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FOREWORD

The general technique of using neutron interactions - and in particular
the inelastic scattering of neutrons - to study the dynamics of matter, and
the interatomic forces which determine dynamics, is now well established.
This area of physics research is of increasing interestto developing countries
as well as to many advanced research centres of the world. Three inter-
national symposia have already been devoted to the subject of neutron in-
elastic scattering: the first was held in Stockholm in 1957; the second and
third were convened by the IAEA in Vienna in October 1960, and in Chalk
River, Canada, in September 1962. In view of continuing and expanding
activity in this field, the IAEA convened the present Symposium at Bombay
from 15 to 19 December 1964 on the invitation of the Government of India
and the Indian Atomic Energy Commission.

‘A total of 66 papers representing 15 countries and 1 international organi-
zation were presented at Bombay. The meeting concentrated onexperimental
results and interpretation rather than on equipment and techniques; thus
neutron inelastic scattering has ''come of age' and is indeed now fully
established as a versatile and powerful research tool.

Gratitude is expressed to authors of papers, chairmen of sessions, and
discussion participants for their contributions to the success of the Bombay
Symposium.



EDITORIAL NOTE

The papers and discussions incorporated in the proceedings published
by the International Atomic Energy Agency are edited by the Agency's edi-
torial staff to the extent considered necessary for the reader's assistance.
The views expressed and the general style adopted remain, however, the
responsibility of the named authors or participants.

For the sake of speed of publication the present Proceedings have been
printed by composition typing and photo-offset lithography. Within the limi-
tations imposed by this method, every effort has been made to maintain a
high editorial standard; in particular, the units and symbols employed are
to the fullest practicable extent those standardized or recommended by the
competent international scientific bodies. '

The affiliations of authors are those given at the time of nomination.

The use in these Proceedings of particular designations of countries or
territories does not imply any judgement by the Agency as to the legal status
of such countries or territories, of their authorities and institutions or of
the delimitation of their boundaries.

The mention of specific companies or. of their products or brand-names
does not imply any endorsement or recommendation on the part of the Inter-
national Atomic Energy Agency.
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LIQUID DYNAMICS

K.-E. LARSSON
ROYAL INSTITUTE OF TECHNOLOGY, STOCKHOLM, SWEDEN

Abstract — Résumé — Anpotanus — Resumen

LIQUID DYNAMICS. The neutron scattering results obtained from liquids may be divided into at least
two classes: (a) those obtained from simple liquids such as liquid metals and condensed noble gases such as
argon and (b) those obtained from polyatomic liquids such as the liquid hydrocarbons

From an analysis of the quasi-elastically and inelastically scattered spectrum for the simple liquids very
direct information is obtained on the local order of the atomic arrangements as a function of time. The existence
of interference scattering in the inelastic scattering region clearly indicates that local order is maintained in the
simple liquids for a length of time of the order of 10°!2 s or longer, allowing a development of vibratory motions
of periods shorter than 10712 5,

The studies of the more complex hydrogenous liquids have led to an increased insight into the relaxational
phenomena in these liquids. Applying the principle of division of the scattered neutron spectrum into an in-
elastic and a quasi-elastic part, one obtains from the analysis of the inelastic part detailed information about the
rotational, librational and vibrational levels in the molecule as well as in the intermolecular hydrogen bonds.
The analysis of the quasi-elastic peak leads in several cases to a determination of a self-diffusion coefficient
typical for the proton motion. It is also possible to derive a mean lifetime for the hydrogen bond or for a
hindered rotation in some cases.  The nature of diffusive motions in the hydrogenous H-bonded liquids is also
rather clearly illustrated as a kind of step-wise rotational motion hindered by the H-bond. There seems to
exist a universal limiting relaxation time of about 1072 5 in all the hydrogenous liquids investigated at tempera-
tures such that the viscosity of the liquid is of the order of 1 cP or smaller. From a comparison with the ultra-
sonic data on glycerol it seems clear that the neutron does not observe all the existing relaxational effects
present in glycerol but rather selects those mechanisms which occur on the right time scale of 107! to 108 5,

It seems that conglomerates of molecules, the size of which is strongly temperature dependent, may very
well exist for the case of glycerol. In such cases the true diffusion mechanism seems to be a very complicated
one occurring on various time scales of which the neutron experiments give information only on the faster parts.
The neuntron studies appear, however, as a good complement to the ultrasonic, dielectric and proton resonance
methods of investigating relaxational phenomena in liquids,

If the technique of exchanging the proton against a deuteron is applied to the hydrogenous samples a
considerable increase is gained'in the amount of information obtained from the neutron data, This will be
exemplified for glycerol which has been investigated both in a partially, C;H{(OD),, and fully, C,D,(OD),,
deuterated form.

DYNAMIQUE DES LIQUIDES., Les données obtenues par la diffusion des neutrons dans les liquides peuvent
se diviser pour le moins en deux catégories: a) données obtenues pour des liquides simples, tels que métaux
liquides et gaz rares condensés comme l'argon; b) données obtenues pour des liquides polyatomiques tels que les
hydrocarbures liquides. '

En analysant le spectre de diffusion quasi €lastique et inélastique pour les liquides simples, on obtient
des renseignements directs sur 1'ordre local des arrangements atomiques en fonction du temps. L'existence
d'une diffusion d’interférence dans la région de diffusion inélastique montre clairement que dans les liquides
simples, 1'ordre local se maintient pendant une durée de 1'ordre de 10™* s ou davantage, ce qui permet 1'appa-
rition de mouvements vibratoires de périodes inférieures 3 10 12,

Les études sur les liquides hydrogénés plus complexes ont permis de mieux comprendre les phénom2nes de
relaxation dans ces liquides. En appliquant le principe de la division du spectre des neutrons diffusés en une
partie inélastique et une partie quasi élastique,”on constate que 1'analyse de la partie inélastique fournit des
renseignements détaillés sur les niveaux de rotation, de libration et de vibration dans la molécule et les liaisons
intermoléculaires par 1'hydrogene, L'analyse du pic quasi élastique permet dans plusieurs cas de déterminer un
coefficient d*autodiffusion typique pour le mouvement des protons. Il est également possible d'établir dans
certains cas une valeur moyenne de la durée de vie pour la liaison par 1'hydrog2ne ou pour une rotation inhibée,
La nature des mouvements de diffusion dans les liquides hydrogénés 3 liaisons par 1'hydrog2ne peut &tre assez

. 3
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exactement représentée comme une sorte de mouvement rotatoire échelonné et inhibé par ces liaisons, I1
semble qu'il existe un temps de relaxation limitatif universel d'environ 1072 s dans tous les liquides hydrogénés
&tudiés 2 des températures telles que leur viscosité soit de 1'ordre de 1 cP ou inférieure A cet ordre de grandeur,
Une comparaison avec les données relatives 2 la glycérine obtenues 2 1'aide d'ultrasons fait apparaftre nettement
que le neutron ne subit pas tous les effets de relaxation se produisant dans la glycérine, mais de préférence ceux
qui se manifestent 3 1'échelle de temps appropriée de 1014 3 1013 g,

L'existence de conglomérats de molécules, dont la dimension dépendrait étroitement de la température,
semble parfaitement possible dans le cas de la glycérine. Le véritable mécanisme de diffusion représente alors
probablement un processus fort complexe qui s*op2re 2 diverses échelles du temps et au sujet duquel les expé-
riences au moyen des neutrons ne fournissent de renseignements que sur les phases les plus rapides, Il apparaft
toutefois que les études 2 1'aide des neutrons completent fort bien les méthodes qui permettent d'étudier les
phénom&nes de relaxation dans les liquides au moyen de méthodes de résonance (ultrasons, diélectriques
et protons), ’ .

En appliquant aux &échantillons hydrogénés la technique fondée sur le remplacement du proton par un
deutéron, on parvient 3 augmenter considérablement la somme des connaissances pouvant &tre déduites des
données obtenues au moyen des neutrons. L'auteur cite, 3 titre d'exemple, la glycérine qu'il 2 étudiée sous unt
forme partiellement deutérée, C,H.(OD), et enti2rement deutérée, C,D(OD) .

IMHAMMKA XUJKOCTEHN. PeaynnTaThl paccesHHs HeATPOHOB HAa XKHAKOCTSX MOXHO MOA-
pasiennTs No KpaiHeil Mepe HA IBE KATETOPHH: a) Pe3yNbTATH, MONYYEHHBIE HA NMPOCTHX KHAKO-
CTAX, Hanp¥Mep XUAKHX MeTaanax,  KOHIeHCUPOBAHHLIX MHEDPTHBIX ra3aX, HanpUMep aprode, H
b) pe3ynbTaThl, NONy4YeHHE€ Ha MHOI'OATOMHBIX XHAKOCTAX, HANPHMEp KUAKHUX YT/€BOAOPOAAX.

B pe3ynbTaTe aHa/ju3a CnekTpa KBa3Hynpyroro M Heynpyroro paccesiHHs Ha npoCTHIX XHUA™
KOCTSAIX nojyuyeHH O4YeHb siCHble JaHHBIe O /JIOKAJbHOM MOpsSiAKe PAaCMONOKEHHSI aTOMOB KaK (PyHKUHH
BpeMeHu. Hanuuue uHTepdepeHUHOHHOro paccessHHa B obsacTH HEynpyroro paccesiHus CBHAeTeNb~
CTBYeT O TOM, YTO IOKanbHH! it NOPAAOK COXPAHAETCHA B TPOCTH X XHAKOCTAX B TeYEHHe nopsahka 10712 cex
unu Sonee, 4TO AefaeT BOIMOXHBM KoneGaTenbHEle ABHKEHHA C nepHOAOM MeHee 10712 cexk.

Hayuenue Gonee cnoxHmX FHAPOTEeHHLIX KHAKOCTEH MO3IBOMUNO Ny4lle NOHATH ABJEHUS pe-
NIaKCalMH B 3THX XHIAKOCTAX. ECIH NpUMEHHTE NMPUHUMN Ae/eHHA CNEKTPAa PacCeSHHBX HeATPOHOB
Ha HEYNpPYTY0 H K8a3MynpyTylo YaCTH, TO OKa3bHIBAeTCH, UTO aHa/JMU3 HEYNnpyro# YacTH RKaeT no-
Apo6HY0 HHPOPMAUHIO OTHOCHTENBHO BpamaTeJbHOrO, BHGPAUHOHHOTO M KojlebaTe/bHOT O ypoBHe#H
B MOJeKxyje, a TaKXe B MeXMONEeKyNAPHLX BOAOPOAHBX CBA3AX. AHAAU3 KBa3Hynpyroro nuka
B pfje ciy4yaeB NaeT BO3MOXHOCTb onpelenHTh Kood duuneHT camoand dy3uu, THNHUHEH WA ABH-
XeHHS NPOTOHOB. B HEKOTOPHX Cly4YasX MOXHO TaKXe ONpelesIHTh ¢pelHee BPeMs CyleCTBOBAaHHSA
BOAOPOAHOM CBA3H WIH CTECHEHHOTO BpameHusi. Takxe HOBONBHO y6GeANTENBHO NMOKa3bIBAETCS
xapakTep AU dy3HOHHBIX ABHXEHUA B THAPOTEHHBIX XUAKOCTAX C BOJOPOAHMIMH CBA3AMH, KaK O&~
HOT'O H3 BHAOB CTYMEHYaTOro BpamMaTe/NbHOro ABHXEHHS, CTECHEHHOT O BOJOPOAHOA cBa3bw. Hnsa
BCEX HCCHeJOBAaHHHX I'MAPOTEHHbN X KHAKOCTEA NPH TAaKHX TeMNepaTypax, Koria BA3KOCTb XKHA~
KOCTH COCTaBAAeT NOpsiika 1 caHTHnay3a WIH MeHee, CYMmecCTBYeT, NO-BHAHMOMY, YHHBEPCAIbHO®
npedenbHoe BPeMS peflakCcalluM, COCTaBisipmee npuMepHo 10712 cex. CpaBHEHHE C ylnsTPa3BYKoO™
BBIMM QaHHBIMM MO TAHLEPHHY NOKa3blBaeT, YTO HEHTPOH BHABAAET He Bce ¢ dexrn penakcauuu,
CymecCTByOmHWe B TIJHLEPHHE, a AHIb Te MEXaHH3MBI, KOTOpPhle NPOHCXOARAT B JAHana3oHe
10-11—10-13 cex.

MpencrasnseTcs, YTO B I/IMLEPHHE BMNOJHE MOTYT Cy€CTBOBaTbh KOHIJIOMEpPaThi MONEKY,
pa3Mep KOTOPHIX B 3HAUMTEJIbHOW CTEneHH 3aBHCHT OT TeMnepaTyphl. B Takux cayyasx HCTHH-
HBIA MexaHn3M AHP dy3uM ABNAAETCA, NO-BHAHUMOMY, OUEHBb CJIIOXHBIM M NPONUCXOAHT B Pa3/NH4YHbIE
‘MPOME@ XyTKH BpeMeHH. HeHTpOHHbIe 3KCnepPHMEHTH MO3BOAAIT NMONYYUTH AaHHEIE TONLKO O Gonee
6BICTPOi 4YAaCTH 3THX MeXaHH3MOB. OIHAaKO HEHTPOHHBIE HCCIEAOBAHHA ABASKTCH XOPOWMM AO-
NONHeHUeM YJAbTPa3BYKOBOTO U ANINEKTPHUECKOTO METOAOB, a TaKXe MeTOAa NMPOTOHHOTO Pe3o-
HaHCa NMPH UCCAEeAOBAHHMH SABAEHUH PENaKCALMH B KHAKOCTAX.

Ecsn B OTHOMEHUM THAPOTEHHHX 06Pa3loB NPMMEHHTh METOA 3aMeHBl NPOTOHA AeHTPOHOM,
TO MO HEATPOHHHM AAHHBIM MOXHO MONYYHTH 3HAUKTENbHO bonbpme uHPOPMALMHK. ITO BHAHO HA
npHMepe rHUePHHA, KOTOPBIA HCCAeJOBaNCcad KaK B YaCTHYHO, TaK K B MOJHOCTHIO AeHTepPH30BaH -
HOM BHze, T.e. B Bulie C3 Hg(OD)3 u C3D5(0OD)3 cooTBeTCTBEHHO.

DINAMICA DE LOS L{QUIDOS. Los resultados logrados por dispersi6n de neutrones en liquidos pueden
dividirse al menos en dos clases: a) los obtenidos con lfquidos simples, tales como los metales fquidos y los
gases nobles como el argén, condensados, y b) los obtenidos con lfquidos poliatémicos, tales como los hidro-
carburos 1fquidos,
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El andlisis del espectro de dispersién cuasieldstica e inel4stica en los lfquidos simples permite obtener
informacién mﬁy directa sobre el orden local de los ajustes atémicos en funcién del tiempo, La existencia de
interferencias en la regi6n de dispersién ineléstica indica claramente que el orden local se mantiene en los
Ifquidos simples durante un lapso de unos 10 % s o mayor, lo que es compatible con la existencia de movimientos
vibratorios de perfodo inferior a 1072 s,

El estudio de los liquidos hidrogenados, que son mds complejos, ha permitido profundizar los conoci-
mientos que se poseen sobre los fenémenos de relajacién en dichos lfquidos, Cuando se aplica el principio
de la divisi6n del espectro de dispersi6n neutr6nica en una parte el4stica y en otra cuasieldstica, el an4lisis
de la parte ineldstica proporciona informacién detallada sobre los niveles de rotacién, oscilacién y vibracién
en la molécula y en los enlaces hidrégeno intermoleculares. El anilisis del pico cuasieldstico permite a veces
determinar un coeficiente de autodifusi6n caracterfstico para el movimiento proténico, En algunos casos, tam-
bién es posible deducir el perfodo del enlace hidrégeno o de una rotacién restringida. La natwraleza de los

. movimientos de difusi6n en los lfquidos hidrogenados con enlaces hidrégeno se explica asimismo bastante
claramente como una especie de movimiento rotacional gradual restringido por el enlace hidrégeno, Parece
existir un tiempo Wmite de relajacién universal de unos 1072 s en todos los Hquidos hidrogenados que se han
investigado a temperaturas tales qué su viscosidad es del orden de 1 cP o menor, De la comparacién con los
datos relativos al glicerol, obtenidos con ayuda de ultrasonidos, se desprende que los neutrones no se ajustan
a todos los efectos de relajaci6n existentes en el glicerol, sino que seleccionan los mecanismos que se verifican
en el lapso, propicio para ellos, de 101! a 10718 s,

Al parecer, en el glicerol pueden muy bien existir conglomerados de moléculas cuyo tamafio depende
estrechamente de la temperatura, En tales casos, el verdadero mecanismo de difusién parece ser muy compli-
cado y se desarrolla a ritmos diferentes; los experimentos de dispersién s6lo proporcionan informaciones sobre los
mis rdpidos. De todas formas, los estudios con ayuda de neutrones parecen constituir un buen complemento de
los métodos ultrasénicos, dieléctricos y de resonancia prot6nica utilizados para el estudio de los fenémenos de
relajacién en los lfquidos,

Si se aplica a sustancias hidrogenadas, la técnica de sustituir protones por deuterones amplfa considerable-
mente la informacién que proporcionan los neutrones. A este respecto se cita el ejemplo del glicerol, que se
ha investigado en sus formas parcial y completamente deuteradas, esto es, C,H,(ODy) y C,D(ODy).

1. INTRODUCTION

It is possible to approach the problem of liquid dynamics from two di-
rections: (a) either the liquid is considered as a disordered solid, and the
solid-state ideas are transferred to the liquid field, or (b) the liquid is con-

‘ sidered as a condensed gas and the gas aspects are supposed to be dominating,
Both aspects may be fruitful to apply to the liquid dynamic problem. One
or the other aspect dominates depending upon the temperature of the liquid
and upon the time scale of observation. The experimental studies of fluctu-
ation and transport phenomena of liquids range from the classical studies
of diffusion and viscosity covering time periods of minutes and hours to
relaxational studies by ultrasonics, proton resocnance measurements, di-
electric measurements and neutron scattering studies, altogether covering
time ranges from 1076 to <10713 5. In Raman and infrared spectroscopy
an instantaneous picture is obtained of the energy transitions between various
energy levels caused by rotational and vibrational motions of complex mole-
cules in liquids. The intermolecular bonds in liquids often manifest them-
selves in the appearance of extra broad energy levels and the close collisions
lead to a broadening and smearing out of sharp spectral lines for various
reasons.

The liquids may be divided into a number of classes but from the
dynamical point of view it seems proper to talk about (a) monatomic-li-
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quids and (b) molecular liquids. The vast majority of liquids belong to class
(b) and most of the experimental information has been gained with molecular
liquids. From the theoretical point of view the molecular liquids present
a many-body problem of formidable complexity, whereas the simpler mon-
atomic liquids, such as liquified noble gases and liquid metals, are some-
what simpler to handle theoretically. Thus the current models for liquid
dynamics may be tested most simply in the neutron scattering results on
these simpler fluids. In spite of this the neutron studies of the complex
liquids offer a tool to deepen our understanding not only of the liquid dy-
namics but also of the neutron scattering method itself, clearly demonstrating
its limitation and possibilities.

2. THE NEUTRON SCATTERING METHOD

The slow neutron scattering process happens to offer a very interesting
time scale to the observing scientist. If the momentum transfer in the
scattering process is h¥, where ¥ =K-%g and K and Ky are scattered and in-
going wave vectors respectively, it follows from the uncertainty relation
that the interaction range or observationrange of aneutronis Ax > 1/[x]. On
the other hand, simple fluctuation theory predicts that in a time t a particle
in a liquid diffuses a distance (Ax2)}=(2Dt}, where D is the self-diffusion
coefficient of the molecules of the liquid. Identifying the two values of Ax
one may see that the observation time of the neutron which would be ne-
cessary to feel the motion of the particle over the distance Ax is

tops > 1/2Dk?2 (1)

If D~10"5 cm?/s and 0.1 <x2< 10 &2 ina typical neutron scattering experi-
ment one may see that 5X 10711 > to > 5X 1013 g, If on the other hand
one imagines that the slow neutron is interacting with a heavier molecule,
say a mass of M =100, its average speed Vv during interaction would be about
104 cm/s, so that its interaction time,t;,, = Ax/V > 1/«¥, would be in the
range 13X10712 s> t;;, > 0.3X10712 5. Obviously the neutron will thus see
the motions occuring on a time scale < tijp. If diffusion of a molecule occurs
without any time delay the neutron would see the diffusive motion, so that
a sharp ingoing neutron line would appear broadened due to the uncertainty
in position of the scatterer. If on the other hand, the diffusive process would
be delayed by the presence of neighbours the diffusive line-broadening will
be observed only if the delay time is < ty;,,. If one also imagines that the
nucleus with which the neutron is interacting is vibrating or rotating within
the bond in the molecule or within an intermolecular bond, such as a proton
in an H-bond, the neutron will also register the energy transfers in the vi-
brating-rotating system. Such energy transfers often occur with lifetimes
7of the order of 10712 s in liquids, and therefore many periods of a damped
oscillation might be felt by the neutron and registered as relatively sharp
lines or bands in an inelastically scattered spectrum. Between the two re-
gions of small diffusive and relatively large (rotational, vibrational) energy
transfers there also exists a region which corresponds to hindered trans-
lations (damped oscillations) of the centre of gravity of the molecule. The
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reason such oscillations should exist is simply that the oscillating molecule
is caught in a cage created by neighbours oscillating in a like manner.

Various hypotheses regarding the mean lifetime 7, of such an oscilla-
tory centre of gravity in a cage of neighbours [1, 2, 3, 4] and also regarding
the period of diffusion [5] have been invented. In a solid-like model the
relaxation time 7, is so long that the vibrational perlod T=1/Vosc is K 79.
Also in such a model the time 7y spent by the molecule ina diffusive or trans-
lational state is assumed short in comparison to 7y. In one case it has also
been assumed that because of the ever changing walls of the cage within which
a molecule is enclosed, the molecule also performs a slight diffusive motion
during the translational or oscillatory period. Because of the existence of
a residential time 7y there should exist a frequency distribution f(w) similar
to the one defined for solids although the physical meaning is not so clear
in the liquid case because of the strong damping and anharmonicity [6]. Other
solid-like models have been created, such as the stochastic model in which
the oscillatory motions of the centre of gravity of the molecules are similar
to the phonons in a solid with the addition of a damping and with the assump-
tion that low frequency modes, w<w', may not be transmitted through the
liquid but rather degenerate into diffusive modes [7]. No serious theoretical
attempts have so far been made to describe the differential scattering cross~
section of a vibrating-rotating system performing hindered translations and
diffusion like a complex molecule. - Yet considerable experimental effort
has gone into the study of liquids like Ho, HyO, D90, CHy4, CsHjg, C3Hs(OH)g,
C3H5(OD)3, C3Ds(OD)3, CqH35COOH, CH3;OH, CyH;OH ete. [8]. In the fol-
lowing, the results obtained on such liquids exemplify what sort of infor-
mation is obtainable from neutron scattering data.

In some of the liquids mentioned, like DyO and C3D5(OD)3, there should
exist interference scattering resulting from the atomic short-range order
within the molecule and possibly also collective scattering caused by the
ordering effect of the intermolecular hydrogen bonds. In accordance with
the picture of propagating more or less strongly damped waves in the liquid,
there should exist around each molecule or atom in the liquid regions over
which strong correlations in the molecular motions would persist. Within
such a correlation range of a few atomic distances the atomic and molecular
order should have such a mean lifetime that collective scattering should
appear. In this modified sense it should be possible to regard and treat the
interference scattering in a liquid like that in a polycrystal.

The analysis of such coherent scattering from complex liquids is, how-
ever, exceedingly difficult. It appears much simpler to study coherent

‘scattering phenomena in monatomic liquids of which some are 100% coherent
scatterers, such as liquid tin [9), lead [10] and aluminium [11]. Somewhat
more difficult to interpret are the results measured on mixed coherently
and incoherently scattering simple liquids like liquid argon [12,13] andliquid
sodium [14,15]). A few examples of results obtained on coherently scattering
simple liquids are given,



8 K.-E. LARSSON
3. TREATMENT OF NEUTRON SCATTERING DATA

The neutron scattering data obtained from liquids may be of three kinds,
namely total scattering data o5, angular distribution studies do/dQ and fi-
nally the energy-analysed angular distribution d%0/dQdw. In this review we
concentrate on the last two observable quantities. The choice of proper in-
going neutron energy is very important as is illustrated by the following
consideration. :

Let us assume that the liquid would scatter as an incoherent solid such
that d%/d2dw may be given by the phonon expansion formula [16] with only
the first few terms (n=0,1, 2, 3) retained. Let us.assume that the experi-
mental resolution function is of Gaussian shape and that the equivalent Debye
temperature of the liquid is 50°K which corresponds to a Debye-Waller factor
2W =3 if the square of the momentum transfer k2=15A-2, if the mass of
the scatterer is M =92 and if the temperature of the sample is 293°K. If
we now consider four ingoing neutron wavelengths, namely A=1.13 & cor-
responding to an energy of E =64 meV and a resolution width AX/X = 89%,
x=1.54 correspondingto E~ 36 meVand AX/A=5%, X=2.25 K corresponding
to Ex~16 meV and AX/ X =5%, and finally A =4 & corresponding to E~5 meV
and A)L_/')L =4%, we observe {Fig.1l) that it is not possible to resolve the
elastic peak unless the ingoing neutron energy is low. The fact that too high
neutron energies give only the gas model result is well known,but for the
sake of clarity it is nevertheless mentioned here. Of course a higher reso-
lution would give the central peak resolved even at the higher. neutron
energies,but for intensity reasons such high resolutions are not practical '
in many cases. If one therefore wants to study broadening effects of the
central quasi-elastic peak,very low ingoing neutron energies are preferable.
This means that the inelastic scattering will be mainly observed only
in energy gain. If particular attention is to be paid to very high energy
transfers, w> 15X 1013 rad/s (E>0.1 eV), only an energy loss experiment
with higher ingoing energy will solve the experimental problem.

There are essentially two or three different ways to treat the neutron
data.

(a) One basic idea in the detailed treatment of neutron scattering data
is that the observed intensity distribution, which more or less directly re-
flects the cross-section d?6/dQdE, may be divided into a quasi-elastic and
an inelastic part. The ideal situation would be one which allowed a direct
comparison of all the observed intensity with a theoretically obtained
d20/df2dw, thus including both quasi-elastic and inelastic scattering caused
by both diffusive, hindered translational, hindered rotational and internal
vibrational motions and energy transfers. As such a situation does not exist
one has to resort to simplified ideas and approximate formulas.

If cold neutrons of 4 to5-4& wavelength are used as ingoing neutrons,
broadenings of the quasi-elastic line in a range 3X 1075 to 8X 10 eV may
usually be analysed with normal resolution values of ‘dx/x-(dt/t) down to
the region of 1.5%. Larger broadenings up to a few millivolts may be ana-
lysed with somewhat higher ingoing energy, such as the example of A = 2.2548
or E =16 meV given in Fig.1 (for which the assumed resolution broadening
is 1.6 meV). Examples of scattering results obtained with the full cold
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E,=64 maV E =35 meV
AE =10 meV AE =36meV

INTENSITY

E =16 meV E,=5 meV
AE =1.8meV AE =04 meV

[

WAVE LENGTH (A)
Fig. 1
Ilustration of the importance of making the correct choice of ingoing energy E,
when the resolution is given by instrumental properties.

It is seen that only when Ey= 16 and 5 meV is the elastic peak resolved
and a study of its width possible.

neutron spectrum and with neutrons of wavelength 2.25 A impinging on
glycerol, pentane and liquid aluminium as well as results gained when a re-
duced cold neutron spectrum is scattered from liquid argon are shown in
Fig.2. It is observed that a separate analysis of the quasi-elastic peak is
impossible for the full cold neutron spectrum and for too large broadenings
but that larger widths obtained at higher temperatures or larger k-values
may be analysed from the observations with neutrons of shorter wavelength.
The argon results of Fig.2 exemplify a case of a loosely bound liquid where
none or very little inelastic scattering is observed. The results on liquid
aluminium exemplify a case where no quasi-elastic scattering appears at
all.

The isolated quasi—elastic peak may be used for a direct comparison
with various cross—section predictions or it may be used to derive one
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Examples of scattered neutron spectra from liquids
with various ingoing neutron energies and spectral distributions.
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quantity, the width AE. Definite predictions of the full width at half maxi-
mum are given by a number of liquid models, the most important of which
have been

(i) The simple diffusion model [17]
AE = 2hnDk 2 (2)

(ii) The jump diffusion model [1]

_2h e2w
og-2 <1 e +D,<270> @

(iii) The modified jump diffusion model {4]

2h e 2W
= ) - .
AE 7_0 1 +K»D07b 1 +K2D7_o> . (4)

Here D is the total self-diffusion coefficient and Dy is a smaller diffusion
coefficient describing the slow continuous motion of the vibrating particle
during the residential time 7, . Dy is, at least at higher viscosities, much
smaller than D.

