), a single wave к, и interacts only with two 
quite different waves T?,u' and As we have seen above, one of the main 
effects of non-linear interaction is the damping of a single wave which is 
defined by the right-hand side of Eq. (33). Let us rewrite this equation in 
the form 
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- = + f v t u . t ' ^ CfcvCt-ш- dk' du'. (34) 

The term гц̂ш CTĵ  in the left-hand side of this equation takes into account the part 
of non-linear interaction proportional to Ст<ш . In the right-hand side of Eq. (34) 
from which we have already picked up the "damping" of every single wave, there 
remains only the effect of the driving force. We shall consider this force 
to be small, which is in fact so if V « 1. According to this, we shall write 
С = C(°> +C<1> , where C^1) «C<°> . For the amplitude of the forced osc i l -
lations c m in the right-hand side of Eq. (34), it will be sufficient to retain 
the non-linear term only, thus we shall have 

= (u - ЧГ+ Ч У f viTw.iT'w1 ¿ t b dk' du1. (35) 

Let us multiply Eq. (34) by cfm and average the result over the random phase 
of oscillations. In the non-linear term we substitute С = C ( 0 ) + , as -
suming that С should be statistically independent. The averaging of the 
non-linear term leads to three terms, two of which are proportional to Ifo, 
and the third one contains Î 'cj* "̂k • as the integrands. Defining the quan-
tity г}£ш so as to cancel the terms in the right-hand side of the mentioned 
equation, which are proportional to we obtain the following equations: 

1"-ЦГ+11Гш|211Гы=-| f |v ir w , l^ .| 2 I lVI i^-dk ' du', (36) 

K - f S ' S f f g ? 1 ^ * ' - (37, 

where 

Vï*. . - Vi» я + Vi» Т»и • . к w,.k ш ku, к w кш.к и • 

Defining a new function S ^ by the relation Stf^3 (u - uf+ , we rewrite 
these equations in the form 

Чш=\ ¡ Ч Х / ^ Ъ ш ' f l ï v W dk' du', (38) 

= S Z - S £ ! / ТГ„ du', (39) 

where 

S t ^ í u - u ^ ) - 1 . 

The functions Stfw and sfô have a simple physical meaning which can be 
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easily understood if a small additional external force f&j is added to the right-
hand side of Eq. (8). Repeating the calculations it will be easy to verify that 
S-fo, is the Green function describing the response of the turbulent medium 
to the "small f o rce " S^J is the Green function in the linear approximation. 

The equation of this form for ordinary fluid was suggested byKraichnan. 
Wild has shown that such equations may be derived using the selective sum-
mation of the perturbation theory series. Similar equations may be used 
to treat strong turbulence phenomena in plasma. 

VII. SEMI-EMPIRICAL APPROACHES 

Even if the weak coupling approximation were to be applied to strong 
plasma turbulence it would require a large number of numerical calcula-
tions. That is why it is desirable to use simpler methods of treatment of 
strong turbulent motions in plasma. In many specific cases, the semi-
empirical methods similar to those used in ordinary hydrodynamics may 
be developed for plasma turbulence. We shall consider here only one speci-
fic case, namely, the turbulent convection in mirror traps. Such turbulent 
convection was observed experimentally by Ioffe. In his experiment, the 
collisionless plasma at low pressure was produced by acceleration of ions 
in a radial electrical field. This plasma, with an ion temperature of the 
order of 1 keV and density ^109cm"a, escapes from the trap at an anomalous 
time during t= 10"4 s. 

Experiments show that decay of plasma is induced by flute instability. 
This instability leads to convection of plasma in traps. In the Ioffe device 
the electrons are cold. Their temperature is of the order 10 eV. Hence, 
the instability arises due to force F ^ n T ; / R which acts on the unit volume 
of a single plasma tube in radial direction. R is the mean radius of cur -
vature of magnetic lines. As can be shown easily, this force leads to the 
acceleration of a single tube of the order of g0 = (Ti/Rm) [Í^/(Í22 + f2o)], where 
Г2С = еН/mc, = 4я ,е2п/т. If this tube is surrounded by plasma, then the 
magnitude of the acceleration is g^(n'/n)g0 , where n' is the excess of plasma 
density compared to the background density. 

When the turbulent convection develops, the amplitude of pulsation n1 

at a distance x from the wall is of the order of n1 =xdn/dx. The amplitude 
of velocity pulsation is of the order v1 = (gx)$ = x(g0dlnn/dx)*, so that the coef -
ficient of turbulent diffusion D ^ v'x=? x2 (godln n/dx) i . Thus, near the wall, 
the flux q is equal to -Ax2(dn/dx)2 (go/n)*, where A is a numerical factor of the 

order of unity. To obtain q and therefore the plasma lifetime T we must 
estimate the minimal scale of pulsations x0. To do this, we must take into 
account that plasma motion is produced by fluctuations of the electrical 
fields. Namely, the transverse component of these fields E x = - Vj_cp leads 
to transverse velocity = с(ЁХЙ)/Н2. Since cold electrons are not confined 
by magnetic mirrors , the plasma potential must be positive. But in the 
vicinity of the wall, namely at the distance x pt = ( T ^ / m t h e plasma 
tubes lose their ions, so that in this region the potential cannot be positive. 
It means that the boundary of plasma is equipotential and the radial compo-
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nent of velocity vr must be zero at a distance of the order of about 
p¡ near the wall. From these arguments it follows that the minimal scale 
of pulsation x0 must be of the order of the ion Larmor-radius pj. Estimating 
q as q = A гц/goXo = A n \/goP¡> we obtain for the plasma lifetime in a magnetic 
trap of radius a the following relation 

At low density, when £2§<f22, this relation leads to т = This dependence 
was verified experimentally. Moreover, the experimental data on electrical 
field fluctuations fit fairly well into the qualitative theoretical picture of 
turbulent convection. 

This fact demonstrates the validity of using semi-empirical approaches 
to plasma turbulence. Such an approach cannot, of course, give quantitative 
results, but it is adequate for a qualitative consideration of the turbulent 
phenomena. One may express the hope that together with the weak coupling 
approximation, this approach can give quantitative as well as qualitative 
results. 
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I. LANDAU DAMPING AND FINITE AMPLITUDE WAVES 

The main topics of my lectures will be anomalous damping in collision-
free plasmas of finite amplitude disturbances and, in particular, of shock 
waves. 

First, let me consider a laminar mechanism of collisionless damping, 
the well-known Landau damping. As one can see f rom the linear theory 
described in the paper by SIMON [1], this damping is related to resonant 
particles having a velocity close to the wave phase velocity. Now we shall 
take into account a non-linear phenomenon which plays an important role . 
As is known, Landau damping is determined by the value of the derivative 
of the distribution function 

One of the most important non-linear phenomena is the distortion of the 
distribution function, especially in the resonant region v =¡ и/к. In order 
to understand what will happen, we start from the quasi-linear approxima-
tion (QLA) [2], where these distortions are described by a diffusion-type term 

F i g . 1 

T h e d istort ion o f the d is tr ibut ion f u n c t i o n in the q u a s i - l i n e a r theory . 

in the .kinetic equation for the "background" function ( F ) , Fig. 1. It is quite 
clear now that the larger the oscillation amplitude the stronger their r e -
laxing action on the form of the distribution function F(v) in the neighbour-
hood of v=!io/k will be. Hence, one may expect that the damping decrement 

555. 
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value ( 1 d « ? / d t (<# - wave energy) which is proportional to dF /dv ( i . e . 
v = u/k) decreases with the increase of S. The quasi-stationary slope dF/dv 
will be found from the equation 

¿ D g = St(F) (2) 

where, for the resonant particles v^u/k , the expression for D(quasi-linear 
coefficient of diffusion) can be reduced to 

e2Ë2 
D - è è r - (3)* 

In the expression for Fcol l we shall keep the term of the highest order con-
taining the second derivative (i/T/m)d2(fM- F)/dv2 , where fM is Maxwell 's 
function of distribution. Such a simplified form of the coll ision integral 
takes into account the reduction of the local equilibrium**. By integrating 
Eq. (2) once we shall get 

dfM _ 1 m 

dv dv 1+e2E2 /mui/T " K ' 

The damping decrement of small amplitude waves (e2E2/muvT < 1) tends to 
я-иo / w\2 dFM ( u\ 

— { к ) " d T ' ( V = c ) ' 

i . e . Landau damping decrement. At e 2E 2 /mwTy>l amplitudes, the linear 
theory is no longer applicable. The damping decrement for such waves, 
as follows from Eq. (4), should decrease with the increase of amplitude 
as E "2 . 

The above quasi-linear consideration reflects a general feature of damp-
ing decrease for finite amplitude waves. However, in the quasi-linear ap-
proximation we could not see the microscopic mechanisms of entropy pro-
duction, since QLA means random phase approximation from the beginning. 

Let us now make a qualitative consideration, where we can see the 
mechanism of phase mixing. What would happen to the Maxwellian distri-
bution function if a monochromatic wave with amplitude cp0 of electric po-
tential were given in a plasma for t = 0 (t =time)? Our main interest l ies 
in a time evolution of resonant particles. These particles will be trapped 
by moving potential wells if (m/2)(v-u/k)2<ecp0 , and will oscillate inside 
the wells (Fig. 2). The periods of such oscillations are different for the 
various particles having different energies. The distribution function must 
keep along the characteristics of the collisionless kinetic equation. These 
characteristics are the particle orbits. Now, on the basis of period dif-
ferences, we can conclude that the distribution function at any fixed x will 

* W e shall c o n s i d e r an e x a m p l e o f L a n g m u i r e l e c t r o n i c o s c i l l a t i o n s . 
' * * A p r e c i s e c o n s i d e r a t i o n o f Landau ' s f o r m o f c o l l i s i o n integra ls g i v e s s imi lar results. 
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Fig . 2 

Trâpp ing by m o v i n g p o t e n t i a l we l l s 

be modulated in space velocity, and this modulation will grow with time 
(see Fig. 3). 

This is the microscopic mechanism of plateau formation. Because of 
the fast growing of modulation frequencies in velocity space (i. e. second 

f(v) 

f (v ) 

f ( v ) 

f ( v ) 

. ¡!Í! Я 

Ш к 

F i g . 3 

M o d u l a t i o n o f the d istr ibut ion f u n c t i o n 
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derivatives 8'¿f/3v2), conventional collisions will very soon need to be taken 
into account and we can obtain, at last, a real plateau. It is interesting 
to know the final result for the wave damping rate in this case . 

Moreover , it is a more complicated task to find the Landau damping 
for finite amplitude monochromatic waves when the quasi- l inear method 
is inapplicable. As is well-known, in this case we have non-dámping o s -
cillations in the limit when interparticle collisions may be neglected - these 
being the stationary waves of Bernstein-Green-Kruskal. 

Let us now calculate the damping decrement. As an example, we take 
longitudinal plasma waves of finite (but not small) amplitude assuming the 
collision frequency to be sufficiently low but not neglecting it at all. The 
method is the following: the electron distribution function f(v, x) is derived 
f rom a kinetic equation (we assume that the amplitude change of the wave 
connected with its damping may be neglected so that it can be considered 
stationary in the system where the wave is at rest) . The wave damping' 
is now given by the formula: 

dt 
. . U vfdv, (5) 

where E is the wave field amplitude, and j the current density induced by 
the wave (in the system where the plasma is at rest and S is the energy 
density of the wave). The dash means the average over the period of o s -
cillations. Thus, everything is reduced to the search for the distribution 
function. 

Ions, for simplicity, are assumed to be infinitely heavy (at rest) and 
uniformly distributed in space. 

The kinetic equation for this function in the system of the resting wave 
may be written down in view of collisions as* 

9f , , ,3f 
u Э^-Ф'(У) Эи 

9f_ 
Эи Эи + (а+ u)f (6) 

where all values are reduced to the dimensionless form: 

V p h 
a " ( T / m ) i ' 

у = kx. ф(х) = ф0 cos2 y" -

m2yph 
Td= : 87re4nL ' и = 2kvTTD ' 

(7) 

where ф(х) is the wave potential in the system at rest, к and vph are its wave 
number and phase velocity respectively, TD is the effective time of electron 
collisions whose velocity coincides with the wave phase velocity, L are 
Coulomb logarithms and ф(у), y, a and и are the dimensionless'potential 
energy, co-ordinate, phase velocity and collision frequency, respectively. 

* W e shall n o w use m o r e rea l f o rms o f c o l l i s i o n integrals . 
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Let us introduce one restriction which makes the problem soluble (in 
practice): 

u « c p 0 « l : (8) 

this corresponds to a wave of finite but small amplitude and low frequency 
of coll isions. 

Now it will be more convenient to deal with new independent variables 
for the distribution functions 

U2 
uDy-* е = у + ф ( у ) . У-

where e is the dimensionless total particle energy in the wave field. Then 
Eq. (6) takes the form 

| = ^ { ± [ e - 9 ( y ) ] i ( f + H ) + c f } , (9) 

a Vph _ r0 3 
Ñ/2 ~ (2T/m)i* V ' s/2kvT rD ' 

where the ± signs before the root correspond to the different directions of 
electron velocit ies (plus sign is taken for particles overtaking the wave). 

In solving Eq. (9) we must consider two cases: e >tp0 (external region) 
and е<ф 0 (internal region, see Fig. 2). We find the solution of Eq. (9) as 
an expansion in ser ies : 

f (y ,€ )=f 0 (e ) + v f 1 ( e ,y )+ . . . . (10) 

By substituting Eq. (10) into Eq. (6) we get 

(11) 

where fo(e) (zero approximation) is defined (in the external region) by the condi-
tion fj(y) is per iodic,and by the boundary condition that at e » ( p ( the value 
f0(e) should asymptotically approach the Maxwell distribution for the plasma 
moving at the velocity - c relative to the wave. Thus the equation for f0(e) 
at е>ф0 will be 

J(e) fn + dfo 
de + c f L = 0 , (12) 

ti 

where J(e) ' Фо s i n 2 \ ) ' dy a r e some elliptic integrals. Now we 
- 7 Г 

can find fo(e) and substitute it in Eq. (11). Finally we must have 
f f x t and Wext = J jEdx, which, as one can see, will be expressed in t e rms 
of some elliptic integrals. 
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Let me write this, omitting a calculation and using some expansions 
of elliptic integrals f or the case cp0« 1, 

WeJ!t = 0. 1 i/cpi с e-c2wTn. (13) 

The same procedure must be used also in the internal region (e<cp0). How-
ever, the distribution function here is quite symmetrical f+(e) = f - (€) . This 
means that its contribution to wave damping W is quite small, and we can 
therefore neglect it. 

The major problems arise when we want to find distribution functions 
inside the singular domain lying between external and internal regions. 
Fortunately, as shown by ZACHAROV and KARPMAN [3] , we do not need 
to know in detail the behaviour of this function to calculate Wsing : it is enough 
to know its value at both sides of the singular region. In fact, 

+1Г ¥>d+ 6 

< . = 1 5 ? Л / r r ^ W + r > -1Г 9f(, 

+7Г . %+à 

-IT <p0-« 

where 6 is the width of the singular region. 
Now, by using integration by parts and taking into account only the 

lowest derivatives of the distribution function inside a singular region, we 
obtain 

+ir v0+s 

/ d y { / d e <Ц'^Ф(У>]* [ f - ( y , e ) + f - ( y , g ) ] 
-7Г cp-6 

If we substitute here the values of 8fo/9e, which we find from external (e =Фо+ 0) 
and internal (e = ф0 - 0) regions, we finally have 

W s i n g - 3^|e" c 2cWTn. (14) 

In order to explain the physical meaning of the results for monochro-
matic waves, we shall give a semi-quantitative estimate of the dependence 
of increment on amplitude. The QLA formula (4) may be interpreted as 
follows: let us represent it as v = VnV(l+ T i /T2)- Here vm is the decrement 
obtained in the linear approximation ("Landau damping"), 7г is the character-
istic t ime f o r the establishment of Maxwe l l ' s loca l distribution, т2 is the 

Эе t =</>.-0 
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characteristic time of distortion of the distribution function under the in-
fluence of wave packet f ield. If т2 , i . e . the co l l is ions succeed in 
"Maxwellizing" the distribution function, we get the conventional Landau 
damping. With the increase of the wave amplitude the distortion introduced 
by it turns out to be so large that the coll isions lag behind "Maxwellizing" 
and the decrement of damping decreases . 

With the aid of a similar interpretation we can estimate the absorption 
in the case of "monochromatic waves" , and on condition that Ti and т2 are 
chosen correct ly . Let cp be the amplitude of potential in the wave. 
Then the particles having velocities relative to the waves of the order 
u/k - (ecp/m)^< v<u)/k + (еср/m)? will be responsible for the absorption. This 
means that the distribution function is distorted most strongly in the Av 
region with the width of the order (еср/т)г . Because of the Coulomb c o l -
l is ions (small -angle scattering) the local equilibrium in this region will 
evidently be reconstructed within the time Tl~eq>/vT. The time of the non-
linear distortion under the influence of the wave field is of the order 

X/(e<p/M)2 , where X is the wave length. We shall finally get 

1 + (е Ф ЛтХ1лГт) -1 • ( 1 5 ) 

This means that for "monochromatic" waves the damping decrement falls 
off as EP/2 with the increase of amplitude. A rigorous consideration as we 
have seen above confirms this dependence. 

Hence, it follows that non-linear wave damping takes place in the dis-
tribution of resonant particles responsible for damping. Nevertheless, this 
does not guarantee us that non-linear stable waves, once they have appeared, 
will exist f o r a long period of t ime. It is also necessary to see whether 
they are stable with respect to the different, random distortions. If they turn 
out to be unstable it would mean that their energy has passed to some other 
forms of motion of plasma, possibly to the irregular turbulent motion. Then 
we speak about the effective damping. 

II. THE CONNECTION BETWEEN FINITE RESISTIVITY INSTABILITY 
(PRECISE THEORY) AND BOHM DIFFUSION (SPECULATIONS) 

Let us now consider the finite-resistivity instability of plasma confine-
ment. The great importance of finite resistivity has been shown in the paper 
by FURTH [4]. I shall talk about a different aspect of this problem, 
in particular, about the finite resistivity instability in a plasma column s i -
tuated in a strong magnetic field with straight lines of force (Fig. 4). I ex-
clude effective gravity, longitudinal currents (in undisturbed equilibrium) 
and will try to look for instabilities induced only by the non-uniformity of 
plasma density. In order to make clear the physical meaning of the insta-
bility looked for , I shall use some simplifications which, as far as I know, 
do not change the final results. 
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Fig. 4 

Plasma column in a strong magnetic field with straight lines of force. 

P o « H i 
8 ж 

T, <<Te = T0 

w « Œ Hi 

(16) 

Let us consider the behaviour of disturbances in the form 

(Pj exp (iut + ikjZ + ikyy). 

Then the equations for perturbations will be 

iun + с S n ! 
Ho 

(17, 

(These are the continuity equations for ions, where we neglected the ion motion 
along z. It means that we consider a perturbation with ky » kz. ) However, 
we take into account the electron motion along Й0, neglecting inertia of the 
electrons. 

i k ^ T o - en0E z - mn0vzv = 0. (18) 

Finite resistivity means a friction term in Eq. (18). The above f orm of 
Eq. (18) is, in fact, a generalized Ohm' s Law (with the pressure gradient). 
It is there that we find the only difference from Furth1 s problems. 

If we examine the electron continuity equation 

i u n + c ^ n j + i k z v z n 0 = 0 , 

36" 
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we shall see f r o m the quasi-neutrality condition, that the last term here 
+ Usarlo must be compensated by some additional ion currents, 6v¡, which 
is equal to 

M c d_ [EXf l ] 
dt H2 ХЙ eH2, 

the inertial drift of ions. So we have 

r c2iu ikzn 0 v z =- i^ ,n 0 M^p-E y . (19) 

Consequently, we have three equations, (17)-(18), for three variables: n, E, 
vz . According to the standard procedure we find the following dispersion 
relation 

u = (20) 
s 

where 

к2 Л „ „ 1 
у 

= I k f ) 

e " eH0 n0 

Now we see the simple physical meaning of the disturbances which are ob-
tained. In fact we have drift waves. If we put ve-* 0, i. е. Цг*а>, we find 

w = we. (21) 

It is easy to see that the imaginary part ,arising f r o m finite conductivity, 
corresponds to the instability. 

If we cannot put k| arbitrarily, for instance, because of the finite length 
of the plasma column, we shall always have high us values. This means 
that the growth rate of instability will be small in this case ; 

wï Im u « - « ue. (22) 
u s 

Further, if the choice of kz is not limited, we can have arbitrary us. The 
im.aginary part of и has a maximum, 

Im w (23) 

when w . This is the most unstable case. 
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These calculations ignored the precise eigenvalue problem and are only 
a rough estimate of the growth rate of instability. 

Now we shall discuss this instability, considering the strong eigenvalue 
problem. In fact, we must construct perturbations in the prec ise f o rm 

[exp (iwt + ikzz + ikyy)] ф(х). (24) 

Instead of deriving the eigenfunction equation, repeating the above calcula-
tions for the new form of perturbations Eq. (24), we note that 

Kyl- k2+ k2 - » k 2 - — Ky + Kx -» Ky d x 2 . (25) 

Using it in Eq. (20), we find 

d2cp 
dx2" 1 - i ^ u 1 - Ц Ф = О , (26) 

where us = ц (x), we = ue(x). 
I shall now say a few words about the philosophy of finite resistivity 

instability. 
There is one classical example in the field of finite dissipation insta-

bility, that is, the well-known Poiseuille flow instability. The situation 
is very similar in these two cases . There are small parameters before 
the highest derivatives of the eigenfunction equations. The chosen example 
is easier: Eq. (26) is an equation of the second order. 

