Library of Recommended Actinide Decay Data, 2011

Technical Editors M.A. Kellett, A.L. Nichols

LIBRARY OF RECOMMENDED ACTINIDE DECAY DATA, 2011

The following States are Members of the International Atomic Energy Agency:

AFGHANISTAN ALBANIA ALGERIA ANGOLA ARGENTINA ARMENIA AUSTRALIA AUSTRIA AZERBALIAN BAHRAIN BANGLADESH BELARUS BELGIUM BELIZE BENIN BOLIVIA BOSNIA AND HERZEGOVINA BOTSWANA BRAZIL BULGARIA BURKINA FASO BURUNDI CAMBODIA CAMEROON CANADA CENTRAL AFRICAN REPUBLIC CHAD CHILE CHINA COLOMBIA CONGO COSTA RICA CÔTE D'IVOIRE CROATIA CUBA CYPRUS CZECH REPUBLIC DEMOCRATIC REPUBLIC OF THE CONGO DENMARK DOMINICA DOMINICAN REPUBLIC **ECUADOR** EGYPT EL SALVADOR ERITREA **ESTONIA** ETHIOPIA FLJI **FINLAND** FRANCE GABON GEORGIA GERMANY GHANA GREECE

GUATEMALA HAITI HOLY SEE HONDURAS HUNGARY **ICELAND** INDIA **INDONESIA** IRAN, ISLAMIC REPUBLIC OF IRAO **IRELAND** ISRAEL ITALY JAMAICA JAPAN JORDAN KAZAKHSTAN **KENYA** KOREA, REPUBLIC OF KUWAIT **KYRGYZSTAN** LAO PEOPLE'S DEMOCRATIC REPUBLIC LATVIA LEBANON LESOTHO LIBERIA LIBYA LIECHTENSTEIN LITHUANIA LUXEMBOURG MADAGASCAR MALAWI MALAYSIA MALI MALTA MARSHALL ISLANDS MAURITANIA MAURITIUS MEXICO MONACO MONGOLIA MONTENEGRO MOROCCO MOZAMBIQUE MYANMAR NAMIBIA NEPAL NETHERLANDS NEW ZEALAND NICARAGUA NIGER NIGERIA NORWAY OMAN PAKISTAN PALAU

PANAMA PAPUA NEW GUINEA PARAGUAY PERU PHILIPPINES POLAND PORTUGAL QATAR REPUBLIC OF MOLDOVA ROMANIA RUSSIAN FEDERATION RWANDA SAN MARINO SAUDI ARABIA SENEGAL SERBIA **SEYCHELLES** SIERRA LEONE SINGAPORE SLOVAKIA **SLOVENIA** SOUTH AFRICA **SPAIN** SRI LANKA **SUDAN SWAZILAND SWEDEN** SWITZERLAND SYRIAN ARAB REPUBLIC TAJIKISTAN THAILAND THE FORMER YUGOSLAV REPUBLIC OF MACEDONIA TOGO TRINIDAD AND TOBAGO TUNISIA TURKEY UGANDA UKRAINE UNITED ARAB EMIRATES UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND UNITED REPUBLIC OF TANZANIA UNITED STATES OF AMERICA URUGUAY UZBEKISTAN VENEZUELA VIET NAM YEMEN ZAMBIA ZIMBABWE

The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world".

LIBRARY OF RECOMMENDED ACTINIDE DECAY DATA, 2011

Technical Editors M.A. KELLETT, A.L. NICHOLS

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2013

COPYRIGHT NOTICE

All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at:

Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: sales.publications@iaea.org http://www.iaea.org/books

© IAEA, 2013

Printed by the IAEA in Austria December 2013 STI/PUB/1618

IAEA Library Cataloguing in Publication Data

Library of recommended actinide decay data, 2011. — Vienna : International Atomic Energy Agency, 2013. p. ; 30 cm. STI/PUB/1618 ISBN 978-92-0-143910-9 Includes bibliographical references.

Actinide elements — Decay.
 Radioactive decay — Measurement.
 Radioactive decay — Tables. I. International Atomic Energy Agency.

IAEAL

FOREWORD

A major objective of the nuclear data programme within the IAEA is to devise and promote improvements in the quality of nuclear data used in science and technology. Work of this nature was performed by participants in an IAEA coordinated research project (CRP) formulated in 2005 to produce an updated decay data library of important actinides recommended for adoption in various nuclear applications. The specific objectives of this project were to improve the accuracy of heavy element and actinide decay data in order to: determine more accurately the effects of these recommended data on fission reactor fuel cycles; aid in improved assessments of nuclear waste management procedures; provide more reliable decay data for nuclear safeguards; assess with greater confidence the environmental impact of specific actinides and other heavy element radionuclides generated through their decay chains; and extend the scientific knowledge of actinide decay characteristics for nuclear physics research and non-energy applications.

Some CRP participants were able to perform a number of highly precise measurements, based on the availability of suitable source materials, and systematic in depth evaluations of the requested decay data. These requested data consisted primarily of half-lives, and α , β^- , EC/ β^+ , Auger electron, conversion electron, X ray and γ ray energies and emission probabilities, all with uncertainties expressed at the 1 σ confidence level.

The IAEA established a CRP entitled Updated Decay Data Library for Actinides in mid-2005. During the course of discussions at the coordinated research meetings, the participants agreed to undertake work programmes of measurements and evaluations, to be completed by the end of 2010. The results of the evaluation studies undertaken by the CRP are presented in Annex I. Annexes II–V include descriptions of the sources of the evaluated decay data and each individual evaluation process in detail, as well as data files in the Evaluated Nuclear Structure Data File (ENSDF) format and in the Evaluated Nuclear Data File (ENDF) format.

The IAEA is grateful to members of the Decay Data Evaluation Project and laboratories affiliated with the International Committee for Radionuclide Metrology for their assistance and support in the work. Particular appreciation is extended to V. Chisté and C. Dulieu from the Laboratorie National Henri Becquerel, France, for their assistance in the preparation of Annexes I and II. The IAEA officer responsible for this publication was M.A. Kellett of the Division of Physical and Chemical Sciences.

ACKNOWLEDGEMENTS

The following co-workers and members of the wider community played important roles in ensuring that the agreed decay data evaluations were undertaken and reviewed: A. Arinc and T.D. MacMahon, National Physical Laboratory, United Kingdom; E. Browne, Lawrence Berkeley National Laboratory, United States of America; V. Chisté and C. Dulieu, Laboratoire National Henri Becquerel/Commissariat à l'énergie atomique, France; R.G. Helmer†, Idaho National Laboratory, United States of America; T. Kibédi, Australian National University, Canberra, Australia; B. Singh, McMaster University, Canada; J.K. Tuli, Brookhaven National Laboratory, United States of America; and Wang Baosong, China Nuclear Data Center, China Institute of Atomic Energy, China.

† Deceased.

EDITORIAL NOTE

Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use.

The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this book and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate.

The annexes have been prepared from the original material as submitted for publication and have not been edited by the editorial staff of the IAEA.

CONTENTS

1.	1. INTRODUCTION								
	1.1. 1.2.	Backgro Objectiv	ound	1 1 1					
		1.2.1.	Requirements	2					
		1.2.2.	Measurements	2					
		1.2.3.	Evaluations	2					
	13	Scope		2					
	1.J. 1 /	Undate	of the database	23					
	1.4.	Opuale		5					
2.	EVAI	LUATIO	N METHODOLOGY	9					
	2.1.	Averagi	ng process	9					
	2.2.	Data co	nsistency	9					
	23	Status		10					
		o tartas .		10					
3.	CON	CLUSIO	NS	18					
REF	EREN	CES		19					
ANN	JEX I:	RECOM	(MENDED DECAY DATA	21					
	SYM	BOLS A	ND NOTATION	23					
	Hg-20	06		25					
	Tl-20	6		29					
	Tl-20	7		33					
	Tl-20	8		37					
	Tl-20	9		43					
	Tl-21	0		47					
	Pb-20)9		51					
	Pb-21	0		53					
	Pb-21	1		57					
	Pb-21	2		61					
	Pb-21	4		65					
	Bi-21	0		69					
	Bi-21	1		71					
	Bi-21	2		75					
	Bi-21	3		79					
	Bi-21	4		83					
	Bi-21	5		95					
	Po-21	0		99					
	Po-21	1		03					
	Po-21	2		07					
	Po-21	3		.09					
	Po-21	4	1	111					
	Po-21	5.	1	13					
	Po-21	6		115					
	Po-21	8	1	117					
	At_21	1	1	10					
	At-21	5	1	23					

At-217	125
At-218	127
At-219	129
Rn-217	131
Rn-218	133
Rn-219	135
Rn-220	139
Rn-222	141
Fr-221	143
Fr-223	147
Ra-223	155
Ra-224	161
Ra-225	165
Ra-226	167
Ra-228	171
Ac-225	1/3
Ac-22/	181
Ac-228	187
Th -228	199
Th -229	203
Th 222	215
Th 222	221
Th 224	223
Do 221	233
Pa-222	237
Pa-235	243
Pa-234	249
Га-234Ш Ц 222	203
U-232	213
U-255	211
U-235	207
U-235	207
U-230	301
U-237	305
U-230	309
Nn-236	317
Nn-236m	321
Nn-237	325
Np-238	331
Np-239.	335
Pu-238	341
Pu-239	347
Pu-240	357
Pu-241	363
Pu-242	367
Am-241	371
Am-242	381
Am-242m.	385
Am-243	389
Am-244	393
Am-244m	397
Cm-242	401

 	 	 		40
 	 	 		41
 	 	 		41
 	 	 		41
 	 	 		42
	 	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

CONTENTS OF THE ACCOMPANYING CD-ROM:

ANNEX II: COMMENTS ON EVALUATIONS
ANNEX III: DATA FILES IN THE EVALUATED NUCLEAR STRUCTURE DATA FILE (ENSDF) FORMAT
ANNEX IV: DATA FILES IN THE EVALUATED NUCLEAR DATA FILE (ENDF) FORMAT
ANNEX V: LIST OF 85 NUCLEI EVALUATED

1. INTRODUCTION

1.1. BACKGROUND

Actinides and their natural decay products are important in the nuclear fuel cycles of all operational and proposed fission reactor systems. Thus, such decay data are directly applicable to a wide range of energy related applications that are based on power generation, fuel manufacture, reprocessing and waste storage, encompassing facility design, safety assessments, waste management and safeguards/proliferation issues. Non-energy related applications of note include nuclear medicine and related functional studies, quality control in various production processes, safeguards to ensure non-proliferation, and addressing many forms of concern in health and safety. Extensive measurement programmes have been undertaken over the past fifty years to address the need for accurate actinide decay data. An additional and necessary feature of this process of data improvement involves the regular assessment and evaluation of published nuclear structure and decay data in order to recognize the evolution and existence of highly satisfactory datasets, and to clearly identify the remaining problems and inadequacies to be addressed, and hopefully to be resolved in future studies.

A previous IAEA coordinated research project (CRP) from 1978 to 1986 resulted in the preparation of a library of recommended actinide decay data, and also provided the catalyst for a series of data measurements that continued into the 1990s [1]. A comprehensive review was undertaken in 2000 [2], in which the status of and requirements for improved actinide decay data were reassessed on the basis of existing decay data libraries (Table 1). Highly relevant decay data studies had been performed over the previous 15 years prior to this particular review, but these data were not combined with earlier datasets, evaluated and incorporated into the recommended IAEA data files of 1986. Furthermore, actinide decay data measurements have been undertaken since 2000, and also need to be considered in future evaluations.

Recommendations have been made in recent years within the nuclear science community that the actinide decay data and their decay chains should be re-evaluated in order to reformulate and update the existing internationally accepted IAEA data files. The International Nuclear Data Committee is a body of external advisers invited by the IAEA to comment in detail on nuclear data matters. At their biennial meetings in May 2002 and 2004, they requested that the IAEA consider the establishment of a CRP entitled Updated Decay Data Library for Actinides that should focus on new measurements and a comprehensive assessment and re-evaluation of the existing data.

1.2. OBJECTIVES

Well defined decay data for actinides and their decay chains are important to the nuclear power industry, particularly in the reprocessing of irradiated fuel and the storage of the resulting products and wastes under controlled conditions. A recommended list of 85 actinides and heavy element decay products evolved from the meetings of the CRP, along with justifications for their inclusion in such a comprehensive tabulation (Table 2). Various efforts were also made to ensure that the planned objectives and ongoing work of the CRP were known to the worldwide community of decay data measurers and evaluators [3–5].

1.2.1. Composition of the coordinated research project

Eight research centres and laboratories formally participated in the CRP by performing the required measurements and evaluations:

- (a) Argonne National Laboratory¹, United States of America (represented by F.G. Kondev);
- (b) China Nuclear Data Center, China Institute of Atomic Energy, China (represented by Huang Xiaolong);
- (c) Radionuclide Metrology Laboratory, Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania (represented by A. Luca);

¹ Work at Argonne National Laboratory was supported by the US Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357.

- (d) IAEA (represented by A.L. Nichols);
- (e) Laboratoire National Henri Becquerel/Commissariat à l'énergie atomique, France (represented by M.-M. Bé);
- (f) National Physical Laboratory, United Kingdom (represented by A. Pearce);
- (g) V.G. Khlopin Radium Institute, Russian Federation (represented by V.P. Chechev);
- (h) Variable Energy Cyclotron Centre, India (represented by G. Mukherjee).

Various co-workers played important roles in ensuring that the agreed decay data evaluations were undertaken, and their input to the CRP is acknowledged.

1.2.2. Requirements

At the beginning of the CRP, some of the decay data requirements identified prior to and during the course of a previous CRP on Decay Data of the Transactinium Nuclides (1978–1985/1986) still remained to be addressed [1]. The status of much of the actinide decay data of direct application to the fission fuel cycles had also been reassessed in 2000 [2], and provided a sound basis for discussions at the first two coordinated research meetings in 2005 and 2007 [6, 7]. Along with the more familiar actinides, more comprehensive efforts were made to identify and evaluate the natural decay products of ^{235,238}U and ²³²Th through specific protactinium, actinium, radium, francium, radon, astatine, polonium and bismuth radionuclides to lead, thallium and mercury.

1.2.3. Measurements

New measurements of specific decay data parameters were encouraged throughout the course of the CRP, dependent mainly on the need for improved data and the availability of suitable source materials. These experimental measurements included the determination of ²⁴⁰Pu and ^{245,246}Cm half-lives [8–12], α particle emission probabilities of ^{243,246}Cm and ²⁵⁰Cf [9–12] by means of passivated implanted planar silicon detectors and a magnetic spectrograph, and relative and absolute emission probabilities of X rays and γ rays in the β^- decay of ²³³Pa and α decay of ²⁴³Cm by means of a low energy photon spectrometer and coaxial germanium detectors [12–14]. The deliberately low counting rates in the α particle studies suppressed spurious effects that have previously affected the determination of the α particle intensities, while the γ ray spectra assisted greatly in the redefinition of some of the stronger γ emissions along with the observation and quantification of several new transitions that were introduced into the proposed decay schemes.

1.2.4. Evaluations

Decay data were evaluated from the open literature and laboratory reports published over a considerable period of time leading up to the end of 2008. Agreed evaluation procedures were adopted on the basis of international Decay Data Evaluation Project (DDEP) methodology [15] — the user is referred to a number of the most relevant parallel publications by the Bureau international des poids et mesures (BIPM) [16–20], and the following pages of the BIPM and DDEP web sites:

- http://www.bipm.org/en/publications/monographie-ri-5.html
- http://www.nucleide.org/DDEP_WG/DDEPdata.htm

All evaluations were based on the available experimental data, supplemented with the judicious adoption of well established theory if necessary. Well defined evaluation procedures were strictly applied to derive the recommended half-lives and decay data [15].

1.3. SCOPE

The IAEA, in Technical Reports Series No. 261 [1], published recommended half-lives for 124 radionuclides, γ ray energies and emission probabilities for 47 radionuclides, and α particle energies and emission probabilities

for 29 radionuclides, although all new measurements and decay data evaluations at that time focused on only 23 radionuclides (of which two contained additional decay chain data (²²⁹Th and ²³²U)).

A list of 85 radionuclides evolved from the CRP meetings in 2005 [6] and 2007 [7], embracing actinides and their decay products of importance in both energy and non-energy applications. Members of the CRP reviewed and modified the list of actinides and decay products to be included in the updated IAEA actinide decay data library. All CRP meetings were held in Vienna in 2005 [6], 2007 [7] and 2009 [21] to monitor progress, promote measurements, implement the agreed evaluation methodology, and agree upon the final recommended datasets, as presented in this publication.

One of a number of agreed aims was to undertake comprehensive decay data evaluations with much greater detail than the earlier CRP initiative of 1978–1986. The decay data of each one of the 85 radionuclides was re-evaluated within this CRP as an international exercise led mainly by laboratories involved in the DDEP [15–20, 22, 23].

1.4. UPDATE OF THE DATABASE

A major requirement has been to redefine and improve the consistency and uniformity of the IAEA actinide decay data library. This objective was achieved through the adoption of an agreed evaluation methodology that provides consistent and high quality results. A further aim and expectation is that users of such data in both energy and non-energy applications will accept the data in this publication and introduce the recommended values into their work.

Annex I² provides an assembly of the recommended self-consistent decay data, covering half-lives, and α , β^- , EC/ β^+ , γ and X ray energies and emission probabilities of the selected radionuclides. More detailed technical descriptions of the evaluations are described in Annex II (on the accompanying CD-ROM). This detail was judged to be essential in order to record and demonstrate the quality of the resulting data files, and allows the reader to trace the origins of the nuclear data used to determine the recommended values.

The recommended data have been made available in two internationally agreed formats, so as to facilitate the integration of the recommended decay data files into the computational systems of Member States: data in the Evaluated Nuclear Structure Data File (ENSDF) format can be found in Annex III, and in the Evaluated Nuclear Data File (ENDF-6) format in Annex IV. A comprehensive list of the 85 nuclei evaluated is given in Annex V. Annexes II–V are on the accompanying CD-ROM.

Radionuclide	Data type ^a	Accuracy achieved (%) ^b	Requirements
²²⁸ Th decay chain	T _{1/2}	0.1-0.9	Overall, desired data accuracy has been achieved
	$P_{\gamma}^{\ c}$	2–5	
²²⁹ Th decay chain	T _{1/2}	2	Possible need for marginal improvements
	$P_{\gamma}^{\ c}$	1–3	
²³⁰ Th	T _{1/2}	0.4	Desired data accuracy has been achieved
²³² Th decay chain	$T_{1/2}$	0.4	No known stringent requirements - however, data need to
	P_{γ}	—	be reassessed (²³² Th/ ²³³ U nuclear fuel cycle)
²³³ Th	T _{1/2}	0.5	P_{β} and P_{γ} requirements are not satisfied
	P_{β}	~10	
	P_{γ}	~10	
²³¹ Pa	T _{1/2}	0.3	Possible need for marginal improvements in P_{α} and P_{γ}
	P_{a}	2-7	
	P_{γ}	2–5	

TABLE 1. ACTINIDE DECAY DATA - STATUS, 2000 [2]

² The annexes have been prepared from the original material as submitted for publication and have not been edited by the editorial staff of the IAEA.

Radionuclide	Data type ^a	Accuracy achieved (%) ^b	Requirements
²³³ Pa	T _{1/2}	0.4	Requirements for more accurate P_{β} data
	P_{β}	~10	
	P_{γ}	1	
²³² U	$T_{_{1/2}}$	0.7	Desired data accuracy has been achieved
	P_{a}	1	
	P_{γ}	1-2	
²³³ U	$T_{_{1/2}}$	0.1	Data need to be reassessed (232Th/233U nuclear fuel cycle)
	$(T_{1/2})_{\rm SF}$		
	P_{α}	1–2	
	$P_{\rm X}^{\ \rm d}$		
	P_{γ}	1-2	
²³⁴ U	$T_{_{1/2}}$	0.1	Desired data accuracy has been achieved
	$(T_{1/2})_{\rm SF}$	~50	
	P_{a}	0.03-1	
	P_{γ}	1–2	
²³⁵ U	$T_{_{1/2}}$	0.1	Requirement for more accurate P_{α} and P_{γ} data (particularly
	$(T_{1/2})_{\rm SF}$	~50	low energy γ rays (<120 keV))
	P_{a}	5-12	
	P_{γ}	1	
²³⁶ U	$T_{1/2}$	0.1	Requirements for more accurate P_{α} and P_{γ} data
	$(T_{1/2})_{\rm SF}$	3	
	P_{a}	5-15	
	P_{γ}	10	
²³⁷ U	P_{γ}	2–3	Requirements for more accurate P_{γ} data for the main γ ray transitions
²³⁸ U	$T_{_{1/2}}$	0.1	P_{a} measurements have improved accuracy to 2%, so that a
	$(T_{1/2})_{\rm SF}$	1.2	better defined decay scheme can be constructed
	P_{a}	5-20	
	$P_{\rm X}^{\ \rm d}$		
	P_{γ}	13	
²³⁹ U	$T_{_{1/2}}$	0.2	Possible need for better defined P_{β} data (decay heat
	P_{β}	2-20	calculations)
	P_{γ}	2	
²³⁶ Np	$T_{_{1/2}}$	10	Requirements for more accurate $T_{1/2}$ and P_{β} data
	BF	2	
	P_{β}	?	
	P_{γ}	2	
^{236m} Np	$T_{_{1/2}}$	2	Desired data accuracy has been achieved
	BF	2	
²³⁷ Np	$T_{_{1/2}}$	0.5	Significant efforts were expended to measure P_{q} , P_{γ} , P_{X} and P_{e}
	P_{α}	20	(i.e. electron spectra); however, a consistent and comprehensive decay
	P_X^a P	1-2	scheme has yet to evolve due to the underlying complexity
²³⁸ Np	T_{γ}	0.1	Requirements for more accurate P data
	$P_{\gamma}^{1/2}$	5	• Ŷ

TABLE 1	ACTINIDE DECAY DATA —	- STATUS	2000 [2] (cont)
ITIDLL I.		0111100	2000 [2] (0000.)

Radionuclide	Data type ^a	Accuracy achiev (%) ^b	Requirements
²³⁹ Np	$T_{1/2}$	0.2	Possible need for better defined P_{β} data (decay heat calculations)
	P_{β}	2-15	
	P_{γ}	1–2	
²³⁶ Pu	$T_{_{1/2}}$	3	Requirements for more accurate P_{α} and P_{γ} data
	P_{a}	1–3	
	P_{γ}	30	
²³⁷ Pu	$T_{_{1/2}}$	0.1	Desired data accuracy would appear to have been achieved
	$P_{\rm X}^{\rm \ d}$	—	
²³⁸ Pu	$T_{_{1/2}}$	0.3	Desired data accuracy has been achieved
	$(T_{_{1/2}})_{_{ m SF}}$	4	
	P_{α}	<1	
	$P_{\rm X}^{\rm d}$	2–3	
	P_{γ}	1–2	
²³⁹ Pu	$T_{_{1/2}}$	0.1	Desired data accuracy has been achieved, with the
	P_{α}	1–2	derivation of a complex and comprehensive decay scheme
	$P_{\rm X}^{\ \rm d}$	3	
	P_{γ}	<1	
²⁴⁰ Pu	$T_{_{1/2}}$	0.1	Possible need for marginal improvements in P_{α} and P_{γ} data
	$(T_{_{1/2}})_{_{ m SF}}$	3	
	P_{α}	1–2	
	$P_{\rm X}^{d}$	3	
241-	P_{γ}	1–2	
²⁴¹ Pu	<i>T</i> _{1/2}	0.7	Concerns associated with $T_{1/2}$ have been assuaged; desired
	$(T_{1/2})_{\rm SF}$	0.8	data accuracy has been achieved
24275	P_{γ}	1-2	
²⁴² Pu	<i>T</i> _{1/2}	0.3	Requirements for better characterized $P_{\rm X}$; other parameters
	$(T_{1/2})_{\rm SF}$	1.5	are reasonably well defined
	P_{α}	<1	
	P _X ^a	2.5	
241 A	Γ_{γ}	2-3	$\mathbf{D}_{\mathbf{r}}$
AIII	Г _{1/2} Р	0.13	significant efforts have been made to determine
	Γ _α D d	2	$P_{\rm c}$ (50.54 keV)
		1_10	$I_{\gamma}(39.34 \text{ KeV})$
²⁴² A m	T_{γ}	0.1	Desired data accuracy has been achieved
7411	1/2 BF	1	Desired data accuracy has been achieved
^{242m} Am	T	14	Requirements for improved accuracy in $P \cdot \alpha$ decay mode
	1/2 BF	0.03	has been well defined
	$P_{\rm d}$		
²⁴³ Am	T X	0.2	Both P and P measurements are merited and such
	P	0.5-20	studies were performed to improve the accuracy of these
	P_{a}^{d}	_	data
	X P	2	

TA	BLE 1. A	CTINIDE DECAY	DATA — STAT	TUS, 2000 [2] (cont.)

Radionuclide	Data type ^a	Accuracy achieved (%) ^b	Requirements
²⁴² Cm	T _{1/2}	0.04	Desired data accuracy has been achieved
	$(T_{1/2})_{\rm SF}$	2	
	P_{γ}	4–20	
²⁴³ Cm	$T_{_{1/2}}$	0.3	While the major γ ray emissions are reasonably well
	P_{a}	1–3	characterized, some of the lower intensity transitions are
	$P_{\rm X}^{\rm d}$	—	poorly defined
	P_{γ}	2-10	
²⁴⁴ Cm	$T_{1/2}$	0.3	Desired data accuracy has been achieved
	$(T_{1/2})_{\rm SF}$	0.4	
	P_{a}	<1	
	$P_{\rm X}^{\rm d}$	3	
	P_{γ}	2-10	
²⁴⁸ Cm	T _{1/2}	1	Requirements for more accurate P_{χ} and P_{χ} data
	P_{a}	<1	
	$P_{\rm X}^{\rm d}$	_	
	P_{γ}	~5	
²⁵⁰ Cf	$T_{1/2}^{-1}$	0.7	Challenging requirements for $T_{1/2}$ and $(T_{1/2})_{SF}$ need to be
	$(T_{1/2})_{\rm SF}$	4	addressed (0.2 and 2%, respectively)
²⁵² Cf	$T_{1/2}$	0.3	Discrepant $T_{1/2}$ data
	$(T_{1/2})_{\rm SF}$	0.3	

TABLE 1.	ACTINIDE	DECAY	DATA —	STATUS,	2000	[2] (cont.)	
----------	----------	-------	--------	---------	------	-------------	--

^a T_{1/2}: total half-life; (T_{1/2})_{SF}: spontaneous fission half-life; BF: branching fraction; P_a: α particle emission probability; P_β: β particle emission probability; P_χ: X ray emission probability; P_γ: γ ray emission probability.
 ^b Uncertainties for α particle, β particle, X ray and γ ray emission probabilities apply to the major transitions only, corresponding to

the 1σ confidence level.

^c The listed requirements for decay chain radionuclides represent those for the more prominent transitions of all members of the decay chain.

^d $P_{\rm X}$ refers to L X ray emission probabilities.

Radionuclide	Origins	Applications
²⁰⁶ Hg	238 U (4n + 2) decay chain	
²⁰⁶ T1	238 U (4n + 2) decay chain	
²⁰⁷ Tl	235 U (4n + 3) decay chain	
²⁰⁸ Tl	²³² Th 4n decay chain	
²⁰⁹ Tl	237 Np (4n + 1) decay chain	
²¹⁰ Tl	238 U (4n + 2) decay chain	
²⁰⁹ Pb	237 Np (4n + 1) decay chain	
²¹⁰ Pb	238 U (4n + 2) decay chain	
²¹¹ Pb	235 U (4n + 3) decay chain	
²¹² Pb	²³² Th 4n decay chain	
²¹⁴ Pb	238 U (4n + 2) decay chain	
²¹⁰ Bi	238 U (4n + 2) decay chain	
²¹¹ Bi	235 U (4n + 3) decay chain	
²¹² Bi	²³² Th 4n decay chain	Therapeutic nuclear medicine — monoclonal antibody attachment
²¹³ Bi	237 Np (4n + 1) decay chain	Therapeutic nuclear medicine — monoclonal antibody attachment
²¹⁴ Bi	238 U (4n + 2) decay chain	
²¹⁵ Bi	235 U (4n + 3) decay chain	
²¹⁰ Po	238 U (4n + 2) decay chain	
²¹¹ Po	235 U (4n + 3) decay chain	Therapeutic nuclear medicine (short lived daughter of 211 At)
²¹² Po	232 Th 4n decay chain	
²¹³ Po	237 Nn (4n + 1) decay chain	
²¹⁴ Po	238 I (4n + 2) decay chain	
²¹⁵ Po	235 I (4n + 3) decay chain	
216 D O	232 Th $4n$ decay chain	
218 P O	238 I ($(4n + 2)$ decay chain	
211 A t	0 (4n + 2) decay chain	Therapeutic nuclear medicine managlanal antibady attachment
At		and also used with ¹⁸ F for in vivo studies
²¹⁵ At	235 U (4n + 3) decay chain	
²¹⁷ At	237 Np (4n + 1) decay chain	
²¹⁸ At	238 U (4n + 2) decay chain	
²¹⁹ At	235 U (4n + 3) decay chain	
²¹⁷ Rn	237 Np (4n + 1) decay chain	
²¹⁸ Rn	238 U (4n + 2) decay chain	
²¹⁹ Rn	235 U (4n + 3) decay chain	
²²⁰ Rn	232 Th 4n decay chain	
²²² Rn	$^{238}\text{U}(4n + 2)$ decay chain	
²²¹ Fr	237 Np (4n + 1) decay chain	
²²³ Fr	235 U (4n + 3) decay chain	
²²³ Ra	235 U (4n + 3) decay chain	Therapeutic nuclear medicine — monoclonal antibody attachment
²²⁴ Ra	232 Th 4n decay chain	Therapeutic nuclear medicine - monocionar antibody attachment
²²⁵ R a	237 Nn (4n + 1) decay chain	
Ra 226D a	238 L $(4n + 2)$ decay chain	Primary officiancy calibration standard
228 D a	$\frac{232}{2}$ Th 4π doosy shair	
225 A C	237 Np $(4n \pm 1)$ decay chain	Therenautic nuclear medicing management articles we attack art
AU	-1 (411 + 1) decay chain	(noteworthy decay chain predecessor of 213 Bi)
²²⁷ Ac	235 U (4n + 3) decay chain	Therapeutic nuclear medicine — monoclonal antibody attachment (parent of ²²³ Ra)

TABLE 2. SELECTED ACTINIDES AND THEIR DECAY CHAINS

Radionuclide	Origins	Applications
²²⁸ Ac	²³² Th 4n decay chain	
²²⁸ Th	²³² Th 4n decay chain	Primary efficiency calibration standard; therapeutic nuclear medicine — monoclonal antibody attachment (noteworthy decay chain predecessor of ²¹² Bi)
²²⁹ Th	237 Np (4n + 1) decay chain	Mass determination in $(4n + 1)$ decay chain; therapeutic nuclear medicine — monoclonal antibody attachment (parent of ²²⁵ Ac)
²³¹ Th	235 U (4n + 3) decay chain	
²³² Th	²³² Th 4n decay chain	Th–U fuel cycle
²³³ Th		
²³⁴ Th	238 U (4n + 2) decay chain	
²³¹ Pa	235 U (4n + 3) decay chain	Non-destructive assay
²³³ Pa	237 Np (4n + 1) decay chain	Mass determination
²³⁴ Pa	238 U (4n + 2) decay chain	
^{234m} Pa	238 U (4n + 2) decay chain	Environmental studies
²³² U		Shielding calculations
²³³ U	237 Np (4n + 1) decay chain	Th–U fuel cycle and environmental studies
²³⁴ U	238 U (4n + 2) decay chain	Mass determination and non-destructive assay
²³⁵ U		Mass determination and non-destructive assay
²³⁶ U		Mass determination and non-destructive assay
²³⁷ U		Non-destructive assay
²³⁸ U		Non-destructive assay
²³⁹ U		Decay heat
²³⁶ Np		²³² U production
^{236m} Np		²³² U production
²³⁷ Np		Mass determination and environmental studies
²³⁸ Np		
²³⁹ Np		Decay heat and detector efficiency calibration standard
²³⁸ Pu		Non-destructive assay
²³⁹ Pu		Non-destructive assay and environmental studies
²⁴⁰ Pu		Non-destructive assay and environmental studies
²⁴¹ Pu		Non-destructive assay
²⁴² Pu		Non-destructive assay and environmental studies
²⁴¹ Am		Primary efficiency calibration standard; diagnostic nuclear medicine — heart imaging and detection of osteoporosis
²⁴² Am		²⁴⁴ Cm production and Am mass determination
^{242m} Am		²⁴⁴ Cm production and Am mass determination
²⁴³ Am		Long term storage and environmental studies
²⁴⁴ Am		²⁴⁴ Cm production
^{244m} Am		²⁴⁴ Cm production
²⁴² Cm		Non-destructive assay
²⁴³ Cm		Non-destructive assay and environmental studies
²⁴⁴ Cm		Non-destructive assay and environmental studies
²⁴⁵ Cm		Long term storage and environmental studies
²⁴⁶ Cm		Long term storage and environmental studies
²⁵² Cf		Neutron standard; therapeutic nuclear medicine - treatment of
		cervical, melanoma and brain carcinomas

TABLE 2. SELECTED ACTINIDES AND THEIR DECAY CHAINS (cont).

2. EVALUATION METHODOLOGY

Data were evaluated from the open literature and available laboratory reports published over a considerable period of time. Omissions of individual values had to be justified by the evaluator on the basis of their perceived quality and validity or other specific grounds.

Evaluation efforts focused on measurements of the half-lives and absolute emission probabilities of the various decay processes (e.g. α , β^- , EC/ β^+ , Auger electrons, conversion electrons, X rays and γ rays). Transition energies were most frequently derived from well defined evaluations of the nuclear level energies [24] and tabulations of X ray, Auger electron and electron subshell binding energies [25–28], although other references were cited when suitable data were not available from these particular sources. Emission probabilities of the K and L X rays, and K and L Auger electrons were calculated by means of the EMISSION program for radionuclides with EC and γ transitions (adoption of EMISSION version 4.01, 28 January 2003, with the EMISSION database extended to *Z* = 96) [29, 30].

2.1. AVERAGING PROCESS

The recommended decay data consist of the weighted average of the published values in which the weights have been taken to be the inverse of the squares of the overall uncertainties. A set of data is defined as self-consistent if the probability of χ^2 exceeding the calculated value is 1% or less. When the data in a set are inconsistent, the method of limitation of the relative weight is recommended. If any particular weight contributes over 50% of the total, the corresponding uncertainty is increased, so that the contribution of the value to the sum of the weights will be less than 50%. The weighted average is then recalculated and adopted if the probability of χ^2 exceeding the recalculated value is greater than 1%; otherwise, the weighted or unweighted mean is chosen according to whether or not the 1 σ uncertainty on each mean value includes the other term — the basis for the latter choice is that it may be unreasonable to use the weighted average if the data do not comprise a consistent set.

2.2. DATA CONSISTENCY

Under certain circumstances, an applications library needs to contain decay data that are complete and consistent. The normal procedure would be to evaluate and prepare individual files that have been internally tested for consistency between the various recommended parameters that constitute the decay scheme (i.e. α , β^- , EC, β^+ and γ transitions). Hopefully, consistency within a particular radionuclidic decay scheme evolves during the evaluation process.

The consistency of a recommended set of decay data can be determined by calculating the percentage deviation between the effective *Q*-value:

effective
$$Q$$
-value = $\sum_{i=1}^{\text{all BF}} Q_i \times BF_i$ (1)

where Q_i and BF_i are the Q-value and branching fraction of the *i*th decay mode (i.e. weighted sum of the evaluated Q-values of the radionuclide), and the calculated Q-value:

calculated *Q*-value =
$$\sum_{i}^{\text{all }\alpha} E_{\alpha_{i}} P_{\alpha_{i}} + \sum_{j}^{\text{all }\beta} E_{\beta_{j}} P_{\beta_{j}} + \sum_{k}^{\text{all }\gamma} E_{\gamma_{k}} P_{\gamma_{k}} + \sum_{l}^{\text{all ce}} E_{\text{ce}_{l}} P_{\text{ce}_{l}} + \dots \dots$$
(2)

where $E_{\alpha_i}, E_{\beta_j}, E_{\gamma_k}, E_{ce_l}$, etc. and $P_{\alpha_i}, P_{\beta_j}, P_{\gamma_k}, P_{ce_l}$, etc. are the energies and emission probabilities of the *i*th α particle, *j*th β particle, *k*th γ ray, *l*th conversion electron, etc. of the individual decay process.

The consistency of the recommended decay scheme data (expressed as percentage deviation) can be quantified by the simple equation:

% consistency =
$$\left[\frac{(\text{effective } Q\text{-value}) - (\text{calculated } Q\text{-value})}{(\text{effective } Q\text{-value})}\right] \times 100$$
 (3)

Consistency checks for the recommended decay data files were undertaken for the actinides and their natural decay products, and are listed in Table 3. Percentage deviations above 5% are regarded as high and imply a poorly defined decay scheme; a value of less than 5% indicates the construction of a reasonably consistent decay scheme. However, while there are merits in undertaking such a form of statistical analysis, subsequent adjustments to improve consistency may not always be appropriate.

2.3. STATUS

Brief summaries of the inadequacies found during the decay scheme evaluations of each individual radionuclide are given in the comments section of Table 3. All of these observations are entirely based on individual attempts to evaluate and derive comprehensive and consistent decay schemes and their associated decay data. Under such circumstances, new data requirements have primarily been driven almost exclusively by the evaluators' desire for perceived reliability and completeness, rather than due consideration of the relative importance of each specific radionuclide. While the healthy iterative process of measurements and evaluations is critical to logical and systematic improvements to decay data, the real need for further experimental studies also depends on the relative importance of accruing improved data for the purpose of application as well as basic research.

Some of the newly recommended decay data for the actinides and particularly the natural decay products are based on rather old measurements, while some other equivalent measurements have been shown to be disparate. New experimental studies would be extremely beneficial if the particular radionuclide plays an important role in intermediate term and long term fuel management (and, more specifically, will be recycled and re-irradiated). Inconsistencies were observed when comparisons were made between the population and depopulation of the daughter nuclear levels, most notably when deriving transition probabilities from experimentally determined α particle and γ ray emission probabilities (e.g. ²²⁴Ra and ²²⁶Ra). All of these irregularities and other anomalies are noted in Table 3, and are described within the detailed comments of Annex II.

These latest efforts to evaluate and assemble comprehensive decay schemes for actinides and their decay products have significantly improved the consistency and overall quality of the resulting recommended decay data. Evaluated nuclear data include: half-lives; *Q*-values; branching fractions; energies, emission probabilities and other transition properties of α , β^- , EC/ β^+ , Auger electrons, conversion electrons, X rays and γ rays; and the uncertainties of all of the parameters corresponding to the 1σ confidence level. The CRP participants believe that these data represent significant improvements when compared with the contents of other existing decay data files and libraries, and should be internationally accepted as improvements in the definition and quantification of the decay schemes of the actinides and their decay chain products.

Radionuclide	Evaluator ^a	Consistency ^b	Comments
²⁰⁶ Hg	ANL	0(9)%	The recommended half-life is the weighted mean of three measurements from the 1960s (with two values from the same author) — new measurements are merited. A simple decay scheme of three β and five γ transitions was derived from the available measurements.
²⁰⁶ T1	ANL	0.00(6)%	An extensive set of eight half-life measurements made between 1941 and 1972 was used to derive the recommended half-life. A simple decay scheme dominated by the transition (99.885%) was proposed from the available measurements.
²⁰⁷ Tl	ANL	0.0(5)%	The recommended half-life is the weighted mean of four measurements carried out between 1931 and 1967. A simple decay scheme dominated by the transition (99.729%) was derived from the available measurements.
²⁰⁸ Tl	IAEA	0.2(3)%	The half-life is the weighted mean of four measurements, with the uncertainty increased artificially to encompass the most precise study. A consistent decay scheme has been derived, assuming no direct β decay to the 2614.55 keV and ground states of ²⁰⁸ Pb (based on spin-parity considerations).
²⁰⁹ Tl	ANL	1(1)%	Half-life measurements are scarce — further studies are merited. The proposed decay scheme is dominated by the transition (97.70%). However, a significant number of observed γ ray transitions have not been identified within the recommended decay scheme (while 15 were successfully assigned, 11 remain unplaced) — further γ ray studies are required to clarify and resolve existing difficulties.
²¹⁰ Tl	LNHB	0(3)%	The decay scheme is based mainly on measurements published in 1964 — many β^- particle emission probabilities are uncertain, and no evidence exists for transitions with energies >3 MeV. Further β^- particle emission probability measurements are strongly recommended to resolve these discrepancies.
²⁰⁹ Pb	ANL	0.0(3)%	The recommended half-life is the weighted mean of five measurements undertaken from 1941 to 1972. A very simple decay scheme consists of only one β^- transition directly to the ground state of ²⁰⁹ Bi.
²¹⁰ Pb	LNHB	-0.6(15)%	Recently measured L X rays are not self-consistent, and do not agree with values deduced from the decay scheme — further X ray measurements would assist in determining the origin of these discrepancies.
²¹¹ Pb	ANL	-0.1(6)%	Experimental data for the half-life are very scarce — new measurements are required to confirm two previous studies in 1932 and 1965. A significant number of observed γ ray transitions have not been identified within the recommended decay scheme (while 22 were successfully assigned, 18 remain unplaced) — further γ ray measurements are required to clarify and resolve existing difficulties, and should include γ - γ coincidence studies.
²¹² Pb	IAEA	0.2(12)%	The recommended half-life is the weighted mean of three old measurements — further studies are merited to determine this value with greater confidence. A reasonably simple decay scheme has been constructed from the γ ray measurements — five distinct γ ray emissions were identified with ²¹² Pb decay in these studies. Although low energy γ ray transitions have been postulated to exist in the decay scheme (with energies between 40 and 60 keV), this possibility was rejected on the basis of insufficient experimental evidence in the open literature. Further studies are required to resolve this issue, and confirm the correctness of the proposed decay scheme.

TABLE 3.	DECAY DATA	EVALUATIONS.	CONSISTENCY AND	COMMENTS

Radionuclide	Evaluator ^a	Consistency ^b	Comments
²¹⁴ Pb	LNHB	-0.5(15)%	There is only one half-life measurement from 1931 — further measurements are recommended. Problems associated with calculating internal conversion coefficients suggest that new measurements of the multipolarities and mixing ratios of the γ transitions would be beneficial.
²¹⁰ Bi	LNHB	0.00(10)%	The decay scheme is based mainly on α particle emission probabilities measured prior to 1962, with no direct measurements of the β^- particle and X ray emission probabilities. The most recent half-life measurement dates back to 1959. β^- particle and X ray emission probability measurements are strongly recommended to give greater confidence in the proposed decay scheme.
²¹¹ Bi	IFIN-HH	-0.004(7)%	Although the relatively old experimental half-life data are consistent, further measurements would be beneficial. New K X ray, α and β^- particle emission probabilities are required, because these data show discrepancies.
²¹² Bi	IAEA	0.12(24)%	The recommended half-life is the unweighted mean of two somewhat old measurements (from 1914 and 1961) — further studies are merited to determine this value with greater confidence. The 39.858 keV γ ray is particularly important in the α branch, and further measurements are required to determine the emission probability of this transition with greater confidence.
²¹³ Bi	CNDC	0.1(5)%	New half-life measurements are recommended.
²¹⁴ Bi	LNHB	0.3(5)%	There is only one half-life measurement from 1956 — further measurements would be beneficial.
²¹⁵ Bi	IAEA	0(8)%	A reasonably complex but inadequate decay scheme has been constructed from a single set of γ ray measurements. Direct β^- feeding to the ground state of the daughter ²¹⁵ Po has not been determined with confidence. The evaluators resorted to comparisons with the β^- decay of other odd–even Bi radionuclides and β^- decay theory (fifth power law of the β^- end point energy) in order to define the β^- and γ ray emission probabilities in absolute terms. Further experimental studies are required to derive the decay scheme, particularly the absolute γ ray emission probabilities and direct β^- feeding to the ground state of the daughter ²¹⁵ Po.
²¹⁰ Po	LNHB	0.0000(18)%	The decay scheme is based mainly on γ ray emission probabilities measured prior to 1957, with no direct measurements of the α particle and X ray emission probabilities. The most recent half-life measurement dates back to 1964. Both α particle and X ray emission probability measurements are strongly recommended to give greater confidence in the proposed decay scheme.
²¹¹ Po	IFIN-HH	0.00(3)%	Although the relatively old experimental half-life data are consistent, further measurements would be beneficial.
²¹² Po	IAEA	0.000(2)%	Extremely short lived radionuclide (half-life of $0.300(2) \ \mu s$).
²¹³ Po	CNDC	0.03(14)%	Further measurements of γ ray and α particle emission probabilities are required.
²¹⁴ Po	LNHB	0.0000(15)%	Indirect and inadequate experimental data — new direct measurements of α particle and γ ray emission probabilities are required.
²¹⁵ Po	KRI	0.01(3)%	The decay scheme is incomplete — measurements of weak γ ray transitions in α decay and β^- particle emission probabilities in β^- decay are required.

TABLE 3. DECAY DATA EVALUATIONS, CONSISTENCY AND COMMENTS (cont.)	
---	--

Radionuclide	Evaluator ^a	Consistency ^b	Comments
²¹⁶ Po	IAEA	0.000(10)%	The recommended half-life is the weighted mean of three somewhat old measurements and a more recent study — further measurements are merited. A simple decay scheme was derived from γ ray studies that were also used to calculate the two proposed α particle emission probabilities. Measurements of the emission probabilities of the α particles and γ rays are required to confirm the validity of the proposed decay scheme.
²¹⁸ Po	LNHB	0.000(4)%	The decay scheme is based on β^- emission measurements undertaken in 1952 — new measurements of α and β^- particle emission probabilities are required.
²¹¹ At	IAEA	-0.01(17)%	A reasonably simple decay scheme has been constructed from α particle and γ ray measurements, and studies of the α branching fraction.
²¹⁵ At	KRI	0.00(5)%	The decay scheme is not fully complete — weak α transitions are possible due to higher ²¹¹ Bi levels known from ²¹¹ Pb β^- decay, but not yet observed in ²¹⁵ At α decay.
²¹⁷ At	CNDC	0.02(3)%	The minor β^- decay branch of ²¹⁷ At has not been studied, and further measurements of the γ ray and α particle emission probabilities for the main α branch are required.
²¹⁸ At	LNHB	0.82(18)%	Early experimental data from 1948 and 1958 — new measurements of α and β^- particle emission probabilities are required.
²¹⁹ At	IAEA	0.0(3)%	Little of substance can be gleaned from the literature. Hence, a simple decay scheme has been tentatively constructed; it is assumed that only α and β^- feed directly to the ground states of the daughters ²¹⁵ Bi and ²¹⁹ Rn, although these processes have been neither observed satisfactorily nor quantified experimentally. Spectral studies are required to assemble and quantify the decay scheme with much greater confidence.
²¹⁷ Rn	CNDC	0.00(6)%	A very simple decay scheme was constructed for single α particle decay to the ²¹³ Po ground state.
²¹⁸ Rn	LNHB	0.00(4)%	Indirect and inadequate experimental data — new direct measurements of α and β^- particle emission probabilities are required.
²¹⁹ Rn	IAEA	0.0(10)%	A reasonably comprehensive and consistent decay scheme has been derived from a combination of α particle and γ ray measurements.
²²⁰ Rn	IAEA	-0.001(20)%	The recommended half-life is the weighted mean of five rather disparate measurements — further studies are merited. A simple decay scheme was derived from γ ray studies that were also used to calculate α particle emission probabilities. Measurements of the α particle emission probabilities are required to confirm the validity of the proposed decay scheme.
²²² Rn	LNHB	0.002(12)%	Early measurements of α particle emission probabilities — further such studies are required.
²²¹ Fr	CNDC	0.08(4)%	Measurement of the γ ray emission probability for the 218.1 keV γ ray deemed to be necessary.
²²³ Fr	CNDC	-1(11)%	Accurate measurement of the γ ray emission probability for the 204.9 keV γ ray deemed to be necessary.
²²³ Ra	KRI	0.8(22)%	For a number of daughter ²¹⁹ Rn levels, there is disagreement between the measured probabilities of α transitions and values deduced from the P _(y+ce) balance. Further measurements are needed to determine the γ ray transitions and ²²³ Ra α decay scheme with greater precision.

TABLE 3. DECAY DATA EVALUATIONS, CONSISTENCY AND COMMENTS (cont.)

Radionuclide	Evaluator ^a	Consistency ^b	Comments
²²⁴ Ra	IAEA	0.00(7)%	The recommended half-life represents the least squares weighted mean of two somewhat old studies and a much more recent measurement — further measurements are required to determine the half-life with greater confidence. There is an unsatisfactory lack of agreement between the derivation of the decay scheme by means of the measured γ ray emission probabilities, compared with an equivalent procedure involving the measured α particle emission probabilities. Both the measurement and spectral analysis techniques used to determine the γ ray emission probabilities were judged to be more reliable and, therefore, preference was given to α particle emission probabilities derived by calculation from the recommended γ ray emission probabilities and their theoretical internal conversion coefficients (hence, the preparation of a highly consistent decay scheme). However, measurements of α particle and γ ray emission probabilities remain inconsistent, and further spectroscopic studies are required.
²²⁵ Ra	CNDC	0(3)%	Measurements of the half-life are deemed necessary, as well as the emission probability for the 40.1 keV γ ray.
²²⁶ Ra	LNHB	0.00(6)%	Only two sets of inconsistent data are known to exist for the α particle emission probabilities — further measurements are required. X ray measurements would also prove useful.
²²⁸ Ra	IFIN-HH	0(13)%	Although the relatively old experimental half-life data are consistent, further measurements would be beneficial. Measured data for β^- transition probabilities are inconsistent with the proposed decay scheme derived from γ ray emission probabilities — further measurements are required.
²²⁵ Ac	CNDC	-1(3)%	There are only two measurements of half-life (the most recent in 1950) — further measurements are desirable. New measurements of γ ray and α particle emission probabilities are required in order to help resolve the inconsistency seen with the 99.65 and 99.90 keV γ rays.
²²⁷ Ac	KRI	-1.2(19)%	The data for β^{-} and γ ray emission probabilities are only approximate — more accurate measurements would generate confidence in the derived decay scheme.
²²⁸ Ac	NPL	5(5)%	The placement of γ ray transitions in the decay scheme leads to inconsistencies in the β^- transitions. Further investigation of the γ ray emissions may help to assemble a more consistent decay scheme.
²²⁸ Th	IAEA	-0.1(7)%	A reasonably well defined decay scheme was derived from a combination of α particle and γ ray measurements. Although a consistent decay scheme was derived, further detailed α particle measurements are required to develop and support the overall correctness of the proposed decay scheme.
²²⁹ Th	VECC	-3(1)%	A reasonably complete decay scheme was formulated with more than 200 γ rays. However, there are 26 unplaced γ rays. Efficient coincidence measurements are needed to place them in the level scheme of ²²⁵ Ra, and aid in reducing the percentage deviation. There was some evidence of α decay from the first excited state at 7.6 eV — more studies are needed to confirm this form of decay from this nuclear level.
²³¹ Th	CNDC	3(20)%	Further measurements are required of γ ray emission probabilities for γ rays <120 keV — a relatively large dataset with some inconsistencies.
²³² Th	NPL	0.3(17)%	A reasonable set of half-life data which are consistent. There are few published data and a large spread in the γ ray emission probabilities. More precise α particle emission probability measurements would help support the decay scheme.

TABLE 3. DECAY DATA EVALUATIONS, CONSISTENCY AND COMMENTS (cont.)

Radionuclide	Evaluator ^a	Consistency ^b	Comments
²³³ Th	KRI	-0.2(3)%	Data on γ ray emission probabilities have been taken mainly from recent measurements from 2008. Precise measurements of β transitions are required.
²³⁴ Th	IFIN-HH	0(6)%	Although the relatively old experimental half-life data are consistent, further measurements would be beneficial. Measured data for β^- transition probabilities are inconsistent, with the decay scheme derived from γ ray emission probabilities — further measurements are required. X ray measurements would also be useful — no such data exist.
²³¹ Pa	NPL	1.0(23)%	The half-life data are unsatisfactory and there is a strong need for new measurements. Further measurements of low energy γ transitions and α particle emission probabilities are also required to develop a more reliable decay scheme.
²³³ Pa	KRI	0(4)%	Precise measurements of the low energy γ rays and L X rays with a pure source of ²³³ Pa would prove beneficial.
²³⁴ Pa	CNDC	-6(3)%	The proposed decay scheme is based mainly on one set of measurements, in which the total intensity $\Sigma I(\beta^{-})$ is overstated (110%). Twenty eight observed γ rays with 3.2% of the total intensity were not placed in the proposed decay scheme. Further measurements are needed to determine the γ transitions and the decay scheme with greater precision.
^{234m} Pa	CNDC	0.00(21)%	The isomeric γ transition energy is uncertain (<10 keV). Sixteen γ rays with 0.018% total intensity were not placed in the proposed decay scheme. Further accurate measurements of the absolute emission probability of the 1001.026 keV γ ray are required.
²³² U	NPL	0.0(8)%	A consistent decay scheme has been assembled. The half-life data are sparse and inconsistent, and further measurements would be beneficial.
233U	VECC	0.4(6)%	The samples used for the measurements are enriched to 99.9% ²³³ U, although a small amount of impurity may arise from ²³² Th. The extensive and complex decay scheme is reasonably complete and consistent, and was obtained from several sets of measurements. The excitation energy of the first excited state in the daughter ²²⁹ Th has been measured to be 7.6 eV, a value significantly higher than previously estimated (~4 eV). However, the half-life of this metastable state is not well known — a recent study indicates a half-life value of either <6 h or >20 d at the 99% confidence level — further measurements are required.
²³⁴ U	LNHB	0.00(4)%	Further measurement of the γ ray and α particle emission probabilities is required — all published results are from the same laboratory/group.
²³⁵ U	CNDC	0.6(3)%	New half-life measurements are recommended.
²³⁶ U	IFIN-HH	0(6)%	Further measurements of α particle emission probabilities are required, as only one known set of measurements is published. X ray measurements would also be useful — no reported data exist.
²³⁷ U	KRI	0(4)%	Early experimental half-life data are poor — further measurements are required. Precise measurements of the β^- transition energies and probabilities would prove beneficial.
²³⁸ U	LNHB	0.0(7)%	Further measurements of the half-life and α particle emission probabilities are required.
²³⁹ U	KRI	0(3)%	A number of reported γ rays were not placed in the decay scheme — although further measurements are merited, the total relative intensity of these unplaced γ rays is only ~0.5% of all observed γ rays.

TABLE 3. DECAY DATA EVALUATIONS, CONSISTENCY AND COMMENTS (cont.)

Radionuclide	Evaluator ^a	Consistency ^b	Comments
²³⁶ Np	KRI	0(9)%	There are inadequate experimental data, including two conflicting measurements of the EC/β^{-} branching ratio — further measurements are required.
^{236m} Np	KRI	0(11)%	There are inadequate experimental data, including measurements of the EC/β^{-} branching ratio — further measurements are required.
²³⁷ Np	KRI	-0.2(4)%	The proposed decay scheme cannot be considered complete since the α feedings measured directly in the ²³⁷ Np α decay and those deduced from the γ ray intensity balances of the nuclear levels are not in good agreement — further measurements are required.
²³⁸ Np	KRI	-0.1(24)%	The approximate data available for β^- transition probabilities are inconsistent with the decay scheme derived from γ ray emission probabilities — further measurements are required.
²³⁹ Np	KRI	0.9(21)%	Discrepant measured data for β^- transition probabilities are in poor agreement with the decay scheme derived from γ ray emission probabilities — further measurements are required.
²³⁸ Pu	KRI	0.00(9)%	Some expected weak γ ray transitions were not observed directly in ²³⁸ Pu α decay, but were adopted from the measured decay data of ²³⁴ Pa and ²³⁴ Np.
²³⁹ Pu	KRI	0.00(12)%	Determination of the multipolarities of the low energy γ rays would be beneficial.
²⁴⁰ Pu	KRI	0.01(15)%	Some expected weak γ ray transitions were not observed directly in ²⁴⁰ Pu α decay, but were adopted from the decay of ²³⁶ Pa and ²³⁶ Np, and from nuclear reaction data. The α transitions to ²³⁶ U highly excited levels with energies of 958, 960 and 967 keV were not observed. They are expected from level spin data, and γ rays can be expected to de-excite these levels. Measurements would be beneficial.
²⁴¹ Pu	KRI	0.0(10)%	There is an ambiguity in the placement of the 121.2 keV γ ray transition in the ²³⁷ U level scheme due to a doublet (7/2+, 11/2+) near 204 keV — further measurements are required.
²⁴² Pu	KRI	0.00(25)%	Weak α transitions to some highly excited ²³⁸ U levels have not been observed — measurements would be beneficial.
²⁴¹ Am	KRI	-0.02(14)%	A number of γ ray transitions (27.03, 54.1 and 95.0 keV) require more detailed measurement, including associated conversion electron emission probabilities.
²⁴² Am	IAEA	0(3)%	There are only three sets of half-life data — further measurements are required. A spectroscopic γ ray study is also required as no emission probability measurements exist — the γ ray energies were constructed from the level scheme, and emission probabilities from P_{ee}/P_{β} -data.
^{242m} Am	IAEA	1.9(18)%	The recommended half-life represents the least squares weighted mean of two somewhat old studies — further measurements are required to determine the half-life with greater confidence. A simple IT decay mode dominates the decay scheme of ^{242m} Am — the small α branch is complex, and many features of this decay mode remain unresolved. Conversion electron data for the 48.60 keV IT γ ray transition are lacking, and such measurements are merited. Arguably, further accurate high resolution γ ray spectroscopy studies are also required to develop and complete the rather complex α decay mode.
²⁴³ Am	LNHB	-0.02(8)%	Further measurements of the half-life are merited. New measurements of the γ ray and α particle emission intensities should help to improve the decay scheme balance.

TABLE 3. DECAY DATA EVALUATIONS, CONSISTENCY AND COMMENTS (cont.)

Radionuclide	Evaluator ^a	Consistency ^b	Comments
²⁴⁴ Am	IAEA	0(6)%	There is only one half-life measurement — further measurements are required. A spectroscopic γ ray study is also required — γ ray energies are constructed from a level scheme, and the emission probabilities adjusted as necessary (only one reference quantifies data uncertainties).
^{244m} Am	IAEA	0(13)%	There are only two half-life measurements from the 1950s, neither of which quote uncertainties — further measurements are required. Spectroscopic γ ray studies are also required as there is only one known set of data for the γ ray emission probabilities.
²⁴² Cm	KRI	-0.04(10)%	Accurate measurements of the 44, 102, 157 and 210 keV γ rays are required.
²⁴³ Cm	KRI	-0.3(6)%	Accurate measurements of a number of γ ray transitions with energies less than 200 keV are required. These transitions were not observed in the ²⁴³ Cm α decay and were derived from measurements of the decay of ²³⁹ Np and ²³⁹ Am.
²⁴⁴ Cm	KRI	0.0(6)%	Some weak γ ray transitions have not been observed in ²⁴⁴ Cm α decay and were taken from the ²⁴⁰ Np β^- decay and ²⁴⁰ Am electron capture decay — direct measurements of ²⁴⁴ Cm α decay are required.
²⁴⁵ Cm	KRI	-0.3(5)%	The half-life measurement results show discrepancies — further measurements are required.
²⁴⁶ Cm	ANL	0.0(3)%	The recommended half-life is the weighted mean of five measurements carried out between 1969 and 2007 (some of these data were corrected for changes in the reference ²⁴⁴ Cm and ²⁵⁰ Cf half-lives). However, discrepancies remain, and further studies are merited. Emission probabilities for the two γ rays within the proposed decay scheme have not been measured directly, and were simply calculated from the recommended $\alpha_{0,1}$ and $\alpha_{0,2}$ emission probabilities as determined from experimental studies.
²⁵² Cf	LNHB	-0.1(4)%	Accurate measurements of the α particle emission probabilities are required.

TABLE 3.	DECAY DATA	EVALUATIONS.	CONSISTENCY AND	COMMENTS (cont.)

^a Evaluators are designated by their affiliation: ANL: Argonne National Laboratory, USA; CNDC: China Nuclear Data Center, China Institute of Atomic Energy, China; IAEA: International Atomic Energy Agency; IFIN-HH: Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania; KRI: V.G. Khlopin Radium Institute, Russian Federation; LNHB: Laboratoire National Henri Becquerel, France; NPL: National Physical Laboratory, United Kingdom; VECC: Variable Energy Cyclotron Centre, India.

^b Uncertainty on the final significant figure or figures is quoted in parentheses, and is generally expressed at the 1σ confidence level: hence, -0.1(4)% means $-0.1\% \pm 0.4\%$; 0.000(12)% means $0.000\% \pm 0.012\%$; and 0.3(21)% means $0.3\% \pm 2.1\%$.

3. CONCLUSIONS

A set of recommended decay schemes and decay data were produced and assembled by CRP participants to update an IAEA decay data library of actinides and their natural decay products. These studies resulted in the formulation of significantly improved decay parameters for a range of actinides and decay chain nuclides from ²⁵²Cf to ²⁰⁶Hg, including the 4n + 2 (²³⁸U), 4n + 3 (²³⁵U) and 4n (²³²Th) natural decay chains, and the artificially produced 4n + 1 (²³⁷Np/²³³U) decay chain.

The achievements of the CRP include the following:

- Measurements of the half-lives, and α particle and γ ray emission probabilities of specific actinides;
- Extension of the evaluated database to include requested decay chains and other actinide radionuclides of importance in non-energy related applications;
- Evaluation of all existing relevant data published up to the end of 2008;
- Preparation of this report which summarizes and documents the recommended decay data of the actinides and natural decay products of primary importance in fission energy operations and studies, along with specific radionuclides chosen for various non-energy applications.

One important expectation is that the resulting data will be internationally accepted as a significant contribution to improving the quality of the decay data of the actinides and other heavy elements that constitute their known decay chains.

REFERENCES

- INTERNATIONAL ATOMIC ENERGY AGENCY, Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986).
- [2] NICHOLS, A.L., Decay data: Review of measurements, evaluations and compilations, Appl. Radiat. Isot. 55 (2001) 23-70.
- [3] KELLETT, M.A., KONDEV, F.G., NICHOLS, A.L., IAEA Coordinated Research Project: Updated decay data library for actinides, Appl. Radiat. Isot. 66 (2008) 694–700.
- [4] KONDEV, F.G., AHMAD, I., GREENE, J.P., NICHOLS, A.L., KELLETT, M.A., Updated Decay Data Library for Actinides, Bull. Am. Phys. Soc. 52 (2007) 31.
- [5] KELLETT, M.A., et al., New IAEA Actinide Decay Data Library, Proc. Int. Conf. on Nuclear Data for Science and Technology, J. Korean Phys. Soc. 59 2 (2011) 1455–1460.
- [6] KELLETT, M.A., Summary Report of the First Research Coordination Meeting on Updated Decay Data Library for Actinides, Rep. INDC(NDS)-0479, IAEA, Vienna (2006).
- [7] KELLETT, M.A., Summary Report of the Second Research Coordination Meeting on Updated Decay Data Library for Actinides, Rep. INDC(NDS)-0508, IAEA, Vienna (2007).
- [8] AHMAD, I., KONDEV, F.G., GREENE, J.P., NICHOLS, A.L., KELLETT, M.A., Measurement of the ²⁴⁰Pu half-life, Nucl. Instrum. Methods Phys. Res. A579 (2007) 458–460.
- [9] KONDEV, F.G., AHMAD, I., GREENE, J.P., KELLETT, M.A., NICHOLS, A.L., Measurements of the half-life of ²⁴⁶Cm and the α-decay emission probabilities of ²⁴⁶Cm and ²⁵⁰Cf, Appl. Radiat. Isot. 65 (2007) 335–340.
- [10] KONDEV, F.G., KELLETT, M.A., AHMAD, I., GREENE, J.P., NICHOLS, A.L., "Experimental studies to improve specific actinide decay data", Int. Conf. Nuclear Data for Science and Technology (Proc. Int. Conf. Nice, 2007), (BERSILLON, O., GUNSING, F., BAUGE, E., JACQMIN, R., LERAY, S., Eds), Vol. 1, EDP Sciences, Les Ulis, France (2008) 93–96.
- [11] KONDEV, F.G., et al., "Studies of nuclear structure and decay data properties of actinide nuclei", 13th Int. Symp. on Capture Gamma-ray Spectroscopy and Related Topics (CGS-13), (Proc. Int. Conf. Cologne, 2008), (BLAZHEV, A., JOLIE, J., WARR, N., ZILGES, A., Eds), AIP Conf. Proc., Vol. 1090 (2009) 199–206.
- [12] KONDEV, F.G., et al., "Decay studies of minor actinide nuclides, and future opportunities for improving the decay data of neutron-rich fission products", Int. Conf. Reactor Physics, Nuclear Power: a Sustainable Resource, PHYSOR-2008 (Proc. Int. Conf. Interlaken, Switzerland, 2008), (CHAWLA, R., DANG, V.N., MIKITYUK, K., Eds), Vol. 1, Curran Associates, Inc., New York (2011) 108–115.
- [13] KONDEV, F.G., AHMAD, I., GREENE, J.P., KELLETT, M.A., NICHOLS, A.L., Measurements of X- and γ-ray emission probabilities in the β⁻ decay of ²³³Pa, Appl. Radiat. Isot. 68 (2010) 2382–2386.
- [14] KONDEV, F.G., AHMAD, I., GREENE, J.P., NICHOLS, A.L., KELLETT, M.A., Measurements of absolute gamma-ray emission probabilities in the decay of ²³³Pa, Nucl. Instrum. Methods Phys. Res. A652 (2011) 654–656.
- [15] BÉ, M.-M., et al., Table of Radionuclides, Introduction, CEA Saclay, Gif-sur-Yvette (1999).
- [16] BÉ, M.-M., et al., Table of Radionuclides (Vol. 3 A = 3 to 244), Monographie BIPM-5, Bureau international des poids et mesures, Sèvres, France (2006).
- [17] BÉ, M.-M., et al., Table of Radionuclides (Vol. 4 A = 133 to 252), Monographie BIPM-5, Bureau international des poids et mesures, Sèvres, France (2008).
- [18] BÉ, M.-M., et al., Table of Radionuclides (Vol. 5 A = 22 to 244), Monographie BIPM-5, Bureau international des poids et mesures, Sèvres, France (2010).
- [19] BÉ, M.-M., et al., Table of Radionuclides (Vol. 6 A = 22 to 242), Monographie BIPM-5, Bureau international des poids et mesures, Sèvres, France (2011).
- [20] BÉ, M.-M., et al., Table of Radionuclides (Vol. 7 A = 14 to 245), Monographie BIPM-5, Bureau international des poids et mesures, Sèvres, France (2013).
- [21] KELLETT, M.A., Summary Report of the Third Research Coordination Meeting on Updated Decay Data Library for Actinides, Rep. INDC(NDS)-0539, IAEA, Vienna (2009).
- [22] BÉ, M.-M., et al., Table of Radionuclides (Vol. 1 A = 1 to 150), Monographie BIPM-5, Bureau international des poids et mesures, Sèvres, France (2004).
- [23] BÉ, M.-M., et al., Table of Radionuclides (Vol. 2 A = 151 to 242), Monographie BIPM-5, Bureau international des poids et mesures, Sèvres, France (2004).
- [24] Evaluated Nuclear Structure Data File, National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York, USA; also Nuclear Data Sheets, Elsevier BV, Amsterdam.
- [25] LARKINS, F.P., Semiempirical Auger-electron energies for elements $10 \le Z \le 100$, At. Data Nucl. Data Tables **20** (1977) 311–387.
- [26] SCHÖNFELD, E., RODLOFF, G., Tables of the Energies of K-Auger Electrons for Elements with Atomic Numbers in the Range from Z = 11 to Z = 100, PTB Rep. PTB-6.11-98-1 (1998).

- [27] SCHÖNFELD, E., RODLOFF, G., Energies and Relative Emission Probabilities of K X-rays for Elements with Atomic Numbers in the Range from Z = 5 to Z = 100, PTB Rep. PTB-6.11-1999-1 (1999).
- [28] BROWNE, E., FIRESTONE, R.B., X-ray Energies and Intensities, Table of Radioactive Isotopes, Wiley, New York (1986) C-19–C-30.
- [29] SCHÖNFELD, E., JANSSEN, H., Evaluation of atomic shell data, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527-533.
- [30] SCHÖNFELD, E., JANSSEN, H., Calculation of emission probabilities of X-rays and Auger electrons emitted in nuclear disintegration processes, Appl. Radiat. Isot. 52 (2000) 595-600.

Annex I

RECOMMENDED DECAY DATA

Tabulations of the recommended decay data for the 85 radionuclides are presented in this annex. The radionuclides are ordered by atomic number.

The data presented include:

- Recommended half-lives $(T_{1/2})$, *Q*-values and decay modes;
- Transition probabilities, nature and log *ft* data for β^- transitions;
- Transition probabilities, nature, log *ft* and shell capture probabilities for electron capture transitions;
- Energies and emission probabilities for the different radiations:
 - Alpha particles;
 - Electrons (β ⁻ emission, Auger and conversion electrons);
 - X rays.
- Gamma ray energies, transition and emission probabilities, multipolarities and total internal conversion coefficients.

SYMBOLS AND NOTATION

1 Units

- s second min minute h hour d day y year (1 y =
- y year (1 y = 365.24219878 d or 31556925.26 s)
- eV electronvolt (1 eV = $1.602\,176\,462\,(63) \times 10^{-19}$ J)

keV kiloelectronvolt (1 keV = 1000 eV)

2 Particles and quanta

- α alpha particle
- β^+ positron from β^+ decay
- β^- electron from β^- decay
- γ gamma quantum, photon emitted when a nucleus decays to a lower energy state
- ec internal conversion electron
- ec_K internal conversion electron, ejected from the K shell
- ec_L internal conversion electron, ejected from the L shell
- ec_M internal conversion electron, ejected from the M shell
- ec_{M+} internal conversion electron, ejected from the M and higher shells
- ec_N internal conversion electron, ejected from the N shell
- ec_{N+} internal conversion electron, ejected from the N and higher shells
- ec_O internal conversion electron, ejected from the O shell
- e_A Auger electron
- e_{AK} K-Auger electron
- e_{AL} L-Auger electron
- KLL KLL-Auger electron
- KLX KLX-Auger electron (X=M, N)
- KXY KXY-Auger electron (X=M, N; Y=M, N)
- X X-ray quantum, photon emitted during the rearrangement of the atomic shells
- XK X-ray quantum, photon emitted during the rearrangement of the atomic K shell
- XL X-ray quantum, photon emitted during the rearrangement of the atomic L shell

3 Energies

- Q_{α} total energy of alpha decay
- Q_{β^-} total energy of β^- decay
- Q_{EC} total energy of electron capture (EC) decay
- Q_{IT} total energy of isomeric transition decay

4 Transitions, probabilities, emission intensities and conversion coefficients

- $\alpha_{x,y}$ transition by α decay between level x and level y
- $\beta_{x,y}^-$ transition by β^- decay between level x and level y
- $\epsilon_{x,y}$ transition by electron capture (EC) between level x and level y
- P_K K-shell capture probability for an electron capture (EC) transition
- P_L L-shell capture probability for an electron capture (EC) transition

P_M	M-shell capture probability for an electron capture (EC) transition
P_{M+}	M- and higher-shells capture probability for an electron capture (EC) transition
·	$(P_K + P_L + P_M + \ldots = 1)$
$\gamma_{x,y}$	γ -ray emission between level x and level y
P_{γ}	γ -ray emission probability for a given transition (not including conversion electrons)
P_{ce}	conversion electron emission probability for a given transition
$P_{\gamma+ce}$	total transition probability for a given transition (including conversion electrons)
1 1 2 2	$P_{\gamma+ce} = P_{\gamma} + P_{ce}$
α_K	K-shell internal conversion coefficient
α_L	total L-shell internal conversion coefficient
α_M	total M-shell internal conversion coefficient
α_{M+}	total M- and higher-shells internal conversion coefficient
α_N	total N-shell internal conversion coefficient
α_{N+}	total N- and higher-shells internal conversion coefficient
α_{π}	internal-pair formation coefficient
$\alpha_{T(ICC)}$	total internal conversion coefficient ($\alpha_T = \alpha_K + \alpha_L + \alpha_M + \ldots$)
α_T	total conversion coefficient $(\alpha_T = \alpha_K + \alpha_L + \alpha_M + \ldots + \alpha_\pi)$

5 Other physical quantities and abbreviations

E0, E1, E2, EL	electric monopole, dipole, quadrupole, 2L-pole
$\log ft$	logarithm of the comparative half-life in β^- or EC decay
J	quantum number of total angular momentum
K, L, M, \ldots	electron shells
K/L	ratio $P_{ce_K}/P_{ce_L} = \alpha_K/\alpha_L$
K/LM	ratio $P_{ce_K}/(P_{ce_L}+P_{ce_M}) = \alpha_K/(\alpha_L+\alpha_M)$
K/LMN	ratio $P_{ce_K}/(P_{ce_L}+P_{ce_M}+P_{ce_N}) = \alpha_K/(\alpha_L+\alpha_M+\alpha_N)$
KLX/KXY	ratio $P_{A_{KLX}}/P_{A_{KXY}}$
L	orbital angular momentum quantum number
m_0	electron rest mass
max	maximum
min	minimum
avg	average
Z	atomic number of an element
A	mass number of an isotope
N	number of neutrons in an isotope, $N = A - Z$
M1, M2, ML	magnetic dipole, quadrupole, 2L-pole
$\bar{\nu}$	average total number of spontaneous fission neutrons
$T_{1/2}$	half-life (= total half-life for multiple decay modes)
λ	decay constant, $\lambda = ln2/T_{1/2}$
δ	mixing ratio of different multipolarities
π	parity

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	8.32	(7)	\min
Q_{β^-}	:	1308	(20)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,0}^- \end{array}$	$\begin{array}{c} 659 \ (20) \\ 1003 \ (20) \\ 1308 \ (20) \end{array}$	$\begin{array}{ccc} 3.0 & (4) \\ 35 & (7) \\ 62 & (7) \end{array}$	1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique	$5.41 \\ 5.24 \\ 5.67$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Tl)	5.25 - 15.32	5.1(4)	
e _{AK}	(Tl) KLL KLX KXY	54.587 - 59.954 66.37 - 72.86 78.12 - 85.50	0.30 (7) } } }	
$\begin{array}{c} ec_{2,0} \ {\rm K} \\ ec_{2,0} \ {\rm L} \\ ec_{2,0} \ {\rm M} \\ ec_{2,0} \ {\rm N} \\ ec_{3,2} \ {\rm K} \\ ec_{3,2} \ {\rm L} \\ ec_{3,0} \ {\rm K} \\ ec_{3,0} \ {\rm L} \end{array}$	 (Tl) (Tl) (Tl) (Tl) (Tl) (Tl) (Tl) (Tl) (Tl) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 8.0 \ (15) \\ 1.35 \ (26) \\ 0.31 \ (6) \\ 0.080 \ (15) \\ 0.122 \ (24) \\ 0.0204 \ (41) \\ 0.0906 \ (18) \\ 0.01498 \ (30) \end{array}$	
$\begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,0}^- \end{array}$	max: max: max:	$\begin{array}{ccc} 659 & (20) \\ 1003 & (20) \\ 1308 & (20) \end{array}$	$\begin{array}{c} 3.0 \ (4) \\ 35 \ (7) \\ 62 \ (7) \end{array}$	avg: 203 (7) avg: 330 (8) avg: 450 (8)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL $XK\alpha_2$	(Tl) (Tl)	8.9531 - 14.7362 70.8325	2.9(4) 2.3(5)	$K\alpha$
		${ m Energy}\ { m keV}$	Photons per 100 disint.	
--	----------------------	----------------------------	-----------------------------------	----------------------
$XK\alpha_1$	(Tl)	72.8725	3.9(8)	}
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115	} } 1.32 (25) }	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84.838 85.134 85.444	$ \} \\ 0.39 (8) \\ \} $	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{l} \gamma_{1,0}(\mathrm{Tl}) \\ \gamma_{2,0}(\mathrm{Tl}) \\ \gamma_{3,2}(\mathrm{Tl}) \\ \gamma_{3,1}(\mathrm{Tl}) \\ \gamma_{3,0}(\mathrm{Tl}) \end{array}$	$\begin{array}{c} 265.832 \ (5) \\ 304.896 \ (6) \\ 344.52 \ (17) \\ 383.59 \ (6) \\ 649.42 \ (5) \end{array}$	$\begin{array}{c} 0.014 \ (7) \\ 36 \ (7) \\ 0.70 \ (14) \\ 0.014 \ (7) \\ 2.3 \ (3) \end{array}$	E2 M1 M1 M1(+E2) M1	$\begin{array}{c} 0.1603 \ (23) \\ 0.375 \ (6) \\ 0.269 \ (4) \\ 0.13 \ (8) \\ 0.0501 \ (7) \end{array}$	$\begin{array}{c} 0.012 \ (6) \\ 26 \ (5) \\ 0.55 \ (11) \\ 0.012 \ (6) \\ 2.2 \ (3) \end{array}$

5 References

M.NURMIA, P.KAURANEN, M.KARRAS, A.SIIVOLA, A.ISOLA, G.GRAEFFE, A.LYYJYEN, Nature 190 (1961) 427 (Half-life)

G.K.WOLF, Nucl. Phys. A116 (1968) 387 (Half-life, gamma-ray energy and emission probabilities) R.C.LANGE, G.R.HAGEE, A.R.CAMPBELL, Nucl. Phys. A133 (1969) 273 (Gamma-ray energy and emission probabilities) G.ASTNER, G.K.WOLF, Nucl. Phys. A147 (1970) 481 (Gamma-ray energy and emission probabilities) R.C.LANGE, G.R.HAGEE, A.R.CAMPBELL, Priv. Comm. (1971) (Gamma-ray energy and emission probabilities) D.G.TUGGLE, Thesis, Report LBL-4460, Univ. California (1976)

(Gamma-ray energy and emission probabilities)

F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311

(K Auger electron energies)

M.U.RAJPUT, T.D.MACMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 289 (Evaluation techniques)

S.I.KAFALA, T.D.MACMAHON, P.W.GRAY, Nucl. Instrum. Methods Phys. Res. A339 (1994) 151 (Evaluation techniques)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527

(K-shell fluorescence yields)

B.SINGH, J.L.RODRIGUEZ, S.S.M.WONG, J.K.TULI, Nucl. Data Sheets 84 (1998) 487 (log ft values)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998)

(K Auger electron energies)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999)

(K X-ray energies and relative emission probabilities)

E.BROWNE, Nucl. Data Sheets 88 (1999) 29

⁽Nuclear levels)

E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (EMISSION program and X-ray and Auger electron emission probabilities and energies) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (ICCs) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75 (2003) 35 (K and L X-ray energies) T.D.MACMAHON, A.PEARCE, P.HARRIS, Appl. Radiat. Isot. 60 (2004) 275 (Evaluation techniques) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICCs) F.G.KONDEV, Nucl. Data Sheets 109 (2008) 1527 (Nuclear levels) C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97 (SAISINUC software)

Hg - 206

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	4.202	(11)	\min
Q_{β^-}	:	1532.4	(6)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} \text{Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c}\beta_{0,2}^{-}\\\beta_{0,1}^{-}\\\beta_{0,0}^{-}\end{array}$	$\begin{array}{c} 366.0 \ (8) \\ 729.3 \ (6) \\ 1532.4 \ (6) \end{array}$	$\begin{array}{c} 0.110 \ (14) \\ 0.0051 \ \ (3) \\ 99.885 \ (14) \end{array}$	1st forbidden 1st forbidden unique 1st forbidden	

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.0034 (6) } } }	
$ec_{2,0 \ K} ec_{2,0 \ L}$	(Pb) (Pb)	1078.4 1150.54 - 1151.20	$\begin{array}{c} 0.093 \ (11) \\ 0.017 \ (3) \end{array}$	
$ \begin{array}{c} \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array} $	max: max: max:	$\begin{array}{ccc} 366.0 & (8) \\ 729.3 & (6) \\ 1532.4 & (6) \end{array}$	$\begin{array}{c} 0.110 \ (14) \\ 0.0051 \ (3) \\ 99.885 \ (14) \end{array}$	avg: 104.52 (25) avg: 232.39 (21) avg: 538.86 (25)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.19 - 15.217		0.035~(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 0.026 \ (3) \\ 0.044 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.0150 (17)	$\mathrm{K}\beta_1'$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.0045~(6)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{2,1}(Pb)$ $\gamma_{1,0}(Pb)$	$\begin{array}{c} 363.3 \ (5) \\ 803.06 \ (3) \end{array}$	$\begin{array}{c} 0.00015 \ (15) \\ 0.0051 \ (3) \end{array}$	E2 E2	$\begin{array}{c} 0.0663 \ (20) \\ 0.01030 \ (31) \end{array}$	$\begin{array}{c} 0.00014 \ (14) \\ 0.0050 \ (3) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

K.FAJANS, A.F.VOIGT, Phys. Rev. 60 (1941) 619 (Half-life) D.E.ALBURGER, G.FRIEDLANDER, Phys. Rev. 82 (1951) 977 (Maximum beta-decay energy) B.W.SARGENT, L.YAFFE, A.P.GRAY, Can. J. Phys. 31 (1953) 235 (Half-life) A.POULARIKAS, R.W.FINK, Phys. Rev. 115 (1959) 989 (Half-life) D.A.HOWE, L.M.LANGER, Phys. Rev. 124 (1961) 519 (Maximum beta-decay energy) M.NURMIA, P.KAURANEN, M.KARRAS, A.SIIVOLA, A.ISOLA, G.GRAEFFE, A.LYYJYEN, Nature 190 (1961) 427 (Half-life) W.H.ZOLLER, C.BOTTERON, W.B.WALTERS, Report MIT-905-133, Massachusetts Institute of Technology (1968) (Gamma-ray emission probability) W.H.ZOLLER, W.B.WALTERS, J. Inorg. Nucl. Chem. 32 (1970) 2465 (Gamma-ray emission probability) D.FLOTHMANN, R.LOHKEN, W.WIESNER, H.REBEL, Phys. Rev. Lett. 25 (1970) 1719 (Half-life, Maximum beta-decay energy) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables 10 (1971) 205 (Log ft values) B.I.PERSSON, I.PLESSER, J.W.SUNIER, Nucl. Phys. A167 (1971) 470 (Half-life, Maximum beta-decay energy) J.C.MANTHURUTHIL, D.C.CAMP, A.V.RAMAYYA, J.H.HAMILTON, J.J.PINAJIAN, J.W.DOORNEBOS, Phys. Rev. C6 (1972) 1870 (Gamma-ray transition energies) L.L.COLLINS, G.D.O'KELLEY, E.EICHLER, Report ORNL-4791, Oak Ridge National Laboratory (1972) (Half-llife) H.C.GRIFFIN, A.M.DONNE, Phys. Rev. Lett. 28 (1972) 107 (Half-life) W.WIESNER, D.FLOTHMANN, H.J.GILS, R.LOHKEN, H.REBEL, Nucl. Phys. A191 (1972) 166 (Half-life, Maximum beta-decay energy) J.E.DRAPER, R.J.MCDONALD, N.S.P.KING, Phys. Rev. C16 (1977) 1594 (Transition energies, K/L conversion electrons subs) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313 (Electron shells binding energies) W.H.TRZASKA, J.KANTELE, R.JULIN, J.KUMPULAINEN, P.VAN DUPPEN, M.HUYSE, J.WAUTERS, Z. Phys. A335 (1990) 475(K/L conversion electrons subshell ratio) M.U.RAJPUT, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 289 (Evaluation techniques) S.I.KAFALA, T.D.MCMAHON, P.W.GRAY, Nucl. Instrum. Methods Phys. Res. A339 (1994) 151 (Evaluation techniques) S.RAMAN, J.B.MCGRORY, E.T.JURNEY, J.W.STARNER, Phys. Rev. C53 (1996) 2732 (Gamma-ray transition energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilitie) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (206Tl and 206Pb level schemes) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (Program Emission) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1 (ICC) M.-M.Bé, R.G.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl. 2 (2002) 481 (Saisinuc supporting software) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) R.D.DESLATTES, E.G.KESSLER, P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 77 (2003) 35(K and L X-ray energies) D.MACMAHON, A.PEARCE, P.HARRIS, Appl. Radiat. Isot. 60 (2004) 275 (Evaluation techniques) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	4.774	(12)	\min
Q_{β^-}	:	1418	(5)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	$520 (5) \\ 848 (5) \\ 1418 (5)$	$\begin{array}{c} 0.271 \ (10) \\ < 0.00008 \\ 99.729 \ (10) \end{array}$	1st forbidden non-unique 1st forbidden unique 1st forbidden non-unique	$6.15 > 10.8 \\ 5.11$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Pb)	5.33 - 15.82	0.00333 (6)	
$e_{\rm AK}$	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.000202 (23) } } }	
$ \begin{array}{c} \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array} $	max: max: max:	$\begin{array}{ccc} 520 & (5) \\ 848 & (5) \\ 1418 & (5) \end{array}$	$\begin{array}{c} 0.271 \ (10) \\ < 0.00008 \\ 99.729 \ (10) \end{array}$	avg: 155.0 (17) avg: 273.2 (18) avg: 492.5 (21)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		0.00201~(6)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$0.00154 (6) \\ 0.00258 (10)$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.00088 (4)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.000266 (12)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Pb)$	328.10(12) 560.608(2)	0.00189(19) 0.00189(19)	[M1] F2	0.334(5)	0.00142(14)
$\gamma_{2,0}(Pb)$	897.77(12)	0.269(9)	M1+0.8%E2	0.0210(3) 0.0233(4)	0.00103(19) 0.263(9)