(iv) Further possibilities to obtain theoretical line width values for com—
parison with the observed widths are obtained from numerical computations
with formulas developed by SCHOFIELD [2] and EGELSTAFF and SCHOFIELD
[3] which for larger k-values give a width

AE = V21n2 J(D/7)hk, : (5)

where 7 is of the character of a delay tirhe before ‘the simple diffusive
spreading of an atom occurs.

(v) The stochastic model of a monatomic liquid developed by RAHMAN,
SINGWI and SJIOLANDER [7] may be used to calculate the cross—sectionfrom
which the width of the quasi-elastic peak is obtained. The value of the ratio
{w'/wp)® appearing in their formulas gives the delay time tg= (MD/kT }{wp/w')?
before diffusion sets in. wp is the Debye frequency and w'Swp.

(vi) The simple diffusion model corrected for interference 'scattering.[18]
AE =h(w 2, )4, (6)

where % = [k2/(1 +v(«))] [kB’I"/M] . Here (1 +v{w)) is the Fourier trans-
form of the pair correlation function for the liquid and M is the mass of the
scattering atom. ’

Instead of measuring the width of the quasi-elastic peak, this isolated
intensity distribution mav also be compared directly with the computed
cross—section formulas of (a) Vineyard, (b) Singwi-Sj6lander, (c) Oskotskii,
(d) Egelstaff and Schofield, or {e) Rahman, Singwi and Sj6lander. Essentially
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all these models describe a scale of variation of the atomic motion between
a continuous diffusion by small and frequent collisions and a solid-like os-
cillatory behaviour.

In case the quasi-elastic peak has been isolated there remains an in-
elastically scattered spectrum to be analysed. Ashas beenshown,a generalized
frequency distribution f{w) corresponding to the distribution of normal modes
in a solid might be derived from the inelastic neutron spectrum [6,19]. The
best way of obtaining this is to study the scattered distribution (E/QO)S(K,w)
for various ingoing neutron energies and scattering angles and then to ob-

tain f(w) from values of lim g-%i) .
k-0 K w= const,

wave vectors are K and EK;, respectively. This method has been described
in detail by EGELSTAFF [6, 20].

In case the experimenter cannot cover a big enough region of points in
(k,w)-space because of technical reasons, another and approximate method
may be used to derive a f(w). This method consists in making use of the
phonon-expansion formula developed for a solid and to retain only the first
(one-phonon) term [21}. To approach the limit k- 0, the measurement is
made at a small angle of observation. In this case f(w) is obtained from

The scattered and ingoing

w 1

f(w) ~ S(k, w) FW&“’ (7N
where the plus sign refers to energy loss and the minus sign to energy gain
experiments. Most often e2¥ must be put equal to one, as the Debye-Waller
factor is not known.

Parameters gained from such an analysis of the data are the diffusion
coefficient D which is obtained from the slope of the line-width curve AE = f(k)
at the origin if 6D7 >> <r2>, where <r2?> is the rms deviation of the vi-
brating atom from the origin (the Debye~Waller factor is 2W = (<r2>/6)«?),
the relaxation or correlation time 7, which is obtained from the line-width
curve for large k-values if the curve saturates because then AE = Zh/'ro and
the frequency distribution f(w). Such an analysis is of interest for the case
of complex liquids like water (HgO), glycerine (C3Hs(OH)s), pentane (CsHiz)
etc.

{b) A different approach to the problem of data treatment is to make
use of the very general definition of the cross-section [22]

d?0 _ a2
dQ2dw

% % I eiFen g, 1)d? dt. (8)
If the ingoing neutron spectrum is very narrow, such that the energy spread
may be neglected, the observed intensity distribution is essentially identical
with d2cr/ d?dw. Therefore a double Fourier transform over k- and w-space
of the observed intensity gives G(T,1). As an integration over all k- and w~-
space must be made, the measurement should cover a wide range of k,w-
values. If the scattering atom scatters incoherently or if only so large k-
values are considered that (1 +v(k)) is essentially constant, it is possible

to derive the rms-deviation of an atom from the origin p(t) from one single
Fourier transform of the data
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F, (k1) = exp(~k?p(t)) = 2 | cos BT 5,(a, B)dB, (9)

where o =h%?/2MkpT, B=tw/ksT and 7=(kgT/h)t and S(e, f) is the dimension-
less scattering law in the symmetric form. S(e,f) is related to the cross-
section Eq.(8) through

d2o
dQdw

=k50(<[a|2> Ss(®,w) + |<a> 2 Sa(®,0)) (10)

for the general case with a mixed coherent (Sq and |<a>|2) and mixed in-—
coherent (Ss and <!al2>) scatterer. a is the scattering length and S 4 are
the self and distinct parts of the scattering function S(k,w). The relation
between S(k,w) and S(a, B) follows from :

e#25(a, B) =ky T - S(«, ) (11)

Equation (9) for F;(k,t) results if the self-correlation function for an atom
is Gaussian with a width function p(t)

—r 2
Gilr.t) = e?wﬁ(tﬁ) Bt (12)

The function p(t) gives a very clear picture of what happens to an atom in
the liquid as time proceeds. '

(¢) When the scattering nuclei have a considerable coherent scattering
length the analysis of the data is very complicated. In the case of a poly-
crystal treated as a harmonic oscillator, cross—section formulas were
worked out at an early stage of development [23,24]. Inelastic neutron
scattering was shown to occur only if the condition

27T —q < Kk<27Thy T4 (13)

is fulfilled. Here g(q=27/}) is the phonon wave number and Ty =1/d} where
dpig is the distance between the lattice planes h, k and 1. In a liquid there
are nolattice planes of ideally infinite extension but one may atleast for a simple
monatomic liquid imagine regions around each atom within which a strong
local order exists such that a sort of local 'lattice planes' of small extension
exist. If it is also assumed that damped phonons exist, such that a gq—vector
may be defined in the liquid, then it should be expected that coherently
scattered neutron intensity would occur only if

k+g> 277> Kk —q. (14)
In a liquid the distribution of 7-vectors should be continuous rather than

discrete. If these basic assumptions are made it is possible to define a
coherent cross—section for the liquid [11, 25]

d% _ [ d%
(dﬂdw>coh h <dew>mcoh Z, (15)
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where Z is a structure factor given by

) T max. )
=2qLK~ f 7(1+v(7)) dr (16)
1-mirl.

Here (1 +v(7)) is equivalent to the normal liquid structure factor (1 +¥(«))
with k replaced by 7.

The small energy transfer region corresponding to quasi-elastic
scattering was early treated by the convolution approximation which des-
cribes the coherent cross—section as a product of the incoherent cross-
section and the liquid structure factor (1 +v{k)). The validity of this ap-
proximation has, however, been shown to be rather limited.

Other approaches to the problem of analysing the coherent scattering
of neutrons were recently presented by RAHMAN [26] and by SINGWIin[27].
Rahman showed that a time-delayed convolution approximation may des-
cribe an observed scattering cross—section. Few systematic attempts have,
however, been made to interpret the coherent quasi-elastic and inelastic
neutron scattering, which may certainly give much important information
about correlation ranges and local order in liquids [27].

3

4. SOME EXPERIMENTAL RESULTS AND THEIR INTERPRETATION

In the following a few examples are given on experimental results on
liquids which have been most intensively investigated. Only results related
to the above discussion have been selected.

(a) Water

Water was one of the substances first investigated by the neutron
scattering technique [28~36]. Investigations of the width of the quasi-elastic
line at room temperature indicated that there exists a delay time 7; of magni—
tude 1.5X 10712g (Fig.3). During this average time a spectrum of hindered
translation (motions of the centre of gravity) and hindered intermolecular
rotations of the OH group in the H-bond is developed as was shown by the
derived frequency spectrum f(w). The hindered rotations cover a broad band
centred round w~10% rad/s corresponding to about 70 meV (Fig.4), where-
as the hindered translations of the H,O molecule and of the OH group are
observed in a region w< 6X 1013 gad/s or E<45 meV. A comparison be-
" tween the spectra scattered from HyO and D;O showed that the 70-meV peak
was shifted to an energy which is nearly~2 towards lower w-values than it
should be if the proton were performing harmonic vibrations or rotations in
the interatomic potential, whereas the low energy part of the spectrum did
not shift, which verifies the identification made. A Fourier analysis of water
data has given a partial result for the width p(t) of the assumed Gaussian
spreading behaviour of a molecule (Fig.5). It is found from the figure that
the asymptotic diffusive behaviour p(t) - Dt does not occur-at room tempera-
ture until a delay time of the order of (1-2) X 10-12s has elapsed, in excellent
agreement with the value of 1, derived from the line-width data of Fig. 3.
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Line widths of the quasi-elastic peak of water observed at three different laboratories

+ Sakamoto
A Stiller
O Larsson

(b) Glycerine, pentane and oleic acid

A substance which was investigated in much detail is glycerine which
has the formula

T
-0 Q O-n

-0-
_O_
_O_.

jaciiparias

Further complex liquids investigated in relatively great detail [35, 37] are
pentane

HOHHHE
H-C-C-C-C-C-H

H HHHH
and oleic acid C;7H33COOH. Glycerine shows a strong variation of viscosity
and consequently also of the diffusion constant with temperature. Further-
more the glycerine molecule is, like water, bound to neighbouring molecules
by hydrogen bonds. There might also exist internal molecular H-bonds.
Already from the study of glycerine as well as of the hydrocarbons, of which
pentane is an example, certain facts are known from ultrasonic studies,
proton magnetic resonance studies, dielectric studies, and Raman and infra-
red spectroscopy. Also measurements of the coefficient of viscosity nhave
been made from which the self-diffusion coefficient D ma;;r be obtained by
use of Eyrings theory

D=kgT/2rn, (1

where r is the molecular radius.
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Generalized frequency distributions obtained from neutron spectra of water
at two different temperatures and at two different laboratories using different methods of analysis.

It is known that the long molecules show rotational isomerism, which
means that the molecule may exist in several different steric forms ob~-
tained by a partial rotation of a CHy group round a C -C bond. As the dif-
ferent forms have different potential energy the shift from one form to the
other is associated with an energy difference or activation energy Ey which
by Raman spectroscopy for pentane and other substances is found to be
~0.5 keal/mole [38]. By successive rotations about neighbouring linkages,
multiples of this value may occur such that 0.5, 2X 0.5; 3X 0.5 kcal/mole
would appear as possible energy barriers to isomeric rotations.

It is also known [39] from infrared spectroscopy that CHy rocking mo-
tions occurina carbon chain which in pentane showsupinabandat 6-800 cm 1,
corresponding to w=~~ (11-15)X 1013 rad/s. Furthermore skeletal vibrations
exist which are sensitive to the length of the carbon chain [40]. The higher
energy proton vibrations are difficult to observe in a neutron scattering
experiment.

Energy transfers between guantum levels of all these motions should
appear in the inelastically scattered neutron spectrum and some of the mo-
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The rms deviation of the scattering proton in water as a function of time-
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tions might cause broadening of the quasi-elastic line because all these
motions finvolve changes of the proton positions. Torsional oscillations of
an OH-group in an H-bond as seen in the HyO spectrum at (w=>~ 10X 1018 rad/s)
(70 meV) should also appear in the glycerine spectrum. There is thus good
reason to believe that the observed neutron spectrum would be a complicated
mixture of intramolecular and intermolecular energy transitions.

~ By sending in the full cold neutron spectrum with its sharp cut-off at
4 A, neutron spectra were obtained from glycerine, oleic acid and pentane
at a series of temperatures. Approximate generalized frequency distiri-
butions f(w) were obtained by the phonon expansion technique (compare Eq.(7)).
Examples of the results are given in Fig.6. For glycerine f{w) is given both
in the solid glass state and in the liquid state, for oleic acid both in the solid
and in the liquid state and for pentane only in the liquid state. It is seen’
that the spectra show considerable similarities. In the liquid state and some-
times also in the solid state peaks appear at w=~ 1.3, 2.7 and 4X 1013 rad/s.
Similarly, broad intensity maxima seem to appear at w ~6 and (13-14)X 1013
rad/s in the two long molecules CsHjp and C17H3gCOOH, In glycerine a broad
intensity maximum appears at wa (10-11)X 1013 rad/s, where the hindered
rotation band appears in water. In all substances there is a faint indication
of an intensity maximum for w= (0.5-0.9) X 1013 rad/s.
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Generalized frequency distributions obtained from glycerine,
pentane and oleic acid in solid and liquid phases

The band at w =~(13-14)X 1013 rad/s may very well correspond to CHg
rocking vibration. The faint band at w =4 may well be some kind of skeletal
vibration involving some motion of the protons bound to the carbon atom.
It is believed that the two main peaks at w> 1.3 and 2.7X 103 rad/s are due
to partial rotations of CHz groups (rotational isomerism) and finally the faint
peak at w~ (0.5~0.9)X 1018 rad/s is believed to be due to oscillatory motions
of the centre of gravity of the molecule in its cage of neighbours.

Measurements perfomed on partially deuterated glycerine C3Hs(OD)s
(Fig.7) showed that in glycerine the assignment of the peaks atw =1.4, 2.7
and 4X 108 rad/s due to protons bound to carbon atoms is correct, as well
as the interprefation that the broad maximum at w=~ 10 X 1013 rad/s is due to

2*
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The low-frequency part of the frequency spectra obtained from
natural and partially deuterated glycerine in the glass state

the proton in the OH group. The scattering from the deuterons is notvisible
from a thin (0.2-mm thick) sample; only the seattermg from the protons is
registered. '

It is also of interest to note that when the temperature is strongly in- -
creased such that the viscosity of the medium comes into the region of 1 cP
a pronounced peak appears at w =~(0.5-0.9)X1013 rad/s (Fig.8). Such an
effect could result from a strong diffusive component (not shown) in f(w) for
_ small w which could make the peak appear more intense, One may also
compare the results with those obtained on water and with the predictions
of the stochastic model by Rahman, Singwi and Sjslander, which may be ap-
plied only to the motion' of the centre of gravity of the molecule.

It should be noted that with the interpretation given here almost all of
f(w) refers to motions within the molecule. Only the Small peak at
(0.5-0.9)X 1013 rad/s in pentané, oleic acid and glycerine and the hindered
rotation peak at 10X 1013 rad/s in glycerine are assumed to correspond to
intermolecular degrees of freedom.

The analysis of the quasi-elastic peak has given line-width data AE =£(«?)
of which some examples are give‘n in Fig.9. The larger line widths of gly-
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Shape of the fréquency distributions in oleic acid and pentane at high iemperatures
(close to the boiling points)

cerine at 453°K were obtained with a crystal spectrometer and 2.25-& in-
going neutron wavelength, all other data being obtained from cold neutron
measurements. It is important to notice that line broadenings were observed
eveninthe solid phase for glycerine and oleic acid showing that the broadening
is at least in some cases not caused by true diffusive motions but probably
by partial rotational jumps over an angle of 120° of CH, groups. This ex—
planation is in conformity with the assignment of peaks in the frequency dis-
tribution f(w). As shown by the figure the line-width curves show the typical
saturation character even for the low viscosity case of glycerol at 453°K,
where n=0.021 p. From the tangent at the origin to the line-width curves
values of D are derived and from the saturation value of AE for large «-—
values one obtains values of 7. It is observed (Fig.10) that the D-values
thus obtained for glycerine show two regions: one region for T < 400°K, where
one derives an activation energy E, by assuming

D = Dye “Eo/kT (18)
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of 3 kcal/mole, and another region for T > 400°K where the average value
of Eg=17.5 kcal_/mole. This value of Eg for the temperature range 450> T

LINE WIDTH AE IN 107 ev

CyH, (OH),

453" K

8F 443°K

369° K

LINE WIDTH AE IN 107 eV

CypH3;CODH

373°K

293°K

275° K

254" K

It S]
Fig. 9

Observed line widths in glycerine ‘and oleic acid in solid and liquid phases

(solid glycerine at 266°K and solid oleic acid at 254 and 275°K)
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Fig. 10

"Diffusion coefficients” derived from observations
of the type illustrated in Fig. 9
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> 400°K is in agreement with direct measurement [41] of the average acti-
vation energy for viscosity in this range, assuming n=ny(T) e Eo/kT, Also
the absolute value of D agrees with the value calculated from the measured
n-value and the Eyring formula (Eq. (17)). _

The values of 7y derived from the line-width curves show an interesting
variation (Fig.11). The relaxation times all decrease with increasing

n
20
~
o
=]
£
o
—
TR
E
- N
c 3
=]
w7
x
L]
¢
20 30 40 10°
T

Fig. 11

Relaxatijon times for the scattering protons in water,
glycerine, oleic acid and pentane.

0 H,0

O C3Hg(OH),

+ Cy7 Hgg COOH
A CHpp

temperature and seem to more or less saturate at 7=10"12s when the vis-
cosity comes into the region of 0.01 P. Let us now assume that in the case
of glycerine the line broadening for large k-values is caused by a rotational
jump of a CHy,OH group round a C-C bond [42] such that 7, is considered
asameanlifetime of a hydrogen bond which has to be broken to allow the ro-
tation of the considered group. It is then logical to assume that

Ty = Ty © Bo/kT, ' (19)

where 7 is the inverse value of the hindered rotation frequency
whr =(10-11)X 1018 rad/s. If the observed values of wy and the value of 7
are used one obtains for E; a value of 3 kcal/mole in the temperature regia’n
T <400°K and 2.5 kcal/mole for T > 400°K. The value of 3 kcal/mole is in
excellent agreement with the value obtained separately from the D-value
at small “%k-values and equal to the energy of an H-bond, If it is assumed
that the neutronis really observing the motion of the whole glycerine molecule
for T > 400°K, it is natural to assume that three H-bonds have to be broken
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to allow a diffusion of the molecule. The energy necessary to break three
bonds each of an energy of 2.5 kcal/mole would be 7.5 kcal/mole, in ex-
cellent agreement with the observed activation energy for the diffusion con-
stant for T > 400°K. Such a conclusion would also.mean that the viscosity
n could be described by

n=c-e3E/kT =¢c.73 (20)

This makes a strong test of this analysis as 7n is measured quite separately
with classical methods. ‘As seen in Fig.12 where the measured n is given

CH, OH,

s 3 8

[

Viscosity coefficient (p)

Qo

A0 ® 2
'cln10s

Fig. 12

Observed viscosity as a function of observed relaxation time
Full curve corresponds to the relation 7 = 1.74 X 10% T%.

as a function of the measured 7,, a good fit is obtained with a calculated
n=c-7§ curve which strongly supports these ideas.

One may say that in the case of glycerine the line broadening is caused
by an intramolecular rotation, which is hindered by the intermolecular
binding potential.

In the case of pentane and liquid oleic acid it is reasonable to assume
that the line broadening is caused by the partial rotation of a CHq group. In
these cases the situation is never reached that the calculated D-value reaches
the observed "neutron value''. The uncertainty in the D-values is too large
topermit a closer analysis but an activation energy of the order of 1 kcal/mole
is obtained from the temperature variation of the D-values. This is in
reasonable agreement with the value of 0.45 kcal/mole obtained in Raman
spectroscopic measurements for the basic activation energy for formation
‘of rotational isomers.

If it is assumed that the CH, groups perform hmdered rotation round
a C-C axis during an average time 7y and thereafter jump to another position
(a new rotational isomeric state is formed) with an activation energy of

nEg =~nX 0.45 kecal/mole, it would be possible to calculate the hindered ro-
tational frequencies w,, from
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As 7y for pentane and high temperature oleic acid is ~1071%s this gives for
n=1, 2,3 and 4 the frequencies 1.4,2.9,6.4and 13.8X 1013rad/s, respectively.
It is noticed that the first two values happen to coincide rather well with
the observed peaks in f(w) at w=1.3 and 2.7X 1013 rad/s. In pentane and
oleic acid faint peaks are also observed at w=(6-7)X 1013 and w=(13-14)X 1013
rad/s, respectively.

The D-values obtained in this way for pentane, oleic acid and glycerine
for T < 400°K are not true diffusion constants but rather a measure of proton
transport by rotational motions within a molecule. The fact that the neutron
is observing internal molecular motions and not intermolecular motions is
demonstrated, if the line-width data are plotted on a reduced scale (Fig.13).

] e

+ DELAYED OIFFUSION

L A L L 1 i

0 1 2 3 4 S [ 7 8 9 10
DIFFUSIVE | TRANSIENT VIBRATORY REGION on? Ty
REGION REGION

Fig. 13

Generalized line-width curve.
O CgHs(OH)
+ C,q Hgg COOH
B Cyy Hgg COOH (solid)
A CgHp

Instead of plotting AE =hAw versus k2 one plots AwTy versus Dk27p, both quan-
tities being dimensionless. In this reduced plot all the measured points fall
along one single curve. It is also found that the experimental values ob-
tained from solid oleic acid and glycerol in the glass state fall along the same
curve as those values obtained from the liquid state of glycerol, pentane and
oleic acid. In order to understand this plot it is worth while to compare it
with a discussion given by de GENNES [18]. Neglecting the possible vi-
brational motions of the scattering atoms he gives a similar reduced plot
of the width Aw of the expectéd scattered neutron distribution measured
in units of a correlation frequency £ as a function of the variable
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General line-width curve predicted by de Gennes
neglecting the vibratory motion of atoms compared to the experimental line-width curve

(k2ksT/M Q#)% -Qy appears as a correlation time for velocities of atoms
in the medium (Fig.14). In the case of simple Langevin diffusion we have

kyT/M=D/t,, (22)

where tg is a very short delay time before diffusion sets in. It is a measure
of the collision time itself. In the simple Langevin case we should expect
that Q¢ =tg. Thus k2ksT/M Q2= k2Dtg for Langevin diffusion. As kyT/M
=92 (¥ calculated from the most probable energy Eg=%kpT) it is seen that

@Bl - even o (23)

obs

where tops is the neutron observation time. We thus see that the abscissa
is tﬂ/tobs. When tg/tobs <1 the neutron observes diffusion behaviour and when
ts /tobs > 1 the neutron observes gas behaviour.

. In the hydrogenous liquids we are now dealing with there exists a long
delay period 7y during which the observed particle performs vibratory
motions (the flat position of Fig.13). In this case Qo =79. The fact that
not all modes of motion are diffusive is considered if in Eq.(20) above a
delay time ftg (f> 1) is accepted

kgT/fM =D/fty. (24)

This leads to «2kgT/M Q02 = k2 [D/(fts)] 7¢. But ftp is just 7, so that
the abscissa k2 kgT/M Q2 reduces to k2D7y which has been used in Fig.13.
1/K2D has the meaning of the neutrons interaction time tgy and the abscissa
‘as before means 7o [tops. The following facts are found:

‘ (i) Ifk2D7 < 0.5 diffusive behaviour is observed. As for high tempera-
ture liquids 79 =~10712 s we find that only for times longer than 2X 1012 5 is
pure diffusive behaviour observed.
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{ii) If 0.5< Dk27 < 2 there exists a transient region in which both dif-
fusive and vibratory motion are participating. Actually the average of the
observed variation of AwT, in this region may be described by AE =0.9 hD«?
+0.4%/7,. One may see that a diffusive as well as a vibratory term is pre-
sent. Most of the cold neutron studies fall in this region. If 1y= 10712 g this
transient region corresponds to a time range between 2X 10712 and 5X 10713 g,

(iii) If 2< Dk27 < at least 10, a flat region exists in which Aw7y~ 2 which
means AE=2h/ Ty » the saturation value for vibratory behaviour when the
correlation or residence time is Tp . For a high temperature liquid with
Ty~ 10712 s this corresponds to a time region between 10713 and 5X 1013 g,

{iv) Only if Dk275> at least 10 is'the typical gas behaviour possible.
As the limiting value of 7, for high temperature liquids seems to be ~10712 g
one may see that the neutron is still observing vibratory behaviour when its
interaction time is only 10713 s, 1/Dk2 >tops ~~M/kgTk2 =1/¥k has to be
< 10713 g before only the gas behaviour is observed. This is to be compared
with observations on liquid sodium (Fig.18) where the gas-like behaviour
of the atoms in this liquid is approached for times of the order of 10°13 g,

The fact that the experimental results for the proton motion in the solid
and the liquid phases agree in magnitude means that the same mechanism
for motion is observed in both cases and must be of intramolecular origin.
This mechanism is probably the partial rotational motions just discussed.

Probably the very general curve of Fig.13 has a considerable range of
validity. Such a general line-width behaviour should be expected for all sub-
stances and for solids, liquids and gases. The only feature that would be
expected to vary is the length of the plateau giving a measure of the degree
of solid-like behaviour (compare Fig.14). In a solid it would be long; in an
associated liquid shorter; in an almost ideal liquid, such as for instance
liquid argon, it might be almost non-existent and in a gas it should disappear.
(23H5(OH)3 at 369 °K

INTENSITY

H@EY
Fig. 15

Angular distribution do/dQ of quasi-elastically scattered neutrons in glycerol -
The dashed lines were calculated by use of Eq. (25).
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Angular distribution measurements dc/qQ including the integration of
scattered intensity over only the quasi-elastic peak may give interesting
information. Such measurements may for instance be performed with a
crystal monochromator to select for instance 2.25-A wavelength, the
scattered spectrum being energy analysed by the time-of-flight technique.
The quasi-elastic peak is then easily separated and its area may be plotted
versus k2. Such a procedure will to a certain extent be able to select be-
tween various models. This is exemplified by an experiment of this type
performed on glycerine at 369°K (Fig.15). It is found that the observed in-
tensity may not be described by a straight line, InI= <r2/_6 >k2, as it should
if the quasi-elastic peak described the harmonic hindered rotation of an OH
proton in the hydrogen bond. Apparently the finite lifetime of the proton in
its vibratory position must play a role. If it is assumed that the jump dif-
fusion model may be used to describe rotational jumps it should be possible
tofit the observed points with the integrated formula do/d2 = ¢ (d20/dQdw)dw.
If this integration is performed on the Singwi~Sjolander jump diffusion cross-
section [1] one obtains

do _e®™ (71 ow. > 1
dQ  1+(1 /1) \m e2W .b+e [f+(f2—4b§)%]*+[f—(f2_4b2g)%]i,- (25)

where

b =1+k2D;7,-e2W

¢ =1+k2Dym +2(7 [/ 7) +(71/ T2 - €2V

f =(1+k2Dy1)2+(7y/ ToR +2(7 [ Tp) -2V

g =(71/T°)2T D7y =D7 [1+(7/7o)]

\- T1=average time spent in the diffusive jump. The value of the Debye-
Waller factor 2W =(<,r'2>/6)l<2 is obtained from the slope of the measured
curve at 7o=2X 10°12 s; it is possible to calculate da/dQ for various values
of .7y . As will be seen in the figure 7, appears as a rather sensitive para-
meter such that in this particular case a fit is obtained to the measured in-
tensity distribution for 7, =7%/25=(8 +3)X 10" s. It is interesting to note
that this value of 7; is also found for all the other temperatures in the range
369-453°%K.. This value comes very close to the inverse value of the hindered
rotation frequency which is 27 X 1014 g, The flip-over of a CHyOH group
occurs very rapidly. It also should be noticed that this is a typical non-
Gaussian behaviour of the angular distribution. '

To connect the neutron relaxation times 7 to other relaxation studies
on liquid glycerine the results on dielectric [43] and ultrasonic [44] rela-
xation time studies are given in Fig.16. It is found that the dielectric re—
laxation time is more than two orders of magnitude longer than 79 at room
temperature and the ultrasonic relaxation time is about one order of magni-
tude larger. On the other hand both curves intersect the neutron curve in
the temperature region T > 400°K. This behaviour may be understood if the
dielectric relaxation time is associated with the mean lifetime of a cluster
of molecules whereas the ultrasonic is associated with the relaxation of one
single molecule returning by diffusion to the position it had before the com-
pressional wave was applied.
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Relaxation times in glycerine obtained by nuclear magnetic,
dielectric and ultrasonic relaxation studies compared to the neutron data
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(c) Liquid sodium

As exemplified above the neutron scattering picture obtained from mole-
cular liquids is indeed very complex. The results obtained from liquid
metals are considerably easier to handle. In this case it is to be expected
that the derivation of the intermediate scattering function F;(k, t) and even
of Gy(r,t) and Gq4(r, t) might be possible and fruitful.

It is interesting to compare two experiments performed on liquid sodlum.
one which [14] used cold ingoing neutrons E~5 meV and the previously de-
scribed separation method to analyse the data, and the other [15] which used
neutrons of 25- 70- and 100~meV energy combined with a derivation of Fj(k,t)
and thus of the interesting width function p(t). Both investigations were
performed at temperatures between 100 and 200°C. The main results of
the cold neutron experiments are:

(i) A fit of the Egelstaff—-Schofield cross-section formula [3] to the
quasi-elastic peak at such low k-values (scattering angles of 30°, 45° and
60° so that (1 ++(k)) is small) gave numerical values for the parameter c
which may be interpreted as equivalent to, although not identical with, the
delay time T, before diffusion begins. Values obtained for c¢c were in the
region (1 - 1.5)X 1012 g,

(il) An attempt to use the cross-section based on the convolution ap-
proximation [17] to interpret data obtained at larger k—values (75° and 90°
scattering angles) showed that no good fit to the data could be obtained.

