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FOREWORD

Nuclear data for applications constitute an integral part of the IAEA programme of ac-
tivities. When considering low-energy nuclear reactions induced with light particles, such
as neutrons, protons, deuterons, alphas and photons, a broad range of applications are
addressed, from nuclear power reactors and shielding design through cyclotron production
of medical radioisotopes and radiotherapy to transmutation of nuclear waste. All these
and many other applications require a detailed knowledge of production cross sections,
spectra of emitted particles and their angular distributions.

A long-standing problem of how to meet the nuclear data needs of the future with
limited experimental resources puts a considerable demand upon nuclear model compu-
tation capabilities. Originally, almost all nuclear data were provided by measurement
programmes. Over time, theoretical understanding of nuclear phenomena has reached a
high degree of reliability, and nuclear modeling has become standard practice in nuclear
data evaluations (with measurements remaining critical for data testing and benchmark-
ing). Thus, theoretical calculations are instrumental in obtaining complete and internally
consistent nuclear data files.

The practical use of nuclear model codes requires a considerable numerical input that
describes the properties of the nuclei and the interactions involved. Experts have used
a variety of different input sets, often developed over years in their own laboratories.
Many of these partial input databases were poorly documented or not documented at
all, and were not always available for other users. With the trend of reduced funds for
nuclear data evaluations, there is a real threat that the immense accumulated knowledge
of input parameters and associated calculations may be compromised or even lost for
future applications. Therefore, the IAEA has undertaken an extensive co-ordinated effort
to develop a library of evaluated and tested nuclear-model input parameters.

Considering that such a task is so immense, it was decided to proceed in two major
steps. First, to summarize the present knowledge on input parameters and to develop a
single Starter File of input model parameters, and then to focus on testing, validating and
improving the Starter File. The first step was addressed through the IAEA Co-ordinated
Research Project (CRP) entitled “Development of Reference Input Parameter Library for
Nuclear Model Calculations of Nuclear Data (Phase I: Starter File)”, initiated in 1994
and completed successfully in 1997. The electronic Starter File (known as RIPL-1) was
developed and made available to users throughout the world. The second step followed
immediately afterwards within the CRP entitled “Nuclear Model Parameter Testing for
Nuclear Data Evaluation (Reference Input Parameter Library: Phase II)”, initiated in
1998 and completed in 2002. This later CRP resulted in the revision and extension of
the original RIPL-1 Starter File to produce a consistent RIPL-2 library containing rec-
ommended input parameters, a large amount of theoretical results suitable for nuclear
reaction calculations, and a number of computer codes for parameter retrieval, determi-
nation and use. The new library will be of immediate practical value for a number of
users and should represent a firm basis for future improvements.

Initial objectives of the RIPL-2 CRP were:

• Test and improve nuclear model parameters for theoretical calculations of nuclear
reaction cross sections at incident energies below 100 MeV.

• Produce a well-tested Reference Input Parameter Library for calculations of nuclear
reactions using nuclear reaction codes.

• Develop user-oriented retrieval tools and interfaces to established codes for nuclear
reaction calculations.



• Publish Technical Report and make the library and tools available on-line and on
CD-ROM.

The CRP participants (T. Belgya (Hungary), O. Bersillon (France), R. Capote Noy
(Cuba), T. Fukahori (Japan), Ge Zhigang (China), S. Goriely (Belgium), M. Herman
(IAEA), A. V. Ignatyuk (Russian Federation), S. Kailas (India), A. J. Koning (Nether-
lands), P. Obložinský (USA), V. Plujko (Ukraine) and P. G. Young (USA)) convened at
three Research Co-ordination Meetings held at:

• Vienna, Austria, 25-27 November 1998 (see INDC(NDS)-389, February 1999)

• Varenna, Italy, 12-16 June 2000 (see INDC(NDS)-416, September 2000)

• Vienna, Austria, 3-7 December 2001 (see INDC(NDS)-431, April 2002)

to discuss progress and agree on the contents and form of the new library. In the course
of work, the original scope of the CRP has been substantially extended by inclusion of
new quantities and results of microscopic calculations for about 8000 nuclei. Extensive
efforts have also been dedicated to the testing of the RIPL-2 data.

RIPL-2 is targeted at users of nuclear reaction codes interested in low-energy nuclear
applications. Incident and outgoing particles include neutrons, protons, deuterons, tri-
tons, 3He, 4He and γ, with energies up to approximately 100 MeV. The numerical data
and computer codes included in the library are arranged in seven segments/directories:

No Directory Contents

__ _________ ____________________________________

1 MASSES Atomic Masses and Deformations

2 LEVELS Discrete Level Schemes

3 RESONANCES Average Neutron Resonance Parameters

4 OPTICAL Optical Model Parameters

5 DENSITIES Level Densities (Total, Partial)

6 GAMMA Gamma-Ray Strength Functions

7 FISSION Fission Barriers and Level Densities

The RIPL-2 library is physically located at a Web server operated by the IAEA, and
can be conveniently accessed by pointing any Web browser at:

http://www-nds.iaea.org/RIPL-2/
This Web site provides for downloading entire RIPL-2 segments, individual files, and
retrieval of selected data. In addition, some basic calculations and graphical comparisons
of parameters are also available. A CD-ROM with the complete RIPL-2 library can
be requested cost-free from the IAEA. This Handbook contains a full description of the
library including the physics involved, with an introductory and seven technical chapters,
plus related Annexes that describe the library structure as defined above.

During the development of RIPL-2, several important issues could not be addressed
within the current CRP. Therefore, a third phase of the RIPL project has been initiated
in 2002 in order to extend the applicability of the library to cross sections for reactions
on nuclei far from the stability line, incident energies beyond 100 MeV, and reactions
induced by charged particles. This phase is planned for completion in 2006-07.



The IAEA wishes to thank all participants of the CRP for their diligent work that
has lead to the creation of the Reference Input Parameter Library, and for their valu-
able contributions to the present Technical Report. Finally, M. Herman was the IAEA
responsible officer for the CRP, this publication and the resulting database.
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1 INTRODUCTION

An important trend in the evaluation of neutron and charged-particle nuclear data is
the increased use of nuclear reaction theory codes to compute cross sections, spectra and
angular distributions required for a large variety of applications. As a matter of principle,
the use of model codes offers many advantages such as preservation of the energy balance
and coherence of partial cross sections with total and/or reaction cross sections. These
features are essential for consistent and reliable transport calculations. In addition, the
theoretical approach permits the prediction of data for unstable nuclei and fills gaps in
the experimental data. Nuclear reaction theory is believed to be in a position to meet
many of the requirements for practical applications. The major sources of uncertainty are
the input parameters needed to perform theoretical calculations.

For any nuclear reaction calculation, nuclear masses are the basic data for obtaining
binding energies and Q-values. These data are presented in Chapter 2, together with
other useful information such as ground state deformations.

Discrete level schemes, including spins, parities, γ-transition branchings and conver-
sion coefficients are important for the determination of low-energy nuclear level densities
and for cross-section calculations. Most of the related experimental information is con-
tained in the ENSDF library. However, the format of the ENSDF library is not appropriate
for reaction calculations. In addition, a lack of unique spin and/or parity assignments for
many levels, and missing conversion coefficients for most of the electromagnetic transitions
prevent direct use of the ENSDF library by the reaction model codes. To overcome these
deficiencies, a dedicated RIPL-2 library of discrete levels has been created. Chapter 3
describes the contents, along with the procedures used to retrieve the necessary data and
fill gaps.

As is well known, neutron cross sections at low incident energies exhibit resonant
behavior, and a careful statistical analysis of the experimental results leads to the average
neutron resonance parameters, as described in Chapter 4. These average quantities are
not directly used in the model calculations, but are important data for constraining the
parameters of different models:

• average spacing of resonances is the only measure of the level density near the
neutron binding energy,

• neutron strength functions have to be reproduced by the optical model at low en-
ergies, and

• average radiative width is used to normalize γ-ray strength functions.

Above the resonance energy region, the nuclear reaction models can only reproduce
the smooth behavior of the cross sections, and the evaluation of nuclear data is generally
divided into two major steps. By using the optical model in the first step, the elastic
channel and the direct inelastic channels for deformed nuclei are explicitly calculated,
whereas all other channels are lumped together in the reaction cross section. Chapter 5
gives an extensive compilation of optical model parameters for different types of incident
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particles, from the neutron to 4He. A consistent evaluation can be achieved for each
interacting system by using a unique parameterization which reproduces the relevant ob-
servables (total or reaction cross sections, elastic angular distributions, analyzing powers)
over an energy range as broad as possible, including, the low energy region in the case
of neutron interaction, where the calculated neutron strength function and scattering ra-
dius should match the experimental values. Furthermore, the parameters should have a
smooth energy dependence.

The second step consists in sharing the reaction cross section among all possible indi-
vidual channels. For incident energies lower than about 10 MeV, this is done by using the
statistical decay of the compound nucleus, a formalism often referred to as the Hauser-
Feshbach theory. Written in a compact form, the Hauser-Feshbach formula that gives the
cross section for the A(a,b)B reaction is represented by the expression:

σa→b =
∑
Jπ

Ta Tb∑
i

∑
c Tic

where the index i stands for the different types of outgoing particles1 (or the fission
channel, if any), and the T s are the transmission coefficients calculated by the optical
model for this particle. The index c represents all accessible final states which are either
discrete excited levels of the residual nucleus or a continuum of levels described by the
level density.

In the case of discrete levels, one should only take into account the low-lying levels of
known excitation energy, spin, parity, and decay branchings (if γ production is required).
Above the energy of the last level for which one of the previous quantities is missing or
uncertain, one has to consider a continuum of levels described by the total level density.
At low excitation energy, the level density should match the cumulative number of discrete
levels and reproduce the average spacing of neutron resonances at the neutron binding
energy. Different theoretical approaches to this longstanding problem are presented in
Section 6.1.

For incident energies higher than approximately 10 MeV, the pre-equilibrium reaction
mechanism constitutes the bridge between fast (direct) processes and slow (compound)
processes providing for the high-energy tails in spectra and the smoothly forward peaked
angular distributions. Methods for calculating partial (or particle-hole) level densities
used in the pre-equilibrium model calculations are given in Section 6.2.

Gamma-ray emission is an almost universal reaction channel since γ rays, in general,
accompany any nuclear reaction. Modeling of the γ cascade provides γ spectra and allows
calculation of isomeric cross sections. The basic quantity is the γ-ray strength function
derived typically from the Giant Resonance parameters, as discussed in Chapter 7.

The fission cross-section calculations depend on two key ingredients: (i) fission level
density (level density of the fissioning nucleus at the saddle point deformation), and (ii)
fission barriers. These two strongly interdependent parameters are discussed in Chap-
ter 8.

1Outgoing particles considered are normally p, n, d, t, 3He, α and γ.
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Many of the parameters are model dependent, and should therefore be used strictly
within the frame of their definitions. Although the parameters reported in RIPL-2 are
ready to be used in reaction calculations, some of them may still need improvements or ad-
justments. The reaction models are particularly sensitive to optical model potentials and
total level densities, which have to reproduce consistently different pieces of information.
Therefore, utmost care should be applied when selecting an adequate set of parameters.

Due to the extensive testing and additions, the RIPL-2 database has been substantially
improved compared to the original RIPL-1 database. Nevertheless, RIPL-2 does not fully
supersede the original RIPL-1 library since only the recommended files were considered
in the RIPL-2 exercise. So called ‘other’ files of RIPL-1 were not incorporated in the
new database. Although these do not match the level of testing typical for RIPL-2, they
still might be of practical use in nuclear data evaluations or basic research, and therefore
RIPL-1 information and data continue to be fully tracable through:

(a) Handbook for Calculations of Nuclear Reaction Data - Reference Input Parameter
Library, IAEA-TECDOC-1034, IAEA, Vienna (1998);

(b) Web site address: http://www-nds.iaea.org/ripl/;

(c) CD-ROM: RIPL-1.

RIPL-2 contains numerical values for most of the parameters needed to model nuclear
reactions and a number of computer codes. For nuclei close to the stability line, the
parameters were derived from the available experimental data. For a certain nucleus,
these are usually sets of a few numbers used by the reaction codes to calculate derived
quantities such as Q-values, transmission coefficients, level densities or γ-ray strength
functions. Often, these parameters are supplemented with closed-form systematics to fill
gaps in the experimental data. Since these systematics were obtained by fitting existing
data, their extrapolation to the nuclei far from the stability line is doubtful. Therefore,
RIPL-2 also contains parameters and some derived quantities provided by the large-scale
calculations within microscopic models adjusted to the existing experimental data. These
results are tabulated for practically all nuclei between drip lines and can be directly used
by nuclear reaction codes. All RIPL-2 data are stored in a unified format to facilitate
their use. In addition to the model parameters, RIPL-2 includes a number of utility
codes, which are intended for calculating derived quantities from the RIPL-2 parameters,
data retrieval and library maintenance. The internet address for the RIPL-2 database is
http://www-nds.iaea.org/RIPL-2/.
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2 ATOMIC MASSES

Coordinator: S. Goriely

Summary

Nuclear ground state properties are fundamental quantities in many different fields of
physics. The present chapter considers the available experimental data concerning the
atomic masses (Audi and Wapstra 1995 [2.1]), as well as the deformation parameters
(Raman et al. 2001 [2.13]) extracted from the experimental reduced electric quadrupole
transition probability. When no experimental data exist, ground-state properties can
be derived from local or global theoretical approaches. RIPL-2 provides ground-state
properties predicted by three global models: the Finite-Range Droplet Model (Möller et
al. 1995 [2.3]), the Hartree-Fock-Bogoliubov Model (Goriely et al. 2002 [2.6]) and the
approximation to the Shell Model by Duflo and Zuker (1995 [2.8]). In addition to nu-
clear masses, the FRDM model also provides microscopic corrections and deformation
parameters, while the HFB model provides density distributions and deformation param-
eters. Relative isotopic abundances for all stable nuclei found naturally on earth are also
provided as supplementary information.

2.1 Atomic masses

Nuclear ground state properties, and more particularly nuclear masses, are fundamental
quantities in many different fields of physics. The mass Mnuc(N, Z) of a nucleus with N
neutrons (of mass Mn) and Z protons (of mass Mp) is measurably different from the sum
of the masses of the free nucleons, and provides a direct determination of the internal
energy Enuc (negative of the binding energy) of the nucleus:

Enuc = {Mnuc(N, Z) −NMn − ZMp}c2 (2.1)

The atomic mass can be calculated from the nuclear mass from the relationship:

Mat = Mnuc(N, Z) + ZMe − Be(Z) (2.2)

where Me is the electron mass, and Be is the total atomic binding energy of all electrons.

Most of the nuclear masses for nuclei close to the stability line were measured with high
accuracy. However, many applications involve nuclear species for which no experimental
data are available. In these cases, they have to be estimated on a theoretical basis.
Many different mass formulae are available nowadays. We will consider here only global
approaches, which provide predictions of nuclear masses for all nuclei lying between the
proton and the neutron drip lines up to the super-heavy region Z <∼ 120.
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2.1.1 Experimental masses

The latest compilation of experimental atomic masses at the time was the 1995 work
of Audi and Wapstra [2.1], which includes 1964 nuclei. In addition, these authors also
estimated a set of additional 967 masses from trends in systematics based on the regularity
of the mass surface. This final set of Audi and Wapstra best recommended masses included
2931 nuclei.

2.1.2 Finite-Range-Droplet-Model mass table

Attempts to develop formula or algorithms representing the variation in Enuc from one
nucleus to another go back to the 1935 “semi-empirical mass formula” of von Weizsäcker
[2.2]. This approach corresponds to the widely used liquid-drop model of the nucleus,
i.e., the macroscopic mass formula which accounts for all but a small part of the vari-
ation in the binding energy. Improvements have been gradually made to the original
liquid-drop mass formula, leading to the development of macroscopic-microscopic mass
formulae, where microscopic corrections accounting for the shell and pairing correlation
effects are added to the liquid drop part. Thus, the macroscopic and microscopic fea-
tures are treated independently, both parts being connected exclusively by a parameter
fit to experimental masses. Later developments included modifications to the macroscopic
properties of the infinite and semi-infinite nuclear matter and the finite range character of
the nuclear forces. The most sophisticated version of this macroscopic-microscopic mass
formula is the “finite-range droplet model” (FRDM) [2.3]. The atomic mass excesses
and nuclear ground-state deformations are tabulated for 8979 nuclei ranging from 16O to
A=339. The calculations are based on the finite-range droplet macroscopic model and the
folded-Yukawa single-particle microscopic correction. Relative to the 1981 version, im-
provements are mainly found in the macroscopic model, pairing model with a new form
for the effective-interaction pairing gap, and minimization of the ground-state energy with
respect to the additional shape degrees of freedom. The parameters are determined di-
rectly from a least-squares adjustment to the ground-state masses of 1654 nuclei ranging
from 16O to 106Sg. The error of this mass model is 0.689 MeV for the 1888 Z, N ≥ 8
nuclei with experimental masses. Data file mass-frdm95.dat includes the Audi and
Wapstra (1995) experimental and best recommended masses when available, along with
the FRDM calculated masses, microscopic corrections and deformation parameters in
the β-parameterization. The microscopic correction Emic corresponds to the difference
between the total binding energy and the spherical macroscopic energy (see below).

2.1.3 Hartree-Fock-Bogoliubov mass table

As well as the liquid-drop approach, there are microscopic theories based on the nucleonic
interactions providing estimates of the binding energies. The most promising approach
nowadays is the non-relativistic Hartree-Fock (HF) method based on an effective nucleon-
nucleon interaction of Skyrme type. It was demonstrated that HF calculations in which
the Skyrme force is fitted essentially to all mass data are not only feasible, but can also
compete with the most accurate droplet-like formulae available nowadays [2.4].
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Recently, a new Skyrme force has been derived on the basis of HF calculations with
pairing correlations taken into account in the Bogoliubov approach, using a δ-function
pairing force [2.5, 2.6]. Pairing correlations are often described within the BCS framework.
However, the BCS procedure neglects the fact that the scattering of nucleon pairs between
different single-particle states under the influence of the pairing interaction will actually
modify the single-particle states, a difficulty that becomes particularly serious close to the
neutron-drip line where nucleon pairs are scattered into the continuum. For such nuclei,
this problem is avoided in the HF-Bogoliubov (HFB) method.

The Skyrme and pairing parameters of the HFB-2 mass table are determined by fitting
to all Audi and Wapstra (1995) experimental masses for 1888 Z, N ≥ 8 nuclei, both
spherical and deformed. A Wigner correction term of the form EW = VW exp(−λ(N −
Z)2/A2)−V ′

W |N −Z| exp(−A2/A2
0) is also included to account for the over-binding in the

Z � N nuclei. The latest force (BSk2) is a standard Skyrme which gives an rms error of
0.680 MeV with respect to the 1888 known masses. The quality of the HFB predictions
is identical to the one obtained with the FRDM (the same rms of about 0.680 MeV
on the same set of masses). The BSk2 force is characterized by the following nuclear
matter properties: energy per nucleon at equilibrium in symmetric nuclear matter av =
−15.794 MeV, the corresponding density ρ0 = 0.1575 fm−3, the isoscalar effective mass
M∗

s /M = 1.04, the isovector effective mass M∗
v /M = 0.86 and the symmetry coefficient

J = 28 MeV. Details regarding the BSk2 force can be found in Ref. [2.6] and those
regarding the HFB model in Ref. [2.5]. The HFB model was also found to give reliable
predictions of nuclear radii. A comparison with the measured radii of the 523 nuclei in
the 1994 data compilation of Nadjakov et al. [2.7] shows an rms error of 0.028 fm.

The complete HFB-2 mass table is available in the mass-hfb02.dat file. In addi-
tion to the Audi and Wapstra (1995) experimental and best recommended masses when
available, this mass table includes the HFB masses, deformation parameters in the β-
parameterization and the parameters of the nucleon density distribution for all 9200 nuclei
lying between the two drip lines over the range Z, N ≥ 8 and Z ≤ 120. The density dis-
tribution amplitude ρq,0, radius rq and diffuseness aq are determined by fitting the HFB
distribution by a simple spherical Fermi function ρq(r) = ρq,0/[1 + exp(−(r − rq)/aq)].
Note that the amplitude ρq,0 is determined so that the nucleon number is conserved in
the spherical approximation. Exact HFB density distributions (assuming spherical sym-
metry) are also tabulated in the matter-density-hfb02 subdirectory for nuclear radii
up to 15 fm in steps of 0.1 fm. The tabulated nucleon densities do not take into account
the finite size of the proton.

2.1.4 Duflo-Zuker approximation to the Shell Model

Another microscopic approach worth considering is the development by Duflo and Zuker
[2.8] of a mass formula based on the shell model. In this approach, the nuclear Hamiltonian
is separated into a monopole term and a residual multipole term. The monopole term is
responsible for saturation and single-particle properties, and is fitted phenomenologically,
while the multipole part is derived from realistic interactions. The latest version of the
mass formula made of 10 free parameters reproduces the 1888 Z, N ≥ 8 experimental
masses with an rms error of 0.553 MeV. A simple 120-lines FORTRAN subroutine in the
masses/duflo-zuker96.for file makes the computation of any mass straightforward, and
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2.2 Shell corrections

The microscopic correction to the binding energy is a quantity of fundamental importance
in the derivation of many physical properties affected by the shell, pairing and deformation
effects. However, there is a lot of confusion in the literature about what is referred to as
the shell correction energy; different definitions exist. The most common one defines the
various microscopic corrections (e.g., [2.3]) as follows:

The total nuclear binding energy is written as

Etot(Z, A, β) = Emac(Z, A, β) + Es+p(Z, A, β) (2.3)

where β characterizes the nuclear shape at equilibrium, i.e., the shape which minimizes
the total binding energy. Es+p = Eshell +Epair is the shell-plus-pairing correction energy1.
Defining a macroscopic deformation energy by the difference in the macroscopic energy
between the equilibrium and spherical shape:

Edef (Z, A, β) = Emac(Z, A, β)−Emac(Z, A, β = 0), (2.4)

the total nuclear binding energy can now be expressed as

Etot(Z, A, β) = Emac(Z, A, β = 0) + Emic(Z, A, β) (2.5)

with the microscopic correction

Emic(Z, A, β) = Eshell(Z, A, β) + Epair(Z, A, β) + Edef (Z, A, β) (2.6)

including all shell, pairing and deformation effects. Another frequent definition of the
microscopic energy considers the experimental energy Eexp(Z, A), when available, instead
of the total theoretical binding energy Etot and is given by the equation:

Eexp
mic = Eexp(Z, A)− Emac(Z, A, β) (2.7)

� Eshell(Z, A, β) + Epair(Z, A, β) = Es+p(Z, A, β) (2.8)

Should the mass formula be exact, Eexp
mic = Es+p(Z, A, β). Although Eexp

mic is often referred
to as an “experimental” microscopic correction, this terminology is incorrect, since the pa-
rameter remains model-dependent through the use of the model-dependent Emac quantity.
Each mass model calls for specific theoretical backgrounds to estimate the macroscopic
part, as well as the shell, pairing and deformation energies. The most common approaches
to derive the macroscopic part are the Finite-Range Droplet or Liquid Drop model [2.3],
the Thomas-Fermi approach [2.9] or the Extended-Thomas-Fermi approach [2.10]. De-
pending on the approach followed to derive the smooth macroscopic part of the binding
energy and the parameter set adopted for the macroscopic part, the microscopic correc-
tions can take different values. The FRDM microscopic correction Emic can be found in
the mass-frdm95.dat file. This dataset also contains the deformation corrections calcu-
lated for the deformation parameters β2 and β4 estimated from the FRDM mass formula.

1Note that we define the pairing correction for even-even nuclei, and do not consider the odd-even
effect also attributed to the pairing interaction.
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Therefore, these corrections can also be used for transforming the FRDM microscopic cor-
rections into the corresponding FRDM shell corrections. The shell corrections calculated
according to the liquid drop model of Myers-Swiatecki [2.11] are included in the “Nuclear
Level Densities” segment (shellcor-ms.dat file).

When shell, pairing and deformation corrections are introduced to a given quantity
(for example the nuclear level density) using the corresponding energy correction, special
attention should be paid to the prescription adopted. In particular, depending on the level
density formula considered, the ”microscopic” correction to the level density a-parameter
can include very different effects, so that different energy corrections should be considered
(see [2.12] for more details).

2.3 Deformations

In addition to the theoretical deformation parameters derived from the FRDM and HFB
ground-state predictions, information can also be extracted from the experimental reduced
electric quadrupole transition probabilities B(E2). Assuming a uniform charge distribu-
tion to distance R and zero charge beyond, the model-dependent deformation parameter
β is related to B(E2) by [2.13]:

β =
4π

3ZR2
0

[B(E2)/e2]2 (2.9)

where R0 = 1.2 A1/3. The final compilation of 328 experimental deformation parameters
β (and corresponding uncertainties) is included in the gs-deformations-exp.dat file.
Note that a similar parameter β2 is widely used in the theory of the direct-interaction
excitation of collective states to describe the deformation of the average potential. While
the β values given here provide a useful guide to the values to be expected for this nuclear
potential deformation parameter, the β and β2 values can differ somewhat.

2.4 Relative isotopic abundances

For practical applications, the relative isotopic abundances (expressed in percent) for
each stable nucleus found naturally on earth is given in the abundance.dat file. The
data originate from the Nuclear Wallet Cards, as retrieved from Brookhaven National
Laboratory [2.14].

2.5 Summary of codes and data files

The programs and data files included in the directory are:

abundance.dat - Natural abundances of stable isotopes.

abundance.readme - Description of the abundance.dat file.
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duflo-zuker96.for - Code to estimate nuclear masses with the 10 parameter formula of
Duflo and Zuker.

duflo-zuker96.readme - Description of the duflo-zuker96.for file.

gs-deformations-exp.dat - Compilations of experimental deformation parameters beta2.

gs-deformations-exp.readme - Description of the gs-deformations-exp.dat. file.

mass-frdm95.dat - Ground state properties based on the FRDM model.

mass-frdm95.readme - Description of the mass-frdm95.dat file.

mass-hfb02.dat - Ground state properties based on the HFB model.

mass-hfb02.readme - Description of the mass-hfb02.dat file.

matter-density-hfb02/zxxx.dat - Neutron and proton density distributions based on
the HFB model.

matter-density-hfb02.readme - Description of the matter-density-hfb02/zxxx.dat files.
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3 DISCRETE LEVELS

Coordinator: T. Belgya

Summary

Discrete levels and their decay characteristics are required as input for nuclear reaction
calculations, which replace the statistical level densities and strength functions below a
certain energy Emax. Most of the data were extracted from the ENSDF library. How-
ever, many missing data such as unique spins and parities were inferred using statistical
methods, while missing internal conversion coefficients (ICC) and electromagnetic de-
cay probabilities were calculated. For each element the data have been stored in a file
containing all isotopes in increasing mass order.

In addition, cutoff energies Emax for completeness of level schemes and spin cutoff
parameters have been determined for a large number of nuclei. The latter data have
been collected in a separate data file, together with the results obtained from a constant
temperature fit to the nuclear level schemes.

Nuclear reaction and statistical model calculations require complete knowledge of the
nuclear level schemes in order to specify all possible outgoing reaction channels and to
calculate partial (isomeric) cross sections. Knowledge of discrete levels is also important
for adjusting level densities, which replace unknown discrete level schemes at higher exci-
tation energies. For this purpose completeness of the level scheme is of crucial importance.
The term ”completeness” means that up to a certain excitation energy all discrete levels
in a given nucleus are observed and are characterized by unique energy, spin and parity
values. Knowledge of particle and gamma-ray decay branches is also required, especially
when the population of isomeric states is of interest.

Complete level schemes can only be obtained from comprehensive spectroscopic studies
of non-selective reactions. Statistical reactions, such as (n, n′γ) and averaged resonance
capture, are particularly suitable due to their non-selective excitation mechanism and
completeness of information obtained by means of gamma-ray spectroscopy [3.1]. For
practical reasons the vast majority of nuclei cannot be studied by such means; hence
the degree of knowledge of the experimentally determined discrete level schemes varies
widely throughout the nuclear chart. While this knowledge is compiled for the Evaluated
Nuclear Structure Data File (ENSDF) [3.2], the format is too involved for use in reaction
calculations. The original purpose of the ENSDF is to serve as a typographical input
for the preparation of Nuclear Data Sheets, and extracting data is by no means simple.
ENSDF contains a great deal of information in a format that can not be easily decoded
by the computer codes. Therefore, the data have to be extracted and reformatted for
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The first attempt to create a suitable library of discrete levels was undertaken in the
RIPL-1 project [3.3, 3.4, 3.5]. However, the RIPL-1 starter file suffered from a number
of deficiencies related to the use of the retrieval code NUDAT and a format that was too
restrictive. Therefore, a new extended Discrete Level Schemes Library has been created
and formatted according to the recommendations of the RIPL-2 co-ordination meetings
[3.6, 3.7].

3.1 Discrete Level Scheme Library (DLSL)

The RIPL-2 Discrete Level Scheme Library (DLSL) has been created by the Budapest
group using the ENSDF-II data set of 1998 as a source [3.2, 3.8]. This data set is a
slightly modified version of the original ENSDF library [3.2], and contains explicit final
states for gamma transitions. In the new version of the DLSL, there are no limitations
to the number of levels or transitions, which were identified as deficiencies in the RIPL-1
file [3.5].

The 1998 ENSDF II CD-ROM contains 2637 data sets of nuclear decay schemes
(606254 rows of data). There are 2546 nuclear decay schemes with at least 1 known
level, that cover the range A = 1−266, Z = 0−109. These 2546 level schemes, have been
called the basic set, and were processed to obtain the DLSL files. The basic set contains
113346 levels out of which 8554 have unknown level energies. These are marked with +X,
+Y..., an ENSDF notation also used in the RIPL-2 DLSL files. A total of 12956 spins
are unique; for the additional 8708 levels, spin and/or parity assignment is considered
uncertain (parenthesis around a single spin or parity value). These spin-parity values
were adopted and extracted from the ENSDF file. The basic set also reports 159323 γ
transitions between the levels.

Some of the data such as level spins, parities and electron conversion coefficients were
found to be missing in the basic data set. Since these data are crucial for model calcu-
lations, they have been calculated or inferred from other available data using statistical
assumptions. Table 3.1 shows the number of spins that has been inferred under different
assumptions.

Table 3.1: Type and number of spin estimates.

Type of method Number
Spin ranges from gamma transitions 3560
Spins from spin distribution 3551
Spins chosen from a list using spin distribution 6280

One of the most difficult tasks was the determination of the maximum level number
(Nmax), and the corresponding energy (Emax) up to which a level scheme is supposed to
be complete. A new fitting method that eliminates the deficiencies of the earlier fitting
procedure [3.5, 3.9] has been developed, and is outlined in Ref. [3.7] and detailed in
ANNEX 3.A. The temperature as a function of the mass number A was obtained from
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a global least-squares fit for 625 nuclei. An additional 503 nuclei that were not used in
the global fit have been fitted using the above T (A) function in order to estimate Nmax

values. The results for the 2546 nuclei are reported in the file level-param.dat.

In order to calculate γ-ray emission intensities from nuclear reactions, the ICCs must
be known for all electromagnetic transitions from a given level. Since only some of them
are available in ENSDF, the missing values have been calculated and included in the
RIPL-2 file. This brings the number of ICCs in RIPL-2 to 92634 compared to 21595 in
ENSDF.

Data uncertainties have generally been disregarded since they are not used in the
reaction calculations.

The major steps in the construction of the Discrete Level Scheme Library are outlined
below:

• Adopted or available discrete nuclear levels and γ-ray transitions have been retrieved
and converted into RIPL-2 format using FORTRAN programs developed within the
CRP.

• Cut-off energies (Emax) and the corresponding cumulative numbers of levels (Nmax)
below these energies have been determined from constant-temperature fits to the
staircase plots for nuclei with at least 20 known levels.

• Additional energy cut-offs (Ec), corresponding to the energy of the highest level
with unique spin and parity assignment, have been determined for all nuclei on the
basis of the ENSDF data alone.

• Data retrieved from ENSDF have been extended in order to obtain unique data
values as required for reaction calculations. Thus, unique spin and parity values
have been generated from known data up to the cut-off energy Emax. Internal
conversion coefficients (ICC) for electromagnetic transitions have been calculated
using unique spin and parity values if they were not given in ENSDF.

The extension has included the complete (γ-ray and particle emission) decay be-
havior of the levels if known from experiments.

• Data have been tested for internal inconsistencies that may arise from misprints,
logical errors, or use of improper algorithms.

• For nuclei that have at least 10 levels with spin assignment below Emax, the spin
cut-off factors have been calculated from the spin assignments provided in ENSDF.

• Missing spins and parities were inferred up to Nmax because up to this energy one
relies on spin/parity distributions derived from known data.

It should be stressed, that the data in the RIPL-2 DLSL files are intended only for
nuclear reaction calculations and not for nuclear structure studies. This warning refers
particularly to inferred spins and calculated quantities such as ICCs.
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3.1.1 Format of the Discrete Level Schemes Library

The library is located in the RIPL-2/levels/levels directory and is arranged in separate
elemental files. The file names are zxxx.dat where xxx stands for the charge number
of an element preceded with zeros if necessary to form three digits. The charge number
runs from 0 to 109. Each file contains decay data for all isotopes of an element ordered
by increasing mass number.

There are three kinds of records. Data for each isotope begin with an identification
record. An example is given below for Nb-89. The upper lines with labels are not part of
the actual file and serve only to facilitate explanation of the format:

SYMB A Z Nol Nog Nmax Nc Sn[MeV] Sp[MeV]

89Nb 89 41 25 24 16 1 12.270000 4.286000

The corresponding FORTRAN format is (a5,6i5,2f12.6), and the labels mean:

SYMB: mass number with elemental symbol

A: mass number

Z: charge number

Nol: number of levels in decay scheme

Nog: number of gamma rays in decay scheme

Nmax: maximum number of levels up to which the level-scheme is complete; the corre-
sponding level energy is Emax

Nc: level number up to which the experimental spins and parities are unique

Sn: neutron separation energy in MeV

Sp: proton separation energy in MeV

The identification record is followed by level records shown below for the first three
levels in Nb-89:

Nl El[MeV] J p T1/2[s] Ng s unc spin info nd m percent mode

1 0.000000 4.5 1 6.84E+03 0 u +X (9/2+) 1 = 100.0000 %EC+%B+

2 0.000000 0.5 -1 4.25E+03 0 u +Y (1/2)- 1 = 100.0000 %EC+%B+

3 0.658600 3.5 -1 4.00E-09 1 c (7/2,9/2,11/2) 0

The corresponding FORTRAN format is:

(i3,1x,f10.6,1x,f5.1,i3,1x,(e10.2),i3,1x,a1,1x,a4,1x,a18,i3,10(1x,a2,1x,f10.4,1x,a7)),

and the labels mean:
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Nl: serial number of level

El: level energy in (MeV)

J: Assigned unique spin, determined from spin information; details are given in
ANNEX 3.B

p: calculated unique parity determined from parity information; details are given
below

T1/2: half-life of level if known; details are given below

Ng: number of gamma rays de-exciting the level

s: method of selection of J and p; details are given in ANNEX 3.B

unc: uncertain level energy; details are given below

spin info: original spin information from ENSDF file; can be used to adjust spin-parity
values by hand

nd: number of decay mode of a level if known (values up to 10); value 0 means that
decay may occur by gamma-ray emissions, but other decay modes are not known

m: modifier of percentage; details are given below

percent: percent of the decay mode; details are given below

mode: ENSDF notation of decay modes; details are given below

The third kind of record is a gamma record, which immediately follows a corresponding
level record. Number of gamma records is given in the level record. The sample gamma
records below correspond to the decay of the 5th level in Nb-94 (level record is also shown):

5 0.113401 5.0 1 5.00E-09 2 u (5)+ 0

Nf Eg[MeV] Pg Pe ICC

3 0.055 4.267E-02 1.301E-00 2.050E+00

1 0.113 7.499E-01 8.699E-01 1.600E-01

The corresponding FORTRAN format is (39x,i4,1x,f10.3,3(1x,e10.3)), and the labels are:

Nf: serial number of the final state

Eg: gamma-ray energy in (MeV)

Pg: probability of decay with gamma ray; details are given below

Pe: probability of decay with electromagnetic transition; details are given in ANNEX
3.D

ICC: internal conversion coefficient; details are given below
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3.1.2 Conventions and methods

This section contains detailed description of the conventions used to represent physical
quantities and methods of their determination. Formulas for estimating certain quantities
are given if not trivial.

J: Spin of a level. Unknown spin values have been determined according to the
procedure described in ANNEX 3.B. Possible values are -1.0 for unknown spin,
otherwise 0.0, 0.5, 1.0 ...

p: Parity of a level. If parity was not known, positive or negative values were chosen
with equal probability for levels up to Emax. The method used for the parity
determination is not indicated in the file. Possible values are 1 for positive parity,
-1 for negative parity, and 0 for unknown parity.