A rigorous solution of the type II differential equation requires an ac-
curate knowledge of the density profile. We shall restrict ourselves to the 
case when density varies so slowly that ws can be considered as a constant. 
Close to the point where n,] /n0 is maximum, we may be written in the form 

и»=Ч 'e0 •fix'. (27) 

We then obtain 

f i _ « ! _ 
dx2 I u 1 - Ueo 0. (28) 

The solution of Eq. (28) is completely similar to the solution of Schroedinger 
equation for a linear harmonic oscillator. As a result, for the eigenvalues 
and the eigenfunctions we obtain: 

E - - { ^ ï t 1 " ? ] } 1 * 
(29) 

k - . ÏM k2 K U2 V (30) 
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with 

§ = 2 n + l (31) 

q>(x) ^ „ (Tx jexp f -ybc 2 ) . (32) 

Here Hn(yx) are Hermitian polynomials and 

where 

Uj = Re u, u2 = Im to. 

These solutions, as may easily be seen, decrease in both directions from 
x = 0, a point where n'0/n0 is maximum. 

If we examine the eigenvalues thus obtained carefully, we can see that 
the rough estimates of the type (20), (23) and (25) give a correct idea of the 
order of magnitude of the instability increment. 

In a weakly ionized plasma, it would be necessary to take into account 
the neutral gas effect. We shall give the expressions for the frequency and 
increment of developing instability, without any derivations, taking into 
account ion-neutral coll isions 

(if us + voi 3> ( U e U s ) * ) , where voi is the ion collision frequency. 
Thus, in addition.to the already known stabilizing factor which is due 

to the short plasma-column length, we obtain yet another factor — ion f r i c -
tion with the neutral gas. 

The development of instability must give rise to a "turbulent" regime 
in the plasma and to turbulent diffusion. Let us make dimensional est i -
mates of the expected diffusion, as is generally done in turbulence theory. 

The diffusion coefficient can be written in the form 

Here v is the rate of plasma pulsations and т the time characteristic of the 
dis appear cine e of correlations. In this case, т since there is no other i 
time factor which would determine the irreversibil ity of the "turbulent" 
regime. The pulsation amplitude will be defined according to the following 
considerations. On the one hand, instability induces the growth of the pul-
sation amplitude 3v/3t=¿W2V*; on the other hand, the non-linear terms of 
the type (v^)v and ^-nv induce the transfer of energy into the short wave 
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section of the spectrum where the fluctuations fade. The stationary value 
of the pulsation amplitude is defined from the conditions of equilibrium ex-
isting between these two processes: 

,. V * , oy i*^—n* , 
Л± 

where A.x is the dimension characteristic of the turbulent pulsations taking 
the direction perpendicular to H. 

We now obtain for D: 

2 2 D^iOgXj^i^Xi.. 

It is obvious to take for Xx the instability wave length 

We are interested in obtaining the minimum diffusion coefficient, that is 
why we shall take the minimum permissible 2 тг/г, where r is the charac-
teristic transverse dimension of the system. 

After this, we finally obtain 

D * CT0 . xmax 2jreHo 

This coincides with the diffusion coefficient adopted in the well-known Bohm 
hypothesis. 
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A V C O - E V E R E T T R E S E A R C H L A B O R A T O R Y , 

E V E R E T T , M A S S . , U N I T E D S T A T E S O F A M E R I C A 

In ordinary gases , the density r i se a c r o s s a shock wave o c c u r s in a 
distance of the order of a few coll ision mean free paths for strong shocks 
and becomes larger for weaker shocks. For MHD shocks in a plasma with 
a mean free path short compared to the gyro radius the shock thickness will 
also be larger than the mean f ree path. In both of these cases the shock 
thickness can be derived in a relatively straightforward manner f r o m the 
steady one-dimensional flow equation taking into account the standard kinetic 
theory dissipation coeff icients of the medium viscosity, electrical c on -
ductivity, etc. [1 ,2] . 

In a col l is ion f r ee plasma, or more prec i se ly a plasma with a mean 
free path large compared to the gyro radius, shock waves have thicknesses 
less than a mean free path. In this case, the mechanisms by which the d i -
rected flow energy ahead of the shock is converted to random energy behind 
the shock are more complex. The purpose of this lecture is to discuss some 
of the mechanisms by which this dissipation can occur. 

Among the reasons for interest in collision free shock waves is the pos -
sibility of using shock waves as a heating mechanism for plasmas. If 
a plasma sample smal ler than the particle col l is ion mean f ree path is to 
be heated by a shock wave we must understand the dissipative mechanism 
in such a shock. A more fundamental reason is that since shock waves r e -
quire some dissipation the study of coll ision free shock waves provides an 
opportunity for the study of turbulent dissipation mechanisms. 

In the collision dominated case, the isentropic theory of characteristics 
(discussed in an earlier lecture) leads to the conclusion that a pressure pulse 
steepens. Eventually, the gradients become so steep that the dissipative 
effects become important, limit the steepening process , and result in a 
steady shock structure in which the density and tepiperature rise monotoni-
cally. In a collision free plasma the steepening process still exists in some 
cases . For example, a zero temperature collision free plasma is c o m -
pletely described by the MHD equations in the limit of ion gyro period small 
compared to the time scale of variation of the flow parameters. The theory 
of characteristics therefore again leads to the steepening of a compression 
pulse and we conclude that a shock wave can be f o rmed on a scale smal l 
compared to a mean f r ee path. 

In the col l is ion f ree case , however, as the gradients increase the 
steepening process is not inhibited directly by dissipative effects but rather 
by non-dissipative changes in the dispersion relation of small amplitude 
waves. When gradients are reached such that the pulse has significant com-
ponents at wavelengths of the order of the ion gyroradius these components 
will propagate at different speeds than the longer wavelengths components. 
Thus the basic assumption in the characteristic theory (propagation speed 
independent of wavelength) which led to steepening is violated and we might 
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expect smal l s ca l e s tructure of the o r d e r of the ion gyroradius to appear . 
The prob lem of the co l l is ion f r ee shock structure is to determine the nature 
of these fine scale variations and how they lead to dissipation. 

HYDRAULIC ANALOGY 

T h e r e exists an analogy between the co l l i s i on f r e e p lasma shocks and 
hydraulic jumps in water which is helpful in demonstrating some of the p o s -
sible mechanisms which may o c c u r . Waves in shallow water with wave -
lengths long compared to the water depth, h, propagate at a speed v/gh which 
i s independent of wavelength, (g is the a c c e l e r a t i o n due to gravi ty ) . Thus 
the theory of charac ter i s t i c s applies and it can eas i ly be shown that a finite 
amplitude pulse steepens. When wavelengths comparable to either the water 
depth o r a length (zT/pg)* as 0.5 c m which is determined by the sur face t e n -
sion, T , are reached the propagation speeds of smal l amplitude waves 
change. (T is the sur face tension and p the density). At these wavelengths 
the damping due to v i s c o s i t y is , however , stil l s m a l l . Thus in the water 
c a s e as in the p l a s m a c a s e non -d i ss ipat ive changes in the d i s p e r s i o n r e -
lation l imit the steepening p r o c e s s . In both c a s e s a small scale structure 
will appear which is not in itself dissipative but results in dissipation. Thus 
examination of shock s tructures in shallow water can be helpful in i l lustrating 
some of the e f fects which may o c cur in p lasmas . The analogy should, how-
ever , not be extrapolated to the point of quantitative comparison. 

The water experiments to be descr ibed as well as much of the discussion 
of the analogy is based on the work of WITTING [3] although the ex is tence 
of the analogy had been previously suggested by several authors f o r example 
[4]. The water exper iment is sketched in F ig . 1. A long tank is separated 
by a d iv ider which d o e s not quite r e a c h the bo t tom. The p r e s s u r e in the 
c h a m b e r in the le ft is reduced sl ightly giving r i s e to a d i f f e rence in water 
l eve l between the two parts of the tank. When the cap is removed manually 
the p r e s s u r e r i s e s and water f l ows out producing a shock wave propagating 
to the right. 

T h r e e dist inct types of shock w a v e s a r e o b s e r v e d in w a t e r . T w o of 
these are regular laminar patterns in which a wave train which is stationary 
in shock co -ord inates appears and is gradually damped by v i scos i ty . In one 
of these the wave t ra in i s behind the shock and in the o ther it i s ahead of 
the shock. The third type o c c u r s in strong shock waves and is an i rregular 
turbulent pattern. 

The top picture in Fig . 2 is a side view of a weak shock propagating into 
relat ively deep water ( sur face tension unimportant). The horizontal line is 
the initial water leve l while the wavy line is the water sur face at an instant 
in t ime. The wave train d e c r e a s e s in amplitude towards the le f t . Thus we 
m a y regard the wave train as having been produced at the shock front and 
damping as it moves behind the shock. The picture shown would be entirely 
steady in a c o - o r d i n a t e s y s t e m moving with the shock, however , s ince the 
med ium is d i s p e r s i v e the phase and group v e l o c i t i e s are not equal and the 
energy assoc ia ted with the wave train can be moving re lat ive to the shock . 

The l ower picture in F ig . 2 is a top view of a weak wave travell ing into 
shallower water ( sur face tension significant). A regular wave train is again 
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P U M P - Г 

Fig.1 

Apparatus for water experiment 

Fig. 2 

Weak hydraulic shocks 

observed. However, in this case it appears to damp as one goes to the right, 
i . e . , ahead of the shock. 

Both top and s ide v i e w s of s t r o n g e r s h o c k s in both deep and shaHow 
water a r e i l lustrated in F i g . 3 . In these c a s e s the shock i s s e e n to be 
highly turbulent. The water s u r f a c e , par t i cu lar ly in the deep water c a s e , 
appears to fluctuate in a highly random fashion. The side v iew indicates a 

Fig.3 

Strong hydraulic shocks 
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graduai r i s e in water leve l to the leve l behind the shock with no remnant of 
the wave train behind. The shallow water top view may indicate some m o r e 
pronounced regular features super imposed on the turbulent background. 
Thus , there might be s e v e r a l c l a s s e s of turbulent s h o c k s . However , f o r 
both shallow and deep water the shock waves become turbulent f o r sufficiently 
strong shock waves . 

Let us f i r s t d i s cuss the wave trains f o r weak shocks in t e rms of smal l 
amplitude w a v e s . The right hand s ide of F i g . 4 shows the d i s p e r s i o n r e -

C O L L I S I O N L E S S PLASMA SHALLOW WATER 

Fig. 4 

Dispersion relations for infinitesimal waves 

lation f o r water f o r two d i f ferent water l e v e l s . In o r d e r to obtain a wave 
train standing in shock c o - o r d i n a t e s the phase ve loc i ty must equal the f low 
ve loc i ty . Poss ib le f low ve loc i t ies ahead and behind are also indicated. The 
in te rsec t i on of these l ines with the d i s p e r s i o n c u r v e s a r e p o s s i b l e c a s e s 
in which a wave could stand in shock co - o rd inates . However, we must also 
r equ i re that if the wave train i s p roduced by the shock the e n e r g y f lux be 
away f r o m the s h o c k . Thus a wave t ra in ahead of the shock must have a 
group ve loc i ty greater than the phase ve loc i ty and a wave train behind must 
have a group veloc i ty l e s s than the phase veloc i ty . The points which satisfy 
this condition a r e indicated by a r r o w s . Note that, f o r shallow water , the 
only poss ib le case is a wave train ahead of the shock. F o r deep water, 
waves e ither behind o r ahead would be p o s s i b l e at c o n s i d e r a b l y d i f f erent 
wavelengths . The exper iments indicate that the l o n g e r wavelength i s the 
dominant one as one might expect if one viewed the shock as having been 
f o rmed by a steepening p r o c e s s . 

PLASMA WAVE TRAINS 

The d i s p e r s i o n relat ions f o r a z e r o temperature p lasma are shown in 
the left part of F ig . 4 f o r a shock propagating perpendicular to the magnetic 
f ield and at 60°. (The curve on the far right corresponds to e lectron plasma 
osci l lat ions and probably has too short a wavelength to be of interest) . For 
shocks propagating at an angle to the f ield we see that the allowed case with 
the longest wave length co r responds to a wave train ahead of the shock with 
a wavelength of the order of the ion gyro - rad ius . F o r propagation perpendi-
cular to the magnetic field the wave train would exist behind and have a wave-
length about 40 t imes smal ler . Examining the dispers ion relation at various 
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angles showsthat the wave train behind would only exist f o r a smal l range 
of angles ( ~ ^ m e / m i ) in the neighbourhood of 90°. Thus the m o r e c o m m o n 
case would have wavelengths comparable to the ion gyroradius and the wave 
train ahead. 

Thus far we have d iscussed the wave trains entirely as small amplitude 
waves . The water p ic tures show a finite amplitude which retains its shape 
as the shock propagator . Thus we must stil l ask whether such t ime i n d e -
pendent finite amplitude solutions exist . It has been shown, both f o r water 
[5, 6] and f o r p l a s m a s [7, 8 ] , that such non- l inear solutions ex is t . In the 
complete absence of d iss ipat ion these solutions give only a so l i tary pulse . 
However, with any small dissipation a non- l inear wave train develops which 
then gradually damps. The damping in the p lasma case might be due to the 
remaining co l l i s ional e f f e c ts o r Landau damping. 

TURBULENT PLASMA SHOCKS 

It is c l ear that f o r suf f ic iently weak shock waves the laminar solutions 
d i s cussed above wil l apply. However at s o m e shock strength, which is at 
p r e s e n t not c l e a r l y d e t e r m i n e d , we would expec t instab i l i t i es to b e c o m e 
important and lead to a turbulent shock. Several spec i f i c instabilities have 
been suggested re cent ly [9, 10]. We wil l d i s c u s s a m o d e l which has been 
suggested f o r a fully turbulent shock [11] propagating perpendicular to the 
magnet ic f ie ld into a z e r o t emperature p lasma. We will f i r s t d i s c u s s the 
f o r m a l equations which ought to be so lved [12] and then indicate the extent 
to which a poss ib le solution can be suggested. 

The general p icture cons is ts of a gradual change in density, magnetic 
f ield and flow ve loc i ty upon which is super imposed a random field of waves . 
F o r moderate shock strengths these wave amplitudes will be smal l enough 
so that quas i - l inear theory may be applied. The wave spectrum will be d e -
termined by the wave interactions with one another and with the overall f low. 
The flow in turn will be coupled to the wave spectrum by the momentum and 
energy f luxes assoc iated with the waves . 

F o r z e r o t emperature there will be no resonant par t i c l e e f f e c t s , thus 
the wave kinetic equation is of the f o r m 

Рпь = 3nk | dx 3nk dkx Эпк = /ЭпЛ 
D t 8 t d t Эх d t Эк х ~ V a t /wave-wave 

where the non- l inear interaction t e r m is due entirely to wave-wave scattering. 
nk i s the number of quas i -par t i c l e s o r the energy at wave number к divided 
by ftw. (See paper by Kadomtsev* ) . The t e rms dx /dt and d k x / d t are to be 
evaluated fol lowing a wave packet . Thus 

dx 
dT = u + v <2> 

where u is the f low ve loc i ty and is the x - component of group ve loc i ty r e -
$ 

These proceedings. 
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lative to the fluid. F r o m the condition that the frequency in shock fixed c o -
ordinates и+k x u is a constant in a steady state shock we obtain 

dkx du 
dt^ = dx ( 3 ) 

where we have a lso assumed that the d ispers ion relation contains no explicit 
dependence on x . This assumption makes use of two results to be descr ibed 
b e l o w . We have a s s u m e d that the relevant wave spec t rum cons i s t s of the 
whistler mode at frequencies well above the ion cyclotron frequency and well 
below the e lectron cyc lotron frequency. In this frequency range и is a func -
tion of В / p and ïc only . Thus, f r o m E q . ( 6 ) be low there is no expl ic i t d e -
pendence on x . Rewriting E q . ( l ) f o r a steady state shock structure making 
use of Eqs . (2) and (3) we have 

( и + „ ч Э £ к _ к d u a n ^ / Э п Л 
( U V Эх ' K x d x Э к х \ 9 t у wave-wave' W 

This e x p r e s s i o n re la tes the wave s p e c t r u m to the mean f l ow through 
u and du /dx . In o r d e r to obtain the e f fect of the waves on the f low we must 
write the conservat ion equations. These take the f o r m 

p u = p 1 u 1 ( 5 ) 

5 = S i 
P Px 

Б 2 B 2 
Pu2 + ^ + p x x = P l U Î + g ^ 

•В2 ! ! В ? ш ( e + p x x ) u + q x + | p U 3 + ' ^ = | p l U 3 + 4 ^ 

(6) 

( 7 ) 

(8) 

where 

Pxx = /d3knkftkxvg (9) 

e = /d3knk f iu (10) 

qx = Jd3knkhuvg (11) 

where В is to be interpreted as the average f i e ld . The contribution to the 
magnetic s t ress tensor due to the fluctuating f ields of the waves is contained 
in p x x . p x x can be evaluated by summing the contributions to the magnetic 
s t ress f r o m each of the waves. It is , however , obtained more simply in the 
f o r m given in E q . ( 9 ) by observ ing that p r e s s u r e is a momentum flux and is 
t h e r e f o r e the product of the m o m e n t u m of a q u a s i - p a r t i c l e (wave) ftk and 
the ve loc i ty at which it t ransports energy or momentum, v^, summed over 
the total number of quas i -part i c les . Similarly e and qx are the wave energy 
density and energy flux relative to the fluid. 
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In pr inc ip le we should now t r y to find a solution of E q s . (4) to (8) . In 
p r a c t i c e this i s e x t r e m e l y d i f f i cul t s ince a n o n - l i n e a r part ia l d i f f erent ia l 
equation is involved. F o r m a l l y the equations do not d i f f er v e r y much f r o m 
the coupling of the Boltzmann Equation with the fluid equations which must 
be solved f or ordinary shock waves. There is, however, one great s impl i f i -
cation which can be used f o r ordinary gases , which is absent in the present 
c a s e . Namely , there i s an equi l ibr ium par t i c l e distribution (Maxwell ian) 
which can be used as a base distribution function. One can then make either 
a perturbation expansion about the Maxwel l ian distr ibution function, as is 
done in the Chapman-Enshog p r o c e d u r e , o r make use of Maxwell ians in a 
parametr i c descr ipt ion of the distribution function, as was done by M O T T -
SMITH [13] . In the present c a s e h o w e v e r the wave s p e c t r u m at t h e r m o -
dynamic equi l ibr ium is much too s m a l l to p r o d u c e s igni f icant e f f e c t s and 
we have no a p r i o r i knowledge of an expected turbulent wave spec t rum. 
Some suggest ions f o r general features of the s p e c t r u m w e r e made in Re f . 
[12]; however they did not lead to a comple ted argument . 

Let us attempt to est imate the shock thickness f o r a poss ib le solution 
of this set of equations by satisfying three minimum criter ia [11]. First , there 
must be an energy source f o r the turbulent wave energy. This is contained 
in the equations, as may be seen by multiplying Eq. (4 ) by h и and integrating 
over wave number space. The wave col l is ion term does not contribute since 
wave energy i s c o n s e r v e d in w a v e - w a v e s cat ter ing . Making use of s o m e 
integrations by parts , this energy moment b e c o m e s 

S a ± * U p „ g . . . d i 

The f i r s t t e r m is the divergence of the wave energy flux and therefore the second 
t e r m must be a wave e n e r g y s o u r c e . Whether it is a pos i t ive o r negative 
depends on the s ign of d u / d x . F o r a c o m p r e s s i v e f l o w , as in the s h o c k , 
du /dx is negative c o r respond ing to a s o u r c e . Th i s energy s o u r c e may be 
regarded phys i ca l ly as s imply the work done against the wave p r e s s u r e in 
an adiabatic c o m p r e s s i o n assoc ia ted with the c o m p r e s s i v e f l ow . 

Secondly, we must require that the waves have a sufficient group velocity 
so that they can propagate u p s t r e a m against the f l ow . If they did not they 
would simply be blown downstream by the flow and leave the shock transition 
region. If we assume that, as in the case of weak waves, the longest wave -
length which can do this wil l be important , we must ask f o r the s m a l l e s t 
value of к which has a group v e l o c i t y equal to the f l ow ve loc i ty ahead of the 
shock, in o r d e r to define a typical wave number in the wave spectrum. F o r 
waves somewhat above the ion c y c l o t r o n f r equency the d i s p e r s i o n relat ion 
may be approximated by 

u = ^ - k k z (13) 

where VA i s the A l fvén speed, Qi the ion c y c l o t r o n f requency and k z i s the 
component of к para l le l to the magnet ic f i e ld . Setting the x - c o m p o n e n t of 
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group ve l o c i ty equal to the flow speed ahead, i . e . the shock Mach number , 
M, t imes the Al fvén speed, we obtain 

o r s ince the minimum magnitude of к is achieved f o r kx = k^ 

k = 2 M ^ - . (15) 
V A 

The third c r i t e r i o n which must be sat is f ied is that there be s o m e 
randomization p r o c e s s to prov ide the entropy change required by the c o n -
servation conditions. The only randomizing process present in the equations 
i s the w a v e - w a v e scat ter ing t e r m . The shock th i ckness must t h e r e f o r e 
be suf f i c ient to a l low f o r w a v e - w a v e s ca t t e r ing . On the o ther hand, the 
shock cannot be too many scatter ing lengths wide , s ince the wave energy 
must increase f r o m an extremely smal l value ahead of the shock to a finite 
value behind. This would correspond to a very strong shock in an ordinary 
gas in which the temperature rat io a c r o s s the shock is v e r y l a r g e . Since 
this requires a l a rge entropy charge the gradients must be very steep, i . e . 
of the order of the scattering length. The mean time for scattering of a wave 
by other waves m a y be evaluated f r o m the expl ic i t f o r m of the w a v e - w a v e 
scattering t e r m and, assuming a fa i r ly broad wave spectrum, turns out to 
be of the o r d e r of 

B 2 1 

the corresponding distance a wave travels be fore being scattered, which we 
shall take as an estimate of the shock thickness, is then the t ime given 
above multiplied by the group ve loc i ty o r roughly 

~ B 2 1 

E q . ( 1 7 ) def ines the shock thickness in t e r m s of the mean wave number 
к which is def ined in E q . ( 1 5 ) and the wave e n e r g y e which is de termined 
by the conservat ion equations (5) to (8) 87re/B2 i s a rapidly increasing f u n c -
t ion of Mach number thus the s h o c k th i ckness d e c r e a s e s rap id ly with i n -
c r e a s i n g Mach n u m b e r . At a Mach number of two we find that the shock 
th ickness i s roughly 

L (18) 

EXPERIMENTS 

Direc t exper imental ev idence f o r the structure of co l l i s i on f r e e shock 
waves is at present v e r y m e a g r e . At the t ime that Re f s . [11] and [12] were 
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wr i t ten w e thought that they had been p r o d u c e d in the l a b o r a t o r y and had 
a thickness in agreement with the above est imate . T h e r e i s , however , an 
alternate explanation of the o b s e r v e d structure in t e r m s of ionization p r o -
c e s s e s [14] which casts cons iderable doubt on interpreting the experiments 
as co l l i s i on f r e e shock waves . 