(iii) By comparing the inelastically scattered spectra from the solid
and the liquid phases it was shown that the difference is very small. It was
shown that the inelastically scattered spectrum could relatively well be des-—
cribed by the one—phonon incoherent cross—sectlon formula using an earlier
calculated frequency spectrum.
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In conclusion one might say that this experiment clearly demonstrated
the solid-like character of liquid sodium.

In the other experiments as many as eight scattering angles between
16.3° and 84.7° were used together with the three higher ingoing neutron
energies mentioned above. A large region of energy-momentum space (w,k)
was thus covered and a Fourier transform involving integration over the
w co-ordinate of the data without involving too long extrapolations of the
observed cross—section values is made to give the intermediate scattering
function which in the Gaussian approximation directly gives the width function
p(t). It is interesting to notice the form of the cross-section (or the
scattering law S(k,w)) as a function of k (Fig.17). It is seen that for k-values
lower than 6 Al and for w-values lower than about 101 rad/s there is a pro-
nounced coherence effect causing peaks to occur for those k-values where
the liquid structure factor (1 +v¥(«)) had its maxima. This structure factor
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Scattering law for sodium at 100°C

8 = 15/0.0321 = (E - Eg)/kgT
a=h?x?/2MkgT

M= 23 mp

kgT = 0.0321 eV
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flattens out at k~5 or 6 Al. For larger k-values the interference contri-
bution to the scattering is small and therefore only those larger x-values
are considered in the determination of p(t). This is equivalent to restricting
the observation range of the neutron Ax> 1/« to relatively small values and
therefore p(t) is not obtained in the long time region where the diffusive
motions should occur. The values of p(t) thus obtained are given in Fig.18.
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Time-dependent width functions p(t) for sodium obtained by Fourier transformation
of the scattering law assuming a Gaussian for the self-correlation function

—— Experiment e{™<2/4)P(t)exp. = ¢ [ cos (87)5(c. B)IB
) 0

- - - Gas p(t) = 1% /2MKgT +(2kgT/M)t2
—— Diffusing atom p(t) = 4Dt
o= ‘hzkz/?MkBT; T= (kBT/‘fl)t

The importént features of this p(t) function are:
(i) For times t<10713 s it shows the expected gas-like behaviour. The
atom spreads out from the origin as <r2>=(vt)2. In a time region between
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10713 and at least 10712 s it flattens out and shows a typical solid-like
behaviour. The value of <r2> = p(t) in this region determines a Debye-Waller
factor. It is found that in 1012 s the atoms have spread out an average dis-
tance of only 0.87 A which is small compared to the nearest-neighbour
distance 3.83 A, The atom finds itself still within the cage of neighbours
after this time and diffusive behaviour is not expected until a longer time
has elapsed. : .

(ii) The fact that the various p(t) curves obtained for different x-values
do not agree in the ''solid-like'' region 10713 <t< 10712 s indicates that here
the Gaussian approximation may not be quite correct. On the other hand
the coincidence of the curves in the '"gas-like'" region t<10723 s shows that
here the Gaussian model is correct, a fact already proved theoretically
[17,19]. i _

In conclusion it is interesting to note that both the cold neutron experi-
ment and the higher energy neutron experiment indicate the same fact: there
is a delay before diffusion sets in which is at least of the order of 10712 s,
During this time a solid-like behaviour develops, a fact which to a certain
extent justifies the use of approximate formulas like the phonon expansion
formula. The slight upward slope of the p(t) curve indicates, however, that
the multiphonon terms might be of importance as it is just the difference
p(t) = p(0) which in the form of a series expansion gives rise to the phonon
terms.

(d) Coherently scattering monatomic liquids

Experiments have been performed on liquid tin [9], lead [10].and alu-
minium {11] which more or less clearly showed the existence of coherent,
collective scattering also in the case of a liquid.

Experiments on liquid lead were performed with various ingoing neutron
energies and at various k—values such that a double Fourier transform
could be made of the data. In this case,as well as for the sodium experi-
ment described above,no corrections were performed for the finite width
of the primary neutron 'line". The resulting Ge(r,t) and Gq(r,t) function
showed the expected smearing out with increasing time. From the width
of Gg(r,t) a ps(t) function was derived and from the width of the first peak
in Gq(r,t) a pg(t) width function was obtained. It was shown that p(t) ex—
hibited a behaviour similar to the one obtained above for sodium whereas
p4(t) starting from a larger finite value at t =0 after a time of the order of
3X 10°18 g almost coincided with p(t). " A non-diffusive and more solid-like
behaviour for more than 10712 s was established for liquid lead.

The experiment on liquid tin ﬁsing 6.25-R neutrons showed that there
possibly exists a coherent selection rule k +q2 2772 k —q in the liquid as
well as in the solid polycrystalline case, in accordance with the theoretical
outlines given by the Eqs.(13) and (14). '

A similar experiment on liquid aluminium [11] showed very definitely
" that the inelastically scattered spectrum from the liquid is almost identical
with the spectrum obtained from the polycrystalline solid. This indicates
that round each atom of the liquid there exists a region of a radius of several
atomic distances, a correlation range, within which collective, coupled vi-
brations similar to the phonons exist.
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(e} Liguid argon

Of particular interest are the neutron scattering experiments performed
on liquid argon. Such scattering experiments have been performed both
in the liquid and in the polycrystalline, solid phase [12,13]. The results
obtained from the liquid phase indicate clearly the existence of collective
scattering effects. This is shown both in the variation of the width of the
quasi-elastic peak which shows the typical wavy character predicted by de
GENNES [18] and in the inelastically scattered spectra, which when plotted
versus k for constant w show the typical broad peaks also observed directly
in liquid sodium. No values of the correlation time 7y have been obtained
experimentally for liquid argon but computations have shown [27] that prob-
ably there is no plateau in the width function p(t) for this case. The shape
of the calculated generalized frequency distribution shows that a deviation
from simple Langevin diffusion exists but is small. These measurements
and calculations indicate that liquid argon rather closely approximates an
ideal liquid although the deviations are large enough to give rise to a certain
solid-like behaviour. (See [45] for a detailed report on argon.)

4. CONCLUSION

Several other interesting neutron experiments have been performed on
liquids and it is interesting to note that in none of the cases studied so far
has one found a simple diffusive behaviour of the liquid following directly
upon the gas behaviour for short times t<10713 g, There seems to exist a
universal minimum delay time of ~1012 s in the condensed state due to the
high value of the density of the liquid as compared to a gas. During this
time a solid-like vibratory behaviour develops. The neutron scattering me-
thod also appears valuable in the study of intermolecular and intramolecular
motions of molecules in complex liquids. Details of the hydrogen bond me-
chanism may be studied by the neutron technique. A connection to other
experimental techniques is obtained by a method similar to that of the Raman
and infrared spectra and the inelastically scattered neutron spectra, and
a connectiontoultrasonic and dielectric relaxation studies may be established
via the studies of the relaxation phenomena causing the width of the quasi-
elastically scattered neutron spectrum.
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DISCUSSION
’

J.A. JANIK: Could you tell us how you obtain the widths of your quasi-
elastic peaks? Obviously the widths obtained from scattered neutron spectra
depend to a large extent on the method by which you subtract the low-energy
part of the phonon spectrum.

K.-E. LARSSON: We use a number of methods. For example: (a) we
compare the top corner of the "beryllium break'' with a calculated spectrum.
The latter is obtained as a folding of a Liorentzian, a Gaussian and the spec-
trum EdE with all its details; (b) we measure the width from the half-height
of the "beryllium break' to the top and multiply by two; (c) we assume that
the cold neutron spectrum is a step-function spectrum, in which case the
wing at the bottom of the "beryllium break' must be the same as the rounding
off at the top. All the methods give comparable resulis.

J.J. RUSH: I am interested-in the way in which you have determined
tl}xe activation energy for reorientation of the glycerol molecules. Is there
enough information available on the structure of glycerol to calculate a bar-
rier to reorientation, using some average of the-observed torsional frequen-
cy band and the moment of inertia of the rotating group (assuming perhaps an
average cosine potential for the reorientation)? Also, do you have any idea
of the average angle through which the molecule flips in breaking the hydro-
gen bonds? )

K-E. LARSSON: We are still looking for basic explanations to account
for our data, and I am therefore unable to glve a satisfactory answer to your
questions at present,

W. GLASER: In the case of solid oleic ac1d is the line width of the
quasi-elastic peak large compared with the rotational level spacing? If not,
you should see discrete lines.

K.-E. LARSSON: The line width of the quasi-elastic peak in the solid
state is of the order 0.2 - 0.5 meV. Therefore the level distances for ro- .
tational motions ought to be of the order of 0.1 meV or smaller, in order
to be considered as building up the quasi-elastic peak. This value might be
too small for a level distance.

G. VENKATARAMAN: What technique was used for measuring the in-
tensity of the quasi-elastic peak?

K-E. LARSSON: A crystal monochromator was used to produce an in-
going wavelength of 2 - 3 R. The scattered spectrum was analysed byatime-.
of-flight technique. The only cases used were those in which very simple
separation of the quasi-elastic "line'" from the broad inelastic spectrum was
possible.

+
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Abstract — Résumé — Anporanua — Resumen

A KINETIC DESCRIPTION OF THE VAN HOVE CORRELATION FUNCTIONS. The Van Hove density
correlation function G(r, t) for a classical fluid is written as the integral over momenta of an appropriate one-
particle distribution function F(r, B, 1). A similar procedure gives the self-correlation function Gg(r, t) in terms
of a different distribution function Fs(r.B’. t). It is shown that for moderately dense gases these distribution
functions can be calculated from kinetic equations, The kinetic equations are derived from density series
expansions of F(r, B, t) and Fg(r, ¥, t). For times short compared to the time between collisions the density
series can be used directly, For longer times it is necessary to sum an infinite series of terms in order to properly
account for the effects of multiple collisions, The surnmation of the most dominant terms can be carried out
in terms of the solution to an integral equation, In the lowest order this equation has the form of a linearized
Boltzmann equation including corrections for incomplete collisions, If these corrections are neglected the
appropriate equation for F(r, B, t) becomes the linearized Boltzmann equation as used in the theory of sound
propagation in gases, ‘The appropriate equation for Fs(r, T, 1) becomes the neutron transport equation, Since
these equations are known to have the correct hydrodynamic limit, the long- wavelength behaviour of G{r, t)
and Gg(r, t) is thus exphcltly derived.

The kinetic equations are directly applicable only to dilute systems; however, they are suitable for a
systematic study of dynaxﬁical correlations, The essential difference between the two equations is the collisional
invariants, In the equation determining F(r, B, t) the invariants are particle number, momentum and energy,
whereas in the equation determining Fs(r.B'. t) only the particle number is an invariant, Because the degeneracy
of the zero eigenvalue of the associated collision operators in the two cases is different, the hydrodynamic
equations appropriate to G(r, t) and Gg(r, t) do not have the same form. The consequences of the two descriptions
are demonstrated by model calculations in the context of simple relaxation approximations, The Gg(t, t) calcu-
lation leads to a correlation function with non-Gaussian effects which are qualitatively similar to but more
pronounced than those calculated by Rahman in liquid argon from molecular dynamics, More refined treatment
of the collision integral is now being considered, The G(r, t) calculation shows the expected effects of thermal
diffusion and damped sound wave propagauon at long wavelengths and deviates from the convenuonal hydro—
dynamic description at short wavelengths

DESCRIPTION CINETIQUE DES FONCTIONS DE CORRELATION DE VAN HOVE, La fonction de corré-
lation de densité de van Hove G(r, t) pour un fluide classique est exprimée par une intégration sur les quantités
de mouvements d'une fonction appropriée de distribution 2 une particule F(r, B,t). Par un procédé analogue, on
obtient la fonction d'autocorrélation Gg(r, t) exprimée 3 1'aide d'une autre fonction de distribution Fy(r, B, t).
Les auteurs montrent que pour des gaz de densité moyenne, ces fonctions de distribution peuvent &tre calculées
2 partir d'équations cinétiques. Ces derni2res sont &tablies par des développements en série, selon la densité,
de F(r, B, t) et Fg(r, P, ¥). Pour des temps courts par rapport aux intervalles entre les chocs, les séries ainsi ob-
tenues peuvent &tre utilisées directement. Pour des temps plus longs, il faut faire 1a somme d'une série infinie
de termes de mani®re 2 tenir compte des effets de chocs multiples. La sommation des termes prédominants
peut se ramener 1 la solution d*une équation intégrale. Dans I'ordre inférieur, cette équation a la forme d'une
&quation de Boltzmann linéaris€e, corrigée pour tenir compte des chocs incomplets, Lorsque ces corrections
sont néglig€es, 1'équation appropri€e relative 2 F(r,3, 1) devient 1"€quation de Boltzmann linéaris€e telle qu'elle

* Work of these authors supported by the United States Atomic Energy Commission under contract
AT (30-1)-3326.
#% Present address; National Bureau of Standards, Washington, D. C. On leave from the Catholic
University of Nijmegen, Netherlands, The work of this author was supported in part by the United States
Air Force through the Air Force Office of Scientific Research under grant 324-63.
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est employée dans la théorie de 1a propagation du son dans les gaz. L’équation appropriée relative 3 Fs(r,'ﬁ. t)
devient 1'€quation de transport des neutrons, Comme on sait que ces équations tendent vers 1a limite hydro-
dynamique correcte, on obtient ainsi explicitement le comportement de G(r, t) et Gg(r, t) pour les grandes ondes,

Les équations cinétiques ne s’appliquent directement qu'aux syst2mes dilués; cependant,elles conviennent
2 une étude systématique des corrélations dynamiques, La différence essentielle entre les deux €quations est
constituée par les invariants de choc, L'équation qui détermine F(r, B, t) comporte les invariants suivantss
nombre de particules, quantité de mouvement et énergie; en revanche, dans 1'équation qui détermine Fs(r._ﬁ. 1),
seul le nombre de particules ne varie pas. Comme, dans les deux cas, la valeur propre zéro des opérateurs de
choc associés accuse une dégénérescence différente, les &quations hydrodynamiques appropriées A G(r, t) et
Gg(r, t) n'ont pas 1a mé&me forme, Les conséquences de ces deux descriptions sont mises en évidence par les calculs
2 1'aide d'un mod2le dans le contexte des approximations de relaxation simples, Le calcul de Gg(r, ) aboutit 2
une fonction de corrélation ayant des effets non-gaussiens qui sont qualitativement similaires aux effets que
Rahman a calculés pour 1'argon liquide en se fondant sur la dynamique des molécules, mais sont plus prononcés
que ces effets, Les auteurs étudient maintenant la possibilité de soumettre 1'intégrale de choc 2 un traitement
plus fin, Le calcul de G(r, t) indique les effets prévus de diffusion thermique et de propagation d'ondes acousti-
ques amorties pour les grandes ondes, et s'écarte de la description hydrodynamique classique pour les ondes
courtes, L

KUHETHUYECKOE ONMUCAHUE ®YHKLUHWA KOPPEJSILHY BAH 'OBE. ®yHKLMA KODpEeAsi-
UMK nAoTHocTH Ban I'oBe G(r,t) AnA KJIAaCCHYECKOR XKUAKOCTH BHIpAaXaeTCs B BHAE MHTErpajga no
BCEM MOMEHTaM COOTBeTCTByWimeil GyHKUMH pacnpefeneHus ofHoit wactuus F(r,p,t). B pesyns-
TaTe nNpUMeHEeHUs aHaJOTHYHOrO MeTOAa BHBOANUTCH QYHKUMS camokoppeasuuu Gs(r,t) B pamkax
dyHKUKN pasnuyHoro pacnpedeneHus Fs(r,P,t). TokasmpBaeTcsi, 4TO WIS CpeAHHX NO CBOei MIOT- |
HOCTHM ra3os 3TH GyHKLUMM pacnpenesyleHHsi MOKHO PaCCUHMTHIBATh M3 KHHETHYECKHUX ypaBHeHHH. Ku-
HeTHYeCKNe yPaBHEHHMs BHIBOAATCH M3 paclIMpeHHit pajsa niaoTHocTed dynkumin F(r,P,t)uFs(r,p,1).
Jlng nepHoaoB, KPAaTKOCPOUHLIX MO CPABHEHHK CO BpeMeHeM MeXAY CTOJNKHOBEHHAMH, PSA fIOT=
HOCTe# MOXHO MCMOAb3OBATH HENMOCPEACTREeHHO. las 6onee npoAoAKHUTENbHbIX N€PUOLOB HEe06X0~
AMMO CYMMHPOBaTh 6€CKOHEUHbIe PAAB WIEHOB C LieNbI0 Haanexamero yuera 3 dekToB MHOTO-
KPAaTHHX CTONKHOBeHHil. CyMmMupoBaHHe Haubo/lee 4acTO BCTPeUaOIUXCA WIEHOB MOKHO NpPoBO-
ANTH B paMKaxX pelleHUst NPUMEHHT €JIbHO K MHTETPajJbHOMY ypaBHeHMIO. [IpH HaUMeHbIIEM TIOpPAAKe
3TO ypaBHeHHe UMeeT POpMY NMHeapU3UPOBAHHOTO ypaBHeHHs BoibliMaHa, BKAOYAa0METro NonpaBKH
Ha HenmoJHble CTOAKHOBeHMsi. Ecau npeHebpeub 3TUMM nonpaBKaMu, TO COOTBETCTBylIee ypaB-
Henue ans F(r,P,t) craHoBUTCA NMHEapU3NPOBAHHBIM ypaBHeHHeM GonblMaHa B TOM BHAe, B KO-
TOPOM OHO HCMOJNb3YeTCs B TEOPHHM pacnpocTpaHeHus 3Byka B ra3ax. CooTBeTCTBypllee ypaBHeHHe
ans F, (r,P,t) cTaHOBMTCS ypaBHeHMeM ANns repeHoca HefirpoHoB. ITOCKOAbKY M3BECTHO, YTO 3TH
ypaBHeHHS] HMEKOT NpPaBHIbHbH THAPOAMHAMHYECKHH fpedes, MOITOMY JIETKO BHIBOAUTCS AJIMHHO-
BONHOBas xapakTtepucruka G(r,t) u G (r, t). : ’

KuHeTHueCKHe ypaBHEHHMS HernocpeACTBEHHO NPUMEHHMBI TONBKO K pa3GaB/lleHHBIM CHCTEMAaM.
OJAHAKO OHH MPUT'OAHBI JJIi CHCTEMAaTHYeCKOTO H3y4YeHHsl AMHaMH4YeCKHX Koppeasuui. CymecTBeH-
HEIM pa3/iHyMeM MexXAy 3THMH ABYMs YPaBHEHHSIMH SIBASETCS HaJIHMHE NMPOTHBOPEYUBHIX HHBADHAHT -
HBIX BEJIHUMH. B ypaBHeHuH, onpenensiomem F(r,P,t), nuBapuantaMu SABASOTCA KOJIHYECTBO 4acs
TML, KMIYALC M 3HEPTHs, B TO BpeMs KaK B ypaBHeHHH, onpeleasomem K, (r,p,t), Toneko Koau~
YeCTBO YaCTHI SBAAETCH HHBAPMAHTOM. BBHAYy TOro, Y4TO B 9THX ABYX CAyudasX CHHXeHHE Hyle-
BOro CO6CTBEHHOrO 3HAYEHHsI CBSI3AaHHBIX ONEPATOPOB CTOJKHOBEHHS He ONMHAKOBO, THAPOAHHAMH™
yeckHe ypaBHEHHUs, cooTBeTcTBykmHe G(r,t) u G (r,t) He UMeT oaAuHaKoBO# dopMet. 3HadeHHS
3THX ABYX ONMCaHHUH NeMOHCTPHPYWTCS pacHeTaMM MoleJlei B miaaHe mpocThiX npubiuxenuir ocnab-
nenunsi. B pesyabrare pacuera Gs(r,t) BHBOAUTCS GYHKUUA KOPPENSILMM C HEerayccoBbMH 3¢ -
dekraMu, KoTOphe NOAOGHH B KaY€CTBEHHOM OTHOMEHWH, HO Gonee BhHpa3UTeNbHH, yeMm addexTo,
paccunTaHHie PaMaHOM MpH H3YUEeHHH MONEKYJAAPHOA AHWHAMHKM B AHAKOM aproHe. B Hacrosmee
BpeMs H3yuaeTcs Bonpoc o bonee ycosepmeHcTBOBaHHOR 06paboTKe mHTerpana CTOJNKHOBEHMA.
Pacuer G(r,t) cBUAeTeALCTBYET O HaJMUMU npeldnonaraeMbx sddexkros Tennosoi Aud dy3un u
pacnpoCTpPaHEeHHH 3aTyXaloIKX 3BYKOBHX BOJIH npu Gonbmoft ANNHE BOJH, U TaKoH pacueT OTAU~
Yaercs 0T 06bYHOro rHAPOAHHAMUYECKOTO OMUCAHUS NpH Majoil ANHHe BOMHHI .

DESCRIPCION CINETICA DE LAS FUNCIONES DE CORRELACION DE VAN HOVE, La funcién de corre-
lacién de Van Hove de la desnidad Gq(r, t) de un fluido cldsico se expresa como la integral, a lo largo de im-
pulsos, de una funcién apropiada de distribuci6n de una sola partfcula F(r, B, t). Por un procedimiento anilogo
se obtiene la funcién de autocorrelacién G(r, t) a partir de una funci6n de distribuci6n diferente Fs(r.ﬁ, 1. Se
demuestra que, en el caso de gases moderadamente densos, estas funciones de distribucién pueden calcularse
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sobre la base de ecuaciones cinéticas, que se obtienen por desarrollo en serie, en foncién de la densidad, de
F(r.B.0y de.Fg(r, B, ©). Para intervalos breves en comparacién con el tiempo que media entre los choques,
puede utilizarse directamente la serie en funcién de la densidad. Trat4ndose de intervalos prolongados es
preciso sumar una serie infinita de términos para tener debidamente en cuenta los efectos de los choques milti-
ples, Lasuma de los términos predominantes puede efectuarse por resolucién de una ecuacién integral, En el
término de orden inferior, &sta asume la forma de una ecuaci6n linealizada de Boltzmannque comprende las
correcciones para tener en cuenta los choques incompletos, Si se desprecian estas correcciones, la ecuacién
correspondiente a F(r, T, t) pasa a ser la ecuaci6n de Boltzmann linealizada tal como se utiliza en la teorfa
de la propagaci6n del sonido en los gases. La ecuaci6n correspondiente a Fg(r, T, t) pasa a ser la ecuacién de
transporte neutrénico., Como se sabe que estas ecuaciones tienen el l{mite hidrodindmico correcto, se deduce
explicitamente el comportamiento de G(r, t) y Gy(r, t) para grandes longitudes de onda.

. Las ecuaciones cinéticas s6lo se pueden aplicar directamente a los sistemas diluidos; no obstante, se
prestan al estudio sistemn4tico de las correlaciones dindmicas, La diferencia esencial entre las dos ecuaciones
son los términos invariables de choque, En la ecuaci6n determinante de F(r, B, t), los términos invariables son
el nfimero de partfculas, el impulso y la energfa, mientras que en la ecuacién determinante de Fy(r, B, 1), sélo
hay un término de esa clase, a saber, el nfimero de partfculas. Como la degeneraci6n del valor propio cero de
los operadores de choque asociados es diferente en uno y otro caso, las ecuaciones hidrodinimicas correspon-
dientes a G(r, t) y Gg(r, t) no presentan la misma forma, Las consecuencias de una y oma descripcién se ponen de
‘manifiesto por c4lculos realizados a base de modelos en el marco de aproximaciones por relajacién simple,
Del cdlculo basado en Gg(r, t) se deduce una funci6n de correlacién con efectos no gaussianos que son cualitativa-
mente anilogos a los calculados por Rahman para el argén lquido a partir de la dinfmica molecular, pero més
pronunciados, Los autores estdn estudiando un tratamiento més depurado de la integral de choque. El cilculo

basado en G(r, ) pone en evidencia los efectos previstos de difusi6n térmica y de propagacién amortiguada de
ondas sonoras para grandes longitudes de onda, y difiere de la expresién hidrodindmica cldsica para pequefias
longitudes de onda,

I. INTRODUCTION

It is generally recognized that the linear response of a system to an
external disturbance can be expressed in terms of time-dependent correla-
tion functions in the equilibrium ensemble [1]. If the disturbance is suf-
ficiently slowly varying in space and time, the response is expressible in
terms of linear phenomenological equations [2], and the only properties of
the system which enter are certain thermodynamic derivatives and transport
coefficients. In particular for a one-component classical fluid, the res-
ponse to a density disturbance [3] is determined by the heat conductivity «,
the shear viscosity n and the second or bulk viscosity §. There is general
agreement [1] as to the correct expressions of these quantities in terms of
correlation functions.

The Van Hove correlation function G(r,t) can be considered in terms
of propagation of the density impulse associated with localizing an atom at
the origin at time zero. The slow space and time variation of G(r,t) is de-
termined by the behaviour of the double Fourier transform S(k, w) for small
k and w. In the limit of small k and w it is reasonable to calculate S(k, w)
from the Fourier transformed linearized hydrodynamic equations. The as-
sociated hydrodynamic limit of S(k, w) has been considered by many authors
[4,5,6]. The basic idea is that the response to a small density disturbance
should obey the same equations whether this disturbance is externally in-
duced or occurs as an equilibrium fluctuation. The basic validity of this
idea has been known for a long time from the observation of the Brillouin-
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Mandelshtam doublet in the frequency spectrum of light scattered by a li-
quid [7]. '

In neutron scattering, however, we are dealing with much more rapid
space and time variation. We can no longer assume that the hydrodynamic
equations are applicable either to G(r, t) or to the response to an externally
induced density disturbance of high frequency and short wavelength. In order
to study this problem we need a more detailed kinetic description which is
applicable to more rapid phenomena and which goes to the correct hydro-
dynamic limit. It is an open question whether the response to an external
disturbance and to a spontaneous fluctuation remains the same in the kinetic
regime, :

In trying to understand this problem for simple liquids, we are limited
both by a lack of theoretical understanding and by a lack of relevant experi-
mental information. On the theoretical side we have no generally valid ki~
netic equation for liquids. Experimentally, the response to an external
density disturbance can be studied through the propagation of ultrasonic or
hypersonic waves. Modern techniques allow these phenomena to be studied
up to frequencies of the order of 1010 s-1, but there is no information yet
available concerning dispersion or deviations from classical sound absorp-
tion in monatomic liquids. The response to spontaneous density fluctuation
is given by S(k, w) as measured by light scattering [7] or neutron scattering.
There are not as yet any scattering experiments in simple liquids which
can be directly compared with existing or with feasible sound absorption
experiments.

In order to understand better the behaviour of S(k, w) in the kinetic re-
gime, we have investigated the case of a dilute monatomic gas including
the effects of binary collisions. For this case, the propagation of sound
for an arbitrary ratio of wavelength to mean free path is known to be des-
cribed by the linearized Boltzmann equation [8] (i. e. the linearization for
small departures from equilibrium of the equation originally proposed by
Boltzmann for the kinetic theory of gases). There is experimental informa-
tion on the propagation of sound in the kinetic regime [9], and there is an
extensive literature on approximate methods of solution of the linearized
Boltzmann equation [10]. The basic conclusion of the present work is that
the same linearized Boltzmann equation for the propagation of sound in gases
is applicable to the calculation of S(k, w). This is true as long as the effects
of incomplete collisions can be ignored.

In section II, we summarize a derivation [11] of kinetic equations ap-
propriate for G(r,t) and Gy(r, t) in a moderately dense classical gas. The
formulation is quite general and systematically allows for the effects of in-
complete collisions as well as for the inclusion of statistical correlations
at zero time. If these effects are neglected the resulting kinetic equations
reduce to the linearized Boltzmann equation in the case of G(r, t) and the
neutron transport equation in the case of G¢(r,t). In section III we discuss
the differences between these two equations. The equation for Gg(r,t) has
a collision integral which conserves only particle number, and leads to a
hydrodynamic limit which is described by simple diffusion. The collision
integral in the equation for G(r,t) conserves energy and momentum as well
as particle number, and the associated hydrodynamic limit is described
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by the processes of sound wave propagation and heat diffusion. In section IV
we consider single-relaxation-time kinetic models which allow analytic solu-
tions of the kinetic equations. These solutions give us a semi-quantitative
understanding of the behaviour of S(k, w) and S(K, w) as we go from the hydro-
dynamic limit (small k) to the free particle limit (large k). Finally in sec-
tion V we give some general discussion of our results.