T1/2: Half-life of a level. All known half-lives or level widths have been converted into
seconds. Half-lives of stable nuclei are represented as -1.0E+0.

unc: Flag indicating uncertain energy of a level. Under certain cases, such as an
unobserved low energy transition out of a band head or decays to a large number
of levels from a super-deformed band, the energy of a corresponding band may be
impossible to determine. This field provides the means of introducing a note about
this problem in the level scheme. ENSDF evaluators set the energy of such band
heads to 0.0 keV or, if the level order is known, to the preceding level energy, and
they place a note that one should add an unknown energy X to this value. In such
cases, a decay scheme is not suitable for level density determination. Usually, the
super-deformed levels are inadequate for calculation of the level density anyway.
Therefore, the nuclei with more then two uncertain levels have been excluded
from level density calculations. Two uncertain levels have been accepted, because
in some cases they correspond to important isomeric states.

m: The decay percentage modifier informs a user about major uncertainties in the
decay pattern of a level. Modifiers have been copied from ENSDF without any
modifications. They can have the following values: =, <, >, ? (unknown, but
expected), AP (approximate), GE (greater than or equal), LE (less than or equal),
LT (less than), and SY (value from systematics).

percent: Probability of different decay modes of a level. As a general rule, probabilities
of various decay modes add up to 100% except: (i) when a small probability is
present, the sum may be slightly more then 100% due to rounding, (ii) when
β-decay is followed by heavier particle emission, probability of the β-delayed par-
ticle emission is also included as a portion of the β-decay and the sum can be
substantially larger then 100%. When the modifier is ‘?’, the sum is indefinite.

mode: Short notation for decay modes of a level (see Table 3.2 for details). Some minor
channels, such as decay through emission of 20Ne, have been ignored.

Pg: Probability that a level decays through γ-ray emission (ratio of the total electro-
magnetic decay of the level to the intensity of the γ ray). If no branching ratio
was provided in ENSDF file, Pg is set to zero.
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Table 3.2: Decay mode codes.

Code Explanation
%B− β− decay
%EC electron capture
%EC+%B+ electron capture and β+ decay
%N neutron decay
%A α decay
%IT isomeric transition
%P proton decay
%3HE 3He decay
%B+P β+ delayed proton decay
%B−N β− delayed neutron decay
%SF spontaneous fission
%ECP electron capture delayed proton decay
%ECA electron capture delayed α decay
%G γ decay
%B+2P β+ delayed double proton decay
%B−2N β− delayed double neutron decay

Pe: Probability that a level decays with the given electromagnetic transition (ratio of
the intensity of a given electromagnetic transition and the total electromagnetic
decays of the level). The sum of the electromagnetic decays has been normalized
to %IT or %G (see ANNEX 3.D). If no branching ratio was provided in ENSDF,
Pe is set to zero.

ICC: Internal conversion coefficient for a transition. An improved version of the NNDC
program HSICC.FOR [3.10] has been used to calculate the ICC values if not
provided in ENSDF (see ANNEX 3.C for details). When calculating the ICCs,
the first multipole mixing ratio given in ENSDF has been used. If there was
no multipole mixing ratio given, E2 has been assumed for the mixed E2+M1
transitions of even-even nuclei, and M1 for the others. No attempt has been
made to include possible E0 decays. For other mixing possibilities the lowest
multipole order has been used unless the mixing ratio was found in ENSDF. The
mass of the nucleus and energy of the transition also limits the ICC calculations.
Below A=10, ICCs have only been calculated for Li and C. ICCs have been set
to zero if the transition energy exceeds a certain (mass dependent) energy.

3.1.3 Format of the file with constant-temperature fit parameters

The parameters resulting from the constant-temperature fits to the discrete levels have
been tabulated in a separate file (level-param.dat). An excerpt from this file is given
below:
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# Results of constant temperature fits to discrete levels

# Z A El T dT U0 dU0 Nlev Nmax N0 Nc Emax Ec Chi Fit Flag NoX Xm EX sigma

# [MeV] [MeV] [MeV] [MeV] [MeV] [MeV] [MeV]

#-------------------------------------------------------------------------------------------------------------------------

24 46 Cr 1.15020 0.11901 0.00000 0.00000 1 1 1 1 0.00000 0.00000 0 0.000

24 47 Cr 1.13140 0.11924 -0.89872 0.24665 31 9 7 1 1.54100 0.00000 3.291E-02 0 0.000

24 49 Cr 1.10760 0.11815 0.28855 0.35758 159 46 7 13 5.05800 2.61320 2.419E-02 * 0 2.899

24 50 Cr 1.10170 0.11543 0.71883 0.34984 146 41 7 7 4.80100 3.32457 1.706E-02 * 0 2.711

24 51 Cr 1.09890 0.11131 -0.51774 0.39928 270 93 7 13 4.45100 2.38540 5.770E-03 * 0 3.010

24 52 Cr 1.09810 0.10624 1.11616 0.28719 272 27 7 12 4.83730 3.77172 1.467E-02 * 0 2.993

24 53 Cr 1.09860 0.10091 -0.18601 0.31142 167 31 15 9 3.61651 2.32071 6.920E-03 * 0 2.856

24 54 Cr 1.09950 0.09625 0.71942 0.28388 121 38 7 7 4.68052 3.15956 1.097E-02 * 0 2.475

24 55 Cr 1.09960 0.09324 -0.68804 0.25704 105 33 7 5 3.35100 0.88071 1.789E-02 * 0 2.554

24 56 Cr 1.09800 0.09261 0.91710 0.22630 36 18 7 3 4.01400 1.83160 8.940E-03 * 0 2.082

24 57 Cr 1.09340 0.09437 0.00000 0.00000 1 1 1 1 0.00000 0.00000 0 0.000

24 58 Cr 1.08490 0.09767 0.00000 0.00000 1 1 1 1 0.00000 0.00000 0 0.000

where:

Z: charge number

A: mass number

El: elemental symbol

T: temperature in the CT model

dT: uncertainty of T

U0: back-shift in CT model

dU0: uncertainty of U0

Nlev: number of levels in the ENSDF data set

Nmax: level up to which the level scheme is complete (from CT fit)

Nmin: first level considered in the fit

Nc: last level with unique spin assignment

Emax: energy corresponding to Nmax

Ec: energy corresponding to Nc

Chi: measure of the fit quality (see ANNEX 3.A)

Fit: ‘star’ if the record comes from the global fit of pre-selected nuclei used to determine
the T (A) function

Flag: ‘F’ if Chi > 0.05, i.e., bad fit

NoX: number of levels with +X, +Y, +Z ... notation (X, Y, Z... are unknown energy
values)

Xm: level at which the first +X, +Y, +Z ... notation appears

Ex: level energy at which the first +X, +Y, +Z ... notation appears

sigma: spin-cutoff parameter deduced from experimental spins (see ANNEX 3.B for de-
tails)
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The corresponding FORTRAN format statement is:
(2i4,1x,a2,4(1x,f9.5),4i4,1x,f8.5,1x,f8.5,(1x,e10.3),1x,a1,a2,i4,i4,f7.3,1x,f6.3)

No constant-temperature fits have been carried out for nuclei with less then 20 known
levels or more then 2 uncertain levels. In such cases, the Chi value is left blank and
U0 = 0, dU0 = 0, Nmax = 1, Nmin = 1, Emax = 0.

3.2 Applied procedures

This section contains a detailed description of the procedure applied in the construction
of the DLSL, and should possibly facilitate future updates of the library.

3.2.1 Construction of Discrete Level Scheme Library

Several FORTRAN codes have been developed and used in the preparation of the Dis-
crete Level Scheme Library (see flowchart in ANNEX 3.F). The available data sets were
collected from the individual ENSDF-II data files [3.8] and transferred into a single data
file (my.enx) using a simple FORTRAN code ensdf2read.f90. The order of data sets in the
single file has been determined by the order of file names in the input file (file.ENSDF).

FORTRAN code (discretels.f90) has been used to provide a simplified level scheme
file for drawing and fitting, or to create a more complete intermediate file. The simplified
level scheme file (levdens.dat) was used as an input for the global constant-temperature
level-density fitting code (levglobal.f90), which is described in ANNEX 3.A. Output of the
levglobal.f90 code is par30 20 -4 4.dat, which contains the results of global level density
fitting. The numbers in the file name indicate nuclei that have been included in the global
fit (actually those with a minimum of 30 levels and lying within -4 to +4 mass units
around the stability valley). Number 20 indicates the number of nodes of the Cardinal
spline used to describe temperature as a function of A (T (A)). The total number of
nuclei included in the fit was 625. Several combinations of the above input parameters
had been studied before the best combination was found. Program levglobal.f90 provides
the graphic interface [3.11] to visualize the development of the T (A) function during the
iterative fitting procedure. In each iteration, the program changes Nmax and the Nmin

level numbers for each nucleus independently, in such a way that the fit approaches that
part of the level scheme that can be well described by a constant temperature formula.
Ten iterations were generally enough to minimize the global χ2 and determine the Nmax

and Nmin values. Resulting Nmax values have been identified as the cut-off point at which
the level schemes can be considered complete. The final nuclear temperature function
T (A) is shown in Fig. 3.1. A comparison of this function with the temperatures obtained
from the Gilbert-Cameron fits by the Bombay group is favorable [3.6], although there are
differences at shell closures and in the transitional regions (see Ref. [3.7]).

Values of the corresponding shift parameters U0 as a function of mass are shown in
Fig. 3.2. It is important to note that for the first time reliable uncertainty estimates
could be determined for the temperature and the shift parameter values.

The FORTRAN code cumcomp.f90 was used to visualize the results of global fitting.
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Figure 3.1: Nuclear temperature T as a function of the mass number A for nuclei near
the valley of stability.
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Figure 3.2: Shift parameter U0 as a function of mass number A.
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For each nucleus, the constant-temperature formula with fitted parameters was compared
to the actual staircase plot of cumulative level numbers, providing a visual test of the fit
quality.

In a subsequent run of the discretels.f90 code a complete intermediate file (dls.dat)
was created using files my.enx and par30 20 -4 4.dat as input. This exercise constituted
the actual retrieval of ENDSF data and included the decoding of all relevant information
from the ENSDF data file. Fixed temperature fits were also performed for those nuclei
that have more then 20 levels and no more than 2 with uncertain energies, but had not
been not included in the global fit. The code assigned Nmax to each nucleus, based on
the agreement of the constant-temperature fit with the staircase diagram for this nucleus.
Also unique spins and parities for levels up to Nmax were assigned using the available data
and algorithms described in ANNEX 3.B. In addition, the level-param.dat file containing
the results of the constant temperature fits was created.

The last step in DLSL construction is the final formatting and testing. Calculations
of the ICCs and transition probabilities were also performed during this step, using the
code dtest.f90 to read the intermediate dls.dat file as input. Missing ICCs for the elec-
tromagnetic transitions were calculated by means of a FORTRAN subroutine developed
from the ENSDF HISCC code and input files Icctbl.dat and Iccndx.dat (see ANNEX 3.C
for details). The code dtest.f90 was used for calculating decay probabilities (formula are
given in ANNEX 3.D) and for testing the internal consistency of the data stored in dls.dat
file. The outputs of the code dtest.f90 are zxxx.dat files with nuclear decay schemes that
constitute the Discrete Level Scheme Library and several additional files with the results
of the tests.

3.2.2 Consistency tests

The following tests have been performed with the code dtest.f90.

• The difference between the initial and final level energies has been compared with
the de-exciting γ-ray energy corrected for the nucleus recoil. Cases with energy
differences larger then 5 keV are listed in Table 3.3. While small differences might
well be within the quoted uncertainties, the larger values indicate internal incon-
sistencies in the ENSDF library. Therefore, these observations have been collected
together and communicated to the ENSDF manager at the National Nuclear Data
Center in Brookhaven National Laboratory. As a result, some of these problems
have been corrected in the ENSDF data set.

• Sums of the decay probabilities have been tested by printing deviations of the sum
from 100% if they exceeded 0.1%. There are cases in which the decay probabilities
sum up to much less then 100%. Typically, they correspond to one known partial
width and known total width for a level at which the evaluators were unable to
distribute the difference among other possible decay modes such as neutron or alpha.
On the other hand, when β delayed-neutron or proton decay occurs, the sum of
decay probabilities given in ENSDF is substantially larger than 100%, because the
percentage given for the heavy particle is a portion of the β-decay followed by the
heavier particle (or particles) emission.
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Table 3.3: Statistics of energy differences

No. Cases Range [keV ]
289 5 ≤ E < 10
116 10 ≤ E < 20
50 20 ≤ E < 50
21 50 ≤ E < 100
33 100 ≤ E

Sum 509

• Errors in the ICC calculation occurred when a γ decay of unknown energy occurs
between two levels with energies E and E+X, where X is unknown.

• Multiple orders of γ-ray transitions have been checked yielding 19 cases with unusu-
ally high multipolarities. Some of them are actually real, while others result from
deficiencies in the original ENSDF file or from the spin assignment of the present
work since the unique spin selection (see ANNEX 3.B) makes use of only the final
state spin. Cases in which a γ cascade between two states with known spins involves
an intermediate state of unknown spin were not considered. Fortunately, there are
not too many such cases and they can be treated individually (see Table 3.4). Also
note that the 1998 version of the ENSDF-II does not contain the corresponding spin
limitation.

Table 3.4: Cases of very large multipole order

Symbol Ei [keV ] Ji Jf Comment
58Mn 728.060 1.0 6.0 Spin selection should be improved
53Fe 3040.400 -9.5 -4.5 Known M5 transition from isomer level
53Fe 3040.400 -9.5 -3.5 Known E6 transition from isomer level
67Zn 2434.930 -5.5 -0.5 M5 non-isomer (transition rate must be too high)
90Y 682.030 7.0 -2.0 Known E5 transition from isomer level
113Cd 263.590 -5.5 0.5 Known E5 transition from isomer level
117Sn 314.580 -5.5 0.5 Known E5 transition from isomer level
123Te 247.550 -5.5 0.5 Known E5 transition from isomer level
125Te 144.795 -5.5 0.5 Known E5 transition from isomer level
133Ba 288.247 -5.5 0.5 Known E5 transition from isomer level
184Re 188.010 8.0 -3.0 Known E5 transition from isomer level
192Ir 155.160 9.0 4.0 Known E5 transition from isomer level1
206Tl 2643.110 -12.0 6.0 Exists in ENSDF; no multipolarity stated
207Tl 1348.100 -5.5 0.5 Known E5 transition from isomer level
202Pb 2169.830 -9.0 4.0 Known E5 transition from isomer level
202Pb 2169.830 -9.0 4.0 Known E5 transition from isomer level
204Pb 2185.790 -9.0 4.0 Known E5 transition from isomer level
211Po 1462.000 12.5 -3.5 Spin selection should be improved2

1Level energy has changed in the recent evaluation.
2Final spin is given in a recent evaluation as 17/2+ to give an E4 isomeric transition.

22



Figure 3.3: Distribution of relative differences between calculated ICCs, and ICCs from
ENSDF.

• A total of 21595 calculated ICC values were compared with those given in the
ENSDF file. The distribution of relative differences ((ICCcal − ICCexp)/ICCexp)
is shown in Fig. 3.3. Out of 21595 relative differences, about half (10493) are
within 1% and approximate to a normal distribution resulting partly from rounding
errors. About 6000 relative differences form a double peak structure; the reason
for these differences was far from trivial. When analyzing absolute and relative
differences, part of this structure arose from rounding effects and there were other
unclear reasons for the small ICC values. To make the above statements clear,
Fig. 3.4 presents the absolute value of small differences of ICCs as a function of
the calculated ICC values. By scanning the horizontal axis one can see similar
patterns as in fractals. The origin of the grouping can be traced back to rounding or
perhaps to the differences in the ICC theory and/or measured values. The remaining
5000 values show very large differences due to various reasons. For example, an
arbitrary rule is used to calculate ICCs in the case of unknown mixing ratios: the
present ICC values for M1+E2 mixed transitions were calculated assuming pure
E2 in even-even nuclei and pure M1 otherwise, while in ENSDF the ICC values
were calculated assuming 50% mixing. In summary, the applied subroutine can be
concluded to provide satisfactory ICC values for the current purpose, although the
origin of the differences between the present calculations and ENSDF values should
be investigated further.

• Electromagnetic transition rates have been successfully tested - all of the calculated
rates satisfy the Recommended Upper Limit (RUL) [3.12].

• Formal correctness of the zxxx.dat files has been tested with the code zread.f90 and
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Figure 3.4: Absolute differences between calculated and ENSDF ICC values as a function
of ICC.

no formatting problems have been encountered. The zread.f90 code includes the
getza subroutine which can also be used to retrieve level schemes from the library.

• A new method to extract nuclear temperature T has been developed (see ANNEX
3.E). The temperatures provided by this procedure have been compared to the T (A)
function obtained in the global fit (see Fig. 3.5). Most of the T values obtained with
the method described in ANNEX 3.E are close to the T (A) curve. Only a small
percentage of cases are discrepant due to bad fits and/or low number of available
levels.

3.2.3 Physical validation of the files

The Discrete Level Scheme Library was tested in reaction calculations using three statisti-
cal model codes (EMPIRE, TALYS and UNF). These tests helped to disclose and correct
some deficiencies (such as negative internal conversion coefficients and zero branching
ratios assigned to a single transition depopulating a level) that had escaped previous
checks.
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Figure 3.5: Comparison of temperature values obtained from two independent methods.
Points with no uncertainty bars are obtained using the method described in ANNEX 3.E,
while points with error bars originate from the global fit procedure (see Fig. 3.1).
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ANNEX 3.A

PROCEDURE FOR CONSTANT TEMPERATURE FITTING
OF CUMULATIVE NUMBER OF LEVELS

The nuclear temperature is a smooth function of mass number A [A3.1, A3.2]. This
observation supports the possibility of simultaneously fitting the temperature T as a
function of mass number for a large number of nuclei. Furthermore, the work of the CRP
has demonstrated that nuclei around the valley of stability can be fitted in this way. A
natural requirement is that there must be a certain minimum number (N0) of known levels
in each nucleus.

The nuclei suitable for fitting were selected and the following method has been ap-
plied. First, the fit which was used in the RIPL-1 project [A3.1] has been repeated for
a set of selected nuclei. This approach provided initial values for Nmax, while the initial
minimum numbers of levels (Nmin) were set to 14 for odd-odd, and to 7 for other nuclei.
A temperature function T (A) has been subsequently fitted to the cummulative number
of levels for all these nuclei and was represented by a Cardinal spline. The formulas used
in the fitting procedure are listed below.

Let N(Emi) denote the cumulative number of levels at level i in the mth nucleus and
Yim = ln(N(Eim)) denote the associated natural logarithm. The constant temperature
formula can be written as

N(E) = exp
(

E − U0

T

)
, (3.1)

and the natural logarithm is

ln(N(E)) =
E − U0

T
= aE + b (3.2)

with

T =
1

a
and U0 = − b

a
(3.3)

The dependence of a(A) as a function of mass number A can be expressed using the
following linear equation

a(A) = A
20∑

k=1

βkCk(A) (3.4)

In Eq. 3.4, Ck(A) is the kth Cardinal spline [A3.3]. Multiplying the spline with the mass
number A transforms the approximate linear dependence of a(A) into dependence on A.
We are now ready to set up the least square function for the problem:

χ2 =
∑
i,m

(Yi,m − a(Am)Ei,m − bm)2

Ei,m

(3.5)

The index i runs from Nmin to Nmax in each nucleus. Nmin and Nmax are independent
for each nucleus and were changed during this fitting process in such a way that the fit
approached the linear part of Yim. Limits were applied for the Nmin and Nmax values.
If Nmax − Nmin > 15, the new Nmax and Nmin values have been set. For non even-even
nuclei, the Nmin values were limited to the 7-20 region.
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Energy weighting (Ei,m) has been chosen to decrease the weight of the potentially
poorly-known high energy levels. By solving Eq. 3.5, a universal T (A) function for all nu-
clei and U0 values for individual nuclei have been obtained. 10 iterations were sufficient to
achieve convergence. Since the χ2 values provided by the procedure were unconventional,
the final χ2 values have been calculated for each individual nucleus using the correspond-
ing partial sum in Eq. 3.5, normalized to the difference between Nmax and Nmin.
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ANNEX 3.B

DETERMINATION OF UNIQUE SPINS

When determining the unique spin for a level, a check was made as to whether a range
of spin values could be assigned with the help of γ transitions to final levels of known spin.
Otherwise, if there were more than 10 levels with known spins (not necessarily unique),
a continuous spin distribution was determined from the existing spin assignments up to
Emax, and all missing spins up to Emax were randomly extracted from the resulting spin
distribution. If there were less than 10 known spins, a reliable spin distribution could not
be estimated and no spins were inferred.

For the continuous spin distribution, the usual formula has been used [A3.4, A3.5]

ρ(J) =
(2J + 1)exp (−(J + 1/2)2/(2σ2))

2
√

2πσ3
, (3.6)

where J is the spin and σ is the spin cut-off parameter. The normalization factor N can
be obtained by integration

N =

+∞∫
0

ρ(J)dJ =

√
2exp (−1/(8σ2))

2
√

πσ
. (3.7)

The normalized spin distribution is

ρN (J) =
ρ(J)

N
=

2J + 1

2σ2
exp

(
−(J + 1/2)2

(2σ2)
− 1

8σ2

)
. (3.8)

The spin cut-off parameter was obtained from the following formula

+∞∫
0

(J + 1/2)2ρN (J)dJ = 2σ2 + 1/4. (3.9)

The experimental spin cut-off was calculated with the discrete representation of Eq. 3.9.

σ2
exp =

Nmax∑
i=1

Ni∑
k=1

(Ji,k + 1/2)2/Ni

2N
− 1

8
, (3.10)

where Ni is the number of known possible spins (e.g., for 1/2, 3/2, 5/2; Ni = 3) given for
the ith level and k = 1, 2, ...Ni. N is the number of levels for which Ni > 0, while the level
index i extends to the cut-off number Nmax.

The continuous normalized spin distribution with the experimental spin cut-off pa-
rameter has been used to determine unique spin values for levels up to energy Emax using
a Monte Carlo procedure. Five cases can be distinguished:
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1. Ni = 0. When there was no experimental information on the spin, J has been chosen
randomly with a probability modeled by the spin distribution. In such cases, the
type of selection ‘s’ has been coded as ‘n’.

2. Ni = 1. Despite uncertainties (such as (1)+ ), the spin has been considered to
be “unique” and selection type ‘s’ has been coded as ‘u’. We note that Nc is not
consistent with the ‘u’ sign and is meant to give the highest level number with
unique (i.e., single and unequivocal) experimental spin and parity values.

3. Ni > 1. The spin has been chosen using the probabilities obtained from the spin
distribution, but constrained to spin values of a given set (e.g., (1, 3, 4)−). The
sum of these probabilities was normalized to 1 before a spin was chosen in a Monte
Carlo procedure using the normalized weights. In such cases, the type of selection
‘s’ has been coded as ‘c’.

4. If a set of possible spins was inferred from the spins of final states after γ transitions,
‘s’ has been coded as ‘g’. Method 2 or 3 was then used for selection depending on
the number of possible spins.

5. Above Emax or if unique spins could not be determined due to the lack of experi-
mental spin distribution, the ‘s’ field has been coded as ‘blank’. If there were levels
with unique experimental spin above Emax, the corresponding ‘s’ fields have been
coded as ‘u’. The possible spin values are: 0.0, 0.5, 1.0 ... and -1.0 for an unknown
spin.
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ANNEX 3.C

DETERMINATION OF MISSING INTERNAL
CONVERSION COEFFICIENTS

The National Nuclear Data Center provides the HSICC Program Package for calculat-
ing Internal Conversion Coefficients (ICC). One component (hsicc.for) calculates internal
conversion coefficients by cubic spline interpolation of the values tabulated by Hager and
Seltzer for the K, L, and M shells and by Dragoun, Plajner, and Schmetzler for the
N + O + ... shells. However, this program was designed as a stand-alone code and in-
volves a large number of instructions for handling ENSDF input files. Therefore, the code
was transformed into a subroutine that uses the original Iccndx.dat and Icctbl.dat files
containing tabulated ICC values as input. The spline interpolation has been replaced with
Cardinal cubic splines [A3.3], which are suitable for interpolation because they guarantee
mutual orthogonality of the splines at node points. Let S(x) be a linear combination of
Cardinal splines

S(x) =
n∑

k=1

βkCk(x). (3.11)

Ck(x) Cardinal splines satisfy the following orthogonal relations

Ck(xj) = δk,j. (3.12)

Due to the orthogonality of the Cardinal splines, the value of S(x) at the node point xj

is βj.

The binary index file Iccndx.dat contains the record number corresponding to a certain
charge in the table Icctlb.dat. Icctlb.dat contains ICC values as a function of transition
energy for four electric and four magnetic multipolarities. The natural logarithm of the
tabulated ICC values in Icctlb.dat multiplied by some power of the γ-ray energies (in the
same way as in hsicc.for) have been interpolated as a function of the natural logarithm
of transition energies at node points. The interpolation for a given Z is done only once
by using multiple-spline or hyper-spline interpolation for all sub-shells and multipoles.
Let us denote the sub-shells by l and the multipoles by m. Since the Cardinal splines
are completely defined by their node points, for different multipoles only the βk,l,m values
of the multiple-spline Sl,m(x) vary. Accordingly, the ICC calculations were very fast to
perform.
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ANNEX 3.D

CALCULATION OF DECAY PROBABILITIES

Calculations of total decay probabilities were based on the following rules: (i) if no
decay mode was given for a level, but there were de-exciting γ transitions, 100% electro-
magnetic decay was assigned to the level (%IT=100%); (ii) if other decay modes beside the
electromagnetic were given, the percentage of electromagnetic decay mode was obtained
from the decay mode information. This procedure was identified by the notation %IT
or %G in the decay record in the ENSDF files. First, the total relative electromagnetic
decay probability was calculated

Ptot rel =
Noγ∑
k=1

Ik(1 + αk), (3.13)

where Ik is the relative γ intensity and αk is the ICC. The absolute electromagnetic decay
probability of the kth branch is

Pelectromagnetic,k =
Ik(1 + αk)

Ptot rel
· 0.01 ·%IT (%G), (3.14)

while the absolute γ-decay probability is

Pγ,k =
Ik

Ptot rel
· 0.01 ·%IT (%G). (3.15)

Other decay probabilities (particle) are given in the information on decay modes for a
level.
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ANNEX 3.E

SIMPLE METHOD FOR DETERMINATION OF
APPROXIMATE NUCLEAR TEMPERATURE

A simple method of determining approximate nuclear temperature was developed and
applied to DLSL. Assuming that the constant temperature model describes level densities
at low energies with some confidence, a useful expression was derived to determine the
temperature T . If one calculates the average level energy in continuous approximation
with the constant-temperature level density, the following expression is obtained:

Eaverage(Emax) =

1
T

Emax∫
−∞

Eexp
(

E−U0
T

)
dE

exp
(

Emax−U0

T

) = Emax − T, (3.16)

which is replaced by the following sum in discrete representation:

Eaverage(Emax) =

Nmax∑
i=1

Ei

Nmax
≈ Emax − T (3.17)

T can easily be obtained from Eq 3.17. This equation can be used to calculate the
nuclear temperature by using the Emax obtained from the least-square fits (as compared
with the T (A) function of Fig. 3.5). This new method is independent of the global fitting
method because any functional dependence of the temperature on the mass number is not
assumed, although the usage of Emax may introduce some correlation between the two
methods.
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ANNEX 3.F

FLOWCHART OF DLSL CONSTRUCTION

Sequence of codes together with respective input and output files are listed below, as
used in the preparation of the Discrete Leval Scheme Library.

• ensdf2read.f90

input: file.ENSDF (list of 2637 nuclei to be retrieved form ENSDF II)

output: my.enx (data for the 2637 nuclei retrieved from ENSDF II)

• discretels.f90

input (in step 1): my.enx (output of ensdf2read.f90)

output (in step 1): levdens.dat (first run contains only levels to be used for fitting
and plotting)

• levglobal.f90

inputs: levdens.dat (output of discretels.f90), and stable1.txt (list of isotopes located
in the valley of stability).

output: par30 20 -4 4.dat (results of the constant temperature fit (T and U0) for
625 nuclei)

• cumcomp.f90

inputs: levdens.dat (output of discretels.f90) and par30 20 -4 4.dat (output of lev-
global.f90)

output: plots of cumulative number of levels for visual check of fits

• discretels.f90

inputs (in step 2): my.enx (output of ensdf2read.f90) and par30 20 -4 4.dat (out-
put of levglobal.f90)

outputs (in step 2): dls.dat (intermediate file containing level schemes of nuclei)
and level-param.dat (results of the constant temprature fit for all nuclei that have
enough levels but were not considered in the global fit with levglobal.f90)

• dtest.f90

inputs: dls.dat, parall.dat, Icctbl.dat and Iccndx.dat

outputs: zxxx.dat (discrete level files), decay list.txt, Decayprob error.txt, Energy-
diff error.txt, Multipol errot.txt (diagnostic files)
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4 AVERAGE NEUTRON RESONANCE

PARAMETERS

Coordinator: A. Ignatyuk

Summary

Average resonance parameters included in the recommended RIPL-1 file were tested and
revised during RIPL-2. The differences between the recommended and alternative files
were analyzed on the basis of the last compilation of the resolved resonance parameters.
Recommended data were corrected for some nuclei, and the number of nuclei has been
extended to 297. Along with the data for the s-wave neutron resonances, the evaluations
of the average parameters for the p-wave resonances have been added to the RIPL-2
library. The file formats are explained in the corresponding readme file.

Parameters required for statistical model calculations are neutron strength functions,
average radiative widths and the average spacing of resonances. These parameters are
generally obtained from the analysis of parameter sets for the resolved resonances. Experi-
mental resolution and sensitivity limits create incomplete (missing resonances) or distorted
(errors in width determination) information on the resonance parameters. Therefore, the
average widths and resonance spacings cannot be directly deduced from available res-
onance sequences, and should always be estimated while taking into account missing
resonances. Various methods for statistical analysis of missing resonances have been de-
veloped, and most of them were applied to evaluate average resonance parameters during
the RIPL project. Advantages and shortcomings of such methods are briefly discussed
below in order to obtain some objective estimation of the accuracy of the recommended
parameters. Before describing the statistical methods for resonance analysis, one should
be aware that statistical methods of resonance analysis work only when applied to pure
resonance samples - results become less and less accurate with sample deficiencies.

Sample cases of pure resonances are rare. Such difficulties are overcome by adopting
different statistical analysis methods as well as sampling criteria to identify a reduced
sample in which missing resonances and/or distortions are reduced. Thus, determinig
average resonance parameters is an iterative procedure in which one tries to reach con-
vergence of results from different methods of analysis. The spread of values from different
statistical procedures indicates that the uncertainties are affecting the results. However,
in many cases such an iterative procedure is not sufficient to guarantee the correctness
of the parameters. Whenever possible, they should be validated by use of supplementary
information such as capture cross sections and radiative widths.
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4.1 Evaluation methods

The neutron strength functions for a given orbital angular momentum l are defined by
the relationship

Sl =
< gΓl

n >

(2l + 1)Dl
=

1

(2l + 1)∆E

∑
r

grΓ
l
nr , (4.1)

where the summation is performed over N resonances in the energy interval ∆E;
gr = (2Jr + 1)/2(2I0 + 1) is the statistical weight factor that depends on the angular
momentum Jr of a resonance and the spin I0 of the target nucleus; Γl

nr are the reduced
neutron widths of resonances, and Dl is the average resonance spacing defined as

Dl = ∆E/(N − 1). (4.2)

The reliable identification of s- and p-wave resonances is most important for an accurate
evaluation of the average parameters. If such an identification can be made, the neutron
strength functions can be simply evaluated from the linear approximation of the cumula-
tive sum of the products grΓ

l
nr . Departure from linearity may indicate missing resonances.

The relative error of the evaluation can be defined from the equation

δSl

Sl
=
√

2/N, (4.3)

which is based on an asymptotic estimate for the variance of the sum of neutron widths
distributed in accordance with the Porter-Thomas law [4.1].

Dominant contributions to the sum in Eq. (4.1) for s-neutrons are given by resonances
with large neutron widths; missing weak resonances or admixture of p-wave resonances
have a rather small effect on the evaluation of the strength functions. The situation is not
so favorable for p-neutrons, for which the strength function can be strongly distorted by
any admixture of incorrectly identified s-wave resonances. This is the main reason that
the relative accuracies of p-wave strength functions for many nuclei are much lower than
for the s-waves.

For a rather full set of resonances the relative statistical error of the resonance spacing
can be determined by the relationship

δDl

Dl
=

0.45
√

lnN + 2.18

N
≈ 1

N
, (4.4)

which was obtained by Dayson and Mehta for the Gaussian orthogonal ensemble [4.2].
Obviously, missing resonances in the analyzed set result in an error that essentially exceeds
the statistical error. Thus, an estimation of the missing resonances is crucial for an
accurate evaluation of the average resonance spacings.

Three approaches were developed to account statistically for the missing or erroneously
identified resonances: (i) methods that exploit the statistics of level spacings, (ii) methods
based on the fit of the reduced neutron width distribution by the Porter-Thomas law,
(iii) methods that use combined simulation of the level and width statistics. Both the
advantages and weaknesses of these various methods have been broadly discussed in Refs.
[4.3–4.8]. Some new developments related to the third type of method were proposed
recently [4.9–4.12].
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The simplest method of resonance analysis is the staircase plot of the cumulative
number N(E) of resonances as a function of energy. It is usually assumed that at low
energies there are no missing resonances, and a linear approximation of this part of the
plot gives a direct estimation of Dl. A variation of this method is the approach based
on ∆3 statistics given by Dayson and Mehta [4.2]. The best fit of N(E) is determined
through a least-squares study of the parameter

∆ = min

[
1

∆E

∫ ∆E

0
[N(E)−AE − B]2dE

]
. (4.5)

For a complete set of levels, the value and the variance of this parameter are defined by
the relationships:

∆3 =< ∆ >=
1

π2
(lnN − 0.0687), σ =

1

π2

√
4π2

45
+

7

24
= 0.11. (4.6)

Obviously, absence of levels or presence of spurious levels from another sequences increases
∆3. Therefore, if the fitted value of ∆ satisfies the condition ∆3 − σ < ∆ < ∆3 + σ, the
analyzed set of resonances may be considered as a pure and complete set. Unfortunately,
∆3 statistics provide no means of correcting an inadequate set of resonance parameters.
Besides, one finds in practice that the ∆3 test criteria are often satisfied for samples that
are known to be neither pure nor complete [4.6, 4.8].

In contrast to the spacing distribution, the neutron width distribution is only slightly
affected by missing or spurious weak resonances. The upper part of the Porter-Thomas
distribution, corresponding to strong resonances, can be regarded as virtually unper-
turbed. A number of resonances that have the reduced neutron width above a given value
are described by the function

N(Γ) = N0

∫ ∞

Γ/Γ

exp(−x/2)dx√
2πx

= N0

[
1− erf

√
Γ/2Γ

]
. (4.7)

Thus, by fitting the corresponding distribution of neutron widths with a maximum like-
lihood approach, we can find both the average reduced neutron width and total number
of resonances N0 at the considered energy interval. Various versions of this method were
developed to take into account energy variations of the measurement threshold and other
experimental conditions [4.8, 4.9].

The third class of methods attempts to account simultaneously for limitations imposed
on estimations of a mean width and resonance spacing by the Wigner and Porter-Thomas
laws. Simulations of the neutron cross section by the Monte-Carlo methods that include
experimental resolution and other conditions are applied in most cases. Some analytical
treatments that could replace the Monte-Carlo simulation for some calculations were
discussed in Ref. [4.9].

The conclusion that can be formulated on the basis of the resonance parameter analy-
ses performed by different groups is that none of the methods guarantees an unambiguous
identification of missed or spurious resonances. Critical analyses of the experimental con-
ditions and approaches used to obtain individual resonance parameters are very important
in many cases. Priority in average parameter evaluations should be given to the quality
of the selected resonance set rather than to the total number of resonances considered
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[4.9, 4.13]. Only for a rather small number of nuclei is the accuracy of the evaluated res-
onance spacings better than 10%. The best examples of such nuclei are U-235 and U-238
for which the relative errors of the recommended D0 are better than 2%, and Pu-239,
Pu-240 and Pu-242 for which such errors are about 5% [4.9, 4.11].

4.2 Files of average neutron resonance parameters

Complete tables of average resonance parameters provided by Beijing, Bologna and Ob-
ninsk groups were collected during the course of the RIPL-1 project. All these parameters
are mainly based on the analysis of the resolved resonance parameters presented in the
well-known BNL compilation [4.14, 4.15]. Despite the common base, many discrepancies
were found between the average parameter estimations. These discrepancies were rather
large when compared to the parameter uncertainties, especially for cases with less than
20 resonances.

After consideration of the existing discrepancies, the Beijing and Obninsk groups re-
analyzed some of their previous evaluations, and prepared updated versions of the average
resonance parameters. Agreement between the updated parameters has been significantly
improved for most of the nuclei, although the uncertainties quoted for the Obninsk eval-
uations were systematically higher than the uncertainties given in the original BNL eval-
uations [4.14, 4.15] and the revised Beijing data. This difference was shown to be mainly
concerned with the reduction of the energy interval that the Obninsk group used to im-
prove the quality of the analyzed sets of resonances in accord with the statistical methods
described above. Taking into account substantial differences between the uncertainties
obtained by the various methods, those of the Obninsk group seem more reliable than
others. Accordingly, the Obninsk evaluation of the average resonance parameters was
included in RIPL-1 as the recommended file, and the Beijing evaluation as the alterna-
tive [4.16]. The Minsk evaluation of the average resonance parameters for the actinides
was also included as an alternative file, and the additional compilations of the average
resonance spacings (mengoni gc.dat and iljinov gc.dat files) were included in Segment 5
of the RIPL-1 Starter File [4.16], because of their relevance to nuclear level densities.

