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Poreword

This Consultants Meeting, recommended by the International Nuclear
Data Committee (INDC) and convened by the IAEA Nuclear Data Section in
cooperation with the International Centre for Theoretical Physics (ICTP)
in Trieste, had the objectives to review the status and the use of nuc-
lear theories, models and computer codes in the evaluation of neutron
nuclear data needed for fission and fusion reactor design and other nuc-
lear applications and to work out recommendations for future developments,
with particular consideration of the requirements and possible cooperation
of nuclear scientists from developing countries.

The meeting clearly demonstrated the importance of current research
in basic nuclear theory for an improved understanding and determination
of nuclear model parameters, a more adequate and detailed description of
nuclear properties and reactions and thus for improvements in the pre-
diction of neutron nuclear reaction data needed in nuclear energy appli-
cations. Eight review and twenty contributed papers presented in plenary
followed by working group discussions formed the basis for a detailed re-
view of the current and required developments in the following areas of nuc-
lear theory:

- resonance and statistical theory;
- capture mechanism;
- nuclear level densities ;
- optical model;
- pre-compound decay; and
- fission theory;

including a survey of available and required nuclear model computer codes.
The meeting was thus in keeping with the traditional nuclear theory ac-
tivities of the ICTP.

The most important result of the meeting is therefore the recommen-
dation of an extended seminar of several weeks duration on nuclear theory
and nuclear model computer codes for applications to be held in 1977» As
appropriate places the meeting suggested the ICTP in Trieste for the nuclear
theory part, and the Centro di Calcolo of CNEN in Bologna or the NEA Com-
puter Program Library at Ispra for the computer code part of the seminar.



The proceedings of this meeting are published in two volumes.
Volume I contains the summary report of the meeting and the review
papers presented at the meeting, Volume II the contributed papers
presented at the meeting.

The meeting was attended by 39 representatives from 16 countries
and three international organizations. The excellent assistance by
staff from the ICTP and the Institute of Theoretical Physics of the
Trieste University contributed greatly to the success of the meeting
and is most gratefully acknowledged.
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Contributed Paper Ho« 1

R-MATRIX METHODS FOR LIGHT SYSTEMS.*

by

G.M. HALE

Los Alamos Scientific Laboratory

and

Service de Physique Nucléaire
Centre d'Etudes de Bruyères-le-Châtel

ABSTRACT.

The R-matrix formulation of nuclear reaction theory is briefly
reviewed, using the Green's function operator approach. General fea-
tures of comprehensive R-matrix analyses of reactions in light sys-
tems are discussed, illustrated by a description of an analysis of
reactions in the 'Li system. Some characteristics of dispersion
expansions for the R-and S-matrices are compared.

* Work performed under the auspices of the United States Energy
research and development administration.
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1. INTRODUCTION.

Since the development of R-matrix theory almost 30 years ago by
WIGNER and EISENBUD [l], it has been used extensively to describe
nuclear reactions in which resonance phenomena are important. Appli-
cations of the theory as a phenomenological tool to describe experi-
mental data have ranged in complexity from using the celebrated
BREIT-WIGNER line shape to represent isolated resonances to imple-
menting the full multichannel, multilevel treatment to account simul-
taneously for data in several reactions over an energy interval which
includes many (possibly interfering) resonances. Extensions of the
"conventional" R-matrix approach have also provided the framework
for calculations which use microscopic model Hamiltonians and wave-
functions that give the proper bound-state spectrum to generate
resonances in the continuum states. The general concern of this paper,
however, will be with essentially model-independent applications of
R-matrix theory to represent data from nuclear reactions, with par-
ticular attention to detailed analyses that have been performed in
recent years for reactions in light systems.

Some of the R-matrix formalism is briefly developed in the next
section. Although the dispersion form of the R-matrix is most rig-
orously established by the conventional approach of WIGNER and
EISENBUD [l] and LANE and THOMAS [2], we shall use the Green's func-
tion method introduced by BLOCK [3] which appears in many modern
descriptions of the theory. The dispersion form of the R-matrix comes
naturally and directly out of this representation, and extensions or
generalizations of the conventional theory are easily seen. Appli-
cations of the conventional theory to phenomenological analyses of
data from reactions among light elements are discussed in section 3.
Systematic features that have occured in comprehensive R-matrix
studies made at Los Alamos are noted, and some results from the anal-
ysis of reactions in the ' Li system are shown to illustrate the
technique. In the last section, some features of R-matrix and S-matrix
parameterizations are compared. Alternative expansions which have
characteristics of both theories are suggested.
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2. FORMAL CONSIDERATIONS.

R-matrix theory takes advantage of the short range of nuclear
forces to divide configuration space into two regions : an "interior"
region in which little is known about the forces or wavefunction, and
an "exterior" region in which both the forces and the form of the
wavefunction are presumed to be known. The boundary separating these
two regions is called the "channel surface", since the form taken for
the wavefunction in the exterior region is that for a superposition
of separated two-body pairs (channels) between which (at most)
Coulomb forces act. Information is transferred between the interior
and exterior regions by continuity conditions on the wavefunction at
the channel surface.

In order to make this matching process explicit, BLOCK [s] in-
troduced a method in which an operator^ which projects onto the
channel surface is artificially added to both sides of Schroedinger's
equation in the interior region,

(H - e +,£>B) ty =j?^ ip. (1)

The projection can be accomplished by defining channel surface "func-'

ft* V72 « <rc - *c> J————— ) ———~———£- Y^ (fc) (2)
2 M a / ac c c

in terms of the channel reduced mass M , radius r = a , and spin-c c c _
angle eigenfunction of total angular momentum and parity, Y (r ).

Solving equation (1) formally for the wavefunction gives :

* = (H - e +Je)"1«^? *. (3)
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IfO^Q is taken to have the form :

= I c) (a ——
c C dr

- Bc)- (c (4)

then :

I c) (ar
dr

- BC) (c if, ) (5)

and the projection of ijj at the surface is given by :

(c'|i|) ) =1 (c1 (H - e
c

-1 c) (a.

With the associations (c|ij>) = V , a
(c1 | (H - e

, —3 —— (c ip) = D , andc c ar c
T> c) = R i » because of the particular form (4)

taken foT:jS„, equation (5) reduces to the customary definition of the
D

R-matrix [2],

V , = y R , (D - B V )C * - - C G C C C (6)

Thus, the R-matrix can be considered as the channel surface matrix_. i
elements of a Green's function operator G = (H - e +o6L) which de-D is
pends on the parameters B through <£„> although the wavefunction in
(1) or (3) is clearly independent ofJ^^.,

D

A generalized form of the R-matrix results from expanding the
Green's function operator in any complete set of functions p),

GB = (u l (H - -I

W v) (v I (7)
p,v

p, v
where A = (p l H - e +«ct,|v) is a generalization of the level matrix.pv
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This type of expansion has been used in several calculations [4 - 7]
that predict the resonances of compound systems based on shell-model
Hamiltonians and wavefunctions which have successfully reproduced the
bound states.

For phenomenological applications, however, it is more advanta-
geous to expand the Green's function in terms of the eigenfunctions
| A) of H - e + <£„ which satisfy :

(H - ex +̂ B) | A) = 0.

If these form a complete set, the expression (7) simplifies to :

GB =£ U) <ex - e)'1 tt|»
A

giving the R-matrix :

Rc'c = (C'IGBIC) = £ A

~1 Y >with

in its familiar dispersion form.

Since the completeness property for the eigenfunctions JA) cannot
be established for Hamiltonians and boundary conditions in the general
case, the conventional approach [l,2j restricts the boundary conditions
(and Hamiltonian) to be energy independent so that R satisfies the
first-order, non-linear differential equation of RICATTI. The disper-
sion form then follows from the fact that solutions of the RICCATTI
equation can be expanded in an absolutely convergent MITTAG-LEFFLER
series [2] . It is this expansion in the eigenfunctions of (H-e +-e>B)
with B independent of energy that has been implied by the term "con-
ventional" R-matrix theory in the preceeding discussions.

The R-matrix for the boundary condition B' that is equivalent to
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the R-matrix for boundary condition B (in the sense that it gives the
same wavefunction) is given by :

V = [° " RB (B' ~ B)] ~] RB (9)

The transformation of resonance parameters between equivalent R-
matrices for energy-independent boundary conditions (B — » B') can be
accomplished analytically, as was pointedout by BARKER[s] , by diago-
nalizing the level matrix,

VA "S YCA- <Bc - V

The eigenvalues of this matrix are the new pole positions e ' , and theA
new widths are given in terms of V, the matrix of A' s eigenvectors by

' VA'A .

In order to calculate the results of experimental measurements,
the information contained in the R-matrix about the projections of the
interior wavefunction on the channel surface must be propogated to sim-
ilar projections of the exterior wavefunction. Since the exterior wave
function is a superposition of channel states, fy = ̂ T ty , these projec-

c . ctions can be thought to form the elements U , ^ (c1 |<Jj ) of a matrix
C O C

which has known radial dependence in the external region. In general,

U = Uj Aj + U2 A£ (10)

where AI and A« are radius-independent matrices in the exterior region,
and U, and U„ are diagonal matrices containing, for each channel, two
independent radial solutions of Schroedinger's equation for Coulomb
scattering. Measurements generally detect only the relative amplitudes
of the U. and U„ functions, and thus depend on quantities of the form

-1X = A„ A. . If U1 and U„ are chosen such that their elements have
essentially unit Wronskians with each other, then matching surface
projections (6) of the internal wavefunction to those of the external
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wavefunction in the form U. + U„X gives a simple relation for X,

X = U'1 R2 U"1 - Uj U'1, (11)

in terms of the R-matrix, R~, having boundary conditions
B? = a U' / U„ . Of course R„, having energy-dependent boundary
conditions, is not "conventional", but it is easily related to an
R-matrix having energy-independent boundary conditions using equa-
tion (9) .

Depending on the choices of U and U«, X in equation (11) becomes
the S - (or collision) matrix, T - (or transition) matrix, K - (or re-

-1/2actance) matrix, etc. For instance, if U. = (K a ) F and-1/2 ic c c i.
U = (K a ) (G + iF ), where F and G are, respectively, the<£c c c c c L» c.
regular and irregular Coulomb functions evaluated at r = a for chan-C t—
nel c in which the wave number is K , X represents the amplitudes ofc
outgoing spherical waves for incident plane waves of unit flux, which
is sometimes called the nuclear T-matrix. In this case,

B2 = L = a (G' •*• iF') / (G + iF)
= S + iP,

and from (11) we have :

TN = (Ka)1/2 (G + iF)"1 RL (G + iF)"1 (Ka)'/2 - F (G + iF)"1

5, (12)

where S and P are the Coulomb shift and penetrability functions and
0 = arg (G + iF) is the negative of the so-called "hard sphere" phase
shift. The quantity T„ is important for calculating the observables of
nuclear reactions, because it contains the matrix elements of
Wolfenstein's M-matrix [9] in the basis of channel eigenfunctions (Y )
of total angular momentum and parity. A simple change of basis to the
channel spin functions allows one to calculate arbitrary observables
for each reaction from the T-matrix and the initial-and final-state
spin operators, using Wolfenstein's trace prescription.



We mention finally in this section an interesting property of
R-matrices of the type R„ that occurs in equation 11. If the disper-
sion form were justified for this function (either by completeness
arguments, or by the Mittag-Leffer expansion) the pole positions and
residues of the associated matrix X of relative amplitudes are inde-
pendent of the matching radius in the exterior region. This can be
seen by considering linear combinations of the columns of the U-matrix
of equation (10) to give elements of the value vector V = (c|ifi) ap-
pearing in equation (6) :

v = U a = U ctj + U2 a2-

The vectors a1 = A. a and a„ = A„ a are independent of matching radius
in the exterior region since AI and A„ have the same property. The
vector a is determined to within an overall constant by a subsequent
condition on a which is also radius independent. This condition is
that at the e, of X (and of R_) , ot, = 0 (or det (A.) = 0). Thus theA Z l l
vector Y-i of elements (clx) is given by :A

YA = U2A «2A,

and R~ has the expansion :

Inserting this expression into (11) gives :
T

—1 a?l ^9} —1 —1
X = £ < U 2 A V>-f^HU2AU2 > - U , U 2 ' (14)

A A

TThus, the poles e and residues cu, a01 of X have the stated propertyA Z A Z A
due to the radial independence of a and a„ in the external region.
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3, APPLICATIONS TO LIGHT NUCLEI.

In this section, we discuss the phenomenological application of
conventional R-matrix theory to analyse data from reactions among light
nuclei. The restriction to light nuclei is not essential in principle,
but in practice, the large number of open channels and resonances en-
countered in heavier compound systems does not allow R-matrix theory
to be applied without severe approximations. Limited computing re-
sources often force approximations in R-matrix calculations even for
light systems.

The most common approximation technique is to perform single-
level fits, either to experimental data, or to individual-energy
phase-shifts determined from data, to find the R-matrix parameters.
In either case, the T-matrix of equation (12) is used, which for a
single level reduces to :

-10 . T ,r .n -10 -10C C C 3_ ß C C ftT , = e ——-— e sin $ e - ô . e sin 0 ,c'c r ce c

-1 ( 1/2 T( 1/
V e, +where ß = tan v A . ,

and F =T T with T = 2 P y\ ,*-" c c c cX
o

A =T A with A = - S Y -vc c c c 'cX .

The BREIT-WIGNER form, which is actually a special case of these
expressions in which A and T are taken to be energy independent,
holds for resonances that are relatively narrow and have no appre-
ciable width in channels that are close to threshold. The single
level approximation has been widely used to represent qualitatively
isolated resonant features in experimental data, and has been, for
the most part, successful in identifying their spins and parities.
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Since resonances are rarely truly isolated, however, multilevel
and distant-level (or background) effects must be taken into account
in order to obtain resonable fits to experimental data over appre-
ciable intervals of energy. This is the situation that usually con-
fronts evaluators of neutron cross sections, for instance. Multi-
level R-matrix codes have been used at several institutions (Ohio U.,
Yale, Argonne, Oak Ridge, Cal. Tech., Duke, Karlsruhe, Geel, and Lasl,
to name a few) to fit data from reactions among light nuclei. These
fits have accounted for distant-level contributions in various ways,
and in some cases have allowed for multichannel affects. We will
summarize in the remainder of this section some of our experiences in
using perhaps the most general of these codes to analyze light sys-
tems.

3.1 General Features.

The energy dependent analysis (EDA) code [lu], developed at Los
Alamos under the direction of D. DODDER, is a general R-matrix fitting
code which accepts two-body channels having particles of arbitrary
spins, masses, charges, parities, and relative angular momentum.
Starting from a parameterization of the multichannel R-matrix,

v, . Y->'Ac' 'Ac

A

at channel radii a for boundary conditions B , the code essentiallyc c
transforms R to R^ using equation (9), and then calculates elements of
the T-matrix from equation (12). By implementing the Wolfenstein
M-matrix formalism [9] in its general form, EDA is able to calculate
arbitrary experimental observables for any of the two-body reactions
possible in the system. Given a set of experimental measurements for
these reactions, an automated search routine adjusts the R-matrix para-
meters to achieve a "best fit" in the usual least-squares sense to all
the data included.

In the last few years, analyses using this code have been perfor-
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4med for reactions in several light compound systems, including Li,
Li, He, Li, B, C, N and 0. Typically, these analyses have
spanned something like 10 MeV excitation energy in the compound sys-
tems, and have obtained good fits to almost all available data for
reactions among the open two-body channels. Many of these analyses
have been discussed elsewhere [ll-14], so that only certain general
features they have in common will be considered here.

3.1.1. Parameters.

The parameterization of the R-matrix involves specifying the
following different types of quantities :

As was pointed out in the previous section, the choice of bound-
ary conditions has no effect on the wavefunction, and thus upon the
calculation of measured quantities, so that one chooses these numbers
only to simplify the interpretation, or perhaps the relations of the
resonance parameters. For energy-independent boundary conditions, it
is difficult to choose a single number for each state which simplifies
interpretation of the parameters at all energies. For instance, the
common choice B = S (e ) forces a maximum of the T-matrix to corre-c c o
spond with a pole of the R-matrix (no level shift) only at e = e . For
simple potential scattering in each channel from a square well of ra-
dius a , the choice B = - 1 (1 being the relative orbital momentumG C C C
quantum number in channel c) results in reduced widths :

2

that are independent of X and 1 . Although we have found this relation
to hold approximately in simple cases like the scattering of nucléons

4 r tfrom He [l\j , it has not proved useful for accurate representations
of experimental data. Our approach for data fitting, therefore, has
been to specify R-matrix parameters for some convenient choice of
boundary conditions (usually B = 0),knowing that this set can be transformed
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analytically to any other set corresponding to energy independent
boundary conditions more appropriate for interpreting the resonance
parameters.

Chœme I

The extensive use of the single-level approximation has left the
impression that R-matrix fits in general are artificially sensitive
to the choice of channel radii. We have found that this apparent
sensitively comes indeed from the neglect of "background", or distant-
level contributions, and that one can use radii roughly equal to the
sum of the radii of the interacting particles in all channels, pro-
vided the background contribution is taken into account. In particular,
this approach appears to better represent (with the same number of
parameters) "hard sphere" s-wave phase shifts over large energy re-
gions than does the usual technique of choosing separate "hard sphere
radii" in the s-wave states.

We represent the distant-level contribution in these analyses
with a few-pole terms in the R-matrix, located both above and below
the energy region of interest. Since these poles do not necessarily
correspond to known resonances outside the region of interest, their
positions are generally quite uncertain, and often have to be fixed
at large numbers in the analyses. The reduced widths found in these
distant pole terms are also generally large, giving rise to a slowly
varying, non diagonal background that is significant at all energies.
These non diagonal distant-level contributions are interpreted as
indications that direct reaction mechanisms are present L2].

The parameters (e^5Ycx)of P°le terms in the R-matrix corresponding
to actual resonances in the energy region of interest are determined
by fitting resonant features in the data. For light nuclei, these
features range from relatively narrow and distinct peaks to broad and
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overlapping structures. In the latter case, especially (as for the Li
and He systems), it has been necessary to include measurements of
several different types in order to establish resonance parameters for
the anomalies.

3.1.2. Data.

Our general approach has been to include all available experi-
mental data for reaction among the open channels. For neutron cross
section evaluation, this has of ten meant including data (ie, charged
particle cross sections, polarizations, etc.) for which smoothed
representations are not required in the file. However, a comprehensive
approach has proved to be valuable, particularly in cases where the
neutron cross sections of interest are uncertain due to the difficulty
in measuring them [12]. In all cases, the use of data from several
different reactions and from many different observable types is designed
to limit the multiplicity of possible solutions for the resonance pa-
rameters that might exist if, for instance, only total cross sections
were included in the fit. At the same time, the analyses have checked
the consistency of all the experimental information included, making
allowances automatically for possible differences in normalization
and energy scale among different data sets.

7
3. 2. Analysis of reactions in the Li system.

An analysis which illustrates many of the points just discussed
is that performed for the reactions in the Li system. At excitation
energies below 9.4 MeV, the open two-body channels are t -f- He and
n + Li (photon channels are neglected). The analysis takes into

4 4account most of the known data for the reactions He(t,t) He,
Li(n,t) He, and Li(n,n) Li (see Table 1), and most of the known
levels in this energy region (see Fig. 1). For reasonable values of

6 4the channel radii ( 'v 4.2.f. for n + Li and 4.0.f. for t + He), non-
diagonal distant-level contributions were required in all states.

The calculations shown in Figs. 2-4 are representative of the
4 4generally excellent fits obtained to He(t,t) He scattering data at
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triton energies between 2 and 11 MeV. The energy region shown (7,5 -
10 MeV) is of particular interest in this analysis since it contains
two /2 - resonances, one of which lies below the n + Li threshold,
and the second of which shows up prominantly in the n + Li reactions
at low neutron energies. Measurements of neutron cross sections [15-
17] in the vacinity of the second resonance show substantial disagree-
ments, and appear to be inconsistent with unitary conditions relating
them. The data shown in figs.2-4 are accurate new measurements of the
4 4He(t,t) He differential cross section which were made recently by
JAEMIE, et al [l8] to introduce independent experimental information
into the determination of parameters for these levels. Including these
new measurements in the analysis indeed imposed stringent additional
constraints on the values of the neutron cross sections. The resulting
curves for the neutron total cross section and the (n,a) integrated
cross section are shown over the resonance in fig. 5. The total cross
section agrees reasonably well with recent measurements [15,19,20"],
while the (n,a) cross section lies between the values of recent mea-
surements [l6,2lj, which differ by more than 25 % in the peak of the
resonance. Curves for the Li(n,t) He differential cross section are
shown in Fig.6. The calculations reproduce the large asymmetry seen
by SCHRÖDER, et al [22] in the angular distribution at 25 KeV, and
agree fairly well with the measurements of OVERLEY, et al [23] at high-
er energies. Good fits (not shown) were also obtained to LANE's mea-
surements [l7J of n + Li elastic angular distributions and polariza-
tions.

The predictive capability of the R-matrix parameters obtained
from this analysis is illustrated in the last figure. Shown in Fig. 7

4 4 6 4are predictions of He(t,t) He and Li(n,t) He polarizations compared
with recent measurements [24,25]. One sees that the measurements were
anticipated by the calculations in considerable detail, even to the4threshold effect (insert, top part of figure) evident in the He(t,t)
polarization excitation functions.

Thus, we feel that the Li system is phenomenologically well
understood at excitation energies below ̂  10 MeV in terms of a single
set of R-matrix parameters that can reproduce (or predict) the results



of any experiment performed for the reactions of tritons with alpha
particles, or for those of neutrons with Li. These parameters obvi-
ously have direct value in obtaining evaluated nuclear data for these
reactions, and with the proper interpretation, could be used to guide
microscopic structure calculations for Li.

4. DISCUSSION AND CONCLUSIONS.

A question often asked proponents of R-matrix theory is, "why
aren't you using S-matrix theory, instead ?". S-matrix expansions were
developed in a series of papers by HUMBLET [26-28] to answer what he
felt was a serious defect in R-matrix theory, namely : that individual
terms of the collision matrix (S = 1 + 2iT) derived from the theory
were not explicitly independent of the matching radius in the exterior
region. HUMBLET's direct expansions indeed have this property, but
they rely on the background contribution to give the S-matrix a number
of other important features, such as unitarity, threshold effects,and
truncation of the partial-wave series, that come automatically from
R-matrix theory. Our feeling is that it is preferable to use background
terms in the R-matrix to supply the radial independence of the S-matrix,
than to depend on similar terms in the S-matrix to give important prop-
erties of nuclear reactions.

However, the considerations at the end of section 2 show that
radial independence of asymptotic quantities derived from the R-matrix
could be made more explicit if the boundary conditions were chosen to
be logarithmic derivatives of solutions of the wave equation in the

mm iexternal region. In fact, choosing B=a(G' + iF') (G + iF) = L
generates the S-matrix expansion given (but not recommended) by
HUMBLET in eg. A1.8 of réf. [28]. Equating the boundary condition to
the logarithmic derivative of a real solution in the external region
would result in an expansion for the real asymptotic quantity X having
similar properties of radial independence, but avoiding the complica-
tions of having complex poles and residues. A dispersion form is not
immediately justified for this type of R-matrix, of course, since it
has energy-dependent boundary conditions.
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The analyses we have performed in the light systems indicate that
conventional R-matrix theory can be used to give a detailed accounting
of data for several reactions simultaneously, and is therefore a use-
ful tool for evaluators with access to large computers. Methods of
representing the distant-level, or background contributions in these
calculations is an area that deserves more study. It is interesting to
note, however, that the background contributions which JOHNSON [29J
calculated from an optical potential for his analysis of n+ 0 resem-
bled distant pole terms, which indicates that even this simple repre-
sentation may suffice for purposes of data fitting.

Most of the analyses mentioned above were done in collaboration
with one or more of the following people : D. DODDER, K. WITTE, R.
NISLEY, J. DEVANEY, E. ARTHUR, and G. AUCHAMPAUGH. Valuabe assistance
in obtaining and interpreting experimental data was given by P. YOUNG,
N. JARMIE, L. STEWART, and G. OHLSEN. The author gratefully acknowledges
the help of the staff of the Service de Physique Nucléaire de Bruyëres-
le-Châtel in preparing this paper.
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7Li SYSTEM

OBSERVABLE TYPES ANALYZED :

Reaction
Total neutron Integrated
Cross Section Cross Section

6T . XLi

6T . , . 6T . XLi(n,n) Li

6Li(n,ct)T X

4 aHe(t,t) He

Differential
Cross Section Polarization

X X

X

X X

TABLE 1.

Types of data included in Li analysis.
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FIGURE CAPTIONS.

Fig. I. Level diagram for Li. The dotted lines indicate the range
over which data were included. Checked levels correspond
approximately to those in our analysis. Additional levels
found in the analysis are indicated in parentheses.

4 4Fig. 2. He(t,t) He excitation functions at center-of-mass angles of
26.3, 49.6, 69.0, and 123.0 degrees. The solid curve in this,
and all subsequent figures, gives the R-matrix calculation.
Data points are from Ref.[l8J.

4 4Fig. 3. He(t,t) He excitation function at 150 degrees center-of-mass
angle, showing the effects of both 5/2 - resonances.

4 4Fig. 4. He(t,t) He angular distributions at E = 8.229, 8.580,
8.980, and 9.844 MeV. The measurements are from Ref.[l8],

Fig. 5. Predicted values of the neutron total cross section (upper
curve) and of the Li(n,a) reaction cross section (lower
curve).

6 4Fig. 6. Li(n,t) He angular distributions at E = .025, .100, .240,
and .400 MeV. Data at the upper three energies are those of
OVERLEY et al. Ref. [23],

Fig. 7. Polarization predictions for reactions in Li :
4 4a) Excitation functions for the He(t,t) He analyzing power.4b) Angular distributions for the He(t,t) analyzing power.

Data are from Ref [24]-.
Excitation curv«
from Réf. [25].

c) Excitation curve for Li(n,t) He analyzing power. Data are
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analysis. Additional levels found in the analysis
are indicated in parentheses or brackets.
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ABSTRACT
Methods for extracting photon strength functions are briefly

discussed. We follow the Brink-Axel approach to relate the strength
functions to the giant resonances observed in photonuclear work and
summarize the available data on the E1, E2 and Ml resonances. Some
experimental and theoretical problems are outlined.
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1 . INTRODUCTION

The main features of the photon strength distributions are well
established. We know that most of the strength of the most important
multipoles is localized to particular energy regions. The distributions
exhibit resonance shapes and we label them as giant resonances. The
basic properties of the giant El resonance (GDR) are well established
and w i l l be briefly reviewed. Experimental work is in progress to
determine the localization and strength of the giant E2 resonance (GQR)
as well as of the giant Ml.resonance.

The energy region of primary interest in neutron reactions is
around and below the neutron binding energy which is well below the peak
of the GDR and GQR . Unfortunately, very l i t t l e information from photo-
nuclear work is available in this energy region and, in the general case,
the photon strength has to be estimated. We shall follow the approach of
Axel ["ij for the extrapolation of the photon strength into the bound
energy region. In applications to neutron radiative reactions a further
assumption has to be made in order to describe j-ray transitions to

referred to,
excited states. This assumption,! as the Brink hypothesis [2], states that

each excited state has b u i l t on it a giant resonance identical to that
for the ground state but shifted upward in excitation energy by the energy
of the particular state. Employing these assumptions, a y~ray strength
function can be derived to form a basis for comparisons with experimental
results on average strengths of radiative transitions.

This field has recently been surveyed in an excellent review paper
by Bartholomew et al [3]- Important aspects of the concept have also been
illuminated in recent conference reviews, e.g. Jackson [V] and Khanna and
Bartholomew \_S\ . Comparisons with recent experimental results are in

progress.
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2. THE BRINK-AXEL APPROACH

The y-ray strength function is defined [3] as the average reduced
width for transitions of a particular multipole type. For a transition
of multipole XL (L is the multipolarity) and energy E from a level at

7TE, of spin and parity J , the strength function is

FT"
Y E^2L+1 J

where T . is the partial y-ray width averaged over states with spin and
ITparity J in the neighbourhood of E, and p.(E,) is the level density forA J A

such states.
The strength function for ground state transitions can be related

to the photo-absorption cross section,ïï in b, by

~J /r S

y) - 2 *10
r9JEY

where g. = •=-:—=- and a (E ) is the average absorption cross section ofJ t. J +1 "fd y
a nucleus with ground state spin J for the excitation of levels with spin J
at energy E, = E . The total observed absorption cross section, a , forA y Ya
the considered multiple XL is the sum of al
transitions one generally assumes [2] that

__the considered multiple XL is the sum of all contributing a . For E1ya

yaE1 ~ 3 yaE1

The idea of the Brink-Axel approach is to apply the relation for
transitions from the ground state to any excited state A not only for
transitions from the excited state A to the ground state but also for
those to other excited states. This implies that all levels are treated
equally and only the average statistical properties of the levels are
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considered. Single-particle effects, for example, which are of dominating
importance in reactions of direct type, have to be dealt with separately.

The Y"raY strength function is, thus, in this approach proportional
to the photon absorption cross section, a , and a pre-requisi te for theya
approach is that this cross section can be obtained from available giant
resonance data.

3. THE GIANT E1 RESONANCE

Perhaps the most remarkable feature of the E1 resonance is its
localized nature, despite the fact that it occurs in the continuum with
many decay channels open. The localization as a function of mass number
i s schematical 1 y shown in fig 1 which also indicates the localization of
the E2 and M1 resonances. (The figure is taken from a review article by
Hanna [6]). The E1 resonance occurs at an energy of about 77/A

MeV in medium and heavy nuclei. In l i g h t nuclei, however, the energy of
the resonance falls off below the dashed l i n e at 63/A MeV, which
indicates the suggested position of the isoscalar GQR.

The resonance energy E s 77/A is close to the value predicted
from the hydrodynamical model. In this model the photon absorption cross
section may consist of one or two Lorentz curves.

2 a.
a(E) = E '

i=1 1+(E2-E.2)2/E2r.2

2
ao = /a(E)dE = I £ a.r.

The strength of the GDR is often given in terms of the Thomas-Reiche-Kuhns
formula (referred to as the classical dipole sum rule)

a = /adE = 60 -^ MeV-mbo A
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The experimental results in terms of this dipole sum rule are shown in
fig 2. The general trend of the data integrated over the resonance is
that the cross section for heavy nuclei exceeds the classical sum rule by
a factor of about 1.3. In the medium range the experimental value is
close to the sum rule and for light nuclei it falls below it.

Two Lorentz curves are required to fit the photo absorption cross
section for a deformed nucleus and it is well established that the area
under the higher energy peak is twice that under the lower energy peak.

In some light and medium-weight nuclei the GDR is observed to be re-
latively wide and in some cases there is evidence for two peaks separated
by 3~^ MeV. This broadening is attributed to the isospin splitting
of the resonance into two components, T> and T<. This effect should have
important consequencies for neutron reactions because an incident neutron
should excite only the T< states of the formed nucleus (the T_ states are
isospin forbidden). We shall follow the work of Fallieros and collaborators
[7] to obtain estimates of the positions and relative strengths of the
two components.

The T = T+1 and the T = T components are displaced upward and
downward with respect to the center of the dipole resonance by the symmetry
energy term and the energy difference can be written as

V is nearly the same as the strength of the isospin part of the optical
potential. From the experimental data one obtains

V * 60 MeV

which has been shown by Fallieros and collaborators to correspond to a
single-particle value around V - 100 MeV.

The ratio of the strengths is given by
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S(V 1 , 1-1.5T/A2 / 3 .

WT ' 1+1.5/A2/3 ^

From these formulas one obtains the energy splitting and strength ratio
for the following examples (taken from Paul, ref [?])

T

AE

sog

13c

1/2

6.9

* i

i*2Ca

1

2.9

« r»

60 M-Ni

2

3.0

« i

88Sr

6
k. 8

.n. « r»

142Nd

11

5.1

208Pb

22

6.6

0.03 0.003

We note that the energy separation is at least of the order of the width
of the GDR and therefore the two components should be relatively easy to
separate and identify. The T component is expected to carry the dominating
part of the GDR strength in heavy nuclei whereas the strength of the T
component, which should not be excited in neutron reactions, is appreciable

in medium-weight nuclei and becomes at least as large as the T strength
i n l i g h t nuclei.

In conclusion, the basic properties of the GDR are generally quite
well established. The experimental photon absorption cross sections can
be fitted with one or two Lorentz curves except for some (in particular
light) nuclei which exhibit a more complex resonance structure. Thus, for
estimates of the photon strength in the energy region of most interest in

neutron reactions, i.e. close to the neutron binding energy and below, we
strongly recommend to use the experimental data on GDR and Lorentz curves
to provide predictions for the shape and magnitude of the strength function.

k. THE GIANT E2 RESONANCE

The observation some years ago of a compact isoscalar E2 resonance
just below the E1 resonance in experiments on inelastic electron and proton
scattering has started a considerable activity to establish the properties
of this resonance. The results from various experiments are s t i l l contradic-
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tory in many cases but some systematic trends seem to be possible to
distinguish. In heavy nuclei, say A > 40, the E2 resonance is localized at
about 63/A MeV in agreement with predictions of Bohr and Mottelson and
recent shell-model calculations. It is expected that the resonance exhausts
the isoscalar E2 sum rule (Gell-Mann - Telegdi sum rule)

2
a » • / % dE * 0.22 -\pr mb/MeV

E A /j5

except for the strength related to the well-known first excited 2 state,
which carries about 10% of the sum rule strength. However, only a fraction
of this strength has been observed in several cases which indicates that
the E2 strength might be spread over a wider energy region. In light nuclei,
it now seems well established that the E2 strength is distributed over a
very wide energy region extending from bound energies up to or above the E1
resonance.

5. THE GIANT Ml RESONANCE
Information on the giant M1 resonance is rather extensive for light

and medium-weight nuclei but s t i l l scarce for heavy nuclei. The major
strength comes from spin-flip transitions of nucléons with maximum orbital
angular momentum and it is observed for light nuclei that this strength is
concentrated to rather few levels - sometimes only one or two levels. The
experimental results for heavy nuclei indicate that the Ml strength is
spread in a similar way as the El strength but the data are incomplete and
at present no systematic comparison can be made.

The M1 strength appears to be localized mainly in the energy region
between about 30/A 3 and 45/A 3 MeV. From the results on light nuclei
one might infer that the strength exhausts the M1 sum rule. This corresponds
to an integrated strength which is roughly two orders of magnitude lower than
that of the E1 strength. However, the localization of the M1 strength - on
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the low-energy tai l of the E1 resonance rather close to the neutron.binding
energy - may imply that it is important to consider this strength in neutron
reactions. Its importance is closely related to the spreading of the
strength but, as mentioned above, data are incomplete and much more work
needs to be done in heavy nuclei.

6. EXPERIMENTAL METHODS

Several methods can be employed to experimentally test the v a l i d i t y
of the concept of photon strength function and to determine the form and
magnitude of the function in the photon energy region not readily available
to photon absorption work.

The methods related to neutron reactions include high-resolution
(GeLi) spectroscopy of y-rays from neutron resonance capture in which
partial radiation widths of primary transitions are determined. Thus, the
absolute magnitude of the Y~raY strength can be obtained. However, the
energy range is rather limited because of resolution and difficulties in
mult i polarity and primary assignments. The measurements have to be made

for many neighbouring resonances to reduce Porter-Thomas fluctuations.
Alternatively, the average Y~raY spectra following the capture of neutrons
with an energy spread large enough to span many resonances, can be measured
to give average relative intensities of transitions to particular final
states. Absolute calibration can be achieved by normalizing to the thermal
capture spectrum.

The gross-structure shape of a Y~raY spectrum, e.g. from neutron
capture, can be utilized to yield information on the energy dependence of
the y-ray strength function over a wide energy region. Based on the
assumption of a statistical Y~ray decay from any excitation energy region, a
strength function can be found to give agreement with the observed spectral
shape. The method has been observed to work surprisingly well in heavy nuclei
An extension of this method is the "sequential extraction method" in which
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the y-ray decay from each of a complete set of contiguous energy intervals
is measured In the same experiment such as the (d,pY) coincident experi-
ments. Hence, it is possible to unfold the primary j-ray spectrum for each
energy interval and to deduce a relative strength function. To obtain
absolute values of the strength function, normalization is made to the
results from neutron resonance capture.

Other methods include studies of elastic and inelastic scattering of
y-rays and of photoneutron reactions just above the neutron separation energy.

RESULTS

The results from various methods to determine the Y~i~ay strength
functions in nuclei with A £ 90 have recently been reviewed by Bartholomew
et al [3]. In a few cases experiments with different methods have been

181performed on the same target nucleus. One such exampel is Ta, for which
the results are shown in fig 3. The strength' functions shown by open
circles in 3a and in 3b were obtained by fitting the experimental (n,y)
spectra from thermal capture and from 0.7 and 2.6 MeV neutron capture,
respectively. The strength function, represented by solid triangles was
obtained from the sequential extraction method using the (d,py) reaction
and the solid points are from average y-ray intensities of individual
transitions following capture of a ̂  2 keV broad beam of neutrons. The
strength functions obtained from the different methods are consistent with-
in the uncertainties inherent in each method. The departure observed for the
two curves from fast neutron capture may reflect experimental difficulties
related to appropriate background subtraction. New experiments with improved
signal-to-background ratio are in progress in an attempt to solve this
p rob1 em.

The overall agreement is quite good between the experimental strength
function for Ta and the Lorentzian tail of the giant dipole resonance
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(dashed curve). Similarly, for some of the other nuclei, which have been
studied, the energy dependence of the strength function is observed to
follow that of the Lorentz curve, although in some of these cases the
absolute magnitudes do not agree. The reason for this discrepancy is not
known.

from
Considerable departure in the energy dependence / the Lorentz curve

is observed for nuclei in the range 190 ~ A £ 208 and also, but less
197obvious, for nuclei in 110 £ A £ 134. A well-known example is Au, for

which the experimental results are summarized in fig 4. In 4a the strength
function deduced from photon elastic scattering (solid points) and, above
threshold, from photoneutron measurements (open circles and triangles)

197is shown. Figures 4b and 4c give the results for the reactions Au(n,y)
i n-i

and Au(d,py). The open circles represent here the strength function
extracted by the spectrum fitting method from (n,y) spectra, the solid
triangles by the sequential extraction method and the solid circles by the
high-resolution work on individual j-ray intensities following capture of
neutrons from a ̂  2 keV broad beam.

The strength functions obtained from the different methods are
consistent in the region of overlap, i.e. E > 4.8 MeV. At about 6 MeV the
absolute magnitude of the strength function is consistent with the Lorentz
curve (dashed line), however, below 5 MeV the extracted strength functions

depart significantly below the Lorentzian. In this representation, taken
from Bartholomew et al [3], there is evidence for a maximum or pigmy

1 Q~7 1 QÖ
resonance, peaking at E 26 MeV in Au and Au. Results from other

work show a more pronounced resonance shape than indicated in fig 4. The

differences can probably be ascr ibed to experimental d i f f icul t ies, in parti-

cular related to the determination of an appropriate background. Prel iminary

results from an (n,y) experiment by Earle, Bergqvist and Nilsson wi th

improved signäl-to-background ratio indicate a more dist inct ive resonance
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than shown in fig *t.
It has been suggested [8J that these irregularities in the strength

function is a result of a threshold effect which appears when the energies
of the neutron particle states with low orbital angular momentum are
close to the neutron threshold. Numerical calculations of this effect
based on the shell model are now being performed-by Zimanyi and Csernal.

The empirical strength functions deduced by spectrum fitting methods
are mixtures of all multipoles. However, there is experimental evidence
that the decay of levels excited by neutron capture is dominated by dipole
transitions but in these methods there has been no attempt to separate the
E1 and M1 contributions. The information on the energy dependence of the
Ml strength is rather fragmentary. In some nuclei, resonance-averaged
measurements exhibit an E energy dependence for M l p a r a l l e l l to that for
E1 radiation. A representative exemple is the result for Ta (by Bol linger,
Erskine and Thomas quoted by Jackson [4]). Some other results indicate a
peaking of the strength between 7 and 9 MeV. However, much more data are
required to establish the properties of the M1 strength function.

Almost no data on the E2 strength are available.

NON-STATISTICAL EFFECTS IN NEUTRON CAPTURE
Most of the non-statistical effects that have been found in low-

energy neutron capture are in s-wave capture for nuclei with A = 35"65 and
p-wave capture for A = 90-100. For reviews of these effects, see Lane [8],
Mughabghab [9] and Chrien [lu]. The resulting Y~ray spectra are often
dominated by a few Y~i*ay lines to levels with large neutron single-particle
strength. It may seem meaningless in these cases to discuss the statistical
concept of photon strength function. Nevertheless, we think that it should
be worthwhile to investigate the applicability of the Brink-Axel approach
also to nuclei with A < 90.



The neutron capture reactions at energies above about 5 MeV have been
observed to proceed by direct and semi direct processes. Work is in progress
to find an appropriate theoretical description of these effects (see ref



REFERENCES

[1] P. Axel, Phys. Rev. 126 (1962) 671
[2] D.M. Brink, Doctoral Thesis, Oxford University (1955)
£3} G.A. Bartholomew, E.D. Earle, A.J. Ferguson, J.W. Knowles and M.A. Lone,

Advances in Nuclear Physics 7. 097*0 229
[4] H.E. Jacson, Proc. of the EANDC Topical Discussion on "Critique of

Nuclear Models and their Validity in the Evaluation of Nuclar Data"
Tokyo 1975, p. 119

[5] G.A. Bartholomew and F.C. Khanna, 2nd Symp. on Neutron Catpure Gamma
Ray Spectroscopy and Related Topics, Petten 1974, P- 119

[6] S.S. Hanna, Proc. Int. Conf. on Nuclear Structure and Spectroscopy,
Amsterdam 1974, Vol. 2 p. 249
Experimental data taken from
E.G. Fuller, H.M. Gerstenberg, H. Vander Molen and T.C. Dunn,
Photonuclear Reaction Data, NBS Special Publication 380 (1973)

[7] Review papers by S. Fallieros and by P. Paul, Proc. tnt.
Conf. on Photonuclear Reactions and Applications, Asilomar 1973,
p. 401 and 407

[8] A.M. Lane, 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy
and Related Topics, Petten 1974, p. 31
J. Zimanyi and B. Gyarmati, Int. Symp. on Correlation in Nuclei,
Balatonfüred 1973, OMKDK Budapest 1974, p. 313
B. Gyarmati, A.M. Lane and J. Zimanyi, Phys. Lett. 5£B_ (1974) 316

[9J S.F. Mughabghab, 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy
and Related Topics, Petten 1974, p. 53

[lu} R.E. Chrien, 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy
and Related Topics, Petten 1974, p 247

jj 1J I. Bergqvist, 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy
and Related Topics, Petten 1974, p. 199



- 42

FIGURE CAPTIONS

1. Location of giant resonances (from réf. [6]).

2. Integrated absorption cross section normalized to the classical
dipole sum rule (from Fuller et al. [6]). Solid points were
obtained from integrating Lorentz line fits to neutron production
cross section data. Open circles and squares are from total absorption
cross section measurements with integration taken to 30 MeV for circles
and to 1^*0 MeV for squares.

3. Photon strength function for Ta (from réf. [3]) derived from Lorentz
curves fitted to the observed giant dipole resonance (dashed curve)
compared to the results of different experiments (see text).

k. Photon strength function for Au (from réf. [3]) derived from Lorentz
curves fitted to the observed giant dipole resonance (dashed curve)

compared to the results of different experiments (see text).

5. Energy dependence of the average intensities of Y~rays to individual
1 Ro -states in Ta (from réf. [4j).
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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On Threshold Effects in the Statistical Distribution
of Neutron Capture Widths

I, Rotter, H,W. Barz, Zentralinstitut für Kernforschung
Rossendorf bei Dresden, GDR,

J» Höhn, Technische Universität Dresden, GDR0

Abstract
The following effects are investigated: (i) The existence of
threshold states, i.e. states in the neighbourhood of decay
thresholds which are not connected with states of the compound
nucleus, (ii) The existence of a shift of the resonance states
which is generated by a threshold and can lead to an accumula-
tion of compound nucleus levels in the neighbourhood of thres-
holds, (iii) The existence of a mixing of the compound nucleus
levels via the continuum which can lead to a systematic change
of the widths and positions of the compound nucleus levels.

The calculations are performed for the •'U-m reaction in
the framework of the continuum shell model. The results obtai-
ned are discussed from the point of view of their influence on
the statistical distribution of neutron capture widths.

1 . Introduction

For statistical distributions of neutron widths the know-
ledge of the influence of dynamical effects on widths and posi-
tions of the decaying levels is necessary. Recently, a model cal-
culation has been done where the importance of single-particle
resonances for the behaviour of the cross section near thresholds
has been established. In order to investigate dynamical effects
quantitatively calculations must be performed in which the compli-
cated structure of the nuclear levels as well as the reaction me-
chanism are taken into account in a straightforward manner. Cal-
culations of such a type are not carried out up to now. They can

2be done by using the coupled channel method in the framework of
the continuum shell model. This model is an extension of the usu-
al shell model by including nucléon channels into the calculation
from the very beginning. Resonance parameters like widths and po-
sitions of the resonance levels can be obtained. The results of



the calculations are exact in the framework of the model.
It is the aim of this paper to investigate the influence

of the continuum on widths and positions of resonance levels in
the continuum shell model (CSM) for the reaction N+n. The sing-
le particle do/p resonance is treated like a bound state up to a
cut-off radius in order to define the space of bound states in
analogy to the configuration space of the usual SM. The method of calcula-
tion is given in sect. 2 of the paper while the effects investi-
gated and the results obtained are described in the following
sections. Some conclusions are drawn in sect. 6.

2. The calculations
2 3The basic equations of the model are given in refs. ' .

Using the projection technique, the whole wave function of the mo-
del is given by

(1),——w V T*" I^/ —— t l ' / - f\J l **l ' -** fca"Ä'Ä'fc
Here, H^p s QHP, while P+Q=1 are the projection operators and H
the Hamiltonian. The functions F and WR are solutions of the
equations

0 (2)

(Hpp - E) WR = H^J^, (3)

resp. The wave functions Q „ are eigenf unctions of the operator

= HQQ " V Hpp - B HPQ
ef fwhich is effective in the Q space. The eigenvalues of HQQ are

denoted by S""^;« They contain the positions E and the widths
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I „ of the resonance levels»
The method of numerical calculations consists in solving

the usual SM problem

(HQQ - Esh> 4 R - 0,

which gives the eigenvalues E - and the eigenf unctions ($> •& of
the operator HAno Using these values, the equations (2) and (3)yy 2 3are solved with the coupled channel method ' .

The numerical calculations reported here are performed for1 5the B+n reaction. The SM structure for the intermediate nuc-
"1 f\ "l Rleus N and the target nucleus W is obtained in the 1p-1h and

2p-2h configuration spaces and the 1h and 1p~2h configuration
spaces, resp. , by using a 5 -force for the nucléon-nucléon inter
action,

V(r., - r2) . VQ (a + b P) (JT - £,). (6)

The parameters are V = 500 MeV/f^, a = 1,0, b = 0.05. The para-2meters of the Woods-Saxon potential are the same as in paper »
Together with the bound states the single-particle d^ A? resonan-
ce is included in the Q-space up to the cut-off radius 7» 5 fm,
while the remaining part and the scattering states define the P-
space. In some calculations, the SM energies E , of the resonance
levels are chosen different from the eigenvalues of H^o The SM. wwwave functions Cp , however, are not changed in all cases« The
continuum is restricted to 1 — 6 in the coupled channel calcu-
lations.

3. Threshold states
ASeveral years ago Baz has shown that in the neighbour-

hood of thresholds the cross section of neutron scattering reac-
tions may have a resonance - like behaviour which is not connec-
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ted with the formation of an intermediate nucleus. The question
whether those threshold states can be seen in the real cross
section is not clarified up to now.

In fig» 1. the direct reaction cross section of the reac-
tion ̂ N (n,n) N corresponding to J = 0* is shown. The cross
section is reduced at all energies where a new channel opens.

[McV]

Pig* 1
The direct reaction part of the elastic N+n ( J M = 0+) scatte-
ring» The three inelastic channels correspond to the 5/2+ and
1/2 states of at 5.30 MeV and to the 3/2" state at 6.32 MeV.

The effect is, however, very small» It amounts to 0.3 % deviation
in the cross section in the very neighbourhood of the thresholds
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at 5.30 MeV. Uo effect at all could be seen in the inelastic
channels of the same reaction and even in the elastic channel
corresponding to J = 1~.

The threshold effect in the direct reaction part will be di-
minished or amplified by threshold effects in the widths P(E).
In fig» 1, the elastic cross section of H (n,n) H is shown
also for a case in which the resulting threshold effect at 5*30
,MeV is maximal. The six 0* resonance levels which are included in
the calculation are lying between 9 and 10 MeV« A resonance-like
behaviour of the cross section results like in the case without
resonances which is a pure threshold effect. It is, however, very
small in comparison with real resonances»

The threshold effect in the elastic cross section of the neu-15tron scattering on N is connected in the main with the direct
reaction part» It is small at the energies considered here« In
nuclear reactions at higher energies in which the direct reaction
part is larger the threshold effect may be larger and can lead to
an additional resonance-like structure in the cross section«- Sû e-
ly, this structure will be covered by the high density of resonan-
ce states at these energies in realistic cases«

4« Shift of resonance states to thresholds

An effect of another type may occur in the neighbourhood of
thresholds, namely a shift of the resonance states in direction
to thresholds and an enlargement of their widths« An example is
shown in fig« 2« Here, the threshold energy of the channel corres-
ponding to the 3/2" level of N is arbitrarily changed« The reso-
nance at 6.4 MeV is shifted to lower energies if the threshold is
at 5«66 MeV and to higher energies if the threshold is at 7«44 MeV
(dotted lines of fig« 2)« The shifts are small, however, and the
widths are changing only a little (table 1) although the spectros-
copic factor of the 6.4 MeV resonance in relation to the channel

— 15corresponding to the 3/2 level of ÏÏ is not small*
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ig» 2

öfmb]

800 (n,n) «N
T resonances

600

400

200
^threshold

5.66

l l l
0

•n [Me/]

The cross sec-
tion of the1 5H+n reaction
with two 1*~ re-
sonances« The
calculations
are performed
with account of
four channels
corresponding to
the 1/2" ground15state of N, to
the 5/2* and
1/2+ states at
5.30 MeV and to
the 3/2*" state at
6.32 MeV. The en-
ergy of the thres-
hold corresponding
to the 3/2~ state

15of N has been
chosen to be 6,32
MeV (experimental
value, full line)
as well as 5«66
MeV and 7.44 MeV
(dotted lines).
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Table 1
The shifts Er, - E -. and widths / T> of two 1 resonance states•i g it sn ti _in N. The energy of the threshold corresponding to the 3/2
state of '^

(c.m.)
3Dthreshold

5.66

6.32

7.44

Kf is changed

-0.220

-0.219

-0.219

as in fig. 2.

U8 MeV

282

281

279

%-Esh/MeV f

-0.664

-0.625
-0.566

-, /kev

202

194

188

Prom these results it follows that thresholds have some
influence on the position and the width of a resonance. The mag-
nitude of the effect is, however, small in the case considered
here. This is connected with the fact that the resonances have
a complicated nuclear structure while the structure of the
threshold is the simple particle + final nucleus structure in
any case. The influence of a threshold on a resonance nearby de-
pends not only on the energy but also on the overlap integral
between the shell model wave functions of the threshold and of
the resonance state. Therefore, it cannot be so large in the
real case as one expects for resonances with a simple configu-
ration.

5« The mixing of resonances via the continuum

The diagonal matrix elements

"R (7)

contain the energy U^ and the width VR of the resonance level
described by the SM wave function 4>R. Here, the configuration
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mixing of the discrete resonance states is taken into account
like in a usual SM calculation. The channel coupling, i, e« the
interaction of the resonance levels via the continuum, is consi-
dered in the eigenvalues Er, - ̂  P-o and. eigenfunctions C£D follo-
wing by a diagonalization procedure of HQO «

In order to investigate the mutual mixing of the resonances
via the continuum, the energies E ̂  of some levels are changed
arbitrarily relative to the energies of other levels» The distan-
ces between the levels are constant (200 keV)« The wave func-
tions 4>„ are taken from the SM calculation in every case without
any change«

The widths V(E) and f (E) of a 0+ resonance of ÎT are shown
in fig. 3» The energies E ̂  ' of other 0 resonance levels are
chosen in such a manner that Ev!' > EV"' (full line), Ev! <E„?"'f j \ / -i \ sn / • \ sxi sn sxi(dashed line), and Ê '< EV ;< E^;(dotted and dash - dotted li-
nes), respectively« As can be seen from these results, the width
P of the resonance lying at the lowest energy is enlarged at the
cost of the resonances lying at higher energies» This effect seems
to be similar to the effect well known in structure calculations»
Like in structure calculations, the lowest lying level is shifted
to lower energies while the higher lying levels are shifted to
higher energies so that the distance between the resonance levels
enlarges by mixing via the continuum» This effect is larger if
the resonances are more overlapping«
In fig« 4. the energies and widths of five 0 resonance levels
are shown in the case in which the distance between them is chan-
ged« The shifts UR - E , and the widths VR are independent of the
distances between the resonances while Er, - E , and Pn show theit sn. n
effects discussed above.

The results in fig. 3 show further that threshold effects
are not important in the mixing of the resonances via the con-
tinuum. There can not be seen any enhancement of P* in compari-
son with V in the neighbourhood of thresholds which would be
larger than for other energies»
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r M

Energies Esh of the
SK 0* resonances

10

Pig. 3
The energy depen-
dence of the widths
V and P of a 0+ re-
sonance state in1 fiN with account of
four channels (s.
fig. 2)« The ener-
gies Egh of five
other 0+ resonance
states are given in
the upper part of
the figure« In the
case of 5 MeV ̂
Esh MeV» theenergies E'«
and widths I""7« of
all resonances are;
4.97 MeV - 23 keV,
5.03 MeV - 2? keV,
5.30 MeV - 88 keV,
5.53 MeV - 5 keV,
5.72 MeV - 4 keV,
5.99 MeV - 0.5 keV.