II. DERIVATION OF KINETIC EQUATIONS

The Van Hove density correlation functions for an isotropic fluid are

Gl = 5 ) <60, - Do) -3, (2.1)
i,j
G ) = 2 ) Cofd; - DIt - 3, (2.2)

i

where n is the equilibrium density, r = Ia-a'l s Hi and Hi(t) are the positions
of the i-th molecule initially and at time t, and indices i and j run over all
the particles in the system. When these expressions are treated classically,
the ensemble average_< > implies

-8U - -, - -
Gr, 1) =2 Z k/ﬂde(pl...%%—é(qi-q)eﬂ_‘é(qj—‘q'), )
. ’ N .
i,j

where we have assumed an equilibrium distribution appropriate to a canonical
ensemble, and )

95 = 9lp;) = (B/2rm)¥2e8y/mm (2.4)

with B-1=T,, the equilibrium temperature in energy units, m is the particle
mass, and f)’J is the momentum of the j-th molecule. The vector xN =(x;...xy),
defined in vy-space, specifies the phase of the system whereas x; = (4, Bj),
defined in y-space, specifies the phase of the molecule. The potential ener-
gy of the system, assuming two-body additive forces, is

vy = ) el (2.5)
i<j '

where qy; = lal ‘ajl and ® is the pair potential. Other symbols in Eq. (2. 3)
to be defined are the configuration integral

QN=quNe'BU<'qN> , (2.6)
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and the Liouville operator

L. =L+ 1}, (2.7)

Lo= z 15.-%,. _ (2.8)
i

L= Z (_vpj -Vpi )'tiv(qu)- (2.9)

i<j

In using the Koopman time-displacement operator exp(tL) to study the
evolution of a system there will appear certain symmetries between the mo-
mentum and position of a particle. We can exploit this property by intro-
ducing an obvious generalization of the Van Hove functions,

f(xx';t) = %Z(G(x_i—x) 8(x,(t) - x') (2. 10)

i,j

.fs(xx';t)=%z<6(xi-x)6(xi(t)-x')>. (2. 11)

It is clear that analogous to G(r,t) f gives the expected number of molecules
at the phase point x! at time t, given initially that there was a molecule at x.
Once we have a description of f, G(r,t) is immediately determined by inte-
grations,

G(r, t) =fd3pd3p'f(xx';t). (2.12)
Normalization of the momentum-impulse function is
fdx'f(xx' ;1) = No(p), (2.13)
which implies
fdaz.'G(r, t)=N (2. 14)

and N is the total number of molecules in the system. Correspondingly,
in the case of the self-correlation function

Gy(r, t) =fd3p Pptfs(xx;t), - (2.19)
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de'fs(XX';t) =o(p), ‘ (2. 16)

fd3er(r,t) = 1. (2.17)

It is not feasible to evaluate the ensemble average { ) directly from
the explicit expression (2.3). However, a systematic reduction of this many-
body problem can be achieved by using the Ursell expansion [12] of exp(tL).
Thus, .

1 1 '
e 6(x; - x') :\:ut(j) + z u i+ ... + (—QT—WZ U(3jqe - 3 +- - .j|6(x]. -x'),

h e (2.18)
where
0
u,(1) =™V =W | : (2.19)
ut(12) - e(].,(12) - etL°(12) s (2‘ 20)
up(123) = 1% _ o ULAD+LAN] _ o tAB+ @] _ L@ +LW) 4 5o uP(2s)

(2. 21)

ete. -

The prime over each summation sign indicates that the summation in-
dices must not equal j and that they must also not equal each other. Equa-
tion (2. 18) describes the evolution of the phase of the j-th molecule in the
system during time interval t in terms of the evolution of successively larger
clusters of molecules. In the leading term molecule j moves freely, and
in the next term j interacts dynamically with only one other molecule, and-
so on. Substituting Eq. (2. 18) into Eq. (2. 10) we see that for a given term
only the phases of the molecules in the set (jj;...j,) and the phase of the
i-th molecule, if i is not already contained in the set, need be considered.
The dependence upon all other molecules is eliminated by integration. In
analysing the evolution of a cluster two basically different types of inter-
particle correlation effects should be distinguished. Consider, for example,
the case where i is a member of (jj;.:.]J,); then calling all suc¢h contribu-
tions in Eq. (2. 10) f;, we find

2
1 1
fa(xxt;t) =3 Z m fdx%}l. ..qn(l.. . 0) Z 8(x; - x)u (L. .. £)6(x;-x'),
i i,j=1
(2. 22
where )

n(l. . ﬂ) - N(N = 1) QI\(IN -4+ 1) d3qﬂ+1. .. d3qu°BU(qN) (2' 23)
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is the usual f-particle distribution function in equilibrium theory. In each
cluster each molecule initially has a Maxwellian momentum distribution and
is spatially correlated to all the other molecules in the cluster according
to n(1...4£). We shall speak of these molecules as Being statistically cor-
related. The dynamical interactions among the molecules in the cluster
which take place during time interval t are described by u,(1....£). So the
molecules are also dynamically correlated after time t. In the present
treatment, statistical and dynamical effects appear separately; thus they
can be treated with different approximations.

For a sufficiently dilute gas all statistical effects can be ignored. The
function n{1...#) is then replaced by n? and Eq. (2. 22) then becomes a density
series. The expression in wavelength-frequency space is (V=N/n is the
system volume)

8

. 1 o Z
f,(kzpp') = 3 dt ezt fd3q d3qt etk @9 f (xx!;t)

0

RET kg " o5 8(; - Bhuyll. .. )T s, -B1)

—v —F— X({)l...q)2 e 1 0(p; - Plu,tl. .. pj P
=1 i,=1

= Z n‘zfg(sz))f)" ), (2.24)

2=0 '

which may be interpreted as describing the propagation of a disturbance cha-
racterized by wave vector k and frequency z. In this case the molecules
are dynamically correlated but not statistically correlated. Aside from f,
the remaining contributions to Eq. (2. 10) are simple to evaluate in the ab-
sence of statistical effects. The function f(xx';t) now becomes

£(kzBp") = 2 Ins(K)p(P)o(p*) + £,(kzpp" ) (2.25)
and the first few terms in fa(kzﬁﬁ") are

£2(kzPB') = o(p)8 (P - B )z - iK. V)L, (2. 26)

’ 2
- = k. Bq, Py
B0 2 [aadnme ) 6@ - BT B2 T - kT 86y - B,
i,i71

(2.27)

3
e =5 [ drideadxmody ) e H6(E, - F) [B(2IB(13)
i=1

+ B(13)B(12) + B(23)B(12) + B(23)B(13)leFq 6(3; - p' Mz~ iK-¥;),
‘ (2. 28)
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- -
where v=p/m,
«©

u(ij) = [dte?u (ij) = B(ij)[z - LT, (2. 29)
0

and

B(ij) = [z - L2(ij) ] LA ()1 + B(ij)]. (2.30)

In writing Eq. (2. 28) we have made a binary collision expansion of the Ursell
operator u,(123) and retained only the most dominant terms at long times
{or small z). This means that collision sequences which contain a cycle,
B(12)B(13)B(23), or repeated collision, B(12)B(13)B(12), have less singular
behaviour at small z and in the present approximation have been ignored. B
The binary collision kernel B(ij) obtained from an expansionof u,(1...i...j... 2)
is still a £-body operator. However, the molecules, except for i and j, only
stream freely and this effect does not appear in the anaiysis when their ini-
tial spatial correlation is ignored. Hence binary collision expansions of
different u, operators all give the same B(ij).

For very short time behaviour the density series given in Eq. (2. 24) can
be used directly [13]. At long times the series diverges as successively
higher terms contain contributions proportional to higher inverse powers
of z. Thus if a description is to be valid for both short and long times the
density series must be summed to all orders. Such a summation can be
carried out in the above approximation of considering only collision sequen-
ces which contain no cycles or repeated collisions. In equilibrium theory
a connected graph with no cycles is called a Cayley tree [12], and so we may
call our approximation the Cayley-tree approximation. Using this approxi-
mation and ignoring statistical correlation we have reduced a many-body
problem to one wherein only binary effects are present. It is at this level
that we are able to derive kinetic equations for f and f;.

The operator B(ij) acts on the relative separation of molecules i and j
as well as their momenta. The spatial effects of this operator can be ex-
hibited more explicitly by its k-space representation,

E.E| a5 __1 3 d3 v-i(E-_q).+_k>'..z.) .. i(R'E+K-'$)
(i le(IJ)[kikj)— dgdige T B(ij)et TN (2.31)

which is an operator only in momentum space. Combining Egs. (2.25),
(2.26) and (2. 27) we then have
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£, (KZBF) = 9(@)8 @ - B1)(= - -9+ n [ oprcpy0u05l6(5; - B)(RO|B(12) [FO)
+ 8(B,- B)(OK|B(12) [KO) 16(B; - B' )(z - ik-¥;)™!

+n? f d%p,d3p,d3p,0, 9,05 16(B, - B)(KO|B(13) |KO) (KO [B(12) |KO)

+ 8(D,- P)(KO | B(23) |EO)(OK|B(12) [KO)

+ (B - B)[(OK|B(13)|KO)(KO|B(12)|KO)

+ (OK|B(23) | KO)(OK | B(12) |KON}6(B; - ' )(z - iK- v)) 1 +. ..
(2.32)

It can be shown [11] that this series can be reproduced to all orders in the
density by iterating the integral equation,

£, (kzB5) = 9(B)s (- B1)(z - 1K 971+ n [ a¥p %, - By)

[(KO| B(12) [RO)pyf (kzB,B*) + (KO| B(12)| OK) )£ ,(kzB,B") 1.
(2.33)

Since the momentum P'is superfluous the same physical content is given by
R - 3 > o
(z - 1I§-v1)F(kzpl) =o(p;) + nfd py(z - 1K-v1)

[(KO| B(12)| KO)p,F(kzB,) + (KO| B(12)| OK)p, F(kzB,)],
(2.34)

where
F(kzs)=fd3ptfa(kz5§"). ‘ (2. 35)

Equation (2. 34) is a kinetic equation in Fourier space. The collision integral
is non-Markoffian because of incomplete collisions and is also non-local
because of the finite extent of the molecules. Ignoring these effects we can
transform the integral to give

(z - iR-¥))F(kzp;) = ¢(p,) + nfdapzvlzbdbde(cpé F! + ¢l F} - 9, F, - ¢,F,), (2.36)
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where (b, €) are the usual impact variables for a binary collision v12:] 31 - 72],
and the prime denotes that the function has the velocity after the collision.
Equation (2. 36) is just the linearized Boltzmann equation appropriately trans-
formed, with initial condition, F(r,B,t = 0) = §(¥)p(p). For the self-correlation
function we have

(z - iK-¥))F, (k2P;) = 9(p;) +n ] d®pyv, bdbdelp(p})F, (kzB} ) - 9(p,)F, (kzB,)],
' (2.37)

which is the neutron transport equation with the same initial condition. From
Eqs. (2.36) and (2.37) we have the initial conditions for G(r,t) and G(r, t),

G(r, 0) =n + (%), (2.38)
G,(r, 0) = 8(7). (2.39)

III. COLLISIONAL INVARIANTS AND HYDRODYNAMICAL BEHAVIOUR -

The only difference in our descriptions of G(r, t) and G¢(r;t) lies in the
collisional integrals in the kinetic equations. For times short compared to
the mean free time the dominant effects are those due to molecular streaming.
In the limiting case both G and G; can be calculated from the free molecule
result,

F(kzP) = F, (k) = p(p) (2 - iK-9)"L. (3.1)

At the opposite extreme of large times, collision effects dominate and the
two correlation functions can be expected to exhibit markedly different be-
haviour. It has been widely recognized that G(r, t) has a hydrodynamic limit
for slowly varying disturbances [4, 5, 6]. This limit exists for any classical
one-component fluid and is characterized by the irreversible processes of
damped sound wave propagation and heat conduction. On the other hand, the
corresponding limit for Gs(r,t) is simple diffusion. Thus the long-wavelength
spectrum associated with G(r,t) consists of a central peak and two equally
displaced peaks (the Brillouin doublet) while that for G, has a Lorentzian
shape. In this section we shall discuss the hydrodynamical limits of our
kinetic equations briefly and emphasize that such characteristic behaviour
of the correlation functions is a direct consequence of the structure of the
collision integrals.

From the two kinetic equations it is clear that in the orie description
" the disturbances propagate with collisions which conserve particle number,
momentum and energy, whereas in the other only the particle number is
conserved. This observation is easily demonstrated using kinematical trans-
formations well known in the kinetic theory of gases [14]. If J(F) and J(F;)
are the collision integrals in Eqgs. (2. 36) and (2. 37), respectively, then
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1
f d*v,d%v,v, bdbde (?) I(F)=0 (3.2)
v2
and
f @3v,d¥v,v, bdbde J (E) = 0. (3.3)

In other words the zero eigenvalue of the collision operator corresponding
to J(F) is five-fold degenerate whereas thatcorresponding to Js(Fs) is non-
degenerate. From Eq. (2. 36) one obtains a set of conservation equations

a
'51:_2(1': t)+ VHC”(I‘, t) =0,
5 .
EC,_,(r,t)%-Vva(r, t) =0, (3.4)

0
ST E(r, 1)+ 9Qy(r, 1) = 0,

and initial conditions

Z(r, 0)'= 6(2), :
(3.5)

Cp(r: 0) = 0:
E(r, 0) = —— (%)
2 Bm ’
where Greek subscripts denote Cartesian components and

z J1\
Cp Vy
Py | = fdav B(rvt) v, |- (3.6)
E v v2
Qyp v,,v2

In order to use the hydrodynamic equations additional expressions must be
found for B, and Qp, which within a constant factor, are just the pressure
tensor and heat flux vector. A number of approximations common in fluid
dynamics can be used here. For example, in the ideal gas approximation
B, is diagonal and Q,vanishes and the result is the Euler equations. This
leads to a delta function for S(k,w), aside from a term proportional to §(EK)
with w=ck, where c is the adiabatic sound speed for a monatomic ideal
gas, ¢ =(5/A3 m). A more realistic approximation is to use Newton and
Fourier laws for Py, and Qy which then resultsin the Navier-Stokes equations.
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One can show [15] in this case that for small k, S(k,w) indeed gives a three-
component spectrum; the width of the central éomponent depends upon the
coefficient of thermal conductivity k while the width of the displaced com-
ponents depends on k as well as on n and &, the shear and bulk viscosities.
Thus we see in the long wavelength limit the dynamical processes which
characterize the system response to a microscopic density disturbance are
precisely those which determine the transport properties of the system.

Applying similar considerations to Eq. (2.37) one has only the conserva-
tion equation

a
gGs(r, t)+ VW, (r,t) =0, (3.7)

where
W,(r, 1) = | &®vv,F (r3t). : (3. 8)

Higher order velocity-moment equations can be written down but it is clear
that in these equations there will be contributions due to J (F). " The problem
is identical to that encountered in neutron transport theory. In the approxi-
mation that the current and density are simply related by a Fick's rule,
Eq. (3. 7) becomes the diffusion equation and Sk, w) is a Lorentzian whose
width depends on the diffusion coefficient D [16].

The approach of Egs. (2. 36) and (2. 37) to their hydrodynamic limits can
be studied systematically as an expansion in the relative change in macro-
scopic variables over the distance of a mean free path [8]. This is the well-
known Chapman-Enskog method for calculating transport coefficients from
kinetic equations. The method can be applied directly to Egs. (2. 36) and
(2. 37) but because it is designed specifically for the evaluation of transport
coefficients little can be said from such an analysis about the system res-
ponse to moderately rapid space-time variations. One therefore needs to
seek explicit solutions of Egs. (2. 36) and (2. 37) in the kinetic region. Al-
though these initial value problems are already well-defined, detailed cal-
culations using specific two-body potentials have not yet been carried
through. In the next section we discuss model calculations which are useful
in understanding dynamical correlation effects in the region where the wave-
lengths are of the same order as the mean free path.

IV. SINGLE-RELAXATION-TIME KINETIC MODELS FOR G(r, t) and G(r, t)

The basis of the Chapman-Enskog development is the assumption that
collision effects dominate so that the zeroth order solution is obtained by
simply ignoring the effects of free molecular flow. When wavelengths and
mean free path are comparable there is no reason to believe that this is a
reasonable assumption. However, the difficulty is avoided if appropriate
simplification of the collision integrals can be found which enables exact
solution of the resulting equation. Kinetic models for which this is possible
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have been considered by BOHM and GROSS [17] and by BHATNAGAR, GROSS
and KROOK [18]. Subsequent literature on this approach is quite extensive.

The kinetic models to be used for the calculation of G(r, t) and G(r, t)
can be systematically developed from Egs. (2.36) and (2.37) [10, 19]. We
shall summarize the essential points in the derivation. One assumes that
there exists a complete set of eigenfunctions {y;} of the linear operator J(F)

JWi) =N

with eigenvalues X;. Except for the case of Maxwell molecules (¢(r)~1/r%)
the explicit forms of ¥; and A; are not known. However, certain properties
of J(F') can be demonstrated for arbitrary central force interaction. For
example, it has already been mentioned that the eigenvalue A =0 is five-fold
degenerate as a consequence of the conservation of particle, momentum and
energy. The corresponding orthogonal eigenfunctions y;, i=1...5, are pro-
portional to 1, vy, and v?/v}-3/2, with v3=2/Bm. All other eigenvalues
must be negative since the kinetic equation is irreversible. One then has

F(rt) = Zan(r, o (V)b (), (4.1)

n

d F(rvt
ap(r,t) = ffd‘;“ﬁ@((;/;))wifrv) ) s (4. 2)

and upon inserting Eq. (4. 1) into J(F) one finds

I(F) = Z 8oty | (4.3)

n

A kinetic model is obtained if all the non-zero eigenvalues are assumed to
‘have the same value, -A. In this approximation the collision integral can
be rearranged as ‘

5 .
Toex (F) = - AF(r¥t) + Aq(v) Zan(r, . (%)

n=1

= - AF(rvt) + Ag(v) l:Z(r, t) + %n@' gr,t)+n (X—z- %) 7(r, t) :l
0 0

(4. 4)

where we have written ng(r, t) = G(r,t), and E(r,t) =%v%[Z(r, t) + n7(r, t)].

In this form the local density is n+ Z(r,t), the local velocity is q(r, t) and
the local temperature is T(r,t) = T,[1+ 7(r,t)]. A similar approximation
of Eq. (2. 37) yields
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Tpg(Fy) = - A F, (r¥t) + A 0(v)G,(r, t). (4.5)

The constants A and A; are model parameters yet to be determined. Since
they are average eigenvalues, in principle they can.be computed if the eigen-
value spectra are known, This is possible only in the case of J(F) for Max-
well molecules, so that in practice additional conditions are required. In
each case, the parameter has the interpretation of the average rate at which
the molecules approach local equilibrium, and‘an estimate of this relaxation
frequency can be obtained by reqﬁiring the kinetic description to predict
certain transport coefficients correctly.

Kinetic descriptions of G(r,t) and G,(r, t) based on Egs. (4. 4) and (4. 5)
have been considered recently. On account of the simplicity of the models
exact solutions for the wavelength-frequency components of the correlation
functions have been obtained. The results are applicable to dilute fluids
for arbitrary ratios of wavelength to mean free path. For the self-correlation
function it is found that [20]

§ siw 1- ) - V2 .
s -i fae [ - SR UGN 0

where
“x2-w/kv, ¥ = X [k,

Ulxy) = etyu(xy), Vixy) = atyvixy),

ulxy) + iv(xy) =;i fds(x+ iy - s)?! e,

-00

The parameter y is a measure of the wavelength of the disturbance as com-
pared to the collision mean free path. In the limit of small and large y one
has respectively

L1 DK
y»1 7w+ (Dk2)2’

Sslk, ©) =5 (kvym) ! expl-w?/vi] 4.7

which are just the free molecule and simple diffusion results appropriate
to large and small momentum transfer. The diffusion coefficient D is given
by v§/2)\5. In Fig. 1 we plot some typical numerical results for S (k, w). Away
from the hydrodynamic region the line shape is seen to be narrower than
the simple diffusion result. It should be observed that the kinetic descrip-
tion represents a non-Gaussian calculation, in spite of the fact that the
mean square displacement predicted is identical to that given by a simple
Langevin equation with damping constant A,., For comparison Gaussian ap-
proximation results are also given in the same figure. It is of some interest
to study the non-Gaussian behaviour from the ratio of spatial moments. We
can define
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Fig.1
Deviations of response function 2D k2Sy(k, u)
from simple diffusion line shape as a function of w/2D k?(solid curves),

Also shown are the Gaussian approximation results of Singwi and Sjclander
(dashed curves), Phys, Rev. 119 (1960) 863.

@ (t)=—<——y<r2n> -1 (4. 8)
n Cn r2 ] .

where C,=1,3,5...(2n+ 1)/3". The function a,(t) would be zero for alltimes
if Gs(r,t) were Gaussian. In Fig.2. we show @y, a3 and a4 [21). It can be
seen-that the deviation increases with increasing n with the maximum show-
ing a tendency to shift to larger times. The same qualitative behaviour has
been observed in Rahman's calculations [22] for liquid argon based on clas-
sical equations of motion. The non-Gaussian effects in Rahman's calcula-
tions are smaller, but it is not known whether this is because he uses a real-
istic interatomic potential or because he calculates for a high density system.
It is of interest to obtain a better physical understanding of the similarities
and differences between these two calculations.

For the case of the density correlation function the solution again in-
volves the functions U(x,y) and V(x,y), where y is now defined with X; re-
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The non-Gaussian behaviour of the single-relaxation-time kinetic model as a function of x .
If G(r, t) were Gaussian, o, ogand o, would vanish identically,

placed by A [23]. The expression is considerably more complicated and
will not be displayed here. In Fig.3 we show how S(k,w) varies for different
ratios of wavelength to mean free path. At long wavelengths it is evident
that the adiabatic probagation of pressure disturbances and the diffusion
of thermal disturbances give rise to well separated peaks. For y> 5 the
location of the displaced component is given by the adiabatic sound speed,
(5/6)%v0. The corresponding intensity ratio of the central peak to displaced
peaks is also characterizedby the ideal, monatomic gas value of (C,- Cy) /G,
Cp and Cy being the usual specific heats at constant pressure and volume,
Since the kinetic results are applicable when the wavelengths become
comparable to mean free path, the range of validity of the hydrodynamic
equations can be examined in the present approximation. KADANOFF and
MARTIN [5]) have derived an expression for S(k, w) from a set of linearized
hydrodynamic equations appropriate to a one-component fluid,

: C Dk’ . C FKir
= -y T =y
Saalk, ©) (1 cp> ¥ (DR T C, (- PO + (W22

_(1.C\ Dk - ) (4.9)
Cp ) (W2 - 2k?)2+ (wk?T)2’ )
where ¢ is the sound speed, Dr=x/mnC,, I'= (4nm§1+ )+ DT(%E-- 1}, kis
v

the thermal conductivity, n is the shear viscosity and £ is the second or
bulk viscosity. Equation (4.9) is an approximate result valid at long wave-
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Variations of response function (kvy/m)S(k, w) for various ratios
(ratio =272 y) of wavelength to mean free path.

lengths. To compare with our calculations we use the exact expression as
derived from the same hydrodynamic equations [24]

9& K4, + AD [ ( -%l> c2+£C:P-k2DRDT]
p ad

4 Lp. 212 o[, 2_ 212_Coya 27
k[ <D+ D> kD} +w ‘:w c’k C‘,kD"DT] (4. 10)

SH(k: w) =

D£=(%n+§)/mn. (4.11)

A comparison of Sy(K, w) with S(k, w) is shown in Fig. 4, where we have used
the following:  Cy/Cp=3/5, c=(5/6)iv,, £=0, k=5nmv§C,/6X, and
n-= nmv0/2k If included, Sy would lie intermediate to the two curves shown.
It appears that for y €1 the hydrodynamic description is not appropriate,
a conclusion not unexpected since one is certainly in the kinetic region.
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Fig. 4.

Comparison of (kvy/mS(k, w) (solid curves) and (kvy/mSy(k, w) (dashed curves).

The kinetic results for S(k,w) and S,(k,w) alsoprovide a test of Vineyard's
convolution approximation [16]. However, the comparison is meaningful
only if the parameters A and A can be specified in an internally consistent
way. One approach is to adjust these constants such that appropriate trans-
port coefficients calculated from the kinetic models are in agreement with
measurements. For argon at 0°C and one atmosphere, A is 3.14 X109 s-1
or 4.81X109 57! depending on whether the thermal conductivity or the shear
viscosity [25] is used. The discrepancy arises because the stress tensor
and the heat flux vector are different velocity moments and therefore should
have different decay rates. In the sinple-relaxation-time approximation this
difference is explicitly neglected, so that the ratio of xto nCp is 5/3 instead
of 5/2 for monatomic gases. We can obtain an average value for X using
the same relative proportions as found in the classical sound absorption
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coefficient. One then has A =4.1X10° s1, From the measured diffusion
coefficient [25] A is found to be 3.66 X109 g1, Thus A and A, differ by
roughly 10%. Neglecting this difference we show in Fig.5 a comparison

AY
A
v
A
\
\

Fig.5 .
Comparison of (kv,/m)S(k, w) and (kvy/mSy(k, w) as calculated in the

single-relaxation-time approximation assuming A and As are the same
(solid and dashed curves respectively).

of S(k, w} and S (k, w) at the same values of y. The results are identical at
y =0, and at large y the central peak of S is similar in shape to Ss, in parti-
cular both widths are the same in the hydrodynamic limit if X =A5. At inter-
mediate values of y where the sound peak in S is less well developed, S is
considerably broader. One may conclude that in dilute gases Vineyard's
convolution approximation would lead to too narrow a spectrum for wave-
lengths comparable to or less than the mean free path. For very long wave-
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lengths this approximation even gives the wrong line shape as is already
well known., :

V. DISCUSSION

We have derived kinetic equations for the calculation of Van Hove's cor-
relation functions, and in so doing a connection between slow-neutron (and
light) scattering and the theory of irreversible processes is established. "
The approach is different from VINEYARD!s [26] generalization of the B-B-
G-K-Y hierarchy equations for molecular distribution functions. For dilute
systems it is shown that G(r, t) can be calculated from an equation for single"
densities without calculating any two-particle distribution functions. The
density correlation function G(r, t) is given by two parts which in general
should be calculated separately. When statistical effects are ignored, one
of the two parts is simply the equilibrium density and is of no further in-
terest. The other part is the zeroth velocity moment of the solution to the
linearized Boltzmann equation provided effects due to incomplete collisions
and finite extent of the molecules are neglected. The self-correlation func-
tion G;(r,t), in the same approximation, is given by the zeroth velocity
moment of the solution to the neutron transport equation. If incomplete
collisions are taken into account the equations become non-Markoffian. A
different non-Markoffian kinetic equation which can be used to calculate
"Gg(r, t) has recently been derived by NOSSAL [27]. It has been recognized
that to account properly for short-time behaviour a description should in-
clude memory effects. Rahman's molecular dynamics calculations for liquid
argon give a momentum correlation function which becomes negative at
intermediate times. This will not-occur in a kinetic description without
memory effects. In liquid argon it is not likely that this behaviour is due
to incomplete collisions, but is due rather to oscillations in the attractive
force field of neighbouring molecules, which is not a binary collision effect.
It should be noted that an equation for the calculation of the momentum cor-
relation function(ﬁ-"ﬁ(t)) can be derived from the results of section II. One
has

(B P)>= [dp !B BHYBR; 1), (5.1)

‘Y(Bf)";t)=nfd3qd3q'fs(xx';t). (5.2)

\

The equation for ¥(pp';t) turns out to be the space-independent form of the
neutron transport equation if non-local effects in the collision are ignored.

Thus far the kinetic descriptions of G(r, t) and Gy(r, t) have been ex-
plored only in the context of simple relaxation models. Interesting results
are obtained if the calculations are performed directly with Eqgs. (2. 36) and
(2. 37) for a particular two-body potential. Attempts to carry out such a
calculation are currently under way. In both cases, the kinetic equations
can be put into the form
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[a% +7 V4 nKy(v) J f(rvt) =n fdav' Ky (v, V' )i(rv1), (5.3)

where Ky(v) and K;(¥,V') are known integrals of the differential cross-
section. It can also be shown that K; depends ohly on the magnitude of v
and V! and the angle between them. Since a given force law completely
characterizes both calculations of S and S;, aquantitative test of the con-
volution approximation can be thus obtained.

Comparison of kinetic and hydrodynamic calculations has shown that
appreciable differences appear in the region y<1. Presumably one can ex-
tend the range of applicability of the hydrodynamic equations by introducing
fequency-dependent transport coefficients and dispersion effects in the sound
speed. A question arises as to whether in so doing it is appropriate to use
Eq. (4.9), which differs significantly from Eq. (4. 10) in the kinetic region
* even when constant transport coefficients areused. It should be remembered
that the validity of the hydrodynamic equations is not limited by the applica-
bility of the kinetic equation from which they can be derived. The hydro-
dynamic equations can be applied to dense fluids as long as the appropriate
values of the parameters are used. On the other hand, the hydrodynamic
description is restricted to small k. While Eqs. (4. 9) and (4. 10) should be
useful in analysing the Doppler shifts in light scattering experiments, they
are less likely to be appropriate for interpreting slow neutron scattering
data. )

From our kinetic calculations for a dilute system, it appears quali-
tatively reasonable to apply the hydrodynamic Egq. (4. 10) to slow neutron
scattering by liquids for the smallest obtainable momentum transfers
(k~2 X107 cm™Y). In doing this we find that the frequency distribution S(k, w)
is much broader than that of Sy(k, w). The thermal diffusivity in liquids is
much larger than the atomic diffusion coefficient (for argon at 90°K,
Dr/D~50 [28]). Thus the central peak of S(k,w) is much broader than S;(k,w).
The presence of the unresolved sound wave peaks will accentuate this dif-
ference. This is a qualitatively striking result since near the first diffrac-
tion maximum, de Gennes narrowing effect [4] occurs, and S(k,w) is nar-
rower than S((k,w). Since the fraction of incoherent scattering in argon can
be varied by varying the isotopic composition, the observation of this strik-
ingly different behaviour of S(k, w)land S;(k, w) for k ~2 X107 cm~! as com-
pared to k ~2X 108 cm~l may be experimentally feasible.