The recommended data sets have been extended under the RIPL-2 project to include
the average parameters for p-wave neutron resonances along with the s-wave resonance pa-
rameters considered previously. Although the accuracy of the data for p-wave resonances
is certainly not as good as for s-wave resonances, such improved data are important in
the optical and statistical models. Another task of the RIPL-2 project was to test and
revise the previously recommended parameters.

A reliable separation of p-wave resonances from the background of stronger s-wave
resonances plays a crucial role in estimating the average resonance parameters. Thus,
trustworthy results for the p-wave resonance parameters can only be obtained under the
simultaneous analysis of the resolved resonance data for both s- and p-wave neutrons.
Such an analysis for nuclei included in the RIPL-1 list of recommended parameters was
performed by the Obninsk group [4.17], and the corresponding resonance spacings D1,
the neutron strength functions S1, and the average radiative widths of p-wave resonances
were added to the RIPL-2 database.
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Another problem is to produce a complete list of recommended parameters. In the
original BNL compilation [4.14, 4.15], the average resonance parameters were obtained for
about 230 nuclei; Iljinov et al. [4.18] compiled the resonance spacings for 284 nuclei; the
Beijing compilation reports data for 344 nuclei [4.19]; however, the recommended RIPL-1
file is limited to only 281 nuclei. A careful review of the Beijing compilation shows that 35
out of 344 nuclei contain no data quantifying the neutron strength functions and a number
of resonances are set to zero. This observation indicates that the resonance spacings for
these nuclei were not obtained from the analysis of experimental data, but rather from the
systematics of neighboring nuclei. Such systematics could be useful for many applications,
but the results should not be mixed with the direct experimental data, and therefore have
been removed from the RIPL-2 database. All issues related to the resonance spacing
systematics that are connected with nuclear level densities are considered in Chapter 6.

Some skepticism can arise with respect to the recommended parameters of nuclei for
which data are available for a rather small number of resonances, particularly for about
45 nuclei in RIPL-1 in which the number of resonances are equal or less than five. Any
statistical analysis of such data is doubtful. Nevertheless, we decided to include such cases
in the recommended file to provide an estimate that is certainly better than nothing. So all
nuclei available in the alternative files of RIPL-1 but not in the recommended file were re-
analyzed on the basis of the last compilation of the resolved resonance parameters [4.20].
As a result, 16 nuclei were added to the list of average resonance parameters included in
the RIPL-2 file. This file was tested by the Brussels group in their microscopic calculations
of nuclear level densities, and some misprints were corrected in the final version of the
RIPL-2 file.

Independent analyses of the resonance parameters for about 20 nuclei have been per-
formed by the BNL group [4.21]. They re-evaluated the resonance spacings, the neutron
strength functions and the radiative widths for the most important fission products. In
most cases, the new BNL results overlap with the RIPL-1 recommended parameters within
the bounds of the accepted uncertainties.

The s-wave resonance spacings included in RIPL-2 are shown in Fig. 4.1, along with
the Beijing evaluation [4.16] and BNL data. Uncertainties for most of the data do not
exceed the sizes of the symbols, showing that the results of all the evaluations agree rather
well for nuclei with more than 30 known resonances. For other nuclei, the data included in
the RIPL-2 file seem preferable for two reasons: (i) more accurate selection of the energy
interval used for the average parameter evaluations and (ii) more reliable estimations of
the quoted uncertainties.

The resonance spacings of the p-wave resonances are shown in Fig. 4.2. These data
were obtained for a substantially smaller number of nuclei than for the s-wave resonances.
Nevertheless, the p-resonance spacing data are very important in testing the consistency
of the results. Based on the general statistical properties of nuclear levels, the spacings
of the s- and p-wave resonances should be related (D1 = D0/3) at least for nuclei far
from the magic numbers. This relationship is also useful for a coarse estimation of the
s-resonance spacing when only p-resonance data are available. Data included in RIPL-2
for the s-wave neutron strength functions are shown in Fig. 4.3, and compared with
BNL data [4.14, 4.15] corrected in a new evaluation [4.21]. For most cases, there are no
significant differences between the two evaluations. As explained above, the
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Figure 4.1: Average resonance spacings for the s-wave neutron resonances included in the
BNL [4.14, 4.15, 4.21], Beijing [4.16, 4.19] and RIPL-2 evaluations.
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Figure 4.2: Average resonance spacings for the p-wave neutron resonances included in the
BNL [4.14, 4.15] and RIPL-2 evaluations.
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Figure 4.3: The s-wave neutron strength functions included in the BNL [4.14, 4.15, 4.21]
and RIPL-2 evaluations. Uncertainties are shown for the RIPL-2 evaluations only.

uncertainties quoted in the RIPL-2 file are slightly higher than those in the BNL evalu-
ation, partially because they take into account sample quality in addition to statistical
errors.

Similar results for the p-wave neutron strength functions are presented in Fig. 4.4.
The BNL compilation includes some additional data on the p-wave strength functions that
were obtained from neutron cross-section analyses in the unresolved resonance region.
However, such analyses require some additional, model-dependent approximations, and
therefore we decided to limit the RIPL-2 resonance files to the data based on the resolved
resonance parameters observed directly.

Average radiative widths included in the RIPL-2 files are shown in Figs. 4.5 and 4.6
for the s- and p-wave resonances, respectively. The recommended values obtained by
different groups agree with each other in general [4.16]. However, we note that for many
nuclei the average widths are given without any uncertainties in the BNL and Beijing
evaluations. Under such circumstances, the uncertainties provided in the RIPL-2 file
should be adopted.
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Figure 4.4: The p-wave neutron strength functions included in the BNL [4.14, 4.15] and
RIPL-2 evaluations.

                                        

                                        

                                        

                                        

                                        

0 50 100 150 200 250
10

100

1000

 BNL 
 RIPL-2

Mass number

G
g, m

eV

Figure 4.5: Average radiative widths for the s-wave neutron resonances included in the
BNL and RIPL-2 evaluations.
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Figure 4.6: Average radiative widths for the p-wave neutron resonances included in the
BNL [4.14, 4.15] and RIPL-2 evaluations.

4.3 Conclusions and recommendations

All recent evaluations by the Beijing, Minsk, Obninsk, and Troitsk groups have been
included in the RIPL-1 database, and the recommended RIPL-1 data were tested and
revised during the RIPL-2 project. Previous data were corrected and extended by taking
into account recent experimental data. In addition to the data for the s-wave neutron
resonances, new evaluations of the average parameters for the p-wave resonances have
been included in the RIPL-2 library.
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5 OPTICAL MODEL PARAMETERS

Coordinators: O. Bersillon and P.G. Young

Summary

The optical model segment of the Reference Input Parameter Library is described. Avail-
able files include a library of phenomenological optical model potentials (OMP) for inci-
dent neutrons, protons, deuterons, tritons, 3He and 4He particles; a microscopic optical
model code for incident nucleons; several retrieval and utility codes for accessing the OMP
library; definition of the format of the OMP library; and user information for the various
codes. Global as well as nuclide-specific potentials are included that utilize spherical,
vibrational, dispersive and rotational models. The optical model parameterizations in the
library are given in a general format that allows for easy expansion. Recommendations for
the use of the library are given, together with user instructions for the various computer
codes.

The optical model provides the basis for many theoretical analyzes and/or evaluations
of nuclear cross sections that are used in providing nuclear data for applied purposes. As
well as offering a convenient means for the calculation of reaction, shape elastic and (neu-
tron) total cross sections, optical model potentials are widely used in quantum-mechanical
pre-equilibrium and direct-reaction theory calculations, and (most importantly) in sup-
plying particle transmission coefficients for Hauser-Feshbach statistical-theory as used in
nuclear data evaluations.

The importance of optical model parameterizations is made even more apparent by
the worldwide diminution of experimental facilities for low-energy nuclear physics mea-
surements and the consequent increased reliance on theoretical methods for providing
nuclear data for applications. Therefore, the preservation of past work aimed at describ-
ing experimental results with optical model potentials is vital for the future development
of nuclear databases. Additionally, the availability and use of microscopic optical model
codes is important for predicting data for target nuclei far from the line of stability, where
phenomenological models might not be valid.

The optical model segment of RIPL-2 is aimed at extending the library of optical
model parameterizations developed under the RIPL-1 project [5.1], and providing access
to a microscopic optical model code. The product of this activity for phenomenological
optical potentials is an optical model potential (OMP) library that contains reliable, state-
of-the-art parameterizations for the conventional optical model codes used in calculations
of nuclear data for applications. In addition to preserving optical model parameterizations
for future activities, the library offers a convenient means for evaluators to access a wide
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body of information on the optical model. Subroutines have been developed for reading
and writing the data library and for creating convenient summaries of the library. Pro-
cessing codes are provided that permit direct interfacing of the library with the selected
optical model codes.

The OMP library is organized in two parts: an archival file and a user file. The
archival file contains all potentials compiled so far, totaling some 533 entries; the user file
is a subset of the archival file and contains 406 potentials. The focus of the RIPL-2 studies
was the user library, which contains the most useful optical potentials for calculating data
for applications. The format of the archival library is identical to the user library, and the
various retrieval and utility codes that are provided work equally well with either library.
Details of the phenomenological library and supporting codes are given below.

In addition to the OMP library, a semi-microscopic optical model code is also supplied
and described in Section 5.2. This model should mainly be used when experimental data
are missing.

5.1 Phenomenological parameterizations

5.1.1 Description of the potential

One of the primary goals of the optical model segment is to provide a format for optical
model parameterizations that is general enough to cover all commonly used phenomeno-
logical potential representations and that is easily expanded for additional types of optical
potentials. We have focused on standard Schrödinger-type forms of optical model poten-
tials, and have included spherical, coupled-channel rotational, vibrational and dispersive
optical models.

As presently formulated, potentials of the form

V (r) = −VR fR(r) − iWV fV (r) + 4aV D VD
d

dr
fV D(r) + 4iaWD WD

d

dr
fWD(r) +

λ2
π

r
[VSO

d

dr
fV SO(r) + iWSO

d

dr
fWSO(r)] σ · l (5.1)

are allowed, in which VR and WV are the real and imaginary volume potential well depths,
VD and WD are the real and imaginary well depths for the surface derivative term, VSO

and WSO are the real and imaginary well depths for the spin-orbit potential, and λ2
π is

the pion Compton wavelength squared (� 2 fm2). The quantity σ · l is the scalar product
of the intrinsic and orbital angular momentum operators and is given by

σ · l = l for j = l +
1

2

= −(l + 1) for j = l − 1

2
(5.2)

where fi(r) are radial-dependent form factors and are defined below (Section 5.1.5).

Any incident particle is permitted by the format, but we have limited our initial
library to incident neutrons, protons, deuterons, tritons, 3He and 4He particles. Our
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approach is to supply a general form for optical model potentials that is an extension of the
representation implemented in the SCAT2000 optical model code [5.2] and that describes
most of the parameterizations that have been commonly used in the past. Additionally,
three specialized formats are formulated that describe particular less common forms of
potentials, but which offer promise as being important for applied purposes.

Many high energy potentials are obtained with the use of the relativistic kinematics
(see Annex 5.D). It should be noted here that the relativistic OMPs given in the library
include the γ relativistic factor [5.3].

5.1.2 Dispersive relations

The dispersive optical model is a natural result of the causality principle: a scattered wave
cannot be emitted before the arrival of the incident wave. This introduces an integral
relationship [5.4] which links the real and imaginary parts of the nuclear potential

∆V (E) =
1

π
P
∫ ∞

−∞
W (E ′)
E ′ − E

dE′ .

where W is either the volume or the surface absorption potential. This addition provides a
more realistic description of the energy dependence of the optical potential and enables the
prediction of single-particle, bound-state quantities (such as binding energies, occupation
probabilities and spectroscopic factors). There are few analyses that include dispersive
relationships. One reason is that the integrals are analytical for only a very restricted
number of absorption potential energy dependences (piecewise linear [5.2] or Brown and
Rho form [5.5, 5.6]). Precise numerical calculation of these integrals might make the use
of the dispersion approach easier [5.7].

An example is given in Ref. [5.8] of the extension of the dispersive optical model
approach to permanently deformed nuclei.

5.1.3 Nucleon-nucleus potentials

Individual Nucleus Potentials

The bulk of the nucleon-nucleus potentials in the OMP library is for single target nuclei
(or perhaps for a very narrow range of neighboring targets) and cover a range of incident
energies. These potentials are usually the most accurate for specific targets and should be
considered whenever accuracy is imperative. There is one important series of potentials
that, while given for specific targets, were derived as part of a comprehensive analysis
covering targets from 24Mg to 209Bi. These are the spherical optical model potentials
by Koning and Delaroche [5.9]. Other significant individual nuclide potentials are those
by Arthur [5.10] and the extensive lists of potentials used in PR China [5.11] and Japan
[5.12] for fission products. All of the rotational model potentials described below are in
the form of individual nucleus potentials with relatively small ranges of validity in Z and
A.
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Global potentials

The use of the term “global” refers to optical model potentials that cover a wide range
of incident energy and target nuclei. The most important potentials that are global for
both incident neutrons and protons are those of

• Koning and Delaroche [5.9] (Z=12-83, A=27-209, E=0.001-200 MeV), and

• Madland [5.3] (Z=6-82, A=12-208, E=50-400 MeV).

In addition to incorporating improved methodology, these potentials are the most recently
developed global potentials and, as such, their analyses have drawn upon a wider range
of experimental data than the older potentials.

Other older global potentials that cover both incident neutrons and protons are those
of

• Becchetti and Greenlees [5.13] (Z=20-92, A=40-238, E=10-50 MeV),

• Walter and Guss [5.14] (Z=26-82, A=54-208, E=10-80 MeV), and

• Varner et al. [5.15] (Z=20-83, A=40-209, E=16-65 MeV).

Older global potentials developed exclusively for incident neutrons are those of

• Moldauer [5.16] (Z=20-83, A=40-209, E=0.001-5 MeV),

• Wilmore and Hodgson [5.17] (Z=20-92, A=40-238, E=0.01-25 MeV),

• Engelbrecht and Fiedeldey [5.18] (Z=20-83, A=40-210, E=0.001-155 MeV),

• Strohmaier et al. [5.19] (Z=23-41, A=50-95, E=0.001-30 MeV).

For incident protons alone, there are the potentials of

• Menet et al. [5.20] (Z=6-82, A=12-208, E=30-60 MeV),

• Perey [5.21] (Z=16-49, A=30-100, E=0.01-22 MeV), and

• Patterson et al. [5.22] (Z=20-82, A=48-208, E=25-45 MeV).

Coupled-channels potentials

The RIPL-2 OMP library contains 33 neutron and 8 proton coupled-channels poten-
tials for ground-state rotational bands. These potentials have been necessarily developed
for more limited target Z and A ranges, as they are dependent upon the structure of
each target nucleus. For incident neutrons, the targets include 151−153Eu, 165Ho, 169Tm,
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182−186W, 185,187Re, 197Au and a number of actinides between 232Th and 252Cf. In each
case, the structure information is provided in the OMP library for the target nuclei for
which the potential was determined. It is possible for the user to use these potentials over
a broader range of target nuclei, most probably with reduced accuracy, although the user
must provide the required structure information.

Coupled-channels potentials for incident protons are provided for the same target
nuclei, except that only one potential is included for actinides. These potentials were
determined with the neutron potentials using the Lane model [5.23].

5.1.4 Complex-particle potentials

A limited number of spherical potentials are included for complex particles.

For incident deuterons, there are global potentials from

• Bojowald et al. [5.24] (Z=6-82, A=12-208, E=20-100 MeV),

• Lohr and Haeberli [5.25] ( Z=20-83, A=40-209, E=8-13 MeV), and

• Perey and Perey [5.26] (Z=20-82, A=40-208, E=11-27 MeV).

Additionally, there are individual target potentials for 5 nuclei between 40Ca and 208Pb
by Daehnick et al. [5.27], each covering the incident deuteron energy range from 11.8 to
90 MeV.

For incident tritons and 3He particles, the global potentials of Becchetti and Greenlees
[5.28] (Z=20-82, A=40-208, E=1-40 MeV) are included. The energy dependence of the
triton potential is based on the 3He potential, which covers the same energy range for the
same target charge and mass range.

In the case of incident alpha particles, the OMP library includes global potentials from

• McFadden and Satchler [5.29] (Z=8-82, A=16-208, E=1-25 MeV),

• Avrigeanu et al. [5.30] (Z=8-96, A=16-250, E=1-73 MeV),

• Huizenga and Igo [5.31] (Z=10-92, A=20-235, E=1-46 MeV), and

• Strohmaier et al. [5.19] (Z=20-45, A=40-100, E=1-30 MeV).

Also included in the RIPL-2 optical file space is a code that can be used to obtain phe-
nomenological alpha-particle potentials (om-alpha.f). This code was developed by Kumar
and Kailas [5.32] for the RIPL-2 co-ordinated research project, and utilizes systematics of
the nuclear radius and slope as well as real potential microscopic volume integrals from
earlier analyzes of alpha optical model potentials. The new global potential is valid for
incident alpha energies near the Coulomb barrier up to 150 MeV and for target nuclei over
the mass range A = 16 to 208. The elastic and reaction cross sections calculated with this
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model show satisfactory agreement with experimental data for the limited cases checked
so far. At energies below the Coulomb barrier, the potential has not been thoroughly
tested.

5.1.5 Format of OMP library

A complete description of the format of the OMP library is given in Annex 5.A, so only
a summary is given here. The format allows parameterizations for spherical, coupled-
channels rotational, vibrational and non-axial deformed optical models. Potentials may be
relativistic or non-relativistic, dispersive or non-dispersive. The format allows for inclusion
of structure data for coupled-channels rotational, vibrational and non-axial deformed
models.

The general form of the optical model potential is the following:

Vi(E) = α1 + α7η + α8∆c + α9A + α10A
1/3 + α11A

−2/3 + α12∆c′ +

(α2 + α13η + α14A)E + α3E
2 + α4E

3 + α6

√
E +

(α5 + α15η + α16E) ln(E) + α17∆cE
−2 (5.3)

where Vi(E) designates the ith term of the potential (for example, VR, WD, VSO, etc.)
at incident laboratory energy E, η = (N − Z)/A, N and Z are the neutron and proton
numbers of the target nucleus, and A is the integer atomic mass of the target, i.e., A
= N + Z. Two different forms of correction terms for Coulomb repulsion with incident
protons are provided:

∆c =
0.4 Z

A1/3
and ∆c′ =

1.73 Z

Rc
(5.4)

where Rc is the Coulomb radius. The coefficients that multiply ∆c and ∆c′ are usually
zero for incident neutrons.

Each of the potential terms in Eq. 5.1 can be represented over any number of defined
energy ranges using as many of the terms given in Eq. 5.3 as required, with the coefficients
of the unused terms set to zero.

Either Woods-Saxon or Gaussian form factors are permitted for the fi(r) terms in
Eq. 5.1:

fi(r) =
[
1 + exp

(
r − Ri

ai

)]−1

(Woods-Saxon form) (5.5)

or

fi(r) = exp

[
−(r − Ri)

2

a2
i

]
(Gaussian form). (5.6)

The nuclear radius is given by Ri = ri A
1/3, where ri is given by

ri(E) = β1 + β2E + β3η + β4A
−1 + β5A

−1/2 + β6A
2/3 + β7A + β8A

2 +

β9A
3 + β10A

1/3 + β11A
−1/3, (5.7)
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and a similar form is used for the diffuseness (ai):

ai(E) = δ1 + δ2E + δ3η + δ4A
−1 + δ5A

−1/2 + δ6A
2/3 + δ7A + δ8A

2 +

δ9A
3 + δ10A

1/3 + δ11A
−1/3. (5.8)

βi and δi are constants that are given in the OMP library. Note that the β11A
−1/3

term in Eq. 5.7 permits the inclusion of a constant (A-independent) quantity to the radius
that is Ri = ro + r′i A

1/3 = β11 + r′i A
1/3.

In addition to the general formula given in Eq. 5.7, three specialized formats are
provided for inclusion of potentials by Smith et al. [5.33], Engelbrecht and Fiedeldey
[5.18], Varner et al. [5.15], and Koning and Delaroche [5.9]. The first two special forms
are described in the RIPL-1 report [5.1]; whereas the third is used with potentials from
Koning and Delaroche, has changed since RIPL-1, and is summarized below.

The format used for the Koning and Delaroche potentials, as well as that of Koning
el al. [5.34], is given by the following expression:

Vi = b1[1− b2(E − Ef ) + b3(E −Ef )2− b4(E − Ef)3] + b5 +

b6(E − Ef )n/[(E − Ef )n + bn
7 ] + b11 exp[−b12(E − Ef )] +

b8 exp[−b9(E −Ef )](E − Ef)
n/[(E − Ef)

n + bn
10] (5.9)

where Ef is the Fermi energy and is provided in the library. Likewise, the various bi are
determined from parameters in the library. The format and relationships are fully defined
in Annex 5.A.

5.1.6 Contents of OMP library

The OMP library is given in two parts: an archival file and a user file. The archival file
contains all potentials compiled so far and totaling 533, of which 287 are potentials for
incident neutrons, 146 potentials for protons, 11 for deuterons, 26 for tritons, 53 for 3He
particles, and 10 for incident alpha particles. The user file is a subset of the archival file
with all single-energy potentials eliminated, and contains 406 entries.

Each potential included in RIPL is given a unique reference number, according to
a system that is described in Annex 5.B. This numbering system was adopted in order
to separate the potentials for different incident particles into different reference number
regions, and to provide approximate information on the sources of the various potentials by
geographical region. For example, the latter information might be used if only potentials
from a particular source are adopted for a given set of calculations.

An example of a complete entry for one reference in the library is given in Annex 5.C,
following the format given in Annex 5.A. The reference number (5003) indicates that the
incident particle is a proton, and that the source of the potential is a laboratory in the
United States of America.

Summary information on all the potentials compiled to date is given in Annex 5.D,
together with references for each potential. The user library to date includes:
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• 283 optical model parameterizations for incident neutrons,

• 101 parameterizations for incident protons,

• 8 parameterizations for incident deuterons,

• 1 parameterization for incident tritons,

• 3 parameterizations for 3He particles, and

• 10 parameterizations for incident alpha particles.

5.2 Microscopic optical model

The phenomenological parameterizations described in the previous section are suitable if
there are sufficient experimental data to constrain the optical model parameters. If these
data are too sparse or totally lacking, one has to move to global parameterizations or, in
a more physical way, to a semi-microscopic approach as described in Ref. [5.35].

The potentials in this model are calculated by folding the target radial matter density
with an optical potential in nuclear matter based on the Brückner-Hartree-Fock work of
Jeukenne et al. [5.36]. Parameterization of this potential in nuclear matter was revised
by unifying the low and high energy components [5.35, 5.37], and thus making the semi-
microscopic model applicable in the nucleon energy range from 1 keV to 200 MeV and
for spherical nuclei with mass number A > 30.

The semi-Microscopic Optical Model is implemented in the MOM package which is
included in the optical directory.

5.3 Validation

Validation of the potentials in the library has been carried out at several levels. In addition
to considerable proof reading, several of the potentials contained in the RIPL-2 library
have been tested by Kumar et al. [5.38] against experimental data. In every case where
local potentials were compared to global potentials, the local parameterizations produced
better agreement with the experimental data than did the global potentials. Additionally,
volume integrals from several well-known global potentials were compared to “best-fit”
potentials for the 208Pb + n system [5.1], which indirectly involved experimental data.

The testing of the present RIPL-2 OMP library has focused on verifying that the
potentials in the library are accurately entered and that they produce reasonable results
when used in optical model calculations. To this end, every potential in the library has
been processed with the OM-RETRIEVE code to make inputs for the ECIS96 code.
ECIS96 calculations were performed at one or more incident energies, and the resulting
reaction cross sections were compared to check for obvious errors. Additionally, inputs
were made for the SCAT2000 code from every spherical potential and the resulting
reaction cross sections were compared against one another and with the ECIS96 results.

54



Table 5.1: Comparison of total (σt) and reaction (σr) cross sections calculated for 14 MeV
neutrons on 27Al with the SCAT2000 and ECIS96 codes from spherical potentials in
the RIPL-2 library. The om-retrieve.f code was used to generate inputs for the codes.

RIPL First σt (mb) σt (mb) σr (mb) σr (mb)
number author SCAT2000 ECIS96 SCAT2000 ECIS96

18 Harper 1670.9 1672.0 919.0 919.1
117 Petler 1709.1 1709.1 954.0 953.2
419 Molina* 1688.1 1688.1 907.8 906.9
1402 Koning 1722.8 1722.5 987.4 992.3
2405 Koning 1780.7 1780.6 1051.9 1051.4
242 Lee 1749.0 1747.9 1029.4 1028.4
418 Molina* 1697.9 1698.0 932.1 931.4
101 Ferrer 1774.6 1774.8 1099.0 1099.0

* Dispersive potentials.

No consideration was given to the Z and A ranges of validity of the potentials, as the test
was merely intended to check for library data input errors.

The global potential of Madland [5.3], as processed from the RIPL-2 library with
OM-RETRIEVE, has been checked in detail against Madland’s calculations with the
SNOOPY code used in his original analysis. Additionally, the global and individual-
nucleus potentials of Koning and Delaroche [5.9] have been checked in detail by comparison
with parameter values supplied by Koning. The results of SCAT2000 and ECIS96
calculations with these potentials have been compared with some of the older potentials
for particular targets and incident energies.

Table 5.1 compares reaction cross sections calculated with SCAT2000 and ECIS96
for 14 MeV neutrons on 27Al and a variety of RIPL-2 potentials. All the potentials are
spherical, and two of the potentials are dispersive. SCAT2000 and ECIS96 results are
in excellent agreement, typically within a few tenths of a percent. These small differences
can be attributed to the differences in the target masses adopted in the two codes. The

Table 5.2: Comparison of total (σt), elastic scattering (σe), reaction (σr), first (σ1) and
second (σ2) excited state cross sections calculated for 10 MeV neutrons on 238U with the
ECIS96 code from coupled-channels rotational potentials in the RIPL-2 library. The
om-retrieve.f code was used to generate inputs for the codes.

RIPL First σt σe σr σ1 σ2 Type of
number author (mb) (mb) (mb) (mb) (mb) potential

600 Vladuca 5745.0 2592.0 3153.0 248.6 39.0 Coupled-channels
410 Lagrange 5774.1 2609.2 3164.9 238.5 54.1 Coupled-channels
416 Haouat 5774.1 2609.2 3164.9 238.5 54.1 Coupled-channels
5 Young 5780.1 2628.3 3151.7 259.6 60.7 Coupled-channels

2006 Young 5760.3 2620.7 3139.5 263.8 61.6 Coupled-channels
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Table 5.3: Comparison of reaction cross sections (σr) calculated for 50 and 90 MeV
protons on 208Pb with the SCAT2000 and ECIS96 codes from spherical potentials in
the RIPL-2 library. The om-retrieve.f code was used to generate inputs for the codes.

50 MeV 90 MeV
RIPL First σr (mb) σr (mb) σr (mb) σr (mb)

number author SCAT2000 ECIS96 SCAT2000 ECIS96
4101 Becchetti 2049.5 2049.4 - -
4102 Menet 2122.6 2122.5 - -
4131 Schwandt 1998.8 1991.2 1919.5 1913.3
4428 Koning 2028.3 2020.7 1956.3 1949.5
5405 Koning 2033.0 2025.4 1950.5 1943.8
5001 Madland 1974.8 1967.2 1894.1 1888.0
5100 Varner 2103.2 2103.2 - -
5101 Walter 2029.1 2029.1 - -

total cross sections from the various potentials show a total spread of roughly 6 percent,
whereas the spread in the reaction cross sections is almost 20 percent.

Similar comparisons are given in Table 5.2 for 10 MeV neutrons on 238U, limited to
the ECIS96 code because the potentials use a coupled-channels rotational model. The
agreement in this case is much better for the total, reaction and elastic cross sections, and
is reasonably good for the (n, n′) cross sections.

Proton potentials for 208Pb are compared at 50 and 90 MeV in Table 5.3. Again, the
SCAT2000 and ECIS96 results are in good agreement, and the spread in the reaction
cross sections is small. Note that calculations are only included over the energy range of
validity of the various potentials.

5.4 Recommendations and conclusions

5.4.1 Recommendations

Ultimately, it is the responsibility of the users of the RIPL-2 data files to choose potentials
that are most appropriate for the particular applications they are addressing. However,
on the basis of our testing of these data, some general recommendations can be made.

Nucleus-specific potentials can be expected to give better results than global poten-
tials, provided the potential has been carefully derived under physical constraints, and
users apply only the potentials in the Z, A and energy ranges where the potentials were
derived. This conclusion is supported by the work of Kumar et al. [5.38] who found
that in every case where local potentials were compared to global potentials, the local
parameterizations produced better agreement with experimental data.

A common situation is that nucleus-specific potentials may not exist or be so limited
as to be useless for a particular problem. Under such circumstances, one must resort to
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other options. Additionally, even if nucleus-specific potentials are available for a problem,
the choice always exists as to which nucleus-specific potential to choose for a particular
problem. Accordingly, we have made suggestions or recommendations for an initial choice
of potentials that can be adopted for most problems.

Actinide and rare earth targets

1. In the case of strongly deformed nuclei, we recommend that coupled-channels ro-
tational potentials be used for the individual nucleus involved if such are available.
These potentials can be chosen from those listed in Annex 5.D.

Incident neutrons - targets with Z ≤ 90

1. We recommend the individual-nucleus potentials of Koning and Delaroche (RIPL
1400 - 1467).

2. For cases where option 1 is not possible but the target is still close to the line of
stability, we recommend the global potential of Koning and Delaroche (RIPL 2405).
For 50 ≤ E ≤ 400 MeV, a possible alternative is the potential of Madland (RIPL
2001).

3. If the target lies far from the line of stability, we recommend use of the microscopic
optical model code MOM.

Incident protons - targets with Z ≤ 90

1. We recommend the individual-nucleus potentials of Koning and Delaroche (RIPL
4416 - 4429).

2. For cases where option 1 is not possible but the target is still close to the line of
stability, we recommend the global potential of Koning and Delaroche (RIPL 5405).
For 50 ≤ E ≤ 400 MeV, a possible alternative is the potential of Madland (RIPL
5001).

3. If the target lies far from the line of stability, we recommend use of the microscopic
optical model code MOM.

Incident deuterons

1. We recommend the individual-nucleus potentials of Daehnick (RIPL 6112 - 6116),
where applicable.

2. If option 1 not possible, we recommend the global potential of Bojowald et al. (RIPL
6400).
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Incident tritons

1. We recommend the global potential of Becchetti and Greenlees (RIPL 7100); this
is the only choice available in the RIPL-2 library.

Incident 3He

1. We recommend the global potential of Becchetti and Greenlees (RIPL 7100).

Incident alpha particles

1. We recommend the individual-nucleus potentials from Annex 5.D, where possible.

2. If option 1 is not possible, we recommend the global potential of Strohmaier (RIPL
9400: Z = 20 - 45, E = 1 - 30 MeV) or Avrigeanu et al. (RIPL 9600: Z = 8 - 96,
E = 1 - 73 MeV).

5.4.2 Conclusions

Improved phenomenological optical model potentials have been developed in recent years
that can enhance significantly the quality of optical model calculations for applied prob-
lems. These include Koning and Delaroche’s extensive set of optical model potentials for
individual target nuclei covering the nucleon energy range E=1-200 MeV and the target
range Z=12-83, A=24-209, with accompanying global potentials covering the same energy
and target ranges [5.9]. These potentials not only span very broad ranges in energy, Z
and A, but are also based upon a modern analysis approach that utilizes an extensive
experimental data base [5.34]. Additionally, the use of microscopic optical model calcu-
lations has advanced to a state where routine use of such potentials as a supplement to
phenomenological models is not only feasible but also very desirable.

A primary aim of the RIPL-2 optical segment has been to accumulate a large body
of information that will be useful in optical model calculations and to provide computer
codes for processing the information into inputs for commonly used optical model codes.
The RIPL-2 optical model potential library includes a wide collection of older, traditional
potentials as well as many of the newer ones. The data base and codes in the RIPL-2
library should permit users to perform a wide range of optical model calculations of high
quality. Considerable testing of the OMP library has been performed, and the reliability
of the data base is judged to be high. While it is recognized that the information base is
by no means exhaustive, these data have been formulated in a manner that permits easy
expansion as new information becomes available or as gaps are filled in older data.
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5.5 Summary of codes and data files

The structure of the optical directory in RIPL-2 is as follows:

optical/

om.readme
om-utility.readme
om-utility.tgz

om-summary.f
om-modify.f
om-utility.cmb

om-data/
om-parameter.readme
om-parameter-a.dat
om-parameter-u.dat
om-deformations.readme
om-deformations.dat

om-get/
om-retrieve.readme
om-retrieve.tgz

om-retrieve.f
om-retrieve.cmb
gs-mass-sp.dat

kd-global.readme
kd-global.f
om-alpha.readme
om-alpha.tgz

om-microscopic/
mom.readme
mom.tgz
mom-manual.ps

Programs and data files are included in the directory:

om.readme - short description of the overall content of the OPTICAL directory.

om-utility.readme - description of the om-summary.f and om-modify.f codes.

om-utility.tgz - tarred and zipped (gzip) file containing the om-summary.f, om-modify.f,
and om-utility.cmb files.

om-summary.f - code that provides summary information about the om-parameter-
a.dat or om-parameter-u.dat libraries. The only input required is the OMP library
file, plus a terminal input specifying whether the outputs are sorted on RIPL ref-
erence number or on target Z, A, Emin for each projectile type. The code creates
three output files: (i) a concise table of potentials with a description of each, one
line per RIPL reference; (ii) publication references for each entry in the table: (iii)
a summary for each RIPL entry giving RIPL reference, authors, publication refer-
ence, and a brief summary of the work. See Annex 5.D for the table and references
file that result from the om-parameter-u.dat file.

59



om-modify.f - code that allows addition or deletion of potentials from the OMP library.
Contains a simple option for creating a user OMP file from an inputted archival
OMP file.

om-utility.cmb - common-block file required by both the om-summary.f and om-modify.f
code.

om-parameter.readme - description of the optical model parameter library files, in-
cluding complete details of the format of the library.

om-parameter-a.dat - archival version of the OMP library.

om-parameter-u.dat - user version of the OMP library.

om-deformations.readme - description of the om-deformations.dat file.

om-deformations.dat - file of deformation parameters that can be accessed by the om-
retrieve.f code for distorted-wave Born-approximation calculations; described below.

om-retrieve.readme - description of the input options and files required for the om-
retrieve.dat code. A summary is given of the output files, together with instructions
for compiling the code.

om-retrieve.tgz - tarred and zipped (gzip) file containing the om-retrieve.f, om-retrieve.cmb
and gs-mass-sp.dat files.

om-retrieve.f - FORTRAN-77 code that allows retrieval of potential parameters from
the OMP library and formatting into inputs for the SCAT2000 [5.2] spherical
or the ECIS96 [5.6] coupled-channels optical model codes. Inputs for spherical,
coupled-channels rotational, vibrational, or DWBA calculations can be made, with
SCAT2000 limited to spherical models only.

Summary of the code:

1. The three basic options are to produce (i) SCAT2000 input, (ii) ECIS96
inputs, or (iii) ECIS96 inputs for DWBA calculations. If option (ii) is chosen,
the form of the ECIS96 input is determined by whether the OMP potential
is spherical, rotational, or vibrational. Any required structure information is
provided by the OMP library.

2. The input to the om-retrieve.f code includes the RIPL potential reference num-
ber, incident particle, target nucleus and energies at which SCAT2000 or
ECIS96 inputs are required.

3. Using a built-in energy grid, a table of potential values can be made as a
function of energy using option (ii) above.

4. A simple input exists that allows ECIS or SCAT inputs to be made for a
given target Z, A and a given incident particle at a given energy from every
spherical potential in the library - useful for checking purposes.

5. If the option is chosen to make DWBA inputs for ECIS96, deformation in-
formation is taken from an external file, either user-provided or from the om-
deformations.dat file, as described above.
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The code contains certain protections for misuse of the potentials. For example,
only ECIS96 inputs can be made from coupled-channels or vibrational potentials,
and the DWBA option only works for ECIS96 inputs. However, only a screen
message is given if the user attempts to utilize a potential in a Z or A or energy
range outside the range of validity of a particular potential, because there can be
valid reasons for highlighting such a situation.

om-retrieve.cmb - common-block file required by the om-retrieve.f code.

gs-mass-sp.dat - file of nuclear masses (and ground-state spins and parities) required
by the om-retrieve.f code. The mass values in the file are entirely consistent with
those provided in the RIPL-2 file mass/mass-frdm95.dat.

om-kd02.readme - description of the kd-global.f code.

om-kd02.tgz - simple stand-alone code for calculating optical parameters from the
Koning-Delaroche global neutron and proton potential (RIPL reference numbers
2405 and 5405). The code requires a simple input that specifies whether the inci-
dent particle is a neutron or proton, the energy of the incident particle, and the Z
and A of the target nucleus.

om-alpha.readme - description of the alphaop.f code, including instructions for the
input and a summary of the output quantities.

om-alpha.tgz - tarred and zipped (gzip) file containing a stand-alone code for calculat-
ing phenomenological optical model potentials. Instructions for using the code are
included in the om-alpha.readme file.

mom.readme - description of the microscopic optical model code and supplementary
files.

mom.tgz - tarred and zipped (gzip) file containing files required for microscopic optical
model calculations.

mom-manual.ps - postscript file containing the manual for the mom.f code. The man-
ual contains a description of the physics in the code and instructions for use.
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sphérique, Commissariat à l’Énergie Atomique report CEA-N-2227 (1978), Proc.
ICTP Workshop on Computation and Analysis of Nuclear Data Relevant to
Nuclear Energy and Safety, 10 February - 13 March 1992, Trieste, Italy.