The mixing of the resonances via the continuum would be ve-
ry different from that shown in figs« 3 and 4, if "the single-par-
ticle a., /o resonance would not be included in the Q space of dis-
crete states« The number of resonances would be changed as compa-
red with the SM result and their energy shifts Ep - E , and diffe-_., it snrences in the widths { R - VR would be larger than in the calcu-
lations given here«
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Fig. .4
The energies and widths of five
0 resonances in W before the
diagonalisation (UR, VR) and af-
ter the diagonalisation (ErjjPp)effof the operator H~n » The distan-yyces between the SM energies E ,
are changed from 50 keV to 100
keV and 200 keV. The distance bet-
ween the lowest and highest lying
resonances is denoted by A • The
calculation has been performed
with account of four channels
fcfig. 2).
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6. Conclusions

In this paper, the influence of the continuum on the reso-
nance parameters of some resonance levels with realistic SM16structure are investigated» The calculations, done for the N
nucleus in the framework of the CSM by using the coupled chan-
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nel method, give results which are numerically exact. The re-
sults obtained may be summarized in the following manner»
(i) Threshold states are found in the direct reaction part of
the cross section as well as in the partial cross section. The
absolute magnitude of the effect is, however, very small»
(ii) A small shift of resonance levels towards thresholds can
be observed as well as a small enhancement of the widths of
these levels»
(iii) The influence of a threshold on a resonance nearby depends
on the overlap integral between the wave functions of the thres-
hold and of the resonance. The threshold does not enlarge this
overlap integral even for resonances lying nearby»
(iv) The resonances are mixed via the continuum also in the case
if the overlapping is vanishing small» All important parts of the
wave functions inside the nucleus are taken into account by the
cut-off-technique for single-particle resonances in diagonalizing
HQQ so that the mixing obtained here is additional to the con-
figuration mixing obtained in a usual SM calculation« The mixing
via the continuum enlarges effectively the widths of the low ly-
ing 0 resonance levels and reduces the widths of the 0 resonan-
ces lying at higher energies« Moreover, the low-lying levels are
pushed down and the high-lying levels up.

Prom these results the conclusion can be drawn that thres-
hold effects do not play any deciding role in the distribution
of nucléon decay widths« Effects, however, which are coming from the
continuum mixing may lead to systematic changes of the resonance
parameters»
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UNCERTAINTY ESTIMATES OF STATISTICAL THEORY CALCULATIONS
OF NEUTRON CAPTURE CROSS SECTIONS OF FISSION PRODUCTS

H. Gruppelaar
Physics Department

Reactor Centrum Nederland
Petten, The Netherlands

Abstract
After a short outline of the statistical model used for the

calculation of average radiative capture cross sections, the paper
reviews the theory of the estimation of uncertainties originating
from statistical fluctuations in the number of resonances per
averaging interval, level width fluctuations and other fluctuations
inherent to the statistical nature of the model.
Next, the influence of uncertainties of model parameters °n the
capture cross sections is discussed, and. a survey is given of the
difficulties which are encountered in the evaluation of these para-
meters and their uncertainties.
Finally, some remarks on the practical calculation of cross section co-
variances are given and some examples of calculations are presented.

1. INTRODUCTION

In nuclear mass regions where fast neutron radiative capture cross
sections are not well known from experiments, such as in the fission-
product mass range, one heavily relies on statistical model calculations.
To estimate the uncertainty in these calculations one has to consider
(i) the degree of validity of the model, (ii) the inherent uncertainties
due to the statistical nature of the model, and (iii) uncertainties in-
duced by errors in model parameters.

For a detailed comparison between theory and experiment an error
analysis of the calculated cross section is necessary. In the field of
fission-product cross section evaluation Schmittroth flj has checked
the moâel for capture calculations taking into account statistical model
errors at high energies. In the present paper, however, the validity of
the adopted model (sect. 2) is not questioned.
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Experience with nuclides for which accurate capture measurements have
been performed, shows that the adopted model seems to be adequate.

Uncertainties due to the statistical nature of the model (sect. 3)
are not only due to fluctuations in level widths and number of reso-
nances per energy interval, but also arise from statistical estimates
of the low-energy levels, spins and parities involved in the calcula-
tion. The first type of errors has been treated in refs. [2-4], the
latter type of errors was considered in réf. [l]. In the present paper the
theory described in these references is surveyed and some extensions
and suggestions for practical calculations are given.

Errors in model parameters (sect. 4) often are the most important
sources of uncertainties in the calculated capture cross sections.
The sensitivity of the capture cross section for parameter variation
of neutron- and radiation strength functions has been reported pre-
viously [3] . In this paper parameters associated with a more sophis-
ticated model are considered. Also some problems connected to the
estimation of parameters and their errors are mentioned. The sensi-
tivity for optical-model parameter variations has been studied by
MacKellar and Schenter [5j .

Apart from a test of the validity of the model, an application
of the work described in this paper might be the preparation of
error files [oj connected to evaluated nuclear data files such as
ENDF/B-IV. The demand for error files originates from questions
with regard to sensitivity studies for safe and economic operation
of nuclear systems. Another application is the interpretation of
integral cross section measurements by means of adjustment of cross
sections within the uncertainty limits ^7,8J. In the last section
some remarks on the practical calculation of variances and co-variances
of capture cross sections are given and some examples are presented.

2. OUTLINE OF STATISTICAL MODEL

2.1. Average radiative capture cross section
It is supposed that (with the neglection of level-level interfer

ence) the radiative capture cross section averaged over an energy
interval AE can be written as

<0>AE ' < >

with partial cross sections

where the contribution of each resonance y is expressed by the single
level Breit-Wigner formula

rY

yJir
For a few nuclides non-statistical capture processes are important,
see section 4.3.3 about the determination of the average value of
the capture width.
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A summation symbol £' (with a prime) means that quantum number selection
rules have to be taken into account.v
The symbol r is a short notation for all partial widths, which occur
in the right-hand side of eq. (3). The other symbols in eqs. (1-3)
have the usual meaning. Throughout this paper it is assumed that

AE » DT » <TT >, (4)JIT Jir

where D is the mean level spacing and <Tj > the average total width
of the compound state. We interprète eq. (2J as follows:

(5)
AE

where <J>(E) is a weighting function, usually taken as the constant
1 /AE and qj]r(E) is the distribution function for the resonance
energies, assumed to be equal to l/Djiï. The averaging signs in the
right-hand side of eq. (5) have the meaning of an average over a
Porter-Thomas distribution function p(Tx), shortly denoted as

CO

drx P(rx) f(rx,E,E'), (6)

where the integration has to be performed over all widths Tx.
Eq. (5) can be written as

rn. rY

JJ_JJL > . (7)
AE

The integrand of eq. (7) is roughly proportional to <j>(E)E 2.
When AE is small eq. (7) can be approximated by

rn rY

S < - *• (8)

where the neutron energy E is replaced by the average value

Ê" = / dE E*<KE)/ / dE E~H(E) (9)
AE AE

and <nj >._ is the average number of levels in AS1 with spin J and
parity rr:

The notation of eqs. (1-10) is chosen to facilitate the treatment in
section 3.
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2.2. Width fluctuation factor
Eqs. (1,8) may be combined to obtain the Hauser-Feshbach formula

with width fluctuation factor:

in which the relation between transmission coefficients and widths
is supposed to follow the expression

T = 2irr/D. (12)

The width fluctuation factor is defined as

where mostly the fluctuations in the radiation widths are neglected.
The capture width T'Y has to be distinguished from the total radiation
width Tr which implicitly occurs in the denominator of eq. (13):

rr = r - z r?. (14)
i x

nEach of the neutron widths T. (including the incoming neutron width
Tn) is supposed to be distributed according to a Porter-Thomas dis-
tribution with v^ degrees of freedom. In sect. 3.1.1. an expression
for W is given.

3. STATISTICAL MODEL ERRORS

3. 1 . Fluctuations in resonance energies and widths

For use in this section eqs. (1-3,8) are recombined as follows:

a(E) = £ a (Ë) = E <a (E)> (15)
T JIT > Jrr AEJrr JIT

with
<0J,(E>>AE = < J

2ir2 Jir JIT
such that n y

.-.
a( } =

with
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Throughout this section it is assumed that D is independent of E.
The co-variance between average cross sections for two not

partially overlapping intervals AE and AE is defined as

cov(a( ),a(I2)) = £ côv(a (Ë^.a (,T T ,
JlJ2 irl ir2 * X 2' * 2 * 2

(20)
with

In the following part of this section the indices J and IT are omitted.
The occurrence of Kronecker delta symbols in eq. (20) follows from the
absence of correlations between levels with different spin or parity.
The first term of eq. (21) is written as

/ dE / dE2 <t(E H(E )x
AEX AE2

 J 1 2

(22)

where the joint-distribution function for the resonance energies is
defined as

q(E'1>E2) = I «(E'J-E'P + ̂ f ̂2.) (23)

wij:h ¥ the two-level correlation function from random-matrix theory
[9]. With the help of eqs. (22,23), each term of eq. (20) can be written
as

r« dE;
/ -j- < f̂ .Ê Ê fâ .Ê

u-»
/ dE, / dE2 <j> (E )<(>,,(
AEX AE2 l

, « , E|-E2 x , x t -t
—OO —OO

where
<î(r) = l-¥(r) (25)

is the so-called cluster function, which is equal to unity for r=0
and approaches zero for |r| » 1. The integrand in the first term
of eq. (24) in between square brackets is only important for E,
close to E2; integration over Ej leads to the approximation [3j :
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r4 9 ^rnrY<,2
-g2 < (~- > fi^-E,). (26)

The integrand of the second term of eq. (24) in between square brackets
is only important for E1 = E-J and E2 ~ E , such that $((E -E„)/D) can
be replaced by (̂Ej-E-jj/D) and the integration over E' and E1 becomes
trivial:

rnrY'9*9£>- (27)

Re- arrangement of terms gives the following expression for each term
of eq. (20):

, loir 's2 rrnrY>jaß! JdE2 <f>1(E1)<J)2(E2) PJ-|- D ' ^
AE1 AE2 Lk D

, u , rnrT r°rï
(28)

The first term of eq. (28) may be interpreted as originating from
fluctuations in the level widths. The second term of eq. (28) is re-
lated to the covariance of the number of levels ^ and n2 in two
intervals [3J :

cov(n1,n2) = / dEl / dE2 -L S - , - -^ (29)

Neglection of the energy dependence of <f>(E)o(E) in eq. (28) leads to
the final expression for each term of eq. (20)

cov(a(I1),a(Ë2))Jïï= •—— g2 —— var(I~-)6g g

cov(n1,n2)
o(E1)o(E2) ———————— . (30)

<nx> <n2>

3.1.1. Width fluctuation variance
With the help of eq. (19) the variance in eq. (30) can be ex-

pressed as
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(31)

Neutrons with H^ # SL2 must differ at least two units of angular momen-
tum in order to reach the compound state with the same parity.
Consequently the product of the corresponding transmission coeffi-
cients is small at low neutron energies and the second sum of eq.
(31) may be neglected.

The width fluctuation factor W1 defined in eq. (13) can be
calculated with the expression (which follows from réf. [24J )

exp(-<Tr>t)dt <32)
2 2The relative variance of the widths can be expressed as W2 - W, where

W. is defined as

(33)

For W2 one easily obtains the relation
Ww2 - -<r>2 d _L_ -yu -s^ ^ ..— , »- J ——2 d<rn>
« t exp(-<rr>t)dt (34)

3.1.2. Co-variance of n. and n„
Expressions for the calculation of c,

asymptotic approximation [lu] for the variance:
follow from the

var(n) (ln<n>+a) (35)

with a = 2.18. Requiring that for two adjacent intervals the variance
can be calculated with

n2) = var(nx) + var(n2) + 2 cov(n1,n2), (36)
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one finds for the covariance of two aajaoent intervals
.

cov(n1,n2) = - — j- (In —— - —— + a). (37)

Likewise the co-variance for two intervals separated by a third inter-
val can be calculated.

3.1.3. Ericson fluctuations

Due to the condition AE » <r> (eq. 4), which is always satis-
fied in reactor physics applications, Ericson fluctuations [25] are
smeared out.

3.2. Fluctuations in the number of bound target levels
Above a certain excitation energy e the target levels are not

well known and the level density has to be prescribed by a continuous
function of energy p (e). The average number of levels upto an energy
E can be estimated by

TJ

<NE> = N f / p (e)de, (38)
P eP

where Np is the number of levels below the pth excitation energy Cp«
Very roughly the capture cross section is inversely proportional to
<N^> and so is the relative variance of the capture cross
section. As <N^> increases exponentially with energy, the error is
only of importance in a limited energy range just above ep.
Schmittroth [l] has given an expression for the variance of bound
levels neglecting correlations between levels and assuming £p=0
and a number of other approximations. We follow his treatment here.

For the error calculation in this section the capture cross
section is approximated by:

a(E) = C(E)——————— = C(B) . (39)

aE + AE(e e ...) aE + I â e.)
P P i>p

•p
where A is a function of all excitation energies e. with i>p and
â (ê )=0 for E< e.. Assuming that the energies e- are independently
distributed on the interval (ep,°°), each with a level density dis-
tribution function p (e.)5 one finds*

<AE> = / aE(e)po(e)de (40)
eP

and E

cov(AEl,AE2) = /1aEl(e)aE2(e)po(e)de (E^Eg). (41)

* In equ. (40) the function §o(6) is supposed to be normalized
according to equ. (38).
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The average value of the cross section can be written as

<q(E)> = C(E)
y L. (42)

aE + <AE>

where the "level fluctuation factor" L is equal to or less than 1.
In most calculations this factor is taken as unity. The relative co-
variance between two cross sections is approximately equal to

a(E2))
<a(E1)><a(E2)> ~ ̂  + <AE1>} (<E2

Analytical expressions for the integrals in eqs. (38, 40, 41)
are obtained with the substitutions (adopted in calculations, see
Sect. 5)

pn(e) =iexp[fe-e0)/T] (44)

and »
afc(e) - g (E-e) acf(E-e), (45)

where the compound formation cross section a f in eq. (45) is
approximated by the semi-empirical formula [ifj

acf(E) = a (pE+v). (46)

In eq. (46) a is the geometrical cross section and \i and v are
simple functions of the nuclear mass.

3.3. Spins and parities of bound target levels
In the energy range above e uncertainties in the cross section

also arise from statistical estimates of the spins and parities Iw of
the bound levels. A first impression of the effect of these errors
is obtained by varying the spin of one bound level [l2j , which may
lead to large errors (upto 40%) when the difference between I and
the ground-state spin Io is large and when the level density is low.
Less pronounced effects are obtained for a change in parity of one
level.

Schmittroth has calculated [ij the variance of the capture
cross section due to uncertainties in I17 by means of a Monte-Carlo
method, assuming the following distributions:

Pff - 1/2, (48)



where a is the spin cut-off parameter. Assuming that all spins and
parities of excited target levels are unknown, errors of 20% to 30%
have been found. However, in practice these errors are much smaller,
since often one knows at least a few spins either exactly or within
one unit of angular momentum.

In routine cross section calculations the inelastic scattering
transmission coefficients are averaged over I and n above E = e_,
using the distributions of eqs. (47,48). Problems in these calcula-
tions are the choice of 02 and the validity of eq. (48), which is
too simple at low energies. Another problem, pointed out by Schmitt-
roth [l] is the occurrence of a "spin and parity fluctuation factor"
S, in the capture cross section, analogous to the factor L in eq. (42)

3.4. Low-energy level scheme of final nucleus

The level scheme of the final nucleus enters into the calculation
when the y~width is calculated (see sect. 4.4). Due to the large
number of levels involved, the variance of <TY> due to fluctuations
in the number of levels and in the spins and parities is supposed to
be small in comparison with other uncertainties such as the validity
of the distribution functions.

4. ERRORS DUE TO UNCERTAINTIES IN MODEL PARAMETERS

4.1. Calculation of co-variance of the cross section

Assuming that the cross section is a function of a number of
independent model parameters p, , the covariance can be written as

var(p,) (49)
k v Vk v yk K

A convenient way to estimate the quantity

= 3o(E) ...J,_ ^ (50)

is by varying the parameters p, in a(E) over one standard deviation.
The parameters have to be chosen such that they are uncorrelated.

This is only possible to a certain extent. Moreover, when the cross
sections have to be evaluated for a series of nuclides which are
going to be used together in certain applications [23] , correlations
between parameters of different nuclides have to be taken into
account ] 3] .

Often one has to deal with (large) asymmetrical errors. In these
cases it might be better to assume a normal distribution for the
logarithm of the parameter and/or the cross section.

The main job to be performed is the evaluation of parameters
and their uncertainties. The most important parameters of the sta-
tistical model for radiative capture originate from the resolved
resonance parameters and the low-energy level scheme. Often, problems
are encountered in deriving average quantities from these experimental
data. Moreover, in many cases experimental data are lacking and the
model parameters have to be derived from theory or systematics.
These circumstances make an error estimate difficult and often some-
what arbitrary.
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In the process of parameter evaluation the (scarce) experimental
cross section data also play an important role. Usually one or more
parameters are manually adjusted to give a reasonable fit of the cal-
culated cross sections with the experimental point cross sections.
When integral measurements (such as reaction rates and reactivity
worths) are available, an elaborate least-squares adjustment scheme
can be used to pbtain adjusted cross sections and parameters with
their errors [sj. However, such a procedure is usually applied as a
final step, after the determination of all cross section uncertain-
ties with methods described in this paper.

A status report on fission product cross se_ctions and model
parameters has been given by Ribon and Krebs [iSj . New fission-product
cross section evaluations are underway in Japan (JAERI), U.S.A. (for
ENDF/B-V) and in Europe (CNEN-Bologna, GEA-Saclay and Cadarache,
RCN-Petten).

After these preliminaries some important parameters are con-
sidered in more detail in the next subsections, where the discussion
is mainly based on experience with the so-called RCN-2 fission product
cross section evaluation.

4.2. Neutron strength functions
Y nAt low neutron energies Tjiï is much larger than T^j, so the

partial capture cross section a_.T(E) is approximately proportional
to T£J , where A = 0 or 1. At higher neutron energies â -j(I) is roughly
proportional to Tj,,., as the neutron transmission coefficients in the
nominator and denominator of the expression for the capture cross
section partially compensate each other.

From several studies [_5,13j one may conclude that below about
50 keV it has to be preferred to calculate the neutron transmission
coefficients from strength functions. Since at higher energies the
sensitivity of the capture cross section for changes in the trans-
mission coefficients is low, one can base the error calculation in
the ent-ive energy range on a suitable strength function model, rather
than applying both a strength function model and an optical model
in two energy ranges. Correlations between transmission coefficients
are difficult to account for with an extended strength function model.
On the other hand, the use of two models in different energy regions
obstructs the calculation of correlations between cross sections in
a low and high energy interval. In this paper an extended strength
function model has been adopted [39J.

The s- and p-wave strength functions SQ and Sj and corresponding
errors are determined from resolved resonance parameters, where the
parity of each resonance often has to be estimated by means of a
statistical analysis. The uncertainty in these parity assignments
is a major source of errors in SQ and Sj for nuclides in the vicinity
of A= 90, The variance in SQ, exclusively based on Porter-Thomas
statistics,for a large number of resonances nt amounts to JJ4J

var(S0) = | SQ2 . (51)

The p-wave strength function also follows from a fit to the
total (or capture) cross section. Typical uncertainties for many
tThe usually adopted relation between T£ and SA does not fulfil the
requirement T£ < \ for all energies.



nuclides are 10% to 30% in SQ and about 50% in Sj. The other strength
functions are calculated from an optical model and supplied with large
errors (a 100% error in 82 results in a maximum error of about 15% in
the capture cross section; see figs. 4,7-9, discussed in section 5).

4.3. Mean level spacings and spin cut-off parameters

In this and in the following sections the symbols E and e are
used for the neutron energy and the excitation energy, respectively.
4.3.1. Level density formula

The level density pjïï(e) is commonly described by the Gilbert-
Cameron formula |15J (adopted in sect. 5),

pj/e> =RJP^o<£>> (52>
where for low excitation energies pQ is defined as in eq. (44) and
for high energies (above e ) p is defined asX O

r ~~i i/u 5/4
P o (e ) = exp 2/aU /(12/2a aU ) (e > EX) (53)

with
. U = e- P. (54)

The symbol P in eq. (54) is for the pairing energy correction given
by Gilbert and Cameron [is] .

The square of the parameter o in eq. (53)is the spin cut-off para-
meter, which also occurs in the expression for R-, eq. (47) and which
is related with the level density parameter a at energies e > e ,
according to the equation

02(E) - c /au A2/3 (E > ex), (55)
with c = 0.0888 [is] or c = 0.146 [loj (adopted in sect. 5).
For low energies the spin cut-off parameter 02(0) may be estimated
from the experimental low-energy level scheme. A linear relationship
with excitation energy,

02(e) - 02(0) + (02(EX) - a2(0)) e/ex, (e < ex) (56)
could perhaps be used in the expression for Rj (adopted in sect. 5).

The parameters eQ,T (eq. 44), a and ex follow from a fit of
the Gilbert-Cameron formula to the mean s-wave level spacing Dobs
at the neutron separation energy and to the low-energy level scheme
(i.e. the parameters Ep and N defined in sect. 3 .2 . ) . ,
From the independent parameters Do^s, 0 2 (0) , e , Np, P and c, which
describe the complete nuclear density formula, D0^,s is by far the
most important parameter in the uncertainty calculation of the cap-
ture cross section. In the following the indices c and t will be
used to discriminate between compound and target nucleus parameters.
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4.3.2. Compound nucleus parameters
Uncertainties in D , influence the capture cross section mainly

via the capture transmission coefficient at the neutron separation
energy, T^ (0), which is inversely proportional to Do^s and which is
used as a normalization for T̂ (E) at high neutron energies:

TL(E) - TL(0> SJ/E> (57>
with R p

TY
T (0) = -2L. <FY (0)> J/R ——— (58)

Jir Dobs J* R I + i + R I_
and

gjiï(0) = 1. (59)
f-tHowever, the level density p also occurs in the factor g, (E) ,

which describes the energy dependence of TÏ. . In sect. 4.4.1. an
approximate expression for gT (E) is given. It has to be noticed
that a similar relation exists for '1̂ =21: r^L/Djrr, see eq. (14).

Due to the normalization requirement (57) the uncertainties
in level density parameters other than DQ Ŝ have a relatively small
impact on the capture cross section. This is particularly valid for
ô (O), Ep, N£ and Pc, which enter only through g (E) into the ex-
pression for the cross section.

The effect of the parameter c which enters both into the ex-
pression for a2 and in that for a2 can be important: the large
difference between the two values of c mentioned before [_15,16]
leads to a change in the capture cross section of 30% to 40% at 5
MeV. In figs. 1 and 2 the sensitivity of the calculated capture
cross sections of ^%b and ^°Mo for a change of the parameter c
from the value 0.146 to 0.0888 is shown. The calculations have been
performed with the code FISPRO-RCN (see sect. 5.1.). The large
effects shown in figs. 1 and 2 are not due to the target nucleus,
since a decrease of a2 would increase the capture cross section,
in distinction to the effect of a2.c
4.3.3. Target nucleus parameters

The level density of the target nucleus enters into the calcu-
lation above the neutron energy E = e (sect. 3.2.), where a part
of the total neutron transmission coefficient can be calculated with
the approximate expression [l] (adopted in sect. 5)

E
Tĵ E) = R E S / p*(e) T̂ (E-e)de. (60)

A eP
In this equation S„T mainly serves as an orbital angular momentum

factor. Both Rj and S depend on c .cut-off factor. Both Rj and S^j depend
The most interesting energy region of the capture cross section

for applications in fast breeder reactors usually is below e , where
p (e) and a2 are described by eqs. (44) and (56), respectively.
Therefore important parameters are Dc, , Nt, e*- and aMO) .
The influence of a non-equal parity distribution on eq. (60) has not
been investigated in this paper.
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The sensitivity of the cross section for a change in Dobs is large
and increases with energy. A variation of e (keeping N£ constant) also
has a large effect on the capture cross section (see fig. 1). Therefore,
for the error calculation, ejj has to be chosen such that the probability
of missing bound levels with excitation energies below e*: is very low.
The capture cross section is not very sensitive for a variation of
c?(0), although this sensitivity increases when the target ground-state
spin is high. The reason that the capture cross section is not very
sensitive to a variation in o~2(0) is due to the use of relation (56)
in which the value of a2(0) at e1- is fixed at the value c/a(ex~P)'A ' ̂  • In
réf. flj eq. (56) has not been used, but a|(e) was assumed to be equal
to a|(0) upto ex. This assumption leads to a rather large sensitivity
of the capture cross section for a?(0). In our case the parameter c is more
important, although its effect mainly is expressed via a2.

4.3.4. Determination of parameters
The mean level spacing is determined from resolved resonance para-

meters. The variance in Dj„., based on the Wigner distribution * for level
spacings, is given [_14] by

var(DT ) = —— D2
T , (61)JIT irn JIT '

where n is the number of level spacings used in the analysis. However,
in practice the uncertainties are often much larger due to missed
levels or due to unknown parities.

A major problem is the determination of Dofos when no resonance
parameters are known. Up to now the best results are obtained from
systematics of a as a function of the neutron number N for a fixed
proton number Z. The mean level spacing determined in this way is
usually not better known than within a factor of 2. Existing theoretical
models, supplied with adjustable parameters, up to now do not improve
this situation f_13]. Often helpful to the evaluation of fission-product
cross sections is the adjustment of Dobs to fit a(E) to measured cross-
sections whenever this is possible. In this way the systematics of a
may be improved.

The spin cut-off parameter a2(0) can be determined from the ex-
perimental spin distribution by means of the following relation,
obtained [l] from eq. (47) by the method of maximum-likelihood

°2(0) = ~ f (I, +4)2, (62)n i=0
where n is the number of levels with known spin. The error in a2(0)
is difficult to estimate. Assuming no uncertainties in the level
scheme and neglecting the energy dependence, the relative variance
is equal to 1/n.

The parameter c is an important quantity for the capture cross
section at high ̂ energies. Its value is obtained from theoretical
arguments [l 5 , 1 6_| .

* When Dyson statistics is used eq. (6l) becomes
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4.4. Gamma parameters
4.4.1. Expression for the radiative capture width

The most sophisticated statistical model adopted in fast radiative
capture calculations for the computation of the_statistical capture
width is expressed in the following relation [jTJ based on the Brink-
Axel estimate

Jff
I (l-\ir.)(B+E-ei)2aL(B+E-ei) +

t c+ I (1-fi ,) / (B+E-e)2 aL(B+E-e) I pj ,(e)d
rr' e I

(63)

where the El photo absorption cross section is given by a sum over
Lorentzian functions

aL(e) = I 2
r r . (64)

The symbols E, B, e denote the neutron energy, neutron binding energy
and excitation energy, respectively. The parameters ar, er, Tr are
the giant resonance parameters corresponding to the peak cross
section, peak energy and half maximum width, respectively.
In most calculations the summation over the "discrete" levels e^ with
spin l£ and parity ir^ = IT is also replaced by an integration (eg. in
réf. [37J). In the summation over final states the spins are restricted to
Ii= I J~M> J or J+1 for J ̂  0 and to l£ = 1 for J = 0.

With the assumption of equal parity distribution and no energy
dependence of the spin cut-off parameter a convenient approximation
for <T̂ (E)> (adopted in sect. 5) is,

B
<F^ (E)> «——-—— I (B+E-e)2 aT (B+E-e) pc(e)de. (65)«J rr c /•_ ._* -Li op (B+E) oo

In this equation the spin dependence is completely dropped, which is
approximately correct: the spin dependence of <FY (E)> is roughly
given by

, 1
(66)

where a
is an e

2 is the spin cut-off parameter of the compound state and a?
ffective spin cut-off parameter of the bound levels.s an efectve spn cut-of parameter o te oun

Assuming that eq. (65) holds andneglecting the energy dependence
of the spin cut-off parameter the factor g, (E) (see eq.57) is independent
of J and ir: B

(B+E-e)2 aL (B+E-e)
gjir(E) = f ———————————————————— . (67)

/ (B-e)2 a (B-e) p(e)de
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In conclusion: the J-dependence of <T^ (E)> is rather weak, but
may become important when the level density is low. For nuclides with
a low level density the parity dependence of <TY (E)> is usually much
stronger, as for most of these nuclides the parity distribution is not
equal at low energies.

Similar equations as derived before follow for the total radia-
tion width <TJ >. In eq. (63) the probability that a y~cascade pro-
ceeds via an unbound level has been neglected; This so-called cascade
process becomes important above a few MeV. Also neglected in eq. (63)
are possible Ml-components, and non-statistical capture effects (see
sect. 4 .4.3.) .

4.4.2. Effect on the cross section

We assume that <F^ (E)> is normalized via relation (57) where
<r ÎT(0)> may be obtained from: (i) complete calculation from eq. (63),
(ii) normalization of eq. (63) with the experimental y-width for s-
wave capture <ry_n>, (iii) experimental capture widths <I£=Q> and
<rl=j > and neglection or calculation of the J-dependence of the cap-
ture width.

In the error calculation we vary <Tj|_n> and <rj=]> simultaneously,
thus assuming a complete correlation between <T -> and <FT_.>.
The sensitivity of the capture cross section for a change in the capture
width is large and increases with energy.

The giant resonance parameters weakly influence the capture cross
section between 5 MeV and 10 MeV. At still higher energies the
giant resonance parameters become important for the description of
the collective enhancement of the capture cross section [38J .

4.4.3. Determination of parameters

For many nuclides the capture width has been measured for only
a few resonances. However the spread in F Y is not Large, as many decay
channels are involved. Difficulties in the determination of <T T̂r(0)>
arise when there is a clear spin or parity dependence, while the
spins and parities of the resolved resonances are not well known.

The use of theory to predict <F^ (0)> is difficult due to the
uncertainties in the parity distribution of the low-lying levels.
In réf. [37J an energy dependent expression for the parity distribution
is given which might be helpful. Results for <FT Q>, based on eq. (63),
have been given in réf. [26J , where also a comparison has been made
with experimental widths and with other estimates obtained from semi-
emirical formulas |_27,28j. The three formalisms compared in réf. |_26J
give about the same results, with an uncertainty of roughly 25% in
<T __> for nuclides in the fission-product mass range.

Another problem in the determination of <F^ (0)> originates from
the existence of non-statistical components, in particular due to p-
wave valence capture f18J around A= 90. The overwhelming evidence of
these non-statistical effects in neutron capture has not vet resultedr™ ™iin codes for routine cross section evaluation. Weigmann and Rohr |_28J
have taken into account a simple expression for the valency neutron
contribution in their semi-empirical description of the total radiative
widths, based on the assumption that FY is completely correlated with
In the calculations (sect.5) the (n,2y) cascade process has been taken
into account.
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the reduced neutron width:
r̂X. = S(1 A2/3 |3T DTir S., (68)Vj. >val. X. J JK $,'

where 3, is the number of different final spin values for dipole emission from a
compouna state with spin J. The factor s has been determined from
a number of known experimental capture widths by subtracting the
calculated statistical contributions. For p-wave capture in „the mass
range 88 < A < 125 it has been found*that s, = 3.82x10"̂  [28_| .
In the treatment of Weigmann and Rohr no "discrete" level scheme
was considered in the calculation of the statistical part of <rj>
and it has been assumed that <rj.> = <rj=n>. However, from statis-
tical calculations based on eq. Ï63) Refto [29] has found that <rT.>
is much larger than <r|_-> in the mass range around A= 90. Probably
si would decrease therefore when eq. (63) and eq. (68) were used.
When eq. (68) is used for the calculation of the valence capture
part of the cross section the width fluctuation factor has to be
omitted (in a first-order approximation), which gives an additional
enhancement of the capture cross section.

In the case of the 93Nb(n,Y)9tfNb reaction a doorway state re-
action mechanism has been suggested [30,3l]. In this case no cor-
relations between rY and rn for individual resonances have been
observed, although there is a significant correlation between re-
duced (d,p) and (n,y) strengths for transitions to the same final
states. As it appears from fig. 3, there is also a clear enhancement
of the capture cross section in between 10 and 30 keV. The capture
cross section calculated with the strength function model, does not
fit the experimental points measured by Kompe [32]. This is not due
to the use of a too low p-wave neutron strength function, since the
adopted value Sj = 7.OslO"1* is already 10 to 20% too high to fit the
experimental total cross section points. The p-wave capture width,
and the average s-wave level spacing, have been evaluated from re-
solved resonance parameters: <rl_]> = 195±18 meV and Dobs = 100±10 eV.
This example shows the type of difficulties which are encountered when
non-statistical effects contribute.

Uncertainties in experimental giant resonance energies and widths
are in the order of 1% and 5%, respectively. Semi-empirical descript-
ions of er and Fr may also give a good estimate of these quantities
Q9,20]. Due to the normalization of eq. (57) the uncertainty in
the peak cross sections ar may be neglected.

4.5. Level scheme parameters
As has been explained before, excitation energies, spins and

parities of low-lying levels play a role in the determination of:
(i) the "discrete" part of the total neutron transmission coefficient,
(ii) the "discrete" part of the gamma width, (iii) the low-energy spin
and parity distributions, (iv) the continuous level-density formulae
(parameters e and N ) for the target and the compound nucleus.

In this work we assume that for e < ep there are no errors in
the level scheme. For the error calculation this means that e has
to be taken rather low: in between 1 and 2 MeV.

Prom recent calculations by Chrien et al, of valency capture widths
for 9°Mo, a much higher value, s\ = 13 • 10 ~4, follows. Second remark:
Eq. (68) might be slightly improved by taking into account the Ey
dependence by multiplying eq. (68) with the square of the neutron
binding energy.
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5. CALCULATIONS

5.1. Model restrictions
For routine error calculations the model as programmed in the

code FISPRO-RCN has been used. This code is an improved version of
the code FISPRO f2lj developed at Bologna and calculates the capture
cross section according to eq. (11) with additional terms for cascade
processes and direct and collective processes.

Some restrictions are made for the error calculation: (i) no
uncertainties in the discrete level schemes,
(ii) uncertainties mentioned in sects. 3.3. and 3.4. are neglected,
(iii) T . is independent of j and is calculated from strength funct-
ions (A -0 to 4), (iv) uncertainties in P, cp, Np, c (sect. 4.3.1.)
are neglected; P is taken from réf. [is] ; c = 0.146 [lo] , (v) gJrr(E)
is calculated according to eq. (67); only the parity dependence
of <r"Y (0)> is taken into account, (vi) the distributions (47,48) are used.

The following parameters are considered: S{ (£ = 0 to 4), Dobs,
Dobs> <rl=o>' <r£=l>» °̂ °)»er'rr and K- The constant K is a multi-
plicative constant to fit the term for direct and collective capture
at 14 MeV. The other parameters have been defined before. The para-
meter <rj_1> is supposed to be completely correlated with <rT_f)>.

The error calculation is performed for the average cross
section <a>Ag> where AE is determined by the group structure of the
ABBN library [_22_| . Only one point per energy interval is calculated
at the arithmetic mean energy E.

5.2. Organization of the computations

The error calculation in the statistical energy range is per-
formed with a system of four codes:

ERPREP - prepares input for the following codes;
FISPRO-RCN - code for cross section calculation;
FISW - version of FISPRO-RCN for calculation of

statistical model errors of sect. 3.1.;
ERCOM - calculates statistical model errors of sect.

3.2., combines the output of all codes,
calculates a correlation matrix and updates
an error file.

The code ERPREP prepares the input for a large number of FISPRO-
RCN runs: one run with the expectation values of the parameters and
for each of the parameters listed above a run with the parameter varied
over one standard deviation (the parameters (rT_(-)> and <rj_ > are
varied simultaneously). In addition the input for the code FISW is
produced.

The code FISW calculates, in addition to what the code FISPRO-RCN
calculates, the width fluctuation factor W2, according to eq. (34).
For further processing the following quantities are stored on an inter-
mediate file: i, £, J, aCT(E.), DT , (W,),,, (W2)PT, for each value of. AJ l >J M 1 X,J X,Ji (energy index), A and J.

In the code ERCOM these quantities are used to calculate the
variances in the cross section due to fluctuating level widths accor-
ding to the expression (see sect. 3.1.)
Arguments for most of the model restrictions and the choice of para-
meters to be varied are given in previous sections.
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2 2- w:
(69)

U *° A AEi

Likewise, the co-variances due to fluctuating numbers of resonances
are calculated with the expression

_ _ cov(n. ,n.)
). (70)

with <n.> = AE./D and <n.> = AE./Dj^ and cov(n.,n.)» according to
the recipes given in sect. 3.1.2.

The relative co-variances due to fluctuations in the number of
bound target levels is (independently from the codes FISPRO-RCN and
FISW) calculated in ERCOM as prescribed at the end of sect. 3.2.
The quantities e , e , T , a , y , v , E . are used in this calculation.

All statistical model eïrors are combined to a co-variance
matrix which is stored on an error file. For visual inspection the
corresponding standard deviations and correlation coefficients are
printed.

The quantities ocr, (eq. 50) are also processed by the code
ERCOM through combination of results produced by FISPRO-RCN.
These quantities are separately stored on the error file. Finally,
the code ERCOM computes the total standard deviations in the capture
cross section as well as the full correlation matrix.

Further processing (with other codes) takes place to update
the error file with the co-variance matrix for the resolved resonance
region, taking into account self-shielding effects [j3J . After a cor-
rection to compensate for the neglection of the energy dependence
of the product a(E)(f>(E) within each energy interval, the complete
co-variance matrix for a mixture of fission-product nuclides can be
calculated \_ 8_f . For this purpose it is possible to account for
correlations between parameters of different nuclides, which becomes
important when the uncertainty in lumped fission product mixtures is
evaluated [23] .

5.3. Results
In fig. 4 the components oo^ (eq. 50) which significantly contri-

bute to the total standard deviation of the capture cross section of
103Rh are plotted. Also indicated are the total standard deviation and
the standard deviation due to statistical model errors. More details
about the figure are given in the caption. The total standard deviation
is rather low in this case, due to the fact that both <r^> and D^. are
well known. The largest error at low energies is due to the Si-
strength function. It is interesting to note the relatively small effects
of the 82", 83- and 84- strength functions, in spite of the large un-
certainties assigned. At high energies the main source of uncertainty
is Dobs.

The correlation coefficients and total relative standard devia-
tions of the capture cross section of 103Rh are given in table 1.
In the first part of the table the correlation coefficients and the
total relative standard deviations due to statistical model errors
as defined in sect. 3 are given separately, as a function of the ABBN
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group number (_22j . The strong correlations between the first four
groups of table la are due to fluctuations in the number of bound
levels. The other small, negative, coefficients originate from
correlations between the number of resonances per energy group.
When all errors are combined it appears (table Ib) that nearly all
groups are strongly correlated. The negative correlation coefficients
in table la are due to the parameter Sj which generates a positive
oo^ for low energies and a negative <S o^ for high energies (see fig. 4),

The statistical model uncertainties in the calculation of the
10 3Rh(n,y) lottKh cross section are rather small, due to the circum-
stance that resolved resonances are known upto Eres = 4.03 keV and
that 24 bound target levels are known below e = 1.294 MeV. To illus-
trate the possible effects of statistical moBel errors, a second
calculation has been performed with Eres.= 100 eV and e^ = 0.2 MeV
(only two excited states included). The results of this calculation
are shown in figs. 5 and 6. It is seen that under this circumstance
the statistical model errors predominate.

In figs. 7-9 the error components for the calculated capture
cross section of 93Nb, 139La and 98Mo have been plotted. The results
for 93Nb are quite similar with those for 103Rh. It might be good
to notice that uncertainties due to non-statistical effects (see
section 4.4.3) are not included in the error calculation. In the case
of 139La the uncertainty in the capture width is rather high (r"Y
is known only for two resonances), whereas the uncertainty in D^g
is relatively low as a result of the fact that some resonances have
been measured in the 138La(n,y)*39La reaction. Consequently, the
total standard deviation for the calculated capture cross section
of 139La is a rather flat function of energy. In the case of 98Mo,
large uncertainties are present in <rl_fl>, < r Y 1

> » Dc, and D^s
due to uncertainties in the parity assignments of the resolved
resonances. A large uncertainty in the capture cross section of 98Mo
is found, therefore.

In conclusion one could say that in a few favourable cases,
where the resolved resonances and low-energy level schemes of both
the target and the final nucleus are well known, a standard deviation
of about 10% in the calculated capture cross section in between
10 keV and 1 MeV is feasible. However, non-statistical effects and
systematical errors in the determination of the parameters may de-
crease the reliability of the statistical model calculation. Above
the neutron energy of 1 MeV the statistical model has to be applied
with great care, as several sources of statistical model errors,
uncertainties in the distribution functions and errors in model para-
meters play a role. Above a few MeV also cascade processes and direct
and collective processes have to be taken into account. Therefore
the uncertainty in the calculated capture cross section at high
energies will be larger than 40% in most cases. The correlations be-
tween average cross sections in two ABBN energy groups are large
over at least three adjacent groups.
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FIGURE CAPTIONS

fig. I Sensitivity of the calculated cross section of the 93Nb(n,Y)91*Nb
reaction for changes in e and c.
The "normal" values of e and c used in the calculation are
ec = 1.15 MeV and c = O.Î46 [lo] . The parameters have been
viried to e_ = 1.28 MeV and c = 0.0888 [is] , respectively.
Other parameters used in the calculations are given in the
caption of fig. 7.

fig. 2 Sensitivity of the calculated cross section of the 98Mo(n,y)99Mo
reaction for _a change in c. The two values used for c are
c = 0.146 [l6~j and c = 0.0888 [is] . Other parameters used in
the calculations are given in the caption of fig. 9.

fig. 3 Evaluated capture cross sections of 93Nb compared with ex-
perimental values. The experimental points are from Yamamuro
et al. [33J, Kompe [32] and Poenitz [34]. Evaluated curves are
from Howerton et al. [3S] , Benzi et al. [36] and from RCN.
The dashed curve is calculated with a strength function model,
with S0 = 0.36*10-^, Si = 7.0*10-^, S2 = Q.57*\0~kt <r{=„> =
146 meV, <r][=1> = 195 meV, Dcbg = 100 eV.
(These parameters have also been used for figs. 1 and 7).
The discrepancy between the dashed curve and the measured
points might be due to the existence of doorway states in the
capture process. Above 50 keV the RCN-2 evaluated curve has
been calculated with the statistical model where the trans-
mission coefficients are calculated with the optical model,
and the other parameters are as given in the caption of fig. 7.

fig. 4 Total standard deviations and error components of the calcu-
lated cross section of the 103Rh(n,Y)10 Rh reaction.
The explanation of the symbols used in the inset of the figure
is given in the text. The values of the parameters and their
relative standard deviations (given in parenthesis) are as
follows: S0 = 0.47S10""14 (15%), Sj = 6.50*\0~k (30%), So =
3.25*10-*+ (100%), S3 = 3.25*10-^ (100%), 84 = 3.45*10-* (100%),<r|=0)1> = 161 meV (6%), Dgbs = 26.1 eV (-3%), D^ = 48 eV (-70%),
al = 6*.5 (20%), e = 16.1 MeV (1%), Tr = 7.4 MeV (5%), K = 1.23
(20%) .
The first energy of the statistical calculation is at Eres =4.03 keV; e t= 1.294 MeV. This figure corresponds to table 1.P

fig. 5 Total standard deviations and error components of the calcu-
lated cross section of the 103Rh(n,Y)10 Rh reaction, extending
the statistical calculation to very low energies (Eres = 100 eV)
and assuming that the target level scheme is unknown above
e t= 0.2 MeV. All other parameters are as given in the caption
or fig. 4.

fig. 6 Statistical model errors for the cross section of the
103Rh(n,Y)101+Rh reaction, calculated with the same assumptions
as given in the caption of fig. 5. The three components which
contribute to the total standard deviations are due to fluctu-
ations in: the level widths, number of resonances per averaging
interval, and number of bound target levels involved.



-85 -

fig. 7 Total standard deviations and error components of the
calculated cross section of the 93Nb(n,Y)9lfNb reaction.
The values of the parameters and their relative standard
deviations (given in parenthesis) are as follows:
S0 - Q.36*̂ -1* (17%), Sj = 7.0*10-'* (50%), S2 = 0.57*10~4
(100%), So = 6.0*10-̂  (100%), 84 = 2.7*)0~It (100%),
<rY > = 146 meV (3.5%), <r£=1> = 195 meV (9.5%), D§bs =
100 eV (-10%), D£bs = 41 eV (-75%), er = 16.5 MeV (1%),
Tr = 4.7 MeV (5%), K = 0.75 (25%), a£ = 12 (40%).
The first energy of the statistical calculation is at
Eres = 7.37 keV; e t - 1.15 MeV. The capture cross section
of 93Nb calculated with these parameters has been plotted
in figs. 1 and 3.

fig. 8 Total standard deviations and error components of the cal-
culated cross section of the 139La(n,y) La reaction.
The values of the parameters and their relative standard
deviations (given in parenthesis) are as follows:
S0 = 0. 64*10-** (23%). Si = 2.0*10"4 (100%), S2 = 3.3*10-'t
(100%), S3 = 6.1*10"4 (100%), S, = 2.8*10-1+ (100%),
< r = > = <r> = 50 ev (25%>> S = 29° ev <-9%)> D=0 = <=i = e > bs = e -> ohs -41 eV (-17%y,er = 15.1 MeV (1%), Tr = 5.0 MeV (5%), c£ = 8.2(2Q%),
K = 0.55 (24%). The first energy of the statistical caf-
culations is at Eres =10.5 keV; e t = 1.96 MeV.

fig. 9 Total standard deviations and error components of the
calculated cross section of the 98Mo(n,Y)99Mo reaction.
The values of the parameters and their relative standard
deviations (given in parenthesis) are as follows: SQ =
0.35*10-̂  (40%), S] = 7.0*10-'* (50%), S2 = 0.54*1Q-* (100%),
S3 = 3.94*10-'* (100%), S4 = 3.04*10-" (100%), <FY > =
86 meV (17Z),<rJ > = 120 meV (20%), Dgb = 800 eV (-30%) ,
Dohs = 130° eV *-'5%)» er " 15-8 MeV < 1 %>» rr = 6-° MeV(5%), K = 1.6 (50%), 0-2 = 6.6 (13%).
The first energy of the statistical model calculation is
at Eres = 5-39 keV; e t = 2.74 MeV. The capture cross
section of 98Mo calculated with these parameters has been
plotted in fig. 2.

N.B. The energies at which the uncertainties are estimated do
correspond with the arithmetic mean energy of the ABM groups.



4 = 1.28

= 0 . 0866

normal c and

E (MeV)

Fig. 1.



-87 -



.. 88 .-

(b*keV
1/2

2.0

1.5

1.0

0.5

93
Nb

RCN-2 STRENGTH
FUNCTION MODEL

D YAMAMURO
A KOMPE
O POENITZ
___ RCN-2
_.._. ENDF/B-4
_._. BENZI ET AL

10 100
E(keV)

1.000

Fig. 3.



SE.NSÏTTVITY FUNCTIONS ÏSr 45103 DflTF.= 23/10/75

Œ
O
(n

LU
Œin
LU

Œ
_J
LU

D total standard deviation
O statistical model error

,30

.60 <r> and <r

not separately indicated

i i l l l l l : l l l l l i l i i l l i i i i : l i

ENERGY (MEV)
Fig. 4.



- 90 -

SENSITIVITY FUNCTIONS IS= 45103 DRTE= 23/10/75

1.00

CD
£N

Œx:
CD
CO

.30

-60

UJ •<
CD

or
CJ .20

nr— « jo

Œ

LLJ
C£ -.20

! i ; ; ; ; i l r

a
o
A

4
X

O
t
%
z
Y

total standard deviation
statistical model error
50
51

-.40
10

not separately indicated:

-4 10-3 10-2 10
-1 10 10

ENERGY ( M E V )
Fig. 5.



CO

§<=•
•fH
-t-i
cO

widths

o resonances

bound levels

10 10
E (MeV)

Fig. 6.



SENSITIVITY FUNCTIONS IS = 41093 URTE = 31/10/75

1.00

Œ
Oi—i
CO .60

0
A
+
X

O

_ y

Y

LU

Œm
LU

-.00
Œ
_J
LU

-T-TTTTTj—

total standard deviation
statistical model error
s0
si
S2
s3
S4
<rî=0> and <rj=]>
Dobs
Dobs
not separately indicated:
a 2 , e , r , K

-.40

10
-3

10
-2 10 -l 10 10

ENERGY ( M E V )
Fig. 7.



SF.NSTTTVITY FUNCTIONS IS- 57139 DflTf.r 31/10/75

l .00

er

CO

or
in
CJ

LU

er
_j
LU

30

.80

l i I =10

-.00

-.20 -

T l l t

D total standard deviation
statistical model errorO

A S0

-f sl
X S2

O S3

X <rj=0> and <r}=1>
Z o§bs
Y Dobs

not separately indicated:

-.40
10

i i i i i 1 1 1 1 l l l l ! ! il

-2
10

-l 10 10 10

ENERGY ( M E V )
Fig. 8.



5W3ITÏVITY FUNCTIONS 13= 42098 DFFtz 28/10/75

1 -00

Œ

O

en

UJ

Œ
m
CJ

Lü

Œ

LU

total standard déviation
statistical model error
S0
si
S2

not separately indicated
2

10 10 10 10

ENERGY ( M E V )
Fig. 9.



- 95 -

Contributed Paper Wo. 5

Uncertainties and applications of the nuclear level density with inclusion of
collective rotations.
A.S. Jensen
Institute of Physics, University of Aarhus
DK-8000 Aarhus C, Denmark
ABSTRACT

The collective rotations are included for small excitation energies. in the
level density of deformed nuclei by addition of a rotational band on top of each
of the intrinsic levels. Estimates of the effect are given. Uncertainties of the
calculations are studied in a realistic model. The calculations using different
models are compared with level density observations. Examples of applications
to fission probability calculations are discussed in connection with the compari-
son to available experimental data. The capability for predicting unknown data is
thus indicated.Pinally it is outlined how more flexible and thereby more useful
level density expressions might be obtained.
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Uncertainties and applications of the nuclear level density with inclusion of
collective rotations.
A. S. Jensen
Institute of Physics, University of Aarhus
DK-8000 Aarhus C, Denmark

1. INTRODUCTION
There are several interrelated purposes of this paper. The first is to

describe how to calculate the nuclear level density with collective rotations
included. Thus in Sect. 2 the theory is briefly sketched and estimates of the
effect of the collective rotations is given.

The second purpose is to estimate the uncertainties involved in the
calculations. In Sect. 3 such estimates are given for the level density
calculated from a reasonable single particle spectrum. The reliability is
further- investigated by comparison to available experimental values.

The third purpose is to illustrate the predicting power of models where
the level density enters very directly. This is done in Sect. 4 where different
measurements were analyzed using such models. This illucidates (with the results
of Sect. 3) the possible applications limited by the uncertainties involved in
the calculations.

The fourth purpose is to indicate improvements or different ways to
proceed to obtain higher predicting power. In Sect. 5 is outlined a possibility
of how this goal may be approached.
2. THEORY

The Hamiltonian describing the nuclear system is assumed of the form

H = £ { Z e, (â a + a±aT)-G Z â atâ .a } (i)
-, . -L J. J_ JL J- Jx , , , J. J. J. J_k i > o i,i'x>

where a+ (ai) is the creation operator for a particle (neutron or proton)
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with single particle energy e. and with spin up (down) in the state labelled
by i .If axial symmetry is assumed each single particle state has a given
projection fi. of the angular momentum on the symmetry axis. The pairing strength
G, (k = neutron, proton) may be different for the two kind of particles.
2.1. Level density of spherical nuclei«

From the Hamiltouian in Eq. (1) the nuclear level density p maybe evaluated
in the saddle point approximation [1], [2] . The result is given by the familiar
expression

where the given average values of excitation energy E, number of neutrons lTn
and protons Up and projection K of the angular momentum are constraints on
the system enforced by the corresponding Lagrangian multipliers ß, \n, \p and
Y . Both S and D are given as functions [2] of these solutions g, \ , \
and y ^° "the equations n ^

E + EO - E { z «iO-fCv^i'/V (3)
k iX>

(4)

K = z: { E n.f~ } (5)
k i>o

If the pairing gaps A, are finite they must satisfy the gap equations
K.

2/Gk = E f+/E , k = n,p (6)

When T = 1/ß =0, K = 0 we have E = 0 defining E . The remaining quantities
are given by

= Tanh [fc (

, \<i, A^ /0\ê -AJ +• A VD;

The procedure is now the following. The six equations (3) - (6) are for
given E, Ik, K, Gk solved for ß , \n, Xp , y, An , An * If no positive solu-tions for An and Ap can be found^one or both of Eqs.̂ 6)are omitted and the
corresponding A is assumed equal to zero.

Because of the pairing this procedure is only valid for doubly even nuclei.
Considering the odd nucleus as an even nucleus plus one or two quasiparticles
the systematic odd-even differences are accounted for [3]. Thus no special
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attention is needed for odd systems.
The level density as function of the total angular momentum I may now

be evaluated. Omitting all arguments of p except K the usual way to proceed
[4] is to decompose p(K) in parts of given I

00

p(K) = Z p (K, I) (9)
I=K

Under the assumption that p for a given I is independent of K i.e.

p(K=I .1) = p(K=I +1,1) = p (l) (10)(J\ 0» / MV o > I ^sym: ' ^ '

this leads to

p(K=I ) - p(K=I +1) = P(K=I ,1=1 )= p (1=1 ) (11)H^ cr v^ o ' v^ o' o' Hsym. o' ^ '
When the K-distribution of p is Gaussian [1], [5] we find [2]

where the spin cut-off parameter is given as
n?o- 2=-|E{E —— ̂ ——— } (13)

k i>o cosh (-gßE.)
This derivation of Eq.(l2) assumes that p(K, l) is independent of the
projection axis (here the symmetry axis) i.e. the system is assumed rotationally
symmetric. Hence the label sym. on the resulting level density.
2.2. Level density of deformed nuclei.