The kinetic equations considered in the present work are valid only for
dilute systems. To extend the description to moderately dense fluids ad-
ditional effects should be taken into consideration. Among these are the
dynamical effects of triple collisions and the statistical effects of spatial
correlation. Using Eq. (2. 25) we have been able to justify approximately
the introduction of the equilibrium pair distribution function in the collision
integral. The result is similar in character to Enskog!s modification of .
the Boltzmann equation for dense gases [14].

In summary we have established the relationship between kinetic theory
and inelastic neutron scattering for classical monatomic fluids in the range
of low density where the kinetic theory is very well understood. The ex-
tension to moderate densities is feasible, difficult, and of considerable
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current theoretical interest. It is not yet clear whether this approach will
eventually lead to quantitative predictions which can be compared with in-
elastic neutron scattering experiments.
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DISCUSSION

P. EGELSTAFF: What is the shape of [S(k, w) dw according to your
model? After all, this function has a large effect on the positions of the
peaks in S(k, w) plotted as a function of w.

S. YIP: The integral is unity for all k, and follows from the fact that
in this model the particles are statistically uncorrelated at equilibrium.

A. SJOLANDER: Doyou reallyhaveto gobeyond the ordinary Boltzmann
equation to get the kind of curves you have shown us, i.e. a broadened sound
peak and a diffusive central peak deviating from the macroscopic results?

S. YIP: No, the linearized Boltzmann equation will always give this type
of line shape for small wavelengths.
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" THE SELF-CORRELATION FUNCTION OF REAL GASES. In the formal theory of inelastic scattering of
neutrons, the self-correlation function has been worked out in terms of statistical averages of the derivatives
of the N-body interaction-potential of the scatterer. ’

In the present paper, these averages are evaluated for real gases by means of a cluster-expansion related
" to that of Mayer-Ursell, This leads to certain non-linear types of clusters, which are investigated with respect
to the topology of the graphs, their multiplicity (by combinatorial analysis) and their quadrature, As one expects,
in view of the many-body problem, some of the clusters are not separable and have to be machine-integrated.
In this way, the self-correlation function ¥ ; t) is calculated for short times, including also the first
non-Gaussian term, The cluster-expansion breaks off after the first interaction term, so that the results are
valid for low density only, This still gives rise to very many different types of clusters, containing up to seven
points, for each coefficient, The assumed potential is a general two-particle, hard-core type,
As Singwi et al, have shown, the long time behaviour of yg is determined by the time integral of the
velocity auto-correlation:

o

J< v (0) Ve (D) > T de.
0

To construct the integrand for all times, we can make use of our cluster-expansion for small t and adopt Langevin's
diffusion theory for large t.
Numerical computations are under way.

FONCTION D'AUTOCORRELATION DES GAZ REELS. Dans la théorie formelle de la diffusion inélastique
des neutrons, on a établi la fonction d’autocorrélation en se fondant sur les moyennes statistiques des dérivées
du potentiel d‘interaction 3 N corps du diffuseur.

L'auteur a évalué ces moyennes pour des gaz réels 2 1'aide d'un développement par amas en rapport avec
celui de Mayer-Ursell, 11 obtient ainsi des types d'amas non linéaires qu'il étudie du point de vue de la topo-
logie des diagrammes, de leur multiplicité (par analyse combinatoire) et de leur quadrature, Comme on peut
s'y attendre pour ce probl2me 2 plusieurs corps, certains amas ne sont pas séparables et doivent &tre intégrés
au moyen d'un ordinateur, .

De cette fagon, la fonction d‘autocorrélation % (:? , t) est calculée pour des temps courts, y compris le
premier terme non gaussien. Le développement par amas cesse de s'appliquer apr2s le premier terme d'inter-
action, de sorte que les résultats ne sont valables que pour les faibles densités, On obtient encore de u2s nom-
breux types différents d*amas qui contiennent jusqu'd sept points, pour chaque coefficient. Le potentiel admis
est du type général A deux particules et 3 cceur dur,

Comme Singwi et son &quipe 1'ont montré, le comportement 3 long terme de y; est déterminé par 1'inté-
grale de temps de 1'autocorrélation de vitesse:

I <%(0) v (D) >pdt _
¢

En vue de déterminer 1'expression 2 intégrer pour toutes les valeurs temps, on peut utiliser le développement
par amas proposé par 1'auteur lorsque t est petit et adopter la théorie de la diffusion de Langevin lorsque t
est grand.

On est en train de faire des calculs numériques,

59
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$YHKIIUSA CAMOKOPPEJIALIMA PEAJIBHBIX "A30B. B ¢opmanbHO TeOpHH HEYnpyroro
paccesnnus HeHTpoHOB (ByHKUNA CaMOKOppeNsuud BhHBeJeHa B cpeAHe-CTaTHCTHYECKHX NPOH3BOA~
HBIX B3aHMOAeACTBHe-noTeHLHan N-Tesa paccenBaTens.

B maHHOM foKjaZe 2TH CpefHHe 3HAYEHHA ONpPeAeNfSOTCA WA peajbHBIX Ta30B pa3noXeHHEM
Ha TPYNn:, CBA3aHHHNM C MeToAOM Mafiepa-Ypcemns. DTO NPMBOAMT K IMONy4EHHIO HEKOTODHIX He-
NHHeHHEIX THNOB CPYNN, KOTOPble H3YYaKwTCS B OTHOHEHHH TONOJAOTHH rpad, MX MHOTOKPaTHOCTH
(MeTonaMu KOMGHHATOPHOT'O aKHajiM3a) M MX KBajpaTypsl. Kak npeamnonaraercs B CBSI3H C mpo-
6GneMofi MHOTHX TeJl, HeKOTOpPEHEe M3 TPynn Hepas3AeNHMBI, H X HeODXOAHMO HHTErPHPOBATH C NO-
MOmBO CYETHO~peMapnmuX MamuH.

TaKuM MyTeM pacCYMTHBaeTCA (PyHKUHA CAMOKOPPENSUHH ¥, (K,t) 1% KOPOTKHX NPOMeXyT-
KOB BPEMEHHM, B TOM MHCIEe W NepBblii HerayCCOBCKHil WwieH. PasjioXeHue Ha I'pynnsl npepsHBaeTCs
nocne nepBoOro WieHa, BHpaXalomero B3auMoJeHCTBHe, TaK UTO Pe3yNbTATH CrnpaBefUIUBH TOABKO
JUISE HU3KOM MVIOTHOCTH. 3TO TeM He MeHee NMPHBOAMT K CaMbIM Pa3/JHYHBIM THMaM Ipynmn, B KO-
TOPHX COAEPXUTCH A0 T TOYEK ANA Xaknoro koad duuueHra. B KavecTBe noTeHuHana npejnona-
raercs o6s4YHaA TBepAas CepAUeBHHA C ABYMs 4aCTHLAMH.

Kak nokasanyn CHHTBHM H Ap., XapaKTe€pPHCTHKA Y, IS NPOAOCJXHMTENBHOrO BPeMEHH onpele-
NAeTCS BPEeMEHHHM WHTETPaJOM 110 CKOPOCTH-aBTOKOPPESLMH:

J< vk (0)vk(t) >7dt.

Jns cocTaBieHHs NOAMHTETPANbBHOrO BHpAXEHHS LIS BCEX CAy4YaeB ME MOXeM HCHONbL30BaTh Hame
pas3/iokeHHe Ha Ipynnbl Wi HeGoARMHUX 3HAYeHUA t U NPUHATH TeopHio AU Pyaun JlaHKeBeHa Ans
6onbmuUX 3HaUeHuH t.

YucnoBhie noACYeTH TOTOBATCH.

LA FUNCI(;N DE AUTOCORRELACION DE LOS GASES REALES, En la teorfa formalista de la dispersién
ineldstica de neutrones, la funcién de autocorrelacién se ha elaborado sobre la base de los promedios estadisticos
de las derivadas del potencial de interaccién (N cuerpos) del dispersor,

En la memoria, estos promedios se calculan para los gases reales segiin el procedimiento de un desarrollo
en racimo, que guarda relaci6n con la de Mayer-Ursell, Ello da origen a ciertos tipos no lineales de racimos,
que se estudian en lo que respecta a 1a topologfa de los gréficos, a su multiplicidad (por anflisis combinatorio)
y a su cuadratura, Como es de esperar, dado el problema de la multiplicidad de cuerpos, algunos de los raci-
mos no son separables y han de ser integrados con una calculadora elecuénica,

De esta manera se calcula la funcién de autocorrelacién Ys (7:. ) para tiempos breves, incluido el primer

“término no gaussiano, El desarrollo en racimo cesa después del primer término de interaccién, de forma que
los resultados s6lo son v4lidos para densidades bajas, Pero aun asf aparecen en cada coeficiente muchos tipos
diferentes de racimos que contienen hasta siete puntos, En cuanto al potencial, se admite la hip6tesis de un
niicleo rfgido formado por dos particulas,

Como han demostrado Singwi y sus col., el comportamiento a largo plazo de yg viene determinado por
la integral, respecto del tiempo, de la autocorrelacién de 1a velacidad.

o

J< % (0) ve(DT dt.
[

Con el fin de determinar el integrando correspondiente a cualquier tiempo, se puede recurrir al desarrollo en
racimo cuando t es pequefio, y aceptar la teorfa de la difusién de Langevin en los casos en que t es grande,
Se estdn realizando cdlculos numéricos,

1. INTRODUCTION

SCHOFIELD [1], among others, has developed the formal theory for
the inelastic scattering of neutrons in statistical media. In his work, to
which we mainly refer, the self-correlation function
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N
1 iR (O iR
vs&,t)5ﬁ<2e RO GO (1.1)
/r

is finally expressed in classical thermal averages of derivatives of the inter-
action potential V(?l, F; s e IT;]). (The scatterer is supposed to consist of
N spinless interacting atoms.) In Eq. (1.1) hk is the momentum transfer of
the neutrons to the scattering system and ¥ (t) the Heisenberg operator for
the position of the i-th atom at time t.

<A >TE trace (Ae'ﬂ/l(r)/trace e H/KT

3N 2

p
M= Z 2m+V(r1,r2,...?N),
i=1

where ¥ is the Hamiltonion operator of the scattering N-body system and
T the temperature of the scatterer.
The transition from quantum thermal averages, as defined above to

classical ones,

(A), = fde“ﬁdN?A(Bj,?j)e H“‘T/f N"d“" -HAT (1.2)

H being the classical Hamiltonian of the system, is possible by means of
an expansion-in powers of h, This was done in [1] so that only classical ther-
mal averages have to be evaluated. In [1] it is shown that for an isotropic
scattering system

In v(K,t) = k2T, +T, - ... , (1.3)
where |
T = 21—, % y? [1+( 1- 2T<x)<5§1>2 + O(y‘*)} (1.4)
and
T, s a4 E>2<E£4[(I_<%—3(Kx)2).y8+0(y1°)1- (1.5)
! m h

Here y? is a complex time variable defined by

ﬁ_ﬂ

yit) = T (1.8)

and
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__ 4 4
1- 2Ry= - 33 m(kT)2< > +O@mh)

RS- 508, = gz {5 gy (3 >> (5 Zﬂ % ey (ot >}+°“‘6’

(In Eq. (26) of Ref.[1], i.e. the last equation shown above, there is an omis-
sion of the term 1/(kT)3) By 8°V/3x? we mean (3%/8x%)V (¥}, 75, ...Ty), With
= (x5 Yo )
In this paper we calculate (82V/axZ)T, ((E)ZV/ax‘)‘)T and (8*V/9x*); for
real gases of a very general class. From this, then, we derive the self-
correlation function v, to a certain approximation,

2, . ADOPTED MODEL OF THE REAL GAS
We assume the gas to consist of N atoms (mass m), which interact
through two-body forces with potential ¢(r). For the following calculations

we need not specify the function ¢(r). It might be a Lennard-Jones or a hard-
core potential or any other short-range-type potential.

V(?l,@’,...ﬁ,F},...?N)=Z¢(l—>i-?].I). (2.1)
(We note that in dense systems three-body forces should also play a role.)

3. THERMAL AVERAGES

As the quantities A in question here happen to be P-independent, we ob-
tain from Egs. (1.2) and (2.1)

(A) = derA(?,rz,.. Ty) exp BZ¢U>/derexp Bzcm,) (3.1)
N5

Here ¢;; = ¢(ry;) = ¢(|?i - |) and B = 1/kT. Our method consists in cal-

culating
f dNTA(T) exp <—BZ¢Q>

by means of a special cluster expansion, originating from the well-known
Ursell-Mayer one [2] . The denominator in Eq. (3.1) can be taken over from
the virial theory of real gases.
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4., CALCULATION OF (62V/6x‘i)T
Here

2
AR =25 V@, ... B =V, .
0%}

11 3X2 Z‘b (ry) =3¢ zz¢(rk1) [ <8rk> id_r]

where

¢k1 = d’(rkl)

I B -
Ty1 = lrk - 1“1'
S 9r Xk- X1 -
k1 __=2k 1. =‘COS’0k

9x3 ki

8%ryy _ sinZy

ox? Ty
hence

a, . (4.1)

[~z

N
2
_ 2 sSin” 9k
= @y cos Y, + ¢l =
11 k}_2 < k1 kT T

The quantities a),, thus defined, ‘are functions of ?k ——i)'l only. With ¢(ryq)
given, ¢%, and ¢'/r,; are known functions.

k

1
[

4.2. (Vi1)r
It follows that
(Vi )y < _[ Zakl exp ( BZdJU)
i<j

where v is the volume of the gas. Following Ursell-Mayer, we introduce
the everywhere-bounded quantities

f(r)=1f; =exp(-B¢;)-1, (4.2)

so that

expl - BZ¢1]> H(1+f1,)’1+zf +Z>:u iy

i<j i<ij i<ji'<j"
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In what follows, we keep only the first two terms of this expansion. Higher
order terms of fij products give rise to very many more terms in the fol-
lowing cluster expansion, but these can be managed principally. For nu-
merical results, they mustbe taken into account partially, depending on the
density Nvg/v, v, being hard sphere volume. We then have

(Vip)p « f Nézakl <1+Zf> Efderakl zz fd’rNaklfU‘F . (4.3)

1<J k=2i<j

where d’TN = dVNF/vN, These are "cluster integrals", for only if the pomts
rk , rl s r and r are clustered together are the 1ntegrands non-zero.
4.3. Notation for cluster integrals

To treat the sums properly, we adopt the following graph notation for
the cluster integrals,

dry £y,  i——= ]

d7y ay, 11—k

1— k

dry aklfij i ———j
k

drya fi 1< i

1
dryay fi > k
1/

dragfiy 1=== k

etc,

The numerical value of each type of cluster integral is, of course, indepen-
dent of particular values of i, j and k. We see that in one graph two points
are connected by more than one line. This non-linearity complicates the
counting problem, as will be seen.

4.4. Counting of cluster integrals

For Eq. (4.3) the counting is easy
N
Zfd'rNakl = (N- 1)X[k—1]; v, =N-1 (4.4.1)
=2

(v, is the number of graphs in Za,, with i points.)
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N K 1~ 1—k
1"
ZZfder ay; £ =0y X {1—_——4 +n} X {1<J} + X L/, k} + n4><L___J.]

k=21i<j

_ . (4.4.2)
(n; is the number of graphs in £ ay fj; with i points.) '
ny
ngy = N-1 (4-4'3)
n% and nj

Wwith k,j = 2,3,...N, the question is, how many possibilities k-j are
there. Since k-j and j-k have to be counted separately, this is the number
of variations of N-1 elements in pairs of two.

(N-1)!

T IN- Dozt DN - 2) (4.4.4)
Likewise,
T 50 ) N )
ny T ImN-D) -5 oD W -2) (4.4.5)
ng

At first sight the equation for n, should be

(N-1)!

TIN-1)- 3]! (N -1) (N-2)(N-3)

(triple vs:riations k-i-j). But this would mean the occurence of both 1,k, 1, j
and 1,k,j,i. Yet in Zfij,fji does not occur at all, so
i3 '
n, = $(N-1) (N-2)(N-3). (4.4.6)

An illustration for N=4 is

zzaklfij = lag) tag tay) (g + g+ fy+fpp+ L5+ £) 7
K

i<j
There is no term fy,, f3etc. For the counting to be correct, the following
condition is necessary and this condition may serve as a check: In
N N

aklz £y

i=1
i<j

k=2

there are (N- 1) <1\2I> = N—£—1 [N(N=-1)] terms. The same number should re-
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sult by adding the above multiplicities of the graphs, namely,

ng+ny +nYy+n,= (N-1)+2(N-1) (N-2) + H{N-1) (N-2)(N-3)

—% [2+4(N-2) + (N-2) (N- 3)]

- 54 - 1))

Thus we obtain from Eqs. (4.3) and (4.4.1)-(4.4.6)

==1] .

(Vipdpe(N-1) X [k—1} + (N-1) X [k

1 k
+(N-1) (N-2)X[/\\\]+ (N-1) (N-2)X[/\\J
kK s

+H(N-1)(N-2)(N-3) x[===K+... (4.5)

5. CALCULATION OF (V3 ),
Vi = 02V /ox? |

From Eq.(4.1)

we obtain

N
(Vi) ocdeN ZaklaQ1 <1+Zfij+...> (5.1)

5.1. Investigation of Zakl a,;
: 2,k

Here two types of graph occur

and k =—=1.
k ¢

As in section 4.4. ‘we obtain

vg=(N-1) (N-2)and vy = (N-1) (5.2)

for these graphs, respectively. To check this, we observe that in

N .
2 = - 1)2
5{321(1311 there are (N-1)* terms, and v, + v, = (N .1)2 also.
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5.2. Cluster types

In Z a,;ay,f;; there are the following topological possibilities of com-
k101 *Hij

bining /\ with —=——:
- 1

(a) 5 clusters: [— ng

kj|2

!
1
. n
(b) 4 clusters: /\ /\ /\ n} n'; ni
k ? | |
! |
A \ '
(c) 3 clusters: 1,(/\« /\\ /_\ ni ny oY

Combinations of == with ———:
(d) 4 clusters: ki———j m, (5.3)
(e) 3 clusters: / /__ m'ymy
(f) 2 clusters: 1===k m,

Here we have introduced the numbers m; of graphs, belonging to ==. The

n; belong to /\ .

5.3. Counting

By the same arguments as those in section 4.4., one finds

=3 (N-4)(N-3)(N-2)(N-1)

=]
~~—
"
=]
W
1]
2
1

W= (N-1) (N-2) (N-3)

=]
=
n
=]
[)
[}
o]
=
1]

(N-1) (N-2)

(5.4)
m,= % (N-3) (N-2) (N-1)
mh= m (N- 1) (N-2)

m, = (N-1).
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From Egs. (5.1)- (5.4) (Vf; ), can be found

1 .
(Vi)p = (N-1) (N-2) X |:/\j’+ (N-1)><[1 =k:|
1

k 4

+4(N-4) (N-3) (N-2) (N- 1>>< [/\ i———j}

k 4

+(N-1) (N-2) (N- 3)>< /\ /\ /\]
+(N-1) (N- Z)X[/\ /A A} |

+ H(N-3) (N-2) (N- 1)x[ ___}

PN-1) (N—2)X[/\\ +Z__}+ (N—l)x[:—:—:].

N
As a check, i Z .18y z fi;, there are

2, k=2 i=1,i<j

(N-1)2 <12\]> = Ezll [N(N- 1)2] =y—;i[N3 - 2N? +N]

terms. Likewise

6. CALCULATION OF < >

6.1. (Vf)T

One could of course differentiate V(?l. z ¢ (r”) four times. But
i<j

(04 V/3x})r ¥ (Vi11)r is by definition an integral over (d¥1). So we pre-
fer to perform a partial integration first. Generally,

<3x1 A> = kT <6x1 > (6.1)
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Proof:

(A)g «de? ARy .. Fy) exp[-BV(F. .. )]

< A> deF—al A eBV
90X,

.8 -8vy 4 98 _(iy_ -Bv
gaT AeB) ot B = A

-de?éi—(AeBVH —> -B< 8x1> .

The first integral vanishes (surface term). Let A = (9V/0x)% in Eq. (6.1).
9V /ox; =V;. Then

. 3y - — 3 = 2
(Vy Vi) = kT 8x1 M >r IR
B 0 - 2 2
= 3 kT kT <———8X1 v, Vn]>T = 3T (V2 +V, Vi),
=3 (kT)2 (VE )p + 3 (kT)S (Vyqqq ).
Hence

3 (kT)® (Vi ) = (v4) -3 (kTR (V) . (6.2)

Since we already know (V121 , only the calculation of (V‘1} P remains.

)y

. N
Vit e ) $(0) =) $a) (-cos 9y)
i<k =2

where cos ¥ = (x| - x;)/r; (see section 4.1.). If

-9 ' (ryy) cos Iy = byy; byp = by (B - Fp) (6.3)
then
: Z DDy Py Py
k. £, m,n=2
and

(Vi})T OCfd’TN Zbklbﬂlbmlbnl <1+Zf -+, > (6.4)

k,2,m, n i<j
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6.2, /dm by1by by by

6.2.1. Cluster types

In this sum, there are the following cluster types. (Now 1-——k stands
for [dryby;!)

(a) 5 clusters A Vg
k n

0 m
1
(b) 4 clusters Wn v,
k m
1 1
(c) 3 clusters //\ vl /\ 1/'3
k n [} m
(d) 2 clusters 1=k Vs,

6.2.2. The counting of non-linear graphs

We demonstrate what we mean on this graph: A It consists of i=3

k m
points (the fourth labelled with 1 is alwayé the same) and R = 4 lines. The

lines occur in groups, namely one group (n; = 1) with r; = 2 lines and two

groups (n, =2) with ry =1 line. (Of course, anrj = R.) Let v be the num-
i
ber of possible graphs, characterized by (i, R, nj, r;).

(a) If it were a linear graph (only single lines),

v=mn=(N-1) (N-2)....(N-1i) (6.5)
(k, m, n=2,3,...N; variations in groups .of i.)
(b) Because there are double lines in A, v is larger than . Remember,

1
mmeans /by bgi by bgy d7n. Now this product also originates from by, by

k m
bnl by, etc. So we get

v=1nai (6.6)
with

R!

(6.7)

=]
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(i) There are R! possible arrays of k,¢, m,n...,
(ii) But permutations of the r; lines within a group do not count and there
are n; such groups to which this applies.

(iii) Permutations of whole groups with equal number of lines do not count;

1/n;!
; In this formula v = fi n, all clusters of equal (i, R, nj, rj) are contained,
o VANTIAN

1
For A , this yields

m
k¢
- [}
v=hn=(N=-1) (N-2)(N-3)2.14.ﬁ= 6 (N-1)(N-2)N-3).

This result, we could have obtained in a more direct way, too:

(i) Withk = £, you get (N- 1) (N-2) (N-3) = & different A
n

k,¢ m
(ii) also n such clusters m

k ¢, m
(iii) and n such clusters /R .
K oo ™0

(iv) Each of them also occurs with k,£ or £, m or m,n having changed places:
£,k; m, 4 n,m. This means a factor 2 and from (i), (ii) and (iii) a total

V=61-1=6(N71)(N-2) (N-3).

We now apply Eqs. (6.5), (6‘.6) and (6.7) to the clusters 'in section 6.2.1,
and obtain

vg= (N-1) (N-2) (N-3) (N-4) A

vy =6 (N-1) (N-2) (N-3)
Vé: i =2,R=4,n1=1,r1=3,n2=1, r, =1

4! g
V:'i=§!—1'—1.—l(N-l)(N-2)=4(N-1)(N-2)
(6.8)

ygz i =2, R=4, n,=2, 1;,=2, n,=0

ne Al (N-1) (N-2)= 3(N-1) (N-2

]/3-22.2!(-)(-)_(_)(-)

Vo= N -1,

2
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Combining the Eqgs. (6.8) and section 6.2.1., we obtain

deNZ biyby by by

k,f,m,n
1
= (N-1) (N-2)(N-3)(N-4)><L4\mn}+ 6(N - 1)(N-2)(N-3)x[l/mvn}
1 ) 1
+4(N-1)(N-2)X [k/\}ﬁﬂN- IMN - 2) X [ /\\J+ (N - 1)x[1 = k],
n 4 m
(6.9)

To check this, we find that inz by by by by , there are (N-1)4 = (N- 1)
[N3-3N2 + 3N - 1] terms. In Eq.(6.9), there are

(N-1)[(N-2) (N-3) (N-4)+6(N-2) (N-3)+ 7(N-2)+ 1]

= (N-1) [N3- 3N2+ 3N- 1],

6.3. ferbkl b, qu._

6.3.1. Cluster types

(The numbers 1), 2) ... below the clusters refer to the multiplicities
to be found below.)

1

(a) 4 clusters 1==k i——-j 3 clusters //\\ /
Tk k

’

1) 2) 3)

/ 2 clusters 1 &=

1 1
(b;) 5 clusters /\ i——ej 4 clusters /\ /\ /\

5) l 6) 7) l, 8)

\
3 clusters /\ /\\
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. 1 1 1 I
(by) 5 clusters /\ i--=1 4 clusters /\ //\\ /\
¢ m

212;n 13) j; i:{214')n “15)
16) 17) 18)

0 sousers AN s st A\A\A\/v
19) l20) 21)l 22

4 clusters W /\\ A

26)
29)
(d) 7 clusters % _——
30)
|
6 clusters /\ A A m A
] 1
! 31) 32) ! ll33) 34) ! 35)
5 clusters /4/\ % % 4\
36) 37)
ANNRZANIZAN A 4\ AN
40) 41) 42) 43) 44) 45)

6.3.2. Counting

Using the experience of the foregoing chapters, we find the multiplicity
of cluster numbers 1), 2) ... 45) as follows,
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1); With k fixed, there are #{N-2) (N - 3) different i -—=1]. There are N-1
values of k.
Result: 3(N-1)(N-2) (N-3)

2): (N-1)(N-2)
3): (N-1) (N-2)
4): (N-1)

5); For each‘/\, there are (N - 3) (N - 4) different i ~——j. There are

4 (N-1)(N-2) different /\
Result: 2(N-1) (N-2) (N-3) (N-4)

6),7),8): For each /\ , there are N -3 possible attached n ---j;

4(N-1)(N-2) different /\ .
Result: 4(N-1) (N-2) (N-3)
9),10),11): 4(N-1) (N-2)

12): //\\ fixed, $(N-3) (N-4) possible i-——j; 3(N-1) (N-2) //\

Result; § (N-1) (N-2) (N-3) (N-4)
13), 14),15): 3(N-1) (N-2) (N- 3)
16),17),18): 3 (N-1) (N-2)
19); For each%, there are 4 (N-4) (N-5) i-—-j; 6(N-1) (N-2){N-3)

different A

Result: 3(N-1) (N-2) (N-3) (N-4) (N-5)

20), 21),22),23): 6(N-1) (N-2) (N-3) (N-4)
24), 25), 26),27),28),29): 6(N-1) (N-2) (N-3)
30): $(N-5) (N-6)[(N-1)....(N-4)

Result: #(N-1) (N-2)...... (N-8),
31),32),33),34),35): [(N-1)(N-2).,. (N-4)] (N-5)
36),317),...45): (10 graphs); (N-1) (N-2)(N-3)(N-4)

6.3.3. Summary

deNEE by by Pmybm £y
1

SAN-1) (N-2) (N-3)X[1 ==k i -—— j]+(N- 1)(N-2)><[//\
k

b

I i

-
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+ (N-1)X l:l = k] + 2(N-1)(N-2)(N-3)(N-4)X [/\ ——*]

i
+4(N-1) (N-2)(N-3)><[/\ + /\ + /\ }+ 4(N- 1)(N- 2
l :
N
x[,/\ + /\+ [\ i\+ %(N-l)(N-Z)(N-S)(N~4)X{/\\ ———}

+3(N-1)(N-2)(N-3)X[/\\ +/\\ + /\\ } 3(N-1)(N- 2)
|
I

LA AN s nmean e sax[ AN -]
+6(N-1>....<N-4>x[%+A+A+A]
+6(N-1>(N-z>(N-3)x[/\\l+m+A |
B R LAY
.+(N-1)....(N-5)><[ %+A+A+A+ AN ]
cov-nw-ax N AN AN AN
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+(N-1>...(N-4)><[%+@+%+@+A+&J

(6.10)

This expression we call Eq. (6.10). Checking the number of terms we find
that in

N N
2 bklblllbmlbnl Z fij
k2, m,n=2 i<j,i=1
there are
(N-1)* @) =N—2'~1[N5 - 4N*+ 6 N3 - 4NZ + N]
terms. Adding up the number of graphs in (6.10) yields the same. - From

Eqgs. (6.9) and (6.10) we obtain (Vi )1 (see Eq. (6.4)) and by means of Eq.(6.2)
finally (Vi;1; ).