4.2 Gamma Transitions and Emissions

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, S.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) K.FAJANS, A.F.VOIGT, Phys. Rev. 58 (1940) 177 (Half-life) H.D.EVANS, Proc. Phys. Soc. (London) 63A (1950) 575 (Measured energies and probabilities of beta-transitions) B.W.SARGENT, L.YAFFE, A.P.GRAY, Can. J. Phys. 31 (1953) 235 (Half-life) S.CUPERMAN, Nucl. Phys. 28 (1961) 84 (Measured energies and probabilities of beta-transitions) P.R.CHRISTENSEN, O.B.NIELSEN, H.NORDBY, Phys. Lett. 4 (1963) 318 (Measured energies and probabilities of beta-transitions) W.F.DAVIDSON, C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 45 (1967) 2295 (Measured energies and probabilities of beta-transitions) J.M.TRISCHUK, E.KANKELEIT, Nucl. Phys. A90 (1967) 33 (Half-life, measured energies and probabilities of beta-transitions) CH.BRIANCON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Measured energies and probabilities of gamma-transitions) H.V.KLAPDOR, P.VON BRENTANO, E.GROSSE, K.HABERKANT, Nucl. Phys. A152 (1970) 263 (Measured energies and probabilities of gamma- and beta-transitions and ICCs) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205 (Log ft values) O.HAUSSER, F.C.KHANNA, D.WARD, Nucl. Phys. A194 (1972) 113 (Multipolarity and mixing ratio) C.BARGHOLTZ, L.ERIKSSON, L.GIDEFELDT, Phys. Scr. 7 (1973) 254 (Multipolarity and mixing ratio) O.HAUSSER, D.B.FOSSAN, A.OLIN, D.WARD, W.WITTHUHN, R.E.WARNER, Nucl. Phys. A225 (1974) 425 (Measured energies and probabilities of gamma-transitions) F.T.AVIGNONE III, T.A.GIRARD, Phys. Rev. C13 (1976) 2067 (Multipolarity and mixing ratio) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) M.M.HINDI, E.G.Adelberger, S.E.Kellogg, T.Murakami, Phys. Rev. C38 (1988) 1370 (Measured energies and probabilities of gamma- and beta-transitions, B(M1), experimental ICCs) A.ARTNA-COHEN, Nucl. Data Sheets 63 (1991) 79 (Evaluation and gamma-ray normalisation factor) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Evaluation of K-shell fluorescence yields and X-ray emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electron energies) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X-ray energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities) ANL /F.G. Kondev

R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35
(Evaluated energies and probabilities of gamma-transitions)
R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75
(2003) 35
(Evaluated X-ray transition energies)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337
(Q)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202
(Theoretical ICC)
C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97
(SAISINUC Software and atomic data)
F.G.KONDEV, S.LALKOVSKI, Nucl. Data Sheets 112 (2011) 707
(Nuclear levels)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.058	(6)	\min
Q_{β^-}	:	4999.0	(17)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} \text{Proba} \\ \times 1 \end{array}$	bility .00	Nature	$\log ft$
$\beta_{0,23}^{-}$	518.3(17)	0.052	(5)	1st forbidden non-unique	6.67
$\beta_{0,21}^{-}$	615.7(17)	0.017	(5)	1st forbidden non-unique	7.41
$\beta_{0.20}^{-}$	640.3(17)	0.045	(4)	1st forbidden non-unique	7.04
$\beta_{0.19}^{-}$	675.1(17)	0.005	(2)	Allowed	8.1
$\beta_{0.18}^{-}$	702.4(17)	0.102	(11)	1st forbidden non-unique	6.82
$\beta_{0.17}^{-}$	737.1(17)	0.002	(1)	1st forbidden non-unique	8.6
$\beta_{0.13}^{-}$	818.6(17)	0.231	(9)	1st forbidden non-unique	6.7
$\beta_{0.12}^{-}$	873.7(17)	0.174	(9)	1st forbidden non-unique	6.92
$\beta_{0.8}^{-}$	1003.6(17)	0.007	(3)	1st forbidden non-unique	8.5
$\beta_{0.7}^{-}$	1037.8(17)	3.17	(4)	1st forbidden non-unique	5.92
$\beta_{0.6}^{-}$	1052.4(17)	0.048	(3)	1st forbidden non-unique	7.76
$\beta_{0.5}^{-}$	1079.0(17)	0.63	(4)	1st forbidden non-unique	6.68
$\beta_{0.4}^{-}$	1290.5(17)	24.1	(2)	1st forbidden non-unique	5.38
$\beta_{0.3}^{-1}$	1523.9(17)	22.1	(5)	1st forbidden non-unique	5.69
$\beta_{0,2}^{-}$	1801.3 (17)	49.2	(6)	1st forbidden non-unique	5.61

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Pb)	5.262 - 10.398	4.50 (13)	
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.27 (3) } }	
$\begin{array}{c} {\rm ec}_{3,2} {\rm K} \\ {\rm ec}_{3,2} {\rm L} \\ {\rm ec}_{3,2} {\rm M} + \\ {\rm ec}_{4,2} {\rm K} \\ {\rm ec}_{4,2} {\rm L} \\ {\rm ec}_{4,2} {\rm L} \\ {\rm ec}_{4,2} {\rm M} + \\ {\rm ec}_{2,1} {\rm K} \\ {\rm ec}_{2,1} {\rm L} \\ {\rm ec}_{2,1} {\rm M} + \\ {\rm ec}_{1,0} {\rm \alpha} \\ {\rm ec}_{1,0} {\rm K} \end{array}$	 (Pb) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 2.86 \ (13) \\ 0.49 \ (2) \\ 0.15 \ (1) \\ 1.88 \ (2) \\ 0.32 \\ 0.098 \\ 1.25 \ (1) \\ 0.34 \\ 0.109 \\ 0.0369 \ (6) \\ 0.170 \ (3) \end{array}$	

Surrey Univ. /A.L. Nichols

		Ene: ke	rgy V	Electrons per 100 disint.	E	lnergy keV
$\begin{array}{c} \beta_{0,23}^{-} \\ \beta_{0,21}^{-} \\ \beta_{0,20}^{-} \\ \beta_{0,19}^{-} \\ \beta_{0,18}^{-} \\ \beta_{0,17}^{-} \\ \beta_{0,13}^{-} \\ \beta_{0,13}^{-} \end{array}$	max: max: max: max: max: max: max: max:	$518.3 \\ 615.7 \\ 640.3 \\ 675.1 \\ 702.4 \\ 737.1 \\ 818.6 \\ 873.7 \\$	(17) (17) (17) (17) (17) (17) (17) (17)	$\begin{array}{c} 0.052 \ (5) \\ 0.017 \ (5) \\ 0.045 \ (4) \\ 0.005 \ (2) \\ 0.102 \ (11) \\ 0.002 \ (1) \\ 0.231 \ (9) \\ 0.174 \ (9) \end{array}$	avg: avg: avg: avg: avg: avg: avg: avg:	$\begin{array}{c} 154.3 \ (6) \\ 187.7 \ (6) \\ 196.4 \ (6) \\ 208.6 \ (6) \\ 218.3 \ (6) \\ 230.8 \ (6) \\ 260.4 \ (6) \\ 280.8 \ (6) \end{array}$
$\beta_{0,8}^{-,12} \\ \beta_{0,8}^{-,7} \\ \beta_{0,7}^{-,6} \\ \beta_{0,5}^{-,6} \\ \beta_{0,4}^{-,5} \\ \beta_{0,3}^{-,6} \\ \beta_{0,2}^{-,2} $	max: max: max: max: max: max: max:	$1003.6 \\ 1037.8 \\ 1052.4 \\ 1079.0 \\ 1290.5 \\ 1523.9 \\ 1801.3$	(17) (17) (17) (17) (17) (17) (17) (17)	$\begin{array}{c} 0.007 \ (3) \\ 3.17 \ (4) \\ 0.048 \ (3) \\ 0.63 \ (4) \\ 24.1 \ (2) \\ 22.1 \ (5) \\ 49.2 \ (6) \end{array}$	avg: avg: avg: avg: avg: avg: avg: avg:	$\begin{array}{c} 329.7 \ (7) \\ 342.8 \ (7) \\ 348.4 \ (7) \\ 358.6 \ (7) \\ 441.5 \ (7) \\ 535.4 \ (7) \\ 649.5 \ (7) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.184 - 15.216		2.75(12)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 2.03 \ (5) \\ 3.42 \ (7) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	1.17 (3)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.353 (11)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$ \begin{array}{c} \gamma_{5,4}(\mathrm{Pb}) \\ \gamma_{4,3}(\mathrm{Pb}) \\ \gamma_{7,4}(\mathrm{Pb}) \\ \gamma_{3,2}(\mathrm{Pb}) \\ \gamma_{7,3}(\mathrm{Pb}) \\ \gamma_{4,2}(\mathrm{Pb}) \end{array} $	$\begin{array}{c} 211.52 (2) \\ 233.37 (2) \\ 252.71 (2) \\ 277.37 (2) \\ 486.08 (2) \\ 510.74 (2) \end{array}$	$\begin{array}{c} 0.38 \ (2) \\ 0.51 \ (2) \\ 1.26 \ (3) \\ 10.1 \ (5) \\ 0.055 \ (4) \\ 24.8 \ (2) \end{array}$	$\begin{array}{c} M1{+}3\%E2\\ [M1{+}33\%E2]\\ [M1{+}14\%E2]\\ [M1{+}0.04\%E2]\\ [M1]\\ [M1{+}0.25\%E2]\end{array}$	$\begin{array}{c} 1.096 \ (17) \\ 0.66 \ (3) \\ 0.616 \ (15) \\ 0.529 \ (8) \\ 0.1164 \ (17) \\ 0.1019 \ (16) \end{array}$	$\begin{array}{c} 0.18 \ (1) \\ 0.31 \ (1) \\ 0.78 \ (2) \\ 6.6 \ (3) \\ 0.049 \ (4) \\ 22.5 \ (2) \end{array}$

	${ m Energy}\ { m keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{2,1}(Pb)$	583.187(2)	86.7(3)	E2	0.0205(3)	85.0(3)
$\gamma_{18,4}(Pb)$	588.108(18)	0.06(1)	[M1]	0.0704(10)	0.06(1)
$\gamma_{12,3}(Pb)$	650.27(2)	0.043(5)	[M1]	0.0541 (8)	0.041~(5)
$\gamma_{13,3}(Pb)$	705.34(2)	0.023(4)	[M1]	0.0438(7)	0.022~(4)
$\gamma_{5,2}(Pb)$	722.26(2)	0.25~(4)	$\mathrm{M1}{+}8.8\%\mathrm{E2}$	0.0387~(7)	0.24(4)
$\gamma_{6,2}(Pb)$	748.87(2)	0.048(3)	[M1]	0.0375~(6)	0.046(3)
$\gamma_{7,2}(Pb)$	763.45(2)	1.86(2)	[M1+1.0%E2]	0.0354(5)	1.80(2)
$\gamma_{-1,1}(Pb)$	808.32(13)	0.030(7)			0.030(7)
$\gamma_{18,3}(Pb)$	821.48(2)	0.042(4)	M1	0.0295~(5)	0.041(4)
$\gamma_{-1,2}(Pb)$	835.90(11)	0.076(11)			0.076(11)
$\gamma_{3,1}(Pb)$	860.53(2)	12.7(1)	[M1+0.02%E2]	0.0262(4)	12.4(1)
$\gamma_{20,3}(Pb)$	883.59(2)	0.032(3)	[M1]	0.0244~(4)	0.031(3)
$\gamma_{12,2}(Pb)$	927.64(2)	0.131(7)	[M1]	0.0216 (3)	0.128(7)
$\gamma_{13,2}(Pb)$	982.70(2)	0.208(8)	[M1]	0.0186(3)	0.204(8)
$\gamma_{4,1}(Pb)$	1093.90(2)	0.44(1)	E2	0.00560 (8)	0.44(1)
$\gamma_{19,2}(Pb)$	1126.24(2)	0.005(2)	${ m E1}$	0.00203 (3)	0.005(2)
$\gamma_{20,2}(Pb)$	1160.96(2)	0.011(3)	[M1]	$0.01214\ (17)$	0.011(3)
$\gamma_{21,2}(Pb)$	1185.57(2)	0.017(5)	[M1]	$0.01151 \ (17)$	0.017~(5)
$\gamma_{23,2}(Pb)$	1283.04(2)	0.052(5)	[M1]	0.00943(14)	0.052~(5)
$\gamma_{8,1}(Pb)$	1380.89(2)	0.007(3)	[M1]	0.00785(11)	0.007~(3)
$\gamma_{17,1}(Pb)$	1647.32(2)	0.002(1)	[M1]	0.00518 (8)	0.002(1)
$\gamma_{20,12}(Pb)$	1744.12(2)	0.002(1)	[M1]	0.00457~(7)	0.002(1)
$\gamma_{1,0}(Pb)$	2614.511 (10)	100	E3	0.00246~(4)	99.755(4)

5 References

L.G.ELLIOTT, R.L.GRAHAM, J.WALKER, J.I.WOLFSON, Phys. Rev. 93 (1954) 356 (K ICC) D.L.BAULCH, H.A.DAVID, J.F.DUNCAN, Australian J. Chem. 10 (1957) 85 (Half-life) E.M.KRISIUK, A.G.SERGEEV, G.D.LATYSHEV, K.I.ILIN, V.I.FADEEV, Sov. Phys. - JETP 6 (1958) 880 (Multipolarities) V.D.VOROBEV, K.I.ILIN, T.I.KOLCHINSKAIA, G.D.LATYSHEV, A.G.SERGEEV, IU.N.TROFIMOV, V.I.FADEEV, Bull. Rus. Acad. Sci. Phys. 21 (1958) 956 (Conversion electron emission probabilities) G.T.EMERY, W.R.KANE, Phys. Rev. 118 (1960) 755 (Beta-ray emission probabilities, gamma-ray emission probabilities) G.Schupp, H.Daniel, G.W.Eakins, E.N.Jensen, Phys. Rev. 120 (1960) 189 (Beta-ray emission probabilities, gamma-ray emission probabilities) L.SIMONS, M.BRENNER, L.KÄLD, K-E.NYSTEN, E.SPRING, Soc. Sci. Fennica Comm. Phys. Math. 26 (1961) part 6 (Gamma-ray emission probabilities) H.DANIEL, G.LÜHRS, Z. Phys. 176 (1963) 30 (Conversion electron emission probabilities, K ICC, Multipolarities) H.OSTERTAG, K.H.LAUTERJUNG, Z. Phys. 199 (1967) 25 $\,$ (Beta-ray emission probabilities) N.O.LASSEN, N.HORNSTRUP, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 36 (1967) No. 4 (Half-life) J.S.LARSEN, B.C.JORGENSEN, Z. Phys. 227 (1969) 65 (Gamma-ray emission probabilities) G.Aubin, J.Barrette, G.Lamoureux, S.Monaro, Nucl. Instrum. Methods 76 (1969) 85 (Gamma-ray emission probabilities)

A.PAKKANEN, J.KANTELE, P.SUOMINEN, Z. Phys. 218 (1969) 273 (Gamma-ray emission probabilities) V.H.MUNDSCHENK, Radiochim. Acta 14 (1970) 72 (Half-life) R.ACKERHALT, P.ELLERBE, G.HARBOTTLE, Radiochem. Radioanal. Lett. 8 (1971) 75 (Half-life) P.JAGAM, D.S.MURTY, Nucl. Phys. A197 (1972) 540 (Gamma-ray emission probabilities, mixing ratio) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) M.Kortelahti, A.Pakkenan, J.Kantele, Nucl. Phys. A240 (1975) 87 (Gamma-ray emission probabilities, mixing ratio) F.T.AVIGNONE, S.M.BLANKENSHIP, W.W.TRUE, Phys. Rev. C14 (1976) 267 (Mixing ratio) R.J.GEHRKE, R.G.HELMER, R.C.GREENWOOD, Nucl. Instrum. Methods 147 (1977) 405 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) F.T.AVIGNONE, A.G.SCHMIDT, Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) L.I.GOVOR, A.M.DEMIDOV, V.A.KURKIN, Bull. Rus. Acad. Sci. Phys. 54 (1990) 147 (Mixing ratio) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) O.EL SAMAD, J.DALMASSO, G.BARCI-FUNEL, G.ARDISSON, Radiochim. Acta 62 (1993) 65 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) M.Schramm, K.H.Maier, M.Rejmund, L.D.Wood, N.Roy, A.Kuhnert, A.Aprahamian, J.Becker, M.Brink-MAN, D.J.DECMAN, E.A.HENRY, R.HOFF, D.MANATT, L.G.MANN, R.A.MEYER, W.STOEFFL, G.L.STRUBLE, T.-F.WANG, Phys. Rev. C56 (1997) 1320 (Nuclear levels, Spin and Parity) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K-x ray) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energy) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) S.I.VASILEV, K.YA.GROMOV, A.A.KLIMENKO, ZH.K.SAMATOV, A.A.SMOLNIKOV, V.I.FOMINYKH, V.G.CHUMIN, Instrum. Exp. Tech. 49 (2006) 34 (Crossover gammas) M.J.MARTIN, Nucl. Data Sheets 108 (2007) 1583 (Nuclear structure, nuclear level energies)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.161	(7)	\min
Q_{β^-}	:	3976	(8)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	bility 00	Nature	$\log ft$
$\beta_{0,10}^{-} \\ \beta_{0,9}^{-} \\ \beta_{0,8}^{-} \\ \beta_{0,7}^{-}$	$587 (8) \\615 (8) \\906 (8) \\1071 (8)$	$0.420 \\ 0.10 \\ 0.645 \\ 0.70$	(22) (3) (16) (9)	1st forbidden 1st forbidden	$6.3 \\ 6.5$
$\beta_{0,6}^{-}$	1451 (8)	0.070	(15)	Allowed	8
$\beta_{0,5}$ $\beta_{0,4}^-$	1515(8) 1660(8)	$0.031 \\ 0.32$	(16) (11)	1st forbidden unique 1st forbidden	$9.2 \\ 7.5$
$\beta_{0,3}^{-0,4}$	1827(8)	97.70	(15)	1st forbidden	5.2
$\beta_{0,2}^-$	1944(8)	< 0.1		Allowed	> 8.3

3 Electron Emissions

		Energy keV	Electrons per 100 disint.]	Energy keV
e_{AL}	(Pb)	5.34 - 15.82	13.23(15)		
eak	(Pb)		0.77(9)		
	KLĹ	56.028 - 61.669	}		
	KLX	68.181 - 74.969	}		
	KXY	80.3 - 88.0	}		
$ec_{3,2 K}$	(Pb)	29.22 (8)	17.51 (48)		
$ec_{3,2 L}$	(Pb)	101.36 - 104.18	3.39(9)		
$ec_{3,2}$ M	(Pb)	113.37 - 114.74	0.799(20)		
$ec_{3,2 N}$	(Pb)	116.33 - 117.08	0.200(5)		
$ec_{4,2 K}$	(Pb)	195.61 (14)	0.057~(28)		
$ec_{2,1 K}$	(Pb)	377.13 (8)	2.34(7)		
$ec_{2,1 L}$	(Pb)	449.27 - 452.09	0.786(23)		
$ec_{2,1 M}$	(Pb)	461.28 - 462.65	0.197~(6)		
$ec_{2,1 N}$	(Pb)	464.24 - 464.99	0.0497~(15)		
$ec_{3,1 \text{ K}}$	(Pb)	494.35 (8)	0.0491 (40)		
$ec_{3,1 L}$	(Pb)	566.49 - 569.31	0.0100(8)		
$ec_{8,3}$ K	(Pb)	832.43 (14)	0.01142 (33)		
$ec_{1,0 K}$	(Pb)	1478.94 (5)	0.2340(42)		
$ec_{1,0 \ L}$	(Pb)	1551.08 - 1553.90	0.0396~(6)		
$\beta_{0,10}^{-}$	max:	587 (8)	0.420(22)	avg:	177.8(28)
$\beta_{0,9}^{-}$	max:	615 (8)	0.10(3)	avg:	187.4(28)
$\beta_{0,8}$	max:	906 (8)	0.645(16)	avg:	292.9 (30)

		Ene ke	rgy V	Electrons per 100 disint.]	Energy keV
$\beta_{0.7}^{-}$	max:	1071	(8)	0.70(9)	avg:	355.5(31)
$\beta_{0.6}^{-}$	max:	1451	(8)	0.070(15)	avg:	505.9(33)
$\beta_{0.5}^{}$	max:	1515	(8)	0.031(16)	avg:	518.1(31)
$\beta_{0.4}^{-}$	max:	1660	(8)	0.32(11)	avg:	591.2(33)
$\beta_{0,3}^{-}$	max:	1827	(8)	97.70(15)	avg:	660.0(34)
$\beta_{0,2}^{-}$	max:	1944	(8)	< 0.1	avg:	709.0(34)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		8.04 (14)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		5.85 (10) 9.84 (16)	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	3.36 (8)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	1.016 (28)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{3,2}(Pb)$	117.224 (7)	100	$\mathrm{E1}$	0.295(5)	77.22 (27)
$\gamma_{4,2}(Pb)$	284.04 (23)	0.21(10)	[M1]	0.495(7)	0.14(7)
$\gamma_{5,3}(Pb)$	311.5(3)	0.031(15)	[E2]	0.1034(15)	0.028(14)
$\gamma_{6,3}(Pb)$	375.5(2)	0.070(15)			0.070(15)
$\gamma_{2,1}(Pb)$	465.128(24)	100	E2	0.0350(5)	96.62(5)
$\gamma_{-1,1}(Pb)$	469.7(3)	0.12(3)			0.12(3)
$\gamma_{3,1}(Pb)$	582.4(2)	0.374(29)	[M2]	0.200(3)	0.312(24)
$\gamma_{4,1}(Pb)$	748.3(2)	0.080(21)	[E1]	0.00428(6)	0.080(21)
$\gamma_{7,3}(Pb)$	755.6(3)	0.114(21)	[M1]	0.0366~(6)	0.11(2)
$\gamma_{-1,2}(Pb)$	860.5(3)	0.26(4)			0.26(4)
$\gamma_{7,2}(Pb)$	873.5(4)	0.59(8)	[E1]	0.00320(5)	0.59(8)
$\gamma_{-1,3}(Pb)$	890.0(4)	0.12(3)			0.12(3)
$\gamma_{-1,4}(Pb)$	902.8 (4)	0.10(2)			0.10(2)
$\gamma_{8,3}(Pb)$	920.43 (11)	0.645(15)	[M1]	0.0220(3)	0.631(15)
$\gamma_{-1,5}(Pb)$	970.3	0.054(15)	- •		0.054(15)

ANL /F.G. Kondev

Tl - 209

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{10,3}(Pb)$ $\gamma_{9,2}(Pb)$ $\gamma_{1,0}(Pb)$ $\gamma_{-1,6}(Pb)$ $\gamma_{-1,7}(Pb)$ $\gamma_{-1,8}(Pb)$ $\gamma_{-1,9}(Pb)$ $\gamma_{3,0}(Pb)$ $\gamma_{4,0}(Pb)$	$\begin{array}{c} 1239.66 \ (11) \\ 1329.29 \ (16) \\ 1566.93 \ (5) \\ 1661.1 \ (5) \\ 1673.2 \ (4) \\ 1781.7 \ (5) \\ 2005.3 \ (2) \\ 2032.1 \ (5) \\ 2149 \ (1) \\ 2315.80 \ (21) \\ 2548 \ 2 \end{array}$	$\begin{array}{c} 0.420 \ (22) \\ 0.10 \ (3) \\ 100 \\ 0.10 \ (2) \\ 0.48 \ (4) \\ 0.04 \ (2) \\ 0.020 \ (5) \\ 0.001 \\ 0.015 \ (5) \\ 0.0289 \ (21) \\ 0.015 \ (6) \end{array}$	E2 [M4] [E3]	0.00294 (5) 0.01529 (22) 0.00292 (4)	$\begin{array}{c} 0.420 \ (22) \\ 0.10 \ (3) \\ 99.707 \ (5) \\ 0.10 \ (2) \\ 0.48 \ (4) \\ 0.04 \ (2) \\ 0.020 \ (5) \\ 0.001 \\ 0.015 \ (5) \\ 0.0288 \ (21) \\ 0.015 \ (6) \end{array}$

5 References

F.HAGEMANN, Phys. Rev. 79 (1950) 534 (Half-life) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205 (Log ft) T.Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.Norseev, V.G.Chumin, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85 (Gamma-ray emission energies and probabilities) V.M.DATAR, C.V.K.BABA, S.N.ACHARYA, S.A.CHITAMBAR, H.C.JAIN, S.K.BHATTACHERJEE, C.S.WARKE, Phys. Rev. C22 (1980) 1787 (Beta emission energies and probabilities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray emission energies and probabilities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray emission energies and probabilities) M.C.KOUASSI, A.HACHEM, C.ARDISSON, G.ARDISSON, Nucl. Instrum. Methods Phys. Res. A280 (1989) 424 (Gamma-ray emission energies and probabilities) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Nuclear levels, multipolarities) O.EL SAMAD, J.DALMASSO, G.BARCI-FUNEL, G.ARDISSON, Radiochim. Acta 62 (1993) 65 (Gamma-ray emission energies and probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-shell fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies) G.Ardisson, V.Barci, O.El Samad, Phys. Rev. C57 (1998) 612 (Gamma-ray emission energies and probabilities) K.YA.GROMOV, SH.R.MALIKOV, T.M.MUMINOV, ZH.K.SAMATOV, ZH.SEHREHEHTEHR, V.I.FOMINYKH, V.V. TSUPKO-SITNIKOV, V.G.CHUMIN, Proc. 49th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Dubna (1999) 117 (Gamma-ray emission energies and probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K X-ray energies and relative emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities) K.YA.GROMOV, S.A.KUDRYA, SH.R.MALIKOV, T.M.MUMINOV, ZH.K.SAMATOV, ZH.SEREETER, V.I.FOMINYKH, V.G.CHUMIN, Bull. Rus. Acad. Sci. Phys. 64 (2000) 1770 (Gamma-ray emission energies and probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

45

R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75 (2003) 35

(K and L X-ray energies)

V.G.CHUMIN, V.I.FOMINYKH, K.YA.GROMOV, A.A.KLIMENKO, S.A.KUDRYA, A.A.SMOLNIKOV, S.I.VASILIEV, Proc. 53rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Moscow (2003) 105

(Gamma-ray emission energies and probabilities)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICCs)

C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97

(SAISINUC software)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	1.30	(3)	\min
Q_{β^-}	:	5482	(12)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,11} \\ \beta_{0,10} \\ \beta_{0,9} \\ \beta_{0,8} \\ \beta_{0,7} \\ \beta_{0,3} \\ \beta_{0,2} \end{array}$	$\begin{array}{c} 1380 \ (12) \\ 1603 \ (12) \\ 1860 \ (12) \\ 2024 \ (12) \\ 2413 \ (12) \\ 4290 \ (12) \\ 4386 \ (12) \end{array}$	~ 2 ~ 7 ~ 24 ~ 10 ~ 10 ~ 31 ~ 13	Allowed 2nd forbidden unique Allowed Allowed	$ \begin{array}{c} 6.2 \\ 5.9 \\ 5.6 \\ 6.1 \\ 6.4 \\ 6.9 \\ 7.3 \\ \end{array} $

3 Electron Emissions

		Energy	Electrons	Ε	nergy
		$\rm keV$	per 100 disint.		keV
есз 2 к	(Pb)	~ 9	~ 16		
ec _{3.2} L	(Pb)	81.1392 - 83.9648	~ 12		
$ec_{3,2}$ M	(Pb)	93.1493 - 94.5160	~ 3.2		
$ec_{2,1 \text{ K}}$	(Pb)	208 (3)	5.3(7)		
$ec_{2,1 L}$	(Pb)	280.1392 - 282.9648	3.15(42)		
$ec_{2,1 M}$	(Pb)	292.1493 - 293.5160	0.81(11)		
$ec_{2,1 N}$	(Pb)	295.1064 - 295.8637	0.205(27)		
$ec_{1,0 K}$	(Pb)	711.6 (3)	0.803(12)		
$ec_{1,0 L}$	(Pb)	783.7 - 786.6	$0.1746\ (25)$		
$ec_{1,0 M}$	(Pb)	795.7 - 797.1	0.0421~(6)		
$ec_{1,0 N}$	(Pb)	798.7 - 799.5	0.01066 (16)		
$ec_{4,1 \ K}$	(Pb)	982 (20)	0.022(9)		
$ec_{-1,1 L}$	(Pb)	67.1392 - 69.9648	~ 20		
ес _{-1,1 М}	(Pb)	79.1493 - 80.5160	~ 6		
$ec_{-1,2 \text{ K}}$	(Pb)	268 (10)	0.88~(45)		
$ec_{-1,2 L}$	(Pb)	340.1392 - 342.9648	0.15(8)		
$ec_{-1,2}$ M	(Pb)	352.1493 - 353.5160	0.035~(18)		
$ec_{-1,3 \text{ K}}$	(Pb)	294 (10)	0.55~(37)		
$ec_{-1,3 L}$	(Pb)	366.1392 - 368.9648	0.09~(6)		
$ec_{-1,3}$ M	(Pb)	378.1493 - 379.5160	0.022(15)		
$\beta_{0,11}^{-}$	max:	1380 (12)	~ 2	avg:	477(13)
$\beta_{0.10}^{-}$	max:	1603 (12)	${\sim}7$	avg:	568(14)
$\beta_{0.9}^{-}$	max:	1860 (12)	~ 24	avg:	674(10)
$\beta_{0.8}^{-}$	max:	2024 (12)	~ 10	avg:	743 (10)
$\beta_{0,7}^{5,0}$	max:	2413 (12)	~ 10	avg:	907 (7)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

		Ene ke	ergy V	Electrons per 100 disint.	Η	Energy keV
$\begin{array}{c} \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \end{array}$	max: max:	4290 4386	(12) (12)	~ 31 ~ 13	avg: avg:	$\begin{array}{c} 1721 \ (11) \\ 1763 \ (5) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

_		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.217			
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pb) (Pb)	$72.805 \\ 74.97$		$\begin{array}{c} 7 \ (4) \\ 11 \ (6) \end{array}$	$K\alpha$
$\begin{array}{c} \mathrm{XK}\beta_3\\ \mathrm{XK}\beta_1\\ \mathrm{XK}\beta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	3.8 (19)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	1.1(6)	$\mathbf{K}\beta_{2}^{\prime}$

4.2 Gamma Transitions and Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{-1,1}(Pb)$	83 (30)	30 (6)	[E2]	~ 14	~ 1.98 (40)
$\gamma_{3,2}(Pb)$	97(30)	40(20)	M1+E2	~ 9	$\sim 4 (2)$
$\gamma_{2,1}(Pb)$	296(3)	89(11)	E2	0.120(5)	79(10)
$\gamma_{-1,2}(Pb)$	356(10)	5.0(25)	[M1]	0.270(22)	4(2)
$\gamma_{-1,3}(Pb)$	382(10)	3.7(24)	[M1]	0.223(17)	3(2)
$\gamma_{11,9}(Pb)$	480 (36)	2(1)			2(1)
$\gamma_{-1,4}(\text{Pb})$	670(20)	2(1)			2(1)
$\gamma_{1,0}(Pb)$	799.6(3)	100	E2	0.01042(31)	98.969(30)
$\gamma_{7,5}(Pb)$	860(30)	6.9(20)			6.9(20)
$\gamma_{-1,5}(\text{Pb})$	910 (30)	3(2)			3(2)
$\gamma_{4,1}(Pb)$	1070(20)	11.9(49)	[E1]	0.00222(7)	11.9(49)
$\gamma_{5,2}(Pb)$	1110(20)	6.9(20)			6.9(20)
$\gamma_{9,6}(Pb)$	1210 (20)	16.8(40)			16.8(40)
$\gamma_{6,2}(Pb)$	1310 (20)	20.8(49)			20.8(49)
$\gamma_{5,1}(Pb)$	1410 (20)	4.9(20)			4.9 (20)
$\gamma_{-1,6}(Pb)$	1490 (20)	2(1)			2(1)
$\gamma_{-1,7}(Pb)$	1540(30)	2(1)			2(1)
$\gamma_{8,4}(Pb)$	1590(30)	2(1)			2(1)
$\gamma_{-1,8}(Pb)$	1650 (30)	2(1)			2(1)
$\gamma_{10,4}(\text{Pb})$	2010 (30)	6.9 (20)			6.9 (20)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\begin{array}{l} \gamma_{-1,9}(\mathrm{Pb}) \\ \gamma_{7,1}(\mathrm{Pb}) \\ \gamma_{8,2}(\mathrm{Pb}) \\ \gamma_{9,3}(\mathrm{Pb}) \end{array}$	$\begin{array}{c} 2090 \ (30) \\ 2280 \ (12) \\ 2360 \ (30) \\ 2430 \ (30) \end{array}$	$\begin{array}{c} 4.9 \ (20) \\ 3 \ (2) \\ 7.9 \ (30) \\ 8.9 \ (30) \end{array}$			$\begin{array}{c} 4.9 \ (20) \\ 3 \ (2) \\ 7.9 \ (30) \\ 8.9 \ (30) \end{array}$

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweildler, Rev. Mod. Phys. 3 (1931) 427

(Half-life)

A.V.KOGAN, L.I.RUSINOV, Sov. Phys. - JETP 5 (1957) 365

 $({\rm Half\text{-}life,\ neutron\ emission})$

G.STETTER, Report TID-14880 (1961)

(Neutron emission probability)

 $\operatorname{P.Weinzierl}, \operatorname{E.Ujlaki}, \operatorname{G.Preinreich}, \operatorname{G.Eder}, \operatorname{Phys. Rev.} 134 (1964) B257$

(Half-life, beta emission energies and probabilities, gamma-ray energies and emission probabilities)

B.HARMATZ, Nucl. Data Sheets 34 (1981) 735

(Spin, parity, energy level, beta and gamma probabilities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527

(Atomic data)

I.M.Band, M.B.Trzhaskovskaya, C.W.Nestor Jr., P.O.Tikkanen, S.Raman, At. Data Nucl. Data Tables 81 (2002) 1

(Theoretical ICC)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129

 (\mathbf{Q})

E.BROWNE, Nucl. Data Sheets 99 (2003) 483

(Spin, parity, energy level, beta and gamma probabilities)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.277	(15)	h
Q_{β^-}	:	644.0	(12)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} \text{Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,0}^-$	644.0 (12)	100	1st forbidden non-unique	5.54

3 Electron Emissions

		Energy keV	Electrons per 100 disint.		Energy keV
$\beta_{0,0}^-$	max:	644.0 (12)	100	avg:	197.35 (42)

4 References

R.S.KRISHNAN, E.A.NAHUM, Proc. Cambridge Phil. Soc. 36 (1940) 490 (Half-life) K.FAJANS, A.F.VOIGT, Phys. Rev. 60 (1941) 619 (Half-life) W.MAURER, W.RAMM, Z. Phys. 119 (1942) 602 (Half-life) A.POULARIKAS, R.W.FINK, Phys. Rev. 115 (1959) 989 (Half-life) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205 (log ft values) B.I.PERSSON, I.PLESSER, J.W.SUNIER, Nucl. Phys. A167 (1971) 470 (Half-life) H.BEHRENS, M.KOBELT, W.G.THIES, H.APPEL, Z. Phys. 252 (1972) 349 (Half-life) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 $\,$ (Nuclear levels) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

Pb - 209

Pb-210

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	22.23	(12)	У
Q_{β^-}	:	63.5	(5)	keV
Q_{lpha}	:	3792	(20)	keV
β^{-}	:	100		%
α	:	1.9	(4)	$ imes 10^{-6}$ %

2 β^- Transitions

	Energy keV	Proba × 1	ability 100	Nature	$\log ft$
$\frac{\beta_{0,1}^{-}}{\beta_{0,0}^{-}}$	17.0(5) 63.5(5)	80.2 19.8	(13) (13)	1st forbidden 1st forbidden	$5.5 \\ 7.8$

3 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,0}$	3720 (20)	0.0000019 (4)

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Bi)	5.3 - 10.7	36.0(9)	
$e_{AK} e_{1,0 L} e_{1,0 M} e_{1,0 N}$	(Bi) (Bi) (Bi) (Bi)	30.152 - 33.120 42.540 - 43.959 45.601 - 46.382	$58 (1) \\13.65 (25) \\3.50 (6)$	
$\beta_{0,1}^{-}$ $\beta_{0,0}^{-}$	max: max:	$\begin{array}{ccc} 17.0 & (5) \\ 63.5 & (5) \end{array}$	80.2 (13) 19.8 (13)	avg: 4.3 (1) avg: 16.3 (1)

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$	Photons per 100 disint.
XL	(Bi)	9.4207 - 15.7084	22.0(5)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Bi)$	46.539(1)	80.2 (13)	M1	17.86(25)	4.252(40)

5.2 Gamma Transitions and Emissions

6 References

I.CURIE, J. Phys. Radium 10 (1929) 388 (Half-life) P.CURIE, I.CURIE, J. Phys. Radium 10 (1929) 385 (Half-life) M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) F.WAGNER, Report ANL-4490, Argonne National Laboratory (1950) 5 (Half-life) D.K.BUTT, W.D.BRODIE, Proc. Phys. Soc. (London) 64A (1951) 791 (Gamma-ray intensity) C.S.WU, F.BOEHM, E.NAGEL, Phys. Rev. 91 (1953) 319 (Gamma-ray intensity) P.E.DAMON, R.R.EDWARDS, Phys. Rev. 95 (1954) 1698 (Gamma-ray intensity) J.TOBAILEM, J. Phys. Radium 16 (1955) 235 (Half-life) W.STANNERS, M.A.S.Ross, Proc. Phys. Soc. 69A (1956) 836 (Beta intensity) J.TOUSSET, Compt. Rend. Acad. Sci. (Paris) 245 (1957) 1617 (Beta intensity) W.F.MERRITT, P.J.CAMPION, R.C.HAWKINGS, Can. J. Phys. 35 (1957) 16 (Half-life) R.W.FINK, Phys. Rev. 106 (1957) 266 (Gamma-ray intensity) I.Y.KRAUSE, Z. Phys. 152 (1958) 586 (Gamma-ray intensity) J.TOUSSET, J. Phys. Radium 19 (1958) 39 (Beta intensity) B.D.PATE, D.C.SANTRY, L.YAFFE, Can. J. Phys. 37 (1959) 1000 (Half-life) G.HABORTTLE, J. Inorg. Nucl. Chem. 12 (1959) 6 (Half-life) W.R.ECKELMANN, W.S.BROECKER, J.L.KULP, Phys. Rev. 118 (1960) 698 (Half-life) M.Nurmia, P.Kauranen, M.Karras, A.Shivola, A.Isola, G.Graeffe, A.Lyyjynen, Nature 190 (1961) 427 (Alpha branching ratio) P.KAURANEN, Ann. Acad. Sci. Fenn., Ser. A, VI 96 (1962) (Alpha branching ratio) L.IMRE, G.FABRY, I.DEZSI, Nucl. Sci. Abstr. 17 (1963) 4186 (Half-life) G.K.WOLF, F.Lux, H.J.BORN, Radiochim. Acta 3 (1964) 206 (Alpha branching ratio) H.RAMTHUN, Z. Naturforsch. 19a (1964) 1064 (Half-life) H.R.VON GUNTEN, A.WYTTENBACH, H.DULAKAS, J. Inorg. Nucl. Chem. 29 (1967) 2826 (Half-life) A.HÖHNDORF, Z. Naturforsch. 24a (1969) 612 (Half-life)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

K.YA.GROMOV, B.M.SABIROV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray intensity) R.J.GEHRKE, R.A.LOKKEN, Nucl. Instrum. Methods 97 (1971) 219 (L x-rays) R.G.HELMER, A.J.CAFFREY, R.J.GEHRKE, R.C.GREENWOOD, Nucl. Instrum. Methods 188 (1981) 671 (Gamma-ray energy) K.DEBERTIN, W.PESSARA, Int. J. Appl. Radiat. Isotop. 34 (1983) 515 (Gamma-ray intensity) D.METHA, B.CHAND, S.SINGH, M.L.GARG, N.SINGH, T.S.CHEEMA, P.N.TREHAN, Nucl. Instrum. Methods Phys. Res. A260 (1987) 157 (L x-rays) R.G.HELMER, M.A.LEE, Nucl. Data Sheets 61 (1990) 93 (Spin, parity, level energy) U.SCHÖTZIG, Nucl. Instrum. Methods Phys. Res. A286 (1990) 523 (Gamma-ray intensity) Y.HINO, Y.KAWADA, Nucl. Instrum. Methods Phys. Res. A286 (1990) 543 (Gamma-ray intensity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (Spin, parity, level energy) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energy) G.A.RECH, E.BROWNE, I.D.GOLDMAN, F.J.SCHIMA, E.B.NORMAN, Phys. Rev. C65 (2002) 057302 (Half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) E.BROWNE, Nucl. Data Sheets 99 (2003) 483 (Spin, parity, level energy) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q})

Pb - 210

Pb - 211

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	36.1	(2)	\min
Q_{β^-}	:	1367	(6)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,10}^{-}$	96(6)	0.0172(15)	1st forbidden non-unique	5.93
$egin{array}{c} eta_{0,9} \ eta_{0,8}^{-} \end{array}$	133(6) 171(6)	$\begin{array}{c} 0.0009 & (3) \\ 0.019 & (4) \end{array}$		
$\beta_{0,7}^{-}$ $\beta_{0,6}^{-}$	257 (6) 263 (6)	$\begin{array}{ccc} 1.06 & (4) \\ 0.0047 & (7) \end{array}$	1st forbidden non-unique	5.58
$\beta_{0.5}^{-}$	286 (6)	0.0570(24)		
$\beta_{0,3}^{-,3}$	535(6)	6.32(9)	1st forbidden non-unique	5.73
$\beta_{0,2}$	600(6)	< 0.09	1st forbidden non-unique	>7.7
$\beta_{0,1}^{-}$	962~(6)	1.57 (9)	1st forbidden non-unique	7.21
$\beta_{0,0}^{-}$	1367~(6)	91.28(12)	1st forbidden non-unique	5.99

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Bi)	5.42 - 16.34	0.782(18)	
e_{AK}	(Bi)		0.029(4)	
	KLĹ	57.491 - 63.419	}	
	KLX	70.025 - 77.105	}	
	KXY	82.53 - 90.52	}	
ес _{7.4 К}	(Bi)	4.60 (5)	0.050(18)	
ec _{7.4} L	(Bi)	78.74 - 81.71	0.086(17)	
ес _{7,4 М}	(Bi)	91.13 - 92.55	0.0229(44)	
$ec_{3,2 L}$	(Bi)	48.916 - 51.885	0.389(21)	
$ec_{3,2}$ M	(Bi)	61.305 - 62.724	0.092(5)	
$ec_{3,2 N}$	(Bi)	64.366 - 65.147	0.0234(13)	
$ec_{1,0 K}$	(Bi)	314.308 (9)	0.36(3)	
$ec_{1,0 L}$	(Bi)	388.446 - 391.415	0.079(3)	
$ec_{1,0 M}$	(Bi)	400.835 - 402.254	0.0191(7)	
$ec_{3,1 \text{ K}}$	(Bi)	336.624 (15)	0.264(7)	
$ec_{3,1 L}$	(Bi)	410.76 - 413.73	0.0451 (12)	
$ec_{3,1 M}$	(Bi)	423.15 - 424.57	0.01059 (29)	
$ec_{7,1 \text{ K}}$	(Bi)	614.149 (25)	0.01833~(48)	
$ec_{2,0 K}$	(Bi)	676.154 (13)	0.0194(13)	
ес _{3,0 К}	(Bi)	741.458 (12)	0.080(8)	
$ec_{3,0}$ L	(Bi)	815.596 - 818.565	0.0136(14)	

		Ene ke	rgy V	Electrons per 100 disint.]	Energy keV
$\beta_{0,10}^{-}$	max:	96	(6)	0.0172(15)	avg:	25.0(17)
$\beta_{0.9}^{-}$	max:	133	(6)	0.0009(3)	avg:	35.0(17)
$\beta_{0.8}^{}$	max:	171	(6)	0.019(4)	avg:	45.6(18)
$\beta_{0.7}^{7}$	max:	257	(6)	1.06(4)	avg:	71.0(18)
$\beta_{0.6}^{\bullet,\bullet}$	max:	263	(6)	0.0047(7)	avg:	72.8(18)
$\beta_{0.5}^{-1}$	max:	286	(6)	0.0570(24)	avg:	79.7(19)
$\beta_{0.3}^{-1}$	max:	535	(6)	6.32(9)	avg:	159.8(21)
$\beta_{0,2}^{-2}$	max:	600	(6)	< 0.09	avg:	182.2(21)
$\beta_{0,1}^{-1}$	max:	962	(6)	1.57(9)	avg:	313.3 (23)
$\beta_{0,0}^{\underline{0,1}}$	max:	1367	(6)	91.28 (12)	avg:	470.9 (24)

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Bi)	9.4207 - 15.7084		0.494(13)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 0.228 \ (10) \\ 0.381 \ (17) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.130 (6)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } }	0.0399 (20)	$\mathrm{K}\beta_{2}^{\prime}$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c} \gamma_{3,2}({\rm Bi}) \\ \gamma_{7,4}({\rm Bi}) \\ \gamma_{5,2}({\rm Bi}) \\ \gamma_{7,2}({\rm Bi}) \\ \gamma_{2,1}({\rm Bi}) \\ \gamma_{1,0}({\rm Bi}) \\ \gamma_{3,1}({\rm Bi}) \\ \gamma_{8,2}({\rm Bi}) \\ \gamma_{10,2}({\rm Bi}) \\ \gamma_{4,1}({\rm Bi}) \\ \gamma_{4,1}({\rm Bi}) \end{array}$	$\begin{array}{c} 65.304 \ (18) \\ 95.13 \ (5) \\ 313.96 \ (4) \\ 342.83 \ (3) \\ 361.846 \ (16) \\ 404.834 \ (9) \\ 427.150 \ (15) \\ 429.65 \ (6) \\ 504.07 \ (6) \\ 609.55 \ (4) \\ 675 \ 81 \ (4) \end{array}$	$\begin{array}{c} 0.59 \ (3) \\ 0.19 \ (3) \\ 0.0268 \ (21) \\ 0.035 \ (6) \\ 0.049 \ (6) \\ 4.30 \ (7) \\ 2.13 \ (5) \\ 0.008 \ (3) \\ 0.0059 \ (8) \\ 0.033 \ (9) \\ 0.0181 \ (0) \end{array}$	$\begin{array}{c} M1\\ M1+74.3\%E2\\ [M1,E2]\\ [M1,E2]\\ M1+54.8\%E2\\ M1+0.05\%E2 \end{array}$	$\begin{array}{c} 6.61 \ (10) \\ 9.3 \ (4) \\ 0.20 \ (12) \\ 0.17 \ (11) \\ 0.122 \ (8) \\ 0.1783 \ (25) \end{array}$	$\begin{array}{c} 0.077 \ (4) \\ 0.018 \ (3) \\ 0.0268 \ (21) \\ 0.029 \ (4) \\ 0.042 \ (3) \\ 3.83 \ (6) \\ 1.81 \ (4) \\ 0.008 \ (3) \\ 0.0059 \ (8) \\ 0.033 \ (9) \\ 0.0181 \ (0) \end{array}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{l} \gamma_{7,1}({\rm Bi}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \\ \gamma_{10,1}({\rm Bi}) \\ \gamma_{4,0}({\rm Bi}) \\ \gamma_{5,0}({\rm Bi}) \\ \gamma_{6,0}({\rm Bi}) \\ \gamma_{7,0}({\rm Bi}) \\ \gamma_{8,0}({\rm Bi}) \\ \gamma_{9,0}({\rm Bi}) \\ \gamma_{10,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 704.675 \ (25) \\ 766.680 \ (13) \\ 831.984 \ (12) \\ 865.92 \ (6) \\ 1014.38 \ (4) \\ 1080.64 \ (4) \\ 1103.52 \ (20) \\ 1109.509 \ (23) \\ 1196.33 \ (5) \\ 1234.3 \ (4) \\ 1270.75 \ (6) \end{array}$	$\begin{array}{c} 0.492 \ (10) \\ 0.64 \ (4) \\ 3.60 \ (5) \\ 0.0046 \ (2) \\ 0.0173 \ (5) \\ 0.0121 \ (5) \\ 0.0047 \ (7) \\ 0.118 \ (3) \\ 0.0103 \ (4) \\ 0.0009 \ (3) \\ 0.0068 \ (12) \end{array}$	M1+0.05%E2 M1 M1+13.8%E2 [M1]	$\begin{array}{c} 0.0476 \ (7) \\ 0.0382 \ (6) \\ 0.028 \ (3) \end{array}$ $0.01472 \ (21)$	$\begin{array}{c} 0.47 \ (1) \\ 0.62 \ (4) \\ 3.50 \ (5) \\ 0.0046 \ (2) \\ 0.0173 \ (5) \\ 0.0121 \ (5) \\ 0.0047 \ (7) \\ 0.116 \ (3) \\ 0.0103 \ (4) \\ 0.0009 \ (3) \\ 0.0068 \ (12) \end{array}$

5 References

B.W.SARGENT, Can. J. Res. 17A (1939) 103 (Half-life) M.GIANNINI, D.PROSPERI, S.SCIUTI, Nuovo Cim. 25 (1962) 1227 (Gamma-ray emission energies and probabilities) S.E.VANDENBOSCH, C.V.K.BABA, P.R.CHRISTENSEN, O.B.NIELSEN, H.NORDBY, Nucl. Phys. 41 (1963) 482 (Gamma-ray emission energies and probabilities) C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 43 (1965) 383 (Gamma-ray emission energies and probabilities) R.O.MEAD, J.E.DRAPER, Phys. Rev. 139 (1965) B9 (Gamma-ray emission energies and probabilities) M.NURMIA, D.GIESSING, W.SIEVERS, L.VARGA, Ann. Acad. Sci. Fenn., Ser. A, VI 167 (1965) (Half-life) W.F.DAVIDSON, C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 45 (1967) 2295 (Gamma-ray emission energies and probabilities) J.DALMASSO, H.MARIA, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 822 (Gamma-ray emission energies and probabilities) CH.BRIANCON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray emission energies and probabilities) S.GORODETZKY, F.A.BECK, T.BYRSKI, A.KNIPPER, Nucl. Phys. A117 (1968) 208 (Gamma-ray emission energies and probabilities) W.D.HAMILTON, K.E.DAVIES, Nucl. Phys. A114 (1968) 577 (Gamma-ray emission energies and probabilities) E.F.DA SILVEIRA, A.G.DE PINHO, C.V.DE BARROS, Ann. Acad. Brasil. Ciênc. 43 (1971) 97 (Gamma-ray emission energies and probabilities) N.B.GOVE, M.J.MARTIN, Nucl. Data Tables A10 (1971) 205 (Log ft) K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK, Nukleonika 21 (1976) 935 (Gamma-ray emission energies and probabilities) M.M.HINDI, E.G.Adelberger, S.E.Kellogg, T.Murakami, Phys. Rev. C38 (1988) 1370 (Gamma-ray emission energies and probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-shell fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies) E.Schönfeld, G.Rodloff, Report PTB-6.11-1999-1, Braunschweig (1999) (K X-ray energies and relative emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities and energies)

Pb - 211

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337
(Q)
R.D.DESLATTES, E.G.KESSLER JR., P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 75 (2003) 35
(K and L X-ray energies)
E.BROWNE, Nucl. Data Sheets 103 (2004) 183
(Nuclear levels, multipolarities and mixing ratios)
C.DULIEU, M.M.BÉ, V.CHISTÉ, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) 97
(SAISINUC software)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202
(Theoretical ICCs)
F.G.KONDEV, S.LALKOVSKI, Nucl. Data Sheets 112 (2011) 707
(Nuclear levels)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	10.64	(1)	h
Q_{β^-}	:	569.9	(19)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	ability 100	Nature	$\log ft$
$\begin{array}{c} \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,0}^{-} \end{array}$	$\begin{array}{c} 154.6 \ (19) \\ 331.3 \ (19) \\ 569.9 \ (19) \end{array}$	4.99 81.7 13.3	(21) (11) (11)	1st forbidden 1st forbidden 1st forbidden	$5.35 \\ 5.18 \\ 6.74$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Bi)	5.35 - 10.66	21.4(7)	
$e_{\rm AK}$	(Bi) KLL KLX KXY	57.49 - 63.42 70.03 - 77.11 82.53 - 90.52	1.29 (15) } } }	
$\begin{array}{c} ec_{1,0} \ {\rm K} \\ ec_{1,0} \ {\rm L} \\ ec_{1,0} \ {\rm M} + \\ ec_{2,0} \ {\rm K} \\ ec_{2,0} \ {\rm L} \\ ec_{2,0} \ {\rm M} + \\ ec_{3,1} \ {\rm K} \\ ec_{3,1} \ {\rm L} \\ ec_{3,1} \ {\rm M} + \end{array}$	 (Bi) (Bi) (Bi) (Bi) (Bi) (Bi) (Bi) (Bi) (Bi) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 3.45 \ (16) \\ 0.61 \ (3) \\ 0.19 \ (1) \\ 30.9 \ (10) \\ 5.37 \ (17) \\ 1.73 \ (5) \\ 1.21 \ (20) \\ 0.21 \ (4) \\ 0.066 \ (11) \end{array}$	
$ \begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,0}^- \end{array} $	max: max: max:	$\begin{array}{rrrr} 154.6 & (19) \\ 331.3 & (19) \\ 569.9 & (19) \end{array}$	$\begin{array}{c} 4.99 \ (21) \\ 81.7 \ (11) \\ 13.3 \ (11) \end{array}$	avg: 41.1 (5) avg: 93.5 (6) avg: 171.7 (7)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(Bi)	9.42 - 15.709	13.8(6)	
$XK\alpha_2$	(Bi)	74.8157	10.07(18)	$K\alpha$
		Energy keV	Photons per 100 disint.	
--	----------------------	----------------------------	----------------------------	---------------------------
$XK\alpha_1$	(Bi)	77.1088	16.9(3)	}
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } 5.77 (13) }	$\mathrm{K}\beta_{1}^{'}$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } 1.77 (5) }	$\mathrm{K}\beta_{2}^{'}$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{l} \gamma_{1,0}({\rm Bi}) \\ \gamma_{2,1}({\rm Bi}) \\ \gamma_{3,2}({\rm Bi}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,1}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 115.183 \ (5) \\ 123.449 \ (5) \\ 176.640 \ (11) \\ 238.632 \ (2) \\ 300.089 \ (12) \\ 415.272 \ (11) \end{array}$	$\begin{array}{c} 4.87 \ (19) \\ 0.198 \ (19) \\ 0.157 \ (15) \\ 81.6 \ (11) \\ 4.66 \ (21) \\ 0.17 \ (3) \end{array}$	[M1] [E2] [M1] [M1] [M1] [M1]	$\begin{array}{c} 6.8 \ (1) \\ 2.80 \ (4) \\ 2.02 \ (3) \\ 0.872 \ (13) \\ 0.464 \ (7) \\ 0.192 \ (3) \end{array}$	$\begin{array}{c} 0.624 \ (23) \\ 0.052 \ (5) \\ 0.052 \ (5) \\ 43.6 \ (5) \\ 3.18 \ (14) \\ 0.144 \ (22) \end{array}$

5 References

D.G.E.MARTIN, H.O.W.RICHARDSON, Proc. Phys. Soc. 195A (1948) 287 (Beta-ray emission probabilities) H.VON BUTTLAR, Naturwissenschaften 39 (1952) 575 (Half-life) P.MARIN, G.R.BISHOP, H.HALBAN, Proc. Phys. Soc. (London) 66A (1953) 608 (Half-life) J.TOBAILEM, J.ROBERT, J. Phys. Radium 16 (1955) 115 (Half-life) E.M.KRISYOUK, A.G.SERVEYEV, G.D.LATYSHEV, V.D.VOROBYOV, Nucl. Phys. 4 (1957) 579 (Conversion-electron emission probabilities, multipolarity) K.O.NIELSEN, O.B.NIELSEN, M.A.WAGGONER, Nucl. Phys. 2 (1957) 476 (Conversion-electron emission probabilities, multipolarity) A.G.SERGEYEV, V.D.VOROLYEV, A.S.REMENNYI, T.J.KOLCHENSKAYA, G.D.LATYSHEV, Y.S.YEGOROV, Nucl. Phys. 9 (1959) 498 (Mixing Ratio) P.G.ROETLING, W.P.GANLEY, G.S.KLAIBER, Nucl. Phys. 20 (1960) 347 (Gamma-ray emission probabilities, multipolarity) M.GIANNINI, D.PROSPERI, S.SCIUTI, Nuovo Cim. 21 (1961) 430 (Gamma-ray emission probabilities) H.DANIEL, G.LÜHRS, Z. Phys. 176 (1963) 30 (Conversion-electron emission probabilities, multipolarity) D.KRPIC, R.STEPIC, M.BOGDANOVIC, M.MLADENOVIC, Fizika 1 (1969) 171 (Mixing Ratio) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities)

F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) F.T.AVIGNONE, A.G.SCHMIDT, Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-ray, LX-ray, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure and energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 20

(Theoretical ICC)

Pb - 212

Pb - 214

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	26.916	(44)	\min
Q_{β^-}	:	1019	(11)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.9}^{-}$	180 (11)	2.762(22)	Allowed	4.5
$\beta_{0.8}^{-}$	222 (11)	0.0196(27)	Allowed	6.9
$\beta_{0.7}^{-}$	485(11)	1.047(17)	1st forbidden	6.2
$\beta_{0.5}^{-}$	667~(11)	46.52(37)	1st forbidden	5.1
$\beta_{0.4}^{-}$	729(11)	41.09(39)	1st forbidden	5.2
$\beta_{0,0}^{-}$	1019(11)	9.2(7)	1st forbidden	6.3

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	En k	ergy æV
e_{AL}	(Bi)	5.3 - 16.4	19.8(3)		
eak	(Bi)		0.80(9)		
	$\tilde{\mathrm{KLL}}$	57.49 - 63.42	}		
	KLX	70.02 - 77.10	}		
	KXY	82.45 - 90.52	}		
$ec_{1,0 L}$	(Bi)	36.8400 - 39.8089	10.39(31)		
$ec_{1,0 M}$	(Bi)	49.2284 - 50.6479	2.46(8)		
$ec_{1,0 N}$	(Bi)	52.2893 - 53.0704	0.641~(20)		
$ec_{4,1 \text{ K}}$	(Bi)	151.471 (3)	5.26(16)		
$ec_{4,1 L}$	(Bi)	225.610 - 228.578	0.908(28)		
$ec_{4,1 M}$	(Bi)	237.998 - 239.417	0.214(7)		
$ec_{4,1 N}$	(Bi)	241.059 - 241.840	0.0560(17)		
$ec_{3,0 K}$	(Bi)	168.34 (3)	0.32(1)		
$ec_{3,0 L}$	(Bi)	242.48 - 245.45	0.0551 (17)		
$ec_{3,0}$ M	(Bi)	254.87 - 256.29	0.01298 (38)		
$ec_{4,0 K}$	(Bi)	204.698 (2)	7.22(23)		
$ec_{4,0 L}$	(Bi)	278.836 - 281.805	1.291 (40)		
$ec_{4,0}$ M	(Bi)	291.225 - 292.644	0.305(10)		
$ec_{4,0 N}$	(Bi)	294.286 - 295.067	0.0797~(25)		
$ec_{5,0 K}$	(Bi)	261.406 (2)	9.26(29)		
$ec_{5,0 L}$	(Bi)	335.544 - 338.513	1.584(46)		
ec _{5,0 M}	(Bi)	347.933 - 349.352	0.373(11)		
$ec_{5,0 N}$	(Bi)	350.994 - 351.775	0.0975 (29)		
$\beta_{0,9}^-$	max:	180 (11)	2.762(22)	avg:	50(3)
$\beta_{0,8}^{-}$	max:	222 (11)	0.0196(27)	avg:	62(3)

		Ene ke	ergy V	Electrons per 100 disint.	E	nergy keV
$ \begin{array}{c} \beta_{0,7}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,0}^{-} \end{array} $	max: max: max: max:	485 667 724 1019	(11) (11) (11) (11)	$\begin{array}{c} 1.047 \ (17) \\ 46.52 \ (37) \\ 41.09 \ (39) \\ 9.2 \ (7) \end{array}$	avg: avg: avg: avg:	145 (4) 207 (4) 227 (4) 337 (4)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Bi)	9.42 - 16.36		12.42(22)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		6.26 (12) 10.47 (20)	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	3.59(9)	$\mathrm{K}\beta_1'$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } }	1.10 (4)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Bi)$	53.2275(21)	14.71(42)	M1+E2	12.88(39)	1.060(7)
$\gamma_{-1,0}(\mathrm{Bi})$	107.22 (9)	0.0068(14)			0.0068(14)
$\gamma_{-1,1}(Bi)$	137.45(30)	0.045(18)			0.045~(18)
$\gamma_{-1,2}(Bi)$	141.3~(6)	0.027~(14)			0.027(14)
$\gamma_{-1,3}(Bi)$	170.07~(6)	0.0146(27)			0.0146(27)
$\gamma_{3,2}(Bi)$	196.20(5)	0.069(9)			0.069(9)
$\gamma_{3,1}(Bi)$	205.68(9)	0.0114(23)			0.0114(23)
$\gamma_{-1,4}(\mathrm{Bi})$	216.47(7)	0.0100(23)			0.0100(23)
$\gamma_{4,1}(Bi)$	241.997(3)	13.72(20)	M1(+E2)	0.888(27)	7.268(22)
$\gamma_{3,0}(Bi)$	258.87(3)	0.924(13)	M1	0.737(22)	0.5318(36)
$\gamma_{7,3}(Bi)$	274.80(5)	0.504(15)	M1+E2	0.392(12)	0.362(10)
$\gamma_{4,0}(Bi)$	295.224(2)	27.29(26)	M1+E2	0.482(14)	18.414(36)
$\gamma_{9,7}(Bi)$	305.26(3)	0.0324(22)	[E1]	0.0295(9)	0.0315(21)
$\gamma_{6,2}(Bi)$	314.32(7)	0.077(6)			0.077(6)
$\gamma_{6,1}(Bi)$	323.83(4)	0.0287(32)			0.0287(32)
$\gamma_{5,0}(\mathrm{Bi})$	351.932(2)	46.96(37)	M1(+E2)	0.319(10)	35.60(7)
$\gamma_{9,6}(Bi)$	462.00 (7)	0.213(6)		. /	0.213(6)
$\gamma_{7,1}(\text{Bi})$	480.43(2)	0.3838(49)	M1(+E2)	0.1384(42)	0.3371(41)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\begin{array}{l} \gamma_{9,5}({\rm Bi}) \\ \gamma_{7,0}({\rm Bi}) \\ \gamma_{8,3}({\rm Bi}) \\ \gamma_{9,4}({\rm Bi}) \\ \gamma_{9,3}({\rm Bi}) \\ \gamma_{-1,5}({\rm Bi}) \\ \gamma_{9,1}({\rm Bi}) \\ \gamma_{9,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 487.09 \ (7) \\ 533.66 \ (2) \\ 538.41 \ (8) \\ 543.81 \ (7) \\ 580.13 \ (3) \\ 765.96 \ (9) \\ 785.96 \ (9) \\ 839.04 \ (9) \end{array}$	$\begin{array}{c} 0.438\ (6)\\ 0.192\ (10)\\ 0.0196\ (27)\\ 0.050\ (9)\\ 0.372\ (6)\\ 0.053\ (8)\\ 1.068\ (13)\\ 0.589\ (8) \end{array}$	(E1) [M1,E2] E1+M2 (E1) E1 (E1)	$\begin{array}{c} 0.01058 \ (32) \\ 0.06 \ (4) \end{array}$ $\begin{array}{c} 0.00843 \ (25) \\ 0.00740 \ (22) \end{array}$ $\begin{array}{c} 0.00410 \ (12) \\ 0.00363 \ (11) \end{array}$	$\begin{array}{c} 0.433 \ (6) \\ 0.182 \ (6) \\ 0.0196 \ (27) \\ 0.050 \ (9) \\ 0.369 \ (6) \\ 0.053 \ (8) \\ 1.064 \ (13) \\ 0.587 \ (8) \end{array}$

5 References

M.CURIE, A.DEBIERNE, A.S.EVE, H.GEIGER, O.HAHN, S.C.LIND, S.MEYER, E.RUTHERFORD, E.SCHWEIDLER, Rev. Mod. Phys. 3 (1931) 427 (Half-life) E.E.BERLOVICH, Bull. Rus. Acad. Sci. Phys. 16 (1952) 314 (Beta emission intensity) K.SAGEYAMA, J. Phys. Soc. (Japan) 8 (1953) 689 (Beta emission intensity) H.DANIEL, R.NIERHAUS, Z. Naturforsch. 11a (1956) 212 (Half-life) K.O.NIELSEN, O.B.NIELSEN, M.A.WAGGONER, Nucl. Phys. 2 (1957) 476 (Beta emission intensity) H.DANIEL, Z. Naturforsch. 11a (1958) 759 (Beta emission intensity) G.T.EWAN, J.TAVENDALE, Can. J. Phys. 42 (1964) 2286 (Gamma-ray emission intensities) E.W.A.LINGEMAN, J.KONIJN, P.POLAK, A.H.WAPSTRA, Nucl. Phys. A133 (1969) 630 (Gamma-ray emission intensities) G.WALLACE, G.E.COOTE, Nucl. Instrum. Methods 74 (1969) 353 (Gamma-ray emission intensities) K.YA.GROMOV, B.M.SABIROV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray emission intensities) R.S.MOWATT, Can. J. Phys. 48 (1970) 2606 (Gamma-ray emission probabilities) A.HACHEM, Compt. Rend. Acad. Sci. (Paris) Ser. B 281 (1975) 45 (Gamma-ray emission intensities) V.ZOBEL, J.EBERTH, E.EUBE, Nucl. Instrum. Methods 141 (1977) 329 (Gamma-ray emission intensities) F.RÖSEL, At. Data Nucl. Data Tables 21 (1978) 91 (Theoretical ICC) G.MOUZE, Compt. Rend. Acad. Sci. (Paris) 292 (1981) 1243 (Gamma-ray emission intensities) H.AKCAY, G.MOUZE, D.MAILLARD, CH.YTHIER, Radiochem. Radioanal. Lett. 51 (1982) 1 (Gamma-ray emission intensities) M.A.FAROUK, A.M.AL-SORAYA, Nucl. Instrum. Methods 200 (1982) 593 (Gamma-ray emission intensities) D.G.OLSON, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray emission intensities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission intensities) I.PENEV, W.ANDREJTSCHEFF, CH.PROTOCHRISTOW, ZH.ZELEV, Z. Phys. A318 (1984) 213 (Half-life (E=53 keV)) Y.A.AKOVALI, Nucl. Data Sheets 55 (1988) 665 (Energy level, spin, parity, multipolariy)

G.MOUZE, J.F.COMANDUCCI, C.YTHIER, Rev. Roum. Phys. 35 (1990) 337 (Gamma-ray emission intensities) G.MOUZE, O.DIALLO, P.BECHLICH, J.F.COMANDUCCI, C.YTHIER, Radiochim. Acta 49 (1990) 13 (Gamma-ray emission intensities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. Lett. 153 (1991) 137 (Gamma-ray emission intensities) O.DIALLO, G.MOUZE, C.YTHIER, J.F.COMANDUCCI, NUOVO Cim. 106A (1993) 1321 (Gamma-ray emission intensities) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity, multipolariy) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.MOREL, M.ETCHEVERRY, J.L.PICOLO, Appl. Radiat. Isot. 49 (1998) 1387 (Gamma-ray emission intensities) D.SARDARI, T.D.MCMAHON, J. Radioanal. Nucl. Chem. 244 (2000) 463 (Gamma-ray emission intensities) J.U.DELGADO, J.MOREL, M.ETCHEVERRY, Appl. Radiat. Isot. 56 (2002) 137 (Gamma-ray emission intensities) G.L.MOLNAR, Z.S.RÉVAY, T.BELGYA, Proc. 11th Int. Symp. on Capture Gamma-ray Spectroscopy, 2-6 September 2002, Pruhonice (2002) 522 (Gamma-ray emission intensities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) J.Morel, S.Speman, M.Rasko, E.Terechtchenko, J.U.Delgado, Appl. Radiat. Isot. 60 (2004) 341 (Gamma-ray emission intensities)

R.G.HELMER, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19

(Gamma-ray emission intensities)

Bi - 210

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	5.012	(5)	d
$Q_{\beta^{-}}$:	1162.1	(8)	keV
Q_{lpha}	:	5042.7	(18)	keV
β^{-}	:	99.99986	(2)	%
α	:	1.40	(15)	$ imes 10^{-4}$ %

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,0}^-$	1162.1(8)	99.99986(2)	1st forbidden	8

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1}$	$ \begin{array}{c} 4650 (4) \\ 4687 (4) \end{array} $	$\begin{array}{c} 0.000084 \ (9) \\ 0.000056 \ (6) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
$\beta_{0,0}^-$	max:	1162.1 (8)	99.99986(2)	avg: 389.2 (3)

5 Photon Emissions

5.1 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Tl})$ $\gamma_{2,0}(\mathrm{Tl})$	$\begin{array}{c} 265.832 \ (5) \\ 304.896 \ (6) \end{array}$	0.000056 (6) 0.000084 (9)	E2 M1	$\begin{array}{c} 0.1603 \ (23) \\ 0.375 \ (6) \end{array}$	$\begin{array}{c} 0.000048 \ (5) \\ 0.000061 \ (7) \end{array}$

6 References

A.POMPÉI, J. Phys. Radium 6 (1935) 471
(Half-life)
A.FLAMMERSFELD, Z. Phys. 112 (1939) 727
(End point energy)
G.J.NEARY, Proc. Roy. Soc. (London) 175A (1940) 71
(End point energy)
N.HOLE, Arkiv Mat. Astron. Fysik 31B (1944) 1

(Half-life) E.BRODA, N.FEATHER, Proc. Roy. Soc. (London) 191A (1947) 20 (Alpha branching ratio) F.BEGEMANN, F.G.HOUTERMANS, Z. Naturforsch. 7a (1952) 143 (Half-life) E.E.LOCKETT, R.H.THOMAS, Nucleonics 11 (1953) 14 (Half-life) E.A.PLASSMANN, L.M.LANGER, Phys. Rev. 96 (1954) 1593 (End point energy) J.ROBERT, J.TOBAILEM, J. Phys. Radium 17 (1956) 440 (Half-life) R.W.FINK, G.W.WAREN, B.L.ROBINSON, R.R.EDWARDS, Bull. Am. Phys. Soc. 1 (1956) 171 (Alpha branching ratio) R.J.WALEN, G.BASTIN-SCOFFIER, J. Phys. Radium 20 (1959) 589 (Alpha branching ratio) J.ROBERT, Ann. Phys. (Paris) 4 (1959) 89 (Half-life) R.J.WALEN, G.BASTIN-SCOFFIER, Nucl. Phys. 16 (1960) 246 (Alpha branching ratio and energy) L.I.RUSINOV, YU.N.ANDREEV, S.V.GOLENETSKII, M.I.KISLOV, YU.I.FILIMONOV, Sov. Phys. - JETP 13 (1961) 707 (Spin, parity and multipolarity) M.Nurmia, P.Kauranen, M.Karras, A.Siivola, A.Isola, G.Graeffe, A.Lyyjynen, Nature 190 (1961) 427 (Alpha branching ratio) H.DANIEL, Nucl. Phys. 31 (1962) 293 (End point energy) P.KAURANEN, Ann. Acad. Sci. Fenn., Ser. A, VI 96 (1962) (Alpha branching ratio and energy) S.T.HSUE, M.U.KIM, S.M.TANG, Nucl. Phys. A94 (1967) 146 (End point energy) R.C.LANGE, G.R.HAGEE, A.R.CAMPBELL, Nucl. Phys. A133 (1969) 273 (Alpha energy) D.FLOTHMANN, W.WIESNER, R.LÖHKEN, H.RESEL, Z. Phys. 225 (1969) 164 (End point energy) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (Energy and half-life levels) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 99 (2003) 649 (Spin, parity and energy level)

Bi - 211

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.15	(2)	\min
Q_{lpha}	:	6750.33	(46)	keV
Q_{β^-}	:	574	(5)	keV
α'	:	99.724	(4)	%
β^{-}	:	0.276	(4)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,0}^-$	574(5)	0.276	(4)	1st forbidden	5.99

3 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 6278.5 \ (9) \\ 6622.4 \ (6) \end{array}$	$\begin{array}{c} 16.16 \ (23) \\ 83.56 \ (23) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
$e_{\rm AL}$	(Tl)	5.18 - 15.31	1.617(21)	
e _{AK}	(Tl) KLL KLX KXY	54.587 - 59.954 66.37 - 72.86 78.12 - 85.50	0.096 (11) } } }	
$ec_{1,0 \text{ K}} ec_{1,0 \text{ L}} ec_{1,0 \text{ M}} ec_{1,0 \text{ N}}$	(Tl) (Tl) (Tl) (Tl)	$\begin{array}{rrrr} 265.50 & (4) \\ 335.68 & -338.37 \\ 347.33 & -348.64 \\ 350.18 & -350.91 \end{array}$	$\begin{array}{c} 2.59 \ (5) \\ 0.446 \ (9) \\ 0.1044 \ (22) \\ 0.0263 \ (5) \end{array}$	
$\beta_{0,0}^-$	max:	574 (5)	0.276(4)	avg: 172.9 (18)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Tl)	8.9531 - 14.7362		0.929(19)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Tl) (Tl)	70.8325 72.8725		$\begin{array}{c} 0.726 \ (16) \\ 1.225 \ (27) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115	} } }	0.417 (11)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84.838 85.134 85.444	} } }	0.124 (4)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Tl})$	351.03(4)	16.16(24)	M1+E2	0.243(4)	13.00 (19)

6 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) F.N.Spiess, Phys. Rev. 94 (1954) 1292 (Half-life) R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha emission probabilities) M.GIANNINI, D.PROSPERI, S.SCIUTI, Nuovo Cim. 25 (1962) 1314 (Branching ratio of the alpha particles emission) M.NURMIA, D.GIESSING, W.SIEVERS, L.VARGA, Ann. Acad. Sci. Fenn., Ser. A, VI 167 (1965) (Half-life, Branching ratio of the alpha particles emission) S.GORODETZKY, F.BECK, A.KNIPPER, Nucl. Phys. 82 (1966) 275 (Alpha emission probabilities, Multipolarities, Mixing ratio, K ICC) W.F.DAVIDSON, C.R.COTHERN, R.D.CONNOR, Can. J. Phys. 45 (1967) 2295 (Branching ratio of the alpha particles emission) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray energies) V.H.MUNDSCHENK, Radiochim. Acta 14 (1970) 72 (Half-life) G.A.KOROLEV, A.A.VOROBYOV, Y.K.ZALITE, Nucl. Instrum. Methods 97 (1971) 323 (Half-life) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha emission energies) D.F.URQUHART, Report AAEC TM 634 (1973) (Gamma-ray energies)

IFIN-HH /A. Luca

V.M.VAKHTEL, T.VYLOV, V.M.GOROZHANKIN, N.A.GALOVKOV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, YU.V.NORSEEV, V.G.CHUMIN, Conf. Dubna (1975) 149 (Gamma-ray energies) K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK, Nukleonika 21 (1976) 935 (Gamma-ray energies) M.H.MOMENI, Nucl. Instrum. Methods 193 (1982) 185 (Gamma-ray energies, Gamma-ray emission probabilities) M.M.HINDI, E.G.ADELBERGER, S.E.KELLOGG, T.MURAKAMI, Phys. Rev. C38 (1988) 1370 (Gamma-ray energies) $\operatorname{J.T.ITURBE},$ Nucl. Instrum. Methods Phys. Res. A274 (1989) 404 (Alpha emission energies) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies, Alpha emission probabilities) P.Schuurmans, J.Wouters, P.De Moor, N.Severijns, W.Vanderpoorten, J.Vanhaverbeke, L.Vanneste, Hyperfine Interactions 75 (1992) 423 (Alpha emission energies) M.J.MARTIN, Nucl. Data Sheets 70 (1993) 315 (Spin and Parity, Level energies) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Spin and Parity, Level energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR, Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Bi - 211

IFIN-HH /A. Luca

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	60.54	(6)	\min
Q_{β^-}	:	2252.1	(17)	keV
Q_{lpha}	:	6207.26	(3)	keV
$Q_{\alpha*}$:	8954.12	(11)	keV
β^-	:	64.06	(7)	%
$\beta^- n$:	0.014	(1)	%
α	:	35.93	(7)	%

2 β^- Transitions

	Energy keV	Probab $\times 10^{\circ}$	oility 00	Nature	$\log ft$
$\begin{array}{c} \beta_{0,6} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,2}^{-} \end{array}$	$\begin{array}{c} 446.1 \ (17) \\ 451.2 \ (17) \\ 572.7 \ (17) \\ 631.4 \ (17) \\ 739.4 \ (17) \\ 1524.8 \ (17) \\ 2252.1 \ (17) \end{array}$	$\begin{array}{c} 0.68\\ 0.032\\ 0.21\\ 1.90\\ 1.44\\ 4.50\\ 55.31\end{array}$	(4) (4) (4) (3) (1) (6) (9)	1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique 1st forbidden non-unique	6.67 8.03 7.55 6.74 7.094 7.718 7.267

3 α Emissions

	${ m Energy}\ { m keV}$	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,8}$	5302 (2)	0.000040 (4)
$\alpha_{0,7}$	5344(2)	0.00036(3)
$\alpha_{0,6}$	5481.4(3)	0.0050(4)
$\alpha_{0,4}$	5606.60(5)	0.43(3)
$\alpha_{0,3}$	5625.7(4)	0.060(3)
$\alpha_{0,2}$	5768.29(6)	0.61(3)
$\alpha_{0,1}$	6051.04(3)	25.1(1)
$\alpha_{0,0}$	6090.14(3)	9.7(1)
$*\alpha_{1,0}$	9498.78 (11)	0.0024(2)
$*\alpha_{4,0}$	10432.94 (11)	0.0010(1)
*050	10552.1(2)	0.0106(7)

* Long-range α .