For deformed nuclei rotational bands are built on top of each intrinsic
state. For axial symmetric nuclei (considered so far) the rotational energy is
given as

where J. is the moment of inertia around an axis perpendicular to the symmetry
axis. When the coupling between intrinsic and collective degrees of freedom is
neglected the level density becomes [4]



We have now explicitely written also the energy argument in the level density
of Eg. (2). Because this level density has contributions "both from internal and
collective degrees of freedom we label it unif. [3]«

For small I-values we find [4] from Eqs.(l2) and (15)

2Depending on nucleus, deformation and excitation energy we have a ^ 10-100.
Although we are not to consider non-axial systems it is maybe worth to

give the effect on the level density. In this case K is not a conserved quan-
tum number and the level density now becomes [4]

21+1
Pn.a.M- V(M«*-(I'T)) °7)T=1

where T labels the 21+1 different states with a given I. The argument K
has disappeared and should in this case be removed from the preceding derivation.
Again we obtain for small I-values

Pn.a.OO « (2I+1)P(E) (18)
which for a Gauss ian K-distribution leads to

sym.
For the non-spherical level densities Eqs.(l5) and (17) the space reflection
symmetry is assumed broken (pear-shape). If this symmetry is preserved the level
densities should be reduced by a factor of two [4]«

The inclusion of rotational states in this way introduces too many degrees
of freedom. Double counting might therefore become a problem. To avoid this the
coupling (i.e. the coriolis coupling) between intrinsic and rotational motion
should be treated properly. The operator in this coupling term creating the
particle-hole excitations is Jx (the angular momentum component along the
rotation axis, the x-axis). The energies are consequently for the harmonic
oscillator of the order h(u>y - coz) . When the nuclear temperature becomes
comparable with this energy these particle-hole excitations are already
counted among the intrinsic excitations. Thus they should not also be counted
as collective rotational states. For actinides and rare earth nuclei a rough es-
timate of the corresponding excitation energy gives around 50 MeV for typical
ground state deformations [6], Very crudely we can in such cases say that below
50 MeV the rotations should be included as described, and above 50 MeV only
intrinsic .excitations should be counted. A proper treatment of the transition
region is not formulated at the moment.
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3. CALCULATED LEVEL DENSITIES COMPARED WITH OBSERVATIONS

The level density has been determined experimentally at the neutron
separation energy for nuclei covering most of the periodic table. A comparison
between calculations and these observations is therefore, natural. Fortunately
the neutron binding energy is about an order of magnitude smaller than the
critical energy of around 50 MeV mentioned in Sect. 2.2, thus for deformed nuclei
the rotations are expected to contribute fully as described above.
3.1. Results.

Only a few systematic investigations using different sets of single parti-
cle energies e± have appeared. One of them [3] obtains e^_ from an axial
symmetric deformed average potential of the Woods-Saxon type. The functional form
of the radius, depth and diffuseness parameters are taken from a Thomas-Fermi
calculation [?]• The ground state deformations used are obtained by the shell
correction method [8] for nuclei with mass number A between 140 and 253. The
lightest nuclei considered (100 ^ A <. 140) were all assumed spherical.

In fig. 1 we show the resulting ratio of the calculated and observed level
density. The experimental values are taken from Lynn [9]. Systematic odd-even
effects are reproduced as mentioned in sect. 2.1.

In the deformed region Punif. is on ^e average a factor four too small
and except for a few nuclei we have 0.2 £ Punifj./ßobs.̂  9*5« T]le Pb-region is
reproduced better by psyjn. an(̂  also around *3öBa there is a similar
tendency. The transition from spherical to deformed nuclei in the region
190 <; A <, 208 is clearly seen. For the lighter nuclei (100 <; A £ 130) psym>
underestimates the level density by a factor 100. This is surprising in view of
the reasonable agreement for the other spherical nuclei around ÔSp̂ , jn
conclusion a very considerable improvement is obtained for deformed nuclei by
inclusion of the rotational states. The discrepancy reduces from a factor of
100 to a factor 4.

In another investigation [10] e. was obtained from an average potential
of the ITilsson type. For the spherical nuclei the parameters of Seeger and Perisho
[11] was chosen and for the deformed nuclei a recent version of the Filsson
potential [12] was used. The equilibrium determined by the shell correction
method was used.

Although also lighter nuclei were considered we shall here restrict
ourselves to the same nuclei (A s 100) as in réf. [3]» The results exhibit no
systematic odd-even effects allowing a presentation without reference to the odd
or even character of the nuclei. With the observed values of Lynn [9] fig» 2
was then prepared.

The values of Pcalc./Pobs. scatter around unity in all the different
mass regions. The deformed nuclei" (150 < A < 185 and A > 228) differ on the
average only by a factor of two (up or down) from observations. The systematic
underestimate seen in fig. 1 is not present. The "spherical" nuclei in the
Pb-region show a strong variation with A. The increase towards the rare
earth nuclei is opposite expectations based on the results in fig. 1 . However,
the Mlsson model single particle spectrum [12] removes this discrepancy [10],
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For the nuclei of A < 150 this calculation seems to reproduce the average
"behavior of the observed level density. This is in contrast to the Woods-Saxon
results.
3.2. Uncertainties in the calculations.

In réf. [3] uncertainties in the calculations were reported. For the small
excitation energies the error introduced by the method of level density
calculations described in sect. 2 is in the case of no pairing less than 25$.

An essential source of uncertainty is the parameters of the average poten-
tial leading to the single particle spectrum e. . A change of the radius of
around 8$ changes the level density by a factor less than 6. An increase of the
spin-orbit coupling by 17$ produces less than 30$ change of the level density.
An increase of the diffuseness by 50$ changes the level density of spherical
nuclei by up to a factor of 3j about the same (maybe slightly larger) result is
expected for deformed nuclei when the ground state deformation is changed con-
sistently.

The pairing strength G is also important. A variation corresponding to
15$ change of the pairing gap produces less than 40$ change in the level density.
This is much less than the factor of 3 given in réf. [10]. The discrepancy may
be due to the different pairing treatments and the different single particle
spectra.

Such variations of the parameters together with their estimated uncer-
tainties give us the uncertainty of the calculated level density. In réf. [3]
an uncertainty range of about a factor of 3 is given.

The uncertainty range of the average potential parameters is also supposed
to give limits within which other reasonable potentials should fall. It would
therefore follow that the results described above in the two different models
come out consistent with these limits. The overall larger (by a factor around
four) level density from the Mlsson type potentials than from the Woods-Saxon
potential may,in view of the very strong pairing dependence quoted in réf. [10],
be considered within these inaccuracy limits for the heavier nuclei.

For the lighter nuclei, however, the discrepancy(compare figs. 1 and 2)
is too big. It reflects a basic difference between the single particle spectra
arising from the two different potentials. The Seeger and Perisho parameters
[11] are adjusted to give good single particle levels and the reasonable level
density resulting may therefore be anticipated. The «question remains, however,
why does the average potential based on the Thorns-Fermi calculations [7] so
much underestimate the level density? or are the nuclei maybe not spherical?
or are the contributions from the collective states like the vibrations unexpectedly
large?
4. APPLICATION TO THE ANALYSES OF OBSERVATIONS

Partial decay widths frequently enter more or less directly in the
measured quantities. For neutron emission we have
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JH-I +i E~Bn
(20)

where p„ and p^ are the level densities of compound and daughter nucleus,
T-j_.j is the neutron transmission coefficient. The sums are over all final spins
ana the integration is over all possible final excitation energies of the daugh-
ter nucleus. Assuming p(e,,i)=lir(2j+l)p(e) and T-j^ independent of j we find

E-B
p(e)de

1=0
n=2^TET'2I * PC-)*« S (21+DV«) (21)

E-Bn
J (E-Bn-e)p(e)de
o

where the inverse cross section is assumed equal to the geometrical

a- „ = n*2 E (21+1)T (e) = nR2 (22)inv. -. _ x

The spin independent expression Eq.(2l) for F is often used. Its validity
seems to rely on the 21+1 dependence of the level density. This dependence
breaks down for spin values above ~ 5Î1 for the heavier nuclei. Because of the
appearance of p both in numerator and denominator the errors tend to cancel and
the expression Eq.(2l) may still be fairly good for somewhat larger spin-values.

The dipole radiation width may be estimated from

Where C is a constant e.g. determined from the knowledge of F at one energy.
The spin dependence of F., is very weak and in analogy to Eq.(2lJ we may write

<*-«>v«>d« (24)
This approximation to Eq.(23) holds for spin values up to around 4Qh in the
heavier nuclei.

The fission width for one barrier is given by
IT "P~ pB(e,j) de (25)

where p_ is the level density on top of the barrier, B„ is the barrier height
and u) the frequency of the parabola with the same curvature as the barrier.
The spin-dependent expression is obtained simply by omitting the argument J in
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Eg. (25).
For a double hump fission "barrier one often uses the approximation [13]

to the total fission width F»

where ri and Ff refer to the first and second "barrier, each calculated with
an expression like Eq> (25). Because of the exponential dependence of Ff on "Bf
a small difference (0.5-1.0) MeV between the two barrier heights reduces F^
to that of the highest barrier.

2414.1. Fission probability near threshold of Cm.
The shell and pairing effects included in the width through the level

densities may in certain cases be observed. For the reactions 3̂opu (Q/, 2n)
and 241.Am(p?2n) , both passing the compound nucleus 241 Cm, the ratio Fn/r.ffor 241cm has been extracted as function of energy from the measured excitation
functions [14]« A tump around 5 MeV above the neutron binding energy of 241 Cm
is observed.

Neglecting rotations we calculated FnFf from the spin independent
expressions Eqs.(2l) and (25) both with and without pairing [14]» ê results
are compared with the experimental values in fig. 3» Clearly, the inclusion of
pairing is crucial to obtain the observed bump. The explanation is the differ-
ence in shell structure between ground state and barrier deformation. This again
is reflected in different values of the pairing gaps and how they disappear with
excitation energy. Because pairing is essential for p for small excitation
energies this in turn is reflected in the calculated Fn/Tf. The rotationalcontributions are not included but they are not expected to change the picture.
4.2. Fission probabilities above threshold.

In several cases for nuclei in the Fb-region, a and proton induced
fission cross sections are measured over a large energy region [15]» Calculations
neglecting shell and pairing effects in the fission probability always fail to
reproduce the measurements in an energy region extending over more than around
10 MeV.

With Fn of Eq. (20) evaluated directly from the single particle spectrum
of a Hilsson model [12] and Tf of Eq. (25) obtained with a uniform model
assumption for p-g, Moretto et al. [16] were able to reproduce the measured
fission probability. They neglected rotations in the level density but had 5
free parameters at their disposal. Thus implicitely the collective enhancement
of p may be contained in such calculations.

An absolute comparison without parameters has been made by Freiesleben
et al. [1?]» They obtain the results shown in fig. 4 when rotations are
included in pg. The low energy behavior is reproduced for 210po -̂j; around
10 MeV above the barrier differences show up very strongly. Even allowing Bf
as a free parameter would not improve the fit.
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The conclusion is obviously that the statistical model yields an in-
correct energy dependence or the calculated level densities are incorrect.
If the latter is assumed either the single particle energies or the pairing
strengths are not appropriate or other collective states contribute signifi-
cantly. The answer has so far not been given.

2394.3« Fission probability and lifetime measurements of U.
The fission cross section of the reaction U(n,f) has been measured

[18] for compound nuclear excitation energies around the fission barrier. (This
essentially determine Ff/F; T = Tn+T^-Ty+ .......) With the crystal blockingtechnique also the lifetime of the 239u compound nucleus formed in the same
reaction has been measured [19] for three neutron energies. (This essentially
determines T = h/F.)

When E— Bn of the compound nucleus is small (like the case considered
here) the continuous level approximation in Eq. (20) fails. Therefore the final
states (in 238u) were divided into a discrete region below 1 MeV, where the
levels are known, and the statistical region above 1 MeV. Above 1 MeV we use
the level density obtained from the Woods-Saxon potential (see Sect. 2) and
the rotational states are included. We normalize Punif. °̂  ̂ q. (15) (an extra
factor of 1/2 due to the assumed space reflection symmetry is introduced) to the
observed number of -|- levels at the neutron binding energy. This (energy and
spin independent) normalization factor lTn is around 4 (see fig. 1). The discrete
levels contribute about 50fo for an excitation energy of 6.5 MeV and practically
nothing at 7.0 MeV. The normalization factor H"n only makes a difference when
the discrete levels contribute significantly to Fn. Otherwise it disappears
due to the ratio of level densities entering in Eq.(20).

The transmission coefficients were calculated using an optical model
with parameters adjusted to give elastic cross sections [20]. This completes
the description of the ingredients applied in the rn-evaluation.

For Ff we introduce, as in the case of Fn , a discrete spectrum for
the low energies above the fission barrier. It was chosen as rotational bands
built on top of the lowest quasi particle states. To account for deficiencies in
the level density p-™ i (calculated from the single particle energies at the
theoretical barrier deformation) a normalization factor M^ is applied (as in
pc and pD where Nn«4).

The energy dependence of the fission probability may now be reproduced
with a suitable choice of the fission width parameters. We obtain a good fit
with the values [21], [19]

= 6.1 MeV, hu>A = 0.6 MeV, U = 35

=5.8 MeV, hu)B = 0.5 MeV, N = 45
(27)
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The barrier heights are slightly "below values [22] obtained in systema-
tic fission probability analyses. Also hu^ is on the low side. The N-values
are very interesting. If we allow for a factor of around 4 (as in pQ and
p-p) due to vibrations still a factor of 10 is needed. The outer barrier (B)
being pear shaped (theory) reduces further the factor to 5 (see sect. 2.2.).
This brings the value down close to the region of uncertainty due to level
density inaccuracies and the uncertainties in the determination of Ifjp) itself.
For the inner barrier (A), which has no pear shape (theory), the factor may
rather be taken as an experimental indication of a non-axial deformation leading
to a pB enhancement. As seen from Eqs.(l6) and (19) this could easily amount
to a factor of 10.

The total decay width is now defined and the corresponding lifetime may
be calculated as a function of energy. The result [21] is compared with ex-
perimental lifetime [19] in fig. 5. They differ by about a factor of two which
partly may be due to the different averaging procedures used in the calculated
and experimental lifetime extraction [19]»

OOOSince both the compound cross section o> and the U(n,y) cross
section an y are known experimentally we may obtain the total width from
calculations of Ty "by "the relation [19]

r = ̂- • r (28)
n, Y

The corresponding lifetime (dashed curve in fig. 5) fall between the calculated
and observed points. Thus confirming the consistency of the hole picture.

The effects of the rotational enhancement of the level density normally
enter only weakly in these width calculations, the reason being that only ratios
of level densities are needed. For Tn the effect may be difficult to recognize
because pc and pp are similar. It may be easier for 1%. when pc and pg
are different mostly due to different symmetry properties, e.g. spherical ground
state and axial symmetric barrier or axial symmetric ground state and non-axial
symmetric barrier. Because of the parameters entering in Tf , e.g. B , most of
the effect may be hidden in such effective parameter determinations. In order
to get a more complete picture systematic investigations of many nuclei are
needed. The measured fission probabilities should be refitted when the
different symmetry properties indicated from energy surface calculations are
taken into account [23].
4.4« Conclusion.

The examples of fission probabilities shown here serve as illustration
of the predicting power (or lack) of the theoretical models considered.

Prediction of already known data is possible if a few parameters are
left for fitting,e.g. in the analyses of Moretto et al. [16]. In absolute calcula-
tions, e.g. Freiesleben et al. [1?], the experimental results are in general
not reproduced. Thus the power of absolute predictions of existing experimental
results already is not very good.
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However, in small energy regions where additional information (e.g. the
level density at the neutron binding energy, transmission coefficients etc.) are
available, the predictions seem quite possible.

In the actual calculations described above the level density is only
reliable to within the accuracy given in sect. 3. But also other quantities
entering the expressions are uncertain, e.g. barrier heights and deformations and
how they change with excitation energy and spin. Predictions of experimental
results must take all this into account. Since experimental quantities involve
ratios of level densities, they are possibly better determined than the level
density itself.

The power of predicting unknown data must consequently rely heavily on
all entering quantities and the ability to extrapolate them. Here the
reliability and extrapolation of the level density seems already to present a
problem due to the uncertainty of the single particle spectrum e^ (or the
average potential giving e-;)«
5. HOW TO PROCEED?

In the level density the essential parameters are e^. But in the stati-
stical region, i.e. many excited states, probably only gross properties of the
e^— spectrum are important. The most obvious is the average single particle energy
spacing go around the Fermi energy. It has been used extensively, but is now
known to be insufficient. Also the degree of bunching is very important for the
level density. A measure of the bunching is the shell correction 6W.

It would be very valuable if the level density could be parametrized
directly in terms of go , 6 W and maybe other quantities characteristic of the
ej_-spectrum. The computer-time would be reduced and the essential properties of
the level density and their consequences would appear in a more transparent way.
Fn , Tf and Fy would become possible or at least easier to predict.

Estimates of the level density would then only rely on these average pro-
perties of the single particle spectrum. They might be easier to extrapolate
(but presumably of the same degree of difficulty as the average potential
parameters leading to e^) or they might be determined by additional information
about the process in question.

On a phenomenological basis an attempt of this kind was already made by
Ignatyuk et al. [24]. They used the ordinary Fermi gas expression with an
energy dependent level density parameter a .given by

a(E) = a (1 H- • Ô.W) (29)

f(E) = 1 - exp(-YE) (30)
This expression represents for large E-values a translation of the energy
scale corresponding to the shell correction 6 W [25]. The mass dependent
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parameters a and y are "then given by the best fit to the observed level
densities at the neutron binding energy. The improvement over the expression
without the 6W-terms is significant.

This level density was then applied [26] to the fission probability of
nuclei in the Fb-region. For excitation energies below 50 MeV the experimental
results are reproduced.

The expression of Eq.(29) enters in the intrinsic level density and
Ignatyuk et al. [24] did not include any collective enhancement. Recently this
was attempted [27] as described in sect. 2. The level density data for the
deformed actinide and rare earth region and the spherical Pb-region were used
to determine the parameters a' and y Subsequent calculation of the fission
probability of ^ Po gives too strong an energy dependence.

The same procedure was then carried out [27] with the function of Eg.(30)
replaced by

f(E) = 1 - exp(-v VE) (31)

212Below 70 MeV the fission probability of Po is then reproduced within a
factor of two. Because it varies by five orders of magnitude in the excitation
energy regicfri of interest, such a fit is not trivially obtained.

The importance of the functional form of f(E) or in other words the
influence on the level density of the shell structure is demonstrated by this
example. To find f(E) in a more systematic way one could calculate the level
density in realistic models, i.e. with shell and pairing effects and from this
extract the function. Such procedure hopefully would lead to the above mentioned
simple parametrization of the level density in terms of gross properties of the
level spectrum.

Since the simplicity is obtained with essentially no cost of lesser
accuracy (so far an assumption, although I believe it is possible) this is an
enormous advantage in the analyses of existing data. Also unkown data may be
predicted with "error bars" from the known uncertaintj.es of the parameters in the
level density.
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F I G U R E C A P T I O Ï T S

Pig. 1 The ratio of calculated to observed level density at the neutron separation
energy as function of the mass number A . The calculations are those
of réf. [3] where a Woods—Saxon potential was applied. The rotational
contribution is included for the closed points and not for the open
points. The squares are the doubly even nuclei, the circles odd-odd
nuclei and the crosses are the odd nuclei. The tilted crossed have an
odd proton.

Fig. 2 The same as fig. 1 with the calculations from réf. [10] where Mlsson
type potentials were used (see text). As in fig. 1 the rotational
contribution is included for the closed points and not for the open
points. Ho distinction referring to the odd or even character of the
nucleus was made.

241Fig. 3 The quantity Fn/Ff for the fissioning system Cm as a function of
the excitation E* - §2 above the neutron binding §2 • These results
are from réf. [14]« ^e full drawn curve is the extracted experimental
result and the dotted continuation is an interpolation connecting to
the high energy value [14]« 1^® dashed and the dot—dashed curves are
calculations with and without pairing, respectively. A height B^ =
5.0 MeV of the first and highest barrier of 241 Cm was used.

?10
Fig. 4 The ratio Ff/Fn for Po as a function of excitation energy taken

from réf. [1?]« The curves with level densities based on the single
particle spectra for an asymmetric and a symmetric second saddle point
deformation are calculated with the rotations included. The fission
barrier height of 22.1 MeV is obtained using the experimental ground
state masses and no additional free parameters are allowed. The points
are measured values [1?]»

Fig. 5 The lifetime as a function of the excitation energy of the compound
nucleus -1 U. The figure is taken from réf. [19] where the Aarhus
Studsvik measurements (triangles) are reported. Also the more uncertain
Moscow—results are shown (full circles).
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ON A NEU SEMIEHPIRICAL NUCLEAR LEVEL DENSITY FORMULA

WITH SHELL EFFECTS

tf.S. RAflAMURTHY, S.K. KATARIA and S.S. KAPOOR

Bhabha Atomic Research Centre,
Trorabay, Bombay 400 085, India

A B S T R A C T

A new semi-empirical nuclear level density formula is
proposed, which takes into account the influence of nuclear shell
structure on level densities and its excitation energy dependence.
The formula is tested against experimental level spacings of nearly
120 nuclei and is shown to perform aearly as good as a detailed
microscopic calculation starting fro« a set of shell model levels,
at the same time retaining the inherent simplicity of phsnomenological
formulae.
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1. INTRODUCTION

Nuclear level densities play a central role in any statistical
analysis of nuclear reactions. Experimental information on nuclear
level densities as obtained from analysis of neutron and charged
particle resonances, inelastic scattering and reactions, particle
evaporation spectra etc. extend neither over a wide range of excita-
tion energies nor over all nucléon numbers over the periodic table.
In view of this, in any practical calculation, one often resorts to
theoretical estimates of nuclear level densities.

Two different approaches have been employed in the past for
theoretical calculations of nuclear level densities. In the first
approach, one retains the traditional Beth* expression for level
density, with the level density parameter a_ obtained by suitable
interpolation/extrapolation techniques from available experimental

(1 )informations, as for instance given by Newton ' or by Gilbert and
(2)Camsron . However, this approach suffers from one serious drawback.

That is, in all these formulae, shell effects are taken into account
only in an empirical way. Consequently, since the constants of these
formulas are determined from experimental data confined to a narrow
range of excitation energies, any attempt to extrapolate these formulae
to other excitation energy ranges are subject to large errors. It has
in fact been shown on the basis of a detailed calculation starting
from a shell model single particle energy level scheme that the Bethe
form of the level density formula cannot satisfactorily describe th«
excitation energy dependence of shell effects on nuclear level density
by treating £ as an energy independent free parameter. In particular,
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the rapid washing out of shell effects on the thermodynamic properties
of nuclei is a feature, which is now well established but which is
ignored by the existing level density formulae«

(4)In the second and more recent approach, ' one numerically
computes the level density starting from a set of shell model single
particle energy levels. This approach has a sounder theoretical basis
than the first approach and takes into account in a natural way the
influence of nuclear shell and pairing effects on the level density
and its wiping out with excitation energy. Consequently, this approach
has found a wider use in the last few years. There exist however a few
inherent drawbacks in this approach. First is, of course, the availa-
bility of shell model level schemes for all nuclei, coupled with the
need of a considerably larger computation effort« While this, in
itself, is not a big constraint, because of a large number of single
particle level schemes currently available in literature and easy
accessibility of fast computers, this is a step which the average non-
specialist user will like to gladly dispense with. The second drawback
of this procedure is more intrinsic. In any shell model calculation,
the quantity on which the calculated level density crucially depends,
is the density of single particle levels at the Fermi surface. This is
not a quantity which is crucially adjusted in any calculation of shell
model energy level scheme. In fact, differences to the extent of 10-2GJÈ
are known to exist between the calculated average single particle energy
level density at the Fermi surface corresponding to various level schemes
currently being used in literature for the calculation of nuclear shell
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correction energies to the deformation potential energies. It is
therefore necessary to adopt some sort of normalization procedure which
ensures that the shell independent parts of the calculated level
densities are consistent with any Liquid Drop Model (LQM) estimate.
The need for such a normalization in microscopic calculations of nuclear
moments of inertia parameters from shell model single particle level
echsmes has already been pointed out in an earlier work. Normaliza-
tion to the 1-01*1 values is a wall established procedure in deformation
potential energy calculations. The third and the most important draw-
back of microscopic calculations of level densities fron shell model
single particle level scheme is as follows. All microscopic calculations
of level densities currently made starting from shell model levels are
dona in the independent particle model approximation» However, it has
been shown* ' that if one takes into account the fact that the shell
modal potential is a self consistent potential generated by two body
interactions, significant differences in the calculated level densities
as a function of excitation energy result. In view of these inherent
uncertainties in a microscopic calculation and the inadequacy of the
earlier simpler prescriptions we propose in the present work a neu semi-
empirical method of calculating nuclear level densitiest which whils
retaining the simplicity of the earlier semi-empirical methods, treats
nuclear shell effects in a more realistic manner.
2. BASIC THEORETICAL CONSIDERATION

The traditional Bethe expression for nuclear level densities is
based on the independent particle model of the nucleus with equispaced
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single particle energy levels.
In its simplest form, the nuclear density of states is given by

uy ~ C ex^Csl d)
where S is the thermo dynamic entropy of the nucleus and the preexponen*
tial factor C is a slowly varying function of the excitation energy.
For equispaced levels

where Ex is the excitation energy and a, is a parameter related to the
density of single particle states g.

For a system of non-interacting Fermions, confined to nuclear volumes,
a_ is proportional to the mass number A of the nucleus .

The spin dependent level density P is obtained from U7" through
the relation

(3)

where 1_ is the angular aomentura and <j- is the spin cut off factor.
In general in addition to the entropy S, both the pre-exponential factor
C and <j- are shell and pairing dependent. However the predominant
energy dependence of f cones only through the entropy S. In the
present work, ue have therefore restricted our analysis to the entropy
S. C_ and <r Have been estimated in the conventional way, as given,
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for instance, in réf. (7).
(8 )It is well known that nucléon levels in actual nuclei exhibit

appreciable fluctuations from the equispaced level scheme and these
fluctuations are the source of the shell effects in nuclear masses and
other observables.

Let us consider only one kind of nucléons, say neutrons. Let
G (£)* o ( <=r - <=rv_ ) represent the actual single particle level
density for these nucléons, where ér^are a suitable set of shell model
levels. In the spii
can write G (£-) as

to )levels. In the spirit of the Swiatacki - Strutinsky approach v ' we

where g(<~~ } represents the overall smooth behaviour of the level scheme,
while o 9(e ) is the local fluctuation. For energies close to the Fermi
energy, g(er) can be well approximated by a constant, Q- . It has been
shown earlier* ' that the fluctuations O g(£ } can be well represented by
a fast converging Fourier series expansion of the form.

Closed expressions for the entropy and excitation energy as a function of
(Q\the temperature for such a level scheme have been obtained by Gilbert. '

<~ TT ~j- " '
" T

^̂oo-r'i -*
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A detailed analysis* ' of results of microscopic calculations of
entropies and excitation energies of nuclei starting from shell model
levels has shown that in most cases, only the contribution from the
fundamental term is important in equations (6) and (7). On the
assumption that the effect of the temperature dependence of the
chemical potential ju. on entropy and excitation energy is small at the
temperatures under consideration, one can write

(8)

—3JT-*- ̂  "(&~J (9)fe

where AI

B » TT~u7

A» T-SX̂ , f f --^ o, and h— > -1

One can therefore identify A. as the shell correctionjAg to the ground
state energy of the nucleus.
The above considerations therefore suggest a simple prescription for a
complete representation of the thermodynaraic entropy of a nucleus as a
function of excitation energy
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(11)
is related to the LOW value of the level density parameter a_ as

Q „T£?O . CA
The constant B which represents the fundamental frequency of oscilla-
tion of QQ. ((£- ) is expected to be of the order of the major shall

9
spacing THO for spherical nuclei. It is known that

We can therefore write
* -

where Bo is a mass independent parameter»
Eqs. (10) and (11 ) form the basis of the method proposed here for a
theoretical estimate of the lev/el density of any nucleus as a function
of its excitation energy» With the temperature T as an implicit
parameter, these equations give the entropy as a function of excitation
energy, provided the mass independent parameters c « a/A and Bo and the
ground state shell correction energy A« of the nucleus ara known»
The affect of nucléon pairing can be accounted for approximately by
defining an effective excitation energy

A AE - ZX^ where /Jw is the pairing energy of the last two protons/
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neutron« for even 2/ even N nuclei* /Ab is zero for odd-odd nuclei.
3* DETER ni NAT ION OF PARAMETERS

Extensive expérimental date on nuclear level densities have been
obtained fro« neutron resonance studies. For the present analysis
which is confined mainly to spherical nuclei, we have used the results
of compilation of Baba* ' . The experimental level spacings, after
correction for the angular momentum dependence, pre exponential factor
and the pairing energy waking use of relations (1 ) - (3), were converted
into the thermodynamic entropies of nuclei. Cqs. (10) and (11) were then
fitted to the experimental data in the least square sense to obtain the
best values of the parameters c « a/A and 60. The values of the ground
state shell correction energy for the different nuclei were taken fron
the «ass formula of Seeger and Howare* '. Figs. (1) and (2) show plots
of the calculated mean square deviations between the calculated and the
experimental entropies, against the unknown parameters C and Bo* It is
seen that a wall defined set of parameters can be chosen on the basis of
minimum mean square deviation. The best values of parameters are

c » 0.146 (WeV~1)
-I

Bo « 18 He«
It is heartening to note that the best values of the parameters are

-Irealistic. The value Bo a> 18 Ms U corresponds to a major shell spacings of
* 'WeW, in very good agreement with the values used in literature

In order to test the consistency of the proposed formula and the
experimental data, the input data were divided into three groups, even-
even, even-odd and odd-odd nuclei and the above analysis was carried out
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for each group. These results are also shown in Figs, (1) and (2)»
It is seen that the sane value of Bo is obtained for each groupl The
maximum deviation in the best value of c is less than 4#. The root
mean square deviation obtained for the best set of parameters is
about 0.0 between the calculated and the experimental entropies for
even-even nuclei and somewhat larger for odd-odd and odd mass nuclei.
A deviation of this order compares favourably with those obtained by

(4)detailed microscopic calculations .
4. CONCLUSION

Us have proposed here a simple nuclear level density formula
which takes into account nuclear shell effects in a realistic way.
The parametrization chosen is based on the results of earlier micro-
scopic calculations of the thernodynamic properties of nuclei and is
capable of reproducing the excitation energy dependence of shell effects
on the thermodynamic properties* The merit of the present method
therefore lies in its greater reliability for extrapolation to higher
excitation energies, where it is necessary to take into account the
washing out of shell effects with excitation energy. This is a feature
which is not contained in earlier level density formulae. The batter
quality of fit obtained for even-even nuclei as compared to odd-odd
and odd mass nuclei indicates that there is still some scope for
improvement in the way in which pairing effects are taken into account.
Attempts are in progress to find a better paranetrization to include
pairing effects, which can simulate the results of microscopic SCS
calculations.

We are thankful to Shri M. Prakash for many helpful discussions.
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ABSTRACT
The purpose of this paper is to provide a guide to the use of optical

model computer programs to analyse and calculate neutron data.
After a brief discussion of the physical basis of the optical model a

survey is given of the most widely used optical model and Hauser-Feshbach
computer programs. The range of applicability and reliability of the major
optical potentials proposed is assessed by comparison with available ex-
perimental data and some observations and suggestions are made for the
optimum choice of optical potentials for given purposes of neutron data
calculations.

1. INTRODUCTION
The purpose of this review is to provide a guide to the use of optical model

computer programs to analyse and calculate neutron data, together with the best
neutron potentials for such calculations.

The physical basis of the optical model is briefly discussed in section 2 and
the optical potential is defined in section 3, and some available computer pro-
grammes are listed. Section 4 is devoted to a description of various potentials
which have been proposed, and indication of the degree of their success is given.

2. PHYSICAL CONSIDERATIONS

The optical model of elastic scattering arises from a very simplified picture
of complicated nuclear interactions which involve large numbers of particles. It
is therefore hardly surprising that the range of its validity is limited and care
should be excercised in its use. It gives cross-sections (called 'shape elastic1)
varying smoothly with energy that are directly comparable with the experimental
data at higher energies. At lower energies there is in addition a contribution
coming from the formation and decay of the compound nucleus that shows itself by
marked resonance structure as in Fig. 1. This structure cannot be calculated in
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detail, but the Hauser-Feshbach theory does allow us to calculate the energy
averaged cross-section from this process. This can then be simply added to the
shape elastic cross-section to give a total cross-section that can be compared
with the experimental data:

a (Total) = a (Shape elastic) + O (Compound elastic)
This relation holds at every angle.
The resonance structure is only visible if the resolution of the detecting

apparatus is high enough, so absence of resonance does not necessarily imply that
the compound nucleus contribution is absent. It is thus always necessary to
calculate the compound nucleus cross-section, unless it is already known from
previous work to be negligible. A detailed account of the physical basis and
formalism of the optical model may be found in [2] and [3].

The description given here assumes that the nucleus may be treated in a com-
pletely statistical manner, but in many cases there are strong terms which couple
particular states in which many nucléons act collectively. In these cases the
optical model becomes inadequate and a treatment involving coupled channels
becomes necessary. A knowledge of the coupling terms involves the theory of the
particular collective motion concerned, and many such calculations have been
performed for rotational and vibrational nuclei. The presence of collective
effects in such nuclei implies that the underlying resonant structure involves
strong corellations, and the development of a theoretical basis for the fluctua-
tion cross-sections in such conditions has proved extremely difficult, and it is
only recently that hopes for its solution have appeared.

3. OPTICAL MODEL CALCULATIONS

We first of all consider the standard optical model calculation of the cross-
section for elastic scattering of a neutron by a nucleus. The potential is
usually defined by the expression

df (v) h 2
V(r) = Vf (r) + i W £2(r) + i W g(r) + U —~—— (—) L.ai v i. s s ar mir — —

where f. (v) = —————^— , R. = r. A
l+exp(-~)

o, ri
exp(——), a

and g(r) = — —————————
ci r*

If this potential is inserted in the Schrodinger equation, standard mathema-
tical techniques [2,3,4] enable the differential cross-section and polarisation as
a function of scattering angle, together with the total cross-section for non-elastic
interactions (the reaction cross-section) and the total cross-section to be calculated.
Many electronic computer programs have been written to carry out this calculation



- 133 -

rapidly and accurately given the parameters of the potential V(r).
In this review we are concerned with how to carry out such calculations to

give any neutron cross-sections that may be required. To do this one first needs
a computer program together with the appropriate parameters.

3.1 The computer program
Very many programs have now been written to carry out simple optical model

calculations, and some of these are listed in Table I. These may usually be
obtained on application to the authors and put on the nearest available computer.

Before using a program to calculate unknown cross-sections it is essential
to ensure that it is working correctly. This may be done by repeating standard
calculations whose results are available either in graphical or (preferably) in
numerical form. This test should be carried out in the region of parameter
space (energy and nucleus) for which calculations are to be made because programs
are written with particular regions in mind, and may give inaccurate results in
other regions.

At low incident energies there is often a substantial contribution to the
cross-section coming from compound nucleus reactions. The cross-sections of
these reactions may be calculated by the Hauser-Feshbach formalism, and several
computer programs to do this are listed in Table II. Provided the cross-sections
are averaged over sufficiently large energy intervals, the total cross-section at
any angle is just the sum of the compound and direct components, so the data may
easily be analysed (see section 4.3).

4. OPTIMUM OPTICAL POTENTIALS
The searches for potentials which give a good representation of the nuclear

scattering have generally been of an empirical nature, but have been guided by
the knowledge of what forces might be expected in a complicated situation from
known nucléon potentials. Thus one might expect that the potential would roughly
follow the density distribution of nucléons within the nucleus, although the
resulting potential would be modified by the nucléon-nucléon potential. Such
effects as the exclusion principle must also be taken into account.

There are three main approaches which have been made to determine the optical
potential. The first was empirical and consisted of postulating physically
reasonable forms for the terms which are expected to appear, and then performing
large numbers of fits to experimental data, adjusting the various parameters which
occur in the potential. Over the last two decades numerous analyses of experimen-
tal data for nuclear scattering have been made, and the resulting potentials
published. Sometimes the potentials are optimised to fit data for a single nucleus
at one energy and sometimes they are chosen to give the best overall fit to a wide
range of data. This approach led to a large number of potentials which could fit
particular sets of data, but because of various ambiguities between different
parameters, data from one situation cannot always be used elsewhere.
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Perey and Buck [5] suggested that the main dependence of the optical model
potentials on energy would come from the non-local nature of the forces. They
were able to obtain a single potential of this form which they fixed by reference
to lead data. It was found that this potential and the equivalent local
potential derived from it by Wilmore and Hodgson [6], fitted the data over a wide
range (see section 4.1 and Table III). It was subsequently discovered that the
potential could not be used successfully at low energies and was not able to fit
the neutron s-wave phase shift around A = 100 (see Fig. 2). Moldauer C7] was
able to find a potential, after extensive analysis of experimental results, which
was able to fit the data below 1 Mev (see Table III) . Engelbrecht and Fiedeldey
[8] looked for a potential which would extend the range at the high energy limit.
They found a set of data, based upon the energy dependent local equivalent of the
non local potential, which accounts for data between 1 and 200 Mev (see Table III).
Over the restricted range of 1-25 Mev however, the Perey-Buck potential remains
better.

The third approach, that of Greenlees, Pyle and Tang [9], was to say that the
potential could be, in a large measure, fixed by taking a very simplified model
in which the nucléon potential was simply folded into the nucléon distribution.
Thus V(r) = f(r')v(r-r')dr' where f(r) is the nucléon distribution within the
nucleus, and v(r-r') is the nucléon-nucléon interaction. This approach has had
considerable success in the analysis of proton data at high energies.

For convenience of reference some of these overall neutron potentials are
listed in table III.

When calculating an unknown cross-section, it is advisable to start with one
or more of these overall potentials, and in some cases, as will be apparent from
the examples given below, the results are already quite reliable. If accurate
data for nearby nuclei and energies are available, it may be worthwile altering
the parameters of the appropriate overall potential to optimise the fit to these
data, before going on to use it to calculate the unknown cross-section.

To show the accuracy that may be expected when these potentials are used to
calculate unknown cross-sections, we now present a series of comparisons between
cross-sections calculated using them and the experimental data.

4.1 Total cross-sections
Figs. 4-16 show the cross-sections as a function of energy for the original

Perey Buck non-local calculations as a function of energy and mass number. The
total cross-sections are fitted well by the parameters but the reaction cross-
section are not well described at low energies, particularly for the lighter
nuclei. Fig. 3 shows the results of Manero ClO] compared with the energy depen-
dent equivalent local potential for Fe^6. The fit here is remarkably good. The
question arises as to how far the optical model may be pushed beyond its range of
applicability and Manero et al. have also compared the calculations with experi-
ments on calcium and carbon Fig. 4-5. Calcium seems to be a more difficult case
and Fig. 4 shows an 8% difference between the experimental and theoretical results.
For the carbon nucleus marked fluctuations are seen, so that the model is really
beyond the range where it might be expected to give good results, and yet the
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agreement shown in Fig. 5 is no worse than that found for the calcium case.
Glasgow and Foster [11] carried out an extensive comparison of experimental
results with calculations using the Perey Buck non local potential, for a large
number of nuclei between 3 and 15 Mev. Their results, which are displayed in
Figs. 6-15. show that above the resonance fluctuation region, the agreement is
generally within 3%, except in the region of strongly deformed nuclei, where
differences of up to 7% are observed.

4.2 Neutron strength functions and total reaction cross-sections
The s-wave, p-wave and d-wave strength functions [12] are shown in Figs. 2.

17 and 18 as a function of mass number, in comparison with the results of calcu-
lations using the potentials of Perey and Buck. The considerable disagreement
around mass 100 is the s wave strength has already been commented upon, but there
is also a discrepancy around mass 150 which may be accounted for by collected
effects. The p-wave and d-wave functions do not show good agreement, but the
experimental determination is more difficult and the errors are greater. Also
there may be individual shell effects which are more important for particular
orbitals, but affect the average cross-sections less markedly.

The reaction cross-sections have been compared with the potentials of Perey
and Buck, and Becchetti and Greenlees [13]. The results shown in Figs. 19-20?
show that quite good agreement may be obtained if estimates of the compound elastic
contribution are allowed for at low energies.

4.3 Elastic scattering
Provided that the energy is sufficiently high for the compound elastic con-

tribution to be negligible, the differential cross-sections for the elastic
scattering of neutrons from about 5 to 30 Mev are quite well given by some standard
potentials, as shown in Figs. 21-32 and 37.

In the absence of the necessity for a coupled channel treatment, the elastic
cross-section is often obtained by using the Hauser-Feshbach theory to calculate
the contribution from the fluctuation or compound elastic cross-section. The cross-
section is then given by

a(total = a(shape elastic) + a(compound elastic)
and for this result to hold, it is necessary that the average is carried over an
energy interval greater than the average width of the fluctuations. Above a
few Mev the compound nucleus contribution becomes negligible and may be neglected.
Often estimates may be obtained at low energies, by assuming that the contribution
is isotropic. Experimental information at some energies then gives information
to determine its energy dependence. Such calculations are shown in Figs. 26-32,
for calcium [6,14]. The 14.6 Mev experimental results for calcium were used as a
basis for a parameter fit to try to improve on the local equivalent of the Perey
Buck potential. Fig. 32 shows that in this case little improvement can be made.

Zyp and Jonker [15] used the potentials of Rosen [16] and of Becchetti and
Greenlees [13] to analyse the polarisation data for 3.2 Mev neutrons, scattered
from a wide range of targets, and the results are shown in Fig. 33. It was found
that the potential of Rosen, which was derived from a consideration of polarisations,
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gives a better fit than other potentials, but the elastic scattering cross-sections
are fitted less well by Rosen potential than by the others.

4.4 Inelastic scattering
The inelastic scattering of neutrons introduces further parameters into the

model of the nucleus. To calculate the compound elastic scattering cross-sections,
a knowledge of the correllation between level widths is needed. Some results of
such calculations are shown in Figs. 34-36. The results of Gilboy and Towle [17]
for iron, show quite good agreement between theory and experiment, but this can
|only be obtained by neglecting the width fluctuation correction. The results of
McDaniel, Brandenberger, Glasgow and Leighton [18], used a value of the Moldauer [19]
correlation parameter Q = 0.5. They found that their results for Zr^2 and Mo96
were even worse for other values. The calculations of Brandenberger [20] for
Pb206 do however show good agreement with experiment.

5. CONCLUSIONS

There are many readily available computer programs that can be used to calcu-
late various neutron cross-sections. The most widely used are listed in tables I
and II. Many overall neutron optical potentials have been found that give cross-
sections in fair agreement with the experimental data. Some of these potentials
are listed in table III and some indication of their range of applicability and
general reliability may be obtained from the figures in this paper. The overall
potentials may be improved for some nuclei, but it is generally found that such
parameter changes, although giving benefits for a few neighbouring nuclei, will
give a worse agreement over most of the range of nuclear masses.
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FIGURE CAPTIONS

1. Measured neutron total (vertical bars) and angle integrated elastic
scattering (circles) cross-sections of titanium [1]. The solid curve indi-
cates the total cross-section calculated from the optical model.

2. Experimental data on neutron s-wave strength functions compared with spherical
and deformed optical-model phase shifts [21],

3. Total neutron cross-section for iron as a function of neutron energy. The
open circles show the results of optical model calculations using the equi-
valent non-local potential [6,14] in comparison with the experimental data [10].

4. Total neutron cross-section for calcium as a function of neutron energy. The
open circles show the results of optical model calculations using the equi-
valent non-local potential [6,14] in comparison with the experimental data [10].

5. Total neutron cross-section for carbon as a function of neutron energy. The
open circles show the results of optical model calculations using the equi-
valent non-local potential [6,14] in comparison with the experimental data [10].

6. Neutron total cross-sections for light nuclei [11], in comparison with optical
model predictions.

7. Neutron total cross-sections for the 2s-ld shell nuclei [11] compared with
optical model results.

8. Neutron total cross-sections for various If?/ nuclei, with the exception of
2Qla [11].

9. Neutron total cross-sections for Ifs/ and 2p. nuclei [11] compared with optical
model results. 2

10. Neutron total cross-sections for 2p^ and Ig9, nuclei [11] compared with opticalmodel results. * /2

11. Neutron total cross-sections for Ig7, and 2ds, nuclei [11] compared withoptical model results. * !i

12. Neutron total cross-sections for various 2ds/ and Ihn , nuclei [11] compared
with optical model results. 2 /2

13. Neutron total cross-sections for various 2d3, and 3s, nuclei [11] comparedwith optical model results. *
14. Neutron total cross-sections for various 2d3, and 3s, nuclei [11] comparedwith optical model results. '2 *
15. Neutron total cross-sections for various Ihg, and 2£7/ nuclei [11] comparedwith optical model results. /2 '2

16. Calculations of the total cross-sections using the non-local potential [5],
17. Calculations of p-wave strength functions from the non local potential [5],

compared with the experimental results [12].
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18. Calculations of d-wave strength functions from the non-local potential [5],
compared with experiment [123.

19. Calculations of the reaction cross-section using the non-local potential [53.
20. Calculations of the total and reaction cross-sections from the Becchetti and

Greenlees potential [133.
21. The differential elastic scattering cross section for 7 Mev neutrons on

ĝ 209 compared with non-local optical model predictions [223.

22. Elastic scattering cross-sections of 7 Mev neutrons on uranium [6,14] .
23. Elastic scattering cross-sections of 14 Mev neutrons on uranium [6,143.
24. Elastic scattering cross-sections of 14 Mev neutrons on iron [6,143.
25. Elastic scattering cross-sections of 14-5 Mev neutrons on iron [6,143.
26. The estimation of the compound nucleus contribution to the elastic

scattering cross-section in Ca [6,143.
27. Elastic scattering cross-sections of 1 Mev neutrons on calcium [6,143.
28. Elastic scattering cross-sections of 2 Mev neutrons on calcium [6,143.
29. Elastic scattering cross-sections of 3.5 Mev neutrons on calcium [6,14].
30. Elastic scattering cross-sections of 4.1 Mev neutrons on calcium [6,143.

31. Elastic scattering cross-sections of 6 Mev neutrons on calcium [6,14].
32. Elastic scattering cross-section of 14.6 Mev neutron on calcium [6,14],

showing improvement to be obtained by parameter fitting.
33. Polorisations [153 for various nuclei compared with results from the

potentials of Rosen (solid curves) and Becchetti and Greenlees (dashed curves),
34. Differential inelastic scattering cros's-sections of iron compared with

Hauser-Feshbach theory predictions [173.
35. Differential cross-section for inelastic neutron scattering from Pb20̂ ,

compared with Hauser Feshbach theory predictions [203.

36. The differential inelastic cross-sections for 1.5 Mev neutrons compared
with theoretical calculations [183.

37. Differential cross-sections at small aneleo r 9A1
using the equivalent non-local pint"?[I\, 14] .
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TABLE 1« Optical model programs (see reference C23])<

Name of Program Author
ECIS Raynal
SASSI Benzi

SMOG Benzi
ADAPE Fabbri
DANGFASI (DUMBO) Fabbri

CERBERO Fabbri

SURF
MIDI
MIMOC

RES

ELEISE-3

Fabbri
Fabbri
Fabbri

Fabbri

Igarasi

STAX-2

INS-ELASTIC
OMW
OMPS
ABACUS-NEARREX
2 (and 4)-PLUS
JUPITER (1 and 2)
OPTIC
SCAT
ABACUS-II
GENOA
JIB3, DWUCK
SNOOPY, FTAU
DWBA-VENUS
MARS
JULIE/SALLY

Tomita

Kawai
Wilmore
Hill
Zawadzki
Dunford
Tamura
Goldman
Melkanoff
Auerbach
Perey
Perey
Perey
Tamura
Tamura
Bassel

Features
Coupled Channels with search.
Spherical Optical Model with Compound Nuclear
Cross Sections.
Spherical.Optical Model with polarisations.
Adiabatic coupled channels.
Coupled Channels with polarisations, phase
shifts.
Spherical Optical Model,Compound Nucleus Cross
Sections, charged particle Cross Sections,
Moldauer Formalism.
Coupled Channels, Photo Reaction Cross Sections.
Coupled Channels, Radiative Capture.
Coupled Channels, Microscopic Model, Phase
Shifts.
Coupled Channels, Microscopic Model, Resonance
Parameters.
Optical Model, Compound Nucleus Cross Sections,
Non-local Potential, Charged Particle Cross
Sections, Moldauer Formalism, Evaporation
Model, Search.
Optical Model, Compound Nucleus Cross-Sections,
Moldauer Formalism, Search
Optical Model.
Optical Model, Search.
Optical Model, Search.
Optical Model, Compound Nucleus Cross Sections.
Coupled Channels.
Coupled Channels, adiabatic coupled channels.
Optical Model.
Optical Model.
Optical Model, Search.
Optical Model with Search.
Optical Model with Search, Compound Nucleus.
Optical Model with Search, Compound Nucleus.
DWBA
Coupled Channels Born Approximation.
DWBA
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TABLE II

Programs for compound nuclear cross-sections (see reference [23]). Many of the
optical model programs listed in Table I also contain facilities for the calculation
of compound nuclear cross-sections.

Name of Program
HFW
COMNUC
HF-XS
LIANA
HELENE
TRNRX
HAFEVER
NEARREX
MANDY/BARBARA
RES.AV-IXS
HFS

Author Features

Wilmore Hauser Feshbach, fluctuations, continua of states.
Dunford Moldauer formalism, fission.
Grench Hauser Feshbach, radiative capture.
Smith Hauser Feshbach, fluctuations.
Penny Hauser Feshbach.
Mathur Hauser Feshbach, y~ray angular distribution.
Friedman Hauser Feshbach
Moldauer Hauser Feshbach, fluctuations, capture.
Sheldon Hauser Feshbach, fluctuations.
Tucker Hauser Feshbach, fluctuations.
Wills Hauser Feshbach.
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Contributed Paper No, 8

Applications of the Statistical Theory to the Prediction
and Evaluation of Neutron Cross Sections for Reactors

- Evaluation of Am Cross Sections -

Sin-iti Igarasi
Japan Atomic Energy Research Institute

Tokai-mura, Naka-gun,
Ibaraki, Japan

ABSTRACT

241Neutron cross sections of Am are evaluated in the energy region
from 1 keV to 15 MeV. The cross sections are estimated by using optical and
statistical model calculations, because the existing experimental data for
this nuclide are very scarce, except for the fission cross section. The
experimental data are used to obtain an empirical formula of smoothed fission
cross section. The cross sections on (n,2n) and (n,3n) reactions are
calculated with a simple formula proposed by Pearlstein. These cross sections
are treated as the elements of the competing processes in calculation of
compound elastic, inelastic scattering and capture cross sections.
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1. Introduction
In recent work of the author, modified cross section formulas were

proposed in the statistical model calculations to establish the equality
between the sum of the partial cross sections and the total cross section
obtained by the optical model calculations, even if the partial cross
sections were taken by using various kinds of the nuclear models or by
experiments. From the viewpoint of the cross-section evaluation, the obtained
cross sections must be constructed so that this equality is satisfied. In

241this paper, the cross-section evaluation on Am is presented as an example

of applications of the statistical model calculations with the modified
formulas.

241Existing experimental data for Am are very scarce. The fission
cross section is only available for the cross-section evaluation. In this
work, the numerical data were obtained from CCDN and by surveying the

literature. Brief description on the experimental data of the fission
cross section will be given in section 2.

Descriptions of the optical potential and the cross-section formulas
241are given in section 3. Since Am is a deformed nucleus, the coupled-

2)channel calculations must be applied. In this work, however, spherical
optical potential was used. Discussions will be given on this circumstance.

In section 4, the evaluation method is presented for the fission, (n,2n)
and (n,3n) reaction cross sections which were treated as the elements of
the competing processes in the statistical model calculations. Results of
the present evaluation are shown in graphs and tables.
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2. Present Status of the Experimental Data
3)According to CINDA 74 , there are few experiments above 1 keV, except

for the fission cross section measurements. A few experiments have been
performed for investigation of the spontaneously fissioning isomers. For
the present evaluation, the following experiments on fission cross section
measurements only were usable.

(i) Nobles et al. ' presented data at 13 points in the energy
region from 0.49 to 7.34 MeV. The measurement was performed with gas

235scintillation counter. The data were normalized to U(n,f) cross section.
Though this experiment is very old, the data near 6 MeV are valuable for
estimating (n,n'f) cross section.

(ii) Protopopov et al. measured the data at 14.6 MeV with ionization
chamber. The cross section is rather small, i.e. 2.35 ± 0.15 barns.

(iii) Kazarinova et al. presented two data points at 2.5 and 14.6 MeV.
The cross section at 14.6 MeV is 2.95 ± 0.15 barns which is larger than
that of Protopopov et al.

(iv) Seeger et al. ' ' measured with underground nuclear explosion
technique in the region from 20 eV to 1.0 MeV. The data points above 1 keV
are about 750. They used the standard cross sections of Li(n,a) reaction

235below 10 keV and of U(n,f) above 10 keV. Systematic error was estimated
at 7.1% and statistical error was at 10 to 300% or more. The data below
about 100 keV may be too large.

(v) Fomushkin et al. measured with 14.5 MeV neutrons and with fission

neutrons. In the former experiments, they obtained a value of 2.53 ± 0.12
barns with integration of the fission fragment angular distributions and
a value of 2.3 ± 0.15 barns with the ionization chamber. The standard

238cross section used was U(n,f) cross section.
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12 13)(vi) Bowman et al. ' measured with Livermore 30-MeV linac. The data
239were obtained in the region from 0.5 to 6.0 MeV, with Pu(n,f) standard

cross section. The errors were estimated at 5%.
14)(vu) Shpak et al. ' presented 43 data points from 8 keV to 3.3 MeV with

the errors of 5 to 40%. The data were obtained with glass plate detectors
239and were normalized to the standard Pu(n,f) cross section. The data

below 500 keV are smaller than those obtained by Seeger et al.
15)(viii) Fomushkin et al. measured data at 14 points with glass plate

235detector. The standard cross section was U(n,f) cross section.
(ix) lyengar et al. obtained data with solid-state track detectors in the

region from 0.32 to 2.1 MeV. The data seem to be rather small.
(x) lyer et al. measured a value of 2.7 ± 0.47 barns at 14.1 MeV.