7. QUADRATURE OF THE GRAPHS
7.1. 1 ==k

In section 4.4. we had

B N dN? o o
l==—= k= /dny apfy = e a(r, - ;) f(ry) (7.1)

a,, was defined in Eq.(4.1) as

k1
1y

ay = 9" (1) cos?d, 421 Ea) lfl 1) sin®, (7.2)
k1

with cos ¥y = (xk‘~ %x7)/ ¥y and f(r) = e oM 1. Considering f, ¢,¢', ¢'/r
and ¢'' as integrable functions, we obtain from Eq.(7.1)

d?l d?k —3 —_
1l === = —Vz a(rfy - ) i(ryy)

Substituting 'f‘)k - ?1 =Pandr, =r,
— —> -
1 =—= k:fd—m—fgf—f(r) a(?}tfgf(r) a(@)
v v ' v

With a(?) from Eq. (7.2), one can introduce polar co-ordinates. Depending
on ¢, the radial part is elementary or not. In the latter case, numerical
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computation is necessary. As previously mentioned, the values of the graphs
apparently are independént of the naming of the subscripts.

1 .

\
7.2, /\
k J
1 - = >
N dr; dry drj ¢
\ V3 Al
k j

- - e — - - -
We set rj - r; = r and performfdrj, then we set ry - r; = r' and perform

fd?k . The last integrationf dx_'; simply yields v. In this way, we get

- 2
A\ E 0 [
k j
1

s/

k j
This cluster can be treated similarly. (Start withj da ) 1 —k
i ——— j falls into two parts from the beginning.
1j
t
1
e A
KoL

This type splits into products of three single integrals, to be treated
by three successive substitutions ?1( -7, = T ete.,

o A
k ¢

These can also be separated or ''reduced" to clusters of lower orders,
(Start with f dr,, then f dry.)

7.6. Closed triangles

1 )
dry dry dry
/- \ :deN 21201 i =fff v % ag i
k [ )

This is the first irreducible cluster. Substitutions ?k - ?1 =7, ?g - ?1 =7
do not work because of f(ry,). Therefore, machine integration must be used.
While, for a specific gas, the parameters of the potential ¢ can be inserted



78 D.]J. SIGMAR

numerically, in f(r) the temperature T is contained. So, the computation
must be repeated for every value of T.

Fortunately, the number of closed triangle-graphs is small in our ap-
proximation. Summing up sections 4,5 and 6, one finds only four such clusters
which do not vanish.

8. REMARKS ON THE CONVERGENCE OF THE CLUSTER EXPANSION

We had

I I T
(A)r =ijeBV/fWeBV (8.1)l

(vN we have added for convenience.)

(We note, that the classical Maxwell-Boltzmann statistics have been used,
indistinguishability not being taken into account. But the latter brings only
a factor 1/‘N!, which is cancelled in Eq. (8.1). Maxwell-Boltzmann statistics
apply to the usual temperatures, as long as the thermal wavelength
A « 3/v/N), The denominator

dN? -BV = aNa
Tne Ee (N— o0} (8.2)

has been treated extensively in virial theory, which yields

e i (%) Bu(T),
v=1

By beingvirial coefficients. The order of magnitude of B, is vg (v, being the

hard=core volume), so
<_1§I_ Y B, =~ <_._9.NV \ :
v v v

remains finite, when N -, v = o0; N/v = constant; and a exists as long
as Nvy<v. (This is true for non-condensed gases.) For the problem of
convergence of virial expansions, see [3].

With « finite,

N—)
e““:fﬂ Y
v

diverges for ¢ > 0, N— oo,
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8.1, Behaviour of the numerator of Eq. (8.1)

For example, let A(Y')1 eee Y‘)N) =V, (?1 .. .?N ). We found

aNy -8V
f N Vi1 e
1

.-
= (N-1) X [k_~1+k—_f_1} + (N-1) (N-2)x[/\\\+ k[__l
. ] ]

k

+ %(N—l)(N-2)(N-3)XB:f{]‘h-- ' (8.3)

For N-» w, N-i =N, i=1,2...

_,
k—1 =f£ a(?) ~ 0 , since a(?) vanishes for |?| » Iy; rg... hard core
M v radius
dr 0
k === 1= | — a(r) f(r) ~— for the same reason
1 N .
d?‘ —, dr Vo Vo
\ = —_— — y —
k/\ \ 'f a(r) v f(r) =,2? . = V2
i

j;f{fd f()f—a(r)

Consequently, the last term in Eq. (8.3) diverges as

2
lim N° 1@ = lim N&%O-
N,v-w v v

in spite of our assumption (Nv, /v)2 « 1, So the numerator diverges, too.
But from physical reasons, we know that the entire fraction (Eq. (8.1)) will
exist or be proportional to N, if A is an extensive quantity.

Similar arguments apply to (Vi3 )r, (Vij11)1-

9. THE SELF-CORRELATION FUNCTION FOR LARGE TIMES

Until now, the underlying theory of Schofield, which made use of a’
Taylor series in t, limited the resulis to small times. For large times,
we make use of a theory by RAHMAN et al. [4] and SINGWI et al. [5]. They
have worked out the correlation function

lNQexp [-ik - B(0)] exp[iKk - ?(t)>
i T

which they call F; (Schofield's v;) in terms of velocity-correlation functions,
valid for all values of t and get
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In F, (E),t) = -K2<-% +y (t)> + K%y, (t) + O(kE) (9.1)

where ’

T

t
v, () =.f(t-t1)<vx(0)vx (t1)>rdt1=%f(t—tlxvm)?(tl»dtl (9.2)
0 0 '

For our target being isotropic in space,

e 0V, (0 = 5 FOTW) o

T
1
¥y (t) =fdt1fdt2. . .‘/nd’c4<vK (t)v, (ta) v, (tZ)VK(t1)>r-§'y%(t) (9.3)
6 0 0
Here v, (t) is a Heisenberg operator, v, belng defined by K-V=k- VK,V B/m,
B be1ng the momentum operator,
9.1. Schofield's expression

If we recall Schofield's expression (see Egs. (1.3)-(1.6)), comparison
yields

B =Ty ) + g (0.4)
t small

¥, ()= T, (%) | (9.5)

Thus, we know v, (t) and v,(t} from our cluster expansion. By differentiating
Eq. (9.2) twice, we also know

iht

om (9.6)

L @orRmy, - Srvm- a‘zz“ T+ o
for 0 £ t < ty, to being the upper limit for I, I, to converge reasonably.
9.2. Rahman et al.

Now Rahman et al. show that for t -«
Yoty =D, - t-C,
with

=%f<?1’(0)7(t1)>T dt, 9.7)
0
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C,=3 ftl - HOIV() Dy dt, (9.8)

0

Besides, they indicate that for large t and not too large k2 (k2D;T « 1, T be-
ing the correlation time), v; gives the dominant contribution to Eq. (9.1). The
higher v, may be neglected in this case.

All one has to know is <{¥(0) \"/)(t) op for all times in order to find F, (k,t)
for large t.

From Eq. (9.6), we know the velocity auto-correlation for small t. For
large t, however, it is known that quantum effects are n_gt important any
more [6]. Therefore, the classical calculation of (v(O)v(t))T for large t.
suffices, which can be done by means of Langevin's stochastic diffusion
theory [6,7,8]. This leads to

T ROFO), =S e t<t<w, ©(9.9)

where 7n is thé viscosity and tx.  the lower limit for the classical approxima-
tion to be valid (Condition: t4» h/kT).

9.>3. Calculation of D;

We split up the integral in Eq. (9.7) according to

"0 o
D, =fdt1(Eq. (9.6)) +fdt1(Eq. (9.9)); (9.10) .

0 T

that means we use Eq. (9.6) as integrand in the first integral and Eq. (9.9)
in the second. Of course, t; ~ ty is desirable. This depends on how many
clusters one calculates, From Eq. (9.8) it follows that

4
1 — 2 ih ih
§ fdtl G(O)v(tl))r = I1'1 (yo) 2 tO -I{—'f> + 2_I-n—

0

where Yo =y {t= 1) = to - (ihto/kT) and I'} = {d/dy?)T}. Here, we have used
v1(0) = 0, which comes from Eq. (9.2). If to= ty,yg~t? and

t >>l or tokT
07 kT T

» 1 (9.11)
Fronﬁ Eq. (9.9) one finds

- kT . Ty
3fdt (v(O)V(t)) = ne”

Hence, Eq.(9.10) becomes
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ih kT e

1= (t)2t +2 +—n§—7—e (9.12)
Ty in Schofield's theory was given by
L% —lﬂyz [1 T m(kT)Q(Vu )r <kT > } (9.13)
Hence,
S s U, YR 2y e
(9.14)

kT ne <t kT\?2
pog42y o2 A -0
I () 2m 12m?2kT Vi) h >

and fromi Eq. (9.12)

) KT e tok T KT . pew, . B
D, = 2t0[2m - TomTier Vi1 )T< > } mpe Mrigs (9.15)

The imaginary part f/2m could be neglected because of Eq. (9.11), but for

Iny; (see Eq.(9.1)), we just need D, - (ih/2m') which from Eq. (9.15) appears
to be real.

9.4, '‘Calculation of C;

Similarly to Eq,. (9.10), we write

L oo
C, =ft1(Eq. (9.6)) dt; +ft1(Eq. (9.9)) dt, (9.16)
0 [
%
ﬁl (Eq. (9.6)) dt; =\/‘t1'Y']: (t ) dty = tovi(ty) = vy (ty)
0 0

and with Eq. (9.4), one arrives at

. ih hito 2 _ihto
ftl(Eq. (9.6))dt, = toTY (yo) (21, kT>+ s - L) -5
0

Here, we can insert Eq. (9.11), i.e. y=t}, 2ty - ih/kT = 2 t,, Eq.(9.14)
for T} (y% = t2), and Eq. (9.13) for ITl(yg = t%). Doing this, one gets
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0
ftl(Eq. (9.6))dt,

0

kT h? KT t5\?
= 2020
t [2m T2m?kT (V1) \"q > 2t

2 2 2
k
(KTt Ty By <th9
2m 12 m(kT) ™\ &

kT [ 3w o (tho ’ 917
2m TemEn)? Vult (73 (9.17)
T kT [ KT .. 1
[0 000 at, = KT toftl et - KL emia (i, 4+ 1) (9.18)
t*

Inserting Egs. (9.17) and (9.18) in Eq. (9.16) yields
t3kT 312 kTt\2] | kT ( N . '
= - —_— —_— _— Tt
C, o [1 12 m (KT (Vll)T< B > + o t*+n € (9.19)

So we have found D; and C; iny; (t) =t D; - Cifor t>w. And Eq. (9.1)
finally becomes

ln‘yS (E),t)= -k2 <-%?mi+t D, - Cl>; t—2o,

10. CONCLUSIONS

For small times, the self-correlation function and also the velocity
auto-correlation function of real gases can be calculated by means of cluster
expansions of the thermal averages occurring in Schofield's theory. From
this and with the help of Langevin's diffusion theory, used only in the long
time range where it is valid, it is possible to find the diffusion constants
D, and C; as defined in [4, 5], whence the self-correlation function for large

times is also known,
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DISCUSSION

K.S. SINGWI: You might be interested to know that Professor Nijboer
at the Argonne National Laboratory recently performed the small-time ex-
pansion of the velocity autocorrelation function (expansion carried up to t8),
and the coefficients of expansion are to be calculated numerically for the case
of liquid argon. As yet, no results are available.

D.J. SIGMAR: What potential was used?

K.S. SINGWI: It was a Lennard-Jones 6-12 potential.

S. YIP: As you know, the kinetic approach also gives a non-Gaussian
result, It would be interesting to compare your numerical results with those
obtained by solving the kinetic equation describing Gg (r,t). The latter are
being investigated by Desai at Cornell. In addition, Nussal at Michigan has
investigated the quantum correction and the effect of a potential, so it would
be interesting to compare your results with his.
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Abstract — Résumé — Apnoranus — Resumen

COHERENT SCATTERING OF SLOW NEUTRONS BY LIQUID SODIUM. This paper presents a calculation
of the scattering law $(,8) for liquid sodium at two different temperatures, based on a phenomenological theory
of coherent scattering of slow neutrons by liquids developed earlier by one of us (K. 5. S.). The main result of
this paper is that for small values of B the peaks of S@,B), which are characteristic of 1 + I'() curve, tend to
disappear for large values of B, a result in agreement with Randolph's observations and which cannot be ex-
plained by the convolution approximation of Vineyard, Further, the calculated curves for §@,8) suggest that
precision experiments would be needed to determine the dispersion relation for "phonons" and the range of
coherence R in a classical liquid,

DIFFUSION COHERENTE DES NEUTRONS LENTS PAR LE SODIUM LIQUIDE, Les auteurs présentent un
mode de calcul de la loi de diffusion S(,8) pour le sodium liquide 3 deux températures différentes; le calcul
se fonde sur la théorie phénoménologique de la diffusion cohérente des neutrons lents par les liquides, proposée
antérieurement par 1'un des auteurs (K, S, S.). La conclusion essentielle du mémoire est que les pics de S, 8),
caractéristiques de l1a courbe 1 + I'(¥), que I'on constate pour les petites valeurs de B, tendent 2 disparaftre pour
les grandes valeurs de 8. Ce résultat, qui concorde avec les observations de Randolph, ne saurait &tre expli-
qué par 1'approximation de convolution de Vineyard. En outre, il semble ressortir du calcul des courbes de
S(.,B) que des expériences de précision seraient nécessaires pour déterminer le rapport de diffusion pour les
<« phonons> et la gamme de cobérence R dans un liquide classique,

KOTEPEHTHOE PACCESHUE MEJJIEHHB X HEATPOHOB HA XHIKOM HATPHU. Haer-
CA pacueT 3aKoHa paccesHus S (a, ) Ans XUAKOTO HAaTPisl NpH ABYX pa3jIMMHEIX TeMmneparypax,
OCHOBaHHbIH Ha PEHOMEHONOTrNYEeCKOH TeOPHH KOTePEHTHOrO paCCefiHuA MeAJeHHBIX HEATPOHOB Ha
KUAKOCTAX, pa3spaboTaHHON paHee oAuuM U3 aBropoB (K.C.C.). OcHOBHHM pe3yarTaTOM HacTos~
.meli paboOTH ABAKETCA TO, HTO ANA HebONBWMMX 3HAUEHHA [ nUKH S (o, ), XapakTepualymw e Kpu-
Byio 1+ (R), criaxuBanTca npy Goabmux sHavyeHusnx . DTOT pe3yabTar cornacyercs ¢ Habnio-
neHusMy PaHnonbda u He MoxeT GHITH O6BsICHEH nNpubAUKeHHeM CBepTKH JYHKUMH, npeAnOXKEeHHHM
BaitnspaoM. KpoMe Toro, paccunTaHHble KpuBhe ANS S(a,3) NOKa3HBAaWT, YTO AXA OnpelesleHus
RHCTIEPCHOHHOTO COOTHOMEHHs Ans "GoHOoHOB'" M 061aCTH KOTepeHTHOCTH R B Kiaaccuveckoi xuna-
KOCTH HEOGXOAUMDBI TOYHEIE SKCMEPHMEHTH .

DISPERSION COHERENTE DE NEUTRONES LENTOS EN EL SODIO LIéUDO. En la memoria se calcula
la ley de dispersién (8 ) para el sodio liquido a dos temperaturas diferentes, basindose en la teorfa fenome-
nol6gica de la dispersién coherente de neutrones lentos en lfquidos, formulada anteriormente por unc de los au-
tores (K, S. S,). El resultado m4s importante de este trabajo es que los picos caracterfsticos de S(t!{B), que se
observan para valores reducidos de B y que constituyen un reflejo de los picos de la funcién 1 +T (75. tienden a
desaparecer para valores elevados de 8, resultado que concuerda con las observaciones de Randolph y que no
puede explicar la aproximacién basada en la integral de convolucién de Vineyard, Asimismo, las curvas
caleuladas para S, 8) sugieren que serfan necesarios experimentos de gran precisién para determinar la rela-
cién de dispersion de los <« fonones> y el alcance de la coherencia R en un liquido clsico,

* Based on work performed under the auspices of the United States Atomic Energy Commission,
*% Present addresss Department of Physics, Harvard University, Cambridge, Mass.,United States
of America,
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"1. INTRODUCTION

In a paper [1], one of us (K. S. S.) proposed an extension of the convolu-
tion approximation of VINEYARD (2] to treat the coherent scattering of slow
neutrons by a monatomic liquid. The intermediate scattering function F(k,t)
can be written as )

F(K,t) = (1+ T(K)F, (%, t) + H(K, t), (1)
where
<R '
H(Z,8) =5 ) < exp(ii Ro(0)) exp(-1k Byft) >y
a#B
<R
- ) <expliR: B(0)) exp(-i%: By(0) > <exp (iR Ry(0)
af B
exp(-i% - Ry(1)) Dy | . (2a)

where R)OXO) is the position vector of atom « at time 0 and ﬁﬂ(t)_ is the position
vector of atom f§ at time t and both are the usual Heisenberg operators. The
sum in Eq. (2a) extends over all atoms 8 which lie within a sphere of radius R
with atom « as the centre, and is to be understood in the following sense

<R .
ﬁlz exp(ik: H,(0)) exp(-ik- By(0)) Dy = f ei'K’?g(;«’) exp(-| ¥|?/RHdF, (2b)
atB '

g(?) being the static pair correlation function. ¥ is the momentum transfer.
In writing F(k, t) in the form given by Eq. (1), it has been assumed that the
convolution approximation is good for all atoms whose distance of separation
is greater.than a certain distance R, which is a parameter of the model.
The correction term H(X,t), which is supposed to take care of correlated
motions of neighbouring atoms for short times, times of the order of 10-12s
or less, was evaluated as if the liquid behaved like a ''quasi-harmonic' solid.
To test how good or bad this model was, an explicit numerical calculation
of the width of the "quasi-elastic' scattering as a function of momentum
transfer ¥ was made for liquid argon near the triple point. The calculated
width exhibited an oscillatory behaviour which for certain values of the pa-
rameters agreed reasonably well with the observationsof BROCKHOUSE et al.
[3] and those of LARSSON and co-workers [4]. This agreement gave us some
confidence in our model. o

In a second paper [5],the calculations of Ref.[1] were improved in se-
veral respects; in particular it was shown what role the coherence para-
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meter R played in determining the width of the ''quasi-elastic' scattering
(whereas in [1] the case R -» was considered). Besides, a formula for the
inelastic differential scattering cross-section in '"ene-phonon' approximation
was derived without making any assumption regarding the existence of a
reciprocal lattice vector in a liquid. The harmonic approximation was, how-
ever, used. This formula was used to calculate the scattering law S(«, B)
for liquid argon near the triple point. It was also shown in Ref, [5] that in
the limit R- and q<<¥, q being the wave number of the "phonon'', our
formula for coherent inelastic scattering reduced to that valid for a poly-
crystalline solid after appropriate modifications as introduced by EGELSTAFF
[6] for the case of a liquid, The latter formula was used by KROO et al. [7]
to analyse their scattering data, and which analysis led these authors to
arrive at a dispersion relation for ''phonons'' in liquid argon.

A result of some significance which we arrived at in Ref. [5] for liquid
argon is the following: the characteristic peaks of S(«, 8) which occur for
small values of B8, and which are a reflection of the peaks of 1 +T'(x), tend
to disappear for large values of 8, a result which cannot be accounted for
by the convolution approximation. Such a behaviour of S{a, B) has been ob-
served by RANDOLPH [8] in his studies with liquid sodium. This led us
to apply our model to liquid metals, and in this paper we present detailed
numerical calculations of S{«, 8) for liquid sodium as a function of e for
various values of B. These curves for S(e, ) suggest the direction in which
future experiments ought to be done and the accuracy needed if we were to
determine a dispersion relation for '"phonons' in a liquid and the range of
coherence R.

It is worth mentioning here that the considerations of our model are
more valid the closer the behaviour of a liquid is to that of a solid. And
since in liquid metals experimental indications [8-11] are that, at least for
times of interest in slow neutron scattering, the behaviour of the mean
square displacement p (t) of an atom resembles more that of a solid, these
liquids offer a best testing ground for our model. Studies with liquid metals
might, therefore, help in elucidating the nature of coherent scattering. And
this has been the main motivation for this paper.

2. MATHEMATICAL FORMULAE

The mathematical framework was developed in Refs.[1] and [5] to which
the reader is referred. We give below the relevant formulae needed for
present calculations. The inelastic differential scattering cross- sect1on

in ""one-phonon' approximation (for energy gam) is given by

%o k2hw 1
dode 411' ko Geoh exP( 2k T> exp(-k’) °°th(2 > M w2 L)

[—m +14T(K) + sech( > 6oz LR &, q)} ' | | ‘(5)

Ocoh

where the function L(R, &, q) is defined by
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0 +q
__3R 1 7 ,
L(R,K,q)—Ezm’-”-‘/‘kl'(k)dkzq\f{[exp(—4 (k- k+ x) >
0 -q i

(et )] o (o)
- exp <-£Z3 (k + k)2>}} dx, @)

see Eqgs. (45) and (46) of [5]. In the above equations the coherernce para-
meter R has the same meaning as in Eq. (2) and q is the magnitude of the
wave number of the ''phonon" whose mean velocity is defined by c. The other
symbols have their usual meaning. f(w) is the generalized frequency dis-
tribution function given by the Fourier transform of the velocity auto-
correlation function. 1"(_’) is the Fourier transform of the static pair cor-
relation function g(”) of the liquid; exp(- K2a) is the usual Debye Waller
factor.

f(w) can be assumed to consist of a sum of two functions f;(w) and fy(w),
the former corresponding to the diffusive type of modes and the latter to
the damped vibratory type of modes. For our purpose we can neglect fj (w)
for two reasons: (a) Since the mean square displacement of a sodium atom
is very much like that of a solid [8] for times ~2X10-12s, one would expect

" [12] to get an f(w) such that the area under fj(w) is very small compared to
the area under f2(w); and (b) Since we are interested herein values of energy
transfers hw which are large compared to the width of f;(w), we can forget
about the latter. For f(w) we therefore assume the following simple form:

f(w) = —a- ¢ /¥ (5)

which is so chosen that it is normalized to unity and has a maximum for

W=Wy; Wpis a parameter which is adjusted to fit the experimental data.
Introducing the dimensionless variables

@ =K?h2 [ 2Mk,T (6)
and

B = hw/kgT, (7)

and using Eq. (5) and assuming hw<2k,T, we can write Eq. (3) in the following
form:

1

N der “> exp(- hw/ 2k T)Sg(K, hw), (8)
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where

S, Fw) =;L—j’-r-‘;{—‘;“58(a, B). (9)

The scattering law S(e, B) is given by

Star B) = - exp(-28 [Brexp(-%a) | 25541406 + £ 5°(S20 f Lim, @]
(10

In the above equations Ej and E denote the initial and final neutron energies,
respectively. Equation (8) is in the form used by RANDOLPH [8]. Follow-
ing Egelstaff, S(e, B) is usually referred to as the scattering law. Itis a
dimensionless quantity depending on energy and momentum transfers and
is characteristic of the scattering medium. The most important term in
Eq. (10) is the one which contains L(R, k, q) and represents our correction
to the convolution approximation. S(e, ) in the convolution approximation
is given by Eq. (10) with L(R, «, q) = 0.

3. RESULTS AND DISCUSSION OF S(a, B)

The first thing we notice in Eq. (10) is that the correction to the con-
volution approximation depends on 3, the mean velocity ¢ of the ''phonon"
and the function L(R, k, q). The correction term has both the static and the
dynamic character. L(R, k,q) as a function of « for various values of R
and q has an interesting behaviour.

In Fig. 1{(a), the experimental values [13] of 1+ I'(X) for liquid sodium
at T =100°C are plotted, and in Fig. 1(b) the same for T =325°C are plotted.
Using these values the integrals in Eq. (4) have been evaluated numerically
(using CDC 3600) for different values of the parameters R and q. For the
sake of illustration, we have plotted in Fig. 2(a) the function L(R, «, q) for
R=12 & for three different values of q for T =100°C. Notice that as q be-
comes large, the function becomes comparatively much flatter from its be-
haviour for small q's. In Fig. 2(b) we have plotted L(R, «, q) for a given
q=0.5 A1 for three different values of R. Notice that L(R, k, q) is much
less sensitive to the change in the values of R. All these characteristics
of L(R, k,q) are, as we shall see, reflected in Sf, 3).

To calculate S(a, ) we need to know the values. of B, and a. In the re-
gion of small ¥- and 8-values where the correction term is negligible and
where the Debye-Waller factor is approximately unity, B, can be obtained
by comparing the calculated S{e, 8) with the observed one. In this way we
arrived at a value of 8,,~ 0.28 for T =100°C. For a we have taken a value
of 0.125 A2, which gives a reasonable overall fit with experimental S(a, 8).
Oinc/Ocon=1.85/1.55 (see [8]). For a given B and q, the mean velocity of
sound ¢ =BkgT /kq is fixed. In Figs.3-6 we have plotted S(a, 8) as a function
of @ for four different values of B for the values of the parameters shown.
S(a, B) as calculated from the convolution approximation is also plotted. For
two values of 8, 0.08 and 0.2, S(a,B) was also calculated for a higher tem-
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Function L(R, k, q) in A*2 versus k(4-1) for liquid sodium at T =100°C
for R=12 A for three different values of q as shown ’
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Function I(R, k, @) in A*2 versus k(&1 for liquid sodium at T=100°C
for q=0.5 & for three different values of R as shown

_ perature T = 325°C, and the results are shown in Figs. 3(a), 3(b), 3(c), 5(a),
and 5(c). For T =325°C we arbitrarily took a slightly higher value for
2=0,15 & and for Bm=0.3.  The curves denoted by ojnc =0, correspond to
the hypothetical case of sodium being a completely coherent scatterer; and
have been drawn to illustrate what one should expect for the general shape
of S(a, B) in the case of completely coherent liquid metals.

From an inspection of the curves in Figs. 3-6, the following general
conclusions can be drawn:
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Fig. 3(a)

Scattering law S(ct, B) as a function of o for 8=0, 08 for the values of the parameters shown,
The curve marked convolution is as calculated using the convolution approximation of Vineyard,
The squares indicate the experimental points of RANDOLPH [8] for an energy gain experiment,
The horizontal bar shows the magnitude of the experimental error involved.

S(ct, 8) curve for T=325°C for the values of the parameters shown is also plotted,
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Scattering law S(a, B) as a function of o for 8=0, 08 for the values of the parameters shown
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Scattering law S(ct, B) as a function of o for 8=0. 08 for the values of the parameter shown

36—

3.2 . B =0l -

L T+ 100°G :
28 . q:035 &Y c=13.96 x 10% cm/ss |
L a B < 0.28 |

XA

I | | | 1
0.28 0.55 0.92 1.37 1.91 2.64 326 4.08
a(1072)

Fig. 4(a)

Scattering law S(a, B) as a function of acfor 8=0, 1 for the values of the parameters shown.
The curve marked convolution is as calculated using the convolution approximation of Vineyard,
The squares indicate the experimental points of RANDOLPH [8] for an energy gain experiment.
The horizontal bar shows the magnitude of the experimental error involved.

The curve for R=16 & approaches Randolph's smooth experimental curve of his Fig. 8 fairly closely.

The curve marked oy, = 0 corresponds to the hypothetical case of sodium
) being a completely coherent scatterer,
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Scattering law S(ct, B) as a function of o for 8=0.1 for the values of the parameters shown
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Scattering law S(a, 8) as a function of acfor 8=0. 1 for the values of the parameters shown

(a) For small values of § and hence of energy transfer, the difference
between the values of S(e, B) as given by our Eq. (10) and the convolution
approximation is small. This difference is largest in the region of k-values
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Scattering law S(c, 8) as a function of o for 8=0, 2 for the values of the parameters shown.
The curves marked convolution are as calculated using the convolution approximation of Vineyard.
The squares indicate the experimental points of RANDOLPH [8] for an energy gain experiment.
The horizontal bar shows the magnitude of the experimental error involved.
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The curve for R=16 & approaches Randolph's smooth experimental curve of his Fig. 8 fairly closely.