Recent satell ite exper iments have, however , shown c lear evidence f o r 
the existence of a co l l i s i on f r e e shock wave standing ahead of the m a g n e t o -
sphere . The mean f r e e path f o r part i c le co l l i s i ons in the so lar wind, plasma 
i s g r e a t e r than the d i s tance to the sun, thus, if a shock wave i s to ex i s t 
ahead of the magnetosphere it must be c o l l i s i o n f r e e . Magnetometer data 

GEOCENTRIC DISTANCE (R.I 

• ! . ' ' ' b , • i - i i 
- ! ! H • i 

- . - л . . . . . . 

• - ¡on gyro f o d i u i 

Fig. 5 

IMP magnetometer data 

taken by NESS [15] in the IMP satell ite is shown in Fig . 5. The upper curve 
i s the magnitude of the average magnet ic f ie ld and the l o w e r curve i s a 
measure of the r m s variations in f ield strength. At large distances f r o m the 
earth the f ie ld has a re lat ively steady value. At about 23 earth radii there 
i s a sudden jump in magnitude as we l l as an i n c r e a s e in f luctuation l e v e l . 
This shock transition appears almost discontinuous in magnitude of B. How-
e v e r the fluctuation l eve l s e e m s to increase over a distance of the o rder of 
the gyroradius . In data f r o m other passes , the magnitude of В also i n -
c r e a s e s in a finite d istance . Behind the shock the fluctuation leve l appears 
to r e m a i n high. At about 16 earth radi i the f ie ld again i n c r e a s e s at the 
magnetosphere boundary . 

The data f r o m IMP has, at present , not been analysed in sufficient d e -
tail in the neighbourhood of the shock, to make c l ear quantitative statements 
about the shock thickness or dissipation mechanism. It i s , however, c l ear 
that shock t h i c k n e s s e s , of the o r d e r of the ion g y r o r a d i u s o r l e s s , o c c u r 
and that s igni f i cant turbulence i s p roduced in a s trong s h o c k . 
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A D V A N C E D K I N E T I C T H E O R Y 

R. BALESCU 
UNIVERSITE' LIBRE DE BRUXELLES, BRUSSELS, BELGIUM 

1. OUTLINE OF THE GENERAL THEORY 

In this paper we always consider a simple model of a plasma 
consisting of N particles of charge e, mass m, enclosed in a cubic box of 
volume Г2, the average density being С = N/f2. The total charge is neutra-
lized by a continuous background of opposite charge, which otherwise plays 
no ro le in the dynamics. The Hamiltonian of this system is there fore 

N ? 

i=1 

where 

jn | x r x n | CI 1 
1 

the Fourier transform VL being 

f 1 - 3 * 

The system is descr ibed by a N-part i c le distribution function 
• • ^J» . . . vN ; t j s f ^ x , v; t), which is normal ized to one: 

J W ) N ( d ? ) N f N = l . (1 .4) 

F r o m this function, one can define reduced distribution functions 
(5?!. . . Vj. . . vs ; t) by integrating over N - s part ic les : 

fsft. . . 2 , , ^ . ..%;t) " p f r j j , f(d?)N"S(dv)N"V (1. 5) 

The factor in front of the integral takes care of the fact that we are in-
quiring about the probability of having one particle in x j , v j , one particle 
in 5?2, % » • • • regardless of their identity. The reduced functions are the 
only quantities of real interest, because all relevant physical quantities (den-
sity, local velocity, two-point correlations, etc. ) are expressed in terms 
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of f j and f j . Another important quantity is the one -par t i c l e ve loc i ty d i s -
tribution ф t): 

Ф ( v ; t ) = j j j d v f i ( x . $ t ) . (1 .6) 

Note that 

Jdvç(v; ' r, t) = l . (1 .7) 

The N-body distribution obeys the Liouville equation 

+ I ^ ^ • S X ^ f N = t 1 -
j j<n 

where 
a t = a / a t 

V = 3 / 3 X j 

3j = 3/3 Vj 
-> - > 

3 j n = 3 j - 3 n 

Our general method is based on a formal solution of the Liouville equa-
tion (1. 8) which is a l inear equation. The solution is expanded as a power 
ser ies in e2 and the various terms are analysed by means of a diagram tech-
nique. The latter enables one to choose among all t e r m s those which are 
relevant f or a given problem (in general, an infinite subseries of the c o m -
plete perturbation ser ies ) . The latter are then summed explicitly, or they 
are shown to satisfy a new equation, dif ferent f r o m the original Liouvil le 
equation, which i s the kinetic equation of the prob l em at hand. We shall 
outline the method here ; readers interested in details are r e f e r r e d to the 
author ' s book [1]. 

The solution of Eq. (1. 8) (which is l inear) can be expressed in t e r m s 
of the Green ' s function, which obeys the equation 

^ ( x v t |x' v ' t ' ) = 6 (x - x ' ) 6 (v - v ' )6 (t - t ' ) (1. 9) 

with the causal condition 

0 ( x v t | x ' v ' t ' ) = 0 for t ' > t . (1 .10) 

The variables x ' v ' t 1 are mere parameters in Eq. (1. 9). However, one can 
regard S? as an operator whose matrix elements are 

< x v | s ? ( t , t ' ) | x ' v ' > s a ? ( x , v , t | x ' v ' t ' ) . (1 .11) 

3 7 * 
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Its operation on a function is defined by 

g?f = dvSÍ(xvt |x' v ' t 1 )f(x' v ' t 1 ). (1 .12) 

With this definition it is easily shown that the solution of the initial value 
problem for Eq. (1. 8) is given by 

fN(t) = » ( t ,0 ) f N (0 ) . ' (1 .13) 

Hence S^(t, 0) is the operator which, acting on the initial value, trans-
forms it into the solution at time t. It is shown that ^( t , t 1 ) actually depends 
only on the difference t - t ' if the interaction V does not depend on time. One 
can then introduce the Laplace t rans form of the G r e e n ' s function, cal led 
the reso lvent o p e r a t o r â t ( z ) : 

oo . 

5?(z) = JáT&{r)eiZT (1.14) 
о 

and, feeding this back into Eq. (1. 13): 

> e - ^ ( z ) f N ( 0 ) , (1 .15) 
с 

С being a contour parallel to the real axis, lying above all singularities of 
the integrand. Eq. (1. 15) is our fundamental starting point. 

We now do perturbation theory .We there f o re make the fo l lowing d e -
composi t ion : 

J=Jo+ e 2 ^ ' 

s I / * = I ^ w v 
j<n j<n 

Let us also call g?%r) the G r e e n ' s function of the unperturbed Liouville 
equation, and^?°(z) the corresponding reso lvent . It i s then demonstrated 
[1] that the complete G r e e n ' s function obeys the following integral equation: 

t 

8? (t) = 9?°(t) - e 2 y d t '' &°(t - t;' ) J ' & (t1 ) 
о 

(1 .17) 
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and corresponding ly 

á ? ( z ) - e 2 ^ ' ( z ) j C , S t ( z ) , ( 1 . 1 8 ) 

Hence, i fá?°(z) is known, Eq. (1. 18) can be so lved by s u c c e s s i v e iterations, 
and the result substituted into Eq. (1. 15) gives the s e r i e s 

oo 

f N ( t ) = ¿ J d z e ' i z t ^ ( - e 2 ) n ^ ° ( z ) [ , ^ 0 ( z ) p f N ( 0 ) . (1 .19 ) 
С n=0 

This i s the general solution of the Liouvi l le equation in t e r m s of an infinite 
perturbation s e r i e s . 

In o r d e r to make ca lculat ions with Eq. (1. 19) it is convenient to w o r k 
in a r e p r e s e n t a t i o n in which the o p e r a t o r á?°(z) i s d iagonal . It i s e a s i l y 
seen that this i s the c a s e in F o u r i e r representat ion (indeed, Eq. (1. 16), 
i s then a purely a lgebra i c operator ) . We t h e r e f o r e expand the distribution 
function as 

f N ( x , v ; t ) = ^ e " « p k ( v ; t ) (1 .20 ) 

к 

( indeed, к stands f o r the set E i . . ,I?N, and E x m e a n s cEj -Xj ) . The m a t r i x 
e l ements of any o p e r a t o r are def ined as 1 

<k|A|k>> = / d x e - i k x A e i k ' \ ( i . 2 l ) 

Eq. (1. 19) then b e c o m e s an equation f o r the F o u r i e r components : 

» г 

P k ( v ; t ) = ¿ ^ J d z e - i z t ( - e 2 ) n ^ < k | ^ 0 ( z ) u ^ ° ( z ) ] n | k < > p k , ( v ; 0 ) . ( 1 . 2 2 ) 

n=0 к' 

F r o m Eq. (1. 16) one obtains: 

< k | « 0 ( z ) | b t > = ï î ^ r T ) 6 ( k - k « ) (1 .23 ) 

and, using E q s . (1. 2) and (1. 16): 

< k | ^ n | k ' > — Vtü.üi i(Ê' - С . ) ' Çï m I j j' J r 

•9jn ô(k j + k n - ï d - к ' ) П e ( k t - k { ) . (1 -24) 
гД, n 
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T h e r e appears a se lec t ion rule stating that at each e lementary interact ion, 
the s u m of w a v e - v e c t o r s i s c o n s e r v e d . We must s t r e s s t h a t < k | o f ' 
is an operator acting on functions of the ve lo c i t i e s . The Liouvi l le equation 
(1. 8), t r a n s f o r m e d to Four i e r space reads as: 

3 t Pk + i ^ kj-vjPk = e 2 ^ < k | ^ » |k«>Pk- • ( 1 - 2 5 ) 

j ' . k-

The f ormula (1. 22), when written out expl ic it ly , contains of c o u r s e an 
enormous number of t e r m s , c o r respond ing to all poss ib le combinations of 
w a v e - v e c t o r s in the intermediate states . In o r d e r to c l a s s i f y these t e r m s 
we introduce a graphical representat ion of each of the t e r m s in this s e r i e s , 
by using the fo l lowing ru les : 

(a) With each m a t r i x e l ement oígt°(z): \st°{z) ¡к1)) we a s s o c i a t e a set of 
superposed l ines ; the number of l ines equals the number of non-vanishing 
w a v e - v e c t o r s in the set k. 

(b) Each line ie labelled with an index, representing the particle associated 
with the corresponding wave vec tor . 

(c ) With each m a t r i x e lement of J!jn : > we a s s o c i a t e a v e r t e x 
which is the c o n c o u r s e of the l ines label led j and n in the set к (if any) and 
of the l ines label led j and n in the set k ' (if any). 

F o r instance the d i a g r a m shown in F i g . 1 c o r r e s p o n d s to the c o n t r i -
bution to (v^ |. . . ; t) f r o m p¡*¡ jî, (va, vn |. . . ; 0) d e s c r i b e d by the fo l lowing 
t e r m of Eq. (1. 22): 

X i ( g . - v a + ( i - g ' ) V j - z ) ^ ' ' & * l - a I * - * - ff,>i(g'-va + ( V g . ) ^ n - z ) 

In this , m o r e exp l i c i t n o t a t i o n , | . . . ; t) m e a n s the F o u r i e r component 
with one n o n - v a n i s h i n g w a v e v e c t o r Й c o r r e s p o n d i n g to the p a r t i c l e a . 

The d iagrams are m o r e than a p i c tor ia l representat ion of the var ious 
t e r m s . One can prove a number of t h e o r e m s relat ing the shape of the d ia -
g r a m (number and type of v e r t i c e s , c o n n e c t e d n e s s , e t c . ) to the o r d e r of 
magnitude of the c o r r e s p o n d i n g t e r m as a function of e2 , c , t, . . . Hence , 
the p r a c t i c a l p r o c e d u r e of cho i ce in so lv ing a given p r o b l e m i s as f o l l o w s . 
One f i r s t dec ides , on physical grounds, the order of magnitude of the t e rms 
one wants to re ta in . One then draws all p o s s i b l e d i a g r a m s which a r e of 
that o r d e r . One f inal ly sums the c o r r e s p o n d i n g t e r m s . We have no t i m e 
to go into the details of the method here : many examples have been worked 
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i n 

M 

Fig. l 

Diagram corresponding to the contribution to 

P j f ^ l - • • : 0 from ( 7 a , 7n |.. . ;0) 

out in Re f . [1 ]. We shal l t rea t h e r e a f ew p r o b l e m s which wi l l show how 
the method w o r k s . 

2. N O N - M A R K O F F I A N KINETIC EQUATION F O R P L A S M A S 

We want an equation d e s c r i b i n g the evo lut ion in t i m e of the r e d u c e d 
o n e - b o d y distribution of a p lasma . Its F o u r i e r decompos i t i on is given by 

where Pkfva; t) is the integral of v a | . . . ; t) o v e r all v e l o c i t i e s but v a . If 
the s y s t e m w e r e homogeneous , the only t e r m le f t in Eq. (2. 1) would be 
ccp(va ;t) , the ve loc i ty distribution. We cons ider f i r s t this t e r m . We need 
to write down all the diagrams ending with no line at left. The most general 
type of diagram is shown in Fig. 2. 

We represent by <2> the sum of all poss ib le diagrams with no external 
l ine and in which no intermediate state is the " v a c u u m " state . Such d i a -
grams are cal led diagonal f ragments . <l is the sum of all diagrams having 
no external line at left , but having a number of them at right, and again no 
intermediate vacuum state: these are the destruction f ragments . 

Taking advantage of this s t ruc ture , we m a y wr i te Eq. (1. 22) f o r SI = 0 
as f o l l o w s 

i ; t ) = c [ cp (v a ; t )+ J die p ^ ; t ) e k ' X a ], ( 2 . 1 ) 

Po (v; t) = ¿ Jdz e " i z t P0 (v; 0) + A 0 (z ) pQ(v; z) + £ <2>ok(z)pk(v; 0 ) ] 
к 

( 2 . 2 ) 

С 
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Fig. 2 

D i a g r a m o f the m o s t g e n e r a l t y p e 

The last equality de f ines the Laplace t r a n s f o r m of p 0 ( v ; t ) . The d e c o m p o -
sit ion c o m e s out as f o l l ows : 
(A) The f i r s t t e r m i s the z e r o ' t h o r d e r t e r m . 
(B) The s e c o n d t e r m is the s u m of all t e r m s beginning at l e f t with a d i -
agonal f r a g m e n t ; we def ine 

oo 

Ao(z)= £ < 0 | ^ ' [ ^ 0 ( z ) J " ] n | 0 > . ( 2 . 3 ) 
n = l 

( a l l d i a g o n a l 

f r a g m e n t s ) 

This o p e r a t o r acts on the Lap lace t r a n s f o r m of i t se l f , as can be s e e n 
f r o m Fig . 2. 
(C) The third t e r m r e p r e s e n t s the sum of all t e r m s beginning at le f t with 
a destruct ion f ragment : 

^ o k ( z ) = 2 < D | i " [ ^ 0 ( Z ) ^ ' ] n | k > . ( 2 . 4 ) 
n = 0 

( a l l d e s t r u c t i o n 

f r a g m e n t s ) 

This opera tor acts on the F o u r i e r components ( c o r re la t i on funct ions) 
at t ime z e r o . 

T o get the kinetic equation, we take the t i m e der ivat ive of both s i d e s 
of Eq. (2. 2), and integrate them o v e r all v e l o c i t i e s but v a . The resu l t i s 

9t<p(a;t)= / d v ¿ J~dz e" i z t [AQ(z) pQ (v; z) + V ^ o k ( z ) p k (v; 0)] . ( 2 . 5 ) 
(a) С k 

This f o r m is not yet sat i s fac tory because of the o c c u r r e n c e of the Laplace 
t r a n s f o r m . We el iminate it by inverting the second Eq. (2. 2): 

oo 

dtq>(a; t) Jdv Jdze'i™ [A0(z) JdTe^p0 ( V ; T ) 
( а ) С 0 

+ X ^ b k ( z ) p k ( v ; о ) ! 
к 

(1.17) 



584 R. BALESCU 

or , after s ome algebra 

t 

8,q>(a;t) = Jàrj^ Jdz e'iZT Jdv A0(z)p0 (v; t - r) 
О С (a) 

+ ¿ J dz e" i z t Jdv ^ ¿%(z )p k(v;0). (2.7) 
с (a) k 

This is the bas i c equation we shall now d i s cuss . 
(a) F i r s t we note that in all p r o b l e m s invo lv ing many b o d i e s , one m u s t 
assume that the corre lat ions between part ic les vanish for infinite separation. 
It is shown that this implies 

P 0 ( v ; t ) = ¡ ? ( v j ; t ) . ( 2 . 8 ) 

j 

Actual ly , if this i s assumed at t ime z e r o it wi l l be maintained at all later 
t imes . This condition c l oses the equation: (2. 7) is there fore a highly non-
l inear equation. 
(b) Eq. (2. 7) is a typical non-Markoffian equation. In other words, the evo -
lution of ф at t ime t is re lated to the values of ф at all e a r l i e r t imes , as is 
seen f r o m the f i r s t t e r m . This is in contrast with usual kinetic equations 
(Boltzmann, V lasov , etc ) . 
(c ) The evolution of ф(а; t) is a functional of the c o r re la t i ons at the initial 
t i m e . Th i s i s another aspec t of the long range m e m o r y of the s y s t e m . 

We now note that Eq. (2. 7) is stil l an exact equation: the only a s s u m p -
tion there is the l a r g e s i ze of the s y s t e m . In o r d e r to spec ia l i ze it f o r the 
case of a p lasma to dominant o rder , we must make a cho ice among the dia-
g r a m s . We have no t i m e to go into the detai led arguments just i fy ing this 
c h o i c e . Let us state that we retain all d i a g r a m s of o r d e r e 2 ( e 2 c ) p , which 
i s shown in F i g . 3. 

B e f o r e showing how the d i a g r a m s can be s u m m e d let us indicate how 
the general equation s impl i f i e s in spec ia l situations. It must f i r s t be noted 

A 0 

Fig- 3 

Diagram of order e 2 (e 2c)p 
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that in s i m p l e c a s e s , and in par t i cu lar in the p l a s m a l imi t , t h e r e appear 
two widely separated t ime s c a l e s , i . e . a short t ime s ca l e , of the o r d e r of 
Up1, the i n v e r s e p l a s m a f r e q u e n c y , and a long t i m e s c a l e of the o r d e r of 
the re laxat ion t i m e , o r the o r d e r of the t i m e rate of change of cp. It turns 
out that the short t i m e contributions c o m e out of the s ingular i t ies of A 0 (z ) , 
which in normal c a s e s are located at distances of o r d e r u>p off the rea l axis . 
We m a y then neg lec t the retardat ion in Eq. (2. 7) and wr i te the M a r k o f f i a n 
approx imat ion to the kinetic equation as 

Jdz~- JdvA0(z)p0(v,t) 
С (ot) 

+ ~ Jdz e~izt Jdv 0). (2. 9) 
с k 

We now can go a step fur ther . If, as said above , all s ingular i t i es of 
A 0 (z ) and of &ok( z ) a r e l o cated f a r down in the c o m p l e x plane, the c o r r e s -
ponding res idues give rapidly damped t e r m s , and can be neglected. There 
r e m a i n s a single t e r m to be c ons idered , i . e . the res idue of the f i r s t t e r m 
in the r . h. s * at the po le z = 0. Hence if we are interested in the l o n g - t i m e 
behaviour of a normal (in part icular , a stable) p lasma, Eq. (2. 9) s impl i f i es 
to 

3 tcp(a;t)= J d v A 0 ( 0 ) p 0 ( v ; t). ( 2 ,10 ) 
(a) 

This is the usual kinetic equation of p l a s m a s , valid f o r long t i m e s . It has 
now r e d u c e d to a Marko f f i an , n o n - l i n e a r equation in which the m e m o r y of 
the initial c o r r e l a t i o n has d i sappeared . 

Let us now outline schematical ly how the ring diagrams can be summed. 
We s t r e s s the fact that r ing d iagrams are among the v e r y few examples in 
p h y s i c s in which a per turbat ion s e r i e s can be s u m m e d in c l o s e d f o r m . 

We f i r s t note that all r ing d iagrams begin at le f t with the s a m e vertex : 
<C . We there f o re r e - w r i t e the f i r s t t e rm in the r . h . s . of Eq. (2. 7) in the 

fo l lowing f o r m (the destruct ion t e r m can be handled in a s i m i l a r way and 
wil l not be c o n s i d e r e d h e r e ) . 