238The standard was U(n,f) cross section.
The data of the fission cross section surveyed above are shown in Fig. 1^

from 1 keV to 15 MeV, with "a symbol.
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3. Optical Potential and Cross Section Formulas
Optical model of the nucleus is very useful to compute the total and

absorption cross sections and the transmission coefficients which play very
important role in the statistical model calculations. For deformed nucleus

O / 1 O ̂such as Am, the deformed optical potential had better be used. In this
evaluation, however, spherical optical potential was used, because there
are no proper methods to calculate all the necessary quantities in the framework
of the coup led- channel calculations with the deformed potential and,because
there are no experimental data to verify precisely the results of the
calculations. Moreover, the coupled-channel calculations require much more
computer time than the spherical optical model calculations.

In this evaluation, the parameters of the spherical optical potential
were determined in the following manner. Above about 2 MeV, the total
cross section was assumed to be reproduced by the coupled-channel calculation

I O Nwith the deformed optical potential given by Tanaka . Deformation parameter
$2 was given as 0.24 . Effect of ßt, (= - 0.015) was investigated in detail,
but it was negligibly small. However, the effect of ßi, should not be
ignored in general '

Below 2 MeV, the potential parameters given by Tanaka are not suitable,
because his potential has unreasonably small imaginary part in the low energy

235 239region. Taking account of the experimental data of U and Pu, the
241total cross section of Am was assumed to be 12 - 13 barns near 100 keV,

15 - 16 barns near 10 keV and 25 - 26 barns near 1 keV. The potential
parameters of the spherical optical model were determined so that the total
cross section satisfied the above conditions from 1 keV to 15 MeV. Besides,
the absorption cross section should be larger than 2.6 barns at 15 MeV,
because the fission cross section shown in Fig. 1 is about 2.5 barns.

Under these conditions, automatic parameter search was performed by
a computer code which looks for a suitable parameter set of the spherical
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optical potential so that the calculated total cross sections fit to the

experimental data. After many trials, the best set of the parameters was

determined as

CMeY)

Tso= 7- 0 (Me? )
= 1.32 (fe
= b = 0,50 = 0.47

where the potential form was

=Y-f, cr.a.
( l f 7wxc y T

f,CT,a,To)={l

iT

and

-l

(3.1)

(3.2)

(3.3)

(3.4)

Using the above potential, the total cross section (jV+ )> shape

elastic scattering cross section ((ĵ p) and the absorption cross section

(formation cross section of the compound nucleus plus direct reaction cross

section) ((ĵ, ) were calculated as well as the neutron transmission coefficients.

Compound elastic scattering cross section (Orfe^' inelastic scattering cross

section (Q~. ) and neutron capture cross section (^ were obtained
1 21 22)with the following formulas ' ' ,
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„ . #l.M—ftft <3 -5>
>

cr CE )=-£-^ntf^n^ b2

(3.6)

where index fl/ stands for the emitted neutron with energy £•>«» and state

of residual nucleus with spin J and parity 7E/ « Therefore, the compound

elastic scattering cross section O^o is equal to Ql, „ (E-n.) and tlie inelastic
scattering cross section v L « . •'•s t̂ 16 sum °

i.7)

For overlapping levels of the residual nucleus, Eq. (3.7) must be rewritten
with the level density YL, ,(P J >

Quantities and . / in Eqs. (3.5) and (3.6) are connected with
<̂ ' _̂ -,.

the neutron and y~ray transmission coefficients^ | A "*S and ̂  I > as
. . . . x » T i Ä / ^ l /

follows 1,22)

.7ÏÏ

where

(3.9)

represents the effect of the resonance interference. Two y~
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coefficients s^ |y</ and
the level density of the compound nucleus,

II\ 23)v a./ are êiven in tne integral form with

and the quantity

(3.10)

in Eqs. (3.5) and (3.6) is defined as

(3.11)

«»*ifl •*•>The correction factors for the width fluctuation »O««.«* ••''' an<^«
are given in the conventional integral forms

A factor Q( representing the effects from the competing processes is
defined as

(3.12)
where " means the sum of the cross sections of all competing processes

which cannot be obtained by Eqs. (3.5) and (3.6). In this paper, til) is
the sum of the fission cross section (X, r , (n,2n) and (n,3n) reaction cross

sections. In the next section, evaluation or estimation of these cross
sections will be presented.
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4. Evaluation of the Cross Sections
In this section, the present evaluation and its results are presented.

In order to compose the cross section /̂ M*" mentioned previously, the fission,
(n,2n) and (n,3n) cross sections are estimated.

For fission cross section, the evaluation was performed on the basis
4-17)of the experimental data shown in Fig. 1. In order to express the cross

section in a mathematical formula, the following form was assumed,

i.l)

The first term in Eq. (4.1) stands for the sum of the resonance components
and the second expresses the sum of the high energy components of the fission

24)cross section. Here, a formula of penetrability for the barrier with
threshold (or barrier) energy Q . was assumed to be

(4.2)

Fission probability was given in the high energy region as follows,

(4.3)

The formation cross section \j^>. ( CM,/ °^ fĉ e comP°und nucleus is assumed
here to change slowly with the incident neutron energy in MeV region.

Derivation of the second term in Eq. (4.1) is given as follows. Using
Eq. (4.3), the cross section should be expressed as

(4-4)
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r-B r Bwhere t/, and Q— are the barrier energies for the compound and target\s *
nuclei, respectively. The second term in Eq. (4.4) stands for (n,n'f) cross

T" Bsection. The barrier energy £ is about 900 keV in the measure of the
r-B

incident neutron energy and t-r ^s about 6 MeV. Hence, the second term is

negligible nearEn==Ec , and has the form of Gffttôt. /j | + e^pjOCr (ET-E)]|

near.En-ET •
It was tried to determine the parameters in Eq. (4.1) using the least-

squares method. In the preliminary stage of this trial, weight for each data

point \j (Elyjjwas given as the inverse square of the error, ZOl̂  (Evi")>
assigned in the original reports. When the error was not given in the report,
the error of 10% was assumed for each data point. Six levels of the resonances

were assumed in this stage; 1.5, 3.0, 10.0, 15.0, 30.0 and 150.0 keV.
However, unrealistic results were achieved in the calculation with these

assumptions. For example, some resonance energies were negative.
In the final stage after some trial, weight for the data was modified

as follows: for a data point \jCj.f(Eo/ at ener§y F > the farthest data
CY" (EO from the data of interest was looked for in the interval of £ — O-Oo" t
to Eo^O-O^Eo ' The wei8ht for the data point (V (Eu) was assigned

as the inverse of ~ The number °f resonance

levels was also reduced to four. Under these conditions, the calculations

were performed, and special results were obtained in the region from 1 keV
DUt

4,5)

o
to 15 MeV. However, the deduced barrier energy £̂ _. for (n,n'f) was about

8 MeV, that is unrealistic. This is due to the data of Nobles et al.
which are smaller than the majority of the data above 1 MeV. Nevertheless,

these data of Nobles et al. are very valuable in the region around 6 MeV,
because no data presents the rise for (n,n'f) process except them. Hence,

T-Bin order to utilize these data and to get an adequate value of [̂ _. , they

were renormalized so that the cross section value of 1.39 barns at 2.42 MeV
changed into 1.7 barns. Symbol X in Fig. 2 shows these renormalized
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values. They were still small, but could not be risen more because they
must not be larger than the data at 14 MeV. Moreover, selection of reliable
data at 14 MeV was made, as well as rejection of the data transcribed from
the graphs. It is due to this selection that the number of data points in
Fig, 2 is smaller than that in Pig. 1 in MeV region.

Result of the least squares fit thus obtained is shown in Fig. 2, as
well as a band of 95% confidence coefficient. A resonance level near 160
keV was necessary to make the cross section curve rise reasonably in the
region from 60 keV to 400 keV. In fact, the smaller cross section values
shown in Fig. 3 were obtained by ignoring this resonance. The cross section
curve in Fig. 2 seems plausible as the expectation value of the average
cross section. The parameters in Eq. (4.1) thus obtained are shown in Table 1.
The energies of fission threshold are 6.43 MeV and 6.55 MeV for the compound
and target nuclei, respectively. If the structure be the intermediate
resonance, widths of the four levels are 5.05, 8.90, 8.95 and 24.6 keV.
Taking (j^ =2.7 barns, the parameters ß and ß in Eq. (4.4) are given
as 0.686 and 0.849. Parameter 0\£ = 7.72 is plausible, because the corresponding
quantity "n,tOc is 27r / 7.72 = 0.814 MeV. However, Q(J = 0.704 is too small.
If there had been more experimental data in the region from 6 to 10 MeV,
more reliable value should be obtained for the parameter 0(-_ .

25)According to Pearlstein , (n,2n) and (n,3n) reaction cross sections
are calculated by the following simple formulas,

(WCEO-O^CEO-ftCEO-ß. (EO, <4-5)

and

On,m (EO- (X.CEO •T>
M(E»V?3n (En) , (4.6)

where vJrjeXEn) ^s non-elastic cross section, rLCE») is neutron emission

probability,
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'O /T— \ Jn 't/*ws—' l l/ »^V^-rt ^vj JQ ^̂ "̂  lv J
* tvi

and

En
(4.8)

Neutron separation energy ^^ from the residual nucleus is about 6.7 MeV
and two-Hieutron separation energy ̂ N_ is about 12.6 MeV . Inverse cross
section Cjl .(fc.̂  is assumed constant, and the integrals can be performed

>»*WVV'%*'

analytically. Pearlstein adopted a level density parameter ^ of Newton's
27)form . These quantities were adopted in this paper.

Two quantities C Jj" and M^ were modified here from those by Pearlstein.X̂TI& I M
In high energy region, the compound elastic scattering cross section Cjl0^s ç_ç,
becomes very small. Hence, CTl- may be equal to the formation cross section"̂̂  flo
of the compound nucleus Cj", . In this paper, since the direct reaction
is not considered, the cross section yjt, is equal to the cross section

which is obtained by the optical model calculation. In the present calculation,
is about 2.7 barns near 10 MeV.
From the meaning of the quantity j|^ , it should be defined as

T) AFM I - (4-9)
where \JCfrWlot stands for the sum of the charged particle emission cross
sections. In this case, the fission cross section is only the component

of \Jrmntvt ' Taking account of the second plateau value of the fission

cross section, v J o m i . was assumed as 2-57 barns. With these values, (n,2n)
and (n,3n) cross sections were easily obtained.
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As mentioned in the previous section, the cross section Z\(j was obtained

as the sum of the fission, (n,2n) and (n,3n) cross sections calculated in
this section. Using this ̂ \J , the compound elastic, inelastic scattering
and capture cross sections were calculated by using Eqs. (3.5) and (3.6).
These calculations were performed with many parameters such as energy, spin

19 28)and parity for each discrete level ' of the residual nucleus, level
29)density parameters for the residual and compound nuclei, average level

spacing and y-ray width at zero neutron energy, and neutron separation
26)energy . The levels above 0.85 MeV in the residual nucleus were assumed

here as the overlapping levels. These parameters are shown in Tables 2 and 3.
In this evaluation, Brink-Axel type profile function was used in the

calculation of the j-ray transmission coefficients. The energy and width
of the giant resonance in the photoreaction were taken as 12.84 MeV and 5.0
MeV. Detailed descriptions were given in Ref. l about the y~ray transmission
coefficients, profile function and level density formulas used here.

Results of the present evaluation are shown in Fig. 4. The capture
cross section below 10 keV reveals y'U" form being due to s-wave neutron
capture. Above several ten keV, the p-wave neutron capture becomes dominant.

235 239These are one order larger than those of U or Pu. This may be due
to the effects of the fission cross sections. Though the fission cross

241section of Am is probably overestimated here in the low energy region,
235 239it is still small in comparison with that of U or Pu. Therefore, true

values of the capture cross section may be larger than those obtained here.
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5. Concluding Remarks
As an example of application of the statistical model calculations,

241the evaluation of Am cross sections was presented. In this evaluation,

no experimental data were utilized, except for the fission cross section.
The fission, (n,2n) and (n,3n) cross sections were estimated by taking
account of the experimental data and of the magnitudes of the absorption
cross sections. The fission cross section, in particular, was obtained by
an empirical formula with which the smooth trend of the experimental data

was reproduced. These cross sections were used in order to make up a
parameter representing an effect of the competing processes whose cross
sections cannot be calculated by the cross section formulas for calculating
the compound elastic, inelastic scattering and capture cross sections.
That the sum of all partial cross sections is equal to the total cross section

obtained by the optical model is assured in this calculation method.

This is an example showing that the statistical model calculations are
practically useful to obtain a reliable cross section set in some cases.

This method is applicable to estimate the cross sections of some transactinium
nuclides and of fission product nuclides. For these nuclides, there are

few experimental data. From the viewpoint of the reactor applications,
these are not necessarily the highest important matters for the moment.
Hence, the data with accuracies of about 20 to 30% may be usable to estimate
the reactor characteristics. In this sense, the optical and statistical

models are very useful, because they can be applied easily to obtain the
data with a certain degree of accuracy, on average, in a wide energy
range and for many nuclides.

From the viewpoint of consistent nuclear model calculations, however,

it is desirable that the calculations be based on the same fundamental nuclear

model. Hence, it should be attempted to unify the statistical, direct and

collective model calculations by an appropriate way.
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Appendix
Computer codes used in this evaluation are CASTHY, TOTAL, JUPITOR and

two small ones by which an empirical formula of the smoothed fission cross
section was obtained, and (n,2n) and (n,3n) cross sections were calculated.
In this Appendix, brief descriptions are presented concerning CASTHY and

TOTAL whose users manuals are not yet prepared.
A computer code CASTHY is made based on the formulas given in Ref. l.

Using this code, the excitation functions of total, capture, elastic and
inelastic scattering cross sections are calculated. Effect of the Y~raY
cascade in the compound nucleus is also taken into account. At present,
however, it is treated only approximately.

A code TOTAL is made for automatic search of the optical potential
parameters by using the least squares method concerning the total cross section.
The data of 50 points and the parameters of 15 at most are treated in one
run. Many subroutines of this code are transcribed from ELIESE-3 (JAERI
1224 (1972)). In particular, in a subroutine for the automatic parameter
search, the data area of the angular distributions of the elastic scattering
cross section in ELIESE-3 is replaced by the data area of the total cross
section in TOTAL. For details the reader is referred to the report JAERI 1224.
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Figure Captions

*5 / 1Fig. 1. Experimental data of Am fission cross section.
The data are -taken mainly from NEUDADA Library.

Fig. 2. The best fit curve of Am fission cross section.
The confidence band obtained in this work is also
given. Symbol X stands for the renormalized values
of the data of Nobles et al.

Fig. 3. An example of the cross section curve obtained by
neglecting the resonance near 160 keV.
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241Fig. 4. Evaluated neutron cross sections of Am.
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Table 1. Parameters obtained as the best fit values.

(a) Resonance Parameters.

X
1
2
3
4

ER(MeV)
1.39 x 10~3
1.36 x 1<T2
2.92 x 10~2
1.64 x 10-1

C(MeV -barns)
7.07 x 10~6
2.16 x 10~5
3.94 x 10
1.63 x 10

r6
-5

R(MeV2)
6.36 x 10~6
1.98 x 10~5
2.00 x 10~5
1.51 x 10~4

(b) Barrier Parameters.

k
c
T

EB(MeV)

0.903*
6.55

(MeV1)
7.72
0.704

B (barns)
1.85
0.720

Since neutron separation energy from the compound nucleus
is 5.53 MeV, the barrier energy for the compound nucleus
is estimated as 5.53 + 0.903 =-6.43 MeV from its ground
state.
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SYSTEMATIC OPTICAL AND HAUSER-FESHBACH MODEL INTERPRETATION OF

MEASURED ELASTIC AND INELASTIC NEUTRON SCATTERING DATA

T. Wiedling, E. Ramström and B. Holmqvist
Neutron Physics Laboratory, AB Atomenergi, Studsvik,

Nyköping, Sweden

ABSTRACT

The elastic and inelastic neutron scattering processes play predominant
roles in nuclear fission reactors and will without doubt also be most im-

portant in future fusion reactors. The elastic and, in particular, the in-
elastic neutron scattering processes dominate the energy loss of the primary
fission neutrons and largely determine the character of the reactor neutron
spectrum. The energy of the neutrons released in a deuterion-tritium-fueled
fusion reactor is converted to thermal energy partly by scattering pro-
cesses in the blanket, where, when tritium loaded, also the tritium breeding

process takes part. The scattering processes are thus of importance in con-

nection with the regeneration of tritium. Accurate experimental investiga-
tions of neutron scattering processes and the analyses and theoretical in-
terpretation of the observed effects are evidently very interesting from the
applied neutron physics point of view.
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The purpose of this paper is to give a short introduction to the ap-
plication of the optical model and the Hauser-Feshbach model for estimating

neutron elastic and inelastic scattering cross sections to be used in the

reactor technology in connection with core, shielding and safety problem
calculations. The discussions will concentrate on the practical aspects of
the numerical calculations of the cross sections and comparisons with ex-
perimental results.
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1. INTRODUCTION

1.1. Applications of neutron scattering data

The elastic and inelastic neutron scattering processes play predominant

roles in nuclear fission reactors and will also be most important in future
fusion reactors. Elastic and, in particular, inelastic neutron scattering
are the main processes contributing to the energy loss of the primary fis-
sion neutrons and largely determine the character of the reactor neutron
spectrum. Thus in a fast reactor the inelastic scattering in the fuel itself
is by far the strongest slowing down mechanism. Also in the thermal reactor
the inelastic scattering contributes substantially to this effect. For the
same reason the scattering in the reactor structure and the shield are most
important, and thus also for the choice of proper materials. The energy of
the neutrons released in a deuterium-tritium fueled fusion reactor is con-
verted to thermal energy partly by scattering in the lithium loaded blanket
where also the tritium breeding process takes place. The scattering pro-
cesses are thus of importance in connection with the regeneration of tritium.
However, in the present status of the fusion reactor technology the study

of neutron processes occurring in fission reactors may be considered to have
a higher priority than the investigation of those of the fusion reactor.

Neutron scattering takes place not only in the reactor fuel and the
elements of the reactor structure, but also in the fission products of the
fuel. Since many of these fission products are radioactive, their nuclear
properties are not easily measured in the laboratory. Information on the
neutron-nucleus interactions of these products can thus be obtained only by

calculations based on the knowledge and experience gained from experimental
and theoretical studies of stable isotopes.
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Uncertainties in neutron cross section data of reactor fuels and struc-

tural materials directly affect the safety and economy of a reactor design,
and the consequences of the lack of precision in fundamental nuclear reac-

tor data have been discussed on several occasions [ 1-6]. It may be mentioned

that Greebler et al. [ 3] have shown that a 15 per cent uncertainty in the
inelastic scattering cross section of steel above an energy of 0.8 MeV would

introduce the same effect on the predicted breeding ratio of a 1000 MWe fast
breeder reactor as does 30 per cent uncertainty in the 24"Pu neutron capture

cross section in the energy range 0.1 - 100 keV. Such error sources may
cause substantial uncertainties in the calculated reactor operating costs.

Another example of uncertainty effects is given by Shure [ 7] who studied the

effects of uncertainties in the neutron inelastic cross section of iron on
an iron-water shield and demonstrated that a 10 per cent change in the iron

cross section changes the predicted flux of neutrons entering the water
shield by about 30 per cent.

1.2. Scope of the present review

The accuracy of cross sections required for a reactor physics calcula-
tion depends on several factors like isotope, type of reaction, magnitude

of cross section, position of the isotope in the reactor, reactor type, and

nature of the calculation. The World Request List for Nuclear Data Measure-
ments (WRENDA) [8] can advantageously be used as a guide to get an indica-

tion of the accuracies of cross sections requested for calculations on fis-

sion and fusion.reactor systems. Specifically for neutron elastic and in-
elastic scattering cross sections applicable within the fission reactor pro-

grams, WRENDA specifies accuracies mostly of the order of 5 to 10 per cent.

However, there are exceptions from these values, as for instance for the

neutron inelastic cross sections of iron and nickel, the proposed accuracy
for which is 3 per cent, and it is doubtful whether so high a precision is
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obtainable with the techniques at present available.
Accurate experimental investigations of neutron scattering processes

and the analyses and theoretical interpretations of the observed effects
are evidently of a very great importance from the applied neutron physics
point of view. These studies contribute to the knowledge of the pure scat-

tering interactions, but also provide a tool for calculating the cross sec-
tions of other neutron-nucleus processes of interest for applications like
those of the nonelastic and neutron absorption processes, as well as the

total cross sections.
The purpose of this paper is to give a short introduction to the appli-

cation of the optical model and the Hauser-Feshbach model for estimating
neutron elastic and inelastic scattering cross sections to be used in the
reactor technology in connection with core, shielding and safety problem

calculations. Since this paper will concentrate on the practical aspects of
the numerical calculations of the cross sections and comparisons with ex-

perimental results, there will be no detailed discussion of nuclear theo-

ries. Thus the optical model will be applied quite straight-forward by pro-

ceeding from a central potential and neglecting the physically more correct
non-locality and other refinements of the theory, however interesting they

may be from the pure nuclear physics point of view. With the same attitude

in mind the inelastic neutron scattering process will be treated on the
basis of the experience gained from simultaneous experimental studies and

model calculations of excitation functions.

There exists a large amount of data from a number of measurements on

neutron scattering [9]. However, the lack of comprehensive data sets has

resulted in a demand for systematic experimental investigations. In recent
years there have also been extensive systematic programs at Argonne, Oak

Ridge, and Studsvik [ 10-15], The ANL program has until recently been re-
stricted to the energy range below 1.5 MeV neutron energy. The ORNL inter-
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est has been in the 5 to 8 MeV range, and the Studsvik efforts were made in

the 1.5 to 8 MeV interval.
Comprehensive investigations are now in progress at several laboratories

[16] using an appreciably improved technique, and will certainly make impor-

tant contributions to our knowledge of neutron scattering, elastic as well

as inelastic.
Extensive reviews of the theoretical nuclear models for neutron elastic

and inelastic scattering have recently been presented by Hodgson [ 17-19].
The experimental neutron elastic scattering data which form the basis of

the present discussion were collected at Studsvik mainly during a ten year

period before 1970. Until that time they were the most comprehensive set of

data in the energy interval 1.5 to 8 MeV. The optical model calculations made

in connection with the collection of these data were also comparatively ex-

tensive. It is worthwhile to draw attention to the recent comprehensive

studies at Studsvik of inelastic neutron scattering of a number of elements

in the energy range 2 to 4.5 MeV [ 15]. Results and experience from these in-

vestigations will be reviewed.

2. NUCLEAR THEORY BASIS

2.1. Elastic neutron scattering

The theoretical interpretation of the first systematic experimental in-

vestigation of neutron elastic scattering, i.e. the one by Walt and Barschall

[20] who measured the differential cross section of a large number of ele-

ments at 1 MeV, was accomplished on the basis of the nuclear optical model

by Feshbach, Porter and Weisskopf [21]. Calculations of cross sections per-

formed with a complex square well potential, V = U+iW, showed that a general

agreement was obtained with the experimental results. However, the simple
square well potential is a somewhat unphysical picture of the nucleon-

nucleus interaction. Instead an analytical expression of the shape of the
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potential chosen should preferably be based on a phenomenological approach
founded on physical arguments. With this in mind the real part, U, of the
potential could be expected to be uniform in the nuclear interior in ac-

cordance with the short range and saturation properties of the nucléon-
nucléon forces and to have an exponential fall-off with increasing radius.
The.imaginary part, W, is expected to be a combination of volume and surface
terms. Owing to the Pauli exclusion principle the absorption of nucléons is
reduced when the density is large, causing the surface peaking. The features

described above can be represented by the Saxon-Woods and the derivative of
the Saxon-Woods form factor, i.e. f(r) = {1+exp[(r-lO/a]}"1 and g(r) =
= 4{l+exp [(r-R)/b]}~2expf(r-R)/b], where R is the nuclear radius and a and b

are surface diffusenéss parameters.
The optical potential discussed above is valid for zero spin nuclei. For

non-zero spin nuclei a number of additional interactions are possible, of
which the spin-orbit effect is the most important. Thus one usually intro-
duces a spin-orbit interaction term in the potential. The local central op-
tical potential is then described by the expression

-V(r) = Uf(r)+iWg(r)+U_n(ft/u c)2l/r(d/dr)|f(r)|ö'ÄöU TT

where the last term represents the spin-orbit interaction with the depth U_ .oU

The constant y denotes the pion mass, 0 and 2, the Pauli spin operator and
the orbital angular momentum operator, respectively.

The nuclear optical model has up to now been treated on the assumption
that it has a local character. As Brueckner has shown [22] the optical po-
tential has, however, a non-local character and may be expected to be energy
dependent. The non-locality of the basic forces has later been discussed by

Watson [ 23]. The non-locality formalism and its application to neutron data
have been worked out by Perey and Buck f 24], Wilmore and Hodgson [ 25] and
Engelbrecht and Fiedeldey [ 26], among others.
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Lane t 27] suggested an isobaric spin dependence of the real part of the

optical potential. This effect was demonstrated in the neutron-nucleus in-
teraction by Holmqvist [ 12] by an analysis of neutron elastic scattering

data. A comprehensive treatment of the whole optical model complex has re-

cently been presented by Hodgson [ 17,18].

An essential characteristic of the optical model is its ignorance of the

detailed mechanism of the nucleon-nucleus interaction. Features depending on

particular properties associated with the level structure of the nucleus are

thus not described by the model. Also important for a satisfactory optical

model description of a nucleon-nucleus interaction is the excitation of many

levels of the compound nucleus to average out characteristic properties of

specific levels. Such a condition is met in experiments with particle beams

of large energy spread relative to the mean level spacing of the compound

nucleus. The number of excited levels must be large enough not to show up

any effects from individual resonances or small groups of resonances. All

effects must be wholly statistical in nature. This condition is usually ful-
filled for medium and heavy nuclei at an incident energy above a few MeV.

Perturbating interactions may arise in the nucleon-nucleus system when

the nucleus is non-spherical, causing coupling effects between the elastic

channel and the non-elastic channels. The pure optical model is not applic-

able to such a system. It is certainly not valid either for such a high

nucléon energy that there will be a strong coupling between the incident

nucléon wave function and that of individual constituents of the nucleus.

2.2. Inelastic neutron scattering

The inelastic scattering of neutrons from nuclei can take place either

as a compound nucleus reaction or as a direct reaction. The compound nucleus

reaction can be described as proceeding in two independent phases, i.e. the
formation of the compound system and the disintegration of this system into
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the products of the reaction. The theoretical description of the formation
of the compound nucleus can be based on the optical model making it pos-

sible to calculate the cross section of this process, i.e. the total ab-
sorption cross section. The distribution of the total absorption cross sec-
tion between the different decay modes which are open at a particular ex-
citation energy of the compound nucleus can be estimated by the statistical
model proposed by Hauser and Feshbach [ 28]. When formulating this theory it

was assumed that the contribution of each total angular momentum and parity
of the system to the average partial reaction cross' section could be written
as the product of the average cross sections for compound nucleus formation
and decay, respectively. However, according to Porter and Thomas [ 29] the
level widths fluctuate in resonances and therefore the assumption of in-

dependence of formation and decay of the compound nucleus on the average is
no longer valid. Furthermore, it is known that compound nucleus resonances
interfere in a statistically describable manner. Taking these two effects
into account Moldauer [30] derived an expression believed to be more general

than the original one of Hauser and Feshbach for the description of the neu-
tron-nucleus interaction. Moldauer introduces a correlation parameter, Q ,
the value of which is dependent on the properties of the compound nucleus.
In the limit of infinitely many overlapping resonances the value of Q goes
to zero, while in the case of isolated resonances Q approaches one. In the
many channel limit, where there are competing decay channels, the fluctua-
tions of the level widths about their average values can be disregarded.
Recently it has been shown by Moldauer [ 31] that the simple estimates of the
correlations among the resonance parameters, which form the basis for the
introduction of the correlation parameter, are not adequate. However, in

many cases the formalism introduced by Moldauer has been found empirically
successful in describing experimental scattering data.
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In a direct inelastic reaction the incoming neutron is thought to in-
teract with only a few nucléons in the target nucleus knocking one neutron

out of the system and leaving the target nucleus in an excited state. The
cross sections for neutron inelastic scattering taking place through this

process are usually calculated by the distorted-wave Born approximation
(DWBA) [ 32] and the coupled-channel approximation [33]. The latter formalism

is the one used most frequently. It is, for instance, applied in cases where

there are open channels corresponding to inelastic scattering to rotational

states. Furthermore, the coupled-channel model is applicable for nuclei with

collective states excited via low lying states. The coupled-channel calcula-
tions have been discussed in detail by Tamura [34].

There are no sharp boundaries between the energy regions or the mass
regions in which the compound nucleus reaction and the direct reaction are

operative. However, as is well known, the effects of the different processes

can be observed experimentally in the different shapes of the angular distri-
butions of the neutrons, since the compound nucleus formation gives an iso-

tropic or slightly anisotropic but symmetric angular distribution, whereas
that of the direct reaction is anisotropic. The results of inelastic neutron

scattering measurements [ 15] indicate that for medium weight and heavy nuclei

the process takes place primarily via compound nucleus formation, at least
for neutron energies below about 5 MeV.

3. NUCLEAR MODEL DESCRIPTIONS OF EXPERIMENTAL NEUTRON SCATTERING OBSERVA-

TIONS

3.1. Elastic scattering

3.1.1. Problems of interpretation of experimental observations

The local potential of the nuclear optical model is characterized by a

number of parameters describing the interaction of the nucleon-nucleus sys-
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tern. A potential of the previously given analytical form including the Saxon-

Woods and derivative Saxon-Woods form factors has as many as seven param-
eters: the potential depths, radii, and diffuseness parameters of the real
and imaginary parts, and the potential depth of the spin-orbit term. It has
often been emphasized that the large number of parameters makes the nuclear
optical model difficult to use with confidence. With such a large number of

parameters it has been argued that it would be possible to get a description

of any experimental scattering data whatsoever, and accordingly there would
be no physical basis for the interpretation of the results. It is true that
experimental results can be described by several different parameter sets,
but at least the most extreme ones can be disregarded for reasons of funda-

mental physics.
By the use of high speed computers laborious nuclear optical model cal-

culations can be made in order to determine the numerical values of the pa-
rameters. The introduction of automatic search procedures facilitates the
adjustment of the parameters to give the best fits, described by an index

of quality x2» to experimental elastic scattering angular distribution data.
The minimum value of x2 i-n tne parameter space can be acquired by a search
code to minimize the quantity

X
n N , [da(e.)/dfi] - [da(9.)/dß] -,22 _ 1 y I i se______i exp l

A[da(e.)/dfi] •*i' exp

n , ._1 y j____i
N i L

which leads to an objective and quantitative comparison between experiment
and calculation. [da(6.)/d£2] and [da(6.)/dß] are the calculated and ex-X S G l

perimental differential cross sections, respectively, A[da(6.)/dfl] is theIL 6Xp

experimental uncertainty and N is the number of observations.
One of the most serious difficulties in using the multiparameter search

procedure is the existence of several minima in the parameter space. A spe-
cific minimum value of x2 m^y not be the "extreme" one. The minima may in some
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cases by comparatively closely spaced, i.e. there are only small differences

between the numerical values of the parameter sets, giving roughly the same

X2-values. Also the choice of numerical input values of the parameters can

have an influence on the resulting numerical parameter values. Sometimes,

therefore there may be some doubt about the uniqueness of a calculated pa-

rameter set. In this connection the well known (U,r ) and (W,b) ambigui-

ties should be recalled. The (U,r ) coupling is often discussed in terms

of the relation Ur . It is characteristic of this ambiguity that within

small limits of U and r the variation of one of these parameters is re-
lated to a variation of the other one in such a way that the product Ur

remains essentially constant. In the special case of a square well poten-

tial the value of the exponent n is equal to 2, and this value can suitably

be used when checking calculations with a potential of the Saxon-Woods

shape. The (U,r .) ambiguity has been overcome by Holmqvist [ 12] by choos-
ing the volume integral of the potential as a measure of the strength it-

00

self. The volume integral is defined by the expression J = 4ir / f(r)r2dr.
o

This technique has been used with advantage to smooth out the scattering in

the parameter values caused by the more or less statistical distribution ob-

tained in the parameter search routine and attributable to minimum values

of x °f tne same significance.

It is necessary to be very critical when examining optical model data,

particularly if one considers only a limited experimental material. It is

important to stress that more general conclusions concerning the validity
and generality of the results of the search procedure are possible only if

a large homogeneous experimental set of data is available, collected with

high accuracy for many elements in a large energy interval, A proper ex-

perimental data bank certainly gives the opportunity to test the optical

model with confidence and reliability and to study its ambiguities. For a
comprehensive experimental data set one could expect an overrepresentation
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of the "correct" minimum values and thus also of the most significant param-

eter sets.
With regard to the statistical nature of the optical model it is a ques-

tion whether it should to be used in attempts to draw conclusions concerning
specific neutron-nucleus interactions, for instance in limited mass regions
of special character. The best use of the nuclear optical model is probably
only for descriptions of the general behaviour of the nucleon-nucleus system.

3.1.2. Experience of optical model parameter calculations

The results of a series of calculations of optical model parameters will

be reported in order to demonstrate some properties of the search procedure
when the parameter values are adjusted to obtain best agreement between cal-

culated and measured elastic scattering cross sections. Already in the pre-
vious paragraph it was mentioned that the choice of the numerical values
used as input parameters in a search procedure may have an influence on the
resultant minimum values. It is thus important to investigate this problem
in some detail. An investigation of this type can be performed in a number

of ways but because of the enormous computer time which may easily be spent,
some suitable boundaries must be chosen. For this reason the study has been
limited and concentrated to an investigation of the importance and influence
of the choice of the numerical input value of one of the parameters, i.e.

the radius (r ) of the real part of the potential when carrying out a
multiple parameter search procedure. This is a suitable choice of parameter
from the physics point of view since the nuclear radius is a fundamental
nuclear characteristic the magnitude of which is well known from a number
of different experiments. Without being extreme in any sense the computer

input value of the real part of the radius was in one series of calculations
chosen well below the one usually considered to be an ordinary value. In two
other series of calculations the radius parameter was of more common size.
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The computer codes (ABACUS II and ABACUS-NEARREX) available limited

the number of variable parameters to five. The minimum value of x2

searched for in the (U,r ,a,W,r ) space. The parameters b and U were

kept constant. Even if valuable information on the (W,b) coupling was lost

by the constancy of b, this was not considered a serious limitation in this

study. The strength of U has, within rather wide limits, little influenceoU

on the shape of an angular distribution and on the cross sections, and thus

there is no drawback in choosing a fixed value. The parameters of the opti-
cal model potential represent measures of the experiments and the x2 is a

quantity used to judge the results of the calculated fits in a way not in-

fluenced by any human bias. As a criterion two fitting procedures are con-
sidered to be of the same quality if the ratio between the x2 values is not

larger than 2, which is a very conservative choice. Otherwise the one with
the larger value is rejected. However, the calculations give not only angu-

lar distribution fits but also total elastic and total cross section values.

Thus, the decision whether a calculated parameter set is to be accepted or

not can be founded not only on the minimum value of x but, if necessary

in extreme cases, also on comparisons between the observed and calculated

elastic scattering angular distributions and observed and calculated total

elastic scattering and total cross sections. These specific optical model
calculations were applied to neutron elastic scattering angular distribu-

tions measured at 8 MeV neutron energy for a number of elements ranging in

mass number from 27 to 209. Experimental details can be found in a number
of previous publications [12-14].

Calculations have been performed for each element with computer input
values of the r -parameter of 1.0, 1.2 [ 12,13] and 1.3 fm, respectively.

All other input parameter values, i.e. those of U, W, a and r , were the
same for each run and for each element. The numerical data of the calcula-

tions on some elements, light as well as heavy, are shown in Table 1. Apart
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from the optical model parameter values the table gives the calculated and

experimental elastic and total cross sections. Absorption cross sections

are also included for the sake of completeness. As is observed for several

cases, three parameter sets fit the data equally well according to the x2~

values. But the input value r = 1.0 fm gives for the light and medium

heavy elements (Al, Mn, Fe, Co, Cu) U-values which are high and r -values

which are low relative to the two other data sets. In some cases this ef-

fect seems to be compensated by a somewhat larger diffuseness parameter a.

The discriminator, i.e. x » of a parameter set does not, for these elements,

have the sensitivity necessary to permit a distinct choice of parameter set.

For the heavy elements (As, Cd, Au, Pb ) there is a much more efficient x2~

discrimination, often in combination with remarkably small U and r values,
i.e. U in the 30 to 40 MeV range and r less than 1 fm. The reason why

r = 1.0 fm gives a sharp discrimination for many of these elements is

probably effects on the search procedure of the more complicated diffraction

patterns of their angular distributions.
Angular distributions calculated with the optical model parameter data

sets obtained with f1̂ 11 = 1.0 and 1.2, are shown for the elements Al, Mn,

Fe and Co in Fig. 1. As is seen, there are only slight differences between

the curves of each element, as could also be expected from the x2~values

and other data of Table 1.

3.1.3. Elastic scattering cross section calculations with generalized sets

of optical model parameters

Neutron data are requested for many nuclei and for a range of neutron

energies [9], It is an ambitious but not a very interesting task to measure

all these data. Since it is possible to specify the accuracy of data needed
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for technological applications it is from many points of view, economical

as well as practical, important to study, analyse and present existing know-

ledge of neutron cross sections so that such a Sisyphean labour can be elim-

inated. Thus global sets of optical model parameters have been presented by,

among others, Wilmore and Hodgsont 25] and Holmqvist and Wiedling [13]. By

giving the parameter sets in simple algebraic forms the proper parameters

are easily calculated and the required cross sections can be calculated with

a suitable computer program within the accuracy, i.e. 10 to 20 per cent,

required for many, if not most, of the structural materials used in present
day fission reactor design.

Since the optical model, as a matter of course, describes only the over-

all properties of the nucleon-nucleus interaction and no specific nuclear
structure effects are taken into account, i.e. it is completely statistical,

systematic deviations are to be expected between experimental and calculated

cross sections for nuclei with characteristic internal properties. These de-

viations may become even more pronounced if one uses a global set of poten-

tials to describe the neutron-nucleus interaction pattern.

The results of neutron scattering measurements at Studsvik have been
used in an attempt to obtain generalized parameter sets of the optical po-

tential. The experimental data consists of elastic scattering angular distri-

butions of a number of elements ranging from Al to Bi in the neutron energy

interval 1.5 to 8 MeV. Five-parameter search procedures were used to get the

numerical values of U, W, r , r and a. The parameters b and U were given
the values 0.48 fm and 8 MeV, respectively. On the basis of these results

parameter sets with the following algebraic characteristics [ 13] were ob-
tained

U = 44.44+0.1987A-1.893xlO~3A2+4.527xlO~6A3

W = 5.89+9.376xlO~2A-7.343x10-^2+1.408xlO~6A3



- 221 -

r = 1.183+0.0003Aoü
r TT = 1.183+0.0004AoW

(The potential depths are given in MeV and the radii in fm.) The main task

has not been to provide a tool to describe the observations of the neutron-

nucleus process with the nuclear model most appropriate for each specific
case, since this has not been necessary with regard to the requested cross
section accuracy. Accordingly, within the studied neutron energy range the
optical model parameters U and W which, from the point of view of the non-
local optical potential are expected to be energy-dependent, are energy-

independent in the studied energy interval within the experimental and
computational accuracies.

Elastic scattering angular distributions and total cross sections have
been calculated for a number of elements by use of the expressions for U, W,

r and r . Fig. /2 shows some corresponding angular distributions, those
of the 5-parameter search procedure, and the experimental cross sections
for a range of elements at 3 MeV neutron energy. Total calculated and ex-
perimental [ 35, 36] cross sections are compared in Fig. 3. An examination
of the results shows in general good agreement between experiments and cal-

culations and the results for the t/otal cross sections should be observed
in particular. The deviations between the total cross sections are, with a
few exceptions, less than a few per cent.

The experimental information which Wilmore et al. t25] used to deduce
their parameters was less homo"geneous than that of the Studsvik data li-

brary, but on the other hand their analyses were extended into a larger
energy range. Examples of angular distributions of elastically scattered
neutrons calculated with the Wilmore-Hodgson expressions, including a spin-
orbit term (U = 10 MeV) which they did not originally use, are shown for



Co at 6.09 MeV and Pb at 8.05 MeV in Fig. 4. Also included in the figure are

angular distributions calculated by the 5-parameter search routine by use of

the Studsvik generalized optical model parameters, as well as the experi-
mental differential cross sections. There are good fits to the experimental

angular distributions of the Studsvik calculations and somewhat less good

to the Wilmore-Hodgson potentials. Comparisons of the total and total elas-

tic calculated cross sections calculated with Studsvik and Wilmore-Hodgson's

sets show for these two cases maximum spreads of less than 10 per cent. The

two parameter sets evidently show satisfactory agreement at least for the

presented cases.

3.2. Inelastic scattering

3.2.1. Problems of interpretation of experimental observations

There are a number of problems in connection with the interpretation of

experimental inelastic scattering observations and the model descriptions

of the results. Thus cross section calculations according to the Hauser-

Feshbach (HF) statistical model demand a rather detailed knowledge of the
characteristics of the target nucleus. There must be information available

about the excitation energies, spins and parities of all levels which it is
energetically possible to excite in the target nucleus at the specified

neutron energy as well as about the nuclear optical potential of the nucleon-

nucleus system for the calculation of the transmission coefficients. The

information on the level properties is usually obtained from the results of

other types of nuclear physics experiments even if comparisons between cal-

culated and experimental excitation functions make it possible in principle

to settle the spins and parities of the levels, at least when applying the
pure Hauser-Feshbach model contrary to the Hauser-Feshbach-Moldauer (HFM)
[30] concept which does not, a priori, give a recipe for a definite choice

of level data.
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Since the parameters of the optical model potential are used to derive
the transmission coefficients, the magnitudes of the parameters will have
a direct influence on the coefficients and, accordingly, on the calculated

cross sections. Thus, it is of general interest to know how sensitive the
results of the cross section calculations are to changes in the optical
model parameters. This problem has been investigated by Almen-Ramström t 15]
for some elements by changing the values of the parameters U, W, r , r TT,ou ow
and a one at a time in the HF calculations. The results obtained for Fe at

3 MeV neutron energy show that changes of 2 and 5 per cent in the real po-
tential depth will affect the inelastic scattering cross sections of most
neutron groups by appreciably less than 5 and 20 per cent, respectively.
The corresponding value is 4 per cent for a change of 10 per cent in the
imaginary potential depth. Changes of the values of U and W of 5 and 10 per

cent, respectively, are comparatively large if it is considered that the
potential depths of the Studavik sets 113] range for U from about 48 to 44
MeV and for W from 7.8 to 6.2 MeV in the mass region Al to Bi. The uncer-
tainty of a calculated cross section can thus be considered to be compara-

tively little influenced by inaccuracies in the potential depths.
As mentioned above, the energies, spins and parities of all levels up

to the bombarding energy have to be known when HF calculations are to be
made. However, when the number of levels is comparatively large, for instance
at high excitation energies, a level density function is the only nuclear

structure information required. The level density distribution as expressed
in the formalism of Gilbert and Cameron t 37] may suitably be used for this
purpose. If no computer code with the option to include an expression for
the level density in the target nucleus is available, there are difficul-
ties in performing reliable HF calculations for a target nucleus for which

no proper knowledge exists about the levels with regard to energies, spins
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and parities. However, experience has shown [ 15] that these difficulties

can be partly overcome if the details are known for those levels for which
the cross sections are wanted and for about ten of the closest lying higher

levels. The characteristics of levels with even higher energies have also

some influence on the results of the calculations. These sources cause an

uncertainty of the order of a few per cent in the results of the model cal-

culations.

3.2.2. Results of a study of the usefulness of the Hauser-Feshbach model

The usefulness of a model for the description of the inelastic scatter-

ing process has to be investigated by systematic comparisons of calculated
and experimental cross sections. Recently such an investigation of the

Hauser-Feshbach statistical model has been performed in a study of inelastic

scattering from eighteen elements in the energy range 2.0 to 4.5 MeV [15].

The main result of this investigation is that the bulk of the observations

are well described by the HF formalism adjusted according to Moldauer's
original but somewhat inadequate model picture [ 30]. Thus it is an obvious

result that in cases where there are few open competing decay channels for

the compound nucleus, the cross sections calculated with the HFM formalism

with Q =0 usually give a good description of the experimental data but

when the number of open channels increases, the cross sections calculated
with the pure HF formalism compare favourably with the experimental data.

At the lowest primary neutron energy studied, i.e. 2.0 MeV, where for some
of the nuclei the number of open decay channels is limited, the inelastic

scattering cross sections calculated with Q =0 are lower than those cal-
culated with the pure HF formalism by at most 50 per cent. This figure de-

creases when the number of open decay channels for the compound nucleus in-

creases with increasing primary neutron energy. Thus for instance for 17
open channels, the cross sections calculated with Q = 0 are less than 20



- 225 -

per cent lower than those calculated with the pure HF formalism. Some ex-
ceptions from the general trend have been observed for a few excitation

functions for some levels in odd-mass nuclei with collective states in the
investigated excitation energy region.

Some specific results will be briefly discussed. Fig. 5 shows experi-
mental cross sections for vanadium as well as the excitation functions cal-
culated with the pure Hauser-Feshbach formalism (solid line) and the Mol-

dauer formalism with the correlation parameters Q =0 (dashed line) and
Q = 1 (point-dashed), respectively. The experimental cross sections are
well described by those calculated with Q = 0 for incident neutron energies
below about 4 MeV, while at higher energies, where the number of open chan-

nels increases, the cross sections calculated with the pure Hauser-Feshbach
formalism describe the data well. 89Y (Fig. 5) is an example of an isotope
for which the experimental excitation functions for most but not all of the
studied levels are in good agreement with the calculated cross sections.
Thus the experimental data for the 1.51, 1.74 and 2.22 MeV levels are con-

sistent with those calculated with Q = 0 in the whole investigated energy

range. However, the calculated cross sections for the 0.900 MeV level, the
spin and parity of which are well known [ 38], are almost a factor of two
larger than the experimental data. Furthermore, the calculated excitation
function cross sections of the group composed of the 2.53, 2.57 and 2.62 MeV

levels are about 50 per cent larger than the cross sections of two experi-
mental points. One explanation of the observed discrepancies may be that
89Y has collective states within the investigated excitation energy region
resulting from coupling of the 39th p 1/2 proton to excited states of the
|gSr5Q core which have been shown to be collective in nature to some extent

[39]. However, in the calculations only wave functions for single-particle
nuclear states are used. Further detailed studies are necessary in order to
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get a complete understanding of the observed effects.

3.2.3. Applications of the optical model and Hauser-Feshbach formalism

As mentioned previously neutron scattering takes place in the fission

products of the reactor fuel besides in the reactor fuel itself and in the

elements of the reactor structure. Thus the neutron cross sections for the

fission products will affect the reactivity of the reactor. However, these

cross sections are not always easy to measure, since many of the fission
products are radioactive. Thus information on these quantities has to be

obtained from calculations with the optical model and the Hauser-Feshbach
formalism. In order to make these calculations with confidence, existing

theoretical models must be checked for reliability on nuclei of a different

character.

When deriving the set of generalized optical model parameters mentioned

previously [ 13], only results from a few measurements on nuclei in the
atomic mass region covered by the fission products were taken into account.

This is also the case for the systematic investigation of neutron inelas-
tic scattering discussed above [ 15]. Thus in order to test the usefulness

of this set of generalized parameters for nuclei in the mass range covered

by the fission products, calculations of inelastic scattering cross sec-

tions have recently been made by Ramström [ 40] in the energy range from

threshold up to about 1.5 MeV for some fission products, i.e. 98Mo, 100Mo,
103Rh) 133CSj 139La and I'+lpr. The results show that the experimental data

for most of the investigated levels are well described within the quoted

experimental uncertainties. Exceptions are a few levels in 100Mo and 139La.

Calculations were also made using the Igarasi potential [41], However, the
experimental inelastic scattering cross sections are as a rule better de-
scribed by those calculated with the Studsvik potential than with the Igarasi

potential.
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4. COMPUTER PROGRAMS

A number of computer codes exist for calculations of neutron cross sec-
tions using the optical model as well as the Hauser-Feshbach formalism. Only

one of them, viz. ABACUS-NEARREX [ 42], which is widely used, will be very

shortly commented upon as regards its potentialities. ABACUS (in the ver-
sions ABACUS II and ABACUS-NEARREX) is the program mainly used in the cal-

culations discussed in this report.
The ABACUS-NEARREX (the ANL version) is a computer code for optical

model calculations of total, shape elastic and absorption cross sections.
The optical potential is chosen in its ordinary form. Different types of
form factors are available to describe the radial shapes of the real, imagi-
nary and spin-orbit parts of the potential. Furthermore, the imaginary part

can be of both surface and volume absorption character. It is most important
that a search routine is included in the program, making it possible to vary

automatically up to five of the potential parameters in order to get the best
fit between calculated and experimental cross sections. Provision is made
for the computation of compound elastic and inelastic neutron cross sections

according to the Hauser-Feshbach formalism [ 28], including, if desired, the
Moldauer [30] corrections, as well as of radiative capture and fission cross

sections. For technical reasons, such as the size of the computer memory and
the running time of the computer, the program can handle only a limited

number of levels. At present it is possible to include up to 50 levels in

the Studsvik version of the program. For nuclei in which more levels are ex-
cited pure Hauser-Feshbach calculations can be performed with a computer
program HAFEX [ 43] using the transmission coefficients calculated with
ABACUS-NEARREX. In order to reduce the number of levels for which the trans-

mission coefficients have to be calculated for nuclei with many close-lying
states, the levels in different excitation energy intervals may in this pro-
gram be grouped according to their spins and parities.
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Another method to calculate the inelastic cross sections if the number

of excited states is comparatively large in the target nucleus is to de-
scribe the distribution of levels by a level density formula. This com-

puter facility is important for the calculation of compound nucleus cross

sections at such high neutron energies that there is no detailed knowledge

of the level scheme of the target nucleus. This option is not included in
ABACUS-NEARREX, but is in some other codes, for instance HELENE [44],

Beside the ABACUS-NEARREX computer code there are a large number of
optical model programs. The following may be mentioned: MAGALI (Saclay),

GENOA 2 (ORNL), ADAPE (CNEN, Bologna), 2-PLUS (AI) and JUPITER (ORNL). The

last three programs have been developed for deformed nucleus optical model
calculations.

The experience from test runs of existing versions of major computer
codes widely used in different laboratories has shown that they may be
inconsistent with one another. The problem seems to be a matter of the com-

putational procedure and is probably widespread, since calculations carried
out with the same parameters and programs but different computers fail

to give the same results. It is evident that considerable attention should
be paid to this problem. It is recommended that computer code versions should

be checked by running specific standard test programs.

5. CONCLUDING REMARKS

The problems connected with the production and use of neutron scattering

data have been treated in such a way as to present the results and conclu-

sions in a manner easy to understand by the user of cross section data in
applied fields of nuclear physics.

The neutron elastic and inelastic scattering studies, some results and

experiences of which have been discussed in the previous paragraphs, have
been performed in an attempt to check existing nuclear theories and models.
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Such studies are necessary at the present state of the art of theoretical
nuclear physics in order to give the user of neutron data simple tools to
estimate cross sections with the necessary accuracy, since the optical
model and the Hauser-Feshbach model, when specifically used to calculate
scattering cross sections, are virtually useless for this purpose unless
some information founded on experimental results and experience is stored

in the fundamental expressions of the models. Some such information is
stored in the parameters of the nuclear optical potential, the numerical
values of which were deduced by extensive studies and intercomparisons of
experimental results and numerical calculations. By this technique it has
been possible to estimate the magnitudes of several of the parameters. The

estimation of cross section values of the accuracy required for reactor
physics applications has been simplified by the design of global sets of
expressions of the parameters. The accuracy which can be obtained by using
such a set in a large mass or energy region is of course limited by the
statistical amount of experimental data available. The experimental data

must be of high quality and be well distributed in respect of atomic mass
number and energy. With regard to measurements of cross sections to be used
for this purpose it may be necessary to judge whether the experiments should
be made in such detail that single isotopes have to be studied or whether,
to satisfy the requirement of high-quality experimental and calculated data,
the natural elements can serve the purpose. This is an important point,
since enriched isotopes of specific elements are usually difficult to ob-
tain for many laboratories.

Problems in generalizing the parameter sets associated with nuclear
structure effects may be overcome by limiting the data descriptions to those
mass ranges which can be expected to be of highest technological priority
and deducing separate optical model data sets for each of these regions. It
would be possible to get model sets giving the highest cross section accu-
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racy needed for each applied purpose in reactor physics. This approach to
the problem may, of course, be satisfactory for the user of data, but not

from the pure physics point of view, neither experimentally nor theoreti-

cally. To meet these latter requirements it is necessary to study the scat-

tering processes in detail with the utmost precision in order to find out

the properties of every single isotope. This is a very ambitious and in-

teresting task but the question is whether it is necessary in order to meet

the needs of future applications of neutron elastic and inelastic scatter-

ing cross sections for fission and fusion reactor physics. The user of the

data must have the competence to specify a realistic value of the accuracy
required for each specific nucleus. This accuracy may differ from isotope

to isotope depending on its application.

The calculations of reliable neutron inelastic scattering cross sections

are in some respects more complicated than those of elastic scattering.

There are a number of reasons for this circumstance associated with the

model picture of the scattering process, i.e. the creation of a compound

nucleus and its decay via a number of channels related to individual levels

with different characteristics such as single particle configurations,

nuclear deformations and rotational bands. Often a vast amount of informa-
tion on energies, spins and parities has to be known for a whole band of

individual levels otherwise accurate cross sections cannot be calculated.
Such information on level data can only be obtained by the combined efforts

of experimental and theoretical nuclear physics. Recent view-points on and

problems associated with the theoretical description of inelastic scatter-
ing observations have been discussed by Moldauer [ 45] at this meeting.