The curve marked ojpc =0 corresponds to the hypothetical case of sodium
being a completely coherent scatterer,
S(et, B) curve for T=325°C is also plotted for the values of the parameters shown,
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Scattering law S(ct, B) as a function of o for 8=0. 2 for the values of the parameters shown
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Scattering law S(ct, B) as a function of & for 8=0. 2. for the values of the parameters shown.
S(ct, B) curves for T =325°C and for the hypothetical case oj,.=0 are also shown.
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Scattering law S(ct, B) as a function of afor 8=0. 25 for the values of the parameters shown.
The curve marked convolution is as calculated using the convolution approximation of Vineyard,
The curve for R=16 A approaches RANDOLPH's smooth experimental curve [8] of his Fig, 8 fairly closely,
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Scattering law S(et, B) as a function of o for B=0, 25 for the values of the parameters shown

corresponding to the main peak of 1+ T'(k). It, however, increases as the
value of § increases. For large values of 8(30. 2), the detailed shape of
S(a, B) is quite different from the one given by the convolution approximation.
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In fact, for large values of the coherence parameter R for a given 8 (> 0. 2),
the main peak of S{a, B) tends to disappear.

(b) For temperatures far above the melting point, the main peak of
S(a, B) (in the region k~2 & 1y is almost non-existent even for 8 = 0. 08; and
the shape of S(a, 8) is so much distorted that one can hardly discern the effect
of 1+ I'(£) which was so clearly evident near the melting point.

(c) One would need fairly precision experiments to distinguish for a
given B between S(a, B) curves for different values of R or for a given R be-
tween curves for different q's. Thus it would not be easy to determine a
dispersion relation for 'phonons".

4. COMPARISON WITH EXPERIMENT

In Figs. 3(a), 4(a), and 5(a), the squares denote the experimental points
of Randolph (energy gain experiment) for T =100°C. The horizontal bar for
the point [Tc’[ =1.7 &1 gives an idea of the magnitude of the error involved
in the measurement of momentum transfer. Judging purely from these ex-
perimental points, S{a,B) as given by the convolution approximation is as
good as that given by our Eq.(10). If, however, one compares Randolph's
smooth curves (not shown) for the scattering law (Fig. 8 of Ref. [8]), one
would see that his curves approach fairly closely our corresponding cal-
culated curves for R=16 & and ¢~15X10%4cm/s. We do not know what cri-
teria were used by Randolph to draw the smooth curves of his Fig. 8 through
the points of his Fig. 5.

In spite of the poor precision of his experiments, Randolph was able
to draw a general conclusion that for values of 8>0.2, the main peak of
S(a, B) disappears which for small values of 8 is quite prominent, And for
higher temperatures this seems to happen even for values of 8 smaller than
0.2 (see Fig. 10 of [8]). His conclusions thus seem to be in general agree-
ment with our conclusions (a) and (b) of section 3.

For small values of K, the last term in the square brackets in Eq. (10)
is negligible, in which case Bsinh(8/2) S(a,B) is proportional to 82exp(-28/Bm)
for B << 1. The function 82 exp(-28/Bm) is our generalized frequency distri-
bution function. The value of 83~ 0.28, which we have chosen for our com-
putations, is approximately what one would obtain from Randolph's curve
for o =0. 006 of his Fig. 12. o

The value of 15X10¢ cm/s for the mean velocity of sound which seems
to give a reasonable fit with Randolph's data is of the right order of mag-
nitude, when one remembers that the experimental value [ 14 ] for the longi-
tudinal velocity of sound in liquid sodium at 100°C is 26 X104 cm/s.

5. CONCLUSIONS

The scattering law S(e,B) as given by our Eq. (10) seems to be in reason-
_able agreement with experimental data hitherto known. It needs to be ex-
.tended by taking ''multiphonon'’ contribution into account. How good our
Eq. (10) for. S(oz, B) is for other liquid metals still remains to be tested, though

5+
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there is no reason to believe that the latter would behave dynamically very
differently from sodium. Precision measurements would be needed, as is
clear from curves of Figs. 3-6, to determine the dispersion relation for
"phonons'' and the value for the coherence parameter.R." It is also apparent
that the most fruitful region of experimental investigation lies in the domain
of I-El—values lying between 1.4 and 2. 8 A-1 where the coherent effects are
most pronounced. A study of the temperature variation of S(a, 8) is also
interesting. Since the coherent effects depend on the nature of the function
L(R, k, q), which in turn depends sensitively on the precise shape of the func-
tion 1+ IYK), it is important that the latter should be studied experimentally
very carefully. Hitherto, this fact has not been stressed.

Finally, let us remember that our theory is purely phenomenological.
But until we have a rigorous mathematical theory of the liquid state, our
approach should at least help in understanding the coherent neutron scatter-
ing data and in suggestmg new experiments.
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DISCUSSION

K-E. LARSSON: Within the correlation range R you are treating the
liquid as a solid when you use the phonon description of the collective modes.
I wonder what the true difference is between your treatment and the semi-
crystalline treatment proposed by Dr. Egelstaff, What is the unit in your
theory that takes up the momentum in the scattering process?

K.S. SINGWI: In our treatment we do not assume the existence of a
reciprocal lattice vector in a liquid, which in itself is an improvement from
a theoretical standpoint. The treatment also accounts for diffusion and en-
ables one to get an idea of the range of coherence in a liquid. The unit is the
mass of atoms contained in a sphere of approximate radius R. '
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N. KROO: In our argon measurements we have observed the disappear-
ance of the first diffraction peak at higher energies, as in the case of the
liquid sodium data. It should be added, however, that the same effect is
apparently found in solid-phase results near the melting point.



INELASTIC SCATTERING OF COLD NEUTRONS
BY CONDENSED ARGON
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Abstract — Résumé — ApgoTanuns — Resumen

INELASTIC SCATTERING OF COLD NEUTRONS BY CONDENSED ARGON. Inrecent years the question
of the existence of collective modes of heat-motion in liquids has been put forward by different authors, To
investigate this problem we have done neutron inelastic scattering measurements on liquid argon at 88°K tempera-
ture, As a comparison, solid, polycrystalline argon {80°K) was also studied, The experiment was carried out
with the time-of-flight spectrometer at the Studsvik R2 reactor. The ingoing neutron energy was 5 meV and the
scattered neutron spectra were analysed at nine angles between 60° and 100°,

The interference part of the scattering has been used to obtain information about the collective motions of
atoms in the two phases, The meaning of average dispersion relations isdiscussed, and methods by which these
functions can be obtained are described,

The results of such analysis are given for both the solid and liquid phase, Dispersion relations were ob-
tained in both cases, The slopes of these curves at the origin are in good agreement with the sound velocities
obtained by other methods.

The results on liquid argon can be taken as proof that the energy and momentum conservation relations
were both active in the scattering process, and as a strong support to the idea of the existence of collective
motions in a classical liquid.

DIFFUSION IN]:ZLASTIQUE DES NEUTRONS FROIDS DANS L'ARGON CONDENSF:. Au cours de ces der-
nidres années, différents chercheurs se sont intéressés 2 la question de l'existence de modes collectifs d'agita-
tion thermique dans les liquides. En vue d'étudier ce probl¢me, les auteurs ont mesuré la diffusion inélastique
des neutrons dans 1'argon liquide 2 la température de 88°K, A titre de comparaison, ils ont également examiné
I'argon polycristallin solide (80°K). L'expérience a &té faite 3 1'aide du spectrométre 3 temps de vol du réacteur
R2 de Studsvik. L'énergie des neutrons incidents était de 5 meV; les spectres des neutrons diffusés ont été
analysés pour neuf angles différents compris entre 60 et 100°.

La partie de la diffusion due aux effets d'interférence a été utilisée pour obtenir des renseignements sur
les mouvements collectifs des atomes dans les deux phases, Les auteurs examinent 1'interprétation des relations
de dispersion moyennes et décrivent les méthodes qui permettent d'établir ces fonctions.

Ls indiquent les résultats de cette analyse 2 1a fois pour la phase solide et pour la phase hqmde. Iis ont
€tabli des courbes de dispersion pour les deux cas, Les pentes de ces courbes 2 I'origine concordent assez bien
avec les vitesses du son obtenues par d'autres méthodes.

Les résultats relatifs 3 l'argon liquide attestent le fait que la relation de conservation de 1'énergie et celle
de conservation de 1a quantité de mouvement exercent toutes les deux une influence sur le processus de diffusion;
ils confirment aussi nettement I'idée de 1'existence de mouvements collectifs dans un liquide classique,

HEYNPYI'OE PACCESIHUE XOJOIHBIX HEHTPOHOB HA KOHIEHCUPOBAHHOM
APT'OHE. 3a nocnefxue rofsl BONPOC O CyMeCTBOBAHUH KOJUJIEKTHBHBX $OPM TEMIOBOTO ABUXE-
HUA B XMAKOCTSAX NOKHMUMAJICS Pa3/IMYHBIMH aBTOopaMu. Jis u3yueHus 3Tofl npobseMBl Mbl NpOBenHU
U3MepPeHHsT HeYNPYToro PacCesHHs HeATPOHOB Ha XHAKOM aproHe npu TeMneparype 88°K. Ias
CPaBHEeHMS M3Y4aJiCi TAKie TBEPJAbii MHOTOKPHCTANAHYeCKHR aprod (BOK) . 3KCrnepUMEHT npo-
Boawincs Ha peakrope R2 B CTyACBHKE C NOMOWmbI CNEKTPOMETpa N0 BpeMeHH nponeTa. JHeprus
BXOAAMUX HeHTPOHOB COCTaBJAANA 5 MOB; aHaJIu3bkl CNEKTPOB PACCEAHHHIX HEATPOHOB NPOBOAWIUCE
npu 9 yraax mexay 60° u 100°.

* IAEA fellow from the Central Research Institute for Physics, Budapest, Hungary.
*k On leave from the Comitato Nazionale per 1'Energia Nucleare, Ispra, Italy.
%k The Royalinstitute of Technology, Stockholm, Sweden.
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HurepdepeHUHUOHHAS YacTh PAacCesHNS HCNojib30Banack A8 noiayveHHs mHGopmMauuu o xon-
NIeKTHBHMIX ABUXEHHSAX aTOMOB B ABYX da3ax. PaccmaTpupaeTcs 3Ha4eHHe CpEAHUX AHCMEPCHOH™
HEIX COOTHOMEHHN W ONMMCHBAKTCA METOAH, NMPH NOMOMH KOTOPHX MOTYT ObTh momy4eHsl 3TH
dyHKURK .

PesynbraThl TAKOTO aHANU3a NPHBOAATCH KaK MIS TBEPAOH, Tak H W1 Kuakoi ¢asn. B oboux
caydasnX 6bUIM noAydyeHH AMCNEPCHOHHbIE COOTHOMEHHsi. HaK/IOHB 3THX KPMBEIX B Havajle XOpomo
COTNIaCy®nTCA CO CKOPOCTSMU 3BYyKa, NOJYUYEHHHIMH ADYTHMH METOAAMH.

Pe3ynbTaTh, noly4yeHHbe C XHAKHM apProHOM, MOTYT CJIy XHTh AOKa3aTeJbCTBOM TOTO, YTO
COOTHOMEHNsA COXpaHEHHs] KaK MMMNYAbCa, TaK ¥ SHEPTUH ABASKTCA aKTHBHHIMHU B nmpouecce pac-
cesiHusl, a TaKXe NOATBEPKIASHHEM KOHLEMNUHH O CymeCTBOBAHHN KONNEKTUBHHX ABHXEHHil B Knac-
CH4eCKO#l XHAKOCTH.

DISPERSION INELASTICA DE LOS NEUTRONES FRIOS EN EL ARGON CONDENSADO, En los Gltimos afios,
diversos investigadores han plantegdo la cuestién de 1a existencia de modos colectivos del movimiento térmico
en los lfquidos, A fin de estudiar este problema, los autores han efectuado mediciones de la dispersién inel4stica
de los neutrones en argén quido a 88°K. A fines de comparacién, se estudi6 también el comportamiento del
arg6n s6lido policristalino (80°K), El experimento se realizé con ayuda del espectrémetro de tiempo de vuelo
instalado en el reactor R32 de Studsvik, La energfa de los neutrones incidentes era de 5 meV, y se analizaron
los espectros de los neutrones dispersos en nueve angulos distintos, comprendidos entre 60° y 100°. :

La interferencia observada en la dispersi6n se ha utilizado para obtener informacién acerca de los movi-
mientos colectivos de los dtomos en las dos fases, Los autores examinan el significado de las relaciones medias
de dispersidn, y describen los métodos por los que pueden obtenerse esas funciones,

Exponen también los resultados de tales andlisis tanto para la fase s6lida como para la fase 1fquida, En
ambos casos se obtuvieron relaciones de dispersién, La pendiente de estas curvas, en su tramo inicial, se ajusta
bastante bien a las velocidades del sonido determinadas por otros métodos,

Los resultados obtenidos con el argén liquido pueden considerarse como prueba de que las relaciones de
conservacibn de 1a energfa y del impulso intervienen activamente en el proceso de dispersién, y vienen en
apoyo de la idea de la existencia de movimientos colectivos en un lfquido clisico,

I. INTRODUCTION

The method of inelastic scattering of cold neutrons has been extensively
applied to investigations of the dynamics of condensed matter. The previous
investigations in the liquid phase have shown many features of the scattering
to be similar to those observed in solids, especially in polycrystals [1];it is
well known for example from X-ray and elastic neutron scattering measure-
ments that a certain amount of short range order remains in the liquid phase
(2, 3]. , |

To compare the dynamical behaviour of a solid and a simple liquid sys-—
tem, argon has been chosen for the present measurements.

II. THEORETICAL BACKGROUND

Argon, occurring in nature, is a mixture of different isotopes with dif-
ferent scattering lengths for neutrons. Therefore the scattering contains
a coherent as well as an incoherent part. According to the measurements of
HENSHAW [3] the nuclear coherent and incoherent scattering cross—sections
are Ocoph=0.6 b and ojpcon = 0.19 b, respectively.

The general formulation of the scattering cross—section for thermal
neutrons from an arbitrary system of atoms was given in 1954 by VAN HOVE
[4] in the first Born -approximation. He showed that the coherent and in-
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coherent scattering cross-sections are directly related to the time-dependent
correlation functions, namely

2
d"0coh_ _Ocoh XK' (kr— T r
3o~ Bath &, P UKT-WHG (r, fydrdt (1
do; gj k
ine = Jige = [ oy i(kr- wt)G, (T, t)drdt. (2)

"dQdw 87%h k

This formulation shows that both the single-particle and the co-operative
modes give contributions to the inelastic neutron scattering cross-section.’
In the present investigation only coherent scattering is discussed.

According to EGELSTAFF [5] the pair correlation function for a classi-
cal isotropic system can be written as

Gylr, ) =glr)F(r, 1) ‘ {3)

where g(r) is the static pair correlation function and F(r, t) is a function de-
fined by Eq.(3) and describes the motions in the system. If we substitute
Eq.(3) in Eq. (1) we get -

ggog;h g;ozhh l; S (K w)+f'y(l; —K.')R(K', w)dk'} (4)

with
ss(K,w)=%fexp i(kr - 0t)Gs{r, t) drdt (5)
R(k,w)= zirfeip i(kr —wt)F(r, t)drdt (6)

and
v(k) =fg(r)exp i krdr. , (7.

From Eq.(4) we can see that the "dynamical function' of the scattering sys-
tem is always observed folded with the function, which depends on the struc-
ture of the scatterer.

A. Solids

Because in the solid phase v (k) is a set of §-functions Eq.(4) can be
written as a sum. Looking only at the one-phonon part of the cross-section.
one can rely upon a formula derived by WEINSTOCK [6] for a microcrystal
and extended by EGELSTAFF [7] to the polycrystallme case. This formula
reads
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1 -2W
d“Oeoh _ Ocon 1 k K {N+1}f( \Z 8)

and
) _7F: :
Z—Z 2BTkq " (9
T

In Eq.(8) M is the mass of the scattering nucleus, e is the Debye-Waller

factor, N=[exp(hw/kgT)]-1 is the population factor for energy gain and N+1
is the corresponding population factor of energy loss of the neutron; f(w) is
the frequency distribution of the normal modes. In Eq.(9) Z is the poly-
crystalline (energy-dependent) structure factor, 7 is the modulus of a reci-
procal lattice vector, F, is the crystalline structure factor times the multi-
plicity of the proper plane, B is the volume per atom in the crystal and q
is the modulus of the average phonon wave vector corresponding to the fre-
quency w. The limits within which contributions to Z are created from a
certain set of planes, characterized by 7, are given by

kK (@, w)~qlw) =277 £ k(O, W)+ g(w), (10)

where © is the scattering angle. Therefore the cross-section will show
discontinuities at the limits of the interval given by Eq.(10).

‘ One can see that in order to calculate the coherent scattering cross-
section one needs the frequency distribution of the normal modes and the
average dispersion relation q=g(w). Conversely, if 7 is known one can
determine the average dispersion relation from the position of the breaks
in the observed coherent single-phonon cross-section. The meaning of this
function and the method to evaluate it are discussed later.

B. Multiphonon corrections’

From the phonon expansion formula of Eq.{8] it is known that the factor
2W governs the multlphonon intensity. Because of the small value of this
factor (2W=(0.0434 A2)(K2A‘2)) for solid argon at 80°K, the two-phonon and
higher—-phonon terms can be neglected in the incoherent cross~section.

As far as the coherent multiphonon cross—section is concerned, it is
clear [7] that this contribution does not give rise to sharp breaks and there-
fore it does not affect our determination of the dispersion relation. Nu-
merical calculations of the coherent two-phonon cross—-section showed that
the ratio of the two—phonon to the one-phonon term never exceeded 0.03 in the
region of interest. These calculations were done in the Debye approximation
using formulas derived by EGELSTAFF [7]. The higher phonon terms are
still smaller and, besides, they may be represented by the incoherent ap-
proximation and may therefore be neglected.

C. Dispersion relations in isotropic systems

In a single crystal one can always determine the dispersion relations
of the normal modes by studying the coherently and inelastically scattered
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neutron spectra. Because both the energy and quasi-momentum conservation
laws have to be fulfilled, resonances are observed in the one-phonon scatter-
ing which help determine the w=w(q) relation. '

In the polycrystalline case one cannot speak about the direction of 7
caused by the isotropic distribution of the crystalline planes in the different
grains. Therefore we cannot determine the w=w(q) dispersion relation. We
can instead define a function (scalar-scalar) which, for example, gives the
connection between the energy and an average wave number (q) of the phonons
in the crystal. If we had an isotropic medium, i.e. one dispersion curve,
then Z in Eq.(8), as already mentioned, would be different from zero only
in the k—-q S 277 Sk+q region, with sharp breaks at the two ends of the inter-
val. At a fixed w the distance between the two breaks would be Ak = 2q and
the relation w=w{g) could be determined. In the real case at a certain energy
w, since the constant energy surfaces in the Brillouin zone are not spheres,
the corresponding g-values have a finite distribution. Therefore we cannot
find sharp breaks in the coherent scattering picture, only some broad distri-
bution in k. But we can still define the average dispersion relation from the
full width at half height of this distribution in the form

w =w(AK1/2)= w(2q). (11)
D. Liquids

In the liquid phase the long-range order existing in solids is replaced
by a short range order.only, as verified by the experimental studies of pair-
distribution functions by X-rays and neutron diffraction. Also recent neutron
inelastic scattering studies have clearly shown that vibratory motions may
exist in a liquid as well as in a solid. Thus frequency spectra for the
motions of the atoms in liquids have been derived from incoherent neutron
scattering studies [9, 10]. Similarly it has been found that interference
scattering is caused by a liquid as well as by a solid. This was shown from
scattering studies on liquid metals like tin and aluminium [11, 12}, '

In the case of solid argon the mixture of the coherent and incoherent
inelastic scattering does not cause any serious difficulties in the interpre-
tation of the data. The reason for this is that the coherently scattered in—
tensity is about one order of magnitude higher than the incoherent one in
the region where the important breaks occur.

In the liquid case the situation may be entirely different, if the coherent
inelastically scattered intensity does not show the same break structure as
in the solid phase, and thus would be almost indistinguishable from the
smooth incoherently scattered intensity. This difficulty may be expected
to occur in liquid argon because of the high mobility and the weak binding of
the spherical atoms. A diffusion broadening of the sharp breaks, which is
of the same order of magnitude as the inelastic energy transfer itself, is
expected. Moreover, the incoherent quasi-elastic scattering will show a
similar broad distribution, overlapping any inelastic coherent scattering.

There is still a possibility left to draw conclusions about the collective
motions in the liquid, namely by doing investigation around the well-pro~
nounced first peak in [1++9(ky)]. This function describes the angular distri~
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bution of elastically scattered neutrons and can be interpreted as the result
of broadening of the sharp Bragg peaks which exist in the solid phase.

With the above-mentioned similarities between the solid- and liquid
phases in mind it seems reasonable to extend the validity of Eq.(8) to the
liquid phase with one modification. Instead of &-functions in the angular
distribution of the coherent elastically scattered neutrons there is now, as .
mentioned above, a smooth functioh with a few dominant peaks. The sum-
mation over the discrete T-values should now be replaced by an integration
over 7, {1] giving

K+q

Z(K,q)'v;c-l—q f27r'r[1+-y(27r1')]d(27r'r). (12)

)

K-q

A decisive test of the existence of collective modes in a liquid would be
to search for a dispersion relation. With the generalization of Eq.(8), ex-
pressed in Eq.(12), in mind, it seems consistent to apply the treatment des-
cribed for the solid in section II.C to the liquid.

In this treatment the first diffraction peak at different energies w should
be broadened in k, as determined by the relation between wand q for the
Y"quasi-phonons''. This is expressed by the limits of integration in Eq, (12).
It is seen that contributions to Z(k, w) originate from a region (k +q)-(x -q)=2q
and the width of this function is therefore a measure of q.

To obtain the width of the "dynamical function" from the total width of
the broadened diffraction peak we might, as an approximation, take ’

2q = Ak = [(Aky, )%= Ak ))1V2, (13)

where Ak, is equal to the measured full width at half height of the first dif-
fraction peak at energy w. This formula is exact for the folding of Gaussians
only.
The advantage of using Eq.{13) may be understood from the form of Eq.
{4) expressing that the ""dynamical function' can only be observed folded with
a function depending on the structure of the scatterer. Being always around
the well-pronounced first peak, the effect of this folding is about the same.
The method discussed above is concerned only with the interference part
of the scattering. To perform the analysis we must first subtract the in-
coherent contribution from the observed data. If we have a model describing
the incoherent scattering we can normalize the predicted cross—section to
the measurement by taking data in a region of x and w where only incoherent
scattering can occur. The cross-section, normalized in this way, can then
be extrapolated to the region of k and w where interference scattering occurs.
The form of the incoherent cross-section which was used is given here for
reference:
dzcing _ gz_u,_g_k_' Dx’

dQdw T ko (Dk2R+ w2’ (14)

where D is the diffusion coefficient.
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This is the cross—section which would be observed if the atomic motions
could be described as simple diffusion only.

III. EXPERIMENTAL DETAILS

The experiment was carried out with the time-of-flight spectrometer
at the Studsvik R2 reactor. A description of this instrument is given else-
where [13]. The incident spectrum is centred around 4.1 A with a wave-
length spread of 7%. The scattered spectra are analysed by the conventional
time-of-flight technique. The time resolution at 4 A is 1.5%. The angular
spread of the scattered beam is +2°. P

To study argon in both solid and liquid form a liquid nitrogen cooled
cryostat was constructed in which it was possible to keep the sample at liquid
nitrogen temperature and higher. Temperatures above the nitrogen boiling
point were reached with the aid of a small electric heater attached to the
bottom of the argon chamber. The sample container was made of aluminium
in the form of a cylinder with diameter 6 cm and wall thickness 0.1 cm. The
transmission for scattering of the liquid sample along a diameter was about
93%. The effect of the absorption was found negligible within the present
accuracy. -

Since the temperature region for the liquid phase of argon is only 5.5°
the temperature of the liquid has to be kept constant and the temperature
gradient over the sample not too large. By heating in a corner of the bottom
of the container the convection in the liquid could be increased and the
temperature gradient therefore decreased. It was found that with a constant
current through the heater and the nitrogen container filled above a certain
level the temperature was constant within 0.2°, The temperature difference
between the top and bottom of the sample was less than 1°. In the case of
a solid sample it was found that to keep the temperature constant within 0. 1°
it was sufficient to ensure that the nitrogen container was filled above a cer-
tain level. The temperature difference between top and bottom was in this
case 0,2°. The temperature of the solid sample was (801 0. 2)°K. The
liquid was kept at (88+0.7)°K in a closed volume and thus under its own
vapour pressure, which at this temperature is 1.2 atm. By having over-
pressure in the sample container we could avoid contamination of the sample
with air. This could be a serious problem even with a relatively tight sys-
tem, as the same sample should be used for weeks and impurities could thus
accumulate. To avoid contamination of the solid sample we kept helium gas
at 1.2 atm above the solid surface. To check that, despite the precautions
" mentioned above, there were no impurities in the sample and that the sample
was solid or liquid, respectively, everywhere over the region covered by
the beam, we evaporated the samples a few times and measured again at
the same angle with a new sample. We could not, in any case, see any dif-
ference between the spectra scattered from the two different samples,

The data read out frorm the 1024 channel time-analyser in the form of
a punched tape were sent to a computer by which certain standard corrections
were performed for the energy-dependent detector efficiency, the energy-
dependent removal of neutrons by the air between the sample and the detector
and a conversion of the data from flight-time to energy scale. The flat back-
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ground, determined by averaging over 50 channels in an energy region where
the background was known to be flat, was subtracted at the same time. No
effort was made to evaluate the absolute values of the cross-sections. Runs
at different angles were normalized to each other with the help of a monitor
placed in the beam between the chopper and the sample.

IV. RESULTS AND DISCUSSIONS

A. Solid argon

The temperature of the solid sample was (80.01 0. 2)°K which is 4°K
below the melting point. The spectra of the scattered neutrons were ana-~
lysed at nine scattering angles in the angular region between 60° and 100°.
One of the results of the three-day runs, corrected as described in section
III, is shown in Fig. 1.
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Intensity-distribution of the neutrons scattered by solid argon at 60°

From the breaks, such as the one indicated by the arrow in the figure,
we determined the average dispersion relation by the method described in
section II.A. The result of this analysis is shown in Fig. 2. The straight
line drawn in this figure is the result of a least square fit to the first eleven
points.

The high value of the cross—section at small energy transfers appears
in the measured data as well as in Eq.(9). One of the most obvious differ-
ences between the measured cross—-sections and Eq. (8) is the low value of
the experimental data at higher energies. This fact made it impossible to
find breaks at higher energies. To investigate which factor in the cross-
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Dispersion relation for solid argon

section is responsible for this disagreement it would be necessary to under-
take a measurement of the frequency spectrum. Such an investigation has
not yet been completed.

B. Liquid argon

The temperature of the liquid sample was (88+ 0. 7)?K and the liquid
was kept under its own vapour pressure. The scattering angles were the
same as in the measurement on the solid sample. One of the corrected
spectra is shown in Fig. 3. Each spectrum represents three to four daiys'
running time. Since in this case not only the inelastic but also the quasi-
elastic part of the scattering is involved, 'it was necessary to study the in-
tensity of the elastic scattering from the sample container. To this end runs
" were made with the sample container filled with He gas and cooled to liquid
nitrogen temperature. In the analysis of the quasi-elastic scattering this
extra scattering was corrected for. .

The width of the quasi-elastic peak was studied as a function of k. The
cross—section at small w was supposed to be Liorentzian in w [14]. This
assumption is in fact later shown to involve a slight oversimplification, but
the exact shape of the quasi-elastic peak should not be too important in evalu-
ating the width. To evaluate this quantity at the various scattering angles
the incident spectrum was folded with Lorentzians of different widths. The
full width at half height after folding was then plotted as a function of the
width of the Lorentzian. Inthis way we obtained a calibration curve which helped
us to find directly the proper width of the cross-section from the measured
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Intensity distribution of neutrons scattered by liquid argon at 79.5°

total width at a certain angle., Thé natural widths obtained in this way are
plotted as a function of « in Fig.4. Our results agree within the limits of
error with those obtained by'BROCKHOUSE 9_t__a_1.[15] with the sample at
T =84.5°K and under its own vapour pressure. . .