Э [ ф (в) = J d ! d « F r ( v a ; t ) , (2. 11) 

where d a = - 8T3e2c rrr1 Vi i l - <fa is essentially the matrix element corresponding 
to d , and F f ( v a ; t ) is the remainder of the s e r i e s . Note that all ve loc i ty 
integrations have been included in Fj*, which is t h e r e f o r e a function of v a , 

* R i g h t h a n d £ i d e . 
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and t. The function t) is written in the f o r m 

i 

F ? ( v a ; t ) = ¿ Jàr J d w e - u « T F T ( v a ; w ) (2 .12) 
о с 

(we took the new Laplace variable w for convenience). F-¡»(v; w) is a func-
tion of v, w and t - T, through the distribution function CP(V; t - Т). The latter 
parameter t - т wi l l not be written expl ic it ly . An examination of the s e r i e s 
of d iagrams shows that the sum FjKv; w) obeys a r e c u r r e n c e relation which 
is actually an integral equation: 

e^ ( » -w )F T ( v ;w )=£U(v ) / ц ^ ) ^ + w > ' < 2 - 1 3 > 

where v = e^-(u) is the d i e l e c t r i c constant of the p lasma which is r e g u -

la r in the l o w e r ha l f -p lane of w. d¡*(v) and q-»(v; w) are s o m e funct ionals of 
tp(v; t - T) which we shall not spec i fy . Noting now that the kernel depends only 
on the component paral le l to 1 of the ve l o c i t i e s , we can multiply both s ides 

I** of the equation by &(v — — ) and integrate o v e r v. Calling 

~Uv)* / d v e ( v - ^ ) f j v ) 
1 J * J 

we obtain an equation f o r the b a r r e d functions: 

oo 

< - ( v - w ) F t ( v ; w ) = i f d + ( 2 Л 4 ) 

-во ^ 

This equation is written f o r complex w. Remember w must be on a parallel 
to the rea l axis above all s ingularit ies of Fj^i/; w). As it stands, this equa-
tion cannot be so lved in c l o s e d f o r m by any standard method. However , if 
we are allowed to move w down to the rea l axis , the kernel (v - w - vj)"1 b e -
c o m e s 

7riá_(i/ - w - t / i ) = p t ; . w . t / + iri&(v-w-Vi) (2. 15) 
* » 

and the equation b e c o m e s of a type known as a Cauchy singular integral equa-
tion. There exists an extensive literature (see f o r instance Ref. [2]) treating 
these equations, which can be solved in c losed f o r m . 

It turns out that, if the p rov i so is satisf ied, the solution of Eq. (2. 13) is 
of the f o r m : 
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• r < * • > • ? - • ч Д ^ - ч ' ( 2 - i 6 ) 
у 

Q j being a functional of çp(v; t - т ) . We must now d iscuss whether our initial 
assumption (about the poss ib i l i ty to m o v e w down to the rea l axis) is sa t i s -
f ied . This depends on the behaviour of the integral in Eq. (2. 14). The whole 
point can be seen f r o m the f i r s t t e rm of the solution in Eq. (2. 16). The c o r -
responding t e r m in the integrand of Eq. (2. 14) is 

q-~!(- Vi : w) q-l(-VbW) 
[v - w - 1 / х )е^( -v - w) ei^j/ + w)(i/ - w - vj 

where e^u) is the " o r d i n a r y " d ie l e c t r i c constant, regular in the upper hal f -
plane. This function has a certain number of zeros ; l e t f + b e the zero closest 
to the rea l axis ; we can t h e r e f o r e write e+(u) =a+(w)(w- £,.). The integral i s 
t h e r e f o r e of the f o r m 

[dv ^ . 
J 1 ( v - W - I / 1 ) ( l / + W + Ç + ) 

This function has two cuts: one on the rea l axis ,Im w = 0, and one on the 
l ine , Imw =Imf+. Two c a s e s ar ise : 

(i) The p lasma is stable. Then all the z e r o s of the d ie l e c t r i c constant l ie 
in the l o w e r ha l f -p lane : ImÇ + <0 . In this c a s e , in lett ing w g o t o the r e a l 
axis , we c r o s s no cut, the singular integral equation is the proper- analytic 
continuation of the or ig ina l equation, and hence Eq. (2. 16) is "a so lut ion of 
Eq . (2. 13). Substituting Eq. (2. 16) into E q s . (2. 12) and (2. 11) (and adding 
the des t ruc t i on f r a g m e n t ) we obtain the genera l n o n - M a r k o f f i a n " r i n g 
equat ion" which d e s c r i b e s the evolut ion of a h o m o g e n e o u s p l a s m a f o r a r -
b i t rar i l y short t i m e s . Th i s equation r e d u c e s in the Marko f f ian l o n g - t i m e 
l imi t to the we l l -known r ing equation: 

atcp(va; t) = J Л / d v № f ^ 

• 6(I-Va- Г -Vi t f -^ (Ptv t)q>fà ; t) = w{q>} . (2. 17) 

(ii) The p lasma is unstable. In this case there is one z e r o (at least) in the 
upper half -plane: 1 т ^ > 0 . Hence, in letting w go to the rea l axis we have 
c r o s s e d a cut, and there fore Eq. (2. 16) is no longer a solution of the original 
equation (2. 13). 

H o w e v e r , we can st i l l obtain the solut ion in this c a s e by p e r f o r m i n g 
the p r o p e r analyt ical continuations. Starting f r o m the stable so lut ion 
(Eq. (2. 16)), we let move into the upper half -plane: this involves an ade-
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quate de f o rmat i on of the contour of integrat ion in the s e c o n d t e r m on the 
r . h . s of thatequation. In this way we obtain a non-Markof f ian kinetic equa-
tion valid f o r unstable p lasmas . 

If we assume that the instability is "weak" , i. e . Ç+ is suff iciently c lose 
to the rea l axis , we may again make a Markof f ian approximation and obtain 
a long-t ime kinetic equation. The only di f ference with the general treatment 
outlined above is that in t rans forming Eq. (2. 9) we must include the residue 
at the unstable po le w = |+ as we l l as the res idue in w = 0. The resul t is a 
kinetic equation of the genera l f o r m 

where Я?{ф} i s the n o r m a l c o l l i s i o n t e r m def ined in Eq. (2. 17) and^/icp} i s 
another funct ional of cp, of the genera l f o r m : 

Hence У{ф} is of the general f o r m of a Fokker -P lanck equation with a t i m e -
dependent diffusion coef f ic ient . Without giving the detailed f orm of the latter, 
we retain the property 

The e f fec t of ^{ф} is a stabil ization of the plasma. Starting with a two -
humped distr ibution, the stabi l izat ion p r o c e e d s through f r i c t i on — which 
br ings the two max ima c l o s e r together — and dif fusion — which broadens 
the humps. The stabil ization m e c h a n i s m is very e f f i c ient , as can be seen 
f r o m the exponential t ime dependence of D(t): the m o r e unstable the plasma, 
the m o r e important is the fr ict ion and the diffusion. 

B e f o r e f inishing, let us just mention that the analysis of the " i n h o m o -
geneity fac tor " p^(v;t) in Eq. (2. 1) can be done along the same lines, leading 
to a kinetic equation f o r this function. The calculations have been done by 
BALESCU and KUSZELL [3]. Here too, f o r smal l amplitude inhomogenei -
t i es ; an exact kinetic equation can be derived, as well f o r stable as f o r un-
stable p lasmas . 

3. T H E D I E L E C T R I C CONSTANT AND THE T H E O R Y O F BROWNIAN 
MOTION 

Much s t r e s s has been laid in recent y e a r s on the s o - c a l l e d "d i e l e c t r i c 
formulat ion" of the many-body prob lem. The start of this development has 
been given by NOZIERES and PINES [4] who showed that the ground state 
e n e r g y of a quantum m e c h a n i c a l e l e c t r o n - g a s can be e x p r e s s e d in t e r m s 
of the d i e l e c t r i c constant of the s y s t e m . Th is r esu l t has l a te r b e e n 
g e n e r a l i z e d and it has been shown that the f r e e e n e r g y of a s y s t e m in 
equi l ibr ium can be e x p r e s s e d in t e r m s of the d i e l e c t r i c constant ( for a r e -

3, cp(7; t) =4?{ф} +J?{q>}, (2. 18) 

(2. 19) 

D ( t ) ~ e 2 1 V , y0 = Im?+. 
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v i ew of these r e su l t s s e e Re f . [5]). It is t empt ing to invest igate the r o l e 
of the d i e l e c t r i c constant f o r s y s t e m s out of equi l ibr ium. It was shown by 
NOZIERES and PINES [4] that the stopping power of an e lec tron gas can be 
e x p r e s s e d in t e r m s of the d i e l e c t r i c constant in the B o r n approx imat ion . 

In a recent work BALESCU and SOULET [6 ] have shown that the concept 
of a d i e l e c t r i c constant p lays a centra l r o l e in the theory of the Brownian 
motion. Let us f i r s t d e s c r i b e the prob l em. The general Markoff ian equa-
tion f o r long t i m e s , Eq. (2.10), r educes to a part i cu lar ly s imple f o r m if we 
cons ider the s y s t e m to cons i s t of a test par t i c l e moving through a med ium 
which i s in equi l ibr ium. In that c a s e 

N 

P 0 ( v ; t ) = ^ ( v T ; t ) П <P°(vs ), ( 3 . 1 ) 
s= l 

where ^(vT; t) i s the v e l o c i t y distr ibution of the test par t i c l e , and cp°(vs) i s 
the equi l ibr ium distribution of the " f i e l d " par t i c l e s . If m o r e o v e r it is a s -
sumed that the coupling between test part i c le and system is smal l , then the 
leading diagonal f ragments wil l contain only two v e r t i c e s involving the test 
partic le (there cannot be l e s s than two! ). Hence the equation resulting f r o m 
Eq.(2. 10) under these c i r c u m s t a n c e s is a s e c o n d - o r d e r di f ferential equation 
in <p(v7; t) which can be written in the f o r m : 

Зф Э Г < A v > , 1 9 < A v A v > | , „ 

This is the c l a s s i c a l F o k k e r - P l a n c k equation govern ing the t h e o r y of 
Brownian motion. It should be s t r e s s e d that no assumption has been made 
on the density or interactions of the field part ic les . Our purpose is the ca l -
culation of the two coe f f i c ients ( A v > / A t and < A v A v ^ / A t which character ize 
the Brownian motion*. 

Independently of the prev ious d iscuss ion , we want to define the d i e l e c -
t r i c constant of a p l a s m a f r o m stat ist ica l m e c h a n i c s . Suppose f i r s t that, 
in a phenomeno log i ca l theory , we c o n s i d e r an external charge density of 
the f o r m 

eTpe x(x, t) - e ^ e ' 1 ' 7 " 1 " . ( 3 . 3 ) 

We want to calculate the f ie lds E(x; t), B(x; t) inside the plasma. The Poisson 
equation, after F o u r i e r - L a p l a c e transformation, can be written in either of 
the two f o r m s 

* W e m e n t i o n at this p o i n t that t h e r e is a n o t h e r c i r c u m s t a n c e in w h i c h E q . ( 2 . 1 0 ) r e d u c e s t o E q . ( 3 . 2 ) 

( o f c o u r s e , wi th d i f f e r e n t c o e f f i c i e n t s ) : it is the c a s e o f a test p a r t i c l e , a rb i t rar i l y s t rong ly c o u p l e d t o t h e 

m e d i u m , but h a v i n g a mass m u c h la rger than t h e m a s s o f t h e f i e l d p a r t i c l e s . A11 t h e results d i s cussed 

b e l o w c a n b e g e n e r a l i z e d t o c o v e r this c a s e as w e l l ( s e e Ré f . L6J ). 
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iK-Q^u) = 4тг е ^ е 1 " 1 

iC-Ê^u) = 4тг [еггре"1ая+ e h|d(u) ], 
( 3 .4 ) 

where eh$ d (u) is the induced charge density. We now assume: 
К 

= (3 .5 ) 
k к к 

and deduce the value of the d ie l e c t r i c constant e>(u) as: 
к 

_ J _ . 1 _ e h ' f (u>) 
e j " ) e ^ e - i w t ' 

(3 .6 ) 

If it turns out that eh 1^ (ш)~ ерГ^е"'"1, the r e su l t ing d i e l e c t r i c constant i s 
independent of the test par t i c l e and r e p r e s e n t s an intrinsic property of the 
medium. 

Let us now calculate the quantity h^"3 f r o m a m i c r o s c o p i c theory. Our 
system is a plasma of N e lectrons plus an additional test particle, of charge 
e T , assumed to be small : e T / e « 1. The Hamiltonian is therefore 

H = H,, + e SpH 

N 

H0 = Y lmvf+ Y Y, Vss' + l ^ T (3-7) 

s f r 

N 

' • I v 

S=1 ф' 

N 

H ' = 

s - 1 

Note that H0 contains now all the interactions among the f ield part ic les . The 
total charge density eh^ is def ined as e t i m e s the integral o v e r all v e l o c i -
t ies of the sum of the inhomogeneity fa c to rs corresponding to all part i c les : 

N 

ehf= J(dvs)"dvT[e ^ p - ( v 0 | . . . ; t ) + e T p ? ( v T | . . . ; t ) ] . ( 3 .8 ) 

We want to calculate this quantity as a function of t, starting at t ime z e r o 
with an appropr iate initital condit ion. The latter is chosen in such a way 
that the test par t i c l e i s not c o r r e l a t e d to the med ium, and that the test 
par t i c l e distr ibution is compat ib le with the a s s u m e d f o r m (3. 3) 

p ^ (vs,vT; 0) = p (vs; 0)i^ô(ïc - E ^ f i ^ - u)X(vTJ. (3-9) 
K s k T s 

X ( v T i ) i s an a r b i t r a r y funct ion of the c omponents of vT p e r p e n d i c u l a r to 
k]., n o r m a l i z e d to unity; Pk s(v s ; 0) are the initial F o u r i e r c omponents of 
the s y s t e m ; it i s a s s u m e d that the la t ter i s h o m o g e n e o u s : Ek s = 0. 
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Apply ing the p r e v i o u s f o r m u l a e we obtain 

P s . ( j | . . . ; t ) = ^ < Í Í ( j ) |â?(t) |ls; Г т = K)>Pis (vs ; 0)r^6(ic-vT - ы)Х} (3 .10) 

Is 

being the state with a s ingle non-vanishing wave v e c t o r , equal to ÏÎ, 
f o r part i c le j . 

A s the test part ic le is assumed to be weakly coupled to the system, we 
want the response only to f i r s t o r d e r in the perturbation. Hence 

t 

^ ( t ) = ^ ° ( t ) - e e T / d t 1 S í O ( t - t 1 ) u í , 1 ^ 0 ( t 1 ) . ( 3 .11 ) 
о 

We now note that in the unperturbed system, the test particle is not coupled 
to the plasma; one can then show that 

< l . ; í | » 0 ( t ) | l , ' ; ^ . > = < l , | » , ( t ' ) | l S > e - i í í \ t 6 f l t . 1 » 6(v^ - 7 T ) , (3. 12) 

w h e r e i s the G r e e n ' s function of the medium (in absence of the test par -
t i c le ) , ! . e . 

P k s K ; t ) = ^ < k s | ^ s ( t ) | k ' > p k . s ( v s ; 0). (3. 13) 
k's 

Substituting into Eq. (3. 8) we obtain, after s ome algebra: 

eh r ( t ) = е Л е - . « - е 2 е т г ? j d ^ / d v 
о 

N 

x £ ^<S ( 1 )|sr'(t-t l)|il I} ' ir j + S>XJe-^p1 |(v , ;t), (3.14) 
i . j = l I s ' 

where 

( 1 . 1 7 ) 
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is the matr ix e lement o£jT (actually there is an operator - in Eq. (3. 15), 
but the second t e r m gives a vanishing contribution after the integration over 
v T ) . Express ing now the Green 1 s function in t e r m s of the reso lvent y ie lds : 

t 

eh^(t) = etj, r^e"ilJt: -e2eTr^e" i tJt Jdt^ Jdz e " i z ( t " V 
о с 

X J d ^ ^ < I ? ( i ) | ^ s ( z ) | { l s } ^ + S > X j e i w ( t - t ' ) p l s ( v , ; ^ ) . (3 .16 ) 

i. j ls 

We now note that the induced charge density can be identif ied as 

and that this quantity is indeed proport ional to e rrke"U J t , as expected. Hence, 
the d ie lec t r i c constant is 

t 

i h - ' - ^ i J d r / d z e - ^ 
k о с 

X J d v s ^ < S ( i ) | ^ s ( z ) | { l s } ^ + C > X j P l s ( v s ; t - T ) . (3 .17 ) 

i. j Is 

This is the most general formula f or the die lectr ic constant of a plasma. 
We note that no assumption has been made on the density, intensity of the 
interactions, etc . Moreover the system has not been assumed to be in equi-
l i b r ium; t h e r e f o r e the d i e l e c t r i c constant is st i l l a function of t i m e . We 
note again here the non-Markof f ian character of the expression: the d i e l e c -
t r i c constant depends on the whole history of the system. 

If we now assume that the field part ic les are in equilibrium, pj = pf (vs ) 
is independent of t ime and 

1 e2 Г e-i(z - u)i 
i R u j " 1 = J d z - i ( z - u ) 

к С 

X / d V s Í I I { 1 « > ' í j + < <Vs )• 
i. j Is 

If, m o r e o v e r , we wait a su f f i c i ent t i m e f o r the s y s t e m to r e a c h a s teady 
state, i . e . f o r the transient contr ibut ions to die out , we obtain 

¿ ¿ p - 1 = - e 2 / d v s E ( 1 ) I - a ' M I { l s ЦХ> + Й>Хз rf, (V, ). (3 .18 ) 

i. i ls 
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This is the d i e l e c t r i c constant involved in usual situations in e l e c t r o -
dynamics . T o make contact with well -known formulae , we note that a s imple 
case contained in this formula obtains if we take 

p ° ( v s ) = 0 f o r l s / 0 

(i . e . we neg lec t the equi l ibr ium cor re la t i ons ) . M o r e o v e r , we retain only 
the fo l lowing d iagrams f o r the reso lvent : 

+ 0 + 0 û + _ 
j i j i n j 

The summation of these diagrams is very simple (it is just a geometr i -
cal progress ion ) , and the result is the Vlassov d ie lectr i c constant: 

ejl(u) = 1 - ^grri Jdv£3y(v)S_(£v - w). 

Coming back now to the Brownian mot ion t h e o r y , we shal l only quote 
the r e s u l t s without p r o o f . T h e s e r e s u l t s a r e obtained by c o m p a r i n g the 
d iagrams f o r the d ie lec t r i c constant and those f o r the kinetic equation. The 
p r o o f s which are s tra ight forward but somewhat lengthy can be found in 
Réf . L6J. 

T h e d i f fus ion t e n s o r in the F o k k e r - P l a n c k equation i s g iven b y 

Av Av ^ 2еет Г.т-» ЁК , , T 1 1 0 . 

and the f r i c t i on coe f f i c ient : 

< А ^ > _ е е г Г.г>.тг>. 1 ,. 1 9 < A v A v > „ „ . 
~ E T I m i p ^ j + 2 Щ — м — • ( 3 " 2 0 ) 

Let us s t r e s s o n c e m o r e that, although s i m i l a r f o r m u l a e have b e e n 
known e a r l i e r , the p r e s e n t ones are va l id quite g e n e r a l l y , whatever the 
nature of the m e d i u m . Such f o r m u l a e are useful b e c a u s e they lend t h e m -
se lves to approximation methods which could af ford new approaches to the 
study of Brownian motion and of t ransport c oe f f i c i en ts . 

R E F E R E N C E S 

[1] BALESCU, R., Statistical Mechanics of Charged Particles, Interscience, New York (1963). 
[2] MUSKHEUSHVIU, N., Singular Integral Equations, Noordhof, Groningen (1953), 

38 



594 R. BALESCU 

[3] BALESCU, R. and KUSZELL, A. , Kinetic equation for an inhomogeneous plasma far from equilibrium, 
J. math. Phys. 5 8 (1964) 1140. 

[4] NOZIÊRES, P. and PINES, D. , Nuovo Cim. (X) 9 (1958) 470. 
[5] BROUT, R. and CARRUTHERS, P., Lectures on the many-electron problem. Interscience, New York (1963). 
[6] BALESCU, R. and SOULET, Y . , Journal de Physique, to be published. 



T U R B U L E N C E IN H Y D R O D Y N A M I C S A N D 
P L A S M A P H Y S I C S 

S.F. EDWARDS 
THEORETICAL PHYSICS DEPARTMENT 

MANCHESTER UNIVERSITY & CULHAM LABORATORIES 
CULHAM, ABINGDON, BERKS,, 

UNITED KINGDOM 

1. INTRODUCTION 

The problem of turbulence is interesting in its own right since turbulence 
is a widespread and important physical state. But it is also interesting in 
that, complicated as it is , it represents perhaps the simplest non-l inear 
field problem whose coupling constant, the Reynolds number, is readily 
varied in a laboratory, right up to infinite coupling. The other non-linear 
field problems, the quantum many-body problem, liquids, quantum field 
theory and plasma physics, are all systems of greater complexity than 
straight homogeneous isotropic incompressible turbulence. Perhaps plasma 
physics, in which the short-range f orces are of little physical interest and 
consequence, is the next in order of difficulty even though it is so r ich in 
physical phenomena. One can thus expect that a reliable theory of turbulence 
will prove of value in understanding the more awkward and extreme situations 
in plasma physics, and these in their turn will help towards a reliable theory 
of the thermodynamics and transport properties of liquids in general . In 
the f irst part of this paper I shall consider turbulence, extending the d i s -
cussion to m . h . d . turbulence with and without external fields, and finally 
discuss how to set up general transport equations for plasmas which have 
validity outside the range considered to date. 