[5.3] MADLAND, D.G.,“Progress in the Development of Global Medium-Energy
Nucleon-Nucleus Optical-Model Potential”, Proc. OECD/NEA Specialists Meet-
ing on Nucleon-Nucleus Optical Model to 200 MeV, Bruyères-le-Châtel, France
(1997) 129.

61



[5.4] MAHAUX, C., SARTOR, R., Adv. Nucl. Phys. 20 (1991) 1.

[5.5] BROWN, G.E., RHO, M., Nucl. Phys. A372 (1981) 397.

[5.6] RAYNAL, J., ECIS96, Proc. OECD/NEA Specialists Meeting on Nucleon-Nucleus
Optical Model to 200 MeV, Bruyères-le-Châtel, France (1997) 159.

[5.7] CAPOTE, R., MOLINA, A., QUESADA, J.M., J. Phys. G: Nucl. Phys. 27 B15
(2001).

[5.8] ROMAIN, P., DELAROCHE, J.P., in Proc. OECD/NEA Specialists Meeting on
Nucleon-Nucleus Optical Model to 200 MeV, Bruyères-le-Châtel, France (1997)
167.

[5.9] KONING, A.J., DELAROCHE, J.P., Nucl. Phys. A713 (2003) 231.

[5.10] For example, see ARTHUR, E.D., Nucl. Sci. Eng. 76 (1980) 137 and other
references in Annex 5.D.

[5.11] For example, see GE ZHIGANG, China Nuclear Data Center, Communication of
Nuclear Data Progress, No. 21 (1999) 35 and other references in Annex 5.D.

[5.12] For example, see IGARASI, S., JAERI-M 5752 (1974) and other references in
Annex 5.D.

[5.13] BECHETTI Jr., F.D., GREENLEES, G.W., Phys. Rev. 182 (1969) 1190.

[5.14] WALTER, R.L., GUSS, P.P., Rad. Effects 95 (1986) 73.

[5.15] VARNER, R.L., THOMPSON, W.J., MCABEE, T.L., LUDWIG, E.J., CLEGG,
T.B., Phys. Repts. 201 (1991) 57.

[5.16] MOLDAUER, P.A., Nucl. Phys. 47 (1963) 65.

[5.17] WILMORE, D., HODGSON, P.E., Nucl. Phys. 55 (1964) 673.

[5.18] ENGELBRECHT, C.A., FRIEDELDEY, H., Ann. Phys. 42 (1967) 262.

[5.19] STROHMAIER, B., UHL, M., REITER, W., ”Neutron Cross Section Calculations
for 52Cr, 55Mn, 56Fe, and 58,60Ni”, IAEA Advisory Group Meeting on Nuclear
Data for Radiation Damage Assessment and Related Safety Aspects, Vienna,
Austria, October 1981, INDC(NDS)-128, IAEA Vienna (1982).

[5.20] MENET, J.J.H., GROSS, E.E., MALANIFY, J.J., ZUCKER, A., Phys. Rev. C4
(1971) 1114.

[5.21] PEREY, F.G., Phys. Rev. 131 (1963) 745.

[5.22] PATTERSON, D.M., DOERING, R.R., GALONSKY, A., Nucl. Phys. A263
(1976) 261.

[5.23] LANE, A.M., Nucl. Phys. 35 (1962) 676.

[5.24] BOJOWALD, J., MACHNER, H., NANN, H., OELERT, W., ROGGE, M.,
TUREK, P., Phys. Rev. C38 (1988) 1153.

[5.25] LOHR, J.M., HAEBERLI, W., Nucl. Phys. A232 (1974) 381.

[5.26] PEREY, C.M., PEREY, F.G., At. Data Nucl. Data Tables 17 (1976) 1.

[5.27] DAEHNICK, W.W., CHILDS, J.D., VRCELJ, Z., Phys. Rev. C21 (1980) 2253.

62



[5.28] BECCETTI Jr., F.D., GREENLEES, G.W., Annual Report, J.H. Williams
Laboratory, University of Minnesota (1969).

[5.29] MCFADDEN, L., SATCHLER, G.R., Nucl. Phys. 84 (1966) 177.

[5.30] AVRIGEANU, V., HODGSON, P.E., AVRIGEANU, M., Phys. Rev. C49
(1994) 2136; see also AVRIGEANU, M., AVRIGEANU, V., Development of a
Computerized System for the Storage, Retrieval, and Optimization of Optical
Model Parameters for Nuclear Data Computations, Institute of Atomic Physics,
Bucharest, NP-83-1994 (1994).

[5.31] HUIZENGA, J.R., IGO, G., Nucl. Phys. 29 (1962) 462.

[5.32] KUMAR, A., KAILAS, S., Bhabha Atomic Research Centre, personal communi-
cation (2002).

[5.33] SMITH, A.B., GUENTHER, P.T., WHALEN, J.F., Nucl. Phys. A415 (1984) 1.

[5.34] KONING, A.J., VAN WIJK, J.J., DELAROCHE, J.P., “ECISVIEW: An Inter-
active Toolbox for Optical Model Development”, Proc. OECD/NEA Specialists
Meeting on Nucleon-Nucleus Optical Model to 200 MeV, Bruyères-le-Châtel,
France (1997) 111.

[5.35] BAUGE, E., DELAROCHE, J.P., GIROD, M., Phys. Rev. C63 (2001) 024607.

[5.36] JEUKENNE, J.P., LEJEUNE, A., MAHAUX, C., Phys. Rev. C14, 1391 (1974);
Phys. Rev. C15 (1977) 10; Phys. Rev. C16 (1976) 80; Phys. Rep. 25C (1976) 83.

[5.37] BAUGE, E., DELAROCHE, J.P., GIROD, M., Phys. Rev. C58 (1998) 1118.

[5.38] KUMAR, A., YOUNG, P.G., CHADWICK, M.B., Assessment of Some Optical
Model Potentials in Predicting Neutron Cross Sections, LA-UR-97-0289 (1997).

63





ANNEX 5.A

OPTICAL MODEL PARAMETER FORMAT

FOR RIPL LIBRARY

Structure of the format

[ALL INPUT PARAMETERS ARE READ IN FREE FORMAT READ STATEMENTS]

iref
author [1 line of author names]
reference [1 line of reference information]
summary [4 lines of descriptive information]
emin,emax
izmin,izmax
iamin,iamax
imodel,izproj,iaproj,irel,idr

*****LOOP: i=1,6
jrange(i)

*****LOOP j=1,jrange
epot(i,j)
(rco(i,j,k), k=1,11)
(aco(i,j,k), k=1,11)
(pot(i,j,k), k=1,25)

*****END i AND j LOOPS

jcoul
*****LOOP j=1,jcoul

ecoul(j),rcoul0(j),rcoul(j),rcoul1(j),rcoul2(j),beta(j)
*****END j LOOP

(1)*****SKIP TO (2)***** IF IMODEL NOT EQUAL TO 1

nisotopes
*****LOOP n=1,nisotopes

iz(n),ia(n),ncoll(n),lmax(n),idef(n),bandk(n),[def(j,n),
j=2,idef(n),2]

*****LOOP k=1,ncoll(n)
ex(k,n),spin(k,n),ipar(k,n)

*****END k AND n LOOPS

(2)*****SKIP TO (3)***** IF IMODEL NOT EQUAL TO 2

nisotopes
*****LOOP n=1,nisotopes

iz(n),ia(n),nvib(n)
*****LOOP k=1,nvib(n)

exv(k,n),spinv(k,n),iparv(k,n),nph(k,n),defv(k,n),thetm(k,n)
*****END k LOOP
*****END n LOOP

(3)*****SKIP REMAINING LINES IF IMODEL NOT EQUAL TO 3

nisotopes
*****LOOP n=1,nisotopes

iz(n),ia(n),beta0(n),gamma0(n),xmubeta(n)
*****END n LOOP
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Definitions

iref = unique fixed point reference number for this potential
author = authors for this potential (up to 80 characters, 1 line)

reference = reference for this potential (up to 80 characters, 1 line)
summary = short description of the potential (320 characters, 4 lines)

emin,emax = minimum and maximum energies for validity of this potential
izmin,izmax = minimum and maximum Z values for this potential, where

Z is the number of protons in the target nucleus.
iamin,iamax = minimum and maximum A values for this potential, where

A = Z + N and N is the number of neutrons in the target.
imodel = 0 for spherical potential

= 1 for coupled-channel, rotational model
= 2 for vibrational model
= 3 for non-axial deformed model

izproj = Z for incident projectile
iaproj = A for incident projectile
irel = 0 for non-relativistic parameterization

= 1 for relativistic parameterization
idr = 0 dispersion relations not used

= 1 dispersion relations with equivalent volume real
potential used

= 2 exact dispersion relations used, i.e., volume +
surface real potential used. In this case the real surface
potential is entered in the library as zero and must be
supplied by a processing code. This calculation is done
in the om-retrieve code.

index i = 1 real volume potential (Woods-Saxon)
= 2 imaginary volume potential (Woods-Saxon)
= 3 real surface derivative potential
= 4 imaginary surface derivative potential
= 5 real spin-orbit potential
= 6 imaginary spin-orbit potential

jrange = number of energy ranges over which the potential is specified
= positive for potential strengths
= negative for volume integrals
= 0 if potential of type i not used

epot(i,j) = upper energy limit for jth energy range for potential i
rco(i,j,k)= coefficients for multiplying A**(1/3) for

specification of radius R in fm where:
R(i,j) = {abs[rco(i,j,1)] + rco(i,j,2)*E + rco(i,j,3)*eta

+ rco(i,j,4)/A + rco(i,j,5)/sqrt(A)
+ rco(i,j,6)*A**(2/3) + rco(i,j,7)*A
+ rco(i,j,8)*A**2 + rco(i,j,9)*A**3
+ rco(i,j,10)*A**(1/3)
+ rco(i,j,11)*A**(-1/3)} * [A**(1/3)]

and

if rco(4,j,1) > 0.0: Woods-Saxon derivative surface potential
if rco(4,j,1) < 0.0: Gaussian surface potential.

[Note that the A dependence of rco(i,j,11) cancels out so that
rco(i,j,11) is equivalent to adding a constant of that magnitude
to the radius R(i,j)].

aco(i,j,k) = coefficients for specification of diffuseness a in fm
where:

a(i,j) = abs(aco(i,j,1)) + aco(i,j,2)*E + aco(i,j,3)*eta
+ aco(i,j,4)/A + aco(i,j,5)/sqrt(A)
+ aco(i,j,6)*A**(2/3) + aco(i,j,7)*A
+ aco(i,j,8)*A**2 + aco(i,j,9)*A**3
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+ aco(i,j,10)*A**(1/3) + aco(i,j,11)*A**(-1/3)

pot(i,j,k) = strength parameters in MeV when aco(i,j,1)>0.
= volume integral of strength in MeV-fm**3 when

aco(i,j,1) < 0., and are given as follows:

if pot(i,j,k>21) .eq. 0, then [standard form]

V(i,j) = pot(i,j,1) + pot(i,j,7)*eta + pot(i,j,8)*Ecoul1
+ pot(i,j,9)*A + pot(i,j,10)*A**(1/3)
+ pot(i,j,11)*A**(-2/3) + pot(i,j,12)*Ecoul2
+ [pot(i,j,2) + pot(i,j,13)*eta + pot(i,j,14)*A]*E
+ pot(i,j,3)*E*E + pot(i,j,4)*E*E*E + pot(i,j,6)*sqrt(E)
+ [pot(i,j,5) + pot(i,j,15)*eta + pot(i,j,16)*E]*ln(E)
+ pot(i,j,17)*Ecoul1/E**2

if pot(i,j,22) .ne. 0, then [Smith form]

V(i,j) = pot(i,j,1) + pot(i,j,2)*eta
+ pot(i,j,3)*cos[2*pi*(A - pot(i,j,4))/pot(i,j,5)]
+ pot(i,j,6)*exp[pot(i,j,7)*E + pot(i,j,8)*E*E]
+ pot(i,j,9)*E*exp[pot(i,j,10)*E**pot(i,j,11)]

if pot(i,j,23) .ne. 0, then [Varner form]

V(i,j) = [pot(i,j,1) + pot(i,j,2)*eta]/
{1 + exp[(pot(i,j,3) - E + pot(i,j,4)*Ecoul2)/pot(i,j,5)]}
+ pot(i,j,6)*exp[(pot(i,j,7)*E - pot(i,j,8))/pot(i,j,6)]

if pot(i,j,24) .ne. 0, then [Koning form]

V(i,j) = b(i,j,1)*(1.- b(i,j,2)*(E-EF) + b(i,j,3)*(E-EF)**2
- b(i,j,4)*(E-EF)**3) + b(i,j,5)
+ b(i,j,6)*((E-EF)**n(i,j)/((E-EF)**n(i,j) + b(i,j,7)**n(i,j)))
+ b(i,j,8)*exp(-b(i,j,9)*(E-EF))*((E-EF)**n(i,j)/
((E-EF)**n(i,j) + b(i,j,10)**n(i,j)))
+ b(i,j,11)*exp(-b(i,j,12)*(E-EF))

where
E = projectile laboratory energy in MeV
eta = (N-Z)/A
Ecoul1 = 0.4Z/A**(1/3)
Ecoul2 = 1.73*Z/RC
EF = Fermi energy in MeV [for above case when

pot(i,j,24).ne.0. or when idr=2].
= pot(i,j,18) + pot(i,j,19)*A

If pot(i,j,18) and pot(i,j,19) = 0., then
EF = -0.5*[SN(Z,A) + SN(Z,A+1)] (for incident neutrons)

= -0.5*[SP(Z,A) + SP(Z+1,A+1)] (for incident protons)

where
SN(Z,A) = the neutron separation energy for nucleus (Z,A)
SP(Z,A) = the proton separation energy for nucleus (Z,A).

For cases where idr=2:
EP = pot(i,j,20)

= average energy of particle states.
If pot(i,j,20)=0., then use default value of EP=EF.

EA = pot(i,j,21)
= energy above which nonlocality of the absorptive potential

will be assumed.
If pot(i,j,21)=0., then use default value of EA=1000.

For pot(i,j,24).ne.0., the b(i,j,m) are defined as:
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b(i,j,m) = 0 for i=1,6, j=1,jrange(i), m=1,12, except for
the following:

b(1,j,1) = pot(1,j,1) + pot(1,j,2)*A + pot(1,j,8)*eta
b(1,j,2) = pot(1,j,3) + pot(1,j,4)*A
b(1,j,3) = pot(1,j,5) + pot(1,j,6)*A
b(1,j,4) = pot(1,j,7)
b(1,j,5) = pot(1,j,9)
b(1,j,11) = pot(1,j,10) + pot(1,j,11)*A
b(1,j,12) = pot(1,j,12)
b(2,j,6) = pot(2,j,1) + pot(2,j,2)*A
b(2,j,7) = pot(2,j,3) + pot(2,j,4)*A
b(4,j,8) = pot(4,j,1) + pot(4,j,8)*eta
b(4,j,9) = pot(4,j,2)

+ pot(4,j,3)/(1. + exp((A-pot(4,j,4))/pot(4,j,5)))
b(4,j,10) = pot(4,j,6)
b(5,j,11) = pot(5,j,10) + pot(5,j,11)*A
b(5,j,12) = pot(5,j,12)
b(6,j,6) = pot(6,j,1)
b(6,j,7) = pot(6,j,3)
n(i,j) = int(pot(i,j,13))

And, continuing the definitions:

jcoul = number of energy ranges for specifying coulomb
radius and nonlocality range

ecoul(j) = maximum energy of coulomb energy range j
rcoul0(j),rcoul(j),rcoul1(j),rcoul2(j) =

coefficients to determine the coulomb radius, RC,
from the expression

RC = [rcoul0(j)*A**(-1/3) + rcoul(j) + rcoul1(j)*A**(-2/3) +
rcoul2(j)*A**(-5/3)] * A**(1/3)

beta(j) = nonlocality range. Note that when beta(j).ne.0.,
then the imaginary potential is pure derivative
Woods-Saxon for energy range j.

nisotopes = number of isotopes for which deformation parameters
and discrete levels are given

iz,ia = Z and A of the target associated with the deformation
parameters and discrete levels that follow

ncoll = number of collective states in the coupled-channel
rotational model for this iz, ia

lmax = maximum l value for multipole expansion
idef = largest order of deformation

bandk = k for the rotational band
def = deformation parameters, l=2,4,6,...through lmax
ex = rotational level excitation energy (MeV)

spin = rotational level spin
ipar = rotational level parity (+1 or -1)
nvib = number of vibrational states in the model for this

iz, ia (first level must be ground state)
exv = vibrational level excitation energy (MeV)

spinv = vibrational level spin
iparv = vibrational level parity (+1 or -1)

nph = 1 for pure 1-phonon state
= 2 for pure 2-phonon state
= 3 for mixture of 1- and 2-phonon states

defv = vibrational model deformation parameter
thetm = mixing parameter (degrees) for nph=3
beta0 = beta deformability parameter

gamma0 = gamma deformability parameter
xmubeta = non-axiality parameter

68



ANNEX 5.B

REFERENCE NUMBERING SYSTEM

FOR RIPL OPTICAL MODEL POTENTIALS

DEFINITION: IREF = 1000*I + JREF

Table 5.4: Incident Particles (leading digit, I).

IREF I Particle
1 - 3999 0 - 3 Neutrons

4000 - 5999 4 - 5 Protons
6000 - 6999 6 Deuterons
7000 - 7999 7 Tritons
8000 - 8999 8 He-3
9000 - 9999 9 He-4

Table 5.5: Geographic Indicators (trailing 3 digits, JREF).

JREF Region
1 - 99 Los Alamos National Laboratory (LANL)

100 - 199 Other U.S. laboratories, universities
200 - 299 Japan, JAERI
300 - 399 Russia
400 - 499 Western Europe, JEF community
500 - 599 China
600 - 649 Former Soviet Union and Eastern Europe
650 - 699 India, Pakistan
700 - 799 Others
800 - 999 Reserved
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ANNEX 5.C

EXAMPLE OF A POTENTIAL

IN THE OPTICAL PARAMETER LIBRARY

5003
E.D.Arthur and C.Philis
Report LA-8630-PR, p.2 (1980)
Parameters are based on fits to 169Tm low-energy resonance data and total
cross sections, plus fits to 11-MeV neutron scattering on 165Ho. Lane
model used to relate n and p potentials.

0.001 100.0000
67 69
165 169
1 1 1 0 0
1

100.000
1.26000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.63000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
49.80000 -2.50000-1 0.00000+0 0.00000+0 0.00000+0 0.00000+0 1.60000+1

1.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

2
8.300
1.26000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.63000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

100.000
1.26000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.63000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
-1.00000 1.20000-1 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0
2
6.500
1.26000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.48000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
5.02000 5.10000-1 0.00000+0 0.00000+0 0.00000+0 0.00000+0 8.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

100.000
1.26000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.48000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
8.93300 -9.20000-2 0.00000+0 0.00000+0 0.00000+0 0.00000+0 8.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

1
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100.000
1.26000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.63000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0
6.00000 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0
0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0 0.00000+0

0
1

100.000 0.0000 1.2500 0.0000 0.0000 0.0000
2

67 165 3 4 4 3.5 3.000E-01 -2.000E-02
0.00000000 3.5 -1
0.09470000 4.5 -1
0.20980000 5.5 -1
69 169 5 4 4 0.5 2.900E-01 -1.000E-02
0.00000000 0.5 1
0.00842000 1.5 1
0.11810000 2.5 1
0.13890000 3.5 1
0.33190000 4.5 1

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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ANNEX 5.D

SUMMARY OF ENTRIES AND REFERENCES

INCLUDED IN THE RIPL-2 OPTICAL MODEL

POTENTIAL LIBRARY

This annex contains a summary of the optical model parameterizations that are in-
cluded in the user version of the RIPL-2 optical model potential ibrary. The results are
given in tabular form, with each entry summarized in a single line and with a complete
list of the references included in the library (as defined by Ref. No.). The table and
reference list were obtained using the om-summary.f computer code, which is included
in the RIPL-2/optical/om-get directory.

Lib. Inc. Model Disp Rel Z-Range A-Range E-Range Ref. First
No. Part. Type Pot Pot (MeV) No. Author

15 n spher. no no 6- 6 12- 12 0.0- 65.0 1 M.B.Chadwick
2001 n spher. no yes 6-82 12-208 50.0-400.0 2 D.G.Madland

16 n spher. no no 7- 7 14- 14 0.0- 60.0 1 M.B.Chadwick
136 n spher. no no 7- 7 14- 14 18.0- 60.0 3 M.S.Islam
17 n spher. no no 8- 8 16- 16 0.0- 50.0 1 M.B.Chadwick

137 n spher. no no 8- 8 16- 16 18.0- 60.0 3 M.S.Islam
101 n spher. no no 12-83 24-209 11.0- 11.0 4 J.C.Ferrer

1400 n spher. no yes 12-12 24- 24 0.0-200.0 5 A.J.Koning
1401 n spher. no yes 12-12 26- 26 0.0-200.0 5 A.J.Koning

18 n spher. no no 13-13 27- 27 0.0- 20.0 6 R.C.Harper
430 n spher. no no 13-82 27-208 0.1- 24.0 7 O.Bersillon
117 n spher. no no 13-13 27- 27 0.0- 60.0 8 J.Petler
243 n spher. no no 13-47 27-109 0.0- 80.0 9 N.Yamamuro
419 n spher. yes no 13-13 27- 27 0.0-150.0 10 A. Molina

1402 n spher. no yes 13-13 27- 27 0.0-200.0 5 A.J.Koning
2405 n spher. no yes 13-83 27-209 0.0-200.0 11 A.J.Koning
242 n spher. no no 13-13 27- 27 0.0-250.0 12 Lee
418 n spher. yes yes 13-13 27- 27 0.0-250.0 10 A. Molina

1403 n spher. no yes 14-14 28- 28 0.0-200.0 5 A.J.Koning
1404 n spher. no yes 15-15 31- 31 0.0-200.0 5 A.J.Koning
1405 n spher. no yes 16-16 32- 32 0.0-200.0 5 A.J.Koning
1406 n spher. no yes 17-17 35- 35 0.0-200.0 5 A.J.Koning
1408 n spher. no yes 18-18 40- 40 0.0-200.0 5 A.J.Koning
1407 n spher. no yes 19-19 39- 39 0.0-200.0 5 A.J.Koning
116 n spher. no no 20-83 40-209 0.0- 5.0 13 P.A.Moldauer
401 n spher. no no 20-92 40-238 0.0- 25.0 14 D.Wilmore

2100 n spher. no no 20-83 40-209 10.0- 26.0 15 R.L.Varner
100 n spher. no no 20-92 40-238 10.0- 50.0 16 F.D.Becchetti
138 n spher. no no 20-20 40- 40 18.0- 60.0 3 M.S.Islam
800 n spher. no no 20-83 40-210 0.0-155.0 17 C.A.Engelbrecht

1409 n spher. no yes 20-20 40- 40 0.0-200.0 5 A.J.Koning
1410 n spher. no yes 21-21 45- 45 0.0-200.0 5 A.J.Koning
133 n spher. no no 22-22 44- 50 0.1- 20.0 18 D.W.Muir

1411 n spher. no yes 22-22 48- 48 0.0-200.0 5 A.J.Koning
134 n spher. no no 23-23 50- 51 0.1- 20.0 18 D.W.Muir
404 n spher. no no 23-41 50- 95 0.0- 30.0 19 B.Strohmaier
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1412 n spher. no yes 23-23 51- 51 0.0-200.0 5 A.J.Koning
112 n spher. no no 24-24 50- 50 0.0-100.0 20 A.Prince
114 n spher. no no 24-24 52- 52 0.0-100.0 20 A.Prince

1413 n spher. no yes 24-24 52- 52 0.0-200.0 5 A.J.Koning
113 n spher. no no 24-24 53- 53 0.0-100.0 20 A.Prince
115 n spher. no no 24-24 54- 54 0.0-100.0 20 A.Prince

1415 n spher. no yes 25-25 55- 55 0.0-200.0 5 A.J.Koning
125 n spher. no no 26-26 54- 54 8.0- 14.0 21 S.M.El-Kadi
428 n vibra. no no 26-26 54- 56 0.1- 14.0 22 J.P.Delaroche
129 n spher. no no 26-29 54- 65 8.0- 30.0 21 S.M.El-Kadi
130 n spher. no no 26-29 54- 65 8.0- 30.0 21 S.M.El-Kadi
10 n spher. no no 26-26 54- 56 0.0- 52.0 23 E.D.Arthur

2101 n spher. no no 26-82 54-208 10.0- 80.0 24 R.L.Walter
104 n spher. no no 26-26 54- 54 0.0-100.0 20 A.Prince

1414 n spher. no yes 26-26 54- 54 0.0-200.0 5 A.J.Koning
126 n spher. no no 26-26 56- 56 8.0- 14.0 21 S.M.El-Kadi
103 n spher. no no 26-26 56- 56 0.0-100.0 20 A.Prince

1416 n spher. no yes 26-26 56- 56 0.0-200.0 5 A.J.Koning
105 n spher. no no 26-26 57- 57 0.0-100.0 20 A.Prince
106 n spher. no no 26-26 58- 58 0.0-100.0 20 A.Prince
11 n spher. no no 27-27 59- 59 0.0- 27.5 25 E.D.Arthur

1419 n spher. no yes 27-27 59- 59 0.0-200.0 5 A.J.Koning
19 n spher. no no 28-28 58- 58 0.0- 20.0 6 R.C.Harper

131 n vibra. no no 28-28 58- 60 0.0- 80.0 26 P.P.Guss
132 n spher. no no 28-28 58- 60 0.0- 80.0 26 P.P.Guss
107 n spher. no no 28-28 58- 58 0.0-100.0 20 A.Prince

1417 n spher. no yes 28-28 58- 58 0.0-200.0 5 A.J.Koning
108 n spher. no no 28-28 60- 60 0.0-100.0 20 A.Prince

1418 n spher. no yes 28-28 60- 60 0.0-200.0 5 A.J.Koning
109 n spher. no no 28-28 61- 61 0.0-100.0 20 A.Prince
110 n spher. no no 28-28 62- 62 0.0-100.0 20 A.Prince
111 n spher. no no 28-28 64- 64 0.0-100.0 20 A.Prince
127 n spher. no no 29-29 63- 63 8.0- 14.0 21 S.M.El-Kadi
429 n vibra. no no 29-29 63- 65 0.1- 14.0 22 J.P.Delaroche

1420 n spher. no yes 29-29 63- 63 0.0-200.0 5 A.J.Koning
128 n spher. no no 29-29 65- 65 8.0- 14.0 21 S.M.El-Kadi

1421 n spher. no yes 29-29 65- 65 0.0-200.0 5 A.J.Koning
12 n spher. no no 30-30 57- 81 0.0- 20.0 27 P.G.Young

200 n spher. no no 31-69 69-146 0.0- 20.0 28 S.Igarasi
240 n spher. no no 31-69 69-146 0.0- 20.0 29 S.Igarasi
500 n spher. no no 31-31 69- 69 0.1- 20.0 30 Zhang

1422 n spher. no yes 31-31 69- 69 0.0-200.0 5 A.J.Koning
1423 n spher. no yes 32-32 74- 74 0.0-200.0 5 A.J.Koning
202 n spher. no no 33-37 61-107 0.0- 20.0 31 Japan

1424 n spher. no yes 33-33 75- 75 0.0-200.0 5 A.J.Koning
1425 n spher. no yes 33-33 79- 79 0.0-200.0 5 A.J.Koning
1426 n spher. no yes 34-34 80- 80 0.0-200.0 5 A.J.Koning
501 n spher. no no 36-36 83- 83 0.1- 20.0 32 Cai
502 n spher. no no 36-36 86- 86 0.1- 20.0 33 Cai
503 n spher. no no 37-37 85- 85 0.1- 20.0 32 Cai

1427 n spher. no yes 37-37 85- 85 0.0-200.0 5 A.J.Koning
203 n spher. no no 38-42 69-116 0.0- 20.0 31 Japan
504 n spher. no no 38-38 88- 88 0.1- 20.0 32 Cai

1428 n spher. no yes 38-38 88- 88 0.0-200.0 5 A.J.Koning
118 n spher. no no 39-51 85-125 0.0- 5.0 34 A.B.Smith
505 n spher. no no 39-39 89- 89 0.1- 20.0 32 Cai
13 n spher. no no 39-39 89- 89 0.0- 21.0 35 E.D.Arthur

1429 n spher. no yes 39-39 89- 89 0.0-200.0 5 A.J.Koning
506 n spher. no no 39-39 91- 91 0.1- 20.0 36 Cai
14 n spher. no no 40-40 90- 90 0.0- 20.0 37 E.D.Arthur

1430 n spher. no yes 40-40 90- 90 0.0-200.0 5 A.J.Koning
2404 n spher. no no 40-40 90- 90 0.0-200.0 38 A.J.Koning
1431 n spher. no yes 40-40 91- 91 0.0-200.0 5 A.J.Koning
1432 n spher. no yes 40-40 92- 92 0.0-200.0 5 A.J.Koning
1435 n spher. no yes 40-40 94- 94 0.0-200.0 5 A.J.Koning
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20 n spher. no no 41-41 93- 93 0.0- 20.0 6 R.C.Harper
507 n spher. no no 41-41 93- 93 0.1- 20.0 39 Rong

1434 n spher. no yes 41-41 93- 93 0.0-200.0 5 A.J.Koning
508 n spher. no no 41-41 95- 95 0.1- 20.0 39 Rong
422 n spher. no no 42-42 92-100 0.0- 20.0 40 Ch.Lagrange

1433 n spher. no yes 42-42 92- 92 0.0-200.0 5 A.J.Koning
1436 n spher. no yes 42-42 94- 94 0.0-200.0 5 A.J.Koning
509 n spher. no no 42-42 95- 95 0.1- 20.0 41 Cai

1437 n spher. no yes 42-42 96- 96 0.0-200.0 5 A.J.Koning
510 n spher. no no 42-42 97- 97 0.1- 20.0 42 Cai
511 n spher. no no 42-42 98- 98 0.1- 20.0 42 Cai

1438 n spher. no yes 42-42 98- 98 0.0-200.0 5 A.J.Koning
512 n spher. no no 42-42 100-100 0.1- 20.0 33 Cai

1440 n spher. no yes 42-42 100-100 0.0-200.0 5 A.J.Koning
204 n spher. no no 43-45 80-125 0.0- 20.0 31 Japan
513 n spher. no no 43-43 99- 99 0.1- 20.0 36 Cai

1439 n spher. no yes 43-43 99- 99 0.0-200.0 5 A.J.Koning
514 n spher. no no 44-44 99- 99 0.1- 20.0 43 Zhang
515 n spher. no no 44-44 100-100 0.1- 20.0 43 Zhang
516 n spher. no no 44-44 101-101 0.1- 20.0 44 Zhang
517 n spher. no no 44-44 102-102 0.1- 20.0 43 Zhang
518 n spher. no no 44-44 103-103 0.1- 20.0 44 Zhang
519 n spher. no no 44-44 104-104 0.1- 20.0 43 Zhang
520 n spher. no no 44-44 105-105 0.1- 20.0 43 Zhang
521 n spher. no no 45-45 103-103 0.1- 20.0 43 Zhang

1441 n spher. no yes 45-45 103-103 0.0-200.0 5 A.J.Koning
522 n spher. no no 45-45 105-105 0.1- 20.0 43 Zhang
205 n spher. no no 46-48 89-134 0.0- 20.0 31 Japan
523 n spher. no no 46-46 105-105 0.1- 20.0 45 Zhang

1442 n spher. no yes 46-46 106-106 0.0-200.0 5 A.J.Koning
524 n spher. no no 46-46 108-108 0.1- 20.0 45 Zhang

1443 n spher. no yes 47-47 107-107 0.0-200.0 5 A.J.Koning
525 n spher. no no 48-48 113-113 0.1- 20.0 46 Zhang

1444 n spher. no yes 48-48 114-114 0.0-200.0 5 A.J.Koning
206 n spher. no no 49-51 97-141 0.0- 20.0 31 Japan
526 n spher. no no 49-49 115-115 0.1- 20.0 46 Zhang

1445 n spher. no yes 49-49 115-115 0.0-200.0 5 A.J.Koning
1446 n spher. no yes 50-50 116-116 0.0-200.0 5 A.J.Koning
1447 n spher. no yes 50-50 118-118 0.0-200.0 5 A.J.Koning
1448 n spher. no yes 50-50 120-120 0.0-200.0 5 A.J.Koning
1450 n spher. no yes 50-50 122-122 0.0-200.0 5 A.J.Koning
1452 n spher. no yes 50-50 124-124 0.0-200.0 5 A.J.Koning
527 n spher. no no 51-51 121-121 0.1- 20.0 46 Zhang

1449 n spher. no yes 51-51 121-121 0.0-200.0 5 A.J.Koning
528 n spher. no no 51-51 123-123 0.1- 20.0 46 Zhang

1451 n spher. no yes 51-51 123-123 0.0-200.0 5 A.J.Koning
207 n spher. no no 52-54 103-150 0.0- 20.0 31 Japan

1454 n spher. no yes 52-52 128-128 0.0-200.0 5 A.J.Koning
529 n spher. no no 52-52 130-130 0.1- 20.0 45 Zhang
530 n spher. no no 53-53 127-127 0.1- 20.0 45 Zhang

1453 n spher. no yes 53-53 127-127 0.0-200.0 5 A.J.Koning
531 n spher. no no 53-53 135-135 0.1- 20.0 45 Zhang
532 n spher. no no 54-54 123-123 0.1- 20.0 47 Shen
533 n spher. no no 54-54 124-124 0.1- 20.0 47 Shen
534 n spher. no no 54-54 129-129 0.1- 20.0 48 Shen
535 n spher. no no 54-54 131-131 0.1- 20.0 48 Shen
536 n spher. no no 54-54 132-132 0.1- 20.0 48 Shen
537 n spher. no no 54-54 134-134 0.1- 20.0 48 Shen
538 n spher. no no 54-54 135-135 0.1- 20.0 48 Shen
539 n spher. no no 54-54 136-136 0.1- 20.0 48 Shen
208 n spher. no no 55-55 111-153 0.0- 20.0 31 Japan
540 n spher. no no 55-55 133-133 0.1- 20.0 43 Zhang

1455 n spher. no yes 55-55 133-133 0.0-200.0 5 A.J.Koning
541 n spher. no no 55-55 134-134 0.1- 20.0 43 Zhang
542 n spher. no no 55-55 135-135 0.1- 20.0 43 Zhang

74



543 n spher. no no 55-55 137-137 0.1- 20.0 43 Zhang
209 n spher. no no 56-56 112-154 0.0- 20.0 31 Japan
544 n spher. no no 56-56 135-135 0.1- 20.0 43 Zhang
545 n spher. no no 56-56 136-136 0.1- 20.0 43 Zhang
546 n spher. no no 56-56 137-137 0.1- 20.0 43 Zhang
547 n spher. no no 56-56 138-138 0.1- 20.0 43 Zhang

1456 n spher. no yes 56-56 138-138 0.0-200.0 5 A.J.Koning
210 n spher. no no 57-58 117-156 0.0- 20.0 31 Japan
548 n spher. no no 57-57 139-139 0.1- 20.0 43 Zhang

1457 n spher. no yes 57-57 139-139 0.0-200.0 5 A.J.Koning
549 n spher. no no 58-58 140-140 0.1- 20.0 43 Zhang

1458 n spher. no yes 58-58 140-140 0.0-200.0 5 A.J.Koning
550 n spher. no no 58-58 141-141 0.1- 20.0 43 Zhang
551 n spher. no no 58-58 142-142 0.1- 20.0 43 Zhang
552 n spher. no no 58-58 144-144 0.1- 20.0 43 Zhang
211 n spher. no no 59-59 119-160 0.0- 20.0 31 Japan
553 n spher. no no 59-59 141-141 0.1- 20.0 47 Shen

1459 n spher. no yes 59-59 141-141 0.0-200.0 5 A.J.Koning
212 n spher. no no 60-60 141-143 0.0- 20.0 31 Japan
420 n vibra. no no 60-60 142-148 0.0- 15.0 49 G.Haouat
554 n spher. no no 60-60 142-142 0.1- 20.0 47 Shen

1460 n spher. no yes 60-60 142-142 0.0-200.0 5 A.J.Koning
555 n spher. no no 60-60 143-143 0.1- 20.0 47 Shen
213 n spher. no no 60-60 144-148 0.0- 20.0 31 Japan
556 n spher. no no 60-60 144-144 0.1- 20.0 47 Shen