The present discussion of neutron scattering processes has been limited
to applications in the fission reactor field, with the natural overlap to
fusion reactor problems. This approach has been considered natural and

adequate since the main application of neutron data is and has been in reac-



- 231 -

tor physics. The bulk of existing systematically collected experimental

scattering data have also been produced on requests from the reactor physics
community. There is, however, still a large volume of information lacking
which, with regard to its use in calculations for fission reactors may be
estimated with adequate accuracy by application of the present knowledge of
the behaviour of the nuclear models. On the other hand cross sections for

fusion reactor development are needed to a large extent at energies up to
14 MeV, i.e. far above those of the fission reactor, and thus simultaneous
systematic experimental and theoretical studies are necessary in order to
develop adequate model descriptions applicable in this field.
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TABLE I Numerical parameter data, cross sections and x values from 5-pa-

rameter optical model search procedures for Al, Mn, Fe, Co, Cu, Zn, As, Cd,
Au and Bi for input parameter values of r ,. of 1.0, 1.2 and 1.3 fm at 8.05

MeV neutron energy. Also experimental total elastic (a 1 ) [l3j and total

(a ) [SS] cross sections are given.

Element

rinput
ou m

U MeV

W MeV

roU
 Cm

row fm

a fm

°T "

°A b

«.. b

"ce b

"el b

X2

^ b

Al

1.0 1.2 1.3

57.04 49.9 49.76

7.02 7.14 7.37

1.05 1.22 1.217

1.27 1.24 1.24

0.71 0.65 0.64

1.728 1.78 1.78

0.99 1.01 1.02

0.74 0.77 0.76

0 0 0

0.74 0.77 0.76

5.81 6 6.9

1.68±0.05

0.81*0.04

Mn

1.0 1.2 1.3

52.54 50.5 47.66

8.11 8.04 7.99

1.16 1.19 1.23

1.16 1.17 1.17

0.66 0.65 0.62

3.18 3.21 3.25

1.31 1.32 1.34

1.88 1.89 1.91

0 0 0

1.88 1.89 1.91

7.2 8 8.0

3.32*0.09

1.94*0.14

Fe

1.0 1.2 1.3

54.33 49.3 48.56

10.58 10.45 10.44

1.151 1.23 1.232

1.23 1.20 1.20
/

0.655 0.64 0.638

3.18 3.31 3.31

1.43 1.47 1.47

1.74 1.85 1.84

0 0 0

1.74 1.85 1.84

2.3 2 2.3

3.31+0.09

1.76+0.09

Co

1.0 1.2 1.3

56.24 51.3 53.76

9.56 10.04 9.44

1.131 1.19 1.163

1.14 1.17 1.108

0.67 0.66 0.639

3.24 3.36 3.26

1.39 1.46 1.37

1.84 1.90 1.89

0 0 0

1.84 1.90 1.89

2.4 4.8 2.4

3.52±0.08

1.82+0.09

Cu

1.0 1.2 1.3

49.7 47.5 44.58

10.12 10.11 10.01

1.19 1.22 1.27J

1.22 1.18 1.18

0.70 0.68 0.679

3.55 3.58 3.79

1.59 1.57 1.63

1.97 2.01 2.16

0 0 0

1.97 2.01 2.16

1.16 0.73 1.45

3.6310.05

2.00±0. 10

Element

input
oU m

U MeV

W MeV

roll fm

roW f»

a fm

°T b

"A b

o bse

v b

"el b

X2

°T
eXP b

Zn

1.0 1.2 1.3

35.23 49.4 47.37

12.25 10.8 11.05

0.66 1.20 1.231

1.27 1.19 1.13<

0.69 0.70 0.68!

2.86 3.62 3.66

1.41 1.62 1.63

1.44 2.00 2.02

0 0 0

1.44 2.00 2 .ÜZ

12.1 5 5.8

3.68+0.08

1.8210.09

As

1.0 1.2 1.3

39.74 48.95 47.42

9.81 9.73 9.92

0.79 1.224 1.243

1.24 1.17 1.182

0.672 0.668 0.66(

2.67 3.79 3.88

1.42 1.62 1.66

1.25 2.18 2.22

0 0 0

1.25 2.18 2.22

116 18 21

4.00+0.05

2. 37+0. 11

Cd

1.0 1.2 1.3

30.87 49.49 49.3

8.24 9.55 9.47

0.95 1.20 1.21

1.32 1.27 1.27

0.67 0.68 0.68

3.55 3.97 3.96

1.91 1.99 1.99

1.65 1.98 1.96

0 0 0

1.65 1.98 1.96

6.8 2.4 2.7

4.2510.10

1.62+0.2

Au

1.0 1.2 1.3

37^00 45.48 43.01

6.33 6.29 7.24

0.89 1.23 1.29

1.32 1.27 1.27

0.62 0.65 0.63f

5.30 4.93 5.21

2.32 2.32 2.53

2.98 2.60 2.68

0 0 0

2.98 2.60 2.68

.95 0.7 28

5.19+0.10

2.30±0.2

Pbrad

1.0 1.2 1.3

48.94 44.5 44.75

5.83 6.21 5.98

1.17 1.25 1.247

1.33 1.28 1.28

0.68 0.65 0.652

5.54 5.51 5.50

2.50 2.46 2.45

3.03 3.04 3.05

0 0 0

3.03 3.04 3.05

4.7 2 1.5

5.57±0.12

2.70+0.2
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FIGURE CAPTIONS

Fig. I Elastic neutron scattering angular distributions of Al, Mn, Fe and
Co at 8.05 MeV calculated with optical model parameter sets ob-
tained in 5-parameter search procedures with input values of r
of 1.0 (dashed lines) and 1.2 fm (solid lines). The circles re-
present experimental cross sections [12,13].

Fig. 2 Angular distributions of elastically scattered 3 MeV neutrons cal-
culated with the optical model formalism by the 5-parameter search

routine (solid lines) and using Studsvik generalized optical model
parameters (dashed lines) [13]. The circles represent experimental
cross sections [ 12],

Fig. 3 Comparisons between experimental and calculated total cross sec-

tions . The calculations were made with the Studsvik generalized
optical model parameters. The experimental cross sections are those
of Foster et al. (open circles) [35] and Cierjacks et al. (filled
circles) [ 36].

Fig. 4 Neutron elastic scattering angular distributions of Co and Pb at
6.09 MeV and 8.05 MeV, respectively, calculated with Studsvik
(solid lines) and Wilmore-Hodgson (dashed lines) optical model
parameters. The circles represent experimental cross sections
[12,13].

Fig. 5 Inelastic neutron scattering excitation functions in the energy
range 2 to 4.5 MeV for levels in V and Y. The solid lines repre-
sent pure HF calculations. The dashed and point dashed lines are
modified HF calculations with Q =0 and 1, respectively.
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Fig. 1 Elastic neutron scat-

tering angular distributions
of Al, Mn, Fe and Co at 8.05

MeV calculated with optical
model parameter sets obtained
in 5-parameter search proced-

ures with input values of r

of 1.0 (dashed lines) and 1.2

fm (solid lines). The circles
represent experimental cross

sections [l2,13j.
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Fig. 2 Angular distributions of elastically scattered 3 MeV neutrons cal-
culated with the optical model formalism by the 5-parameter search routine
(solid lines) and using Studsvik generalized optical model parameters (dashed
lines) [l3J. The circles represent experimental cross sections [12].
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Fig. 3 Comparisons between experimental and calculated total cross
sections. The calculations were made with the Studsvik generalized
optical model parameters. The experimental cross sections are those
of Foster et al. (open circles) [35] and Cierjacks et al. (filled
circles) [ 36].
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Fig. 4 Neutron elastic scattering angular distributions of Co and
Pb at 6.09 MeV and 8.05 MeV, respectively, calculated with Studsvik
(solid lines) and Wilmore-Hodgson (dashed lines) optical model pa-
rameters. The circles represent experimental cross sections |l2, 13|
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Abstract :
The differential elastic and inelastic scattering cross
sections of 3*4 MeV neutrons for the elements Na, Mg, AI,
Si, P, V, Mn, Fe, Co, Pb and Bi have been determined ex-
perimentally. The measured angular distributions are compared
with optical model and Hauser-Feshbach theory calculations
performed with the program ELISA.
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1. INTRODUCTION
At the Technical University Dresden an extensive investigation
program on inelastic scattering in the neutron energy range
around 3 MeV is carried out. As yet, differential elastic and
inelastic scattering cross-sections at 3.4 MeV for 11 elements
have been measured.
The main purposes of this work are the following:
- to test the reaction mechanism at comparatively low incident
energy by comparison with the statistical theory of nuclear
reactions,

- to obtain an absolute and consistent description of both
elastic and inelastic scattering channels over a wide mass num-
ber region

- and, last not least, to get accurate nuclear data for appli-
cation.

The present paper presents some preliminary results of this work.

2. EXPERIMENTAL RESULTS
The measurements were carried aut on the 500 keV pulsed beam DD-
neutron generator of the Technical University, Scattered neutrons
were measured with the time-of-flight method in the energy range
from 1-3.4 MeV between 15° and 150°. A more dedaited descrip-
tion of the experimental method is given elsewhere [l].
The main part of data handling and analysis was carried oat with
computer techniques on the BESM-6 computer.
Experimental results are corrected for detector efficiency,
neutron flux attenuation, multiple scattering, isotopic compo-
sition of the scattering sample, finite dimensions of scatterer
and other effects, statistical errors of the peak areas have been esti-
mated to be less than 1% for the elastic scattering and better
than 5% for inelastic scattering. Systematic errors of the
angular distribution data are mostly due to geometrical uncer-
tainties in the distance between target and scattering sample
and to uncertainties in the unfolding of time-of-flight peaks
(between 1 and 30 %) which in seme cases overlap Btrongly, Such
errors are stated in the figures 1 to 4.
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Moreover the absolute calibration of the experiment is subject
to some errors, which influence all points of the
angular distribution in the same manner, A maximum inaccuracy
of 8 % in the determination of incident neutron flux is cau-
sed by the ignorance of the true distribution function of deu-
terium molecules in the target matter and by uncertainties in
the cross sections of the D(d,n) and D(d,p) reactions. The
error of detector efficiency was estimated to be around 5 %t
caused by inaccuracies in the light yield curves for compton
electrons and recoil protons.
But this values represent the upper limit of systematic errors
in the cross sections. Comparison with standard data shows,
that the total errors in oin are between 10 and 15 /&•

3. THEORETICAL ANALYSIS
The experimental cross sections have been compared with theo-
retical predictions, which consist of calculations of the shape
elastic scattering cross sections by the optical model and of
the compound reaction components by Hauser-Feshbach theory
with Moldauer fluctuation corrections. Both type of calcula-
tions were carried out with the computer program ELISA [2], which
includes the following possibilities:
- calculations in the framework of a usual spherical optical
potential ;

- calculations of compound nuclear processes in the framework
of Hauser-Peshbach statistical theory, either with or
without Moldauer fluctuation corrections. In these calcula-
tions ,besides the discrete levels of final nuclei,a conti-
nuous part of final states, with definite level density pa-
rameter a and spin cut-off factor 6 , may be included.

- Calculations are possible for spins 0, 1/2 and 1 of inco-
ming or outgoing particles.

In the present work optical potential parameters from Holm-
qvist [3 ] were used for all calculations, so that no fitting
procedure was needed« In the statistical theory calculations
the open proton and alpha channels have been taken into account.



4« RESULTS AND DISCUSSION
in figs, 1-4 comparison between experiment and theory Is shown
for some typical representatives of light, medium and heavy
nuclei.
Altogether, the computed elastic differential cross sections are
in good accordance with experimental results. In all cases be-
sides the shape elastic reaction a considerable compound elasticpo
part must be added to the cross section. In the case of Si
the compound elastic part seems to be overestimated by the sta-
tistical theory (see fig. 2).
The calculated inelastic cross section is in good agreement with
the experimental results for the first 2"l"-state of Mg (see
fig. 1). It seems, that no essential contribution* of other re-
action mechanisms in this case are evident,

poFor Si (see fig. 2) there are striking deviations between cal-
culations and experiment for both elastic and inelastic (2* le-
vel at 1.77 MeV) cross sections. If we assume, that the com-
pound nucleus formation cross section is overestimated by a
factor 2, than we get a satisfactory description of elastic
scattering. But in this case the existing discrepancies for
inelastic scattering are increased, leading to the assumption,
that for the excitation of the 2+ state an other (direct) re-
action mechanism is responsible, A reason for this behaviour

pOis probably due to the considerable deformation of the ~ Si
ground state. Further investigations of this point are needed.
The differential elastic scattering cross section for ^ Fe (see
fig« 3) is in a good agreement with calculations, whereas the
experimental inelastic cross section for the first 2+ state at
0,84 MeV is considerably higher than the results of calculations
by the statistical theory. We assume that this is due to direct
excitation processes.
Also for the heavy nucleus °Bi (fig. 4) elastic scattering
is well described by the program employed. In the case of in-
elastic scattering the situation is different for the two ex-
cited levels: For the first excited 7/2" state at 0.91 MeV both
shape and magnitude of statistical theory calculation are in
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satisfactory agreement with experiment. A small probably di-
rect contribution is evident. The calculations, corresponding
to the second state at 1.61 MeV are based on the spin-parity
assigument 3 = 13/2+ [4 3. Theoretical predictions only in
this one case are higher than experimental cross sections, and
the shape of angular distributions is also different. Further•jfcalculations are needed, especially with other J -assignments.

5. SUMMARY
- It was shown by some examples, that the differential elastic
scattering cross section at 3.4 MeV neutron energy may be well
described by the computer program ELISA, including both shape
elastic and compound elastic contributions. The Holmqvist
optical parameters have been found to be avery useful parame-
ter set for this purpose»

- The experimental differential inelastic scattering cross sec-
tions in general are not completely reproduced by the statisti-
cal Hauser-Peshbach theory including Moldauer fluctuation
corrections. We assume, that additional direct contributions
must be taken into account, even in this comparatively low
energy region around 3 MeV, Further theoretical investiga-
tions are needed to confirm this assumption.
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FIGURE CAPTIOUS
Fig, 1 Differential elastic and inelastic scattering cross

sections in the center of mass system for Mg at
3.4 MeV incident energy.
Theoretical curves (full lines) are calculated with
the program ELISA [2^ including optical model and
statistical Hauser-Feshbach calculations with Holm-
qvist's optical model parameter set [3j*
a) elastic scattering; T - total elastic, S - shape

elastic and G - compound elastic contributions.
b) inelastic scattering with excitation of the 1-st

state.
ooFig. 2 The same as on Fig. 1, but for Si

Fig. 3 The same as on Fig. 1 , but for Fe
Fig. 4 The same as on Fig. 1. but for Bi; in this case

the first (open circles) and second (full points)
excited states have been measured and calculated
(broken line and full line, respectively).
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NUCLEAR MODEL CODES AVAILABLE AT THE NUCLEAR ENERGY AGENCY
COMPUTER PROGRAM LIBRARY (NEA-CPL).

ENRICO SARTORI (IAEA OFFICER AT THE NEA-CPL)
LUIS GARCIA DE VIEDMA (HEAD OF THE NEA-CPL)

ABSTRACT
This paper briefly outlines the objectives of the NEA-CPL and its
activities in the field of Nuclear Model Computer Codes. A short
description of the computer codes available from the CPL in this
field is also presented.

In 1964 the Nuclear Energy Agency (NEA) of the Organization
for Economic Co-operation and Development (OECD) established a
Computer Program Library at Ispra, Italy. Thirteen European
countries plus Japan and Australia contribute to the financing
of the CPL, which from the very beginning has operated in close
collaboration with centres providing similar services in North
America, namely the United States Code Center (USCC) at Argonne
National Laboratory and the Radiation Shielding Information Center
(RSIC) at Oak Ridge National Laboratory. In addition, a number
of other countries maintain links with the CPL through the
International Atomic Energy Agency (IAEA).



- 254 -

The major objective of the CPL is to avoid excessive
duplication of effort in programming by making existing computer
codes more widely available, and to achieve through the collection,
testing and re-distribution of computer programs in the field of
reactor physics and technology, an improved use of these programs
and an accelerated development of new and more advanced codes
based on the exchange of users' experience and proposals for
improvement (1).

The collaboration established by the CPL with nuclear
centres through a very well tried and tested circuit of liaison
officers, has always insured a good input of the programs
available in this field. Thereafter, the program packages are
made available to other CPL member establishments upon request,
on a free of charge basis.

The CPL user community is kept informed of Library activities
through a series of publications such as Computer Program Abstracts,
Index of Nuclear Programs and Newsletters. Seminars are also
organized by the Library to encourage the discussion of topics of
general interest to the nuclear community in relation to computer
applications, the aim being to stimulate the exchange of information
on well defined subject matter and to act as a guideline for the
CPL on the direction to be taken in the selection of program
material.

The original subject scope of the CPL covered the field of
computer codes in Reactor Physics, however at the recommendation
of the NEACRP {Committee on Reactor Physics) and the NEANDC (Nuclear
Data Committee), it was agreed that the subject scope of the Library
be widened to include (among other fields) Nuclear Model Computer
Codes, on the understanding that only a limited number of programs
be originally selected for dissemination by the Library, due to the
high costs involved.

To assist with the selection of those codes which were thought
to be particularly useful and for which there existed a potentially
wide-ranging interest, the members of the NEANDC supplied the CPL
with information and the availability status of computer codes
developed in their countries. This information was further analyzed
and processed by Prof. V. Benzi, CNEN, Bologna, and eventuated in
the publication of a "List of Computer Programs for Neutron Cross
Section Calculations and Analysis" (2) which included information
in coded form of the most important features of these selected
codes. Included in this list were approximately forty Optical
Model and thirty Statistical Model Codes. The NEANDC has since
been requested by the CPL to make a further selection of these
codes.
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In the meantime, the CPL has commenced its collection of some
of these codes and to date about fifteen codes in the fields
of Optical and Statistical Model Calculations are available
from the Library. A short description of these, together with
some related programs can be found in part 2.
It is hoped that the participants of this specialist meeting
can give the CPL an indication of further programs to be included
in its collection. It should also be added that the CPL intends
to devote one of its future seminars to the discussion of Nuclear
Model Calculations with particular emphasis being placed on the
features and performances of the various programs in this field,
and any suggestions as to the specific codes to be made the topic
of this discussion would also be very welcomed.
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COMPUTER CODES IN THE FIELD OF OPTICAL MODEL AND STATISTICAL MODEL
CALCULATIONS AVAILABLE FROM THE NEA-CPL

Each header contains the following information:
Name of the program, contributing organization, country of origin
and programming language.

SAUD-EX, CNEN, Italy. Fortran-2.
Evaluates the neutron radiative capture cross section by means
of the statistical model, using the Lane-Lynn scheme. Neutron S-
and p-waves only are taken into account and the competition of the
inelastic scattering with the capture process is not considered.
The Porter-Thomas distribution is assumed for the reduced neutron
width. The application range is from 1 to 10O keV. (4).

FISPRO, CNEN, Italy. Fortran-4.
Evaluates the fast neutron radiative capture cross section of
fission products according to the Hauser-Feshbach theory as
developed by Margolis. The dependence of the level density on the
excitation energy is based on a gaslike model. Rough estimations
of cross-sections for one-phonon, two-phonon evaporation, direct
and semi-direct capture can be made. Neutron penetrabilities are
either given on input cards or are computed according to the strong
interaction (1^4) and to the spherical optical model (l-£:9). Maximum
number of excited levels is 19 and maximum neutron orbital angular
momentum is 9. (5).

HAFEVER, USCC, USA. Fortran-4.
Calculates the energy exchange inelastic scattering cross section
(integrated over angle) according to the Hauser-Feshbach theory as
modified by Goldman, which includes the effect of spin-orbit coupling
on the transmission coefficients. Penetrabilities must be provided
in the input. The target nucleus is originally in the ground state.
The maximum number of energy levels of the target nucleus is 2O and
maximum neutron orbital angular momentum is 14. (6).
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NEARREX, USCC, USA. Fortran-4
Computes neutron-induced, average fluctuation (or compound
nucleus) cross-sections. Provision is made for the computation
of compound-elastic and inelastic radiative capture and fission
cross-sections as well as other processes, such as proton emission.
It can also be used to compute proton induced average cross sections.
Hauser-Feshbach theory as modified by Holdauer is used. The residual
states can be any one of the ground or excited states of the target
nucleus, for which excitation energies, spins and parities must be
specified. The average resonance parameters for each of these neutron
channels are computed as a function of the compound transmission
coefficients, specified as input. Equidistant spacing model is
used for the level density. The angular momentum dependence of the
level density is of Gaussian form. Each neutron partial wave is
assumed to be distributed according to the Porter-Thomas distribution
(7).

THRESH, USCC, USA. Fortran-4
Calculates neutron induced reaction cross sections from 0 to 20 MeV
and fission-spectrum averages for nuclides having 21 to 5O protons.
Reaction products considered are 2n, 3n, p, d, t, He3,<X, np, nd, nt,
n He3, niX, pn, 2p, p«, c*n,0(p, dn. A statistical model with
empirically determined parameters is employed (Evaporation Model)
The model is based on the fact that the high energy non-elastic
cross section is well known and that the competition for charged
particles and neutron emission for neutron induced reactions is
a relatively smooth function of the neutron-excess over protons
in the target nucleus. Binding energies, if calculated by the
program, are calculated from Hillman's empirical mass formula.
Fitting parameters and binding energies are supplied by the program
but may optionally be defined by the user. (8).

CASCADE, USCC, USA. Fortran-4.
Solves the intranuclear gamma-ray cascade equation to determine
secondary particle emission probabilities. Competing processes
considered are gamma-ray emission, neutron emission and fission.
The gamma ray cascade takes into consideration that particle emission
is possible when gamma-rays with energy less than that of the incident
particle are emitted.

/Conta,.



CASCADE, USCC, USA. Fortran-4. (Contd..)
The neutron cascade may occur when the compound nucleus is in
such a highly excited state that a neutron is emitted leaving
channels other than gamma-ray channels open.
A coupled set of inhomogeneous Volterra equations of the second
kind describing the energy dependence of the probability for
particle termination of a gamma-ray cascade is solved numerically.
Branching ratios determined from these probabilities may be used
as input to the COMNUC program. Only dipole radiation is permitted,
no discrete channels are permitted. Only continuum particle emission
is considered. (9).

COMNUC, USCC, USA. Fortran-4.
Calculates neutron reaction cross sections using statistical model
for decay of the compound nucleus. Competing reaction types
permitted are elastic, discrete and continuum inelastic, gamma-ray
emission, capture, fission and (n, 2n).
Hauser-Feshbach theory as modified"byJMoJLdauer is used to determine competition
in the decay of the compound nucleus. The continuum fission model
assumes that fission may occur for various orders of deformation.
The deformation is assumed to occur adiabatically so that the level
density for the undeformed compound nucleus can be used. The
calculation of gamma-ray emission probability follows the single
particle model of Weisskopf. The radiation is assumed to be a
mixture of dipole and quadrupole. All nuclear level densities required
are calculated according to the formulation of Cook. Direct reaction
components may be provided by card input. These are combined with
calculated compound nucleus cross sections. Transmission coefficients
can be supplied on card or a simple soherical optical model can be
used. Branching ratios calculated by CASCADE may be input by COMNUC.
(9).

SMOG, CNEN, Italy. Fortran-2.
Evaluates the total-, the reaction-, the shape-elastic total and
differential cross sections, the phase strength functions and
transmission coefficients by means of the optical model. Woods-Saxon,
Gauss and square well potentials including spin-orbit coupling can
be selected. The Fox-Goodwins method is used for numerical integration.
Maximum angular momentum is 20. (10).

SASSI, CNEN, Italy. Fortran-2.
Calculates the neutron total and reaction cross-sections, as well
as the angular distributions for shape-elastic and compound-nucleus
processes (elastic and inelastic). The spherical optical model and
the Hauser-Feshbach statistical model as modified by GolcTman to
include spin orbit effects is used. The Fox-Goodwins method is
used for numerical integration. Maximum angular momentum is 50.
Maximum number of excited levels is 3O. (11).



BLIESE-lt JAERI, Japan. Fortran-2.
Calculates any kind of cross sections for elastic and inelastic
scattering of neutrons, protons and alpha particles.
The optical model and Hauser-Feshbach* s method in the compound
nuclear process is used. Fox-Goodwin's two point method is used
for numerical integration of wave functions. The only process
competing with inelastic scattering considered is (n, p).
Contributions from highly excited levels in the continuum region are
not included. Maximum number of excited levels is 30. Experimental
and calculated angular distributions of scattered particles may be
compared by means of the%z deviation. (12).

ELIESE-3, JAERI, Japan. Fortran-4.
Calculates elastic cross section and its angular distribution,
the inelastic scattering cross section for each discrete nuclear
level and its angular distribution, the total inelastic scattering
and compound-nucleus formation cross section for particles with
spin 0, 1/2, 1. The reaction cross sections concerning absorption
and emission of particles with spin 0, 1/2, 1 can be calculated.
Optical model and Hauser-Feshbach theory are used. Moldauer's
method can be used in the calculation of the compound nuclear process.
Hauser-Feshbach1s method is extended to calculate the cross section
for the excitation of the overlapping levels of the resic'ual nucleus.
A resonance interference option is also included. A constant nuclear
temperature representation of nuclear level densities is used at
low excitation energies and the Fermi-gas formula is adopted at high
excitation energies. Gaussian and Yukawan non-local kernels are
available. Polarization, asymetry, rotation, depolarization and
tensor polarization of scattered particles can be calculated. Fox-
Goodwin' s method is used for calculating wave functions. Automatic
search for up to 15 potential parameters, limited to the elastic
scattering calculation is available (13).

STAX-2, JAERI, Japan. Fortran-4
Calculates neutron elastic and inelastic scattering and compound-
nucleus formation cross-sections, transmission coefficients. Optical
model and Moldauer 's theory are used. The optical potentials used
are Woods-Saxon for real part, derivative Woods-Saxon for imaginary
part and Thomas form for spin-orbit. The wave equation is solved
by the Noumerov's method. Searches for potential parameters are
made with respect to any combination of the following integral
or differential cross sections; total elastic and inelastic for the
first excited level. Searches are made by means of the Gauss -Newton
method. Largest value of orbital angular momentum is 10, maximum
number of excited levels is 25. (14.)
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2 PLUS, USCC, USA. Fortran-4
Solves the problem of scattering of charged or uncharged nucléons
by a nucleus represented by a deformed nuclear potential. The
model assumes that the target nucleus has a O+ ground state and
a 2+ first excited level, which are strongly coupled by the
deformed potential. (Coupled Channel Calculations)
All other levels are treated in the weak coupling limit (spherical
potential). A Hauser-Feshbach compound nucleus calculation has
been included so that lower energy neutron scattering may be
calculated. A coupled set of sevel, complex second-order
differential equations is solved by difference techniques. The
asymptotic scattering solution boundary conditions are applied
by using a matrix inversion method. The basic three- dimensional
problem is reduced to one dimension by a spherical harmonics expansion.
The output contains total, potential elastic, potential inelastic
(2+), reaction and compound nucleus cross sections as well as elastic
and inelastic angular distributions. Maxima of 12 levels including
ground state and 30 terms in the Legendre expansion are permitted.
Comparison of theoretical and experimental data is permitted bymeans of a y~test. (15).

JUPITOR 1, USCC, USA. Fortran-4.
Is used to perform coupled-channel calculations to evaluate the
cross-sections for the scattering of nuclear particles by various
collective nuclei. Spin of the projectile can be either 0, 1/2,
1 for non-adiabatic or 0, 1/2 for adiabatic coupled channel
calculations. Targets can be either vibrational (soherical) or
rotational (permanently deformed) and of either even or odd atomic
numbers. When the target is deformed, excitation of states
belonging to higher (vibrational) bands can be considered. Coulomb
excitation can be included and the form factor can be either real
or complex. A maximum of six states and 3O partial waves can be
coupled at one time. The maximum number of orbital angular momentum
is 69, in solving the coupled differential equations the prediction-
correction method due to Stormer is used. (16).

RELATED PROGRAMS.

LYNNE, USCC, USA. Fortran-4
Performs a multipole expansion of the Woods-Saxon potential. The
numbers generated are suitable for microscopic calculations of
inelastic scattering from nuclei, which use a Wood-Saxon interaction
between the projectile and the target nucléons.
PEGGY, USCC, USA. Fortran-4.
A least squares search program which analyses in terms of phase
shifts, the elastic scattering of spin 0 and 1/2 particles by spin
0 nuclei. Real or complex phase shifts may be used with or without
spin-orbit-coupling. Differential cross section and polarization
angular distributions may be analyzed either separately or
simultaneously.
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RAMES, U SCC, USA. Fortran-4
Computes both local and non-local radial integrals of a variety
of radial operators using single-particle wave functions, which
are eigenstates of motion in Woods-Saxon potential well.

ATHENA-4, USCC, USA. Fortran-4.
Computes form factors for inelastic scattering calculations using
single particle wave functions that are eigenstates of motion in
either Woods-Saxon potential or harmonic oscillator well. Two-body
forces of Gauss, Coulomb, Yukawa and a sum of cut-off Yukawa radial
dependences are available.

BESFIT, USCC, USA. Fortran-4.
Calculates differential elastic scattering cross sections using a
Bessel function expansion, based on a diffraction model. Constant
terms may either be supplied as input data or obtained by a least
squares fitting of the data.
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NEUTRON EMISSION SPECTRA ANALYSIS WITH PRE-EQUILIBRIUM

AND EQUILIBRIUM STATISTICAL THEORY

D. Hermsdorf, A. Meister, S. Sassonov, D. Seeliger, K. Seidel
Section of Physics, Technical University Dresden, GDR

Abstract :
The results of neutron emission spectra analysis at 14 MeV
incident energy in the framework of equilibrium and pre-
equilibrium statistical models are summarized.
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1. INTRODUCTION
During the past years an extensive program of measurements of
differential inelastic scattering cross-sections for 14 MeV
neutrons in a wide mass number range was carried out at the
Technical University Dresden. Resulting voluminous amount of
neutron data for more than thirty elements have been collected
in a special report [l]. It was a rather hard work because of
complicated experimental techniques on one side and the
necessity to use a lot of corrections and data handling
processes on the other side. The whole research program was
designed to obtain maximum accuracy of the absolute cross
sections.
Based on the first experimental results of this program in
1970 we started interpretation of neutron emission spectra in
the framework of, at that time,new preequilibrium models. First
results we presented at the Neutron Conference in Kiev in 1971,
afterwards updated results were presented at some other
conferences (for example [ 2J). The present paper contains a
summary of the most important results from this work, which
provided new interesting details in our knowledge of the me-
chanism of nucléon inelastic scattering in the medium energy
region.
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2. PRE-EQUILIBRIÜM MODELS
First, a brief review of the statements and expressions of
the various exciton model modifications used for our inter-
pretations of neutron scattering is given, A detailed ex-
planation of models as well as detailed bibliography are
avoided. Interested -people are referred to the two reviews
by Blann [3 ] and by Seidel, Reif, Toneev and Seeliger [4 1

2,1« General formulation
With the aid of master equations of the exciton model we can
follow the time evolution of a reaction:

(1)

In eq. (1) the following notations have been used
P - occupation probability of n = p+h exciton states;

îA+ - decay constants for transitions between n and n - 2
exciton states of the intermediate system;

W^ - emission probability for a particle i at excitation
B^ + 6 above the Fermi energy;

E - full excitation energy E » € + B * € 4- Bj, + U,
É0 6- kinetic energy of incoming and outgoing particles;
B ,B^ - the respective binding energies.
The preequilibrium particle spectrum IL ( €) may by expressed

U/£ (n, €) eft c/e (2)
as

where 0?eq̂  is the equilibration time. Finally, the total pre-
equilibrium cross-section for («,/3) process is given by

= .-
l E
J tt
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with the mean life-time of an n - exciton state
TÏ,.

P ( » , * ) el* (4)
o

and the cross section 6 (£Q) for the formation of the first
p-h-state.

Let us consider the most important physical quantities, which
determine results of calculations by the general equations
(1) - (4).

2.2» Particle emission

The nucléon emission probability from p,h-state is given by
the well-known principle of detailed balance in nuclear re-
actions

i hj £}

whereU(p, h, E) is the density of p,h-states, which
is usually calculated from the expression given by Ericson

«(*«***"*

2*3, T rans it ion rat es

The decay constants for transitions n-^-n +A^ a* excitation
energy E is given by the time-dependent perturbation theory<*r. ,where «^/ is the density of accessible final states for tran-
sitions £ n = i 2 as given by Williams (factor 1/2 by Oblos-
zinsky et al.)
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2.4. Approximations
Solution of the set of coupled differential equations (1) de-
mands voluminous calculations with a large computer. Therefo-
re in most cases it is convenient, to use simple analytical for-
mulas, which are derived from (1) through additional physical
assumptions.
i) It may be seen from (8), that during the first steps of in-

teractions in the intermediate system the transition pro-
bability A - is very small: f
A, »A- if »<<h=U5 £-' i

Neglecting A_-transitions, from equations (1) and (2) we
get the following preequilibrium particle spectra

(9)
=/

. h, €)

where E>n is the depletion factor, which reduces the popula-
tion of each state according to the amount of particle
emission from simpler states. D is given by

^M __ A*__ft - r / V/(»'-i, «; «*« J
+ L t

ii) Blann's hybrid model contains the following approximations:
The transition rate in (9) is replaced by the colli-
sion rate \ GQ^ of the particles in the continuum, which
is derived from considerations of nuclear matter. Blann re-
commends following equation for A ooll as a function of
particle energy 6 :

^coll=<Ŵ =1»4*1°21( € +B0)-6.1010( € +B0)2 sec""1 (11)
The second point of the hybrid model is, that emission pro-
bability from p,h-state Wif is replaced by the decay con-
stant \ln(€) for transitions into continuum for a particle
at excitation € + B above the Fermi energy.
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Prom eqs. (9) - (12) we get the preequilibrium decay proba
bility in the hybrid model approximation as

where R^(n) is the number of all particles of the type i
in the n-exciton-state.

iii) The most simple expressions for preequilibrium decay proba
bility we get from (9) with the additional assumption,
that emission probability during the equilibration pro-
cess is neglectible

f
This assumption leads from eq. (9) to

TTTT^
and from eqs. (5\ (6), (7), (8) and (14) we can derive
the well-known formula

2which assumes that ^/M/ ) does not depend upon n. Assuming
a constant life-time of exciton states 7~ = Z~ = const,,n o *the following expression is derivedg)

(16)
x E (u/e)*~*'(" + ''J<»-4)r* d€

As shown in fig« 1 eqs. (2), (13), (15) and (16) corre-
spond to similar, but not identical preequilibrium spec-
tra-shapes. If the different spectra are normalized in
the high energy region - differences up to - 25 % between
them occur in the low energy region.
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3. RESULTS PROM ANALYSIS OP EXPERIMENTAL NEUTRON SPECTRA
3. 1 • Spectra shape
The first we tried to do was the description of the shape of
neutron emission spectra in a wide energy and mass-number ran-
ge. Because of the strong time decoupling of preequilibrium
and equilibrium reaction modes the following expression has
been used for comparison with experiments

where the first term implies the preequilibrium spectra shape,
according to eq. (16), —

da)
The second term describes the well-known equilibrium part of
emission spectra, given by the statistical theory of nuclear
reactions:

(19)
(Fermi gas model)

or
/ f. \ Tu/ 7'-**"*• ' € O;Ml, (.*/ £Xp [_ / TJ ,«ON. I V d* I

(constant temperature model)
In a Jf-fit to the integrated (over the solid angle) experi-
mental spectra the free parameters of eq. (17) K,,, K^ and a
(or T) have been varied independently.
The following results have been obtained:
- It was shown, that inclusion of preequilibrium emission is a
useful and simple way to describe the shape of experimental
neutron emission spectra in a wide energy and mass number ran-
ge. As yet, there is no other way to do it. The shapes of
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preequilibrium and equilibrium spectra become strongly diffe-
rent with increasing mass-number. Therefore, the TÉ -fit
has a sharp minimum for the fit parameters K^, Kg and a (or
T) (see fig, 2) and experimental spectra can be divided with
definite accuracy (which is determined by the accuracy of
the employed models) in the two reaction modes. At least it
is a simple method to parametrize neutron spectra.

.NAfter integration of separated preequilibrium spectra o ̂ t58
f ̂ nn' £fe)°^ we obtained the mean mass-dependence of pre-
equilibrium emission cross-section 6 ̂ ^£fa
Most of the cross-section values are within the range

** nn* =
By several reasons it seems, that the resulting preequilibrium
cross-section is somewhat overestimated.
It is well-known, that from neutron spectra level density
parameters were obtained ~by many authors. Therefore, we examined
the influence of preequilibrium emission on these parameters.
We compared a parameters, obtained in a narrow high excita-
tion energy range U «10 + 11 MeVfrom the equilibrium model
only, and those from the analysis with eq. (17) in whole ex-
citation range U»0 •«• 12 MeV,including preequilibrium pro-
cesses. In the second case small contributions of secondary neu-
trons had to be subtracted from experimental spectra. The
results in Jfig_.__^_ indie ate a strong deviation between both
parameter sets increasing with mass-number. The parameters
from the analysis including preequilibrium emission are in
general agreement (deviations 10-20 %) with level density pa-
rameters from neutron resonances and fluctuation analysis.
This analysis confirms the remarkable contributions of com-
paratively slow preequilibrium neutrons, which are predicted
by the exciton models. A the same time it shows, that the
existing exciton-models aiitogether somewhat overestimate
the preequilibrium spectra in the low energy part. This is
demonstrated in fig« 4 for the gallium spectrum. The lowest
preequilibrium spectrum is an idealized one, which gives the



best a parameter. The other spectra correspond to approxi-
mations (16) (indicated with T") and (15) (indicated
with "H "). The worst spectrum in this sense is predic-
ted by the hybrid model (13) (not shown).

- Assuming that the high energy "tails" consist of preequi-
librium neutrons only, from the slope of the experimental
spectra the initial numbers of excitons n0 may be obtained by means
of the equation

The results of such exercise are in surprisingly good agreement
with predictions of exciton model, the mean behaviour is
well described by (fig. 5)

n0 » 3,2 i 0,2 ,
supporting the principal consistency of exciton models. This
is also in agreement with an analog analysis of nucleon-in-
duced reactions, whereas most of the oC -induced reactions
give n -values near 5,f3, 4~|.

3.2f Transition rates
The problem of calculating absolute spectral yield by the ex-
citon models is mainly one of calculating the intranuclear
transition rates A+ (7) between intermediate states. There-
fore, it seems very interesting to get these values (or the
equivalent matrix elements ̂ /M/ / f rom various reaction
channels at the same excitation energy. The consistency of

r\the models demands, that we get the same matrix element (/M
independent of the type of outgoing reaction channel.
For this purpose the preequilibrium emission spectrum for the
3-exciton state from eq. (9)

was compared with the experimental observed absolute "high



- 272 -

energy tail" of the spectra, in this way we can obtain abso-
lute transition probabilities A+ as shown on fig, 6 • it is re-
markable, that within 4 50 % the A -values are constant over
the whole mass number range«
The average extracted values are (at E «21-22 MeV)

= (5,9 ± 0,7) 1021Js~1]
=^~1 (3) = (1,7 i 0,2) 10*2|s]

< /] > = (3,9 ± 0,4) [Mev]
< /M/2 > « (18 i 2) A~3 MeV2

In an independent work Golli et al. [ 5 ] from analysis of total
(n,p) cross-sections at 14 MeV obtained a very similar tran-
sition rate

= 4,9 • 10
« 15,2 A~3[MeV2]

Thus both reaction channels at 14 MeV incident energy are
well described by the same transition probability (or matrix
element). This result is also in agreement with an analysis
of ( p, n ) -excitât ion function by Birattera et al, f6l ;which
gave the result

<\+(3) > = 6 • 1021fs-1].
Existing theoretical approaches considerably deviate from ex-
perimental values:

from nucléon-nucléon collisions in nuclear matter (see eq.(11),

(3)>= 24 ' 1021fs"1]
from an everaging procedure over all accessible p-h-confi-
gurations by Gadioli et al. £ 7 J

+
from the imaginary part of the optical model T 2 L

3_»3« Absolute cross-sections
One of the main purposes of any nuclear reaction theory is the
a-priori prediction of absolute cross sections without any
free perameters.



- 273 -

The hybrid model does not imply any free parameter,but analysis
of many experiments has shown, that the used collision ra-
tes from nuclear matter theory are too high. An improvement
of the agreement with experiment is obtained by an additional
factor 1/K on the right side of eq. (11), wheras K*s-5 ... 10.
We found, that the hybrid model is a useful tool for absolute
calculation of neutron spectra, if an additional factor K«10,
constant for the whole mass-number scale, is introdu-
ced.
An a-priori absolute calculation of neutron spectra without
any free parameters (with an accuracy of about * 15 %) we ob-
tained with an approach of Toneev and coworkers £8j, As in
other approaches, Toneev starts from relation
Acoll ~<^> f <«> = < V> 7l (23)

between density of nucléons p , the average velocity <v>, the
effective cross-section of interaction between nucléons ̂ tf>
and the mean free path .A. of them, usually, the collision
rate is taken equal to the transition rate for the 1p Oh-state

kcoll (*°) = *+ *** °>€° * 3d ) t (24)
whereas transition rates for more complex states are calcula-
ted by eqs, (7) and (8), In Toneev's approach A coii is cal-
culated for all n-exciton states, taking into account the
cross-section as a function of interacting particle energy
^̂ "coll̂  and tlle res*?ic'''i°ns bY tne Pauli principle (by the
factor

The interacting enersy^ ĉon^ is composed of the average en-
ergy of an excited particle<£F + /n̂ and the kinetic energy
of the collision partner ( /5)fj,. Therefore, the free nuc-
leon-nucleon interaction cross-section becomes a function of n,
A solution of master equations (1) has been carried out by the
Monte-Carlo method, which takes into account all tran-
sitions A^ between intermediate states as well as emission of partic-
les of any type (including <x -particles). Some examples of
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calculated spectra are shown on Fig, 7 - as one can see, an
excellent absolute agreement between experiment has been
obtained.

A summary of all calculations is seen in the Fig. 8. The
total pre -equilibrium cross section 6rnnt calculated this
way (with S^ (£0) in (3) from optical model nonelastic cross
section) are denoted with full points. Values of o , fitted
to the experimental spectra (by chosing an optimal
are shown as open circles. Both values are very similar,
indicating the high accuracy of absolute calculations. The
absolute pre-equilibrium model (without any experiment)
yields the same mass systematic ^~ ^A as was found from
experiment by the fitting procedure (17). This is another
essential argument supporting the validity of exciton models,

3.4. Timing of the (nn') process

From application of exciton models we learned much about the
dynamics of inelastic scattering. The main point is, that
by the master equations (1) both pre-equilibrium and equili-
brium emission spectra are calculated on a unique base,
from which arises, without any additional assumptions , the
division of reaction events into two, corresponding to the
time, strongly different groups.

At the beginning of the nuclear interaction A4»AJfor n«n)
is valid, whereas in the later phase of the reaction process
both transition probabilities are almost equal A+^A. (for
n «r n) .

A more precise, with respect to eq. (7), relation between
the exciton number and the transition probability A (n) was
given by Gadioli et al. C73:

(26)
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From eq. (26) we calculated the life-time t~n of exciton
states as a function of n for a A=100 nucleus at 22 MeV
excitation energy. The result is the following: The life-

-22time of the 3-exciton states is about 1.5*10 s. During
the first interactions the life-time rapidly increases be-
cause of decreasing density of accessible final states.
At n "«-13 the transition probability A_ becomes remarkable,
After some ten interactions, with an relaxation time of_piabout (. cs-5» 10 s, an equilibrium distribution of
particles and holes is reached with an average time inter-
val between two-particle interactions (transitions) ofppabout 3« 10 s. In the next figure (Fig. 9) the total

—22emission probability per 10" seconds I(t) as a function
of time is shown.

n

Intermediate system starts with a high emission probability
1(0) = 0.15*10" s., which rapidly decreases with increasing
time (i.e. exciton number n). After the relaxation time
t > Tpg-i _ the emission probability is almost constant
I(t)ar3*10~5/10~22s. for a long time up to 10~18s. Between

18 1710" s. and 10" 's. I(t) drops to zero. We conclude, that
the dominating part of all emission events arises within
the time intervals 0< t < 5«10~21s. and 10~18 < t <10~17s.,
corresponding to pre-equilibrium and equilibrium reaction
mechanism, respectively.
Let us estimate the life-time of compound nucleus Tn-m by
the statistical model:

(28) -±~ * ̂

Taking j?Cjf(E)1i from the constant temperature model with
T=0.9 MeV and the average inverse cross section <ffT (£.)> =

cr
with the results of eq. (27).

1 Q= 2 barn, we get from (28) Tr,-Kr«'3'10~ s., in agreement
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4. CONCLUSIONS

The various modifications of the exciton model are found
to be useful for description of neutron inelastic scattering,
as well as it was shown for other reaction channels [3, 43.
The main advantage of this model is its simplicity and
physical transparency. With this model, in addition to the
well-known statistical theory of nuclear reactions, it is
possible to calculate angular integrated spectra of emitted
particles and excitation functions. Of course, there are
some shortcomings of this model: It does not describe angu-
lar distributions and there are some indications, that this
model in its present state overestimates the low-energy part
of pre-equilibrium spectra.
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PIGÖRE CAPTIONS

Pig. 1 Comparison between different shapes of pre-equili-
brium spectra, according to eqs. (2), (15) and (16),
distinguished as full line, dashed line and dash-
dotted line, respectively.

Pig. 2 Sensitivity of the X -fit of eq.(17) to experimental
neutron emission spectra for nuclei with different
mass numbers; a) Fb b) Si c) Ta d) Ti; All quan-
tities are normalized to best fit numbers.

Pig. 3 Level density parameters obtained from neutron spectra,
fitted by Weisskopf-Ewing formula only (open circles)
and taking into account pre-equilibrium emission,
according to eq. (17) (full points); results from
neutron resonances and fluctuation analysis (crosses)
are shown for comparison.

Pig. 4 Analysis of integrals over the solid angle neutron
emission spectrum for Ga by eq. (17); dashed curves
give equilibrium spectra and dash-dotted curves pre-
equilibrium spectra; the different shapes of pre-
equilibrium spectra correspond to eqs. (15) and (16)

n(denoted with "M " and '"£"", respectively); the'best
shape', with respect to the a-value, is denoted with
"Q "a. .

Pig. 5 Initial number of excitons n , extracted from the
shape particle emission spectra for different reac-
tions [43; open circles - from present analysis of
(nn')-spectra; squares and triangles - from proton-
induced reactions and crosses - from oC-induced reac-
tions.

Pig. 6 Absolute transition probabilities A+(3) at E —21-22P1 —1MeV excitation energy (in units 10 s~ ) extracted
from neutron emission spectra of nuclei in a wide
mass-number range.
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Pig. 7 Absolute calculation of neutron and proton emission
spectra for Ta+n with the program WRPEC from
Toneev et al. CsJ.

Pig. 8 Mass-dependence of the total pre-equilibrium cross
section 5~ ,CmbJ; open circles - with the choice
of an optimal 5̂ (£0)> full points - with 6^( €.<>) from
the optical model.

—22Pig. 9 Total emission probability I(t) per 10 s.
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CALCULATION OF PRE-EQJJILIBRIUM PROCESSES IN (n,2n), (n,np)
AND (n,pn) REACTIONS

K. Seidel, D. Seeliger, and A. Meister,
Technical University of Dresden,

German Democratic Republic

ABSTRACT

The authors consider the influence of pre-equilibrium processes on
the cross-sections of (n,2n), (n,np) and (n,pn) reactions for an initial
nuclear energy of 14 MeV. The influence of the main structural effects
of nuclei on equilibrium and pre^equilibrium cross-sections are discussed
for a model nucleus. Lastly, a comparison is made between the cross-
sections calculated for a number of specific nuclei, both with allowance
for pre-equilibrium processes and, as previously done, without such
allowance.

1. INTRODUCTION

Pre-equilibrium processes play an important part in many nuclear processes
where the initial energy is between a few MeV and 100 MeV. Using pre-
equilibrium decay models it is generally possible to arrive at a qualitative
description of these processes [l].

The work described here is a study of the role of these processes in
reactions accompanied by multiple emission of nucléons. The calculations
are all performed for an initial neutron energy of 14 MeV, since most of the
experiments have been performed at this energy, at least for the (n,2n) reaction.
For the (n,pn) and (n,np) reactions there are very few expérimental data
available, even at this energy.

One aim of the work is to study the mechanisms of these reactions,
including the interaction of structure and mechanism, and the other is to
develop a new method of calculating (n,2n), (n,pn) and (n,np) reaction cross-
sections, which are difficult to determine experimentally but are of practical
importance. The new method should be more accurate than the equilibrium,
statistical theory of nuclear reactions. The work is a continuation of that
described in Ref. [2], in which the method was first used.



- 286 -

2. MODEL

After the bombardment of a nucleus by a neutron, the compound system,
starting with a small number of degrees of freedom (two particles plus one
hole correspond to n = 3 excitons), is gradually transformed into a more
complex configuration (for each transition An = 2), until a state of
statistical equilibrium is reached, i.e. the state of the compound nucleus [3].
There is a specific probability of the emission of a nucléon from each pre-
equilibrium state with n quasiparticles. This emission will lead to a unit
decrease in A and n and to a decrease in the excitation energy. The nucleus
(ZtN) will therefore give rise to a nucleus (Z-1(W) in the case of emission
of a proton or (Z,ÎT-l) in the case of emission of a neutron and so on.
Absolute spectra for both types of nucléons from all intermediate nuclei are
calculated as long as the excitation energy does not become less than the
nucléon binding energy. The calculations are performed on the basis of the
hybrid model [3], according to which the probability PW(E) of pre-eequilibrium
emission of a nucléon of type x from a state with n excitons is equal to

(D
++T)(E)

where p is the number of nucléons of type x in state n;
il X.

Q , (u), Q (E ) represent the densities of states with n-1 and n quasi-il™™ X XI
particles in the final and intermediate nucleus, respectively, as obtained
by combination of equidistant, single-particle levels;

A is the probability of emission, obtained from o. by means of the
detailed balance principle; and

A. is the probability of an intranuclear transition with An = 2.

In accordance with Ref. [3]» A- is calculated on the basis of the
probability of nucléon collision in the nuclear matter, which gives the
expression:

(E+B) - 6,0'1o18 (E+B)2] s'1 (2)

where K is a parameter which is independent of energy;
B is the nucléon binding energy.
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The equilibrium spectrum PP(E) of particles of type x is calculated
from the comprehensive statistical theory of nuclear reactions [4]:

PP(E) .

dEv

where QR(U) is the level density of the residual nucleus, given in terms
of the Fermi-gas model [5] by:

The influence of shell effects on the density Q0(U) can be taken intoit
account by using experimentally determined density parameters (a). As well
known, allowance for the pairing effect is made by introducing an effective
excitation energy U -„ = U- A .

Given the known cross-section of formation of an initial system with
n = 3» we thus obtain absolute spectra of the emitted nucléons and after
summation with respect to energy we get the cross-sections of the (n,n f),
(n»p)» (n»2n), (n,np), (n,pn) etc. reactions.

All the parameters, except K in (2), can be regarded as well known. The
value of K is obtained by comparing the calculation based on pre-equilibrium
decay models with the (n,n() experimental spectra [6] in the high-energy range
where pre-equilibrium emission predominates. Fig. 1 shows that in a wide
range of mass numbers (A), K = 12 can be regarded as a suitable parameter.

3. CALCULATIONS FOR MODEL MJCLEAR SYSTEMS

The cross-sections for equilibrium and pre-equilibrium decay depend in
complex manner on such quantities as binding energy, density parameter, shell
structure, pairing energy etc. In order properly to appreciate both the
importance of taking into account pre-equilibrium decay, and the influence of
structural effects on the cross-sections, we performed various calculations
for a model compound system with the following parameters:

Initial energy of incident neutron « 14 MeV;

Binding energy of all nuclei B = B =7 MeV;



- 288 -

Density parameter of all nuclei a = 13.3 MeV~ , which corresponds to
A -1a mass number A K 100, since for the Fermi-gas model a = y-r MeV ;

i O
Pairing energy for all nuclei A = 0;

Cross-sections of the inverse reaction a. are calculated using the
optical model for A = 100 as in Refs [7l and [8],

Figure 2 shows emission spectra for the first neutron and proton with and
without consideration of pre-equilibrium decay models. The presence of pre-
equiiibrium decay has a strong effect on the shape of the spectra, the cross-
sections, and also on the branching of decay of the compound system for both
channels. Owing to the emission of a large number of nucléons of high energy
the mean energy of excitation of the final nucleus is reduced and, as a result,
the probability of emissio|£ of secondary nucléons is reduced.

Figure 3 shows th$l(/n,p), (n,n')» (n,pn), (n,np) and (n,2n) cross-sections
obtained by using the comprehensive statistical model (left-hand side) and by
taking into account pre-equilibrium decay models (right-hand side). In the
second case, the first figure in parentheses is the pre-equilibrium cross-
section and the second figure the equilibrium cross-section.

It is interesting to note that the pre-equilibrium cross-sections for
emission of secondary nucléons are relatively small. However, the presence
of pre-equilibrium processes in the emission of primary nucléons has a marked
effect on the total cross-section of processes with emission of two nucléons.
The (n,pn) and (n,np) cross-sections are 2.1 and 1.3 times greater, respectively.
The (n,2n) cross-section is reduced by a factor 0.86. The total probability
of neutron emission is reduced by Qfo while the probability of proton emission
is increased by a factor of 4*91

In view of the arbitrary choice of parameters, these figures must of course
be regarded as a sort of average representation of the influence of pre-
equilibriura decay on the reaction cross-sections.

We shall now consider the influence of structural parameters on the cross-
sections. Similar calculations were performed with successive variation of
the nucléon binding energy, the density parameter (shell effect) or the
effective excitation energy (pairing effect). The results are shown in
Table 1. The first column indicates which of the above-mentioned effects is
being considered.