2. TURBULENCE IN INCOMPRESSIBLE HYDRODYNAMICS 

An incompress ib le fluid of unit density with v iscos i ty v satisf ies the 
Navier Stokes equations 

where an external force has been added to create motion in the fluid. 
Introduce the three - and four-dimensional Fourier transform 

au 
at = i / V 2 U - ( U • V ) U - V p + ^ " ( 2 . 1 ) 

V • и = 0 ; (2.2) 

(2.3) 

595. 
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and 

Uk = J U (r, t) expi (k • r + k 0 t )d 3 rdt , (2 .4 ) 

so that eliminating the p r e s s u r e 

Э Щ 
at 

7*2 а Г aSy в у 3 3 S aS : - I / k 2 u f + J M j f f U j U f d j d 1 + у К (2 . 5 ) 

where 

and 

where 

and 

a8y 1 - » - • - » 0 ay y aS 
M - i T ( W i 8 ( k + j + 1 ) ( к ^ / + к Г ^ к ) . ( 2 . 6 ) 

- ( i k 0 + vk 2 ) Vt+f M?kB/i uf U[d4jd4 l 0, (2.7) 

M - k 7 l = T ( f c ) 3 « ( k + j + 1 ) ( k f e f • + * ? 0 f ) ( 2 . 8 ) 

ад ав а В 2 
={6 - к к / к ). ( 2 .9 ) 

(Throughout к wil l mean three vec tor , к four v e c t o r ) . 

Now suppose the external f o r c e f luctuates in space and t ime, represent ing 
say a shaking gr id , and the probabi l i ty distr ibution of ^ " i s known. It wi l l 
put energy into the s y s t e m at a certa in rate and pre ferent ia l ly into certa in 
wave n u m b e r s . It wi l l then d i f f u s e into o ther wave n u m b e r s , eventual ly 
being des troyed by the v i s c o u s t e r m when it r eaches a large к reg ion . A 
steady state can thus be set up, and energy wil l enter and leave the sys tem 
at a constant rate E say, while the energy content will be fixed at E say. Now 

E = ^ I U 2 ( r ) d 3 r (2.10) 

(2 .27 ) 
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so that if 

then 

F r o m (2. 5) by multiplying by U'_ç and averaging o v e r d o n e finds 

„ 8 о й a , 
= (2 .14) 

4— 

If & fluctuates rapidly s o that it has a gaussian distr ibution with 

< S ^ t ) S ^ t ' ) > = 2 h f 6 ( t - f ) 6 a a (2 .15 ) 

it is eas i ly shown that 

x/|k|2qk + < M U U U > = h£. ( 2 . 16 ) 

Clearly the equation says : (Change of energy) + ( l o s s of v iscos i ty) + (transfer 
in and out) = (gain f r o m outs ide) . (2 .17) 
Later a r igorous development wil l be given, but f o r the moment consider the 
analogy with the probabil ity f of finding a part ic le of ve loc i ty v in the B o l t z -
mann equatioh, when one adds a sink of p a r t i c l e s p r o p o r t i o n a l to f and a 
s o u r c e . The n o r m a l i z a t i o n in tegra l i s l ike ( 2 . 1 3 ) 

N = J f ( v ) d 3 v (2 .18) 

and the Boltzmann equation 

| ^ + i / f + J с ( v v ' v j v j j w ( f (v)f (vj ) - f ( v ' ) f ( v p ) d ( a l l ) = h, (2 .19 ) 

i . e . 

( change in number ) + ( l o s s to s ink) + ( t r a n s f e r in and out of v ' ) = gain f r o m 
outs ide . (2 .20 ) 
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Fig.1 

Processes where v + Vj - v ' + v j 

That the co l l i s i on t e r m has the f o r m it has is c l ear f r o m the equations 
of motion. In (2 .5 ) one s e e s that " k " interacts with " j " and " 1 " with j +1 = к 
and the two p r o c e s s e s shown in F i g . 1, where 

V + V J = v ' + v ' (2.21) 

will have analogues (Fig . 2) so one can guess that the transfer term will look 
like 

f A k ] T (2.22) 

Л containing 6 ( j + l ~ k ) just as a contains 6 (v + V J - v 1 ~ v j ) . To complete the 
analogy one can look at the quantum f o r m of the c r o s s section a which, if the 
interparticle potential is ф, is 

«Hv+vi-v1 — Vj) j 6 ( E + E j - E ' - E j ) 

21 
= I m 

^ ( V + V T V ' - V J ) ! 
^ ( E + E j - E ' - E J + i e ) (E1 = i m y ' 2 e t c ) . (2 .23 ) 

R e a d e r s f a m i l i a r with se cond quantization wi l l s e e in F i g . 2 the " v e r t e x " 
of a f ield with equation of mot ion (2. 5), and wil l r e cogn ize M f o r ф and ivk2 

f o r E e t c . So if the " c r o s s s e c t i o n " is calculated in perturbation theory it 
can be expected to give 

where 

L ' k l H 6 £ M - f n M k- i - i + 
0S' „ УУ\ j n 

c (к4 + 2k3 .j c o s 8 - k j 3 c o s 8 ) s in 2 6 
= 6 ( k + J + 1 ) ^ (k2 + 2kj c o s 0 + j 2 ) 

( c o s 0 =k. j /|k||X|) 

(2. 25) 

(2.26) 

(2 .27 ) 
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Fig. 2 

Qk(0 as a function of t 

(Note that s ince the v i s c o s i t y i s i r r e v e r s i b l e in t ime +on ly s igns appear 
in the d e n o m i n a t o r . ) T o get away f r o m perturbat ion theory one can argue 
that s o m e m o r e adequate t ime s ca l e than the perturbation value (i/|k|2 + i/j]j2 

+ 1/|Г|2)-1 should be used; f o r example some u"1 = (uк + " 7 + uï')"1 say. Finally 
then the transport equation is 

q î + / A t j î q î ( q f r q î ) d s j d 8 l = h î ( 2 . 2 8 ) 

having an equi l ibr ium solution, the solution of (2. 28) with 9q /9t z e r o . To 
use this equation one must f ind a way of d e r i v i n g AîJ^?. The author f i r s t 
attempted to do this by der iv ing L iouv i l l e ' s equation and f r o m it a transport 
equation which yielded an approximation to 

^ t ( t ) =<U^(t )U^(0)> i . e . <UkU_k> (2 .29) 

(EDWARDS [1]) r e f e r r e d to as [I] in future. Though this wil l work in some p r o b -
l e m s it a p p e a r s i m p o s s i b l e f r o m L i o u v i l l e ' s equation to get an adequate f o r -
m a l i s m . The t roub le i s that L i o u v i l l e ' s equation s e p a r a t e s t i m e f r o m al l the 
other v a r i a b l e s . Now if the t i m e s c a l e s of the p r o b l e m r e a l l y are c o m p l e t e l y 
separate, as f o r example the time taken over a co l l is ion and the time between c o l -
l is ions are, in the usual Bolt zmann equation (2.19) , then Liouville ' s equation i s a 
good start ing point . But in turbulence there is a continuum of t i m e s c a l e s and 
s ince " k " interacts with " j " and " 1 " , if one a s s o c i a t e s a t ime s ca l e with S 
of say Uk, then the " c o l l i s i o n " wil l always make t ime s c a l e s both g r e a t e r 
and s m a l l e r than uTt. It appears then that cons iderat ion of the probabi l i ty 
that UiT(t) = ük • at t, f o r all к i . e . F(t; . . . Uk . . . ) is not a good starting point. 
One needs rather the probabi l i ty that U£(t) =u¡^(t) and P ( . . . [ u £ ( t ) ] . . . ) i . e . 
P ( . . .Uk . . . ) . Here the c o m p a r i s o n is between Hamiltonian mechan i cs and 
Lagrangian mechanics , and in the next section I shall develop a new approach 
to t ransport theory which I shall ca l l Lagrangian statist ical mechan i c s . An 
alternative attack which d o e s contain the idea of input and output i s due to 
KRAICHNAN [2J; s evera l applications have been published by KRAICHNAN [3], 
and a compar i son with [1]. 

3. LAGRANGIAN STATISTICAL MECHANICS 

Consider a definite fluid whose veloc i ty f ield is ï î ( r , t ) . The probability 
f o r its ve loc i ty f ield being Щг, t) is 
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P([u]) = П e ( 0 ( ? . t ) - ï ( ? . t ) ) (3 .1 ) 
r. t 

and 

fP 6u = 1, (3 .2 ) 

w h e r e 6u m e a n s the integra l o v e r al l funct ions u. (Those unfami l iar with 
the v i ta l concept of funct ional integrat ion can consult G E L ' F A N D and 
Y A G L O M [4]; o r c o n s i d e r s p a c e d i s c r e t e and take the l imi t in the f inal 
f o r m u l a e . ) 

If the equation of m o t i o n ( 2 . 1 ) i s ca l l ed 

f o r this impl ies P = 0 unless X = 0, and X = 0 f o r U = u; and the normalization 
(3. 2) implies (3 .1) can be a solution. But (3. 4) does not contain the boundary 
conditions f ixing the part icular U and so can be applied to an ensemble . 
F e r m i ' s treatment of the gauge condition (FERMI [5]) has this f o r m . One 
i s now in the pos i t ion of having an equation which wil l deal with part i cu lar 
situations o r e n s e m b l e s . Since I wish to d i s c u s s e n s e m b l e s only I should 
need only one equation, rather than the infinite set ( 3 . 4 ) f o r a l l r , t . The 
requ i red equation must be 

f o r f r o m this the complete set of symmetr i ca l moments of the Navier-Stokes 
equations can be r e c o v e r e d and hence all statistical information concerning 
an e n s e m b l e . Equat ion (3. 5) w i l l p lay the r o l e in L a g r a n g i a n s ta t i s t i ca l 
mechanics that L iouv i l l e ' s equation does in Hamiltonian mechanics . To see 
that (3. 5) is a pract i ca l proposi t ion I wil l use it to so lve a s imple but highly 
sugges t ive m o d e l . C o n s i d e r one U with v i s c o s i t y J and externa l f o r c e 

X a ( ï , t ) = 0 , (3 .3 ) 

then the equation f o r P is 

X P = 0 , (3 .4 ) 

(3 .5 ) 

(3 .6 ) 

If the functionál probabi l i ty distribution of 3r is 

(3 .7 ) 

N being the normal izat ion given 

J p m = 1, ( 3 . 8 ) 
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then c l e a r l y 

< P ( [ u ] ) > = N e x p [ - ^ f ( Ú - J u ) 2 d t ( 3 .9 ) 

so that if 

Г l u t 

U u = / e U(t)dt (3 .10 ) 

P ( [ u ] ) = N e x p [ - ^ J x J u U . j d 2 +J 2 ) du ] , (3 .11 ) 
(The s y m b o l N wi l l a lways mean n o r m a l i z a t i o n , whatever value the n o r -
ma l i za t i on has . ) 

H e n c e 

(3 .12) 

00 
p l W t 

< U ( t ) U ( 0 ) > = f J - P ^ d u (3 .13) 

= § e " ' M (3 .14 ) 

and 

< U 2 > = ^ . (3 .15) 

These resul ts mean that if P , sat is fying 

f m ( f - J u + P ) d t P = o ( з л е ) 

i . e . 

f 6 U ~ ( 1 ) ( ( Í l J ~ J ) U ' ü ( 3 .17 ) 

i s averaged o v e r & using (3. 7), then the ( 6 / 5 U b e c o m e s r e p l a c e d by 
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and 

as i s checked f r o m ( 3 . 1 1 ) . T o get a sys temat i c approx imat ion p r o c e d u r e 
which wi l l d e r i v e the above resu l t s exact ly when & has a gaussian d i s t r i -
bution, par t i cu lar note must be made of the way 

a w = < u ( t ) u ( 0 ) > (3 .19) 

^ ш = < и ы и . ш > (3 .20) 

appears in the functional equation (3 .17 ) . 
The function £?(t) wi l l be s y m m e t r i c in t and decaying , with no o s c i l -

la tory behaviour . Its s ingular i t ies are at u) = ± i j on the imaginary axis and 
a r e m i r r o r i m a g e s . But the r e s p o n s e of U to the r a n d o m f o r c e can only 
invo lve the behav iour of <(U(t) U(0) > f o r t > 0, i . e . when in (3 .17 ) one has 
wri t ten in e f f e c t 

s e = _ h f h / ( i i 0 + J ) 1 . „ . 

one i s separat ing the s ingular i t ies in the upper half plane f r o m the l o w e r ; 
only the upper s ingularit ies get used in the causal response of U to the 
f luctuations. 

T o obtain these r e s u l t s by a s y s t e m a t i c p r o c e d u r e one m a y w r i t e 

/ ¿ - t ^ + i w ^ - J U J d u P 

If now & i s c ons idered to have the nominal o r d e r one can expand 

P =P0 + P 1 + . . . (3. 23) 

as a s e r i e s in ^ where P0 is given by 

P0 = N e x p ( - J u u J ^ ; 1 U w d u ) (3 .24 ) 
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and 

P0 6u = 1 (3 .25) 

< у 1 и ы и . й ) . Р й и > = у 1 и ш и _ ш . P 0 0 и = £ ? ш 0 ( ь ) - ы ' ) . ( 3 .26 ) 

The expansion g ives 

-Jdu 

If 

P ^ P o P i . ' ( 3 .28 ) 

Then 

I ( « t ( i u ~ J ) U " ) « и 1 d u = / ( 3 - 2 9 ) 

and 

Pj = f^uU-ш J)"1 du. (3. 30) 

It wi l l be seen that the opera tor on the left of (3. 27) is H e r m i t e ' s operator 
o r ra ther a sum of H e r m i t e ' s o p e r a t o r s f o r each w, and if the s e r i e s 
P 0 + Pj + P 2 + . . . i s r e s o l v e d into H e r m i t e funct ions condit ions (3. 25) and 
(3. 26) ensure that no s e c o n d o r d e r funct ions o c c u r and a l l ze ro th o r d e r 
funct ions a r e in P 0 . P r o c e e d i n g to the next o r d e r 

P 2 = P 0 J U S r ^ - S s j i u +J) ) (Uw U u - ^ / 2 J ] d u . (3. 31) 

At this point, one may average , <( P j = 0 and f r o m (3. 26) 

f ( i u + J) = < ^ J ? : w > = 2h. (3 .32 ) 

It i s r e a d i l y c o n f i r m e d that a l l ^ P j ^ i> 0 a r e then m a d e z e r o and s i n c e 
& = J)"1 one has 
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It wi l l be seen that 

S. F. EDWARDS 

©_e J t , / © - = 0 f o r t > 0 , \ 
\©_ = l f o r t < 0 / 

= 2h ©_ 

(3 .34 ) 

(3 .35 ) 

At t = 0 the ©. must be interpreted (as i s usual with discontinuous functions 
def ined by F o u r i e r integrals ) as having a value of 2. Thus at t = 0, s ince 

(3 .36) 

= h / J 

f = - b = 0 . 

(3 .37 ) 

(3 .38 ) 

If h were not the result of instantaneously fluctuating input áf would curl over 
smooth ly at t = 0, but s ince it i s v e r y convenient to avoid extraneous t i m e 
dependences this def init ion is suitable bear ing in mind that at t = 0, 95 f / 3 t 
has to be interpreted as 

1 
2 at 

t=o+ 

1 as? 
2 at (3 .39 ) 

t=0" 

In the next sect ion the full development wil l be g iven. 

4 . THE GENERAL D E V E L O P M E N T 

F r o m the m o d e l one can expect that the theory wil l r evo lve around the 
determinat ion of the c o r re la t i on SJ a n d á i s to be expected in the f o r m 

k " k n k 

where Qf1 contains al l the s ingular i t ies in the upper half plane, П - i has al l 
i ts s ingular i t i es in the l o w e r half p lane, and A k i s an ent ire funct ion ( f o r 
further spec i f i cat ion of A k one runs into famil iar trouble (CASTILLEJO et al . 
[6] which wil l not be dealt with here ) . The operator Í2 is the response 
function in the sense that if s o m e extra perturbation i s applied to the fluid, 
the r e s p o n s e 
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and f r o m (2 .1 ) d i r e c t l y 

n-g-tt -t 1 ) ! - ó ( t - t ' ) 
t-*t' 

( 4 . 2 ) 

The b a s i c equation ( 3 . 5 ) w i l l be expanded around the so lut ion ( P o У of 

by writ ing it as 

(EMuu) +ЗГ 
к к к 

6 
6uk 

_ 6 
6u - D k + n k u k + ( i k 0 + i / | k p u k ) j - d 4 k P = 0. ( 4 . 4 ) 

Thus 

f k«k)d4kP! =f (Muu)+ku.k^^ku.k^)P0 

having the solution 

p i = p o 
' Г Mkjl ukuj uyi / ^ к [ Г ^k^Çu-k Çf ' l 
J nk+í2j J n.k 

( 4 . 5 ) 

( 4 . 6 ) 

(which shows that on an average (4. 2) holds and c o n f i r m s the status of £2). 
The next o r d e r g ives many t e r m s (catalogued in [ 1] as is the complete 

expansion) but co l l e c t ing those containing the second Hermite po lynomials , 
and at this point averaging so that with k,> = 2hkôa® one has 

° = D k " " k ^ k = / + ^ d 4 j d 4 l (4. 7) 

s s . k 

( i k 0 + y | g | ' v a r ^ / n ^ o , (4. 8) 

It is v e r y tempting at this point to identify 

( 4 .9 ) 
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and 

where 

í \ = i k 0 + v | k | 2 + ^ k (4 .10 ) 

- f L k i i J + f î j + f2 ¡ = 1 o ^ l ' o l o d 4 j d 4 l . ( 4 . 1 1 ) 

This i s equivalent to taking Í2"1 to have a single pole s ince if one t r i e s 
^ k = R £ then 

n k + n j + n 1 = i ( k 0 + j 0 + l o ) + v |£|2+i/ |j12+ v\T\2 

= 0 + function of к , X 1 alone, ( 4 .12 ) 

and f r o m (4 .11) this is se l f - cons i s tent . As proved in [1] this will hold also 
to al l higher o r d e r s of a c c u r a c y . This impl ies that 

•S^(t) = q^exp [ - ( v I к I2 + R£)t] ( 4 . 1 3 ) 

and though this may often have considerable validity (see TAYLOR [7]) it is easily 
shown to be inadequate f o r v e r y short and very long t imes , as wil l be d i s -
cussed b e l o w . The ident i f i cat ion , h o w e v e r , c l e a r l y contrad i c t s ( 4 . 8 ) 
unless one may approximate ¡ Ц Е П ) ' 1 ! ? ¡S f jd^ld 4 j to have a character s i m i -
lar to h k / n . k and to be approximated by a © - . I shall cons ider two extreme 
c a s e s of h k t o i l lustrate ( 4 . 8 ) . 

The f i r s t is that of white noise hk = h, which i s v e r y wel l -behaved, but 
not a good descr ipt ion of physical situations in which input is normally c o n -
centrated at s m a l l K. This suggests the second c a s e in which the input is 
idea l i zed to ^ ô ( I c ) , and wi l l be much m o r e t r i c k y to s o l v e . 

I have found ( 4 . 8 ) a v e r y di f f i cult equation to treat without further 
approximation. The trouble l i es in the kernel (Efi)-i and to s impli fy this the 
f o l l o w i n g p r o p o s a l i s m a d e . The funct ion w i l l have f o r m a s in F i g . 3 . 

Suppose that this i s a p p r o x i m a t e d by q¡^exp|-wjf / t | ) s o that 

oo 

/ 

^ ( t ) d t = £ J ^ O ) . ( 4 Л 4 ) 
R Ч Г u k 

о 

Then f o r the kerne l (Ef2)-i let us approximate by 

iîk s i k 0 + u £ 

í2k + í 2 j + n 1 + + u f . (4 .15) 

The actual turns out in the f i r s t c a s e to be wel l represented by exp(-ulTt). 
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F i g . 3 

Analogues of the two processes shown in Fig. 1 

In the second case it is m o r e like exp( -k£t 3 ) , but s ince three Í2 are involved 
it is to be hoped that it wi l l st i l l be adequate there . Adopting the a p -
p r o x i m a t i o n one has now the k e r n e l independent of t ime v a r i a b l e s and s o 

+ J L ^ ( E u r 1 ( 5 ? 1 | : t ) q 1 - ^ j ( t ) ^ 1 ( t ) ) d 3 j d 3 l = 2H(t) (4 .16 ) 

where 

H ( t ) " ¿ / á ¿ h ü » d k e - ( 4 Л 7 ) 

C l e a r l y f o r t > 0, H(t) i s z e r o s ince fi-k has its s ingular i t i es in the l o w e r 
half p lane . Thus H(t) contains ©_(t) and as in the m o d e l as t -» 0 r e a c h e s 
the value ^H(t = 0 - ) and this is in fact hk f r o m (2 .16 ) , f o r putting t = 0 (and 
as 3q /9 t = 0) 

^ ( q j r q ^ J d 3 ! ^ . (4 .18 ) 
к j 1 

This , of c o u r s e , has assumed a steady state; f o r s lowly changing external 
c i r c u m s t a n c e s one wi l l get 

f + v l î Ы qT(qk - q j )d3 Id3 i - h ï . ( 4 .19 ) 

thus c o n f i r m i n g that the approx imat ions s o f a r have maintained the c o n -
servation of energy . Equation (4.18) acts as a boundary condition upon (4. 8), 
which has now b e c o m e (4 .16 ) . 

If one writes 

5 f - ( t ) = q - e (4 .20 ) 

- ^ + V | k | 2 + q f j r L i r ] r ( E U ) - V 0 Î q 7 ( q 7 e " ^ - q l p d 3 j d 3 l = 2 H e ^ « £ . ( 4 . 2 1 ) 

If ( 4 . 1 8 ) i s mult ipl ied by e"®k and subtracted f r o m (4. 20) one i s left , f o r 
t > 0 

f f + J Ь ^ Ч Т ^ Е Л * - * - * - l ) d 3 j d 3 l = g . (4 .22 ) 
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Thus (4 .9 ) , (4 .12 ) and 

w k 

OQ 

: / 

e d T (4 .23 ) 

constitute the set of equations to be so lved in the next s e c t i o n . It wi l l be 
o b s e r v e d that q k ( t ) > 0 f r o m (4 .19 ) , f o r if qk passed through z e r o anywhere, 
at that t ime 3 q k / 3 t > 0 and it would always i n c r e a s e . If one attempts the a p -
parent ly s i m p l e r approx imat i on of e l iminat ing <.uuu> to get equations f o r 
<Cuu,> in t e rms of <^uuuu> and then puts <(uuuu> s<(uu><Cuu)>, the positive definite 
nature of q k i s not p r e s e r v e d ( c f . KRAICHNAN [8]) . This kind of a p -
prox imat i on has been made in quantum f ie ld theory and resu l t s l ikewise in 
negative probabil it ies and the o c currence of ghost poles in the complex plane. 
One can also show that £ f k = |uk|2 )> is also posit ive. 