1461 n spher. no yes 60-60 144-144 0.0-200.0 5 A.J.Koning
557 n spher. no no 60-60 145-145 0.1- 20.0 47 Shen
558 n spher. no no 60-60 146-146 0.1- 20.0 47 Shen
559 n spher. no no 60-60 147-147 0.1- 20.0 47 Shen
421 n CC rot. no no 60-60 148-150 0.0- 15.0 49 G.Haouat
560 n spher. no no 60-60 148-148 0.1- 20.0 47 Shen
214 n spher. no no 60-60 150-999 0.0- 20.0 31 Japan
561 n spher. no no 60-60 150-150 0.1- 20.0 47 Shen
215 n spher. no no 61-61 147-999 0.0- 20.0 31 Japan
562 n spher. no no 61-61 147-147 0.1- 20.0 47 Shen
563 n spher. no no 61-61 148-148 0.1- 20.0 47 Shen
564 n spher. no no 61-61 149-149 0.1- 20.0 47 Shen
216 n spher. no no 62-62 144-144 0.0- 20.0 31 Japan
565 n spher. no no 62-62 144-144 0.1- 20.0 47 Shen
217 n spher. no no 62-62 147-147 0.0- 20.0 31 Japan
566 n spher. no no 62-62 147-147 0.1- 20.0 47 Shen
123 n vibra. no no 62-62 148-150 0.0- 15.0 50 M.T.McEllistrem
218 n spher. no no 62-62 148-148 0.0- 20.0 31 Japan
567 n spher. no no 62-62 148-148 0.1- 20.0 47 Shen

1462 n spher. no yes 62-62 148-148 0.0-200.0 5 A.J.Koning
219 n spher. no no 62-62 149-149 0.0- 20.0 31 Japan
568 n spher. no no 62-62 149-149 0.1- 20.0 47 Shen
124 n CC rot. no no 62-62 150-152 0.0- 15.0 50 M.T.McEllistrem
220 n spher. no no 62-62 150-150 0.0- 20.0 31 Japan
569 n spher. no no 62-62 150-150 0.1- 20.0 47 Shen
570 n spher. no no 62-62 151-151 0.1- 20.0 47 Shen
571 n spher. no no 62-62 152-152 0.1- 20.0 47 Shen
572 n spher. no no 62-62 154-154 0.1- 20.0 47 Shen
221 n spher. no no 63-63 151-999 0.0- 20.0 31 Japan
573 n spher. no no 63-63 151-151 0.1- 20.0 51 Ge

2004 n CC rot. no no 63-63 151-153 0.0- 20.0 52 R.Macklin
574 n spher. no no 63-63 153-153 0.1- 20.0 51 Ge
575 n spher. no no 63-63 154-154 0.1- 20.0 51 Ge
576 n spher. no no 63-63 155-155 0.1- 20.0 51 Ge
222 n spher. no no 64-64 133-171 0.0- 20.0 31 Japan
577 n spher. no no 64-64 152-152 0.1- 20.0 47 Shen
578 n spher. no no 64-64 154-154 0.1- 20.0 47 Shen
579 n spher. no no 64-64 155-155 0.1- 20.0 47 Shen
580 n spher. no no 64-64 156-156 0.1- 20.0 47 Shen
581 n spher. no no 64-64 157-157 0.1- 20.0 47 Shen
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582 n spher. no no 64-64 158-158 0.1- 20.0 47 Shen
583 n spher. no no 64-64 160-160 0.1- 20.0 47 Shen
223 n spher. no no 65-65 138-175 0.0- 20.0 31 Japan
584 n spher. no no 66-66 164-164 0.1- 20.0 53 Ge
119 n CC rot. no no 67-67 165-165 0.0- 30.0 54 A.B.Smith
120 n CC rot. yes no 67-67 165-165 0.0- 30.0 54 A.B.Smith

2007 n CC rot. no no 67-69 165-169 0.0- 30.0 55 P.G.Young
2003 n CC rot. no no 67-69 165-169 0.0-100.0 56 E.D.Arthur
201 n spher. no no 69-74 147-186 0.0- 20.0 28 S.Igarasi
241 n spher. no no 69-74 147-186 0.0- 20.0 29 S.Igarasi
585 n spher. no no 69-69 169-169 0.1- 20.0 53 Ge
586 n spher. no no 71-71 174-174 0.1- 20.0 57 Han
587 n spher. no no 71-71 175-175 0.1- 20.0 57 Han
423 n CC rot. no no 74-74 182-186 0.0- 9.0 58 J.P.Delaroche

2406 n CC rot. no no 74-74 182-186 0.0- 16.0 58 J.P.Delaroche
403 n spher. no no 74-74 182-186 0.0- 30.0 59 J.P.Delaroche

2002 n CC rot. no no 74-74 182-186 0.0-100.0 60 P.G.Young
2005 n CC rot. no no 75-75 185-187 0.0- 20.0 61 R.Macklin
1463 n spher. no yes 78-78 194-194 0.0-200.0 5 A.J.Koning

21 n spher. no no 79-79 197-197 0.0- 20.0 6 R.C.Harper
400 n CC rot. no no 79-79 197-197 0.0- 57.0 62 J.P.Delaroche

1464 n spher. no yes 79-79 197-197 0.0-200.0 5 A.J.Koning
1465 n spher. no yes 80-80 202-202 0.0-200.0 5 A.J.Koning
102 n spher. no no 82-82 206-208 5.0- 50.0 63 R.W.Finlay
121 n spher. yes yes 82-82 208-208 0.0- 80.0 64 Weisel

2 n vibra. no no 82-82 208-208 0.0-200.0 65 H.Vonach
1466 n spher. no yes 82-82 208-208 0.0-200.0 5 A.J.Koning
402 n spher. no no 83-83 209-209 0.0- 30.0 66 O.Bersillon
122 n spher. yes yes 83-83 209-209 0.0- 80.0 64 Weisel

1467 n spher. no yes 83-83 209-209 0.0-200.0 5 A.J.Koning
9 n spher. no no 90-95 230-250 0.0- 10.0 67 D.G.Madland

408 n CC rot. no no 90-90 230-232 0.0- 20.0 68 Ch.Lagrange
414 n CC rot. no no 90-90 232-232 0.0- 20.0 69 G.Haouat
600 n CC rot. no no 90-95 232-242 0.0- 20.0 70 G.Vladuca
409 n CC rot. no no 92-92 234-234 0.0- 20.0 68 Ch.Lagrange
415 n CC rot. no no 92-92 235-235 0.0- 20.0 69 G.Haouat

3 n CC rot. no no 92-92 235-235 0.0- 30.0 71 P.G.Young
4 n CC rot. no no 92-92 237-237 0.0- 30.0 72 P.G.Young

410 n CC rot. no no 92-92 238-238 0.0- 20.0 68 Ch.Lagrange
416 n CC rot. no no 92-94 238-239 0.0- 20.0 69 G.Haouat

5 n CC rot. no no 92-92 238-238 0.0- 30.0 72 P.G.Young
2006 n CC rot. no no 92-92 238-238 0.0-200.0 73 P.G.Young
2300 n CC rot. no yes 92-92 238-238 0.0-200.0 74 A.V.Ignatyuk

1 n CC rot. no no 93-93 237-237 0.0- 30.0 71 P.G.Young
406 n CC rot. no no 94-94 236-244 0.0- 20.0 75 Ch.Lagrange

7 n CC rot. no no 94-94 239-239 0.0- 30.0 72 P.G.Young
6 n CC rot. no no 94-94 242-242 0.0- 20.0 76 D.G.Madland

411 n CC rot. no no 94-94 242-242 0.0- 20.0 68 Ch.Lagrange
417 n CC rot. no no 94-94 242-242 0.0- 20.0 69 G.Haouat

8 n CC rot. no no 95-95 241-243 0.0- 30.0 77 P.G.Young
412 n CC rot. no no 96-96 246-246 0.0- 20.0 68 Ch.Lagrange
413 n CC rot. no no 98-98 252-252 0.0- 20.0 68 Ch.Lagrange

4102 p spher. no no 6-82 12-208 30.0- 60.0 78 J.J.H.Menet
4015 p spher. no no 6- 6 12- 12 0.0- 65.0 79 M.B.Chadwick
5001 p spher. no yes 6-82 12-208 50.0-400.0 2 D.G.Madland
4016 p spher. no no 7- 7 14- 14 0.0- 70.0 79 M.B.Chadwick
4017 p spher. no no 8- 8 16- 16 0.0- 50.0 79 M.B.Chadwick
4131 p spher. no yes 12-82 24-208 80.0-180.0 80 P.Schwandt
4018 p spher. no no 13-13 27- 27 0.1- 20.0 6 R.C.Harper
4416 p spher. no yes 13-13 27- 27 0.0-200.0 5 A.J.Koning
5405 p spher. no yes 13-83 27-209 0.0-200.0 11 A.J.Koning
4417 p spher. no yes 14-14 28- 28 0.0-200.0 5 A.J.Koning
4100 p spher. no no 16-49 30-100 0.0- 22.0 81 F.G.Perey
4660 p spher. no no 19-19 41- 41 1.0- 7.0 82 Y.P.Viyogi

76



4101 p spher. no no 20-83 40-209 10.0- 50.0 83 F.D.Becchetti
5100 p spher. no no 20-83 40-209 16.0- 65.0 15 R.L.Varner
4418 p spher. no yes 20-20 40- 40 0.0-200.0 5 A.J.Koning
4651 p spher. no no 20-20 48- 48 3.0- 5.0 84 S.Kailas
4662 p spher. no no 20-20 48- 48 1.0- 7.0 82 Y.P.Viyogi
4108 p spher. no no 20-82 48-208 25.0- 45.0 85 D.M.Patterson
4650 p spher. no no 21-21 45- 45 3.0- 5.0 84 S.Kailas
4661 p spher. no no 21-21 45- 45 1.0- 7.0 82 Y.P.Viyogi
4663 p spher. no no 22-22 49- 49 1.0- 7.0 82 Y.P.Viyogi
4652 p spher. no no 23-23 51- 51 3.0- 5.0 84 S.Kailas
4664 p spher. no no 23-23 51- 51 1.0- 7.0 82 Y.P.Viyogi
4653 p spher. no no 24-24 54- 54 3.0- 5.0 84 S.Kailas
4000 p spher. no no 25-26 54- 56 0.0- 28.0 23 E.D.Arthur
4665 p spher. no no 25-25 55- 55 1.0- 7.0 82 Y.P.Viyogi
5101 p spher. no no 26-82 54-208 10.0- 80.0 86 R.L.Walter
4419 p spher. no yes 26-26 54- 54 0.0-200.0 5 A.J.Koning
4420 p spher. no yes 26-26 56- 56 0.0-200.0 5 A.J.Koning
4001 p spher. no no 26-27 59- 59 0.0- 23.0 87 E.D.Arthur
4654 p spher. no no 27-27 59- 59 3.0- 5.0 84 S.Kailas
4666 p spher. no no 27-27 59- 59 1.0- 7.0 82 Y.P.Viyogi
4019 p spher. no no 28-28 58- 58 0.1- 20.0 6 R.C.Harper
4421 p spher. no yes 28-28 58- 58 0.0-200.0 5 A.J.Koning
4422 p spher. no yes 28-28 60- 60 0.0-200.0 5 A.J.Koning
4655 p spher. no no 28-28 61- 61 3.0- 5.0 84 S.Kailas
4667 p spher. no no 28-28 61- 61 1.0- 7.0 82 Y.P.Viyogi
4423 p spher. no yes 28-28 62- 62 0.0-200.0 5 A.J.Koning
4425 p spher. no yes 28-28 64- 64 0.0-200.0 5 A.J.Koning
4424 p spher. no yes 29-29 63- 63 0.0-200.0 5 A.J.Koning
4656 p spher. no no 29-29 65- 65 3.0- 5.0 84 S.Kailas
4668 p spher. no no 29-29 65- 65 1.0- 7.0 82 Y.P.Viyogi
4669 p spher. no no 30-30 68- 68 1.0- 7.0 82 Y.P.Viyogi
4657 p spher. no no 31-31 71- 71 3.0- 5.0 84 S.Kailas
4670 p spher. no no 31-31 71- 71 1.0- 7.0 82 Y.P.Viyogi
4658 p spher. no no 33-33 75- 75 3.0- 5.0 84 S.Kailas
4671 p spher. no no 33-33 75- 75 1.0- 7.0 82 Y.P.Viyogi
4659 p spher. no no 34-34 80- 80 3.0- 5.0 84 S.Kailas
4672 p spher. no no 34-34 80- 80 1.0- 7.0 82 Y.P.Viyogi
4002 p spher. no no 38-38 88- 89 0.0- 21.0 35 E.D.Arthur
4109 p spher. no no 39-39 89- 89 1.0- 7.0 88 C.H.Johnson
4673 p spher. no no 39-39 89- 89 1.0- 7.0 82 Y.P.Viyogi
4003 p spher. no no 39-39 89- 89 0.0- 21.0 35 E.D.Arthur
4426 p spher. no yes 40-40 90- 90 0.0-200.0 5 A.J.Koning
5404 p spher. no no 40-40 90- 90 0.0-200.0 38 A.J.Koning
4125 p spher. no no 40-40 92- 92 2.0- 7.0 89 D.S.Flynn
4126 p spher. no no 40-40 94- 94 2.0- 7.0 89 D.S.Flynn
4127 p spher. no no 40-40 96- 96 2.0- 7.0 89 D.S.Flynn
4110 p spher. no no 41-41 93- 93 1.0- 7.0 88 C.H.Johnson
4674 p spher. no no 41-41 93- 93 1.0- 7.0 82 Y.P.Viyogi
4020 p spher. no no 41-41 93- 93 0.1- 20.0 6 R.C.Harper
4128 p spher. no no 42-42 95- 95 2.0- 7.0 89 D.S.Flynn
4675 p spher. no no 42-42 96- 96 1.0- 7.0 82 Y.P.Viyogi
4129 p spher. no no 42-42 98- 98 2.0- 7.0 89 D.S.Flynn
4676 p spher. no no 42-42 98- 98 1.0- 7.0 82 Y.P.Viyogi
4130 p spher. no no 42-42 100-100 2.0- 7.0 89 D.S.Flynn
4111 p spher. no no 45-45 103-103 1.0- 7.0 88 C.H.Johnson
4677 p spher. no no 45-45 103-103 1.0- 7.0 82 Y.P.Viyogi
4112 p spher. no no 46-46 105-105 1.0- 7.0 88 C.H.Johnson
4678 p spher. no no 46-46 105-105 1.0- 7.0 82 Y.P.Viyogi
4113 p spher. no no 47-47 107-107 1.0- 7.0 88 C.H.Johnson
4679 p spher. no no 47-47 107-107 1.0- 7.0 82 Y.P.Viyogi
4114 p spher. no no 47-47 109-109 1.0- 7.0 88 C.H.Johnson
4680 p spher. no no 47-47 109-109 1.0- 7.0 82 Y.P.Viyogi
4115 p spher. no no 48-48 110-110 1.0- 7.0 88 C.H.Johnson
4681 p spher. no no 48-48 110-110 1.0- 7.0 82 Y.P.Viyogi
4116 p spher. no no 48-48 111-111 1.0- 7.0 88 C.H.Johnson
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4117 p spher. no no 48-48 113-113 1.0- 7.0 88 C.H.Johnson
4118 p spher. no no 48-48 114-114 1.0- 7.0 88 C.H.Johnson
4119 p spher. no no 49-49 115-115 1.0- 7.0 88 C.H.Johnson
4682 p spher. no no 49-49 115-115 1.0- 7.0 82 Y.P.Viyogi
4120 p spher. no no 50-50 116-116 1.0- 7.0 88 C.H.Johnson
4683 p spher. no no 50-50 120-120 1.0- 7.0 82 Y.P.Viyogi
4427 p spher. no yes 50-50 120-120 0.0-200.0 5 A.J.Koning
4121 p spher. no no 50-50 122-122 1.0- 7.0 88 C.H.Johnson
4122 p spher. no no 50-50 124-124 1.0- 7.0 88 C.H.Johnson
4684 p spher. no no 50-50 124-124 1.0- 7.0 82 Y.P.Viyogi
4123 p spher. no no 52-52 128-128 1.0- 7.0 88 C.H.Johnson
4685 p spher. no no 52-52 128-128 1.0- 7.0 82 Y.P.Viyogi
4124 p spher. no no 52-52 130-130 1.0- 7.0 88 C.H.Johnson
4686 p spher. no no 52-52 130-130 1.0- 7.0 82 Y.P.Viyogi
5004 p CC rot. no no 63-63 151-153 0.0- 20.0 52 R.Macklin
5003 p CC rot. no no 67-69 165-169 0.0-100.0 56 E.D.Arthur
5406 p CC rot. no no 74-74 182-186 0.0- 16.0 58 J.P.Delaroche
5002 p CC rot. no no 74-74 182-186 0.0-100.0 60 P.G.Young
5005 p CC rot. no no 75-75 185-187 0.0- 20.0 61 R.Macklin
4004 p CC rot. no no 79-79 197-197 0.0- 57.0 90 P.G.Young
4428 p spher. no yes 82-82 208-208 0.0-200.0 5 A.J.Koning
4429 p spher. no yes 83-83 209-209 0.0-200.0 5 A.J.Koning
5006 p CC rot. no no 92-92 238-238 0.0-200.0 73 P.G.Young
5300 p CC rot. no yes 92-92 238-238 0.0-200.0 74 A.V.Ignatyuk

6400 d spher. no no 6-82 12-208 20.0-100.0 91 J.Bojowald
6100 d spher. no no 20-83 40-209 8.0- 13.0 92 J.M.Lohr
6101 d spher. no no 20-82 40-208 11.0- 27.0 93 C.M.Perey
6112 d spher. no no 20-20 40- 40 11.8- 90.0 94 W.W.Daehnick
6113 d spher. no no 28-28 58- 58 11.8- 90.0 94 W.W.Daehnick
6114 d spher. no no 40-40 90- 90 11.8- 90.0 94 W.W.Daehnick
6115 d spher. no no 50-50 120-120 11.8- 90.0 94 W.W.Daehnick
6116 d spher. no no 82-82 208-208 11.8- 90.0 94 W.W.Daehnick

7100 t spher. no no 20-82 40-208 1.0- 40.0 95 F.D.Becchetti

8100 3He spher. no no 20-82 40-208 1.0- 40.0 95 F.D.Becchetti
8101 3He spher. no no 20-20 40- 40 21.0- 84.0 96 H.H.Chang
8102 3He spher. no no 28-28 58- 58 22.0- 84.0 96 H.H.Chang

9100 4He spher. no no 8-82 16-208 1.0- 25.0 97 L.McFadden
9600 4He spher. no no 8-96 16-250 1.0- 73.0 98 V.Avrigeanu
9101 4He spher. no no 10-92 20-235 1.0- 46.0 99 J.R.Huizenga
9018 4He spher. no no 13-13 27- 27 0.1- 20.0 6 R.C.Harper
9000 4He spher. no no 13-26 27- 56 1.0-100.0 100 E.D.Arthur
9400 4He spher. no no 20-45 40-100 1.0- 30.0 19 B.Strohmaier
9401 4He spher. no no 22-30 37- 86 20.0- 30.0 101 O.F.Lemos
9001 4He spher. no no 27-27 59- 59 1.0-100.0 102 E.D.Arthur
9019 4He spher. no no 28-28 58- 58 0.1- 20.0 6 R.C.Harper
9020 4He spher. no no 41-41 93- 93 0.1- 20.0 6 R.C.Harper
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6 NUCLEAR LEVEL DENSITIES

Coordinators: A.V. Ignatyuk and R. Capote

Summary

Level densities are key ingredients of the statistical theory of nuclear reactions. Practical
formalisms of nuclear level densities and their parameterization are considered in this
chapter. The total level densities required for the statistical calculations of reaction cross
sections at low and intermediate energies are described in Section 6.1. Then, the partial
(particle-hole) level densities needed as input to the extremely useful pre-equilibrium
model of nuclear reactions are discussed in Section 6.2. The fission level densities required
for the statistical calculations of the fission cross sections are considered separately in
Chapter 8, together with the corresponding fission barriers.

The RIPL-2 library includes a FORTRAN code written by Avrigeanu for various
Fermi-gas single-particle models in the equidistant spacing approximation, including pair-
ing and shell effects within the closed-form treatments. A FORTRAN code produced by
Capote and Pedrosa has also been adopted which uses a microscopic theory based on a
convolution of shell-model single-particle states with BCS pairing.

The statistical properties of excited nuclear levels have been a matter of concern and
study for many years. One of the basic statistical properties of these levels is their
density, for which the Fermi-gas and constant temperature models are frequently used
with input parameters obtained from fitting certain experimental data. However, the
physical assumptions underlying these models are not sufficiently sophisticated to account
properly for variations of level densities over a wide energy interval from the ground state
to well above the neutron separation energy. This is not surprising as these models were
formulated more than fifty years ago, in the infancy of such concepts of nuclear physics.

Some of the most important concepts upon which our current understanding of the
structure of low-lying nuclear levels is based include shell effects, pairing correlations and
collective phenomena. All these concepts have been incorporated into the generalized
super-fluid model developed by many authors over the last 30 years. The phenomenolog-
ical versions of this model are convenient for the analysis of experimental data and have
been developed intensively over recent years.

For practical applications of the statistical models, it is very important to obtain
parameters of the level densities from reliable experimental data. The cumulative numbers
of low-lying levels and the average distances between neutron resonances are usually
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used for this purpose. The systematics of the level density parameters developed under
the RIPL project are discussed below together with recommendations regarding their
application to different tasks.

6.1 Total level densities

6.1.1 Composite Gilbert-Cameron model

Simple analytical expressions for the excited state density ρ(U) of a nucleus with a given
excitation energy U and level density ρ(U, J) of a nucleus with a given angular momentum
J were obtained by Bethe on the basis of the Fermi-gas model [6.1]:

ρ(U) =

√
π

12a1/4U5/4
exp(2

√
aU),

ρ(U, J) =
2J + 1

2
√

2πσ3
ρ(U) exp

[
−(J + 1/2)2

2σ2

]
, (6.1)

in which a = π2g/6 is the level density parameter proportional to the single-particle state
density g near the Fermi energy, and σ2 is the spin cutoff parameter.

For the Fermi-gas model, the state equations determining the dependence of the ex-
citation energy U , the entropy S and other thermodynamic functions of a nucleus on
temperature t have simple forms:

U = at2, S = 2at, σ2 =< m2 > gt, (6.2)

where < m2 > is the mean square value of the angular momentum projections for the
single-particle states around the Fermi energy, which may also be associated with the
moment of inertia of a heated nucleus I = g < m2 >. There are obvious connections
between the thermodynamic functions (Eqs. 6.2) and the state and level densities (Eq.
6.1).

The main parameters of the Fermi-gas model may be estimated rather simply using
the semi-classical approximation:

a = 2
(

π

3

)4/3 m0r
2
0

h̄2 A(1 + βsA
−1/3), (6.3)

I0 =
2

5

m0r
2
0

h̄2 A5/3, (6.4)

where m0 is the nucleon mass, r0 is the nuclear radius parameter, A is the mass number and
βs defines the surface component of the single-particle level density. Eq. 6.4 corresponds
to the rigid-body value of the nuclear moment of inertia, and differences between various
semi-classical determinations of the level density parameters (Eq. 6.3) are mainly due to
the large uncertainties in the existing evaluations for βs.

The most direct information on the level density of highly-excited nuclei is obtained
from the average parameters of neutron resonances, which have been analyzed by many
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authors [6.2–6.11]. For the majority of nuclei the observed resonances correspond to s-
neutrons, and therefore the value of the average spacings D0 is related to the level density
of the compound nucleus by the relationships:

(D0)
−1 =

{
1
2
[ρ(Bn + ∆E/2, I0 + 1/2) + ρ(Bn + ∆E/2, I0 − 1/2)] for I0 �= 0,

1
2
ρ(Bn + ∆E/2, 1/2) for I0 = 0,

(6.5)

were Bn is the neutron binding energy, ∆E is the energy interval for which the resonances
are being examined, I0 is the target nucleus spin, and the coefficient 1/2 before the sum
takes into account that s-neutrons form resonances only of a particular parity. If necessary,
resonances for p-neutrons can be considered in a similar way.

The experimental values of D0 are normally used as source data, from which the
magnitude of the level density parameter can be derived by means of Eqs. 6.1 and 6.5.
Many authors have carried out such an analysis [6.5, 6.7, 6.8]. The regular differences
of the level densities for even-even, odd and odd-odd nuclei analogous to the even-odd
differences of the nuclear masses have been already noted in the early systematics of the
experimental data. The so-called effective excitation energy is normally introduced to
take this effect into account:

U∗ = U −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δZ + δN for even− even
δZ for even Z
δN for even N
0 for odd − odd

(6.6)

where δI is the corresponding phenomenological correction for even-odd differences of
nuclear binding energies.

Data on the cumulative numbers of low-lying nuclear levels are also very important
for level density analyses. The observed energy dependence of the cumulative number of
levels can be described rather well by the function [6.3, 6.5]:

N(U) = exp[(U − U0)/T ], (6.7)

where U0 and T are free parameters determined by fitting corresponding data. N(U) is
related to the level density by the equation:

ρlev(U) =
dN

dU
=

1

T
exp [(U − U0)/T ] , (6.8)

in which the parameter T corresponds simply to a nuclear temperature. Since the value
of this parameter is assumed to be constant over the energy range considered, Eq. 6.8 is
called the constant temperature model.

A description of the level density for the whole range of excitation energies is obtained
by combining the low-energy dependent Eq. 6.8 with the high-energy dependence pre-
dicted by the Fermi-gas model. The link between the parameters of both models can be
found by imposing the continuity of level density and the first derivative at some matching
energy

Ux = U0 + T ln ρfg(Ux),
1

T
=

√
a

U∗
x

− 3

2U∗
x

, (6.9)

where U∗
x is the effective matching energy that includes the pairing corrections (Eq. 6.6).
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Analysis of the experimental data within this phenomenological approach was carried
out initially by Gilbert and Cameron [6.5], and the parameters obtained by different
authors in the subsequent analyzes of experimental data are reported in the RIPL-1
Handbook [6.12]. A rather simple systematic relationship has been proposed for the level
density parameter:

a

A
= 0.0088 (S(Z) + S(N)) + Q(Z, N), (6.10)

where S(I) are the shell corrections for protons and neutrons, respectively, and Q(Z, N) =
0.12 for deformed nuclei (54 < Z < 78, 86 < N < 122, and 86 < Z < 122, 130 < N <
182), and Q(Z, N) = 0.142 for other nuclei considered as spherical. Tables of the shell
corrections and the corresponding pairing contribution corrections are given in the RIPL-1
data files.

Values of the a-parameters depend to some extent on the determination of the spin
cutoff parameter. Early systematics used a value of < m2 >= 0.146A2/3, which corre-
sponds to mean-square averaging of the proton and neutron angular momenta projections
over all single-particle levels occupied in the ground state of a nucleus [6.5, 6.7]. Later
analyses used more correct values < m2 >= 0.24A2/3, or the rigid body values of the
moment of inertia. These differences in the choice of the spin cutoff parameters, as well
as some variations in the even-odd corrections to the excitation energies, should be borne
in mind when comparing the a-parameters obtained by different authors.

Adjusted tables of the shell and pairing corrections were proposed in Refs. [6.13-6.15].
The systematics of the a-parameter differ from Eq. 6.10 only in the numerical values of
the coefficients and a slightly different definition of the functions Q(Z, N). Parameters
derived by the Beijing group [6.15] are based on rather recent compilations of the neutron
resonance densities, and were included in the beijing gc.dat file of the RIPL-1 project as
recommended data.

Revision of the low-lying data and the neutron resonance spacings described in Chap-
ters 3 and 4 requires an updating of the level density parameters. Level density param-
eters obtained for the updated resonance spacings are shown in Fig. 6.1 in comparison
with the results of previous analyses [6.11, 6.15]. We have used the pairing corrections
δ = n12A−1/2 with n = 2 for even-even nuclei, n = 1 for odd nuclei and n = 0 for odd-
odd nuclei. Such a definition of the pairing corrections is used in the Myers-Swiatecki
mass formula, and reproduces the averaged behavior of the corrections reported in Refs.
[6.5, 6.15]. The same corrections were also used in Ref. [6.11]. Agreement of the RIPL-2
results with the parameters obtained by Iljinov et al [6.11] is good for most nuclei, and
their differences from the Beijing data arise from the slightly different pairing corrections
and the updated values of the resonance spacings.

The level density parameters obtained from the resonance spacing analysis were matched
with the level density of low-lying levels by solving Eqs. 6.7 and 6.9 for the cumulative
numbers N0 of low-lying levels and the corresponding excitation energies U0 as defined
in the recommendations of Chapter 3. Fig. 6.2 shows the nuclear temperatures T , the
energy shifts U0 , and the matching energies Ux. Generally, the present results are close to
similar results of previous analyses considered in the RIPL-1 Handbook [6.12]. However,
the matching equations for the level densities (Eqs. 6.9) set some limitations on the tem-
peratures and the energy shifts, resulting in differences between the values derived from
the matching conditions and the same parameters estimated from the analysis of low-lying
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Figure 6.1: Level density parameters of the Fermi-gas model with normal shift.

levels only. These differences can be seen in Fig. 6.2 where both sets of parameters are
shown for the same nuclei.

The complete set of level density parameters obtained for the composite Gilbert-
Cameron model is given in the level-density-gc.dat file, and the format is described in the
level-density-gc.readme file.

The parameters are evaluated when the experimental data for the neutron resonance
spacings are available. Systematics for the parameters a(Z, N) and δ(Z, N), that can be
used for the remaining nuclei were developed in Refs. [6.5, 6.13, 6.15] and reported in the
corresponding RIPL-1 files.

One of the serious deficiencies of systematics discussed so far is the energy inde-
pendence of the a-parameters. The results of all consistent microscopic calculations of
the nuclear level densities display damping of the shell effect at high excitation energies
[6.16, 6.17, 6.19]. In order to account for the damping of the shell effects, the level density
parameter a should become energy dependent, as approximated by the formula [6.20]

a(U, Z, A) = ã(A)

{
1 +

δE0

U
[1− exp(−γU)]

}
, (6.11)

where ã is the asymptotic level density parameter to which a(U) tends at high excitation
energies, δE0 is the shell correction energy, and γ is the damping parameter. Systematics
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Figure 6.2: Level density parameters for the constant temperature model.

based on similar formula were proposed in Refs. [6.20, 6.21, 6.22, 6.35], and the differences
between the corresponding level density parameters are mainly related to different shell
corrections.
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Shell corrections are usually determined as

δE0 = Mexp(Z, A)−Mld(Z, A, β), (6.12)

where Mexp is the experimental value of the mass defect, and Mld is the liquid-drop
component of the mass formula [6.23]. Differences between the various approximations
are mainly related to the liquid-drop component; if the liquid-drop model formula for
spherical nuclei are adopted in Eq. 6.12, the shell corrections coincide with the microscopic
energies considered in Chapter 2. However, some authors prefer to include the deformation
energies within the liquid-drop component of Eq. 6.12 [6.23]. Such a consistent definition
of the shell corrections is important for the analysis of equilibrium deformations of highly
excited nuclei [6.18], but differences in the shell correction estimations are less essential
for the systematics of the level density parameters.

Fig. 6.3 shows the shell corrections corresponding to the most widely used mass
formula [6.5, 6.23, 6.24] for the nuclei considered above. If these corrections are taken
together with the a-parameter values for the neutron binding energies (Fig. 6.1), the
asymptotic level density parameters can be derived on the basis of Eq. 6.11. Using the
semi-classical formula for the asymptotic and damping parameters

ã = αA + βA2/3, γ = γ0/A
1/3, (6.13)

and the Myers-Swiatecki shell corrections, the following coefficients (in units of MeV−1)
were obtained from a least-squares fit of the a-parameters:

α = 0.0959 ± 0.0005, β = 0.1468 ± 0.0035, γ0 = 0.325± 0.015 (6.14)

Another mass-dependence formula for the asymptotic level density parameter is preferable
for the Möller-Nix shell corrections because of their large values for the actinides:

ã = αA + βA2, [with γ = γ0/A
1/3] (6.15)

with the corresponding coefficients:

α = 0.1125 ± 0.0005, β = (1.22± 0.11)10−4, γ0 = 0.325± 0.015. (6.16)

Deviations of the a-parameters included in the RIPL-2 level-densities-gc.dat file from
the parameters calculated on the basis of systematics are shown in Fig. 6.4 for both sets of
shell corrections. Standard deviations are equal to 0.0613 for the systematics using Myers-
Swiatecki corrections, and 0.0649 for Möller-Nix corrections. These results show that
both systematics have approximately equal accuracy, and can be used for the evaluation
of unknown level density parameters with expected uncertainties of about 6.5%. The
Myers-Swiatecki shell corrections for about 8000 nuclei are given in the shellcor-ms.dat
file, while those of Möller-Nix are listed in the masses/mass-frdm95.dat file discussed in
Chapter 2.

The systematics of the constant temperature model parameters were discussed in Ref.
[6.25], in which the nuclear temperature used in Eq. 6.7 was approximated by the formula

T = 17.60A−0.699
√

1 + γδE0, (6.17)
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Figure 6.3: Shell corrections to the nuclear binding energies estimated by different authors.

where numerical coefficients are obtained by a least-squares fit of the data shown in
Fig. 6.2. The same approach can be adopted for the energy shifts in which the following
relationships were derived:

U0 =

⎧⎪⎨
⎪⎩

11.17A−0.464 − 0.520− 0.79δE0 for even− even nuclei,
−0.390− 0.00058A − 0.79δE0 for odd nuclei,
−11.17A−0.464 + 0.285− 0.79δE0 for odd − odd nuclei.

(6.18)

Both the nuclear temperatures and the energy shifts in Chapter 3 are evaluated for
a much larger number of nuclei than included in the above list of a-parameters. When
available, these parameters are certainly preferable for level density calculations at low
excitation energies. However, for intermediate energies, values of T and U0 should always
be re-estimated in accordance with the matching conditions (Eqs. 6.9) and corresponding
systematics of the a-parameters for highly excited nuclei.

6.1.2 Back-shifted Fermi-gas model

Another approach to the problem of a simultaneous description of neutron resonance
densities and low-lying levels was proposed in Ref. [6.9]. Both sets of experimental data
are assumed to be described on the basis of the Fermi-gas relationships if the level density
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Figure 6.4: Deviations between the level density parameters derived from the resonance
spacing analysis and the systematics based on the shell-correction formula (Möller-Nix
(MN) and Myers-Swiatecki (MS)).

parameter a and the excitation energy shift δeff are considered as free parameters for
each nucleus. Since for odd-odd nuclei the resulting displacement is negative, the above
approach is known as the back-shifted Fermi-gas model. Since in this approach the Fermi-
gas formula are applied to a rather low excitation energies, a more accurate estimation of
temperature is used

U − δeff = at2 − t,

and the temperature is usually added to the excitation energy in the dominator of Eq.
6.1 [6.9].

Results of the corresponding analysis of the neutron resonance densities and low-
lying nuclear levels are shown in Fig. 6.5. Due to the change in the determination of
the effective excitation energies, the values obtained for the a-parameters are somewhat
lower than those shown in Fig. 6.1. However, shell effects in the mass dependence of
the a-parameter remain essentially the same. Differences between parameters obtained in
RIPL-1 [6.12] and RIPL-2 reflect the improvements achieved for both sets of experimental
data: neutron resonance spacings and cumulative numbers of low-lying levels.

Spin cutoff parameters are usually determined on the basis of the evaluation of the
moment of inertia to give the rigid-body value and half this value. The results of the
spin-distribution analysis of low-lying levels considered in Chapter 3 are shown in Fig. 6.6.
The half-rigid-body value of the moment of inertia is in reasonable agreement with the
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Figure 6.5: Level density parameters in the back-shifted Fermi-gas model.

available data, but because of the large uncertainties more accurate spin cutoff parameters
are difficult to estimate. Accordingly, the half-rigid-body moments of inertia were used
for the evaluation of the a-parameters presented in Fig. 6.5.

The complete set of level density parameters obtained for the back-shifted Fermi-gas
model is given in the level-density-bsfg.dat file, and the format is described in the level-
density-bsfg.readme file.
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Systematics for the level density parameters of the BSFG model were developed in
Ref. [6.26] on the basis of Eq. 6.11, which differs from the above for the Gilbert-Cameron
model through mainly the pairing corrections. These corrections were taken to be equal
to (δZ +δN )/2 for even-even nuclei, 0 for odd nuclei, and −(δZ +δN)/2 for odd-odd nuclei.
Whereas for the Möller-Nix shell corrections and the asymptotic level density parameter
given by Eqs. 6.13, the following coefficients (in MeV−1) were obtained:

α = 0.1337, β = −0.06571, γ = 0.04884. (6.19)

We performed similar analysis for the a-parameters shown in Fig. 6.5. The Myers-
Swiatecki shell corrections were used, the asymptotic level density parameter was taken
as Eq. 6.13, and the pairing corrections were chosen to be equal to 12/A1/2 for even-even
nuclei, 0 for odd nuclei, and −12/A1/2 for odd-odd nuclei. The following coefficients (in
MeV−1) were obtained:

α = 0.0904± 0.0005, β = 0.0373 ± 0.0035, γ0 = 0.325± 0.015. (6.20)

For the Möller-Nix shell corrections and the asymptotic level density parameter defined
by Eqs. 6.15 these coefficients are

α = 0.0883± 0.012, β = (1.03± 0.84)10−4, γ0 = 0.325± 0.015. (6.21)
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Figure 6.7: Deviations between the level density parameters derived from the resonance
spacing analysis and their systematics for the BSFG model.