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
$e_{\rm AL}$	(Tl)	5.182 - 10.132	12.2(4)	
$e_{\rm AK}$	(Tl) KLL	54.587 - 59.954	0.0069 (8) }	

		Energy keV	Electrons per 100 disint.	Energy keV
	KLX KXY	66.37 - 72.86 78.12 - 85.50	} }	
$e_{\rm AL}$	(Po)	5.434 - 10.934	0.0833 (25)	
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.0048 (6) } } }	
$\substack{ec_{1,0 \ L}\\ec_{1,0 \ M}}$	(Tl) (Tl)	24.511 - 27.200 36.154 - 39.469	$\begin{array}{c} 19.06 \ (23) \\ 4.46 \ (5) \end{array}$	
$\begin{array}{c} \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: max: max: max: max: max: max:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.68 \ (4) \\ 0.032 \ (4) \\ 0.21 \ (4) \\ 1.90 \ (3) \\ 1.44 \ (1) \\ 4.50 \ (6) \\ 55.31 \ (9) \end{array}$	avg:130.1 (6)avg:131.7 (6)avg:172.4 (6)avg:192.7 (6)avg:230.8 (6)avg:533.1 (7)avg:834.2 (7)

$\mathbf{5}$ Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Tl)	8.953 - 14.738		7.1(3)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Tl) (Tl)	70.8325 72.8725		$\begin{array}{c} 0.0525 \ (23) \\ 0.089 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115	} } }	0.0301 (14)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84.838 85.134 85.444	} } }	0.0089(5)	$\mathbf{K}\beta_2'$
XL	(Po)	9.658 - 16.213		0.0563(24)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$0.0388(8) \\ 0.0647(13)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.0223(6)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.00693 (20)	$\mathrm{K}eta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{1,0}(\mathrm{Tl})$	39.858(4)	26.0(3)	[M1]	23.3(4)	1.07(1)
$\gamma_{4,2}(\mathrm{Tl})$	164.80(6)	0.010(1)	(E2)	0.816(12)	0.0055(6)
$\gamma_{5,3}(\text{Po})$	180.2(2)	0.0095(40)	M1	2.08(3)	0.0031(12)
$\gamma_{2,1}(\mathrm{Tl})$	288.18(5)	0.46(3)	M1 + 0.64% E2	0.436(7)	0.32(2)
$\gamma_{2,0}(\mathrm{Tl})$	328.04(5)	0.158(4)	[M1]	0.308(5)	0.121(3)
$\gamma_{3,1}(\mathrm{Tl})$	433.5(4)	0.013(1)	[M1]	0.1453(21)	0.011(1)
$\gamma_{4,1}(\mathrm{Tl})$	452.98(4)	0.38(3)	(M1)	0.1293(18)	0.34(3)
$\gamma_{3,0}(\mathrm{Tl})$	473.4(4)	0.047(3)	[M1+E2]	0.074(10)	0.044(3)
$\gamma_{4,0}(\mathrm{Tl})$	492.84(4)	0.04(1)	E2	0.0291(4)	0.039(10)
$\gamma_{6,1}(\mathrm{Tl})$	580.5(3)	0.0011(2)	E2	0.0198(3)	0.0011(2)
$\gamma_{6,0}(\mathrm{Tl})$	620.4(3)	0.0039(4)	[M1+E2]	0.037(5)	0.0038(4)
$\gamma_{1,0}(\text{Po})$	727.330(9)	6.74(4)	E2	0.01393(20)	6.65(4)
$\gamma_{2,1}(\text{Po})$	785.37(9)	1.15(1)	$\mathrm{M1}{+}0.8\%\mathrm{E2}$	0.0387(6)	1.11(1)
$\gamma_{3,1}(\text{Po})$	893.408(14)	0.39(1)	$\mathrm{M1}{+}0.2\%\mathrm{E2}$	0.0278(4)	0.38(1)
$\gamma_{4,1}(\text{Po})$	952.12(2)	0.14(4)	M1+30%E2	0.0190(3)	0.14(4)
$\gamma_{5,1}(\text{Po})$	1073.6(2)	0.0155~(6)	E2	0.00642(9)	0.0154~(6)
$\gamma_{6,1}(\text{Po})$	1078.63(10)	0.559(20)	$\mathrm{M1{+}1.8\%E2}$	0.01692(24)	0.55(2)
$\gamma_{2,0}(\text{Po})$	1512.70(8)	0.291(10)	E2	0.00344(5)	0.29(1)
$\gamma_{3,0}(\text{Po})$	1620.738(10)	1.52(3)	[M1]	0.00620 (9)	1.51(3)
$\gamma_{4,0}(\text{Po})$	1679.450(14)	0.07(1)	E2	0.00291(4)	0.07(1)
$\gamma_{6,0}(\mathrm{Po})$	1805.96(10)	0.12(3)	E2	0.00261(4)	0.12(3)

5.2 Gamma Transitions and Emissions

6 References

F.V.LERCH, Sitzber. Akad. Wiss. Wien, Wath-naturw. Kl. Abt. IIa 123 (1914) 699 (Half-life) A.Rytz, Compt. Rend. Acad. Sci. (Paris) 233 (1951) 790 (Alpha emission energies, Alpha emission probabilities) J.BURDE, B.ROZNER, Phys. Rev. 107 (1957) 531 (Beta-ray emission probabilities) R.J.WALEN, G.BASTIN-SCOFFIER, Nucl. Phys. 16 (1960) 246 (Alpha emission energies, Alpha emission probabilities) G.T.EMERY, W.R.KANE, Phys. Rev. 118 (1960) 755 (Gamma-ray emission probabilities, high-energy alpha) G.SCHUPP, H.DANIEL, G.W.EAKINS, E.N.JENSEN, Phys. Rev. 120 (1960) 189 (Gamma-ray emission probabilities) K.P.Applegate, E.M.Morimoto, M.Kahr, J.D.Knight, J. Inorg. Nucl. Chem. 19 (1961) 375 (Half-life) F.C.FLACK, J.E.JOHNSON, Proc. Phys. Soc. 79 (1962) 10 (Gamma-ray emission probabilities, branching fraction) G.Bertolini, F.Cappellani, G.Restelli, A.Rota, Nucl. Phys. 30 (1962) 599 (Alpha emission probabilities) J.WALKER, T.SALGIR, Proc. Phys. Soc. 86 (1965) 423 (Branching fraction) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) 260 (1965) 3037 (Alpha emission energies, Alpha emission probabilities) S.S.KLEIN, Thesis, Report NP-16835, Univ. Amsterdam (1966) (Gamma-ray energies) R.BENOIT, G.BERTOLINI, F.CAPPELLANI, G.RESTELLI, Nuovo Cim. 49B (1967) 125 (Gamma-ray emission probabilities)

C.YTHIER, H.FOREST, G.ARDISSON, H.MARIA, Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 1362 (Gamma-ray energies, Gamma-ray emission probabilities) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) F.T.AVIGNONE, A.G.SCHMIDT, Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities) B.BENGTSON, H.L.NIELSEN, N.RUD, K.WILSKY, Nucl. Phys. A378 (1982) 1 (Multipolarity) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-ray, LX-ray, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.Schönfeld, G.Rodloff, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure, energies) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) M.J.MARTIN, Nucl. Data Sheets 108 (2007) 1583 (Nuclear structure, energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Bi-213

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	45.59	(6)	\min
$Q^{'}_{lpha}$:	5983	(6)	keV
Q_{β^-}	:	1423	(5)	keV
β^{-}	:	97.91	(3)	%
α	:	2.09	(3)	%

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,9}^{-} \\ \beta_{0,8}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,8}^{-} \\ $	95 (5) 304 (5) 323 (5) 377 (5)	$\begin{array}{c} 0.00039 \ (13) \\ 0.0608 \ (20) \\ 0.595 \ (17) \\ 0 \ 020 \ (4) \end{array}$		7.68 7.07 6.16 7.85
$\begin{array}{c} \beta_{0,6} \\ \beta_{0,5} \\ \beta_{0,4} \\ \beta_{0,3} \\ \beta_{0,2} \\ \beta_{0,1} \\ \beta_{0,0} \end{array}$	$\begin{array}{c} 311 \ (5) \\ 419 \ (5) \\ 555 \ (5) \\ 822 \ (5) \\ 983 \ (5) \\ 1130 \ (5) \\ 1423 \ (5) \end{array}$	$\begin{array}{c} 0.020 & (4) \\ 0.0648 & (23) \\ 0.0129 & (6) \\ 0.0025 & (19) \\ 30.8 & (4) \\ 0.21 & (9) \\ 66.2 & (4) \end{array}$	1st forbidden unique 1st forbidden 1st forbidden 1st forbidden	$7.494 \\ 8.597 \\ 9.9 \\ 6.07 \\ 8.45 \\ 6.316$

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	5549 (10) 5869 (10)	$\begin{array}{c} 0.186 \ (5) \\ 1.90 \ (4) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Po)	5.43 - 16.86	1.7(3)	
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.121 (19) } } }	
e_{AL}	(Tl)	5.18 - 10.13	0.0107~(13)	
e _{AK}	(Tl) KLL KLX KXY	54.587 - 59.954 66.37 - 72.86 78.12 - 85.50	0.00076 (9) } } }	

CNDC /Huang Xiaolong, Wang Baosong

		Ene ke	rgy V	Electrons per 100 disint.]	Energy keV
$\begin{array}{c} ec_{2,1} \ L \\ ec_{1,0} \ K \\ ec_{1,0} \ L \\ ec_{2,0} \ K \\ ec_{2,0} \ L \\ ec_{2,0} \ N \\ ec_{2,0} \ N \\ ec_{1,0} \ K \end{array}$	(Po) (Po) (Po) (Po) (Po) (Po) (Po) (Tl)	$\begin{array}{r} 130.8 & - \\ 199.70 & \\ 275.9 & - \\ 347.34 & \\ 423.51 & - \\ 436.29 & - \\ 439.45 & - \\ 238.17 & \end{array}$	133.9 (1) 279.0 (1) 426.63 437.76 440.26 (2)	$\begin{array}{c} 0.0109 \ (7) \\ 0.09 \ (7) \\ 0.025 \ (8) \\ 3.81 \ (7) \\ 0.653 \ (13) \\ 0.1550 \ (27) \\ 0.0392 \ (7) \\ 0.0212 \ (22) \end{array}$		
$\begin{array}{c} \beta_{0,9}^{-} \\ \beta_{0,8}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: max: max: max: max: max: max: max:	95 304 323 377 419 555 822 983 1130 1423	$\begin{array}{c} (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \\ (5) \end{array}$	$\begin{array}{c} 0.00039 \ (13) \\ 0.0608 \ (20) \\ 0.595 \ (17) \\ 0.020 \ (4) \\ 0.0648 \ (23) \\ 0.0129 \ (6) \\ 0.0025 \ (19) \\ 30.8 \ (4) \\ 0.21 \ (9) \\ 66.2 \ (4) \end{array}$	avg: avg: avg: avg: avg: avg: avg: avg:	$\begin{array}{c} 24.6 \ (14) \\ 84.9 \ (16) \\ 90.8 \ (16) \\ 107.9 \ (16) \\ 121.4 \ (17) \\ 166.4 \ (17) \\ 260.8 \ (19) \\ 320.4 \ (19) \\ 376.8 \ (20) \\ 492.2 \ (20) \end{array}$

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Po)	9.6576 - 16.2129		1.14(18)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$\begin{array}{c} 0.99 \ (15) \\ 1.6 \ (3) \end{array}$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.56(9)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.18 (3)	$\mathrm{K}\beta_2'$
XL	(Tl)	8.9531 - 14.7362		0.0062(8)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Tl) (Tl)	70.8325 72.8725		0.0058(7) 0.0098(12)	$K\alpha$
$\begin{array}{l} \mathrm{XK}\beta_3\\ \mathrm{XK}\beta_1\\ \mathrm{XK}\beta_5^{\prime\prime} \end{array}$	(Tl) (Tl) (Tl)	82.118 82.577 83.115	} } }	0.0033(5)	$\mathrm{K}\beta_1'$

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV		Photons per 100 disint.	
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84.838 85.134 85.444	} } }	0.00098 (14)	${ m K}eta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{2,1}(Po) \\ \gamma_{1,0}(Po) \\ \gamma_{1,0}(Tl) \\ \gamma_{5,3}(Po) \\ \gamma_{2,0}(Po) \\ \gamma_{4,1}(Po) \\ \gamma_{3,0}(Po) \\ \gamma_{6,2}(Po) \\ \gamma_{7,2}(Po) \\ \gamma_{5,1}(Po) \\ \gamma_{7,1}(Po) \\ \gamma_{7,1}(Po) \end{array}$	keV 147.70 (4) 292.80 (1) 323.70 (2) 402.8 (3) 440.44 (1) 574.9 (3) 600.9 (2) 604.93 (17) 659.75 (2) 710.82 (3) 807.37 (1) 826.55 (4)	\times 100 0.0314 (20) 0.55 (8) 0.1866 (37) 0.00010 (4) 30.77 (36) 0.00068 (16) 0.0026 (19) 0.0014 (5) 0.043 (6) 0.0112 (6) 0.287 (14) 0.0065 (4)	E2 M1+E2 M1+E2 M1	$\begin{array}{c} 1.453 \ (21) \\ 0.30 \ (18) \\ 0.178 \ (15) \end{array} \\ 0.179 \ (3) \end{array}$	\times 100 0.0128 (8) 0.421 (7) 0.1584 (24) 0.00010 (4) 26.1 (3) 0.00068 (16) 0.0026 (19) 0.0014 (5) 0.043 (6) 0.0112 (6) 0.287 (14) 0.0065 (4)
$\begin{array}{l} \gamma_{8,1}({\rm Po}) \\ \gamma_{4,0}({\rm Po}) \\ \gamma_{9,2}({\rm Po}) \\ \gamma_{5,0}({\rm Po}) \\ \gamma_{6,0}({\rm Po}) \\ \gamma_{7,0}({\rm Po}) \\ \gamma_{8,0}({\rm Po}) \\ \gamma_{9,0}({\rm Po}) \end{array}$	$\begin{array}{c} 826.35 \ (4) \\ 867.96 \ (2) \\ 886.66 \ (14) \\ 1003.58 \ (2) \\ 1045.67 \ (8) \\ 1100.16 \ (1) \\ 1119.42 \ (8) \\ 1328.2 \ (3) \end{array}$	$\begin{array}{c} 0.0065 \ (4) \\ 0.0122 \ (6) \\ 0.00102 \ (19) \\ 0.0535 \ (22) \\ 0.019 \ (4) \\ 0.265 \ (6) \\ 0.0543 \ (20) \\ 0.00039 \ (13) \end{array}$			$\begin{array}{c} 0.0065 \ (4) \\ 0.0122 \ (6) \\ 0.00102 \ (19) \\ 0.0535 \ (22) \\ 0.019 \ (4) \\ 0.265 \ (6) \\ 0.0543 \ (20) \\ 0.00039 \ (13) \end{array}$

6 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253

(Half-life)

F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life)

L.B.MAGNUSSON, F.WAGNER JR., D.W.ENGELKEMEIR, M.S.FREEDMAN, Report ANL-5386, Argonne National Laboratory (1955)

(Multipolarity)

G.GRAEFFE, K.VALLI, J.AALTONEN, Ann. Acad. Sci. Fenn., Ser. A, VI 145 (1964)

(Gamma-ray energies and intensities)

R.ARLT, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, V.O.SERGEEV, L.G.TSARITSYNA, K.SHTRUSNYI, B.S.DZHELEPOV, Proc. 19th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Erevan (1969) 152 (Gamma-ray energies and intensities)

B.S.DZHELEPOV, A.V.ZOLOTAVIN, R.B.IVANOV, M.A.MIKHAILOVA, V.O.SERGEEV, M.I.SOVTSOV, O.M.SHUMILO, Proc. 19th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Erevan (1969) 153 (Multipolarity)

P.POLAK, Radiochim. Acta 19 (1973) 148

CNDC /Huang Xiaolong, Wang Baosong

⁽Half-life)

T.Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.Norseev, V.G.Chumin, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85

(Gamma-ray energies and intensities)

J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331

(Gamma-ray energies and intensities)

R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139

(Gamma-ray energies, intensities and emission probabilities)

M.C.KOUASSI, A.HACHEM, C.ARDISSON, G.ARDISSON, Nucl. Instrum. Methods Phys. Res. A280 (1989) 424

(Gamma-ray energies and intensities)

M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723

(Decay scheme and levels)

Y.A.AKOVALI, Nucl. Data Sheets 66 (1992) 237

(Decay scheme and levels)

 $\operatorname{E.Schönfeld},\,\operatorname{H.Janssen},\,\operatorname{Nucl.}$ Instrum. Methods Phys. Res. A369 (1996) 527

(Atomic data)

V.G.Chumin, J.K.Jabber, K.V.Kalyapkin, S.A.Kudrya, V.V.Tsupko-Sitnikov, K.Ya.Gromov, V.I.Fominykh, T.A.Furyaev, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606

(Gamma-ray energies and intensities)

G.ARDISSON, V.BARCI, O.EL SAMAD, Phys. Rev. C57 (1998) 612

(Gamma-ray energies and intensities)

K.Ya.Gromov, S.A.Kudrya, Sh.R.Malikov, T.M.Muminov, Zh.K.Samatov, Zh.Sereeter, V.I.Fominykh,

V.G.CHUMIN, Bull. Rus. Acad. Sci. Phys. 64 (2000) 1770

(Gamma-ray energies and intensities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129

 (\mathbf{Q})

Bi - 214

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	19.8	(1)	\min
Q_{β^-}	:	3270	(11)	keV
$Q^{'}_{lpha}$:	5621	(3)	keV
$Q_{\alpha*}$:	11105	(11)	keV
β^{-}	:	99.979	(13)	%
α	:	0.021	(13)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.80}^{-}$	86 (11)	0.0011 (5)		6.8
$\beta_{0.79}^{}$	99 (11)	0.00014 (9)	1st forbidden	7.8
$\beta_{0.77}^{}$	110 (11)	0.00079(12)		7.2
$\beta_{0,76}^{-}$	121(11)	0.00019		8
$\beta_{0,75}^{-}$	127(11)	0.00118 (9)		7.3
$\beta_{0,73}^{-}$	176(11)	0.00037 (4)		8.2
$\beta_{0,72}^{-}$	188(11)	0.0052 (7)		7.1
$\beta_{0,70}^{-}$	204(11)	0.00141(23)	1st forbidden	7.8
$\beta_{0,69}^{-}$	216(11)	0.030(5)		6.6
$\beta_{0,65}^{-}$	256(11)	0.0252(24)		6.9
$\beta_{0,62}^{-}$	270(11)	0.0160(16)		7.1
$\beta_{0,61}^{-}$	284(11)	0.032 (5)		6.9
$\beta_{0,60}^{-}$	291 (11)	0.0165 (6)		7.2
$\beta_{0,58}^{-}$	309(11)	0.00036(14)	1st forbidden	9
$\beta_{0,57}^{-}$	329(11)	0.041 (7)		7
$\beta_{0,56}^{-}$	336(11)	0.00216 (32)		8.3
$\beta_{0,55}^{-}$	341(11)	0.0025 (9)		8.3
$\beta_{0,54}^{-}$	348(11)	0.0220 (9)		7.3
$\beta_{0,53}^{-}$	353 (11)	0.0014 (9)	1st forbidden	8.6
$\beta_{0,52}^{-}$	373(11)	0.0046 (5)	1st forbidden	8.1
$\beta_{0,51}^{-}$	376(11)	0.022 (3)		7.5
$\beta_{0,50}^{-}$	390(11)	0.0115(16)		7.8
$\beta_{0,49}^{-}$	400(11)	0.0087 (4)	1st forbidden	7.9
$\beta_{0,48}^{-}$	409(11)	0.0146~(20)		7.6
$\beta_{0,47}^{-}$	443(11)	0.00218(17)		8.7
$\beta_{0,44}^{-}$	484(11)	0.0248(31)		7.8
$\beta_{0,43}^{-}$	500(11)	0.038(5)		7.6
$\beta_{0,42}^{-}$	541(11)	0.525(16)		6.6
$\beta_{0,41}^{-}$	551(11)	0.247 (8)		6.9
$\beta_{0,39}^{-}$	571(11)	0.026 (4)		8
$\beta_{0,40}^{-}$	573(11)	0.0471(23)	1st forbidden	7.7
$\beta_{0,38}^-$	575(11)	0.231(15)	1st forbidden	7
$\beta_{0,37}^-$	608(11)	0.098 (9)		7.5
$\beta_{0,36}^{-}$	639(11)	0.0223(21)		8.2
$\beta_{0,35}^-$	665(11)	0.058 (4)		7.7
$\beta_{0,34}^{-}$	710(11)	0.00018 (9)	1st forbidden	10.5
$\beta_{0,32}^{-}$	727(11)	0.044 (7)	1st forbidden	8.1

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.31}^{-}$	764 (11)	0.092 (9)	1st forbidden	7.9
$\beta_{0.30}^{$	765(11)	0.169(10)	1st forbidden	7.6
$\beta_{0.29}^{-}$	788(11)	1.227(27)		6.8
$\beta_{0,28}^{-}$	822(11)	2.76 (6)	Allowed	6.5
$\beta_{0,27}^{-}$	847(11)	0.0620 (49)		8.1
$\beta_{0,26}^{-}$	909(11)	0.0030 (8)		9.6
$\beta_{0,25}^{-}$	922(11)	0.0014 (9)		9.9
$\beta_{0,24}^{-}$	977(11)	0.558(8)	1st forbidden	7.4
$\beta_{0,23}^{-}$	$1004\ (11)$	0.187(12)	1st forbidden	8
$\beta_{0,21}^{-}$	1068(11)	5.642(43)	1st forbidden	6.6
$\beta_{0,20}^{-}$	1077(11)	0.851(10)	1st forbidden	7.4
$\beta_{0,19}^{-}$	$1124\ (11)$	0.433(22)	1st forbidden	7.8
$\beta_{0,18}^{-}$	1151 (11)	4.339(18)	1st forbidden	6.8
$\beta_{0,17}^{-}$	1182(11)	0.114(6)		8.4
$\beta_{0,16}^{-}$	1253(11)	2.449(10)	1st forbidden	7.2
$\beta_{0,15}^{-}$	1261 (11)	1.430(9)	1st forbidden	7.4
$\beta_{0,14}^{-}$	1275(11)	1.171(18)		7.5
$\beta_{0,13}^{-}$	1382(11)	1.584(10)	1st forbidden	7.5
$\beta_{0,12}^{-}$	1423(11)	8.147(28)	1st forbidden	6.9
$\beta_{0,11}^{-}$	1506(11)	17.10(8)	1st forbidden	6.6
$\beta_{0,10}^{-}$	1529(11)	0.116(16)	1st forbidden	8.8
$\beta_{0,9}^-$	1540(11)	17.494(36)	1st forbidden	6.7
$\beta_{0,8}^-$	1557(11)	0.170(16)		8.7
$\beta_{0,7}^{-}$	1609(11)	0.65 (6)	1st forbidden	8.2
$\beta_{0,6}^-$	1727(11)	3.12(4)	1st forbidden	7.6
$\beta_{0,5}^{-}$	1857(11)	0.396~(46)	1st forbidden	8.6
$\beta_{0,4}^-$	1894(11)	7.45 (5)	1st forbidden	7.4
$\beta_{0,1}^-$	2661 (11)	0.62(20)	1st forbidden	9
$\beta_{0,0}^-$	3270(11)	19.67(20)	1st forbidden	7.9

3 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,5}$	4941 (3)	0.000052(3)
$\alpha_{0.4}$	5023(3)	0.000045(3)
$\alpha_{0,3}$	5184(3)	0.00013(1)
$\alpha_{0,2}$	5273 (9)	0.00125(7)
$\alpha_{0,1}$	5452 (3)	0.0116(7)
$\alpha_{0,0}$	5516(3)	0.0082(5)
$*\alpha_{1.0}$	8287 (6)	0.00012
$*\alpha_{6.1}$	8430 (6)	0.00006
$*\alpha_{2,0}$	8950 (6)	0.00002
$*\alpha_{4.0}$	9080 (6)	0.0022
$*\alpha_{6,0}$	9320 (6)	0.00005
$*\alpha_{7,0}$	9378 (8)	0.00002
.,0		

CEA/LNE-LNHB /V. Chisté, M.M. Bé

84

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$*\alpha_{10,0}$	9500(6)	0.0001
$*\alpha_{14,0}$	9670(8)	0.00004
$\alpha_{17,0}$	9802(6)	0.00012
$\alpha_{21,0}$	9907~(6)	0.00007
$\alpha_{24,0}$	10082(6)	0.00014
$\alpha_{26,0}$	10150 (8)	0.00002
$\alpha_{32,0}$	10332(6)	0.00008
$\alpha_{38.0}$	10505(10)	0.00002

* Long-range $\alpha.$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Po)	5.43 - 16.86	0.934(16)	
елк	(Po)		0.053(7)	
	KLĹ	58.97 - 65.20	}	
	KLX	71.93 - 76.60	}	
	KXY	84.72 - 93.04	}	
$ec_{18,9 K}$	(Po)	295.84 (5)	0.0800(16)	
$ec_{18,9 L}$	(Po)	372.01 - 375.13	0.01391 (26)	
$ec_{1,0 K}$	(Po)	516.216 (7)	0.676(10)	
$ec_{1,0 L}$	(Po)	592.388 - 595.510	0.1892(28)	
$ec_{1,0 M}$	(Po)	605.164 - 606.640	0.0469(7)	
$ec_{1,0 N}$	(Po)	608.329 - 609.138	0.01201 (19)	
$ec_{4,1 \text{ K}}$	(Po)	675.259 (14)	0.060(9)	
$ec_{5,1 K}$	(Po)	713.07 (2)	0.01094~(17)	
$ec_{4,1 L}$	(Po)	751.431 - 754.550	0.0127~(15)	
$ec_{6,1 K}$	(Po)	840.959 (16)	0.0595~(25)	
$ec_{6,1 L}$	(Po)	917.131 - 920.250	0.01014 (40)	
$ec_{9,1 K}$	(Po)	1027.195 (15)	0.1858(29)	
$ec_{9,1 L}$	(Po)	1103.367 - 1106.490	0.03131 (45)	
$ec_{12,1 \text{ K}}$	(Po)	1145.015 (12)	0.0573~(8)	
$ec_{11,0 K}$	(Po)	1671.398 (14)	0.0608 (9)	
$ec_{11,0\ L}$	(Po)	1747.57 - 1750.69	0.01012 (16)	
$\beta_{0,80}^-$	max:	86 (11)	0.0011(5)	avg: $23(3)$
$\beta_{0,79}^{-}$	max:	97 (11)	0.00014 (9)	avg: $26(3)$
$\beta_{0,77}^{-}$	max:	110 (11)	0.00079(12)	avg: $29(3)$
$\beta_{0,76}^{-}$	max:	121 (11)	0.00019	avg: $32(3)$
$\beta_{0,75}^{-}$	max:	127 (11)	0.00118 (9)	avg: $34(3)$
$\beta_{0,73}^{-}$	max:	176 (11)	0.00037~(4)	avg: $48(3)$
$\beta_{0.72}^{-}$	max:	188 (11)	0.0052(7)	avg: $51(3)$
$\beta_{0.70}^{-}$	max:	202 (11)	0.00141(23)	avg: 55 (3)
$\beta_{0,69}^{$	max:	216 (11)	0.030 (5)	avg: 59 (3)

		Ene ke	ergy eV	Electrons per 100 disint.	E	nergy keV
$\beta_{0,65}^{-}$	max:	256	(11)	0.0252(24)	avg:	71(3)
$\beta_{0,62}^{-}$	max:	270	(11)	0.0160(16)	avg:	75(3)
$\beta_{0,61}^{-}$	max:	284	(11)	0.032(5)	avg:	80(3)
$\beta_{0,60}^{-}$	max:	291	(11)	0.0165~(6)	avg:	82(3)
$\beta_{0,58}^{-}$	max:	307	(11)	0.00036~(14)	avg:	87(3)
$\beta_{0,57}^{-}$	max:	329	(11)	0.041~(7)	avg:	93(3)
$\beta_{0,56}^{-}$	max:	336	(11)	0.00216 (32)	avg:	95(3)
$\beta_{0,55}^{-}$	max:	341	(11)	0.0025 (9)	avg:	97(3)
$\beta_{0.54}^{-}$	max:	348	(11)	0.0220 (9)	avg:	99(3)
$\beta_{0.53}^{-}$	max:	350	(11)	0.0014(9)	avg:	100(3)
$\beta_{0.52}^{-}$	max:	373	(11)	0.0046(5)	avg:	107(3)
$\beta_{0.51}^{-}$	max:	376	(11)	0.022(3)	avg:	108(3)
$\beta_{0.50}^{$	max:	390	(11)	0.0115(16)	avg:	113(3)
$\beta_{0.49}^{-}$	max:	400	(11)	0.0087(4)	avg:	116(3)
$\beta_{0.48}^{-}$	max:	409	(11)	0.0146(20)	avg:	119(4)
$\beta_{0.47}^{-}$	max:	443	(11)	0.00218(17)	avg:	130(4)
$\beta_{0.44}^{-}$	max:	484	(11)	0.0248(31)	avg:	143(4)
$\beta_{0.42}^{-}$	max:	500	(11)	0.038(5)	avg:	149(4)
$\beta_{0,43}^{-}$	max:	541	(11)	0.525(16)	avg:	162(4)
$\beta_{0,41}^{-}$	max:	551	(11)	0.247(8)	avg:	166(4)
$\beta_{0,41}^{-}$	max:	571	(11)	0.0471(23)	avg:	172(4)
$\beta_{0,40}^{-}$	max:	571	(11)	0.026(4)	avg:	173(4)
$\beta_{0,39}^{-}$	max:	575	(11)	0.231(15)	avg:	174(4)
$\beta_{0,38}^{-}$	max:	608	(11)	0.098(9)	avg:	185(4)
$\beta_{0,37}^{-}$	max:	639	(11)	0.0223(21)	avg:	196(4)
$\beta_{0,30}^{-}$	max:	665	(11)	0.058(4)	avg:	205(4)
$\beta_{0,35}^{-}$	max:	708	(11)	0.00018(9)	avg:	220(4)
$\beta_{0,34}^{-}$	max:	725	(11)	0.044(7)	avg:	226(4)
$\beta_{0,32}^{-}$	max.	762	(11) (11)	0.092(9)	avg.	240(1)
$\beta_{0,31}^{-}$	max.	765	(11) (11)	0.002(0) 0.169(10)	avg.	241(4)
$\beta_{0,30}^{-}$	max.	788	(11)	1.207(27)	avg.	211(1) 249(3)
$\beta_{0,29}^{-}$	max.	822	(11)	2.76(6)	avg.	262(0)
$\beta_{0,28}^{-}$	max.	847	(11)	0.0620(49)	avg.	202(1) 271(4)
$\beta_{0,27}^{-}$	max.	909	(11)	0.0020(10)	avg.	294(4)
$\beta_{0,26}^{-}$	max.	909	(11) (11)	0.0030(0) 0.0014(9)	avg.	294(4) 298(4)
$\beta_{0,25}^{-}$	max.	977	(11) (11)	0.558(8)	avg.	230(4) 310(4)
$\beta^{0,24}_{\beta^{-}}$	max.	1004	(11) (11)	0.000(0) 0.187(12)	avg.	320(4)
$\beta_{0,23}^{P_{0,23}}$	max.	1066	(11) (11)	5.642(43)	avg.	323(4) 353(4)
$\beta_{0,21}^{\rho_{0,21}}$	max.	1077	(11) (11)	0.851(40)	avg.	353(4) 357(4)
$\beta_{0,20}$	max.	1199	(11) (11)	0.001(10) 0.433(22)	avg.	375(4)
$\beta_{0,19}^{-}$	max.	1151	(11)	433 (22)	avg.	386 (4)
$^{P_{0,18}}_{\beta^{-}}$	max.	1189	(11)	4.009 (10) 0.114 (6)	avg.	308 (4)
$^{P_{0,17}}_{\beta^{-}}$	max	1952	(11)	0.114(0) 2 440 (10)	avgi	195 (4)
$^{P_{0,16}}_{\beta^{-}}$	max	1200 1950	(11)	2.449 (10) 1 490 (0)	avg:	420 (4) 198 (1)
$\rho_{0,15}^{\rho_{0,15}}$	max:	1209	(11)	1.430(9) 1.171(19)	avg:	420(4)
$\rho_{0,14}$	max:	1270	(11)	1.1(1(18))	avg:	434(4)
$\rho_{0,13}$	max:	1402	(11)	1.584(10)	avg:	4/0(4)
$\beta_{0,12}$	max:	1423	(11)	8.147(28)	avg:	493(4)

86

		Energy keV		Electrons per 100 disint.	Energy keV	
$\beta_{0.11}^{-}$	max:	1506	(11)	17.10 (8)	avg:	526(4)
$\beta_{0,10}^{-,10}$	max:	1527	(11)	0.116(16)	avg:	535(4)
$\beta_{0.9}^{-}$	max:	1540	(11)	17.494(36)	avg:	540(4)
$\beta_{0.8}^{=.}$	max:	1557	(11)	0.170(16)	avg:	547(4)
$\beta_{0.7}^{=}$	max:	1609	(11)	0.65(6)	avg:	568(4)
$\beta_{0.6}^{-}$	max:	1727	(11)	3.12(4)	avg:	616(5)
$\beta_{0.5}^{-}$	max:	1855	(11)	0.396(46)	avg:	669(5)
$\beta_{0.4}^{-}$	max:	1892	(11)	7.45(5)	avg:	685(5)
$\beta_{0.1}^{-}$	max:	2661	(11)	0.62(20)	avg:	1008(5)
$\beta_{0,0}^{-}$	max:	3270	(11)	19.67(20)	avg:	1270(5)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.66 - 16.21		0.627~(15)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Po) (Po)	76.864 79.293		$\begin{array}{c} 0.426 \ (13) \\ 0.710 \ (22) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.244 (9)	$\mathrm{K}\beta_1'$
$\begin{array}{l} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.0760 (29)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Tl})$	62.5(10)	0.0116(7)	(M1)		0.0116(7)
$\gamma_{2,1}(\mathrm{Tl})$	191.1 (18)	0.00125(7)			0.00125(7)
$\gamma_{11,6}(\text{Po})$	221 (1)	0.106(31)	[M1,E2]	0.8(5)	0.059(6)
$\gamma_{-1,0}(\text{Po})$	230(1)	0.0031(11)		0.0585(11)	0.0029(10)
$\gamma_{16,11}(Po)$	252.80(6)	0.0212(33)	[M1]	0.809(12)	0.0117(18)
$\gamma_{6,3}(\text{Po})$	268.8(2)	0.0168(19)	[E1]	0.0405~(6)	0.0161 (18)
$\gamma_{29,22}(Po)$	273.80(5)	0.120(8)			0.120(8)
$\gamma_{42,28}(Po)$	280.95(5)	0.062~(6)			0.062~(6)
$\gamma_{-1,1}(\text{Po})$	304.2(2)	0.033~(6)		0.30(19)	0.0255~(23)
$\gamma_{14,7}(\text{Po})$	333.350(42)	0.0646(41)	[E1]	0.0247(4)	0.063(4)
$\gamma_{-1,2}(\text{Po})$	334.78(8)	0.033(5)			0.033(5)
$\gamma_{11,5}(\text{Po})$	348.92 (6)	0.164 (43)	[M1]	0.335~(5)	0.123 (32)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{11,4}(\text{Po})$	386.77(5)	0.343(30)	[M1,E2]	0.16(10)	0.296(5)
$\gamma_{18,9}(\text{Po})$	388.88(5)	0.493~(6)	(M1)	0.250(4)	0.394(5)
$\gamma_{29,17}(\text{Po})$	394.05(8)	0.0127~(18)			0.0127(18)
$\gamma_{35,22}(Po)$	396.01(8)	0.0259(18)			0.0259(18)
$\gamma_{2,1}(\text{Po})$	405.74(3)	0.180(7)	[E2]	0.0541 (8)	0.171(7)
$\gamma_{28,14}(\text{Po})$	452.92(10)	0.034(5)	[M1,E2]	0.10(7)	0.031~(4)
$\gamma_{9,3}(\text{Po})$	454.770(12)	0.292(5)	[E1]	0.01251 (18)	0.288(5)
$\gamma_{21,10}(\text{Po})$	461.0(2)	0.067~(9)	[M1]	0.1581(23)	0.058~(8)
$\gamma_{12,4}(\text{Po})$	469.76(7)	0.145(18)	[M1,E2]	0.09(6)	0.133(15)
$\gamma_{21,9}(\text{Po})$	474.41(5)	0.100(9)	[M1,E2]	0.09(6)	0.092~(6)
$\gamma_{38,22}(\text{Po})$	485.92(11)	0.021~(4)			0.021~(4)
$\gamma_{29,14}(\text{Po})$	487.95(13)	0.028(9)	[E1]	0.01080(16)	0.028(9)
$\gamma_{39,21}(\text{Po})$	494.2(4)	0.011(3)			0.011(3)
$\gamma_{31,15}(Po)$	496.90 (18)	0.0068(18)			0.0068(18)
$\gamma_{23,11}(Po)$	501.96(15)	0.0181(22)			0.0181(22)
$\gamma_{42,22}(Po)$	519.90 (5)	0.0166(17)			0.0166(17)
$\gamma_{42,21}(\text{Po})$	524.6(2)	0.0169(17)			0.0169(17)
$\gamma_{6,2}(\text{Po})$	528(1)	0.0112(13)	[E2]	0.0282(5)	0.0109(13)
$\gamma_{23.9}(Po)$	536.77(4)	0.061(8)			0.061(8)
$\gamma_{21.7}(\text{Po})$	543.0(2)	0.093(23)	[M1,E2]	0.06(4)	0.088(21)
$\gamma_{22,7}(Po)$	547.6 (3)	0.034(3)	L / J		0.034(3)
$\gamma_{62,28}(Po)$	551.9 (8)	0.0055(14)			0.0055(14)
$\gamma_{12,3}(Po)$	572.76(7)	0.072(8)	[E1]	0.00779(11)	0.071 (8)
$\gamma_{15,5}(Po)$	595.23(7)	0.0183(17)	[M1.E2]	0.05(3)	0.0174(15)
$\gamma_{41,18}(Po)$	600.0(5)	0.008 (4)			0.008 (4)
$\gamma_{1,0}(Po)$	609.312(7)	46.42(19)	E2	0.0204(3)	45.49 (19)
γ_{13} $_3(Po)$	615.73(10)	0.055(7)	[E1]	0.00674(10)	0.055(7)
$\gamma_{14,4}(P_0)$	617.0(2)	0.027(5)	[=-] [E1]	0.00672(10)	0.027(5)
$\gamma_{51,23}(P_0)$	626.4(6)	0.0041(14)	[]	()	0.0041(14)
$\gamma_{-1,23}(P_0)$	630.79(7)	0.0166(14)			0.0166(14)
$\gamma_{15,4}(P_0)$	633.14(10)	0.057(3)	[M1.E2]	0.044(25)	0.055(3)
$\gamma_{20,12}(P_0)$	634.72(21)	0.0067(24)	[M1,E2]	0.043(25)	0.0064(23)
$\gamma_{29,12}(10)$ $\gamma_{16,4}(P_0)$	639.67(10)	0.035(5)	[E2]	0.0183(3)	0.034(5)
$\gamma_{10,4}(10)$ $\gamma_{20,6}(P_0)$	649.18(7)	0.056(7)	[M1.E2]	0.041(24)	0.054(7)
$\gamma_{20,0}(10)$	658.7(2)	0.000(1) 0.017(4)	[[[]]]	0.011 (21)	0.001(1) 0.017(4)
$\gamma_{21,11}(10)$	661.1(2)	0.056(4)	[M1 E2]	0.039(22)	0.011(1) 0.054(4)
$\gamma_{21,0}(10)$ $\gamma_{2,1}(P_0)$	$665\ 453\ (22)$	1539(7)	E1	0.009(22) 0.00579(9)	1.530(7)
$\gamma_{3,1}(10)$	677 41 (15)	0.0055(23)	121	0.00010 (0)	0.0055(23)
738,16(10)	683.22(6)	0.0000(20)	[E1]	0.00551.(8)	0.0000(20)
$\gamma_{28,11}(10)$	687.6(3)	0.004(0)		0.00001 (0)	0.004(0)
$\gamma_{39,15}(F0)$	603.3(5)	0.0000(14) 0.0050(15)			0.0000(14) 0.0050(15)
727,9(P0)	607 00 (95)	0.0039(13)	[M1 F9]	0.034(10)	0.0039(13)
$\gamma_{8,2}(r_0)$	600.89 (20)	0.009(4) 0.016(5)	$[111, \mathbb{Z}2]$	0.034(19)	0.007 (4) 0.016 (5)
738,14(PO)	099.02 (10) 702.11 (4)	0.010(0)	[]] /[1]	0.0510.(9)	0.010(0)
$\gamma_{18,5}(Po)$	(03.11(4))	0.304(12)		0.0319(8)	0.479(11)
γ _{28,10} (Po)	(04.9 (3))	0.051(10)	[E1]	0.00519 (8)	0.0110(00)
$\gamma_{41,15}(Po)$	(08.8 (3))	0.0119(20)			0.0119(20)
$\gamma_{17,4}(Po)$	(10.67 (10))	0.076(4)	E9	0.01404 (00)	0.076(4)
$\gamma_{14,3}(\text{Po})$	719.86(3)	0.399(10)	E2	0.01424(20)	0.393(10)

88

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{\rm e2} c(\rm Po)$	722.98 (12)	0.037(7)			0.037(7)
$\gamma_{23,6}(10)$	722.90(12) 733.80(15)	0.031(1) 0.038(3)			0.031(1) 0.038(3)
$\gamma_{42,14}(10)$	$740\ 73\ (18)$	0.030(0)	[M1 E2]	0.029.(16)	0.008(0) 0.0428(21)
$\gamma_{18,4}(10)$	752.84(3)	0.0110(20) 0.130(8)	[M1, E2]	0.029(10) 0.028(16)	0.0126(21) 0.126(8)
$\gamma_{29,9}(10)$	768,356,(10)	4969(19)	M1+E2	0.020(10) 0.0157(21)	$4\ 892\ (16)$
$\gamma_{4,1}(10)$	7861(4)	0.31(5)	[E1]	0.0101(21) 0.00422(6)	0.31(5)
$\gamma_{28,7}(P_0)$	788.6(5)	0.01(6)	[M1]	0.00122(0) 0.0385(6)	0.015(5)
$\gamma_{21,3}(10)$	806 174 (18)	1.276(6)	E2	0.01127(16)	1.262(6)
$\gamma_{3,1}(10)$	815.0 (1)	0.0399(31)	[M1.E2]	0.023(13)	0.039(3)
$\gamma_{20,4}(P_0)$	821.18(3)	0.172(10)	M1	0.0346(5)	0.166(10)
$\gamma_{29,7}(P_0)$	826.3(2)	0.133(11)	M1	0.0341(5)	0.129(11)
$\gamma_{21,4}(P_0)$	832.39 (11)	0.0354(20)	[E2]	0.01057(15)	0.035(2)
$\gamma_{12,2}(-5)$ $\gamma_{28,12}(P_0)$	847.16 (11)	0.016(6)	[]		0.016(6)
$\gamma_{10,3}(Po)$	873.07 (19)	0.019(3)			0.019(3)
$\gamma_{24,5}(Po)$	878.03 (12)	0.0120(28)	[M1,E2]	0.019(10)	0.0118(27)
$\gamma_{28,6}(Po)$	904.29(10)	0.066 (8)	[E1]	0.00326(5)	0.066 (8)
$\gamma_{24,4}(Po)$	915.74 (15)	0.023(5)	[M1, E2]	0.017(9)	0.023(5)
$\gamma_{20,3}(Po)$	917.8 (3)	0.005(3)	[E1]	0.00317(5)	0.005(3)
$\gamma_{20,3}(P_{20})$	930.2(2)	0.043(8)	L]		0.043(8)
$\gamma_{6,1}(\text{Po})$	934.061 (12)	3.173(11)	M1+E2	0.0234(10)	3.10(1)
$\gamma_{29.6}(\text{Po})$	939.6 (5)	0.016(4)	[M1, E2]	0.016(8)	0.016(4)
$\gamma_{35,7}(\text{Po})$	943.34 (12)	0.017(3)			0.017(3)
$\gamma_{37.8}(\text{Po})$	949.8 (5)	0.0055(23)			0.0055(23)
$\gamma_{38,10}(Po)$	952.2(8)	0.0059(23)			0.0059(23)
$\gamma_{30.6}(\text{Po})$	961.61(17)	0.0101(14)			0.0101(14)
$\gamma_{42,11}(Po)$	964.08 (3)	0.363(12)			0.363(12)
$\gamma_{41.10}(Po)$	976.18 (12)	0.0151(21)			0.0151(21)
$\gamma_{23,3}(\text{Po})$	991.49 (19)	0.011(3)	[M1,E2]	0.014(7)	0.011(3)
$\gamma_{48,12}(Po)$	1013.8 (2)	0.0087(19)			0.0087(19)
$\gamma_{44,11}(Po)$	1021.0(5)	0.016(3)			0.016(3)
$\gamma_{28,5}(\text{Po})$	1032.37 (8)	0.061(4)	[E1]	0.00257(4)	0.061(4)
$\gamma_{39,7}(Po)$	1038.0(3)	0.0086(15)		. ,	0.0086(15)
$\gamma_{27,4}(\text{Po})$	1045.6(2)	0.023(3)			0.023(3)
$\gamma_{7,1}(\text{Po})$	1051.96(3)	0.328(8)	[M1,E2]	0.012~(6)	0.324(8)
$\gamma_{42,7}(\text{Po})$	1067.2(3)	0.024~(7)			0.024~(7)
$\gamma_{28,4}(\text{Po})$	1069.96(8)	0.272(10)	[E1]	0.00241~(4)	0.271(10)
$\gamma_{8,1}(\text{Po})$	$1103.64\ (19)$	0.107(15)	[M1,E2]	0.011(5)	0.106(15)
$\gamma_{29,4}(\text{Po})$	1104.79(19)	0.074(14)	[M1,E2]	0.011(5)	0.073(14)
$\gamma_{37,6}(\text{Po})$	1118.9(5)	0.010(4)			0.010(4)
$\gamma_{9,1}(\text{Po})$	1120.287(10)	15.14(3)	M1+E2	0.01522 (23)	14.91(3)
$\gamma_{31,4}(\text{Po})$	1130.29(19)	0.036(3)			0.036~(3)
$\gamma_{10,1}(Po)$	1133.66(3)	0.255(8)	[E2]	0.00578 (8)	0.254(8)
$\gamma_{11,1}(\text{Po})$	1155.19(2)	1.657(7)	M1+E2	0.0135~(4)	1.635(7)
$\gamma_{32,4}(\text{Po})$	1167.3(2)	$0.0123\ (17)$			$0.0123\ (17)$
$\gamma_{28,3}(\text{Po})$	1172.98(10)	0.055(7)	[E2]	0.00542(8)	0.055(7)
$\gamma_{29,3}(\text{Po})$	1207.68(3)	0.455(12)	[E1]	0.00196(3)	0.454(12)
$\gamma_{-1,4}(\text{Po})$	1226.7(3)	0.018(8)			0.018(8)
$\gamma_{30,3}(Po)$	1230.6(4)	0.007~(5)			0.007~(5)

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{12,1}(\text{Po})$	1238.111 (12)	5.901(14)	M1+E2	0.01200(17)	5.831 (14
$\gamma_{13,1}(\text{Po})$	1280.96(2)	1.451~(6)	M1	$0.01101 \ (16)$	1.435~(6)
$\gamma_{37,4}(\text{Po})$	1284(1)	0.013~(6)			0.013~(6)
$\gamma_{41,5}(\text{Po})$	1303.76(8)	0.105~(5)			0.105~(5)
$\gamma_{38,4}(\text{Po})$	$1316.96\ (15)$	0.077~(7)			0.077(7)
$\gamma_{35,3}(\text{Po})$	1330.0(2)	0.0120(14)			0.0120(14)
$\gamma_{41,4}(\text{Po})$	1341.49(16)	0.0214(27)			0.0214(27)
$\gamma_{42,4}(\text{Po})$	1351 (1)	0.0042(11)			0.0042 (11)
$\gamma_{65,7}(\text{Po})$	1353.4(8)	0.0036~(9)			0.0036(9)
$\gamma_{4,0}(\text{Po})$	1377.669(12)	3.984(11)	E2	0.00404~(6)	3.968(11)
$\gamma_{14,1}(\text{Po})$	1385.31 (3)	0.796(5)	[E1]	0.001631 (23)	0.795(5)
$\gamma_{43,4}(\text{Po})$	1392.5~(4)	0.0087~(19)			0.0087 (19)
$\gamma_{15,1}(\text{Po})$	1401.50(4)	1.337(7)	(M1+E2)	0.0053~(9)	1.330(7)
$\gamma_{16,1}(\text{Po})$	1407.98(4)	2.398(8)	(E2)	0.00389(6)	2.389(8)
$\gamma_{38,3}(Po)$	1419.7(3)	0.0055~(10)			0.0055 (10)
$\gamma_{65,6}(\text{Po})$	1470.9(3)	0.0094(13)			0.0094(1)
$\gamma_{17,1}(\text{Po})$	1479.15(14)	0.051(4)			0.051~(4
$\gamma_{18,1}(\text{Po})$	1509.228(15)	2.144(10)	M1+E2	0.00732(11)	2.128(1)
$\gamma_{51,4}(\text{Po})$	1515.5(3)	0.0072(21)			0.0072(2
$\gamma_{19,1}(\text{Po})$	1538.50(6)	0.401(22)			0.401(2)
$\gamma_{6,0}(\text{Po})$	1543.32(6)	0.303(13)	[E2]	0.00333(5)	0.302(1
$\gamma_{20,1}(\text{Po})$	1583.22(4)	0.712(5)	M1+E2	0.00642(18)	0.707(5
$\gamma_{21,1}(\text{Po})$	1594.73(8)	0.276(15)	[M1]	0.00644 (9)	0.274(1
$\gamma_{22,1}(\text{Po})$	1599.31~(6)	0.322(15)			0.322(1
$\gamma_{65,4}(\text{Po})$	1636.3(2)	0.0111(16)			0.0111(1
$\gamma_{23,1}(\text{Po})$	1657.00(19)	0.047(5)			0.047~(5
$\gamma_{7,0}(\text{Po})$	1661.28(6)	1.051 (9)	E2	0.00296(5)	1.048(9
$\gamma_{57,3}(\text{Po})$	1665.8(2)	0.015~(6)			0.015(6)
$\gamma_{24,1}(\text{Po})$	1683.99(4)	0.217(3)			0.217(3
$\gamma_{61,3}(\text{Po})$	1711.0(8)	0.023~(5)			0.023~(5
$\gamma_{9,0}(Po)$	1729.595(15)	2.852(10)	E2	0.00278(4)	2.844(1)
$\gamma_{26,1}(\text{Po})$	1751.4(8)	0.0009(5)			0.0009(5
$\gamma_{11,0}(\text{Po})$	1764.494(14)	15.39(5)	M1	0.00511(8)	15.31(5
$\gamma_{27,1}(\text{Po})$	1813.73(14)	0.0108(9)			0.0108 (9
$\gamma_{28,1}(\text{Po})$	1838.36(5)	0.343(10)			0.343(1
$\gamma_{12,0}(\text{Po})$	1847.420 (25)	2.025(12)			2.025(1)
$\gamma_{29,1}(\text{Po})$	1873.16 (6)	0.212(8)			0.212 (8
$\gamma_{13,0}(\text{Po})$	1890.30(15)	0.078(4)			0.078(4
$\gamma_{30,1}(Po)$	1895.92(14)	0.146(8)			0.146 (8
$\gamma_{31,1}(\text{Po})$	1898.7 (4)	0.049(8)			0.049 (8
$\gamma_{32,1}(Po)$	1935.5(2)	0.032(7)			0.032 (7
$\gamma_{35,1}(\text{Po})$	1994.6 (6)	0.0024(5)			0.0024 (5
$\gamma_{15,0}(Po)$	2010.78 (12)	0.0434(17)			0.0434 (1
$\gamma_{36,1}(Po)$	2021.6 (2)	0.0214(21)			0.0214 (2)
$\gamma_{37.1}(Po)$	2052.94 (12)	0.069(4)			0.069 (4
$\gamma_{38,1}(Po)$	2085.1 (2)	0.0082(5)			0.0082 (5
$\gamma_{40.1}(Po)$	2089.7(2)	0.0443(22)			0.0443 (2
$\gamma_{41,1}$ (Po)	2109.92(12)	0.084(3)			0.084 (3)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{18,0}(\text{Po})$	2118.55(3)	1.162(5)	M1	0.00356(5)	1.158(5)
$\gamma_{19,0}(\text{Po})$	2147.9(2)	$0.0134\ (13)$			0.0134(13)
$\gamma_{43,1}(Po)$	2160.4(3)	0.007~(5)			0.007~(5)
$\gamma_{44,1}(\text{Po})$	2176.5(2)	0.0033~(6)			0.0033~(6)
$\gamma_{20,0}(\text{Po})$	2192.58(16)	0.038(3)			0.038(3)
$\gamma_{21,0}(\text{Po})$	2204.21 (4)	4.929(23)	M1	0.00333~(5)	4.913(23)
$\gamma_{48,1}(\text{Po})$	2251.6(2)	0.0055~(5)			0.0055~(5)
$\gamma_{49,1}(\text{Po})$	2260.3(2)	0.0087~(4)			0.0087~(4)
$\gamma_{23,0}(\text{Po})$	2266.51 (13)	0.0165~(8)			0.0165~(8)
$\gamma_{50,1}(\text{Po})$	2270.9(4)	0.0014(3)			0.0014(3)
$\gamma_{51,1}(\text{Po})$	2284.3(2)	0.0050(4)			0.0050(4)
$\gamma_{52,1}(\text{Po})$	2287.65(23)	0.0046(5)			0.0046(5)
$\gamma_{24,0}(\text{Po})$	2293.40(12)	0.306(4)			0.306(4)
$\gamma_{53,1}(\text{Po})$	2310.2(3)	0.0014(9)			0.0014(9)
$\gamma_{54,1}(\text{Po})$	2312.4(2)	0.0086(8)			0.0086(8)
$\gamma_{55,1}(\text{Po})$	2319.3(3)	0.0014(9)			0.0014(9)
$\gamma_{56,1}(\text{Po})$	2325.0(3)	0.0017(3)			0.0017(3)
$\gamma_{57,1}(\text{Po})$	2331.3(2)	0.026(4)			0.026(4)
$\gamma_{25,0}(\text{Po})$	2348.0(13)	0.0014(9)			0.0014(9)
$\gamma_{58,1}(\text{Po})$	2353.5(7)	0.00036(14)			0.00036(14)
$\gamma_{26.0}(Po)$	2361.00 (19)	0.0021(6)			0.0021(6)
$\gamma_{60,1}(\text{Po})$	2369.0(4)	0.0028(4)			0.0028(4)
$\gamma_{61,1}(Po)$	2376.9(2)	0.0086(8)			0.0086(8)
$\gamma_{62,1}(Po)$	2390.8(2)	0.00156(14)			0.00156(14)
$\gamma_{65,1}(Po)$	2405.1(5)	0.0011(7)			0.0011(7)
$\gamma_{27.0}(Po)$	2423.27(13)	0.0048(6)			0.0048(6)
$\gamma_{69,1}(\text{Po})$	2444.7 (8)	0.008(4)			0.008(4)
$\gamma_{28,0}(Po)$	2447.86 (10)	1.550(7)	${ m E1}$	0.001424(20)	1.548(7)
$\gamma_{70,1}(Po)$	2459.0 (8)	0.00141(23)		()	0.00141(23)
$\gamma_{29.0}(Po)$	2482.8(4)	0.00096(18)			0.00096 (18)
$\gamma_{30,0}(Po)$	2505.4(2)	0.0056(6)			0.0056(6)
$\gamma_{77,1}(Po)$	2550.7(7)	0.00032(9)			0.00032(9)
γ_{34} (Po)	2562.0(6)	0.00018(9)			0.00018(9)
$\gamma_{79,1}(Po)$	2564.0(6)	0.00014(9)			0.00014(9)
$\gamma_{35,0}(P_0)$	2604.5(5)	0.00036(9)			0.00036(9)
$\gamma_{36,0}(P_0)$	2630.9(3)	0.00086(23)			0.00086(23)
$\gamma_{37,0}(P_0)$	2662.4(10)	0.000200(41)			0.000200(41)
$\gamma_{38,0}(P_0)$	2694.7(2)	0.033(3)			0.033 (3)
$\gamma_{40,0}(P_0)$	2699.4(3)	0.00282(23)			0.00282(23)
$\gamma_{40,0}(P_0)$	2719.3(2)	0.00170(17)			0.00170(17)
$\gamma_{43,0}(P_0)$	2769.9(2)	0.0225(8)			0.0225(8)
$\gamma_{44,0}(P_0)$	2785.9(2)	0.0055(5)			0.0055(5)
$\gamma_{47.0}(P_0)$	2826.98(20)	0.00218(17)			0.00218(17)
$\gamma_{48.0}(P_0)$	2861.08(40)	0.00041(13)			0.00041(13)
$\gamma_{50,0}(P_0)$	2880.3(2)	0.0101 (16)			0.0101(16)
$\gamma_{51,0}(P_0)$	2893.5(2)	0.0057(5)			0.0057(5)
(D)	2000.0(2) 2021 0(2)	0.0001(0)			0.0031(0)
$\gamma_{EA} \cap (P \cap)$					

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\begin{array}{l} \gamma_{56,0}({\rm Po}) \\ \gamma_{60,0}({\rm Po}) \\ \gamma_{62,0}({\rm Po}) \\ \gamma_{69,0}({\rm Po}) \\ \gamma_{72,0}({\rm Po}) \\ \gamma_{73,0}({\rm Po}) \\ \gamma_{75,0}({\rm Po}) \\ \gamma_{75,0}({\rm Po}) \\ \gamma_{76,0}({\rm Po}) \\ \gamma_{77,0}({\rm Po}) \\ \gamma_{80,0}({\rm Po}) \end{array}$	$\begin{array}{c} 2934.6 \ (3) \\ 2978.9 \ (2) \\ 2999.98 \ (20) \\ 3053.88 \ (20) \\ 3081.7 \ (3) \\ 3093.98 \ (40) \\ 3142.58 \ (40) \\ 3149.0 \ (5) \\ 3160.6 \ (6) \\ 3183.57 \ (40) \end{array}$	$\begin{array}{c} 0.00046 \ (12) \\ 0.0137 \ (4) \\ 0.0089 \ (7) \\ 0.022 \ (3) \\ 0.0052 \ (7) \\ 0.00037 \ (4) \\ 0.00118 \ (9) \\ 0.00019 \\ 0.00047 \ (8) \\ 0.0011 \ (5) \end{array}$			$\begin{array}{c} 0.00046 \ (12) \\ 0.0137 \ (4) \\ 0.0089 \ (7) \\ 0.022 \ (3) \\ 0.0052 \ (7) \\ 0.00037 \ (4) \\ 0.00118 \ (9) \\ 0.00019 \\ 0.00047 \ (8) \\ 0.0011 \ (5) \end{array}$

6 References

W.B.LEWIS, B.V.BOWDEN, Proc. Roy. Soc. (London) A145 (1934) 235 (Alpha emission energies and probabilities) J.M.CORK, C.E.BRANYAN, A.E.STODDARD, H.B.KELLER, J.M.LE BLANC, W.J.CHILDS, Phys. Rev. 83 (1951) 681 (Alpha emission energies) G.H.BRIGGS, Red. Mod. Phys. 26 (1954) 1 (Alpha emission energies and probabilities) H.DANIEL, R.NIERHAUS, Z. Naturforsch. 11a (1956) 212 (Half-life) R.J.WALEN, G.BASTIN-SCOFFIER, Nucl. Phys. 16 (1960) 246 (Alpha emission energies and probabilities) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) 260 (1965) 3037 (Alpha emission (long range) energies and probabilities) R.GUNNINK, J.B.NIDAY, R.P.ANDERSON, R.A.MEYER, Report UCID-15439, Univ. California (1969) (Gamma-ray emission probabilities) E.W.A.LINGEMAN, J.KONIJN, P.POLAK, A.H.WAPSTRA, Nucl. Phys. A133 (1969) 630 (Gamma-ray energies and emission probabilities) G.WALLACE, G.E.COOTE, Nucl. Instrum. Methods 74 (1969) 353 (Gamma-ray emission probabilities) K.YA.GROMOV, B.M.SABIROVV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray emission probabilities) A.HACHEM, H.MARIA, J.DALMASSO, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 279 (1974) 555 (Gamma-ray energies and emission probabilities) A.HACHEM, Compt. Rend. Acad. Sci. (Paris) Ser. B 281 (1975) 45 (Gamma-ray emission probabilities and energies) V.ZOBEL, J.EBERTH, U.EBERTH, E.EUBE, Nucl. Instrum. Methods 141 (1977) 329 (Gamma-ray energies and emission probabilities) F.RÖSEL, H.M.FRIESS, K.ALDER, H.C.PAULI, At. Data Nucl. Data Tables 21 (1978) 92 (Theoretical internal conversion coefficients) R.G.HELMER, R.J.GEHRKE, R.C.GREENWOOD, Nucl. Instrum. Methods 166 (1979) 547 (Gamma-ray energies) B.BENGTSON, H.L.NIELSEN, N.RUD, Nucl. Phys. A319 (1979) 21 (Half-life and gamma transition probabilities) G.MOUZE, Compt. Rend. Acad. Sci. (Paris) 292 (1981) 1243 (Gamma-ray emission probabilities) H.AKCAY, G.MOUZE, D.MAILLARD, C.YTHIER, Radiochem. Radioanal. Lett. 51 (1982) 1 (Gamma-ray energies and emission probabilities) M.A.FAROUK, A.M.AL-SORAYA, Nucl. Instrum. Methods 200 (1982) 593 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34,2 (1983) 533 (Gamma-ray emission intensities, X-ray emission intensities)

Bi - 214

D.G.OLSON, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray emission probabilities) G.MOUZE, O.DIALLO, P.BECHLICH, C.YTHIER, J.F.COMANDUCCI, Radiochim. Acta 49 (1990) 13 (Gamma-ray emission probabilities) N.COURSOL, F.LAGOUTINE, B.DUCHEMIN, Nucl. Instrum. Methods A286 (1990) 589 (Gamma-ray emission probabilities) G.MOUZE, C.YTHIER, J.F.COMANDUCCI, Rev. Roum. Phys. 35 (1990) 337 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. Lett. 153 (1991) 137 (Gamma-ray emission intensities) O.DIALLO, G.MOUZE, C.YTHIER, J.F.COMANDUCCI, NUOVO Cim. 106A (1993) 1321 (Gamma-ray emission probabilities) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity, multipolarity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.MOREL, M.ETCHEVERRY, J.L.PICOLO, Appl. Radiat. Isot. 49 (1998) 1387 (Gamma-ray emission intensities) D.SARDARI, T.D.MCMAHON, J. Radioanal. Nucl. Chem. 244 (2000) 463 (Gamma-ray emission probabilities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical internal conversion coefficients) J.U.DELGADO, J.MOREL, M.ETCHEVERRY, Appl. Radiat. Isot. 56 (2002) 137 (Gamma-ray emission intensities, X-ray emission intensities) E.BROWNE, Nucl. Data Sheets 99 (2003) 483 (Energy level, spin, parity and multipolarity) G.L.MOLNAR, ZS.RÉVAY, T.BELGYA, Proc. 11th Int. Symp. on Capture Gamma-ray Spectroscopy, 2-6 September 2002, Pruhonice (2003) (Gamma-ray emission intensities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (Q) J.Morel, S.Speman, M.Rasko, E.Terechtchenko, J.U.Delgado, Appl. Radiat. Isot. 60 (2004) 341 (Gamma-ray emission probabilities)

 $\rm R.G.Helmer,$ in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19

(Gamma-ray emission intensities)

Bi - 214

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	7.6	(2)	\min
Q_{β^-}	:	2189	(15)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Probabili × 100	ity	Nature	$\log ft$
$\beta_{0.18}^{-}$	790 (15)	2.8 ((1)	[1st forbidden non-unique]	6
$\beta_{0.17}^{-}$	895~(15)	2.0 ((2)	[1st forbidden non-unique]	6.34
$\beta_{0.16}^{-}$	1013 (15)	0.2 ((1)	[1st forbidden non-unique]	7.5
$\beta_{0,14}^{-}$	1111 (15)	0.7 ((1)	[1st forbidden non-unique]	7.1
$\beta_{0,9}^{-}$	$1354\ (15)$	1.5 ((1)	[1st forbidden non-unique]	7.1
$\beta_{0.6}^{-}$	1512 (15)	0.5 ((1)	[1st forbidden non-unique]	7.8
$\beta_{0.5}^{-}$	1581 (15)	0.7 ((1)	(1st forbidden non-unique)	7.7
$\beta_{0.4}^{-}$	1671 (15)	0.3 ((2)	(1st forbidden non-unique)	8.1
$\beta_{0.3}^{-}$	1787(15)	0.5 ((1)	(1st forbidden unique)	9
$\beta_{0.2}^{}$	1895(15)	30 ((6)	(1st forbidden non-unique)	6.35
$\beta_{0,0}^{0,2}$	2189(15)	61 ((6)	(1st forbidden non-unique)	6.28

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Po)	5.434 - 10.934	4.0 (4)	
$e_{\rm AK}$	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.22 (5) } } }	
$\begin{array}{c} ec_{1,0} \ {\rm K} \\ ec_{1,0} \ {\rm L} \\ ec_{1,0} \ {\rm M} + \\ ec_{2,0} \ {\rm K} \\ ec_{2,0} \ {\rm L} \\ ec_{2,0} \ {\rm M} + \end{array}$	(Po) (Po) (Po) (Po) (Po)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.22 \ (1) \\ 0.13 \ (1) \\ 0.04 \\ 6.0 \ (4) \\ 1.5 \ (1) \\ 0.7 \ (1) \end{array}$	
$\begin{array}{c} \beta_{0,18}^{-} \\ \beta_{0,17}^{-} \\ \beta_{0,16}^{-} \\ \beta_{0,14}^{-} \\ \beta_{0,9}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \end{array}$	max: max: max: max: max: max: max: max:	$\begin{array}{ccc} 790 & (15) \\ 895 & (15) \\ 1013 & (15) \\ 1111 & (15) \\ 1354 & (15) \\ 1512 & (15) \\ 1581 & (15) \\ 1671 & (15) \\ 1787 & (15) \end{array}$	$\begin{array}{c} 2.8 \ (1) \\ 2.0 \ (2) \\ 0.2 \ (1) \\ 0.7 \ (1) \\ 1.5 \ (1) \\ 0.5 \ (1) \\ 0.7 \ (1) \\ 0.3 \ (2) \\ 0.5 \ (1) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Surrey Univ. /A.L. Nichols, ANL /F.G. Kondev

_		Energy keV		Electrons per 100 disint.	Energy keV	
$egin{array}{c} eta_{0,2}^- \ eta_{0,0}^- \end{array} \ eta_{0,0}^- \end{array}$	max: max:	1895 2189	(15) (15)	$30 (6) \\ 61 (6)$	avg: avg:	$\begin{array}{c} 685 \ (6) \\ 808 \ (6) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		2.7(3)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$\begin{array}{c} 1.8 \ (3) \\ 3.0 \ (5) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	1.02(16)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.32(5)	$\mathbf{K}\beta_{2}^{\prime}$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{3,1}(\text{Po})$	130.58(1)	0.0505(12)	M1+26.5%E2	4.44 (13)	0.0093(10)
$\gamma_{4,2}(\text{Po})$	224.04(7)	0.044~(7)	E2	0.319(5)	0.033~(5)
$\gamma_{1,0}(Po)$	271.228(10)	2.34(10)	M1+94%E2	0.201~(7)	1.95(7)
$\gamma_{2,0}(\text{Po})$	293.56(4)	32(2)	M1+50%E2	0.34(5)	23.8(9)
$\gamma_{6,2}(Po)$	383.10(8)	0.14(7)			0.14(7)
$\gamma_{3,0}(\text{Po})$	401.81(1)	0.50(8)	E2	0.0555(8)	0.48(7)
$\gamma_{6,1}(\text{Po})$	405.43(7)	0.006(1)			0.006(1)
$\gamma_{4,0}(\text{Po})$	517.60(6)	1.10(8)	M1+50%E2	0.073(10)	1.02(8)
$\gamma_{9,2}(Po)$	541.76(22)	0.21(7)			0.21(7)
$\gamma_{9,1}(\text{Po})$	564.09(22)	0.67(7)			0.67(7)
$\gamma_{5,0}(\text{Po})$	608.30(7)	0.67(7)	(M1+E2)		0.67(7)
$\gamma_{6,0}(\text{Po})$	676.66(7)	0.40(7)			0.40(7)
$\gamma_{17,4}(\text{Po})$	776.9(1)	0.81(14)			0.81(14)
$\gamma_{14,2}(\text{Po})$	784(2)	0.33(7)			0.33(7)
$\gamma_{14,1}(\text{Po})$	806.4(20)	0.40(7)			0.40(7)
$\gamma_{9,0}(\text{Po})$	835.32(22)	0.62(7)			0.62(7)
$\gamma_{16,1}(\text{Po})$	905(2)	0.21(7)			0.21(7)
$\gamma_{17,1}(\text{Po})$	1023.3(1)	0.62(7)			0.62(7)
$\gamma_{18,2}(\text{Po})$	1105.2~(4)	1.50(7)			1.50(7)
$\gamma_{18,1}(\text{Po})$	1127.6(4)	0.48(7)			0.48(7)

Surrey Univ. /A.L. Nichols, ANL /F.G. Kondev

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{17,0}(Po) \\ \gamma_{18,0}(Po)$	$\begin{array}{c} 1294.5 \ (1) \\ 1398.8 \ (4) \end{array}$	$\begin{array}{c} 0.62 \ (7) \\ 0.81 \ (7) \end{array}$			$\begin{array}{c} 0.62 \ (7) \\ 0.81 \ (7) \end{array}$

5 References

B.W.SARGENT, Proc. Roy. Soc. (London) A139 (1933) 659 (Beta decay, 5th power law) E.K.Hyde, A.Ghiorso, Phys. Rev. 90 (1953) 267 (Beta decay, Half-life) R.D.EVANS, The Atomic Nucleus, Tata McGraw-Hill (1955) 559 (Beta decay, 5th power law) I.KAPLAN, Nuclear Physics, Addison-Wesley (1963) 364 (Beta decay, 5th power law) M.NURMIA, D.GIESSING, W.SIEVERS, L.VARGA, Ann. Acad. Sci. Fenn., Ser. A, VI 167 (1965) (Half-life) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 385 (K/L and L sub-shell ratios, ICC) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) D.G.BURKE, H.FOLGER, H.GABELMANN, E.HAGEBØ, P.HILL, P.HOFF, O.JONSSON, N.KAFFRELL, W.KURCEWICZ, G.Løvhøiden, K.Nybø, G.Nyman, H.Ravn, K.Riisager, J.Rogowski, K.Steffensen, T.F.Thorsteinsen, et AL., Z. Phys. A333 (1989) 131 (Half-life) E.Ruchowska, J.Zylicz, C.F.Liang, P.Paris, Ch.Briançon, J. Phys. (London) G16 (1990) 255 (Gamma-ray energies, Gamma-ray emission probabilities, Half-life) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Nuclear structure, level energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Nuclear structure, level energies) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) J.KURPETA, A.PLOCHOCKI, A.N.ANDREYEV, J.AYSTO, A.DE SMET, H.DE WITTE, A.-H.EVENSEN, V.FEDOSEYEV, S.Franchoo, M.Gorska, H.Grawe, M.Huhta, M.Huyse, Z.Janas, A.Jokinen, M.Karny, E.Kugler, W.Kurcewicz, U.Koster, et al., Eur. Phys. J. A18 (2003) 31 (Gamma-ray energies, gamma-ray emission probabilities, beta-particle emission probabilities) Y.A.AKOVALI, At. Data Nucl. Data Tables 100 (2003) 141 (Nuclear structure, level energies) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Nuclear structure, level energies) M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Nuclear structure, level energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Surrey Univ. /A.L. Nichols, ANL /F.G. Kondev
Bi - 215

Surrey Univ. /A.L. Nichols, ANL /F.G. Kondev

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	138.3763	(17)	d
$Q^{'}_{lpha}$:	5407.46	(7)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 4516.66 \ (9) \\ 5304.33 \ (7) \end{array}$	$\begin{array}{c} 0.00124 \ (4) \\ 99.99876 \ (4) \end{array}$	

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.217		0.00000384 (10)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pb) (Pb)	$72.805 \\ 74.97$		$\begin{array}{c} 0.00000277 \ (10) \\ 0.00000466 \ (17) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.00000159 (6)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.000000481 (20)	$\mathrm{K}\beta_2'$

3.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pb)$	803.10 (5)	0.00124 (4)	E2	0.01033 (15)	0.00123 (4)

4 References

E.V.SCHWEIDLER, Verh. Deutsch Phys. Ges. 14 (1912) 539
(Half-life)
M.CURIE, J. Phys. Radium 1 (1920) 12
(Half-life)
A.DORABIALSKA, Roczniki Chem. (Poland) 11 (1931) 475
(Half-life)
S.ROSENBLUM, G.DUPOUY, J. Phys. Radium 4 (1933) 262
(Alpha energy)
W.B.LEWIS, B.V.BOWDEN, Proc. Roy. Soc. (London) A145 (1934) 235

(Alpha energy) A.S.SANIELEVICI, J. Chim. Phys. 33 (1936) 759 (Half-life) W.H.BEAMER, C.R.MAXWELL, J. Chem. Phys. 17 (1949) 1293 (Half-life) M.A.GRACE, R.A.ALLEN, D.WEST, H.HALBAN, Proc. Roy. Soc. (London) A64 (1951) 493 (Gamma-ray instensity) W.C.BARBER, R.H.HELM, Phys. Rev. 86 (1952) 275 (Gamma-ray instensity) S.DE BENEDETTI, G.H.MINTON, Phys. Rev. 85 (1952) 944 (Multipolaity) M.RIOU, J. Phys. Radium 13 (1952) 244 (Gamma-ray instensity) D.C.GINNINGS, A.F.BALL, D.T.VIER, J. Res. Nat. Bur. Stand. 50 (1953) 75 (Half-life) M.L.CURTIS, Phys. Rev. 92 (1953) 1489 (Half-life) E.R.COLLINS, C.D.MCKENZIE, C.A.RAMM, Proc. Roy. Soc. (London) 216A (1953) 219 (Alpha energy) G.H.BRIGGS, Rev. Mod. Phys. 26 (1954) 1 (Alpha energy) J.F.Eichelberger, K.C.Jordan, S.R.Orr, J.R.Parks, Phys. Rev. 96 (1954) 719 (Half-life) R.W.HAYWARD, D.D.HOPPES, W.B.MANN, J. Res. Nat. Bur. Stand. 54 (1955) 47 (Gamma-ray instensity) O.Rojo, M.A.Hakeem, M.Goodrich, Phys. Rev. 99 (1955) 1629 (Gamma-ray instensity) A.Ascoli, M.Asdente, E.Germagnoli, Nuovo Cim. 4 (1956) 946 (Gamma-ray instensity) N.S.SHIMANSKAIA, Sov. Phys. - JETP 4 (1957) 165 (Gamma-ray instensity) V.V.OVECHKIN, Bull. Rus. Acad. Sci. Phys. 21 (1958) 1627 (Gamma-ray instensity) I.I.AGAPKIN, L.L.GOLDIN, Bull. Rus. Acad. Sci. Phys. 21 (1958) 911 (Alpha energy) F.A.WHITE, F.M.ROURKE, J.C.SHEFFIELD, R.P.SCHUMAN, J.R.HUIZENGA, Phys. Rev. 109 (1958) 437 (Alpha energy) C.P.BROWNE, J.A.GALEY, J.R.ERSKINE, K.L.WARSH, Phys. Rev. 120 (1960) 905 (Alpha energy) A.Rytz, H.H.Staub, H.Winkler, Helv. Phys. Acta 34 (1961) 960 (Alpha energy) E.H.BECKNER, R.L.BRAMBLETT, G.C.PHILLLIPS, T.A.EASTWOOD, Phys. Rev. 123 (1961) 2100 (Alpha energy) C.P.BROWNE, Phys. Rev. 126 (1962) 1139 (Alpha energy) J.F.EICHELBERGER, G.R.GROVE, L.V.JONE, Report MLM-1209, Mound Laboratory (1964) 11 (Half-life) D.J.GORMAN, A.RYTZ, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 29 (Alpha energy) R.G.HELMER, Nucl. Data Sheets 61 (1990) 93 (Energy level, spin and parity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 88 (1999) 29 (Spin, parity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 8 (2002) 1 (Theoretical ICC)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

G.Audi, A.H.Wapstra, V.Thibault, Nucl. Phys. A729 (2003) 129 (Q)

Po-211

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	0.516	(3)	\mathbf{S}
$Q^{'}_{lpha}$:	7594.48	(51)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6568.4 \ (10) \\ 6891.2 \ (10) \\ 7450.2 \ (3) \end{array}$	$\begin{array}{c} 0.523 \ (9) \\ 0.541 \ (17) \\ 98.936 \ (19) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Pb)	5.33 - 15.82	0.01216(17)
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.00071 (8) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		0.00740(16)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 0.00535 \ (14) \\ 0.00900 \ (24) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.00308 (10)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.00093 (4)	$\mathrm{K}\beta_2'$

$\begin{array}{ccc} Energy & P_{\gamma+ce} & Multipolarity & \alpha_T \\ keV & \times 100 \end{array}$

4.2 Gamma Transitions and Emissions

	keV	$\times 100$			$\times 100$
$\gamma_{2,1}(Pb)$	328.2(2)	0.0043(15)	M1	0.334(5)	0.0032 (11)
$\gamma_{1,0}(Pb)$ $\gamma_{2,0}(Pb)$	569.65(15) 897.8(2)	0.546(17) 0.519(9)	E2 M1+E2	0.0216(3) 0.0233(4)	0.534(17) 0.507(9)

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life)

R.F.LEININGER, E.SEGRÈ, F.N.SPIESS, Phys. Rev. 82 (1951) A334 (Alpha emission energies, Alpha emission probabilities) H.M.NEUMANN, I.PERLMAN, Phys. Rev. 81 (1951) 958 (Alpha emission energies, Alpha emission probabilities) F.ASARO, Thesis, Report UCRL-2180, Univ. California (1953) (Alpha emission energies, Alpha emission probabilities) R.W.HOFF, Thesis, Report UCRL-2325, Univ. California (1953) (Alpha emission energies, Alpha emission probabilities) G.H.BRIGGS, Rev. Mod. Phys. 26 (1954) 1 (Alpha emission energies) J.W.MIHELICH, A.W.SCHARDT, E.SEGRÈ, Phys. Rev. 95 (1954) 1508 (Gamma-ray energies) F.N.SPIESS, Phys. Rev. 94 (1954) 1292 (Half-life) M.M.WINN, Proc. Phys. Soc. (London) 67A (1954) 949 (Half-life) P.A.TOVE, Ark. Fys. 13 (1958) 549 (Half-life) R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha emission energies, Alpha emission probabilities) W.B.JONES, Phys. Rev. 130 (1963) 2042 (Alpha emission energies) L.GUETH, S.GUETH, E.DAROCZY, B.S.DZHELEPOV, Y.V.NORSEEV, V.A.KHALKIN, Report JINR-P6-4079, Joint Institute of Nuclear Research, Dubna (1968) (Alpha emission energies, Alpha emission probabilities) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray emission probabilities) N.A.GOLOVKOV, S.GUETKH, B.S.DZHELEPOV, Y.V.NORSEEV, V.A.KHALKIN, V.G.CHUMIN, Izv. Akad. Nauk SSSR, Ser. Fiz. 33 (1969) 1622 (Alpha emission energies) R.L.HAHN, M.F.ROCHE, K.S.TOTH, Phys. Rev. 182 (1969) 1329 (Alpha emission energies) K.VALLI, E.K.HYDE, J.BORGGREEN, Phys. Rev. C1 (1970) 2115 (Alpha emission energies) G.Astner, Phys. Scr. 5 (1972) 31 (Alpha emission probabilities, Gamma-ray emission probabilities) A.R.BARNETT, J.S.LILLEY, Phys. Rev. C9 (1974) 2010 (Half-life) L.J.JARDINE, Phys. Rev. C11 (1975) 1385 (Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities) M.YANOKURA, H.KUDO, H.NAKAHARA, K.MIYANO, S.OHYA, O.NITOH, Nucl. Phys. A299 (1978) 92 (Alpha emission energies, Alpha emission probabilities)

IFIN-HH /A. Luca

 P_{γ}

J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha emission energies) R.M.LAMBRECHT, S.MIRZADEH, Int. J. Appl. Radiat. Isotop. 36 (1985) 443 (Alpha emission energies, Alpha emission probabilities, Gamma-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies) M.J.MARTIN, Nucl. Data Sheets 70 (1993) 315 (Multipolarities, Spin and Parity, Mixing ratio) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 $(Atomic \ Data, \ Auger \ electron \ emission \ probabilities, \ L \ X-ray \ emission \ probabilities, \ K \ X-ray \ emission \ probabilities)$ G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Production modes) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Po-211

IFIN-HH /A. Luca

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	300	(2)	$\times 10^{-9} \mathrm{~s}$
$Q^{'}_{lpha}$:	8954.12	(11)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	
$\alpha_{0,0}$	8785.17 (11)	100	

3 References

D.E.BUNYAN, A.LUNDBY, D.WALKER, Proc. Phys. Soc. (London) 62A (1949) 253 (Half-life) F.C.FLACK, J.E.JOHNSON, Proc. Phys. Soc. 79 (1962) 10 (Half-life) G.Astner, I.Bergstrom, L.Eriksson, U.Fagerguist, G.Holm, A.Persson, Nucl. Phys. 45 (1963) 49 (Half-life) G.W.McBeth, R.A.WINYARD, Int. J. Appl. Radiat. Isotop. 23 (1972) 527 (Half-life) S.SANYAL, R.K.GARG, S.D.CHAUHAN, S.L.GUPTA, S.C.PANCHOLI, Phys. Rev. C12 (1975) 318 (Half-life) H.BOHN, E.ENDRES, T.FAESTERMANN, P.KIENLE, Z. Phys. A302 (1981) 51 (Half-life) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure, energies)

Surrey Univ. /A.L. Nichols

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.70	(5)	$\times 10^{-6}$ s
$Q^{'}_{lpha}$:	8536.1	(26)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 7614 \ (10) \\ 8375.9 \ (25) \end{array}$	$\begin{array}{c} 0.0050\ (5)\\ 99.9950\ (5) \end{array}$	

3 Photon Emissions

3.1 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Pb)$	778.8 (3)	0.0050 (5)	M1	0.0339(5)	0.0048 (5)

4 References

J.V.JELLEY, Can. J. Res. 26A (1948) 255 (Half-life) K.VALLI, Ann. Acad. Sci. Fenn., Ser. A, VI 165 (1964) (Alpha energies) C.F.LEANG, Thesis, Univ. Paris (1969) (Alpha energies) J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energies) M.C.KOUASSI, A.HACHEM, C.ARDISSON, G.ARDISSON, Nucl. Instrum. Methods Phys. Res. A280 (1989) 424 (Gamma-ray energies and intensities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluation alpha energies) J.WAWRYSZCZUK, M.B.YULDASHEV, K.YA.GROMOV, T.M.MUMINOV, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg (1995) 107 (Half-life) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.WAWRYSZCZUK, K.V.KALYAPKIN, M.B.YULDASHEV, K.YA.GROMOV, V.I.FOMINYKH, Bull. Rus. Acad. Sci. Phys. 61 (1997) 25 (Half-life) V.G.Chumin, J.K.Jabber, K.V.Kalyapkin, S.A.Kudrya, V.V.Tsupko-Sitnikov, K.Ya.Gromov, V.I.Fomin-YKH, T.A.FURYAEV, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606 (Alpha emission probabilities) YA.VAVRYSHCHUK, K.YA.GROMOV, V.B.ZLOKAZOV, V.G.KALINNIKOV, V.A.MOROZOV, N.V.MOROZOVA, V.I.FO-MINYKH, V.V.TSUPKO-SITNIKOV, I.N.CHURIN, Report JINR-P6-97-180, Joint Institute of Nuclear Research, Dubna (1997)(Half-life) J.WAWRYSZCZUK, K.YA.GROMOV, V.B.ZLOKAZOV, V.G.KALINNIKOV, V.A.MOROZOV, N.V.MOROZOVA, V.I.FO-MINIKH, V.V.TSUPKO-SITNIKOV, I.N.CHURIN, Phys. Atomic Nuclei 61 (1998) 1322 (Half-life)

CNDC /Huang Xiaolong, Wang Baosong

V.A.MOROZOV, N.V.MOROZOVA, YU.V.NORSEEV, ZH.SEREETER, V.B.ZLOKAZOV, Nucl. Instrum. Methods Phys. Res. A484 (2002) 225 (Half-life)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (Q)
HUANG XIAOLONG, WANG BAOSONG, Nuclear Science and Techniques Vol.108 (2007) 261 (Evaluation)
M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Decay scheme and levels)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	162.3	(12)	$ imes 10^{-6}$ s
$Q^{'}_{lpha}$:	7833.46	(6)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6610.1 \ (10) \\ 6902.6 \ (3) \\ 7686.82 \ (6) \end{array}$	$\begin{array}{c} 0.000058 \ (2) \\ 0.0105 \ (7) \\ 99.9895 \ (7) \end{array}$

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.19 - 15.22		0.0000347(13)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 0.0000246 \ (15) \\ 0.0000414 \ (25) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.0000141 (9)	$\mathrm{K}\beta_1'$
$\begin{array}{l} {\rm XK}\beta_2 \\ {\rm XK}\beta_4 \\ {\rm XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.00000427 (27)	$\mathrm{K}\beta_2'$

3.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Pb)$ $\gamma_{1,0}(Pb)$	$\begin{array}{c} 298 \ (1) \\ 799.7 \ (1) \end{array}$	$\begin{array}{c} 0.000058 \ (20) \\ 0.0105 \ (7) \end{array}$	E2 E2	$\begin{array}{c} 0.1180 \ (21) \\ 0.01042 \ (15) \end{array}$	$\begin{array}{c} 0.000052 \ (18) \\ 0.0104 \ (6) \end{array}$

4 References

J.V.DUNWORTH, Nature 144 (1939) 152 (Half-life) J.ROTBLAT, Proc. Roy. Soc. (London) A177 (1941) 260 (Half-life) A.G.WARD, Proc. Roy. Soc. (London) A181 (1942) 183 (Half-life) J.C.JACOBSEN, T.SIGURGEIRSSON, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 20 (1943) 11

(Half-life) G.VON DARDEL, Phys. Rev. 79 (1950) 734 (Half-life) R.BALLINI, Ann. Phys. (Paris) 8 (1953) 441 (Half-life) K.W.OGILVIE, Proc. Phys. Soc. (London) 76 (1960) 299 (Half-life) A.Rytz, Helv. Phys. Acta 34 (1961) 240 (Alpha transitions) T.DOBROWOLSKI, J.YOUNG, Proc. Phys. Soc. (London) 77 (1961) 1219 (Half-life) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray instensity) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha transitions) A.ERLIK, J.FELSTEINER, H.LINDEMAN, M.TATCHER, Nucl. Instrum. Methods 92 (1971) 45 (Half-life) W.KURCEWICZ, N.KAFFRELL, N.TRAUTMANN, A.PLOCHOCKI, J.ZYLICZ, K.STRYCZNIEWICZ, I.YUTLANDOV, Nucl. Phys. A270 (1976) 175 (Gamma-ray instensity and energy, alpha intensity) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life) E.BROWNE, Nucl. Data Sheets 65 (1992) 209 (Energy level, spin, parity) J.W.ZHOU, P.DE MARCILLAC, N.CORON, S.WANG, H.H.STROKE, O.REDI, J.LEBLANC, G.DAMBIER, M.BARTHELEMY, J.P. TORRE, O. TESTARD, G. BEYER, H.RAVN, J.MANGIN, Nucl. Instrum. Methods Phys. Res. A335 (1993) 443 (Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1995) 205 (Alpha energy and intensity) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha energy and intensity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 99 (2003) 483 (Energy level, spin, parity)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	1.781	(4)	$ imes 10^{-3} \ { m s}$
Q_{lpha}	:	7526.3	(8)	keV
$Q_{\beta^{-}}$:	715	(7)	keV
α'	:	99.99977	(2)	%
β^-	:	2.3	(2)	$\times 10^{-4}~\%$

2 α Emissions

$ \begin{array}{c} \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,5} \\ \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} $	$\begin{array}{c} 6509 \ (3) \\ 6586 \ (3) \\ 6667 \ (3) \\ 6755 \ (3) \\ 6799 \ (3) \\ 6813 \ (3) \\ 5955.4 \ (8) \\ 7386 \ 1 \ (8) \end{array}$	$\begin{array}{c} 0.0003\\ 0.0020\ (6)\\ 0.0008\ (3)\\ 0.0008\ (3)\\ 0.0016\ (5)\\ 0.0004\ (2)\\ 0.06\ (2)\\ 99\ 934\ (20) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pb)	5.33 - 15.82	0.00115 (14)
e _{AK}	(Pb) KLL KLX KXY	56.028 - 61.669 68.181 - 74.969 80.3 - 88.0	0.000059 (21) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.186 - 15.2169		0.00071 (12)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 0.00045 \ (15) \\ 0.00075 \ (25) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	84.451 84.937 85.47	} } }	0.00026 (9)	$\mathrm{K}\beta_1'$