5. THE SOLUTIONS 

(a) White noise h£ = h 

The equation (4 .19 ) i s per f e c t l y straight f o rward when v i s large , but 
the interesting c a s e is v->0, i . e . large Reynolds number . A s v-»0 the sink 
of e n e r g y r e c e d e s to v e r y l a r g e к and it is p o s s i b l e to start with v = 0, an 
interesting state corresponding to infinite coupling constant in quantum field 
t h e o r y . (The usual m e t h o d s of quantum f i e ld theory have appl ied to t u r -
bulence by Wyld (1962), but are di f ferent f r o m the present expansion which 
i s m o r e ta i l ored to t ransport phenomena. ) It wi l l be argued that the t e r m 

J (Eu)"1 S ^ t ^ t ) L^pd3 jd3l (5.1) 

wil l to a large extent d e c r e a s e quite quickly in t ime, so much so that it will 
s o o n r e s e m b l e an inhomogene i ty , and o v e r a l a r g e t range , f r o m ( 4 . 1 6 ) , 
a f t e r s o m e t i m e 

+ v | к | 2 ^ к + ^ ) / Ч ^ к П ( Е ( о ) ' Ч 3 ^ 3 1 = 0 , ( 5 . 2 ) 

where now 

¿70t) =qlTe-lJkt (5.3) 

w£ = v|ïc| 2+Rk ( 5 . 4 ) 

R £ = J q f L i T j U E u ) - 1 d3 jd 31. (5. 5) 
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In the l imit v = 0 one has 

and if , as wil l appear soon, 

q k = q | k | " 5 / 3 , ( 5 . 7 ) 

c l e a r l y 

R£ = r|S| 5 / 3 (5 .8 ) 

where 

r L i n r l T Í " 5 / 3 ] k | ~ 5 / 3 d 3 j d 3 l 
d ê | 5 / 3 + Ш 5 / 3 + |Г|5 /3) • ( 5 - 9 ) 

F r o m (4 .19 ) one has 

Г Ltr f (a i r -q -T )q id 3 , id 3 l 
J (R^ + R^+R-t) h' (5Л0) 

hence putting q£ = q|k|~5/3one gets 

Ч 2 Г ь т г | Г ( 1 г 1 - 5 / 3 - П | - 1 / 3 ) 1 Г | - 5 / 3 л 
7 - J + m 5 ' 3 ) d J d 

1 = h. (5 .11 ) 

A m o r e po l i shed so lut ion i s obtained by o b s e r v i n g that near t = 0 one has 
f r o m ( 4 . 1 6 ) o r (4 . 22) that 

= (5 .12) 

which deve lops into 

where 

i . e . 

( h + S i T ) = i r < 5 Л З > 

~ Г L tTTq j q 1 d 3 , i d 3 l 
S " J ( R ^ R ^ R ^ ' < 5 Л 4 > 

_ h + Sg 

a & f î 
= ( 5 Л 6 ) 

where uftq-f = h + SÇ. 
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F o r v e r y long t imes there wil l always be a reg ion of j space such that 
Uj>+Uf< for any = J*41 n > 1. It fo l lows that at very long t imes one must 
look at the full f o r m (4. 22). It is easy to see that as v-»0 , $£(t ) : 

so that putting I g ¡5/3 t ^ ¡ £ ¡ 5 / 3 one obtains in dashed var iables 

_ l a Г 
5 r J 

Щ-
| T | - 5 / 3 m - 5 / 3 

к | 2 / 3 

( | £ | 5 S/3 ) ( e " ^ - D d ' j d 3 ! . 

|k|5/3t), 

(5 .17 ) 

Now t-»oo i s |ic|-»oo and the vital thing is that e 0 k " 0 ? " 0 1 ¿ 1 , which can be 
shown to imply that 

(5 .18) 

nri 3 /S 

^ k W Y T ^ 4k e" • (5 .19) 

The p i c ture i s as in F i g . 4 . At v e r y l a r g e |lc|, q£ fa l l s of f much f a s t e r as 

у STARTS LIKE « " M / q 

THEN LIKE , - < h ' » > " 4 

Fig. 4 

Qk ( t ) as a function of t 

v|î?|2 c o m e s into play, but the cascade up to large |E] causes no mathemati -
ca l trouble . Note that if an input with a non -zero fluctuation t ime had been 
used would have zero derivative at t ~ 0 and be something like agaussian. 

(b) Red noise, (It) 

It i s i m p o s s i b l e r e a l l y to obtain an input 6 (Ic) but c l ean m a t h e m a t i c s 
a r e obtained only by going to the l imi t . If the range can be broken up into 
one in which energy is put in, then a big range with no external input or out -
put, then an output v i s c o u s range , it is usual to argue a f t e r K o l m o g o r o f f 
that the intermediate range will depend only on the total rate of input, not on 
its f ine s tructure and not on the v i s c o s i t y . The example above shows that 
one may let v-*0 without trouble , i . e . push the sink to infinite |k|. To get 
the K o l m o g o r o f f argument applying everywhere one must squash the s o u r c e 
down to the o r i g i n . It w i l l be argued then that if s o u r c e and sink a r e r e -
p r e s e n t e d by g f ô f è ) -£Гб(1с - 5 ) , q£ should be g iven b y th^ _gf2/3|g |-н/з of 
K o l m o g o r o f f . (Th i s i s usual ly wr i t ten as E(k) =de 2/3 | к |~5/з w h e r e 
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^ • ( ¿ Г ^ . 4тгк 2Е(к) = (2зг)~3 q £ . ) 

It w i l l a l s o b e argued that 

|S|2/3 t), ( 5 .20 ) 

and that Rtf (defined now by (4. 23) not by (5. 6)) is р|й | 2 /з . Suppose this i s 
the c a s e , let us so lve ( 4 . 1 9 ) f i r s t , i . e . 

/ H S p ( f ¿ | l / ¡ f [f12/3) ^ [ M k ) - 6(k - «,)] , (5 .21 ) 

and the solution wil l be 

If this is to be true 

17M-11/3 2 /3 
q t = q|k| H , 

It m a y s e e m s u r p r i s i n g that the integra l can g ive б funct ions so it is 
worth present ing a s i m p l e m o d e l . C o n s i d e r the integral equation 

f fr^) | ^ ] ( f ( x ) - f ( y ) ) d y = A ô ( x ) - X ô ( x - c o ) , (5 .23 ) 
о 

(N/Xy is the analogue of L , ( x + y ) of ER, | x - y | of q f ) . It wil l be shown that 
f(x) =jux_1 i s a solution. F o r cons ider 

F r o m the s y m m e t r y one can subtract 

A 00 

which i s ze ro , to give (5 .24 ) equal to 

A « 
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Writ ing x1 = Ах, y ' = Ay , this integral equals 

i «> 

/ d X ' / d y ' s T x - y Cx' + y ' ) ( 5 " 2 7 ) 

U 1 

which is we l l -behaved equalling С say . This means that 

A 

о 0 

where С is independent of A . It f o l l ows that 

0 

unless x = 0, which can be readily checked by writing y-> x 2 / y in the f(y) part 
of the integral, thereby t rans forming it into the f(x) part . Thus the integral 
o v e r у sat is f ies the condition f o r weak convergence , (TEMPLE [9]) is ze ro 
except at x = 0 but its integral f r o m x = 0 is C . Hence 

A 

цС = \J S ( x ) d x = | . (5 .30 ) 
о 

One can use a s i m i l a r argument integrating down f r o m infinity to get the 
other 6 function. 

Returning to (5 .22 ) al l the steps go through. One has to be c a r e f u l to 
check that all integrals exist ; they do, and so integrating к inside (say) the 
unit sphere , f outside 

a ! 
| k l < l 

¡ 4 d 3 j ( l k l - X l / 3 | t ( - l l / 3 _ l ^ j - 1 1 / 3 | J | - l l / 8 ) = a i c 1. (5 .31) 

т ч х ( | з г 1 2 / з + т 2 / з + т 2 / з > - i 

The n u m e r i c a l value o f С i s 0 . 1 9 , and wi l l be used in the next sec t i on to 
get q, p. 

Now one has to justi fy this R£ by solving (4 .22 , 4 . 2 3 ) . This is an 
equation where dimensional arguments do not help. Put 

|S|t 3 / 2 ->|£| (5 .32) 

giving (s ince hk/qk is negl igible except at t = 0, |îc| =0) 
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4L LirrrlTl -^ 
<1* 2/>3 + 1Л2/3+ |tp/3) d|kI 3 p 

Finally one may transform ;f-*l|k|, " I Г ] к | to get 

dTBT |
i c |

 3 p j ( l + |j|2/3+ |t|2/3 ) u e M ) . 

(5.33) 

(5.34) 

Now one may consider the limiting cases f irstly of small and then large ïc. 
The highly singular kernel has to be cancelled near j ~ 0 and near 1 ~ 0 by 

ï̂t = *ПГ|Т + * Ht|î- Consider j ~ 0 , and suppose (as will be conf irmed later) 
that 

* n r i r " * w ^ i t r r ^ î - 0 - < 5 - 3 5 > 

Then since 

|k| |l| =k(l -2|"j|cose+|7|2)i /2 

a |k|- |k| lit cose (5.36) 

1*1^1 c o s e i j f r (5-37> 

Crudely speaking then the factor (1 - e x p ( ^ f "Ф1Щ )) is then zero up to 

b H I k l d ^ / d l k l r 1 , (5.38) 

and allowing a 2 for the other singular region 

dé q i-»rl/3 Г i->i2 i-», |->i-l]/3 

¿ j t p p l k l J |j|d|j||j| ф ( 5 . 3 9 ) 
(fî|de/d[5|)-l 

(ф = angular contribution), so 

i. e. 

\l/3 / v 1/3 

(5.41) 

,3 3 2 2 
= 7 I к I (5.42) 

< £ ( t ) = i # W P ~ 3 |k|2t3 . (5.43) 
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(Note this will not be valid at t = 0, since the input will cause a singularity there. 
This must also be so since a2^|at2|t=0 must be positive, being < / |ug |2k§d4k > . ) 
A precise numerical evaluation gives the coefficient 7 to be 1 .6X 10~6. Now 
turn to the case of large |k|. It is c lear then that etfp^k*-ФТ~ ФТ) must be 
bounded. If ~ |S|2 everywhere this could not be the case since then 
|K|2-|k + j 
gral ~exp( 

2 - I j I2 is positive for 3 = _ k / 2 and this region would give theinte-
E I2 ) for large IEI. In fact any power higher than the first is un-

acceptable as |k|-> 00 since it will give a negative term increasing like 
exp(|8|n). In this limit the d$/d|ïc| term is unimportant, the vital thing 
being that the 1 is cancelled in the kernel . This must imply that 

Max(<^-<i>|£|f-<i>|£|t)-0 as k - 00. 

This implies that ф must be linear in |k| as in the noise case; clearly this 
is a quite general result. 

Thus for small к i ос к 
<Mt) « |k|2ta 

for large к ф ос |*k I 
<Mt)oc|g|t3/2 

(5.44) 

Suppose that ф is approximated by 7 | к |2 / (1 +13 |Й | ), (5.45) 
one may then obtain /3 f rom the condition that as | к | -• 00 

J Lqq(ER)"1( l -e®"®"®)->0. (5.46) 

Now the integration is still dominated by the j* ~ 0 region, so one should get 

J l , - £ ¡ ? |T|"11/3d3j( - exp ( - p |k+ Ц+-0 |k I )) = 0 , (5.47) 

a relation which is independent of |E| as it must be if the reasoning is sound. 
This integral has been evaluated giving /3 = 3. 2X 10~4 . (5. 48) 
Finally then from (5. 32), (5.43) and (5.48) one obtains p = 1. 2X 10"2, q = 8. 6, 
(7 = 1. 6X 10"e„ j3 = 3. 2 X 10"4 ) so Kolmogoroff 's constant a 

E ( k ) s l = 0 е 2 / 3 |k|"5/3 (5.49) 

This is of the order of magnitude of the experimental value of 1. 3 (GIBSON and 
SCHWARZ [10]), and is surprising since crude approximations have been 
used. This of course is still not a full solution of the (5. 34) equation, but 
to solve (5 .34) direct ly on a machine is prohibitively lengthy. The final 
form of ф as a function of time is shown in Fig. 5. Physically the slow b e -
ginning emanates f r om the start f rom a state of "equilibrium" character -
istic of all steady stochastic processes . The tail comes from the coupling 
to the many modes and is a more spectacular phenomenon in the power in -
puts since it decays very slowly. Here even in the tail the decay is fast and 
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Fig. 5 

Final form of Q as a function of time 

shows the exponential approximation (dotted l ine) to be rather c rude . One 
could a lso argue that rather than fitting by taking 

со 

4kRf -f ^ k W d t , 
о 

one should use 
oo 

( J ¿ ^ ( t ) Sf^t) S^(t) d t ) 1 

in the kernel of the integral . Since q upon y to the sixth power these a l t e r -
natives wi l l not matter v e r y much . But it would of c o u r s e be much better 
to avoid the exponential f o r m altogether and use Í2 se l f - c ons i s tent ly . (I am 
working on this at present ) . 

The coe f f i c i en t Rk = p|£|2/3 can be checked with exper iment this way. 
Cons ider a highly turbulent f low with a mean drift which var i es very slowly 
with position. This is basical ly the same situation as in the molecular chaos 
present in steady laminar f low, so that if <.u ,> i s the dri f t one can argue in 
the usual phenomeno log i ca l way that one d e r i v e s hydrodynamic equations: 

^ + R K u > + < u > - V < u > V p = 0 

with V<u> = 0 

and = 0 on boundaries . (5 .50) 

Thus f o r steady channel f low 

£Гр I к r 3 U k = ( V p ) t , (5 .51) 
i . e . if u(x) = E u m sin (x jrm/L) 

(L channel width) 
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where 

Thus 

^ f 1 / 3 r ) s i n ( х т т / L ) = E (Vp)m s in (x j rm/L ) (5. 52) 

L 

(vP)m =(VP>L f s in (x jrm/L) dx (5 .53) 
0 

= ̂  ( V p ) ( m odd) . (5 .54) 

u(x) = 4(Vp) L 2 V " 1 / 3 P 1 ^Y S Í n ( ^ / L ) - (5. 55) 
L j m 

m odd 

The t r a n s f o r m of m"3 i s the parabola of Po iseui l le , fm" 1 is a step function, 
т - 5 / з i i e s i n between, and the pro f i l e s e e m s to agree reasonably with e x -
per iment ( see e . g . Go lds te in ' s M o d e r n Deve lopments in Fluid Mechan i cs , 
Vo lume II). 

The rate of input of energy is É = Vp 0, Ü the mean ve loc i ty , 

i . e . ^ = ( 2 J T ) 3 V P U , ( 5 . 5 6 ) 

but if the sum in (5. 56) is ca l led ^(x) 

U = ^ | j ( V p ) L 2 / 3 / ( V p U ) 1 / 2 p (5 .57) 

i . e . U = constant X (VpL) 1 / 2 , (5 .58 ) 

which is D ' A r c y ' s Law. By compar i son with experiment p 5X10" 3 which 
is something like the value obtained. above. The value of a is much improved 
by using this value of r . 

The equations given so far can be extended just as can the field theoretic 
expans ion . Deta i l s a re g iven in R e f e r e n c e [1], but s i n c e it i s s o hard to 
s o l v e those g iven h e r e , I shal l not pursue the nth t e r m . 

6. M A G N E T O H Y D R O D Y N A M I C T U R B U L E N C E 

The equation of incompress ib le m . h . d . flow in the presence of a constant 
external field H0 is 

— + U - V H = (H + H 0 ) . V U + ^ - V H + F 2 , ( 6 . 1 ) 
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o r in a c o m p r e s s e d notation, h = (H + H0)NAJT, P = 1, 

£ M 2 u h + ri | k | 2 h = ^ 2 ^ 

| ^ + i : M 1 u u - E M 1 h h + i/1 к I2 u ( 6 . 2 ) 

(Mi is the prev ious M, M2 ana logous ly . ) 
If u, h are cons idered a s ix v e c t o r a one may write 

where ¡3 contains v, r¡ and H 0 , s o has off diagonal e l e m e n t s . One can now 
run through a l l the analys is again, defining-

4 < » = < и и > . q ( 2 ) =<hh> q ( 3 ) = < u h > 

h ( D h ( 2 ) h ( 3 ) = < F 

It appears that 

< y < U y < 2 ) > = 0 . 

in actual physical c i r cumstances and this impl ies <(uhУ = 0. Consider Ho =0 
f o r the moment, then the Boltzmann equations f o r equil ibrium are 

(11) (D (1) (1) (12) (2) (1) (11) (2) (2) 

v | k | V î ) + / ^ / d ? ! " ^ d 3 j d 3 l + f L ^ r q g - L t r r q r q t д з з a ) 

(6 .3 ) 

ГтШ (2) m (21) (2) (2)
 ( 2 2 )

 (1) (2) 
vilïr |2~(2) , Г L T f f q T q ? -Lirrrqir q f . З - . з . , / L q i qk ,3 • ,3, • (2) 

+ (0 . + U ̂ a J a ( « { W + Ы f p + ) 

where 

L ( 1 1 ) = M i M i , L ( 1 2 ) = M1M 2 and L ( 2 2 ) = M 2 M 2 . (6 .4 ) 

It wil l be noted that the conservat ion of energy now only holds f o r both 
equations, i . e . 

f v |k| 2 q ( 1 ) d 3 k + / r , | k | 2 q ( 2 ) d 3 k = / h ( V k + J h ( 2 ) d 3 k , (6 .5 ) 

and energy can f l ow f r o m u to h and back . C lear ly if h<2) / 0 then q'1) and 
q(2) a r e n o n - z e r o . But if h ' 2 ) = 0 there i s a so lut ion with q ( 2 ' z e r o , but it 
may not be the only so lut ion . If one l e t s i/-*0 and rj-»-0 then the answer to 
this question would appear definite in the two extreme cases considered above 
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since hW can be extracted right out of the calculation, but we have not p r o -
g r e s s e d far enough to answer the question ye t . This question is a spec ia l 
case of the prob lem of the partition of energy among q W , q'2 ) f o r given h ' 1 ' , 
h(2) (CHANDRASEKHAR). The discussion in the literature is restricted mostly to 
the case of large v and rj, but one knows that these can be made zero and cannot 
in f luence the l imit ing c a s e . Calcu lat ions a r e continuing to study this 
p r o b l e m . 

Turning now to an external field one can see that if Ho -»°o the equations 
have non - l inear t e r m s which a r e pure ly two-d imensional , so that one has 
" s h e e t s " of t w o - d i m e n s i o n a l turbulence l inked by A l fvén w a v e s . Culham 
experiments on Zeta* suggest that the energy in these Alfvén waves is rather 
s m a l l s o that while one should do a fu l l t r ea tment and ca lcu late just how 
much energy there i s in the f ie ld d i r e c t i on , one can start by c o n s i d e r i n g 
t w o - d i m e n s i o n a l f luid turbu lence . Now in two d i m e n s i o n s the n o n - l i n e a r 
t e r m s not only c o n s e r v e energy but a l so c o n s e r v e v o r t i c i t y . Thus in two 
d imens ions not only 

J A î n 4 l K q ] r q r ) d 2 j d 2 l c P ' k = 0 , ( 6 . 6 ) 

but a lso 

J k 2 A £ j - f q l ( q t - q 7 ) d 2 j d 2 l d 2 k = 0 . ( 6 . 7 ) 

The f o r m of the equation has been set up so that the f i r s t i s obv ious : 
one only needs A s y m m e t r i c between k, j , and it i s . The second is not quite 
s o e a s y but if one c h e c k s c a r e f u l l y it i s t rue in two d i m e n s i o n s . If 

s ^ - H l î l M r b i ï x l ) 

s o that 

Sj j = (k —*j)(k X~j) 
( 6 . 8 ) 

= ~ S k f ~ S k f 

then the two-d imens iona l kerne l is 

Г s r r d 2 i d 2 l f S Т Г , S i r r , S iTiA , R ™ 

The integral involving Sj^ns eas i ly shown to be equal to - i the value with 
S^f r ep laced by &Jf s o that the kerne l can be written 

[ § Ч Ш ( в л о ) J к2/2! 2(w£ + Uj* +uf) 

* Experimental work at Culham has appeared only in reports byRushbridge and Saunders, and Rushbridge 
ând Robinson. Papers discussing experiment and theory are in preparation by these authors. 
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and s a t i s f i e s the c onserva t i on of e n e r g y . But one a l so s e e s that it equals 

J S ^ Z t î î ô ( k + j V Î ) d 2 j d 2 l , (6.11) 

where Z k j t i s complete ly s y m m e t r i c . Multiplying by k ¿ 

Sjl isi*= |S|«cm«-

which is z e r o when integrated against a s y m m e t r i c function, s o v o r t i c i t y 
i s a l so c o n s e r v e d . The solution of the Boltzmann equation is compl i ca ted 
by this invariant . If one t r i e s the K o l m o g o r o f f so lut ion which in two d i -
mens ions i s q£ oo |íc|"8/3 one finds not only ^ S ( K ) - ^ 6 ( k - oo) on the right but 
a l so another t e r m . The t e r m 5 ( î - 3 ) i s short f o r ( l / 4 ; r K 2 )6(|E|-K) (K->oo), 
and the new t e r m looks l ike (К2 /4тгк) ó11 ( | й | s o that 

past К 

/ б ( й ) " 2 к б ( 1 к 1 _ К ) + № б 1 1 ( 1 к 1 _ К ) k d k 

= 1 - 1 - 0 = 0 (6.12) 

(the new t e r m giving zero ) , and 

1 

f> 6(k)~ 
2тгК2 

б ( I k I - К ) + ô n ( |k I - К ) kdk 

0 - K 2 + K 2 - (6 .13 ) 

But the doublet of vort ic i ty at infinity required to sustain a Ko lmogoro f f 
spec t rum is quite unphysical (though not nonsense : it could happen). This 
p r o b l e m a lso we are act ive ly cons ider ing . 