Deviations of the a-parameters in Fig. 6.5 from the parameters calculated on the basis of
the above systematics are shown in Fig. 6.7 for both sets of shell corrections. Standard
deviations are 0.085 for the systematics with the Myers-Swiatecki corrections, and 0.088
for the Möller-Nix corrections.

An alternative approach was developed for the systematics of the level density param-
eters by the Brussels group [6.27]. The a-parameters derived from the neutron resonance
spacings were approximated by the relationship

a(U, Z, A) = ã [1 + 2 γ δ E0 e−γ(U − δ)]

The shell corrections were derived from the experimental (or theoretical) binding energies
considered in Chapter 2 with the simple spherical liquid-drop formula

MLD = avA + asA
2
3 + (asym + assA

− 1
3 )AI2 + acZ

2/A
1
3 ,

where I = (N − Z)/A. An optimized fit to the 1888 experimental masses with N, Z ≥ 8
[6.28] leads to a final rms deviation of 3 MeV for the liquid-drop parameters (all in MeV):

av = −15.6428, as = 17.5418, asym = 27.9418, ass = −25.3440, ac = 0.70.

With pairing corrections of δ = 0.5, 0,−0.5 for even-even, odd, and odd-odd nuclei, re-

spectively, the spin cutoff parameter σ2 = 0.0194A5/3
√

U/a; the asymptotic level density
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parameters of Eqs. 6.13, can be obtained from a least-squares fit of the updated s-neutron
resonance spacings Dexp to give the following coefficients (in MeV−1):

α = 0.1012, β = 0.0356, γ = 0.030. (6.22)

Ratios Dth/Dexp of the theoretical and experimental resonance spacings are shown in
Fig. 6.8. The root mean square deviation factor can be used to estimate the overall
deviation with respect to the experimental data:

frms = exp

[
1

Ne

Ne∑
i=1

ln2 Di
th

Di
exp

]1/2

,

where Ne is the number of nuclei considered. The present parameterization describes the
experimental data with a deviation frms = 1.78 that is comparable with the deviation
factor frms = 1.48 obtained for the more complex parameterization of the BSFG model
parameters in Ref. [6.26]. Results of microscopic calculations of resonance spacings are
also shown in Fig. 6.8 for comparison, and will be considered later.

Note that the BSFG model can diverge for the very low excitation energies for even-
even and odd nuclei. So the BSFG model should be combined with the constant tempera-
ture model for excitation energies below the accepted upper boundary of low-lying levels.
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Of course, the nuclear temperatures and energy shifts for such a low-energy approach will
be rather different from those considered for the Gilbert-Cameron model (see above).

6.1.3 Generalized superfluid model

On the basis of all results considered above, we can conclude that the Fermi-gas and con-
stant temperature models provide us with comparatively simple and convenient formula
for parameterizing experimental data on nuclear level densities. However, these models do
not give any explanation for the shifts of excitation energies and shell changes of the level
density parameters. An interpretation of these effects must be obtained on the basis of
more rigorous models that take into consideration shell inhomogeneities of single-particle
level spectra, and the superfluid and collective effects produced by the residual interaction
of nucleons. A detailed discussion of such models can be found in Ref. [6.18]. However,
rigorous microscopic methods to calculate level densities are extremely laborious which
limits their application to experimental data analyses. Thus, there is a need to develop a
consistent phenomenological description of nuclear level densities that takes into account
the basic ideas of microscopic approaches to the structure of highly excited nuclear levels,
while being sufficiently simple and convenient for broad application.

The influence of the super-conductive pairing correlations on nuclear properties can
be characterized by the value of the correlation functions (∆0τ), which determine directly
the even-odd differences in the nuclear binding energies and the energy gap of 2∆0τ in
the spectrum of quasi-particle excitations in even-even nuclei. The critical temperature
tc of the phase transition from a super-conductive (superfluid) to a normal state is also
related to the correlation function

tc = 0.567∆0. (6.23)

The excitation energy corresponding to the critical temperature may be expressed as:

Uc =
π2

6
gt2c +

1

4
g∆2

0 − n∆0, (6.24)

where n = 0, 1 and 2 for even-even, odd and odd-odd nuclei, respectively.

Above the critical energy the level density and other nuclear thermodynamic functions
can be described by the Fermi-gas relationship in which the effective excitation energy is
defined as

U∗ = U − Econd, (6.25)

where Econd is the condensation energy that determines a reduction of the nuclear ground
state energy due to the pairing correlations

Econd =
1

4
g∆2

0 − n∆0. (6.26)

Below the phase transition point (Eq. 6.23) the expressions for the thermodynamic
functions of a nucleus are rather complex, and will not be considered here. Complete
expressions can be found in Refs. [6.18, 6.29, 6.30], and the corresponding codes were
included in the RIPL-1 files.
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If coherent collective effects are included to accommodate excited level structure, the
nuclear level density may be expressed as

ρ(U) = ρqp(U)Kvibr(U)Krot(U), (6.27)

where ρqp is the level density due to quasi-particle excitations only, and Kvibr and Krot are
the corresponding enhancement coefficients due to vibrational and rotational excitations,
respectively.

Rotational enhancement of the level density in the adiabatic approximation depends
on the nuclear shape symmetry, and can be written as [6.31]

Krot =

{
1 for spherical nuclei,
I⊥t for deformed nuclei,

(6.28)

where I⊥ is the moment of inertia relative to the perpendicular axis. This formula is
obtained if mirror and axial symmetry of a deformed nuclei is assumed. The most stable
nuclei of the rare-earth elements (150 ≤ A ≤ 190) and the actinides A ≥ 230 have this
shape. Rotational enhancement of the level density becomes greater for non-axial forms
[6.31].

The vibrational enhancement coefficient is determined in the microscopic approach by
the relationship

Kvibr =
∏
i

[
1− exp(−ω0

i /t)

1− exp(−ωi/t)

]gi

, (6.29)

where ωi is the energy of the vibrational excitations, ω0
i is the energy of the corresponding

quasi-particle excitation, and gi is the degeneracy of such excitations. The presence
of quasi-particle energies in Eq. 6.29 accounts to some extent for non-adiabatic effects
in excited nuclei. Due to symmetry constrains imposed on the nuclear Hamiltonian,
the rotational and vibrational excitations become connected in a consistent microscopic
approach [6.18]. As a result, the calculated collective enhancement coefficients are always
reduced in comparison to the adiabatic estimation.

The adiabatic estimation of Krot increases the nuclear level densities by a factor of 50-
100 compared to calculations based on quasi-particle excitations alone. Increases of level
densities due to vibrational excitations will only be appreciable for low-energy excitations
with ωi < 1-2 MeV.

Over the previous twenty years, some microscopic models have been developed to con-
sider collective effects in highly excited nuclei. The results of all these models demonstrate
the damping of level density enhancement factors with increase of excitation energy. On
the basis of the level density calculations within the SU-3 model (oscillator mean field
with the quadrupole-quadrupole interaction between particles), Hansen and Jensen [6.32]
obtained the empirical function

Krot(U) =
Kadiab

rot (U)

1 + exp[(U − Ur)/dr ]
, (6.30)

that describes the damping of rotational enhancement factors. The parameters of this
formula were estimated as

Ur = 120A1/3β2
2 MeV, dr = 1400A−2/3β2

2 MeV, (6.31)
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where β2 is the quadrupole deformation parameter. Some other phenomenological de-
scriptions for the damping enhancement factor were discussed in Refs. [6.33, 6.34, 6.35].
All such descriptions include at least one or two parameters that can fluctuate from one
nucleus to another. Rather large uncertainties exist in estimates of the collective damping
enhancement, and unfortunately we have no reliable experimental data that could be used
for a crucial test of the various model predictions.

The vibrational enhancement of the level density can be approximated by the equation

Kvibr = exp[δS − (δU/t)], (6.32)

where δS and δU are changes in the entropy and excitation energy, respectively, that result
from the vibrational modes. These changes are described by the Bose gas relationships:

δS =
∑

i

(2λi + 1)[(1 + ni) ln(1 + ni)− ni lnni],

δU =
∑

i

(2λi + 1)ωini, (6.33)

where ωi are the energies, λi are the multipolarities, and ni are the occupation numbers
for vibrational excitations at a given temperature. The disappearance of collective en-
hancement of the level density at high temperatures can be taken into account by defining
the occupation numbers in terms of the equation:

ni =
exp(−γi/2ωi)

exp(ωi/t)− 1
, (6.34)

where γi are the spreading widths of the vibrational excitations. This spreading of collec-
tive excitations in nuclei should be similar to the zero-sound damping in a Fermi liquid,
and the corresponding width can be written as

γi = C(ω2
i + 4π2t2). (6.35)

A value of C = 0.0075A1/3 MeV−1 was obtained from the systematics of the neutron
resonance densities of medium-weight nuclei [6.36]. This analysis adopted experimental
values for the energies of the first 2+ excitation, and ω = 50A−2/3 MeV for the octupole
excitations. Due to higher energies, the influence of the latter is much weaker than for
the quadrupole excitations.

The shell inhomogeneities of single-particle level spectra result in a particular form of
energy dependence of the level density parameter a(U): shell effects become weaker with
increasing excitation energy, and at sufficiently high energies the dependence of parameter
a on the mass number tends to the semi-classical value (Eq. 6.3). This important behavior
of the level density parameter was used in defining the systematics of the Fermi-gas model
parameters (Eq. 6.11). Similar equations for the GSM model [6.29] can be written as

a(U, Z, A) =

{
ã(A) [1 + δE0 f(U∗)/U∗] for U ≥ Uc,
ac(Uc, Z, A) for U < Uc.

(6.36)

An additional shift of the excitation energies

Ueff = U∗ + δshift
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Figure 6.9: Level density parameters for the generalized superfluid model.

was introduced into Eq. 6.36 [6.35, 6.36] to take into account possible shortcomings
of the global systematics of the pairing correlation functions and collective enhancement
coefficients. The set of parameters ã and δshift was obtained from the simultaneous fitting
of the cumulative numbers of low-lying levels and neutron resonance spacings, using the
same data set as for the Gilbert-Cameron and backed-shifted Fermi-gas models. The
parameters obtained are shown in Fig. 6.9, and are contained within the level-densities-
gsfm.dat file. Results of a similar analysis performed with the Fermi-gas model that takes
into account the collective enhancement of level densities are also shown for comparison
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[6.11]. Collective enhancement reduces the values of the a-parameters that corresponds
to the observed neutron resonance spacings, but the shell effects remain approximately
the same as shown in Figs. 6.1 and 6.4 .

At first glance, the systematics of the level density parameters in terms of the Fermi-
gas and GSM models appear to be equally justified, since they give almost identical
descriptions of the level densities at excitation energies close to the neutron binding en-
ergy. However, these descriptions correspond to different absolute values of the level
density parameters, because the inclusion of collective effects decreases the resulting a-
parameters. The reduced values agree reasonably well with both the experimental data
derived from the spectra of inelastically scattered neutrons with energies up to 7 MeV,
and with theoretical calculations of the a-parameters for the single-particle level schemes
of a Woods-Saxon potential [6.29]. This agreement is very encouraging because the evap-
oration spectra are most sensitive to the level density parameter. Differences between
the a-parameter obtained from resonance data and from evaporation spectra cannot be
explained in terms of the Fermi-gas model without accounting for the collective effects.
Consideration of the level density collective enhancement is also very important for a
consistent description of the observed fissile behaviour of highly-excited nuclei [6.37].

Nowadays, there is overwhelming evidence that the description of the level densities of
excited nuclei should use more consistent models than those of the Fermi-gas model, albeit
inevitably more complex. The success of the generalized superfluid model is attributed to
the inclusion of the well-known major components of nuclear theory: pairing correlations,
shell effects and collective excitations. Some complexity in the model seems to be justified
by the mutual consistency of the parameters obtained from the various experimental
data, and by the close relationship between the theoretical concepts used to describe the
structure of low-lying nuclear levels and the statistical properties of highly excited nuclei.

Individual parameters are preferable for all practical applications. Parametric uncer-
tainties are not important in predicting the level densities within an intermediate energy
region if the experimental data for neutron resonances and low-lying levels have been
chosen correctly. Analyses of the evaporation spectra of different particles are of great
interest in studies of nuclear level densities. The energy dependencies of the level densities
obtained from the spectrum analyses of various threshold reactions are in good agreement
with the calculations based on the individual parameters of the GSM model [6.36].

However, many tasks require nuclear level density parameters for which no experi-
mental data are available. Under such circumstances, global parameters may be used,
and certain localised systematics may be proposed for these parameters that are based
on extrapolations of the isotopic or isotonic changes. Experimental data on the cumula-
tive number of low-lying levels can be fitted to one of the individual parameters, which
may be advantageous in maintaining the global systematics for other parameters. We
performed the analisis data shown in Fig. 6.9 in order to obtain a global systematics of
the GSM parameters . Using the Myers-Swiatecki shell corrections and Eqs. 6.13 for the
asymptotic and damping a-parameters, the following coefficients (in MeV−1) have been
obtained from a least-squares fit of the data:

α = 0.103± 0.004, β = −0.105± 0.014, γ0 = 0.375 ± 0.015. (6.37)

The energy shifts (in MeV) were approximated by the simple relationship:

δshift = 0.617 − 0.00164 A.
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Figure 6.10: Deviations between the level density parameters derived from the resonance
spacing analysis and their systematics for the GSM model.

Deviations between the a-parameters calculated on the basis of such systematics and
estimated from the resonance spacing analysis (Fig. 6.9) are shown in Fig. 6.10. The
standard deviation for the a-parameters is equal to 0.169, and the equivalent factor frms =
1.98.

Deviations for GSFM are generally not much larger than equivalent data for the
Gilbert-Cameron model or BSFG. Careful analyses imply that the major deviations are
related to the near-magic nuclei for which the shell effects are so strong that their con-
sistent description is possible for only microscopic models. Some essential deviations also
exist for nuclei in which the structure of the collective excitations is intermediate between
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vibrational and rotational. A more accurate estimate of collective enhancements could
be required for such nuclei than the separate consideration of vibrational and rotational
effects used in the above analysis.

6.1.4 Microscopic Generalized Superfluid Model

A more rigorous description of the level densities and other statistical characteristics
of excited nuclei can be obtained from calculations performed with realistic schemes of
the single-particle levels. Such calculations are considered in detail in Ref. [6.18]. The
thermodynamic functions of an excited nucleus (similar to Eq. 6.2 of the Fermi-gas model)
may be written in the form

S =
∑

i

gi[βEini + ln(1 + exp(−βEi)],

U =
1

2

∑
i

gi[
√

(εi − λ)2 + ∆2
0 −Ei(1− 2ni)] +

∆2
0 −∆2

G
, (6.38)

where β (= 1/t) is the inverse temperature, Ei are the energies of quasiparticle nuclear
excitations, ni = [1 + exp(−βEi)]

−1 are the occupation numbers for the corresponding
single-particle levels, and gi is the degeneracy of these levels and the sums for i runs
over all single-particle levels for both protons and neutrons. The quasiparticle energies
Ei = [(εi − λτ )

2 + ∆2
τ ]

1/2 are related to the single-particle energies and the correlation
function ∆τ by the equations

G−1
τ =

1

4

∑
i

gi
1− 2ni

Ei
,

Nτ =
1

2

∑
i

gi[1−
εi − λτ

Ei
(1− 2ni)], (6.39)

where Nτ is the number of protons or neutrons in a nucleus, λτ is the corresponding
chemical potential, and Gτ is the pairing force constant. Eqs. 6.39 determine the proton
and neutron correlation functions for the ground state of a nucleus at t = 0.

For given schemes of single-particle levels, Eqs. 6.38 and 6.39 permit the thermody-
namic functions and the nuclear level densities to be calculated without any additional
parameters. Differences between the behavior of the thermodynamic (Eqs. 6.38) and the
Fermi-gas functions (Eqs. 6.2) can be traced by determining the following functions

a′ = S2/4U, a =
π2

6
β
∑

i

gini(1− ni),

m2 =
pi2

6a
β
∑

i

m2
i gini(1− ni), I‖ = βσ2. (6.40)

Calculated level density parameters for low excitation energies reproduce rather well the
shell variations of the Fermi-gas model parameters observed in experimental data [6.18].
At high excitation energies (above 50 MeV), the mass number dependence of the calculated
parameters is very close to the semiclassical expression (Eq. 6.3).

Codes for microscopic calculations of the nuclear level densities are included in the
RIPL-1 and RIPL-2 libraries. Collective effects are also included in these codes on the ba-
sis of the same approximations as for the phenomenological generalized superfluid model.
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The single-particle level schemes of Möller et al. [6.24] are recommended for such calcula-
tions because they were also used to determine the recommended nuclear binding energies,
shell corrections and deformations (see Chapter 2). Therefore, their application to the
level densities provides the desired consistency between the ground and excited states.

An alternative description of nuclear level densities has been proposed in Ref. [6.19],
based on the Extended-Thomas-Fermi plus Strutinsky-Integral model for the ground state
properties (single-particle level schemes and pairing strengths). Although this approach
represents the first global microscopic formula that could reasonably reproduce the exper-
imental neutron resonance spacings, some large deviations have been found (for example,
in the Sn region). These deficiencies have been removed in the new HFBCS-based model
[6.38], which predicts all the experimental resonance spacings with an accuracy compara-
ble to the equivalent data obtained by the phenomenological BSFG formula (frms = 2.14
for the ratios Dth/Dexp, as illustrated in Fig. 6.8). This microscopic model is based on
the HFBCS ground state description [6.38] as characterized by a nucleon effective mass
close to the real mass, a property of particular importance for reliable level density evalu-
ations that provides a good description of the single-particle level density near the Fermi
surface. HFBCS quantities relevant to the level density calculations can be found in the
single-particle-levels/spl-hfbcs subdirectory, including the deformation parameters,
the single-particle level schemes (energy, parity, spin), pairing strengths and the corre-
sponding cut-off energies for both the neutron and proton systems.

The HFBCS single-particle schemes and deformations are used in addition to the
renormalized pairing strength to estimate the spin-dependent level density within the
statistical approach. All details of the level density calculations and predictions can be
found in Ref. [6.38]. Such a model includes

• BCS pairing (constant-G approximation) with a renormalized strength and blocking
effect for odd-mass and doubly odd nuclei,

• Gaussian-type spin dependence with microscopic shell and pairing effects on the
spin cut-off parameter,

• collective contribution of the rotational band on top of each intrinsic state, and the
disappearance of colletive enhancements at increasing excitation energies,

• deformation effects taken into account in the single-particle spectra,

• improved description of the cumulative number of nuclear levels at very low energies,

• reliable description of the level densities at high energies.

The microscopic HFBCS-based model has been renormalized to experimental data
(278 neutron resonance spacings and 1210 low-lying levels) to account for the available
experimental information, and can consequently be used for practical applications with
a high degree of confidence. The level densities are tabulated for about 8000 nuclei with
8 ≤ Z ≤ 110 lying between the proton and the neutron drip lines, and can be found
in the level-densities-hfbcs subdirectory. Each table includes the spin-dependent level
densities at energies up to U = 150 MeV and spin up to J = 29 (59/2) for each isotope
considered. The nuclear temperature, cumulative number of levels and total level and
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state densities are also included in these tables. Level densities at the inner and outer
fission saddle points are estimated using the HFBCS-based model for some 2300 nuclei
with 78 ≤ Z ≤ 120; details of the corresponding calculations can be found in Chapter 8.

Another quantity of particular importance in reaction cross-section calculations and
extracted traditionally from level density formula corresponds to the cut-off energy Umax

above which the experimental level scheme ceases to be complete, or the number of known
levels Nmax up to which the level scheme is complete. Nmax is usually obtained from a
simple fit to the low-lying states with the constant temperature formula (see Chapter
3). However, this oversimplified model cannot reproduce any of the shell, pairing and
deformation effects at low energies, except in a purely phenomenological manner by a two-
parameter adjustment. Nmax has now been determined on the basis of the microscopic
HFBCS predictions [6.38]. Estimated Nmax and Umax values can be found in the nmax-
umax-hfbcs.dat file (including some 1220 nuclei for which more than 20 excited levels are
known experimentally). Nmax values obtained are substantially smaller than those derived
from the constant-T evaluation presented in Chapter 3.

6.2 Partial level densities

The partial level density is used in pre-equilibrium reaction calculations to describe
the statistical properties of particle-hole excitations [6.39]. Since the pioneering studies
by Strutinsky [6.40], Ericson [6.41] and Blann [6.42], numerous theoretical methods have
been developed to determine partial level densities (PLD), and a variety of approaches
have been used in pre-equilibrium calculations. Some of these studies involve theoretical
methods for incorporating physical phenomena such as shell effects and residual pairing
interaction.

Despite extensive research, even the most sophisticated theoretical predictions can
significantly deviate from reality. Difficulties arise in testing the validity of determining
partial densities through comparison of calculated and measured pre-equilibrium spec-
tra because of the uncertainties in our understanding of the pre-equilibrium reaction
mechanisms. A useful collection of articles on PLD can be found in the conference pro-
ceedings on Nuclear Level Densities in Upton, New York in 1983 [6.43] and at Bologna in
1989 [6.44]. State-of-the-art methods to calculate PLD were recently reviewed by Běták
and Hodgson [6.45].

The most widely used approach to PLD is an equidistant single-particle model using
closed-form expressions, as proposed by Williams [6.46], and further refined by Dobeš and
Běták [6.47], Kalbach [6.43, 6.48, 6.49, 6.50], Zhang and Yang [6.51], Baguer et al [6.52],
Anzaldo-Meneses [6.53] and Hilaire et al [6.54].

Pairing effects play an important role in partial level density near the particle-hole
configuration thresholds as shown by Strutinsky [6.40] and later more consistently by
Ignatyuk and Sokolov [6.55] and Moretto [6.56]. Their results for pairing correction were
parametrized by Fu [6.57] and Kalbach [6.49]. Numerical values of the Fu parameterization
were recently refitted to the original results of Ignatyuk and Sokolov [6.55] to improve their
accuracy near the thresholds [6.58].
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An important modification has been made by Běták and Dobeš [6.59] to limit the
holes to excitation energies less than the nuclear well depth. This approach was extended
by Stankiewicz et al [6.60] and Obložinský [6.61] to consider binding energy restrictions.
An analytical method to calculate PLD starting from an arbitrary single-particle level
scheme was first proposed by Dobeš and Běták [6.47]. Chadwick and Obložinský [6.62]
introduced the particle-hole state-densities with linear momentum in order to describe the
linear momentum structure of the phase space of the excited particles and holes (excitons).
Accuracy of the PLD formula that consider the Pauli exclusion principle was improved
by Baguer et al [6.52]. As suggested by Běták and Dobeš [6.59], the new formulation
was extended by De and Hua [6.63] to include the finite depth of the potential well and
binding energy constraints. Corrections for the PLD calculation near the threshold were
derived by Anzaldo-Meneses [6.53], while an extensive study of the equidistant spacing
model was performed by Hilaire et al [6.54]. A new closed formula was proposed, which
compares very well with the results of the exact calculations; however, this model is not
easy to implement in routine calculations.

Since closed-form expressions for partial level densities based on equidistant levels are
widely used in pre-equilibrium calculations, we provide below simple expressions for their
determination as proposed by De and Hua [6.63]. Pairing correction is included following
the parameterization of Fu [6.49, 6.57, 6.58]. The references cited above can also be
consulted for other formulations.

6.2.1 Equidistant formula with exact Pauli correction term and binding-
energy and well-depth restrictions

The density of p-particle h-hole states with residual nucleus energy U can be factorized
into the energy-dependent density and spin distribution, ρ(p, h, U, J) = ω(p, h, U) Rn(J).
Adopting the equidistant model expression for the energy dependent one-component (no
neutron-proton distinction) density with finite hole-depth and binding-energy restrictions
[6.63]:

ω(p, h, U) =
gn

p!h!

p∑
i=0

h∑
j=0

(−1)i+j

(
p

i

)(
h

j

)
n−1∑
λ=0

(E − α(p, h)− iB − jε
F
)n−1−λ B(p, h, λ)

(n− 1− λ)!

× Θ(E − α(p, h) − iB − jε
F
), (6.41)

where

n = p + h

α(p, h) = (p2 + h2)/2g

B(p, h, λ) =
λ∑

k=0

C(p, k)C(h, λ− k)

C(m, λ) =
λ∑

i=0

bi

i!
(−m

g
)iC(m− 1, λ− i)

C(0, λ) = δλ0

and g is the single-particle density, B is the binding energy, ε
F

is the Fermi energy and
α(p, h) is the Pauli energy (i.e., minimum possible p− h configuration energy, if pairing
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is not considered). The bi coefficients are the Bernoulli numbers which are tabulated
elsewhere (b0 = 1, b1 = 1/2, b2k+1 = 0 for k ≥ 1,...). Θ-function is unity if the argument is
positive, and zero otherwise. The single-particle density is often taken as g = A/13, which
approximates to the average single-particle density near the Fermi energy. As pointed out
by Kalbach [6.49], we can implement the pairing corrections by substituting the Pauli
energy α(p, h) by the threshold energy Ethresh(p, h) [6.49, 6.58]:

Ethresh(p, h) =
g(∆2

0 −∆2)

4
+pm

[
(pm/g)2 + ∆2

]1/2

where pm = max(p, h), and ∆0 and ∆ are the ground and excited state pairing gaps,
respectively. The ratios of the pairing gaps were reported by Rejmund et al [6.58] to be:

(∆/∆0) = 0.996− 2.36(n/nc)
1.57/(E/C)0.76 if (E/C) ≥ 1.03 + 2.07(n/nc)

2.91

= 0 otherwise

where C = g∆2
0/4 is the condensation energy, and nc = 0.791g∆0 is the number of excited

quasi-particles at the phase-transition point from the super-fluid state to the normal state.

As B →∞ and ε
F
→∞ in Eq. (6.41), only the first term (corresponding to i = 0 and

j = 0) remains on the right side, and we obtain the PLD expression derived by Baguer
et al [6.52]. Expanding the factor (E − α(p, h) − iB − jε

F
)n−1 by means of the binomial

theorem, we can obtain the equidistant model expression for the energy-dependent one-
component density with finite hole-depth and binding-energy restrictions similar to those
derived by Běták and Dobeš [6.59] and Obložinsky [6.61]

ω(p, h, U) =
gn

p!h!(n− 1)!

p∑
i=0

h∑
j=0

(−1)i+j

(
p

i

)(
h

j

)
(E − α(p, h) − iB − jε

F
)n−1

x Θ(E − α(p, h) − iB − jε
F
). (6.42)

A Gaussian spin distribution is usually adopted:

Rn(l) =
2J + 1

2
√

2πσ3
n

exp
[
−(J + 1/2)2

2σ2
n

]
, (6.43)

where J is the spin and σn is the spin cut-off parameter (often taken as σ2
n = 0.24nA2/3

[6.64]).

RIPL-2 includes a code written by Avrigeanu and Avrigeanu to calculate partial level
densities using various models, as described in their extensive paper [6.65].

6.2.2 Microscopic theory

Most semi-empirical approaches to partial level densities are based on various simplifying
approximations. Such approaches often account inadequately for shell effects, pairing ef-
fects and parity distributions. More involved microscopical methods have been developed
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to address these deficiencies and calculate realistic particle-hole level densities using the
single-particle level scheme of the shell model. Additionally, the BCS formalism has been
included to account more properly for pairing effects. An exact method of computing par-
tial nuclear level densities directly from a set of single-particle states has been proposed
by Williams [6.66], which is based on the repetitive use of recursion relations to expand
the grand partition function and does not rely on the saddle-point approximation (unlike
the traditional statistical method). Far shorter computation times than the combinatorial
approach (counting all possible configurations) are required. Unfortunately, this method
cannot treat residual interactions in the classical form, and therefore is only useful in the
non-interacting Fermi-gas model.

The advent of high speed computers has encouraged the use of calculational methods
which do not depend on closed-form expressions. These studies include combinatorial
approaches involving exhaustive counting of particle-hole configurations [6.67, 6.68, 6.69,
6.70, 6.71]. The combinatorial method yields an exact level density (at least within the in-
dependent particle model), but is very time consuming and can become intractable at high
excitation energies or for large shell model spaces (heavy nuclei). Pairing interaction may
be included by applying BCS theory [6.70], but at the expense of significantly increased
computation times. Therefore, the Monte-Carlo technique as proposed by Cerf [6.72, 6.73]
is normally adopted to avoid exhaustive counting of the excited levels. Monte Carlo meth-
ods provide very efficient algorithms for solving combinatorial problems (e.g., combina-
torial optimization problems solved by simulated annealing). However, these methods as
applied to partial level densities are still at a relatively early stage of development [6.74].

RIPL-2 includes the microscopic.for code developed by Capote and Pedrosa [6.75] from
the ICAR code described in Ref. [6.70]. This code allows for microscopic calculations of
particle-hole partial level densities (up to 3p− 3h for even-even nuclei), which represent
the dominant contribution to the pre-equilibrium component of emission spectra. Shell-
model single-particle levels are required as input, and are also included in this compilation
(Nix-Möller and Hartree-Fock-BCS).

6.3 Conclusions and recommendations

For any application of the statistical theory of nuclear reactions, the parameters describing
the level density must be obtained from reliable experimental data. Both the cumulative
numbers of low-lying levels and the average spacings of neutron resonances are normally
used for this purpose. The level density parameters fitted to such data were compiled in
RIPL-1 for the three models most frequently used in practical calculations: i) Gilbert-
Cameron approach that combines the constant temperature model for low excitation
energies and the Fermi-gas model at high energies; ii) back-shifted Fermi-gas model; iii)
generalized superfluid model that considers the shell, pairing and collective effects.

During the development of RIPL-2, the previously recommended data were tested
and revised on the basis of the updated evaluations of the neutron resonance spacings
and the low-lying level systematics considered in Chapters 3 and 4. Revised parameter
sets were obtained for all three models. Furthermore, the systematics of the level density
parameters were developed for each model in terms of the shell correction approach. Such
systematics are recommended for level density calculations involving nuclei that have no
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RIPL-2 contains large quantities of data from the microscopic calculations of nuclear
level densities based on the HFBCS model. The microscopic model takes into account
the shell, pairing and blocking effects, deformation effects in the single-particle spectra,
collective enhancement of level densities at low excitation energies and damping at high
excitations. Corresponding tables of level densities for about 8000 nuclei are provided.
The codes and single-particle level schemes for the microscopic calculations of the nuclear
level densities are also given.

Microscopic calculations can be useful for detailed studies of the role of partial level
densities in the pre-equilibrium emission since such calculations take into account shell
and pairing effects. However, the results should always be treated with caution, as the
predictive capabilities of all partial level density theories are limited. For many pre-
equilibrium calculations, the more phenomenological models included in Avrigeanu’s code
are adequate. The general formula derived by De and Hua [6.63] is recommended for use,
which includes pairing corrections, binding energy and finite potential depth constraints,
and a precise treatment of the Pauli exclusion principle. However, the limitations of
such partial level density predictions should be kept in mind, especially considering the
uncertainties in our understanding of pre-equilibrium reaction mechanisms.

6.4 Summary of codes and data files

The structure of the directory is as follows:

densities/
partial/

pld-analytical.readme
pld-analytical.tgz
pld-microscopic.readme
pld-microscopic.tgz

single-particle-levels/
spl-frdm/
spl-frdm.readme
spl-hfbcs/
spl-hfbcs.readme
spl-retrieve.for
spl-retrieve.readme

total/
level-densities-bsfg.dat
level-densities-bsfg.readme
level-densities-gc.dat
level-densities-gc.readme
level-densities-gsfm.dat
level-densities-gsfm.readme
level-densities-hfbcs/
level-densities-hfbcs.readme
level-densities-micro.readme
level-densities-micro.tgz
nmax-umax-hfbcs.dat
nmax-umax-hfbcs.readme
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shellcor-ms.dat
shellcor-ms.readme

The programs and data files included in the directory are:

pld-analytical.readme - description of pld-analytical.tgz file.

pld-analytical.tgz - FORTRAN code that provides a set of subroutines for calculating
p-h level densities using analytical expressions for various equidistant and Fermi-gas
single-particle models.

pld-microscopic.readme - description of pld-microscopic.tgz file

pld-microscopic.tgz - FORTRAN code for microscopic calculation of p-h state densi-
ties.

spl-frdm/zxxx.dat - single-particle levels and ground state deformations calculated
within the FRDM model.

spl-frdm.readme - description of spl-frdm/zxxx.dat files.

spl-hfbcs/zxxx.dat - single-particle levels and ground state deformations calculated
within the Hartree-Fock-BCS model.

spl-hfbcs.readme - description of spl-hfbcs/zxxx.dat files.

spl-retrieve.for - code for retrieving single-particle level schemes from spl-frdm/zxxx.dat
and spl-hfbcs/zxxx.dat files.

spl-retrieve.readme - description of spl-retrieve.for file.

level-densities-bsfg.dat - level density parameters for BSFG model.

level-densities-bsfg.readme - description of level-densities-bsfg.dat file.

level-densities-gc.dat - level density parameters for the Gilbert-Cameron approach.

level-densities-gc.readme - description of level-densities-gc.dat file

level-densities-gsfm.dat - level density parameters for the Generalized Superfluid Model.

level-densities-gsfm.readme - description of level-densities-gsfm.dat file.

level-densities-hfbcs/zxxx.dat - tabulated nuclear level densities calculated on the
basis of the statistical partition function approach, based on the realistic microscopic
single-particle level schemes determined within the HF-BCS mass model.

level-densities-hfbcs.readme - description of level-densities-hfbcs/zxxx.dat file.

level-densities-micro.readme - description of level-densities-micro.tgz file.

level-densities-micro.tgz - microscopic statistical code for calculation of level densities,
with phenomenological treatment of rotational and vibrational enhancements and
including their temperature damping.
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nmax-umax-hfbcs.dat - compilation of Nmax and Umax based on microscopic nuclear
level densities.

nmax-umax-hfbcs.readme - description of nmax-umax-hfbcs.dat file

shellcor-ms.dat - shell corrections of Myers-Swiatecki mass formula.

shellcor-ms.readme - description of shellcor-ms.dat file.
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7 GAMMA-RAY STRENGTH FUNCTIONS

Coordinators: M. Herman and V. Plujko

Summary

Methods and related parameters for modeling γ-ray cascades in highly excited nuclei
have been reviewed. This assessment includes experimental radiative strength functions,
Giant Resonance parameters and various means of calculating γ-ray strength functions
in excited nuclei. Emphasis has been placed on the E1 γ-transitions, which tend to
dominate nuclear reactions. Recent analytical expressions for dipole transition γ-ray
strength functions provide reasonably reliable results over a relatively wide range of γ-ray
energies (from zero to above the GDR energy). RIPL-1 data are recommended for other
γ-ray multipolarities [7.1].

RIPL-2 contains tabulated dipole γ-ray strength functions and Giant Dipole Reso-
nance parameters that result from extensive microscopic calculations and can be used
directly by nuclear reaction codes.

Gamma emission is one of the most significant channels for nuclear de-excitation pro-
cesses, and accompanies most nuclear reactions. Both gamma decay and photo-absorption
can be described through radiative strength functions [7.2, 7.3], while electron-positron
decay depends on the shape of the γ-ray strength functions [7.4, 7.5]. There are two types
of radiative strength functions:

(i) ‘downward’ strength function (
←−
f ), which determines the average radiative width of

the γ-decay, and

(ii) photo-excitation (upward) strength function (
−→
f ) related to the cross-section for

γ-ray absorption.

The γ-decay strength function for a γ-ray emission of multipole type XL is defined as
the average reduced partial radiation width ε−(2L+1)

γ 〈ΓXL(εγ)〉 per unit energy interval of
resonances with average spacing D:

←−
f XL(εγ) = ε−(2L+1)

γ 〈ΓXL(εγ)〉/D, (7.1)

where εγ is the γ-ray energy. The photo-excitation strength function
−→
f Eλ is determined

by the average photo-absorption cross section 〈σXL(εγ)〉 summed over all possible spins
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of final states [7.3]:

−→
f E1(εγ) =

ε−2L+1
γ

(πh̄c)2

〈σXL(εγ)〉
2L + 1

. (7.2)

All γ-decay strength functions depend on the temperature Tf of the final states, which
is a function of the γ-ray energy in contrast to the initial state temperature T . The
transmission coefficient TXL(εγ) of the γ-ray emission is given by the relationship

TXL(εγ) = 2πε(2L+1)
γ

←−
f XL(εγ). (7.3)

Therefore, γ-ray strength functions are important constituents of the compound nucleus
model calculations of capture cross sections, γ-ray production spectra, isomeric state pop-
ulations, and competition between γ-ray and particle emission. Relevant multipolarities
in this context are E1, M1 and E2. The γ-ray strength functions include information
on nuclear structure, and are widely used to study the mechanisms of nuclear reactions
as well as nuclear structure. Widths and energies of the giant multipole resonances and
nuclear deformation parameters in heated nuclei are extracted from experimental data
by comparing of the shape of the experimental γ-ray strength functions with theoretical
data [7.6, 7.7, 7.8, 7.9, 7.10].