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.000078 (26)	${ m K}eta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Pb)$	438.9(2)	0.06(2)	E2	0.0405~(6)	0.058(19)

5 References

A.G.WARD, Proc. Roy. Soc. (London) 181A (1942) 183 (Half-life) P.AVIGNON, J. Phys. Radium 11 (1950) 521 (Beta-branching) YU.M.VOLKOV, A.P.KOMAR, G.A.KOROLEV, G.E.KOCHAROV, Izv. Akad. Nauk SSSR, Ser. Fiz. (Columbia Tech.Transl. 25, 1193 (1962)) 25 (1961) 1188 (Half-life) R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha-particle energies and emission probabilities) K.VALLI, J.AALTONEN, G.GRAEFFE, M.NURMIA, Ann. Acad. Sci. Fenn., Ser. A, VI 184 (1965) (Alpha-particle energies and emission probabilities) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray energies and emission probabilities) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 385 (Gamma-ray energies and emission probabilities) B.GRENNBERG, A.Rytz, Metrologia 7 (1971) 65 (Alpha-particle energies) A.ERLIK, J.FELSTEINER, H.LINDEMAN, M.TATCHER, Nucl. Instrum. Methods 92 (1971) 45 (Half-life) C.MAPLES, Nucl. Data Sheets 22 (1977) 207 (X-, gamma-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables (1991) (Alpha-particle energies and emission probabilities) C.F.LIANG, P.PARIS, R.K.SHELINE, Phys. Rev. C58 (1998) 3223 (Alpha -particle and gamma-ray energies and emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (215Po decay scheme, 211Pb levels) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions)

KRI /V.P. Chechev

Po-216

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	0.148	(4)	\mathbf{S}
Q_{α}	:	6906.3	(5)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	5988.4(7) 6778.4(5)	$\begin{array}{c} 0.0019 \ (3) \\ 99.9981 \ (3) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pb)	5.26 - 10.40	0.0000097(10)
$e_{\rm AK}$	(Pb) KLL KLX KXY	56.03 - 61.67 68.18 - 74.97 80.3 - 88.0	0.00000056 (11) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pb)	9.184 - 15.216		0.0000059 (6)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pb) (Pb)	$72.8049 \\ 74.97$		$\begin{array}{c} 0.0000043 \ (7) \\ 0.0000072 \ (12) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pb) (Pb) (Pb)	$\begin{array}{c} 84.451 \\ 84.937 \\ 85.47 \end{array}$	} } }	0.0000024 (4)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pb) (Pb) (Pb)	87.238 87.58 87.911	} } }	0.00000074 (12)	$\mathrm{K}\beta_2'$

Surrey Univ. /A.L. Nichols

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pb)$	804.9(5)	0.0019(3)	[E2]	0.01027(15)	0.0019(3)

4.2 Gamma Transitions and Emissions

5 References

H.G.J.MOSELEY, K.FAJANS, Phil. Mag. 22 (1911) 629 (Half-life) A.G.WARD, Proc. Roy. Soc. (London) 181A (1942) 183 (Half-life) R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies, Alpha emission probabilities) H.DIAMOND, J.E.GINDLER, J. Inorg. Nucl. Chem. 25 (1963) 143 (Half-life) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r0 parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (K-x ray) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) F.A.DANEVICH, A.SH.GEORGADZE, V.V.KOBYCHEV, B.N.KROPIVYANSKY, A.S.NIKOLAIKO, O.A.PONKRATENKO, V.I.TRETYAK, S.YU.ZDESENKO, YU.G.ZDESENKO, P.G.BIZZETI, T.F.FAZZINI, P.R.MAURENZIG, Phys. Rev. C68 (2003) 035501(Half-life) E.BROWNE, Nucl. Data Sheets 104 (2005) 427 (Nuclear structure, energies) S.-C.WU, Nucl. Data Sheets 108 (2007) 1057 (Nuclear structure, energies) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Surrey Univ. /A.L. Nichols

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.071	(22)	\min
Q_{β^-}	:	260	(12)	keV
Q_{lpha}	:	6114.68	(9)	keV
α	:	99.978	(3)	%
β^{-}	:	0.022	(3)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,0}^-$	260 (12)	0.022 (3)		

3 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	$5181 (2) \\ 6002.35 (9)$	$\begin{array}{c} 0.0011 \ (11) \\ 99.9769 \ (32) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV	
$\beta_{0,0}^-$	max:	260 (12)	0.022 (3)	avg:	73 (4)

5 Photon Emissions

5.1 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Pb)$	836 (2)	0.0011 (11)	(E2)		0.0011 (11)

6 References

M.BLAU, Akad. Wiss. Wien, Berlin 133 (1924) 17
(Half-life)
M.CURIE, A.DEBIERNE, A.S.EVE, H.GEIGER, O.HAHN, S.C.LIND, ST.MEYER, E.RUTHERFORD, E.SCHWEILDLER, Rev. Mod. Phys. 3 (1931) 427
(Half-life (Pb-214))
R.J.WALEN, J. Phys. Radium 10 (1949) 95
(Beta emission probabilities and half-life (At-218))

F.HIESSBERGER, B.KARLIK, Stizber. Akad. Wiss. Wien, Math-Naturw. Kl. Abt. Iia 161 (1952) 51 (Branching ratio) R.J.WALEN, G.BASTIN, Compt. Rend. Cong. Phys. Nucl., Paris (1958) 910 (Alpha emission energies and probabilities, beta emission probabilities) G.BASTIN-SCOFFIER, C.F.LEANG, R.J.WALEN, J. Phys. (Paris) 24 (1963) 854 (Alpha energy) B.GRENNBERG, A.Rytz, Metrologia 7 (1971) 65 (Alpha energy) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha emission energy and probabilities) J.R.VAN HISE, D.E.MARTZ, R.A.JACKSON, D.Y.KUNIHIRA, E.BOLTON, Phys. Rev. C25 (1982) 2802 (Half-life) G.V.POTAPOV, P.S.SOLOSHENKOV, Sov. J. At. Energy 60 (1986) 345 (Half-life) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Energy level, spin, parity, multipolarity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energy and probabilities) P.BALTZER, K.G.GÖRSTEN, A.BÄCKLIN, Nucl. Instrum. Methods Phys. Res. A317 (1992) 357 (Alpha energy) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127 (Energy level, spin, parity, multipolarity) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 457 (Energy level and half-life) Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (Branching ratio) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) A.K.JAIN, B.SINGH, Nucl. Data Sheets 107 (2006) 1027 (Energy level and haf-life)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	7.216	(7)	h
$Q^{'}_{lpha}$:	5982.4	(13)	keV
Q_{EC}	:	785.4	(25)	keV
EC	:	58.22	(8)	%
α	:	41.78	(8)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\substack{\epsilon_{0,1}}{\epsilon_{0,0}}$	$\begin{array}{c} 98.2 \ (26) \\ 785.4 \ (25) \end{array}$	$\begin{array}{c} 0.258 \ (13) \\ 57.96 \ (8) \end{array}$	1st forbidden non-unique 1st forbidden non-unique	$5.77 \\ 5.97$	$\begin{array}{c} 0.015 \ (17) \\ 0.7731 \ (2) \end{array}$	$\begin{array}{c} 0.684 \ (10) \\ 0.1693 \ (1) \end{array}$	$\begin{array}{c} 0.301 \ (7) \\ 0.05758 \ (4) \end{array}$

3 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,5} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 4895.4 \ (13) \\ 4993.4 \ (13) \\ 5140.3 \ (13) \\ 5211.9 \ (13) \\ 5869.0 \ (13) \end{array}$	$\begin{array}{c} <0.00004 \\ \sim 0.0004 \\ 0.0011 \ (2) \\ 0.0039 \ (3) \\ 41.78 \ (8) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Po)	5.434 - 10.934	27.6 (8)
e_{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	1.57 (18) } }
$e_{\rm AL}$	(Bi)	5.35 - 10.66	0.000211 (20)
e_{AK}	(Bi) KLL KLX KXY	57.491 - 63.419 70.025 - 77.105 82.53 - 90.52	0.0000126 (24) } } }

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		18.6(8)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$\begin{array}{c} 12.66 \ (9) \\ 21.08 \ (12) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	7.26 (12)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	2.26 (5)	$\mathrm{K}\beta_2'$
XL	(Bi)	9.42 - 15.709		0.000136(14)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 0.000098 \ (15) \\ 0.000164 \ (25) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.000056 (9)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } }	0.000017 (3)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} & \gamma_{3,2}({\rm Bi}) \\ \gamma_{3,1}({\rm Bi}) \\ \gamma_{1,0}({\rm Bi}) \\ \gamma_{1,0}({\rm Po}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \end{array}$	$\begin{array}{c} 149.72 \ (10) \\ 222.69 \ (10) \\ 669.77 \ (7) \\ 687.2 \ (7) \\ 742.74 \ (7) \\ 892.46 \ (7) \end{array}$	$\begin{array}{c} \sim 0.0002 \\ \sim 0.00008 \\ 0.0040 \ (3) \\ 0.258 \ (13) \\ 0.0013 \ (2) \\ \sim 0.00014 \end{array}$	$\begin{array}{c} M1{+}13.8\%E2\\ M1{+}13.8\%E2\\ [M1{+}5.9\%E2]\\ (M1{+}3.85\%E2]\\ [M1{+}8.3\%E2]\\ [M1{+}8.3\%E2]\\ [M1{+}66.2\%E2] \end{array}$	$\begin{array}{c} 3.0 \ (3) \\ 0.95 \ (5) \\ 0.0520 \ (9) \\ 0.0536 \ (9) \\ 0.0391 \ (7) \\ 0.0145 \ (13) \end{array}$	$\begin{array}{c} \sim 0.00005 \\ \sim 0.00004 \\ 0.0038 \ (3) \\ 0.245 \ (12) \\ 0.00125 \ (19) \\ \sim 0.00014 \end{array}$

6 References

H.M.NEUMANN, I.PERLMAN, Phys. Rev. 81 (1951) 958
(Alpha branching fraction)
R.W.HOFF, Thesis, Report UCRL-2325, Univ. California (1953)
(Alpha decay, Auger-electron spectra, gamma-ray spectra)
P.R.GRAY, Phys. Rev. 101 (1956) 1306
(Half-life, Alpha spectra, Auger electron spectra)
W.J.RAMLER, J.WING, D.J.HENDERSON, J.R.HUAZENGA, Phys. Rev. 114 (1959) 154
(Half-life)

Surrey Univ. /A.L. Nichols

E.H.Appelman, Phys. Rev. 121 (1961) 253 (Half-life) T.D.THOMAS, G.E.GORDON, R.M.LATIMER, G.T.SEABORG, Phys. Rev. 126 (1962) 1805 (Half-life) N.A.GOLOVKOV, SH.GUETKH, B.S.DZHELEPOV, YU.V.NORSEEV, V.A.KHALKIN, V.G.CHUMIN, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1489 (Alpha emission energies, Alpha emission probabilities, Alpha branching fraction) G.Astner, M.Alpsten, Nucl. Phys. A140 (1970) 643 (Multipolarities) V.P.Afanasiev, M.Bochvarova, N.A.Golovkov, I.I.Gromova, R.B.Ivanov, V.I.Kuzin, Y.V.Norseev, V.G.Chumin, Report JINR-P6-4972, Joint Institute of Nuclear Research, Dubna (1970) (Alpha emission energies, Alpha emission probabilities, Alpha branching fraction) L.J.JARDINE, Phys. Rev. C11 (1975) 1385 (Alpha emission energies, Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities, Alpha branching fraction) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) W.-D.SCHMIDT-OTT, R.-D.V.DINCKLAGE, Z. Phys. A286 (1978) 301 (Multipolarities) M.YANOKURA, H.KUDO, H.NAKAHARA, K.MIYANO, S.OHYA, O.NITOH, Nucl. Phys. A299 (1978) 92 (Half-life, Alpha branching fraction) P.HERZOG, H.WALITZKI, K.FREITAG, H.HILDEBRAND, K.SCHLOSSER, Z. Phys.A - Atoms and Nuclei A311 (1983) 351(Multipolarities) R.M.LAMBRECHT, S.MIRZADEH, Int. J. Appl. Radiat. Isotop. 36 (1985) 443 (Alpha energies and emission probabilities, Gamma-ray energies and emission probabilities, X-ray energies and emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies, Alpha emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons) Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r(0) parameters) E.Schönfeld, G.Rodloff, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))V.G.CHUMIN, K.YA.GROMOV, SH.R.MALIKOV, YU.V.NORSEEV, ZH.K.SAMATOV, V.I.FOMINYKH, A.P.CHEREVATENKO, L.V.YURKOVA, Bull. Rus. Acad. Sci. Phys. 65 (2001) 27 (Alpha emission energies, Alpha emission probabilities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 103 (2004) 183 (Nuclear structure and level energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC) F.G.KONDEV, S.LALKOSKI, Nucl. Data Sheets 112 (2011) 707 (Nuclear structure and level energies)

At - 211

Surrey Univ. /A.L. Nichols

At-215

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	0.10	(2)	$ imes 10^{-3} { m s}$
$Q^{'}_{lpha}$:	8178	(4)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 7628 \ (4) \\ 8026 \ (4) \end{array}$	$\begin{array}{c} 0.05 \ (2) \\ 99.95 \ (2) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Bi)	5.42 - 16.34	0.0027~(5)
$e_{\rm AK}$	(Bi) KLL KLX KXY	57.491 - 63.419 70.025 - 77.105 82.53 - 90.52	0.00015 (7) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Bi)	9.4207 - 15.7084		0.0017(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 0.0012 \ (5) \\ 0.0020 \ (9) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.00069 (28)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	89.732 90.074 90.421	} } }	0.00021 (9)	$\mathrm{K}\beta_2'$

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Bi)$	404.853(9)	0.05(2)	M1+E2	0.122 (8)	0.045 (18)

4.2 Gamma Transitions and Emissions

5 References

W.W.MEINKE, A.GHIORSO, G.T.SEABORG, Phys. Rev. 81 (1951) 782 (Half-life, energy of alpha-emission)

G.GRAEFFE, P.KAURANEN, J. Inorg. Nucl. Chem. 28 (1966) 933

(Alpha-particle energies and emission prjbabilities, Bi-211 levels)

J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941

(Alpha-particle energies)

A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205

(Alpha-particle energies and emission prjbabilities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

E.BROWNE, Nucl. Data Sheets 103 (2004) 183

(At215 alpha decay scheme, Bi211 levels)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Band-Raman ICC for gamma-ray transitions)

At - 217

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	32.3	(4)	$ imes 10^{-3} { m s}$
Q_{β^-}	:	737	(6)	keV
$Q_{lpha}^{'}$:	7201.3	(12)	keV
α	:	99.9933	(24)	%
β^{-}	:	0.0067	(24)	%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6037 \ (3) \\ 6322.0 \ (16) \\ 6484.7 \ (16) \\ 6813.8 \ (16) \\ 7066.9 \ (16) \end{array}$	$\begin{array}{c} 0.002\\ 0.0049\ (4)\\ 0.0167\ (8)\\ 0.0384\ (15)\\ 99.932\ (3) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Bi)	5.3 - 16.4	0.0077(4)
e _{AK}	(Bi) KLL KLX KXY	57.491 - 63.419 70.025 - 77.105 82.53 - 90.52	0.00044 (3) } } }
$ec_{1,0 \rm \ K}$	(Bi)	167.35 (4)	0.0125~(6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Bi)	9.421 - 15.708		0.00497(23)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Bi) (Bi)	74.8157 77.1088		$\begin{array}{c} 0.00351 \ (20) \\ 0.0059 \ (4) \end{array}$	} Κα }
$\begin{array}{l} {\rm XK}\beta_3 \\ {\rm XK}\beta_1 \\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Bi) (Bi) (Bi)	86.835 87.344 87.862	} } }	0.00201 (11)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Bi) (Bi) (Bi)	$\begin{array}{c} 89.732 \\ 90.074 \\ 90.421 \end{array}$	} } }	0.00062 (4)	$\mathrm{K}\beta_2'$

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$ \begin{array}{c} \gamma_{1,0}({\rm Bi}) \\ \gamma_{2,1}({\rm Bi}) \\ \gamma_{4,2}({\rm Bi}) \\ \gamma_{2,0}({\rm Bi}) \\ \gamma_{3,0}({\rm Bi}) \end{array} $	$\begin{array}{c} 257.88 \ (4) \\ 335.33 \ (10) \\ 455 \\ 593.1 \ (1) \\ 758.9 \ (1) \end{array}$	$\begin{array}{c} 0.0446 \ (13) \\ 0.0062 \ (3) \\ 0.002 \\ 0.0115 \ (5) \\ 0.0049 \ (4) \end{array}$	M1+29%E2	0.555 (26)	$\begin{array}{c} 0.0287 \ (7) \\ 0.0062 \ (3) \\ 0.002 \\ 0.0115 \ (5) \\ 0.0049 \ (4) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life) H.DIAMOND, J.E.GINDLER, J. Inorg. Nucl. Chem. 25 (1963) 143 (Half-life) K.VALLI, Ann. Acad. Sci. Fenn., Ser. A, VI 165 (1964) (Gamma-ray energies) B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, O.M.NAZARENKO, V.F.RODIONOV, IZV. Akad. Nauk USSR, Ser. Fiz. 31 (1967) 568 (Alpha energies and intensities) C.F.LEANG, Thesis, Univ. Paris (1969) (Alpha energies and intensities, Beta minus decay branching ratio) T.Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.Norseev, V.G.Chumin, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85 (Alpha energies) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and emission probabilities) J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energies) V.G.CHUMIN, S.S.ELISEEV, K.YA.GROMOV, YU.V.NORSEEV, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, Bull. Rus. Acad. Sci. Phys. 59 (1995) 1854 (Beta minus decay branching ratio) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) V.G.Chumin, J.K.Jabber, K.V.Kalyapkin, S.A.Kudrya, V.V.Tsupko-Sitnikov, K.Ya.Gromov, V.I.Fominykh, T.A.FURYAEV, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606 (Alpha and beta minus decay branching ratio) V.G.Chumin, V.I.Fominykh, K.Ya.Gromov, M.Ya.Kuznetsova, V.V.Tsupko-Sitnikov, M.B.Yuldashev, Z. Phys. A358 (1997) 33 (Alpha energies and intensities, Gamma-ray energies and emission probabilities, Multipolarity) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Decay scheme, levels)

CNDC /Huang Xiaolong, Wang Baosong

At - 218

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	1.4	(2)	S
Q_{β^-}	:	2881	(12)	keV
Q_{lpha}	:	6874	(3)	keV
α	:	99.9	(1)	%
β^{-}	:	0.1	(1)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,0}^-$	2881 (12)	0.1	(1)		

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 6653 \ (5) \\ 6694 \ (3) \\ 6756 \ (5) \end{array}$	$\begin{array}{c} 6.4 \ (1) \\ 90.0 \ (1) \\ 3.6 \ (1) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	I	Energy keV
$\beta_{0,0}^-$	max:	2881 (12)	0.1(1)	avg:	1095(12)

5 References

R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 227 (1948) 1090 (Branching ratio) R.J.WALEN, J. Phys. Radium 10 (1949) 95 (Beta emission probabilities, half-life) R.J.WALEN, G.BASTIN-SCOFFIER, Compt. Rend. Cong. Phys. Nucl., Paris (1958) 910 (Alpha emission energies and probabilities, beta emission probabilities) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) 460 (Branching ratio) R.J.WALEN, G.BASTIN-SCOFFIER, Priv. Comm. (1963), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Branching ratio) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha emission energies and probabilities) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Alpha emission probabilities and energies, spin and parity) D.G.Burke, H.Folger, H.Gabelmann, E.Hagebo, P.Hill, P.Hoff, O.Jonsson, N.Kaffrell, W.Kurcewicz, G.Lovhoiden, K.Nybo, G.Nyman, H.Ravn, K.Riisager, J.Rogowski, K.Steffensen, T.F.Thorsteinsen, ISOLDE COLLABORATION, Z. Phys. A333 (1989) 131

(Half-life)

A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205

(Alpha emission energies and probabilities)

Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 457

(Alpha emission probabilities and energies, spin and parity)

Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 127

(Alpha emission probabilities and energies, spin and parity)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (Q)

A.K.JAIN, B.SINGH, Nucl. Data Sheets 107 (2006) 1027

(Alpha emission probabilities and energies, spin and parity)

Half-life, Q-value and Decay mode

$T_{1/2}$:	56	(4)	\mathbf{S}
Q_{β^-}	:	1566	(3)	keV
$Q_{lpha}^{'}$:	6324	(15)	keV
α	:	~ 97		%
β^{-}	:	~ 3		%

2 β^- Transitions

1

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,0}^-$	1566 (3)	$\sim\!\!3$	1st forbidden non-unique	6.2

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,0}$	6208 (15)	~ 97

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	E	nergy keV
$\beta_{0,0}^-$	max:	1566 (3)	$\sim\!3$	avg:	547(2)

5 References

E.K.Hyde, A.Ghiorso, Phys. Rev. 90 (1953) 267

(Half-life, Alpha emission energies, Alpha and beta minus decay, Alpha/beta minus ratio)

D.G.Burke, H.Folger, H.Gabelmann, E.Hagebø, P.Hill, P.Hoff, O.Jonsson, N.Kaffrell, W.Kurcewicz, G.Løvhøiden, K.Nybø, G.Nyman, H.Ravn, K.Riisager, J.Rogowski, K.Steffensen, T.F.Thorsteinsen, The Isolde Collaboration, Z. Phys. A333 (1989) 131

(Half-life)

Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1

(Alpha decay, r0 parameter)

E.BROWNE, Nucl. Data Sheets 93 (2001) 763

(Nuclear structure, level energies)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

G.AUDI, W.MENG, D.LUNNEY, B.PFEIFFER, AME2009, CSNSM, Orsay, France, private communication (2009) (Q)

At - 219

Surrey Univ. /A.L. Nichols

Rn - 217

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	0.54	(5)	$ imes 10^{-3} { m s}$
$Q^{'}_{lpha}$:	7887	(3)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,0}$	7742(3)	100

3 References

W.W.MEINKE, A.GHIORSO, G.T.SEABORG, Phys. Rev. 81 (1951) 782 (Half-life)
C.P.RUIZ, Report UCRL-9511, Univ. California (1961) (Half-life, Alpha energy)
J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energy)
A.RYTZ, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluation alpha energies)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (Q)
M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633 (Decay scheme and levels)

Rn - 217

Rn - 218

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	36.0	(19)	$ imes 10^{-3} { m s}$
$Q^{'}_{lpha}$:	7262.5	(19)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 6531.1 \ (19) \\ 7129.2 \ (19) \end{array}$	$\begin{array}{c} 0.127 \ (7) \\ 99.873 \ (7) \end{array}$

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.66 - 16.21		0.00080(3)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$0.00052 (4) \\ 0.00086 (6)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.000296 (21)	$\mathrm{K}\beta_1'$
$\begin{array}{l} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.000092 (7)	$\mathrm{K}\beta_2'$

3.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Po)$	609.31 (6)	0.127(7)	E2	0.0204 (3)	0.124(7)

4 References

F.ASARO, I.PERLMAN, Phys. Rev. 104 (1956) 91
(Alpha energy)
P.A.TOVE, Ark. Fys. 13 (1958) 549
(Half-life)
C.P.RUIZ, Report UCRL-9511, Univ. California (1961)
(Half-life)
H.DIAMOND, J.E.GINDLER, J. Inorg. Nucl. Chem. 25 (1963) 143
(Half-life)
A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66

 $\rm CEA/LNE\text{-}LNHB$ /V. Chisté, M.M. Bé
(Gamma-ray instensity) A.ERLIK, J.FELSTEINER, H.LINDEMAN, M.TATCHER, Nucl. Instrum. Methods 92 (1971) 45 (Half-life) W.KURCEWICZ, N.KAFFRELL, N.TRAUTMANN, A.PLOCHOCKI, J.ZYLICZ, K.STRYCZNIEWICZ, I.YUTLANDOV, Nucl. Phys. A270 (1976) 175 (Gamma-ray energy and intensity, alpha intensity) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha energy and intensity) J.D.BOWMAN, R.E.EPPLEY, E.K.HYDE, Phys. Rev. C25 (1982) 941 (Alpha energy) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Alpha energy and intensity, gamma-ray energy and intensity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy and intensity) Y.A.Akovali, Nucl. Data Sheets 76 (1995) 127 (Alpha energy and intensity, gamma-ray energy and intensity, spin, parity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha energy and intensity, gamma-ray energy and intensity, spin, parity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q})

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.98	(3)	\mathbf{s}
$Q^{'}_{lpha}$:	6946.1	(3)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,14}$	5745(1)	0.00009(5)
$\alpha_{0,13}$	5765.1(5)	0.00094(19)
$\alpha_{0,12}$	5906.2(10)	0.00009(5)
$\alpha_{0,11}$	5944.4(4)	0.0021(3)
$\alpha_{0,10}$	5958.1(7)	0.0003(1)
$\alpha_{0,9}$	5999.2(4)	0.0032(5)
$\alpha_{0,8}$	6099.9(5)	0.00123(12)
$\alpha_{0,7}$	6124.1(6)	0.00064(12)
$\alpha_{0,6}$	6154.9(3)	0.0184(22)
$\alpha_{0,5}$	6222.0(3)	0.0043(10)
$\alpha_{0.4}$	6311.1(3)	0.048(3)
$\alpha_{0,3}$	6424.8(3)	7.85(24)
$\alpha_{0,2}$	6531.0(3)	0.098(5)
$\alpha_{0,1}$	6553.0(3)	12.6(3)
$\alpha_{0,0}$	6819.2(3)	79.4 (10)
0,0		()

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Po)	5.434 - 10.934	1.50(5)
e _{AK}	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.067 (9) } } }
$ec_{1,0}$ K $ec_{1,0}$ L $ec_{1,0}$ M $ec_{3,0}$ K $ec_{3,0}$ L $ec_{3,0}$ M	(Po) (Po) (Po) (Po) (Po) (Po)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.23 \ (2) \\ 0.74 \ (2) \\ 0.19 \ (1) \\ 0.234 \ (8) \\ 0.102 \ (3) \\ 0.026 \ (1) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		1.01(5)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	76.864 79.293		$\begin{array}{c} 0.540 \ (24) \\ 0.90 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.309(15)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.096(5)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{3,1}(\text{Po})$	130.58(1)	0.72~(6)	M1 + 26.5% E2	4.44(13)	0.133(11)
$\gamma_{4,2}(\text{Po})$	224.04(7)	0.0019(3)	(E2)	0.319(5)	0.0014(2)
$\gamma_{1,0}(\text{Po})$	271.228(10)	13.30(26)	M1+94%E2	0.201(7)	11.07(22)
$\gamma_{2,0}(\text{Po})$	293.56(4)	0.101(4)	M1+50%E2	0.34(5)	0.075~(3)
$\gamma_{12,5}(Po)$	322(1)	0.00009(5)			0.00009(5)
$\gamma_{8,3}(Po)$	330.9(4)	0.00100(11)			0.00100(11)
$\gamma_{11,4}(\text{Po})$	373.5(3)	0.00025 (3)			0.00025 (3)
$\gamma_{6,2}(Po)$	383.1(1)	0.00044~(7)			0.00044(7)
$\gamma_{3,0}(\text{Po})$	401.81(1)	7.12(23)	E2	0.0555~(8)	6.75(22)
$\gamma_{6,1}(\text{Po})$	405.4(1)	0.00025~(4)			0.00025~(4)
$\gamma_{7,1}(\text{Po})$	436.9(5)	0.00031~(6)			0.00031~(6)
$\gamma_{8,1}(\text{Po})$	461.5(4)	0.00017(3)			0.00017(3)
$\gamma_{11,3}(\text{Po})$	489.3(3)	0.00064(9)			0.00064(9)
$\gamma_{4,0}(\text{Po})$	517.60(6)	0.046~(4)	M1+50%E2	0.073(10)	0.043(3)
$\gamma_{13,4}(\text{Po})$	556.1(4)	0.00006~(4)	M1+50%E2	0.061(8)	0.00006~(4)
$\gamma_{9,1}(\text{Po})$	564.1(2)	0.0015(3)			0.0015(3)
$\gamma_{14,4}(\text{Po})$	576.6(10)	0.00009(5)			0.00009(5)
$\gamma_{5,0}(\text{Po})$	608.30(7)	0.0044~(10)	(M1+E2)		0.0044(10)
$\gamma_{11,1}(\text{Po})$	619.9(3)	0.00033(11)			0.00033(11)
$\gamma_{-1,1}(\text{Po})$	665.5(10)	0.00009(5)			0.00009(5)
$\gamma_{13,3}(\text{Po})$	671.9(4)	0.00022(11)	M1+E2		0.00022(11)
$\gamma_{6,0}(\text{Po})$	676.66(7)	0.018(2)			0.018(2)
$\gamma_{7,0}(\text{Po})$	708.1(5)	0.00033(11)			0.00033(11)
$\gamma_{8,0}(\text{Po})$	732.7~(4)	0.00007~(4)			0.00007~(4)
$\gamma_{13,1}(\text{Po})$	802.5~(4)	0.00033(11)	M1+E2		0.00033(11)
$\gamma_{9,0}(\text{Po})$	835.32(22)	0.0017(3)			0.0017(3)
$\gamma_{10,0}(\text{Po})$	877.2(6)	0.00033(11)			0.00033(11)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{11,0}(\text{Po})$ $\gamma_{13,0}(\text{Po})$	$\begin{array}{c} 891.1 \ (3) \\ 1073.7 \ (4) \end{array}$	$\begin{array}{c} 0.0009 \ (2) \\ 0.00033 \ (11) \end{array}$	E2	0.00641 (9)	$\begin{array}{c} 0.0009 \ (2) \\ 0.00033 \ (11) \end{array}$

5 References

H.RODENBUSCH, G.HERRMANN, Z. Naturforsch. 16a (1961) 577 (Half-life) R.J.WALEN, V.NEDOVESSOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha emission energies, Alpha emission probabilities) K.VALLI, J.AALTONEN, G.GRAEFFE, M.NURMIA, Ann. Acad. Sci. Fenn., Ser. A, VI 184 (1965) (Gamma-ray energies, Gamma-ray emission probabilities) J.B.HURSH, J. Inorg. Nucl. Chem. 28 (1966) 2771 (Half-life) J.DALMASSO, H.MARIA, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 822 (Gamma-ray energies, Gamma-ray emission probabilities) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray emergies, Gamma-ray emission probabilities) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 385 (Gamma-ray energies, Gamma-ray emission probabilities, Conversion electron emission probabilities, K/L and L sub-shell ratios, ICC) K.KRIEN, M.J.CANTY, P.HERZOG, Nucl. Phys. A157 (1970) 456 (Gamma-ray energies, Gamma-ray emission probabilities, Conversion electron emission probabilities, L sub-shell ratios, ICC) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha emission energy) K.BLATON-ALBICKA, B.KOTLINSKA-FILIPEK, M.MATUL, K.STRYCZNIEWICZ, M.NOWICKI, E.RUCHOWSKA-LUKASIAK, Nukleonika 21 (1976) 935 (Gamma-ray energies, Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies, Alpha emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons) Y.A.Akovali, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r0 parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) C.F.LIANG, P.PARIS, R.K.SHELINE, Phys. Rev. C59 (1999) 648 (Alpha emission energies, Alpha emission probabilities, Gamma ray energies, Gamma-ray emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Nuclear structure, level energies) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Rn - 219

Rn - 220

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	55.8	(3)	\mathbf{S}
$Q^{'}_{lpha}$:	6404.67	(10)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,1} lpha_{0,0}$	5748.46(11) 6288.22(10)	$\begin{array}{c} 0.118 \ (15) \\ 99.882 \ (15) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Po)	5.434 - 10.934	0.00140 (11)
$e_{\rm AK}$	(Po) KLL KLX KXY	58.978 - 65.205 71.902 - 79.289 84.8 - 93.1	0.000074 (13) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.658 - 16.213		0.00094(8)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		0.00059(8) 0.00099(13)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.00034(5)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.000106 (15)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Po)$	549.76(4)	0.118 (15)	E2	0.0257(4)	0.115(15)

4.2 Gamma Transitions and Emissions

5 References

H.SCHMIED, R.W.FINK, B.L.ROBINSON, J. Inorg. Nucl. Chem. 1 (1955) 342 (Half-life) L.MADANSKY, F.RASETTI, Phys. Rev. 102 (1956) 464 (Gamma-ray emission probabilities) H.RODENBUSCH, G.HERRMANN, Z. Naturforsch. 16a (1961) 577 (Half-life) R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies, Alpha emission probabilities) J.E.GINDLER, D.W.ENGELKEMEIR, Radiochim. Acta 2 (1963) 58 (Half-life) J.B.HURSH, J. Inorg. Nucl. Chem. 28 (1966) 2771 (Half-life) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) W.KURCEWICZ, N.KAFFRELL, N.TRAUTMANN, A.PLOCHOCKI, J.ZYLICZ, A.MATUL, K.STRYCZNIEWICZ, Nucl. Phys. A289 (1977) 1 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) E.Schönfeld, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 157 (Nuclear structure, energies) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) S.-C.WU, Nucl. Data Sheets 108 (2007) 1057 (Nuclear structure, energies) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Rn - 222

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.8232	(8)	d
$Q^{'}_{lpha}$:	5590.3	(3)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} lpha_{0,1} lpha_{0,0}$	$\begin{array}{c} 4827 \ (4) \\ 4987 \ (1) \\ 5489.48 \ (30) \end{array}$	≈ 0.0005 0.078 99.92 (1)

3 Photon Emissions

3.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9.66 - 16.21		0.000766 (15)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Po) (Po)	$76.864 \\ 79.293$		$0.000469 (10) \\ 0.000781 (16)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89.256 89.807 90.363	} } }	0.000269 (7)	$\mathrm{K}\beta_1'$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(Po) (Po) (Po)	92.263 92.618 92.983	} } }	0.0000837(25)	$\mathrm{K}\beta_2'$

3.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Po)$	510 (2)	0.078	[E2]	0.0306 (6)	0.076

4 References

W.BOTHE, Z. Phys. 16 (1923) 266
(Half-life)
I.CURIE, C.CHAMIÉ, J. Phys. Radium 5 (1924) 238
(Half-life)
J.TOBAILEM, Compt. Rend. Acad. Sci. (Paris) 233 (1951) 1360
(Half-life)
L.MADANSKY, F.RASETTI, Phys. Rev. 102 (1956) 464
(Gamma-ray energy)

P.C.MARIN, Brit. J. Appl. Phys. 7 (1956) 188 (Half-life) J.ROBERT, J. Phys. Radium 17 (1956) 605 (Half-life) N.S.SHIMANSKAYA, Instr. Exptl. Techniques 2 (1958) 283 (Half-life) R.J.WALEN, G.BASTIN, Compt. Rend. Cong. Phys. Nucl., Paris (1959) 910 (Alpha energy and probability) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha energy) D.K.BUTT, A.R.WILSON, J. Phys. (London) A5 (1972) 1248 (Half-life) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha energy and probabilties) Y.A.ELLIS-AKOVALI, Nucl. Data Sheets 52 (1987) 789 (Spin and parity) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy and probabilities) R.COLLÉ, Radioact. Radiochem. 6 (1995) 16 (Half-life) Y.A.AKOVALI, Nucl. Data Sheets 76 (1995) 457 (Spin and parity) Y.A.AKOVALI, Nucl. Data Sheets 77 (1996) 271 (Spin and parity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) H.SCHRADER, Appl. Radiat. Isot. 60 (2004) 317 (Half-life) A.K.JAIN, B.SINGH, Nucl. Data Sheets 107 (2006) 1027 (Spin, parity and multipolarity) R.G.HELMER, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19 (Gamma-ray instensity)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	4.79	(2)	\min
Q_{β^-}	:	314	(6)	keV
$Q_{lpha}^{'}$:	6457.8	(14)	keV
α	:	99.9952	(15)	%
β^{-}	:	0.0048	(15)	%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,14}$	5500 (40)	0.000038 (10)
$\alpha_{0,13}$	5530(25)	0.00010(2)
$\alpha_{0,12}$	5689(3)	0.0025(5)
$\alpha_{0,11}$	5697(4)	0.0003
$\alpha_{0,10}$	5776(3)	0.064(4)
$\alpha_{0,9}$	5783(4)	0.0031~(6)
$\alpha_{0,8}$	5813(3)	0.006(1)
$\alpha_{0,7}$	5925(3)	0.0285(24)
$\alpha_{0,6}$	5938.9(20)	0.128(3)
$\alpha_{0,5}$	5965.9(25)	0.064(16)
$\alpha_{0,4}$	5979.9(20)	0.39(7)
$\alpha_{0,3}$	6075.9(20)	0.15(3)
$\alpha_{0,2}$	6126.3(15)	15.1(2)
$\alpha_{0,1}$	6243(2)	1.34(7)
$\alpha_{0,0}$	6341.0(13)	82.8(2)

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
$e_{\rm AL}$	(At)	5.6 - 17.4	3.05(10)
$e_{\rm AK}$	(At) KLL KLX KXY	60.489 - 67.031 73.811 - 81.516 87.10 - 95.72	0.114 (6) } } }
$\begin{array}{c} ec_{1,0} \ {\rm K} \\ ec_{2,1} \ {\rm K} \\ ec_{3,2} \ {\rm L} \\ ec_{3,2} \ {\rm M} \\ ec_{4,2} \ {\rm K} \\ ec_{3,1} \ {\rm K} \\ ec_{4,3} \ {\rm L} \\ ec_{1,0} \ {\rm L} \\ ec_{1,0} \ {\rm M} \\ ec_{2,1} \ {\rm L} \end{array}$	 (At) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.51 \ (13) \\ 0.13 \ (10) \\ 0.156 \ (27) \\ 0.037 \ (6) \\ 0.138 \ (8) \\ 0.0156 \ (21) \\ 0.029 \ (18) \\ 0.274 \ (23) \\ 0.065 \ (5) \\ 0.024 \ (18) \end{array}$

		Energy keV	Electrons per 100 disint.
$\begin{array}{c} ec_{2,0 \ K} \\ ec_{4,2 \ L} \\ ec_{3,1 \ L} \\ ec_{2,0 \ L} \\ ec_{2,0 \ M} \\ ec_{10,2 \ K} \end{array}$	(At) (At) (At) (At) (At) (At)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.570 \ (31) \\ 0.0247 \ (14) \\ 0.0325 \ (43) \\ 1.943 \ (37) \\ 0.515 \ (10) \\ 0.01047 \ (44) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(At)	9.8964 - 16.7291		2.18(7)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(At) (At)	$78.94 \\ 81.51$		$\begin{array}{c} 0.96 \ (5) \\ 1.59 \ (9) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(At) (At) (At)	91.73 92.315 92.883	} } }	0.55~(6)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(At) (At) (At)	$\begin{array}{c} 94.846 \\ 95.211 \\ 95.595 \end{array}$	} } }	0.18 (2)	$\mathrm{K}\beta_{2}^{'}$

4.2 Gamma Transitions and Emissions

	Energy keV	${\rm P}_{\gamma+{\rm ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \hline & \gamma_{3,2}({\rm At}) \\ \gamma_{4,3}({\rm At}) \\ \gamma_{1,0}({\rm At}) \\ \gamma_{2,1}({\rm At}) \\ \gamma_{4,2}({\rm At}) \\ \gamma_{3,1}({\rm At}) \\ \gamma_{10,4}({\rm At}) \\ \gamma_{2,0}({\rm At}) \\ \gamma_{5,1}({\rm At}) \end{array}$	$\begin{array}{c} 53.81 (3) \\ 96.3 (3) \\ 100.25 (2) \\ 117.82 (3) \\ 150.21 (3) \\ 171.83 (3) \\ 208.3 (6) \\ 218.12 (2) \\ 282.12 (9) \\ 282.12 (9) \end{array}$	$\begin{array}{c} 0.220 \ (38) \\ 0.046 \ (26) \\ 2.02 \ (17) \\ 0.19 \ (14) \\ 0.216 \ (12) \\ 0.129 \ (17) \\ 0.0073 \ (14) \\ 15.61 \ (21) \\ 0.0097 \ (20) \end{array}$	M1 M1+E2 M1 M1 M1 E2 [E2] E2 [M1,E2]	14.17 (20) 5.6 (24) 11.97 (17) 7.58 (11) 3.80 (5) 0.863 (12) 0.430 (8) 0.367 (5) 0.41 (25) (25) 0.41 (25) (25) (25) (25) (25) (25) (25) (25)	$\begin{array}{c} 0.0145 \ (25) \\ 0.007 \ (3) \\ 0.156 \ (13) \\ 0.022 \ (16) \\ 0.0449 \ (25) \\ 0.069 \ (9) \\ 0.0051 \ (10) \\ 11.42 \ (15) \\ 0.0069 \ (7) \\ 0.0051 \ (10) \end{array}$
$\begin{array}{l} \gamma_{7,1}({\rm At}) \\ \gamma_{10,2}({\rm At}) \\ \gamma_{5,0}({\rm At}) \\ \gamma_{6,0}({\rm At}) \\ \gamma_{8,1}({\rm At}) \\ \gamma_{12,2}({\rm At}) \\ \gamma_{9,1}({\rm At}) \end{array}$	$\begin{array}{c} 324.10 \ (6) \\ 359.86 \ (4) \\ 382.34 \ (4) \\ 410.64 \ (5) \\ 437.00 \ (5) \\ 446.30 \ (8) \\ 468.3 \ (7) \end{array}$	$\begin{array}{c} 0.0252 \ (17) \\ 0.0514 \ (20) \\ 0.0437 \ (18) \\ 0.1270 \ (26) \\ 0.0010 \ (1) \\ 0.0017 \ (4) \\ 0.0018 \ (3) \end{array}$	M1 M1 E2 E1+M2	$\begin{array}{c} 0.446 \ (6) \\ 0.335 \ (5) \\ 0.284 \ (4) \\ 0.0548 \ (8) \end{array}$	$\begin{array}{c} 0.0174 \ (12) \\ 0.0385 \ (15) \\ 0.0340 \ (14) \\ 0.1204 \ (25) \\ 0.0010 \ (1) \\ 0.0017 \ (4) \\ 0.0018 \ (3) \end{array}$

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{l} \gamma_{8,0}({\rm At}) \\ \gamma_{12,1}({\rm At}) \\ \gamma_{9,0}({\rm At}) \\ \gamma_{10,0}({\rm At}) \\ \gamma_{11,0}({\rm At}) \\ \gamma_{12,0}({\rm At}) \\ \gamma_{13,0}({\rm At}) \\ \gamma_{14,0}({\rm At}) \end{array}$	$\begin{array}{c} 537.8 \ (8) \\ 562.3 \ (12) \\ 568.5 \ (3) \\ 576.9 \ (4) \\ 652 \ (2) \\ 665 \ (2) \\ 809.3 \ (2) \\ 891.9 \ (3) \end{array}$	$\begin{array}{c} 0.0045 \ (8) \\ 0.005 \ (5) \\ 0.0012 \ (4) \\ 0.0033 \ (7) \\ 0.0004 \ (4) \\ 0.0009 \ (9) \\ 0.00010 \ (2) \\ 0.000038 \ (10) \end{array}$	[M1]	0.0948 (13)	$\begin{array}{c} 0.0045 \ (8) \\ 0.005 \ (5) \\ 0.0012 \ (4) \\ 0.0030 \ (6) \\ 0.0004 \ (4) \\ 0.0009 \ (9) \\ 0.00010 \ (2) \\ 0.000038 \ (10) \end{array}$

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life) B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, O.M.NAZARENKO, V.F.RODIONOV, IZV. Akad. Nauk SSSR, Ser. Fiz. 31 (1967) 568 (Alpha energies and intensities) W.LOURENS, Thesis, Technische Hogeschool, Delft (1967) (Half-life) C.F.LEANG, G.BASTIN-SCOFFIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 629 (Alpha energies and intensities, Gamma-ray energies and intensities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and emission probabilities) R.G.HELMER, C.W.REICH, M.A.LEE, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray energies and emission probabilities) Y.A.AKOVALI, Nucl. Data Sheets 61 (1990) 623 (Decay scheme and levels) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluation alpha energies) G.ARDISSON, V.BARCI, O.EL SAMAD, Nucl. Instrum. Methods Phys. Res. A339 (1994) 168 (Gamma-ray energies and intensities) V.G.Chumin, S.S.Eliseev, K.Ya.Gromov, Yu.V.Norseev, V.I.Fominykh, V.V.Tsupko-Sitnikov, Bull. Rus. Acad. Sci. Phys. 59 (1995) 1854 (Beta minus decay branching ratio) YU.S.BUTABAEV, I.ADAM, K.YA.GROMOV, S.S.ELISEEV, R.A.NIYAZOV, YU.V.NORSEEV, V.I.FOMINYKH, A.KH. KHOLMATOV, V.V.TSUPKO-SITNIKOV, V.G.CHUMIN, M.B.YULDASHEV, Bull. Rus. Acad. Sci. Phys. 59 (1995) 5 (Gamma-ray energies and intensities) R.K.SHELINE, C.F.LIANG, P.PARIS, Phys. Rev. C51 (1995) 1192 (Gamma-ray energies, intensities and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) V.G.CHUMIN, J.K.JABBER, K.V.KALYAPKIN, S.A.KUDRYA, V.V.TSUPKO-SITNIKOV, K.YA.GROMOV, V.I.FO-MINYKH, T.A.FURYAEV, Bull. Rus. Acad. Sci. Phys. 61 (1997) 1606 (Beta minus decay branching ratio) K.YA.GROMOV, J.K.JABBER, SH.R.MALIKOV, V.I.FOMINYKH, YU.V.KHOLNOV, V.V.TSUPKO-SITNIKOV, V.G. CHUMIN, Bull. Rus. Acad. Sci. Phys. 63 (1999) 685 (Gamma-ray energies, intensities and emission probabilities) J.GASPARRO, G.ARDISSON, V.BARCI, R.K.SHELINE, Phys. Rev. C62 (2000) 064305 (Gamma-ray emission probabilities) K.YA.GROMOV, S.A.KUDRYA, SH.R.MALIKOV, V.A.SERGIENKO, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, V.G. CHUMIN, Bull. Rus. Acad. Sci. Phys. 66 (2002) 1519 (Alpha energies and intensities, Gamma-ray energies and intensities)

Y.A.AKOVALI, Nucl. Data Sheets 100 (2003) 141
(Decay scheme and levels)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129
(Q)
H.B.JEPPESEN, J.BYSKOV-NIELSEN, P.WRIGHT, J.G.CORREIA, L.M.FRAILE, H.O.U.FYNBO, K.JOHNSTON, K. RIISAGER, Eur. Phys. J. A32 (2007) 31
(Half-life)
M.S.BASUNIA, Nucl. Data Sheets 108 (2007) 633
(Decay scheme and levels)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	22.00	(7)	\min
$Q^{'}_{lpha}$:	5562	(3)	keV
$Q_{\beta^{-}}$:	1149.2	(9)	keV
β^{-}	:	99.980	(4)	%
α	:	0.020	(4)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,22}^{-}$	120.3(10)	0.0012 (3)	Super-allowed or allowed	7.3
$\beta_{0,21}^{-0,32}$	124.6(10)	0.0004 (1)	1st forbidden	7.82
$\beta_{0,30}^{-}$	129.9 (10)	0.00046(12)	1st forbidden	7.82
$\beta_{0.29}^{-}$	191.5 (9)	0.020(4)	nth forbidden unique	6.7
$\beta_{0.28}^{-}$	205.9(9)	0.0082(18)	nth forbidden unique	7.19
$\beta_{0.27}^{-}$	208.4(9)	0.0051(12)		7.41
$\beta_{0.26}^{\circ,21}$	222.6 (9)	0.106(22)	nth forbidden unique	6.18
$\beta_{0.25}^{$	243.3(10)	0.0011 (4)	1st forbidden	8.29
$\beta_{0.24}^{-}$	281.9(9)	0.025 (5)	nth forbidden unique	7.14
$\beta_{0,23}^{-}$	302.8(9)	0.088(18)	1st forbidden	6.69
$\beta_{0,22}^{-}$	306.9(9)	0.035(7)	nth forbidden unique	7.11
$\beta_{0,21}^{-}$	323.3(9)	0.54(10)		5.99
$\beta_{0,20}^{-}$	326.0 (9)	0.014 (3)	nth forbidden unique	7.59
$\beta_{0,19}^{-}$	343.8(9)	0.0040 (8)	nth forbidden unique	8.21
$\beta_{0,18}^{-}$	345.4 (9)	0.14(3)	nth forbidden unique	6.67
$\beta_{0,17}^{-}$	362.1 (9)	0.019 (4)	1st forbidden	7.6
$\beta_{0,16}^{-}$	366.7(10)	0.00111(22)	nth forbidden unique	8.85
$\beta_{0,15}^{-}$	555.3 (9)	0.013 (3)	1st forbidden	8.38
$\beta_{0,14}^{-}$	773.1(10)	0.0046(12)		9.31
$\beta_{0,13}^{-}$	779.9(9)	1.8(4)		6.73
$\beta_{0,11}^{-}$	806.7 (9)	0.037 (8)	1st forbidden	8.47
$\beta_{0,10}^{-}$	814.9 (9)	0.042 (9)	1st forbidden	8.43
$\beta_{0,9}^{\perp}$	819.4(9)	0.049(10)	Super-allowed or allowed	8.37
$\beta_{0,8}^-$	863.1 (9)	0.032 (9)	1st forbidden	8.64
$\beta_{0,7}^{-}$	869.0 (9)	0.004 (4)		9.5
$\beta_{0,6}^-$	914.5 (9)	9.1(17)		6.27
$\beta_{0,5}^{-}$	1025.5 (9)	0.24 (6)		8.02
$\beta_{0,4}^{-}$	1069.6 (9)	15 (3)		6.29
$\beta_{0,3}^{-}$	1087.8 (9)	0.27~(19)		8.1
$\beta_{0,2}^{-}$	1099.1 (9)	67(13)	Super-allowed or allowed	5.68
$\beta_{0,1}^{-}$	1119.3 (9)	6 (6)		6.8
$\beta_{0,0}^{-}$	1149.2 (9)	1	1st forbidden	7.6

3 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,4} \ lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	5172 (5) 5291 (4) 5314 (4) 5403 (3) 5462 (3)	$\begin{array}{c} 0.0009 \ (5) \\ 0.0060 \ (26) \\ 0.0053 \ (23) \\ 0.0044 \ (20) \\ 0.0033 \ (15) \end{array}$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Ra)	5.71 - 12.04	29(4)	
$e_{\rm AK}$	(Ra) KLL KLX KXY	65.149 - 72.729 79.721 - 88.466 94.27 - 103.91	0.159 (21) } } }	
$e_{\rm AL}$	(At)	5.6 - 17.4	0.0076 (18)	
$e_{\rm AK}$	(At) KLL KLX KXY	60.489 - 67.031 73.811 - 81.516 87.10 - 95.72	0.000065 (20) } } }	
$\begin{array}{c} \mathrm{eC}_{2,1} \ \mathrm{L} \\ \mathrm{eC}_{1,0} \ \mathrm{L} \\ \mathrm{eC}_{3,1} \ \mathrm{L} \\ \mathrm{eC}_{2,1} \ \mathrm{M} \\ \mathrm{eC}_{5,4} \ \mathrm{L} \\ \mathrm{eC}_{1,0} \ \mathrm{M} \\ \mathrm{eC}_{3,1} \ \mathrm{M} \\ \mathrm{eC}_{3,1} \ \mathrm{M} \\ \mathrm{eC}_{4,1} \ \mathrm{L} \\ \mathrm{eC}_{13,6} \ \mathrm{K} \\ \mathrm{eC}_{2,0} \ \mathrm{L} \\ \mathrm{eC}_{3,0} \ \mathrm{L} \\ \mathrm{eC}_{3,0} \ \mathrm{L} \\ \mathrm{eC}_{4,1} \ \mathrm{M} \\ \mathrm{eC}_{2,0} \ \mathrm{M} \\ \mathrm{eC}_{3,0} \ \mathrm{L} \\ \mathrm{eC}_{3,0} \ \mathrm{M} \\ \mathrm{eC}_{3,0} \ \mathrm{L} \\ \mathrm{eC}_{3,0} \ \mathrm{M} \\ \mathrm{eC}_{4,0} \ \mathrm{L} \\ \mathrm{eC}_{5,2} \ \mathrm{M} \end{array}$	 (Ra) (Ra)<td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td><td>$\begin{array}{c} 8.1 \ (17) \\ 20 \ (6) \\ 0.26 \ (8) \\ 2.10 \ (45) \\ 0.131 \ (12) \\ 5.0 \ (14) \\ 0.068 \ (20) \\ 1.34 \ (32) \\ 0.092 \ (18) \\ 17.4 \ (37) \\ 0.0344 \ (32) \\ 0.25 \ (5) \\ 0.33 \ (8) \\ 4.3 \ (9) \\ 0.039 \ (27) \\ 0.068 \ (14) \\ 1.38 \ (28) \\ 0.011 \ (7) \end{array}$</td><td></td>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 8.1 \ (17) \\ 20 \ (6) \\ 0.26 \ (8) \\ 2.10 \ (45) \\ 0.131 \ (12) \\ 5.0 \ (14) \\ 0.068 \ (20) \\ 1.34 \ (32) \\ 0.092 \ (18) \\ 17.4 \ (37) \\ 0.0344 \ (32) \\ 0.25 \ (5) \\ 0.33 \ (8) \\ 4.3 \ (9) \\ 0.039 \ (27) \\ 0.068 \ (14) \\ 1.38 \ (28) \\ 0.011 \ (7) \end{array}$	
$ec_{6,3 \text{ K}}$ $ec_{4,0 \text{ M}}$ $ec_{6,2 \text{ K}}$ $ec_{6,1 \text{ K}}$	(Ra) (Ra) (Ra)	$\begin{array}{ccc} (5) \\ 74.83 & -76.54 \\ 80.74 & (5) \\ 100.93 & (5) \end{array}$	$\begin{array}{c} 0.10 \\ 0.33 \\ (7) \\ 0.0191 \\ 1.47 \\ (28) \end{array}$	

		Ener ke'	rgy V	Electrons per 100 disint.	E	Energy keV
ес _{7,3 К}	(Ra)	114.88	(5)	0.0118 (23)		
ес _{13,6 L}	(Ra)	115.4 -	119.2	0.0192(38)		
$ec_{6,0 K}$	(Ra)	130.78	(5)	3.0(6)		
$ec_{7,1 \text{ K}}$	(Ra)	146.33	(5)	0.01506~(22)		
$ec_{6,3 L}$	(Ra)	154.12 -	157.91	0.061~(13)		
ес _{6,3 М}	(Ra)	168.53 -	170.24	0.0156 (38)		
$ec_{6,1 L}$	(Ra)	185.62 -	189.41	0.28(5)		
$ec_{6,1 M}$	(Ra)	200.03 -	201.74	0.066(12)		
ес _{13,2 К}	(Ra)	215.33	(5)	0.215(42)		
$ec_{6,0}$ L	(Ra)	215.5 -	219.3	0.56(10)		
$ec_{6,0 M}$	(Ra)	229.9 -	231.6	0.134(25)		
$ec_{13,2}$ L	(Ra)	300.02 -	303.81	0.040(8)		
$\beta_{0,32}^{-}$	max:	120.3	(10)	0.0012(3)	avg:	31.5(3)
$\beta_{0,31}^{-}$	max:	124.6	(10)	0.0004(1)	avg:	32.7(3)
$\beta_{0,30}^{-}$	max:	129.9	(10)	0.00046~(12)	avg:	34.1(3)
$\beta_{0,29}^{-}$	max:	191.5	(9)	0.020~(4)	avg:	51.5(3)
$\beta_{0,28}^{-}$	max:	205.9	(9)	0.0082(18)	avg:	55.6(3)
$\beta_{0,27}^{-}$	max:	208.4	(9)	0.0051~(12)	avg:	56.3(3)
$\beta_{0.26}^{-}$	max:	222.6	(9)	0.106(22)	avg:	60.5(3)
$\beta_{0.25}^{-}$	max:	243.3	(10)	0.0011~(4)	avg:	66.6(3)
$\beta_{0.24}^{-}$	max:	281.9	(9)	0.025(5)	avg:	78.1(3)
$\beta_{0,23}^{-}$	max:	302.8	(9)	0.088(18)	avg:	84.4(3)
$\beta_{0,22}^{-2}$	max:	306.9	(9)	0.035(7)	avg:	85.7(3)
$\beta_{0.21}^{-}$	max:	323.3	(9)	0.54(10)	avg:	90.7(3)
$\beta_{0,20}^{-2}$	max:	326.0	(9)	0.014(3)	avg:	91.5(3)
$\beta_{0,19}^{-19}$	max:	343.8	(9)	0.0040 (8)	avg:	97.0 (3)
$\beta_{0.18}^{-18}$	max:	345.4	(9)	0.14(3)	avg:	97.5(3)
$\beta_{0.17}^{-}$	max:	362.1	(9)	0.019(4)	avg:	102.7(3)
$\beta_{0.16}^{-16}$	max:	366.7	(10)	0.00111(22)	avg:	104.1 (3)
$\beta_{0.15}^{-15}$	max:	555.3	(9)	0.013 (3)	avg:	165.6(4)
$\beta_{0.14}^{-14}$	max:	773.1	(10)	0.0046(12)	avg:	241.3 (4)
$\beta_{0.13}^{-}$	max:	779.9	(9)	1.8 (4)	avg:	243.7(4)
$\beta_{0.11}^{-}$	max:	806.7	(9)	0.037(8)	avg:	253.3(4)
$\beta_{0,10}^{-10}$	max:	814.9	(9)	0.042(9)	avg:	256.3(4)
$\beta_{0,0}^{-}$	max:	819.4	(9)	0.049(10)	avg:	257.9(4)
$\beta_{0,8}^{-}$	max:	863.1	(9)	0.032(9)	avg:	273.8(4)
$\beta_{0,7}^{-}$	max:	869.0	(9)	0.004(4)	avg:	275.9(4)
$\beta_{0.6}^{-}$	max:	914.5	(9)	9.1 (17)	avg:	292.6 (4)
$\beta_{0.5}^{-}$	max:	1025.5	(9)	0.24 (6)	avg:	333.9 (4)
$\beta_{0,1}^{-1}$	max:	1069.6	(9)	15(3)	avg:	350.5(4)
$\beta_{0,2}^{-}$	max:	1087.8	(9)	0.27(19)	avg:	357.4(4)
$\beta_{0,3}^{-}$	max:	1099.1	(9)	67(13)	ave	361.7(4)
$^{\sim}0,2$	max.	1119.3	(0)	6 (6)	avo.	369.4(4)
					V C .	

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Ra)	10.6241 - 18.3539		24(3)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Ra) (Ra)	$85.43 \\ 88.47$		$\begin{array}{c} 1.44 \ (19) \\ 2.3 \ (3) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	99.432 100.13 100.738	} } }	0.83(11)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102.89 \\ 103.295 \\ 103.74$	} } }	0.27(4)	$\mathrm{K}\beta_2'$
XL	(At)	9.8964 - 16.7291		0.0054(13)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(At) (At)	$78.94 \\ 81.51$		$\begin{array}{c} 0.00056 \ (15) \\ 0.00092 \ (25) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(At) (At) (At)	91.73 92.315 92.883	} } }	0.00031 (11)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(At) (At) (At)	94.846 95.211 95.595	} } }	0.00011 (6)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	$\frac{\rm Energy}{\rm keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(\text{Ra})$	20.27(5)	12.3(26)	[E1]	7.76(22)	1.4(3)
$\gamma_{1,0}(\mathrm{Ra})$	29.78(4)	26(7)	M1 + 8.26% E2	370(50)	0.070(17)
$\gamma_{3,1}(\mathrm{Ra})$	31.69(5)	0.35	M1 + 7.27% E2	260(80)	0.00135
$\gamma_{9,8}(\mathrm{Ra})$	43.5(2)	0.0044	E1	1.015(19)	0.0022
$\gamma_{5,4}(\text{Ra})$	44.0(1)	0.178	M1+21.3%E2	131 (12)	0.00135
$\gamma_{4,1}(\mathrm{Ra})$	49.80(5)	4.3(10)	E1	0.708(10)	2.5(6)
$\gamma_{2,0}(\mathrm{Ra})$	50.10(2)	56(12)	E1	0.696(10)	$33\ (7)$
$\gamma_{1,0}(At)$	58.9(2)	0.0095(36)	M1	10.87(19)	0.0008(3)
$\gamma_{3,0}({ m Ra})$	61.43(5)	0.34(7)	E2	96.5(14)	0.0035(7)
$\gamma_{5,3}(\mathrm{Ra})$	62.31(6)	0.022(10)	E1	0.389(6)	0.016(7)
$\gamma_{5,2}(\mathrm{Ra})$	73.5(1)	0.054(38)	E2	40.8(6)	0.0013(9)
$\gamma_{4,0}(\mathrm{Ra})$	79.65(2)	10.8(22)	E1	0.202(3)	9.0(18)
$\gamma_{13,7}(\text{Ra})$	89.08(10)	0.054(11)			0.054(11)
$\gamma_{5,1}(\mathrm{Ra})$	93.88(5)	0.067(16)	E1	0.1305(18)	0.059(14)
$\gamma_{6,5}(\text{Ra})$	111.05(3)	0.0049(14)			0.0049(14)
$\gamma_{13,6}(\text{Ra})$	134.60(2)	0.62(12)	[E1]	0.234(3)	0.5(1)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{4,2}(At)$	145.3(3)	0.00078(47)	M1 + (E2)	2.9(13)	0.0002(1)
$\gamma_{2,0}(At)$	150.9(2)	0.0135(12)	E2	1.417(21)	0.0056~(5)
$\gamma_{6,4}(\text{Ra})$	155.5(5)	0.0027			0.0027
$\gamma_{6,3}(\text{Ra})$	173.35(5)	0.36(15)	M1,E2	2.1(12)	0.115(22)
$\gamma_{6,2}(\text{Ra})$	184.65(5)	0.24~(6)	${ m E1}$	0.1092(15)	0.22(5)
$\gamma_{7,4}(\text{Ra})$	200.7(2)	0.0027~(10)			0.0027~(10)
$\gamma_{6,1}(\text{Ra})$	204.85(5)	2.8(5)	M1+1.42%E2	2.02(5)	0.92(18)
$\gamma_{9,5}(\text{Ra})$	205.6(2)	0.0090(17)	E2	0.530(8)	0.0059(11)
$\gamma_{10,5}(\text{Ra})$	210.60(5)	0.0105~(21)	$\mathrm{E1}$	0.0798(11)	0.0097~(19)
$\gamma_{7,3}(\text{Ra})$	218.80(5)	0.0232~(46)	M1	1.701(24)	0.0086(17)
$\gamma_{6,0}(\text{Ra})$	234.70(5)	6.5(12)	M1(+0.5%E2)	1.393(16)	2.7(5)
$\gamma_{8,2}(\text{Ra})$	236.05(5)	0.029(8)	${ m E1}$	0.0610 (9)	0.027~(8)
$\gamma_{13,5}(\text{Ra})$	245.60(5)	0.019(4)			0.019(4)
$\gamma_{9,4}(\mathrm{Ra})$	250.25(5)	0.0043	M1 + 81.5% E2	0.44(7)	0.003
$\gamma_{7,1}(\mathrm{Ra})$	250.25(5)	0.035	M1	1.170(16)	0.016
$\gamma_{10,4}(\text{Ra})$	254.6(2)	0.0060(13)	${ m E1}$	0.0512(7)	0.0057~(12)
$\gamma_{8,1}(\text{Ra})$	256.18(5)	0.025(5)	$\mathrm{E2}$	0.250(4)	0.020(4)
$\gamma_{11,4}(\text{Ra})$	262.9(2)	0.0037(12)	${ m E1}$	0.0475(7)	0.0035(11)
$\gamma_{10,3}(\text{Ra})$	272.8(2)	0.0064(23)	M1+E2	0.6(4)	0.004(1)
$\gamma_{7,0}(\mathrm{Ra})$	280.7(5)	0.0003			0.0003
$\gamma_{11,3}(\text{Ra})$	280.7(5)	0.0003			0.0003
$\gamma_{8,0}(\text{Ra})$	286.0(2)	0.0069(24)	M1+E2	0.5(4)	0.0046(10)
$\gamma_{13,4}(\text{Ra})$	289.67(5)	0.21			0.21
$\gamma_{14,4}(\text{Ra})$	296.5(2)	0.0022(7)	M1 + 1.66% E2	0.723(9)	0.0013(4)
$\gamma_{9,1}(\text{Ra})$	299.95(5)	0.0207(41)	E1	0.0352(5)	0.020(4)
$\gamma_{10,1}(\text{Ra})$	304.40(5)	0.0142(28)	M1+6.3%E2(+E0)	0.647(14)	0.0086(17)
$\gamma_{15,8}(\mathrm{Ra})$	307.93(5)	0.012(3)			0.012(3)
$\gamma_{13,3}(\text{Ra})$	307.93(5)	0.0013(13)		0.001 (10)	0.0013(13)
$\gamma_{11,1}(\text{Ra})$	312.65(5)	0.026(6)	M1+2.5%E2	0.621(10)	0.016(4)
$\gamma_{14,3}(\text{Ra})$	314.6(2)	0.0023(7)	EI	0.0316(5)	0.0022(7)
$\gamma_{13,2}(\text{Ra})$	319.25(5)	0.73(14)	M1+3.14%E2	0.383(10)	0.40(9)
$\gamma_{9,0}(\text{Ra})$	329.80(5)	0.025(5)	(E1)	0.0285(4)	0.024(5)
$\gamma_{10,0}(\text{Ra})$	334.30(0)	0.0119(24)	M1+27.12%E2	0.414(13)	0.0084(17)
$\gamma_{13,1}(\text{Ra})$	339.30(3)	0.002(13)	$M1 + c_2 = 07 E_2$	0.950(5)	0.002 (13)
$\gamma_{11,0}(\text{Ra})$	342.30(7)	0.0143(30) 0.0028(15)	M11+02.070E2	0.230(3)	0.0110(24) 0.0027(15)
$\gamma_{12,0}(Ra)$	360.32(2)	0.0028(13)	E1	0.0249(4)	0.0027 (13)
$\gamma_{13,0}(Ra)$	309.32(0)	0.009(10)			0.069(16)
$\gamma_{18,13}(Ra)$	434.4(1)	0.0022(7)			0.0022(7)
$\gamma_{16,11}(Ra)$	439.0(3)	0.00030(8)			0.00030(8)
$\gamma_{17,11}(ha)$	444.0(3)	0.0011(4)			0.0011(4)
$\gamma_{16,9}(1a)$	452.9(2)	0.0008			0.0008
$\gamma_{17,10}(Ra)$	452.5(2) 457.5(2)	0.0008			0.0008
$\gamma_{17,9}(10a)$	469.3(2)	0.000			0.001
$\gamma_{15,10}(10a)$ $\gamma_{15} r(R_{2})$	469.3(2)	0.001			0.001
$\gamma_{10,0}(R_{2})$	475 4 (1)	0.0027			0.001
$\gamma_{19,9}(10a)$	475 4 (1)	0.0021			0.003
$\gamma_{20,11}(Ra)$	480.9(3)	0.0013(4)			0.0013(4)
/20,11(1ta)	100.0 (0)	(1) 01010			(1) 010010

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{20.9}(Ra)$	493.4(2)	0.0024(7)			0.0024(7)
$\gamma_{17.7}(\text{Ra})$	506.9(2)	0.0022(7)			0.0022(7)
$\gamma_{23.9}(\text{Ra})$	516.7(2)	0.0032(8)			0.0032(8)
$\gamma_{24,11}(Ra)$	524.8(2)	0.0043(12)			0.0043(12)
$\gamma_{24,10}(Ra)$	533.1(3)	0.0019(7)			0.0019(7)
$\gamma_{20.8}(\text{Ra})$	537.2(2)	0.0032			0.0032
$\gamma_{24.9}(\text{Ra})$	537.2(2)	0.0019			0.0019
$\gamma_{21,8}(\mathrm{Ra})$	539.8(2)	0.0059(18)			0.0059(18)
$\gamma_{21.7}(\text{Ra})$	545.4(4)	0.00030(8)			0.00030(8)
$\gamma_{17.6}(\text{Ra})$	552.3(2)	0.0027(8)			0.0027(8)
$\gamma_{22.8}(\text{Ra})$	556.3(3)	0.0011(4)			0.0011(4)
$\gamma_{18.6}(\text{Ra})$	569.03(8)	0.049(11)			0.049(11)
$\gamma_{25.9}(\text{Ra})$	576.1(4)	0.0011(4)			0.0011(4)
$\gamma_{24.8}(\text{Ra})$	581.3(4)	0.0013(4)			0.0013(4)
$\gamma_{26,10}(Ra)$	592.3(2)	0.0032(10)			0.0032(10)
$\gamma_{26.9}(\text{Ra})$	596.9(4)	0.0008(3)			0.0008(3)
$\gamma_{28,11}(Ra)$	600.7(4)	0.00054(14)			0.00054(14)
$\gamma_{22.6}(\text{Ra})$	607.6(3)	0.0022(7)			0.0022(7)
$\gamma_{28.9}(\text{Ra})$	613.6(4)	0.0011(4)			0.0011(4)
$\gamma_{24.6}(\text{Ra})$	632.7(3)	0.0022(7)			0.0022(7)
$\gamma_{17.5}(\text{Ra})$	663.7(3)	0.0011(4)			0.0011(4)
$\gamma_{29,8}(\text{Ra})$	671.9(4)	0.00054(14)			0.00054(14)
$\gamma_{17,4}(\text{Ra})$	708.3(3)	0.0013(4)			0.0013(4)
$\gamma_{23.5}(\text{Ra})$	722.65 (5)	0.038(9)			0.038(9)
$\gamma_{18.4}(\text{Ra})$	724.15 (5)	0.014(4)			0.014(4)
$\gamma_{17,2}(\text{Ra})$	737.4 (3)	0.0009(3)			0.0009(3)
$\gamma_{18,3}(\mathrm{Ra})$	742.4(3)	0.0011(4)			0.0011(4)
$\gamma_{21,4}(\text{Ra})$	746.30(5)	0.020(5)			0.020(5)
$\gamma_{18,2}(\text{Ra})$	753.65(5)	0.0094(22)			0.0094(22)
$\gamma_{17,1}(\text{Ra})$	757.20 (5)	0.0076(20)			0.0076(20)
$\gamma_{22,4}(\text{Ra})$	762.6(2)	0.0024(7)			0.0024(7)
$\gamma_{23,4}(\text{Ra})$	766.64(5)	0.022(5)			0.022(5)
$\gamma_{21,2}(\text{Ra})$	775.83(5)	0.45(9)			0.45(9)
$\gamma_{22,3}(\text{Ra})$	780.8(1)	0.003(1)			0.003(1)
$\gamma_{23,3}(\text{Ra})$	784.93(5)	0.0086(21)			0.0086(21)
$\gamma_{24,4}(\text{Ra})$	787.6(2)	0.0024(7)			0.0024~(7)
$\gamma_{17,0}(\text{Ra})$	787.6(2)	0.0003 (3)			0.0003 (3)
$\gamma_{22,2}(\text{Ra})$	792.2(3)	0.00054(14)			0.00054(14)
$\gamma_{23,2}(\text{Ra})$	796.22(5)	0.0108(25)			0.0108(25)
$\gamma_{18,0}(\text{Ra})$	803.77(5)	0.059(14)			0.059(14)
$\gamma_{19,0}(\text{Ra})$	806.0(2)	0.0013~(4)			0.0013~(4)
$\gamma_{22,1}(\text{Ra})$	812.40(6)	0.021(5)			0.021(5)
$\gamma_{27,5}(\text{Ra})$	816.5(2)	0.0013~(4)			0.0013~(4)
$\gamma_{20,0}(\text{Ra})$	823.20(7)	0.0070(16)			0.0070 (16)
$\gamma_{21,0}(\text{Ra})$	825.95(7)	0.054(13)			$0.054\ (13)$
$\gamma_{29,5}(\text{Ra})$	833.9(2)	0.0013~(4)			0.0013~(4)
$\gamma_{24,1}(\text{Ra})$	837.5(1)	0.0097~(21)			0.0097~(21)
$\gamma_{22,0}(\text{Ra})$	842.2(1)	0.0049(11)			0.0049(11)

Fr - 223

Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times \ 100 \end{array}$
846.85 (10)	0.049(13)			0.049(13)
846.85 (10)	0.005(3)			0.005(3)
863.6 (1)	0.0038(9)			0.0038(9)
867.4(1)	0.0016(4)			0.0016(4)
876.5(1)	0.038(9)			0.038(9)
878.1(2)	0.0032(8)			0.0032(8)
893.1(2)	0.0024(7)			0.0024(7)
896.7(2)	0.013(3)			0.013(3)
907.6(2)	0.014(3)			0.014(3)
911.3(3)	0.0008(3)			0.0008(3)
913.6(3)	0.00041(14)			0.00041(14)
926.5(3)	0.0016(4)			0.0016(4)
941.2(3)	0.0030(8)			0.0030 (8)
949.3(4)	0.00032(8)			0.00032 (8)
958.0(7)	0.00035(8)			0.00035 (8)
969.2(4)	0.00032(8)			0.00032(8)
975.2(5)	0.00016(5)			0.00016~(5)
978.7(4)	0.00067(12)			0.00067(12)
989.4(5)	0.00014(3)			0.00014(3)
994.3(3)	0.00011(3)			0.00011(3)
999.3(5)	0.00019(4)			0.00019(4)
1025.1(5)	0.00014(3)			0.00014(3)
	$\begin{array}{c} {\rm Energy}\\ {\rm keV}\\ \\\hline\\846.85\ (10)\\846.85\ (10)\\863.6\ (1)\\867.4\ (1)\\876.5\ (1)\\876.5\ (1)\\876.5\ (1)\\876.5\ (1)\\876.7\ (2)\\907.6\ (2)\\907.6\ (2)\\907.6\ (2)\\907.6\ (2)\\907.6\ (2)\\907.6\ (3)\\926.5\ (3)\\941.2\ (3)\\949.3\ (4)\\958.0\ (7)\\969.2\ (4)\\975.2\ (5)\\978.7\ (4)\\989.4\ (5)\\994.3\ (3)\\999.3\ (5)\\1025.1\ (5)\\ \end{array}$	$\begin{array}{c c} \mbox{Energy}\\ \mbox{keV} & \times 100 \\ \hline \\ 846.85 (10) & 0.049 (13) \\ 846.85 (10) & 0.005 (3) \\ 846.85 (10) & 0.0038 (9) \\ 867.4 (1) & 0.0016 (4) \\ 876.5 (1) & 0.038 (9) \\ 878.1 (2) & 0.0032 (8) \\ 893.1 (2) & 0.0024 (7) \\ 896.7 (2) & 0.013 (3) \\ 907.6 (2) & 0.014 (3) \\ 911.3 (3) & 0.0008 (3) \\ 913.6 (3) & 0.00041 (14) \\ 926.5 (3) & 0.0016 (4) \\ 941.2 (3) & 0.0032 (8) \\ 949.3 (4) & 0.0032 (8) \\ 949.3 (4) & 0.00032 (8) \\ 958.0 (7) & 0.0035 (8) \\ 969.2 (4) & 0.00032 (8) \\ 975.2 (5) & 0.0016 (5) \\ 978.7 (4) & 0.0007 (12) \\ 989.4 (5) & 0.00014 (3) \\ 999.3 (5) & 0.00014 (3) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

6 References

E.K.HYDE, Phys. Rev. 94 (1954) 1221 (Gamma-ray emission probabilities) J.P.ADLOFF, Compt. Rend. Acad. Sci. (Paris) 240 (1955) 1421 (Half-life, Alpha energies and intensities) C.YTHIER, G.MAZZONE, P.W.F.LOUWRIER, Physica 30 (1964) 2143 (Gamma-ray energies and intensities) K.H.LIESER, E.KLUGE, Radiochim. Acta 7 (1967) 3 (Half-life) H.MARIA, C.YTHIER, P.POLAK, A.H.WAPSTRA, Physica 34 (1967) 571 (Gamma-ray energies and intensities) S.K.VASILEV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, A.V.MOZZHUKHIN, B.I.SHESTAKOV, IZV. Akad. Nauk SSSR, Ser. Fiz. 45 (1981) 1895 (Gamma-ray emission probabilities) YU.V.ALEKSANDROV, S.K.VASILEV, B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, A.V.MOZZHUKHIN, A.V. SAULSKY, B.I.SHESTAKOV, Proc. 32nd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei Kiev (1982) 135 (Gamma-ray energies and intensities) CH.BRIANÇON, S.CWIOK, S.A.EID, V.GREEN, W.D.HAMILTON, C.F.LIANG, R.J.WALEN, J. Phys. (London) G16 (1990) 1735 (Multipolarities) A.Abdul-Hadi, V.Barci, B.Weiss, H.Maria, G.Ardisson, M.Hussonnois, O.Constantinescu, Phys. Rev. C47 (1993) 94 (Half-life, Gamma-ray energies and intensities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Decay scheme and levels)

C.F.LIANG, P.PARIS, R.K.SHELINE, Phys. Rev. C64 (2001) 034310 (Alpha energies, intensities and emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (Q)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	11.43	(3)	d
$Q^{'}_{lpha}$:	5978.99	(21)	keV
α	:	100		%

2 α Emissions

	Energy	Probability
	Ke v	× 100
$\alpha_{0,30}$	5014.3	~ 0.00044
$\alpha_{0,29}$	5026.1	~ 0.00063
$\alpha_{0,28}$	5035.9	~ 0.0004
$\alpha_{0,27}$	5056.5	~ 0.0002
$\alpha_{0,26}$	5086	~ 0.0003
$\alpha_{0,25}$	5112.5	$\sim \! 0.0006$
$\alpha_{0,24}$	5137.1	$\sim \! 0.0017$
$\alpha_{0,23}$	5151.98(23)	0.021
$\alpha_{0,22}$	5173.10(23)	0.026
$\alpha_{0,21}$	5211.1(5)	0.0053
$\alpha_{0,20}$	5237.12(23)	0.041
$\alpha_{0,19}$	5259.14(21)	0.042
$\alpha_{0,18}$	5283.65(21)	0.093
$\alpha_{0,17}$	5288.19(23)	0.16(4)
$\alpha_{0,16}$	5339.37(21)	0.13
$\alpha_{0,14}$	5366.37(23)	0.13
$\alpha_{0,12}$	5432.83(21)	0.50(8)
$\alpha_{0,11}$	5434.60(21)	1.60(24)
$\alpha_{0,10}$	5481.7(5)	0.008
$\alpha_{0,8}$	5502.12(21)	0.74(25)
$\alpha_{0,6}$	5539.43(21)	10.6(10)
$\alpha_{0,5}$	5606.99(21)	25.8(11)
$\alpha_{0,4}$	5715.84(21)	49.6(12)
$\alpha_{0,3}$	5747.14(21)	10.0(3)
$\alpha_{0,2}$	5857.52(21)	0.32(4)
$lpha_{0,0}$	5871.63(21)	1.0(2)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Rn)	5.66 - 17.95	30.1 (4)
e _{AK}	(Rn) KLL KLX KXY	62.017 - 68.885 75.744 - 83.785 89.45 - 98.39	1.73 (21) } } }
$ec_{17,13}\ {\rm K}$	(Rn)	4.8 (2)	0.03~(3)

KRI /V.P. Chechev

ес _{2,1 М} ес _{12,7 К}	(Rn)		
$ec_{12,7 K}$		5.4 - 7.0	11.8 (16)
	(Rn)	5.64 (4)	0.1(1)
$ec_{11,6}$ K	(Rn)	8.38 (3)	0.204(13)
$ec_{2,1 N}$	(Rn)	8.8 - 9.7	3.05(41)
$ec_{2,0 M}$	(Rn)	9.90 - 11.49	7.6~(6)
$ec_{5,4 K}$	(Rn)	12.46 (1)	0.0211 (15)
$ec_{2,0 N}$	(Rn)	13.28 - 14.15	1.96(15)
$ec_{4,3 L}$	(Rn)	13.82 - 17.26	0.156(31)
$ec_{3,1 \text{ K}}$	(Rn)	23.92 (1)	7.28(16)
$ec_{4,3}$ M	(Rn)	27.40 - 28.99	0.042(8)
$ec_{4,3 N}$	(Rn)	30.78 - 31.65	0.0108~(22)
$ec_{4,2 \text{ K}}$	(Rn)	45.87 (2)	12.40(36)
$ec_{12,9 L}$	(Rn)	51.5 - 54.9	0.039(17)
$ec_{4,1 \text{ K}}$	(Rn)	55.81 (1)	18.0(5)
$ec_{4,0 K}$	(Rn)	60.24 (1)	1.98(10)
$ec_{6,4 K}$	(Rn)	81.14 (6)	0.249(25)
$ec_{17,13}$ L	(Rn)	85.2 - 88.6	0.021~(15)
$ec_{12,7 L}$	(Rn)	85.99 - 89.43	0.064(32)
$ec_{11,6 L}$	(Rn)	88.73 - 92.17	0.0375~(23)
$ec_{5,4 L}$	(Rn)	92.808 - 96.250	0.214(15)
$ec_{12,7}$ M	(Rn)	99.57 - 101.16	0.017(10)
$ec_{3,1 L}$	(Rn)	104.271 - 107.710	1.373(30)
$ec_{5,4}$ M	(Rn)	106.383 - 107.972	0.0577 (41)
$ec_{5,4 N}$	(Rn)	109.770 - 110.634	0.0150(11)
$ec_{3,1 M}$	(Rn)	117.846 - 119.435	0.328(7)
$ec_{3,1 N}$	(Rn)	121.230 - 122.097	0.0854~(19)
$ec_{4,2 L}$	(Rn)	126.22 - 129.66	2.30(6)
$ec_{4,1 L}$	(Rn)	136.16 - 139.60	3.27~(9)
$ec_{4,2}$ M	(Rn)	139.80 - 141.39	0.547(15)
$ec_{4,0 L}$	(Rn)	140.587 - 144.020	0.373(12)
$ec_{4,2 N}$	(Rn)	143.18 - 144.05	0.143(4)
$ec_{4,1 M}$	(Rn)	149.735 - 151.324	0.777(21)
$ec_{8,3}$ K	(Rn)	151.09 (3)	0.019(16)
$ec_{4,1 N}$	(Rn)	153.120 - 153.986	0.203(5)
$ec_{17,7 \text{ K}}$	(Rn)	153.2 (3)	0.022(22)
$ec_{4,0}$ M	(Rn)	154.162 - 155.751	0.0891(35)
$ec_{4,0 N}$	(Rn)	157.540 - 158.413	0.0232(9)
$ec_{6,4}$ L	(Rn)	161.49 - 164.93	0.058(5)
$ec_{5,0 K}$	(Rn)	171.07 (1)	9.06(27)
$ec_{6,4}$ M	(Rn)	175.07 - 176.66	0.0142(13)
$ec_{6,2 \text{ K}}$	(Rn)	225.47 (1)	1.55(7)
ес _{6,0 К}	(Rn)	239.88 (1)	0.992(25)
$ec_{5,0 L}$	(Rn)	251.415 - 254.850	1.65(4)
$ec_{5,0}$ M	(Rn)	264.990 - 266.579	0.391(10)
$ec_{5,0 N}$	(Rn)	268.370 - 269.241	0.1019(28)
$ec_{8,1 \text{ K}}$	(Rn)	273.279 (15)	0.135(4)
$ec_{6,2}$ L	(Rn)	305.823 - 309.260	0.281(9)
$ec_{6,2}$ M	(Rn)	319.398 - 320.987	0.0666 (21)