I must e m p h a s i z e that al l the d i s c u s s i o n in this paper i s v e r y highly 
idealized and may well be of little value in real is t i c situations. Until funda-
mental questions are c l e a r e d up however it is d i f f i cult to a s s e s s the value 
of approximations designed f o r part i cu lar s i tuations. 

7. TRANSPORT IN PLASMAS 

I shall now show how the ideas developed above can be used as a bas i s 
f o r kinetic theory in a p l a s m a . This work was done in co l laborat ion with 
G. Lewak and draws heavi ly on his t h e s i s . 

The standard Fokker -Planck equation f or a plasma is discussed in detail 
by BALESCU [13]. It is der ived on the assumption that the mean f ree path 
is smal l compared to the Debye length and there is also the assumption that 
the m e a n f r e e path is smal l c ompared to the Debye length and there is a lso 
the assumpt ion that the p l a s m a r e s o n a n c e g ives only a s m a l l contr ibut ion 
to the transport coe f f i c i ents . In near equil ibrium situations these are very 
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good assumptions but the plasma o f f e r s the chance of getting far away f r o m 
equil ibrium when all conventional methods fai l . F o r example, what happens 
if you put up a s trong current through a p lasma and keep it steady so that 
the whole d is tr ibut ion funct ion changes , o r what happens if s t rong f i e l d s 
fluctuating at the p lasma f r equency are applied? I f e e l that the tradit ional 
t ime scale argument will fail , and though one can try to develop more general 
transport equations f r o m L iouv i l l e ' s equation, here the Lagrangian method 
wil l be used . Since in hydrodynamic turbulence one uses u(r) = £v¡ ¿ ( r - r ¡ ) . 
and m o r e general ly p, T and so on, it is natural to cast the density in c o n -
f iguration and ve loc i ty space 

f ( r ,u , t ) = i ; ô ( ? - r i ) ô ( u - r i ) (7 .1 ) 
i 

in a central r o l e . This sat is f ies 

9 f -> 9 f Г - » -» -> -> -» о , 9 f 
at V 9 r j F ( r ~ s) f (s. u> t) d ud = 0 (7 .2 ) 

exact ly (not just in the V l a s o v approx imat ion ) , but (7. 2) d o e s not s p e c i f y 
f s ince this f r o m (7.. 1) vanishes except at N points, N be ingthe number of 
par t i c l e s . This condition can be expressed as a set of sum rules which are 
true i r respec t ive of the motion. They are 

1. J f d 3 x d 3 v = N 

2. f (x, v , t ) f ( x i v } t ) = N 6 ( x - x i ) ô ( v - v ^ f ( x v t ) 
(7 .3 ) 

+ N(N - l ) g ( xx ' vv ' t ) 
(g bounded) 

3. f(x, v, t)f(xi v} t ) f (x" , vu, t) = N 5(x - x i ) 6 ( x - x " )6(v - vi)6(v - vH) f ( x v t ) 

+ £ N(N - l ) g (x xiv vit) f(xiivUt) + N(N - 1)(N - 2)h ( - i i£nt) 
perm v v v 

Cal l these rules Z ¡ =0. 
When one changes f r o m the N par t i c l es to f one changes f r o m 6N v a r i -

ables to a continuum, and the constraint that f vanishes except at the points 
appears in the fact that when the probabil ity distribution P([ f ] ) is developed, 
the solutions at each o r d e r must satisfy the sum rules . The great s imp l i f i -
cat ion i s that to each o r d e r P¡ only the f i r s t i ru les need be sa t i s f i ed . In 
this way co l lect ive co -ord inates need never be redundant. If the mean = 
fg is removed so that f now means the previous f minus fo then 

M i 
9 t 

(7 .4 ) 

3t 9r J ° 3 v J " W J W ( 7 > 5 ) 
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l . e . 

' 9 
8 , + J 

(where J = F f 0 ^ + F ^ + v | ¡ and <f f > r 1 ; v . v ^ t t 1 ) ) 

a re the set to be so lved . Cal l ( 7 . 6 ) X as b e f o r e , so that 

X P = 0 (7 .6 ) 

Z ¡ P = 0 (7 .7 ) 

(Equation (7 .4 ) f i xes f 0 so the probabil ity need not be d i s c u s s e d . ) As be fore 
we shall use the statist ical equation 

y j j X P d 3 x d 3 v d t = 0 (7 .8 ) 

and look f o r a so lut ion ensur ing that (7. 7) is sa t i s f i ed o r ra ther it wi l l be 
enough to s a t i s f y the m e a n 

f* P 6 f = 0 (7 .9 ) 

and of c o u r s e 

J P 6 f = l . (7 .10) 

The expansion wi l l be about 

P 0 = N e x p (-Jf^4d(all)) ( 7 .11 ) 

but now has the added c o m p l i c a t i o n that the so lut ions f o r Pi, P2, . . . . a r e 
not unique unless (7 .9 ) is invoked. Using the Four i e r space time transform 
f j ( v , W), one uses 

f j t ( j t D + n f ) p 0 d ( a l l ) = 0 (7 .12) 

and needs to so lve 

(Пк + nj + Q O P i = £ F f | ^ f / 5 f P o (7 .13) 

in a c o m p r e s s e d notation. 
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In the absence of interact ion this sti l l has the solution 

f 3 ( x v t ) d(all )P0 , (7 .14 ) 

s i n c e unlike the turbulence p r o b l e m EÍ2 can have z e r o s f o r invar iants of 
the mot ion, and here this means the total number of p a r t i c l e s . But it can 
be argued that the number of par t i c l e s wil l be the only invariant of c o n s e -
quence when f ' s " c o l l i d e " so that 

N f f f P 0 (7 .15 ) 

where the singularity in £ Q is taken in the causal s ense ) . 
P r o c e e d i n g as b e f o r e one r e a c h e s (keeping a highly s y m b o l i c notation 

as the full e x p r e s s i o n s are v e r y involved) 

rirjhz 
^ — d (all) = 0, < 7 - 1 6 > 

which d e f i n e s the t i m e c o r r e l a t i o n , and as b e f o r e can b e s i m p l i f i e d to 

f ^ B l u d v J ( t )â^j ( t )dal l (7 .17 ) 

where is simulated by iko + J + wk(v) . (7 .18 ) 
When the two t e r m s in L are put equal one has a slightly different s i tu-

ation to the turbulence c a s e as now J is c o m p l e x , and it is the imag inary 
part which c o m e s in, i . e . if 

Щ - ( ? , ? 1 ; v , v 1 ; t , t 1 ) + K ( ? , ? 1 ; v , v 1 ; t J t 1 ) = 0 ( 7 . 1 9 ) 

^ ( r , ? i ; v , v ! ; t , t l ) + K * ( r , r i ;v , vl ;t , t1) =0 . (7 .20) at 

If 
r 1 ; ? . ;t, t) = q (r , r1-,^, v 1 ; t ) (7 .21) 

^ + ( K + K * ) =0. (7 .22 ) 

This and (7 .4 ) wil l reduce to the normal Fokker Planck equation if Í2к is 
approximated by iko + J alone. This method gives f o r equil ibrium the c o r -
rec t Debye Huckel value f o r q, and indeed gives the distribution f o r q, i . e . 
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f o r f al l at the s a m e t ime exact ly . This i s b e c a u s e the Gibbs distr ibution 
i s exact and is quadratic in the f . The whole expansion Px + P 2 + . - in that 
c a s e turns out independent of F and i s s i m p l y the J a c o b i a n of the t r a n s -
f o r m a t i o n f r o m the c o - o r d i n a t e s to the cont inuous v a r i a b l e s 

J = N e ~ / f f / N (1 + N f f f + . - . ) (7 .23 ) 

The basic equations (4. 8) and (7.16) have been derived on what is essentiaUy 
the assumpt i on that the interact ion r e p r e s e n t s a r a n d o m n o n - l i n e a r i t y in 
function space (and is not the random phase approximat ion which a s s u m e s 
~tf = 0 and m a k e s ( 7 . 4 ) the V l a s o v equation) . It i s p o s s i b l e quite e a s i l y to 
write down correc t i ons to them, but this is rather pointless s ince one hopes 
they will work in the kind of situation descr ibed ear l i e r . Work is at present 
proceeding on these applications. 

A C K N O W L E D G E M E N T S 

The work in magnetohydrodynamics has been done in col laboration with 
M . Dean and D . C . R o b i n s o n . M r . Dean has p e r f o r m e d the ca l cu la t i ons 
quoted above . The exper imenta l work at Culham has appeared only in r e -
p o r t s by Rushbr idge and Saunders , and Rushbr idge and Rob inson , but 
papers discussing experiment and theory are in preparation by these authors. 

I should like to thank m e m b e r s of the Tr ies te School f o r valuable c o m -
ments which a r e i n c o r p o r a t e d into the a b o v e . I should a l s o l ike to thank 
P r o f . Batche lor f o r valuable d i s cuss i ons and D r . Kraichnan f o r a c o r r e s -
p o n d e n c e which e l iminated e r r o r s f r o m the f i r s t v e r s i o n of this w o r k . 
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A S Y M P T O T I C M E T H O D S IN T H E H Y D R O D Y N A M I C 
T H E O R Y O F S T A B I L I T Y * 

R. Z . SAGDEEV 
INSTITUTE OF NUCLEAR PHYSICS, SIBERIAN DIVISION, 
ACADEMY OF SCIENCES OF THE USSR, NOVOSIBIRSK, 

UNION OF SOVIET SOCIALIST REPUBLICS 

I. INTRODUCTION 

The use of asymptotic methods in the linear hydrodynamic theory of sta-
bility is well known, e . g . in connection with the problem of stability of Po i -
seuille flow (for a more detailed account seen reference [1] ). The main point 
is that it is necessary to reach solutions and find the eigenvalues w = и (к) 
f or the given boundary conditions of the following equation: 

« f | ? - Û 2 ( Ç , k . w ) ^ | l + Û i ( Ç . k . u ) Ç = 0 . ( 1 ) 

where or is a small parameter, Ç is a co-ordinate (in the case of Poiseuille 
flow a is proportional to the v iscos i ty) . The presence of the small para-
meter a makes it possible to construct a formal asymptotic series which will 
give a solution for a correctly chosen power of a. 

Recently, a large number of studies have appeared on the subject of the 
stability of a slightly non-uniform plasma. In those cases where a detailed 
analysis was made, the problem reduced to the following equation: 

. T -

d ? 
2 - U(?.k,u)q> = 0. (2) 

In order that (2) may include an explicitly small parameter j3, characteriz-
ing a slight non-uniformity, we introduce a non-dimensional co -ordinate 
x = ? / L (L being the characteristic dimension of the problem). We assume 
U = k j u , where U is always approximately unity, except near point x 0 , where 
U(x0) = 0. We then have instead of Eq. (2): 

, d 4 
dx2 U (x, k,w)<p = 0, (3) 

1 
k02L2 « I - ( 4 ) 

In [2] it was proposed that a small 0 should be used in finding the asymptotic 
solutions, which are well known in quantum mechanics under the name 

* Work performed by ZASLAVSKY, G. M. , MOISEEV, S. S. and SAGDEEV, R. Z . 
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" q u a s i - c l a s s i c a l " . ( F o r a detai led s u r v e y of w o r k in this d i r e c t i o n , s e e 
[10] and [11] . ) 

In a number of c a s e s the fo l lowing situation a r i s e s : in the reg ion c o n -
sidered there exists a point at which U becomes oo. This fact has been studied 
in connect ion with the p r o b l e m of wave t rans f o rmat i on in a p lasma [3] . In 
the c a s e s examined in Ref . [3] the pole U was imaginary and vanished when 
account was taken of the higher derivative with the smal l a - type parameter* . 
In p r o b l e m s on wave t r a n s f o r m a t i o n in a p l a s m a , we used the method of 
s u c c e s s i v e approx imat ions [4] . 

An asymptot ic method s imi lar to that used in both Refs . [4] and [l]1 was 
employed in Ref . [5] f o r an equation of the type (1) in a study of the stability 
of a n o n - u n i f o r m p l a s m a , with account be ing taken of f inite conduct iv i ty . 
It will be c l ear f r o m what fol lows that this method is of very limited 
applicability. 

The present study a ims to show that there is a s imple asymptot i c ap-
p r o a c h to the analysis of the equation: 

afi2 cpIV - j3 U2 ( x , k , u)cp" + Ux ( x , k , u)<p = 0. (5) 

Equation (5) m o d e l s the above - ment ioned p r o b l e m s f o r the condi t ions of 
a s l ightly n o n - u n i f o r m m e d i u m . 

II. S T A T E M E N T OF THE P R O B L E M 

The physica l cons iderat ions d i s cussed in the introduction make n e c e s -
sary an analysis of the fo l lowing equation: 

a 0 2 ^ - / 3 U 2 ( x , k , u ) g £ + U ^ x . k . u J q ^ O , ( 6 ) 

where x i s a non -d imens i ona l c o - o r d i n a t e ; к and ш are the p a r a m e t e r s of 
the p r o b l e m ; a and fi a re s m a l l p a r a m e t e r s : 

a , 1 3 « 1 . (7) 

Usual ly , in the phys i ca l s tatement of the p r o b l e m , the p a r a m e t e r a is i n -
vo lved in calculat ion of a slight dissipative p r o c e s s , and fi i s a "quas i -
c l a s s i c a l " p a r a m e t e r , equal to the rat io between the c h a r a c t e r i s t i c length 
of change of ф and the c h a r a c t e r i s t i c length of change of U j , U 2 . In (6) Uj 
and U 2 are non-d imens iona l p a r a m e t e r s and 

U b U2 » 1, (8) 

except f o r the points where they b e c o m e z e r o . 

* These remarks are a rather rough representation of the situation studied in Ref. [3]. 

40' 
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Solutions tending to z e r o at ± oo wi l l be r e f e r r e d to b e l o w as f inite o r 
l o c a l , o therwise they wi l l be t e r m e d n o n - l o c a l . 

F o r /3 = 1 in (6), an analysis of the equation has been made in studies 
by C . C . Lin [1] and Wasow [6] in connection has been made in studies 
stability of Po iseui l le f low. F o r a = 0 the equation b e c o m e s a s e c o n d - o r d e r 
equation, which has been the sub ject of detai led study in numerous w o r k s , 
e spec ia l l y in connect ion with the q u a s i - c l a s s i c a l approximation in quantum 
mechan i cs ( e . g . s ee r e f e r e n c e [7]) . 

We are looking f o r a solution to Eq. (6) in the fo l lowing f o r m : 

Ф = С exp j ^ J q (x) d x j , (9) 

q ( x ) = q ( °> (x )W0 q ( 1 ) (x) + . . . . (10) 

Substituting (9) and (10) in (6), and taking into account (7) and (8), we get : 

q ( 0 ) 4 _ I Í 2 q ( 0 ) 2 + ü l = о , ( 1 1 ) 

4q(l)q(0)3 + 6 q ( 0 ) ! M . V M + 2qWq«») = 0 . (12) 

F r o m equation (11) we find q<0': 

q ( 0 ) =
 ± 2 a — \4ar2 a 

o r , taking into account s m a l l or, we get the f o l l owing two pa i r s of va lues : 

\i ' 
q ( 0 ) = + 

q ( 0 ) = ± ( ^ 2 
i 

(i = 1, 2), 

(i = 3, 4) . 

(13) 

S imi lar ly , f r o m (12) we get: 

1 dq<0) i 

n(l) = - - d4 (j0) 1 fi = 3 4i 
4 i 2 dx q(0) U 

(14) 

Formulae (13) and (14) allow us to write the solution (9) iñ the following f o rm 
(to within the following terms in the expansion (10)): 
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x 

(i = 1, 2), (15) 

Ф (i = 3, 4) , ( 1 6 ) 

where p t = q ^ A / F -
The solution obtained in (15) is asymptot ic and its a c c u r a c y is l imited 

to the reg i on of appl icabi l i ty of the expansion (10), which reg ion we r e f e r 
to be low as external . C l e a r l y , the solution (15), (16) is not appl icable to 
reg ions near the points where and U 2 b e c o m e z e r o , r e f e r r e d to be low 
as internal r e g i o n s . The so lut ion f o r the internal r e g i o n s can be sought 
separately . Accord ing ly , the solution of Eq. (6) f o r the given boundary con-
ditions r e d u c e s to the fo l lowing three p r o c e d u r e s : (1) finding solut ions in 
the internal and externa l r e g i o n s ; (2) showing what e a c h of the so lut ions 
f o r a part i cular reg ion b e c o m e s in s o m e other region (this question ar i ses 
owing to the presence of Stokes l ines when an asymptotic expression is used); 
and (3) sat i s fy ing the boundary condi t ions (in addition to everyth ing e l s e , 
this a l s o g i v e s an equation f o r the e igenvalues of the p r o b l e m ) . 

It should be noted that the point where U2 = 0 has no special importance, 
s ince in the v i c in i ty of this point the r o l e of the t e r m with Ф1У in (6) i s un-
important and the behav iour of the so lut ion in the v i c in i ty of this point i s 
d e t e r m i n e d by the theory deve l oped f o r Eq . (6) with a = 0. 

In what f o l l ows , without l imiting the generality of the method developed 
be l ow , and f o r the sake of c onven ience , we shal l s e l e c t the s p e c i f i c f o r m 
U-L (x) and U2 (x) (Fig . 1). In Fig . 2 regions I, II are external , and region III 
is internal. 

The above cons iderat ions conclude the statement of the prob lem whose 
solution wi l l be worked out in sect ions I I I -V. 

III. WEAK CASE 

F o r the se lec ted f o r m of Uj (x) and U 2 (x ) (Fig. 1) the values Uj , U2 b e -
c o m e z e r o at the points А , В and 0 2 , 0 2 * , r e s p e c t i v e l y . We wi l l a s s u m e 
that the distance between В and 02 is g rea ter than unity. In the vic inity of 
the point 02 we may represent 

and r e g a r d U j as of constant va lue . F o r p u r p o s e s o f v i s u a l i z a t i o n , the 
regions in which var ious approximations are applicable are shown in Fig . 3. 
The expans ion (17) holds good in s e c t i o n (02 , 1); so lut ions (15), (16) hold 
good f o r s e c t i o n s 1 and 3 r e s p e c t i v e l y . 

U2 = Ux, x < 1, U * 1, ( 1 7 ) 

v The statements made will be symmetrical relative to the substitution (0! „ A ) ^ ( 0 2 , B ) ; we shall 
refer only to points (0 2 ,B) . 
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Fig. 1 

Specific forms for (x) and U2(x). 

Fig. 2 

Case for which regions I and И are external and region III is internal. 

« Z~ 
V3 1 

u2 ' . à Vir ' , 
* I * * f 3 

5 

Fig. 3 
Possibility of coupling due to the fact that sections 1 and 2 have a common part. 

F o r x < 1 equation (6) takes the f orm: 

íj32cpIV - P Uxcp" + Üjtp = 0. ( 1 8 ) 

As in [1] we make the substitution 

ai/3y (19) 

and consider the solution of the equation obtained: 

„ d4cp d2 ф a1/3 
(20) 

in the vicinity of у ^ 1. 
In this sect ion of the paper we shall l imit ourse lves to the case 

al/3 
< 1. . ( 2 1 ) 

where a solution can be found s imi lar to that of Ref. [1] in the f o r m of an 
asymptotic ser ies : 
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vV3 
ф = ф(0) + ф(!) + . 

P 
(22) 

Substituting (22) in (20) we get: 

d4q>(°> - Uy 
d2cp<0) _ 

dy4 ^ dy2 = 0. (23) 

The region in which the solutions of Eq. (23) are applicable is determined 
on the right-hand side by the values x ~ «Vз a n d is indicated in Fig. 3 by 
section 2 (or 4). Equation (23) has the following four solutions [1]: 

q>! = 1; Ф 2 = х ; 

Ф з = > > ^ н а ) [ | ( 1 у ) 3 / ^ ) 5 

(23a) 

(24) 

where H^1), H<2> are Hankel functions of the first and second type, respec-
tively. Considering that the argument of the Hankel functions in (24) is large, 
we can write for the solutions of cp3 and <p4, which become zero at +oo, 

Ф =s x"^4 exp 

-У4 

afi 

U_ 
a 13 

i ,3/2 (x > 0) 

(x.< 0) 

(25) 

If ф may not become zero for +oo, then for x > 0 the solution also consists 
of a growing exponential and the solution for x < 0 is determined by the nor-
mal rules, which take into account that x = 0 is a turning point [7] . The solu-
tions of (25) become the solutions determined by Eq. (16) and they can there-
fore be coupled. This possibility of coupling is due to the fact that sections 1 
and 2 in Fig. 3 have a common part within which coupling in fact takes place. 
The picture is entirely different in the case of the solutions of (23a) and (15), 
which do not coincide with one another and cannot therefore be directly 
coupled. This is due to the following circumstance. The pair of solutions 
in (23a) have, in principle, no quasi-classical form and for them we have 

кУ - Ф dy2 " (26) 

The equality (26) is in fact determined to an accuracy of: 
al/3 

« 1. (27) 
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The inequality (27) means that the regions, where the solutions of (15) and 
(23a) are fit (corresponding to sections 3 and 4 in Fig. 3), do not overlap. 