Since γ-ray strengths functions are used in time-intensive calculations, simple closed-
form expressions or ready-to-use tables are most convenient. Whereas the approaches
based on recent theoretical achievements are useful in improving the reliability of the
closed-form expressions.

Important quantities for the calculation of γ-ray strength functions are Lorentzian
parameters of giant resonances, derived traditionally from the analysis of the photo-
absorption cross sections for the E1 and E2 giant resonances. However, this experimental
database is rather scarce and measurements have not been undertaken for many target
nuclei. Therefore, several global systematic parameterizations have been derived for the
multipolarities of primary importance. Finally, experimental γ-ray strength functions are
extremely useful for adjusting theoretical values.

7.1 Experimental γ-ray strength functions

All experimental γ-ray strength functions have been collected together over a period of
about forty years, based on measurements of partial radiative widths Γγi by means of
three different types of experiment. Most of the data are derived from discrete resonance-
capture measurements using the method of slow neutron time-of-flight spectrometry.
Thermal neutron-capture data can be used (with some restrictions) in certain cases to
derive γ-decay strength functions. Finally, another source of data is provided by photonu-
clear reactions. Analyses of all these experiments involves averaging over Porter-Thomas
fluctuations, which governs the distribution of partial radiative widths.

The most extensive compilation of experimental γ-ray strength functions has been
prepared by Kopecky, and was included in RIPL-1 [7.1]. These data were adopted for
RIPL-2, reformatted, and included in the gamma/gamma-strength-exp.dat file. E1
and M1 strength functions (fE1 and fM1) are given for nuclei from 20F up to 239U, and
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some of the original values were corrected (typically for non-statistical effects). Both
original and recommended values are listed in units of 10−8 MeV−3. Readers are referred
to RIPL-1 documentation for more details regarding compilation and data reduction [7.1].

7.2 Standard closed-form models for E1 strength function

The Brink hypothesis is widely used to calculate the dipole γ-ray strength function [7.11,

7.12]. E1 strength in the SLO model (
←−
f E1 ≡

←−
f SLO) has Lorentzian shape with an energy

independent width Γr:

←−
f SLO(εγ) = 8.674 · 10−8σrΓr

εγΓr

(ε2
γ − E2

r )
2 + (Γrεγ)2

(MeV−3), (7.4)

where the Lorentzian parameters σr, Er, and Γr are the peak cross section, energy and
width of the Giant Resonance, respectively. This approach is probably the most appro-
priate method for describing photo-absorption data on medium-weight and heavy nu-
clei [7.3, 7.13, 7.14]. However, the SLO model for γ emission significantly underestimates
the γ-ray spectra at low energies εγ

<∼ 1 MeV [7.15]. A global description of the γ spec-
tra by the Lorentzian approach can be obtained over the energy range 1 <∼ εγ

<∼ 8 MeV
when the Giant Dipole Resonance parameters are inconsistent with those derived from the
photo-absorption data. Generally, SLO overestimates experimental data such as capture
cross sections and the average radiative widths in heavy nuclei [7.3, 7.16, 7.17, 7.18, 7.19],
and therefore improvements based on microscopic methods are needed.

The first model that gave a correct description of the E1 strengths at energies εγ

close to zero was proposed in Ref. [7.20], followed by the development of an Enhanced
Generalized Lorentzian model (EGLO) in Refs. [7.1, 7.21]. For spherical nuclei, the EGLO
radiative strength function consists of two components: (i) a Lorentzian with energy- and
temperature-dependent empirical width, and (ii) a term corresponding to the zero value of
the γ-ray energy as defined in Ref. [7.20]. The γ-decay dipole strength within the EGLO

model (
←−
f E1 ≡

←−
f EGLO) is defined by the equation [7.1, 7.21]:

←−
f EGLO(εγ) = 8.674 · 10−8σrΓr

[
εγΓk(εγ, Tf )

(ε2
γ − E2

r )
2 + (εγΓk(εγ, Tf))2

+ 0.7
Γk(εγ = 0, Tf)

E3
r

]
, (7.5)

where the energy-dependent width Γk(εγ, Tf) is defined as proportional to the collisional
damping width in the Fermi-liquid through the empirical function K(εγ):

Γk(εγ, Tf) = K(εγ)
Γr

E2
r

[
ε2
γ + (2πTf)

2
]
, K(εγ) = κ + (1− κ)

εγ − ε0

Er − ε0
. (7.6)

The factor κ depends on the model adopted, and was obtained from the average resonance
capture data, while ε0 = 4.5 MeV. If the Fermi-gas model is used, κ is given by [7.1]

κ =

{
1, A < 148,
1 + 0.09(A− 148)2 exp (−0.18(A− 148)), A ≥ 148.

(7.7)
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The EGLO model reproduces the experimental γ-ray data rather well in the mass region
A = 50 − 200, and was recommended in RIPL-1 as the most appropriate approach to a
simplified definition of the E1 γ-ray strength function [7.1]. However, the EGLO (and
SLO) expressions for the γ-decay strength function in heated nuclei are parameterizations
of the experimental data, and contradict recent theoretical findings:

• Shapes of the EGLO and SLO radiative strength functions are inconsistent with
the general relationship between the γ-ray strength function of the heated nuclei
and the imaginary part of the nuclear response function to the electromagnetic
field [7.22, 7.23, 7.24, 7.27].

• Damping width of the EGLO model is proportional to the collisional component
of the zero-sound damping width in the infinite Fermi-liquid in which only the
collisional (two-body) relaxation is taken into account. However, the important
contribution to the total width is also given by the fragmentation (one-body) width
arising from the nucleon motion in a self-consistent mean field [7.25, 7.26]. This
width is almost independent of the nuclear temperature and is not included in the
EGLO model. On the other hand, the energy-independent width in the SLO model
accounts for the fragmentation but not for collisional damping.

These shortcomings can be avoided by using new closed-form models proposed in Refs. [7.27]
and [7.32].

7.3 Refined closed-form models for E1 strength function

The approach proposed in Refs. [7.27, 7.28, 7.29, 7.30, 7.31] is consistent with the de-
tailed balance principle [7.6], and was originally referred to as the Thermodynamic Pole
Approximation (renamed the Modified Lorentzian (MLO) approach because the resulting
expression is a Lorentzian scaled with an enhancement factor). The energy-dependent
damping width in the MLO model also includes a simplified fragmentation contribution
corresponding to the ‘wall approximation’ for one-body dissipation. An expression for
the dipole γ-ray strength function within the MLO model (

←−
f E1 ≡

←−
f MLO) is obtained by

calculating the average radiative width of nuclei with micro-canonically distributed initial
states. This function has the following form for spherical nuclei [7.28, 7.29, 7.30, 7.31]:

←−
f MLO(εγ) = 8.674 · 10−8L(εγ, Tf)σrΓr

εγΓ(εγ, Tf)

(ε2
γ −E2

r )
2 + (Γ(εγ, Tf)εγ)2

(MeV −3), (7.8)

L(εγ, Tf) ≡
1

1− exp(−εγ/Tf)
. (7.9)

where Er and Γr are the giant dipole resonance energy and width, respectively, Γ(εγ , Tf)
is the strength function width (depends on the γ-ray energy and temperature Tf of the
final state), and σr is the peak value of the photo-absorption cross section at Er. The
energies and width are expressed in units of MeV , and σr in mb. Note that the width Γ
at energy εγ = Er can be identified with the GDR width Γr(T ) in the heated nucleus of
temperature T : Γr(T ) = Γ(εγ = Er, T ).
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The scaling factor L(εγ , Tf) in Eq. 7.8 determines the enhancement of the radiative
strength function in a heated nucleus as compared to a cold nucleus. This quantity can
be interpreted as the average number of 1p-1h states excited by an electromagnetic field
with frequency ω = εγ/h̄, and is only important for low-energy radiations1. However, L
is essential for the consistency of Eqs. 7.1 and 7.8 with respect to the detailed balance
principle in constant temperature systems (see Refs. [7.22, 7.23, 7.24, 7.27]).

The Lorentzian term appears in Eq. 7.8 as the imaginary part of the nuclear linear
response function to the electric dipole field. This shape is predicted by the extended hy-
drodynamic model of Steinwedel-Jensen (ESJ) [7.30, 7.36] for heated nuclei, with friction
between the proton and neutron fluids, and also by a semi-classical Landau-Vlasov equa-
tion with a memory-dependent collision term if the γ-transition strength is concentrated
near the giant resonance [7.31]. The Lorentzian shape stems from the random-phase
approximation in cold nuclei [7.37].

Different semi-empirical expressions for the damping width Γ were previously used
in the MLO approach, but the resulting radiative strength functions were close to each
other [7.31]. Therefore, we present here only the simplest expression corresponding to
the ESJ model to approximate the independent sources of dissipation [7.31, 7.38, 7.39];
the width is taken as the sum of a collisional damping width (ΓC) and a term (ΓF ) that
simulates the fragmentation component of the width:

Γ(εγ, T ) = ΓC(εγ, T ) + ΓF (εγ). (7.10)

Component ΓC is inversely proportional to the collision relaxation time τ in the isovector
channel at dipole distortion of the Fermi surface [7.38, 7.39, 7.40], and depends linearly
on the γ-ray energy within the doorway state relaxation mechanism of heated nuclei:

ΓC = ΓC, d ≡
h̄

τ (εγ, T )
= CcollEr (εγ + U) , (7.11)

where U is the thermal excitation energy; U = aT 2 within the Fermi-gas model, and
a = π2g/6, with g representing the single nucleon state density at the Fermi surface.
Linear energy dependence of the collisional damping width in Eq. 7.11 results from the
inverse proportionality of the effective mean square matrix element (for transitions be-
tween the incoherent particle-hole states) to the excitation energy [7.40, 7.41]. The linear
energy dependence of the collisional width was also obtained by means of the test particle
approach, when nucleon collisions were considered as s-wave scattering between pseudo-
particles [7.42, 7.43].

The parameter Ccoll in Eq. 7.11 is determined from the in-medium cross section σ(np)
of neutron-proton scattering near the Fermi surface:

1L also appears in the Fermi-liquid approach with explicit allowance for single-particle occupation
numbers of compound nuclear states (in Ref. [7.33], see Eq.(22) for the strength function at εγ � Er).
An extension of this method to γ-ray energies near GDR resonances slightly violates the detailed balance
principle [7.34, 7.35].
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Ccoll =
1

4π2

16m

9h̄2 σ(np) = c · F, c =
1

4π2

16m

9h̄2 σf(np) = 0.542 · 10−3, F = σ(np)/σf (np),

(7.12)

in which the in-medium cross section σ(np) is assumed to be proportional (factor F ) to
the value of the free space cross section σf(np) = 5 fm2 near the Fermi surface. This
relationship for Ccall ensures agreement between the relaxation time given by Eq. 7.11 and
that calculated from the collisional integral within the Fermi-liquid approach at εγ = Er

and T = 0.

ΓF in Eq. 7.10 is proportional to the wall formula Γw [7.44] with a scaling factor ks:

ΓF (εγ) = ks(εγ)Γw, Γw =
3h̄vF

4R0
= 36.43 · A−1/3 (MeV ) (7.13)

at Fermi-energy εF = mv2
F/2 = 37 MeV. For simplicity, the energy-dependent power

approximation is adopted for the factor ks :

ks(εγ) =

{
kr + (k0 − kr)|(εγ − Er)/Er|ns , εγ < 2Er,
k0, εγ ≥ 2Er,

(7.14)

where the quantities k0 ≡ ks(εγ = 0) and kr ≡ ks(εγ = Er) determine the contribution of
the “wall” component to the width at zero and GDR energies, respectively. The value of
kr is obtained from fitting the GDR width Γr at zero temperature to Eqs. 7.10 - 7.14, with
εγ = Er. Values for k0 = 0.3, ns = 1, and F = 1.0 were found by fitting the predictions
of the MLO model to the experimental γ-decay strengths.

Another approach to determining the E1 γ-ray strength is the Generalized Fermi
Liquid (GFL) model proposed in Ref. [7.32]. The general shape of the dipole strength
function is similar to that obtained by applying the Fermi-liquid theory to finite sys-
tems [7.20], but with an energy-dependent width which includes fragmentation damping
from the dipole-quadrupole interaction. The GFL dipole strength function in spherical
nuclei

←−
f E1 ≡

←−
f GFL is defined by the equation:

←−
f GFL(εγ) = 8.674 · 10−8σrΓr

KGFLεγΓm(εγ, Tf)

(ε2
γ − E2

r )
2 +KGFL(Γm(εγ, Tf)εγ)2

(MeV −3), (7.15)

KGFL =
√

Er/E0 = (1 + F ′
1/3)

1/2/(1 + F ′
0)

1/2 = 0.63,

where F ′
0 and F ′

1 are the Landau parameters of the quasi-particle interaction in the isovec-
tor channel of the Fermi system (F ′

0 = 1.49 and F ′
1 = −0.04) according to Ref. [7.32],

and E0 is an average energy for one-particle one-hole states forming GDR. Eq. 7.15 is
an extension of the original expression [7.32], in which the term KGFL(Γmεγ)

2 has been
added to the denominator to avoid singularity of the GFL approach near the GDR energy.
The factor KGFL is included to preserve the standard relationship between the strength
function at the GDR energy and peak value σr of the photo-absorption cross section.
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Similarly to Eq. 7.10, the width Γm in Eq. 7.15 is taken to be the sum of a collisional
damping width (ΓC) and a term (Γdq) that simulates the fragmentation width:

Γm(εγ, T ) = ΓC(εγ, T ) + Γdq(εγ), ΓC = ΓC, f ≡ Cf

(
ε2
γ + 4π2T 2

)
. (7.16)

The collisional component corresponds to the damping width in the infinite Fermi-liquid
model, and Γdq results from spreading the giant dipole resonance over surface quadrupole
vibrations as a consequence of the dipole-quadrupole interaction:

Γdq(εγ) = Cdqεγ | β̄2 |
√

1 +
E2

εγ
= Cdq

√
ε2
γβ̄

2
2 + εγs2, s2 = E2β̄

2
2 . (7.17)

Cdq = (5 ln 2/π)1/2 = 1.05, E2 is the energy of the first excited vibrational 2+ state (in
MeV), and β̄2 is the effective deformation parameter characterizing the nuclear stiffness
with respect to surface vibrations. The latter is determined from the reduced electric
photo-absorption rate B(E2) ↑≡ B(E2, 0+ → 2+) for the transition between the ground
state and 2+ state [7.45, 7.46]:

β̄2
2 ≡

5

2

E2

C2
= B(E2) ↑ /(

3

4π
eR2

0)
2, (7.18)

where C2 is the stiffness factor of the restoring force, R0 = r0A
1/3 is the radius of a

spherical nucleus of equal volume, and e is the elementary charge. Note that Eq. 7.17
coincides with the expression for the GDR damping width in Ref. [7.47] after substituting
the γ-ray energy εγ with the GDR energy Er.

Cf in Eq. 7.16 represents the collisional damping component in the GFL model, and
is determined by defining the total GFL damping width at the GDR energy in cold nuclei
to be equal to the width Γr (Γm(εγ = Er, T = 0) = Γr). Note that Cf within the Fermi-
liquid approach [7.40, 7.48, 7.49] is determined from the in-medium cross section σ(np) of
the neutron-proton scattering near the Fermi surface, and is equal to Ccoll as determined
by Eq. 7.12.

Finally, we consider a hybrid formula for the E1-strength function proposed in Ref. [7.50].
The general form of this hybrid approach coincides with Eq. 7.4 when Γh(εγ)Γr is adopted
in the numerator and the denominator instead of Γ2

r . The energy-dependent width Γh(εγ)

Γh(εγ) = KGFLΓr

ε2
γ + 4π2T 2

f

εγEr
(7.19)

is infinite at zero energy (εγ → 0) in heated nuclei, while the damping width Γh at zero
temperature depends linearly on the γ-ray energy as does the collisional width ΓC in
Eq. 7.11.

The expressions discussed above have to be generalized for the calculation of E1
strength functions in deformed nuclei, which are usually considered axially symmetric
with the radius defined by
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R(θ) = R
′
0 (1 + α2P2(cos θ)) = R

′
0 (1 + β2Y20) , (7.20)

R
′
0 = R0/λ, λ3 = 1 +

3

5
α2

2 +
2

35
α3

2,

where R
′
0 is the radius of a spherical nucleus of equal volume, P2(cos θ) is the Legen-

dre polynomial, and Y20 = (5/4π)1/2P2 is the spherical harmonic. Both α2 and β2 =
(4π/5)1/2α2 are quadrupole deformation parameters chosen to reproduce the ground-state
quadrupole nuclear moments Q. The E1 strength function in deformed nuclei is defined
as the sum of two components, each with the corresponding energy Er,j, damping width
Γr,j and peak value for the photo-absorption cross-section σr,j. Parameters Er,j, Γr,j and
σr,1 (j = 1, 2) correspond to collective vibrations along (j = 1) and perpendicular to
(j = 2) the axis of symmetry.

The fragmentation damping widths ΓF,1, ΓF,2 of the collective vibrations along two
principal axes of a spheroid are assumed in MLO to be proportional to the dipole widths
(Γs,1 and Γs,2) of the surface dissipative model [7.59]:

ΓF, j(εγ) = ks(εγ)Γs, j, Γs,1 = Γw/aδ
0, Γs,2 = Γw/bδ

0, δ = 1.6, (7.21)

where a0 and b0 are relative semi-axes of a spheroid

a0 ≡ R(θ = 0)/R0 = (1 + α2) /λ, b0 ≡ R(θ = π/2)/R0 = (1− 0.5α2) /λ. (7.22)

The parameters kr (Eq. 7.14) and Cf (Eq. 7.16) appear in expressions that define the
damping widths for MLO and GFL in deformed nuclei, and are determined by fitting
theoretical damping widths Γr,j of the normal modes of the giant dipole resonance in
cold nuclei to the corresponding experimental values. Cf can become negative, leading to
negative values for the in-medium cross sections σ(np) if the same relationship between Cf

and σ(np) as in spherical nuclei is used for deformed nuclei (see Eq. 7.12, with Ccoll = Cf).

7.4 Comparison of closed-form expressions with experimental
data

Variations in the dipole γ-decay strength functions (
←−
f E1) with mass number are shown in

Fig. 7.1 for 50 nuclei included in the gamma/gamma-strength-exp.dat file of RIPL-
2. The back-shifted Fermi-gas model (BSFG) was used to define the thermal excitation
energy Uf = U − US − εγ of the final state in terms of the temperature Tf [7.60]; this
approach relates the temperatures T and Tf to each another and to the thermal excitation

energy U of the initial state, with Tf = (1 +
√

1 + 4a(aT 2 − T − εγ))/2a and T = (1 +√
1 + 4a(U − US)/2a in which US is the energy shift parameter and a is the level density

parameter. Values for the level density parameters a and energy shifts US were taken from
the beijing bs1.dat file of RIPL-1 [7.1] with rigid-body moments of inertia, or from global
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Figure 7.1: E1 γ-decay strength functions plotted against mass number.

systematics [7.61] when no experimental data were available. Quadrupole deformation
parameters β2 were calculated from the ground-state deformation parameters given in
the masses/mass-frdm95.dat file and using Eqs. 7.28 and 7.27. Nuclei with β2 ≤ 0.01
were considered to be spherical. The effective quadrupole deformation parameters β̄2 and
energies E2 of the first 2+ state for even-even nuclei in the GFL model were taken from
raman tableI.txt of Ref. [7.45]. When experimental data were unavailable for even-even
nuclei and for all odd and odd-odd nuclei, |β̄2| were used for β̄2 and global parameterization
was adopted for s2 [7.45]

s2 ≡ E2β̄
2
2 = 217.16/A2. (7.23)

The results shown in Fig. 7.1 were calculated for γ-ray energies that correspond to the
mean energy ε̄γ of E1 transitions in the gamma/gamma-strength-exp.dat file. These
plots show that the GFL, MLO and EGLO models describe the experimental γ-decay
data with εγ ≈ Bn better than the SLO model. GFL and MLO calculations are in very
close agreement and reproduce the experimental data for heavy nuclei (A >∼ 150) better

than the other two models. Fig. 7.2 shows calculated γ-decay strengths (
←−
f E1) for 90Zr;

experimental data are taken from Ref. [7.62] and the GFL, MLO and EGLO data are
calculated for the experimental energies U and εγ. The MLO and SLO models for 90Zr
describe the experimental data better than GFL and EGLO, and the MLO representation
is closer to the experimental data than that of the SLO model.

Fig. 7.3 shows the calculated strength functions (
←−
f E1) for 144Nd, with the initial ex-
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Figure 7.3: E1 gamma-decay strength function of 144Nd for U = Bn.
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citation energy U equal to the neutron binding energy Bn(≈ 7.8 MeV). The experimental
data are taken from Ref. [7.15]. EGLO, GFL and MLO results are characterized by a
non-zero limit and temperature dependence at low γ-ray energies. All three models are in
reasonable agreement for εγ

<∼ 3 MeV, and describe the experimental data much better
than the SLO model (which predicts a vanishing strength function at zero γ-ray energy).
However, GFL, MLO and SLO results at εγ

>∼ 5 MeV are closer to the experimental data
than the values calculated by the EGLO method.

The photo-excitation strength function is expressed in the same form (7.2) as the γ-
decay strength function, but with the temperature of the initial state (T ) instead of the
final state temperature (Tf ). E1 photo-excitation strength functions calculated by the
MLO and SLO models are in good agreement for warm and cold nuclei over a wide range
of gamma-ray energies near the GDR peak energy.

7.5 Microscopic approach to E1 strength function

The Lorentzian or previously described closed-form expressions for the γ-ray strength
suffer from various shortcomings:

(i) unable to predict the enhancement of the E1 strength at energies below the neutron
separation energy as demonstrated by nuclear resonance fluorescence experiments -
this departure from a Lorentzian profile may occur in various ways, such as a pygmy
E1 resonance [7.51] which is observed in fp-shell nuclei and heavy spherical nuclei
near closed shells (Zr, Mo, Ba, Ce, Sn and Pb);

(ii) even if a Lorentzian function provides a suitable representation of the E1 strength,
the location of the maximum and width remain to be predicted from some underlying
model for each nucleus, as described in the previous sections - this approach clearly
lacks reliability when dealing with exotic nuclei.

Therefore, microscopic models have been developed with the aims of providing pre-
dictive power and reasonably reliable E1 strength functions. Attempts in this direction
have been specifically conducted within the quasi-particle random-phase-approximation
(QRPA) [7.52].

The spherical QRPA model includes a realistic Skyrme interaction, and has been used
recently for large-scale derivations of the E1 strength function [7.53, 7.54]. This global
calculation predicts GDR in close agreement with experimental data, i.e., rms deviation
of the predictions from measurements of 84 nuclides is only about 300 keV. The final E1
strength functions obtained by folding the QRPA strengths with a Lorentzian function
also reproduce satisfactorily the photo-absorption as well as the average resonance capture
data at low energies [7.53]. These aforementioned QRPA calculations have been performed
for all 8 ≤ Z ≤ 110 nuclei lying between the two drip lines. QRPA distributions in the
neutron-deficient region, as well as along the valley of β-stability, are very close to a
Lorentzian profile in the MLO model. Significant departures from Lorentzian are found
for neutron-rich nuclei with large asymmetry coefficients I = (N − Z)/A = (A− 2Z)/A,
as shown in Fig. 7.4 for the E1 photo-excitation strength function (fγ(E1)) in units of
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mb ·MeV −1:

fγ(E1) ≡ 〈σE1〉(mb)

εγ(MeV )
= 3(πh̄c)2 −→f E1(εγ) ≡ 1.15 · 106 −→f E1 (MeV −3). (7.24)

RPA-like calculations [7.52, 7.54, 7.55, 7.56] as well as the semiclassical second RPA
model [7.57] show that neutron excess affects the spreading of the isovector dipole strength,
as well as the centroid of the strength function. The energy shift is found to be larger
than predicted by the usual A−1/6 or A−1/3 dependence given by the phenomenological
liquid-drop approximations [7.44]. Some extra strength is also predicted to be located at
sub-GDR energies, and to increase with neutron excess (Fig. 7.4). Even if this behaviour
represents only a few percent of the total E1 strength, an increase by up to an order of
magnitude of the radiative capture cross section can occur for some exotic neutron-rich
nuclei [7.53].

Microscopic predictions of the E1-strength functions determined by the QRPA model
and based on the SLy4 Skyrme force are included in RIPL-2 for 3317 nuclei, with 8 ≤ Z ≤
84 lying between the proton and neutron driplines. The QRPA equations were solved in
the configuration space so as to exhaust the energy-weighted sum rule, and all calculations
were performed within the spherical approximation. A folding procedure was applied to
the QRPA strength distribution in order to take the damping of the collective motion into
account. A phenomenological splitting of the QRPA resonance strength was performed
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within the same folding procedure for the deformed nuclei. All modelling details and a
comparison with experimental data can be found in Ref. [7.53]. The E1 strength has been
tabulated on an energy grid of 0.1 MeV between 0 and 30 MeV, and these data can be
found in a series of gamma/gamma-strength-micro/zxxx.dat files.

Another semi-microscopic approach was recently proposed in Ref. [7.58], based on the
continuum-RPA description of particle-hole states and a phenomenological description
of quasi-particle damping. This model takes into account nucleon pairing and describes
rather well the low-energy part of the radiative dipole strengths. Similarly to the QRPA
method, this approach does not use a thermodynamic description of the ensemble of initial
highly-excited states.

7.6 Giant dipole resonance parameters

The parameters for giant resonances with E1, M1 and E2 multipolarities were collected
in RIPL-1 [7.1] and have also been adopted for RIPL-2. Compilation of the Giant Dipole
Resonance parameters is contained in the gamma/gdr-parameters-exp.dat file. An
extended database of the photo-nuclear reaction parameters Er,j, σr,j can be found in
Atlas of Giant Dipole Resonances [7.63], although this publication does not contain ex-
plicit information on the damping width components Γr,j in deformed nuclei but provides
only full-width at half-maximum of the largest peak in the photo-absorption cross sec-
tion. Therefore, these data can not be directly used in radiative strength or reaction
calculations.

Unknown GDR parameters can be estimated from various systematics, which are
reliable for nuclei near to the beta-stability line with A >∼ 40. The global systematics
for dipole isovector giant resonance parameters can be based on the interpolation of
experimental data, and are defined below (see also Refs. [7.13, 7.14, 7.65], and RIPL-
1 for references):

Spherical nuclei

Er ≡ E0 = 31.2 A−1/3 + 20.6 A−1/6 MeV,

Γr = 0.026 E1.91
r MeV,

σr ≡ σ0 = 1.2× 120 NZ / (AπΓr), mb (7.25)

The factor of 1.2 in the expression for σr is the value of the experimental energy-weighted
sum in units of the classical dipole Thomas-Reiche-Kuhn sum rule σTRK = 60(NZ/A)
(MeV ·mb).
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Deformed nuclei

Er,1 = Er,2/
[
0.911

a0

b0
+ 0.089

]
, Er,2 = E0

1

b0

[
1− 1.51 · 10−2 · (a2

0 − b2
0)
]
,

Γr,1 = 0.026E1.91
r,1 , Γr,2 = 0.026E1.91

r,2 ,

σr,1 = σ0/3, σr,2 = 2σ0/3, (7.26)

where indexes 1 and 2 correspond respectively to the collective motion along and perpen-
dicular to the axis of symmetry with relative semi-axes of a spheroid a0 = (1 + α2) /λ,
b0 = (1− 0.5α2) /λ (see Eqs. 7.20 and 7.22).

The energy expressions in Eq. 7.26 were derived from the hydrodynamic model of
Steinwedel-Jensen [7.64] (Fig. 2 and Eq. 9), and for small deformations Er,1 � E0/(1+α2)
and Er,2 � E0/(1 − 0.5α2) as reported in RIPL-12 [7.1]. Effective quadrupole deforma-
tion parameters α2 or β2 of the equivalent spheroid (Eq. 7.20) were determined from the

ground-state deformation parameters βn ≡ αn

√
(2n + 1)/4π, with the nuclear radius ex-

pansion expressed in spherical harmonics. βn parameters were calculated in Ref. [7.66],
and are listed in the masses/mass-frdm95.dat file. The nuclear quadrupole moment Q

′

was calculated in units of (3/4π)ZeR2
0 for every nucleus by the equation (see also Eqs.1.22

and 6.19 in Ref. [7.67]):

Q
′
= ᾱ2 +

4

7
ᾱ2

2 −
1

7
ᾱ3

2 −
94

231
ᾱ4

2 +
8

7
ᾱ2ᾱ4 +

72

77
ᾱ2

2ᾱ4 +
200

693
ᾱ2

4, (7.27)

where ᾱn ≡ βn/
√

(2n + 1)/4π, with the ground-state deformation parameters βn taken

from Ref. [7.66]. The quadrupole deformation α2 of an effective spheroidal nucleus was
then determined from the calculated quadrupole moment Q

′
by solving the equation:

α2 +
4

7
α2

2 −
1

7
α3

2 −
94

231
α4

2 = Q
′
, (7.28)

where only terms up to the fourth order in α2 from the general expression for Q
′

are
retained. Effective quadrupole deformation parameters α2 have been determined this way
for 8979 nuclei in the masses/mass-frdm95.dat file, and are tabulated in the deflib.dat
file contained in the gamma/gamma-strength-analytic.tgz archive.

Nuclei at high excitation energy and with high angular momentum can be created in
heavy-ion reactions. Static deformation is damped with increasing excitation energy, and
the nuclei become spherical. On the other hand, rotation leads to dynamic deformation,
and calculation of the γ emission in such cases should use a spheroidal shape approxi-
mation [7.8, 7.9, 7.68, 7.69]. Simple expressions were proposed in Ref. [7.70], based on
the liquid-drop model [7.71] with a rigid-body estimate for the nuclear moment of inertia
and a dynamic quadrupole deformation parameter for the rotating nuclei as a function
of angular momentum and mass number A. The oblate nucleus at slow rotation transits

2β was used in RIPL-1 instead of α2.
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sharply to prolate shape when the frequency increases. General expressions are of the
form:

β2 = β2 (I, A) = ES (I) (a1 + a2ES (I)) / (1 + a3ES (I))
2

(7.29)

with

ai = bi + ci (A + di)
2 , (7.30)

where ES (I) = E0
rotI (I + 1) = 34.5A−5/3I (I + 1) MeV is the rotation energy of the

equivalent spherical nucleus with spin I . Slowly rotating spheroidal nuclei have an oblate
shape, which changes to prolate shape at a critical angular momentum Icr. Coefficients bi,
ci and di in Eq. 7.30 have the following values in the case of oblate nuclei (slow rotation):

b1 = −7.46 · 10−3, c1 = −1.94 · 10−7, d1 = −107.1;
b2 = −4.20 · 10−5, c2 = −4.25 · 10−9, d2 = −93.90;
b3 = 5.70 · 10−3, c3 = 2.44 · 10−7, d3 = −73.51.

(7.31)

Coefficients bi, ci and di for prolate nuclei (fast rotation) are:

b1 = −6.36 · 10−3, c1 = −6.33 · 10−7, d1 = −48.3;
b2 = 1.02 · 10−3, c2 = 1.42 · 10−7, d2 = −95.9;
b3 = 0.02, c3 = 8.59 · 10−7, d3 = −74.1.

(7.32)

The dependence of the critical spin Icr on mass number A and proton number Z is given
by the formula:

Icr = Icr (A, Z) = q1 + q2Z
2 , (7.33)

where

qi = q̃i,1 + q̃i,2 · A + q̃i,3 · A2 , (7.34)

and

q̃1,1 = 55.10, q̃1,2 = − 0.063, q̃1,3 = 5.120 · 10−3;
q̃2,1 = −0.013, q̃2,2 = 2.840 · 10−6, q̃2,3 = −2.570 · 10−7.

(7.35)

The dynamical deformation parameter at slow rotation (Eqs. 7.29 - 7.31) is practically
identical to the value obtained analytically in Refs. [7.46, 7.69, 7.72]:

β2 � −
√

5π/4× 2.1A−7/3I(I + 1)/(1− 0.0205Z2/A). (7.36)

Macroscopic models describing the the relative motion of protons against neutrons
have also been successful in reproducing experimental GDR energies and widths [7.44,
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7.79]. An effect often neglected by systematics concerns the experimentally-observed shell-
dependence of the GDR width, that can be explained by considering the coupling between
dipole oscillations and quadrupole surface vibrations [7.77]. RIPL-2 provides improved
predictions of the GDR energies and widths for about 6000 nuclei from 14 ≤ Z ≤ 110
lying between the proton and the neutron driplines. GDR is represented in the Goldhaber-
Teller model [7.78], where the proton sphere vibrates against the neutron sphere. The
dynamics of the oscillation is assumed to be dominated by the np-interaction as described
in Ref. [7.79], with a renormalized strength K = 1360A−1/6 MeV fm3 derived from
a least-squares fit to the experimental GDR energies [7.50]. Both the nucleon density
distribution and ground-state deformation are taken from the Extended Thomas-Fermi
plus Strutinsky Integral (ETFSI) compilation [7.80, 7.81]. The expression for the shell-
dependent GDR width is taken from Ref. [7.77] using the newly-determined GDR energies
and the ETFSI shell corrections. Comparisons between predicted and experimental GDR
energies and widths are shown in Fig. 7.5; more details can be found in Ref. [7.50].
GDR in deformed nuclei splitinto two peaks for oscillations parallel and perpendicular
to the axis of rotational symmetry. All GDR energies and widths are tabulated in the
gamma/gdr-parameters-theor.dat file.

7.7 M1 and E2 transitions

The GFL and MLO models can also be used to estimate the M1 strength
←−
f M1(εγ) over

a broad range of γ-ray energies when either experimental data or systematics for the
ratio R =

←−
f E1(Bn)/

←−
f M1(Bn) at neutron binding energy Bn are known. Then, the M1

strength function can be calculated from the following relationship:

←−
f M1(εγ) =

←−
f E1(Bn)

R
φM1(εγ)

φM1(Bn)
, (7.37)

where φM1(εγ) describes the shape of the dipole magnetic radiative strength function,

and the dipole electric radiative strength
←−
f E1(Bn) is calculated using one of the models

discussed. Experimental values of the ratio R can be extracted for some nuclei from
the gamma/gamma-strength-exp.dat file. Global parameterization of the R is given
by [7.1]:

R =

←−
f E1(Bn)
←−
f M1(Bn)

= 0.0588 · A0.878, Bn ≈ 7 MeV. (7.38)

Two models are in common use for the function φM1:

(i) φM1(εγ) = const according to the single-particle model, and

(ii) φM1(εγ) from the SLO model (Eq. 7.4) and corresponding to the spin-flip giant res-
onance mode [7.46], with the following global parameterization for the energy and
damping width [7.1]:

Er = 41 · A−1/3 MeV , Γr = 4 MeV .
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Figure 7.5: Comparison of experimental data with GDR energies and widths given in the
gdr-parameters-theor.dat file.

E2 radiation is linked to the excitation of the giant quadrupole isoscalar resonances,
and a Lorentzian is recommended to describe the E2 strength. The single-particle model
with energy-independent strengths is recommended for the M2-, E3- and M3-radiations
[7.73].

Note that the sum of the experimental γ-decay strength functions for the E1+M1 tran-
sitions in the energy interval up to Bn has been determined recently in Refs. [7.74, 7.75,
7.76] from the analysis of two-step γ-cascades after thermal neutron capture in the follow-
ing nuclei: 40K, 80Br, 114Cd, 124,125Te, 128I , 137,138,139Ba, 140La, 146Nd, 150Sm, 156,157Cd,
160T b, 164Dy, 166Ho, 168Er, 170Tm, 174Y b, 176,177Lu, 181Hf , 182Ta, 183W , 188,190,191,193Os,
192Ir, 196Pt, 198Au and 200Hg.

Experimental dipole radiative strengths for nuclei with 50 <∼ A <∼ 90 and 6 <∼ εγ

<∼ 10 MeV have been determined by studying the γ emission in (p, γ)-reactions (see
Refs. [7.34, 7.35], and references therein).
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7.8 Conclusions and recommendations

Numerical studies indicate that the calculations of the γ-decay strength functions within
the EGLO, GFL and MLO models give similar results at low γ-ray energies (εγ

<∼ 3 MeV ).
These three models describe the experimental data much better than the SLO model at
these low energies, and also define a non-zero and temperature-dependent limit for the
vanishing γ-ray energy. Results from the GFL, MLO and SLO models at εγ

>∼ 5 MeV are
closer to the experimental data than those obtained from EGLO. The E1 photo-excitation
strength functions for cold nuclei calculated with the MLO and SLO model agree over a
reasonably large range of γ-ray energies around the GDR peak.

The overall comparison between the EGLO, GFL, MLO and SLO models and experi-
mental data showed that MLO and GFL provide the most reliable methods for determin-
ing the E1 γ-ray strength functions over a relatively wide energy interval ranging from
zero to above the GDR peak. GFL and MLO are not time consuming calculational routes
and are recommended for general use; both of them can be used to predict the statistical
dipole γ-ray emission and extract the GDR parameters from the experimental data for
heated nuclei. We note that the GFL model is not consistent with the detailed balance
principle in systems with constant temperature, and the collisional components of the
GFL damping width can become negative in some deformed nuclei.