KRI /V.P. Chechev

		Energy keV	Electrons per 100 disint.
$\begin{array}{c} ec_{6,0} \ L \\ ec_{6,2} \ N \\ ec_{6,0} \ M \\ ec_{6,0} \ N \\ ec_{11,0} \ K \\ ec_{8,1} \ L \\ ec_{11,0} \ L \end{array}$	(Rn) (Rn) (Rn) (Rn) (Rn) (Rn) (Rn)	$\begin{array}{r} 320.234 - 323.670 \\ 322.780 - 323.649 \\ 333.809 - 335.398 \\ 337.19 - 338.06 \\ 346.636 (12) \\ 353.628 - 357.070 \\ 426.985 - 430.420 \end{array}$	$\begin{array}{c} 0.177\ (5)\\ 0.0174\ (5)\\ 0.0420\ (11)\\ 0.0109\ (3)\\ 0.213\ (7)\\ 0.0240\ (6)\\ 0.0378\ (13) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(Rn)	10.1372 - 17.2578		22.1(4)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Rn) (Rn)	81.07 83.78		$\begin{array}{c} 14.86 \ (23) \\ 24.5 \ (4) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Rn) (Rn) (Rn)	94.247 94.868 95.449	} } }	8.50 (18)	$\mathrm{K}\beta_{1}^{\prime}$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Rn) (Rn) (Rn)	97.48 97.853 98.357	} } }	2.72 (7)	$\mathrm{K}\beta_{2}^{'}$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c} \gamma_{1,0}({\rm Rn}) \\ \gamma_{2,1}({\rm Rn}) \\ \gamma_{2,0}({\rm Rn}) \\ \gamma_{4,3}({\rm Rn}) \\ \gamma_{12,9}({\rm Rn}) \\ \gamma_{15,12}({\rm Rn}) \\ \gamma_{15,12}({\rm Rn}) \\ \gamma_{17,13}({\rm Rn}) \\ \gamma_{12,7}({\rm Rn}) \\ \gamma_{12,6}({\rm Rn}) \\ \gamma_{12,6}({\rm Rn}) \\ \gamma_{13,8}({\rm Rn}) \end{array}$	$\begin{array}{c} \text{kev} \\ \hline \\ 4.47 \ (1) \\ 9.90 \ (2) \\ 14.37 \ (1) \\ 31.87 \ (2) \\ 69.5 \ (1) \\ 70.9 \ (2) \\ 102.2 \ (2) \\ 103.2 \ (2) \\ 104.04 \ (4) \\ 106.78 \ (3) \\ 108.5 \ (2) \\ 110.856 \ (10) \\ 114.7 \ (2) \\ \end{array}$	$\begin{array}{c} \times \ 100 \\ \\ 54.9 \ (23) \\ 15.7 \ (21) \\ 10.0 \ (8) \\ 0.21 \ (4) \\ 0.059 \ (25) \\ 0.0036 \ (11) \\ 0.0008 \ (4) \\ 0.064 \ (35) \\ 0.20 \ (5) \\ 0.277 \ (17) \\ 0.006 \ (3) \\ 0.369 \ (26) \\ 0.010 \ (4) \\ 0.010 \ (4) \\ \end{array}$	$E2 \\ M1+E2 \\ M1+E2 \\ (E2) \\ M1 \\ M1+E2 \\ M1+E2 \\ (M1) \\ E2 \\ E2 \\ E1 \\ E2 \\ E2 \\ E2 \\ E2 \\ E2$	860000 990 (40) 539 (15) 2010 (30) 7.36 (11) 9.6 (24) 9.4 (24) 10.89 (16) 5.36 (8)	\times 100 0.0000064 0.0158 (20) 0.0185 (13) 0.000105 (21) 0.007 (3) 0.0036 (11) 0.0008 (4) 0.006 (3) 0.0194 (21) 0.0233 (14) 0.006 (3) 0.058 (4) 0.010 (4) 0.010 (4)
$\gamma_{3,1}(\mathrm{Rn})$ $\gamma_{20,14}(\mathrm{Rn})$	$\begin{array}{c} 122.319 \ (10) \\ 131.6 \ (2) \end{array}$	$\begin{array}{c} 10.32 \ (21) \\ 0.006 \ (3) \end{array}$	M1+E2	7.34 (11)	$\begin{array}{c} 1.238 \ (19) \\ 0.006 \ (3) \end{array}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{14.8}(\text{Rn})$	138.3(3)	0.0017(7)			0.0017(7)
$\gamma_{4,8}(\mathrm{Rm})$	144.27(2)	18.8(5)	M1+E2	4.59(7)	3.36(8)
$\gamma_{17,12}(Rn)$	147.2(3)	0.006(3)	·		0.006(3)
$\gamma_{4,1}(\mathrm{Rn})$	154.208 (10)	28.2(7)	M1	3.83(6)	5.84(13)
$\gamma_{4,1}(\mathrm{Rn})$	158.635(10)	3.18(11)	M1+E2	3.46(12)	0.713(16)
$\gamma_{16.8}(\text{Rn})$	165.8(2)	0.0054(28)			0.0054(28)
$\gamma_{11.5}(\text{Rn})$	175.65(15)	0.017(4)			0.017(4)
$\gamma_{12.5}(\text{Rn})$	177.3(1)	0.047(4)			0.047(4)
$\gamma_{6.4}(\text{Rn})$	179.54(6)	0.480(45)	M1+E2	2.12(7)	0.154(14)
$\gamma_{20,12}(\mathrm{Rn})$	199.3(3)	0.0030(14)			0.0030(14)
$\gamma_{18,9}(\mathrm{Rn})$	221.32(24)	0.038(6)	E1	0.0675(10)	0.036(6)
$\gamma_{19,8}(\mathrm{Rn})$	247.2 (5)	0.0097(28)			0.0097(28)
$\gamma_{8,3}(\mathrm{Rn})$	249.49(3)	0.061(22)	M1+E2	0.6(4)	0.038(10)
$\gamma_{17,7}(\mathrm{Rn})$	251.6(3)	0.088(27)	M1+E2	0.6(4)	0.055(10)
$\gamma_{5,2}(\mathrm{Rn})$	255.2(2)	0.048(7)			0.048(7)
$\gamma_{17,6}(\mathrm{Rn})$	255.7(3)	0.0055(28)			0.0055(28)
$\gamma_{18,6}(\mathrm{Rn})$	260.4(3)	0.0067~(28)			0.0067~(28)
$\gamma_{5,0}(\mathrm{Rn})$	269.463(10)	25.5(6)	M1+E2	0.789(14)	14.23(32)
$\gamma_{10,3}(\mathrm{Rn})$	270.3(4)	0.0007~(4)			0.0007~(4)
$\gamma_{23,12}(\mathrm{Rn})$	286.0(4)	0.0011~(6)			0.0011~(6)
$\gamma_{12,4}(\mathrm{Rn})$	288.18(3)	0.167(5)	E1	0.0364~(6)	0.161(5)
$\gamma_{6,2}(\mathrm{Rn})$	323.871(10)	5.98(14)	M1+E2	0.473(17)	4.06(8)
$\gamma_{7,2}(\mathrm{Rn})$	328.38(3)	0.209(10)	(E1)	0.0271(4)	0.203(10)
$\gamma_{6,1}(\mathrm{Rn})$	334.01~(6)	0.110(7)	(E2)	0.1007(15)	0.100(6)
$\gamma_{6,0}(\mathrm{Rn})$	338.282(10)	4.08(9)	M1	0.430(6)	2.85(6)
$\gamma_{7,0}(\mathrm{Rn})$	342.78(2)	0.232(13)	E1	0.0246~(4)	0.226~(13)
$\gamma_{23,9}(\mathrm{Rn})$	355.5(2)	0.0043(14)			0.0043(14)
$\gamma_{14,4}(\mathrm{Rn})$	355.7(2)	0.0028(14)			0.0028(14)
$\gamma_{8,2}(\mathrm{Rn})$	361.89(2)	0.028~(7)			0.028(7)
$\gamma_{9,2}(\mathrm{Rn})$	362.9(2)	0.016(7)			0.016(7)
$\gamma_{22,7}(\mathrm{Rn})$	368.56(12)	0.009(4)			0.009(4)
$\gamma_{8,1}(\mathrm{Rn})$	371.676(15)	0.665~(15)	M1	0.333(5)	0.499(11)
$\gamma_{9,1}(\mathrm{Rn})$	372.86(6)	0.052	E1	0.0205(3)	0.051
$\gamma_{8,0}(\mathrm{Rn})$	376.26(2)	0.013(4)			0.013(4)
$\gamma_{16,4}(\mathrm{Rn})$	383.35(2)	0.007(4)			0.007(4)
$\gamma_{14,3}(\mathrm{Rn})$	387.7(2)	0.016(6)			0.016(6)
$\gamma_{23,7}(\mathrm{Rn})$	390.1(2)	0.0046(21)			0.0046(21)
$\gamma_{11,2}(\mathrm{Rn})$	430.6 (3)	0.020(6)			0.020(6)
$\gamma_{12,2}(\mathrm{Rn})$	432.45(3)	0.0356(29)	3.64		0.0356(29)
$\gamma_{11,0}(\mathrm{Rn})$	445.033 (12)	1.542(48)	M1	0.205(3)	1.28(4)
$\gamma_{20,4}(\mathrm{Rn})$	487.5(2)	0.011(2)			0.011(2)
$\gamma_{-1,1}(\mathrm{Rn})$	490.8(3)	0.0017(7)			0.0017(7)
$\gamma_{14,2}(\mathrm{Rn})$	500.0(4)	0.0014(6)			0.0014(6)
$\gamma_{14,1}(\text{Rn})$	510.0(4)	0.0004(3)			0.0004(3)
$\gamma_{-1,2}(\text{Rn})$	323.2(4)	0.0014(6)			0.0014(0)
$\gamma_{16,2}(\text{Rn})$	527.011 (13)	0.073(4)			0.0(3(4))
$\gamma_{-1,3}(Rn)$	002.9 (4) 527 G (1)	0.0014(0) 0.0021(7)			0.0014(0) 0.0021(7)
/16,1(Rn)	JJ U.160	0.0021 (7)			0.0021(1)

KRI /V.P. Chechev

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{16,0}(\mathrm{Rn})$	541.99(2)	0.0014(6)			0.0014(6)
$\gamma_{21,3}(\mathrm{Rn})$	545.8(5)	0.0011~(6)			0.0011~(6)
$\gamma_{23,4}(\mathrm{Rn})$	574.1(7)	0.0011~(6)			0.0011~(6)
$\gamma_{17,2}(\mathrm{Rn})$	579.6(3)	0.0014~(6)			0.0014~(6)
$\gamma_{18,2}(\mathrm{Rn})$	584.3(3)	0.0014~(6)			0.0014~(6)
$\gamma_{17,0}(\mathrm{Rn})$	594.0(3)	0.0014~(6)			0.0014~(6)
$\gamma_{18,0}(\mathrm{Rn})$	598.721(24)	0.092(4)			0.092~(4)
$\gamma_{19,2}(\mathrm{Rn})$	609.31(4)	0.057~(3)			0.057~(3)
$\gamma_{19,1}(\mathrm{Rn})$	619.1 (4)	0.0036(11)			0.0036(11)
$\gamma_{19,0}(\mathrm{Rn})$	623.68(4)	0.009(4)			0.009(4)
$\gamma_{20,2}(\mathrm{Rn})$	631.7(7)	0.0004(3)			0.0004(3)
$\gamma_{20,1}(\mathrm{Rn})$	641.7(4)	0.0017(7)			0.0017~(7)
$\gamma_{20,0}(\mathrm{Rn})$	646.1(5)	0.0004(4)			0.0004(4)
$\gamma_{22,2}(\mathrm{Rn})$	696.9(7)	0.0007(3)			0.0007~(3)
$\gamma_{22,0}(\mathrm{Rn})$	711.3(2)	0.0037~(10)			0.0037~(10)
$\gamma_{23,2}(\mathrm{Rn})$	718.4(4)	0.0014~(6)			0.0014~(6)
$\gamma_{23,1}(\mathrm{Rn})$	728.4(8)	0.00028(14)			0.00028(14)
$\gamma_{23,0}(\mathrm{Rn})$	732.8~(6)	0.0006(3)			0.0006 (3)
$\gamma_{-1,25}(\mathrm{Rn})$	737.2(8)	0.00028(14)			0.00028(14)

5 References

G.R.HAGEE, M.L.CURTIS, G.R.GROVE, Phys. Rev. 96 (1954) 817A (Half-life) H.PAUL, H.WARHANEK, Helv. Phys. Acta 30 (1957) 272 (Gamma-ray energies and emission probabilities) R.C.PILGER JR., Thesis, Report UCRL-3877, Univ. California (1957) (Alpha-particle and gamma-ray energies and emission probabilities) J.ROBERT, Ann. Phys. (Paris) 4 (1959) 89 (Half-life) A.Rytz, Helv. Phys. Acta 34 (1961) 240 (Alpha-particle energies and emission probabilities) R.J.WALEN, V.NEDOVESOV, G.BASTIN-SCOFFIER, Nucl. Phys. 35 (1962) 232 (Alpha-particle energies and emission probabilities) M.GIANNINI, D.PROSPERI, S.SCIUTI, Nuovo Cim. 25 (1962) 1314 (Alpha-particle energies and emission probabilities) A.H.WAPSTRA, Nucl. Phys. 57 (1964) 48 (Alpha-particle energies and emission probabilities) H.W.KIRBY, K.C.JORDAN, J.Z.BRAUN, M.L.CURTIS, M.L.SALUTSKY, J. Inorg. Nucl. Chem. 27 (1965) 1881 (Half-life) P.POLAK, A.H.WAPSTRA, C.YTHIER, Priv. Comm. (1966) (Gamma-ray energies and emission probabilities) K.C.JORDAN, B.C.BLANKE, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 567(Half-life) CH.BRIANÇON, C.F.LEANG, R.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1533 (Gamma-ray energies and emission probabilities) D.BERTAULT, M.VIDAL, G.Y.PETIT, J. Phys. (Paris) 30 (1969) 909 (Conversion electron spectra, 269 keV gamma-ray multipolarity) K.KRIEN, C.GUNTHER, J.D.BOWMAN, B.KLEMME, Nucl. Phys. A141 (1970) 75 (Gamma-ray energies and emission probabilities, E2/M1 mixing ratios) W.F.DAVIDSON, R.D.CONNOR, Nucl. Phys. A149 (1970) 363 (Alpha -particle and gamma-ray energies and emission probabilities, E2/M1 mixing ratios)

Ra - 223

B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies and emission probabilities) W.H.A.HESSELINK, Report NP-19781 (1972) (Gamma-ray energies and emission probabilities) B.Richter, M.J.Canty, L.Ley, M.V.Banaschik, A.Neskakis, Nucl. Phys. A223 (1974) 234 (Conversion electron spectra, E2/M1 mixing ratios) K.Blaton-Albicka, B.Kotlinska-Filipek, M.Matul, K.Stryczniewicz, M.Nowicki, E.Ruchowska-Lukasiak, Nukleonika 21 (1976) 935 (Gamma-ray energies and emission probabilities) C.MAPLES, Nucl. Data Sheets 22 (1977) 243 (Alpha-particle energies and emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Atomic electron binding energies) G.J.MILLER, J.C.MCGEORGE, I.ANTHONY, R.O.OWENS, Phys. Rev. C36 (1987) 420 (Half-life) M.J.MARTIN, Nucl. Data Sheets 63 (1991) 723 (Branch of 223Ra decay by emission of 14C) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) R.K.SHELINE, C.F.LIANG, P.PARIS, Phys. Rev. C57 (1998) 104 (Gamma-ray energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (Calculation of emission probabilities of X-rays and Auger electrons) E.BROWNE, Nucl. Data Sheets 93 (2001) 763 (Ra-223 alpha decay scheme and alpha decay data evaluation) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Band-Raman ICC for gamma-ray transitions)

KRI /V.P. Chechev

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.631	(2)	d
$Q^{'}_{lpha}$:	5788.85	(15)	keV
α	:	100		%
^{14}C	:	5	(1)	$\times 10^{-9}~\%$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 5034.29 \ (18) \\ 5051.56 \ (17) \\ 5161.32 \ (18) \\ 5448.80 \ (15) \\ 5685.48 \ (15) \end{array}$	$\begin{array}{c} 0.0030 \ (5) \\ 0.0076 \ (10) \\ 0.0072 \ (8) \\ 5.25 \ (5) \\ 94.73 \ (5) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Rn)	5.58 - 11.48	0.498(16)
e _{AK}	(Rn) KLL KLX KXY	62.017 - 68.885 75.744 - 83.785 89.45 - 98.39	0.0151 (19) } } }
$ec_{1,0 \text{ K}} ec_{1,0 \text{ L}} ec_{1,0 \text{ M}} ec_{1,0 \text{ N}}$	(Rn) (Rn) (Rn) (Rn)	$\begin{array}{rrrr} 142.590 & (6) \\ 222.938 & - 226.376 \\ 236.513 & - 238.102 \\ 239.900 & - 240.764 \end{array}$	$\begin{array}{c} 0.46 \ (2) \\ 0.50 \ (3) \\ 0.134 \ (3) \\ 0.0347 \ (6) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Rn)	10.137 - 17.28		0.373(16)	
$XK\alpha_2$	(Rn)	81.07		0.130(3)	$K\alpha$
$XK\alpha_1$	(Rn)	83.78		0.214(4)	}
$XK\beta_3$	(Rn)	94.247	}		
$XK\beta_1$	(Rn)	94.868	}	0.0743(18)	$\mathrm{K}eta_1'$
$ ext{XK}eta_5''$	(Rn)	95.449	}		
$XK\beta_2$	(Rn)	97.48	}		
$XK\beta_4$	(Rn)	97.853	}	0.0238(7)	$\mathrm{K}eta_2'$
$\rm XKO_{2,3}$	(Rn)	98.357	}		

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$ \begin{array}{c} \gamma_{1,0}({\rm Rn}) \\ \gamma_{2,1}({\rm Rn}) \\ \gamma_{3,1}({\rm Rn}) \\ \gamma_{4,1}({\rm Rn}) \\ \gamma_{3,0}({\rm Rn}) \end{array} $	$\begin{array}{c} 240.986\ (6)\\ 292.7\ (1)\\ 404.45\ (9)\\ 422.04\ (10)\\ 645.44\ (9) \end{array}$	$\begin{array}{c} 5.26 \ (5) \\ 0.0072 \ (8) \\ 0.0022 \ (5) \\ 0.0030 \ (5) \\ 0.0054 \ (9) \end{array}$	E2 E2 E1 [E1] E1	$\begin{array}{c} 0.276 \ (4) \\ 0.1487 \ (21) \\ 0.01717 \ (24) \\ 0.01567 \ (22) \\ 0.00663 \ (10) \end{array}$	$\begin{array}{c} 4.12 \ (4) \\ 0.0063 \ (7) \\ 0.0022 \ (5) \\ 0.0030 \ (5) \\ 0.0054 \ (9) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

F.Asaro, F.Stephens Jr., I.Perlman, Phys. Rev. 92 (1953) 1495 (Alpha-particle emission probabilities) R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies) R.D.LLOYD, C.W.MAYS, D.R.ATHERTON, D.O.CLARK, Report COO-225, Utah Univ. (1962) 88 (Half-life) G.BASTIN-SCOFFIER, Compt. Rend. Acad. Sci. (Paris) 254 (1962) 3854 (Alpha emission energies) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray emission probabilities) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha emission energy) J.C.SOARES, J.P.RIBEIRO, A.GONCALVES, F.B.GIL, J.G.FERREIRA, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 985 (Alpha-particle emission probabilities) K.C.JORDAN, G.W.OTTO, R.P.RATAY, J. Inorg. Nucl. Chem. 33 (1971) 1215 (Half-life) J.DALMASSO, Thesis, Report FRNC-TH-441, Univ. Nice (1972) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, C.YTHIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 277 (1973) 467 (Gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.VANINBROUKX, H.H.HANSEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) G.BORTELS, D.REHER, R.VANINBROUKX, Int. J. Appl. Radiat. Isotop. 35 (1984) 305 (Gamma-ray emission probabilities) P.B.PRICE, J.D.STEVENSON, S.W.BARWICK, H.L.RAVN, Phys. Rev. Lett. 54 (1985) 297 (Cluster decay) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies) E.HOURANI, L.ROSIER, G.BERRIER-RONSIN, A.ELAYI, A.C.MUELLER, G.RAPPENECKER, G.ROTBARD, G.RENOU, A.LIEBE, L.STAB, H.L.RAVN, Phys. Rev. C44 (1991) 1424 (Cluster decay)

W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) T.BABELIOWSKY, G.BORTELS, Appl. Radiat. Isot. 44 (1993) 1349 (Alpha-particle emission probabilities) G.ARDISSON, M.HUSSONNOIS, Radiochim. Acta 70/71 (1995) 123 (Cluster decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 157 (Nuclear structure, energies) S.P.TRETYAKOVA, V.L.MIKHEEV, Nuovo Cim. 110 (1997) 1043 (Cluster decay) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) H.SCHRADER, Appl. Radiat. Isot. 60 (2004) 317 (Half-life) N.J.STONE, J.R.STONE, M.LINDROOS, P.RICHARDS, M.VESKOVIC, D.A.WILLIAMS, Nucl. Phys. A793 (2007) 1 (Half-life) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Ra - 224

Ra - 225

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	14.82	(19)	d
Q_{β^-}	:	356	(5)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,3}^-$	200(5)	<0.01	2nd forbidden	>10.1
$\beta_{0,2}^-$	235(5)	<0.01	1st forbidden unique	>9.9
$\beta_{0,1}^{-}$	316 (5)	$\begin{array}{c} 68.8 \\ 31.2 \\ (20) \end{array}$	Allowed	6.87
$\beta_{0,0}^{-}$	356 (5)		1st forbidden	7.38

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Ac)	5.87 - 19.69	15.7(7)	
$ec_{1,0 L} ec_{1,0 M} ec_{1,0 N}$	(Ac) (Ac) (Ac)	20.24 - 24.22 35.09 - 36.87 38.82 - 39.78	$\begin{array}{c} 29.2 \ (8) \\ 7.2 \ (12) \\ 1.86 \ (27) \end{array}$	
$\begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \\ \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	max: max: max: max:	$\begin{array}{ccc} 200 & (5) \\ 235 & (5) \\ 316 & (5) \\ 356 & (5) \end{array}$	< 0.01 < 0.01 68.8 (20) 31.2 (20)	avg:54.0 (15)avg:70.5 (16)avg:88.3 (16)avg:100.7 (16)

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$	Photons per 100 disint.
XL	(Ac)	10.8701 - 18.9228	13.6(6)

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{1,0}(Ac)$	40.09(5)	68.8 (17)	E1	1.293(19)	30.0(7)

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life) L.B.MAGNUSSON, F.WAGNER JR., D.W.ENGELKEMEIR, M.S.FREEDMAN, Report ANL-5386, Argonne National Laboratory (1955) (Gamma-ray energies emission probabilities) F.S.STEPHENS, Report UCRL-2970, Univ. California (1955) (Gamma-ray energies emission probabilities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies emission probabilities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray emission probabilities) I.Ahmad, J.E.Gindler, A.M.Friedman, R.R.Chasman, T.Ishii, Nucl. Phys. A472 (1987) 285 (Gamma-ray energies) G.J.MILLER, J.C.MCGEORGE, I.ANTHONY, R.O.OWENS, Phys. Rev. C36 (1987) 420 (Half-life) Y.A.AKOVALI, Nucl. Data Sheets 60 (1990) 617 (Decay scheme and levels) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Ra - 226

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	1600	(7)	У
Q_{lpha}	:	4870.62	(25)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,4}$	4160 (2)	0.0002
$\alpha_{0,3}$	4191 (2)	0.0008
$\alpha_{0,2}$	4340(1)	0.0066(22)
$\alpha_{0,1}$	4601(1)	5.95(4)
$\alpha_{0,0}$	4784.34 (25)	94.038 (40)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$ec_{1,0 \text{ K}} ec_{1,0 \text{ L}} ec_{1,0 \text{ M}} ec_{1,0 \text{ N}}$	(Rn) (Rn) (Rn) (Rn)	87.814 (13) 168.163 - 171.600 181.738 - 183.327 185.120 - 185.989	$\begin{array}{c} 0.675 \ (11) \\ 1.280 \ (18) \\ 0.342 \ (5) \\ 0.0892 \ (14) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Rn)	10.14 - 17.26		0.807(14)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Rn) (Rn)	81.07 83.78		$\begin{array}{c} 0.192 \ (4) \\ 0.317 \ (6) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\left({{\operatorname{Rn}}} ight)$ $\left({{\operatorname{Rn}}} ight)$ $\left({{\operatorname{Rn}}} ight)$	94.247 94.868 95.449	} } }	0.1098 (25)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Rn) (Rn) (Rn)	97.48 97.853 98.357	} } }	0.0351 (10)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{c} \gamma_{1,0}({\rm Rn}) \\ \gamma_{2,1}({\rm Rn}) \\ \gamma_{3,1}({\rm Rn}) \\ \gamma_{4,1}({\rm Rn}) \\ \gamma_{3,0}({\rm Rn}) \end{array}$	$\begin{array}{c} 186.211 \ (13) \\ 262.27 \ (5) \\ 414.60 \ (5) \\ 449.37 \ (10) \\ 600.66 \ (5) \end{array}$	$\begin{array}{c} 5.962 \ (48) \\ 0.0066 \ (22) \\ 0.0003 \\ 0.0002 \\ 0.0005 \end{array}$	E2 [E2] [E1] [E1] [E1]	$\begin{array}{c} 0.677 \ (10) \\ 0.209 \ (4) \\ 0.01628 \ (23) \\ 0.01373 \ (20) \\ 0.00762 \ (11) \end{array}$	$\begin{array}{c} 3.555 \ (19) \\ 0.0055 \ (18) \\ 0.0003 \\ 0.0002 \\ 0.0005 \end{array}$

5 References

I.CURIE, F.JOLIOT, Compt. Rend. (Paris) 187 (1928) 43 (Half-life) H.J.J.BRADDICK, H.M.CAVE, Proc. Roy. Soc. A 121 (1928) 367 (Half-life) S.W.WATSON, M.C.HENDERSON, Proc. Roy. Soc. A 118 (1928) 318 (Half-life) F.A.B.WARD, C.E.WYNN-WILLIAMS, H.M.CAVE, Proc. Roy. Soc. A 125 (1929) 713 (Half-life) L.MEITNER, W.ORTMANN, Z. Phys. 60 (1930) 143 (Half-life) E.Gleditsch, E.Foeyn, Am. J. Sci. 29 (1935) 253 (Half-life) P.GÜNTHER, Z. Phys. Chem. A185 (1939) 367 (Half-life) T.P.KOHMAN, D.P.AMES, J.SEDET, Report National Nuclear Energy Series 14B (1949) 1675 (Half-life) W.SEBAOUN, Ann. Phys. (Paris) 1 (1956) 680 (Half-life) G.R.MARTIN, D.G.TUCK, Int. J. Appl. Radiat. Isotop. 5 (1959) 141 (Half-life) G.V.Gorshkov, Z.G.Gritchenko, A.T.Ilyunskaya, B.S.Kuznetsov, N.S.Shimanskaya, At. Energ. 7 (1959) 912 (Half-life) F.S.Stephens, F.Asaro, I.Perlman, Phys. Rev. 119 (1960) 796 (Gamma-ray instensity) G.BASTIN-SCOFFIER, C.F.LEANG, R.J.WALEN, J. Phys. (Paris) 24 (1963) 854 (Alpha intensity) H.RAMTHUN, Nukleonika 8 (1966) 244 (Half-life) G.WALLACE, G.E.COOTE, Nucl. Instrum. Methods 74 (1969) 353 (Gamma-ray instensity) E.W.A.LINGEMAN, J.KONIJN, P.POLAK, A.H.WAPSTRA, Nucl. Phys. A133 (1969) 630 (Gamma-ray instensity) R.S.MOWATT, Can. J. Phys. 48 (1970) 2606 (Gamma-ray instensity) K.YA.GROMOV, B.M.SABIROV, J.J.URBANETS, Bull. Rus. Acad. Sci. Phys. 33 (1970) 1510 (Gamma-ray instensity) W.LOURENS, A.H.WAPSTRA, Z. Phys. 247 (1971) 147 (Gamma-ray instensity) A.G.DE PINHO, M.WESKLER, Z. Naturforsch. 28a (1973) 1635 (X-ray emission intensities) V.S.ALEKSANDROV, Report JINR-PL-7308, Joint Institute of Nuclear Research, Dubna (1973) (Gamma-ray instensity)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

A.HACHEM, Compt. Rend. Acad. Sci. (Paris) Ser. B 281 (1975) 45 (Gamma-ray instensity) V.ZOBEL, E.EUBE, J.EBERTH, U.EBERTH, Nucl. Instrum. Methods 141 (1977) 329 (Gamma-ray instensity) G.MOUZE, Compt. Rend. Acad. Sci. (Paris) 292 (1981) 1243 (Gamma-ray instensity) H.AKCAY, G.MOUZE, D.MAILLARD, CH.YTHIER, Radiochem. Radioanal. Lett. 51 (1982) 1 (Gamma-ray instensity) M.A.FAROUK, A.M.AL-SORAYA, Nucl. Instrum. Methods 200 (1982) 593 (Gamma-ray instensity) D.G.OLSON, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray instensity) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray instensity) G.MOUZE, C.YTHIER, J.F.COMANDUCCI, Rev. Roum. Phys. 35 (1990) 337 (Gamma-ray instensity) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. Lett. 153 (1991) 137 (Gamma-ray instensity) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission energies and probabilities) O.DIALLO, G.MOUZE, C.YTHIER, J.F.COMANDUCCI, NUOVO Cim. 106A (1993) 1321 (Gamma-ray instensity) Y.A.AKOVALI, Nucl. Data Sheets 77 (1996) 433 (Spin, parity and multipolarity) Y.A.AKOVALI, Nucl. Data Sheets 77 (1996) 271 (Spin, parity and multipolarity) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.MOREL, M.ETCHEVERRY, J.L.PICOLO, Appl. Radiat. Isot. 49 (1998) 1387 (Gamma-ray instensity) D.SARDARI, T.D.MCMAHON, J. Radioanal. Nucl. Chem. 244 (2000) 463 (Gamma-ray instensity) S.P.LAMONT, R.J.GEHRKE, S.E.GLOVER, R.H.FILBY, J. Radioanal. Nucl. Chem. 248 (2001) 247 (Alpha intensity) J.U.DELGADO, J.MOREL, M.ETCHEVERRY, Appl. Radiat. Isot. 56 (2002) 137 (Gamma-ray instensity) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) G.L.MOLNAR, Z.S.RÉVAY, T.BELGYA, Proc. 11th Int. Symp. on Capture Gamma-ray Spectroscopy, 2-6 September 2002, Pruhonice (2003) 522 (Gamma-ray instensity) J.MOREL, S.SPEMAN, M.RASKO, E.TERECHTCHENKO, J.U.DELGADO, Appl. Radiat. Isot. 60 (2004) 341 (Gamma-ray instensity) R.G.HELMER, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) 19 (Gamma-ray instensity)
Ra - 226

Ra - 228

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	5.75	(4)	У
Q_{β^-}	:	45.8	(7)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Prob ×	ability 100	Nature	$\log ft$
$ \beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} $	12.7 (7) 25.6 (7) 39.1 (7) 39.5 (7)	$30 \\ 8.7 \\ 49 \\ 12$	(10) (9) (10) (10)	Allowed 1st forbidden Allowed 1st forbidden	5.11 6.2 6.45 7.07

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e _{AL}	(Ac)	5.87 - 19.67	12(5)	
$ec_{1,0}$ M $ec_{1,0}$ N $ec_{2,0}$ M $ec_{2,0}$ N $ec_{3,2}$ M $ec_{3,2}$ N $ec_{4,2}$ L $ec_{4,2}$ M $ec_{4,2}$ N $ec_{4,3}$ M $ec_{4,3}$ N	 (Ac) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c}9\ (7)\\2.5\ (21)\\67\ (11)\\17.8\ (28)\\7.17\ (46)\\1.82\ (12)\\21\ (8)\\5.2\ (19)\\1.38\ (49)\\1.53\ (31)\\0.39\ (8)\end{array}$	
$\beta_{0,4}^{-} \\ \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-}$	max: max: max: max:	$\begin{array}{rrrr} 12.7 & (7) \\ 25.6 & (7) \\ 39.1 & (7) \\ 39.5 & (7) \end{array}$	$30 (10) \\8.7 (9) \\49 (10) \\12 (10)$	avg: 3.2 (2)avg: 6.5 (2)avg: 9.9 (2)avg: 10.0 (2)

4 Photon Emissions

4.1 X-Ray Emissions

	Energy keV	Photons per 100 disint.
XL (Ac)	10.8701 - 18.9228	9.6 (19)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Ac)$	6.28(3)	12 (10)	M2	6680000 (190000)	0.0000018 (15)
$\gamma_{2,0}(Ac)$	6.67(2)	89(14)	E2	1560000 (40000)	0.000057 (9)
$\gamma_{4,3}(Ac)$	12.88(11)	2.30(46)	${ m E1}$	6.67(18)	0.30(6)
$\gamma_{3,2}(Ac)$	13.520(36)	11.0(7)	E1	5.86(10)	1.6(1)
$\gamma_{4,2}(Ac)$	26.40(11)	28(10)	M1+E2	201 (4)	0.14(5)

4.2 Gamma Transitions and Emissions

$\mathbf{5}$ References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, St.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427

(Half-life)

R.A.DUDLEY, Report NYO-9504, Massachusetts Institute of Technology (1960) 85

(Half-life)

J.TOUSSET, A.MOUSSA, J. Phys. Radium 22 (1961) 683

(Beta emission energies, Beta emission probabilities, Gamma ray energies)

C.W.MAYS, D.R.ATHERTON, R.D.LLOYD, H.F.LUCAS, B.J.STOVER, F.W.BRUENGER, Report COO-225, Utah Univ. (1962) 92

(Half-life)

M.HERMENT, A.GIZON, Annual Report ISN Grenoble (1972) 115

(Beta emission energies)

P.C.SOOD, A.GIZON, D.G.BURKE, B.SINGH, C.F.LIANG, R.K.SHELINE, M.J.MARTIN, R.W.HOFF, Phys. Rev. C52 (1995) 88

(Beta emission energies, Beta emission probabilities, Gamma ray energies, Gamma-ray emission probabilities, Multipolarities, Spin and Parity)

A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723

(Spin and Parity, Multipolarities, Mixing ratio, Beta emission energies, Beta emission probabilities, Gamma ray energies, Half-life)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	10.0	(1)	d
$Q^{'}_{lpha}$:	5935.1	(14)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,48}$	4903.6 (14)	0.0011 (4)
$\alpha_{0,47}$	4992.7 (14)	0.0013(3)
$\alpha_{0,46}$	5019.3(14)	0.00015(5)
$\alpha_{0,45}$	5025.5(14)	0.00083(21)
$\alpha_{0,44}$	5035.5(14)	0.0021 (3)
$\alpha_{0,43}$	5064.1(14)	0.00114(18)
$\alpha_{0,42}$	5076.8(14)	0.0038(19)
$\alpha_{0,41}$	5094.1(14)	0.015(7)
$\alpha_{0,40}$	5129.0(14)	0.0058 (8)
$\alpha_{0,39}$	5162.1(14)	0.00066 (12)
$\alpha_{0,38}$	5195.1(14)	0.00015(5)
$\alpha_{0,37}$	5203.3(14)	0.0101(10)
$\alpha_{0,36}$	5210.2(14)	0.022(1)
$\alpha_{0,35}$	5239.3(14)	0.0026(5)
$\alpha_{0,34}$	5269.1(14)	0.048(19)
$\alpha_{0,33}$	5287.6(14)	0.214(10)
$\alpha_{0,32}$	5321.2(14)	0.007(7)
$\alpha_{0,31}$	5341.9(14)	0.0027(8)
$\alpha_{0,30}$	5356.2(14)	0.000097(2)
$\alpha_{0,29}$	5379.0(14)	0.0020(5)
$\alpha_{0,28}$	5391.2(14)	0.0006(4)
$\alpha_{0,27}$	5414.5(14)	0.0030(4)
$\alpha_{0,26}$	5428.3(14)	0.0023(3)
$\alpha_{0,25}$	5430.1(14)	0.0028 (8)
$\alpha_{0,24}$	5435.8 (14)	0.0083(6)
$\alpha_{0,23}$	5443.3 (14)	0.098(19)
$\alpha_{0,22}$	5468.4(14)	0.00052(18)
$\alpha_{0,21}$	5487.4(14)	0.0020(3)
$\alpha_{0,20}$	5497.4 (14)	0.0022(7)
$\alpha_{0,19}$	5515.2(14)	0.0052(19)
$\alpha_{0,18}$	5523.7(14)	0.013(6)
$\alpha_{0,17}$	5540.1(14)	0.0072(8)
$\alpha_{0,16}$	5546.5(14)	0.055(12)
$\alpha_{0,15}$	5555.3(14)	0.084(10)
$\alpha_{0,14}$	5563.3(14)	0.017(7)
$\alpha_{0,13}$	5580.5(14)	0.95(4)
$\alpha_{0,12}$	5599.3(14)	0.114(7)
$\alpha_{0,11}$	5697.9(14)	1.09(0)
$\alpha_{0,10}$	5037.3(14)	4.10(23) 1.21(4)
$\alpha_{0,9}$	5002.2(14)	1.31(4)
$\alpha_{0,8}$	3080.4(14)	0.021(14)

CNDC /Huang Xiaolong, Wang Baosong

	$\frac{\rm Energy}{\rm keV}$	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,7}$	5723.1 (14)	2.03(23)
$\alpha_{0,6}$	5730.5(14)	1.6(3)
$\alpha_{0,5}$	5731.6(14)	1.24(10)
$\alpha_{0,4}$	5731.9(17)	9.0(5)
$\alpha_{0,3}$	5791.7 (14)	6.2(9)
$\alpha_{0,2}$	5793.1 (21)	18.9 (20)
$\alpha_{0,1}$	5804.2 (14)	0.3
$\alpha_{0,0}$	5829.6(14)	52.4(24)

3 Electron Emissions

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Energy keV	Electrons per 100 disint.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e_{\rm AL}$	(Fr)	5.73 - 18.52	23.8 (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e_{AK}	(Fr)		0.115(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		KLĹ	63.576 - 70.787	}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		KLX	77.720 - 86.101	}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		KXY	91.84 - 101.12	}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{13,9\ K}$	(Fr)	2.4 (1)	0.015~(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{7,0 K}$	(Fr)	7.27 (3)	1.84(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{1,0 L}$	(Fr)	7.39 - 11.00	7.0(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{9,3 \rm K}$	(Fr)	10.40 (3)	0.088~(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{2,0 L}$	(Fr)	18.06 - 21.66	14.6(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{8,1 \text{ K}}$	(Fr)	18.72 (3)	$0.0191\ (12)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{3,0 L}$	(Fr)	19.95 - 23.56	6.7~(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{1,0 M}$	(Fr)	21.38 - 23.03	1.88(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{11,6 K}$	(Fr)	22.62 (4)	0.0192~(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{11,5 K}$	(Fr)	23.68 (3)	0.113(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{1,0 N}$	(Fr)	24.87 - 25.77	0.49(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{9,5 L}$	(Fr)	31.6 - 35.2	0.1080(16)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{2,0 М}	(Fr)	32.05 - 33.70	$3.93\ (33)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{3,0 М}	(Fr)	33.94 - 35.59	1.81(17)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{2,0 N}$	(Fr)	35.54 - 36.44	1.02(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ec _{3,0} N	(Fr)	37.43 - 38.33	0.474(45)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{6,3 L}	(Fr)	44.0 - 47.6	0.32(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ес _{13,7 К}	(Fr)	44.04 (3)	0.0221(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ec _{4,2} L	(Fr)	44.32 - 47.92	4.04(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес9,5 м	(Fr)	45.6 - 47.2	0.02914(43)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{6,2 L}$	(Fr)	45.637 - 49.246	0.80(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{9,0 К}	(Fr)	48.93 (2)	0.0968(22)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{7,3 L}$	(Fr)	51.22 - 54.82	0.166(42)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{13,4 К}	(Fr)	52.80 (3)	0.0270(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{7,2}$ L	(Fr)	53.10 - 56.71	0.411(41)
$ec_{5,1 L}$ (Fr) 55.23 - 58.84 0.0562 (43)	$ec_{4,1 L}$	(Fr)	54.91 - 58.52	0.52(14)
	$ec_{5,1 L}$	(Fr)	55.23 - 58.84	0.0562 (43)

CNDC /Huang Xiaolong, Wang Baosong

174

		Energy keV	Electrons per 100 disint.
ес _{10,3 К}	(Fr)	56.12 (3)	1.12 (17)
$ec_{6,1 L}$	(Fr)	56.2 - 59.8	0.136(27)
ес _{6,3 М}	(Fr)	58.0 - 59.6	0.086(20)
$ec_{4,2}$ M	(Fr)	58.31 - 59.96	0.96(6)
$ec_{6,2}$ M	(Fr)	59.627 - 61.277	0.207(42)
$ec_{11,8 L}$	(Fr)	60.2 - 63.8	0.053(8)
ес _{7,3 М}	(Fr)	65.21 - 66.86	0.045(11)
ес _{7,2 М}	(Fr)	67.09 - 68.74	0.111(11)
ес _{23,11 К}	(Fr)	68.05 (4)	0.017 (16
$ec_{7,3 N}$	(Fr)	68.7 - 69.6	0.0118 (30)
$ec_{10,7 L}$	(Fr)	68.78 - 72.38	0.86 (6)
$ec_{4,1 M}$	(Fr)	68.90 - 70.55	0.142(37)
$ec_{5.1 M}$	(Fr)	69.22 - 70.87	0.0136 (10
$ec_{6,1 M}$	(Fr)	70.19 - 71.84	0.035(7)
ec _{7.2 N}	(Fr)	70.58 - 71.48	0.0292 (29
ес _{11.8 М}	(Fr)	74.2 - 75.8	0.0125 (19
ес _{10.6 L}	(Fr)	76.3 - 79.9	0.261(25
ес _{10.5 L}	(Fr)	77.53 - 81.13	0.149 (46
ес _{16.7 К}	(Fr)	78.65 (4)	0.013 (11
ес _{4.0 L}	(Fr)	81.02 - 84.62	1.76 (13
ec _{5.0} L	(Fr)	81.28 - 84.88	0.088(7)
ec _{6.0 L}	(Fr)	82.3 - 85.9	0.33 (14
ec _{10.7} M	(Fr)	82.77 - 84.42	0.204 (15
ec _{13.9} L	(Fr)	84.85 - 88.46	0.011(6)
ec _{11.2} K	(Fr)	86.84 (3)	0.0432(25)
ec _{7.0.1}	(Fr)	89.8 - 93.4	0.586 (48
ec _{10.6} M	(Fr)	90.3 - 91.9	0.062(6)
ec _{10.5 M}	(Fr)	91.52 - 93.17	0.040 (13
eco 3 L	(Fr)	92.9 - 96.5	0.0191 (13
ec _{10.0 K}	(Fr)	94.62 (3)	0.16(9)
ec _{4.0 M}	(Fr)	95.01 - 96.66	0.426 (32
ec _{5.0 M}	(Fr)	95.27 - 96.92	0.0212 (16
ес6 о м	(Fr)	96.3 - 97.9	0.086 (39
есто м	(Fr)	103.8 - 105.4	0.148 (14
ec11 5 L	(Fr)	106.18 - 109.78	0.0465(29)
ec _{7 0 N}	(Fr)	107.3 - 108.2	0.0388 (33
ec13.2 K	(Fr)	115.77 (3)	0.0186 (12)
ec _{11.5} M	(Fr)	120.17 - 121.82	0.0119(7)
ec9.0 T	(Fr)	131.43 - 135.04	0.01940 (44
ec _{10.3.1}	(Fr)	138.619 - 142.228	0.212 (21
ес10 з м	(Fr)	152.609 - 154.259	0.051(5)
ec10.0 T.	(Fr)	177.12 - 180.72	0.0465 (29
ес10.0 м	(Fr)	191.11 - 192.76	0.0117(9)
00,0 IVI	(\mathbf{Fr})	351.11 (3)	0.0185(14)

CNDC /Huang Xiaolong, Wang Baosong

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Fr)	10.38 - 17.799		18.7(9)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Fr) (Fr)	$83.23 \\ 86.1$		1.00 (8) 1.64 (12)	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Fr) (Fr) (Fr)	96.815 97.474 98.069	} } }	0.57(5)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Fr) (Fr) (Fr)	$100.16 \\ 100.548 \\ 100.972$	} } }	0.19 (2)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}}$ × 100	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{2,1}(Fr)$	10.6	7.7(10)	M1	510 (7)	0.015(2)
$\gamma_{1.0}(Fr)$	26.0(1)	9.4(13)	E2	5940 (150)	0.00159(21)
$\gamma_{2,0}(Fr)$	36.69(3)	19.8(17)	E2	1092 (16)	0.0181(15)
$\gamma_{3,0}(Fr)$	38.58(4)	9.1 (9)	E2	854 (13)	0.0107(10)
$\gamma_{8,4}(Fr)$	46.24(5)	0.0090(13)	[E1]	0.841(12)	0.0049(7)
$\gamma_{9,6}(Fr)$	49.12(4)	0.0137(14)	[E1]	0.715(11)	0.0080(8)
$\gamma_{9,5}(Fr)$	50.2	0.15	[E2]	236.0(34)	0.00062
$\gamma_{34,32}(Fr)$	53.4(4)	0.074	[M1]	17.6(5)	0.004
$\gamma_{13,10}(Fr)$	57.71(4)	0.0075(12)	(E1)	0.465(7)	0.0051 (8)
$\gamma_{6,3}(\mathrm{Fr})$	62.6(3)	0.44(10)	[E2]	81.2(23)	0.0053~(12)
$\gamma_{4,2}(Fr)$	62.94(3)	5.81(36)	M1	10.85(15)	0.49(3)
$\gamma_{5,2}(Fr)$	63.5(3)	0.0286(41)	[E1]	0.360(7)	0.021(3)
$\gamma_{6,2}(Fr)$	64.27(3)	1.13(21)	M1+E2	23(4)	0.047~(4)
$\gamma_{7,3}(Fr)$	69.86(5)	0.23~(6)	E2	47.9(7)	0.0047~(12)
$\gamma_{7,2}(Fr)$	71.71(4)	0.57~(6)	E2	42.3(6)	0.0132~(13)
$\gamma_{4,1}(Fr)$	73.55~(9)	0.73(19)	E2	37.5~(6)	0.019(5)
$\gamma_{5,1}(Fr)$	73.85(3)	0.383(29)	${ m E1}$	0.240(3)	0.309(23)
$\gamma_{6,1}(Fr)$	74.82(5)	0.197(39)	(M1+E2)	12.15(18)	0.015(3)
$\gamma_{11,8}(Fr)$	78.8	0.082(13)	M1	5.63(8)	0.0123~(19)
$\gamma_{10,7}(Fr)$	87.41(3)	1.4(1)	M1	4.16(6)	0.271 (19)
$\gamma_{10,6}(Fr)$	94.90(2)	0.449(43)	M1	3.28(5)	0.105(10)
$\gamma_{10,5}(Fr)$	96.16(5)	0.23(7)	M1+E2	6.0(14)	0.033~(7)
$\gamma_{4,0}(Fr)$	99.67(5)	3.09(22)	M1+E2	3.06(11)	0.76(5)
$\gamma_{5,0}(Fr)$	99.89(6)	1.20(9)	${ m E1}$	0.1073(15)	1.08(8)
$\gamma_{6,0}(Fr)$	100.86(4)	0.54(19)	M1+E2	4.6(19)	0.096~(8)
$\gamma_{13,9}(Fr)$	103.48(10)	0.033~(12)	[M1,E2]	10(3)	0.0030(7)
$\gamma_{7,0}({\rm Fr})$	108.38(3)	2.87(19)	M1+E2	10.27 (25)	0.255(16)

CNDC /Huang Xiaolong, Wang Baosong

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{9,3}(Fr)$	111.52(3)	0.427(29)	(E1)	0.363(5)	0.313(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{24,16}(Fr)$	112.80(2)	0.00284(41)	[E1]	0.353(5)	0.0021(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{23,15}(Fr)$	114	0.0094(14)	M1	9.86(14)	0.00087(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{8,1}(Fr)$	119.85(3)	0.104(7)	[E1]	0.305(4)	0.080(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{14.9}(Fr)$	121.06(7)	0.022(6)	(E1)	0.298(4)	0.017(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{11,6}(Fr)$	123.75(4)	0.112(8)	[E1]	0.282(4)	0.087(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{11.5}(Fr)$	124.81(3)	0.205(13)	M1+E2	6.01	0.0292(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{12,7}(Fr)$	126.10(5)	0.0100(9)	(E1)	0.270(4)	0.0079(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{15.9}(Fr)$	129.22(7)	0.016(9)	[M1,E2]	5(2)	0.0027(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{12.6}(Fr)$	133.60(3)	0.0242(20)	(E1)	0.234(3)	0.0196(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{12,4}(Fr)$	134.85(3)	0.0393(37)	(E1)	0.229(3)	0.032(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{26,14}(Fr)$	137.4(1)	0.0023(3)			0.0023(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{23,13}(Fr)$	139.6	0.0068(26)	M1+E2	3.9(17)	0.00139(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{17.9}(Fr)$	144.7(2)	0.0022(6)	(M1 + E2)	3.79	0.00046(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{13,7}(Fr)$	145.15(3)	0.174(11)	(E1)	0.191(3)	0.146(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{9,0}(Fr)$	150.05(3)	0.815(14)	E1	0.1766(25)	0.693(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{13,6}(Fr)$	152.64(3)	0.0230(15)	[E1]	0.1694(24)	0.0197(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{13,4}(Fr)$	153.92(3)	0.239(15)	E1	0.1660(23)	0.205(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{10,3}(Fr)$	157.25(3)	1.73 (18)	M1+E2	3.8(3)	0.36(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{18,9}(Fr)$	161.35(7)	0.013(6)	[M1,E2]	2.5(13)	0.0036(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{23,11}(Fr)$	169.18(4)	0.037(20)	[M1,E2]	2.1(11)	0.012(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{10,1}(Fr)$	169.9	0.0139(14)			0.0139(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{15,7}(Fr)$	170.77(5)	0.015(8)	(E1)	0.1290(18)	0.013(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{15,6}(Fr)$	178.29(3)	0.0180(13)	E1	0.1162(16)	0.0161(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{16,7}(Fr)$	179.78(4)	0.030(11)	(M1, E2)	1.8(10)	0.0108(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{11,3}(Fr)$	186.1	0.0127(14)			0.0127(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{17,7}(Fr)$	186.29(3)	0.0046~(6)	${ m E1}$	0.1045(15)	0.0042(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{16,6}(Fr)$	187.2	0.0103(7)			0.0103(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{11,2}(Fr)$	187.96(3)	0.584(33)	${ m E1}$	0.1023(14)	0.53(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{10,0}(Fr)$	195.74(3)	0.37~(9)	M1+E2	1.5(6)	0.148(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{23,10}(Fr)$	197.50(3)	0.0284(33)	E1	0.0908(13)	0.026(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{12,2}(Fr)$	197.7(1)	0.041~(5)	[E1]	0.0906(13)	0.038(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{11,1}(Fr)$	198.47(23)	0.0205~(14)	[E1]	0.0898(13)	0.0188(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{29,13}(Fr)$	205.07(11)	0.0015~(5)			0.0015~(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{13,2}(Fr)$	216.89(3)	0.343(21)	(E1)	0.0726(10)	0.32(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{19,4}(Fr)$	220.43(8)	0.0060(18)			0.0060(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{11,0}(Fr)$	224.59(3)	0.119(9)	[E1]	0.0669 (9)	0.112(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{13,1}(Fr)$	228.2(4)	0.0046~(12)			0.0046~(12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{41,32}(Fr)$	231.16(7)	0.012(7)	(M1)	1.338(19)	0.005(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{14,2}(Fr)$	236.0(6)	0.0017(3)			0.0017(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{20,4}(Fr)$	238.64(8)	0.0022(7)	(M1)	1.225(17)	0.0010(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{15,3}(Fr)$	240.68(3)	0.0124 (11)	[E1]	0.0568(8)	0.0117(10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{23,9}({\rm Fr})$	243.12(5)	0.0067~(9)	[M1]	1.163(16)	0.0031 (4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{16,3}({\rm Fr})$	249.60(3)	0.0170(13)	(E2)	0.258(4)	$0.0135\ (10)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{13,0}(Fr)$	253.46(3)	0.139(8)	[E1]	0.0504(7)	0.132(8)
$\gamma_{15,0}(Fr)$ 279.18 (3)0.0317 (23)E10.0403 (6)0.0305 (22) $\gamma_{36,21}(Fr)$ 282.1 (2)0.00097 (9)[M1]0.771 (11)0.00055 (5)	$\gamma_{17,3}(Fr)$	256.0(2)	0.00039(7)	[E1]	0.0492(7)	0.00037~(7)
$\gamma_{36,21}(Fr)$ 282.1 (2) 0.00097 (9) [M1] 0.771 (11) 0.00055 (5)	$\gamma_{15,0}(Fr)$	279.18(3)	0.0317(23)	E1	0.0403~(6)	0.0305~(22)
	$\gamma_{36,21}({\rm Fr})$	282.1(2)	0.00097(9)	[M1]	0.771(11)	0.00055 (5)

CNDC /Huang Xiaolong, Wang Baosong

Ac - 225

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{23,7}(Fr)$	284.75(3)	0.0077~(6)	[E1]	0.0385(5)	0.0074~(6)
$\gamma_{25,7}(Fr)$	298.33(5)	0.0028(7)	(M1,E2)	0.4(3)	0.0020 (3)
$\gamma_{34,13}(Fr)$	317.23(18)	0.00065(33)	M1	0.558(8)	0.00042(21)
$\gamma_{27,6}(Fr)$	321.77(4)	0.00340(41)	[E1]	0.0292(4)	0.0033(4)
$\gamma_{21,0}(Fr)$	348.33(5)	0.0030(3)			0.0030(3)
$\gamma_{23,3}(Fr)$	354.56(6)	0.0020(7)	[E1]	0.0236(3)	0.0020(7)
$\gamma_{33,10}(Fr)$	356.6	0.00026(11)			0.00026(11)
$\gamma_{24,3}(Fr)$	362.38(3)	0.0055~(5)	(E1)	0.0225~(3)	0.0054(5)
$\gamma_{22,0}(Fr)$	367.74(12)	0.00052 (18)			0.00052 (18)
$\gamma_{34,10}(Fr)$	374.98(5)	0.0019(5)	[E1]	0.0209(3)	0.0019(5)
$\gamma_{31,7}(Fr)$	388.07(7)	0.00125~(21)			0.00125(21)
$\gamma_{37,12}(Fr)$	403.13(10)	0.00019(16)			0.00019(16)
$\gamma_{33,8}(Fr)$	405.95(3)	0.0079~(5)	[E1]	0.01759(25)	0.0078~(5)
$\gamma_{32,5}(Fr)$	417.90(2)	0.0056~(5)			0.0056~(5)
$\gamma_{47,27}(Fr)$	429.80(18)	0.00038 (19)			0.00038(19)
$\gamma_{36,10}(Fr)$	434.82(5)	0.0029(3)			0.0029(3)
$\gamma_{40,14}(Fr)$	442.16(8)	0.0045~(7)			0.0045(7)
$\gamma_{30,3}(Fr)$	443.43(10)	0.0001			0.0001
$\gamma_{33,7}(Fr)$	443.43(10)	0.0015(5)	[E2]	0.0494(7)	0.0014(5)
$\gamma_{28,0}(Fr)$	446.31(10)	0.0006(4)			0.0006~(4)
$\gamma_{33,6}(Fr)$	451.04(5)	0.0036~(6)	[M1]	0.215(3)	0.0030(5)
$\gamma_{33,4}(Fr)$	452.23(3)	0.13(1)	[M1]	0.213(3)	0.107(8)
$\gamma_{29,0}(Fr)$	458.79(8)	0.00053 (13)			0.00053 (13)
$\gamma_{34,7}(Fr)$	462.43(13)	0.00045(11)	[E1]	0.01338(19)	0.00044~(11)
$\gamma_{34,6}(Fr)$	469.48(5)	0.0028(4)			0.0028(4)
$\gamma_{32,2}(Fr)$	480.85(11)	0.0340(22)			0.0340(22)
$\gamma_{32,1}(Fr)$	491.45(10)	0.00035(14)			0.00035(14)
$\gamma_{31,0}(Fr)$	496.9(3)	0.0015(7)			0.0015(7)
$\gamma_{45,19}(Fr)$	498.6(6)	0.00083(21)			0.00083(21)
$\gamma_{33,3}(Fr)$	512.5(7)	0.00055(21)			0.00055(21)
$\gamma_{33,2}(Fr)$	515.13(3)	$0.0246\ (15)$	[M1]	0.1506(21)	0.0214(13)
$\gamma_{32,0}(Fr)$	517.51(3)	0.0159(10)			0.0159(10)
$\gamma_{36,7}(Fr)$	522.14(4)	0.00208(15)			0.00208(15)
$\gamma_{33,1}(Fr)$	525.94(17)	0.0403(25)	[M1]	0.1425(20)	0.0353(22)
$\gamma_{36,6}(Fr)$	529.59(3)	0.0076(7)			0.0076(7)
$\gamma_{36,4}(Fr)$	530.87(4)	0.0047(5)			0.0047(5)
$\gamma_{34,3}(Fr)$	532.11(9)	0.00077(21)	[E1]	0.01005(14)	0.00076(21)
$\gamma_{37,4}(Fr)$	538.1(1)	0.0038(10)			0.0038(10)
$\gamma_{43,12}(Fr)$	545.8(6)	0.00053(14)			0.00053(14)
$\gamma_{33,0}(Fr)$	551.79(3)	0.0059(16)	[M1]	0.1254(17)	0.0052(14)
$\gamma_{35,2}(Fr)$	564.34(11)	0.00022(9)			0.00022(9)
$\gamma_{40,8}(Fr)$	567.48(5)	0.0012(4)			0.0012(4)
$\gamma_{34,0}(Fr)$	570.69(3)	0.0040(5)	[E1]	0.00874(12)	0.0040(5)
$\gamma_{36,3}(Fr)$	590.42(5)	0.00083(14)			0.00083(14)
$\gamma_{36,2}(Fr)$	593.87(4)	0.0029(3)			0.0029(3)
$\gamma_{35,0}(Fr)$	600.92(3)	0.0024(5)			0.0024(5)
$\gamma_{37,2}(Fr)$	600.92(3)	0.006			0.006
$\gamma_{41,8}(Fr)$	603.09(4)	0.00173(21)			0.00173(21)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{43,9}(Fr)$	628.95(10)	0.00032(7)			0.00032(7)
$\gamma_{37,0}(Fr)$	637.1(7)	0.00012			0.00012
$\gamma_{38,0}(Fr)$	645.94(12)	0.00015(5)			0.00015(5)
$\gamma_{41,5}(Fr)$	649.03(4)	0.0017(5)			0.0017(5)
$\gamma_{47,10}(Fr)$	656.18(11)	0.00049(21)			0.00049(21)
$\gamma_{42,7}(Fr)$	657.88(5)	0.0014(3)			0.0014(3)
$\gamma_{42,4}(Fr)$	667.14(8)	0.0021(18)			0.0021(18)
$\gamma_{46,9}(Fr)$	674.9(3)	0.00010(5)			0.00010(5)
$\gamma_{39,0}(Fr)$	679.36(6)	0.00066(12)			0.00066(12)
$\gamma_{47,9}(Fr)$	702.00 (14)	0.00016(7)			0.00016(7)
$\gamma_{48,10}(Fr)$	747.0(1)	0.0011(4)			0.0011(4)
$\gamma_{47,4}(Fr)$	752.46 (12)	0.00026(7)			0.00026(7)
$\gamma_{43,1}(Fr)$	754.04 (13)	0.00023(7)			0.00023(7)
$\gamma_{42,0}(Fr)$	767.9(3)	0.00030(6)			0.00030(6)
$\gamma_{43.0}(Fr)$	780.6(6)	0.000055(14)			0.000055(14)

5 References

 $\gamma_{44.0}(Fr)$

 $\gamma_{46.0}(Fr)$

808.48 (10)

824.2(7)

0.0021(3)

0.000049

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253

(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life) G.GRAEFFE, K.VALLI, J.AALTONEN, Ann. Acad. Sci. Fenn., Ser. A, VI 145 (1964) (Alpha energies and intensities) G.BASTIN-SCOFFIER, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 863 (Alpha energies and intensities) B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, L.N.MOSKVIN, O.M.NAZARENKO, V.F.RODIONOV, IZV. Akad. Nauk SSSR, Ser. Fiz. 31 (1967) 568 (Alpha energies and intensities) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 417 (Gamma-ray energies and intensities) C.F.LEANG, F.GAUTIER, J. Phys. (Paris) 30 (1969) 296 (Gamma-ray energies) B.S.DZHELEPOV, A.V.ZOLOTAVIN, R.B.IVANOV, M.A.MIKHAILOVA, V.O.SERGEEV, M.I.SOVTSOV, Proc. 21st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Moscow Pt.1 (1971) 140 (Gamma-ray energies and intensities, Conversion electron intensities) B.S.DZHELEPOV, R.B.IVANOV, M.A.MIKHAILOVA, V.O.SERGEEV, IZV. Akad. Nauk SSSR, Ser. Fiz. 36 (1972) 2080 (Gamma-ray energies and intensities, Conversion electron intensities) N.A.GOLOVKOV, B.S.DZHELEPOV, R.B.IVANOV, M.A.BMIKHAILOVA, V.G.BCHUMIN, Sov. J. Nucl. Phys. 15 (1972) 349(Alpha intensities) T.Vylov, N.A.Golovkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, Y.V.B Norseev, V.G.B Chu-MIN, Bull. Rus. Acad. Sci. Phys. 41 (1977) 85 (Gamma-ray energies and intensities, Multipolarity) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha energies and intensities) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and intensities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray energies, intensities and emission probabilities)

CNDC /Huang Xiaolong, Wang Baosong

Ac - 225

0.0021(3)

0.000049

G.Ardisson, M.C.Kouassi, J.Dalmasso, Priv. Comm. (1990)

(Gamma-ray energies and intensities, Multipolarity)

M.C.KOUASSI, J.DALMASSO, H.MARIA, G.ARDISSON, M.HUSSONNOIS, J. Radioanal. Nucl. Chem. 144 (1990) 387 (Gamma-ray energies and intensities)

Y.A.AKOVALI, Nucl. Data Sheets 60 (1990) 617

(Decay scheme and levels)

Y.A.Akovali, Nucl. Data Sheets 61 (1990) 623

(Decay scheme and levels)

M.C.KOUASSI, J.DALMASSO, M.HUSSONNOIS, V.BARCI, G.ARDISSON, J.Radioanal. Nucl. Chem. 153 (1991) 293 (Gamma-ray energies and intensities)

K.Ya.Gromov, M.Ya.Kuznetsova, Yu.N.Norseev, N.I.Rukhadze, V.I.Fominykh, V.V.Tsupko-Sitnikov,

V.G.CHUMIN, M.B.YULDASHEV, YU.S.BUTABAEV, R.A.NIYAZOV, Bull. Rus. Acad. Sci. Phys. 58 (1994) 29 (Gamma-ray energies and intensities)

V.G.CHUMIN, S.S.ELISEEV, K.YA.GROMOV, YU.V.NORSEEV, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, Bull. Rus. Acad. Sci. Phys. 59 (1995) 1854

(Gamma-ray energies, intensities and emission probabilities)

R.K.Sheline, C.F.Liang, P.Paris, Phys. Rev. C51 (1995) 1192

(Gamma-ray emission probabilities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)

G.ARDISSON, J.GASPARRO, V.BARCI, R.K.SHELINE, Phys. Rev. C62 (2000) 064306 (Gamma-ray energies and intensities)

J.GASPARRO, G.ARDISSON, V.BARCI, R.K.SHELINE, Phys. Rev. C62 (2000) 064305

(Gamma-ray energies, intensities and emission probabilities)

S.A.KUDRYA, V.M.GOROZHANKIN, K.YA.GROMOV, SH.R.MALIKOV, L.A.MALOV, V.A.SERGIENKO, V.I.FOMINYKH, V.V.TSUPKO-SITNIKOV, V.G.CHUMIN, E.A.YAKUSHEV, Bull. Rus. Acad. Sci. Phys. 67 (2003) 7

(Gamma-ray energies and intensities, Alpha energies and intensities, Conversion electron energies and intensities, Multipolarity)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (Q)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	21.772	(3)	У
$Q^{'}_{lpha}$:	5042.19	(14)	keV
$Q_{\beta^{-}}$:	44.8	(8)	keV
β^{-}	:	98.620	(4)	%
α	:	1.380	(4)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\begin{array}{c} \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \end{array}$	$\begin{array}{c} 6.9 \ (8) \\ 20.5 \ (8) \\ 35.5 \ (8) \\ 44.9 \ (9) \end{array}$	0.3 10 35	Allowed 1st forbidden 1st forbidden	$6.9 \\ 6.8 \\ 7 \\ 7 \\ 7 \\ 1$

3 α Emissions

	Energy	Probability
	keV	\times 100
$\alpha_{0.24}$	4362.83 (15)	0.00004
$\alpha_{0,23}$	4422.03 (28)	0.00008
$\alpha_{0,22}$	4447.12 (26)	0.0007
$\alpha_{0,21}$	4459(7)	0.00007
$\alpha_{0.20}$	4512(5)	0.00004
$\alpha_{0.19}$	4581 (7)	0.00004
$\alpha_{0.18}$	4594.21 (17)	0.0003
$\alpha_{0.16}$	4712.89 (20)	
$\alpha_{0.15}$	4713.68 (19)	
$\alpha_{0,14}$	4714.88 (15)	0.006(3)
$\alpha_{0,13}$	4734.41 (17)	
$\alpha_{0,12}$	4737.50 (16)	0.0012
$\alpha_{0,11}$	4767.47(15)	
$\alpha_{0,10}$	4769.35(17)	0.025(7)
$\alpha_{0,9}$	4784.19(15)	0.0011
$\alpha_{0,8}$	4795.58(15)	0.014(7)
$\alpha_{0,6}$	4821.09 (15)	0.001
$\alpha_{0,5}$	4854.01 (15)	
$\alpha_{0,4}$	4855.36(15)	0.08(1)
$\alpha_{0,3}$	4872.55 (15)	0.087(7)
$\alpha_{0,2}$	4899.23 (15)	0.0015
$\alpha_{0,1}$	4940.57 (15)	0.546(17)
α. ο	4953.23 (14)	0.658 (14)

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Th)	5.8 - 20.3	3.9	
e_{AL}	(Fr)	5.73 - 18.52	0.097(10)	
e _{AK}	(Fr) KLL KLX KXY	63.576 - 70.787 77.720 - 86.101 91.84 - 101.12	0.00050 (15) } } }	
$\begin{array}{c} ec_{2,0} \ L \\ ec_{1,0} \ M \\ ec_{3,1} \ L \\ ec_{2,1} \ M \\ ec_{3,0} \ L \\ ec_{2,0} \ M \\ ec_{3,1} \ M \end{array}$	(Th) (Th) (Th) (Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.1 27 $0.1016 (21)$ 0.11 $0.0568 (15)$ 1.8 $0.0259 (5)$ $0.01411 (20)$	
$ec_{3,0}$ M $ec_{1,0}$ M $ec_{4,2}$ L $ec_{3,1}$ L $ec_{3,1}$ M $ec_{4,1}$ L $ec_{4,0}$ L	(TII) (Fr) (Fr) (Fr) (Fr) (Fr) (Fr) (Fr)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.01411\ (29)\\ 0.528\ (11)\\ 0.018\ (17)\\ 0.053\ (10)\\ 0.0135\ (16)\\ 0.0140\ (27)\\ 0.022\ (14)\\ 0.022\ (12) \end{array}$	
$ \begin{array}{c} \beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array} $	max: max: max: max:	$\begin{array}{ccc} 6.9 & (8) \\ 20.5 & (8) \\ 35.5 & (8) \\ 44.8 & (8) \end{array}$	$\begin{array}{c} 0.3 \\ 10 \\ 35 \\ 53 \end{array}$	avg: 1.7 (3) avg: 5.1 (3) avg: 9.0 (3) avg: 11.4 (3)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.
XL	(Th)	11.118 - 19.599	2.64
XL	(Fr)	10.381 - 17.839	0.074(8)
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Fr) (Fr)	$83.23 \\ 86.1$	$\begin{array}{ccc} 0.0043 \ (12) & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Fr) (Fr) (Fr)	96.815 97.474 98.069	$\begin{array}{l} \\ \} \\ \} & 0.0024 \ (7) \\ \end{array} \ \mathrm{K}\beta_1' \\ \} \end{array}$

KRI /V.P. Chechev, N.K. Kuzmenko

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Photons per 100 disint.	
$XK\beta_2$	(Fr)	100.16	}		
$XK\beta_4$	(Fr)	100.548	}	0.00079(22)	$\mathrm{K}eta_2'$
$\rm XKO_{2,3}$	(Fr)	100.972	}		

5.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Th)$	9.3	36	E2	326000	0.00011
$\gamma_{1,0}(Fr)$	12.9(1)	0.698	(E2)	49860 (1000)	0.000014
$\gamma_{2,1}(Th)$	15.2(1)	0.15	M1	238 (5)	0.00063
$\gamma_{2,0}(Th)$	24.33(5)	9.5	M1+E2	340(11)	0.028
$\gamma_{8.6}(Fr)$	25.95	0.00000055			0.00000055
$\gamma_{3,1}(Th)$	28.57(5)	0.18	$\mathbf{E1}$	3.24(7)	0.042
$\gamma_{6,5}(Fr)$	33.5(1)	0.00033(9)	[E1]	1.99(4)	0.00011(3)
$\gamma_{6,4}(Fr)$	35.0(2)	0.000078(28)	[E1]	1.77(4)	0.000028(10)
$\gamma_{3,0}(Th)$	37.90(3)	0.12	E1	1.54(3)	0.049
$\gamma_{4,2}(Fr)$	44.7(1)	0.025(23)	[M1+E2]	223 (200)	0.00011(3)
$\gamma_{13,9}(Fr)$	51.06	0.0000028			0.00000028
$\gamma_{10,6}(Fr)$	52.32	0.0000014			0.0000014
$\gamma_{14,11}(Fr)$	53.7(2)	0.000064(16)	[E1]	0.563(11)	0.000041(10)
$\gamma_{2,0}(Fr)$	55.0(1)	0.0077(14)	M1+E2	16.4(8)	0.00044(8)
$\gamma_{16,11}(Fr)$	55.80(5)	0.0000039			0.0000039
$\gamma_{16,10}(Fr)$	57.56(5)	0.0000032			0.0000032
$\gamma_{8,5}(Fr)$	59.4(2)	0.000059(14)	[E1]	0.430(9)	0.000041 (10)
$\gamma_{8,4}(Fr)$	60.6(3)	0.000058(14)	[E1]	0.408(9)	0.000041 (10)
$\gamma_{3,1}(Fr)$	69.28(8)	0.076(14)	M1+E2	18.4(19)	0.0039(6)
$\gamma_{14,10}(Fr)$	70.6(2)	0.0023(18)	[M1+E2]	27(19)	0.000083 (30)
$\gamma_{16,9}(Fr)$	72.5(2)	0.000086 (38)	[E1]	0.252(5)	0.000069 (30)
$\gamma_{9,4}(Fr)$	72.5(2)	0.000086 (38)	[E1]	0.252(5)	0.000069 (30)
$\gamma_{6,2}(Fr)$	79.54(8)	0.00132(12)	${ m E1}$	0.197(4)	0.0011(1)
$\gamma_{3,0}(Fr)$	82.2(1)	0.0192~(23)	E2	22.1(5)	0.00083(10)
$\gamma_{15,8}(Fr)$	83.0(1)	0.0000014			0.0000014
$\gamma_{12,6}(Fr)$	85.0(5)	0.000011			0.000011
$\gamma_{10,5}(Fr)$	86.1(1)	0.00047			0.00047
$\gamma_{4,1}(Fr)$	86.7(2)	0.034(20)	[M1+E2]	11(7)	0.0028(4)
$\gamma_{5,1}(Fr)$	88.1(1)	0.0076~(43)	[M1+E2]	10(6)	0.00069(10)
$\gamma_{11,5}(Fr)$	88.1(1)	0.0076~(43)	[M1+E2]	10(6)	0.00069(10)
$\gamma_{13,6}(Fr)$	88.5~(6)	0.0000097			0.00000097
$\gamma_{9,3}(Fr)$	90.0(1)	0.00021 (8)	[E1]	0.142(3)	0.00018(7)
$\gamma_{4,0}(Fr)$	99.6(1)	0.036(16)	M1+E2	6(3)	0.0051~(7)
$\gamma_{5,0}(Fr)$	101.0(1)	0.0048~(29)	[M1+E2]	6(3)	0.00069 (30)
$\gamma_{10,3}(Fr)$	105.0(2)	0.0046~(16)	M1	12.4(25)	0.00034(10)
$\gamma_{11,3}(Fr)$	106.85(10)	0.0110 (34)	M(+E2)	9(3)	0.0011(1)
$\gamma_{14,6}(Fr)$	108.0(3)	0.00041 (16)	[M1+E2]	9(3)	0.000041 (10)
$\gamma_{12,5}(Fr)$	118.7(4)	0.000054 (13)	[E1]	0.312~(6)	0.000041 (10)
$\gamma_{18,15}({\rm Fr})$	121.6(1)	0.00155 (39)	[E1]	0.295~(6)	0.0012(3)

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{6,1}(Fr)$	121.6(1)	0.00155(39)	[E1]	0.295~(6)	0.0012(3)
$\gamma_{6,0}(Fr)$	134.5(1)	0.00068(12)	E1	0.230(5)	0.00055(10)
$\gamma_{12,3}(Fr)$	137.4(1)	0.00050(12)	[E1]	0.220(5)	0.00041(10)
$\gamma_{13,3}(Fr)$	140.9(1)	0.00025(7)	[E1]	0.206(4)	0.00021~(6)
$\gamma_{14,4}(Fr)$	143.0(1)	0.00034(7)	[E1]	0.198(4)	0.00028(6)
$\gamma_{18,13}(Fr)$	143.0(1)	0.0013(6)	[M1+E2]	3.6(18)	0.00028(6)
$\gamma_{16,5}(Fr)$	143.65(5)	0.00015886	M1	5.11(11)	0.000026
$\gamma_{18,12}(Fr)$	146.0(2)	0.0000088			0.0000088
$\gamma_{8,1}(Fr)$	147.61(8)	0.00296(36)	${ m E1}$	0.184(4)	0.0025(3)
$\gamma_{7,0}(Fr)$	149.3(3)	0.000014			0.000014
$\gamma_{9,1}(Fr)$	159.2(1)	0.00063(12)	[E1]	0.153(3)	0.00055(10)
$\gamma_{8,0}(Fr)$	160.49(10)	0.00506(46)	E1	0.150(3)	0.0044 (4)
$\gamma_{15,3}(Fr)$	161.4(4)	0.00049(23)	[M1+E2]	2.5(13)	0.00014(4)
$\gamma_{16,3}(Fr)$	162.6(2)	0.00019(12)	M1,E2	2.4(13)	0.000055(30)
$\gamma_{9,0}(Fr)$	172.0(1)	0.00109(11)	E1	0.127(3)	0.00097(10)
$\gamma_{10,1}(Fr)$	174.3(1)	0.00081(35)	[M1+E2]	1.9(11)	0.00028(6)
$\gamma_{18,11}(Fr)$	176.1(1)	0.000370(45)	[E1]	0.120(3)	0.00033(4)
$\gamma_{11,1}(Fr)$	176.1(1)	0.00096(40)	M1,E2	1.9(11)	0.00033(6)
$\gamma_{12,1}(Fr)$	206.8(1)	0.00105(11)	${ m E1}$	0.0814(17)	0.00097(10)
$\gamma_{17,1}(Fr)$	216.6(3)	0.00011(7)	[M1+E2]	1.0(7)	0.000055(30)
$\gamma_{-1,1}(\mathrm{Fr})$	219.2(4)	0.0000140(4)			0.0000140(4)
$\gamma_{14,1}(Fr)$	229.7(1)	0.00044(7)	[E1]	0.0634(13)	0.00041(7)
$\gamma_{15,1}(Fr)$	230.9(5)	0.0000252	[M1+E2]	0.8(5)	0.000014
$\gamma_{16,1}(Fr)$	231.79(5)	0.0000072			0.0000072
$\gamma_{14,0}(Fr)$	242.6(2)	0.00030(7)	[E1]	0.0558(12)	0.00028(7)
$\gamma_{15,0}(Fr)$	243.9(4)	0.0000358(10)	[E2]	0.279(6)	0.0000280 (8)
$\gamma_{18,3}(Fr)$	283.4(3)	0.000057(31)	[E1]	0.0389(8)	0.000055 (30)
$\gamma_{23,11}(Fr)$	351.7(3)	0.000056(31)	[E1]	0.0240(5)	0.000055(30)
$\gamma_{22,4}(Fr)$	415.6(3)	0.00024 (7)	- •	0.16(11)	0.00021 (6)
$\gamma_{23,5}(Fr)$	439.60(5)	0.000034(1)			0.000034(1)
$\gamma_{23,4}(Fr)$	441.0 (4)	0.000056(30)	[E1]	0.0148(3)	0.000055(30)
$\gamma_{22,2}(Fr)$	460.2(3)	0.00024 (7)	M1+E2	0.12(9)	0.00021(6)
$\gamma_{23,1}(Fr)$	527.6(1)	0.000029			0.000029
$\gamma_{23,0}(Fr)$	540.40(5)	0.00007			0.00007

6 References

J.M.HOLLANDER, R.F.LEININGER, Phys. Rev. 80 (1950) 915
(Half-life)
J.TOBAILEM, J. Phys. Radium 16 (1955) 48
(Half-life)
N.S.SHIMANSKAYA, E.A.YASHUGINA, At. Energ. 1 (1956) 133
(Half-life)
G.I.NOVIKOVA, A.VOLKOVA, L.I.GOLDIN, D.M.ZIV, L.I.TRETYAKOVA, Zh. Eksp. Teor. Fiz. 37 (1959) 928
(Total alpha-transition probability, gamma-ray energies and alpha-energies, conversion electrons)
J.ROBERT, Ann. Phys. (Paris) 4 (1959) 89
(Half-life)
J.F.EICHELBERGER, G.R.GROVE, L.V.JONES, E.A.REMBOLD, Report MLM-1155, Mound Laboratory (1963) 12
(Half-life)
G.BASTIN, C.F.LEANG, R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 262 (1966) 370

KRI /V.P. Chechev, N.K. Kuzmenko

(Alpha-transition probabilities and alpha-energies)

K.C.JORDAN, B.C.BLANKE, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 567

(Half-life)

H.W.KIRBY, J. Inorg. Nucl. Chem. 32 (1970) 2823

(Total alpha-transition probability)

M.MONSECOUR, P.DE REGGE, A.DEMILDT, L.H.BAETSLE, J. Inorg. Nucl. Chem. 36 (1974) 719

 $({\it Total \ alpha-transition \ probability})$

A.RYTZ, R.A.P.WILTSHIRE, M.KING, Nucl. Instrum. Methods Phys. Res. A253 (1986) 47

(Alpha-transition energies)

A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205

(Alpha-transition energies)

R.K.SHELINE, C.F.LIANG, P.PARIS, J.KVASIL, D.NOSEK, Phys. Rev. C51 (1995) 1708 (Commo region)

(Gamma-ray energies)

C.F.Liang, P.Paris, R.K.Sheline, D.Nosek, J.Kvasil, Phys. Rev. C51 (1995) 1199

 $({\rm Beta\ emission\ probabilities})$

U.Muller, P.Sevenich, K.Freitag, C.Gunther, P.Herzog, G.D.Jones, C.Kliem, J.Manns, T.Weber, B.Will, The Isolde Collaboration, Phys. Rev. C55 (1997) 2267

(Gamma-ray energies)

E.Schönfeld, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (2000) 527

(EMISSION computer code)

E.BROWNE, Nucl. Data Sheets 93 (2001) 763

(Decay scheme of 227Ac, gamma-ray multipolarities, admixture coefficients)

E.BROWNE, Nucl. Data Sheets 93 (2001) 920

(Decay scheme of 231U, gamma-ray emission probabilities of gamma (2,0) and gamma (2,1) in 227Th)

I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1

(Theoretical internal conversion coefficients)

M.-M.Bé, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl.2 (2002) 481 (Saisinuc software)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

Ac - 227

KRI /V.P. Chechev, N.K. Kuzmenko

Ac - 228

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	6.15	(3)	h
$Q^{'}_{lpha}$:	4814	(50)	keV
$Q_{\beta^{-}}$:	2123.8	(27)	keV
β^{-}	:	100		%
α	:	5.5	(22)	$\times 10^{-8}~\%$

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.60}^{-}$	0.7(27)	0.0047(11)	Allowed	3.3
$\beta_{0.59}^{-}$	86.8 (27)	0.0069(11)	Allowed	7.38
$\beta_{0.58}^{-,50}$	94.0 (27)	0.026 (4)	Allowed	6.91
$\beta_{0.57}^{-}$	101.0(27)	0.061 (6)	Allowed or 1st forbidden	6.64
$\beta_{0.56}^{-}$	110.2(27)	0.0032(10)	Allowed	8.03
$\beta_{0.55}^{-}$	113.7(27)	0.238(15)	Allowed	6.2
$\beta_{0.54}^{-}$	136.3(27)	0.07 (4)	Allowed	7
$\beta_{0,53}^{-}$	158.8(27)	0.0132(14)	Allowed	7.91
$\beta_{0,52}^{-}$	165.1 (27)	0.0038 (8)	Allowed	8.5
$\beta_{0,51}^{-}$	178.9(27)	0.307~(22)	Allowed	6.7
$\beta_{0,50}^{-}$	186.6(27)	0.053 (6)	Allowed	7.52
$\beta_{0,49}^{-}$	195.2(27)	0.061 (8)	Allowed	7.52
$\beta_{0,48}^{-}$	217.2(27)	0.025 (5)	Allowed	8.05
$\beta_{0,47}^{-}$	223.9(27)	0.069 (8)	Allowed	7.65
$\beta_{0,46}^{-}$	230.8(27)	0.109(8)	Allowed	7.5
$\beta_{0,45}^{-}$	326.2(27)	0.051 (8)	Allowed	8.3
$\beta_{0,44}^{-}$	327.9(27)	0.035 (6)	Allowed	8.48
$\beta_{0,43}^{-}$	363.6(27)	0.139(12)	Allowed	8.02
$\beta_{0,42}^{-}$	365.6(27)	0.060 (8)	Allowed	8.39
$\beta_{0,41}^{-}$	379.9(27)	0.378(16)	Allowed	7.65
$\beta_{0,40}^{-}$	388.4(27)	0.149(11)	Allowed	8.08
$\beta_{0,39}^{-}$	399.5(27)	1.93 (8)	Allowed	7.01
$\beta_{0,38}^{-}$	435.4(27)	2.50(16)	Allowed	7.02
$\beta_{0,37}^{-}$	440.0(27)	0.20 (3)	1st forbidden	8.13
$\beta_{0,36}^{-}$	441.0(27)	1.21 (4)	Allowed	7.35
$\beta_{0,35}^{-}$	477.8(27)	4.12(20)	Allowed	6.94
$\beta_{0,34}^{-}$	480.7(27)	0.82(3)	1st forbidden	7.64
$\beta_{0,33}^{-}$	485.5(27)	1.23 (6)	Allowed	7.48
$\beta_{0,32}^{-}$	506.0(27)	0.071~(10)	Allowed	8.78
$\beta_{0,31}^{-}$	535.5(27)	8.8(23)	1st forbidden	6.77
$\beta_{0,30}^{-}$	584.6(27)	0.030 (6)	Allowed	9.36
$\beta_{0,27}^{-}$	691.8(27)	1.6(5)	Allowed	7.88
$\beta_{0,26}^{-}$	707.7(27)	0.060 (8)	Allowed or 1st forbidden	9.34
$\beta_{0,25}^{-}$	779.7(27)	0.208(18)	1st forbidden	8.94
$\beta_{0,24}^{-}$	826.4(27)	1.46(11)	1st forbidden unique	8.18
$\beta_{0,23}^-$	897.2(27)	0.67 (8)	1st forbidden	8.65
$\beta^{0,22}$	948.4(27)	0.166(19)	Allowed	9.34