As regards the shell effect we can expect that in the pre-equilibrium
stage of the reaction with n = 3 the mean excitation energy for each exciton

21is -r- = 7 MeV, which is considerably higher than the value (of the order of
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1 MéV) for the gap in the single-particle level scheme. In the equilibrium
state the number of excitons in our system is n » 18 .... 19» i.e. the mean
energy per exciton is of the same order of magnitude as the width of the gap
between shells. Accordingly, the influence of the shell structure must be
relatively weak in pre-equilibriura processes and very strong in equilibrium
processes (cf. also [9]). The figuresgiven in the second line were obtained
with the density parameters of the residual nuclei after proton emission
reduced by 2 MeV~ compared with the parameter in the first line. This means
that proton emission is reduced by a factor of approximately 10 if the calcula-
tion is based solely on the statistical model. There is also a correspondingly
marked reduction in the (n,pn) and (n,np) cross-sections. The fact that
there are pre-equilibrium processes with proton emission means that there is
a reduction of only Qfo in the total probability of proton emission while the
(n,pn) and (n,np) cross-sections are reduced by factors of 0.72 and 0.48,
respectively. If no account were taken of pre-equilibrium decay models, the
reduced a parameter would lead to (n,pn) and (n,np) cross-sections reduced by
factors of 0.09 sind 0.13, respectively, while the (n,2n) cross-section would
be increased by 0.5$.

The figures in the third line were obtained by applying a similar shell
effect in the neutron system. In this case, too, the presence of pre-
equilibrium processes will smooth out the shell structure effects in the cross-
sections. The probability of neutron emission is decreased and proton
emission is increased.

The next three lines demonstrate the occurrence of the pairing effect.
In accordance with expression (4), shifts of A = 2, 1 or 0 MeV are introduced
for residual nuclei of types even-even, odd-even (or even-odd) or odd-odd,
respectively. In decay of the compound nucleus for even-even target nuclei
the probability of emission of a primary neutron is reduced in favour of
higher probability of proton emission, since in the latter case the residual
nucleus is of the odd-odd type. There is a corresponding increase in the
(n,pn) cross-section and decrease in the (n,2n) and (n,np) cross-sections.
Depending on whether or not pre-equilibrium decay models are taken into account,
the cross-sections of these processes differ by 0.7, 0.84 and 2.1, respectively.

In the case of target nuclei of the even-odd type the (n,np) and (n,pn)
cross-sections are reduced. In that of odd-even nuclei the (n,2n) cross-
section is reduced while the (n,np) cross-section is increased by a factor
of about 10}
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Finallyt the last line of Table 1' gives the cross-sections for the case
of underestimated binding energy B = B =5 MeV. The excitation energy
E = 21 MeV remains unchanged; this is actually equivalent to an increase
in the energy of the incident neutrons. In this case, the effect of pre-
equilibrium processes is even more pronounced than in the first case - the
probability of proton emission is increased by a factor of 6.2, while the
probability of neutron emission is decreased by a factor of 0.83.

Summarizing the calculations performed, it can be said that taking
account of pre-equilibrium decay models results in a considerable change
in the cross-sections of processes with emission of one or two nucléons. An
effect of this order of magnitude can be expected from the structural effects
studied. In calculating (nt2n), (n,pn) and (n,np) processes, therefore, it
is essential to take into account the possibility of pre-equilibrium emission
of particles and to use individual parameters B, a and A for each nucleus
concerned.

4. CALCULATIONS FOR SPECIFIC HUCLEI

In real nuclei the effects considered above are mixed and partly inter-
connected, for instance the filling of a shell is usually reflected both in
the density and the binding energy. It is therefore generally not possible
to predict the effect of pre-equilibrium emission on the cross-sections of
the processes in which we are interested. For this reason we shall examine
13 isotopes in the range 58 ̂  A ^ 209, taking careful account of binding
energy, density parameters, and pairing energy in each nucléon-émission event.

The cross-sections for compound-system formation and the inverse-process
cross-sections are taken from the optical model [7, 8], The emission of
compound particles is taken into account by a slight reduction in the
probability of the first compound system being formed. In the second stage
of the reaction the emission of complex particles is ignored. The binding
energies are taken from the table of Q values in Réf. [lu]. The density
parameters are taken from the semi-empirical formula in Réf. [il] and from the
experimental values obtained in the analysis of neutron resonances in Ref. [l2],
The pairing energies for calculating the density from expression (4) were
taken from Ref. [l3J» In the pre-equilibrium decay models, account has so
far not been taken of the effect of nucléon pair correlation on density.

The results of the calculations are given in Fig. 4. The upper part of
the figure shows the (n,2n) cross-sections with and without consideration of
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cQ
pre-equilibrium decay models. In all cases, except for the Ni nucleus,
the expected reduction of 14-2955 is found in the (n,2n) cross-section. For a
constant incident neutron energy 14 MeV, the effect of considering the pre-
equilibrium decay models decreases with increasing mass number. Reference [2]
was followed not long ago "by the work of Holub and Cindro [l4]t which showed
that actually the experimental cross-sections of the (n,2n) process are some-
what lower than the value obtained from calculations based on the statistical
theory of nuclear reactions. It must be emphasized that not very long ago
this process was regarded as a "standard example" of a model of successive
evaporation of two neutrons.

j-Q

The increase in the Kl(nt2n) cross-section from 0.7 mbarn to 1.6 mbarn
can be explained by the relatively high threshold of the (n,2n) reaction and
the large cross-section for equilibrium emission of protons.

The cross-sections of the (n,np) reactions show a marked increase,
especially for heavy nuclei. This is due to the fact that most of the
secondary protons are emitted in the pre-equilibrium stage of the reaction.
The mechanism of the (n,np) reaction thus differs fundamentally from the
assumptions based on the statistical theory of nuclear reactions.

When we consider the lighter nuclei, another effect is observed. The
Coulomb barrier becomes more transparent for protons, and the proton-binding
energy is less, in the general case, than the neutron-binding energy. There
is a range of excitation energies in which only proton emission is possible,
and the compound nucleus lives for a relatively long time before it decays
via the proton channel. In this case, taking account of pre-equilibrium
decay models results in only a small change in the (n,np) cross-section. In

QOthe case of ^Zr the (n,np) cross-section decreases slightly while in that
of TJ"i, Ga and <Br it increases slightly. With Se, the pronounced
increase in the cross-section is due to the fact that the threshold of the
(n,np) reaction is higher than that of the (n,2n) reaction. There is thus
no energy range in which only secondary emission of protons takes place.
The effect of pre-equilibrium processes is therefore more pronounced.

The cross-sections of (n,pn) reactions are given in the lower part. In
the fairly heavy nuclei, owing to the Coulomb barrier, the emission of a
primary proton takes place almost exclusively via pre-equilibrium processes.

In the range A<100, taking pre-equilibrium decay models into account
results in a smaller and less obvious change in the cross-section value.
The direction of the change in the cross-section depends on the extent to
which the reduction in the probability of compound nucleus formation (due to
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pre-equilibrium emission of nucléons and leading to a reduction in the
emission of primary protons from the compound nucleus) is offset by the
emission of low-energy, pre-equilibrium, primary protons, after which the
"evaporation" of a secondary neutron is possible.

For Ni and Cd, taking account of pre-equilibrium decay models
generally means a decrease in the number of primary, low-energy protons, i.e.

ftothe (n,pn) cross-section is reduced. In the case of Se, as a result of
the high energy of the proton bond, the (n,pn) cross-section shows an
increase since the emission of low-energy protons occurs primarily in the pre-
equilibrium stage of the reaction.

The calculations for specific nuclei outlined above illustrate the
complicated influence of nucleus structure effects and of process flow
mechanism on the total cross-sections of (n,2n), (nfpn) and (n,np) reactions.
The same applies of course to the particle spectra. Figure 1 represents an
analysis of the neutron spectra. Taking account of pre-equilibrium decay
models is necessary not only for a correct description of the high-energy
part, which consists primarily of pre-equilibrium neutrons, but also to get
a correct absolute value for the spectrum of secondary neutrons.

CAPTIONS TO FIGURES

Fig. 1. Comparison between experimental and calculated (parameter K in
equation (2) equal to 12) neutron spectra for various nuclei in the
range 79^A<$200.

Symbols: —•— spectrum for pre-equilibrium decay models

— — —• spectrum of primary neutrons from statistical
theory

— — — spectrum of secondary neutrons

———— total calculated spectrum.

Primary neutron and primary proton spectra with (———•) and without
(—• — —) consideration of pre-equilibrium decay models;

*
excitation energy B = EQ + Bn = 21 Me7; cross-section for
formation of compound system = 1720 mbarn. The energy range is

indicated in which the emission of secondary nucléons is possible.
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Pig, 3, Branching scheme for probabilities of neutron and proton emission;
A = Z + W = 100; E* = 21 MeV; B = B = 7 MeV; a = 13.3 MeV"1.p n '
Left side: without consideration of pre-equilibrium decay models;
Right side: with consideration of pre-equilibrium decay models.

Fig, 4. Effect of consideration of pre-equilibrium decay on cross-sections
for multiple emission of nucléons for specific nuclei and for a
model compound system (A = 100).
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Table l

Calculated decay cross-sections (a mbarn) and emission of neutrons (n)
and protons (p) for a compound system with the^following parameters: cross-
section for formation 1720 mbarn; A = 100; E = 21 MeV. A comparison is
made between cross-sections obtained without consideration of pre-equilibrium
decay and cross-sections obtained with consideration of this type of emission,
the table giving the corresponding sums of pre-equilibrium + equilibrium
components for each channel. The influence of structural effects on the
cross-sections in question are studied by varying the parameters B, a and A.

Standard
system

p -shell effect

n -shell effect

Pairing effect
(even -even target)

Pairing effect
(odd -even target)

Pairing effect
(even -odd target)

Binding energy
E* = 21 MeV

BP=B„

(MeV)

7

7

7

7

7

7

5

a

(MeV"1)

13,3

a =11, 3 exc-
a(z,N-v)=I3,3
for r=0,I,2.

a =11, 3 exc.
a(z~r,N)=I3,3
for Y- r=0 , I ,2

13,3

13,3

13,3

13,3

A

(MeV)

0

0

0

0,1,2

0,1,2

0,1,2

0

(/ (mbarn)

n from (Z,N )

1710 -*»
782+887

1719 -*•
782+892

1656 -*•
782+859

1662 -*>
782+862

1712 -+
782+888

1 712 -H*
782+890

1707 -»
II8ÛT450

p from ( Z , W )

9, / *
46+5

0,95-»»
46+0,5

46+33

46+30

8,1-*
46+4,2

46+2,4

12,8—»
87+3,4
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Table 1 (continued)

(/""* (mbarn)

n from ^Z ,ÎT-1 ̂
n,2n

1700 — ».
37+1432

1709 -»•
37+1443

1651 — *•
37+1406

1645 — *•
37+1342

1704 — *•
37+1434

1645 -*•
: 37+1271

1704 — +
212+1303

p from (Z,K-1)
n,np

0,45 ~*
0,28+0,30

0,06 — **
0,28+0,04

0,21 — +•
0,28+0,14

0,19 — *
0,28+0,12

0,003—»-
0,28+0,002

8,2 — »*
0,28+5,7

3,1 — ̂
7,6+1,6

<
i
n from (Z-1,N)

n,pn

7,1 ~-^
0,29+14,5

0,78—^
0,29+10,3

0,29+36

31 —+*
0,29+21

2,3 — *>
0,29+2,8

6,4 -**
0,29+13

12,7—^
8,1+58

Neutron
emission

(f~ (mbarn)
nM-

3417 —fc»
3153

3429 —*>
3165

3355 —*>
3120

3338 ~^
3044

3418—^
3144

3363—*-
2993

4943—».
4114

Proton
emission

(7~ (mbarn)
plvi

10,5—».
51

1,0—»*
47

79

58 — *•*
76

8,1—*
50

16 -H^

54

16 — ̂
99
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THE USB OP THE PRÊ-EQUILIBRIUM MODEL IN THE
EVALUATION OP 93lb + n CROSS SECTIONS

D. Hermsdorf, G. Kießig, D. Seeliger
Section of Physics, Technical University Dresden, GDR

Abstract :

Based on a critical analysis of experimental data as well as
calculations in the framework of different nuclear reaction mo-

93dels, the reaction cross sections for y Nb+n at neutron inci-
dent energies from 30 keV up to 20 MeV were evaluated. The
present paper demonstrates, that statistical models including
particle emission from pre-equilibrium states have proved to be
valuable tools for evaluation purposes.
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1. INTRODUCTION

Niobium represents a material of still growing interest to
fusion reactors because it is preferred for the design of the
neutron blanket surrounding the fusion plasma. An accurate
knowledge of the cross sections of such materials composing
the blanket is essential for estimating breeding, heat gene-
ration, radiation demage and radioactivity. Derived data
requirements can be fulfilled only partially by experimental
data, and some of the wanted data have not been evaluated
up to now. This situation exists although since the initial
evaluations by Howerton [1] and Alien and Drake [2] the
cross sections have undergone several revisions and re-evalu-
ations [3, 4]. Also further independent evaluations [5, 6j
and compilations [?] were carried out. Therefore a re-evalua-
tion of niobium cross sections founded on recent measurements
published in the period from 1969 to April 1975 was accom-
plished, as well as calculations in the frame of some nuclear
reaction models. Results of this work have been reported
elsewhere

The aim of the present work is, to show by some examples the
utility of pre-equilibrium models for neutron data evaluation
work.

2. THEORETICAL MODELS USED FOR EVALUATION

2.1 Survey of used programs and models

A main feature of this evaluation is the use of nuclear reac-
tion models, which enable us to calculate different reaction
channels in a unique and consistent manner and with the use
of a unique set of nuclear structure parameters for diffe-
rent model calculations. In this sense the following reaction
models and computer programs have been applied:
- The Hauser-Feshbach program ELISA [9] for calculations
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of ̂ nT' ̂nn*' ^nn' as wel1 as n̂,*- *** n̂.p in the
energy range 0.03 MeV to 5 MeV. The total spectroscopic information
available up to an excitation energy of about 1.5 MeV (16 or
10 isolated levels in the neutron and proton channel,
respectively) was treated exactly, whereas the continuum
region was taken into account by a nuclear level density
dependent part.

- Optical model calculations of 5" m and S^» also by
means of the program ELISA, in the energy range up to
20 MeV.

- Calculations by means of complete statistical models in-
cluding pre-equilibrium and equilibrium particle emission
in the energy range above 9 MeV with the programs GLtME
[lOj and WPREC [11J for all reaction channels. As parti-
ally shown in section 3.» especially GLUNE, based on
Blann's hybrid model Cl2], proved very successful for
consistent calculations of the excitation functions of
n̂n" n̂̂ n' ̂ n̂ n» ̂ np' ^pn *** ̂n,np as wel1 as

neutron and proton emission spectra. The formalism of
exciton models has been applied also for description of the
(n,o~) reaction channel using the "preformation" factor,
introduced by Colli et al. fl3j.

- Based on the complete statistical model (Weisskopf-
Ewing-formalism) there are some known computer programs
for data evaluation purposes and a variety of different
empirical formulae. We used some of them for comparison,
especially Pearlstein's program THRESH [14] has been
tested extensively.

We used the following set of parameters for different model
calculations :
- Nuclear level density parameters a fl5j;
- Q-values [16J;
- pairing energies [1?J;
- optical potential parameters C4, 18j and transmission
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coefficients calculated therefrom (inverse cross sections);
- nuclear level schemes [19J.

2.2 Pre -equilibrium calculations

In 1966 Griffin C20J suggested a simple quantitative model of
nuclear reactions in order to explain the high-energy part of
nucléon spectra in reactions at moderate excitation energy.
Afterwards Griffin's exciton model was continuously modified
and improved. However, its basic assumptions, simplicity and
physical transparency, were preserved up to now.

A formulation of present state of exciton model is given in
an other contribution to this meeting f21], so that we can
shorten its description and explanation of symbols in this
paper.

In the hybrid model [12], a special variant of the exciton
model, the probability of emitting a nucléon of type i in
the channel energy range 6 to 6 +d6 is given as

(D N
An -2

The first set of square brackets represents the probability
to find a nucléon of the required type and energy in a p-
particle- h-hole state. The second set of brackets contains
the probability, that the excited particle of type i will
decay into continuum at the rate A ( £ ) before it interacts"111
internally with the rate A -,-|(t) to give an (n+2) -exciton
state. Finally, D - is the depletion factor which represents
the fraction of initial population surviving the deexcitation
by particle emission prior to the considered n-exciton state.

One of the most important features of the hybrid model is
the replacement of internal transition rates A, by the
collision rate A -,-, of the particle in the continuum,
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which is derived from considerations of nuclear matter.
Blann recommends the following expression

where B. - is the binding energy of the particle i. The
decay rate to continuum easily can be calculated by the prin-
ciple of detailed balance. And so, with the hybrid model, in
principle, can be calculated without any free parameters both
absolute cross sections and excitation functions of nuclear
reactions with outgoing nucléons. Really, the collision rate
A coll mus^ lDe multiplied with an adjustable parameter 1/K,
where k »5... 10. Only in this case hybrid model gives satis-
factory absolute pre -equilibrium cross section values at
excitation energy about 20 MeV. In the present work all cal-
culations with the hybrid model were carried out with a
constant factor k=5, which gives the best overall apreement
between different reaction channels. The intermediate state
densities used in this work are those of the equidistant
spacing type

E) P+ fi - 1

where density of single particle states g is calculated from
level density parameters a C153 by the well-known Fermi gas
expression

(4) Q » JLl < ,
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3. DISCUSSION OP RESULTS FOR VARIOUS REACTION CHANNELS

3.1 Inelastic scattering

Deviations from the simple evaporation spectrum (constant
temperature T or constant a) become remarkable at incident
energies higher than 7 MeV. Experimental spectra can be well
described taking into account neutron emission from pre-
equilibrium states (see also contribution [213 to this mee-
ting) . >J]i£s_.__1__and__2—show, for example, experimental and
calculated neutron emission spectra at 14 MeV and 9 MeV inci-
dent energy. In both cases calculations with k=5 give a good
fit to experimental data. At 14 MeV a considerable part of
emitted neutrons are due to (n,2n) processes (see contribu-
tion T 22J to this meeting). The situation for the (nn ' )-
channel is the following: Above 9 MeV the 6" , cross section
decreases rapidly mainly due to the competition of (n,2n)-
reactions. Taking into account pre-equilibrium emission this
general situation keeps unchanged, but, the ̂ .̂ i cross
sections become significantly higher than it would be expected by
the complete statistical reaction theory only. For instance,
at 14 MeV pre-equilibrium emission cross-section for the first
neutron is about ^nnt — 400 mb [21J, that leads to a decrea-
se of <o" 0 cross section lay about 150 - 200 mb [22] and

li ) £Li\

corresponding increase of the total 6*nn» cross section by
the same amount. Since the total o" , cross section at
14 MeV in the present evaluation was estimated to be about
350 mb, we can conclude, that pre-equilibrium emission causes
an essential part of the total S~ t cross section. Its im-
portance increases with increasing energy.

Unfortunately, there are no direct measurements of (nn')-
cross section at energies higher than 9 MeV. But the neutron
emission spectra (Fig. 1) have proved a valuable tool for
adjustement of neutron emitting reactions altogether.
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3.2 Reaction (n,2n).

The resulting evaluation of (n,2n) excitation function is
shown in Fig. 3. The calculation with GLUNE, including pre-
equilibrium emission fits well experimental data as well as
mass-systematics. At 14 MeV it gives by about 10% reduced
(n,2n) cross section for niobium in comparison with the calcu-
lation in the framework of complete statistical model C14, 23 J.
The reduction of S"! 0 is mainly due to the higher loss ofil y &X1
excitation energy through pre-equilibrium emission of first
neutrons. Cross sections of pre-equilibrium emission of two
neutrons are rather small (6 mb at 14 MeV up to 30 mb at
20 MeV). A more detailed discussion of the influence of pre-
equilibrium emission on cross sections <5~n pn» ^ -Q^ axi^
^~* •*•* is presented in another contribution to this meetingn,np

The recent measurement of (sn,2n) excitation function by
Prehaut C243 is also in good agreement with the present
evaluation, supporting our conclusions.
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3.3 Reaction (n,p)

The calculated (n,p) excitation function is shown in Fig. 4.
There is only one experimental point at 14 MeV, which seems
to be to small by a factor 2. More experiments are requested,
to prove the calculations. The present calculation shows the
increase with energy of -the importance of pre-equilibrium emission.
The resulting behaviour of pre-equilibrium and equilibrium
contributions to (np)-process is similar to the results ob-
tained by Decowski et al. C24] from analysis of experimental
(n,p) excitation functions for several nuclei. Generally spea-
king, due to Coulomb barrier effects, the influence of pre-
equilibrium processes on charged particle emission is much
higher, than on neutron emission.

The present calculation is similar to the evaluation by
Smith et al. C43, which is based on mass-systematics of
typical (np)-excitation functions.

3.4 Reaction (n,o<- )

The original hybrid model C12jdid not include oC-particle
emission. Therefore, the present evaluation is based on theore-
tical considerations in the frame of pre-equilibrium emission
of pre-formed c*--particles developed by Colli et al. C133 in
the framework of exciton model. But, there is no principal
limitation of the hybrid model, as shown by Oblozinsky C253»
including that complex-particle emission in the hybrid model
is also possible. Results are shown in Fig, 5. The present
evaluation is in good agreement with experimental data. The
importance of pre-equilibrium processes in this case seems
to be obvious.

4. SUMMARY AND CONCLUSIONS

The evaluation of niobium neutron cross sections was carried
out to meet the nuclear data requirements. This was tried to
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achieve by use of very recent measurements and new nuclear
reaction models.In this way these models have been examined for
their suitability and accuracy. Especially it has been paid
attention to apply different models and computer codes for a
consistent description of several reaction channels at once
by use of the same nuclear structure parameters. Models in-
cluding pre-equilibrium particle emission have proved their
importance in all reaction channels at neutron energies
higher than 9 MeV. Simplicity and universality of exciton
model and its modifications favour the application of this
phenomenological nuclear reaction theory for the evaluation
work.
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Figure captions
Q-ÎPig. 1 Evaluation of neutron emission spectrum from *^

at 14 MeV incident energy. Full line represents calcu-
lation with the program GLUNE C10J, dash-dotted curve
shows the pre-equilibrium contribution in this spectrum,

Pig. 2 The same as Fig. 1. but for 9 MeV incident energy.

Pig. 3 Evaluation of (n,2n)-excitation function. Pull line
represents calculation with the program GLUNE; dashed
curve gives calculation by the equilibrium statistical
model T23 J only; dotted line represents evaluation by
Smith et al. t43.

Pig. 4 Evaluation of (n,p)-excitation function. Pull line
represents calculation with the-program GLUNE; dashed
curve shows equilibrium and dash-dotted curve pre-
equilibrium contribution to (n,p)-reaction.

Pig. 5 Evaluation of (n,oC )-excitation function. Calcula-
tions were carried out following the method suggested
by Colli et al. C13J. Notation of the curves is the
same as in Pig. 4.
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93-NB(N,ALPHA) EXCITATION FUNCTION
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Absolute values geometry dependent effects and the
direct component in the pre-equilibrium analysis of

inelastically scattered neutrons

Helmut Jahn
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Kernforschungszentrum Karlsruhe und Fakultät für
Physik der Universität Karlsruhe
Fed.Rep.Germany

Abstract

The pure hybrid model and the geometry dependent hybrid model for pre-
equilibrium nuclear reactions have been developed by Blann to calculate
excitation functions as well as angle integrated scattered particle energy
distributions of the inelastic scattering cross-sections of nucléons on
nuclei with absolute values resulting for the cross sections. Both models
are applied to the Fe(n.n') process. In case of the pure hybrid model
an extra direct component has to be added to fit the empirical data while
the geometry dependent hybrid model reproduces the empirical data quite
well without any adjustment and without an extra direct term. Indications
are presented that the lowest exciton number term of the geometry dependent
hybrid model can be understood as a certain average over the direct component.
But more theoretical as well as empirical investigations have to be carried
through in order to reach a definite clarification of these problems.

The influence of the pre-equilibrium component on the neutron leakage
spectrum from a homogenous iron assembly is investigated.
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1. Success and limitation of the ExcitQn Model
Cline and Blann have discussed the detailed behaviour of an equilibrating
compound nucleus by integrating an appropriate set of master equations. In
this way they succeeded to describe the equilibrating process by a sequence
of transitions between different numbers of excited particles and holes, so-
called excitons. Only the increase or decrease by a particle-hole pair has
been considered. To describe the single transition steps between the

2succeeding exciton numbers they used formulas of Williams for the transition
rates of which the expression describing an increase of the exciton numbers
is

O) Vn.E).,T,

g is the one-particle level density, E the excitation energy of *,he
equilibrating compound nucleus and

(2) n = p + h

is the number of excitons which is the sum of the number p of particles
v f\

and the number h of holes. The transition matrix element |TJ which is very
difficult to calculate has been left unknown. It has been assumed to be
independent of the excit°n number n and the energy E and is simply
treated as a constant parameter to be adjusted.

Cline and Blann were able to show that a rigorous numerical solution
of their master equations could very well be approximated by a closed form
expression for the angle integrated spectral probability distribution of
energy e of an emitted nucléon which can be written as:

(3) P(e)dE

In eq. (3) P (e) is the simple Weisskopf evaporation formula which is given by
) o>(U)

(3a) P
ea
(e) * C~^r^eaq w(E)

with the Fermi gas nuclear state density
1

(3b) «(E)
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and the corresponding expression for u>(U) where U is the excitation energy
of the residual target nucleus given by

(3c) U - E - e - B

with the binding energy B of the emitted nucléon. C in eq. (3a) and the one
nucléon equidistant level density g are constants to be adjusted.

Furthermore P (e) in eq.(3) is the energy distribution of nucléons emitted
before equilibrium has been reached which can be written as

n-l(U)8Vc(e)(3d) ? (Ode » -HJ —— l ——— depr n-n p (E) U+(n,E>n

where p (E) or p , (U) are the density distributions of the n or n-I excitonn n~"l
states usually given by the Ericson expression

g(gE)'
(3e) p (E)

and A (c) is emission rate of the nucléons into the continuum given by thec
expression

(2S+1) meo(e)
(3f) X (e)

g

In this expression (3f) m, s and c(e) are mass, spin and inverse absorption
cross section of the emitted nucléon.

Expression (3d) can simply be understood as the sum over the product of
two factors:

The first factor in the first set of brackets in (3d) is the fraction of
n-exciton states having a particle in the channel energy range E to e+de,
so that the residual nucleus would have an excitation energy U.
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The second factor in the second set of brackets in (3d) is the probability
that the excited particle of interest having the energy range e to e+de will
decay into the continuum provided

(3g) A (e) « A+(n,E)

Inserting (1), (3f) and (3e) into (3d) gives the expression

v "~ A. \ n™"fc
(3h) I (- (n+l)2(n-1)de

(An-2)

n \which inserted into (3) according to Cune and Blann reproduces quite well a
variety of experimental (a,p); (a,n); (p,p') and (p,n) data in the range
between 16 and 45 MeV bombarding energy with a proper choice of n and
with |T| properly adjusted (see Figs. 1 and 2).

10'-

10°

Pr»,*r
—— ExptVcrbmsk! &

Burru«)
—— Calc.<lot<il)

- Cote.{compon«ntt)

l—i—r-
4 6

I——T"
K>

Fig. 1 Experimental (réf. ' )) and calculated neutron spectra for the "Fe+p reaction at 24 MeV
of excitation. The heavy solid curves show the experimental spectrum and the dashed curves
show the calculated results. The upper and lower sets of curves are for calculations made with and
without the inclusion of multiple particle emission, respectively. The dotted curves show the pre-
equilibrium and fint-particle-out equilibrium component spectra, labelled Pre «nd Eq, respectively.

A value of no •= 3 was used in the calculations.

K»

£

'•'Ta(p.n)
E»25M«V

—— Exp.(Vtrbm>W A
Bur rut)

—— CoteXtolal)
— Cole (componmt*)

0 2 4 6 B O I 2 M I 8
C(M«V)

Fig. a • Experimental (réf. ' )) and calculated neutron spectra for the 1§1Ta+p reaction at 25 MeV
of excitation. The solid, dashed and dotted curves have the same significance as in fig. 1 except
that values of «o — 3 and no — 4 was used in the calculations. Component spectra are shown only

for no = 4,
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An extension to 14 MeV - (n,p) cross sections has been carried out by3Braga - Marcazzan, Gadioli - Erba, Milazzo - Collin and Sona of Milan,
» *5 Owho have found an A behaviour of the transition matrix-element }l| .

And the Dresden-Group of Giera, Hermsdorf, Meister, Seeliger, Seidel and4Wohlfahrt have demonstrated how well this description works for the
case of the 14-MeV-(n,n')-processes.

On the other hand Cline and Blann have pointed out that the fraction of
pre-equilibrium particle emission as defined by

(4)
/V(e)de
o v

can very well reach the value of 0,20 to 0,56 at 16 - 45 MeV excitation
energies as can be seen from tables 1 and 2.

TAWJ«f.

Data analyzed and the resulting parameter value» for nucteon-induced réactions

Reaction
system

"Fe+p

l lsln+p

»•Sn+P

«•«Ta+p

»••Pb+p

"•Bi+n

"«Fe+p
"Fe+p
-Cu+p

Compound Emitted
nucleus particle

"Co n

"*Sn n

"*Sb n

'"W n

"»Bi n

210Bi n

Co p
"Co p

Zn p

Lab.
angles

for
data •)

0' -* 170*
(5)

0° ->- 170*
(6)
60'
60°

o« -+ no-
(6)

0*. 170°
0° -•• 170«

(7)
20* -*- 160*

(8)
90*
90*
90*

90«

Excita-
tion

energy
(MeV)

24

27

16
19
25

18
21

18

17
17
19

22

«0»)

3

4
5
3
3
3

4

3
3

2
3
3
4
2
3
2
3

/.')

0.29
(0.29)
0.13
0.18

0.088
(0.15)
0.15

(0.18)
0.27
0.06«

0.20
0.20

/.')

0.16
(0.16)
0.75
0.76

0.98
(0.98)
0.97

(0.98)
0.96
0.86

1.00
1.00

/')

0.19
(0.19)
0.14
0.19

0.093
(0.16)
0.15

(0.19)
0.28
0.072

0.20
0.20

•) The numbers in parentheses indicate the number of angles for which data were included in the
analysis.

*) n0 is the initial exciton number.
') /., ft and / are the fractions of the first-particle-out neutron, proton and nucléon yields,

respectively, which are due to pre-equilibrium particle emission. The numbers in parentheses are
for analyses in which multiple partiel« emission was considered.
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TABLE £,
Data analyzed and the resulting parameter values for *He ion induced reactions

Reaction Compound Emitted Lab. Excita- n„ *) /.c) f, ') /•)
system nucleus particle angles tion

for energy
data •) (MeV)

"Co+oc

"Ni + a

"Nb+a

"*Sn+a

"'Pt+a

l»7Au+a

"Co+a

"Nb+a

'»'Au+a

"Cu

«Zn

"Tc

»•Te

Hg

JOITI

"Cu

"Tc

101J1

P

P

P

P

P

P

P

P

P '

n

n

n

30° -» 150°
(5)

30° -^ 150"
(7)

30° -» 150°
(5)

30° -* 150°
(5)

30° -*• 150*
(5)

45° -> 135°
(3)

30°-» 150°
(3)

45°-» 135°
(5)

30° -* 150*
(3)

45° -» 135*
(4)

45' -» 135°
(4)

45°-» 135°
(4)

35

45

32

43

32

43

33

40

28

45

43

40

5

5

4

4

5

5

4
5

5
6
7

(S)*)

(5)')

(7)')

0.29

0.50

0.28

0.38

0.35

0.38

0.056
0.14
0.28

0.57

0.49

0.25

0.29

0.48

0.18

0.30

0.45

0.49

0.72
0.87
0.90
0.98
0.88

0.54

0.60

0.29

0.48

0.21

0.32

0.38

0.41

0.060
0.15
0.28

0.56

0.32

•) See table-i
*) See table \
') See table <( (but multiple particle emission included in all these results).
') Values assumed in order to estimât« fractions of prc-«quilibrium particle emission.

These tables show that the fraction of pre-equilibrium proton emission can
even reach the value of 1,00. But for the case of proton emission and high
atomic number there is much suppression of equilibrium protons by the
Coulomb barrier increasing with atomic number which does not affect the
pre-equilibrium protons because of their higher energies. Thus the increase
of the fraction of pre-equilibrium proton emission fp with atomic number

57from the value of 0,16 for the Co compound nucleus up to the value of 1,00
for the Bi compound nucleus is mainly caused by the Coulomb barrier in-
creasing with the atomic number. Therefore Cline and Blann have concluded
that it is more meaningful to look at the integrated pre-equilibrium neutron
cross section plus the pre-equilibrium proton cross section divided by the
total compound-nucleus cross section. This quantity they have named
as f, and it can be seen from tables 1 and 2 that f is not much different
from the fraction of pre-equilibrium neutron emission f . Values of f corres-
pondingly corrected for the Coulomb barrier have also been calculated by
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Blann from the Fe(p,p') experimental data of Bertrand and Peelle above
30 MeV excitation energy and have been plotted in Fig.3 together with f-values
calculated from the V(p,n) experimental data of Grimes et al. for
excitation energies below 30 MeV. As tables 1 and 2 Fig. 3, shows for excitation
energies below 30 MeV again f-values up to 0,2. But for excitation energies
in the range between 30 and 70 MeV even f-values from 0,3 up to 0,8 are ob-
. . 1.0tamed.

o
COCO

=J

E(MeV)
tig. 3 Fraction preequilibrium emission as a function of complex

state excitation «nergy from experimental nwasuienants and

fron the Hybrid Model for n. - 3. The expérimental measure-

Bents below 30 MeV «ere baaed on V (p,n> values fron

ref.^W thos« above JO MeV on Fe < p , p ' > value» from

réf. 5 ) Corrections were «stuoated for unnaasurad

particles as discussed in the text.

This range of f-values from 0,2 up to 0,8 for a range of 18-70 MeV excitation
energies cannot be obtained from the description of Cline and Blann mentioned

A

above and represented by eq.(3) as long as jl| is assumed to be constant.
This has been shown by Blann and Mignerey whose f-values resulting from
the method of Cline and Blann1 are represented by the dashed curve of
Fig.4. It shows f-values always smaller than 0,1 even at energies up to 100 MeV
for a model nucleus of 100 nucléons when |T( is adjusted at 15 MeV exci-
tation and with 4.
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10 20 40 60
E(MeV)

Fig.% Predicted variation of the fraction preequilibrium emission

versus excitation energy and initial exciton number accord-

ing to the Hybrid Model. The exciton numbers are shown
above the curves calculated for that number. It was
assumed that all initial excitons w^re particles, half

neutrons and half protons, for a mass 100 nucleus. The
dashed curve shows the results of a calculation using th«

Exciton Model energy dependence, with th« assumption that

|T| is independent of excitation energy, and normalized

to the Hybrid Kodel result, at IS H»îV excitation (from ref.^ ).

As the reason for this failure concerning the dependence of the fraction
of pre-equilibrium emission from the excitation energy Blann and Mignerey

n

have recognized the assumption that JT| in eq.(l) and (3) is a. constant
independent of excitation energy. This has the consequence that the life-
time of an n-exciton configuration goes like

(5) 1 -2
n X+(n,E)

Thus the lifetime for an n-exciton configuration and as a consequence
the pre-equilibrium particle emission is more and more suppressed at
higher excitation energies. Moreover at these higher excitation energies
the lifetime tn for an n-exciton configuration predicted by (1) or (5)
would become so small that a collision cross-section in excess of a free
nucléon-nucléon cross-section would be implied which is a rather unphysical
behaviour.
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2. Improvemetit by the "Hybrid Model"
Because of these just mentioned difficulties concerning the Exciton Model
Blann has undertaken a new approach to calculate the transition rate X which
does not make use of the formula (1) of Williams. Instead Blann has cal-
culated A as a collision probability per unit time for collisions of a
nucléon to be emitted with the nucléons of a Fermi gas. Each collision is con-
nected with an absorption of the incident nucléon together with an exci-
tation of the hitted nucléon. Only those collisions can take place by which
a hitted nucléon is lifted into a level above the Fermi energy. Moreover
the collisions are described by means of the free nucléon-nucléon scattering
cross section of which the empirical laboratory energy dependence below
100 MeV is represented as proportional to the reciprocal collision energy
and as constant above 100 MeV. As the result for the thus calculated transition

Qrate A+ Blann obtains for a nucléon energy e+B above the Fermi energy up
to 100 MeV:

(6) A+(e) « Q.4«102I(e+B) - 6- 10IO(e+B)2J sec"1

For

(7) E » U

we obtain using (3c):

(8) A+(E) - |j.4.1021E-6.1010E2]sec"1

and thus for the lifetime of an excitation between two collisions we get

(9) T = J- -.E'1
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which shows a smaller decrease with increasing excitation energy as compared
to eq. (5). For this reason using the new A+ of eq. (6) and (8) Blann and
Mignerey have obtained higher values for the fraction of pre-equilibrium
particle emission with increasing excitation energy than they had obtained
before with the Williams-expression of eq. (1). These improved results are
also shown in Fig. 4 (solid curve) from which we can see that the fraction
of pre-equilibrium particle emission now can reach values of the order of
magnitude of the experimental data as shown in tables 1 and 2.

The A -expressions of eq. (6) and (8) do no more contain any adjustable para-
meter. Therefore the description using these new X+ expressions of eq. (6)
and (8) has been called by Blann the "Hybrid Model". It also follows from
the X -expressions (6) and (8) that (3g) does no longer hold over the whole
range of energies to be considered. Thus X (e) is now taken into account in
the denominator of the emission probability in the expression for the energy
spectrum of the emitted nucléon for the hybrid model given by:

l n nPx Pn_j(U)g XC(E) n
(10) P_w(e)de»-£ —— —————— ———————— D de-E nPx(e)de

E n=n0 p p (E) A„(e)+X.(e)
An=2 C

vjhere D is the depletion factor

01)

and P is the number of particles in an n-exciton state of type x to ben 3»
emitted.An absolute emission cross section has also been obtained by multi-
plying (10) with the absorption cross-section of the optical model a abs.(e )

X°for absorption of a particle of type x with energy e . The absolute cross-
section for emission of a particle of type x with energy e after a collision
by a particle of type x* with energy c then is:

(12) da -/V FÏ = n\*«-J v JAC. , t. ) — O
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Rather good results of the hybrid model compared with 42 MeV experimental
(a,p)-data are shown by Fig.5. Also Fig.6. shows a rather good agreement

•̂•̂ •MMM

of the 55 MeV-(a,p)-data of Chevarier et al. of Lyon . It shows also an
even-odd-effect of the n "value which according to Blann comes from a
pairing correction of the one-nucleon level density g.

»-lU-̂ -̂ W
5 Experimental and calculated (a,pi spectra on several

targets. The exporint-ntal results (ref » ̂  are shown
as solid curves with several error bars an* are for
incident He energies of 12 KeV.

JC

NKV

Fig. (5 Expflrlmcnc.i l on.I tr.ilcul.itod (a,p) spoctra for 55 MeV LiK-idtnt
a cr.orsy ( f rom rof.9 ). The points represent •i-qicrtn-oijt.ii
nn^lc Intctr.itoJ cross sfctlun"* (ordinat-0 vtrjua th.; proton
ktr.ctlc ttuuRV. 111.' <.>lid ourvos rc^rt':.t-nt hvbrtd pli.^ i-otpo
results for nc

e5; Iho d.ish-.-d cuivt's arc for KybrLd nudcl
cfil.-ul.ition* w i t h n0» A.

3. Introduction of jgepmetry dependence
But even still bigger problems with the n -values arise if the hybrid

5model is applied to the 197 Au(p,p') spectrum data of Bertrand and Peelle
at 62-MeV bombarding energy. Fig. 7 shows that only for n = 2 the calcu-
lated values (dashed curve) are close to the experimental data (solid curve)
while for n « 3 the calculated values (dotted curve) are only 10 --20 %
of the experimental data at high energies.
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\

20 30
€p(MeV)

50 60

Fig. 7" Experimental and calculated 197Au(p,p') spectrum for 62 MeV incident protons.
Experimental results (réf. 5 ) are given by the solid curve; calculated
rcHults by the daslied line for no - 2 and by the dotted line nD - 3.

Now it can hardly be understood how n = 2 should come about as the first
exciton excitation resulting from the first collision of a nucléon in-
cident on a target nucleus within the framework of the above considered
models. Therefore Blann had the idea to assume that the initial inter-
actions might take place primarily in the nuclear skin region. Then the
hole degree of freedom would get, lost, and the initial state might be
characterized as a two particle excited state. But this would mean that
the geometry of the reaction has entered into the calculation by assuming
a surface interaction, and this indicates the failure of pure phase-space
arguments in treating all of the pre-equilibrium components as introduced
with eqs. (3d), (3e) and (10), The phase-space arguments may be valid when
the average excited particle energies have dropped below some value; this
may partly be the explanation for the better results for these models when

tiapplied to He induced reactions as shown in Figs. 5 and 6.
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As the consequence of this kind of consideration Blann has introduced the
geometry effect for the nucléon induced reactions by taking into account
that the nuclear density distribution within the nucleus is not uniform
but can be represented according to Hofstadter as:

,-1
(13) d(R)

where
(13a) c - 1.07 • A /Jfm,
(13b) z - 0.55 fm

and d is the saturation density in the center of the nucleus. Using theS
impact parameter

(14) R^ = H
with

(14a) "fr = — *= de-Broglie wave length/2me .. , . . ,o of the incoming particle

(14b) A = quantum number of orbital angular momentum
of the incoming particle

the nucleus is divided into shells of Radius R of which the density
decreases with R according to

(15) d(R£) - d

Blann then concludes that only those parts of the nuclear density have to
be introduced into the calculations for the £,*th partial wave which are
met as an average by a nucléon crossing the nucleus on its way from the
impact parameter R. up to the Radius

(16) Rg » cA!/3 + 5z

at the nuclear suface at which the density is **» ̂50 of its maximum value.
This average density is given by
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qr • Is d<R>d R
S £ K .

and should be introduced according to Blann into every density dependent
quantity of what is called by Blann the "geometry dependent hybrid model".

The first quantity to be considered is the Fermi energy which for the case
of a uniform density d is given by the expressionS

08) EF - £ «f. V»

For the geometry dependent case then according to Blann there should be the
smaller geometry dependent Fermi energy

(19) EF(R£) 2/3

because of the smaller geometry dependent density <tt (R^ of eq.(17). But,
since the potential depth is mainly given by the Fermi energy, with (19)
the decrease of the potential depth toward the nuclear surface is obtained.
Now in this way it can easily be seen from eq. (19) that the potential depth
will become so small near the nuclear surface that deviations from the
exciton state density expression eq. (3e) for unlimited potential depth of
Ericson for p (E) can no more be neglected. Blann was able to take into
account the limited potential depth for the two-particle one-hole state
density expression to be inserted into eq. (10) with the result:

(20)

and
(20 P2plh(E) -̂ \<R£)[2K-EF(y] ; E>EF(Rt)

For n>3 Blann continued to use the Ericson expression of eq. (3e) because for
these higher exciton numbers the average energy per exciton would be small
enough, so that the influence of the limited potential depth could be neglected,



- 329 -

For the non-geometry dependent hybrid calculations mentioned above the one
nucléon equidistant level density expression

<22) g = iF
was used. Inserting the geometry dependent Fermi energy of eq. (19) into
eq. (22) the geometry dependent one-nucleon level density expression

E
(23) g(Re)

VV
is obtained which was used by Blann in ref .

However the result of eq. (23) shows a one-nucleon level density increasing
towards the nuclear surface which is a rather unphysical behaviour. A different
result is obtained on the basis of the realistic Ferwi gas one-nucleOn level
density

2Vm3/2
(24) g = -T1-A3

where V is the volume of the nucleus, m the mass of ttoe nucléon and e+B+E,,r
its energy above the bottom of the potential. The geometry dependent one—
nucléon level density then is

2Vm3/2

On the other hand V is given by mass number A and saturation density dS
according to

(26) V = A_
s

and the saturation density d is given by the full Fermi energy E_ accordingS r
to 2 3/2(27) ds - — 2~3 (2mEF)

3ir n
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We therefore can express the geometry dependent one—nucléon level density
g(Rj) by the geometry-dependent Fermi energy E„(R.,) of eq. (19) and the
full Fermi energy E_, according to

/e+B+E
X28) , g(R£) = (

with g of eq. (22). Eq. (28) was introduced by Blann in réf. .

Blann also has introduced a geometry dependence for the intranuclear transi-
tion rate X (e) of eq. (6) and (8). The results of eq. (6) and (8) had been
obtained from the average cross section <fo(E+B+EF)S for scattering of a
nucléon in nuclear matter giving a mean free path in nuclear matter of

(29) MFP(e+B+E.,) =

The rate of intranuclear transitions, X+(e),then is given by dividing
the nucléon velocity v by the mean free path:

(30)
(e+B+EF)

in

This expression of eq. (30) for X+(e) is proportional to the saturation
density d of nuclear matter. If geometry dependence is taken into accountS
d is to be replaced by the average density d.(R) of eq. (17). Thes x
geometry dependent X (e,R ) then becomes

(3D
ds

There is still another method introduced by Blann to calculate the
intranuclear transition rate X+(e). This method uses the relationship
between the mean free path of a nucléon travelling through nuclear matter
and the imaginary part W of the optical model . Such a relationship has
been found by Kikuchi and Kawai to be given by

e+B+E..
(32)
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where use is made of the well confirmed assumption

(33) W « EF

For the intranuclear transition rate X , (e) we then obtain like in eq. (30)

and for the geometry- dependent case in analogy to eq. (17) W has to be
replaced by

s v 1 R
(35) 4' (R)> = £-!=- / W(R)dR

s £R£

so that the geometry-dependent intranuclear transition rate becomes
2<W(R)>(36)

Now it can be seen from the expressions (20), (21), (23), (28), (36)
and (3f) if inserted altogether into (10) that we are having an A. -dependent

(£)emission probability P (e) for the geometry- dependent case. Therefore
(12) has to be replaced by

(37) da (e ,e) -7rX25: (2£+!)T (e.)? (e)dexox £=0 xo prx

where the T (e) are the transmission coefficients by which the absorption
ocross-section o abs.(e ) is composed according to

o
(38) a (e.) - wX2? (2t+I)T £(eo>o X

Results obtained by Blann from these considerations of geometry
dependence are shown in Figs. 8 and 9 for the Fe(p,p') angle inte-
grated absolute spectral probability distributions of energy of the
emitted proton for bombarding energies of 62 and 39 MeV.
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Fig. 8; Calculated and experimental (p,p')
spectra from -̂ Fe targets bombarded
with 39 and 62 MeV protons. The heavy
solid curve is ,.the experimental
result of réf. . All calculated
curves are the results of the geometry
dependent hybrid model with parameters
averaged over the incident particle tra-
jectory and with the equidistant one—
nucléon level density.

Fig- 9!

50 60 10
V(MeV)

(p,pf) spectra as in Fig. 8, but
the calculated spectra are obtained
with the realistic Fermi gas one nuc-
léon level density. Only the dot-dash
and the thin solid curve are ob-
tained with geometry dependence
while for the dashed curve all
parameters were evaluated for
properties averaged over the
entire nucleus as corresponding to
the non—geometry dependent pure
hybrid model.

The difference between the calculated curves of Fig. 8 and Fig. 9 is caused by
having used the two different one-nucleon level densities as mentioned above. In
Fig. 8 the equidistant one-nucleon level density with geometry dependence of
equation (23) is used while in Fig. 9 use is made of the realistic Fermi gas
level densities of (24) with (26) and (27) as corresponding to the non-geometry
dependent pure hybrid model and of eq. (28) for taking into account the geo-
metry dependence. In both figures the heavy solid curve represents experimental
results of Bertrand and Peelle . In Fig. 8 the dashed curve is obtained by
calculating the transition rate X from the collisions of the nucléon to be
emitted with the nucléons of a Fermi gas according to equations (6) and (31)
where via eq. (31) the geometry dependence has been taken into account. The
corresponding curve in Fig. 9 is the thin solid curve. On the other hand the
thin solid curve of Fig. 8 represents results where X is obtained with the
imaginary part W of the optical model with geometry dependence according to
eq. (36). To this the corresponding curve in Fig. 9 is the dot-dash curve while
the dashed curve in Fig. 9 is also obtained from the imaginary part of the
optical model but by integrating from zero to Rs in eq. (35) and using all
parameters non-geometry dependent as corresponding to the pure hybrid model. The
results of Fig. 9 obtained with the realistic Fermi gas one nucléon level
density show some improvement concerning the agreement with the experimental!
results as" compared to the results of Fig. 8 obtained with the equidistant
one nucléon level density. Fig. 9^ shows that for the high energy tail the
curves for the geometry dependent case are lifted as compared to the curves
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for the pure non-geometry dependent Hybrid case. Thus the effect as discussed
in connection with Fig. 7_is obtained but now by introducing the geometry
dependence while maintaining n » 3 instead of using the unphysical choice
n » 2 as in the case of the dashed curve of Fig. 7.O «»jfc——»

4. Application of the pure hybrid and geometry dependent hybrid model
56to the 14.7 MeV Fe(n,n')-process,

a) Attempt with the pure hybrid model
Calculations have been carried through to reproduce the 14 MeV Fe(n,n') angle
integrated emission cross section for the energy distribution of the emitted
neutrons using the geometry.dependent hybrid model with the equidistant one-
nucléon level density according to eq. (23). The thus obtained calculated values
for the emission cross section amounted to only a fraction of the experimental
values at high emission energies where the evaporation component can be neglected.
For instance at 10 MeV emission energy only about one fourth of the experimental
value could be reached by the emission cross section calculated as indicated
above. This calculated pre-equilibrium component of the emission cross section
could be increased by a factor of 1.64 by integrating from zero to Rs in
eq. (17), (19), (23), (35) and (36) thus choosing all parameters non geometry
dependent as corresponding to the pure hybrid model. The thus obtained results

13as presented in réf. are shown in Fig. 10.

ME 03

1-OEOO

Fig. 10: Inelastic scattering cross-section of 14 MeV neutrons on Fe
reproduced using the pure hybrid model with equidistant Fermi gas one
nucléon level density.
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14The step curve in Fig. 10 is obtained by Hansen et al. from experimental data.
The equilibrium or evaporation component has been choosen to be

(39)
!

T In= 4irC'o(e)Ee ; T -V"! MeV
squi v VA

where e is the bombarding energy and v and C' are constants to be adjusted to
get agreement of the low energetic part of the calculated curve with the step

~» 1curve as seen in Fie. 10 'with the constant v = 0,16 MeV . The inverse
absorption cross section o(e) is taken from a Karlsruhe version of the Perey-Buclc
program for the optical model. This has also been done with respect to the
absorption cross section a abs(e ) needed from the optical model for the pre-
equilibrium component according to eq. (12) in the pure hybrid case.

,19

Fig. 10 still shows a considerable deficit of the high energy tail of the
calculated curve as compared to the step curve. For instance at 10 MeV energy
of the emitted neutron the value of the emission cross section of the calculated
curve is about three times smaller than the average value of the experimental
gained step curve.

b) Direct component from PWBA-analysis of_ angular distribution
A hint about how to account for this discrepancy shown in Fig. 10 between the
theoretical and experimental curves for the emission cross section of the

Fe(n,n')-process has been taken from the angular distribution of the
15

14 MeV
emitted neutron measured by Hermsdorf et al. as shown in Fie. 11.
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Fig. 11 Angular distribution of 14,7 MeV neutrons scattered inelastically
Fe as measured by Hermsdorf et al.'5.
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Fig. 11 shows energy average results with averaging energy intervals of
131 MeV. It could be shown in réf.

rather well by means of the ansatz:
131 MeV. It could be shown in réf. that these results could be reproduced

d2o(e ,e,9) , da(c .e) , daU-e) d<(e .e,0)(40) ---
absolut

On the right hand side of eq. (40) the first term is the equilibrium component
of Fig« 10 as presented by eq. (39), the second term is the pre-equilibrium
component of Fig. 10 as explained in connection with Fig. 10 and the third
term as the only angular dependent term is choosen to be an expression corres-
ponding to the plane-wave-Born-approximation (PWBA) as

(4,)
dßde- direct

In (41) Q - |k-k| is the absolute value of the difference between the wave
number vectors of the incident and scattered neutron, L is the quantum number
of angular momentum transmitted between the neutron and the target nucleus by
means of the scattering process by which a nucléon of angular momentum quantum
number £ in the ground state of the target nucleus is lifted into the quantum
number I1 of the excited state with A + i* > L > |j, - fc'|. The angular distri-
bution belonging to the transmission of the angular momentum L is given in (41)
by the square of the spherical Bessel function j„(QR) with the corresponding
Clebsch-Gordan-coefficient C.. ,.

Almost the same expression as (41) is valid for collective excitations of the
target nucleus by a direct scattering process with the only difference that L
then has the meaning of angular momentum quantum number of the corresponding
collective state. Thus only this one L occurs in the expression corresponding
to (41) instead of the summation over L.
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Often also in the case of single nucléon excitation only one term in the
summation over L in (41) is mostly used in the literature assuming that
mainly one angular momentum L is transmitted. Thus the square of the spherical
Bessel functions appears as the typical shape, which is closely related to
the direct reactions. In case of Fe the highest proton shell is 1 f 7/2 and
the highest neutron shell is 2 p 3/2 in the ground state. The next unoccupied
proton shell would be 2 p 3/2, the next unoccupied neutron shell would be
1 f 5/2. To lift a proton as well as a neutron into the next upper shell would
mean A£ = 2 in both cases. On the other hand 2+ excited states from collective
or shell model seniority excitations are present together with a number of
4* states as can be seen from the work of Mani . Because of these 2 states

13and the M=2 structure mentioned above the attempt has been made to fit the
angular distribution values measured by Hermsdorf et al. with the term L=2
alone with {J2(QR)}2 in the above expression (41). This is introduced into
(40) and averaged over the energy regions of the scattered neutrons from
2-3 MeV till 10-11 MeV as has been done by Hermsdorf et al. for the measured
values (see Fig. 10). The obtained results are shown in Fig. l..Lfor the energy
regions 7-8 MeV and 10-11 MeV of the scattered neutrons.
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Fig.lia PWBA-fit of angular distributions ofcJ4,7 MeV
neutrons scattered inelastically on Fe» The
background is from the pure hybrid model with the
equidistant Fermi gas one nucléon level density.
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The diagrams of Fig, lia show that the measured values of the angular
distribution of the inelastically scattered 14.7 MeV neutrons are
fitted rather well by the {jT(QR)}2-behaviour of the square of theJj

spherical Bessel function with index L = 2. The same is true for the
other energy regions. This should be considered while taking into
account that the errors of measurement amount to up to 10 %. The still
remaining deviations according to their trend correspond to quite those
deviations which are to be expected and are found also otherwise between
the PWBA- and the measured values. This means that the measured curves
use to be more flat than the PWBA-curves while the positions of the
maxima and minima are essentially maintained. Thus by means of the
preceding and the following fits we have demonstrated that the angular
distribution values measured by Hermsdorf et al. show the typical
shape of direct reactions which is closely related to the shape of the
square of the spherical Bessel functions. For this case of the
{j»(QR)}2-fit with L «• 2 as the only angular momentum transmitted by
the reaction between the neutron and the target nucleus the integration
over the scattering angular space for every region of energy of the
scattered neutron has been carried out. The smoothed results of this
integration are represented by the mounting curve of Fig. 12_as the
direct component. This combined with the equilibrium and pre-equilibrium
component of Fig. 10 according to eq. (40) gives a rather good fit of

14the step curve obtained by Hansen et al. from the empirical data as
is shown by Fig. 12.