To overcome this difficulty let us consider the equation: 

0Ux<p" - ихф = 0, (28) 

which is true as a zero approximation in the region 

•Ja < x < 1, (29) 

(section 5 in Fig. 3). The solution of this equation is: 

Ф= ч / хг 1 - 2 
U^x 

Uj3 

I - I 

(30) 

where Z j is one of two linearly independent cylindrical functions (for example, 
I j and Nj ). For small values of the argument in (30) we have: 

Ф1 = 1; Ф2 = x, (31) 

i . e . Eq. (30) becomes Eq. (23a). For large values of the asymptotic argu-
ment Zi coincides with (15). This completes the first procedure mentioned 
in section II of this paper. The answer to the second part of the problem, 
also mentioned in that section, is given by the theorems of Wasow [6] which 
retain their force in the present case. 

Equations for eigenvalues in the case of local solutions can be written 
down immediately, proceeding as in the quasi-classical approximation for 
a second-order equation [7] in deriving the "rules of quantization": 

(32) 

(33) 

The expressions (32) and (33) give two independent solutions for the 
eigenvalues. This corresponds to the fact that for +oo (or - oo) we have two 
linearly independent solutions, determined by (15) or (16), which are then 
separately "extended" at - oo (or +oo) (a connection only arises for а//32). 

IV. CLASSIFICATION 

In Eq. (18), which is true for x < 1, we make the substitution 

x = 0y , (34) 

o, 
A , 

f ( $ v j d x " (n+ 
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which gives 

a d4œ TT d2œ 
dy4 dy2 

The solution of this equation is obtained by the method of Laplace: 

Ф (У) = J p - exp [ y t - ^ Ш + T -¿j dt, 

(35) 

(36) 

where the integration is per formed in the plane of the complex variable t 
along a contour at the ends of which the function: 

, . a t3 1 IL 

becomes zero . The solution (36), in accordance with (34) and (17), is true 
in the region у < 1/0 » 1. We will l imit our d iscuss ion to the fol lowing 
region: 

1 < у < I » 1 , (37) 

or 

< X < 1 . (37a) 

Since у > 1 in the range considered, the "saddle-point" method can be made 
use of in determining the integral in (36). We have the following four "saddle 
points" : 

(38) 

This determines four contours, integration along which gives four linearly 
independent solutions. By appropriately selecting the contours we get the 
following solutions: 

% (У) ' 
• fihJL- я. ?LL 
VU q3 "02 U 

4 L щexp J 4 i (y)dy (i= 1 , 2 , 3 , 4 ) . (39) 

Determining: 

4 i 
a 4 U i Y 

(1 = 1.2), 

(i = 3 ,4) , 

(40) 
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we get from (39): 
y 

<P¡ (у) - ( ^ Г 1 / 2 exp J q t (y) dy (i = 1, 2), 

(41) 

<Pi (y) = (qi)"5 /2 exp J qj (y)dy (i = 3,4). 

For large values of y, it is not difficult to see that the solutions of (41) 
become the corresponding solutions in the internal region (15), (16). 

Let us consider the value of y, for which the inner root of (40) becomes 
zero: 

fa 4UiY 
Уо — " l a = — \jp" ~jfiJ ' <42> 

(For the type of functions considered Uj (x) and U2 (x), at the points y 0 , the 
value Uj < 0 and y0 is purely imaginary. ) The points y0 will be referred to 
below as branching points. Taking (8) and (34) into account, we see that 
the value at the branching points is x ~ and the distance between the 
branching points is approximately \ja. From (42) it immediately follows that: 

a < 1 ( a / ( 3 2 < l ) , (43) 

a > 1 (o7(32 > 1). (44) 

In the case (43) the branching points do not fall within the region of (37), 
where solution (41) holds good, and they may be disregarded. 

In case (44) the situation is different and, as we shall see from what 
follows, by taking the branching points into account, we make an essential 
change in the entire treatment and this may lead to a qualitatively different 
physical picture of the process. We shall call case (43) the weak case and 
(44) the strong case. 

Since the solution of the problem stated in section III was true for 
a/)32 < |3 < 1, it is correct to consider it as the weak case. 

It should be noted that if we introduce the concept of wavelength, 
X =: <p(dqp/dx)-i, then, in the strong case, many wavelengths can be "fitted in" 
between branching points, which is not so in weak case. Thus, classifica-
tion is made in accordance with the number of wavelengths lying between 
the branching points (i. e. in accordance with the ratio between the para-
meters a and /3), although the distance between the branching points is the 
same in both cases (oija). 

V. STRONG CASE 

As has already been noted, the need to take account of the branching 
points a^, a 2 , bx and b2 (Fig. 4) entirely changes the rules for the transition 
from, say, the region x < Oj to the region x > 0j . 
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\ V 
at 1 I "2 

( / / \ Л / \ V 4 '' ( u À-( / / \ Л / /ck 
3 / 
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3 / «2 1' M 

/ \ в \ 

Fig. 4 

Pattern for the level lines with respect to each of the branching points separately. 

To obtain these rules f o r (41) we shall use the following f o r m of the 
roots in (40) (in the vicinity of the point 0 x ) : 

± ч / у - ( y 2 + a 2 ) * = ±-j= ( \ / y + ia - •»/ у - ia); ( y > 0) 

= ± 7 = W|y|+ia->/|y|-ia) ; (y < 0), 

± N / y + ( y 2 + a 2 ) i = ± - ^ W y + i a + J y - i a ) ; (y > 0) 

= ± j = kJ |y J + ia + s/|y I - ia); (y < 0) 

We then write down the solutions of (41) in the form: 
У 

"Pi. 2 = ( V " 1 / 2 exp ± J(Wl (y) - w2(y))dy ; ( y > 0) 

У 

±if(v1(\y\)-w2(\y\))dy ; ( y < 0 ) , 

У 

± J К (y) + w2 0/)) d y ' (y > 0) 

у 
t f [ v t 1 ( \ y \ ) + W 2 ( | y | ) ) d y ; ( y < o ) . 

(45) 

(46) 

(47) 

Г- i " 1 / 2 = (qx) exp 

Ф3.4 = 5 / 2 e x P 

= (q ) " 5 / 2 exp 

(48) 

where 

32U w, = [ '-¿-^ J X ч/у - ia, 

(49) 
W2 
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In expressions (47) and (48) the exponential is factorized for both branching 
points, which then makes it possible to employ rules of the type in [8]. 

On the left-hand side of point A * we write down an arbitrary solution, 
which becomes zero at - oo. 

Я>= [Qil "1 / 2 exp " i j w j (y)dy + i jw 2 (y)dy 
À A 

+ D|q3|-6/* exp / w1 (y)dy + j w2(y)dy 

(50) 

On the right-hand side of point A, the second term of (50) does not change, 
but the first is transformed in accordance with the rules of (45). This gives: 

Ф(у) = |q j - 1 / 2 e x P l " T + i J q i d y J + e x p l s T " i . / q i d y " - i h 

r 
+ D |q3|"5/2 exp Jwx (y)dy + Jw2 (y)dy (51) 

By taking into account formulae (47) to (49) we can establish a pattern 
for the level lines with respect to each of the branching points separately 
(Fig. 4). The level lines from two adjacent branching points intersect on 
the reed axis at points Clt C 2 . The solution of (51) can then be written in 
the following form, for A < y < Cx : 

Ф(у) 
1 

fell1" 
e'®1 exp 

+ tzt 
q j 1 / 2 

e"1®! 

+J w2 (y) dy 
У 

a2 

+ D|q 3 r 5 / 2 exp 

-J Wj (y)dy 
"У 

ai 
J wx (y) dy - J w2 (y) dy 
У У 

a i а г 

w l (У) dy + j^w2 (y)dy (52) 

where 

2NÍ 
U 2 ( z ) - (4U 1 ( z ) « / j3 2 ) i dz - JjU2(z).+ (4их(г)а/Э2)^г . ЗГ 

_ 1 4 * 
(53) 

The integrals in (52) are taken from the branching points ax (a2) along a 
line where (u2) is purely imaginary, to the point Cx and then along the 
real ajcis. The contours L i and L2 in (53) start at point A, go along the 
real axis to point Cx and then along the lines, where Uj and ĝ  , respectively, 
are purely imaginary, up to the branching points a i , a 2 . In writing (53) 

* T h e m e a n i n g o f a l l t h e s y m b o l s a n d l e t t e r s u s e d i n t h i s s e c t i o n a n d n o t d i s c u s s e d i n t h e t e x t i s c l e a r 

f r o m F i g . 4 . 
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account is also taken of the fact that in the vicinity of point 01 , where U2 = 0, 
the expressions under the integral sign are transformed into 

and 

P i = 

P 2 : 

( 3 2 U 
2a 

/32 U 
2 a 

(z - ia) 

(z + ia) 

i 

respect ively . Sections are selected along the lines 1. It is not difficult 
to see that the value of фг determined by expression (53) is purely real . 

In order to write the solution of (52) (determined on the left-hand side 
of point 0 г ) for the right-hand side of Oj, use is made of the rules of rota-
tion given in the Appendix. It is convenient to introduce the following 
designations: 

P i - ( 4 I W 0 2 ) * ] , 

P 2 = N & U 2 + ( 4 1 W 0 2 ) * ] . 

(54) 

Then, for 01 < у < 0 2 , and to within the constant factor, we have: 

cp(j) = ie'®2 | P l + p5 
I -5/2 exp 

У У 
i j p i (z) dz + i J p 2 (z) dz 

•(iei01 + D) |pj + p. 1-5/2 exp 
У Уг 

- i J Pj (z) dz - i J p2 (z) dz 

+ e i 0 ' |px - P: 
1-1/2 exp 

У У 
i f P j (z )dz - i J p^(z)dz 

+ (2 c o s ^ j - iD) |pj - p2 
- 1 / 2 exp 

n 
- i /p^zïdz + iyp^zjdt 

(55) 

where integration is per formed f r o m a i , a 2 respect ively along the lines 
L 3 , L 4 (Fig. 4), continuing down to the real axis and proceeding along it 
to the point y. Transferring the solution of (55) to point 0 2 , we can re-write 
it in the form: 
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Ф(У) = ie 101 
|Pi + P s 

7572 e X P - i J p x ( z )dz - i J P2(z)dz 
' У У 

ie1® i + D i 1-5/2 
- |Px+ P 21 e x P i J P i ( z ) d z + J p 2 (z) dz 

У У . 
b, 

e1®1 ¥ 
+ 1 ¡172 e XP 

IPX - ftl 

2 eos ¿i - iD I 1-1/2 
+ Y I P 1 - P 2 I e x P 

ijp1(z)dz + i j p2 (z) dz 

b ! b 2 

i J P i (z)dz - i J p 2 ( z ) d z 
У У 

(56) 

The integrals f r o m y to b are interpreted in the same way as those f r o m 
y to a. In addition we have assumed: 

ФЕе ' * 1 

¥ = exp 

exp ijpi (z)dz + ijp2 (z)dz 
h U 

- i j px (z) dz + ij p2 (z) dz . 

(57) 

(58) 

The contours L 3 and L 4 are shown in Fig. 4. It can easily be seen that the 
argument of the exponential in (58) is purely real , and ф2 in (57) is purely 
imaginary. For this, contour L 3 is curved in such a way that it goes f rom 
ai to Oi, thence along the real axis and subsequently f r o m 0 2 to b i . We 
follow a s imilar procedure with L 4 . Then in accordance with (54), on the 

r . 0
2 

real axis, where L 3 and L4 coincide, we have / (pi - p„)dy, which is purely 

imaginary; 
fact that: 

r°2 
fy; / (p 

Jo¡ 
j + P 2 )dy, which is purely real . Taking into account the 

J (z + ia)1/2dz = ( ia ) 3 / 2 . 

(z - ia) dz = ( - i a ) 3 / 2 , 

we 

the 

come direct ly to the above-mentioned statement. 
To the right of point 0 2 , using again the rules of rotation indicated in 

Appendix, we get: 
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Ф(У) = | P l + Р 2 Г 5 / 2 ( 1 Ф е ^ - 1 2 с 0 8 / 1 - Ш ) exp 

+ |Pi + P2 
-5/2 (2 c os Ф1 - iD ie'®1 + D 

¥ Ф 

J p 1 (z)dz + J"p 2 (z )dz 
b2 

Pi(z)dz + Jp2(z)dz 

+ I Pi - ( " e i 0 1 4>+ei01 ¥ - - „ — + 

X exp 

e1"' - iD 2 cos Ф1 - iP 
Ф ¥ 

+ | P l - R 

У 
Pj (z) dz + J P2 (z) dz 

bi ь2 

-1/2 cos Ф1. - iDx\ Y 'J e xP 
г 
У ^ (z)dz - J"P2(z)dz (59) 

The condition of the absence of increasing solutions at +00 is given by 

e i01 Ф¥ = 2 cos <¡>i~ iP 

and 

where 

ÍW ал ei®i - iD . 2 cos 01 - iD e2i"s(2 c o s ^ i - i P ) \i-vje - ф -t- - , 

1Ф3 = ' J Pj (z)dz + J p 2 (z )dz . 

(60) 

(61) 

and contours Ц and are s imi lar to contours Lq , L 2 and are obtained, 
respect ive ly , f r o m b x , b2 through point C2 to B . It should be noted that 
ф3 , like ф 2 , i s purely real and positive. 

Solving the system (60) , we find: 

f rom which 

ei(®! + ®2 + 0,) = J- 1 

?x + Ф2+ Ф3 - а » . 

(62) 

i J Pjdz - i J p 2 dz + J p x dz + J p 2 dz - i J p x dz + i J p 2 dz = ( n + ' 0 ' r 

Li Lz U U L¡ Ц 

(63) 

Equation (63) is a generalized "quantization rule" for the strong case . The 
left-hand side of (63) represents the total incidence of a phase consisting 
of three parts: 



HYDRODYNAMIC THEORY OF STABILITY 639 

(1) Phase incidence in the region A0X , where the wavelength 

(2) Phase incidence in the region fy , 0 2 , where the wavelength 

(3) Phase incidence in the region 02B which is of the same type as that in 
region AOi, 

This "strong coupling" of the oscillations is characteristic of the strong 
case and to that extent condition (63) expresses this fact. 

VI. REMARKS 

1. In accordance with the classification given in section IV, for a /0 2 < 1 we 
have the weak case. The solution given in section III is true for a / 0 2 < 0. 
Thus, for the weak case there remains a region 0 < d /0 2 < 1 not yet con-
sidered. The solution given in section III, as has already been stated, is a 
generalization of a known solution [1] for the quasi-classical case. However, 
a solution can be found for a /0 2 < 1, including a / 0 2 < 0 as a particular case. 
For this, we refer to the formulas (39) - (42). The solutions of (41) are 
unknown for a /0 2 < 1. The coupling rules are the same for them as in sec -
tion III, since the branching points of (42) do not lie in the region in which 
(41) is valid. The "quantization rules" of (32) and (33) remain the same. 

The statements which have been made represent a unification of the 
method developed in sections IV and V. A purely technical difference arises 
in connection with the fact that the asymptotic solutions found in (41) have 
a different structure for the Stokes lines, depending on whether or not the 
branching points of (42) fall in the region in which solution (41) is valid. 
2. The asymptotic method presented can be easily generalized for the case 
in which the behaviour of U2(x), in the vicinity of U2 = zero, has the form: 
U2 - Ux m , it being quite natural that the conditions for coupling the solutions 
should change, although equations (32), (33) and (62) remain the same. The 
case of m = 2 for weak coupling was investigated in [5] . For example, the 
"gravitational mode" found in [5] can be obtained directly from condition (33). 
3. It is known [3,4, 9] that the existence of a non-uniformity in the medium 
results in one type of oscillation in a certain range giving rise to another 
type of oscillation (wave "transformation" effect). 

A detailed physical picture of this phenomenon is given in [3] . The 
method developed above can be applied to this phenomenon. The transforma-
tion effect is already contained in the solution. Thus, for example, in the 
strong case (section V), the presence of an oscillating solution <p3 4 in the 
region Oj 0 g leads to the appearance of an oscillatory solution cpj 2 in the re-
gion A0 1 . It can be said that the points leading to transformation are 
branching points. The coefficient of transformation is obtained as the ratio 
of the amplitudes <Pj and cp3. Of course, in the weak case the transformation 
effect is small, since the "birth" of a new solution takes place successively, 
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according to the small parameter a / f l 2 . The essential factor in the strong 
case is the strong transformation, where the coefficient of transformation 
may be approximately unity. 

VII. SOME CHARACTERISTIC FEATURES OF A PLASMA INSTABILIT 
IN THE FIELD OF GRAVITY 

By way of illustrating the theory set out above, let us consider the 
question of the characteristic features of the stabilization of a so -ca l led 
"flute" instability of a plasma, taking into account the finiteness of the ion 
Larmor radius [12]. The differential equation for the perturbed values in 
the case with which we are concerned has, as we know from [10], the form: 

> Ф - 1 - G 
r ( r - 1) Ф = 0 (64) 

where fl = (kyL)"2 (L is a characteristic dimension), r = u /u ¡ ; u¡ = (cT/eH0 ) 
Xk y n>/n 0 ; G = (g /u? )n¿ /n 0 ; 
sity, T is the temperature, 

is the gravity acceleration, n0 is the den-
H0 is the intensity of the magnetic field, 

n'o = (g /uf )n ' 0 /n 0 L The instability becomes stabilized if G <; 1, and the 
treatment may be considered correct if finite solutions can be shown to exist. 
However, as seen from (64), the coefficient of Ф breaks down at the point 
where r = 1 and the existence of finite solutions has to be substantiated. We 
shall therefore proceed on the basis of broader assumptions in deriving the 
equation for the perturbed values and shall take into account the perturbation 
of the temperature T, which in a quasi-classical approximation satisfies 
the equation: 

I nilr ) + n°T° div v' = "div 

H 

(65) 

Voi and T0 are the unperturbed ion velocity and temperature, respectively. 
For simplicity, we shall consider the electrons to be cold. Selecting the 
perturbations in the form ф (x)exp(iyky + iut) and making standard, simple 
calculations, differing f rom the derivation of (64) only in that account is 
taken of temperature perturbation, we obtain the following equation for ф 
in a system of co-ordinates in which the ions are at rest: 

cp i v . J 2 j 3 - i + ( r - i ) 3r R2 G 
fl(r- 1)2 ! ] } ф " 

+ ^j3"2 + 0 ~ 4 r - 1) 3rR2 - G 
| 3 ( r - l ) 2 

- 30"1R2G^ ф = 0, (66) 

R = L/r¡ (r¡ being the Larmor radius of the ions). 
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For simplicity, let us consider the case of a weak connection, c o r -
responding to two separate equations for finding the eigenfrequencies (32) 
and (33). Here, (33) corresponds to the case of ordinary flute perturbations, 
the role of the second "turning point" being played by the point where U2= 0, 
and finite solutions exist if, outside the interval between the "turning points", 
the potential Uj /U 2 leads to damping solutions. If 

r R 2 > > f 3 ( r - l ) 2 

we obtain from (66) a result corresponding to (64), i . e . a stabilization of 
the instability. 

Let us now consider what is the result of the second equation for eigen-
frequencies, i . e . 

u2 

Jn/U2 dx = ( n 
o. 

A qualitatively correct result can already be obtained from the condition 
U2 « 0. Using the form of U2 from (66) in the case where r = 1 + rj ( r j « 1) 
we find that 

r i =-o (k y r i ) 2 ± (k r ¡ ) 4 + (kyr¡) G (67) 

From (67) we see that taking account of the temperature perturbations leads 
to an instability if 

G > kyzrf. (68) 

As we can see, the stabilization of this instability imposes more rigid con-
ditions on the ion Larmor radius than would be required according to ana-
lysis of equation (64). The distance between the points of "intersection" 
of the solutions in this case is : 

x = k y r ¡ L (69) 

and the treatment used is correct if 

£ - ( k r 1 ) 3 / 8 « l (70) 

APPENDIX 

In this Appendix we shall derive the rules for coupling the solutions of 
cpi in the case of rotation around the branching points (more specifically, let 
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us take the points ai and a2 in Fig. 4). We start with line 1, proceeding from 
point a i . On this line, we write the solution in the form: 

y. y. 

<Р(У)= AIII-L e x p | i f [ w 1 ( z ) - w 2 ( z ) ] dzj- + B ^ exp -^ij[wx(z) -w 2 (z) ] dz 

У У 
+ С1П3 exp yiwi(z) +w2(z)]dzj- + D1H4exp|i|"Wj(z) + w'2(z)]dzj- (Al ) 

where the quantity n ¡ is determined f rom (39). We get: 

IIj = П2= exp 

П3 = П4= exp 

for rotation around point a i , and 

= П2 = exp 

П3 = П4 = exp 

- - l n l W j - w2) 

- - l n ( W ! + w2) 

- - l n ( w 2 - w x ) 

—Jln(w2 + wx) 

( A 2 ) 

(A3) 

f o r rotation around point a 2 . 
It will be seen f r o m (Al ) and (A4) that rotation can take place around 

points ai and a 2 separately, the same coupling rules obtaining in the case 
of rotation around each branching point separately as in the case of [8] . It 
should be noted that the pair of solutions at Ax and Dx rotate around point 
aj independently. Similarly, the pair of solutions at A i and Ci and the pair 
at Bi and Di rotate around point a2 independently. A¡, Bj, C¡ and Di define 
a system of coefficients for a solution in the vicinity of the lines with index i, 
f r o m points аг and a 2 . The result of simultaneous rotation around aj and a2 

then leads to the following: 

A 2 = A x + i D j 

B 2 = B : + iD j B 3 = B24 

c 2 = i A x + i B j + Cj - Dl C 3 = C 2 

D Z = D i I d 3 = iA 2 

A . = A 3 + i D 3 •AJ = - в 

B ' = B 3 + i D 3 
B- = - A 

c i = i A 3 + i B 3 + C 3 " D 3 
c . = - D 

D î = D 3 
l D . = - c 

A 3 = A 2 + iC2 

iA 0 + i B , - Co + D0 

(A4) 
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These are the coupling formulas which are being sought. When we write 
the last column in (A4) we take account of the fact that the solution of Eq. (6) 
must be analytical in the complex plane y. 
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