In Fig.5 is shown the result of such a folding of the incident spectrum
with a Lorentzian, together with the observed spectrum scattered at 79.5°.
The width of the Lorentzian was chosen to agree with the width of the quasi-
elastic peak at this angle. It can be seen that the Lorentzian is incapable
of explaining the scattering even for relatively small energy transfers. This
shows that there is some meaning in trying to apply more elaborate models
in which the possibility of collective modes is taken into account. )

In order to correct for the incoherent part of the scattering a measure-
ment was made at 27.5° at which the coherent contribution is small.
Equation {14) was normalized and fitted to this measurement. After sub-
traction of this incoherent part of the scattering, -the coherent intensity at
fixed w was plotted as a function of k. To increase the statistical accuracy
the channels were grouped together three and three. Such constant w plots
were performed for eleven different values. The intensity at constant w is,
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Intensity distribution of neutrons scattered at 79,5°
The dotted line shows a Lorentzian folded with the ingoing spectrum. The width of the
Lorentzian is chosen to give the same total width as that observed at 79.5°

according to Eq.(8), proportional to k2 Z(k). In order to obtain Z(k), the
measured data (corrected for incoherent scattering) were divided by «2 .
Examples of the intensity per «2 as a function of k are shown in Fig.6. The
widths in k at half height were determined and interpreted in the way des-
cribed in sectionII.D. to yield a dispersion relation. The eleven pairs of w



112 N. KROO et al.

x
L
wl
ost
vt
*\_ ..f » 20655102471
. »¥:z0
N y:o22x 10 47
00 15 20 25 30
K (R
Fig.6

Intensity distribution of the neutrons scattered by liquid argon at fixed w-values

1
10} g
os | * . 1
o ¥ViTwH
o8} i a1 -
¢z 91x10cm s
07} 1
‘s 06} g
o
2 ost E
04l (3 J
L )
03 4
02 + .
01} ]
i 1 1 1 1 1 1
00 01 02 03 04 0§ 06 07
g(&hH
Fig.7

Average dispersion relation for liquid argon

and q determined in this way are shown in Fig. 7, where a straight line cor~
responding to sound velocity ¢=9.1X104 cm s-1 is also drawn.
In the treatment of the data the following approximations have been made:
(1) The first diffraction peak is supposed to be a Gaussian in « at all
energies, This is not quite true, as can be seen in Fig.6. This approxi-
mation is the basis of Eq.(13) by which Ak was evaluated.
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(2). Because of the k2 factor in the cross-section the statistical accuracy
is low at small k. To overcome this difficulty we used only the intensity on
the high k-side of the first diffraction peak assuming the intensity per k2, i.e.
Z, to be symmetric around this peak.-

(3) The incoherent cross—-section is approximated with a Lorentzian.
Because a dispersion relation exists, the incoherent scattering is different
from a Lorentzian which describes the simple diffusion scattering only. Be-
cause of the low intensity of the inelastic scattering at small k-values, where:
the incoherent contribution to the scattering was normalized, we did not find
it worthwhile to search for a more elaborate model. The smooth behaviour

- of any incoherent scattering in the region of the coherent peak is believed
to give a small correction to the results. )

(4) No effort has been made to correct for the contribution of higher
phonon terms. In the solid case they could be neglected both in the coherent
and incoherent scattering. Assuming that the form of the multiphonon
cross—sections used for the solid are valid in the liquid phase too, the only
difference in the multiphonon corrections should come from the difference
in the Debye temperatures, Using Mott's relation [16] and ©®pg=81°K for
the solid, one obtains in the liquid case ®pp=47°K,but according to the pre-
liminary results of our incoherent scattering investigations the agreement
of the Rahman~-Singwi-Sjélander model with the measurements is the best
with ©p~70°K. Because the difference in the Debye temperatures is not
toolarge and the data used in the determination of the dispersion relation cover
only the lower part of the frequency spectrum, the multiphonon terms can
be neglected within the experimental errors, since their maximum is in the
high frequency region. They are furthermore believed to be smooth, mono—
tonous functions of «k in the region of interest here.

Because of the many experimental difficulties it is clear that the results
obtained by this analysis are of significance in a qualitative sense only. With
this in mind no effort has been made to evaluate the errors introduced by
the approximations, and the error bars given in Fig.6 include the statisti-
cal uncertainties only.

V. CONCLUSIONS

These measurements on solid and liquid argon have served a dual pur-
pose: (1) A method has been given to measure an average dispersion re-
lation in a polycrystalline sample and (2) knowing the result for the poly-
crystalline case, it has been shown that a similar average dispersion law
may be found in the liquid. The reason so much effort was devoted to the
study of the average dispersion law for the polycrystal is that if in the liquid
phase collective modes occur at all, they should produce neutron scattering
effects similar to those observed in polycrystals. As already discovered
in studies on liquid metals, such as aluminium [11] and tin [12], it is not
possible to observe any individual effects of collective scattering like the
single-phonon lines observed from single crystals.

It is natural to conceive the crystal lattice broken up into a microscopic
mixture of crystallites of short mean life.  Such a mixture would show a
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scattering picture very similar to that obtained from a polycrystal. The
difference between the scattering from the rapidly fluctuating microcrystal-
line structure of a liquid and the static polycrystalline system would be a
broadening of each individual phonon line leading to a smearing out of the
sharp cut-off's at 277 =k + q in the polycrystalline case. This lifetime effect

. may in the case of argon lead to an almost complete disappearance of the
sharp cut-off's in the inelastic scattering picture since the measured
broadening due to diffusion corresponds to about 1 meV (compare Fig.4)
whereas the value of the energy transfer at the position of the crystalline
cut-off's is in the range 0-5 meV. In the scattered spectira it is then reason-
able to expect a smooth intensity distribution for the coherent as well as for
the incoherent scattering. As seen from a comparison between the scattered
spectra from the polycrystalline and the liquid samples there are no breaks
in the liquid case. This fact does not, however, mean that the coherence
effects are absent. As has been shown it is possible to derive an average
dispersion relation, which can be taken as a proof that the energy and quasi~
momentum relations were both active in the scattering process. This ob~-
servation is in agreement with the results of [11] where, however, the dif-
fusion broadening is so small that .sharp microcrystalline breaks are ob~-
servable in the liquid as well as in the solid scattering.

That the randomness of the atomic motions caused by diffusion allows
the existence of vibratory modes of motion may be understood from the fol-
lowing arguments: In a time t, a diffusing atom, on the average, moves a
distance 6Dt. It is reasonable to expect that if this distance is small com-
pared to the wavelength of the quasi-phonon, i.e.

J6Dt << A =% (15)

the damping caused by diffusion is not too large and the quasi-phonon can
exist. To a certain phonon wavelength A belongs a frequency v determined
by the dispersion relation. The inverse value of v gives the period 7, of
the vibration. From the observeddispersionlaw {see Fig.7) and the known value
of D it is found that for the lowest measured point at q =0.2 A-1 the distance covered
by diffusion during one vibration is of the order of 2 A while the phonon wavelength
is30A. Atthehighest observed gq-value we find that ~/6Dt70~ 1?\, whereas A has the
value 10 A. The condition in Eq. (15) is thus very well fulfilled and we con-
clude that, in spite of the diffusion motion, it is possible for an atom to par-
ticipate in a damped periodic vibration over the whole region investigated.
The validity, at a certain g, of the statement made above is, as can be seen
from Eq.(15), dependent upon the ratio between the diffusion constant and
the frequency at that particular q. If the frequency at any q is taken as pro-
portional to the Debye temperature it is seen that the validity of Eq.(15) is
determined by the ratio of D to ®p. An inspection of the values of these
quantities for other elements shows that the condition in Eq.(15) is fulfilled
by. a great number of liquids.

One feature of the present observations that indicates a strong damping
of the atomic vibrations in the polycrystalline as well as in the liquid case is
that the coherently scattered intensity is unexpectedly low at the highest v-
values. For this reason we do not present any experimental points on the
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dispersion curves in Figs. 2 and 7 for g-values above ~0,6 A-}. The reason
for this damping might be that the anharmonicity of the shallow potential
in which the argon atoms are moving is so large at the highest frequencies
that these vibrations are very far from the simple periodic ones.

These measurements on liquid argon have given strong support to the
idea of the existence of collective motions in a classical liquid.
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ISCUSSION

B.A. DASANNACHARYA: I would like to present the figure below, in
which the square of the width function for liquid argon is plotted against time.
The dots are derived from experiments done at Chalk River and the solid line
is fitted to the points at large time. It gives us a diffusion coefficient value
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Liquid argon at 84.5°K.

of 1,58 x 10-5 ecm?2/s, which is in good agreement with the value obtained
directly from the scattering function at small momentum transfers. The
points at smaller times all lie below this lineX,

N. KROO: I think that this figure represents a further argument in
support of what we were trying to prove with our work. It is clear that the
difference between your points and the width function for simple diffusion is
not too great, but the fact that we were still able to see the dispersion of
quasi-phonons is proof of the usefulness of our method.

G.VENKATARAMAN: It seems to me that there is considerable evi- .
dence in your experiments for collective motions in liquid argon. Is this
reflected in the inelastic spectrum? :

N. KROO: Yes, it is. The wings of the time-of-flight spectra are al-
ways above the Lorentzians, giving the same half-widths as the measured
ones.

% For detailed results see Phys. Rev. (Jan. 1965).
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Abstract — Résumé — Annoramui — Resumen

COLLECTIVE ATOMIC MOTIONS IN LIQUID ALUMINIUM STUDIED BY COLD NEUTRON SCATTERING,
The neutron spectra scattered inelastically from polycrystalline and liquid aluminium have been studied by
means of the cold neutron technique, The polycrystal was kept at 630°C and the liquid at 677°C, It is found
that the approximate cross-section formulas based on the harmonic approximation but including the effect of
coherence describe relétively well the high temperature results of the solid phase. The liquid scattering picture
shows very strikingly the same characteristics as the polycrystalline one, Particularly it is observed that a low
frequency cut-off exists in the liquid scattering picture, which may be understood only on the assumption of
the existence of collective scattering from the liquid. The results imply that, at least over a region of di-
mensions of a few Angstrém, a considerable local order is maintained for such a length of time that vibratory
motions can develop, The results thus clearly demonstrate the existence of a frequency spectrum for the liquid
atomic motions consisting of two parts of different nature, one of transversal nature, the other of longitudinal
nature, The results also indicate that the frequency spectrum for the liquid state and that for the solid state at
room temperature differ most markedly from each other in the high frequency region, a region within which the
shortest range order is of decisive importance. On the other hand, the difference between the frequency spectra
in the solid at high temperature and in the liquid differ only very slightly, The results imply that the diffusion
in liquid aluminium is a slow process with a delay or relaxation time probably of the order of 107 s or greater,
a result already obtained for other liquids by the néutron scattering technique,

MOUVEMENTS COLLECTIFS DES ATOMES DANS L' ALUMINIUM LIQUIDE, ETUDIES PAR LA DIFFUSION
DES NEUTRONS FROIDS, Les auteurs ont étudi€ les spectres des neutrons diffusés inélastiquement par 1'alumi-
nium  I'état polycristallinet 2 1'€tat liquide au moyen de la méthode des neutrons froids en maintenant le
polycristal 3 630°C et le liquide 3 677°C. Ils ont constaté que les formules approchées de la section efficace,

. fondées sur 1'approximation harmonique mais tenant compte de l'effet de cohérence, décrivent assez bien les

résultats obtenus 3 haute température en phase solide. Le schéma de diffusion des neutrons par le liquide
“présente manifestement les m&mes caractéristiques que la diffusion des neutrons par le polycristal, Les auteurs
ont constaté notamment que la diffusion des neutrons par le liquide comportait une coupure 3 faible fréquence,
que 1'on ne peut expliquer qu'en admettant 1'existence d'une diffusion des neutrons collective, Ces résultats
laissent supposer que, pour le moins dans une région ayant des dimensions de quelques angstréms, un ordre local
considérable persiste pendant une durée suffisante pour permeture aux mouvements vibratoires de se développer,
Ils montent ainsi nettement que les mouvements atomiques d'un liquide donnent un spectre des fréquences
comportant deux parties de caractere différent, 1'une de caract?re transversal et l'autre de caract2re longitudinal,
Is indiquent en outre que les spectres des fréquences pour 1'état liquide et pour 1'état solide 3 la température
ambiante diff2rent de fagon tr2s marquée 1'un de I'autre dans la région des hautes fréquences ot 1'ordre du plus
petit parcours revét une importance décisive, En revanche, les spectres des fréquences pour le solide 3 haute
température et pour le liquide n'accusent qu'une trs faible différence. Il ressort de ces données que la diffusion
dans I'aluminium liquide constitue un processus lent comportant probablement un retard ou temps de relaxation

* Visiting scientist from the Boris Kidri¥ Institute of Nuclear Science, Belgrade Yugoslavia, on an
International Atomic Energy Agency fellowship.
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de I'ordre de 1072 s ou plus long; ce résultat a déj2 €té constaté pour d'autres liquides &tudiés par la méthode
de la diffusion des neutrons,

U3YYEHUE KOJJIEKTHBHBIX IBUXEHUA ATOMOB B XHJIKOM AJNIOMUHHKY C MO~
MOMBI0 PACCEAHUSA "XOJOLHLIX"HEATPOHOB. C noMomeio MeToAa "XONMOAHMX" HeHTPOHOB
H3y4eHBl HeATPOHHbIE CNEeKTPHl, HEYNPYTO pacCcesHHble OT NMOJUKPUCTAMIMYECKOTO M XHAKOTO afm-
MuHHA. TeMnepaTypa Harpesa NMOAMKPHCTANAa noiAepXuUBanach Ha ypoBHe 630°C, a XKUAKOCTH ~
Ha ypoBHe 677°C. OG6HapyxeHO, 4TO npuSAH3UTENBbHbe GOPMyAb AIA CedYeHHS, OCHOBaHHbIe Ha
annpoKCHMalHH rapMOHHKaMH, HO BKADYapmue 39 §eKT KOrepeHTHOCTH, CPABHUTENABHO XOPOmMO
NOKa3blBalT BHICOKOTEMNnepaTypHble pe3ynbTaThl TBepho#t dassi. T[Ipu pacCefsHHMH B KHAKOCTH
OTYETNHBO NPOABAAITCA Te Xe caMble XapaKTEePUCTHKH, YTO U NPH PacCeAHHH NOAHKPHCTaNNAA .
Oco6eHHO MOXHO HabawaaTs, YTO 3aBajl HA HU3KOH YaCTOTE NMPOHUCXOAHT NPH PACCESIHHH B XUIA-
KOCTH, 4TO OGBACHAETCA TOILKO Ha OCHOBE NMPEANONOKEHHS O CymMeCTBOBAHUH KOMIEKTHBHOTO pac-
CeAHHS OT XMAKOCTH. Pe3yanLTaThl TOBOPAT O TOM, YTO MO KpajiHe#i Mepe 3a npefenaMu o6acTi
pa3MepoB B HECKOJILKO aHI'CTPEM NOAAKEPXHBAETCA 3HAYHTENbHbIH NOKaNbHbIA NOPANOK B TeUeHHe
TaKoro NpoMeXyTKa BPEeMEeHH, KOTAAa MOTYT BO3HHKHYTb BHOpPalHOHHble ABUXeHUs. Taxum o6-
-pa’oM, Pe3ynbTaThl SICHO AOKa3bBaWT CYIMMEeCTBOBAHME CMEKTPa YACTOT JUIA ABHXEHHS] ATOMOB B
AKHAKOCTH, COCTOSIMErO H3 ABYX YacTel pa3/nH4HON NPHPOABI, ONHA —nonepevyHoro xapakrepa, Apy-
ras —npojonbHoro. PesaynpTaTh TakXe yKa3blBaloT Ha TO, YTO YACTOTHHIA CNEKTp B XHAKOCTH H
CNeKTp Ans TBEPAOro COCTOAHMA NMPH KOMHATHOI TeMnepaType Haubojlee 3aMETHO OTJIHYARTCH
ApYT OT ApyTa B BHICOKO4YacCTOTHOM obnacTu—o6nacTH, B KOTOPO# BEAHYHHA CAMOTO Majloro fno-
paika HMeeT pemapimee 3HayeHHe. C ApPYTo#i CTOPOHBI, CIEKTPH YACTOT B TBEPAOM COCTOSRHMH
npu bucox_oii TeMnepaType ¥ B XHAKOM COCTOSIHUM pa3naudanTcs Mexny coboll numb kpaiiHe He-
3HAYMTENBHO. PeaynbTaTh TOBOPAT O TOM, uTo AN Py3usa B XUAKOM aNnOMHUHHH MPOHUCXOAHT Med-
JIeHHO, NpHYeM BpeMs 3afepXKHU WIH ocnabienus cocrasasier npuMepHo 10712 cek unn Gonee.
OTOT pe3ynbTaT yXe nojyueH MIsA APYTHX KHAKOCTeH C NOMOIbI METOAA paccCesHHs HeHATpPOHOB.

ESTUDIO DE LOS MOVIMIENTOS COLECTIVOS DE ATOMOS EN EL ALUMINIO LIQUIDO POR DISPERSION
DE NEUTRONES FRIOS. Los autores han estudiado los espectros de neutrones dispersos ineldsticamente en
aluminio policristalino y lfquidd, aplicando a tal efecto la técnica de neutrones frfos. El policristal se mantuvo
a 630°C y el lfquido a 677°C. Las férmulas aproximadas de la seccién eficaz, basadas en 13 aproximacién armé-
nica pero que incluyen el efecto de coherencia, describen en forma relativamente satisfactoria los resultados
obtenidos a temperaturas elevadas en la fase sélida. La imagen de dispersi6n en el lfquido presenta caracterfs-
ticas notablemente similares a las obtenidas en la fase policristalina, En especial, se observa en esa imagen una
interrupcién a baja frecuencia, que sblo se explica admitiendo la’existencia de una dispersién colectiva en
el Hquido, Los resultados implican que, por lo menos para una regién de algunos angstroms, se mantiene
un grado considerable de orden durante tiempo suficiente para que puedan producirse movimientos vibratorios,
Asf, los resultados demuestran claramente que en el caso de los movimientos atémicos en el 1fquido existe un
espectro de frecuencias, que consiste en dos partes de naturaleza diferente, una transversal y otra longitudinal.
Indican asimismo que la mayor diferencia entre los espectros de frecuencia correspondientes al estado liquido
y al estado s6lido a temperatura ambiente se observa en 1a regién de las frecuencias elevadas, donde las fuerzas
de corto alcance adquieren una imporiancia decisiva, En cambio, los espectios de frecuencia del sélido a
temperatura elevada sélo difieren muy ngxamente de los correspondientes al liquido, Los resultados indican
que la difusién en el aluminio lfquido es un proceso lento, caracterizado por un tiempo de retardo o relajacién
del orden de 107!2s o mayor. El mismo resultado se obtuvo ya para otros lfquidos por la técnica de dispersién
de neutrones, '

I. INTRODUCTION

Neutrons of an energy as low as 5 meV have proved tobe a most sensitive
tool to investigate microscopic fluctuation phenomena in solids and liquids
-[1, 2]. Particularly the research on the atomic or molecular motions in
liquids have been of great importance, as so far very few methods have
existed which have allowed the detailed study of the correlations of these
motions among the particles, A considerable number of measurements have
already been performed mainly on incoherently scattering liquids like the
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hydrogenous water, glycerol, methane, alcohols ete. [1,2,3,4,5]. The
reason for this choice of liquid samples invariably has been that hydrogen is
an incoherent scatterer and the scattered neutron spectrum would in this
simple case reveal all the motions of the scatterer, i.e. the proton, without
any limitation. There is, however, a serious drawback with the complicated
molecular liquids exemplified above, namely that not only are the protons
dragged with the molecule as a whole in the motion of its centre of mass, but
they are also performing a complicated motion between the molecules .in
existing hydrogen bonds and in the molecules to form a complex inelastically
scattered neutron spectrum involving librational, rotational and vibrational
motions. - The motion of the centre of mass of the molecule is consequently
hard to distinguish from the rest of the motions.

A liquid metal would not present this problem as it is a monatomic hqu1d.
The inelastically scattered neutron spectrum would in this case correspond
to the motions of the centre of mass of the metal nucleus, Another difficulty
is, however, encountered: most metal nuclei are mixed coherent and in-
coherent scatterers. Therefore the interpretation of the scattered neutron
spectra is very much complicated as the coherence may impose strong limi-
tations on the collective scattering process. Very little is known about the
extent to which coherence effects are operating in the liquid phase. A féw
experiments have been made which have aimed at the study of the possible
coherent elastic or quasi-elastic scattering in liquid metals like lead [6] .
Similarly studies on liquid tin have been reported, which have shown the
existence of an inelastic neutron spectrum with similarities between the liquid
and solid phases |7). From the studies on liquid lead the time-displaced
self-correlation function and the correlation function for the sphere ofnearest
neighbours was derived and it was found that for a time of the order of about
5 X 10-3 s the atoms move relatively little, which would mean that vibrations

" of frequencies larger than 2 X 1012 ¢ /s may exist in the liquid. This would
in turn mean that it would probably be meaningful to speak about pseudo-phonons
in the liquid and about a frequency spectrum for these pseudo-phonons. This
would be so because for liquids, the parent solid of which has a high Debye
temperature, the frequencies in the frequency spectrum range up to high
values, for example 9 X 102 ¢/s for aluminium at room temperature [8].
Such a conclusion would also entail that, provided the nuclei have a coherent
scattering cross-section, a nucleus and its nearest surrounding would pro-
duce interference effects in the scattering process. Thisiwould thus be a
result of the slow diffusion in the liquid, which does not cause an appreciable
change in the average position of an atom during a vibrational period and
during the neutrons interaction-time., It would thus be expected that strongly
limiting conditions would be imposed on the inelastically scattered neutron
spectrum due to coherence effects in the liquid as well as in the solid poly-
crystalline case.

On the basis of these ideas we undertook a study of the scattering of cold
neutrons from polycrystalline and liquid aluminium at temperatures of 630
and 677°C respectively. The meltiné point of aluminium is 659.7°C. Alumini-
um is a practically pure coherent scatterer and should thus clearly show the
coherence effects discussed above. Moreover, this substance has been tho-
roughly studied earlier by the neutron scattermg techmque at various hlgher
temperatures [9].
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II. THEORETICAL IDEAS ON THE CROSS-SECTION FOR COHERENT
INELASTIC SCATTERING

As already pointed out above very few attempts exist to formulate a
realistic and practically useful formula for the coherent inelastic scattering
cross-section for slow neutrons. Already in 1944 WEINSTOCK [10] formu-
lated this cross-section for a polycrystalline sample on the basis of the
harmonic approximation. This general form is, however, not very practical
for comparison to experimental results. At the price of sacrificing the
generality of Weinstocks formula, EGELSTAFF [11] in 1953 derived a form
for this cross-section which was more amenable to practical work. Ac-
cording to this formulation the polycrystalline coherent inelastic single-
phonon cross-section may be given by

d2

oc-:oh ~ 2 . I . TrFT 1
dQde ~ 2eoh 2 Briq M
T
with
I-= __h_EEQQ-zw___fL‘ﬂl— (2)
2M k w exp (hw/kyT)-1

Here agy, is the coherent scattering length

B _ is the volume per nucleus in the crystal

T is a reciprocal lattice vector

{73 is the momentum transfer in the scattering process
d is the phonon wave vector

F, is the structure factor forthe plane series specified by 7
M is the mass of the scattering nucleus .

1?, k' are the ingoing and scattered wave vectors

2W is the Debye-Waller factor

hw is the energy transfer in the scattering process

kg is the Boltzmann constant

T is the absolute temperature

f(w) is the frequency distribution of the normal modes,.

Formally Eq.(2) describes the inelastic incoherent cross-section except for
a numerical factor. Equation (1) therefore gives the coherent cross-section
as the incoherent multiplied with a structure factor Z which is

7B,
Zsolid =Z 2BTkq . (3)

T

Formally this is similar to an application of a type of convolution approxi-
mation to the inelastic scattering [12]. Toarriveat Eqs.(1) and (2) it was
necessary to assume the Debye frequency distribution f(w) = 3w?/wg. Thus
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the simple form of the structure factor Z, which is nothing but a result of an
averaging process over the momentum conservation condition 8(K +d- 277) in
the polycrystalline cross-section, was obtained only by the use of the relation
w=cq. Secondly the form given for Eq.(2) was shown to be valid only for the
Debye frequency distribution. Without this last assumption Eq.(2) would
have contained instead of f(w) the factor g2 dq/d(a. It is seen that if w=cq we
find for the last factor the value w2/c3 which is proportional to f(w) only if
f(w) ~w?, The use of a general and more realistic frequency distribution in
Eq.(2) will probably lead to an error which may be considerable for the large
values of w. Only for small values of w may the true frequency distribution
'be realistically approximated by an w2-distribution. For larger values of
" w the true dispersionrelation deviates very much from w=cq. As a matter
of fact dw/dq may be equal to 0 for large q- or w-values. This means that the
expression Iin Eq.(1), before the introduction of the assumption of a Debye
spectrum, may reach values considerably higher than those calculated from.
Eq.(2).
By a suitable definition of average dispersion relations derived from the
realistic shape of f(w) it should, however, be possible to improve this situ-
ation. Such a definition was given by KROO et al.[13] in the form:

w q

ff(w) dw = 47rfq2dq . (4)
o 0

This relation establishes a connection q = q(w) and it is seen that f(w)=q? % )
as is generally required in the formulas derived by Egelstaff. The use of
Eq.(4) should be most realistic for a rather isotropic substance. Using
Eq.(4) and a frequency spectrum divided into a low frequency region de-
scribing waves of transversal nature and a high frequency region describing
waves of longitudinal nature (compare the X-ray work of WALKER, [8]),
two average dispersion relations are defined as follows:

w
_[2 !
Qrransversal [Z; f[f(w)]transversal dw:] ) (52)
0 ,
A %
=L .

Yongitudinal [41r f [f(w)]longitudinal dw} (5P)

0 .

The cross-section according to Eq. (1) may then be calculated separately for
the longitudinal and transversal branches. The two results are then added.

Already for the case of a solid the theoretical basis for a cross-section
calculation for a high temperature sample is relatively weak. In the case of
a liquid the current theories [14] dealing with the possible coherence effects
to be expected in the inelastic scattered neutron spectrum are very scarce.
As was pointed out in the introduction there are several experimental facts
speaking in favour of the existence of a very solid-like behaviour of a liquid
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when seen on a time scale in the range of 10712 s. Thus a frequency spectrum
for the proton motions was derived from measurements on water both
in the solid and in the liquid phase. The two frequency spectra were
found identical over most of the spectral range investigated which was
0.5 X 1013 <w< 15X 101 rad/s [5] . In the case of a liquid, however, the
frequency spectrumn can hardly be imagined to have the same ideal definition
as in a solid. The atomic vibrations must be strongly damped in the liquid
and it is not appropriate to speak about phonons in the sense of freely propa-
gating waves. Rather one may imagine a pseudo-phonon picture in the liquid
as well as in the high temperature solid. As a matter of fact it was already
shown for the case of aluminium at temperatures close to the melting point
that the lifetime of the phonons are of the order of 1071?s and the mean free
paths only of the order of a few wavelengths [9].

_ It therefore suggests itselfto develop for the liquid some sort of general-
ization of the formulas developed for the polycrystal |15]. It is well known
from elastic X-ray and neutron scattering that the discrete structure factors
¥, , for the Bragg reflections in the solid, shift over toacontinuous intensity,
determining structure factor 1++v(x) in the liquid case with broad peaks close
to the former sharp sets of Bragg planes.(For the shape of 1 + y(k) see Fig.4.)
It would consequently be logical to replace the summation over the discrete
lattice planes in the structure factor Z, as given by Eq.(3), by an integration
over a continuous distribution of ''reflecting planes', The extension of these
""planes' inthe liquid could be just a few atomic distances wide. The discrete
structure factor ¥, would simultaneously be replaced by the continuous liquid
structure factor 1+ v(7), where ¥ has been replaced by 7. We then have the
transformation

7 =Z T, _[f47r72 dr (1+v(1)] )
2B 7kq 2 T®*Q y

T

In order to use the transformed structure factor of Eq.(6) certain limits of
integration have to be established. To fix these, the existence of dispersion
relations for the liquid have to be postulated. At least one experiment has
been performed to establish the existence of a single phonon in a liquid {16] .
This experiment was, however, negative. According to our opinion this is
what may be expected: a liquid does not scatter like a single crystal. If
there is any coherent scattering at all, it has to be derived from the coupled
motion of atoms over a small region such as in a polycrystal. The dis-
persion relation thus must be originating from the strongly damped phonons
confined to a small region of atoms in the liquid. If, however, a dispersion
relation is postulated, a phonon wave vector is defined and the corresponding
value or values of w are also defined. Consequentlyz is defined and also

. - = d
the limits of integration, which apparently are '_r’max‘ = %“L and —'r'mm. = 'Kzﬂ,

The structure factor in the liquid case thus is

"max.,

2r?. | .
Zyquia = e | TA\Lrv(n))ar (67)
Tmin, '



COLLECTIVE ATOMIC MOTIONS IN LIQUID Al : 123

In order to be reasonably realistic one has to assume the existence of
at least two dispersion relations, one longitudinal and one transverse, which
is degenerate, both in the polycrystalline case and in the liquid case. "In
the case of aluminium, which is relatively isotropic, this appears as a
reasonable assumption. In the or1g1na1 formulas by Weinstock there enters
into the cross- sect1onthe product (eq eK) , where e is the polarizationvector
of the phonon and &, eK is a unit vector in the d1rect1on ofk. Ina very primitive
approximation one might imagine the longitudinal and transverse phonons to
be pure, i.e. with their polarization vectors parallel and at right angles to
the propagatmn direction. This results in values.for (& &)? of cos2 (] or
sin? © for the two cases respectively, where © is the angle between q andk.
The value of @ is easily found from the vector diagram