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.20}^{-}$	955.4 (27)	3.39(13)	1st forbidden	8.04
$\beta_{0,19}^{-,-3}$	970.3(27)	6(3)	Allowed	7.8
$\beta_{0.18}^{-}$	1000.8(27)	6.67(18)	1st forbidden	7.81
$\beta_{0.16}^{-}$	1063.9(27)	0.099(11)	1st forbidden	9.74
$\beta_{0.15}^{-}$	1101.3(27)	3.0(4)	Allowed	8.31
$\beta_{0.14}^{-}$	1107.4(27)	0.39(6)	Allowed or 1st forbidden	9.2
$\beta_{0.13}^{-1}$	1144.3(27)	0.238(20)	Allowed	9.47
$\beta_{0.12}^{-}$	1154.8(27)	31 (4)	Allowed	7.37
$\beta_{0,11}^{-1}$	1155.4(27)	0.18(3)	1st forbidden	9.6
$\beta_{0.10}^{-}$	1179.6(27)	0.087~(16)	Allowed or 1st forbidden	9.95
$\beta_{0.8}^{-}$	1249.3(27)	0.17(10)	Allowed	9.7
$\beta_{0.5}^{-}$	1727.7(27)	12.4(5)	1st forbidden	8.4
$\beta_{0.4}^{-}$	1745.6(27)	0.147(21)	2nd forbidden unique	12.29
$\beta_{0.3}^{-}$	1795.8(27)	0.72(23)	1st forbidden unique	10.65
$\beta_{0,2}^{\bullet,\circ}$	1937.0(27)	0.6(5)	Allowed	10
$\beta_{0,1}^{\circ,-}$	2066.0(27)	6(4)	Allowed	9

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Th)	5.8 - 20.3	39.9 (21)	
e_{AK}	(Th)		0.27(8)	
	KLL	68.406 - 76.745	}	
	KLX	83.857 - 93.345	}	
	KXY	99.29 - 109.64	}	
ес _{35,29 К}	(Th)	4.830 (13)	0.05~(5)	
ес _{28,27 М}	(Th)	13.233 - 15.083	0.038~(8)	
$ec_{2,1 \text{ K}}$	(Th)	19.414 (6)	0.660(21)	
ес _{38,35} L	(Th)	21.97 - 26.10	0.32(11)	
ес _{31,28 К}	(Th)	28.291 (17)	0.168(24)	
ес _{20,15 К}	(Th)	36.198 (8)	0.0264(10)	
ес _{31,29 L}	(Th)	36.389 - 40.600	5.2(35)	
ес _{38,35 М}	(Th)	37.26 - 39.11	0.076~(25)	
$ec_{1,0 L}$	(Th)	37.287 - 41.500	52.7(21)	
ec _{38,35} N	(Th)	41.11 - 42.10	0.020(7)	
ес _{18,12 К}	(Th)	44.333 (8)	0.1037(35)	
ес _{31,29 М}	(Th)	51.679 - 53.529	1.4(11)	
$ec_{1,0 M}$	(Th)	52.577 - 54.427	14.4(6)	
ec _{31,29} N	(Th)	55.530 - 56.526	0.40(26)	
$ec_{1,0 N}$	(Th)	56.430 - 57.424	3.87(15)	
ес _{19,12 К}	(Th)	74.849 (11)	4.3(22)	
ес _{29,27 L}	(Th)	79.023 - 83.200	3.65(13)	
ec _{18,15} L	(Th)	79.952 - 84.100	0.259(14)	
$ec_{4,2 \text{ K}}$	(Th)	81.706 (11)	0.0227 (14)	

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	$\frac{\rm Energy}{\rm keV}$
ес _{20,12 К}	(Th)	89.757 (7)	0.0225(18)	
ес _{35,29} L	(Th)	94.01 - 98.20	0.033(15)	
ес _{29,27 М}	(Th)	94.313 - 96.163	0.881(31)	
ec _{24.15} K	(Th)	94.388 (9)	0.83(6)	
ec _{18,15} M	(Th)	95.242 - 97.092	0.0701(38)	
ec _{29.27} N	(Th)	98.16 - 99.16	0.234 (8)	
ec _{18,15} N	(Th)	99.090 - 100.089	0.0191(10)	
ес _{5.2 К}	(Th)	99.605 (6)	0.267(10)	
$ec_{2,1}$ L	(Th)	108.592 - 112.800	6.35(20)	
ес _{28.23} к	(Th)	114.179 (12)	0.086 (9)	
ec _{31,28} L	(Th)	117.469 - 121.600	0.0321(46)	
ec _{2.1 M}	(Th)	123.882 - 125.732	1.74 (5)	
$ec_{2,1}$ N	(Th)	127.730 - 128.729	0.468(15)	
ec ₁₈ 12 L	(Th)	133.511 - 137.700	0.0218(7)	
ес _{27 21 к}	(Th)	147.821 (19)	0.0294(20)	
ec _{3 1 K}	(Th)	160.594 (6)	0.1335(43)	
ec19.8 K	(Th)	169.344 (21)	0.10 (8)	
$ec_{4,2,1}$	(Th)	170.884 - 175.100	0.0589(37)	
ес _{28-20-к}	(Th)	172.369 (11)	0.036 (38)	
eC ₂₄ 15 L	(Th)	183.566 - 187.700	0.286(21)	
ес <u>и э</u> м	(Th)	186.174 - 188.024	0.0161(10)	
ecs 2 L	(Th)	188.783 - 193.000	0.0529(19)	
eC ₂₄ 15 M	(Th)	198.856 - 200.706	0.074(5)	
eC ₂₄ ,15 M	(Th)	202.710 - 203.703	0.0202(14)	
ec24,10 IV	(Th)	203.357 - 207.500	0.0166(17)	
ес _{5 2 М}	(Th)	204.073 - 205.923	0.01274(46)	
ес19 7 к	(Th)	211.994 (14)	0.0147(9)	
есзок	(Th)	218.353 (4)	0.0745(30)	
ec5 1 K	(Th)	228.669 (6)	0.261(10)	
есэт 17 к	(Th)	231.31 (1)	0.029 (8)	
ec51 31 K	(Th)	246.910 (18)	0.011(11)	
eC3 1 L	(Th)	249.772 - 253.900	0.0254(8)	
ec19.8 T.	(Th)	258.522 - 262.700	0.024(7)	
ec ₂₈ 20 L	(Th)	261.547 - 265.700	0.0108(45)	
ес _{27 15} к	(Th)	299.802 (8)	0.32(26)	
ec19 7 L	(Th)	301.172 - 305.300	0.0125 (8)	
ec _{3 0 L}	(Th)	307.531 - 311.700	0.0138(5)	
ec _{5 1 L}	(Th)	317.847 - 322.000	0.0483(18)	
eC27 17 L	(Th)	320.49 - 324.70	0.0183(12)	
есэо 17 к	(Th)	330.81 (1)	0.0303(24)	
ес _{5 1 М}	(Th)	333.137 - 334.987	0.01156(44)	
ec ₂₇ 12 K	(Th)	353.361 (8)	0.139 (8)	
ec _{27 15 1}	(Th)	388.98 - 393.20	0.077(32)	
ec29 15 K	(Th)	399.297 (8)	0.0444(35)	
ec _{27,15} M	(Th)	404.27 - 406.12	0.018 (8)	
eco7 10 T	(Th)	442.539 - 446.700	0.0665(37)	
41,14 L	(11)	450.050 (0)		
C20 12 1/	('['h]	452.856 (8)	0.062(45)	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			${ m Energy}\ { m keV}$	Electrons per 100 disint.	${ m Energy}\ { m keV}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{39,19 К}	(Th)	461.166 (12)	0.022(6)	
$\begin{array}{c} & \operatorname{ec}_{29,15} \ \mathrm{L} & (\mathrm{Th}) & 488.475 - 492.600 & 0.0100 \ (\mathrm{8}) \\ & \operatorname{ec}_{29,12} \ \mathrm{L} & (\mathrm{Th}) & 592.106 & (\mathrm{8}) & 0.0124 \ (10) \\ & \operatorname{ec}_{30,12} \ \mathrm{K} & (\mathrm{Th}) & 592.106 & (\mathrm{8}) & 0.0124 \ (10) \\ & \operatorname{ec}_{30,12} \ \mathrm{K} & (\mathrm{Th}) & 662.647 & (7) & 0.0283 \ (20) \\ & \operatorname{ec}_{15,3} \ \mathrm{K} & (\mathrm{Th}) & 662.647 & (7) & 0.057 \ (5) \\ & \operatorname{ec}_{15,2} \ \mathrm{K} & (\mathrm{Th}) & 730.722 & (6) & 0.01008 \ (44) \\ & \operatorname{ec}_{30,12} \ \mathrm{L} & (\mathrm{Th}) & 734.843 - 739.000 & 0.01067 \ (44) \\ & \operatorname{ec}_{30,12} \ \mathrm{L} & (\mathrm{Th}) & 734.843 - 739.000 & 0.01047 \ (49) \\ & \operatorname{ec}_{12,1} \ \mathrm{K} & (\mathrm{Th}) & 855.5118 & (7) & 0.0426 \ (17) \\ & \operatorname{ec}_{12,1} \ \mathrm{K} & (\mathrm{Th}) & 855.5118 & (7) & 0.0426 \ (17) \\ & \operatorname{ec}_{12,1} \ \mathrm{K} & (\mathrm{Th}) & 859.318 & (5) & 0.1282 \ (45) \\ & \operatorname{ec}_{12,1} \ \mathrm{K} & (\mathrm{Th}) & 906.027 + 907.877 & 0.01438 \ (49) \\ & \operatorname{ec}_{12,1} \ \mathrm{K} & (\mathrm{Th}) & 906.027 + 907.877 & 0.01438 \ (49) \\ & \operatorname{ec}_{23,1} \ \mathrm{K} & (\mathrm{Th}) & 948.496 - 952.700 & 0.0304 \ (11) \\ & \operatorname{ec}_{35,1} \ \mathrm{K} & (\mathrm{Th}) & 1478.545 & (13) & 0.017 \ (7) \\ & \beta_{0,59}^{-50} \ max: & 0.7 & (27) & 0.0066 \ (11) \ avg: & 22.4 \ (8) \\ & \beta_{0,59}^{-50} \ max: & 110.2 & (27) & 0.0061 \ (6) \ avg: & 24.3 \ (7) \\ & \beta_{0,55}^{-50} \ max: & 110.2 & (27) & 0.0032 \ (10) \ avg: & 22.7 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 113.7 & (27) & 0.238 \ (5) \ avg: & 35.9 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.3 & (27) & 0.037 \ (21) \ avg: & 35.9 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.3 & (27) & 0.033 \ (6) \ avg: & 43.9 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.8 \ (27) & 0.033 \ (6) \ avg: & 52.5 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.8 \ (27) & 0.033 \ (6) \ avg: & 52.9 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.8 \ (27) & 0.033 \ (6) \ avg: & 52.9 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.6 \ (27) & 0.033 \ (6) \ avg: & 52.8 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.6 \ (27) & 0.035 \ (6) \ avg: & 52.8 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.6 \ (27) & 0.035 \ (6) \ avg: & 52.8 \ (8) \\ & \beta_{0,55}^{-50} \ max: & 136.6 \ (27) & 0.035 \ (6) \ avg: & 52.8 \ (8) \\ & \beta_{0,44}^{-5} \ max: & 33$	ес _{11,5 К}	(Th)	462.641 (21)	0.011(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{29,15} L	(Th)	488.475 - 492.600	0.0100(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{29,12} L	(Th)	542.034 - 546.200	0.013(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{39,15 К}	(Th)	592.106 (8)	0.0124(10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{39,12 К}	(Th)	645.665 (8)	0.0580(24)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{20,5 К}	(Th)	662.647 (7)	0.0283~(20)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{18,3 К}	(Th)	685.298 (7)	0.057~(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{15,2}$ K	(Th)	726.054 (7)	0.0178(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{20,3 K}$	(Th)	730.722 (6)	0.01008 (44)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{39,12}$ L	(Th)	734.843 - 739.000	0.01067 (44)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{18,3 L}$	(Th)	774.476 - 778.600	0.0147~(9)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ec_{12,1 K}$	(Th)	801.559 (6)	0.236(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{15,1 K}$	(Th)	855.118 (7)	$0.0426\ (17)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ес _{12,0 К}	(Th)	859.318 (5)	0.1282~(45)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{12,1 L}$	(Th)	890.737 - 894.900	0.0579 (19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{12,1}$ M	(Th)	906.027 - 907.877	0.01438 (49)	
ec35,1 K (Th) 1478.545 (13) 0.017 (7) $\beta_{0,59}^-$ max: 0.7 (27) 0.0047 (11) avg: 0.18 (68) $\beta_{0,59}^-$ max: 94.0 (27) 0.0069 (11) avg: 22.4 (8) $\beta_{0,57}^-$ max: 101.0 (27) 0.0061 (6) avg: 24.3 (7) $\beta_{0,56}^-$ max: 110.2 (27) 0.0032 (10) avg: 28.7 (7) $\beta_{0,55}^-$ max: 113.7 (27) 0.238 (15) avg: 29.7 (8) $\beta_{0,53}^-$ max: 136.3 (27) 0.0132 (14) avg: 42.2 (8) $\beta_{0,52}^-$ max: 178.9 (27) 0.0307 (22) avg: 47.8 (8) $\beta_{0,50}^-$ max: 178.9 (27) 0.061 (8) avg: 52.5 (8) $\beta_{0,50}^-$ max: 172.2 (27) 0.061 (8) avg: 52.5 (8) $\beta_{0,45}^-$ max: 217.2 (27) 0.025 (5) avg: 58.8 (8) $\beta_{0,46}^-$ max: 230.8 (27) 0.051 (8) <td>ес_{12,0 L}</td> <td>(Th)</td> <td>948.496 - 952.700</td> <td>0.0304(11)</td> <td></td>	ес _{12,0 L}	(Th)	948.496 - 952.700	0.0304(11)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ec_{35,1}$ K	(Th)	1478.545 (13)	0.017~(7)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,60}^{-}$	max:	0.7 (27)	0.0047(11)	avg: 0.18 (68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,59}^{-}$	max:	86.8 (27)	0.0069(11)	avg: $22.4(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,58}^{-}$	max:	94.0 (27)	0.026(4)	avg: $24.3(7)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,57}^{-}$	max:	101.0 (27)	0.061~(6)	avg: $26.2(7)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,56}^{-}$	max:	110.2 (27)	0.0032 (10)	avg: $28.7(7)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,55}^{-}$	max:	113.7 (27)	0.238(15)	avg: $29.7(8)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,54}^{-}$	max:	136.3 (27)	0.07~(4)	avg: $35.9(8)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,53}^{-}$	max:	158.8 (27)	0.0132~(14)	avg: $42.2(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,52}^{-}$	max:	165.1 (27)	0.0038 (8)	avg: $43.9(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.51}^{-}$	max:	178.9 (27)	0.307(22)	avg: $47.8(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.50}^{-}$	max:	186.6 (27)	0.053~(6)	avg: $50.0(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.49}^{-}$	max:	195.2 (27)	0.061(8)	avg: $52.5(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.48}^{-}$	max:	217.2 (27)	0.025(5)	avg: $58.8(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.47}^{-}$	max:	223.9 (27)	0.069(8)	avg: $60.8(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.46}^{-1}$	max:	230.8 (27)	0.109(8)	avg: $62.8(8)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.45}^{-10}$	max:	326.2 (27)	0.051(8)	avg: 91.4 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.44}^{-10}$	max:	327.9 (27)	0.035(6)	avg: 91.9 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.43}^{-}$	max:	363.6 (27)	0.139(12)	avg: 103.0 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.42}^{-}$	max:	365.6 (27)	0.060(8)	avg: 103.6 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0.41}^{-}$	max:	379.9 (27)	0.378(16)	avg: 108.1 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,41}^{-}$	max:	388.4 (27)	0.149(11)	avg: 110.7 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,30}^{-}$	max:	399.5 (27)	1.93 (8)	avg: 114.3 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,20}^{-}$	max:	435.4 (27)	2.50(16)	avg: 125.7 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,38}^{-}$	max:	440.0 (27)	0.20(3)	avg: 127.2 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0,37 β_ ος	max	441.0 (27)	1.20(0)	avg: $127.5(9)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{0,36}^{-}$	max	477.8 (27)	4 12 (20)	avg: $139.5(9)$
$\mu_{0,34}$ max. $\mu_{0,11}$ (21) 0.02 (3) avg. 140.4 (9) μ^{-} more 140.5 5 (97) 1.02 (6) are 140.0 (0)	β_{-}^{-}	max.	480.7 (27)	-1.12(20) 0.89(3)	avg. $140.4(0)$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P0,34 B-	max.	400.1 (21) 485.5 (27)	0.02 (0) 1.92 (6)	avg. $140.4(9)$

		Energ keV		Electrons per 100 disint.	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	
$\beta_{0.32}^{-}$	max:	506.0	(27)	0.071(10)	avg:	148.7(9)
$\beta_{0.31}^{-,}$	max:	535.5	(27)	8.8 (23)	avg:	158.5(9)
$\beta_{0.30}^{-}$	max:	584.6	(27)	0.030(6)	avg:	175.0(9)
$\beta_{0.27}^{-}$	max:	691.8	(27)	1.6(5)	avg:	211.8 (10
$\beta_{0.26}^{-}$	max:	707.7	(27)	0.060(8)	avg:	217.3 (10
$\beta_{0.25}^{-}$	max:	779.7	(27)	0.208(18)	avg:	242.7 (10
$\beta_{0.24}^{-}$	max:	826.4	(27)	1.46(11)	avg:	259.4(10
$\beta_{0.23}^{-1}$	max:	897.2	(27)	0.67(8)	avg:	285.1 (10
$\beta_{0.22}^{-}$	max:	948.4	(27)	0.166(19)	avg:	303.9 (10
$\beta_{0.20}^{-1}$	max:	955.4	(27)	3.39(13)	avg:	306.4 (10
$\beta_{0,19}^{-}$	max:	970.3	(27)	6(3)	avg:	311.9 (10
$\beta_{0.18}^{-}$	max:	1000.8	(27)	6.67(18)	avg:	323.2 (10
$\beta_{0,16}^{-}$	max:	1063.9	(27)	0.099(11)	avg:	346.7(11
$\beta_{0.15}^{-}$	max:	1101.3	(27)	3.0(4)	avg:	360.8 (11
$\beta_{0.14}^{-}$	max:	1107.4	(27)	0.39(6)	avg:	363.1 (11
$\beta_{0.13}^{-1}$	max:	1144.3	(27)	0.238(20)	avg:	377.1 (11
$\beta_{0.12}^{-}$	max:	1154.8	(27)	31 (4)	avg:	381.1 (11
$\beta_{0.11}^{-1}$	max:	1155.4	(27)	0.18(3)	avg:	381.4 (11
$\beta_{0.10}^{-1}$	max:	1179.6	(27)	0.087(16)	avg:	390.6 (11
$\beta_{0.8}^{-}$	max:	1249.3	(27)	0.17(10)	avg:	417.2 (11
$\beta_{0,5}^{-1}$	max:	1727.7	(27)	12.4(5)	avg:	605.7 (11
$\beta_{0,4}^{-}$	max:	1745.6	(27)	0.147(21)	avg:	587.3 (11
$\beta_{0,3}^{-}$	max:	1795.8	(27)	0.72(23)	avg:	605.4 (11
$\beta_{0,2}^{-1}$	max:	1937.0	(27)	0.6(5)	avg:	690.2 (11
$\beta_{0,1}^{-1}$	max:	2066.0	(27)	6(4)	avg:	742.8 (11

4 Photon Emissions

4.1 X-Ray I	Emissions
-------------	-----------

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		37~(4)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$\begin{array}{c} 2.5 \ (7) \\ 4.1 \ (11) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Th}) \\ (\mathrm{Th}) \\ (\mathrm{Th}) \end{array}$	104.819 105.604 106.239	} } }	1.5(4)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	} } }	0.49 (13)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{28,27}(\mathrm{Th})$	18.415(12)	0.142(30)	E1	6.46(10)	0.019(4)
$\gamma_{38,35}(Th)$	42.46(5)	0.43(14)	M1	46.3(7)	0.009(3)
$\gamma_{31,29}(Th)$	56.88(5)	8(8)	E1+[M2]	360(220)	0.020(5)
$\gamma_{1,0}(Th)$	57.752(13)	72.5(28)	E2	153.2(22)	0.470(17)
$\gamma_{20,17}(Th)$	77.34(3)	0.027~(6)	E1	0.232(4)	0.027~(6)
$\gamma_{29,27}(Th)$	99.505(12)	6.10(21)	M1	3.84(6)	1.26(4)
$\gamma_{18,15}(Th)$	100.41(3)	0.114~(6)	E1+M2	3.10(5)	0.114(6)
$\gamma_{35,29}(Th)$	114.56(7)	0.102(46)	M1+E2	9(4)	0.0102(22)
$\gamma_{2,1}(Th)$	129.065(3)	11.85(36)	E2	3.74(6)	2.50(7)
$\gamma_{23,17}(Th)$	135.507(22)	0.024(6)	E1	0.238(4)	0.024(6)
$\gamma_{31,28}(Th)$	137.936(22)	0.239(34)	M1	7.52(11)	0.028(4)
$\gamma_{6.4}(\mathrm{Th})$	140.999(20)	0.055(11)	E1	0.217(3)	0.045(9)
$\gamma_{20.15}(Th)$	145.842 (20)	0.169(6)	E1	0.200(3)	0.169(6)
$\gamma_{18,12}(Th)$	153.967(11)	0.754(23)	E1	0.1757(25)	0.754(23)
$\gamma_{25,22}(Th)$	168.53(12)	0.0127(31)	M1+E2	2.7(15)	0.0111(27)
$\gamma_{49.43}(Th)$	168.53(12)	0.0093(46)	M1+E2	2.7(15)	0.0025(7)
$\gamma_{19,13}(Th)$	173.96(3)	0.036(5)	M1+E2	2.5(14)	0.036(5)
$\gamma_{19,12}(Th)$	184.547 (19)	5.5(29)	E0+M1	100(40)	0.054(19)
$\gamma_{4,2}(Th)$	191.351(17)	0.236(14)	E2	0.776(11)	0.133(8)
$\gamma_{20,12}(Th)$	199.402 (15)	0.299(23)	E1	0.0950(14)	0.299(23)
$\gamma_{24,15}(Th)$	204.029 (11)	0.114 (8)	M2	10.65(15)	0.114 (8)
$\gamma_{5,2}(Th)$	209.248 (7)	4.31 (14)	E1	0.0848(12)	3.97(13)
$\gamma_{19.9}(Th)$	214.89(10)	0.047(8)	E2	0.514 (8)	0.031(5)
$\gamma_{28,23}(Th)$	223.793 (21)	0.058(6)	M1+E2	1.85(4)	0.058(6)
$\gamma_{22,20}(Th)$	231.42(10)	0.026(4)	E2	0.392(6)	0.026(4)
$\gamma_{27,21}(Th)$	257.482(21)	0.0286(19)	M1	1.285(18)	0.0286(19)
$\gamma_{27,21}(Th)$	263.58(10)	0.0451(31)	${ m E1}$	0.0498(7)	0.043 (3)
$\gamma_{3,1}(Th)$	270.245(7)	3.72(10)	${ m E1}$	0.0470(7)	3.55(10)
$\gamma_{19.8}(Th)$	278.80(15)	0.33(9)	M1+E2	0.6(4)	0.204(28)
$\gamma_{27,19}(Th)$	278.80(15)	0.038(6)	E2	0.212(3)	0.031(5)
$\gamma_{28,20}(Th)$	282.02(4)	0.14(6)	M1+E2	0.6(4)	0.09(3)
$\gamma_{19.7}(Th)$	321.646 (8)	0.232(14)	E2	0.1369(20)	0.232(14)
$\gamma_{42,27}(Th)$	326.04(20)	0.035(6)	E2	0.1315(19)	0.035(6)
$\gamma_{3.0}(Th)$	328.004 (7)	3.13(11)	E1	0.0305(5)	3.04(11)
$\gamma_{6,2}(Th)$	332.371(6)	0.38(6)	E1	0.0297(5)	0.37(6)
$\gamma_{5,1}(Th)$	338.320(5)	11.72 (41)	E1	0.0285(4)	11.4(4)
$\gamma_{27.17}(Th)$	340.969(21)	0.405(20)	E2+M1	0.133(21)	0.405(20)
$\gamma_{51,31}(Th)$	356.7(3)	0.032(15)	E1+M2	0.8(8)	0.0178(21)
$\gamma_{55,33}(Th)$	372.59(3)	0.0070(17)	E2	0.0902(13)	0.0070(17)
$\gamma_{29,19}(Th)$	377.99(10)	0.033(6)	M1+E2	0.27(18)	0.026(3)
$\gamma_{57,33}(Th)$	384.47 (9)	0.0070(17)	E2	0.0828(12)	0.0070(17)
$\gamma_{49.30}(Th)$	389.32 (13)	0.0108(17)	M1+E2	0.25(17)	0.0108 (17)
$\gamma_{50,30}(Th)$	397.95 (10)	0.029 (3)		× /	0.029(3)
$\gamma_{41,25}(Th)$	399.83 (14)	0.0316(41)	E1	0.0200(3)	0.031(4)
$\gamma_{27,15}(Th)$	409.460 (13)	2.02(6)	E2+M1	0.21(15)	2.02(6)
· — · · · · · · /	()	× /		× /	
$\gamma_{30,18}(Th)$	415.96(14)	0.0138(23)	${ m E1}$	0.0184(3)	0.0138(23)

4.2 Gamma Transitions and Emissions

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	keV	\times 100			\times 100
$\gamma_{29,17}(Th)$	440.450 (24)	0.166(13)	M1	0.295(5)	0.128 (10)
$\gamma_{11.6}(Th)$	449.11 (6)	0.053(6)	E2	0.0554(8)	0.050(6)
$\gamma_{27,13}(Th)$	452.50 (6)	0.0199(19)	E2	0.0544(8)	0.0199(19)
$\gamma_{37,23}(Th)$	457.18 (15)	0.0186(39)	M1+E2	0.16(11)	0.016(3)
$\gamma_{27,12}(Th)$	463.002 (6)	4.45 (24)	E2	0.0514 (8)	4.45 (24)
$\gamma_{33,20}(Th)$	470.21 (20)	0.0142(30)	${ m E1}$	0.01428(20)	0.014(3)
$\gamma_{26,10}(Th)$	471.77 (15)	0.0357(42)	E2	0.0491(7)	0.034(4)
$\gamma_{34,20}(Th)$	474.79 (10)	0.026(5)	M1+E2	0.14(10)	0.023(4)
$\gamma_{8,5}(Th)$	478.40(5)	0.227(19)	${ m E1}$	0.01379(20)	0.224(19)
$\gamma_{48,26}(Th)$	490.33(15)	0.0116(25)	E2	0.0447(7)	0.0116(25)
$\gamma_{35,19}(Th)$	492.29 (8)	0.0282(41)	M1+E2	0.13(9)	0.025(3)
$\gamma_{39,23}(\mathrm{Th})$	497.64(10)	0.0062(19)	M2	0.581(9)	0.0062~(19)
$\gamma_{7,3}(\mathrm{Th})$	503.819(23)	0.173(19)	${ m E1}$	0.01243(18)	0.171(19)
$\gamma_{29,15}(\mathrm{Th})$	$508.955\ (13)$	0.568(45)	E2+M1	0.1130(16)	0.51(4)
$\gamma_{33,18}(Th)$	515.12(7)	0.051~(6)	${ m E1}$	0.01189(17)	0.051~(6)
$\gamma_{34,18}(\mathrm{Th})$	520.16(3)	0.070(7)	M1+E2	0.11(8)	0.070(7)
$\gamma_{35,18}(Th)$	523.129(22)	0.129(10)	${ m E1}$	0.01153(17)	0.129(10)
$\gamma_{16,6}(Th)$	540.67(5)	0.0297 (38)	M1+E2	0.10(7)	0.027(3)
$\gamma_{8,3}(\mathrm{Th})$	546.445(21)	0.201~(16)	${ m E1}$	$0.01058\ (15)$	0.199(16)
$\gamma_{39,22}(Th)$	548.73(11)	0.0264 (47)	M1+E2	0.10(7)	0.024~(4)
$\gamma_{35,17}(\mathrm{Th})$	555.07(16)	0.048~(6)	M1+E2		0.048~(6)
$\gamma_{29,12}(Th)$	562.496(7)	0.97~(7)	E2+M1	0.09~(6)	0.89(4)
$\gamma_{39,19}(\mathrm{Th})$	570.88(4)	0.22~(6)	M1	0.1472(21)	0.19(5)
$\gamma_{11,5}(Th)$	572.10(5)	0.170(22)	M1+E2	0.09~(6)	0.156(18)
$\gamma_{13,5}(\mathrm{Th})$	583.391(10)	0.120(11)	${ m E1}$	0.00932(13)	0.120(11)
$\gamma_{9,3}(\mathrm{Th})$	610.65(10)	0.024(5)	${ m E1}$	0.00853(12)	0.024(5)
$\gamma_{10,3}(\mathrm{Th})$	616.21(3)	0.085(7)	${ m E1}$	0.00838(12)	0.084(7)
$\gamma_{14,5}(\mathrm{Th})$	620.32(7)	0.084(7)			0.084(7)
$\gamma_{35,15}(\mathrm{Th})$	623.48(22)	0.0128(33)	M1+E2	0.07(5)	0.012(3)
$\gamma_{34,14}(\mathrm{Th})$	626.80(22)	0.015(3)	-		0.015(3)
$\gamma_{35,14}(Th)$	629.41(5)	0.047(5)	E2	0.0254(4)	0.047(5)
$\gamma_{11,3}(Th)$	640.32(4)	0.058(6)	E2	0.0245(4)	0.057(6)
$\gamma_{20,6}(Th)$	649.02(12)	0.043(11)	E2	0.0238(4)	0.0332(36)
$\gamma_{32,12}(Th)$	649.02(12)	0.0086(9)	1.1	0.00754(11)	0.0086(9)
$\gamma_{13,3}(Th)$	031.33(3)	0.094(10)	巴1 M1 - F9	0.00734(11)	0.094(10)
$\gamma_{36,15}(Th)$	000.1(3)	0.00072(38)	M1 + E2 M1 + E9	0.00(4)	0.0034(3)
$\gamma_{16,5}(Th)$	003.88 (8)	0.029(6)	W11+E2 E1	0.00(4)	0.029(0)
$\gamma_{46,23}(1h)$	000.40(0)	0.0008(7)	$\mathbf{E}\mathbf{I}$ $\mathbf{M}1 \perp \mathbf{F}2$	0.00722(11)	0.0008(7)
$\gamma_{35,13}(1h)$	671.05(8)	0.001(7) 0.027(8)	M1+EZ	0.00(4)	0.038(0) 0.027(8)
$\gamma_{38,14}(1h)$	674.63(4)	0.027(8)	M1 + F2	0.06(4)	0.027(6) 0.105(10)
734,12(11)	677 08 (10)	0.105(10)	M1 + E2	0.00(4)	0.105(10) 0.065(6)
$\gamma_{35,12}(1n)$	688 12 (4)	0.005(0) 0.070(7)	W11+E2	0.00(4)	0.003(0) 0.070(7)
$\gamma_{14,3}(1n)$	608.00(10)	0.010(1) 0.038(6)	Fo	0 0203 (3)	0.010(1) 0.038(6)
$\gamma_{34,10}(1n)$	701749(10)	0.030(0) 0.181(15)	152 M1	0.0203 (3) 0.0850 (19)	0.000(0) 0.181(15)
739,15(11)	707.742(13)	0.101(10) 0.169(18)	F.0	0.0000(12) 0.0108(3)	0.161(10) 0.162(18)
/23,6(11)	$718\ 20\ (3)$	0.102 (10) 0.0101 (40)	E1	0.0130 (3)	0.102 (10) 0.010 (4)
751,23(11)	726.88 (10)	0.0131 (40)	E9	0.00020(9) 0.0187(3)	0.013 (4)
/18,5(11)	120.00 (10)	0.00 (0)	172	0.0101 (3)	0.00 (0)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{43.15}(Th)$	737.74 (5)	0.039(5)	M1+E2	0.05(3)	0.039(5)
$\gamma_{39,12}(Th)$	755.313(9)	1.102(43)	M1	0.070(1)	1.03(4)
$\gamma_{20.5}(\mathrm{Th})$	772.291 (7)	1.52(6)	M1+E2	0.0244(14)	1.52(6)
$\gamma_{7.1}(Th)$	774.07 (10)	0.0630(41)	E2	0.01649(23)	0.062(4)
$\gamma_{51,20}(Th)$	776.51 (3)	0.020(6)			0.020(6)
$\gamma_{12,2}(Th)$	782.140 (6)	0.508(41)	E2	0.01615(23)	0.50(4)
$\gamma_{51,19}(Th)$	791.43 (9)	0.0149(42)	M1	0.0618 (9)	0.014(4)
$\gamma_{43,12}(Th)$	791.43 (9)	0.0104(31)	M1+E2	0.039(23)	0.010(3)
$\gamma_{13,2}(Th)$	792.69 (10)	0.082(5)	E2	0.01572(22)	0.081(5)
$\gamma_{18,3}(Th)$	794.942 (14)	4.31 (14)	E2+M1	0.0179(14)	4.31 (14)
$\gamma_{38,8}(Th)$	813.88 (10)	0.0073(17)	M1+E2	0.036(22)	0.0073(17)
$\gamma_{8,1}(Th)$	816.82 (10)	0.0321(42)	M1+E2	0.036(21)	0.031(4)
$\gamma_{25.6}(Th)$	824.931 (25)	0.054(6)	E2	0.01452(21)	0.053(6)
$\gamma_{23.5}(Th)$	830.481 (8)	0.61(6)	E2+M1	0.0150(3)	0.61(6)
$\gamma_{15,2}(Th)$	835.704 (8)	1.70(7)	E2	0.01415(20)	1.70 (7)
$\gamma_{20,2}(Th)$	840.372 (9)	0.984(41)	E2	0.0140(2)	0.97(4)
$\gamma_{51,17}(Th)$	853.96 (8)	0.0128(21)	M1+E2	0.032(19)	0.0124(20)
$\gamma_{46,15}(Th)$	870.47 (7)	0.046 (5)	M1	0.0481(7)	0.046 (5)
$\gamma_{16,10}(Th)$	873.10 (15)	0.032(7)	E1	0.00440(7)	0.032(7)
(8 0(Th)	874.45 (8)	0.051(11)	E2	0.01294(19)	0.050(11)
(47.15(Th)	877.38 (7)	0.0144 (31)	M1+E2	0.030(18)	0.014 (3)
(Th)	880.76(10)	0.0066(19)	E2	0.01276(18)	0.0065(19)
55 18(Th)	887.26 (10)	0.029(3)	M1+E2	0.029(17)	0.029(3)
24 5(Th)	901.38(3)	0.0172(40)	E2	0.01220(17)	0.017(4)
17.9(Th)	904.20(5)	0.78(4)	E2	0.01212(17)	0.78(4)
(12.1(Th))	911.196(6)	26.5(8)	E2	0.01194(17)	26.2(8)
12,1() (55.17(Th)	919.03(12)	0.028(3)		0.01101 (1.1)	0.028(3)
(12.1(Th))	921.87(12)	0.0158(24)	M1+E2	0.027(15)	0.0154(23)
(13,1(14))	930.99(7)	0.0026(24)	M1+E2	0.026(15)	0.0025(23)
20,0()	930.99(7)	0.004(1)		0.020 (-0)	0.004(1)
(50.17(Th)	939.89(15)	0.009(3)			0.009(3)
(10.0(Th))	944.19(3)	0.102(10)	E1+M2	0.025(14)	0.10(1)
(10,0(11))	$947\ 976\ (24)$	0.102(10) 0.111(10)	M1+E2	0.025(14)	0.111(10)
/20,0(±11) /14_1(Th)	958.59(4)	0.29(5)		0.020 (11)	0.29(5)
(14,1(Th))	$964\ 786\ (8)$	4.99(17)	E2+M1	0.01119(23)	4.99(17)
$V_{12,0}(Th)$	968,960,(9)	161(5)	E2	0.01061(15)	15.9(5)
$V_{51,19}(Th)$	975 98 (5)	0.052(6)	M1	0.0356(5)	0.052(6)
(51,12(11))	979.49(10)	0.092(0)	E2	0.0000(0) 0.01039(15)	0.002(0)
$V_{21,0}(Th)$	987.87(10)	0.0200(00)	M1+E2	0.01000(10) 0.022(13)	0.14(6)
(21,2(11))	988.65(20)	0.081(14)	E2	0.022(15) 0.01021(15)	0.081(14)
$V_{51,10}(Th)$	1000.68(10)	0.001(11) 0.0054(3)	112	0.01021 (10)	0.001(11) 0.0054(3)
$V_{50,14}(Th)$	101355(13)	0.0097(16)			0.0097(16)
$V_{140}(Th)$	1016.44(10)	0.0194(31)	M1+E2	0.021.(12)	0.019 (3)
$V_{E4,10}(Th)$	1017 94 (20)	0.032(32)	E2+M3	0.07(7)	0.03(3)
$V_{06} = (Th)$	$1017.0 \pm (20)$ 1019.88(10)	0.002(52)	124 1910	0.01 (1)	0.00(5)
$\frac{120,5(11)}{(Th)}$	$1033\ 244\ (23)$	0.022(0) 0.204(12)	E9	0 00938 (14)	0.022(0)
$\sum_{\lambda = 2}^{11} \frac{1}{\lambda} \frac{1}{$	$1039\ 83\ (7)$	0.254(12) 0.056(18)	114		0.056(12)
23,2(11)	1040.04(17)	0.000(10)	$\mathbf{T}9 + \mathbf{M}9$	0.07(6)	0.000(10)

	Energy	$P_{\gamma+ce}$ $\times 100$	Multipolarity	$lpha_{ m T}$	P_{γ} × 100
	KC V	~ 100			× 100
$\gamma_{57,12}(Th)$	1053.11(20)	0.0143(41)	M1+E2	0.019(10)	0.014(4)
$\gamma_{28,5}(Th)$	1054.13 (20)	0.019(6)	M1+E2	0.019(10)	0.019(6)
$\gamma_{50,8}(Th)$	1062.57(15)	0.011(4)			0.011(4)
$\gamma_{18,1}(Th)$	1065.168(15)	0.135(8)			0.135(8)
$\gamma_{48,7}(\mathrm{Th})$	1074.73(15)	0.011(4)			0.011(4)
$\gamma_{26,3}(Th)$	1088.20(15)	0.0062(14)			0.0062(14)
$\gamma_{19,1}(Th)$	1095.671 (23)	0.126(10)	M1+E2	0.017~(9)	0.126(10)
$\gamma_{27,3}(Th)$	1103.43(10)	0.0102(11)	E3	0.0195~(3)	0.0102(11)
$\gamma_{20,1}(Th)$	1110.604 (9)	0.285(22)	${ m E1}$	0.00288(4)	0.284(22)
$\gamma_{24,2}(Th)$	1110.604 (9)	0.0273(21)	${ m E1}$	0.00288(4)	0.0272(21)
$\gamma_{22,1}(Th)$	1117.65(10)	0.061(7)			0.061~(7)
$\gamma_{29,5}(Th)$	$1135.26\ (15)$	0.0102(17)			0.0102(17)
$\gamma_{30,5}(\mathrm{Th})$	1142.87(15)	0.0108(22)			0.0108(22)
$\gamma_{57,8}(\mathrm{Th})$	1148.17(14)	0.0062(14)	M1+E2	0.015(8)	0.0062~(14)
$\gamma_{19,0}(\mathrm{Th})$	1153.27~(4)	0.148(13)	E1+M2	0.03(3)	0.148(13)
$\gamma_{25,2}(Th)$	1157.16(15)	0.0073(14)	E1+M2	0.03(3)	0.0073(14)
$\gamma_{37,6}(\mathrm{Th})$	1164.55(7)	0.067~(7)	M1+E2	0.015(8)	0.067~(7)
$\gamma_{22,0}(Th)$	1175.33(10)	0.0257(42)	E1+M2	0.027(24)	0.025~(4)
$\gamma_{57,7}(\mathrm{Th})$	1190.83(20)	0.0065(17)	M1+E2	0.014(7)	0.0065(17)
$\gamma_{40,6}(\mathrm{Th})$	1217.03(10)	0.022~(4)			0.022~(4)
$\gamma_{26,2}(Th)$	1229.42(15)	0.0078(25)			0.0078~(25)
$\gamma_{27,2}(Th)$	1245.15(6)	0.110(8)	M1+E2	0.013~(6)	0.110(8)
$\gamma_{34,5}(Th)$	1247.10(5)	0.524(24)	M1	0.0187(3)	0.524(24)
$\gamma_{35,5}(\mathrm{Th})$	1250.06(5)	0.065~(6)			0.065~(6)
$\gamma_{44,6}(\mathrm{Th})$	1276.72(10)	0.015(3)			0.015(3)
$\gamma_{25,1}(Th)$	1286.29(20)	0.052(11)	E1+M2		0.052(11)
$\gamma_{37,5}(\mathrm{Th})$	1287.77(8)	0.109(25)	M1+E2	0.012(6)	0.109(25)
$\gamma_{33,3}(\mathrm{Th})$	1309.76(20)	0.020(7)	E1+M2	0.020(18)	0.020(7)
$\gamma_{34,3}(\mathrm{Th})$	1315.33(10)	0.0152(30)	M1+E2	0.011~(6)	0.015(3)
$\gamma_{29,2}(Th)$	1344.62(15)	0.0094(20)	M1+E2	0.011(5)	0.0094(20)
$\gamma_{41,5}(Th)$	1347.50(15)	0.0163(41)	E1+M2	0.019(17)	0.016(4)
$\gamma_{40,4}(Th)$	1357.81(15)	0.021(5)			0.021(5)
$\gamma_{41,4}(Th)$	1365.71(12)	0.0144(31)	E2+M3	0.03(3)	0.014(3)
$\gamma_{27,1}(Th)$	1374.24(7)	0.0196(14)	E2+M3	0.03(3)	0.0196(14)
$\gamma_{45,5}(\mathrm{Th})$	1401.52 (10)	0.0132(31)	E1+M2	0.017(15)	0.013(3)
$\gamma_{41,3}(Th)$	1415.55(14)	0.022(5)	E3	0.01141(16)	0.022(5)
$\gamma_{32,2}(Th)$	1430.99(10)	0.037(8)		0.000 (1)	0.037(8)
$\gamma_{28,0}(Th)$	1451.43(15)	0.0111(22)	M1+E2	0.009(4)	0.0111(22)
$\gamma_{35,2}(Th)$	1459.131(22)	0.89(6)	E2	0.00498(7)	0.87(5)
$\gamma_{45,3}(Th)$	1469.74(15)	0.021(5)	E1+M2	0.015(14)	0.021(5)
$\gamma_{36,2}(Th)$	1495.904(16)	0.924(30)	$\mathbf{E}2$	0.00477(7)	0.92(3)
$\gamma_{38,2}(Th)$	1501.59(5)	0.513(17)	$\mathbf{D}0 + \mathbf{M}0$	0.000 (10)	0.513(17)
$\gamma_{39,2}(Th)$	1537.89(10)	0.049(6)	E2+M3	0.023(19)	0.049(6)
$\gamma_{40,2}(Th)$	1548.65(6)	0.040(5)	$\mathbf{D}0 \neq \mathbf{M}1$	0.0070.(c)	0.040(5)
$\gamma_{41,2}(Th)$	1557.13(7)	0.173(9)	E2+M1	0.0070 (6)	0.173(9)
$\gamma_{32,1}(Th)$	1500.02(7)	0.021(5)			0.021(5)
$\gamma_{42,2}(Th)$	15(1.55(20))	0.0059(17)	E9	0.00490(7)	0.0059(17)
$\gamma_{43,2}(\mathrm{Th})$	1573.389(24)	0.0341(40)	E2	0.00438(7)	0.034(4)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{33,1}(Th)$	1580.531 (25)	0.624(40)	M1+E2	0.007(3)	0.62(4)
$\gamma_{35,1}(Th)$	1588.200(25)	3.06(12)	E2	0.007(3)	3.06(12)
$\gamma_{54,4}(Th)$	1609.44(15)	0.0081(17)	E2	0.00422(6)	0.0081(17)
$\gamma_{36,1}(Th)$	1625.09(4)	0.270(23)	E2+M3	0.020(17)	0.270(23)
$\gamma_{38,1}(Th)$	1630.618(20)	1.52~(6)	M1+E2	0.007~(3)	1.52~(6)
$\gamma_{33,0}(\mathrm{Th})$	1638.272(23)	0.462(30)	E2	0.00410(6)	0.46(3)
$\gamma_{39,1}(Th)$	$1666.514\ (13)$	0.173~(9)	M1	0.00895~(13)	0.173(9)
$\gamma_{40,1}(Th)$	1677.66(6)	0.057~(6)			0.057~(6)
$\gamma_{41,1}(Th)$	1686.22(11)	0.094(7)	E2	0.00391~(6)	0.094(7)
$\gamma_{42,1}(Th)$	1700.62(20)	0.0105(25)			0.0105(25)
$\gamma_{43,1}(Th)$	1702.40(8)	0.055~(7)	E2+M3	0.018(15)	0.055~(7)
$\gamma_{46,2}(Th)$	1706.17(7)	0.0089(12)	M1+E2	0.0078(12)	0.0089(12)
$\gamma_{47,2}(Th)$	1713.49(20)	0.0057(11)	E2+M3	0.018(14)	0.0057~(11)
$\gamma_{39,0}(\mathrm{Th})$	1724.19(5)	0.030(4)	E1+M2		0.030(4)
$\gamma_{44,1}(Th)$	1738.46(5)	0.018(4)			0.018(4)
$\gamma_{45,1}(Th)$	1740.5(3)	0.011(4)			0.011(4)
$\gamma_{49,2}(Th)$	1742.1(3)	0.0084(25)	M1+E2		0.0084(25)
$\gamma_{50,2}(Th)$	1750.58(20)	0.0084(9)			0.0084(9)
$\gamma_{51,2}(Th)$	1758.11(5)	0.0361(40)	E2+M1	0.00371(6)	0.036(4)
$\gamma_{52,2}(Th)$	1772.2(3)	0.0019(5)	E2+M3	0.016(13)	0.0019(5)
$\gamma_{60,3}(Th)$	1795.13(6)	0.0022(8)			0.0022(8)
$\gamma_{45,0}(\mathrm{Th})$	1797.5(5)	0.0022(8)	E1+M2	0.009(8)	0.0022(8)
$\gamma_{54,2}(Th)$	1800.9(2)	0.0046(8)			0.0046(8)
$\gamma_{55,2}(Th)$	1823.22(10)	0.046(5)			0.046(5)
$\gamma_{56,2}(Th)$	1826.8(3)	0.0022(8)			0.0022(8)
$\gamma_{46,1}(Th)$	1835.29(10)	0.0381(40)	E2+M1	0.00382(10)	0.038(4)
$\gamma_{47,1}(\mathrm{Th})$	1842.15 (8)	0.037(6)	M1+E2	0.0055(4)	0.037(6)
$\gamma_{59,2}(Th)$	1850.17(20)	0.0046(8)			0.0046(8)
$\gamma_{49,1}(Th)$	1870.82(9)	0.0257(24)	M1+E2	0.0051(18)	0.0257(24)
$\gamma_{50,1}(\mathrm{Th})$	1879.6(3)	0.0013(5)			0.0013(5)
$\gamma_{51,1}(Th)$	1887.13 (5)	0.094(7)	E2+M1	0.0050(17)	0.094(7)
$\gamma_{47,0}(\mathrm{Th})$	1900.16(20)	0.0030(6)	E1+M2	0.008(7)	0.0030(6)
$\gamma_{53,1}(\mathrm{Th})$	1907.14 (11)	0.0124(13)			0.0124(13)
$\gamma_{54,1}(\mathrm{Th})$	1929.78 (20)	0.0208(14)	E2+M3	0.013(10)	0.0208(14)
$\gamma_{60,2}(Th)$	1936.3 (3)	0.0022(6)		~ /	0.0022(6)
$\gamma_{55,1}(\mathrm{Th})$	1952.37 (10)	0.062(5)	E2+M3	0.013(10)	0.062(5)
$\gamma_{56,1}(Th)$	1955.9(5)	0.0008(3)		~ /	0.0008(3)
$\gamma_{52,0}(Th)$	1958.4(3)	0.0016(5)	E1+M2		0.0016(5)
$\gamma_{57.1}(Th)$	1965.22 (12)	0.0223 (22)	M1+E2	0.0046(15)	0.0223(22)
$\gamma_{58,1}(Th)$	1972.0 (3)	0.0038 (8)	·		0.0038 (8)
$\gamma_{59,1}(Th)$	1979.3(3)	0.0019(5)			0.0019(5)
(Th)	20204(5)	0.0019(5)	$E1 \perp M2$	0.007(6)	0.0010(5)

5 References

O.HAHN, O.ERBACHER, Z. Phys. 27 (1926) 531 (Half-life) M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, C.Lind, St.Meyer, E.Rutherford, E.Scweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) F.Lux, N.KAUBISCH, Angewandte Chemie Int. Ed. 8 (1969) 911 (Proposed alpha decay) M.ARNOUX, A.GIZON, Compt. Rend. Acad. Sci. (Paris) Ser. B 269 (1969) 317 (Gamma emissions) M.HERMENT, C.VIEU, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 1058 (Gamma emissions and conversion coefficients) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma emissions) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma emissions) R.G.HELMER, Nucl. Instrum. Methods 164 (1979) 355 (Reference gamma-ray energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma emissions) A.S.MAHAJAN, M.S.BIDARKUNDI, Indian J. Phys. 20 (1982) 701 (Gamma emissions and conversion coefficients) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma emissions) U.SCHÖTZIG, K.DEBERTIN, Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma emissions) G.SKARNEMARK, M.SKÅLBERG, Int. J. Appl. Radiat. Isotop. 36 (1985) 439 (Half-life) J.DALMASSO, H.MARIA, Phys. Rev. C36 (1987) 2510 (Decay scheme and gamma emissions) T.W.BURROWS, Report BNL-NSC-52142, Brookhaven National Laboratory (1988) (RADLST) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma emissions) H.BALTZER, K.FRIETAG, C.GUNTHER, P.HERZOG, J.MANNS, U.MULLER, R.PAULSEN, P.SEVENICH, T.WEBER, B.WILL, Z. Phys. A352 (1995) 47 (Gamma in 228Pa decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723 $\,$ (Decay scheme) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Reference gamma-ray energies) A.H.WAPSTRA, G.AUDI, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKOYA, C.W.NESTOR JR., Report ANU-P/1684, Canberra (2005) (Theoretical ICC) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Ac - 228

Th - 228

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	698.55	(32)	d
$Q^{'}_{lpha}$:	5520.08	(22)	keV
α	:	100		%
^{20}O	:	1.13	(22)	$ imes 10^{-11}$ %

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,8} \\ \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,5} \\ \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \end{array}$	$\begin{array}{c} 4448.00\ (23)\\ 4522.97\ (23)\\ 4952.5\ (3)\\ 4997.76\ (24)\\ 5137.97\ (22)\\ 5176.86\ (22)\\ 5211.05\ (22)\\ 5340.35\ (22)\\ 540.35\ (22)\\ \end{array}$	$\begin{array}{c} 0.0000045 \ (7) \\ 0.000017 \ (3) \\ 0.000024 \ (5) \\ 0.000010 \ (2) \\ 0.036 \ (6) \\ 0.218 \ (4) \\ 0.408 \ (7) \\ 26.0 \ (5) \\ 72.4 \ (5) \end{array}$
$\alpha_{0,0}$	3423.24(22)	(3.4(3))

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ra)	5.71 - 12.04	10.4(4)
e _{AK}	(Ra) KLL KLX KXY	65.149 - 72.729 79.721 - 88.466 94.27 - 103.91	0.0020 (3) } } }
$\begin{array}{c} ec_{1,0} \ L\\ ec_{1,0} \ M\\ ec_{1,0} \ N+\\ ec_{2,0} \ K\\ ec_{3,1} \ K\\ ec_{3,1} \ L\\ ec_{3,1} \ M+ \end{array}$	(Ra) (Ra) (Ra) (Ra) (Ra) (Ra)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 18.5 \ (5) \\ 5.0 \ (2) \\ 1.65 \ (5) \\ 0.015 \ (6) \\ 0.023 \ (1) \\ 0.069 \ (2) \\ 0.025 \ (1) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10.622 - 18.412		8.6 (4)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Ra) (Ra)	85.43 88.47		$0.0180(3) \\ 0.0295(5)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	99.432 100.13 100.738	} } }	0.01034(21)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	102.89 103.295 103.74	} } }	0.00339 (9)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{l} \gamma_{4,2}({\rm Ra}) \\ \gamma_{1,0}({\rm Ra}) \\ \gamma_{2,1}({\rm Ra}) \\ \gamma_{5,4}({\rm Ra}) \\ \gamma_{3,1}({\rm Ra}) \\ \gamma_{5,3}({\rm Ra}) \\ \gamma_{4,1}({\rm Ra}) \end{array}$	$\begin{array}{c} 74.38 \ (4) \\ 84.373 \ (3) \\ 131.612 \ (5) \\ 142.71 \ (11) \\ 166.410 \ (4) \\ 182.29 \ (10) \\ 205.99 \ (4) \end{array}$	$\begin{array}{c} 0.015 \ (5) \\ 26.4 \ (7) \\ 0.158 \ (3) \\ 0.0000041 \ (13) \\ 0.217 \ (4) \\ 0.0000057 \ (20) \\ 0.0204 \ (5) \end{array}$	[E2] E2 E1 [E2] E2 [E1] [E1]	$\begin{array}{c} 38.6 \ (6) \\ 21.2 \ (3) \\ 0.247 \ (4) \\ 2.14 \ (3) \\ 1.164 \ (17) \\ 0.1126 \ (16) \\ 0.0841 \ (12) \end{array}$	$\begin{array}{c} 0.00039 \ (14) \\ 1.19 \ (3) \\ 0.127 \ (2) \\ 0.0000013 \ (4) \\ 0.1004 \ (14) \\ 0.0000051 \ (18) \\ 0.0188 \ (5) \end{array}$
$\gamma_{2,0}({ m Ra})$ $\gamma_{6,3}({ m Ra})$ $\gamma_{7,2}({ m Ra})$ $\gamma_{8,3}({ m Ra})$ $\gamma_{7,1}({ m Ra})$ $\gamma_{8,1}({ m Ra})$ $\gamma_{8,0}({ m Ra})$	$\begin{array}{c} 215.985 \ (4) \\ 228.42 \ (18) \\ 700.36 \ (7) \\ 741.87 \ (6) \\ 831.97 \ (7) \\ 908.28 \ (6) \\ 992.65 \ (6) \end{array}$	$\begin{array}{c} 0.265 \ (4) \\ 0.000025 \ (6) \\ 0.000003 \ (1) \\ 0.0000014 \ (4) \\ 0.0000014 \ (2) \\ 0.0000017 \ (5) \\ 0.0000014 \ (4) \end{array}$	E1 [E2] E1 [E2] E2 [M1+50%E2] [E2]	$\begin{array}{c} 0.0752 \ (11) \\ 0.366 \ (6) \\ 0.00611 \ (9) \\ 0.01625 \ (23) \\ 0.01289 \ (18) \\ 0.024 \ (3) \\ 0.00913 \ (13) \end{array}$	$\begin{array}{c} 0.246 \ (4) \\ 0.000018 \ (4) \\ 0.000003 \ (1) \\ 0.0000014 \ (4) \\ 0.0000014 \ (2) \\ 0.0000017 \ (5) \\ 0.0000014 \ (4) \end{array}$

5 References

L.MEITNER, Phys. Zeitschr. 19 (1918) 257
(Half-life)
F.ASARO, F.STEPHENS JR., I.PERLMAN, Phys. Rev. 92 (1953) 1495
(Alpha-particle energies, alpha-particle emission probabilities, gamma-ray emission probabilities, internal conversion coefficients)
H.W.KIRBY, G.R.GROVE, D.L.TIMMA, Phys. Rev. 102 (1956) 1140
(Half-life)
C.W.MAYS, D.R.ATHERTON, R.D.LLOYD, D.O.CLARK, Report COO-225, Utah Univ. (1962) 90
(Half-life)
M.O.COSTA, M.R.S.GRADE, Port. Phys. 4 (1966) 267
(Conversion-electron emission probabilities, internal conversion coefficients)

Surrey Univ. /A.L. Nichols

J.DALMASSO, C.MARSOL, Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 1366 (Gamma-ray energies) C.L.DUKE, W.L.TALBERT JR., Phys. Rev. 173 (1968) 1125 (Internal conversion coefficients) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Alpha-particle emission probabilities, gamma-ray emission probabilities, internal conversion coefficients) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Y.F.RODIONOV, Sov. J. Nucl. Phys. 11 (1970) 515 (Alpha-particle energies, alpha-particle emission probabilities) D.L.SPENNY, A.A.BARTLETT, Report COO-535-620, Utah Univ. (1970) 102 (L- and M-subshell ratios) K.C.JORDAN, G.W.OTTO, R.P.RATAY, J. Inorg. Nucl. Chem. 33 (1971) 1215 (Half-life) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-particle energies, alpha-particle emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger-electron energies) W.Kurcewicz, N.Kaffrell, N.Trautmann, A.Plochocki, J.Zylicz, M.Matul, K.Stryczniewicz, Nucl. Phys. A289 (1977) 1 (Gamma-ray energies, Gamma-ray emission probabilities) W.KURCEWICZ, E.RUCHOWSKA, N.KAFFRELL, N.TRAUTMANN, Nucl. Instrum. Methods 146 (1977) 613 (Gamma-ray energies) W.KURCEWICZ, E.RUCHOWSKA, N.KAFFRELL, T.BJOERNSTAD, G.NYMAN, Nucl. Phys. A356 (1981) 15 (908.28-keV gamma-ray emission probability) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies, alpha-particle emission probabilities) M.P.UNTERWEGER, D.D.HOPPES, F.J.SCHIMA, Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life) R.BONETTI, C.CHIESA, A.GUGLIELMETTI, C.MIGLIORINO, A.CESANA, M.TERRANI, Nucl. Phys. A556 (1993) 115 (Cluster decay) T.BABELIOWSKY, G.BORTELS, Appl. Radiat. Isot. 44 (1993) 1349 (Alpha-particle emission probabilities) G.ARDISSON, M.HUSSONNOIS, Radiochim. Acta 70/71 (1995) 123 (Cluster decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 227 (Nuclear structure, energies) S.P.TRETYAKOVA, V.L.MIKHEEV, Nuovo Cim. 110A (1997) 1043 (Cluster decay) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, r0 parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X-ray emission probabilities) M.P.UNTERWEGER, Appl. Radiat. Isot. 56 (2002) 125 (Half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC)

Surrey Univ. /A.L. Nichols

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Q)

M.-M.BÉ, V.P.CHECHEV, R.DERSCH, O.A.M.HELENE, R.G.HELMER, M.HERMAN, S.HLAVÁC, A.MARCINKOWSKI, G.L.MOLNÁR, A.L.NICHOLS, E.SCHÖNFELD, V.R.VANIN, M.J.WOODS, in Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications Vol. 1, STI/PUB/1287, IAEA, Vienna (2007) (Half-life)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Surrey Univ. /A.L. Nichols

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	7.88	(12)	$ imes 10^3 { m y}$
$Q^{'}_{lpha}$:	5167.6	(10)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
α _{0 44}	4478 (3)	0.005
$\alpha_{0.43}$	4484 (2)	0.03(2)
$\alpha_{0.40}$	4599(3)	0.02(1)
$\alpha_{0,38}$	4608(2)	0.050(8)
$\alpha_{0,36}$	4667	0.001
$\alpha_{0,33}$	4690(2)	0.23(8)
$\alpha_{0,30}$	4694(2)	0.12(2)
$\alpha_{0,29}$	4737	0.01
$\alpha_{0,28}$	4748	0.005
$\alpha_{0,27}$	4754	0.05
$\alpha_{0,26}$	4761(2)	1.0(4)
$\alpha_{0,24}$	4797.8(12)	1.5(2)
$\alpha_{0,23}$	4809	0.22
$\alpha_{0,22}$	4814.6(12)	9.30(8)
$\alpha_{0,20}$	4833	0.29
$\alpha_{0,19}$	4838(2)	5.0(2)
$\alpha_{0,18}$	4845.3(12)	56.2(2)
$\alpha_{0,17}$	4852	0.03
$\alpha_{0,15}$	4861(2)	0.28(10)
$\alpha_{0,14}$	4865	0.03
$\alpha_{0,13}$	4878	0.03
$\alpha_{0,12}$	4901.0(12)	10.20(8)
$\alpha_{0,10}$	4930(2)	0.16(5)
$\alpha_{0,8}$	4967.5(12)	5.97(6)
$lpha_{0,6}$	4978.5(12)	3.17(4)
$\alpha_{0,5}$	5009(2)	0.09(1)
$\alpha_{0,4}$	5023(2)	0.009(3)
$lpha_{0,3}$	5036(2)	0.24(2)
$\alpha_{0,2}$	5047(2)	0.2
$\alpha_{0,1}$	5053(2)	6.6(1)
$\alpha_{0,0}$	5078(2)	0.05(1)

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
$e_{\rm AL}$	(Ra)	5.71 - 12.04	132(7)
e _{AK}	(Ra) KLL KLX KXY	65.149 - 72.729 79.721 - 88.466 94.27 - 103.91	1.60 (21) } } }
$ec_{3,1}$ L $ec_{10,3}$ K $ec_{4,2}$ L $ec_{15,8}$ K $ec_{1,0}$ L $ec_{12,5}$ K $ec_{12,10}$ L $ec_{6,5}$ L $ec_{2,0}$ L $ec_{2,18}$ L $ec_{3,1}$ M $ec_{15,6}$ K $ec_{3,1}$ N $ec_{5,2}$ L $ec_{4,2}$ M $ec_{19,9}$ K $ec_{10,1}$ K $ec_{10,1}$ K $ec_{10,1}$ K $ec_{17,6}$ K $ec_{3,22}$ K $ec_{3,22}$ K $ec_{8,5}$ L	 (Ra) (Ra)<td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td><td>$\left\{\begin{array}{c} 0.52 \ (26) \\ 7.6 \ (16) \\ 0.218 \ (21) \\ 0.45 \ (11) \\ 43 \ (21) \\ 0.037 \ (4) \\ 18.4 \ (33) \\ 1.56 \ (15) \\ 2.14 \ (8) \\ 4.7 \ (7) \\ 18 \ (9) \\ 0.402 \ (3) \\ 4.6 \ (23) \\ 2.4 \ (12) \\ 0.053 \ (5) \\ 111 \ (6) \\ 4.63 \ (41) \\ 4.95 \ (41) \\ 0.05 \ (1) \\ 0.032 \ (3) \\ 0.068 \ (7) \\ 0.02 \ (20) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.068 \ (7) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.000 \ (20) \ (20$</td>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left\{\begin{array}{c} 0.52 \ (26) \\ 7.6 \ (16) \\ 0.218 \ (21) \\ 0.45 \ (11) \\ 43 \ (21) \\ 0.037 \ (4) \\ 18.4 \ (33) \\ 1.56 \ (15) \\ 2.14 \ (8) \\ 4.7 \ (7) \\ 18 \ (9) \\ 0.402 \ (3) \\ 4.6 \ (23) \\ 2.4 \ (12) \\ 0.053 \ (5) \\ 111 \ (6) \\ 4.63 \ (41) \\ 4.95 \ (41) \\ 0.05 \ (1) \\ 0.032 \ (3) \\ 0.068 \ (7) \\ 0.02 \ (20) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.068 \ (7) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.020 \ (20) \\ 0.000 \ (20) \ (20$
$ec_{3,0 L}$ $ec_{1,0 N}$	(Ra) (Ra)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9.0 (23) 3.0 (15)
$ec_{5,1 L}$ $ec_{12,10 M}$ $ec_{6,5 M}$ $ec_{2,0 M}$ $ec_{22,18 M}$	(Ra) (Ra) (Ra) (Ra) (Ra)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.491 \ (23) \\ 4.6 \ (8) \\ 0.391 \ (38) \\ 0.536 \ (20) \\ 1.12 \ (17) \end{array}$
$ec_{19,8 \text{ K}}$ $ec_{6,5 \text{ N}}$ $ec_{24,10 \text{ K}}$ $ec_{20 \text{ N}}$	(Ra) (Ra) (Ra) (Ra)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.91 \ (7) \\ 0.10 \ (1) \\ 0.0165 \ (7) \\ 0.137 \ (5) \end{array}$
$\begin{array}{c} 2,5 \text{ K} \\ \text{eC}_{13,5} \text{ K} \\ \text{eC}_{22,18} \text{ N} \\ \text{eC}_{26,23} \text{ L} \\ \text{eC}_{9,5} \text{ L} \end{array}$	(Ra) (Ra) (Ra) (Ra)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.051 \\ 0.297 \\ (44) \\ 0.42 \\ (6) \\ 0.29 \\ (7) \\ 0.65 \\ (22) \end{array}$
$ec_{5,2 M} ec_{12,3 K} ec_{26,22 L}$	(Ra) (Ra) (Ra)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.65 \ (33) \\ 6.04 \ (18) \\ 0.158 \ (43) \end{array}$

VECC Kolkata /G. Mukherjee

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
00	$(\mathbf{P}_{\mathbf{P}})$	36.6 37.5	0.17(0)
CC _{5,2} N	$(\mathbf{R}_{\mathbf{a}})$	37.286 41.074	4.1(19)
CC18,12 L	$(\mathbf{R}_{\mathbf{a}})$	37.5 - 30.2	0.0166(17)
ec _{8,5} M	(\mathbf{Ra})	37.0 - 39.2 38.00 - 30.72	0.0100(17) 2.2(7)
C10.0 M	$(\mathbf{R}_{\mathbf{a}})$	30.00 - 35.12 30.047 (5)	$\frac{2.2}{1.83}$ (6)
CC19,6 K	$(\mathbf{R}_{\mathbf{a}})$	39.047 (0)	0.121(6)
$C_{5,1}$ M	$(\mathbf{R}_{\mathbf{a}})$	41.61 - 42.54	0.121(0) 0.61(16)
CC3,0 N	$(\mathbf{R}_{\mathbf{a}})$	41.01 - 42.04 42.78 - 43.71	0.01(10) 0.0311(15)
econ v	(\mathbf{Ra})	42.10 - 40.11 43.725 (30)	0.0311(10) 0.031(2)
CC22,9 K	$(\mathbf{R}_{\mathbf{a}})$	43.123 (30) 44.24 (4)	0.031(2) 0.120(0)
ec _{12,2} K	(\mathbf{Ra})	44.24 (4) 11.028 - 16.615	0.129(9) 0.10(2)
CC26,23 M	$(\mathbf{R}_{\mathbf{a}})$	46.12 (3)	0.10(2) 0.20(6)
ec10,0 K	$(\mathbf{R}_{\mathbf{a}})$	46.12 (3) 46.17 - 47.89	0.20(0)
СС9,5 М	$(\mathbf{R}_{\mathbf{a}})$	40.17 - 47.03	0.000(10)
ec33,19 K	(\mathbf{Ra})	41.1 (3) 48.542 40.471	0.0300(13)
ec _{26,23} N	(\mathbf{Ra})	48.86 52.65	0.034(3)
ес _{12,8} L	(\mathbf{Ra})	48.80 - 52.05	0.70(30)
ес <u>26,22</u> М	(\mathbf{Ra})	40.93 - 50.04	5.6(5)
ес <u>8,3</u> Г	(\mathbf{Ra})	49.00 - 55.59 40.78 - 50.71	0.0180(43)
ecg _{,5} N	(\mathbf{Ra})	49.78 - 50.71 50.42 (1)	25(7)
ec _{12,1 K}	(\mathbf{Ra})	50.42 (1) 51.606 53.413	2.3(7)
ес <u>18,12</u> М	(\mathbf{Ra})	51.090 - 55.415 52.404 (0)	0.30(27)
ec _{22,8} K	(\mathbf{Ra})	52.494 (9) 52.54 53.47	4.19(12) 0.0100(27)
ec _{26,22} N	(\mathbf{Ra})	52.54 - 53.47 54.50 (12)	0.0100(21) 0.17(7)
ec33,18 K	(\mathbf{Ra})	54.00 (12) 55.310 56.230	0.17(7) 0.25(7)
ec _{18,12} N	(\mathbf{Ra})	55.0 50.7	16.5(35)
ес _{6,1} L	(\mathbf{Ra})	50.068 62.856	10.3(35)
ec _{26,19} L	(\mathbf{Ra})	59.008 - 02.800 50.425 (40)	0.041(7) 0.060(7)
ec _{30,17} K	(\mathbf{Ra})	53.425 (40) 63.061 (50)	0.009(1) 0.023(2)
ec _{18,5} K	(\mathbf{Ra})	63.001 (50)	0.023(2) 0.10(7)
ec _{12,8} M	(\mathbf{Ra})	63.53 (8)	0.13(7) 0.145(20)
ec _{22,6 K}	(\mathbf{Ra})	64.01 65.72	1.52(29)
ec _{8,3} M	(Ra)	66.88 67.81	1.52(15) 0.048(22)
ec _{12,8} N	(Ra)	67.02 70.81	5.6(8)
ec _{8,1} L	(\mathbf{Ra})	67.02 - 70.01	0.0(0)
ec _{18,10} L	(\mathbf{Ra})	67.62 - 71.0	93.0(13)
ec _{8,3} N	(\mathbf{Ra})	60.011 (18)	$0.401 (39) \\ 0.202 (27)$
ec _{24,8} K	(\mathbf{Ra})	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.292(21)
ec _{6,1 M}	(\mathbf{Ra})	70.3 - 72.0 73.0 - 74.8	4.0(10) 1 18 (25)
ec _{6,1} N	(\mathbf{Ra})	75.408 70.286	1.10(20)
ec _{10,4} L	(\mathbf{Ra})	75.498 - 79.280 75.842 (60)	0.020(3)
CC12,0 K	$(\mathbf{R}_{\mathbf{a}})$	80.013 (00)	0.009 (0) 0.294 (16)
CC24,6 K	$(\mathbf{R}_{\mathbf{a}})$	81 / 3 8 9 1 /	$\begin{array}{c} 0.324 \ (10) \\ 1.30 \ (91) \end{array}$
CU8,1 M	$(\mathbf{R}_{\mathbf{a}})$	816 822	1.09 (21) 22 20 (25)
CU18,10 M	$(\mathbf{R}_{\mathbf{a}})$	01.0 - 00.0 85.04 - 85.07	22.09 (00) 0.26 (6)
CC8,1 N	$(\mathbf{R}_{\mathbf{a}})$	859 961	5.00(0)
CU18,10 N	$(\mathbf{R}_{\mathbf{a}})$	87 876 01 664	5.50(11) 1 78 (40)
CC10,3 L	$(\mathbf{R}_{\mathbf{a}})$	80.60 (5)	2.10 (49)
ec _{18,3} K	(na)	09.00 (9)	0.9

VECC Kolkata /G. Mukherjee
		Energy keV	Electrons per 100 disint.
ес _{15,8} г	(Ra)	89.968 - 93.756	0.085 (22)
$ec_{15,1 K}$	(Ra)	90.385 (70)	0.034(5)
ес _{19,3 К}	(Ra)	96.892 (80)	0.011(2)
ec _{22,10} L	(Ra)	98.868 - 102.656	0.043(5)
$ec_{15,6 L}$	(Ra)	100.748 - 104.536	0.075(5)
$ec_{18,2}$ K	(Ra)	100.775 (80)	0.041 (6)
ес _{10.3 М}	(Ra)	102.286 - 104.003	0.44 (14)
ес _{15.8 М}	(Ra)	104.378 - 106.095	0.023 (5)
ес _{10,1 L}	(Ra)	105.32 - 109.11	0.86(8)
ec _{18.8} L	(Ra)	105.42 - 109.21	0.92(8)
ec _{10.3} N	(Ra)	105.900 - 106.829	0.113 (41)
ec _{26.8 K}	(Ra)	106.24 (8)	0.29 (6)
ec18.1 K	(Ra)	106.938 (3)	4.25 (46)
ecss 22 T	(Ra)	107.248 - 111.036	0.016(2)
ес17 6 т.	(Ra)	107.248 - 111.036	0.025(3)
ec10.8 T	(Ra)	112.694 - 116.482	0.355 (14)
ecop 10 M	(Ra)	113.278 - 114.995	0.0116(23)
ec10.1 K	(Ra)	114.239 (17)	0.248(28)
eco4 10 T	(Ra)	114.958 - 118.746	0.0109 (6)
ec15.6 M	(Ra)	115.158 - 116.875	0.018(2)
ecse e k	(Ra)	117.305 (100)	0.032(5)
ec12.20,0 K	(Ra)	117.76 - 121.55	1.125(33)
есто т м	(\mathbf{Ra})	119.73 - 121.44	0.206(18)
ec10,1 M	(\mathbf{Ra})	119.83 - 121.54	0.200(10) 0.221(18)
eCoc 10 T	(\mathbf{Ra})	122768 - 126556	0.221 (10) 0.016 (3)
C10.1 N	(\mathbf{Ra})	122.100 120.000 123.000 124.27	0.010(0) 0.0544(48)
C10.0 N	(\mathbf{Ra})	123.44 - 124.37	0.0511(10) 0.0583(48)
CC18,8 N	(\mathbf{Ra})	123.44 = 124.57 123.730 = 127.518	0.0303(40)
CC19,6 L	(\mathbf{R}_{2})	125.150 - 121.510 127.104 - 128.821	0.041(11) 0.0851(33)
0012.2 T	$(\mathbf{R}_{\mathbf{a}})$	127.104 - 120.021 198.09 - 139.71	0.0001 (00) 0.0263 (18)
CC12,2 L	(\mathbf{R}_{2})	120.32 - 132.11 130.718 - 131.647	0.0203(10) 0.0224(0)
CC19,8 N	(\mathbf{R}_{2})	130.81 - 134.60	0.0224(3)
C10,0 L	(\mathbf{Ra})	130.01 - 134.00 132.17 - 132.80	0.047(0) 0.260(8)
C12,3 M	(\mathbf{Ra})	132.17 - 135.09 132.334 (100)	0.209(8) 0.021(3)
CC18,0 K	(\mathbf{Ra})	132.034 (100) 132.4 136.2	0.021(3) 0.01782(28)
CC33,19 L	(\mathbf{Ra})	132.4 - 130.2 135.104 - 138.802	0.01702(20)
CC12,1 L	(\mathbf{Ra})	135.78 136.71	0.00(0)
CC12,3 N	(\mathbf{Ra})	135.78 - 150.71 137.177 - 140.065	0.0703(21) 0.777(23)
ec _{22,8} L	(\mathbf{Ra})	137.177 - 140.903 138.140 - 120.857	0.111(23) 0.0816(27)
ec _{19,6} M	$(\mathbf{n}a)$	130.140 - 139.007 139.695 (110)	0.0810(27)
$ec_{22,1}$ K	$(\mathbf{n}a)$	130.000 (110) 120.10 142.08	0.09(1)
ес _{33,18} L	(Ra)	139.19 - 142.98	0.052(0)
ec _{19,6} N	(\mathbf{Ra})	141.704 - 142.083 144.109 - 147.900	0.0213(1)
ес _{30,17} L	(\mathbf{Ra})	144.108 - 147.890	0.013(2)
ec _{10,0} M	(\mathbf{Ra})	140.22 - 140.94	0.0114(18)
$ec_{18,5}$ L	(Ra)	147.744 - 151.532	0.046(5)
ес _{22,6} г	(Ra)	148.22 - 152.01	0.027(5)
$ec_{12,1}$ M	(Ra)	149.514 - 151.231	0.139(23)
ес _{22,8} м	(Ra)	151.587 - 153.304	0.186(5)

VECC Kolkata /G. Mukherjee

206

Th	 229

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
	(\mathbf{D}_{-})	159 100 154 057	0.025 (5)
$ec_{12,1}$ N	(Ra)	153.128 - 154.057	0.035(5)
$ec_{24,8 L}$	(Ra)	153.694 - 157.482	0.054(5)
$ec_{24,1 \text{ K}}$	(Ra)	155.165 (130)	0.031(4)
$ec_{22,8 N}$	(Ra)	155.201 - 156.130	0.0489(14)
$ec_{12,0 L}$	(Ra)	160.525 - 164.313	0.099(16)
ес _{24,6 L}	(Ra)	164.696 - 168.484	0.060(3)
ес _{24,8 М}	(Ra)	168.104 - 169.821	0.0129(12)
ec _{18,3} L	(Ra)	174.29 - 178.08	1.6
ес _{12,0 М}	(Ra)	174.935 - 176.652	0.027~(6)
$ec_{15,1 L}$	(Ra)	175.068 - 178.856	0.011(2)
ес _{24,6 М}	(Ra)	179.106 - 180.823	0.0144(7)
ес _{19,3 L}	(Ra)	181.575 - 185.363	0.022(3)
ес _{18,3 М}	(Ra)	188.70 - 190.42	0.4
ес _{26,8 L}	(Ra)	190.92 - 194.71	0.054(11)
$ec_{18,1 L}$	(Ra)	191.621 - 195.409	0.78(8)
ec _{18,3 N}	(Ra)	192.31 - 193.24	0.14
ес _{19,1 L}	(Ra)	198.922 - 202.710	0.046(5)
ec _{26.8} M	(Ra)	205.33 - 207.04	0.0128(27)
ес _{22,3} L	(Ra)	206.028 - 209.816	0.012(2)
ec _{18.1 M}	(Ra)	206.031 - 207.748	0.187(20)
ec _{18.1} N	(Ra)	209.645 - 210.574	0.049 (5)
ec19.1 M	(Ra)	213.332 - 215.049	0.0109(12)
ec18 n T.	(Ra)	217.017 - 220.805	0.028(3)
ecoo 1 1	(Ra)	223.368 - 227.156	0.017(2)
0022,1 L	(100)	11 0.000 11 1.100	0.011 (2)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10.62 - 18.41		106(7)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Ra) (Ra)	85.43 88.47		$\begin{array}{c} 14.3 \ (6) \\ 23.4 \ (9) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	99.432 100.13 100.738	} } }	8.2 (4)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102.89 \\ 103.295 \\ 103.74$	} } }	2.69 (12)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{8,6}({ m Ra})$	11.10 (8)	12.0 (18)	(M1+E2)	60000 (6)	0.00020(3)
$\gamma_{43,42}({ m Ra})$	11.79(20)	0.0005			0.0005
$\gamma_{3,1}(\mathrm{Ra})$	17.360(36)	24(12)	(M1)	133.2(21)	0.18(9)
$\gamma_{4,2}(\mathrm{Ra})$	23.6	0.291(24)	(M1+E2)	241.33	0.0012(1)
$\gamma_{1,0}(\text{Ra})$	25.39(2)	58(29)	(E2)	7240(110)	0.008(4)
$\gamma_{23,19}({\rm Ra})$	28.68(10)	0.10(3)			0.10(3)
$\gamma_{12,10}(\text{Ra})$	29.9(1)	24.6(45)	(M1+E2)	223	0.11(2)
$\gamma_{10,9}(\text{Ra})$	29.9(1)	0.002			0.002
$\gamma_{6,5}(\text{Ra})$	31.10(5)	2.92(28)	(E1)	2.48(4)	0.84(8)
$\gamma_{2,0}(\text{Ra})$	31.50(5)	4.03(14)	${ m E1}$	2.39(4)	1.19(4)
$\gamma_{22,18}(\text{Ra})$	31.57(9)	6.3(9)	(M1)	91.1 (15)	0.068(10)
$\gamma_{25,21}(\text{Ra})$	33.04(20)	0.01			0.01
$\gamma_{5,2}(\text{Ra})$	37.8(1)	3.3(16)	(E2)	1023~(20)	0.0032(16)
$\gamma_{8,5}(\text{Ra})$	42.3(1)	0.172(17)	(E1)	1.094(17)	0.082(8)
$\gamma_{3,0}(\text{Ra})$	42.82(5)	12.2(31)	(M1+E2)	75(19)	0.16(1)
$\gamma_{5,1}(\mathrm{Ra})$	43.99(1)	1.31(6)	$\mathrm{E1}$	0.985(14)	0.66(3)
$\gamma_{22,15}(\text{Ra})$	46.52(4)	0.021(2)			0.021(2)
$\gamma_{26,23}({ m Ra})$	49.75(8)	0.58(5)	(M1)	25.2	0.022(2)
$\gamma_{9,5}({ m Ra})$	50.99(4)	0.39(9)	(M1)	22.2(4)	0.017(4)
$\gamma_{26,22}(\text{Ra})$	53.75(20)	0.22(6)	(M1)	19.0(4)	0.011(3)
$\gamma_{4,0}({ m Ra})$	55.11(3)	0.0042(6)	(E1)	0.540(8)	0.0027(4)
$\gamma_{18,12}(\text{Ra})$	56.518(5)	5.5(15)	M1(+E2)	18(5)	0.29(2)
$\gamma_{12,9}({ m Ra})$	59.33(10)	0.012(2)			0.012(2)
$\gamma_{24,15}(\text{Ra})$	63.7(2)	0.005(2)			0.005(2)
$\gamma_{9,4}({ m Ra})$	64.96(10)	0.087(11)			0.087(11)
$\gamma_{25,17}(\text{Ra})$	65.91(10)	0.161(17)			0.161(17)
$\gamma_{12,8}(\mathrm{Ra})$	68.09(4)	1.04(38)	M1+E2	14(5)	0.069(10)
$\gamma_{15,11}({ m Ra})$	68.8(1)	0.04			0.04
$\gamma_{20,12}(\text{Ra})$	68.8(10)	0.09	7.0		0.09
$\gamma_{8,3}(\text{Ra})$	68.83(3)	7.7(7)	E2	55.9(8)	0.136(13)
$\gamma_{33,26}(\text{Ra})$	72.739 (10)	0.14(2)	7.0		0.14(2)
$\gamma_{6,1}(\text{Ra})$	75.1(1)	23.1(49)	E2	36.9(6)	0.61(13)
$\gamma_{16,10}(\text{Ra})$	75.19(10)	0.002(1)		0.010(0)	0.002(1)
$\gamma_{9,3}(\text{Ra})$	77.63(5)	0.055(7)	(E1)	0.216(3)	0.045(6)
$\gamma_{26,19}(\text{Ra})$	78.3(2)	0.059(15)	(M1)	6.33(10)	0.008(2)
$\gamma_{8,1}(\text{Ra})$	86.25(4)	8.7 (11)	M1+E2	5.7(7)	1.3(1)
$\gamma_{18,10}(\text{Ra})$	86.40 (5)	100.0(19)	N11	4.75 (7)	26.0(1)
$\gamma_{29,21}(\text{Ra})$	89.09 (20)	0.01			0.01
$\gamma_{36,27}(\text{Ra})$	89.09 (20)	0.005			0.005
$\gamma_{9,2}(\text{Ra})$	89.09(20)	0.14			0.14
$\gamma_{26,17}(\text{Ra})$	94.7(1)	0.028(10)	$(\mathbf{\Gamma}^{1})$	0.1074(10)	0.028(10)
$\gamma_{10,4}(\text{Ra})$	94.13 (8)	0.304(23)	(E1)	0.12(4(18))	0.27(2)
$\gamma_{9,1}(\text{Ra})$	94.92(8)	0.0140(34)	(E1)	0.1208 (18)	0.013(3)
$\gamma_{40,30}(\text{Ra})$	97.01(12)	0.011(3)			0.011(3)
$\gamma_{20,10}(Ra)$	98.80 (10) 101 1 (9)	0.120(15)			0.120(15)
$\gamma_{26,15}(\text{Ra})$	101.1(2)	0.018(3)			0.018(3)
$\gamma_{7,0}(\mathrm{Ra})$	101.58(10)	0.049(7)			0.049(7)