1-tECB

ME»

Fig. 12: Comparison between measured and calculated angular integrated
inelastic cross-sections, where the fit includes the direct
part, (v » 0.16,see equ. (40)).
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Thus the deficit of the calculated equilibrium + pre-equilibrium
components for the pure hybrid case shown by Fig. 10^ for the high
energy tail as compared to the step curve has now been filled by the
direct component desribed above as shown byJTig. 12.

1 7 ^ftAs the next step in the 14 MeV Fe(n,n') pre-equilibrium calcu-
lations a change has been carried through from the equidistant one—
nucléon Fermi gas level "Density (22) to the realistic Fermi gas level
density (24) with (26) and (27). This realistic Fermi gas level density
is again non-geometry dependent and thus also the other parameters are
choosen non-geometry dependent as A according to eq. (35) and (36) if
integrated from zero to Rs. This means that again the pure non-geometry
dependent hybrid model is used but with realistic instead of equidi-
stant one-nucleon level density. The effect on the calculated results
for the 14 MeV Fe(n,n')-process caused by this change is that the pre-
equilibrium component is lifted again by a factor of about 1,3 to 1,64
as compared to the pre-equilibrium component of Fig. 10. This has the
consequence that at a neutron emission energy of 10 MeV the calculated
spectral emission cross section is still smaller than the experimental
obtained value of the step curve but now by a factor of about 2 instead
of the factor 3 of Fis- 10» This can be seen in detail from Fig. 13

"

Fig. 13: Inelastic scattering cross-section of 14 MeV neutrons on
Fe reproduced using the pure hybrid model with realistic

Fermi gas one-nucleon level density.
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There is still another change in Fig. 13 as compared to Fig. 10. This
change is concerned with the equilibrium component of Fig. 13 which no
longer is adjusted as in Fig. 10. In Fig. 10 the equilibrium component
was calculated using the expression (39) in which the constant factor
C1 had to be adjusted to fit the low energy part of the experimental
step curve. Instead of using eq. (39) the equilibrium component in Fig.
13 was obtained from the Hauser Feshbach expression for continuous
channels (see Review Paper 2 of Moldauer.) The special version of the
Hauser Feshbach expression for continuous channels used in Fig. j3 is
obtained from that one which otherwise is used in the Hauser-Feshbach

18computer programm HELENE . So instead of (39) the following expression
was used for the equilibrium component of Fig. 131

do(e .e)
(42a)

de equi

with

•EC "(ê -e)T,,, (e -E .,)* ) j-
i'V * ° °V lh 0 " 2

e
(42b) D« l T „(£ -£,,)+ l J° T „(e)———dE* ° ov

where the T are the transmission coefficients of the neutron channel defined
as in (37) and (38) and calculated again from the previously mentioned Karlsruhe

19version of the Perey-Buck program for the optical model. Moreover u(e -e)
is the level density of the target nucleus with the excitation energy of the
target nucleus given by

(42c) e - e » Uo

So far as w(U) is concerned an expression has been used which is taken
from the work of Gilbert and Cameron and is also used in the Hauser-

1 ftFeshbach computer program HELENE . For the here considered case this
expression is given by
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(42d) u(U)

_U-U
/" Tü)j(U)=e

to, (U)
e2/a(U-û> 3/2cl

; u < u
; U > U

with

(42e) c/a » 0.0888A ' and a/A - 0.00917S+0. 120 MeV_i

The other constants in (42d) and (42e) are for Fe (see Gilbert and Cameron)

(42f) T » U26 MeV; UQ - 0.8 MeV; Ux = 9.2 MeV
S » 0.06 MeV""1; A - 2,81 MeV, e - 5.2500 MeVc

Fig. 13 shows that the low energy branch of the experimental step curve is
remarkably well reproduced with the help of the equilibrium contribution
given by eq. (42a-f) without any adjustment. In order to fill the deficit
at the high energy tail again a direct component according to the PWBA ex-
pression of eq. (41) has been added and again the attempt has been carried
through to fit the angular distribution measured by Hermsdorf et al. with
L - 2 only. This fit is shown in Fig. 14.
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Fig. 14 PWBA-fit of angular distributions of 14«7 MeV
neutrons scattered inelastically by 56pc< T^e
background is from the pure hybrid model with
the realistic Fermi gas one nucléon level density.
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Fig. 14 shows that with the background from the pure hybrid model with
the realistic Fermi gas one-nucleon level density the measured values of2the angular distribution are fitted almost as well by the (J2(QR)} be-
haviour as in Fie. 11 with the background from the pure hybrid model with the
equidistant Fermi gas one-nucleon level density. With the angle integrated
results of Fig. 14, the angle integrated direct component is then obtained
and its combination with the equilibrium and pre-equilibrium components of
Fig. 13 is shown in Fig. 15

1-OE03'

_ E»tR- DATA

o p m.\jafOM

e—e EVA0- CALCULATED

,—t DIRECT REACTIONS

1-OE(E-

l-OEffl.-
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Fig. 15 Comparison between measured and calculated
angular integrated inelastic cross-sections,
where the combined curve includes the direct
component and where the pre-equilibrium component
is obtained from the pure hybrid model with rea-
listic Fermi gas one nucléon level density.

Again as in Fig. 12 it is shown in Fig. 15 that the deficit at the high-
energy tail of the energy distribution of the inelastic neutron scattering
cross section is filled by the direct component also in the case where the
pre-equilibrium component is obtained from the pure hybrid model with rea-
listic Fermi gas one-nucleon level density.
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c) Geometry dependent hybrid model with realistic Fermi gas one nucléon level
density

The 14 MeV Fe(n,nf) pre-equilibrium calculations have been carried on
by introducing the geometry dependence into the hybrid model with realistic
Fermi gas one-nucleon level density. This has been done by introducing the
geometry dependent potential depth for the exciton number n = 3 according
to the equations (19), (20) and (21) and by introducing the geometry de-
pendence of the realistic Fermi gas one-nucleon level density according to
eq. (28). The geometry dependence of A has been taken into account
according to the equations (35) and (36). The results are shown in Fig. 16;

i-OC 03 +

i-OC K

i-CE Oi--

Fig. 16 Comparison between measured (step curve) and calculated
(smooth curve) angular integrated inelastic cross
sections of neutrons on Fe. The calculated pre-
equilibrium component is obtained from the geometry
dependent hybrid model with realistic Fermi gas one
nucléon level density.
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In Fig. 16. the equilibrium component as well as the pre-equilibrium component
are rePresente<* by fĉ e smooth curves as in the preceding figures. The equi-
librium component has been obtained from equations (42a-f) as in Fie. 13.
Thus in Fie. 16 both curves are obtained from absolute values without any

14adjustment: to the empirical step curve of Hansen et al. . This fact that
the curves of Fig. 16 are based on absolute values is quite remarkable in
view of the rather good agreement between the combined calculated curve and
the empirical step curve. It therefore would be very interesting to investigate
whether this good agreement can also be obtained by this program if applied
to other nuclei without any adjustment. This would mean that this program
as applied in Fig. 16 could be used to predict energy distributions of the
inelastic neutron scattering cross sections on nuclei on which measured
results are not yet available (see ref ).

It should be remarked that (n,2n)-processes and other tertiary reactions
are not included in these calculations. There are indications that their
contributions to the here considered energy distribution of the neutron
emission cross-section decreases very rapidly from about 20 % at 2 MeV neutron
emission energy to smaller than 10 % at 3 MeV neutron emission energy and can
be neglected above a neutron emission energy of 4 MeV.

In Fig. 16 sufficient agreement with the empirical step curve has been reached
by the combined curve of the calculated equilibrium component + pre-equilibrium
component alone without an extra direct component as was the case for the
results presented in Figs. 12 and 15. From this the conclusion could be drawn
that the direct component should be contained in the pre-equilibrium component
of Fig. 16 which has been calculated as explained on the basis of the geometry-
dependent hybrid model-with realistic Fermi gas one-nucleon level density.
This is in agreement with the name"direct reaction term" used by Blann in réf.
for the first step n =3 geometry-dependent exciton contribution of which the
geometry dependence is given by the equations (19)-(21), (38), (35) and (36).
Especially the limited hole depth introduced for the geometry dependent n =3
term by the equations (19)-(21) causes the geometry dependent n«3 term to
be originated mainly from the surface region of the nucleus where a direct
reaction would mainly take place at the here considered energies. Thus
accordingly the geometry dependent n »3 term should be considered as the angle
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integrated direct component. The angular dependence then should be calculated
as before by the PWBA expression (41). But const.in equation (41) should not
anymore be adjusted to fit the experimental measured points. But instead it
should be calculated as an e ,e~dependent factor F(e ,e) by equating the angle
integrated PWBA expression (41) with the absolute value of the geometry depen-
dent n =3 term of the pre-equilibrium component (see equations (10) and (37))
calculated with geometry dependent Hybrid model. Accordingly equation (40) has
to be replaced by

d2a(eo,e,9) 1 do(eo",e) 1 do(c0,e)
~I^~> / j equi + T" ~> Blann absolute realisticdflde 4ir de ^ 4tr de , , cgeometry dependent n>5

do2(Eo,e,9)
* (~" >dirct

where eq. (42a-f) has to be introduced into the first term of the right hand
side of eq. (43), while eq. (37) with (3e) , (19), (28), (35) and (36) into the
second term and the last term is equal to (41) but with const» on the right-
hand side replaced by the factor F(e ,e) which has to be determined according
to

do(eQ,e)o
J ( ~ ^ d"direct ~ Blann absolute realistic

n «3 geometry dependent n «3

where the right-hand side has to be taken from eq. (37) with (19)-(21), (28), (35)
and (36) . Examples for the angular distributions obtained with equations (43)
and (44) are presented in Fig. 17;
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Fig. 17 Angular distribution of 14 MeV neutrons scattered
inelastically on ̂ 6pe. The curves represent a PWBA
distribution with equilibrium + n>5 pre-equilibrium
background where the angle integrated PWBA component
is equated with the n »3 component of the geometry
dependent hybrid model.

Fig. 17 shows that the calculated curves now agree with the measured values
almost as well as in Fie, lia and even better than in Fig. 14» But in Fig. 1 la__
and Fig, 14 the calculated curves where adjusted to the measured points while
in Fig. 17 the calculated curves represent absolute values obtained on the
basis of the equations (43) and (44) without any adjustment to the measured
points.
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5. Microscopic DWBA-calculations and the pre-equilibrium description
of the high energy tail of the 14a5 FeÇn^n'j-process

On the preceding pages we have shown that the high energy tail of the
angle integrated scattered neutron energy distribution of the inelastic
scattering cross section of neutrons on Fe can be predicted by the geometry»
dependent hybrid model yielding absolute values so that no adjustment to
the empirical points was needed. Moreover no information about the special
nuclear structure of the target nucleus as wave functions of the ground
and excited states and their excitation energy spectra is needed for this
geometry-dependent hybrid model description of the angle integrated scattered
neutron energy dependent inelastic cross section. This description only
needs information of the type of general nuclear systematics as A-dependence
of the nuclear density distribution and information from the optical model.

As a counterpart to this geometry-dependent hybrid model description there
is a description which is explicitly based on knowledge about the wave
functions of the ground and excited states of the target nucleus and their
excitation energy spectra using DWBA calculations to obtain the high— energy
tail of the angle integrated scattered nucléon energy distributed inelastic
scattering cross section of nucléons on nuclei.

For the 14,5 Fe(n.n') -process this description has been carried through
by Fu using the FeDWBA analysis of Mani . Mani uses for each investigated
level of the target nucleus the DWBA formula with first-order collective
form factors 3. of the target nucleus which gives for the inelastic-scattering

A
cross section of protons leading to an excitation of this level of angular
momentum £:

(45) oA(p,p') - &ft°DW<*»P'P')

where a (A.,p,p') has to be calculated from the optical model for proton
2scattering and ß has to be adjusted to the experimental measured cross
X-

section. Since g. is the deformation parameter of the target nucleus it must
be the same for the DWBA formula of direct inelastic scattering of neutrons

(46) a£(n,n')
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where a TT(A,n,n') has to be calculated from the optical model for neutron
56scattering. Thus if ß. is known from the Fe(p,p') DWBA analysis of

56inelastic proton scattering it can be used to calculate the Fe(n,n')DWBA
cross section for neutron scattering according to (46). The cross sections
thus obtained for the excitation of the first 15 discrete levels of Fe
are the discrete points four of which, are shown as crosses in Fig. 18. By avera-
ging the 15 discrete points over the 1 MeV energy intervalls 9-10,10-11,11-12,
12-13 and 13-14 MeV the step curve shown by Fig. 18 in this region is obtained.
The first 15 levels of Fe are those who are below the continuum cut off energy
e of equation (42). In order to avoid a discontinuity above the continuum cut off

21energy a pre-equilibrium cross section was adjusted by Fu to the step
curve at the continuum cut-off energy in such a manner that the calculated
reproduction of the secondary neutron energy spectrum was smoothly extended
from the step curve into the continuum. This pre-equilibrium component
together with the equilibrium component calculated from the code HELENE1
gives the calculated values of the secondary neutron energy distribution
above the contiuum cut-off energy as shown in Fig. 18;
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secondary neutrons from iron bombarded by 14«5 MeV
neutrons. The calculated curves contain direct
DWBA results, the equilibrium component from the
computer code HELENE and an adjusted pre-equi-
librium component from an older exciton model version
of Blann .
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The pre-equilibrium component in Fig. 18 is taken from an older exciton
22model version of Blann which is obtai

A (n,E) = const independent of n and E.
22model version of Blann which is obtained from equations (3d-f) by assuming

This description of Fig. 18 has the disadvantage that detailed nuclear
structure information about the first 15 levels of the target nucleus such
as level angular momentum £ was necessary to obtain the direct part to which
the pre-equilibrium component was adjusted. This method doesn't allow to
predict the high-energy tail of the energy dependence of the angle integrated
inelastic differential cross section of secondary nucléons from a target
nucleus bombarded by nucléons without the above mentioned detailed nuclear
structure information about the special target nucleus. On the other hand
this treatment would suggest to understand the lowest exciton number term
of the pre-equilibrium component as an averaged or summarized direct
component since at the continuum cut—off energy only the lowest exciton
number term of the pre-equilibrium component is predominant. This agrees
with the conclusion which is expressed by the equations (43) and (44) and by

23Fig. 17 and which also has been reached by Cohen, Holden and Rao and by
r\ *

Lewis from the DWBA analysis of experimental data for (p.p1) and (d,d')
reactions and which also is the basis of the contributed paper of Arndt and
Reif to this meeting.

In contrast to the above considered DWBA method there is the fact that the
geometry dependent hybrid model yields absolute values for the scattered
particle energy-dependent inelastic cross section without nuclear structure
information about the special target nucleus as explained around Fig. 16.
This fact could be meaningful for the absolute values of the DWBA calculated
direct inelastic cross -sections in view of the above stated correspondence
between the direct component and the lowest exciton nuclear term of the
pre-equilibrium component.

The evaluation of Fig. 18 is contained in the ENDF/B-IV library but only
for natural iron. For the other nuclei such as Cr or Ni pre-equilibrium
models do not yet have been used for the evaluation of the secondary neutron
energy distribution on the ENDF/B-IV file. On the other hand it should be
easy to extend the geometry dependent hybrid evaluation as applied to iron
in Fig. 16 also to other nuclei which are interesting in this context (see réf. ).



- 349 -

6. More rigorous theoretical derivations

More rigorous theoretical derivations have been presented. One is based
? S 2fiby Grimes, Anderson, Pohl, McClure and Wong and by Feshbach on the

27concept of doorwaystates of the work by Feshbach, Karman and Letnmer .
28 32 29The other by Agassi, Weidenmüller ' and Mantzouranis is based on the

statistics of the interaction matrixelements characterising the microscopic
behaviour of nuclei. Both derivations arrive at equations similar to those obtained
by Blann for the description of the pre-equilibrium processes. But a closer
look at the single steps of the derivations shows that apparently the
direct reaction processes have been separated in both cases before treating
the equilibration problem. This would mean that the direct reaction processes
are not contained in the descriptions of the pre-equilibrium processes as

30 31given in both cases. On the other hand Mantzouranis, Agassi and Weidenmüller '
have included the angular distributions of the pre-equilibrium nucléons into
their generalized master equation description the calculated results of which
agree rather well with the measured results for angular distributions and
spectra of pre-equilibrium nucléons in a variety of cases in which no direct
component has been separated from the empirical data. Thus still more clarification
appears to be desirable about the distinction between pre-equilibriüm and
direct processes in nuclear reactions.

7. Applications

Measurements of neutron leakage spectra in the energy range 0»! to 15 MeV
from homogeneous assemblies have been made in order to provide test cases for

33neutron transport codes and input neutron cross-sections. Cylindrical and34spherical assemblies have been used made of iron, uranium, niobium, beryllium
and carbon. For the case of iron which is an important material in fast
reactors»calculations of telte neutron leakage spectrum for the cylindrical

34as well as for the spherical case have been carried through on the basis
of'microscopic neutron input data and various transport codes. The calculated
results have been compared with the measured results for both cases. Fig. 19
shows the results for the cylindrical case.



- 350 -

Eig. 19: a) Measured and calculated neutron leakage spectrum of an
iron cylinder bombarded by 14 MeV Neutrons.

b) Microscopic scattered neutron energy dependent inelastic
cross section of 14 MeV neutrons of Fig. 3 of

The calculated curves in Fig. 19a) are obtained with a modified version of
the Karlsruhe Monte Carlo code KAMMC0 . For the dashed curve the evaporation
formula (39) with v=0.1 is used for the distribution of the inelastic scattered
neutrons while in the solid curve the precomponend processes are talcen into account
as shown in the combined curve of Fig. 19b). Accordingly Fig,L9aJ shows that above
3 MeV neutroa energy of the leakage spectrum the influence of the pre-equilibrium
component becomes remarkable. This is important for shielding problems of fast
reactors and expeciaîîy for the inner wall problem of the fusion reactor.
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Contributed Paper No« 16

DIRECT INELASTIC NUCLEON SCATTERING
TO HIGHER EXCITED STATES

E. Arndt and R. Reif
Section of Physics, Technical University Dresden, GDR

Abstract :

The spectra of inelastically scattered nucléons and the
corresponding angular distributions are calculated up to
higher excitation energies in the framework of the DWBA
within a microscopic approach. The method offers the
possibility of a new approach to evaluate an appreciable
part of the spectra and the angular distributions in a
unified manner.
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Recent experimental investigations of inelastic proton
and deuteron scattering with bombarding energies of 1? MeV
and 12 MeV exhibit a strong correlation of the transition
strength of both reactions up to excitation energies of the
nucléon separation energy [l"j . Prom these results one can
conclude that - apart from excitations of low-lying collec-
tive states - direct processes contribute to the smooth
background of the continuous spectra to a large extent also
for higher inelasticity. This offers the possibility to
calculate the high energy part of the spectra and the angu-
lar distribution within the framework of the well developed
first-order DWBA method.

On this line the spectra and angular distributions for
different excitation energies of the reactions Sn(p,p'),
E =17 MeV and 4°Ca(n,n'), EB = 14 MeV have been calculated
within a microscopic approach to the scattering process.
The differential cross section is composed of elementary
excitations (2quasi-particle excitations in Sn [2! or
1p1h-transitions in Ca [3! ). These are summed up inco-11 f-\herently for Sn(p,p') using a Lorentz distribution for
the squared coefficients of the nuclear wave function [5].
Multipolorders of L=2 up to L=6 have been taken into account«
In the case of Ca the formfactor of the dominating exci-
tations of the negative parity states resolved in the in-
elastic proton scattering have been computed with nuclear
wave functions in the Tamm-Dancoff approximation and broa-
dened according to the experimental resolution of the
neutron experiment. In both cases a two-body potential of
Gaussian shape with a range of 1.7 fm has been used as an
effective interaction between the incoming nucléon and the
target nucléons. The optical parameters have been taken
from refs. [5] and [o] for Sn+p and Ca+n, respectively.
The theoretical values are compared with the experiments of
refs. [7] and [s] and results obtained within the Hybrid
model with intranuclear transition rates derived from the
optical model. Examples are given in Figs. 1 and 2«
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The results may be summarized as follows:
1) The calculated relative spectra for a definite scattering

angle resembles in shape the n =3 component of the pre-
compound spectrum from the geometry-dependent hybrid
model.

2) The gross structure observed in the experiment is indi-
cated qualitatively and results from the energy distri-
bution of quasi-particle energies.

3) Normalizing the strength of the effective interaction to
the collective 3~ excitation in ^ Ca the absolute spec-
trum of inelastically scattered neutrons is reproduced
within a factor of two up to excitation energies of
about 7 MeV.

4) The forward-peaked angular distribution in the high-
energy pre-compound region is reproduced.

5) For higher excitation energies transition strength is
missing because of the neglect of higher-order terms as
well as the re-emission from quasi-bound states. Accor-
dingly, the theoretical angular distributions are too
much forward-peaked for these excitation regions.

Similar results have been obtained with collective model
approach in réf. [s] and with simplifying assumptions on
the formfactor and using plane waves instead of distorded
waves in réf. [lu].
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FIGURE CAPTIONS

Fig. 1 DWBA spectra compared with the n=3 component of the
pre-equilibrium spectrum from the geometry dependent
hybrid model and the experimental data [?]. The
parameters of the Lorentz distribution of 2quasi-
particle excitations were =̂0.5 and =̂0.5 MeV.
The theoretical curves are normalized independently.

Pig. 2 Experimental and DWBA angular distribution for
different excitation energies.
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Contributed Paper No. 17

Computer calculations of neutron cross sections and
g—cascades with the statistical model with consideration
of angular momentum and parity conservation.

M. Uhl
Institut für Radiumforschung und Kernphysik, Vienna.

Abstract
A computer code designed to calculate cross sections for

reactions with up to six emitted particles and an arbitrary
number of gamma-rays preceding or following particle emission
is described. The calculations are performed within the frame-
work of the evaporation model with consideration of angular
momentum and parity conservation. For the first step of an
evaporation cascade preequilibrium emission is taken into
account. Some applications to neutron«induced reaction cross
sections are presented and discussed.

1. Introduction
Nuclear reactions with several emitted particles and gamma-

rays are most easily and often successfully treated as "evapo-
ration cascades". In this contribution the computer code STAPRE
will be described which was developed to handle such reactions
essentially under the assumption that they can be represented
as successive evaporations of particles and photons. Further
some applications to neutron—induced reactions are presented.

In the following reactions of the type A(a,bc.. .zjf)Z are
considered which are induced by particle a and characterized
by a certain sequence (bc...z) of emitted particles; an arbitrary
number of gamma decays preceeds or follows the emission of each
particle (fig. 1). For such reactions the code calculates the
population cross sections for levels characterized by excitation
energy E, angular momentum I and parity fl or for groups of such
levels. All possible 'ways" of populating those levels are con-
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sidered; examples of such ways which differ in the energies of the
emitted particles and in the gamma-ray cascades preceeding or
following the emission of particles are shown in fig. 1. Angular
momentum and parity conservation are taken into account. The
angular distribution of the emitted particles and gamma-rays
is not calculated. By appropriate book-keeping one obtains
also the spectra of the emitted particles b,c...z, the acti-
vation cross sections for the intermediate nuclei A+a,
A+a-b, ...Z and the gamma-ray production spectrum for the final
nucleus Z; we are just now improving the code in such a way
that the energy spectrum of all gamma-rays produced by the
considered reaction sequence is calculated.

The above described code can be used for the calculation of the
following quantities:

1) activation cross sections
2) population of isomeric states
3) energy distribution of emitted particles and gamma-rays
4) production cross sections for gamma-rays from low

excited levels.
Up to six sequentially emitted particles can be considered.

The number of gamma-rays is limited only by the use of an
energy grid for the calculations.
2. Models employed

The major part of the calculations is based on the statistical
model. For particles emitted in the first step of the evapo-
ration cascade a "preequilibrium decay" contribution to the
cross section is included, since the statistical model alone
fails to explain the hard component in the spectra of those
particles observed at higher incident energies. Direct reactions
which may be important for the population of low excited
collective levels are not yet taken into account.
2.1. Preequilibrium model

The equilibration of the composite system formed by projec-
tile a and target A is treated in the framework of the "exciton
model" tJ-1 - [.S]- Since the method employed here differs
slightly from those reported in literature a short description
follows.

Starting from a simple configuration the composite system
is assumed to equilibrate through a series of two-body colli-
sions and to emit particles from all intermediate states. The
states of the system are classified according to the number n
of excitons or more specifically to the numbers p and h of the
excited particle and hole degrees of freedom (n = p+h). No
distinction is made between neutrons and protons. The appli-
cation of a two-body interaction to states of a (p,h)-configu-
ration leads to states with (p+1, h+1) , (p,h) or (p-1, h-1)
excited particles and holes. In competition with these internal
transitions particles can be emitted from each state. For all
these processes transition rates averaged over all states of a
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configuration are employed.
Let b(k) (n) = b (p,h) be the population probability of the

states of a (p,h) configuration resulting from k internal
transitions. The corresponding quantity b(k+4)(n) for (k+4)
internal transitions is obtained from:

<**«« -

In eq. (1) ^ ("), ̂ /o ("} and/V-C«) are the average rates forinternal transitions with a change of the exciton number by an
amount of +2, O and -2 respectively, and 3%. (n/ £T )̂ £ris the average rate for emission of particle r with energy of
relative motion £Y . The quantity Pe(n) therefore representsthe total rate for emission of particles. Starting from a,n
initial population probability

b(rt(n) - Snn0 or
successive application of eq. (1) gives the populations of the
various (p,h) configurations by processes with an arbitrary
number k of internal transitions. With increasing k the ratio
b^6" "**(«) / b ̂  (n) becomes independent of n and k.
Hence an upper limit K for the number of internal transitions
to be considered for preequilibrium decay is obtained from the
following condition:

(3)

Qa ,,The preequilibrium contribution — T^t —— « fc b to the
differential cross section is given by

where €T represents the optical model absorption cross
section for the projectile a. The fraction «Lprft °^ the initial
population surviving preequilibrium emission is given by
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Although this method of treating the equilibration of the
composite system employs the same assumptions as the "master
equation approach to the exciton model" described by Cline
and Blann [21], it is much simpler than the latter, since it
does not involve the numerical solution of coupled differential
equations. The results of eqns. (1) to (5) include as special
cases the various approaches which neglect An =-£ and An = 0
internal transitions and (or) the depletion of the populations
by particle emission.

The rates P+di), C)0 (n) and P_ fn) are related by the formulae
of Williams [6], corrected for the Pauli-principle by Cline[?3,
to the absolute square of the average effective matrix element
M of residual interactions. For the dependence of this quantity
on mass number A and excitation energy E of the composite
system the expression

(M/2 = FM A'3E"d (6)
proposed by Kalbach-Cline [8] is used. The rates /VT fn,£T ) d £<
for particle emission are calculated from detailed ballance
considerations as described in réf. [2]. They depend on the
inverse reaction cross sections and on the densities of particle-
hole states; the latter are evaluated by means of a formula
given by Williams [9].

The inverse reaction cross sections and the density g of
single particle states on which all rate expressions depend
are obtained from quantities used for the statistical model
calculations described below: the optical model transmission
coefficients and the level density parameter a = (6/i2)g.

The characteristic parameters of the exciton model
are the initial number "o = Po+h0 of excitons and the value
of the matrix element or of the constant FM (eq. (6)). The
quantitiy n0 depends on the projectile type. Many investi-gations have shown that for nucléon induced reactions the
value n0=2> Cp0 = 2,h0 = -l) is required to explain the shape ofthe observed particle spectra; exceptions are found near closed
shells. The absolute square of the matrix element M has been
estimated from analysis of experimental data by Braga-
Marcazzan et al. C3H and by Kalbach-Cline C8]. Since, however,
the value |M^ required to reproduce the experimental results
depends sensitively on details of the employed model, as for
instance the expressions for emission rates and the single
particle state density g, the constant FM in eq. (6) is regarded
as an adjustable parameter.

As in most models of preequilibrium emission angular manentum
is not taken into account.
2.2. Statistical Model

The excited states of all nuclei relevant for a reaction of
the type A (a,be. . . zjf«) Z are described in two different ways. At
low excitation energy the quantum numbers (E^ Ij, Hi) of all
known "discrete" levels are taken into account. As soon as with
increasing excitation energy the experimental information about
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the levels is no longer complete, a continuous level density
formula J?CE 1 fl") is applied.

The equilibrium contribution to the first step of an eva-
poration cascade is calculated by means of the familiar
Hauser-Feshbach formula Clol ; if necessary the width fluctuation
correction is applied Clll . In case that a particle is emitted
the preequilibrium contribution is added. If the first step of
an evaporation cascade populates levels C E l H ) in an
interval A E around excitation energy E the cross section is
given by

rn<
where ——— Ci ———— is obtained from the Hauser-Feshbach
formula and the preequilibrium contribution gg from
eq. (4) . The quanti tiy CLpre which is given by eq. (5) allows
for the loss of initial population caused by preequilibrium
emission. Since the prequilibrium model described before does
not consider angular momentum and parity it is assumed in
eq. (7) that the population *%£* (E) AE is distributed among
the levels with different spin and parity in the same way as
the equilibrium contribution. For the results of the subsequent
evaporation cascade calculations the application of this
probably poor approximation may be of importance only in case
of a dominant preequilibrium contribution. If a gamma-ray is
emitted instead of a particle the second term in eq. (7) is
omitted.

For all further steps of the cascade the well known formulae
of the evaporation model are applied. The population of levels
(E. ' I ' H1 ) by particle or photon emission from levels CE In) is
governed by the ratio of the average partial P (Elfi ; E.'Il fl1)to the average total decay width P (Ein); both quantities are
obtained by appropriate sums of transmission coefficients for
particles or photons. The processes provided for to compete
with a particular decay mode are the emission of up to four
different particles and of gamma-rays. Since fission as
competing decay mode is not yet taken into account the appli-
cation of the code STAPRE is limited to nuclei not susceptible
to fission.

In order to obtain for a reaction of the type A(a,bc. . .ztf) Z
the population cross section of levels (E.f Ic Flf) in an interval
AE around Ef one has to add the contributions of all different
ways (see fig. 1) by which these levels can be excited. If a
particular way is characterized by a sequence Qs^ of ns emittedparticles and gamma-rays and by the resulting ns states
(Eis I> fit5 ) t the population cross section 9g(Ej IfD t*) AFç is
given by ""
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where ——§•§—— ^= is defined by eq. (7) . The summations
and integrations are restricted by the conservation of energy,
angular momentum and parity. For discrete levels the level
density ̂ (Elf|) has to be replaced by

f (Ein) - E^fcSnru *(E-EJ.
A more detailed description of these calculations has been
given elsewhere [12].

To perform the above described calculations additional in-
formation regarding the transmission coefficients and the level
density is needed.

The transmission coefficients for particles are calculated
externally by means of an optical model code. Since the channel
spin coupling scheme is employed the particle transmission
coefficients "[£ (C) are assumed to depend on energy £, and
angular momentum & of relative motion only.

By assumption the gamma-ray transmission coefficients
depend on the multipole type XL and transition energy 6.. They
are related to the gamma-ray strength functions -̂ xL fc) by
TXL (£)= 2.TT£,2-|--f<L ̂ JTi. ( &). For the energy dependence of
the El-strength function optionally the Weisskopf or the
Brink-Axel model [.IB] can be used as well as an arbitrary com-
bination of both models. Following the suggestion of Gardner
£l4] provision is also made for including a "pigmy resonance"
and a "step" in order to reproduce experimental E-1-strength
functions. The strength functions for Ml, E2 ... M3 radiation
are for the present obtained from the Weisskopf model and nor-
malized to l̂ jĈ ). Optionally ^Ed (£) can be normalized by
fitting the observed average radiation width at the neutron
binding energy. For gamma transitions between discrete levels,
however, experimental branching ratios are used; this is of
special importance for the calculation of isomeric cross
sections and of production cross section for gamma-rays between
low excited levels.

The level density ̂ f(Ein) is calculated within the framework
of the "back-shifted" Fermi-gas-model [l5}. The level density
is assumed to be independent of parity. The energy and spin
dependence is obtained from the expressions of Lang Q16]. A
simple formula for the yrast spin is employed. The parameters
of the model are the level density parameter a, the effective
moment of inertia ®eff and the fictive ground state position A.
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•"• 7 —
A compilation of level density parameters for the back-shifted
Fermi-gas-model has been published by Dilg et al. [17]]; in this
work the parameters were obtained from resonance spacing data
and from the density of low excited levels.

Since a simple level density formula cannot represent
adequately spins and parities of the first low excited levels
it is for many applications extremely important to consider
known levels as far in excitation energy as possible. As a
further improvement one could apply instead of the above named
model recently developed microscopic theories of level densities
[l8] - [203 which take into account realistic single particle
states, pairing and collective states.
3. Applications

In this section some calculations for neutron induced
reactions are described as typical examples to illustrate the
consequences of preequilibrium decay and to emphasize the
importance of the competition between particle and gamma-ray
emission ("gamma-competition"). For all subsequent calculations
level density parameters from réf. £l?3 were employed. Trans-
mission coefficients for neutrons, protons and a-particles were
calculated for global optical potentials given in refs. C2ll,
£223 and^23^. Unless otherwise stated the El-strength function
was obtained by means of the Brink-Axel model and normalized
to the average radiation width at the neutron binding energy.

Fig. 2 shows experimental data for the 56Fe (n,pjf) 56Mn acti-*
vation cross section confronted with the results of three cal-
culations employing different assumptions about the preequili-
brium contribution. The calculation without consideration of
preequilibrium decay obviously fails to reproduce the data for
high incident energy. Good agreement with the data is achieved
by taking into account preequilibrium emission with the
following values for the relevant parameters: (po = 2, ho =1)
and FM = 75O MeV^. The consequences of the preequilibrium
emission can be seen from the following arguments. In comparison
with the evaporation spectra for an equilibrated compound
nucleus the energy spectra of particles emitted in the pre-
equilibrium stage show an excess at higher energies. Therefore
the influence of the Coulomb barrier on proton emission is re-
duced as well as the competition by (n,pnfl-) -processes which is
responsible for the decrease of the (n,pjf)-activation cross
section at higher incident energies. Moreover the fraction of
the initial population subject to preequilibrium emission
increases with increasing bombarding energy. As shown in fig. 3
good agreement with experimental data for the 54;pe (n,pjf) ̂4Mnactivation cross section can be obtained by employing the same
parameters for the preequilibrium model. The values for the
square of the effective matrix element |Ml2 required to fit the
data in these two cases are considerably larger than those
reported by Kalbach-Cline [8] for proton and by Braga-Marcazzan
[Sjfor neutron induced reactions; it has been explained, however,
in section 2.1. that the values found for this quantity depend
critically on the details of the model.
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For (n,p)- and other reactions whose share in the total

absorption cross section is small the theoretical results
depend strongly on the level densities employed. In order to
obtain agreement with experiment one has in most cases to
adjust the level density parameters of ref.D.7] within the
errors quoted there. On the other hand the accuracy of pre-
dictions of such cross sections may become poor if there are
only few or no experimental data at all to adjust the level
densities. An improvement of the accuracy, however, can be
achieved if it is possible to reproduce cross sections for the
most important competing reactions.

In fig. 4 experimental data and calculations concerning the
activation cross section for the reaction 198pt(n,2nf) 197pt are
displayed. The calculations were performed with consideration
of preequilibrium decay with parameters (p = 2, h =1) and
FM = 750 MeV3. The Ed-strength functions were derived from the
Brink-Axel model and the Weisskopf model and normalized to an
average radiation width of 1OO meV. The difference between the
results obtained with these two models for |EÎfe)is very small.
It has been shown by Gardner £.14̂ ], however, that the gamma-ray
production spectra depend sensitively on the model for the
gamma-ray strength functions.

In the range of excitation energies considered here the
emission of gamma-rays represents the process which for a heavy,
not fissionable nucleus competes most effectively with neutron
evaporation. Fig. 4 shows that the results obtained without
taking into account gamma-competition deviate significantly
from those including this effect whenever the competing
reactions (n,n'̂ ) or (n,3njf) are of importance. Therefore cal-
culations of (n,2n<?) -activation cross sections without con-
sideration of gamma-competition, as those described by
Pearlstein CSOj which formerly were frequently used for cross
section evaluations, give in this mass region reliable results only for
incident energies near the maximum of the excitation function.
For many heavy nuclei, as for the present example, incident
energies around 14 MeV for which the majority of data exists
satisfy this condition.

As was already pointed out by Grover [.3l3 t*16 extent of
gamma-competition depends strongly on angular momentum and
excitation energy of the states involved. Particle emission
from high spin states is hindered by the centrifugal barrier
as long as due to a separation energy of several MeV only final
states with much lower spins are available. Gamma-ray emission
from those states, on the other hand, is not hindered to such
an extent because of the higher excitation energies of the
accessible final states.

Garana-competition is more effective at the high energy
portion of the 198pt (n,2ny-) 19?Pt excitation function where the
cross section is enhanced at the expense of (n,3ng-)-processes
than at the low energy portion where the cross section is
reduced by (n,n' $f) -processes. This behaviour can be explained
by the following arguments. Due to the higher incident energies
and the evaporation of two neutrons more states with high
angular momentum and excitation energies near the neutron
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l 97 lQRthreshold are populated for Pt than for Pt.

Fig. 5 shows for 197Pt, besides the level schemes employed,
the fraction #£•(£) of the population of states with excitation
energy around E which by gamma-ray cascades starting from these
levels contributes to the (n,2n|j*-) activation cross section. The
calculations were performed for an incident energy of 17.77 MeV.
It can be seen that the effect of gamma-competition is strongly
reduced with increasing excitation energy. The main contribu-
tion to fy<c(E) originates from states with high angular momentum.

Recently G. Stengl 1.32] measured the above defined ratio
(É) for the reaction 56pe (n,n'{f-) 56pe by counting coincidencesietween neutrons leading to states of 56pe above the neutron

threshold and gamma-rays from the first excited level of the
same nucleus; good agreement between his results and calcu-
lations with the code described here was obtained.

From the previous considerations it is evident that the
extent of gamma-competition depends critically on the spins and
parities of the low excited levels accessible to neutron
emission. Since for 196pt only scarce information about the
levels could be found no attempt was made to improve the
agreement between the calculated 198pt (n,2njf) 19'Pt cross
section and the experimental data.

Applications of previous versions of the code STAPRE to
cross section calculations for gamma-ray production by (n,nf)
and for isomeric state populations by (n,p̂ )-reactions were
described elsewhere C33J, £34], Gardner C-14] reported about
calculations of gamma-ray production spectra performed with a
modified version of this code.
4. Conclusion

The code STAPRE is designed to calculate a variety of cross
sections for processes which can be described as evapo-ration sequences.In particular gamma-ray cascades are treated
in great detail.Therefore the code can successfully be applied
to obtain cross sections for which the consideration of gamma-
rays is essential. By inclusion of preequilibrium decay the
code is applicable at higher bombarding energies, too.

On the other hand, important effects as fission competition
and direct reaction contributions are not considered. There-
fore comprehensive extensions are still required in order to
increase the range of application of this code.

The results of the calculations depend on quantities - as
level densities, level schemes, gamma-ray strength functions
and others more - which frequently are not known very well.
The influence of uncertainties in these quantities on the cross
section differs from reaction to reaction. Therefore in un-
favourable cases inaccurate results may be obtained even if the
reaction is adequately described by the models employed. The
accuracy of the result has to be investigated in each indi-
vidual case. Quite generally, however, the accuracy for a
particular cross section can be improved by fitting as many
experimental data for competing reactions as possible with one
set of values for the above mentioned quantities.



- 370 -

- 10 -
Several statistical model programs exist which perform

similar calculations as the code STAPRE does. To the most
frequently used belong the codes COMNUC and CASCADE developed
by Dunford CS5j. In contrast to STAPRE the COMNUC code cal-
culates transmission coefficients and some related quantities
internally and takes fission competition into account; besides,
it can use results from direct reaction calculations as input.
On the other hand these codes do not consider preequilibrium
decay and do not calculate the spectra of emitted particles
and gamma-rays and cross sections for gamma-ray production and
isomeric state populations.
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FIGURE CAPTIONS

Fig. 1 A schematic representation of the different ways of
populating final states (Er I? n.f) f°r a reactionA(a,bc£)C. T T t

Fig. 2 Experimental data and results of calculations for the
56Fe(n,p{f) 56Mn activation cross section. Not all data
from the quoted references are shown.

Fig. 3 Experimental data and results of calculations for the
54pe (n,pjf) 54]\in activation cross section. Not all data
from the quoted references are shown.

Fig. 4 Experimental data and results of calculations for the
198pt (n,2nj|-)197pt activation cross section. The data
represent the sum of the cross sections for the
population of ground and isomeric state.

Fig. 5 Competition between neutron and gamma-ray emission
from states of 197pt populated by the 198pt(n,2nfr) 197pt
reaction. The quantity ̂ (E) represents the fraction of
the population of states around E which by gamma-ray
cascades contribute to the (n,2n£-) activation cross
section.
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Fig. 3
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THE MODESTY-PL/I PROGRAMME FOR THE CALCULATION OF NUCLEAR-REACTION
CROSS-SECTIONS

W.MATTHES
(Euratom)

CCR - Ispra

Abstract
The Code MODESTY calculates all energetically possible reaction
cross-sections and particle spectra within a nuclear decay chain
initiated by a nuclear reaction.
The present version is based on the statistical nuclear model
for nuclear reactions and employs the optical model for the
calculation of the partial widths for particle decay and the
Blatt-Weisskopf single particle model for the V -decay. The
programme is designed to simplify the evaluation of cross-
section data by giving maximum output information for minimum
input. All necessary nuclear data are automatically searched
from an external (tape-or disc-) library of fundamental data.
The programme makes extensive use of structures and external
direct-access files to reduce core memory occupation which
amounts to about 130K-BYTES.



- 380 -

Introduction
Available codes for the calculation of reaction cross-sections
ask for a detailed specification of the decay chain and a
tedious preparation of the input data. These are inconve-
nient features for the cross-section data evaluation work
and for parameter studies. As a parameter change influences
different reaction channels/many calculations have to be
performed to balance the effect of parameter changes in cross-
section fitting procedures.
To overcome this disadvantage the Code MODESTY was designed
which:
a) calculates and plots all energetically possible reaction

cross-sections and particle spectra within an evaporation
cascade,

b) takes all nuclear data needed automatically from an external
(tape-or disc-) library of fundamental data which is esta-
blished once and can be used for all calculations,

c) needs a minimum of input data (e.g. type and energy of
projectile, target and only a few more parameters) and,which

d) makes extensive use of structures and external direct
access files to reduce the core memory occupation.

A) Description_of Programme-Structure

The programme is designed to follow the population and depopu-
lation of all nuclei within a nuclear decay chain initiated by
a nuclear reaction as shown in Fig. 1. Due to this demand
the main structure of the programme is already fixed and
consists in the following three steps:
1) Establish a list of all nuclei appearing in the decay

scheme (based on séparation-energy considerations). Having
this list, then

2) Populate the levels of the first compound nucleus in the
list and
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3) Start the decay of the first compound nucleus through
particle emission (including £ -decay), populate the
(second)residual nuclei and continue this process until
all nuclei in the list are in their ground state (or an
isomeric state).

Step 1 is obvious and consists simply in a sequence of de-
cisioiB for the possibility of a particle emission
from an excited nucleus. When going through the
decay chain in this way we collect all the available
information and put it into the list describing the
cascade as shown in /ig. 2.
All nuclei in the cascade are numbered and positioned
in the cascade-list according to this number.
Each nucleus is then provided with further additional
information giving.
a) the "keyword" with which all fundamental nuclear

data for this nucleus can be read from an external
file,

b) the number of particles of different kinds (n,p,ô ..
by which the nucleus under investigation differs
from the first compound nucleus

c) the addresses of those nuclei in the list which can
be reached by the corresponding particle emission
(address-list).

Step 2 populates the first compound nucleus which is excited
into the continum. This means we have to calculate the
occupation density in the continum range for which we
use the prescription
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The formulas and symbols are taken from the paper
by M. UHL(1) on which the physical part of MODESTY
is mainly based.

Due to the concept of treating all nuclei and all types of
particles in the cascade on the same footing,
Step 3 consists in 4 nested DO-Loops:

1) DO-Loop over all nuclei N in the Cascade-list^
2) DO-Loop over all levels ^=.£u}3; ~/FJ of each nucleus

N (running from maximum excitation down to the
ground state),

3) DO-Loop over all nuclei N1 which can be reached by
particle emission from N according to the address-
list of N,

flf ) i i )4) DO-Loop over all levels c—^U J // j of N1.
The physics of the procedure as sketched in Fig. 3is now
contained in the expressions for the
a) occupation density at level fe of nucleus N':

b) total decay width from level £* of nucleus N

(3J

where the summation over levels £* ( fc ) includes an energy-
integration indicated by the integration-interval
(DU(N-
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For each set l/vj^*/* & j in the loops we have, therefore,
simply to" calculate the quantity

and

1) to add it to a single variable H which was initiated to
"0" before Loop 3):

2) to add it to an auxiliary array V(N',{£) which was ini
tialized to "0" before Loop 4):

Closing Loop 3) we have the total decay width of level
of nucleus N given in

(«> t) - tj.
and, after normalizing V(N' , c ) according to:
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we obtain the occupation density for all JA/t {g f through:

. M'A/, e'J+y M f)
Finally we close loops 2) and i).
Note that the spectra of all particles emitted from level Ç
of nucleus N (in Loop 2) are now automatically given
by summing the VCN',^) of (8) over all ( V. ~jTf )of e' "
The whole procedure is sketched in Fig. 4.
To reduce main storage place we use keyed direct-access
files for
a) the fundamental data of each nucleus,
b) the transmission coefficients for the different types

of particles permitted as incoming and outgoing projec-
tiles for each nucleus, and for

c) the occupation-density arrays W (N, £) for each nucleus.
Each record on these individual files is a structure containing
data of different types and is given a keyword. A whole
structure can be read into the core memory from external disc
or rewritten after updating on the external disc storage
by simply calling the structure by the keyword (name).
The core memory used by the present version of the programme
is about 130K- BYTES.
The code is written in a straightforward way directly after
the scheme of Fig. 4 to achieve optimal clearness and read-
ability and is at the moment in the test-phase.
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Figure Captions:
Fig. 1 - Example of a nuclear decay cascade initiated by

a nuclear reaction. In this example only three
particles are allowed as projectiles ( n,p,c<,).
Note that some nuclei in the cascade can be excited
over more than one decay- path.
A nucleus in the cascade characterized by xyz is
obtained from the first compound nucleus after
the emission of x neutrons, y protons and
z oCs.
The cascade will be automatically extended as far
as allowed by the kinetic energy of the incoming
projectile.

Fig. 2 - Cascade-List
M: ranges from 1 to NC and numbers the nuclei in the
cascade
NC: total number of nuclei appearing in the cascade
Keyword: Allows to read the record containing all
fundamental data for the nucleus from disc into
main storage

of particles of type v> to be removed
from first compound nucleus to obtain nucleus M

_ Address of the residual nucleus in the cascade
after~emission of a particle of type \> from nucleus M.

Fig. 3 - The physical part of MODESTY is based on the simple
expression for the total decay width and the re-
lations between the occupation densities of the decaying
nucleus and the residual nucleus as illustrated in
this Figure.

Ty/Vif -^ frj&J is the partial decay width for
the emission of a such particle as to excite nucleus
N1 to level £J and is calculated from an optical
model.
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is the level-density and DU(///) the
integration-interval for the integration over the
(excitation) energy.

Fig. 4 -Flow diagramme of MODESTY.

N') indicates an auxiliary arra^ of a length equal
to the total number of levels %=z{l/'/'/
which can be excited:

_ W(N' , e; 4? anarray of the same length as V\N ' ) and contains the
occupation density for all levels &f which can be
excited.

Literature:
(1) M. UHL, Acta Physica Austriaca 31,245-270 (1970)



38?

•v

f
m

r
r\r

I c

V
<5v 4

0
$y-**

ĉ
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A STATISTICAL APPROACH TO THE SCISSION MECHMŒSM

U. Facchini and G. Sassi
Istituto di Fisica dell'Universita, Milano

and CISE, Segrate (Milano)

ABSTRACT

A statistical model of the scission mechanism is reported;
the fission fragments are described as two spherical nuclei
at given temperature and distance. The canonical formalism is
introduced in order to describe the states of the system; the
intrinsic freedom degrees, representing both the repartition
of protons and neutrons in a given pair A , A and the various1 £
possible configurations assumed by the excited nucléons are
assumed in statistical equilibrium. The freedom degrees
related to the collective motion of nucléons, which means to the
fragment kinetic energies, are assumed not to be in statistical
equilibrium. The partial—equilibrium model has been applied to
the calculations of fragment excitation energies and to the
analysis of the fragment charge distributions.

235 233U , fission induced by thermal neutrons and U f
induced by moderate energy protons have been analysed.

I. INTRODUCTION AND GENERALITIES
A number of properties of the fission process of heavy

*nuclei was clarified in the past years. The existence and
the shape of the saddle in the potential energy of the deformed
nucleus were proposed and discussed, at first by means of the

y by •
(2,3)

liquid drop model and lately by the introduction of the
shells and the related effects

The fission cross sections of actinide nuclei and other
nuclei in the region of Au and Pb are now calculated with
good accuracy ; in a recent work it is shown that the
asymmetric shapes are favoured by lower values of the energy
saddle: this fact allows the typical asymmetries in the mass
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spectrum for the low—energy fission of actinides to be understood.
The basic mechanism of fragment separation, however, is

not understood yet and the properties of the nuclear system
motion from the saddle point toward the scission point, have
not been explained. Still lacking is an accurate description
of the properties of the fission fragments such as the features
of the excitation energy distributions, the values of fragment
kinetic energy, the distribution of protons and neutrons in a
given fragment pair.

The adiabatic model
Several different models were proposed in the past for the

description of the scission process; we mention the adiabatic
model first. It is based on the assumption that the separation
motion of fragments is very slow and that friction processes
are practically absent. During the motion the fragments have
sufficient time for assuming a convenient shape, so as to keep
the total potential energy of the nuclear system at minimum.
The energy made available in the motion storesthen into the
fragments as deformation energy ' .

The total potential energy is given by

Ep = mSt

where m and m00 are the masses (in MeV) of the fragmentsfcJL o4
at scission point; the parameters & and C0 are the deformations;

J, *£

V (R, £ , £O is the Coulomb repulsive potential acting
between the fragments. R is the distance between the fragment
centres; it is given by



RS = Rl (<1) + R2 (Z) + d (I> 2)

R and R are the radii of the deformed fragments and d isX £i
a suitable distance parameter which, in a simple way, stands for
the presence of a neck connecting the two fragments up to scission

( 21)point (see fig . 30 of réf. '). When the deformation increases,
the Coulomb potential decreases, whereas the masses, after
overpassing the ground state shapes, which are generally
spherical or moderately deformed, increase rapidly. This causes
the total potential E to have a minimum at a given deformation
value.

It is generally supposed that scission takes place at this
minimum point. Then, after the scission process, the fragments
assume their final ground state shape and, owing to internal
friction, the deformation energy is converted into internal
excitation energy.

Accurate calculations of scission configurations and energies
(5 6}were reported by many authors ' . It is generally shown by

these authors that the calculated deformation energies do not
reach the values of excitation energies, observed experimentally,
which in a given region of the mass spectrum (A ̂115) are
particularly high.

It is noteworthy to recall that recent measurements of
the number of neutrons emitted by excited fragments do not

235confirm thé previous high figures, at least in the case of U^
fission induced by thermal neutrons. Consequently the whole
question of high deformation energies has to be reconsidered
and the fragment shape at scission and the energy stored as
deformation is somehow a,less critical matter. In any case, it
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is necessary to assume that part of the fragment final excitation
energy arises as a result of a viscous motion before the scission
point is reached.

The strong viscosity model
(7)In 1955 P. Fong proposed a statistical model of the

scission process, assuming that the fragment separation motion
is slow and viscous, so that all the available energy is directly
converted into internal excitation energy; Fong assumed than
that the probability of a given scission configuration is
proportional to the number of the fragment possible final
excited states.

This model, like the adiabatic not viscous model, represents
! ag extreme viewpoints. In both models scission is supposed to
occur in the minimum of the potential energy ; in
this region, in fact, the available energy is maximum
so that the number of possible excited states of fragments
is maximum as well. The total final excitation energies are
obtained by adding the intrinsic excitation energies, due to
the viscous motion, and the deformation energies stored into
the scission shape.

The variance of the total excitation energy, the sura of U
and U0 . - U and U being the excitation energies, respectively,2 09
at large distance of the fragments, which experimentally reaches
values ranging from 7 to 12 MeV - is explained by the allowance
of varying the scission point around the minimum region.

Very accurate calculations, based on this model, were made
/ Q\

by A.V. Ignatyuk and the results on energy values and
charge distributions are quite reasonable; we remark that
the mass spectrum, in particular the characteristic asymmetry
observed in low energy fission of actinide nuclei and the
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peculiar properties of fission fragment angular distributions
are, at present, explained by different methods, because they
are particularly related to the properties of the system at
the energy saddle.