A code has been developed as part of the RIPL-2 project to predict E1 strength
functions by means of the MLO, GFL, EGLO and SLO models, and is included in the
gamma/gamma-strength-analytic.tgz file.

Large-scale QRPA calculations of the E1 strength have been undertaken in Ref. [7.53],
and are tabulated in the gamma/gamma-strength-micro/zxxx.dat files that give
the same degree of accuracy as the MLO model in the energy range from 4 to 8 MeV
for nuclei close to the stability line. However, QRPA calculations reveal broadening of
the GDR shape when moving away from the stability line. This effect stems from the
microscopic treatment and can not be accounted for by using experimental GDR shapes,
which were measured for stable nuclei only. Thus, the use of the QRPA results can also
be recommended for calculations on nuclei far from the stability line.

7.9 Summary of codes and data files

The programs and data files included in the directory are:

gamma-strength-analytic.readme - description of FORTRAN code for analytical cal-
culation of the E1 strength function in terms of SLO, EGLO, MLO and GFL models.

gamma-strength-analytic.tgz - source of FORTRAN code for analytical calculation
of the E1 strength function in terms of SLO, EGLO, MLO and GFL models.

gamma-strength-exp.dat - compilations of experimental E1 and M1 strength func-
tions.

gamma-strength-exp.readme - description of gamma-strength-exp.dat file.
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gamma-strength-micro/ - E1 strength functions determined within QRPA model.

gamma-strength-micro.readme - description of gamma-strength-micro file.

gdr-parameters-exp.dat - compilation of experimental giant dipole resonance param-
eters.

gdr-parameters-exp.readme - description of gdr-parameters-exp.dat file.

gdr-parameters-theor.dat - theoretical predictions of the giant dipole resonance ener-
gies and widths for about 6000 nuclei.

gdr-parameters-theor.readme - description of gdr-parameters-theor.dat file.
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8 NUCLEAR FISSION

Coordinators: S. Goriely and A. Ignatyuk

Summary

A set of fission barriers and the corresponding nuclear level densities have been generated
for various applications. Accurate level densities are prescribed within GSM for reactor
physics studies. Since fission level densities and barrier parameters are strongly interde-
pendent, the corresponding set of parameters for both the inner and outer fission barriers
has also been provided. Some specific applications, such as accelerator-driven systems and
stellar nucleosynthesis, require a knowledge of large numbers of fission barriers and level
densities to estimate spontaneous as well as neutron-induced or β-delayed fission prob-
abilities. Hence, the present compilation includes fission barriers for some 2301 nuclei
with 78 ≤ Z ≤ 120 derived by means of the ETFSI method, and the corresponding level
densities at both saddle-point deformations predicted by the microscopic model based on
HFBCS single-particle properties.

The main concepts of nuclear fission theory are based essentially on the liquid-drop
model [8.1, 8.2]. According to this model, competition between the surface tension forces
of a nuclear liquid drop and the Coulomb repulsion forces related to the nuclear charge
leads to the formation of an energy barrier which prevents spontaneous decay of the nu-
cleus. The penetrability of the barrier determines the half-life for spontaneous fission. In
the liquid-drop model, the height of the fission barrier for heavy nuclei decreases rapidly
with increase of Z2/A, and should disappear when (Z2/A)cr = 46− 48. The decrease in
height results in an exponential increase in barrier penetrability. These barrier changes
exhibit good agreement with the behavior of the spontaneous fission lifetimes of the ac-
tinide nuclei, ranging from the long-lived isotopes of uranium to the artificially synthesized
short-lived isotopes of fermium and mendelevium [8.3, 8.4, 8.5, 8.6]. The height of the
barrier is a key ingredient for a description of fission cross sections measured in different
nuclear reactions.

Early studies show that despite some successful results the liquid-drop model can-
not explain the major peculiarity of spontaneous and low-energy fission of the actinides,
namely the asymmetric mass distribution of fission fragments [8.7], implying that shell
effects have a strong influence on fission fragment formation. Initially, fission mass-
asymmetry was explained in terms of some modifications of the liquid-drop model pre-
dictions for configurations close to the scission point (point where the fissioning nucleus
breaks into two fragments). However, new phenomena were discovered in the 1960s that
required more radical changes in the fission model in order to be explained, particularly
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the spontaneously-fissioning Am isomers [8.8] and the intermediate resonance structures
observed in the neutron-induced fission cross sections [8.9, 8.10] that cannot be explained
by adopting the traditional formula for fission barrier penetrability.

Calculations of nuclear deformation energies based on the shell correction method
[8.11, 8.12] played a crucial role in explaining the above phenomena. The fission barriers
calculated for the actinides consisted of a two-hump curve with a rather deep potential
well between the humps. This two-hump shape also identified the spontaneously-fissioning
isomers as the lowest states of a fissioning nucleus in the second potential well, and the
intermediate resonances as excited states of a nucleus in this well [8.13, 8.14].

Our present knowledge of the fission barriers can be represented in terms of three
groups:

(i) results of broad scale investigations of fission cross sections for pre-actinides that
undergo different charged-particle induced reactions to give the main experimental
information on the droplet properties of nuclei - interest in such data has increased
dramatically over the previous decade due to extensive discussions of accelerator-
driven power systems for the transmutation of nuclear waste;

(ii) two-humped barriers of actinides studied with a high accuracy that undergo neutron-
induced reactions of significant importance in reactor physics - investigations of the
fission barriers at low energies were extended for many actinides to the high energies
of charged-particle induced reactions in order to study the changes of fission barriers
with increased excitation;

(iii) barriers required to explain the existence of long-lived superheavy elements with Z >
102 due only to the shell effects in fission barriers - our knowledge and understanding
of superheavy nuclei are still very scanty, and there are extremely large uncertainties
associated with the quantification of their fission barriers (see Ref. [8.15] for a good
review of superheavy nuclei).

Our studies concentrate on the first two groups of data, which are connected with
the basic tasks of the RIPL project. Another field that requires extensive data on fission
barriers is astrophysics which encompasses stellar nucleosynthesis and the rapid neutron-
capture process. Microscopic calculations of the fission barriers associated with this phe-
nomenon will be discussed in the final part of the chapter.

8.1 Fission barriers and level densities for pre-actinides

As with any other decay width, the fission width (Γf ) for an excited nucleus is deter-
mined by the product of the excited level spacing (Dc) and the sum of the transmission
coefficients over all channels leading to fission:

Γf (Uc) =
Dc(Uc)

2π

∑
Tfi . (8.1)

Based on the principles of the liquid-drop model, the intermediate saddle configuration at
the top of a fission barrier is of vital importance in the determination of fission probability.
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A significant amount of the initial excitation energy at the saddle point is concentrated in
the fission degree of freedom, which imposes significant limitations on the excitations of
other degrees of freedom. Therefore, only the transitional states in the saddle point are
usually considered as the fission channels [8.16]. The spectrum of such channels should
be similar to the observed level spectra of the heavy deformed nuclei, taking into account
possible changes in the symmetry and deformation of transitional states. All limitations
connected with the conservation laws for energy, angular momentum and parity should
also be taken into consideration in Eq. (8.1).

Most measurements of the fission cross sections for pre-actinides were performed at
energies above the fission barriers. Fission widths for such energies can be written in the
form:

Γf (Uc) =
1

2πρc(Uc)

Uc−Bf∫
0

ρf(Uc − Bf −E)dE , (8.2)

where ρc and ρf are the level densities for the equilibrium compound and saddle configu-
rations, respectively, and Bf is the fission barrier height [8.1]. Eq. (8.2) shows the strong
interdependence of the barrier parameters and the level densities. Approximations used
in the level density description of the fission cross-section analyses have been discussed
by many authors [8.17, 8.18, 8.19, 8.20, 8.21], and the corresponding uncertainties of the
models applied should always be kept in mind when comparing the fission barriers derived
from available experimental data.

The most complete compilations of the experimental fission barriers are given in Refs.
[8.22, 8.23, 8.24], where comprehensive sets of references can be found. A large amount of
data has accumulated on the fission barriers for light charged-particle induced reactions.
Many measurements of the fission cross sections were also performed for the heavy-ion
induced reactions [8.25]. However, because of the rather complex models involved in
the analysis of heavy-ion reactions, the uncertainties in the estimated fission barriers are
usually found to be much larger than for light charged-particle reactions.

Generally, fission barriers are approximated by the equation:

Bf = Bld − δE0 + δEf , (8.3)

where Bld is the liquid-drop component of the fission barrier, δE0 is the ground state shell
correction, and δEf is the corresponding shell correction for the saddle configuration of
the fissioning nucleus. Usually, one assumes that the shell effects vanish for the strongly-
deformed saddle configurations of pre-actinides, and the ground-state shell corrections
are equal to the microscopic corrections in the nuclear masses as considered in Chapter
2. Differences between the various estimates of the fission barriers relate mainly to the
liquid-drop component of the fission barrier.

Various versions of the liquid-drop model have been developed [8.26, 8.27, 8.28, 8.29],
that differ as a consequence of the choice of model parameters and the additional compo-
nents connected with the diffuse-surface, curvature and proximity effects. Rather simple
equations for the liquid-drop barriers were proposed recently on the basis of the Thomas-
Fermi model [8.30]. Measured barriers for about 120 nuclei were fitted by the formula:

Bf (Z, N) = S(Z, N)F (X), (8.4)
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where S = A2/3(1−kI2) is proportional to the nuclear surface energy with I = (N−Z)/A,
and the surface symmetry coefficient k is defined as k = 1.9 + (Z − 80)/75. The fission
parameter (X) is proportional to the ratio of the Coulomb and surface energies, and can
be defined as

X = Z2/A(1− kI2). (8.5)

Function F is cubic, and joined smoothly to a straight line at X = X1:

F (X) =

{
0.000199748(X0 −X)3 for X1 ≤ X ≤ X0,
0.595553 − 0.124136(X −X1) for 30 ≤ X ≤ X1,

(8.6)

with X0 = 48.5428 and X1 = 34.15.

Available experimental data on the fission barriers for pre-actinides are compared
in Fig. 8.1 [8.23, 8.24] with the estimations derived from Eq. (8.4). The FRDM shell
corrections (see Chapter 2) were used to transform the experimental fission barriers to
liquid-drop barriers. A good description of the experimental barriers led us to recommend
Eq. (8.4) as probably the best approximation of the liquid-drop fission barriers in the
region of X ≥ 30. Lighter nuclei have a dumb-bell shape at the saddle point, and
the calculations based on the Yukawa-plus-exponential double-folded approximation for
nuclear energies may be preferable [8.29]. The corresponding code for such calculations
is included in RIPL-2, and the experimental fission barriers compiled in Ref. [8.24] for
near-magic nuclei with strong shell effects are given in the fission-barriers-exp.dat file
together with the barriers for actinides (as discussed later). All models considered in
Chapter 6 can be used to calculate the fission widths (Eq. 8.1). However, in order to
maintain consistency, the same model should be used for the fission and particle widths
that defined the dominant channels of a compound nucleus decay. The shell, pairing
and collective effects are essentially different for the ground and saddle states, and these
differences should certainly be taken into account in calculations of nuclear fission.

Shell effects can apparently be neglected for the saddle level densities, but they are
important for the neutron widths of near-magic nuclei shown in Fig. 8.1. The energy
dependence of the a-parameters given by Eqs. (6.11) and (6.36) is extremely important for
such nuclei, as confirmed by many results of fission cross section analyses [8.20, 8.23, 8.31].

Pairing effects are implicitly associated with the energy dependence of the effective
moment of inertia, which determines the angular distributions of the fission fragments
[8.32]. Analysis of the corresponding experimental data has shown that the correlation
parameter for the saddle point (∆f ) should always be specified as about 15% larger than
for the ground states [8.33]. The relationship ∆f = 14/A1/2 can be used as a reasonable
approximation for the pairing parameter within the saddle point.

Collective enhancement of nuclear level densities is clearly displayed when undertaking
a systematic analysis of the fission cross sections for spherical and deformed nuclei [8.19,
8.21, 8.34]. A consistent description of the shell, pairing and collective effects can only be
achieved by means of the generalized superfluid model (GSFM). GSFM parameters can
be derived on the basis of the systematics considered in Chapter 6, with corresponding
modifications to the pairing, asymptotic level density parameters and moments of inertia
of the saddle states.

Differences between the asymptotic level density parameters for the fission and neutron
channels are affected by the surface component for the density of single-particle states.
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Figure 8.1: Fission barriers of pre-actinides and their liquid-drop components in compar-
ison with liquid-drop model estimates [8.30]

Adopting the semi-classical approach, the level density parameter can be expressed in the
form [8.20, 8.35, 8.36]

ã = cvA + csBsA
2/3 + ccBcA

1/3, (8.7)

where ci are the coefficients for the volume, surface and curvature components, and Bi are
the corresponding functions that describe the relative increase of the surface or curvature
under deformation of a nucleus. The dumb-bell saddle shapes of pre-actinides correspond
to Bs = 21/3, which leads to the ratio af/an > 1 used in all analyses of fission cross
sections. However, there are large uncertainties associated with estimates of the coefficient
ratio cs/cv [8.20, 8.35, 8.36]. Evaluations of the ratio cs/cv = 1.30 based on microscopic
calculations involving the single-particle level schemes of the Wood-Saxon potential [8.20],
or cs/cv = 1.53 derived from phenomenological systematics of the neutron resonance
densities seem to be the most reasonable approaches. Both methods give an af/an ratio
of between 1.05 and 1.07 which is supported by the direct results of fission cross section
analyses [8.23].

8.2 Fission barriers and level densities for actinides

Highly accurate evaluations are required for the neutron-induced fission cross sections of
the main fissile and fertile nuclei. The fission barriers and corresponding level densities
are key ingredients of such evaluations. Full-scale Hauser-Feshbach theory, the coupled-
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channel optical model and double-humped fission barrier parameterization are normally
used in such calculations, supported by numerous experimental data that demonstrate
the importance of the shell, pairing and collective effects at both the equilibrium and
saddle nuclear states.

Eq. (8.1) is adopted for the fission width, but the transmission coefficients should
be estimated in accordance with the two-humped structure of fission barriers for which
penetrabilities vary with energy in a much more complicated manner than for a one-hump
barrier [8.13, 8.14]. The quasi-stationary states of the nucleus in the well between the
humps have a strong modulating effect on the penetrability of the two-humped barrier
[8.13, 8.37]. These modulations are manifested in the sub-barrier fission cross-sections as
intermediate structures, examples of which are the resonances observed in the 230Th(n,
f) reaction at neutron energies of about 700 keV [8.9] and the structure displayed in the
neutron-induced fission cross-sections of 240Pu [8.10]. More comprehensive discussions of
the experimental data on intermediate structures in actinide fission cross sections can be
found in Refs. [8.13, 8.38].

The transmission coefficient for the deep second well can be averaged over the inter-
mediate structures, and written in the form:

< T (E) >=
TATB

TA + TB + Tγ
(8.8)

where TA and TB are the penetrability of the humps A and B respectively, and Tγ is the
probability for gamma decay in the second well. The transition through the two-humped
barrier is determined by the probability of sequential transitions through each of the
humps. If Tγ << (TA + TB), the probability of the transition through the asymmetric
two-hump barrier is the same as that for the one-hump barrier and equivalent to the
higher hump.

Penetrabilities for each hump can be approximated by the well-known formula for the
penetrability of a parabolic barrier:

Ti(E) =
{
1 + exp

[
2π

ωi

(Ei − E)
]}−1

, (8.9)

where Ei is the energy of the transition state and ωi is the curvature close to the top of
the corresponding barrier. As a consequence of the exponential growth of penetrability
(which is much stronger than the decrease in level spacing), the average fission width (Eq.
8.1) for the two-humped barrier increases exponentially with increasing excitation energy
in an approximately similar manner to one higher hump. At energies above that of the
barrier, the penetrability does not prevent nuclear transitions to open fission channels,
and the fission width increases because of the growth in the number of open channels,
which is much weaker than the sub-barrier increase of the fission width. This change in
the growth rate of fission widths is usually adopted in experimental data analyses as a
direct method for the estimation of fission barrier heights.

The quantum structure of the fission channels at the top of each barrier is extremely
important in the formulation of accurate descriptions of the fission cross sections at the
sub-barrier and near-barrier energies. Such structure depends strongly on the symmetry
of nuclear deformations at the corresponding saddle states. Shell model calculations
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have been undertaken, supported by the results of fission fragment angular distribution
analyses. The fissioning nucleus has been calculated to possess axial asymmetric shape at
the inner saddle A, and axial-symmetric and mirror-asymmetric shape at the outer saddle
B. Mirror-asymmetric even-even nuclei have ground-state rotational band levels with
Kπ = 0+, J = 0, 2, 4... - that unify with the octupole band levels Kπ = 0−, J = 1, 3, 5...
in the common rotational band (which includes levels with all possible values of angular
momentum and parity). Additional unification arises for axial asymmetric shapes and
levels of the γ-vibrational band with Kπ = 2+, J = 2, 4... The quantum number of
the corresponding rotational bands for odd and odd-odd nuclei should be estimated in
accordance with the angular momentum addition rules for unpaired particles and the
corresponding rotational bands. As the result, the fission cross section analysis involves a
much more complex structure of saddle transient states than the well-studied collective-
level sequences of the deformed rare-earth nuclei and actinides.

The saddle shape symmetry should be taken into consideration when evaluating the
collective enhancement of the level densities. Thus, for axial-symmetric, mirror-asymmetric
shapes, the rotational enhancement must be increased by a factor of two relative to the
estimates given in Chapter 6 (Eq. 6.28). The rotational enhancement must be even larger
for γ-asymmetric shapes:

Krot = 2
√

2π {IxIyIz}1/2 t3/2, (8.10)

where Ii is the moment of inertia relative to the corresponding axis, and t is the nu-
clear temperature for transient states. Obviously, the moment of inertia should also be
calculated for deformations corresponding to the saddle states.

The pairing effects at transient states are displayed most clearly in the energy de-
pendence of the parameter K2

0 , which determines the angular distribution of the fission
fragments [8.32]. This parameter is proportional to the effective moment of inertia of
transient states, and is similar to the spin cutoff parameter in the level density formula
(Eq. 6.1). The correlation function (∆f ) obtained from the analysis of the fission frag-
ment angular distributions for even-even plutonium isotopes can be approximated by the
relationship ∆f = 14/A1/2 MeV [8.39], and such an estimation of the pairing for the
saddle states is very close to the results obtained for the pre-actinides [8.33].

As a consequence of the essential role of the shell, pairing and collective effects, a
consistent description of the experimental data for the fission cross sections of actinides
can be obtained through the generalized superfluid model (GSFM). Data for the light
charged-particle induced reactions have been analyzed for a large group of nuclei in Ref.
[8.40] and for neutron-induced reactions in Refs. [8.41, 8.42, 8.43]. The neutron cross
sections have been measured to a high degree of accuracy, and therefore their analyses are
usually considered as the most reliable estimates of the fission barriers and fission level
densities. Shell corrections were derived (in MeV) from an analysis of the fission cross
sections in the first plateau region (2 - 5 MeV over the fission barrier) [8.41], using the
phenomenological version of GSFM (see Chapter 6):

δEA
0 =

{
2.6 for Z ≤ 97,
2.6− 0.1(Z − 97) for Z > 97,

δEB
0 =

{
0.6 + 0.1(Z − 97) + 0.04(N − 143) for Z < 97,
0.6 + 0.04(N − 143) for Z ≥ 97

(8.11)
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Pairing parameters were assigned ∆A
f = ∆B

f = ∆0 + 0.2 MeV, where ∆0 is the pairing
for the ground states (neutron channels). The perpendicular moments of inertia for the
level density calculations were chosen to be equal to 100h̄2/MeV for the inner saddle,
200h̄2/MeV for the outer saddle, and approximately 75h̄2/MeV for the ground states
[8.42].

Note that the matching of the discrete saddle states with the level density parameters
used at high energies can be important for the consistent description of the fission cross
sections at the near-barrier energies. Thus, the GSFM parameters for the fission channels
should be estimated by adopting schemes for the saddle states of each hump; frequently,
the constant temperature model is applied instead of adjusting such parameters. The
temperatures are usually taken to be the same as for the neutron channels (see Chapter
6), and the energy shifts are only adjusted to the adopted saddle state schemes.

Another important effect at the near-barrier energies is the step-like behavior of the
level density near the thresholds of one- and two-quasi-particle excitations. Such step-
like structures are observed directly in the low-energy variations of the parameter K2

0

determined from the fission fragment angular distribution [8.39], and can be explained
within the framework of GSFM [8.44]. The well-known structure in the neutron-induced
fission cross sections of 235U around 1 MeV can be considered as evidence of step-like
changes of the fission level density at the two-quasi-particle excitation threshold [8.42].
An analysis of the irregularities in the neutron-induced fission cross sections of other nuclei
is presented in Ref. [8.45]; the partial level density formula considered in Chapter 6 can
be applied to such irregularities, and possible simplifications were discussed.

Fission barrier parameters have been estimated from modeling analyses of the avail-
able experimental data for the neutron-induced fission cross sections of the uranium,
neptunium, plutonium, americium and curium isotopes [8.43, 8.46, 8.47]. Barrier pa-
rameters for Th and Pa nuclei were also obtained by adopting essentially the same ap-
proach [8.48, 8.49, 8.50]; however, these specific data were less accurately estimated due
to the more complex structure of the fission barriers in light actinides as compared to
transuranium nuclei. The inner and outer fission barrier heights are shown in Fig. 8.2.
Corresponding data were included in the RIPL-1 files, and have been combined with the
recommended barriers for pre-actinides in the fisbar-experimental.dat file of RIPL-
2. A comparison between these data and the fission barriers evaluated in Ref. [8.24]
shows that there is good agreement for the outer barriers of the uranium, plutonium and
americium isotopes. Some disagreements exist for the inner barrier heights, although the
general isotopic dependences are very similar; furthermore, significant discrepancies occur
in the case of the outer barriers of the curium isotopes.

Barrier curvature parameters are usually evaluated with relatively large uncertainties
from analyses of the sub-barrier behavior of fission cross sections [8.38, 8.45]. The following
parameters can be recommended as optimal (in MeV): h̄A = 0.9− 1.0, 0.8 and 0.60, and
h̄B = 0.6, 0.5 and 0.4 for the even-even, odd and odd-odd nuclei, respectively. Even-odd
differences in the curvature parameters are dependent on the superconductive pairing
correlations and their impact on the stiffness and reduced mass parameters of the fissioning
nucleus at the saddle.

Pairing parameters for the fission channels are given in the recommended data files,
together with the corresponding fission barriers. These data are shown in Fig. 8.3 in com-
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Figure 8.2: Inner (A) and outer (B) fission barriers derived from the analysis of neutron-
induced fission cross sections [8.46, 8.47, 8.48, 8.49, 8.50].

parison with the simple approximations used in the systematics of the pairing parameters
for the equilibrium and saddle states. An increase of the pairing at the saddle point is
confirmed by all results of the fission cross section analysis, but the difference between
∆f and ∆0 seems to fluctuate strongly. Variations of ∆f have an important effect on the
fission barrier values extracted from the cross-section analysis. Despite such well-defined
variations, the uncertainties in the fission barrier parameters are difficultly to estimate
accurately. For even-even nuclei in which the sub-barrier and over-barrier cross sections
are analyzed simultaneously, the uncertainties in the higher-hump estimates are about
0.2 MeV; these uncertainties are even larger for the lower hump with values of about 0.5
MeV. Approximately the same uncertainties should be adopted for the fission barriers of
odd and odd-odd nuclei for which the over-barrier cross sections can be analyzed. Finally,
the uncertainties of the outer barriers of the curium isotopes are probably ever larger.

Many of the above results were obtained from analyses of the fission cross sections at
excitations lower than 15 - 20 MeV above the fission barrier. According to the general
concepts of the shell correction method, the two-humped structure of any fission barrier
should disappear at higher excitation, and liquid-drop fission barriers with asymptotic
level density parameters should be used to describe both the fission cross section and
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all competitive reaction cross sections at excitation energies above 30 - 50 MeV. This
prediction would appear to be supported by the available experimental data [8.31, 8.34],
although there are difficulties separating unambiguously the first-step fission of an initial
nucleus from the multi-chance fission of daughter nuclei that arises after the emission of
one or more neutrons. So, we have only theoretical estimates of excitations at which the
transition from shell to liquid-drop model behavior should occur, and lack a satisfactory
understanding of what approximations should be applied to define the fission barriers and
fission level densities in the transitional energies.

8.3 Large-scale microscopic calculations of fission barriers and
level densities

The origin of approximately half the stable nuclides heavier than iron that are observed in
nature has been explained in terms of stellar nucleosynthesis through the rapid neutron-
capture process (or r-process) [8.51]. These complex fundamental studies require a large
number of estimated fission data. Although the exact astrophysical site at which the
r-process develops still represents one of the major puzzles in nucleosynthesis theory, the
r-process is believed to take place in environments characterized by high neutron densities
(Nn >∼ 1020 cm−3), such that successive neutron captures can proceed into neutron-rich
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regions some considerable distance from the valley of β-stability. This process produces
nuclei with decreasing neutron binding energies, and consequently faster (γ, n) photodis-
integration that competes with the slowing-down (n, γ) reactions at high temperatures
(T >∼ 109 K). With timescales usually thought to be much longer than the characteristic
timescale of (n, γ) and (γ, n) reactions, β-decay drives the material to higher Z elements.
Depending on the strength of the neutron flux as well as the duration of the neutron
irradiation, nuclei up to the super-heavy mass region can be produced in timescales of
the order of a second. So far, no astrophysical model is able to provide any reliable
predictions of the thermodynamic conditions under which the r-process can take place.
Fission processes are important in describing the nuclear mechanisms taking place during
the r-process:

(i) if matter reaches the super-heavy neutron-rich region during the neutron irradiation,
fission could recycle the nuclear flow and affect the nucleosynthesis of the bulk of
the r-process nuclei;

(ii) all nuclei produced during the r-process irradiation with A >∼ 208 are neutron-rich
heavy progenitors of the r-abundance peak in the Pb region - their production
ratio depends on the fission probabilities, so that a correct treatment of the fission
processes is needed to predict the production of Pb and Bi during and after neutron
irradiation;

(iii) r-process nucleosynthesis creates long-lived 232Th, 235U and 238U that are used as
cosmochronometers to estimate the upper age limit of the Galaxy [8.52].

An accurate knowledge of the astrophysics, as well as the nuclear properties affecting the
progenitors of these chronometers (particularly the fission probabilities of their progeni-
tors) is a fundamental pre-requisite for a reliable age estimate.

Changes in the abundance of the heavy nuclei as a result of the high neutron fluxes
and temperatures encountered during the r-process nucleosynthesis can only be satisfac-
torily calculated by using a network of nuclear reactions that includes all of the necessary
neutron capture, photodisintegration, β-decay, α-decay, β-delayed particle and fission pro-
cesses. The fission processes include spontaneous, β-delayed and neutron-induced fission
for which the probabilities must be estimated for some 2000 nuclei with 80 <∼ Z <∼ 110 lo-
cated mainly in the neutron-rich region. Therefore, we have compiled fission-barrier data
for some 2301 nuclei with 78 ≤ Z ≤ 120 as derived using the ETFSI method, and the cor-
responding level densities at both saddle point deformations predicted by the microscopic
model (more details are given below).

8.3.1 Fission barriers

Data file fisbar-etfsi.dat contains predictions of the fission barriers and saddle point
deformations as obtained from the Extended Thomas-Fermi plus Strutinsky Integral
(ETFSI) model [8.53, 8.54]. ETFSI is a semi-classical approximation to the Hartree-
Fock method in which the shell corrections are calculated with the “integral” version of
the Strutinsky theorem; BCS corrections are also added with a delta-pairing force. The
fission barriers are derived with the SkSC4 Skyrme force on which the ETFSI-1 mass
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formula is based. Experimental primary barriers can be reproduced [8.24] within plus or
minus 1.5 MeV (except for elements with Z < 87 which have barriers above 10 MeV).
Fig. 8.4 shows the relative accuracy (Bexp−Bth)/Bexp of this global prediction for the pri-
mary barriers, i.e., the highest barrier (see Ref. [8.53] for more details). These predictions
are accurate to within ± 40%, which is an excellent result in view of the global character
of the model based on a Skyrme force fitted exclusively in terms of nuclear masses.
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Figure 8.4: Relative errors (Bexp−Bth)/Bexp in the primary (i.e., highest) barriers calcu-
lated by ETFSI.

The ETFSI compilation includes 2301 nuclei with 78 ≤ Z ≤ 120, and their masses
range from slightly neutron-deficient to extremely neutron-rich nuclei (close to or at the
calculated neutron drip line) up to A = 318. These data contain the nuclei considered in
Ref. [8.53] for which experimental barriers are known, and a slightly extended version of
the set published in Ref. [8.54]. Experimental fission barriers are also included that were
compiled in Ref. [8.53] and originated mainly from Ref. [8.24].

A maximum of two barriers are given for each nucleus (inner and outer), corresponding
to the highest saddle points among the “slightly” and “strongly” deformed. Those two
groups of saddle points correspond to well-separated values of the elongation parameter c
(cin and cout (see below)); cin < 1.6 and cout > 1.6 for many nuclei, although 1.5 < cout <
1.6 in some cases.

As well as the calculated inner and outer barriers, the deformation parameters at the
corresponding saddle points are included in the RIPL-2 database. The nuclear shapes
are limited to axially symmetrical deformations that are described in terms of Brack
parameterization (c, h, α), where c is the elongation parameter (c < 1, = 1 and > 1 for
oblate, spherical and prolate shapes, respectively), h is associated with the “necking”
of the nuclear surface (shapes corresponding to different regions of the (c, h) plane are
described in Ref. [8.53]), and α quantifies left-right asymmetry (α = 0 for symmetric
shapes). Asymmetry parameters ain and aout listed in RIPL-2 do not refer to α, but
to α̃ as defined in Ref. [8.53] to be α c3; the mass ratio of the two fission fragments is
roughly given by (1+3/8 α̃)/(1−3/8 α̃). All calculated fission barriers have deformation
parameters within the domain: 1.00 < c < 2.36, −0.26 < h < 0.22 and 0 ≤ α̃ < 0.75.
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8.3.2 Fission level densities

Level densities need to be provided for all the nuclei of interest. As already stressed,
shell, pairing and deformation effects are essential input in the provision of a reliable
estimate of the level densities at the fission saddle points. Furthermore, the most appro-
priate model that includes all these effects in a consistent form is the microscopic model
based on the partition function method, as described in Chapter 6 [8.55]. This model
is based on HFBCS single-particle properties, and predicts all the experimental s-wave
resonance spacings with accuracies comparable to those obtained by the phenomenologi-
cal BSFG formula. HFBCS is characterized by a nucleon effective mass close to the real
mass [8.56], which is a particularly important parameter for reliable evaluations of level
densities (provides a good description of the single-particle level density near the Fermi
surface). When extrapolating level densities to exotic neutron-rich super-heavy nuclei, a
microscopic approach might also be more stable than a phenomenological model.

The level density model includes:

• BCS pairing (in the constant-G approximation) with a renormalized strength and
blocking effect for odd-mass and doubly-odd nuclei;

• Gaussian-type spin dependence, with microscopic shell and pairing effects that im-
pact on the spin cut-off parameter;

• deformation effects that modify the single-particle spectra and the collective contri-
bution of the rotational bands on top of each intrinsic state;

• an improved description at very-low energies [8.55].

The single-particle level scheme is consistently calculated for each saddle point by
the deformed HFBCS model, based on the MSk7 Skyrme force [8.56] and constrained
on the saddle-point quadrupole, octupole and hexadecapole moments. Identical pairing
strengths (within the constant-G approximation) are used in these calculations and to
determine the level density of the ground-state equilibrium deformation. However, no
consideration is given to the possibility of a damping of the collective effects at increasing
excitation energies.

The level densities are separately given the inner (levden-hfbcs-inner subdirectory)
and outer (levden-hfbcs-outer subdirectory) saddle points as tabulations covering 2300
nuclei, with 78 ≤ Z ≤ 120 included in the ETFSI compilation of fission barriers. Each
table includes the spin-dependent level densities for energies up to U = 150 MeV and spin
up to J = 29 (59/2). The nuclear temperature, cumulative number of levels, and total
level and state densities are also included in the tables. Ground-state level densities are
available in table format [8.55], and have been included in the RIPL-2 compilation (see
Chapter 6). Note that the level density for left-right asymmetric fission barriers should
be increased by a factor of 2 (this correction is not included in the tables).

Predicted fission level densities can be quantified in terms of the af/a ratio (i.e., a-
parameter at the saddle point (af) corresponding to the (inner or outer) fission barrier
expressed as a fraction of the equilibrium ground-state configuration (a)). Two examples
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Figure 8.5: af/a ratios with and without (i.e., intrinsic) rotational enhancement as a
function of the excitation energy for 232Th and 238U predicted by the HFBCS-based nuclear
level density.

are shown in Fig. 8.5: two estimates of af/a ratio for 232Th outer and 238U inner barriers.
Saddle-point deformations correspond to the values determined by the ETFSI model.
First estimate corresponds to the intrinsic af/a ratio, i.e., entropy Sf/S ratio (a = U/t2

differs from a = S/2t in the microscopic approach, and consequently the entropy ratio
must be considered to estimate the traditional a-ratio used in practical applications).
Second estimate gives the equivalent a-ratio when the rotational enhancement factor is
implicitly included in the a-parameter:

ρ(U) =

√
π

12 a1/4 U5/4
exp(2

√
a U) (8.12)

where ρ(U) correspond to the general formula (Eq. 6.1) in which the total microscopic
level density with the collective contribution of the rotational bands was adopted.

The level densities have not been extensively tested on fission cross sections. However,
a preliminary analysis of neutron-induced fission at low energies shows that a system-
atic increase of level densities is required to reproduce the experimental cross section
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if use is made of the RIPL-2 recommended fission barriers (as given in the fisbar-
experimental.dat file and described in the previous section). This increase can be
obtained by a shift of approximately 1 MeV in the energy scale provided in the level
density tables.

8.4 Conclusions and recommendations

Fission barriers and fission level densities are key ingredients of the statistical description
of the fission cross sections induced by different incident particles. The fission barrier
parameters derived from analyses of the available experimental data have been compiled
for both pre-actinides and actinides. Two groups of fissioning nuclei can be formulated
that differ essentially in their barrier properties:

(i) fission barriers close to the liquid-drop model predictions with the ground-state shell
corrections for the pre-actinides, and

(ii) two-humped barriers with strong shell effects in the ground-state, and both humps
for actinides.

The fission density models used for nuclear data evaluations should include in a con-
sistent manner all variations of the shell, pairing and collective effects related to the
fission barrier structures. A phenomenological or microscopic version of the generalized
superfluid model appears to be the most suitable for such tasks, coupled with significant
changes to the level density parameters of the fission channels as recommended above.

The RIPL-2 files include a large amount of data produced from microscopic calcula-
tions of the fission barriers (based on the ETFSI) and fission level densities (based on
the HFBCS single-particle level schemes). The microscopic model takes into account the
shell, pairing and blocking effects, the deformation effects in the single-particle spectra,
and the collective enhancement of level densities at low excitation energies and their dis-
appearance at high excitations. Corresponding tables of the level densities for about 2301
nuclei with 87 ≤ Z ≤ 120 are provided in RIPL-2.

8.5 Summary of codes and data files

The structure of the corresponding RIPL-2 directory is as follows:

fission/
fisbar-experimental.dat
fisbar-experimental.readme
fisbar-etfsi.dat
fisbar-etfsi.readme
fisbar-liquiddrop.for
fisbar-liquiddrop.readme
levden-hfbcs.readme
levden-hfbcs-inner/Zxxx.dat
levden-hfbcs-outer/Zxxx.dat
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Programs and data files included in the directory are:

fisbar-experimental.dat - fission barrier parameters derived from the analysis of ex-
perimental data available for pre-actinides and actinides.

fisbar-experimental.readme - description of fisbar-experimental.dat file.

fisbar-etfsi.dat - fission barriers for 2301 nuclei with 78 ≤ Z ≤ 120 calculated by means
of the Extended Thomas-Fermi plus Strutinsky Integral (ETFSI) method.

fisbar-etfsi.readme - description of fisbar-liquiddrop.for file.

fisbar-liquiddrop.for - FORTRAN code for the liquid-drop model calculations of the
fission barriers and the moment of inertia of fissioning nuclei.

fisbar-liquiddrop.readme - description of fisbar-liquiddrop.for file.

levden-hfbcs.readme - description of levden-hfbcs-inner/Zxxx.dat and
levden-hfbcs-outer/Zxxx.dat files.

levden-hfbcs-inner/Zxxx.dat, levden-hfbcs-outer/Zxxx.dat - level densities cal-
culated for the inner and outer fission barriers, respectively, based on the microscopic
approach HFBCS single-particle level schemes.
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ERRATA

The RIPL potentials 9101 (Huizenga Igo), 9401(Nolte) and 9600(Avrigeanu) for alpha-
induced reactions were corrected in the RIPL-2 database on 10 September 2004. Their
imaginary part was defined as a surface potential, when it should be volume potential.
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