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{33,25}(\text{Ra})$	101.58(10)	0.049(7)			0.049(7)
$\gamma_{27,16}(\text{Ra})$	102.54(2)	0.160(19)			0.160(19)
$\gamma_{24,12}(\text{Ra})$	104.6(2)	0.058(30)	(M1+E2)	5.4(25)	0.009(3)
$\gamma_{10,3}(\text{Ra})$	107.108(8)	10.8(10)	M1(+E2)	12.3(11)	0.81(4)
$\gamma_{15,8}(\text{Ra})$	109.1(1)	0.58(11)	(M1)	12.15(18)	0.044(8)
$\gamma_{21,10}(\text{Ra})$	110.3(5)	0.009(2)			0.009(2)
$\gamma_{12,5}(\text{Ra})$	110.332(8)	0.171(17)	(E1)	0.377~(6)	0.124(12)
$\gamma_{42,38}(\text{Ra})$	114.75(10)	0.0151~(22)			0.0151~(22)
$\gamma_{14,6}(\text{Ra})$	115.85(10)	0.01			0.01
$\gamma_{18,9}(\text{Ra})$	115.85(10)	0.014	(E1)	0.336~(5)	0.01
$\gamma_{10,2}(\text{Ra})$	118.1(1)	0.007~(3)			0.007(3)
$\gamma_{22,10}(\text{Ra})$	118.1(1)	0.074(23)	(E2)	4.72(7)	0.013(4)
$\gamma_{15,6}(\mathrm{Ra})$	119.98(2)	0.52(21)	(M1)	9.30(13)	0.05(2)
$\gamma_{19,9}(\text{Ra})$	123.193(13)	0.195~(9)	(E1)	0.290(4)	0.151(7)
$\gamma_{10,1}(\text{Ra})$	124.55(5)	6.5(6)	(M1)	8.36(12)	0.69(6)
$\gamma_{18,8}(\text{Ra})$	124.65(5)	6.9(6)	(M1)	8.34(12)	0.74(6)
$\gamma_{33,22}(\text{Ra})$	126.48 (10)	0.061(34)	(M1, E2)	5.8(23)	0.009(4)
$\gamma_{17,6}(\text{Ra})$	126.48 (10)	0.095(42)	(M1,E2)	5.8(23)	0.014(4)
$\gamma_{19,8}(\text{Ra})$	131.926(5)	2.71(10)	M1	7.1(1)	0.335(12)
$\gamma_{13.5}(\text{Ra})$	134.19(10)	0.073(12)	(M1)	6.76(10)	0.0094(15)
$\gamma_{24.10}({\rm Ra})$	134.19(10)	0.022(11)	(E2)	2.75(4)	0.006(3)
$\gamma_{33,21}(\text{Ra})$	134.19(10)	0.0014(7)	~ /		0.0014(7)
$\gamma_{12,3}(\text{Ra})$	136.990 (4)	8.71(25)	M1	6.38(9)	1.18(3)
$\gamma_{20.8}(\text{Ra})$	137.0(1)	0.04(1)			0.04(1)
$\gamma_{21.9}(\text{Ra})$	139.8(1)	0.0045(10)			0.0045(10)
$\gamma_{26,12}(\text{Ra})$	142.0(1)	0.035(10)	(E2)	2.18(4)	0.011(3)
$\gamma_{19.6}(\text{Ra})$	142.962(5)	2.69(9)	M1	5.65(8)	0.404(12)
$\gamma_{22.9}(\text{Ra})$	147.64(5)	0.237(24)	${ m E1}$	0.187(3)	0.20(2)
$\gamma_{12,2}(\text{Ra})$	148.15(4)	1.04(7)	${ m E1}$	0.186(3)	0.88(6)
$\gamma_{10,0}(\text{Ra})$	150.04(3)	0.33	(M1 + E2)	4.5(8)	0.06
$\gamma_{11,0}(\text{Ra})$	151.6(3)	0.025			0.025
$\gamma_{33,19}(Ra)$	151.6(3)	0.15	(M1)	4.78(8)	0.025
$\gamma_{12,1}(\text{Ra})$	154.336 (10)	3.9(6)	M1+E2	4.1 (8)	0.77(2)
$\gamma_{22,8}(\text{Ra})$	156.409 (9)	6.40(18)	M1	4.38(7)	1.19(3)
$\gamma_{33,18}(\text{Ra})$	158.42 (12)	0.26(7)	M1(+E2)	4.5 (14)	0.048(5)
$\gamma_{30.17}(\text{Ra})$	163.34(17)	0.097(34)	(M1)	3.87(6)	0.020(7)
$\gamma_{18.5}(\text{Ra})$	166.976 (7)	0.234(11)	(E1)	0.1391(20)	0.205(10)
$\gamma_{22.6}(\text{Ra})$	167.45(5)	0.230 (46)	(M1)	3.61(5)	0.05(1)
$\gamma_{31,16}(Ra)$	169.2(3)	0.0029 (14)	× /	~ /	0.0029(14)
$\gamma_{16.4}(\text{Ra})$	169.2(3)	0.0010 (5)			0.0010 (5)
$\gamma_{30,15}(Ra)$	169.2(3)	0.0039(14)			0.0039(14)
$\gamma_{23.6}(\text{Ra})$	171.76(5)	0.040 (4)			0.040(4)
$\gamma_{24.8}(Ra)$	172.926 (18)	0.472(43)	M1	3.29(5)	0.11(1)
$\gamma_{19.5}(Ra)$	174.05 (7)	0.0023		0.1258(18)	0.002
$\gamma_{30,14}(Ra)$	174.05 (11)	0.0071 (18)		(-)	0.0071 (18)
$\gamma_{33,15}(Ra)$	174.05 (11)	0.0067 (18)			0.0067 (18)
$\gamma_{37,23}(Ra)$	174.7(2)	0.030(3)			0.030(3)
$\gamma_{120}(Ra)$	179.757(7)	0.368(28)	E2	0.867(13)	0.197(15)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{16,3}(\text{Ra})$	182.12 (10)	0.0054(11)			0.0054 (11)
$\gamma_{35,15}(\text{Ra})$	183.0(1)	0.0071(12)			0.0071(12)
$\gamma_{24,6}(\text{Ra})$	183.928 (8)	0.541(27)	M1(+E2)	2.92	0.138(7)
$\gamma_{38,25}(\text{Ra})$	185.6(1)	0.002			0.002
$\gamma_{28,10}(\text{Ra})$	185.6(1)	0.002			0.002
$\gamma_{37,21}(\text{Ra})$	186.1(1)	0.013(5)			0.013(5)
$\gamma_{42,35}(\text{Ra})$	189.25(6)	0.0104(21)			0.0104(21)
$\gamma_{21,5}(\text{Ra})$	190.63(20)	0.0101(20)			0.0101(20)
$\gamma_{16,2}(\text{Ra})$	193.52(5)	0.0007(3)			0.0007(3)
$\gamma_{18,3}(\text{Ra})$	193.52(5)	15.53	M1	2.53	4.4
$\gamma_{15,1}(\text{Ra})$	194.3(3)	0.08(6)	(M1, E2)	1.5(9)	0.03(2)
$\gamma_{19.3}(\text{Ra})$	200.807 (16)	0.1088(48)	(E2)	0.577(8)	0.069(3)
$\gamma_{18,2}(\text{Ra})$	204.690 (5)	0.640(33)	(E1)	0.0854(12)	0.59(3)
$\gamma_{26.8}(\mathrm{Ra})$	210.15(8)	0.55(12)	(M1)	1.90(3)	0.19(4)
$\gamma_{18.1}(\text{Ra})$	210.853(3)	8.1 (9)	M1	1.89(3)	2.8(3)
$\gamma_{41,26}(Ra)$	213.48(5)	0.0087(16)			0.0087(16)
$\gamma_{24.5}(\text{Ra})$	215.10(1)	0.147(11)	(E1)	0.0759(11)	0.137(10)
$\gamma_{27.8}(\text{Ra})$	216.0(1)	0.053(6)	· · · ·		0.053(6)
$\gamma_{21,3}(\text{Ra})$	217.41 (10)	0.0065(11)			0.0065(11)
$\gamma_{19.1}(\text{Ra})$	218.154 (17)	0.49(5)	M1	1.715(24)	0.18(2)
$\gamma_{34,12}(Ra)$	219.8(1)	0.0033(8)			0.0033(8)
$\gamma_{37,17}(Ra)$	219.8(1)	0.0008			0.0008
$\gamma_{26.6}(\text{Ra})$	221.22(5)	0.058(16)	(M1)	1.650(24)	0.022(6)
$\gamma_{16.0}(Ra)$	225.26 (10)	0.003(1)			0.003(1)
$\gamma_{22,3}(\text{Ra})$	225.26(10)	0.086(8)	(E2)	0.384(6)	0.062(6)
$\gamma_{21,2}(Ra)$	228.6(1)	0.0006(2)			0.0006(2)
$\gamma_{21,1}(Ra)$	234.8(1)	0.0008(2)			0.0008(2)
$\gamma_{38,10}(Ra)$	234.8(1)	0.0008			0.00084
$\gamma_{180}(Ra)$	236.249 (20)	0.231(12)	E2	0.327(5)	0.174(9)
$\gamma_{22,1}(Ra)$	242.6(2)	0.189 (18)	M1	1.275(18)	0.083(8)
$\gamma_{22,1}(Ra)$	244.4(1)	0.0013 (3)			0.0013(3)
$\gamma_{25,3}(Ra)$	250.1(1)	0.00034(16)			0.00034(16)
$\gamma_{26,5}(\text{Ra})$	252.43(3)	0.100(13)	(E1)	0.0522(8)	0.095(12)
$\gamma_{24,1}(Ra)$	259.08(4)	0.07(1)	(M1)	1.063(15)	0.034(5)
$\gamma_{24,1}(Ra)$	267.4(1)	0.0008(3)	()		0.0008(3)
γ_{22} , (Ra)	274.1(1)	0.0007(2)			0.0007(2)
$\gamma_{43,9}(-\infty)$ $\gamma_{43,97}(Ra)$	276.85(10)	0.0042(10)			0.0042(10)
$\gamma_{20.9}(\text{Ra})$	278.65(5)	0.0068(8)			0.0068(8)
$\gamma_{44.97}(\text{Ra})$	281.27(10)	0.007(1)			0.007(1)
$\gamma_{22} \circ (\text{Ra})$	282.6(1)	0.0038(7)			0.0038(7)
$\gamma_{20,c}(\text{Ra})$	289.62(5)	0.0000 (17) 0.0150 (17)			0.0000 (17) 0.0150 (17)
$\gamma_{33,6}(Ra)$	293.78(10)	0.0065(8)			0.0065(8)
$\gamma_{26,1}(\mathbf{Ra})$	296.21(10)	0.0191(20)	(E2)	0.1581(23)	0.0165(17)
720,1(100) 720,10(Ra)	298.72(12)	0.0070(8)	(112)	0.1001 (20)	0.0070(8)
730,12(100) 730 9(Ra)	303.75(10)	0.0017(30)			0.0017(30)
720,2(10a) 720,19(Ra)	307.3(1)	0.0011(00)			0.0017(00)
$\gamma_{39,12}(10a)$ $\gamma_{39,12}(Ra)$	310.1(1)	0.000(3)			0.000(3)
$(28,1)^{(103)}$	919.9(1)	0.0020(0)			0.0020(0)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
729.2(Ra)	317.8 (1)	0.00055(14)			0.00055(14)
$\gamma_{42,23}(Ra)$	320.8(1)	0.00016(7)			0.00016(7)
$\gamma_{31.5}(Ra)$	324.6(1)	0.00043(13)			0.00043(13)
$\gamma_{45,28}(Ra)$	327.9(1)	0.003			0.003
$\gamma_{27.0}(\text{Ra})$	327.9(1)	0.016(3)			0.016(3)
$\gamma_{38,10}(Ra)$	328.2(1)	0.0020(8)			0.0020(8)
$\gamma_{34,5}(Ra)$	329.9(2)	0.0006(2)			0.0006(2)
$\gamma_{37.8}(Ra)$	334.74 (10)	0.00043(11)			0.00043(11)
$\gamma_{43,22}(Ra)$	336.7(1)	0.0082(1)			0.0082(1)
$\gamma_{39,10}(Ra)$	336.7(1)	0.0001			0.0001
$\gamma_{45,26}(Ra)$	341.1(1)	0.0008(2)			0.0008(2)
γ_{34}_{4} (Ra)	344.3(1)	0.0001			0.0001
$\gamma_{36,5}(\text{Ra})$	347.4(1)	0.0006(1)			0.0006(1)
$\gamma_{42,19}(Ra)$	349.4(1)	0.0001			0.0001
$\gamma_{29.0}(Ra)$	349.4(1)	0.0004(1)			0.0004(1)
$\gamma_{32,3}(\mathrm{Ra})$	351.7(1)	0.0005(1)			0.0005(1)
$\gamma_{38,9}(\text{Ra})$	358.0(1)	0.006(1)			0.006(1)
$\gamma_{43,19}(Ra)$	361.0(1)	0.0006(1)			0.0006(1)
$\gamma_{38,8}(\mathrm{Ra})$	366.5(1)	0.0004(1)			0.0004(1)
$\gamma_{39.9}(\text{Ra})$	366.5(1)	0.0001			0.0001
$\gamma_{43,18}(Ra)$	368.1(1)	0.0019(3)			0.0019(3)
$\gamma_{31,1}(\text{Ra})$	368.9(1)	0.0019(3)			0.0019(3)
$\gamma_{39,8}(\text{Ra})$	375.1(1)	0.0003(1)			0.0003(1)
$\gamma_{38,6}(\text{Ra})$	377.4(1)	0.0029(3)			0.0029(3)
$\gamma_{43,16}(\text{Ra})$	379.4(1)	0.0013(2)			0.0013(2)
$\gamma_{39,6}(\mathrm{Ra})$	386.4(1)	0.0008(2)			0.0008(2)
$\gamma_{32,0}(\mathrm{Ra})$	395.3(2)	0.0008(1)			0.0008(1)
$\gamma_{34,0}(\mathrm{Ra})$	399.9(2)	0.00014(6)			0.00014(6)
$\gamma_{35,0}(\mathrm{Ra})$	403.3(1)	0.0018(2)			0.0018(2)
$\gamma_{38,5}(\text{Ra})$	408.5(1)	0.0010(1)			0.0010(1)
$\gamma_{41,9}(\text{Ra})$	414.61(10)	0.0003(1)			0.0003(1)
$\gamma_{39,5}(\text{Ra})$	417.4(1)	0.0014(2)			0.0014(2)
$\gamma_{45,19}(\text{Ra})$	419.9(2)	0.0006(1)			0.0006(1)
$\gamma_{43,12}(\text{Ra})$	424.8(1)	0.0032(3)			0.0032(3)
$\gamma_{38,3}(\text{Ra})$	435.3(1)	0.0031~(4)			0.0031~(4)
$\gamma_{39,3}(\text{Ra})$	444.1(1)	0.0005(1)			0.0005(1)
$\gamma_{38,1}(\text{Ra})$	452.6(1)	0.0017(2)			0.0017(2)
$\gamma_{43,10}(\text{Ra})$	454.76(10)	0.0105(11)			0.0105~(11)
$\gamma_{44,10}(\text{Ra})$	459.1(3)	0.001			0.001
$\gamma_{41,5}(\text{Ra})$	465(1)	0.0001			0.0001
$\gamma_{38,0}({ m Ra})$	478.0(1)	0.0037~(4)			0.0037~(4)
$\gamma_{45,12}({ m Ra})$	483.7(1)	0.0018(2)			0.0018(2)
$\gamma_{39,0}({\rm Ra})$	487.3(2)	0.0004(1)			0.0004(1)
$\gamma_{43,8}(\text{Ra})$	492.9(1)	0.00152(16)			0.00152(16)
$\gamma_{43,6}({ m Ra})$	503.6(1)	0.00005			0.00005
$\gamma_{41,2}(\text{Ra})$	503.6(1)	0.00012(5)			0.00012(5)
$\gamma_{45,10}({ m Ra})$	513.5(2)	0.0007(2)			0.0007(2)
$\gamma_{42,5}(\text{Ra})$	523.5(1)	0.0005(1)			0.0005(1)

Th - 229

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
γ_{41} o(Ba)	535.1 (1)	0.0013(2)			0.0013(2)
$\gamma_{43,5}(Ra)$	535.1(1)	0.0002			0.0002
$\gamma_{45,9}(Ra)$	543.0(3)	0.0001			0.0001
$\gamma_{42.3}(Ra)$	549.8(5)	0.0001			0.0001
$\gamma_{45.8}(\text{Ra})$	551.7(2)	0.00011(4)			0.00011(4)
$\gamma_{43,3}(\mathrm{Ra})$	561.8 (1)	0.0019(2)			0.0019(2)
$\gamma_{44,3}(\text{Ra})$	565.7(3)	0.0009(1)			0.0009(1)
$\gamma_{43,2}(\text{Ra})$	573.0(1)	0.0028(3)			0.0028(3)
$\gamma_{43,1}(\text{Ra})$	579.2(2)	0.0006(1)			0.0006(1)
$\gamma_{42,0}(\text{Ra})$	592.5(1)	0.0003(1)			0.0003(1)
$\gamma_{45,5}(\text{Ra})$	594.4(3)	0.0001			0.0001

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. C72 (1947) 253(Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, A.GHIORSO, G.T.SEABORG, Phys. Rev. 72 (1947) 252 (Half-life) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (Half-life, Production modes) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Y.F.RODIONOV, Yad. Fiz. 11 (1970) 925 (Alpha energy) E.F.TRETYAKOV, N.I.TRETYAKOVA, V.F.KONYAEV, Y.V.KHRUDEV, A.C.BEDA, G.F.KARTASHEV, I.N.VISHNEV-SKII, Izv. Akad. Nauk SSSR, Ser. Fiz. 34 (1970) 856 (Alpha energies, 225Ra levels, gamma-ray energies, conversion electrons) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Electron Binding Energies) A.Rytz, At. Data Nucl. Data Tables 23 (1979) 507 (Alpha energies) J.K.DICKENS, J.W.MCCONNELL, Radiochem. Radioanal. Lett. 47 (1981) 331 (Gamma-ray energies and intensities) S.S.RATTAN, A.V.R.REDDY, V.S.MALLAPURKAR, R.J.SINGH, SATYA PRAKASH, M.V.RAMANIAH, Phys. Rev. 27 (1983) 327 (Gamma-ray energies and abundances, Ra X-ray intensities) R.G.HELMER, C.W.REICH, M.A.LEE, I.AHMAD, Int. J. Appl. Radiat. Isotop. 37 (1986) 139 (Gamma-ray energies and emission probabilities) R.G.HELMER, M.A.LEE, C.W.REICH, I.AHMAD, Nucl. Phys. A474 (1987) 77 (Alpha energies, alpha intensities, gamma-ray energies, gamma-ray intensities, conversion coefficient) G.J.MILLER, J.C.MCGEORGE, I.ANTHONY, R.O.OWENS, Phys. Rev. C36 (1987) 420 (Half-life of daughter 225Ra) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life) S.J.GOLDSTEIN, M.T.MURRELL, R.W.WILLIAMS, Phys. Rev. C40 (1989) 2793 (229Th Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Halflife of 229Th) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Electron Binding energies) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) 1 (Auger electrons)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) 1 (KX-rays)

- E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595
- (X-ray and Auger Electron emission probabilities)
- J.GASPARRO, G.ARDISSON, V.BARCI, Phys. Rev. C62 (2000) 064305
- (Gamma-ray energies and intensities)
- G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Q)
- A.K.JAIN, R.RAUT, J.K.TULI, Nucl. Data Sheets 110 (2009) 1409
- (Alpha energies, alpha intensities, gamma-ray energies, gamma-ray intensities, Ra-225 levels)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	25.52	(1)	h
Q_{β^-}	:	391.6	(15)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.14}^{-}$	39.8(15)	0.0032 (2)		7.33
$\beta_{0.13}^{-,11}$	71.4 (15)	0.066 (2)	1st forbidden	6.79
$\beta_{0.12}^{-10}$	73.6(15)	0.00078 (5)		8.76
$\beta_{0,11}^{2,2}$	144.3(15)	2.7 (4)	Allowed	6.11
$\beta_{0.10}^{-1}$	173.4(15)	0.31(23)		7.3
$\beta_{0,9}^{-}$	208.1 (15)	12.2(15)	Allowed	5.95
$\beta_{0,8}$	217.4(15)	1.36(24)		6.96
$\beta_{0,6}$	289.3(15)	13 (8)	Allowed	6.4
$\beta_{0.5}^{-}$	290.2(15)	41 (16)	Allowed	5.88
$\beta_{0.4}^{-}$	307.4(15)	29(18)	Allowed	6.1
$\beta_{0.3}^{-}$	313.9(15)	0.43 (2)	1st forbidden	7.97
$\beta_{0,2}^{-}$	333.0(15)	0.17(17)	1st forbidden	8.2
$\beta_{0,0}^{-}$	$391.6\ (15)$	0.022 (7)	1st forbidden	9.57

3 Electron Emissions

-			I I I I I I I	Ke V
e_{AL}	(Pa)	5.9 - 21.0	68(3)	
e_{AK}	(Pa) KLL KLX KXY	70.081 - 78.822 85.989 - 95.858 101.87 - 112.59	0.038 (5) } }	
$ec_{4,2}$ L $ec_{5,4}$ M $ec_{9,2}$ K $ec_{6,4}$ M $ec_{4,2}$ M $ec_{5,2}$ L $ec_{10,8}$ L $ec_{11,7}$ K $ec_{2,0}$ L $ec_{5,2}$ M $ec_{5,2}$ M $ec_{11,5}$ K $ec_{2,0}$ L $ec_{10,8}$ M $ec_{11,9}$ L	 (Pa) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 45.3 \ (24) \\ 31 \ (11) \\ 0.01333 \ (41) \\ 8.2 \ (36) \\ 11.7 \ (6) \\ 0.0507 \ (14) \\ 0.16 \ (16) \\ 0.49 \ (11) \\ 0.110 \ (33) \\ 54.5 \ (20) \\ 0.0125 \ (7) \\ 0.041 \ (40) \\ 0.59 \ (26) \end{array}$	

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV	Electrons per 100 disint.	Energy keV
ес _{11.4 К}	(Pa)	50.509 (4)	0.61(7)	
$ec_{8.5 L}$	(Pa)	51.647 - 56.019	0.0549(37)	
$ec_{2,0}$ M	(Pa)	53.211 - 55.130	15.0 (5)	
ec _{11.9 M}	(Pa)	58.50 - 60.42	0.16(7)	
ес _{9,6 L}	(Pa)	60.123 - 64.495	5.5(9)	
$ec_{9.5 L}$	(Pa)	60.982 - 65.354	2.47(38)	
ес _{8,0 К}	(Pa)	61.56 (2)	0.032(29)	
ес _{3,1 М}	(Pa)	63.1 - 65.1	0.0873(28)	
$ec_{4,0 L}$	(Pa)	63.110 - 67.482	11.86 (18)	
$ec_{8.5 M}$	(Pa)	67.391 - 69.310	0.0134 (9)	
$ec_{8,4 L}$	(Pa)	68.84 - 73.22	0.1222(42)	
$ec_{9,6 M}$	(Pa)	75.867 - 77.786	1.36(27)	
$ec_{9,5 M}$	(Pa)	76.726 - 78.645	0.63(13)	
$ec_{9,4 L}$	(Pa)	78.176 - 82.548	0.607(42)	
$ec_{4,0 M}$	(Pa)	78.854 - 80.773	3.8(7)	
$ec_{6,0 L}$	(Pa)	81.16 - 85.54	0.0379(10)	
$ec_{8,4 M}$	(Pa)	84.59 - 86.51	0.0297(10)	
$ec_{9,4 M}$	(Pa)	93.920 - 95.839	0.155(12)	
$ec_{11,7 L}$	(Pa)	114.562 - 118.934	0.112(15)	
$ec_{11,5 L}$	(Pa)	124.836 - 129.208	0.0411(36)	
$ec_{11,7 M}$	(Pa)	130.306 - 132.225	0.0279(48)	
$ec_{11,5 M}$	(Pa)	140.580 - 142.499	0.0107(14)	
$ec_{11,4 L}$	(Pa)	142.000 - 146.372	0.122(5)	
$ec_{8,0 L}$	(Pa)	153.06 - 157.43	0.0122(10)	
ес _{11,4 М}	(Pa)	157.744 - 159.663	0.0296(17)	
$\beta_{0.14}^{-}$	max:	39.8 (15)	0.0032(2)	avg: $10.1(5)$
$\beta_{0.13}^{-1}$	max:	71.4 (15)	0.066(2)	avg: $18.3(4)$
$\beta_{0,12}^{-12}$	max:	73.6 (15)	0.00078(5)	avg: 18.9 (4)
$\beta_{0,11}^{0,12}$	max:	144.3 (15)	2.7(4)	avg: 38.1 (5)
$\beta_{0,10}^{-,11}$	max:	173.4 (15)	0.31(23)	avg: $46.2(5)$
$\beta_{0,0}^{-}$	max:	208.1 (15)	12.2(15)	avg: 56.2 (5)
β_0^{-8}	max:	217.4 (15)	1.36(24)	avg: 58.9 (5)
β_0^-	max:	289.3 (15)	13 (8)	avg: 80.1 (5)
β_0^-	max:	290.2 (15)	41(16)	avg: 80.4 (5)
$\beta_{0,3}^{-}$	max:	307.4 (15)	29(18)	avg: 85.6 (5)
$\beta_{0,4}^{-}$	max.	313.9 (15)	0.43(2)	avg: 87.6 (5)
β_{-2}^{\sim}	max	333.0 (15)	0.17(17)	avg: $93.4(5)$
$\beta_{0,2}^{\sim}$	max.	391.6 (15)	0.11(11) 0.022(7)	avg. $111.6(5)$
$P_{0,0}$	шал.	031.0 (10)	0.022(1)	avg. 111.0 (0)

CNDC /Huang Xiaolong, Wang Baosong

4 Photon Emissions

4.1 X-Ray Emissions

				Photons per 100 disint.	
XL	(Pa)	11.3676 - 20.1126		65~(3)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pa) (Pa)	92.288 95.869		$\begin{array}{c} 0.37 \ (4) \\ 0.59 \ (7) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	107.595 108.422 109.072	} } }	0.21(2)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	111.405 111.87 112.38	} } }	0.071 (8)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{4,2}(\text{Pa})$	25.64(2)	74.6(39)	$\mathrm{E1}$	4.37(7)	13.9(7)
$\gamma_{5,2}(\mathrm{Pa})$	42.86(7)	0.1275(34)	[E1]	1.14(2)	$0.0596\ (15)$
$\gamma_{10,8}(\text{Pa})$	44.08(17)	0.22(23)	[M1+E2]	300(300)	0.00074(21)
$\gamma_{2,0}(\mathrm{Pa})$	58.5700(24)	75.1(27)	E2	155.5(22)	0.480(16)
$\gamma_{11,9}(\text{Pa})$	63.86(3)	0.82(36)	M1+E2	34(15)	0.0235(21)
$\gamma_{3,1}(\text{Pa})$	68.5(1)	0.438(13)	E2	73.3(12)	0.00590 (15)
$\gamma_{8,5}(\mathrm{Pa})$	72.7510(25)	0.333(22)	[E1]	0.280(4)	0.260(17)
$\gamma_{3,0}(\text{Pa})$	77.69	0.0042(7)			0.0042(7)
$\gamma_{9,6}(\text{Pa})$	81.2280(14)	8.2(13)	M1(+E2)	8.1(14)	0.905~(23)
$\gamma_{9,5}(\text{Pa})$	82.0870(13)	3.7(6)	M1(+E2)	7.9(13)	0.418(13)
$\gamma_{4,0}(\text{Pa})$	84.2140 (13)	23.4(17)	E1	2.50(25)	6.70(7)
$\gamma_{8,4}(\text{Pa})$	89.95(2)	1.171(35)	E1	0.1598(22)	1.01(3)
$\gamma_{6,1}(\text{Pa})$	93.02(4)	0.0459(34)	[E1]	0.1463(21)	0.040(3)
$\gamma_{9,4}(\text{Pa})$	99.278(3)	0.96(7)	M1+E2	6.0(4)	0.137~(6)
$\gamma_{6,0}(\text{Pa})$	102.2700(13)	0.491(12)	E1	0.1141(16)	0.441(11)
$\gamma_{9,3}(\text{Pa})$	105.81(3)	0.0087~(6)	[E1]	0.1043(15)	0.0079(5)
$\gamma_{10,7}(\text{Pa})$	106.61(3)	0.0197(8)	[E1]	0.1023(14)	0.0179(7)
$\gamma_{8,2}(Pa)$	115.63(3)	0.0121(47)	[M1+E2]	10(4)	0.00110(16)
$\gamma_{10,5}(\text{Pa})$	116.82(2)	0.0302(12)	E1	0.342(5)	0.0225 (9)
$\gamma_{9,2}(Pa)$	124.914(17)	0.0763(20)	E1	0.294(4)	0.0590(15)
$\gamma_{10,4}(\text{Pa})$	134.03(2)	0.0318(10)	E1	0.249(4)	0.0255(8)
$\gamma_{11,7}(\text{Pa})$	135.664(11)	0.72(9)	M1(+E2)	8.0(11)	0.0797(22)
$\gamma_{13,9}(Pa)$	136.75(7)	0.00547(19)	[E1]	0.237(3)	0.00442(15)
$\gamma_{10,3}(\text{Pa})$	140.54(4)	0.0047(19)	[M1+E2]	5.3(25)	0.00074(7)
$\gamma_{11,6}(\text{Pa})$	145.06(4)	0.0201(11)	[E2]	2.46(3)	0.0058(3)
$\gamma_{11,5}(Pa)$	145.94(2)	0.198(27)	M1+E2	5.1(8)	0.0324(12)
$\gamma_{11,4}(Pa)$	163.101 (4)	0.92(7)	M1(+E2)	4.9 (4)	0.156(5)

CNDC /Huang Xiaolong, Wang Baosong

Th	—

231

	$\frac{\rm Energy}{\rm keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{8,1}(Pa)$	165.00(5)	0.00857(35)	[E2]	1.464(2)	0.00348(14)
$\gamma_{11,3}(\text{Pa})$	169.66(3)	0.00161(8)	[E1]	0.1421(20)	0.00141(7)
$\gamma_{8,0}(Pa)$	174.15(2)	0.067(27)	[M1+E2]	2.7(15)	0.0180(6)
$\gamma_{9,0}(Pa)$	183.480(25)	0.0375(9)	E1	0.1181(17)	0.0335(8)
$\gamma_{11,2}(\text{Pa})$	188.76(2)	0.00378(33)	[E1]	0.1105(15)	0.0034(3)
$\gamma_{13,6}(\text{Pa})$	217.94(3)	0.0434(9)	$\mathbf{E1}$	0.0789(11)	0.0402(8)
$\gamma_{13,4}(\text{Pa})$	236.01(3)	0.01002(32)	[E1]	0.0657(9)	0.0094(3)
$\gamma_{12,3}(Pa)$	240.27(5)	0.000308(43)	[E1]	0.0630(9)	0.00029(4)
$\gamma_{13,3}(Pa)$	242.50(4)	0.0016~(6)	[M1+E2]	1.0(7)	0.00082(5)
$\gamma_{14,6}(\text{Pa})$	249.60(7)	0.00085(7)	[E1]	0.0578(8)	0.00080(7)
$\gamma_{14,5}(\text{Pa})$	250.45(7)	0.00071(7)	[E1]	0.0573~(8)	0.00067~(7)
$\gamma_{14,4}(\text{Pa})$	267.62(8)	0.00148(15)	[E1]	0.0493~(7)	0.00141 (14)
$\gamma_{14,3}(\text{Pa})$	274.1(1)	0.000058(27)	[M1+E2]	0.7(5)	0.000034~(12)
$\gamma_{12,1}(Pa)$	308.78(7)	0.0003748(19)	[E1]	0.0358~(5)	0.0003618 (18)
$\gamma_{13,1}(Pa)$	311.00(5)	0.005(1)	M1+E2	0.6(3)	$0.00315\ (14)$
$\gamma_{12,0}(Pa)$	317.87(8)	0.0001039(5)	[E1]	0.0336~(5)	0.0001005~(5)
$\gamma_{13,0}(Pa)$	320.15(8)	0.00022(7)	[M1+E2]	0.5(4)	0.00015 (3)
$\gamma_{14,0}(Pa)$	351.8(1)	0.000090(24)	[M1+E2]	0.35(25)	0.000067(13)

5 References

G.B.KNIGHT, R.L.MACKLIN, Phys. Rev. 75 (1949) 34 (Half-life) A.H.JAFFEY, J.LERNER, S.WARSHAW, Phys. Rev. 82 (1951) 498 (Half-life) M.S.FREEDMAN, A.H.JAFFEY, F.WAGNER JR., J.MAY, Phys. Rev. 89 (1953) 302 (Gamma-ray intensities) M.J.CABELL, Can. J. Phys. 36 (1958) 989 (Half-life) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Gamma-ray emission probabilities) K.KOBAYASHI, T.HASHIMOTO, I.KIMURA, J. Nucl. Sci. Technol. (Tokyo) 8 (1971) 492 (Half-life,Gamma-ray energies,intensities and emission probabilities) E.BROWNE, F.ASARO, Phys. Rev. C7 (1973) 2545 (Gamma-ray energies, intensities and emission probabilities) W.TEOH, Nucl. Instrum. Methods 109 (1973) 509 (Gamma-ray energies and intensities) P.HORNSHOJ, P.TIDEMAND-PETERSSON, R.KACZAROWSKI, B.KOTLINSKA, J.ZYLICZ, Nucl. Phys. A248 (1975) 406 (Gamma-ray energies and intensities, Internal conversion electrons intensities, beta emission probabilities, Multipolarity) S.A.BARANOV, V.M.SHATINSKII, A.G.ZELENKOV, V.A.PCHELIN, Sov. J. Nucl. Phys. 26 (1977) 486 (Gamma-ray energies and intensities) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) R.VANINBROUKX, B.DENECKE, Nucl. Instrum. Methods 193 (1982) 191 (Gamma-ray emission probabilities) C.BAKTASH, E.DER MATEOSIAN, O.C.KISTNER, A.W.SUNYAR, D.HORN, C.J.LISTER, Bull. Am. Phys. Soc. 28 (1983) 41(Gamma-ray intensities and emission probabilities) H.CHATANI, Nucl. Instrum. Methods 205 (1983) 501 (Half-life,Gamma-ray emission probabilities)

CNDC /Huang Xiaolong, Wang Baosong

R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 35 (1984) 783
(Gamma-ray emission probabilities)
E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527
(Atomic data)
H.CHATANI, Nucl. Instrum. Methods Phys. Res. A425 (1999) 277
(Gamma-ray energies, intensities and emission probabilities)
E.BROWNE, Nucl. Data Sheets 93 (2001) 763
(Decay scheme and levels)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129
(Q)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods
Phys. Res. A589 (2008) 202
(Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	14.02	(6)	$\times 10^9$ y
$Q^{'}_{lpha}$:	4081.6	(14)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} \text{Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 3810.0 \ (14) \\ 3948.5 \ (14) \\ 4011.2 \ (14) \end{array}$	$\begin{array}{c} 0.068 \ (20) \\ 21.0 \ (13) \\ 78.9 \ (13) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ra)	5.71 - 19.09	8.18 (29)
e_{AK}	(Ra) KLL KLX KXY	65.149 - 72.729 79.721 - 88.466 94.27 - 103.91	0.00019 (6) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10.624 - 18.354		7.2(3)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Ra) (Ra)	85.43 88.47		0.0017(5) 0.0028(8)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ra) (Ra) (Ra)	$\begin{array}{c} 99.432 \\ 100.13 \\ 100.738 \end{array}$	} } }	0.00097(28)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102.89 \\103.295 \\103.74$	} } }	0.00032 (10)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Ra})$ $\gamma_{2,1}(\mathrm{Ra})$	$\begin{array}{c} 63.811 \ (10) \\ 140.88 \ (1) \end{array}$	$\begin{array}{c} 21.1 \ (13) \\ 0.068 \ (20) \end{array}$	E2 E2	$\begin{array}{c} 80.4 \ (12) \\ 2.26 \ (4) \end{array}$	$\begin{array}{c} 0.259 \ (15) \\ 0.021 \ (6) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

A.F.KOVARIK, N.I.ADAMS JR., Phys. Rev. 54 (1938) 413 (Half-life) D.C.DUNLAVEY, G.T.SEABORG, Phys. Rev. 87 (1952) 165 (Alpha emission probabilities) G.PHILBERT, J.GENIN, L.VIGNERON, J. Phys. Radium 15 (1954) 16 (Alpha emission) R.L.MACKLIN, H.S.POMERANCE, J. Nucl. Energy 2 (1956) 243 (Half-life) G.ALBOUY, Ann. Phys. (Paris) 1 (1956) 99 (Alpha emission probabilities) E.PICCIOTTO, S.WILGAIN, Nuovo Cim. 4 (1956) 1525 (Half-life) F.E.SENFTLE, T.A.FARLEY, N.LAZAR, Phys. Rev. 104 (1956) 1629 (Half-life) B.G.HARVEY, H.G.JACKSON, T.A.EASTWOOD, G.C.HANNA, Can. J. Phys. 35 (1957) 258 (Alpha emission energies) G.E.KOCHAROV, A.P.KOMAR, G.A.KOROLEV, Sov. Phys. - JETP 9 (1959) 48 (Alpha emission probabilities) R.E.BELL, S.BJORNHOLM, J.C.SEVERIENS, Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 32,12 (1960) (Half-life) T.A.FARLEY, Can. J. Phys. 38 (1960) 1059 (Half-life) G.E.KOCHAROV, G.A.KOROLEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 25 (1961) 237 (Alpha emission energies, Alpha emission probabilities) G.A.KOROLEV, G.E.KOCHAROV, Izv. Akad. Nauk SSSR, Ser. Fiz. 26 (1962) 233 (Alpha emission energies) L.J.LEROUX, L.E.GLENDENIN, Nat. Conf. Nucl. Energy, Application of Isotopes and Radiation, Pretoria, South Africa, Ed. F.L.Warren (1963) 83 (Half-life) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma-ray emission probabilities) S.SADASIVAN, V.M.RAGHUNATH, Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities) T.MITSUGASHIRA, M.MAKI, S.SUZUKI, Y.SHIOKAWA, Radiochem, Radioanal, Lett. 58 (1983) 199 (Gamma-ray emission probabilities, Gamma-ray energies, Alpha emission probabilities) J.-C.ROY, L.BRETON, J.-E.COTE, J.TURCOTTE, Nucl. Instrum. Methods 215 (1983) 409 (Gamma-ray emission probabilities) S.K.SAHA, S.M.SAHAKUNDU, J. Phys. (London) G15 (1989) 73 (Alpha emission energies, Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities) N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941 (Half-life evaluation) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha emission probabilities, Alpha emission energies) R.BONETTI, C.CHIESA, A.GUGLIELMETTI, R.MATHEOUD, G.POLI, V.L.MIKHEEV, S.P.TRETYAKOVA, Phys. Rev. C51 (1995) 2530 (Spontaneous fission probability, cluster decay) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 529 (Atomic Data)

A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723

(Spin and Parity, Multipolarities)

I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1

(Conversion electron emission probabilities and energies)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., Proc. Int. Conf. on Nuclear Data for Science and Technology, 26 Sept.-1 Oct. 2004, Santa Fe, New Mexico; AIP Conf. Proc. 769 (2005) 268 (Conversion electron emission energies and probabilities)

NPL /A. Arinc

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	22.15	(8)	\min
Q_{β^-}	:	1243.1	(14)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.20}^{-}$	224.4(14)	0.0434 (9)		6.7
$\beta_{0.19}^{-1}$	258.3(14)	0.205 (2)	Allowed	6.2
$\beta_{0.18}^{-}$	431.5(14)	0.385(4)	Allowed	6.6
$\beta_{0.17}^{-}$	478.5(14)	1.19(3)	Allowed	6.3
$\beta_{0.16}^{-}$	573.2(14)	0.0174(22)	1st forbidden	8.4
$\beta_{0.15}^{-}$	657.6(14)	0.15(3)	Allowed	7.6
$\beta_{0,14}^{-}$	689.2(14)	1.23 (3)	Allowed	6.8
$\beta_{0,13}^{-}$	788.7(14)	0.217(13)	Allowed	7.7
$\beta_{0,12}^{-}$	795.3(14)	0.821(14)	1st forbidden	7.2
$\beta_{0,11}^{-}$	985.8(14)	0.60 (3)	1st forbidden unique	8.1
$\beta_{0,8}$	1041.4(14)	0.074 (8)	Allowed	8.6
$\beta_{0,7}^{-}$	1073.9(14)	0.692(12)	Allowed	7.7
$\beta_{0,5}^{-}$	1148.4(14)	10.4(4)	Allowed	6.6
$\beta_{0,1}^{-}$	1236.4(14)	50 (6)	1st forbidden	6.1
$\beta_{0,0}^{-}$	1243.1(14)	34(6)	1st forbidden	6.2

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e _{AL}	(Pa)	5.9 - 21.6	8.6 (10)	
e _{AK}	(Pa) KLL KLX	70.081 - 78.822 88.03 - 95.56	0.041 (5) } }	
	KXY	101.78 - 112.40	}	
$ec_{1,0 M}$	(Pa)	1.29 - 3.21	34.2 (9)	
$ec_{8,4 \text{ K}}$	(Pa)	2.54 (5)	0.013	
$ec_{9,5 \text{ K}}$	(Pa)	5.10 (2)	0.0270(31)	
$ec_{1,0 N}$	(Pa)	5.27 - 6.30	9.27(26)	
$ec_{4,2 L}$	(Pa)	8.268 - 12.640	4.97(19)	
$ec_{8,3 \text{ K}}$	(Pa)	18.5 (1)	0.013	
$ec_{10,6 \text{ K}}$	(Pa)	21.689 (20)	0.015	
$ec_{4,2}$ M	(Pa)	24.012 - 25.931	1.272(49)	
$ec_{4,2 N}$	(Pa)	27.990 - 29.018	0.332(12)	
$ec_{10,5 K}$	(Pa)	30.63 (2)	0.057(16)	
$ec_{2,0 L}$	(Pa)	36.0 - 40.4	6.39(23)	
ec _{10,4 K}	(Pa)	38.9 (2)	0.034	

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy keV	Electrons per 100 disint.	E	Energy keV
6Co 1 T	(Pa)	42.82 - 47.19	0.052.(22)		
ecs.1 L	(Pa)	49.38 - 53.76	0.020(17)		
ес <u>з,</u> 0 Г	(Pa)	49,908 (12)	0.0206(6)		
CI15 V	(Pa)	50	0.01968 (29)		
eca o M	(Pa)	51.7 - 53.7	1.76(6)		
ec7 5 1	(Pa)	53.40 - 57.78	0.299(14)		
ec2 0 N	(Pa)	55.7 - 56.7	0.475(16)		
ес _{7.0} к	(Pa)	56.57 (1)	0.0281(7)		
ес114 к	(Pa)	58.00 (6)	0.0557(14)		
$ec_{3.1 \text{ M}}$	(Pa)	58.56 - 60.48	0.014 (6)		
$ec_{4,0,L}$	(Pa)	65.372 - 69.744	2.08(8)		
ec _{17.15} K	(Pa)	66.45 (8)	0.075(22)		
$ec_{5.1 L}$	(Pa)	66.88 - 71.26	0.0217(6)		
$ec_{7.5 M}$	(Pa)	69.15 - 71.07	0.0720(34)		
$ec_{7,5 N}$	(Pa)	73.13 - 74.16	0.0193 (9)		
$ec_{5,0 L}$	(Pa)	73.54 - 77.91	0.0814(18)		
$ec_{11,3 K}$	(Pa)	74.20 (18)	0.031(27)		
$ec_{12,11 K}$	(Pa)	77.956 (14)	0.224~(6)		
$ec_{4,0 M}$	(Pa)	81.116 - 83.035	0.41(7)		
$ec_{5,0 M}$	(Pa)	89.29 - 91.21	0.01992 (45)		
ес _{17,14 К}	(Pa)	98.07 (8)	0.020(16)		
ес _{13,10 К}	(Pa)	104 (2)	0.029		
$ec_{18,15}$ K	(Pa)	113.5 (2)	0.0275~(12)		
$ec_{10,5 L}$	(Pa)	122.12 - 126.50	0.0138(20)		
$ec_{10,4 L}$	(Pa)	130.4 - 134.8	0.011		
$ec_{13,8 \rm K}$	(Pa)	140.18 (9)	0.014		
$ec_{11,0 K}$	(Pa)	144.70 (15)	0.031~(31)		
$ec_{11,4 L}$	(Pa)	149.5 - 153.9	0.01166 (33)		
$ec_{17,15}$ L	(Pa)	157.95 - 162.32	0.0167~(6)		
$ec_{11,3}$ L	(Pa)	165.7 - 170.1	0.0111(5)		
$ec_{12,11}$ L	(Pa)	169.447 - 173.819	0.0430(11)		
$ec_{13,7}$ K	(Pa)	172.64 (7)	0.017		
$ec_{12,11}$ M	(Pa)	185.191 - 187.110	0.01037(27)		
$ec_{12,3 \text{ K}}$	(Pa)	264.67 (11)	0.015		
$ec_{12,1 \text{ K}}$	(Pa)	328.34 (4)	0.046(8)		
$ec_{12,0}$ K	(Pa)	335.17 (2)	0.0240(42)		
$ec_{14,5 \text{ K}}$	(Pa)	346.626 (7)	0.227(6)		
$ec_{12,3}$ L	(Pa)	356.2 - 360.6	0.029		
$ec_{15,5}$ K	(Pa)	378.2 (6)	0.035		
$ec_{15,4}$ K	(Pa)	386.42 (4)	0.042		
$ec_{14,5}$ L	(Pa)	438.117 - 442.489	0.043(1)		
$ec_{17,8}$ K	(Pa)	450.33 (8)	0.01		
$ec_{14,5}$ M	(Pa)	405.801 - 405.780	0.01035(24)		
ес _{17,7 К}	(Pa)	462.79 (0) 557.205 (16)	0.02		
ес _{17,5 К}	(Pa)	(10)	0.0423(10)		
$\beta_{0,20}^{-}$	max:	224.4 (14)	0.0434(9)	avg:	60.9(4)
$\beta_{0,19}^{-}$	max:	258.3 (14)	0.205(2)	avg:	70.8 (4)
$\beta_{0,18}$	max:	431.5 (14)	0.385(4)	avg:	124.3(5)

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy keV		Electrons per 100 disint.	Energy keV	
$\beta_{0.17}^{-}$	max:	478.5	(14)	1.19(3)	avg:	139.5(5)
$\beta_{0.16}^{-}$	max:	573.2	(14)	0.0174(22)	avg:	170.8(5)
$\beta_{0.15}^{-15}$	max:	657.6	(14)	0.15(3)	avg:	199.6(5)
$\beta_{0.14}^{-1}$	max:	689.2	(14)	1.23(3)	avg:	210.5(5)
$\beta_{0.13}^{-}$	max:	788.7	(14)	0.217(13)	avg:	245.5(5)
$\beta_{0.12}^{-}$	max:	795.3	(14)	0.821(14)	avg:	247.8(5)
$\beta_{0,11}^{-1}$	max:	985.8	(14)	0.60(3)	avg:	317.0(6)
$\beta_{0.8}^{-}$	max:	1041.4	(14)	0.074(8)	avg:	337.6~(6)
$\beta_{0,7}^{-}$	max:	1073.9	(14)	0.692(12)	avg:	349.7(6)
$\beta_{0.5}^{-}$	max:	1148.4	(14)	10.4(4)	avg:	377.8(6)
$\beta_{0,1}^{-}$	max:	1236.4	(14)	50(6)	avg:	411.2(6)
$\beta_{0,0}^{\pm}$	max:	1243.1	(14)	34(6)	avg:	413.8(6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pa)	11.366 - 21.6		8.2(9)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pa) (Pa)	92.288 95.869		$\begin{array}{c} 0.39 \ (1) \\ 0.615 \ (13) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	$107.595 \\108.422 \\109.072$	} } }	0.235(6)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$ 111.405 \\ 111.87 \\ 112.38 $	} } }	0.079(3)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\text{Pa})$	6.65(5)	51(6)	(M1)	3080(60)	0.0165(18)
$\gamma_{4,2}(Pa)$	29.373(10)	8.83(31)	E1	3.07(6)	2.17(7)
$\gamma_{2,0}(\text{Pa})$	57.10(2)	8.81(33)	E2	176(4)	0.0498(15)
$\gamma_{3,1}(Pa)$	63.92(6)	0.072(31)	(E2)	102.1(21)	0.0007(3)
$\gamma_{3,0}(Pa)$	70.49(10)	0.029(27)	[M1+E2]	40 (30)	0.0007(4)
$\gamma_{7,5}(\text{Pa})$	74.51(5)	0.436(20)	[M1]	9.85(20)	0.0402(17)
$\gamma_{4,0}(\text{Pa})$	86.477(10)	4.48(16)	E1	1.43(8)	1.843(22)
$\gamma_{5,1}(\text{Pa})$	87.99(3)	0.1985(24)	[E1]	0.169(3)	0.1698(20)
$\gamma_{5,0}(\mathrm{Pa})$	94.65 (5)	0.884 (11)	E1	0.140 (3)	0.775 (9)

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{-1,2}(Pa)$	105.2(1)	0.041			0.041
$\gamma = 1, 2 (= 0)$ $\gamma = 6$ (Pa)	108.5(1)	0.0027	M1+E2	3.5(6)	0.0006
$\gamma_{8,0}(Pa)$	115.14(5)	0.03(8)	[M1+E2]	10(4)	0.003(7)
$\gamma_{0,4}(=a)$ $\gamma_{0,5}(Pa)$	117.692(20)	0.038(4)	M1+E2	12.2(4)	0.0029(3)
$\gamma_{9,3}(Pa)$	131.101(25)	0.0641(17)	E1	0.262(5)	0.0508(13)
$\gamma_{10,6}(Pa)$	134.285(20)	0.016(5)	[M1 + E2]	8.0 (14)	0.0018(5)
$\gamma_{10,5}(Pa)$	143.23(2)	0.088(15)	M1+E2	6.7(12)	0.0114(7)
$\gamma_{-1,3}(Pa)$	147.5	0.0018(6)		0.0 ()	0.0018(6)
$\gamma_{10.4}(Pa)$	151.409 (20)	0.040(4)	[M1+E2]	4.9(6)	0.0067(3)
$\gamma_{11.6}(Pa)$	153.49 (18)	0.0480 (8)	[E1]	0.180(4)	0.0407(7)
$\gamma_{9,2}(Pa)$	155.239 (20)	0.000270(35)	E1	0.176(4)	0.00023 (3)
$\gamma_{11.5}(Pa)$	162.504	0.185	[E1]	0.157(3)	0.16
$\gamma_{7,1}(Pa)$	162.504(12)	0.194(3)	[E1]	0.157(3)	0.1674(26)
$\gamma_{7.0}(Pa)$	169.162 (10)	0.287(5)	[E1]	0.1431(29)	0.251(4)
$\gamma_{11,4}(Pa)$	170.60(6)	0.578(10)	[E1]	0.1403(28)	0.507(9)
$\gamma_{17,15}(Pa)$	179.05 (8)	0.125(25)	(M1 + E2)	3.5(8)	0.0278(7)
$\gamma_{10,2}(Pa)$	180.76(3)	0.000123(3)	[E1]	0.1223(24)	0.00011(3)
$\gamma_{11.3}(\text{Pa})$	186.80 (18)	0.067(27)	[M1+E2]	2.2(13)	0.0209(9)
$\gamma_{12,11}(Pa)$	190.552 (14)	0.367(8)	M1	3.26(6)	0.0861(15)
$\gamma_{8.1}(Pa)$	194.97 (7)	0.1183(19)	E1	0.1024(20)	0.1073(17)
$\gamma_{8,0}(Pa)$	201.62(5)	0.0242(9)	E1	0.0946(19)	0.0221(8)
$\gamma_{17,14}(Pa)$	210.67(8)	0.044(18)	[M1+E2]	1.5(10)	0.0178(11)
$\gamma_{-1,4}(\text{Pa})$	211.3(2)	0.0202(9)		. ,	0.0202(9)
$\gamma_{9,0}(Pa)$	212.34(5)	0.0070(7)	E1	0.0839(17)	0.0065(6)
$\gamma_{13,10}(Pa)$	216.54(8)	0.031(12)	(M1 + E2)	1.4(9)	0.0130(7)
$\gamma_{18,15}(\text{Pa})$	226.1(2)	0.0516(22)	M1 + (E2)	2.02(4)	0.0171(7)
$\gamma_{10,0}(\text{Pa})$	237.86(6)	0.00202(43)	[E1]	0.0645(13)	0.0019(4)
$\gamma_{-1,5}(\text{Pa})$	242.3	0.0029~(6)			0.0029~(6)
$\gamma_{12,8}(Pa)$	246.14(6)	0.0043~(6)	[E1]	0.0596(12)	0.0041~(6)
$\gamma_{11,1}(Pa)$	250.65(16)	0.0062(4)	[E2]	0.317~(6)	0.0047(3)
$\gamma_{13,8}(Pa)$	252.78(9)	0.0152(21)	[M1+E2]	1.3(3)	0.0066(3)
$\gamma_{11,0}(\text{Pa})$	257.30(15)	0.09(3)	[M1+E2]	0.8(6)	0.0524 (12)
$\gamma_{12,7}(Pa)$	278.7(4)	0.0047~(6)			0.0047~(6)
$\gamma_{13,7}(Pa)$	285.24(7)	0.030(4)	[M1+E2]	0.94(22)	0.0154(9)
$\gamma_{-1,6}(\text{Pa})$	309.9	0.0032(3)			0.0032(3)
$\gamma_{14,10}(\text{Pa})$	316.1	0.00383(41)	E1	0.0340(7)	0.0037~(4)
$\gamma_{15,10}(\text{Pa})$	347.64(6)	0.0234(13)	[M1]	0.613(12)	0.0145(8)
$\gamma_{13,5}(Pa)$	359.74(4)	$0.1355\ (21)$	M1	0.559(11)	0.0869(12)
$\gamma_{12,4}(Pa)$	361.285(22)	0.0224~(6)	[E1]	0.0255~(5)	0.0218~(6)
$\gamma_{13,4}(\text{Pa})$	367.92(7)	0.0056(11)	[M1]	0.525~(10)	0.0037~(7)
$\gamma_{12,3}(Pa)$	377.27(11)	0.040(3)	[M1+E2]	0.46(8)	0.0275 (9)
$\gamma_{-1,7}(\text{Pa})$	383.5	0.0019(6)			0.0019(6)
$\gamma_{19,15}(\mathrm{Pa})$	398.8(5)	0.0158(10)	[M1]	0.422(8)	0.0111(7)
$\gamma_{-1,8}(\text{Pa})$	408.8(5)	0.0005(4)			0.0005(4)
$\gamma_{16,11}(\mathrm{Pa})$	412.5(5)	0.0115(10)	[M1]	0.385~(8)	0.0083(7)
$\gamma_{-1,9}(\text{Pa})$	418.4(5)	0.0091(7)	/ >		0.0091(7)
$\gamma_{19,14}(\text{Pa})$	430.9 (4)	0.0239(5)	(M1)	0.342(6)	0.0178(4)
$\gamma_{20,15}(\text{Pa})$	433.2(4)	0.0117(4)			0.0117(4)

	keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{12,1}(Pa)$	440.94 (4)	0.249(10)	(M1 + E2)	0.30(5)	0.1912 (23)
$\gamma_{12,0}(Pa)$	447.762 (20)	0.134(5)	[M1+E2]	0.29(4)	0.1043(14)
$\gamma_{-1,10}(\text{Pa})$	454.2(5)	0.04			0.04
$\gamma_{14,5}(\text{Pa})$	459.222 (7)	1.274(17)	M1	0.288(6)	0.989(12)
$\gamma_{-1,11}(\text{Pa})$	464.8	0.0026(3)			0.0026(3)
$\gamma_{14,4}(\text{Pa})$	467.40(6)	0.0167(17)	[M1, E2]	0.16(11)	0.0144(4)
$\gamma_{-1.12}(\text{Pa})$	473.9(5)	0.0033(7)			0.0033(7)
$\gamma_{15.5}(\text{Pa})$	490.80 (6)	0.1338(21)	M1	0.241(5)	0.1078(16)
$\gamma_{-1.13}(\text{Pa})$	497.1 (4)	0.0128(4)			0.0128(4)
$\gamma_{15.4}(\text{Pa})$	499.02 (4)	0.1938(27)	M1	0.230(5)	0.1576(21)
$\gamma_{-1.14}(Pa)$	505.5(6)	0.0055(3)			0.0055(3)
$\gamma_{-1,15}(\text{Pa})$	513.4(4)	0.0133(4)			0.0133(4)
$\gamma_{-1,16}(Pa)$	517.0(4)	0.0046(3)			0.0046(3)
$\gamma_{17,10}(Pa)$	526.69(6)	0.052(4)	[M1,E2]	0.12(8)	0.0463(11)
$\gamma_{-1.17}(Pa)$	531.8 (4)	0.0070(7)	L / J		0.0070(7)
$\gamma_{170}(Pa)$	552.21(8)	0.0194(6)	(M1)	0.1754(35)	0.0165(5)
$\gamma_{-1.18}(Pa)$	553.7	0.0030(3)			0.0030(3)
$\gamma_{-1,10}(Pa)$	554.9	0.0031(3)			0.0031(3)
$\gamma_{17.8}(Pa)$	562.93(8)	0.0636(8)	[M1]	0.167(3)	0.0545(7)
$\gamma_{18,10}(Pa)$	573.7(4)	0.0384(12)	[M1]	0.158(3)	0.0332(10)
$\gamma_{10,10}(Pa)$	578.7	0.0017(5)	[]	01200 (0)	0.0017(5)
$\gamma_{-1,20}(Pa)$	583.2	0.0016(5)			0.0016(5)
$\gamma_{17,21}(1 \alpha)$ $\gamma_{17,7}(Pa)$	595.39(6)	0.1346(19)	(M1)	0.143(3)	0.1178(16)
$\gamma_{12,7}(Pa)$	599.3(2)	0.0335(6)	[M1]	0.141(3)	0.0294(5)
$\gamma_{10,9}(Pa)$	610.0(3)	0.0643(14)	[M1]	0.134(3)	0.0267(0)
$\gamma_{10,0}(Pa)$	642.4(2)	0.0016(11) 0.0226(6)	[M1]	0.1171(23)	0.0202(5)
$\gamma_{16,7}(1\alpha)$ $\gamma_{16,1}(Pa)$	663.3(5)	0.0220(0) 0.0041(6)	[M1]	0.1171(20) 0.1075(22)	0.0202(5)
$\gamma_{10,1}(Pa)$	669.9(5)	0.0018		0.1010 (22)	0.0018
$\gamma_{10,0}(1a)$	669,901,(16)	0.557(7)	[M1]	0.1047(21)	0.504(6)
$\gamma_{17,5}(1 a)$ $\gamma_{17,4}(P_2)$	678.04(10)	0.001 (1)	[M1 E2]	0.1047(21)	0.0647(9)
$\gamma_{17,4}(1a)$	681.2 (6)	0.0000(20) 0.0143(4)		0.00 (4)	0.0047(3) 0.0143(4)
$\gamma = 1,22(1 a)$	690	0.0143(4) 0.0021(5)			0.0143(4) 0.0021(5)
$\gamma = 1,23(1 a)$	698 5 (6)	0.0021(5)			0.0021(5)
$\gamma = 1,24(1.a)$	703.7(6)	0.0100(5)			0.0100(5)
$\gamma_{-1,25}(ra)$	703.1(0) 707.8(2)	0.0091(5)	[F9]	0.0200.(4)	0.0091(3)
/18,6(ra)	7170(3)	0.0033(3) 0.0458(10)	[122] (M1)	0.0209 (4) 0.0874 (17)	0.0031(0) 0.0431(0)
$\gamma_{18,5}(ra)$	717.0(2) 725.1(2)	0.0456(10) 0.0687(11)	(M1)	0.0814(17) 0.0848(17)	0.0421(9) 0.0623(10)
$\gamma_{18,4}(Pa)$	723.1(2)	0.0007(11)		0.0646(17)	0.0055(10)
$\gamma_{-1,26}(Pa)$	741.0	0.0029(2) 0.0227(5)	[[[]]]	0.00615(19)	0.0029(2)
$\gamma_{18,3}(Pa)$	741.1(2) 744.0(5)	0.0257(5)		0.00013(12)	0.0250(5)
$\gamma_{-1,27}(Pa)$	744.9(3) 751 6(6)	0.0055(2)			0.0055(2)
$\gamma_{-1,28}(Pa)$	(31.0 (0))	0.0023(4)			0.0023(4)
$\gamma_{17,1}(Pa)$	101.90(1) 764 = (0)	0.0324(1)			0.0324(7)
γ _{17,0} (Pa)	(04.33 (0))	0.0891(13)			0.0891(13)
$\gamma_{-1,29}(Pa)$	(0(.5)	0.0032(2)			0.0032(2)
$\gamma_{-1,30}(Pa)$	((4.0)(4))	0.0108(5)	[]]] // 1	0.0000(1.4)	0.0108(5)
$\gamma_{19,8}(Pa)$	(83.2(5))	0.00600(32)		0.0692(14)	0.0056(3)
$\gamma_{-1,31}(\text{Pa})$	(84.2(5))	0.0022(2)	[17:4]	0.00500 (11)	0.0022(2)

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{20,9}(\text{Pa})$	806.4(5)	0.0123(5)	[171]	0.00591 (10)	0.0123(5)
$\gamma_{18,0}(Pa)$	811.0(2)	0.0000(2)	[L]] [M1]	0.00521(10)	0.0000(2) 0.0105(6)
$\gamma_{19,7}(Pa)$	813.9(4)	0.0207(0)		0.0021(12)	0.0195(0)
$\gamma_{20,8}(Pa)$	817.0(0)	0.0095(5)			0.0095(3)
$\gamma_{-1,32}(Pa)$	0.02.0(3)	0.0075			0.0075
$\gamma_{-1,33}(Pa)$	040.0(1) 840.5(5)	0.0013			0.0013
$\gamma_{20,7}(Pa)$	849.3(3)	0.0039(3)			0.0039(3)
$\gamma_{-1,34}(Pa)$	870.1(1) 874.0(5)	0.0031(2)			0.0031(2)
$\gamma_{-1,35}(Pa)$	874.0(5)	0.00120(4)	$\mathbf{F}0$	0.0125(2)	0.00120(4)
$\gamma_{19,6}(Pa)$	800.9(5)	0.0098(4) 0.1104(15)	[M1]	0.0133(3) 0.0403(10)	0.0097 (4) 0.1052 (14)
$\gamma_{19,5}(ra)$	890.1(5)	0.1104(10) 0.0023(4)	[M1]	0.0493(10) 0.0481(10)	0.1052(14) 0.0022(4)
$\gamma_{19,4}(1a)$	030.3(5)	0.0025 (4)		0.0401 (10)	0.0022 (4)
$\gamma_{-1,36}(P_a)$	935.2(7)	0.000 0.0369 (7)			0.000(7)
$\gamma_{-1,37}(Pa)$	941.9(8)	0.00000(1) 0.0048(3)			0.0003(1) 0.0048(3)
$\gamma_{-1,38}(Pa)$	942.8	0.0019(3)			0.0019(3)
$\gamma_{21,39}(Pa)$	948.3(5)	0.0010(3)			0.0060(3)
$\gamma_{-1,40}(Pa)$	955(1)	0.0002(3)			0.0002(3)
$\gamma_{-1,40}(Pa)$	960.8(8)	0.0041(2)			0.0041(2)
$\gamma_{-1,41}(Pa)$	962.8(9)	0.0015(2)			0.0015(2)
$\gamma_{-1.43}(Pa)$	968.2(9)	0.0083(3)			0.0083(3)
$\gamma_{191}(Pa)$	978.2(5)	0.00582(30)	[E1]	0.00374(7)	0.0058(3)
$\gamma_{19,0}(Pa)$	984.8 (5)	0.01024(30)	[E1]	0.00369(7)	0.0102(3)
$\gamma_{-1.44}(Pa)$	994 (1)	0.0006(1)			0.0006(1)
$\gamma_{-1.45}(Pa)$	1001(1)	0.0008(2)			0.0008(2)
$\gamma_{-1.46}(Pa)$	1007(1)	0.0014(2)			0.0014(2)
$\gamma_{-1.47}(\text{Pa})$	1011(1)	0.0019(2)			0.0019(2)
$\gamma_{-1,48}(Pa)$	1026.5(10)	0.0075			0.0075
$\gamma_{-1,49}(\text{Pa})$	1092.5(10)	0.006			0.006
$\gamma_{-1,50}(\text{Pa})$	1132.1	0.0006(2)			0.0006(2)
$\gamma_{-1,51}(\text{Pa})$	1139.1	0.0004(1)			0.0004(1)
$\gamma_{-1,52}(\text{Pa})$	1144(1)	0.0027			0.0027
$\gamma_{-1,53}(\text{Pa})$	1201(1)	0.006			0.006

5 References

W.C.RUTLEDGE, J.M.CORK, S.B.BURSON, Phys. Rev. 86 (1952) 775 (Half-life)
E.N.JENKINS, Analyst 80 (1955) 301 (Half-life)
M.S.FREEDMAN, D.W.ENGELKEMEIR, F.T.PORTER, F.WAGNER JR., P.DAY, Priv. Comm. (1957) (Gamma-ray emission probabilities, beta-transition energies)
B.J.DROPESKY, L.M.LANGER, Phys. Rev. 108 (1957) 90 (Half-life, energy of beta(0,0)-transition)
R.DAMS, F.ADAMS, Radiochim. Acta 10 (1968) 1 (Gamma-ray energies)
E.BROWNE, F.ASARO, Report UCRL-17989, Univ. California (1968) 1 (Gamma-ray energies)
J.M.VARA, R.GAETA, Nucl. Phys. A130 (1969) 586 (Gamma-ray energies)

KRI /V.P. Chechev, N.K. Kuzmenko

Th - 233

W.HOEKSTRA, Thesis, Technische Hogeschool, Delft. (1969) (Half-life, KX-ray emission probabilities , gamma - ray relative probabilities) C.SEBILLE, G.BASTIN, C.F.LEANG, R.PIEPENBRING, M.F.PERRIN, Compt. Rend. Acad. Sci. (Paris) Ser. A 270 (1970) 354(Gamma-ray energies) C.SEBILLE-SCHUCK, Thesis, Report FRNC-TH-255, Univ. Paris (1972) (Gamma-ray relative probabilities, gamma-ray multipolarities, conversion electron characteristics) M.DE BRUIN, P.J.M.KORTHOVEN, J. Radioanal. Chem. 10 (1972) 125 (Gamma-ray energies) T.VON EGIDY, O.W.B.SCHULT, D.RABENSTEIN, J.R.ERSKINE, O.A.WASSON, R.E.CHRIEN, D.BREITIG, R.P.SHARMA, H.A.BAADER, H.R.KOCH, Phys. Rev. C6 (1972) 266 (Gamma-ray energies) M.Skalsey, R.D.Connor, Can. J. Phys. 54 (1976) 1409 (Gamma-ray energies) P.JEUCH, Thesis, Tech. Univ. Munchen (1976) (Gamma-ray multipolarities, conversion electron characteristics) L.GONZALEZ, R.GAETA, E.VANO, J.M.LOS ARCOS, Nucl. Phys. A324 (1979) 126 (Gamma-ray energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) S.A.WOODS, P.CHRISTMAS, P.CROSS, S.M.JUDGE, W.GELLETLY, Nucl. Instrum. Methods Phys. Res. A264 (1988) 333 (Gamma-ray energies, ICC for gamma (4,0)) A.ABZOUZI, M.S.ANTONY, V.B.NDOCKO NDONGUE, J. Radioanal. Nucl. Chem. 135 (1989) 1 (Half-life) K.USMAN, T.D.MCMAHON, S.I.KAFALA, Appl. Radiat. Isot. 49 (1998) 1329 (Half-life) M.-M.Bé, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl.2 (2002) 481 (SAISINUC software) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) B.SINGH, J.K.TULI, Nucl. Data Sheets 105 (2005) 109 (Decay data evaluations, multipolarities, decay scheme, Pa233 level energies, multipolarities) D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999 (Uncertainties of LX-ray absolute emission probabilities) V.M.GOROZHANKIN, M.-M.BE, Appl. Radiat. Isot. 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC) D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999 (Absolute and relative gamma-ray and X-ray emission probabilities)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	24.10	(3)	d
Q_{β^-}	:	272	(10)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	bility .00	Nature	$\log ft$
$\beta_{0,7}^{-}$	85 (10)	1.6	(6)	Allowed	7
$\beta_{0,6}^{-}$	95(10)	0.016	(5)	1st forbidden	9.1
$\beta_{0,5}^{-}$	105 (10)	6.5	(7)	Allowed	6.7
$\beta_{0.4}$	106(10)	14.1	(12)	1st forbidden	6.3
$\beta_{0,2}^{-}$	198(10)	77.8	(15)	1st forbidden	6.4

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	En k	ergy æV
e_{AL}	(Pa)	5.9 - 21.6	7.7~(6)		
едк	(Pa)		0.0014(9)		
	KLĹ	70.081 - 78.822	}		
	KLX	85.989 - 95.858	}		
	KXY	101.87 - 112.59	}		
$ec_{3,2}$ L	(Pa)	8.4 - 12.8	3.95(45)		
$ec_{7,5}$ M	(Pa)	14.65 - 16.57	0.63(28)		
$ec_{7,5 N}$	(Pa)	18.63 - 19.65	0.17(8)		
$ec_{3,2}$ M	(Pa)	24.1 - 26.1	1.08(12)		
$ec_{3,2}$ N	(Pa)	28.1 - 29.1	0.292(34)		
$ec_{4,3 L}$	(Pa)	41.78 - 46.15	0.31(8)		
$ec_{5,3 L}$	(Pa)	42.2 - 46.6	1.144(31)		
$ec_{1,0 L}$	(Pa)	52.82 - 57.19	0.106(12)		
$ec_{4,3}$ M	(Pa)	57.52 - 59.44	0.079(20)		
$ec_{5,3}$ M	(Pa)	57.9 - 59.9	0.281(7)		
$ec_{4,3 N}$	(Pa)	61.50 - 62.53	0.021~(5)		
$ec_{5,3 N}$	(Pa)	61.9 - 62.9	$0.0739\ (19)$		
$ec_{1,0 M}$	(Pa)	68.56 - 70.48	0.0258~(29)		
$ec_{4,2}$ L	(Pa)	71.27 - 75.65	8.7(8)		
$ec_{5,2 L}$	(Pa)	71.7 - 76.1	0.239(21)		
$ec_{4,2}$ M	(Pa)	87.02 - 88.94	2.09(18)		
$ec_{5,2}$ M	(Pa)	87.4 - 89.4	0.058~(5)		
$ec_{4,2}$ N	(Pa)	91.00 - 92.02	0.56(5)		
$ec_{5,2 N}$	(Pa)	91.4 - 92.4	0.0154(14)		
$ec_{7,2}$ L	(Pa)	91.70 - 96.08	0.0143(15)		
$\beta_{0,7}^-$	max:	85 (10)	1.6(6)	avg:	22(3)

	E	nergy keV	Electrons per 100 disint.	Er k	aergy xeV
$\begin{array}{ccc} \beta_{0,6}^{-} & \max \\ \beta_{0,5}^{-} & \max \\ \beta_{0,4}^{-} & \max \\ \beta_{0,2}^{-} & \max \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(10) (10) (10) (10)	$\begin{array}{c} 0.016 \ (5) \\ 6.5 \ (7) \\ 14.1 \ (12) \\ 77.8 \ (15) \end{array}$	avg: avg: avg: avg:	$\begin{array}{c} 25 \ (3) \\ 27 \ (3) \\ 28 \ (3) \\ 53 \ (3) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pa)	11.3676 - 20.1126		7.1(3)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pa) (Pa)	92.288 95.869		$\begin{array}{c} 0.013 \ (9) \\ 0.021 \ (13) \end{array}$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3 \\ {\rm XK}\beta_1 \\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	$ 107.595 \\ 108.422 \\ 109.072 $	} } }	0.007(5)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	111.405 111.87 112.38	} } }	0.0025 (16)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{7,5}(Pa)$ $\gamma_{3,2}(Pa)$ $\gamma_{4,3}(Pa)$ $\gamma_{5,3}(Pa)$ $\gamma_{1,0}(Pa)$ $\gamma_{7,3}(Pa)$ $\gamma_{4,2}(Pa)$ $\gamma_{5,2}(Pa)$ $\gamma_{6,2}(Pa)$ $\gamma_{7,3}(Pa)$	$\begin{array}{c} 20.01 \ (2) \\ 29.50 \ (2) \\ 62.88 \ (2) \\ 63.30 \ (2) \\ 73.92 \ (2) \\ 83.31 \ (5) \\ 92.38 \ (1) \\ 92.80 \ (2) \\ 103.35 \ (10) \\ 112.81 \ (5) \end{array}$	$\begin{array}{c} 1.2 \ (6) \\ 5.4 \ (6) \\ 0.43 \ (11) \\ 5.27 \ (11) \\ 0.154 \ (17) \\ 0.073 \ (6) \\ 13.7 \ (12) \\ 2.47 \ (22) \\ 0.0154 \ (48) \\ 0.264 \ (40) \end{array}$	$\begin{array}{c} M1 + E2 \\ E2 \\ M1 + E2 \\ E1 \\ M1 + E2 \\ E1 \\ M1 \\ E1 \\ M1 \\ E1 \\ M1 \\ E1 \end{array}$	$\begin{array}{c} 240 \ (70) \\ 4390 \ (70) \\ 25 \ (5) \\ 0.405 \ (6) \\ 10.6 \ (4) \\ 0.196 \ (3) \\ 5.27 \ (8) \\ 0.1472 \ (21) \\ 3.81 \ (6) \\ 0.23 \ (14) \end{array}$	$\begin{array}{c} 0.0051 \ (21) \\ 0.00123 \ (14) \\ 0.0164 \ (28) \\ 3.75 \ (8) \\ 0.0133 \ (14) \\ 0.061 \ (5) \\ 2.18 \ (19) \\ 2.15 \ (19) \\ 0.0032 \ (10) \\ 0.215 \ (22) \end{array}$

5 References

G.KIRSCH, Report Radium Institute Mitteilungen 127, Vienna; Wien Ber. Iia. 129 (1920) 309 (Half-life)
M.CURIE, A.DEBIERNE, A.S.EVE, H.GEIGER, O.HAHN, S.C.LIND, ST.MEYER, E.RUTHERFORD, E.SCHWEIDLER, Rev. Mod. Phys. 3 (1931) 427 (Half-life)

IFIN-HH /A. Luca

B.W.SARGENT, Can. J. Res. A17 (1939) 103 (Half-life) G.B.KNIGHT, R.L.MACKLIN, Phys. Rev. 74 (1948) 1540 (Half-life) J.S.GEIGER, R.L.GRAHAM, T.A.EASTWOOD, Report AECL-1472 PR-P-52, Atomic Energy of Canada Ltd (1961) 26(L ICC (for 29 keV and 63 keV), Gamma-ray energies) J.-P.BRIAND, Compt. Rend. Acad. Sci. (Paris) 254 (1962) 84 (L ICC (for 29 keV)) S.BJORNHOLM, O.B.NIELSEN, Nucl. Phys. 42 (1963) 642 (Conversion electron emission energies, Conversion electron emission probabilities, Beta emission energies) H.ABOU-LEILA, Compt. Rend. Acad. Sci. (Paris) 258 (1964) 5632 (Half-life) R.FOUCHER, Bull. Rus. Acad. Sci. Phys. 29 (1966) 99 (Multipolarities) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma-ray energies, Gamma-ray relative intensities) J.GODART, A..GIZON, Nucl. Phys. A217 (1973) 159 (Beta and Conversion electron emission energies and probabilities, Gamma-ray energies and transitions probabilities, Multipolarities) T.E.SAMPSON, Nucl. Instrum. Methods 111 (1973) 209 (Gamma-ray energies, Gamma-ray relative intensities) Y.Y.CHU, G.SCHARFF-GOLDHABER, Phys. Rev. C17 (1978) 1507 (Gamma-ray relative intensities) M.H.MOMENI, Nucl. Instrum. Methods 193 (1982) 185 (Gamma-ray energies, Gamma-ray emission probabilities) H.L.SCOTT, K.W.MARLOW, Nucl. Instrum. Methods A286 (1990) 549 (Gamma-ray emission probabilities) N.COURSOL, F.LAGOUTINE, B.DUCHEMIN, Nucl. Instrum. Methods A286 (1990) 589 (Half-life, Beta emission probabilities, Gamma-ray emission probabilities, X-ray emission probabilities) G.A.SUTTON, S.T.NAPIER, M.JOHN, A.TAYLOR, The Science of the Total Environment 130/131 (1993) 393 (Gamma-ray emission probabilities) I.Adsley, J.S.Backhouse, A.L.Nichols, J.Toole, Appl. Radiat. Isot. 49 (1998) 1337 (Gamma-ray emission probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) S.Abousahl, P.van Belle, B.Lynch, H.Ottmar, Nucl. Instrum. Methods A517 (2004) 211 (Gamma-ray emission probabilities) F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods A568 (2006) 734 (Gamma-ray emission probabilities) E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681

(Multipolarities, Mixing ratio, Spin and Parity, Gamma-ray emission probabilities, Gamma-ray energies, Beta emission energies)

IFIN-HH /A. Luca

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	32670	(260)	у
$Q^{'}_{lpha}$:	5149.9	(8)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,25}$	4415.6(9)	0.0021 (5)
$\alpha_{0,24}$	4507.6(8)	0.0036(3)
$\alpha_{0,23}$	4533.0(8)	0.00076(20)
$\alpha_{0,22}$	4568.1(9)	0.008(4)
$\alpha_{0,21}$	4599.6(8)	0.015(7)
$\alpha_{0,20}$	4630.3(8)	0.078(21)
$\alpha_{0,19}$	4633.0(8)	0.0504(11)
$\alpha_{0,18}$	4642.5(8)	0.080~(6)
$\alpha_{0,17}$	4680.1(8)	1.8(3)
$\alpha_{0,16}$	4712.3(8)	1.20(22)
$\alpha_{0,15}$	4736.3(8)	8.4(4)
$\alpha_{0,14}$	4761.2(8)	0.0032(9)
$\alpha_{0,12}$	4794.1(8)	0.040(15)
$\alpha_{0,11}$	4853.5(8)	1.40(15)
$\alpha_{0,8}$	4903.4(22)	0.002(1)
$\alpha_{0,7}$	4936.0(8)	2.9(3)
$\alpha_{0,6}$	4952.6(8)	22.5(5)
$\alpha_{0,5}$	4977.6(8)	0.4(1)
$\alpha_{0,4}$	4987.8(8)	1.6(2)
$\alpha_{0,3}$	5015.1(8)	25.3(5)
$\alpha_{0,2}$	5031.2(8)	20(2)
$\alpha_{0,1}$	5033.8~(8)	2.8(3)
$\alpha_{0,0}$	5060.7(8)	11.7(5)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Ac)	5.87 - 19.69	52.6(15)
e _{AK}	(Ac) KLL KLX KXY	66.769 - 74.715 81.775 - 90.882 96.76 - 106.75	0.078 (11) } } }

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$	Photons per 100 disint.		
XL	(Ac)	10.8701 - 18.9228		44.3(13)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Ac) (Ac)	87.768 90.885		$\begin{array}{c} 0.715 \ (23) \\ 1.16 \ (4) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Ac) (Ac) (Ac)	102.101 102.841 103.462	} } }	0.410 (15)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ac) (Ac) (Ac)	$\begin{array}{c} 105.679 \\ 106.098 \\ 106.563 \end{array}$	} } }	0.136 (6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{3,2}(Ac)$	16.370(14)	2.12(9)	${ m E1}$	8.58 (12)	0.221(9)
$\gamma_{3,1}(Ac)$	18.980(14)	42(4)	M1	113.2(16)	0.37(3)
$\gamma_{11,9}(Ac)$	23.46(6)	1.16(15)	M1	241 (4)	0.0048~(6)
$\gamma_{16,15}(Ac)$	24.46(4)	1.05(21)	M1	214(4)	0.0049(10)
$\gamma_{6,5}(Ac)$	25.390(22)	18.3(14)	M1	191(3)	0.095(7)
$\gamma_{1,0}(Ac)$	27.37(1)	59(7)	E1	4.5(6)	10.8(4)
$\gamma_{2,0}(Ac)$	29.98(1)	26(3)	M1+E2	270(30)	0.097(4)
$\gamma_{6,4}(Ac)$	35.800(22)	0.045(3)	E1	1.746(25)	0.0163(10)
$\gamma_{5,3}(Ac)$	38.200(14)	13(3)	M1+E2	89(19)	0.144(6)
$\gamma_{4,2}(Ac)$	44.160(14)	2.11(16)	M1	37.4(6)	0.055(4)
$\gamma_{3,0}({ m Ac})$	46.35(1)	0.357(19)	E1	0.879(13)	0.19(1)
$\gamma_{20,17}(Ac)$	50.73~(5)	0.057(21)	M1	24.9(4)	0.0022(8)
$\gamma_{7,4}(Ac)$	52.720(22)	1.77(10)	M1	22.2~(4)	0.076(4)
$\gamma_{5,2}(Ac)$	54.570(14)	0.110(6)	E1	0.569(8)	0.070(4)
$\gamma_{15,13}(Ac)$	56.90(3)	0.18(4)	M1+E2	37~(6)	0.0047(7)
$\gamma_{5,1}(Ac)$	57.180(14)	4.6(5)	E2	148.1(21)	0.031(3)
$\gamma_{17,15}(Ac)$	57.190(22)	0.7(3)	E2	148.0(21)	0.0046(21)
$\gamma_{9,7}(Ac)$	60.46(4)	0.0076(10)	E1	0.433(7)	0.0053(7)
$\gamma_{6,3}(Ac)$	63.590(22)	3.99(16)	E2	88.8(13)	0.0446~(17)
$\gamma_{-1,1}(Ac)$	70.49(5)	0.0051 (8)			0.0051(8)
$\gamma_{10,7}(Ac)$	71.85(5)	0.019(7)	M1	8.98(13)	0.0019(7)
$\gamma_{12,10}(Ac)$	72.58(7)	0.029(7)	M1	8.71(13)	0.0030(7)
$\gamma_{4,0}(Ac)$	74.14(1)	0.97(4)	E2	42.6(6)	0.0223 (9)
$\gamma_{9,6}(Ac)$	77.38(4)	0.50(4)	M1	7.23(11)	0.061(4)
$\gamma_{7,2}(Ac)$	96.880(22)	1.10(4)	E2	12.02(17)	0.084(3)
$\gamma_{11,6}(Ac)$	100.84(5)	0.248(10)	E2	9.97(15)	0.0226 (9)
$\gamma_{9,5}(Ac)$	102.77(3)	0.20(4)	E2	9.12(13)	0.019(4)