We note that two points contradict the model, at least
in the formulation given by Fong and Ignatyuk. First, the
discovery, due to experiments on ternary fission, that the
fragments at scission point have outstanding kinetic energy:
we recall that, by assuming a complete equilibrium among
all freedom degrees, Fong needs that the fragments at the scission
point have practically no motion and their kinetic energy is
below one MeV. Second, we recall the recent interesting

(9)measurements due to C. Signarbieux et al. . These authors
observed that the excitation energies of the two fragments
of a pair are completely uncorrelated statistically; actually,
the covariance- of U and U0 is found to be approximately zero.

i-CO &&£

This result is in contradiction with Fong's picture, where

the two quantities are correlated by the fact that the sum
(21)

IL + U0 is determined (as shown in f ig. 30 of réf. ).
———— " —

A partial equilibrium model
Starting from the consideration that, as a result of the

ternary fission experiments, the fragments move at scission
point with kinetic energy of the order of 10-2O MeV, one of
the authors and E. Saetta-Menichella , in 1972, proposed
a new version of the statistical model; they assumed that,
owing to viscosity, the energy released in the motion from
saddle point to scission point is partly converted into fragment
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internal excitation energy and partly is converted into
fragment kinetic energy; the internal freedom degrees are
treated as in statistical equilibrium, whereas the fragment
kinetic energy, which represents a collective motion of
nucléons, is not in equilibrium.

When a fixed scission point and a given fragment configuration
are considered, the statistical distribution of internal excitation
energies and, in particular, the variance of the total excitation
energy U + U are then due to fluctuations in the partitionIA? -iaa
of the total available energy between the internal excitation
degrees and the collective kinetic energy. It has been shown,
that, by assuming an equilibrium temperature of the order of
1 MeV, the calculated variance turns out to have the correct
order of magnitude, which means 7-10 MeV. In the mentioned
paper, hereafter referred to simply as (I), a few simplifying
assumptions have been made. First, it has been assumed that the
fragments at scission point have ground state shape; this
assumption has been made in order to have a rapid overlook on
the fragment masses. Second, it has been assumed that the fragment
level densities are represented by the simple equispaced level
model.

In the present analysis, the partial equilibrium model is
reconsidered, but the simplifying hypotheses are dropped for
more realistic ones, that is, the fragments at scission point
are assumed to have particular shapes, as desired. Moreover, the
level densities are treated with realistic formulae

The description of the statistical system has been extended
and includes all fragment configurations related to a given
pair A ,A , where A and A , mass numbers of the two fragment

1 £* 1 <^
respectively, are fixed, whereas the proton and neutron numbers

•can be exchanged between the fragments of the pair in any possible
way.
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It is then possible to predict the proton distribution of
any given fragment pair.

In Sect. II, the basic properties of the model are discussed
and the particular formalism, based on the introduction of the
canonical partition function,is described.

In Sect. Ill, the basic nuclear models and parameters used
in the calculations are reported.

In Sect. IV and V comparison is given between experimental
and calculated results, both as to excitation energy properties
and charge distributions.

235The analyses are performed for U fission induced by
233thermal neutrons and for U"' fission induced by moderate

energy protons.

SECTION II. BASIC FORMULAE
a) The fragments and their shapes at scission

We denote by A and A9 the mass numbers of the fragments,
by Z and Z0 the proton numbers and by N and N0 the neutronl Ä l v
numbers, respectively.

We have
N +Z = A

and then
ir+N0 = N1 2 o
Z1+Z2 = Zo (IL 2
A„+A_ = A1 2 o

where A is the mass number of the parent nucleus and N ando o
Z its neutron and proton numbers, respectively,o

We assume that at scission point - the point where the two
fragments separate and any interaction, except the Coulomb
repulsion, is supposed to cease - the fragments have a definite
shape characterized by the deformation parameter £• and €*JL £
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Herein, symbols & denote a set of deformation parameters
(12)as, for instance, those used in Nilsson's model

The scission shape is assumed not necessarily equal to
the final shape which the fragments assume after scission
and which is generally assumed to be represented by the
ground state shape of the nuclei, at least at the final stages
of the process.

The deformation energy of the fragments at scission point
are defined by the quantities

ED1 = mSl - mgsl
(II.3)

ED2 = mS2 - m

where m and m stand for the fragment mass energies
(in MeV) at scission point and m . and m _ are thegsl gs2
relevant ground state energies. By substituing the masses by
the corresponding binding energies B and B we get:

S g L

ED1 = Bgtl " Bsl
E = B B (II-4)D2 gt2 s2

As recalled in Sect. I, many authors generally assume that
scission shapes are generally quite deformed and the scission
point corresponds to the minimum potential energy. It is
possible, in principle, to make calculations in the frame of
the partial equilibrium model, by maintaining these assumptions;
we try, however, to clarify a few points: first, by assuming
that the separation motion is quite a sudden process, the
fragments have no time to readjust their shapes, following
the minimum potential lines; second, it seems that recent
experimental results do not confirm the particularly high
fragment excitation energies, as remarked previously, and,.
(°) see Sect. IV
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consequently, a large deformation of fragments at scission
point is not required.

We have performed most of the calculations here reported,
by assuming the spherical shape as the fragment basic scission
shape, that is, the most probable one. The assumption of
spherical scission shape is generally made in ternary fission
studies. We note that, really, the results of the present
calculations do not depend strongly on the shape, whether
it is spherical or with moderate deformation.

b) The scission radius
The scission radius R , as given by formula (1, 2) can beS

obtained by R and R values and by fixing the distance d.1 £
We get

R1(€1) = rQ A1/3 (1 + f1(£1))
1/3

*> =r A (1 + ^»
In the case of spherical nuclei the deformation functions

( 1 a. \f 1 ( fc. ) and f ( C ) are zero: in agreement with r
is

r = 1.22S4- fermio
The Coulomb potential acting between the fragments at scission
point is given by ezjï

V(R_) = ——————— l + C ( £, €0) (II.6)

where e denotes the proton charge and C( w,,C 9) is the
(13)shape — depending correction term . With spherical

shapes of both fragments C is zero. Let us denote by T theo
kinetic, energy of fragments at scission point and by T^^ their
kinetic energy at large distances.
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With good approximation (disregarding the small Coulomb
excitation between the moving fragments) we have

T = V(R ) + T (II.7)öo S S

The average experimental values of T , which give figures
'jt&

of 15O-180 MeV, can be used for calculating a minimum value
of R . In fact, by assuming T = 0 , we obtain values

O O
of R of the order of 18 fermi and values of d ci6-7 fermi.

o

Taking into account that T has a value of 10-20 MeV, aso
pointed out by ternary fission experiments, we shall somewhat
increase d. We assume

d = 8 fermi

c) Energy balance
We assume that part of the final excitation energy of the

fragment is built up in the saddle-scission motion ,owing to
viscosity, and part is due, after scission, to the readjustment
of the fragment shape. We denote by U and U the scission

öl O4

excitation energies of fragments A and A , respectively,
JL *4

and by U and U the long distance final excitation1 -^
energies. We have

U0.1 = US1 + ED1

V - US2 + ED2

Considering the total energy of the system we have the
conservation relation at scission point

<V

(II.8)
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where E = m + U is the total initial energy, m iso o o o
the ground state mass of the fissile nucleus and U is
its excitation energy. As usually, we denote by Q the
energy released at scission point and by Q^the final
fission energy. We have

(V +TS + US1 + US2

where the Q's are given by

QS =mo - (mSlrtS2) + Uo

d) The statistical hypothesis
Let us pay attention to all possible configurations which

the fragment pair A ,A can assume at scission point, by1 ft
different partition of protons and neutrons and for different
excited states of the nuclei, where the top nucléons are
differently located in external shell orbits. The all possible
excited states correspond to different values of excitation
energies U and U and of kinetic energy T .oJL ct£, o

For each given fragment pair we show then the values Z
and Z . The limiting conditions for excitation energies are

£a

as follows

°*US1 + US2 ̂ % - V (V (II'14)

and for kinetic energy are
0 ̂ Tg ^ Og - V (Rs) (11.15)
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All possible configurations of the pair A , A are included
J_ &

in the given description. We assume then(lO) that the
intrinsic degrees representing the described configurations
are in statistical equilibrium; the degrees related to the
collective motion of nucléons and given by the kinetic
energy T are not considered in equilibrium.o

Saying that all possible configurations of the two fragments
are statistically distributed means, as known from statistical
mechanics, that, when account is taken of a large number of
equivalent independent systems where all the possible states
turn out to be in a given distribution n ,n ,n ......... n

1 At 5» K.

(n is the number of system in a given state y) , we assume
that any possible set of values (n ) is equiprobable to
any other. We remark then, that the scission states correspond
to fixed number of particles N and Z , but that their innero o'
energy E = E - T , that is the energy corresponding to they o S
freedom degrees statistically distributed, is not constant;
in fact, it fluctuates around a given value E - T whereO o
T_ is the average value of T for a given pair A , A The
O O 1 2i

statistical ensemble of states is, therefore, a canonical one.
Under such hypothesis the quoted authors have shown that

the probability of finding the system in a given state y is
defined by

where

P(y) =Z- , e- (11.16)

Zf = ^__ e ^U" (11.17)
A ,A =constantX &
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the sum being extended over all states of the system, with
variations of both inner energies U , U and proton

SI O«4

and neutron numbers. Z-is the canonical partition function,
= t is a constant and t is the thermodynamico o

temperature. We shall see in Sect. IV that |3 is of the
order of 1 MeV

From (II.9) we have then

Ey =mSl +mS2 + V(V +US1 + US2 (II

e) Basic formulae

From formulae (11.16) (11.18) we have

p(y) = Zf e e e (11.19)

where
E = m + U .
1 S1 S1 (11.20)
E = m + U2 S2 S2

The total probability of finding a pair A Z , A Z is
11 £ £

given by

-1 -BE ^ - 5E -f V(R )
PA A (Z1Z2) = ZA1A2 * 2 (11.21)

where the sums are extended over the possible inner states
of the fragments A Z and A Z .

We denote these sums by Zf and Zf , respectively.
These sums represent, in fact, the canonical functions of
the two fragments

S- - E1 ^ «Zfl = ̂ e r 1 ; Zf2 = le r 2, (11.22)
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The knowledge of the fragment canonical functions is
very important for both calculations of the total probabilities,
given by formula (11.21"), and energy distributions. In fact,
the average values of E and E are directly related to the
canonical functions.

Denoting the average values by E and E , we havel £

El - - --"-d ß1 (11.23)

E2

where

1 Zfl
(11.24)

2 f 2(JL> = Z

The average values of fragment inner excitation energies
at scission point are then given by

Ei = msi + usi
E2 = mS2 + US2

(11.25)

The variances of the energy distributions E and E , that
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(14)is,the variances of the U 's distributions are given by
D

2er
Mr SI

2
2 = _LfÜ2_ (11.26)

In order to have realistic values of CO and CU weJL •£
introduce the relations between entropy and partition
function . We have in fact

- Sl
(11.27)

where S and S denote the entropies of fragments A Z1 £i J. JL
and A Z , respectively, at the temperature t .«5 « o

Taking into account (11.21) and (11.27), we have for the
total probability p (Z Z )AA 1 £

+ S - AV (R_) + const. (11.28)o

Substituting the masses by the binding energies we have

lnpA A (W - f>BSl +£BS2 - ßV(V - ÏÏS1 - ÏÏS2 +

+ S + S9 + const. (11.29)
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We note what follows: in principle we can build expressions
of UÜ ' "" which are formally correct, but not sufficiently
accurate in order to represent mass, excitation energy and
entropy of a given nucleus. By separation of the masses and
other terms, as given in the present formalism, we can
describe the masses with the most accurate mass formulae,
based on the liquid drop model, as well as shell model
corrections, energy and entropy of the various fragments, by
making use of the single particle model, and for better
accuracy, of the single particle model plus the pairing
interaction. This will be shown in the next sections.

We recall finally that the average excitation energy and
kinetic energy are related by

U ., + U 0 + T = Q, (11.30)
GO 1 00 2 g»

SECTION III
a) The binding energies at scission point

In order to calculate the B values we have used the recento
( "1 CZ. \results of Seeger and Howard . These authors have calculat-

ed the nuclear masses with good accuracy on the basis of the
liquid drop model with the addition of shell and pairing
corrections. The B expression given by these authors is

B (6) = BLD (C) + u ( € ) + P (6 ) (iii.i)
The exact expressions of the various terms are given in

( 16)Seeger 's papers . We only recall briefly that B (£>)1*D
denotes the liquid*drop term and contains the usual volume

and surface interactions, the Coulomb interaction of protons,
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2the symmetry term proportional to (N-Z) and other minor
corrective addenda. Following Strutinsky 's prescriptions,
the shell correction £U. accounts for unevenness of shell
spacing in the nucleus. We have

r r r& U = dU + &U (III. 2)

where &U >0U refer to the shell correction of neutrons
and protons, respectively; these quantities are generally
given as functions of N and Z , respectively, but they
are expressed in T\(jJ ,T and •>Tu/'r unities, given herebelow,C pwhich are proportional to A"^/^. « U_ and oU^ are positiveL N
for closed shell nuclei and negative for middle shell

, .(16)lei
The pairing correction P ( £- ) is given by

, .(16)nuclei

P = P„ + P_ (III. 3)JN /i

where P and P are the pairing terms for neutrons and
protons, respectively; they are expressed as depending on
N and Z, respectively, and given in the same energy unities
as ÛU andN

P's are positive quantities, but they are practically of
no account for closed-shell nuclei, whereas they affect
middle-shell nuclei at the most.

Finally,we find that P and P are about 1 MeV larger^
when N or Z are even,in comparison with the nearest
corresponding odd N and Z values.

The energy factor unities multiplying the various shell
and pairing corrections are
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where
V = 35.37 MeV; V = 31.08 MeV

All these quantities depend on the shape of the nucleus.
We are indebted to dr. Seeger for sending us the table

of values 0UN> 0 ̂7
 an(* ̂ N'̂ V at ^he various deformations,

b) The level system
( i a\In the msss analysis made by Seeger et al. the shell

effects and the pairing interactions are discussed by
considering a definite set of neutron and proton levels.
These levels are in principle described in the basic picture

(12)given by S.G. Nilsson et al. , but with some different
choice of parameters, in order to obtain a more standardized
and simplified formalism. In fact, proton and neutron energy
levels are obtained by considering the nuclear average
potential as given by a harmonic oscillator well; the shape
of the nucleus is then introduced by means of the quadrupole
deformation fc and the octupole parameter 6 .

The level system is then expressed for all nuclei as a
given sequence of values, where the energy scale depends on
the particular nucleus through the usual Hrffc/ and -ft&J as
energy scale factors.

The level sequence corresponds to fig. 3 and 4 of Seeger's
( 1 fi) """""""""̂

paper . These levels, which are introduced into Seeger's
works for the mass calculations, are used in the present
analysis for the calculation of entropy and average energy
at the given temperature t . The same level set is theno
taken into account for the introduction of the pairing
interaction.
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c) The pairing interaction
For discussion of the pairing interaction we refer to

the general paper by Moretto and Huizenga
The pairing force, acting between the two nucléons of the

pair, is given by strength G for neutrons and strength GN ù
for protons.

Following the well known B.C.S. procedure we have the
relation between the energy gap and the energy levels; in
the neutron case, for instance, we have

-'- - 14
N

where

— — i n , (III.5). >~i

N
6 being the single particle energy and c^ the chemical
potential. A similar equation holds for protons.

As discussed in réf. , at a given critical temperature
t the gap A reduces to zero.

The value of t is approximately given byC

t ~* 2 Â /3. 5 (III. 6)

where A is the ground state gap value.
At temperatures higher than t the pairs dissolve and

\*r

the nucleus behaves like an independent particle system.
The main thermodynamic functions are then well represented
by the independent particle model ; this is true for
the partition function and for entropy; the energy Ug
turns out to be given by the sum of the energy U± related
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to the independent particle excitation plus the condensation
energy P; this means that the curve representing U versusS
t is the same as in the independent particle model, but
it is shifted of the P positive value. The P introduced into
the excitation energy calculations is the same as that
introduced into the binding energies, as discussed in the
previous paragraph.

By considering the average excitation energy U we have
Û

then
U0 = U. + P (III.7)S l. p.

U. being the average excitation energy as predicted by
the independent particle model.

d) Calculation of entropy and average excitation energy
The independent particle model analysis directly gives

the basic formulae for the calculation of entropy and average
energy of the system. We recall that the analysis can be
simply based on the properties of the grand canonical partition
function. We give briefly

Zgc = Vy,Ef 6XP (*N * +**Z "» }
where the sum is made over all possible excited states and
all possible numbers of particles N ,Z . Taking into account
that the particles considered are fermions, J&faT, is then

( 1 1 ̂ o
expressed by the following formula

A>n (l+exp(o( - ß &) (III. 9)
"z
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And then, with obvious meaning of notations:

N

Both o/ o/ and p* are in principle independent parameters
which define the ensemble properties; however, when we fix
the particle numbers, either neutrons f\a/V(ti protons Z, we
have A as an independent parameter and *C <XL as quantities
related to N and to Z, and depending on A.
N and Z being fixed, we have then '

ysi 2L i -?f= N = ""'-N1"^" " N
(III. 10)

f , f are the occupation numbers of the given level,
è , fe are the level energies; the levels are considered asN Zi
twofold degenerate. UNW ,0^ are called the chemical potential
of the nucleus, at the temperature t ; the (A values are quite
close to the Fermi energy values, that is, the energy of the
last filled level in the ground state nucleus.

Under such conditions the relation between CÄ/ and J(, is
given by

CÜ = J( _ <^N-N ,-oCz. z (in. ID
By considering the average total energy given by (11.23) and
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taking into account formula (11.11) we have » by denoting E
total average energy due to neutrons :

df>JU N NE = - ———— = - ———— + ———— . N
d f> d

and then (III.12)

¥N - -

We obtain, then, the total average energy given by

w (III. 13)N N 1+ exp

and the average excitation energy given by

"ÏL = E - E (III. 14)
SN(IP) N °N

where E is the ground state energy given by the independent
°Nparticle model

E M = r— XT (III. 15)oN £ N
N

F being the neutron Fermi energy.
We have analogous equations for protons; finally, we have

U = U + U (III. 16)
IP N(IP) Z(IP)

The relation between entropy S and the other thermodynamic
functions is ,*

S =
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Considering J£ expression (III.9) we have then

SN =
tN N

(III. 18)
Taking neutrons and protons into account , we finally obtain
the complete expression S, defined by

S = S„ + S_ (I II. 19)N Z

where the proton terms are represented in the same way as
the neutron terms.

e) The excitation energy variance^.
Considering formulae (11.26) and (III. 11) we have directly

*
where

we have ĴL. ÖJI » o / ̂ Jt„
(III.2O)

and
(III. 2l)uff

and "by
considering (III, 7)
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The expressions of Ji second derivatives are easily obtained
from formula (III.9). They are

"A* = "- ? fr3N*<*•" ( K-°V ( I I I - 2 2 >tt ib"1 4 eL & '
1 ,_ VÎL^LN = _ _L 2i A- 4eew __« *» *

^
(111.23)

(111.24)

Similar expressions are valid for the proton level system.

f) Plan of calculations
The quantities II, S and 6>.. have been calculated for

S «£

all nuclei when
75 ̂  A ̂  -(75

and for Z values ranging from plus-minus 5 unities around the
so called uniform charge distribution value Z ; Z is
the fragment charge in the case of a uniform distribution of
protons and neutrons in the two fragments of the pair.
It is

ZTT__. = A., . Z /A (III. 25)UCD1 l o o
The thermodynamic functions have been calculated for a set of

values ranging from 0.8 up to 1.2 MeV ; all these values
correspond to t values higher than the critical temperature.
The shape of nuclei have been considered spherical (£= 0).
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SECTION IV. ENERGY DISTRIBUTIONS
a) The analysis

235The probability p (Z1Z9) has been calculated for U"
12 233fission induced by thermal neutrons and for U fission

induced by protons of 9.5, 14 and 20 MeV, respectively.
A. values have been varied from 75 to A /2. Z values have been1 o
centered around Z ^ in the range of +_ 5 charge unities. For
each fragment we have calculated the quantities B , S, U and
_ b b
U and the quantities V_, Q_ and Q and the kinetic energiesoo _ o "S eo
T and TL_ for each fragment pair.
D ***
For each fragment pair A ,A we have the probability of

-L £

the various possible Z ,Z values. Let us call p(Z) the
J_ £*

relevant probability of a given Z value for the whole group of
fragment pairs with given A ,A values._L 2t
We have

= PA A (ZlV 7 ̂  PA A (ZlV1 O <L A-i "-n *- ̂JL £ 7^ JL &

From p(Z) distribution, we easily obtain the average values
of the most interesting quantities for the whole group of
fragments with given A ,A .
We have then

s- ^ V ~U , p(Z)
Z

U . p(Z) (IV.2)6e2

Q_. * p(Z) (IV. 3)oo<
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p(Z) ( IV .4 )

E^. p (Z) (I V. 5)

and so on.

These quantities can be directly compared with experimental

S1
values. We have also calculated the values of *C> and of
(̂0 for each fragment pair A A Z Z .US2 1 2 1 <i

Assuming that the scission point and the scission shape are
well definite, U and U variances are also representative

ol Q£

of the variance of the final excitation energies U.««-, an(*
Û jv, a* infinity. Since the final excitation energies are
then completely uncorrelated the variance of the total
excitation energy turns out to be given by

. 6)

and, from formula (11.11) the variance of the kinetic energy
at infinity turns out to be given by

- e <".7>Te>e ^ao
Finally, when the whole group of fragments with different
Z values and given A A is taken into account, we obtain1 *u
for the variance of final kinetic energy

( IV.8)

62
) can be directly compared with the

TOO 2
experimental values of the kinetic energy variance; in fact ,
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the experimental values generally refer to the whole group of
fragments with given A A values.1 •£

235b) Energy distributions in U thermal neutron induced fission
The values ofV^U^JJKU /calculated in the present analysis

•4* vare given in fig. 1. They can be compared
coming out of experimental data. We have in

where ^ is the average number of emitted neutrons, S is
1the neutron binding average energy in the cascade,

is the neutron average kinetic energy, Ey. is the
average energy emitted as gamma rays.

In order to calculate Û .., from experimental data we behave
as follows: values have been taken from the recent

(-t Q\

results of Boldeman et al. ; we recall that these values
differ somewhat from previous experimental values as given by
Apalin et al. . Apalin's data show very large "^values for
A values around 110-115 and for A values around 150.
1 61

As discussed in Sect. I, we recall that these large
values have caused quite a difficult problem in the interpretation
of scission mechanism.

We show herebelow that in the mentioned A and A regions
J- £t

Apalin's values do not correctly reproduce the total fission
energy.

The S values are obtained from Seeger's tables: in order
to have averaged values, we have considered S energies
corresponding to the first, the second, the third and the
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fourth neutron emitted and then we have averaged the four
quantities: S . The obtain«
over the p(Z) distribution
quantities: S . The obtained values have been then averaged

SN / = VP(Z) (IV. 10)
Z £

The CT , values are taken from the results of Milton andNeut
Fräser - < ' . E y is taken following the statements of Nifenecker
etal.(21) __

a + b V ^ /V|<V (IV. 11)

with a = 1.75, b = 1.10

In fig. 1 the values U__ and IL. obtained from" CO Z
experimental results are compared with the • neoretical U 's.
The calculated Upvalues, given in formula (II. 8) are the
sum of two terms, the inner excitation energy at scission
point and the deformation energy. The first energy term depends

235on the temperature, which for U low energy fission has been
chosen as ,

* ̂ » I

=1.2 MeV'1

The \J value is chosen by fitting the U^ data; in fact, the
fitting has not been accurately optimized; higher values of
t =ft have been used with worse results.0 rThe average deformation energy (IV.5) is reported in fig.2;
it depends on the choice of scission spherical shapes.

From comparison between experimental and calculated values
of U^- we see a general good agreement, but rough discrepancies
in the region where A^lOO up to A **130. In the region where
A/-100 and A «'ISO the calculated values are higher than the
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experimental ones, whereas, at A values around 120, the
calculated values are lower than the others.

In the double-magic nucleus region, i.e. A = 132, where
both neutrons (N=82) and protons (Z=50) are in closed shells,
it is quite difficult to obtain lower energy values, as
predicted bM. experiments. In fact, for these nuclei the
deformation energy is zero and the pairing condensation
energy is also practically zero; the only way to assure lower
excitation energy is to reduce the temperature; such a choice,
however, will reduce the calculated excitation energy all
over the various fragments and has thé consequence of increas-
ing the disagreement in the other mass regions.

On the other hand, it is difficult to obtain higher
calculated values in the A = 110-120 region; in fact, in these
regions the deformation energy, i.-e. the difference between
the spherical shape and the ground state shape is already
large; in order to increase the deformation energy one has to
assume very deformed shapes, well over the acceptable ones.
It can be assumed, in principle, that the statistical hypothesis
is not verified, so that the fragments in A = 132 region have
lower temperature and those in region A = 110-12O have higher
temperature; otherwise the average neutron energy in the
fragment with A <£132 does not show a decrease in the temperature;
we recall that the nuclear temperature and the average neutron

(17)energy are related by a proportionality Iftw . If fission
at higher energy is considered, we shall see in the next
paragraph that the agreement between experimental and calculat-
ed final excitation energies is quite good over all the mass
values»
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It is then possible to suggest that the shell effects
remarked in the low energy fission are not correctly represented
by Seeger's level scheme, at least not completely.

At higher energy the shell effects disappear and the
calculated data agree then better with the experimental ones.

We have compared the values of QuL, obtained (see 11.10)
from experimental values of U_̂ ., + IL.-. „ and T_A with<a© 2 °̂

values obtained from formula (11.13) and Seeger'sOB h
mass values, by taking average values over Z (as in IV. 3) .<— N (22)r^/values are taken from Ribrag
In fig. 3 we report the calculated and experimental ̂ -̂̂
values, which show a general good agreement; in the same figure
also the values of'Oflj.yare reported, the observed disagreement,
which is not remarkable, except in the symmetric fission
region, is a consequence of the discrepancies in the/XjJScurve,
as previously discussed. In fig. 4, as above said, we give
t he Vj—/ values obtained from experimental values of given in

- Uréf.
Finally, comparison of the calculated values of the kinetic

2energy variance (Ç ) with the experimental values given in
(23) *»réf. is shown in fig. 5.

Too
the calculated ones. We have to consider that in the

The experimental results show 6 1 values higher than-c

calculated values we do not account for the energy and mass
finite resolution; it is also possible that the hypothesis
of a fixed scission shape is too restrictive, so that a
fluctuation of the scission shape and then of deformation
energy might increase the total energy variance. It is
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j**» Onoteworthy to say that the basic <^ values are of the
correct order and give support to the statistical model.

We recall that the predicted absence of correlation
between the excitation energies of the two fragments of the

(9)pair, as shown by the basic experiments of Signarbieux et al. ,
is in principle contained in the statistical formulae, as from
(11.21) (see réf.(10)).

233c) Energy distribution in U" fission induced by moderate
energy protons

235The same analysis, as described in U thermal neutron
233fission, has been performed for U" fission induced by

protons having energy of 9.5, 14 and 20 MeV, respectively.
The experimental values of the average final excitation energies

calculated by formula (IV.9), considering the
(24)values given by Vandenbosch et al.

The values of KtAu<k have been taken from the same authors
and E has been assumed, in a first approximation, as given
by Nifenecker's formula

( 1 6^The values S have been deduced from Seeger's table
and averaged in the same way as previously shown.

The calculation of the theoretical TJvalues has been
made by formulae (III.14), (III.16) and (III.7).

The values of P have been chosen as follows: in correspondence
with increasing proton energies, we have

for 9.5 MeV protons
for 14 MeV protons

-1.A - 0.8 MeV"" - for 20 MeV protons
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< \ / Xf̂lBiiu'n̂  N^OU9f^re comPared with
the experimental ones in fig. 6. A general agreement is
found and both experimental and theoretical values show
a reduction in the shell effects such as the peak in U
values in the middle shell region (A = 115) and the valley
in the closed shell region (A* 132).

In fig. 7 the/Q-^frvalues obtained from experimental values;—*—— \^t (24)of \lLjQ> and \T0«y the latter defined also in réf. , are
^/%T ^ /^»compared with vQ^5^ values obtained from Seeger's mass

tables and averaged over Z.
In fig. 8 we show the values of the variance, both calculated

by formulae (III.20), (III.21), (IV.8) and obtained from
experimental results. These results are taken from the

(25)experiments of Schmitt et al. and refer to proton energies
of 8.5 MeV and 13 MeV, respectively.

The agreement between experimental and calculated values
°^ V*flB/ 'N?AfflZ-an̂  v^T-J-r *s reasonably good, but not
completely satisfactory in the symmetric fission region.

We recall that all the calculations contain two parameters
only, the value of d, which is not critical, and the temperature
t .o

935
SECTION V. PROTON DISTRIBUTION IN U" FISSION INDUCED BY

THERMAL NEUTRONS
a) The analysis

The calculation of p(Z) has been performed by formulae
(IV. 1), (11.29). As previously said, the value has been
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assumed of the order 1.2, MeV
The obtained p(Z) values are reported in table I for the

various A and A values.
1 £i

Starting from these values we have calculated the average
Z and the so called proton excess in the light fragments! :Zi

^=£"z.p(Z) (V.I) ; Az= T - ZUCD (V.2)
"C

where Z is given by (III.25).UOJU
We have then calculated the variance

Z-Z)2 P(Z) (V.3)

We recall that a comparison with experimental data should
take into account that the charge distributions are generally
assumed for the post-neutron fragments, the so-called fission
product: the distributions given in table I are referred to
the scission instant, before neutron emission.

We have the well-known relation between the primary
fragments, hereafter denoted by A , and the secondary post
neutron products, hereafter denoted by Ao

Ag = Ap + V (V.4)

In order to compare the data we have to refer the calculated
p(Z) to the final products through a convenient averaging
procedure (see further on) or to refer the experimental data
to the initial primary fragments through formula (V.4).

We make the following remarks: a number of experimental
data have been analysed, following a method developed by
Wahl et al." first, by assuming a Gaussian shape for p(Z)
experimental distributions.
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Under such a hypothesis the values Z of the most
P ̂ 2probable charge and of the Gaussian width O ,,,._,. haveZ (.G)

been deduced from experimental values of the distribution;
on the basis of the Gaussian parameters, the proton excess
has been calculated. In principle, if distributions are
really Gaussian, the given parameters should coincide in

— 2average Z and variance ̂  , as given by formulae (V.I)
and (V.3); but since the experimental distributions ,
as well as those herein calculated, are not exactly Gaussian,
we have preferred to use the most direct quantities given
by formulae (V.I) and (V.3), which means the actual average
•— —2.Z value and variance Ç" , and to compare these quantities,Z
when possible, with the experimental results directly.

Jb) Comparison between the predicted charge distributions and
the radiochemical results
The measurement of the fission product charge probabilities

/ p /? _
has been carried on by various authors (seerefs. ); there

( O C\\ ( 9R^are the extensive tables of values given by and , and
(27)lately the accurate collection of data by Atniel et al. ,

which, however, is restricted to the most probable fission
products.

In order to compare p(Z) experimental values with the
calculated values, shown in table I , we have calculated the
corresponding average value of the primary mass A for each
fission product A , by using formula (V. 4) and V values of

(18)Boldeman et al . . We have, then, simply interpolated the
two p(Z) distributions corresponding to the integer values
of A just above and below the A value.
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The results of this comparison are shown in fig. 9.
We have an overall general agreement between the experimental
values and the calculated ones.

Starting from the experimental distributions and the
interpolated theoretical ones, in table II we give the
values of Z and /\ .

Because of the general agreement of p(Z) distributions,
we obtain, in this way, a good agreement among all quantities.
It must be pointed out, however, that the calculated values of

are slightly lower than the experimental ones; owing to
this fact, we shall have larger discrepancies when fission
products are at the wing of the distributions, where the
probabilities are quite low. The discrepancies, of the order
of a factor 5-10, can be seen when the low probability fission

( 26}products, given in the collections of refs. ~" , and p(Z)
values obtained by interpolation of the data of table I are
considered.

c) Pairing and shell effects
The pairing terms contained in the binding energies and

in the average excitation energies, when use is made of
formula (11.29), disappear completely; moreover, as the other
terms are dependent on the pairing forces, the statistical
model predicts absence of odd-even effects in the fission
probabilities.

In the experimental data, we note,in fact, the practically
absolute absence of even-odd effects and this is in agreement
with the theoretical predictions 'J . It is, however, possible
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that small effects of thys type may survive, as reported
(27)in réf. by Araiel and Felkstein, probably as a consequence

of the approximation of the whole analysis.
£± values corresponding to the various pairs of A are/i

plotted in fig. 1O versus A values. It is interesting
to note the uniformity of the curve and the absence of
marked shell effects in the double magic nucleus region
(A = 132).

In fact, when formula (11.29) is considered, the shell
corrections in the binding energies are reduced by the shell
effects in the excitation energies, and entropy is a less
sensitive shell depending function. This is the reason why
the behaviour of p(Z) is mainly dependent on the liquid

2drop terms and particularly on the symmetry term (N-Z) .
In experimental data, as shown in table II , we note the

practical absence of particular shell effects.
We recall that, in one case, a strong effect has been

given for A = 132 in réf. " and reported in Denschlag's
(27)tables. The latest results , however, do not confirm the

anomalous value of
In fig. IQb^ comparison is made between £* values^ •• Z

calculated for the fragments (that is referred to A ) and
A (30) ^values given by Armbrust er et al. , obtained throughZ
the P chain analysis; in fig. IQc ; comparison is made
between 4t* values obtained by Glendenin et al. through

Lt

the X-ray method.
Both set of data fit the theoretical predictions correctly;

we make two remarks: there are no experimental data in the
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symmetric fission region and in the magic nuclei region;
the data of the experimental works have been given with
the (Baussian fit.

CONCLUSIONS AND ACKNOWLEDGMENTS
The described analysis shows that the statistical

hypothesis can explain the energy and charge distributions
in the fission fragment pairs with some accuracy. The fitting
requires two free parameters only, namely the scission
distance and the fragment temperature. The scission distance
is not a critical parameter, the temperature has been
varied and increased as the initial excitation energy of the
parent nucleus increases.

values of ft = t range from 1.2 ( for U thermalThe
-1 233neutron fission) to 0.8 MeV for 20 MeV U"1 proton-induced

fission. The fitting can, in principle, be improved through
a more accurate choice of temperature, by assuming, perhaps,
a more sophisticated scission shape, and through a more
appropriate choice of the basic level system. Choosing the
simple spherical shape and the levels as given in Seeger's
recent tabulation, the excitation energies of fragments turn
out to be reproduced well, and better as the temperature
increases. The charge distributions are also well reproduced,
but not very accurately at the extreme wings of the distribution.

The authors thank dr. P.A. Seeger for sending a number of
necessary data, dr. R. Vandenbosch for sending detailed
results, Mr, H. Nifenecker and Mr* C. Signarbieux for kind
discussions. They finally thank dr. G. Degli Antoni and
dr. G. Fait of the Milan University for preparing part of the
computer programme.
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Figure Captions

Fig. l - Average excitation energies at large distance U
versus the fragment mass number A. Ordinate scale
in MeV.
235U J fission induced by thermal neutrons.

experimental values
calculated values

Fig. 2 - Deformation energy at scission point; ordinate scale
in MeV. Abscissa: mass number of fission fragments.
235U fission induced by thermal neutrons.

Fig. 3 - Values of fission energy Q ând fragment average
kinetic energy at large distance T plotted versus
the light fragment mass number A ; ordinate scale
in MeV. Q and T- values are averaged over Z
distribution.
235U fission induced by thermal neutrons.

^^ calculated values
A experimental values

(with "7* values by Boldeman et al.

Fig. 4 - Values of fission energy {^averaged over Z distribution.
calculated values as in fig. 3
experimental values with V values by

(19)Apalin et al. . The disagreement is
emphasized in the regions:. A A^ 85 and
A
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Fig. 5 - Values of kinetic energy variance!!» I plottediv y*/versus the light fragment mass number A .
Ordinate scale in MeV.
235U~ fission induced by thermal neutrons.
Points (open circles) show the calculated values;

(23)full line stands for experimental results by

Fig. 6 - Average excitation energy at large distance
versus the fragment mass number A. Ordinate scale
in MeV.
233U" fission induced by moderate energy protons.
a) 9.S MeV proton energy
b) 14 MeV proton energy
c) 20 MeV proton energy

experimental values
calculated values

Fig. 7 - Values of fission energy and fragment average
kinetic energy at large distance T plotted versus
the light fragment mass number A ; ordinate scale
in MeV. The values of Ĉ and T^ are averaged over
Z distribution.
233U fission induced by moderate energy protons.
a) 9.5 MeV proton energy
b) 14 MeV proton energy
c) 20 MeV proton energy

O calculated values
41 experimental values
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Fig. 8 - Values of kinetic energy variance V (c> \ „ plotted
/!

versus the light fragment mass number A .
Ordinate scale in MeV.
233U fission induced by moderate energy protons.
Points (open circles) stand for the calculated values;
full line shows the experimental values.

a) 9.5 MeV proton energy
b) 14 MeV proton energy

Fig. 9 - p(Z) distributions for various fragment pairs.
fr,..,o.) p(Z) are plotted versus Z in proton charge unities.

235U fission induced by thermal neutrons.
A or A values are reported in the figure.

(27)experimental points (réf. )
calculated values

Fig.10 - Values ofuu in proton charge unities plotted versusZ
the light fragment mass number. Calculated values:
open circles.
Fig. IQâ  shows /J± experimental values as given by
radiochemical measurements and collected in table II
(black points).
Fig. IQb shows / experimental values as given in
réf. (black points).
Fig. IQc^shows the region corresponding to the

(31)experimental results of réf.
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TABLE I p ( Z )

z

z

z

z

z

z

23
29
30
3>I
32
23

29
30
31
32
28
29
30
.31
32
33
29
30
31
32
33
29
30
31
32
33
29
30
31
32
33
34

p(Z) .003736 Ap 81
.489563
.488794
.017893
.000013

p(Z) .000283 82
.166954
..72IOII
.111408
.000344

p(Z) .000010
.029441 83
,57âï42
.387342
.005063
.000001

p(Z) .002422 84
.236053
.720473
.041003
.000048

p(Z) .000090 85
.049647
.753260
.195991
.001011

p(Z) .000001 86
.005012
.4?760I
.554261
.013118
.000006

Z 30
31
32
33
34

Z 30
31
32
33
34
35

Z 31
32
33
34
35

Z 31
32
33
34
35

Z 32
33
34
35
36

Z 32
33
34
35
36

p(Z) .000210
.109186
.796329
.094063
.000211

p(Z) .000005
.013315
.590167
.392114
.004399
.000001

p(Z) .000749
.189152
.762027
.048019
.000053

p(Z) .000004
-030565
.700687
.267085
.001639

P(Z) .003628
.307021
.665699
..024637
.000015

p(Z) .000127
.069435
.768316
.161533
.000589
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94

95

87 Z 32 P(Z) .000004 A 93
33 »009076
34 .472647
35 »507771
36 »0IC498
37 »000004

88 Z 33 P(Z) .000649
34 .151364
35 »766790
36 .081032
37 .000165

89 Z 33 P(Z) »000028
34 Q028396
35 »645851
36 »322362
37 „00336.2
38 »000001

90 z 33 p(zXoooooi
34 »003001

35 »297070
36 .666992
37 .032902
33 .000034

91 Z 34 P(z,>000l83
35 .077036

36 »754347
37 .167620
38 .000814

92 Z 34 P($ »000007 98
35 »otîSïfe
36 .496108
37 .481483
38 »010545

.000005

Z

96 Z

97

35
36
37
38
39
35
36
37
38
39
40
35
36
37
38
39
40
$6
37
38
39
40

36
37
38
39
40
41
37
38
39
40
41

p(Z) .001018
.179816
.747426
.071588
: 000152

p(Z) »000052
.038638
.679527
.279192
.002590
»000001

p(Z) »000002
.004771
.354031
.616616
.024559
.000022

p(Z) .000330
.103956
.765760
.129464
.000490

p(Z) .000013
.018150
.568337
.406959
.006539
.000002

p(Z) .001738
.234383
.715097
.048710
.000072
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A 99 Z 37 p(Z)
38
39
40
41

100 Z 37 p(Z)
38
39
40
41
42

101 Z 38 p(Z)
39
40
41
42

102 Z 38 p(Z)
39
40
41
42
43

I031- Z 38 p(Z)
39
40
41
42
43

104 Z 39 P(Z)
40
41
42
43

»000094 A 105
.055449
.730682
»212449
.001325
»000003
.007522 J06

»433047
.544901
.014519
-»000008

.000554 107

.139803

.770444

.088990

.000209

.000025 108

.026585

.643776

.326297

.003317

. 000001

.000001 109

.002897

.299253

.668001

.029821

.000026 iio

.000190

.080464

.767649

.151122

.000576

Z 39
40
41
42
43'
44

Z 40
41
42
43
44

Z 40
41
42
43
44

Z 40
41
42
43
44
45

Z 41
42
43
44
45

Z 41
42
43
44
45

p(Z) .000008
.013554
.531307
»447608
..007520
»000002

p(Z) »001373
.211922
.733850
.052778
.000077

p(Z) .000091
»053491
.729414
.215664
.001339

p(Z) .000004
.008729
.451992
.525848
.013420
.000007

p(Z) »000893
.170565
.752824
.075545
.000172

p(Z) .000062
.042537
.691846
.263196
.002359
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A III Z 41 p(Z)
42
43
44
45
46

112 Z 42 p(Z)
43
44
45
46

113 Z 42 p(Z)
43'
44
45
46
47

114 Z 42 p(Z)
43
44
45
46
47

115 Z 43 P(Z)
44
45
46
47

116 Z 43 P(Z)
44
45
46
47
48

.000003 A 117P

.006922

.405663

.568106

.019290

.000016

.000720 118

.149768

.754913

.094307

.000292

.000051

.037075

.661965

.297520

.003388

.000001

.000002

.005975

.374188

.5954^5

.024385

.000026

.000620

.135256

.754363

.109350

.000412

.000043

.03̂ 868

.638477

.324284

.004326

.000001

Z 43 p(Z) .000002
44 .005170
45 .348882
46 .617071
47 .028841
48 .000035

Z 44 p(Z) .000522
45 .122674
46 .753609
47 .122674
48 .000522



As
84

85

86

87

88

89

90

91

92

93

94

95.

131

132

133

134

135

136

137

138

139

140

141

143
144

V
.80

.83

.87

.93

1.02

1. 10

1. 17

1.22

1.28

1.34

1.37

1.40

.51

*56

.64

.82

.97

1.07

I. II

1. 15

1.20

1.25

1.28

1.30
1.36
1.42

TABLE

À
P

84.80

85.83

86.87

87.93

89.02

90*10

91.17

92.22

93*28

94.34

95.37

96.40

131*51

132.56

133.64

134*82

135*97

137.07

138. II

139*15

140*20

141.25

142.28

143.30
144.36
145.42
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II

33-60

34.055

34.33

34 ..73

35*28

35.73

36. C2

36*40

36*83

37*35

37*75

38.03

50.71

51.23
51.66

52*10

52*51

52.99

53*43
53*80

54*13

54.45

55.06

55*37
55.69
56.15

ïc^.
33.61

34.02

34.46

34.89

35*32

35.76

36.16

36.57

36.94

37.38

37.79

38.17

50.73

51.12

51.54

51.93

52.42

52.86

53.23
53.65

54.04

54.44

54.81

55.22
55.64
56.05

«t.
.60.

.55

.60

.71

.63

.56

.49

.61

.65

.64

.60

.47

.67

.67

.54

.43

.60

.69

.66

.55

.62

.65

.67

.69

**
*53

.49

.54

.49

.52

.52

.52

.55

.52

.55

.51

.54

.54

.52

.55

.50

.54

.50

.52

.54

.51

.55

.53

.54
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NOTE ON THE NEUTRON-FISSION COMPETITION

IN HEAVY NUCLEI

V. BENZ I

CNEN, CENTRO DI CALCOLO, BOLOGNA (ITALY)

ABSTRACT

A semiempirical approach to determination of the energy
dependence of the ratio T /Tf for heavy nuclei is here presented,
The proposed formulae are applied to
a weak bump is found at about 4 MeV.

240The proposed formulae are applied to the case of Pu, for which

§ 1. In the last few years, a bump-like structure in the T /rfratio
as a function of the excitation energy of the nucleus has been pre-
dicted by various authors j_l, 2"! , as a consequence of the variation
in the single-particle spectra spacing at the minima and maxima of
the fission barrier.

In particular, theoretical calculations predict a bump with a
maximum at about 4-5 MeV for a large variety of heavy nuclei.
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An attempt to verify this theoretical expectation was car
ried out by Fubini Q}J , on the basis of the following argument.

In the framework of the compound nucleus theory, the neutron
and first-chance-fission cross sections for a target nucleus of
mass number (A-l) are respectively given by

% » V<rn/rtot>

°i ' V'Vtot'
0 being the total compound-nucleus cross section.K
Thus, for an excited nucleus of mass number A, one has

F lTf = a /a' = (a +a , +a „ +ar -a' /a' (1)n f n f n,y n > n » Y n,2n f f) f

where a represents the total fission cross section and the other
symbols have the usual meaning.

In deriving the above equation, it is assumed that processes
other than those considered, like compound elastic scattering or
third-chance-fission, are negligible at the considered energies.

Equation (1) was applied by Fubini to the analysis of the
234,T 236TT 240^ , 242_ . , - . _ , , . ,U, U, Pu and Pu excited nuclei. In order to perform the
calculations, the a , a , and 0 . cross sections evaluatedn,y n,n,y n,2n
by Langner et al. [_4J were used, whereas Davey's evaluation jjf]
was adopted for a- and a'. The analysis covered the energy range
1-10 MeV, but the expected bump in the ratio F /F. was not found
in any one of the nuclei considered.

This result might be partly due to one or more of the follow
ing reasons:
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i) All the evaluated cross sections but a are estimated va
lues, because experimental data above few MeV are scarce.
Thus, the adopted cross sections might be too uncertain for
the purpose in hand.

ii) The evaluated a , contain a non-negligible direct comn, n, y ~~
ponent 0 , the various nuclei analysed by Fubini being
rather deformed. This component was not subtracted from
the adopted a , so that the numerator in the R.H.S. ofn,n',y
Eq. (1) is overestimated.

iii) The a' values above the onset of the second—chance-fission
are badly underestimated and, consequently, ratio rr/rf

is overestimated above ̂ 5.5 MeV.
In order to overcome the difficulties arising from the first
two points above, it seems better to write Eq. (1) in a dif
ferent form ,namely

= [(l-R)(oT/ap] - 1 (2)

where a and a represent the total and shape-elastic crossJ- S G
sections, respectively, and R = [~(0 + 0 ) /0,T] •S 6 t O C J.

The ratio R can be calculated with reasonable accuracy by
means of a generalized optical model adjusted to reproduce the 0
and other experimental data like strength-functions, angular distri
butions, etc.... There is some degree of uncertainty about the
choice of parameters on which the deformed optical potential
depends. However, the calculated ratio R should not be too sensi
tive to the adopted parameters, because 0 and 0 have a strongJ. S (£
positive correlation and 0 t./oT

<<o /° m • It should be noted, in
IT O C J. S 6 I



- 456 -

addition, that Eq. (2) takes correctly into account the contribu
tion of the compound elastic cross section, which is neglected
in Eq . (1) .

For these reasons, the results obtained by means of Eq.(2),
using a theoretical estimate of R together with a carefully measur
ed 0 , should be more reliable than those derived from Eq.(l).

As far as point iii) is concerned, it has to be noted that
at high excitation energies the differential cross section for the
second-chance-fission process, which occur after a neutron with
energy between E'and (E'+dE1) has been emitted by the parent nu-
cleus, is given by

d0£ (E;E')= 0n n,(E){C(E)[Tf(E-E')/TT(E-E' )1 E'e~E'/T}dE ' (3)

with 0 , = (0 - 0 -a -a'). The nuclear temperature T appearingn j ii i. s G r o L i
in Eq. (3)depends on the incident neutron energy E, whereas the

" 2C(E) is a. normalization factor (=1/T ).

Thus, if Ef represents the threshold energy for fission of
the residual nucleus (measured from the ground state), one has

0f(E) =of(E)-of(E) =0 n n,(E)ß(E) (4)

ß(E)-(l/T) E' [r ( E - E ' ) / r ( E - E ' f ] e ~ d E 'tot (5)
o

Equation (4) contains two unknown quantities, namely the
"branching ratio" g and the first-chance-fission cross section af
The last one can be dropped if we put

"f » (0T-ase ""rot ~° f+^f^



- 457 -

from which it follows that

aj =ljCl-R)aT-af)][0/(l-ß)] (6)

As far as the parameter ß is concerned, an estimate can be
obtained by using a relationship like Eq.(l) for the ratio T,/T .
which appears in the R.H.S. of Eq.(5); one has

E-Ef
0(E)=(1/T2) J E'[0£(E-E'-Bn)/aR(E-E'-Bn)] e"E'/T dE' (7)

o
Obviously, in this case ratio (̂ f/̂ ) refers to the fis-

sion and total reaction cross sections of the nucleus with mass
number (A-2), whereas B is the last-neutron separation energy
of the nucleus with mass (A-l),

For the nuclei considered by Fubini, the fission is a thre
shold reaction whose cross section can be adequately represented
by a step function starting at some effective threshold energy E .

In addition, the energy dependence of the compound nucleus
reaction cross section a can be reasonably well represented byK
means of the empirical relationship

o-R(e)*cr (v+v/e) (8)
f\

with a = TîR , as suggested by Dostrovski and Fraenkel £l2j .
o

Using these approximations, the integral appearing on the
R.H.S. of Eq. (7) can be very easily evaluated.

§ 2. As an application of the above considerations, the case of
240the Pu excited nucleus has been considered. The R-ratio was

estimated above 3 MeV using the theoretical results given by Prin
ce et al. £ôj , [?J , |j5j , whereas at lower energies the results obtain
ed by Benzi et al. [Vj were adopted, because it is felt that they
are in better agreement with the most recent measurements of CT_,.
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The total cross section a was obtained from an empirical
fit of the very accurate measurements performed by Schwarz and
jreported in réf. |j- o] .

' 239As far as the a - values of Pu are concerned, the e-
valuation of a., carried out by Pitterle et al. [lljwas adopted
up to 5.5 MeV.

In order to obtain an estimate of g above this energy, the
o o Q

Pu fission cross section was approximated by a step function
of 2.2 barn starting at 0.4 MeV, to which a value of Ef=: 6MeV cor-
responds. Such an estimate was made on the basis of the experimen
tal values obtained by Silbert 1_13_|

The a-n was calculated according to formula (8). An analys-
is of the compound nucleus neutron cross sections, calculated for
nuclei with mass A-238 by means of the generalized optical model,

1/3provided the following empirical values : R=1.5A fm,y=1.060
239and v=0.294 MeV. The neutron separation energy B of Pu, which

appears in Eq. (7), was taken from Howerton's comp i lat ionl_14j ,
which gives B = 5.66 MeV.

The last parameter required in order to calculate 3, namely
the nuclear temperature T, was estimated from the spectrum of se-239condary neutrons emitted by Pu. For this purpose, the measure-
ments carried out by Voigner et al.FlSlat neutron incident energies
of ^14 MeV were analysed. The obtained value of T^lMeV was adopt*
ed as normalisation point, assuming that at high excitation energ-
ies the temperature depends on the energy of the incident neutron as
E1/2.

Inserting in Eq.(7) the values of ac , §r , E ,., B and T thusr K r n
obtained, a value of g^O.6 was found at E=9 MeV.

With such aß- value, Eq.(6)gives a" =0.66 barn, so thati t
a^JJjl.7 barn. Thus, if a monotonie behaviour of a' is assumed, we
are led to the conclusion that al remains nearly constant above
5.5 MeV.

This result agrees with the extrapolation of a' made by Schuster
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and Howerton Ql6 | in analysing the energy dependence of the
average number of prompt neutrons emitted in the fission of
2 35Pu, but strongly disagrees with Davey's estimate, as shown
in Fig. 1.

In addition, the estimate of a" here obtained agrees
quite well with the evaluation carried out by Hunter et al.
in 1973 [17~|-

In Table I, the various cross sections adopted in this
work are given in column under (A), together with the result-
ing T /Ff. In the same table, the cross sections appearing
in Eq.(l), as adopted by Fubini, and the resulting F /F,, are
shown in the columns under (B).

It should be noted that use of more recent evaluations of
239a for Pu, e.g. ENDF/B-IV, would not in practice change the

estimate of 01.
For comparison's sake the two different estimates of

T /Tf are plotted in Fig. 2. As one can see, the results obtained
with the methods here adopted clearly show a bump-like behaviour,
with the maximum at around 3-4MeV, as predicted by Britt et al.[lj.

However, the absolute value of the bump at its maximum
is much lower than predicted in Ref.[l"]. In fact, from Fig. 2
one has (Tn/rf) peak ̂  1 • * <r

n/rf } 9MeV whereas Britt et al.
obtain a factor about 3.5 times larger. Such a discrepancy can-
not be accounted for by any reasonable estimate of errors in the
adopted cross sections.

It has to be noted that the gamma instabilities at the
first saddle were not considered in the theoretical estimates
of T /T. given in Ref. l. From the fact that the effect of an
equilibrium gamma deformation at the taken saddle would be to
decrease the shell energy and the density of single-particle
states near the Fermi surface, one expects the bump-like struc
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ture to be less pronounced for plutonium and heavier actinide
nuclei [_2~\ . Such an expectation is in qualitative agreement
with the results here obtained for Pu-240. This seems to give
some additional support to the need for more realistic models
in which the equilibrium gamma deformation at the first saddle
is properly taken into account.
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FIGURE CAPTIONS

Fig. I Estimated energy dependence of the first-chance-
239fission c' in Pu.

Fig. 2 The estimated energy dependence of F /T. in the
240 n

Pu excited nucleus. The estimate by Fubini
(dashed line) is shown for comparison.
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