NPL /A. Arinc

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
γ_{10} (Ac)	12457(4)	0.0217(20)	E2	4.04(6)	0.0043(4)
$\gamma_{10,4}(10)$ $\gamma_{12,7}(Ac)$	144.43(6)	0.037(3)	E2	2.18(3)	0.0115(9)
$\gamma_{13.4}(Ac)$	199.00(3)	0.0030(12)		- (-)	0.0030(12)
$\gamma_{14,4}(Ac)$	230.59(5)	0.0017(8)			0.0017(8)
$\gamma_{-1,2}(Ac)$	242.18(8)	0.0099(10)			0.0099(10)
$\gamma_{13,2}(Ac)$	243.16(3)	0.065(11)	M1+E2	0.80(17)	0.036(5)
$\gamma_{15,2}(Ac)$	245.490(14)	0.042(3)	M2	5.24(8)	0.0067(5)
$\gamma_{13,1}(Ac)$	245.77(3)	0.013(4)	${ m E1}$	0.0570(8)	0.012(4)
$\gamma_{15,4}(Ac)$	255.900 (14)	0.134(3)	E2	0.264(4)	0.1059(22)
$\gamma_{14,3}(Ac)$	258.38(5)	0.0015(4)			0.0015(4)
$\gamma_{17.7}(Ac)$	260.37(3)	0.282(21)	M1+E2	0.55(11)	0.182(4)
$\gamma_{13.0}(Ac)$	273.14(3)	0.101(7)	M1+E2	0.74(11)	0.0579(12)
$\gamma_{17.6}(Ac)$	277.29(3)	0.10(6)	E1+M2	0.5(9)	0.0680(15)
$\gamma_{15,3}(Ac)$	283.690 (14)	1.72(3)	E1	0.0410(6)	1.65(3)
$\gamma_{-1,3}(Ac)$	286.58(10)	0.0104(5)			0.0104(5)
$\gamma_{15,2}(Ac)$	300.060(14)	4.25(10)	M1+E2	0.764(17)	2.41(5)
$\gamma_{15,1}(Ac)$	302.670(14)	2.4(3)	${ m E1}$	0.0355(5)	2.3(3)
$\gamma_{17,5}(Ac)$	302.680(22)	0.22(10)	${ m E1}$	0.0355~(5)	0.21(10)
$\gamma_{-1,4}(Ac)$	310.0(1)	0.00092(20)			0.00092(20)
$\gamma_{17,4}(Ac)$	313.090(22)	0.129(9)	M1+E2	0.31 (9)	0.0987(20)
$\gamma_{16,1}(Ac)$	327.13(4)	0.0372(11)	E1	0.0298(5)	$0.0361\ (11)$
$\gamma_{15,0}(Ac)$	330.04(1)	2.09(5)	M1+E2	0.541 (19)	1.36(3)
$\gamma_{17,3}(Ac)$	340.880(22)	0.196(7)	E1+M2	0.11(3)	0.177(4)
$\gamma_{18,4}(Ac)$	351.45(3)	0.0029(12)	${ m E1}$	0.0255(4)	0.0028(12)
$\gamma_{16,0}(Ac)$	354.50(4)	0.1094(23)	M1+E2	0.1375(20)	0.0962(20)
$\gamma_{17,2}(Ac)$	357.250 (22)	0.240(18)	M1+E2	0.43(10)	0.168(4)
$\gamma_{17,1}(Ac)$	359.860 (22)	0.0085(3)			0.0085(3)
$\gamma_{20,4}(Ac)$	363.82(4)	0.0080(3)			0.0080(3)
$\gamma_{-1,5}(Ac)$	374.95(10)	0.0045(3)		0.00 (11)	0.0045(3)
$\gamma_{18,3}(Ac)$	379.24(3)	0.066(6)	M1+E2	0.32(11)	0.0498(11)
$\gamma_{21,5}(Ac)$	384.69(6)	0.00365(22)	Ea	0.0779(11)	0.00365(22)
$\gamma_{17,0}(Ac)$	387.23(2)	0.00032(11)	E2	0.0773(11)	0.0003(1)
$\gamma_{20,3}(Ac)$	391.01(4)	0.00687(22)		0.0202(3)	0.00073(22)
$\gamma_{18,2}(Ac)$	393.01(3)	0.00250(22)	EI	0.0198 (3)	0.00220(22)
$\gamma_{18,1}(Ac)$	396.22(3)	0.0095(3)	М1	0.334(5)	0.0095(3)
$\gamma_{19,1}(Ac)$	407.820(22) 410.50(4)	0.0475(11) 0.00183(22)	F1	0.334(3)	0.0350(8)
$\gamma_{20,1}(Ac)$	410.59(4) 427.14(7)	0.00103(22) 0.0007(4)	12/1	0.0105(3)	0.00130(22)
$\gamma_{22,4}(Ac)$	427.14(7) 435.19(2)	0.0007 (4) 0.00294 (17)			0.0007 (4) 0.00294 (17)
$\gamma_{19,0}(Ac)$	437.96(4)	0.00234(11) 0.0045(3)			0.00234(11) 0.0045(3)
$\gamma_{20,0}(Ac)$	$438\ 72\ (10)$	0.0013(4)			0.0013(4)
$\gamma_{24.4}(Ac)$	488.66 (10)	0.00165(17)			0.00165(17)
$\gamma_{23,3}(Ac)$	490.65 (10)	0.0004(1)			0.0004(1)
$\gamma_{22,0}(Ac)$	501.28(7)	0.00076(18)			0.00076(18)
$\gamma_{23,1}(Ac)$	509.63 (10)	0.00036(17)			0.00036(17)
$\gamma_{24,3}(Ac)$	516.45(10)	0.00137(15)			0.00137(15)
$\gamma_{24,1}(Ac)$	535.43 (10)	0.00061(12)			0.00061 (12)
$\gamma_{25.6}(Ac)$	546.5 (3)	0.00083 (13)			0.00083 (13)
,,0((-)	(-)			(-)

	Energy keV	${ m P}_{\gamma+{ m ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{25,5}(Ac)$ $\gamma_{25,4}(Ac)$ $\gamma_{25,3}(Ac)$	571.9 (3) 582.3 (3) 610.1 (3)	$\begin{array}{c} 0.00048 \ (20) \\ 0.00031 \ (17) \\ 0.0005 \ (4) \end{array}$			$\begin{array}{c} 0.00048 \ (20) \\ 0.00031 \ (17) \\ 0.0005 \ (4) \end{array}$

5 References

A.V.GROSSE, Naturwissenschaften 20 (1932) 505 (Half-life) Q.VAN WINKLE, R.G.LARSON, L.I.KATZIN, J. Am. Chem. Soc. 71 (1949) 2585 (Half-life) P.FALK-VAIRANT, M.RIOU, J. Phys. Radium 14,2 (1953) 65 (Gamma-ray emission probabilities and energies) J.P.HUMMEL, Thesis, Univ. California (1956) (Alpha-particle emission probabilities) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (L- and M-shell conversion coefficients) R.FOUCHER, Compt. Rend. Acad. Sci. (Paris) 250 (1960) 1249 (Gamma-ray emission probabilities) F.BRAGANCA GIL, G.Y.PETIT, J. Phys. Radium 22 (1961) 680 (Spin and parity, mixing ratio, half-life excited level) H.W.KIRBY, J. Inorg. Nucl. Chem. 18 (1961) 8 (Half-life) S.A.BARANOV, V.M.KULAKOV, P.S.SAMOILOV, A.G.ZELENKOV, Y.F.RODIONOV, S.V.PIROZHKOV, Sov. Phys. -JETP 14 (1961) 1053 (Alpha-particle emission energies and probabilities, experimental conversions) V.B.SUBRAHMANYAM, Thesis, Univ. California (1963) (Alpha-particle emission probabilities) H.Abou-Leila, R.Foucher, A.G.De Pinho, N.Perrin, M.Valadares, J. Phys. (Paris) 24 (1963) 857 (Spin and parity, multipolarities) G.BASTIN, C.F.LEANG, R.J.WALES, Compt. Rend. Acad. Sci. (Paris) T.262 (1966) 89 (Alpha-particle emission energies) D.BROWN, S.N.DIXON, K.M.GLOVER, F.J.G.ROGERS, J. Inorg. Nucl. Chem. 30 (1968) 19 (Half-life) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7,4 (1968) 442 (Alpha-particle emission energies) G.R.HAGEE, R.C.LANGE, A.G.BARNETT, A.R.CAMPBELL, C.R.COTHERN, D.F.GRIFFING, H.J.HENNECKE, Nucl. Phys. A115 (1968) 157 (Spin and parity, conversion electron emission probabilities) A.G.BARNETT, A.R.CAMPBELL, G.R.HAGEE, J. Inorg. Nucl. Chem. 31 (1969) 1553 (Multipolarities, conversion electron emission probabilities, mixing ratio) R.C.LANGE, G.R.HAGEE, Nucl. Phys. A124 (1969) 412 (Gamma-ray emission energies and probabilities) J.ROBERT, C.F.MIRANDA, R.MUXART, Radiochim. Acta 11 (1969) 104 (Half-life) A.G.DE PINHO, E.F.DA SILVEIRA, N.L.DA COSTA, Phys. Rev. C2,2 (1970) 572 (Gamma-ray emission energies and probabilities, ICC) C.F.LEANG, J. Phys. (Paris) 31 (1970) 269 (Gamma-ray emission energies and probabilities) C.F.LEANG, J. Phys. (Paris) 32,2-3 (1971) 95 (Spin and parity) R.K.GARG, S.D.CHAUHAN, S.SANYAL, S.C.PANCHOLI, S.L.GUPTA, N.K.SAHA, Z. Phys. 257 (1972) 124 (Half-life of excited level) A.G.DE PINHO, L.T.AULER, A.G.DA SILVA, Phys. Rev. C9,5 (1974) 2056 (X-ray emission probabilities, gamma-ray emission probabilities, ICC)

NPL /A. Arinc

S.A.BARANOV, Sov. J. At. Energy 41 (1976) 342

(Alpha-particle emission energies and probabilities)

S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249

(Alpha-particle emission energies and probabilities)

W.TEOH, R.D.CONNOR, R.H.BETTS, Nucl. Phys. A319 (1979) 122

(Gamma-ray emission energies and probabilities, Multipolarities, ICC)

H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251

(Gamma-ray emission energies)

I.ANICIN, I.BIKIT, C.GIRIT, H.GUVEN, W.D.HAMILTON, A.A.YOUSIF, Nucl. Phys. 8 (1982) 369

(Gamma-ray emission probabilities)

M.F.BANHAM, R.JONES, Int. J. Appl. Radiat. Isotop. 34 (1983) 1225

(Gamma-ray emission probabilities)

T.ISHII, I.AHMAD, J.E.GINDLER, A.M.FRIEDMAN, R.R.CHASMAN, S.B.KAUFMAN, Nucl. Phys. A444 (1985) 237 (Half-life first excited state)

A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray emission energies and probabilities, alpha-particle emission energies and probabilities)

N.E.HOLDEN, Pure Appl. Chem. 62 (1990) 941

(Half-life)

A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205

(Evaluated alpha-particle emission energies and probabilities)

Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1

(R0, radius parameter)

E.BROWNE, Nucl. Data Sheets 93 (2001) 763 $\,$

(Spin, parity, energy levels, multipolarities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Q)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)
Pa - 231

NPL /A. Arinc

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	26.98	(2)	d
Q_{β^-}	:	570.1	(20)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,11}^{-}$	114.1 (20)	0.0011 (2)	1st forbidden	10.6
$\beta_{0,10}$	154.3(20) 171.5(20)	25.4(16)	1st forbidden	$\frac{6.7}{7}$
$\beta_{0,9}$ $\beta_{0,8}^-$	171.5(20) 189.8(20)	13.4 (8) 0.020 (3)	1st forbidden unique	9.4
$\beta_{0,7}^{-}$	229.6 (20)	25.9(32)	1st forbidden	7.2
$\beta_{0,6}^{-}$	249.4(20)	0.020 (5)	2nd forbidden	10.4
$\beta_{0,5}^{-}$	258.2(20)	26.6(32)	1st forbidden	7.3
$\beta_{0,4}^{-}$	268.1(20)	0.010 (2)	Allowed	11.8
$\beta_{0.3}^{-}$	271.3(20)	0.12(5)	Allowed	9.8
$\beta_{0,1}^{-1}$	529.8 (20)	0.3(19)	1st forbidden unique	10.2
$\beta_{0,0}^{-}$	570.1 (20)	6.3 (23)	1st forbidden	9.1

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	42.2(13)	
$e_{\rm AK}$	(U) KLL KLX	71.78 - 80.95 88.15 - 98.34	0.95 (13) } }	
	KXY	104.42 - 115.40	}	
$ec_{7,5 L} ec_{10,9 M} ec_{1,0 L}$	(U) (U) (U)	6.80 - 11.39 11.714 - 13.710 18.59 - 23.18	$16.5 (21) \\ 1.53 \\ 10.3 (15) \\ (12)$	
ес _{7,3 L} ес _{7,5 M} ес _{7,5 N}	(U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.013 \ (3) \\ 4.3 \ (6) \\ 1.14 \ (15) \end{array}$	
$ec_{2,1}$ L $ec_{1,0}$ M	(U) (U) (U)	30.05 - 34.64 34.8 - 36.8	$\begin{array}{c} 0.04 \\ 2.8 \ (4) \\ 0.77 \ (12) \end{array}$	
$ec_{1,0 N} ec_{2,1 M} ec_{10,7 L}$	(U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.77 (12) \\ 0.011 \\ 11.2 (12) \end{array}$	
ес _{9,5 L} ес _{10,7 M} ес _{2,0 L}	(U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$10.6 (6) \\ 2.7 (3) \\ 0.034$	
$ec_{10,7 N} ec_{9,5 M}$	(U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.74 \ (9) \\ 2.57 \ (14) \end{array}$	

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy keV	Electrons per 100 disint.	E	Cnergy keV
ес _{10.5 L}	(U)	82.10 - 86.69	2.70(13)		
ec _{9.5 N}	(Ú)	85.154 - 86.216	0.695(38)		
ес _{10.5 М}	(U)	98.31 - 100.31	0.66(4)		
ec _{10,5 N}	(U)	102.42 - 103.48	0.18(1)		
$ec_{5,1 \text{ K}}$	(U)	155.95 (1)	0.0292(6)		
ес _{7,1 К}	(U)	184.527 (5)	4.62 (20)		
$ec_{5,0 K}$	(U)	196.302 (5)	24.5(8)		
ес _{7,0 К}	(U)	224.874 (5)	2.24(9)		
$ec_{7,2 L}$	(U)	226.62 - 231.21	0.0107(3)		
$ec_{5,1 L}$	(U)	249.80 - 254.39	0.0396 (9)		
$ec_{10,1 K}$	(U)	259.802 (5)	0.0336~(8)		
$ec_{5,1 M}$	(U)	266.01 - 268.00	0.0108(3)		
$ec_{7,1 L}$	(U)	278.37 - 282.96	0.88(4)		
$ec_{9,0 K}$	(U)	282.890 (5)	0.0618(12)		
$ec_{5,0 L}$	(U)	290.15 - 294.74	4.83(17)		
$ec_{7,1}$ M	(U)	294.58 - 296.58	0.22(1)		
$ec_{7,1 N}$	(U)	298.688 - 299.750	0.0659~(25)		
$ec_{10,0 K}$	(U)	300.162 (7)	0.16(10)		
$ec_{5,0 M}$	(U)	306.36 - 308.35	1.19(4)		
$ec_{5,0 N}$	(U)	310.463 - 311.525	0.343~(6)		
ес _{7,0 L}	(U)	318.72 - 323.31	0.460(14)		
ес _{7,0 М}	(U)	334.93 - 336.93	0.098~(5)		
$ec_{7,0 N}$	(U)	339.035 - 340.097	0.024(8)		
$ec_{10,1 L}$	(U)	353.65 - 358.24	0.0246~(5)		
$ec_{9,0 L}$	(U)	376.73 - 381.32	0.0410 (9)		
$ec_{9,0 M}$	(U)	392.94 - 394.94	0.01094~(25)		
$ec_{10,0 L}$	(U)	394.01 - 398.60	0.056~(16)		
$ec_{10,0\ M}$	(U)	410.22 - 412.21	0.014(3)		
$\beta_{0,11}^{-}$	max:	114.1 (20)	0.0011(2)	avg:	29.8(5)
$\beta_{0,10}^{-}$	max:	154.3 (20)	25.4(16)	avg:	40.9(5)
$\beta_{0,9}^{-}$	max:	171.5 (20)	15.4(8)	avg:	45.7(5)
$\beta_{0,8}^{-}$	max:	189.8 (20)	0.020(3)	avg:	50.9(6)
$\beta_{0.7}^{-}$	max:	229.6 (20)	25.9(32)	avg:	62.4(6)
$\beta_{0.6}^{-}$	max:	249.4 (20)	0.020(5)	avg:	68.2(6)
$\beta_{0.5}^{}$	max:	258.2 (20)	26.6(32)	avg:	70.8(6)
$\beta_{0.4}^{}$	max:	268.1 (20)	0.010(2)	avg:	73.7(6)
$\beta_{0,3}^{-1}$	max:	271.3 (20)	0.12(5)	avg:	74.6 (6)
$\beta_{0,1}^{-1}$	max:	529.8 (20)	0.3 (19)	avg:	156.1(6)
$\beta_{0,0}^{-}$	max:	570.1 (20)	6.3 (23)	avg:	169.6 (6)

Pa - 233

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		40.6 (11)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(U) (U)	94.666 98.44		$\begin{array}{c} 9.10 \ (26) \\ 14.6 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	110.421 111.298 111.964	} } }	5.25 (18)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(U) (U) (U)	114.407 115.012 115.377	} } }	1.80 (7)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{10,9}(U)$	17.262(6)	2.07	M1+1.66%E2	503	0.0041
$\gamma_{7,5}(\mathrm{U})$	28.559(10)	22.3(28)	M1 + 2.44% E2	313(18)	0.071(8)
$\gamma_{1,0}(U)$	40.349(5)	13.9(19)	M1+54%E2	580(60)	0.024(2)
$\gamma_{7,3}(\mathrm{U})$	41.663(10)	0.032(7)	[E1]	$1.253\ (25)$	0.014(3)
$\gamma_{2,1}(U)$	51.81(4)	0.055	[M1+28%E2]	108	0.0005
$\gamma_{10,7}(U)$	75.269(10)	16.1 (16)	M1+2.2%E2	11.4(12)	1.30(3)
$\gamma_{9,5}(\mathrm{U})$	86.595~(5)	16.1 (9)	M1+0.31%E2	7.08(14)	1.99(10)
$\gamma_{2,0}(U)$	92.16(4)	0.0492	[E2]	19.5	0.0024
$\gamma_{10,5}(U)$	103.86(1)	4.44(18)	M1 + (1% E2)	4.21(21)	0.853~(6)
$\gamma_{6,2}(U)$	228.57(5)	0.0042(7)			0.0042(7)
$\gamma_{7,2}(U)$	248.38(4)	0.082(2)	[E2]	0.346(7)	0.0609(11)
$\gamma_{3,1}(U)$	258.45(2)	0.0289~(6)	[E1]	0.0547(11)	0.0274~(6)
$\gamma_{5,1}(U)$	271.555(10)	0.406(4)	E2	0.258(5)	0.323(3)
$\gamma_{6,1}(U)$	280.61(5)	0.011(2)			0.011(2)
$\gamma_{8,2}(U)$	288.42(10)	0.016(3)			0.016(3)
$\gamma_{3,0}(U)$	298.81(2)	0.12(5)	[E1]	0.0396(8)	0.12(5)
$\gamma_{7,1}(U)$	300.129(5)	12.3~(4)	$\mathrm{M1}{+}0.6\%\mathrm{E2}$	0.87(2)	6.60(21)
$\gamma_{4,0}(U)$	301.99(10)	0.010(2)			0.010(2)
$\gamma_{5,0}(U)$	311.904(5)	68.9(12)	M1+1%E2	0.80(2)	38.3(5)
$\gamma_{6,0}(U)$	320.73(10)	0.0051~(4)			0.0051~(4)
$\gamma_{7,0}(U)$	340.476(5)	7.24(10)	M1+5%E2	0.62(2)	4.47(3)
$\gamma_{10,1}(U)$	375.404(5)	0.751(7)	E2	0.0981(20)	0.684(7)
$\gamma_{8,0}(U)$	380.28(10)	0.0037~(9)			0.0037~(9)
$\gamma_{9,0}(\mathrm{U})$	398.492(5)	1.526(15)	E2	0.0835(17)	1.408(14)
$\gamma_{10,0}(U)$	415.764(5)	1.97(12)	$\mathrm{M1}{+}83\%\mathrm{E2}$	0.13(8)	1.747(7)
$\gamma_{11,0}(U)$	455.96 (10)	0.0011 (2)			0.0011 (2)

KRI /V.P. Chechev, N.K. Kuzmenko

5 References

A.V.GROSSE, E.T.BOOTH, J.R.DUNNING, Phys. Rev. 59 (1941) 322 (Half-life) C.I.BROWNE JR., Thesis, Report UCRL-1764, Univ. California (1952) (Gamma-ray energies) W.D.BRODIE, Proc. Phys. Soc. (London) 67A (1954) 397 (Measured energies and probabilities of beta-transitions) ONG PING HOK, P.KRAMER, Physica 21 (1955) 676 (Measured energies and probabilities of beta-transitions) L.D.MCISAAC, E.C.FREILING, Nucleonics 14 (1956) 65 (Half-life) H.W.WRIGHT, E.T.WYATT, S.A.REYNOLDS, W.S.LYON, T.H.HANDLEY, Nucl. Sci. Eng. 2 (1957) 427 (Half-life) J.P.UNIK, Thesis, Report UCRL-9105, Univ. California (1960) (Measured energies and probabilities of beta-transitions) R.G.Albridge, J.M.Hollander, C.J.Gallagher, J.H.Hamilton, Nucl. Phys. 27 (1961) 529 (Gamma-ray energies and multipolarities, E2 admixtures) G.SCHULTZE, J.AHLF, Nucl. Phys. 30 (1962) 163 (Multipolarities, E2 admixtures) S.BJØRNHOLM, M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Energies and probabilities of beta-transitions) K.M.BISGARD, P.DAHL, P.HORNSHOJ, A.B.KNUTSEN, Nucl. Phys. 41 (1963) 21 (Multipolarities, E2 admixtures) M.J.ZENDER, Thesis, Univ. Vanderbilt (1966) (Multipolarities, E2 admixtures) CH.BRIANÇON, C.F.LEANG, P.PARIS, Compt. Rend. Acad. Sci. (Paris) Ser. B 264 (1967) 1522 (Gamma-ray energies) S.G.MALMSKOG, M.HOJEBERG, Ark. Fys. 35 (1968) 197 (Gamma-ray energies) T.VON EGIDY, O.W.B.SCHULT, W.KALLINGER, D.BREITIG, R.P.SHARMA, H.R.KOCH, H.A.BAADER, Naturforsch. 26a (1971) 1092 (Gamma-ray energies) M.DE BRUIN, P.J.M.KORTHOVEN, J. Radioanal. Chem. 10 (1972) 125 (Gamma-ray energies) T.VALKEAPAA, A.SIIVOLA, G.GRAEFFE, Phys. Fenn. 9 (1973) 43 (Gamma-ray energies and emission probabilities) W.P.POENITZ, D.I.SMITH, Report ANL/NDM-42, Argonne National Laboratory (1978) (Gamma-ray emission probabilities) R.J.GEHRKE, R.G.HELMER, C.W.REICH, Nucl. Sci. Eng. 70 (1979) 298 (X- and gamma-ray emission probabilities) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 905 (X- and gamma-ray emission probabilities) M.J.DE BETTENCOURT, Thesis, Univ. Paris-Sud (Orsay) (1985) (Tentative gamma-rays) K.S.KRANE, Nucl. Phys. A459 (1986) 1 (Multipolarities, E2 admixtures) R.T.JONES, J.S.MERRITT, A.OKAZAKI, Nucl. Sci. Eng. 93 (1986) 171 (Half-life) S.A. WOODS, P.CHRISTMAS, P.CROSS, S.M.JUDGE, W.GELLETLY, Nucl. Instrum. Methods Phys. Res. A264 (1988) 333 (Gamma-ray energies) E.BROWNE, B.SUR, E.B.NORMAN, Nucl. Phys. A501 (1989) 477 (Experimental ICC, gamma multipolarities, beta transition probabilities) Y.A.AKOVALI, Nucl. Data Sheets 59 (1990) 263 (A=233 NDS evaluation, gamma-ray multipolarities, E2 admixtures) M.C.KOUASSI, C.ARDISSON-MARSOL, G.ARDISSON, J. Phys. (London) G16 (1990) 1881 (Level scheme, multipolarities, absolute KX-ray emission probability and gamma-ray energies) J.PEARCEY, S.A.WOODS, P.CHRISTMAS, Nucl. Instrum. Methods Phys. Res. A294 (1990) 516 (E2 gamma-ray admixtures)

KRI /V.P. Chechev, N.K. Kuzmenko

M.U.RAJPUT, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 298 (Evaluation technique) YU.S.POPOV, G.A.TIMOFEEV, Radiokhimiya (in Russian) 41 (1999) 27 (Half-life) K.USMAN, T.D.MCMAHON, Appl. Radiat. Isot. 52 (2000) 475 (Half-life) S.A.Woods, D.H.Woods, P.DE LAVISON, S.M.JEROME, J.L.MAKEPEACE, M.J.WOODS, L.J.HUSBAND, S.LINEHAM, Appl. Radiat. Isot. 52 (2000) 475 (Gamma-ray emission probabilities) V.P.CHECHEV, A.G.EGOROV, Appl. Radiat. Isot. 52 (2000) 601 (Evaluation technique) D.SMITH, M.I.WOODS, D.H.WOODS, Preliminary Report, NPL, Teddington, 2000 (2000) (Gamma-ray and X-ray emission probabilities) U.SCHÖTZIG, E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 883 (Gamma-ray and X-ray emission probabilities) A.LUCA, M.ETCHEVERRY, J.MOREL, Appl. Radiat. Isot. 52 (2000) 481 (Gamma-ray emission probabilities) A.LUCA, S.SEPMAN, K.IAKOVLEV, G.SHCHUKIN, M.ETCHEVERRY, J.MOREL, Appl. Radiat. Isot. 56 (2002) 173 (Gamma-ray and X-ray emission probabilities) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) G.SHCHUKIN, K.IAKOVLEV, J.MOREL, Appl. Radiat. Isot. 60 (2004) 239 (Gamma-ray emission probabilities) X.HUANG, P.LIU, B.WANG, Appl. Radiat. Isot. 62 (2005) 797 (Evaluation of 233Pa Decay Data) B.SINGH, J.K.TULI, Nucl. Data Sheets 105 (2005) 109 (A=233 NDS evaluation, 233U level energies, gamma-ray energies and multipolarities) V.P.CHECHEV, N.K.KUZMENKO, Appl. Radiat. Isot. 64 (2006) 1403 (233Pa decay data evaluation) H.HARADA, S.NAKAMURA, M.OHTA, T.FUJII, H.YAMANA, J. Nucl. Sci. Technol. (Tokyo) 43 (2006) 1289 (Gamma-ray emission probabilities) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

 $\operatorname{D.J.Devries},\,\operatorname{H.C.Griffin},\,\operatorname{Appl.}$ Radiat. Isot. 66 (2008) 1999

(Uncertainties of LX-ray absolute emission probabilities)

Pa - 233

Pa - 234

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	6.70	(5)	h
Q_{β^-}	:	2195	(4)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\frac{\text{Proba}}{\times 1}$	bility 00	Nature	$\log ft$
$\beta_{0.77}^{-}$	51(4)	0.42	(5)		4.98
$\beta_{0.76}^{}$	79(4)	0.21	(3)		5.87
$\beta_{0.75}^{-}$	94(4)	0.064	(11)		6.6
$\beta_{0.74}^{-}$	126(4)	0.40	(7)		6.21
$\beta_{0.73}^{-}$	129(4)	0.140	(24)		6.69
$\beta_{0.72}^{-}$	158(4)	0.055	(8)		7.37
$\beta_{0.71}^{-}$	161(4)	0.90	(15)		6.19
$\beta_{0.70}^{-}$	175(4)	0.112	(16)		7.2
$\beta_{0.69}^{-}$	195(4)	0.122	(16)		7.31
$\beta_{0.68}^{-}$	214(4)	0.59	(8)		6.75
$\beta_{0.67}^{-}$	226(4)	0.044	(12)		7.95
$\beta_{0,66}^{-}$	236(4)	0.44	(19)		7.01
$\beta_{0.65}^{-}$	254(4)	0.35	(5)		7.22
$\beta_{0.64}^{-}$	267(4)	0.22	(4)		7.49
$\beta_{0.63}^{-}$	279(4)	0.21	(3)		7.56
$\beta_{0.62}^{-}$	313(4)	0.25	(3)		7.65
$\beta_{0.61}^{-}$	332(4)	0.029	(7)		8.66
$\beta_{0.60}^{-}$	351(4)	0.17	(3)		7.97
$\beta_{0.59}^{-}$	383(4)	1.43	(15)		7.17
$\beta_{0.58}^{-}$	402(4)	0.41	(8)		7.78
$\beta_{0,57}^{-}$	411(4)	0.061	(11)		8.64
$\beta_{0.56}^{-}$	412(4)	8	(3)		6.53
$\beta_{0,55}^{-}$	424(4)	0.129	(17)		8.36
$\beta_{0,54}^{-}$	433(4)	2.8	(4)		7.05
$\beta_{0.53}^{-}$	457(4)	0.78	(19)		7.68
$\beta_{0.52}^{-}$	458(4)	1.16	(14)		7.51
$\beta_{0.50}^{-}$	472(4)	8.4	(9)	1st forbidden	6.7
$\beta_{0.51}^{-}$	472(4)	36	(5)	Allowed	6.06
$\beta_{0,49}^{-}$	502(4)	6.9	(8)	1st forbidden	6.87
$\beta_{0,48}^{-}$	542(4)	0.95	(13)		7.84
$\beta_{0,47}^{-}$	545(4)	0.18	(4)		8.64
$\beta_{0.46}^{-}$	576(4)	0.035	(20)		9.36
$\beta_{0.45}^{-}$	606(4)	< 0.7			> 8.1
$\beta_{0.44}^{-}$	613(4)	0.05	(3)		9.3
$\beta_{0.43}^{-}$	642(4)	19.6	(18)	Allowed	6.77
$\beta_{0.42}^{-}$	647(4)	0.078	(20)		9.18
$\beta_{0.41}^{-1}$	651(4)	0.10	(9)		9.1
$\beta_{0.40}^{-}$	658(4)	< 0.9			> 8.1
$\beta_{0,39}^{-}$	662 (4)	0.21	(4)		8.79

	Energy keV	Proba × 1	bility 00	Nature	$\log ft$
$\beta_{0.38}^{-}$	693(4)	0.25	(4)		8.78
$\beta_{0.37}^{-}$	699(4)	$<\!\!2.7$			>7.8
$\beta_{0.36}^{-,}$	709(4)	0.12	(3)		9.14
$\beta_{0.34}^{-3}$	747(4)	0.11	(3)		9.25
$\beta_{0,31}^{-}$	883(4)	0.109	(18)		9.5
$\beta_{0.26}^{-}$	980(4)	0.30	(12)		9.22
$\beta_{0,25}^{-}$	1000(4)	$<\!\!1.5$			> 8.5
$\beta_{0,22}^{-}$	1067(4)	1.9	(10)		8.54
$\beta_{0,18}^{-}$	1104(4)	0.69	(20)		9.04
$\beta_{0,16}^{-}$	1126~(4)	$<\!\!8$		1st forbidden	>8
$\beta_{0,15}^{-}$	1171(4)	1.5	(13)		8.8
$\beta_{0.14}^{-}$	1171(4)	$<\!\!5$		1st forbidden	> 8.3
$\beta_{0.13}^{-}$	1206(4)	< 3.1		1st forbidden unique	> 8.5
$\beta_{0.12}^{-}$	1227(4)	$<\!\!2.5$		Allowed	> 8.6
$\beta_{0,11}^{-1}$	1232(4)	< 0.4			>9.4
$\beta_{0,10}^{-}$	1247(4)	< 0.8		Allowed	>9.2
$\beta_{0,7}^{-}$	1346(4)	< 0.8		1st forbidden	>9.3
$\beta_{0,2}^{-}$	2052 (4)	$<\!\!5$		Allowed	>9.2

3 Electron Emissions

_		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	77 (10)	
e_{AK}	(U)		1.08(6)	
	KLL	71.776 - 80.954	}	
	KLX	88.153 - 98.429	}	
	KXY	104.51 - 115.59	}	
ес _{25,16} к	(U)	9.86 (1)	0.171(26)	
$ec_{14,13}$ L	(U)	12.5 - 17.1	6.1(7)	
$ec_{43,33}$ K	(U)	15.70 (1)	3.71(33)	
$ec_{51,45\rm\ K}$	(U)	19.01 (2)	0.86(17)	
$ec_{1,0 L}$	(U)	21.73 - 26.32	62(16)	
$ec_{16,14}$ L	(U)	23.69 - 28.28	5.1(32)	
$ec_{13,7 \text{ K}}$	(U)	24.55 (2)	1.5(11)	
$ec_{49,43\rm\ K}$	(U)	25.31 (3)	0.054(9)	
$ec_{33,30\rm\ K}$	(U)	28.18 (2)	1.04(16)	
$ec_{14,13}$ M	(U)	28.8 - 30.7	1.69(18)	
$ec_{14,13 N}$	(U)	32.9 - 33.9	0.46(5)	
$ec_{15,12}$ L	(U)	33.20 - 37.79	0.8(8)	
$ec_{45,39}$ L	(U)	33.69 - 38.28	0.012(4)	
$ec_{30,22}~{}_{\rm K}$	(U)	34.28 (3)	0.0161 (48)	
$ec_{22,16 L}$	(U)	36.4 - 41.0	0.34(11)	
$ec_{3,2 K}$	(U)	37.11 (2)	1.30(15)	
$ec_{56,51 \rm \ L}$	(U)	37.43 - 42.02	2.2(18)	

CNDC /Huang Xiaolong, Wang Baosong

250

		Energy keV	Electrons per 100 disint.	Energy keV
ес _{1,0 М}	(U)	37.94 - 39.94	17.2(43)	
ec _{16,14} M	(U)	39.9 - 41.9	1.4(9)	
ес _{13,9 L}	(U)	40.9 - 45.5	0.51 (16)	
$ec_{1,0 N}$	(U)	42.05 - 43.11	4.7(12)	
ес _{33,28 К}	(U)	43.88 (2)	0.086(13)	
ec _{16,14} N	(U)	44.01 - 45.07	0.38(25)	
$ec_{25,22}$ L	(U)	45.49 - 50.08	1.5(5)	
$ec_{25,20 L}$	(U)	47.70 - 52.29	0.58(49)	
ес _{22,11 К}	(U)	49.34 (5)	0.11 (12)	
$ec_{15,12}$ M	(U)	49.41 - 51.41	0.24(20)	
ес _{22,16} м	(U)	52.7 - 54.6	0.095(32)	
$ec_{15,12}$ N	(U)	53.52 - 54.58	0.07~(6)	
ес _{56,51 М}	(U)	53.64 - 55.64	0.6(5)	
$ec_{51,43}$ K	(U)	55.25 (2)	1.96(27)	
ec _{22,16} N	(U)	56.8 - 57.8	0.026 (9)	
ес _{13,9 М}	(U)	57.2 - 59.2	0.127(40)	
ec _{56,51} N	(U)	57.75 - 58.81	0.16(14)	
$ec_{16,13}$ L	(U)	58.08 - 62.67	1.7 (6)	
ес _{14.7 К}	(U)	58.95 (3)	0.32(31)	
ec _{13.9 N}	(U)	61.3 - 62.3	0.033(10)	
ес _{25,22 М}	(U)	61.7 - 63.7	0.41(15)	
ес _{25,20 М}	(U)	63.91 - 65.91	0.16(15)	
ес _{51.41 К}	(U)	64.20 (8)	0.15(5)	
ec _{25,22} N	(U)	65.81 - 66.87	0.112(40)	
ec _{25,20} N	(U)	68.02 - 69.08	0.043(38)	
ес _{51.40 К}	(U)	70.55 (2)	5.4(6)	
ес _{16,13 М}	(U)	74.29 - 76.29	0.48(17)	
ес _{14,9 L}	(U)	75.41 - 80.00	0.024(9)	
$ec_{2,1 L}$	(U)	78.10 - 82.69	31(6)	
ес _{56,45 К}	(U)	78.13 (3)	0.7(7)	
ес _{16,13} N	(U)	78.40 - 79.46	0.131(46)	
$ec_{16,12}$ L	(U)	79.13 - 83.72	0.0115(22)	
ес _{23,12 К}	(U)	81.20 (5)	0.1(1)	
$ec_{22,14 L}$	(U)	82.01 - 86.60	1.96(33)	
$ec_{21,9 K}$	(U)	84.35 (5)	0.1(1)	
$ec_{16,11 L}$	(U)	84.92 - 89.51	0.104(32)	
$ec_{4,3 \text{ K}}$	(U)	85.37 (3)	0.138(20)	
ес _{13,5 К}	(U)	87.52 (3)	1.0(5)	
$ec_{2,1 M}$	(U)	94.31 - 96.31	8.7(16)	
ес _{22,14 М}	(U)	98.22 - 100.22	0.54(9)	
$ec_{2,1 N}$	(U)	98.42 - 99.48	2.36(44)	
ес _{16,11 М}	(U)	101.13 - 103.13	0.025(8)	
ec _{22,14} N	(U)	102.33 - 103.39	0.148(25)	
ec _{25,16} L	(U)	103.70 - 108.29	2.69(41)	
$ec_{16,7 K}$	(U)	104.40 (8)	0.276 (47)	
ес _{43,33} L	(U)	109.5 - 114.1	0.84 (8)	
ес _{33,25 К}	(U)	110.90 (3)	4.4 (16)	
-	(II)	111.65 (3)	10(1)	

		Energy keV	Electrons per 100 disint.	Energy keV
ес _{51,45} L	(U)	112.85 - 117.44	0.169(34)	
ес _{25,11 К}	(U)	116.61 (3)	0.16(15)	
ес _{13,7 L}	(U)	118.39 - 122.98	0.90(18)	
$ec_{49,43}$ L	(U)	119.15 - 123.74	0.0120 (19)	
ec _{25,16} M	(U)	119.91 - 121.91	0.75(11)	
ес _{33,30} г	(U)	122.02 - 126.61	0.49(8)	
ec _{25,16} N	(U)	124.02 - 125.08	0.203(31)	
$ec_{58,43}$ K	(U)	124.6 (1)	0.042~(40)	
ес _{43,33 М}	(U)	125.8 - 127.8	0.205~(18)	
ес _{30,22 L}	(U)	128.12 - 132.71	0.111(34)	
$ec_{51,45}$ M	(U)	129.06 - 131.06	0.041(8)	
$ec_{56,40}$ K	(U)	129.77 (2)	1.06(15)	
ec _{43,33} N	(U)	129.9 - 130.9	0.0546 (49)	
$ec_{3,2}$ L	(U)	130.95 - 135.54	8.4(10)	
ec _{51,45} N	(U)	133.17 - 134.23	0.0110(22)	
ес _{33,24 К}	(U)	133.62 (1)	0.118(19)	
$ec_{13,7}$ M	(U)	134.6 - 136.6	0.24~(6)	
ес _{33,28 L}	(U)	137.72 - 142.31	0.0186~(28)	
ес _{33,30 М}	(U)	138.23 - 140.23	0.129(20)	
$ec_{13,7 N}$	(U)	138.71 - 139.77	0.065~(15)	
$ec_{68,51}$ K	(U)	141.6 (1)	0.036~(35)	
ес _{33,30} N	(U)	142.34 - 143.40	0.035~(5)	
$ec_{22,11 L}$	(U)	143.18 - 147.77	0.047(21)	
$ec_{30,22}$ M	(U)	144.33 - 146.33	0.031(9)	
$ec_{3,2}$ M	(U)	147.16 - 149.16	2.33(27)	
$ec_{51,43}$ L	(U)	149.09 - 153.68	0.38~(5)	
$ec_{3,2}$ N	(U)	151.27 - 152.33	0.63~(7)	
$ec_{26,10}$ K	(U)	151.52 (5)	0.11 (9)	
$ec_{14,7}$ L	(U)	152.79 - 157.38	0.126(23)	
$ec_{49,33}$ K	(U)	156.68 (5)	0.83(11)	
$ec_{51,41}$ L	(U)	158.0 - 162.6	0.029(10)	
$ec_{22,11} M$	(U)	159.39 - 161.39	0.012(6)	
$ec_{21,8 K}$	(U)	159.4 (1)	0.056(49)	
$ec_{51,40}$ L	(U)	164.39 - 168.98	1.04(11)	
$ec_{51,43}$ M	(U)	165.3 - 167.3	0.092(13)	
$ec_{14,7}$ M	(U)	169 - 171	0.033(7)	
$ec_{51,43}$ N	(U)	169.41 - 170.47	0.0249(34)	
$ec_{56,45}$ L	(U)	171.97 - 176.56	0.255(42)	
$ec_{23,12}$ L	(U)	175.0 - 179.6	0.035(11)	
ес _{33,22 К}	(\mathbf{U})	178.19 (5)	0.84(29)	
$ec_{21,9}$ L	(U)	178.19 - 182.78	0.035(11)	
$ec_{4,3}$ L	(U)	179.21 - 183.80	0.38(6)	
ес _{33,20 К}	(U)	180.31 (8)	0.07(6)	
$ec_{51,40}$ M	(U)	180.6 - 182.6	0.253(27)	
$ec_{13,5 L}$	(U)	181.36 - 185.95	0.52(6)	
$ec_{51,40}$ N	(U)	184.71 - 185.77	0.068(7)	
$ec_{56,45}$ M	(U)	188.18 - 190.18	0.060(11)	
$ec_{56,45}$ N	(U)	192.29 - 193.35	0.0178(30)	

CNDC /Huang Xiaolong, Wang Baosong

252

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	Energy keV
		104.6 (1)	0.000 (20)	
ес _{71,51} к	(U)	194.0 (1)	0.029(30)	
$ec_{4,3}$ M	(U)	193.42 - 197.42 107.57 - 100.57	0.105(10) 0.128(17)	
$ec_{13,5}$ M	(U)	197.37 - 199.37 107.0 (1)	0.138(17) 0.042(42)	
ес _{23,8 К}	(U)	197.9 (1) 109.949 909.929	0.042 (42) 0.052 (0)	
$ec_{16,7 L}$	(U)	198.242 - 202.832 100.52 200.50	0.035(9)	
$ec_{4,3 N}$	(U)	199.55 - 200.59	0.0285(41)	
ес _{37,29} L	(U)	200.07 - 204.00	0.020(0)	
$ec_{13,5 N}$	(U)	201.08 - 202.74	0.0373(40)	
$ec_{33,25}$ L	(U)	204.7 - 209.3	1.40(19)	
ес _{34,22} к	(U)	204.8 (1)	0.021(10)	
$ec_{51,37}$ L	(U)	205.49 - 210.08	1.94(20)	
$ec_{25,11}$ L	(U)	210.45 - 215.04	0.049(12)	
$ec_{16,7}$ M	(U)	214.452 - 210.450	0.0129(22)	
ес _{33,18} к	(U)	214.80 (3)	0.0198(23)	
$ec_{58,43}$ L	(U)	218.4 - 223.0	0.012(0)	
$ec_{33,25}$ M	(U)	221 - 223	0.372(47)	
$ec_{51,37}$ M	(U)	221.7 - 223.7	0.469(49)	
$ec_{56,40}$ L	(U)	223.61 - 228.20	0.205(30)	
$ec_{33,25}$ N	(U)	225.1 - 226.1	0.100(13)	
$ec_{51,37}$ N	(U)	225.81 - 226.87	0.126(13)	
$ec_{25,11}$ M	(U)	226.66 - 228.66	0.0126(24)	
ес _{33,24} L	(U)	227.46 - 232.05	0.0234(38)	
ес _{33,16} к	(U)	236.3 (1)	0.0233(28)	
$ec_{56,40}$ M	(U)	239.82 - 241.82	0.050(7)	
ес _{46,28} к	(U)	242.3 (1)	0.010(8)	
$ec_{56,40}$ N	(U)	243.93 - 244.99	0.0134(19)	
$ec_{26,10}$ L	(U)	245.36 - 249.95	0.031(10)	
ес _{49,33} L	(U)	250.52 - 255.11	0.194(25)	
$ec_{21,8}$ L	(U)	253.28 - 257.87	0.015(5)	
ес _{37,21 К}	(U)	253.90 (5)	1.12(14)	
$ec_{40,23}$ K	(\mathbf{U})	256.4 (1)	0.50(6)	
$ec_{49,33}$ M	(U)	200.73 - 208.73	0.048(0)	
ec _{49,33} N	(U)	270.84 - 271.90	0.0130(17)	
$ec_{33,22}$ L	(U)	272.03 - 276.62	0.33(5)	
ec _{33,20} L	(U)	2(4.10 - 2(8.14))	0.018(7)	
ес _{33,15} к	(U)	282.1 (3)	0.027(7)	
$ec_{33,22}$ M	(U)	288.24 - 290.24	0.085(13)	
ес _{23,8} L	(U)	291.7 - 290.3	0.0104(44)	
ec _{33,22} N	(U)	292.33 - 293.41	0.0228(34)	
ec _{33,16} L	(U)	330.1 - 334.7	0.0191(23)	
ес _{40,18} к	(U)	331.0 (1) 242.00 (7)	0.0307 (41)	
ес _{33,11} к	(U)	343.08 (5) 347.7 250.2	0.125(47)	
ес _{37,21} L	(U)	547.7 - 552.5	0.210(20)	
ес _{40,23} L	(U)	350.242 - 354.832	0.100(11)	
$ec_{37,15}$ K	(U)	330.7 (1)	0.083(9)	
ес _{37,21} м	(U)	304 - 300	0.052(6)	
ес _{71,43} к	(U)	300.4 (1)	0.040(31)	
$ec_{40,23}$ M	(U)	300.432 - 308.450	0.0242(28)	

Pa - 234

CNDC /Huang Xiaolong, Wang Baosong

		Energy keV	Electrons per 100 disint.	Energy keV
ес _{37,21 N}	(U)	368.1 - 369.1	0.0141(17)	
ес _{45,18 К}	(U)	382.4 (1)	0.0125(24)	
ес _{37,13 К}	(U)	391.16 (5)	0.0138(15)	
ес _{40,15 К}	(U)	397.8 (1)	0.0703(11)	
ес _{37,12 К}	(U)	412.4 (1)	0.069(9)	
$ec_{33,11}$ L	(U)	436.92 - 441.51	0.032(7)	
ес _{45,15 К}	(U)	449.8 (1)	0.149(16)	
ес _{37,15} L	(U)	450.5 - 455.1	0.0159(18)	
$ec_{40,12}$ K	(U)	453.5 (2)	0.51(8)	
ес _{37,9 К}	(U)	454.1 (1)	1.30(17)	
ес _{59,26 К}	(U)	481.5 (1)	0.0247 (37)	
ес _{40,15} L	(U)	491.6 - 496.2	0.01341 (19)	
$ec_{53,21}$ K	(U)	496.6 (1)	0.044~(6)	
ес _{37,12} L	(U)	506.23 - 510.82	$0.0131\ (17)$	
ес _{49,16} к	(U)	508.8 (1)	0.028~(4)	
$ec_{48,15}$ K	(U)	514.0 (1)	0.038~(6)	
$ec_{54,22}$ K	(U)	518.9 (2)	0.0142~(25)	
$ec_{50,16}$ K	(U)	538.3 (1)	0.046(8)	
$ec_{45,15 L}$	(U)	543.6 - 548.2	0.0283 (30)	
$ec_{40,12}$ L	(U)	547.3 - 551.9	0.096(16)	
$ec_{37,9}$ L	(U)	547.9 - 552.5	0.248(32)	
$ec_{40,12}$ M	(U)	563.6 - 565.6	0.0232 (39)	
$ec_{37,9}$ M	(U)	564.2 - 566.2	0.060(8)	
$ec_{37,9}$ N	(U)	568.3 - 569.3	0.0161~(21)	
$ec_{54,16}\ {\rm K}$	(U)	577.2 (1)	0.104(11)	
$ec_{7,2 \rm K}$	(U)	590.6 (1)	$0.0130\ (13)$	
$ec_{49,11}$ K	(U)	615.6 (2)	0.025~(19)	
$ec_{50,13}~{}_{\rm K}$	(U)	617.96 (5)	0.50(6)	
$ec_{54,14}$ K	(U)	622.7 (1)	0.081(9)	
$ec_{5,1 K}$	(U)	627.482 (5)	0.0108(11)	
$ec_{51,12}\ {\rm K}$	(U)	639.7 (1)	0.049(37)	
$ec_{56,15}$ K	(U)	643.6 (1)	0.010(8)	
$ec_{54,16}$ L	(U)	671.0 - 675.6	0.0197(21)	
$ec_{51,9}$ K	(U)	680.8 (1)	0.0325(38)	
$ec_{10,2}$ K	(U)	688.9 (1)	0.097(34)	
$ec_{7,1}$ K	(U)	690.60 (5)	0.0112(14)	
$ec_{12,2}$ K	(U)	709.9 (2)	0.0223(24)	
$ec_{50,13}$ L	(U)	711.80 - 716.39	0.095(11)	
$ec_{22,3}$ K	(U)	716.3 (1)	0.0178(21)	
$ec_{54,14}$ L	(U)	(10.5 - 721.1)	0.0154(17)	
$ec_{50,13}$ M	(U)	(28.01 - 730.01)	0.0228(26)	
$ec_{51,12}$ L	(U)	(33.5 - 738.1)	0.010(6)	
ес _{24,3 К}	(U)	(60.8 (1))	0.0269(25)	
$ec_{15,2}$ K	(U)	(65.32) (4)	0.065(8)	
ес _{14,2} к	(U)	(00.32 (4))	0.0104(23)	
ес _{9,1 К}	(U)	(08.00 (4))	0.101(12)	
ес _{10,2} L	(U)	(82.) - (8).3	0.069(24)	
$ec_{25,3}$ K	(\mathbf{U})	(0) (0)	0.0122(10)	

CNDC /Huang Xiaolong, Wang Baosong

254

		Energy keV	Electrons per 100 disint.	Energy keV	
0010 0 14	(\mathbf{II})	799 - 801	0.064.(23)		
ec10,2 M	(U)	809.8 (1)	0.004(23) 0.076(9)		
eco o V	(U)	811.5 (1)	0.070(3) 0.070(12)		
ecg,0 K	(U)	830.70 (3)	0.070(12) 0.045(5)		
CC13,1 K	(U)	832.5 (2)	0.040(0)		
ec _{18,2} K	(U)	850.6 (1)	0.0100(13) 0.011(6)		
ec _{28,3} K	(U)	859 16 - 863 75	0.011(0) 0.0172(22)		
ес _{15,2} L	(U)	861 90 - 866 49	0.0112(22) 0.0268(31)		
ес <u>і</u> 5 1 к	(U)	865.1 (1)	0.01533(23)		
ec12.1 I	(U)	903.6 - 908.2	0.0194(22)		
eco o I	(U)	905.3 - 909.9	0.0179(30)		
есэ, о ц	(U)	968.2 (1)	0.0130(15)		
есз7 2 к	(U)	1238.3 (1)	0.0164(17)		
$ec_{40,2}$ K	(U)	1279.3 (1)	0.0271 (28)		
$\beta_{0.77}^{-}$	max:	51 (4)	0.42(5)	avg: 13.0 (11)	
$\beta_{0,77}^{-0,77}$	max:	79 (4)	0.21(3)	avg: $20.4(11)$	
$\beta_0,76$ $\beta_0^- \pi \tau$	max:	94 (4)	0.064(11)	avg: $24.2(11)$	
$\beta_{0,75}^{-}$	max:	126 (4)	0.40(7)	avg: $33.1(11)$	
$\beta_{0,74}^{-}$	max.	120 (1) 129 (4)	0.10(1) 0.140(24)	avg: $33.8(11)$	
$\beta_{0,73}^{-}$	max.	158 (4)	0.055(8)	avg: $41.9(12)$	
$\beta_{0,72}^{-}$	max.	160 (1) 161 (4)	0.000(0.00)	avg: $11.9(12)$ avg: $42.9(12)$	
$\beta_{0,71}^{-}$	max.	175 (4)	0.00(19) 0.112(16)	avg: $12.3(12)$ avg: $46.7(12)$	
$\beta_{0,70}^{P}$	max.	195 (1) 195 (4)	0.112(10) 0.122(16)	avg: $52.2(12)$	
$\beta_{0,69}^{P}$	max.	214 (4)	0.122(10) 0.59(8)	avg: $57.8(12)$	
$\beta_{0,68}^{-}$	max.	211 (1) 226 (4)	0.03(0)	avg: $61.3(12)$	
$\beta_{0,67}^{0,67}$	max.	220 (1) 236 (4)	0.011(12) 0.44(19)	avg: $64.3(12)$	
$\beta_{0,66}^{-}$	max.	250 (1) 254 (4)	0.35(5)	avg: $69.7(12)$	
$\beta_{0,65}^{-}$	max.	264 (4) 267 (4)	0.33(0) 0.22(4)	avg: $73.5(12)$	
$^{P_{0,64}}_{\beta^{-}}$	max.	201 (4) 279 (4)	0.22 (4) 0.21 (3)	avg. $75.0(12)$	
$^{P0,63}_{\beta^{-}}$	max.	213 (4) 313 (4)	0.21(0) 0.25(3)	avg: $10.3(12)$	
$^{P_{0,62}}_{\beta^{-}}$	max.	313 (4) 332 (4)	0.23(3) 0.029(7)	avg. $07.0(13)$	
$^{P_{0,61}}_{\beta^{-}}$	max.	352 (4) 351 (4)	0.023(7) 0.17(3)	avg. $95.0(13)$	
$^{P_{0,60}}_{\beta^{-}}$	max.	331 (4)	1.43(15)	avg. $30.9(13)$	
$^{P_{0,59}}_{\beta^{-}}$	max.	402 (4)	1.43(10) 0.41(8)	avg. $100.9(13)$	
$^{P_{0,58}}_{\beta^{-}}$	max.	402 (4) 411 (4)	0.41(0)	avg. $114.0(13)$	
$^{P_{0,57}}_{\beta^{-}}$	max.	411 (4) 412 (4)	0.001(11)	avg. $117.0(13)$	
$\rho_{0,56}$	max.	412 (4) 424 (4)	0 (3) 0 (17)	avg. $110.1(13)$	
$\rho_{0,55}$	max.	424 (4) 422 (4)	0.129(17)	avg. $121.0(13)$	
$\rho_{0,54}$	max:	453 (4)	2.0(4)	avg: $124.7(13)$	
$\rho_{0,53}$	max:	437 (4)	0.78(19)	avg: $152.5(14)$	
$^{P_{0,52}}_{\beta^{-}}$	max:	400 (4)	1.10(14)	avg: $132.3(14)$	
$\rho_{0,50}$	max:	4(2) (4)	8.4(9)	avg: $137.2(13)$	
$p_{0,51}$	max:	4/2 (4)	30(5)	avg: $137.1(13)$	
$p_{0,49}$	max:	502 (4)	6.9(8)	avg: $146.8(14)$	
$\beta_{0,48}$	max:	542 (4)	0.95(13)	avg: $160.1(14)$	
$\beta_{0,47}$	max:	545 (4)	0.18(4)	avg: $164.6(13)$	
$\beta_{0,46}$	max:	576 (4)	0.035(20)	avg: 171.4 (14)	
$\beta_{0,45}$	max:	606 (4)	< 0.7	avg: $181.7(14)$	

Pa - 234

		Ene ke	rgy V	Electrons per 100 disint.]	Energy keV
$\beta_{0,44}^{-}$	max:	613	(4)	0.05~(3)	avg:	184.1 (14)
$\beta_{0.43}^{-}$	max:	642	(4)	19.6(18)	avg:	194.0(14)
$\beta_{0.42}^{-}$	max:	647	(4)	0.078(20)	avg:	195.6(14)
$\beta_{0.41}^{-}$	max:	651	(4)	0.10(9)	avg:	197.1(14)
$\beta_{0.40}^{-}$	max:	658	(4)	< 0.9	avg:	199.3(14)
$\beta_{0.39}^{-}$	max:	662	(4)	0.21(4)	avg:	200.6(14)
$\beta_{0.38}^{-}$	max:	693	(4)	0.25(4)	avg:	211.3(14)
$\beta_{0.37}^{-}$	max:	699	(4)	$<\!\!2.7$	avg:	213.5(14)
$\beta_{0.36}^{-}$	max:	709	(4)	0.12(3)	avg:	216.9(14)
$\beta_{0.34}^{-}$	max:	747	(4)	0.11(3)	avg:	230.3(14)
$\beta_{0.31}^{-}$	max:	883	(4)	0.109(18)	avg:	278.7(15)
$\beta_{0.26}^{-}$	max:	980	(4)	0.30(12)	avg:	314.2(15)
$\beta_{0.25}^{-}$	max:	1000	(4)	$<\!\!1.5$	avg:	312.6(14)
$\beta_{0.22}^{-}$	max:	1067	(4)	1.9(10)	avg:	346.5(15)
$\beta_{0.18}^{-}$	max:	1104	(4)	0.69(20)	avg:	360.2(15)
$\beta_{0.16}^{-}$	max:	1126	(4)	<8	avg:	368.3(15)
$\beta_{0.15}^{-}$	max:	1171	(4)	1.5(13)	avg:	385.4(16)
$\beta_{0.14}^{-}$	max:	1171.2	(40)	<5	avg:	385.4(16)
$\beta_{0.13}^{-}$	max:	1206	(4)	<3.1	avg:	398.5(16)
$\beta_{0.12}^{-}$	max:	1227	(4)	$<\!\!2.5$	avg:	406.4(16)
$\beta_{0,11}^{-1}$	max:	1232	(4)	< 0.4	avg:	408.7(16)
$\beta_{0,10}^{-1}$	max:	1247	(4)	< 0.8	avg:	414.4(16)
$\beta_{0,7}^{-}$	max:	1346	(4)	< 0.8	avg:	452.1(16)
$\beta_{0,2}^{-}$	max:	2052	(4)	<5	avg:	732.2(17)

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(U)	11.6185 - 20.7141		77(10)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		$\begin{array}{c} 10.5 \ (6) \\ 16.8 \ (9) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	6.1 (4)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	114.407 115.012 115.377	} } }	2.0 (1)	$\mathbf{K}\beta_{2}^{\prime}$

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{14,13}(U)$	34.30(4)	8.4(9)	(E2)	2270 (40)	0.0037~(4)
$\gamma_{1,0}(U)$	43.49(2)	86(23)	E2	713(11)	0.12(3)
$\gamma_{16,14}(U)$	45.45(5)	6.8(44)	M1+E2	250(140)	0.027~(9)
$\gamma_{15,12}(U)$	54.96(10)	~ 1.23	[M1+E2]	130(110)	~ 0.0094
$\gamma_{14,12}(U)$	54.96(10)	~ 0.0094	[E1]	0.603~(9)	~ 0.0094
$\gamma_{45,39}(\mathrm{U})$	55.45(5)	0.043(14)	(E1)	0.589~(9)	0.027~(9)
$\gamma_{22,16}(U)$	58.20(6)	0.47(16)	(E2)	174(3)	0.0027~(9)
$\gamma_{56,51}(U)$	59.19(5)	2.9(25)	[M1+E2]	90(70)	0.032(11)
$\gamma_{13,9}(U)$	62.70(1)	2.3(7)	E1	0.426~(6)	1.6(5)
$\gamma_{25,22}(U)$	67.25(10)	2.1(8)	M1+E2	57(11)	0.036(11)
$\gamma_{25,20}(U)$	69.46(5)	0.7~(6)	[E2,M1]	40(30)	0.018(8)
$\gamma_{16,13}(U)$	79.84(2)	2.4(9)	E2	38.4(6)	0.062(22)
$\gamma_{14,9}(U)$	97.17(10)	0.27(10)	[E1]	0.1343(20)	0.24(9)
$\gamma_{2,1}(U)$	99.86(2)	46(9)	E2	13.42(19)	3.2(6)
$\gamma_{16,12}(U)$	100.89(2)	0.140(27)	[E1]	0.1218(17)	0.125(24)
$\gamma_{22,14}(U)$	103.77(2)	2.93(49)	(E2)	11.22(16)	0.24(4)
$\gamma_{16,11}(U)$	106.68(5)	0.17~(5)	[M1]	3.83~(6)	0.036(11)
$\gamma_{25,16}(U)$	125.46(1)	4.7(7)	E2	4.89(7)	0.79(12)
$\gamma_{43,33}(U)$	131.30(1)	23(2)	E1	0.265(4)	18.2(16)
$\gamma_{51,45}(U)$	134.61(2)	1.20(24)	M1	9.50(14)	0.114(23)
$\gamma_{21,13}(U)$	137.23(5)	0.033(11)	[E1]	0.239(4)	0.027~(9)
$\gamma_{13,7}(U)$	140.15(2)	3.2(10)	M1+E2	5.3(18)	0.51(7)
$\gamma_{49,43}(U)$	140.91(3)	0.38(6)	[E1]	0.224(4)	0.31(5)
$\gamma_{33,30}(U)$	143.78(2)	2.02(32)	(M1+E2)	5.31	0.32(5)
$\gamma_{30,22}(U)$	149.88(3)	0.24(7)	[E2]	2.31(4)	0.073(22)
$\gamma_{3,2}(U)$	152.71(2)	18.8(22)	E2	2.14(3)	6.0(7)
$\gamma_{33,28}(U)$	159.48(2)	0.77(12)	[E1]	0.1676(24)	0.66(10)
$\gamma_{22,11}(U)$	164.94(5)	0.23(14)	[E2,M1]	3.5(19)	0.052(22)
$\gamma_{64,54}(U)$	165.61(5)	0.084(25)	[E1]	0.1533(22)	0.073(22)
$\gamma_{51,43}(U)$	170.85(2)	2.97(41)	M1	4.83(7)	0.51(7)
$\gamma_{14,7}(U)$	174.55(3)	0.66(31)	[M1+E2]	2.9(17)	0.17(3)
$\gamma_{51,41}(U)$	179.80 (8)	0.23(8)	[M1]	4.19(6)	0.045(16)
$\gamma_{51,40}(U)$	186.15(2)	8.5(9)	M1	3.79(6)	1.78(19)
$\gamma_{56,45}(U)$	193.73(3)	1.6(7)	[M1+E2]	2.1(13)	0.50(8)
$\gamma_{23,12}(U)$	196.80(5)	0.22(12)	E0+E2+M1	2.0(13)	0.073(22)
$\gamma_{21,9}(U)$	199.95(5)	0.22(12)	(E0+E2+M1)	2.0(13)	0.073(22)
$\gamma_{4,3}(U)$	200.97(3)	1.56(23)	E2	0.734(11)	0.90(13)
$\gamma_{13,5}(\mathrm{U})$	203.12(3)	3.0(6)	M1+E2	1.4(4)	1.24(15)
$\gamma_{16,7}(U)$	220.00(8)	0.49(8)	(M1)	2.37(4)	0.146(25)
$\gamma_{66,53}(U)$	221.15(10)	0.056(24)	[E1]	0.0780(11)	0.052(22)
$\gamma_{37,29}(U)$	221.83(10)	0.110(33)	[E2]	0.513(8)	0.073(22)
$\gamma_{33,25}(U)$	226.50(3)	11.3(20)	M1+E2	1.3(3)	4.9(6)
$\gamma_{51,37}(U)$	227.25(3)	18.4(19)		2.17(3)	5.8(6)
$\gamma_{25,11}(U)$	232.21(3)	0.40(16)	[E2,M1]	1.2(8)	0.18(3)
$\gamma_{66,51}(U)$	235.11(3)	0.122(25)	[E1]	0.0678 (10)	0.114(23)
$\gamma_{17,7}(U)$	235.9(30)	0.005(3)		1 1 (0)	0.005(3)
$\gamma_{58,43}(\cup)$	240.2(1)	0.11 (6)	[M1, E2]	1.1 (8)	0.052(22)

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{56 \ 40}(U)$	245.37(2)	2.09(30)	M1	1.749(25)	0.76(11)
$\gamma_{27.13}(U)$	247.79(7)	0.00037(4)			0.00037(4)
$\gamma_{33,24}(U)$	249.22(1)	2.65(42)	${ m E1}$	0.0594(9)	2.5(4)
$\gamma_{68,51}(U)$	257.2(1)	0.10(6)	[M1, E2]	0.9(7)	0.052(22)
$\gamma_{26,10}(U)$	267.12(5)	0.32(12)	[E2,M1]	0.8(6)	0.18(3)
$\gamma_{49,33}(U)$	272.28(5)	2.18(28)	M1+E2	1.004(14)	1.09(14)
$\gamma_{21,8}(U)$	275.04 (10)	0.17(7)	[M1,E2]	0.8(6)	0.094(23)
$\gamma_{22,7}(U)$	278.3(1)	0.052(14)	[E2]	0.238(4)	0.042(11)
$\gamma_{33,22}(U)$	293.79(5)	4.3 (6)	M1+E2	0.42(10)	3.0(4)
$\gamma_{33,20}(U)$	295.91(8)	0.23(8)	[M1+E2]	0.6(5)	0.146(25)
$\gamma_{17,5}(U)$	298.7(2)	0.015(6)	[E1]	0.0396(6)	0.014(6)
$\gamma_{64,46}(U)$	308.6(2)	0.025(7)	[E2]	0.1726(25)	0.021(6)
$\gamma_{71,51}(U)$	310.2(1)	0.109(35)	[M1,E2]	0.5(4)	0.073(13)
$\gamma_{27,9}(U)$	310.52(10)	$0.000135\ (15)$			$0.000135\ (15)$
$\gamma_{23,8}(U)$	313.5(1)	0.156(47)	[E2,M1]	0.5~(4)	0.104(14)
$\gamma_{21,6}(U)$	316.7(1)	$0.121\ (16)$	[E2]	0.1597(23)	0.104(14)
$\gamma_{34,22}(U)$	320.4(1)	0.078(24)	[E2,M1]	0.5(4)	0.052(8)
$\gamma_{33,18}(U)$	330.40(5)	0.80(9)	[E1]	0.0318(5)	0.78(9)
$\gamma_{74,52}(U)$	331.4(1)	0.073~(13)			0.073~(13)
$\gamma_{21,5}(U)$	340.2(1)	0.042(9)	[E1]	0.0298(5)	0.041 (9)
$\gamma_{31,12}(U)$	343.8(2)	0.035~(8)	[E1]	0.0292~(5)	0.034(8)
$\gamma_{33,16}(U)$	351.9(1)	0.47~(6)	E2	0.1175(17)	0.42(5)
$\gamma_{46,28}(U)$	357.9(1)	0.050(19)	[M1,E2]	0.4(3)	0.036(11)
$\gamma_{56,33}(U)$	360.6(3)	0.018(7)	[E1]	0.0264(4)	0.018(7)
$\gamma_{26,7}(U)$	365.0(3)	0.018(7)	[E1]	0.0257(4)	0.018(7)
$\gamma_{37,21}(U)$	369.50(5)	3.91 (47)	M1	0.565(8)	2.5(3)
$\gamma_{40,23}(U)$	372.0(1)	1.87(21)	M1(+E2)	0.517(8)	1.23(14)
$\gamma_{32,11}(U)$	379.1(1)	0.043(11)	[E1]	0.0237(4)	0.042(11)
$\gamma_{31,9}(U)$	385.4(1)	0.043(11)	[E1]	0.0229(4)	0.042 (11)
$\gamma_{27,7}(U)$	387.94 (6)	0.00072(6)	[mag]		0.00072(6)
$\gamma_{45,25}(U)$	394.1(1)	0.096(14)	[E1]	0.0219(3)	0.094(14)
$\gamma_{33,15}(U)$	397.7(3)	0.063(16)	[M2]	1.349(20)	0.027(7)
$\gamma_{-1,2}(U)$	401.8(2)			0.0000 (0)	0.036(11)
$\gamma_{40,22}(0)$	409.8(1)	0.35(5)	[E1] [D0]	0.0202(3)	0.34(5)
$\gamma_{49,30}(U)$	416.1(1)	0.039(12)	[E2]	0.0746(11)	0.036(11)
$\gamma_{-1,3}(0)$	425.3(2)	0.47(F)	[17:1]	0.0105(9)	0.036(11)
$\gamma_{37,16}(U)$	426.95(5)	0.47(5)	[E1]	0.0185(3)	0.40(5)
$\gamma_{27,6}(U)$ (U)	427.4(4)	0.000031(10)			0.000031(10)
$\gamma_{68,42}(U)$	433.1(1)	0.094(14) 0.152(20)	[]][1]	0.220 (5)	0.094(14) 0.114(15)
$\gamma_{40,18}(0)$	440.0(1)	0.155(20)	$\begin{bmatrix} 1VII \end{bmatrix}$ M1 + F9	0.338(3) 0.241(4)	0.114(10) 0.0040(10)
$\gamma_{27,5}(U)$	430.93(4) 452.4(2)	0.0030(24)	M1+D2	0.241(4)	0.0040(19)
$\gamma_{42,19}(U)$	452.4(5)	0.027(9) 1.20(15)	M1 + F9	0.14(5)	0.027(9) 1.14(12)
$\gamma_{33,11}(U)$	456.06(5)	1.30(13)	M1+D2 [M1]	0.14(5)	1.14(12) 0.024(11)
$\gamma_{45,22}(U)$	401.0(1) 464.9(1)	0.040 (14) 0.040 (14)	[1VII]	0.309(3)	0.034(11) 0.031(11)
739,16(U)	404.2(1)	0.040 (14) 0.222 (20)	[IVII]	0.304(0) 0.01530(00)	0.001(11)
$\gamma_{40,16(U)}$	400.0(1) 179.2(1)	0.220 (00)	[151] [M1]	0.01009 (22)	0.22(3) 0.36(4)
$\gamma_{37,15}(U)$	412.0 (1) 1719 (9)	$\begin{array}{c} 0.40 & (0) \\ 0.027 & (11) \end{array}$	[1V11]	0.290(4) 0.01400(91)	0.30 (4)
741,16(U)	414.2 (2)	0.037(11)		0.01499 (21)	0.030 (11)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{42,16}(U)$	478.6 (1)	0.127(15)	[E1]	0.01472(21)	0.125(15)
$\gamma_{71,43}(U)$	481.0 (1)	0.36(6)	[M1, E2]	0.16(12)	0.31(4)
$\gamma_{45,18}(U)$	498.0 (1)	0.078(15)	[M1]	0.252(4)	0.062(12)
$\gamma_{66,35}(U)$	502.0(1)	0.03(10)	[E2,M1]	0.15(10)	0.027(90)
$\gamma_{37,13}(U)$	506.75(5)	1.32(14)	[E1]	0.01314 (19)	1.30(14)
$\gamma_{40,15}(U)$	513.4(1)	~ 0.468	[M1]	0.232(4)	~ 0.38
$\gamma_{40,14}(U)$	513.5(1)	~ 0.77	[E1]	0.01280(18)	~ 0.76
$\gamma_{45,16}(U)$	519.6(1)	0.41(5)	[E1]	0.01251(18)	0.40(5)
$\gamma_{49,24}(U)$	521.4(1)	0.76(9)	[E1]	0.01242(18)	0.75(9)
$\gamma_{37,12}(U)$	527.9(1)	0.49(6)	(M1)	0.215(3)	0.40(5)
$\gamma_{43,15}(U)$	529.1(3)	0.102(46)	[E2,M1]	0.13~(9)	0.09(4)
$\gamma_{76,44}(U)$	534.1(1)	0.084(13)	[E1]	0.01185(17)	0.083~(13)
$\gamma_{71,37}(U)$	537.2(1)	0.093~(16)	[M1,E2]	0.12(9)	0.083~(13)
$\gamma_{39,13}(U)$	543.8(1)	0.140(25)	[E2]	0.0389~(6)	0.135(24)
$\gamma_{47,19}(U)$	553.7(1)	0.045~(16)	[E1]	0.01105(16)	0.045~(16)
$\gamma_{44,14}(U)$	558.0(2)	0.097(24)	[E2]	0.0367~(6)	0.094(23)
$\gamma_{36,9}(U)$	559.2(2)	0.074(22)	[E1]	0.01084(16)	0.073(22)
$\gamma_{76,43}(U)$	562.8(3)	0.040(13)	[M1,E2]	0.11(8)	0.036(11)
$\gamma_{45,15}(U)$	565.2(1)	1.23(13)	(M1)	0.179(3)	1.04(11)
$\gamma_{40,12}(U)$	568.9(2)	4.2(7)	M1	0.1759(25)	3.6(6)
$\gamma_{37,9}(U)$	569.5(1)	10.9(14)	M1	0.1754(25)	9.3(12)
$\gamma_{41,12}(U)$	575.5(1)	0.03(1)	[E2,M1]	0.10(7)	0.027(9)
$\gamma_{43,12}(U)$	584.1 (1)	0.19(31)	[E2]	0.0331(5)	0.18(30)
$\gamma_{64,32}(U)$	586.3(1)	0.075(13)	[E2]	0.0328(5)	0.073(13)
$\gamma_{40,10}(U)$	590.3(10)	0.040(12)	[E2,M1]	0.10(7)	0.036(11)
$\gamma_{50,22}(U)$	595.4(2)	0.097(24)	[E2]	0.0317(5)	0.094(23)
$\gamma_{59,26}(U)$	596.9(1)	0.231(35)		0.1547(22)	0.20(3)
$\gamma_{49,18}(U)$	602.0(1)	0.35(0)	[E1] [E9 M1]	0.00939(14)	0.54(0)
$\gamma_{43,10}(U)$	004.0(3)	0.037(24)	$[\mathbb{L}2,\mathbb{N}1]$	0.09(0) 0.1447(21)	0.052(22)
$\gamma_{53,21}(0)$	612.0(1)	0.43(0)		0.1447(21) 0.0204(5)	0.30(0)
$\gamma_{41,9}(0)$	610.0(2)	0.034(23) 0.030(12)	$[\mathbf{D}2]$ $[\mathbf{M1} + \mathbf{F2}]$	0.0294(3)	0.052(22) 0.036(11)
$\gamma_{44,11}(0)$	624.2(1)	0.039(12)	[M1 + E2]	0.03(0)	0.030(11)
$\gamma_{49,16}(0)$	624.2(1) 628.1(1)	0.33(0) 0.24(5)	(MI + B2) [E1]	0.1015(13) 0.00868(13)	0.33(5)
$\gamma_{20,4}(0)$	629.4(1)	0.24(0) 0.40(7)	(M1)	0.1342(19)	0.24(0) 0.35(6)
$\gamma_{48,15}(U)$	632.6(2)	0.039(12)	[E2 M1]	0.1012(10)	0.036(0)
$\gamma_{51,18}(0)$ $\gamma_{54,22}(U)$	634.3(2)	0.153(27)	[122,111] [M1]	0.1315(19)	0.135(24)
$\gamma_{34,22}(0)$ $\gamma_{-1.4}(U)$	643.2(2)	01100 (=1)	[1111]	0.1010 (10)	0.027(9)
$\gamma_{27.7}(U)$	646.5(1)	0.115(15)	[E1]	0.00822(12)	0.114(15)
$\gamma_{50,16}(U)$	653.7(1)	0.53(9)	M1	0.1213(17)	0.47(8)
$\gamma_{56,22}(U)$	655.2(2)	0.136(24)	[E1]	0.00802(12)	0.135(24)
$\gamma_{46,11}(U)$	657.4(1)	0.40(5)	L J	×)	0.40(5)
$\gamma_{-1,5}(U)$	659.8(1)	~ /			0.27(4)
$\gamma_{48,13}(U)$	663.9(1)	0.54(9)	[E1]	0.00782(11)	0.54(9)
$\gamma_{11,3}(U)$	666.5(1)	1.19 (13)	[E1]	0.00777(11)	1.18 (13)
$\gamma_{35,5}(U)$	669.7(1)	< 0.0006		× /	<0.0006
$\gamma_{49,15}(U)$	669.7(1)	1.01(10)	[E1]	0.00770(11)	1.0(1)
$\gamma_{24,4}(U)$	675.1(1)	0.103 (14)	[E2]	0.0242 (4)	0.101 (14)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{59,22}(U)$	683.9(2)	0.161(40)	[E1]	0.00740(11)	0.16(4)
$\gamma_{40,8}(U)$	685.1(2)	0.15(4)			0.15(4)
$\gamma_{54,16}(U)$	692.6(1)	1.38(14)	(M1)	0.1040(15)	1.25(13)
$\gamma_{51,15}(U)$	699.03(5)	3.6(4)			3.6(4)
$\gamma_{7,2}(U)$	705.9(1)	2.31(23)	[E1]	0.00698(10)	2.29(23)
$\gamma_{8,2}(U)$	708.3(2)	0.024(9)	[E2]	0.0219(3)	0.023(9)
$\gamma_{-1,6}(U)$	711.5(1)				0.156(25)
$\gamma_{52,14}(U)$	713.7(1)	0.147(25)	[E1]	0.00684(10)	0.146(25)
$\gamma_{62,23}(U)$	716.5(2)	0.033~(10)	[M1,E2]	0.06(4)	0.031~(9)
$\gamma_{15,3}(U)$	727.8(2)	0.116(15)	[E2]	0.0207~(3)	0.114(15)
$\gamma_{49,11}(U)$	730.9(2)	0.67(11)	[M1,E2]	0.06(4)	0.63(10)
$\gamma_{50,13}(U)$	733.39~(5)	7.6(9)	M1	0.0893~(13)	7.0(8)
$\gamma_{54,14}(U)$	738.0(1)	1.26(14)	(M1)	0.0878(13)	1.16(13)
$\gamma_{5,1}(U)$	742.813(5)	2.09(21)	${ m E1}$	0.00636 (9)	2.08(21)
$\gamma_{49,10}(U)$	745.9(1)	0.32(5)	[E1]	0.00631 (9)	0.32(5)
$\gamma_{52,13}(U)$	748.1(3)	0.105(23)	[E1]	0.00628 (9)	0.104(23)
$\gamma_{51,12}(U)$	755.0(1)	1.29(15)	(E2,M1)	0.05~(4)	1.23(13)
$\gamma_{56,15}(U)$	758.9(1)	0.262(33)	[M1, E2]	0.05~(4)	0.25(3)
$\gamma_{50,11}(U)$	761.0(2)	0.074(22)	[E2]	0.0189(3)	0.073~(22)
$\gamma_{28,4}(U)$	764.8(2)	0.21(5)	[M1, E2]	0.05(3)	0.20(5)
$\gamma_{6,1}(U)$	766.4(2)	0.26(5)	(E2)	0.0187(3)	0.26(5)
$\gamma_{58,15}(U)$	769.1(1)	0.196(22)	[M1, E2]	0.05(3)	0.187(20)
$\gamma_{54,13}(U)$	772.4(2)	0.074(22)	[E2]	0.0184(3)	0.073~(22)
$\gamma_{-1,7}(U)$	778.6(2)				0.046(10)
$\gamma_{30,4}(U)$	780.4(2)	0.91 (9)	[E1]	0.00581 (9)	0.90(9)
$\gamma_{9,2}(U)$	783.4(1)	0.305(41)	[E2]	0.0179(3)	0.30(4)
$\gamma_{5,0}(U)$	786.272(22)	1.22(13)	(E1)	0.00573 (8)	1.21(13)
$\gamma_{54,12}(U)$	792.8(3)	0.045(11)	[E1]	0.00565(8)	0.045(11)
$\gamma_{18,3}(U)$	794.9(2)	0.69(11)	[E2]	$0.01735\ (25)$	0.68(11)
$\gamma_{51,9}(U)$	796.1(1)	2.64(31)	[E2]	0.01730(25)	2.6(3)
$\gamma_{55,12}(U)$	802.3(2)	0.033(10)	[M1]	0.0703(10)	0.031(9)
$\gamma_{10,2}(U)$	804.1(1)	0.85(30)	E0+E2	0.37	0.62(22)
$\gamma_{7,1}(U)$	805.80(5)	2.51(30)	[E1]	0.00549(8)	2.5(3)
$\gamma_{8,1}(U)$	808.4(3)	0.19(6)	E0+E2	4.2	0.036(11)
$\gamma_{53,9}(U)$	811.5(1)	0.130(16)	[M1,E2]	0.04(3)	0.125(15)
$\gamma_{56,12}(U)$	814.2 (1)	0.315(41)	[E2]	0.01654(24)	0.31(4)
$\gamma_{11,2}(U)$	819.2 (1)	1.91(20)	[E1]	0.00533(8)	1.9(2)
$\gamma_{-1,8}(U)$	824.2 (2)				1.25(15)
$\gamma_{12,2}(U)$	825.1(2)	1.93(20)	[E2]	0.01611(23)	1.9(2)
$\gamma_{20,3}(U)$	829.3 (2)	0.36(11)	[E1]	0.00521(8)	0.36(11)
$\gamma_{22,3}(U)$	831.5(1)	4.2 (5)	[E1]	0.00518(8)	4.2 (5)
$\gamma_{75,28}(U)$	839.5(1)	0.031(8)			0.031(8)
$\gamma_{49.7}(U)$	844.1 (1)	0.44(5)	[E2]	0.01540(22)	0.43(5)
$\gamma_{-1.9}(U)$	846.1(2)			~ /	0.052(12)
$\gamma_{59.11}(U)$	848.9 (2)	0.027(8)	[E1]	0.00500(7)	0.027(8)
$\gamma_{8.0}(U)$	851.8 (1)	0.074(22)	[E2]	0.01513(22)	0.073(22)
$\gamma_{57.9}(U)$	857.7 (2)	0.037(8)	[E2]	0.01493(21)	0.036(8)
,					

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{77,29}(U)$	869.7 (1)	0.20(3)			0.20(3)
$\gamma_{50,7}(U)$	874.0(3)	0.037~(8)	[E2,M1]	0.035~(21)	0.036(8)
$\gamma_{24,3}(U)$	876.0(1)	2.59(23)	(E2)	0.01432~(20)	2.55(23)
$\gamma_{15,2}(U)$	880.52(4)	6.3(8)	[E2]	0.01418(20)	6.2(8)
$\gamma_{14,2}(U)$	880.52~(4)	4.3(6)	[E1]	0.00468~(7)	4.3(6)
$\gamma_{9,1}(U)$	883.24(4)	9.8(11)	E2	0.01409(20)	9.7(11)
$\gamma_{66,16}(U)$	890.1~(4)	0.027~(8)			0.027~(8)
$\gamma_{25,3}(U)$	898.67(5)	3.31(40)	[E1]	0.00451(7)	3.3(4)
$\gamma_{10,1}(U)$	904.2(1)	0.345~(41)	[E2]	$0.01346\ (19)$	0.34(4)
$\gamma_{65,15}(U)$	916.5(2)	0.024~(7)			0.024~(7)
$\gamma_{26,3}(U)$	918.4(1)	0.101(14)	[E2]	0.01306(19)	0.100(14)
$\gamma_{-1,10}(U)$	920.5(2)				0.029(8)
$\gamma_{12,1}(U)$	925.0(1)	8.0(9)	(E2)	0.01288(18)	7.9(9)
$\gamma_{16,2}(U)$	926.0(2)	1.8(13)	[E1]	0.00428 (6)	1.8 (13)
$\gamma_{9.0}(U)$	926.7(1)	7.4(12)	(E2)	0.01284(18)	7.3(12)
$\gamma_{66,15}(U)$	935.8(2)	0.067(10)	× /		0.067(10)
$\gamma_{17,2}(U)$	942.0(3)	0.047(9)	[E2]	0.01244(18)	0.046(9)
$\gamma_{13,1}(U)$	946.00(3)	13.6(15)	(E1)	0.00412(6)	13.5(15)
$\gamma_{18,2}(U)$	947.7(2)	1.65(21)	[E2]	0.01230(18)	1.63(21)
$\gamma_{19,2}(U)$	952.7(1)	0.083(13)	ĽJ		0.083(13)
$\gamma_{59.8}(U)$	960.0 (1)	0.074(13)	[E2]	0.01199(17)	0.073(13)
$\gamma_{28,3}(U)$	965.8(1)	0.49(6)	[M1.E2]	0.027(16)	0.48(6)
$\gamma_{23,3}(1)$ $\gamma_{73,18}(U)$	975.1(1)	0.027(8)			0.027(8)
$\gamma_{20,3}(U)$	978.2(3)	0.090(23)			0.090(23)
$\gamma_{23,3}(0)$ $\gamma_{14,1}(U)$	980.3(1)	~ 2.71	[E1]	0.00387(6)	~ 2.7
$\gamma_{14,1}(U)$	980.3(1)	~ 1.79	[=-] [E2]	0.01152(17)	~ 1.77
$\gamma_{20,2}(U)$	981.6(3)	0.73(22)	[E 1]	0.00387(6)	0.73(22)
$\gamma_{30,3}(\bigcirc)$	984.2(1)	1.64(21)	[E1]	0.00385(6)	1.63(21)
$\gamma_{22,2}(\mathbf{U})$	989.5(1)	0.104(14)	[22]	0.000000 (0)	$0\ 104\ (14)$
$\gamma_{03,9}(0)$	992.0(2)	0.101 (11)			0.083(22)
$\gamma = 1, \Pi(0)$ $\gamma = 0, \pi(\Pi)$	994.6(3)	0.062(22)			0.062(22)
$\gamma_{70}, \gamma_{(0)}$	997.7(3)	0.002(22) 0.046(12)			0.002(22) 0.046(12)
$\gamma_{73,16}(U)$	1009.9(3)	0.010(12) 0.067(12)			0.010(12) 0.067(12)
$\gamma_{77,15}(0)$	1019.5(0)	0.007(12) 0.027(8)			0.007(12) 0.027(8)
$\gamma_{76,19}(0)$	1010.0(1) 1021.8(2)	0.021(0) 0.156(41)	[M1]	0.0370.(6)	0.021(0)
$\gamma_{23,2}(0)$	1021.0(2) 1023.6(2)	0.100 (11)		0.0010 (0)	0.10(1)
$\gamma = 1, 12(0)$	1025.0(2) 1025.3(2)				0.002(22) 0.052(22)
$\gamma = 1, 13(0)$	1025.5(2) 1028.7(1)	0.58 (6)	$[\mathbf{F}2]$	0.01051.(15)	0.052(22)
$\gamma_{24,2}(0)$	1020.7(1) 1032.8(2)	0.00(0)		0.01001 (10)	0.018(5)
$\gamma_{75,16}(0)$	1032.0(2) 1035.0(2)	0.018(0)			0.018(3)
$\gamma_{-1,14}(0)$	1035.9(2) 1037.0(2)	0.018(7)			0.020(10)
769,11(U)	1037.3(2) 1041.1(9)	0.010(1) 0.033(11)	[F9 M1]	0.022(12)	0.010(1)
$\gamma_{17,1}(\cup)$	1041.1 (2) 1044.4 (2)	0.031 (2)	[111,201]	0.020 (10)	0.032(11) 0.021(2)
732,3(U)	1044.4 (2) 1051 4 (9)	0.031(3)			0.031(3)
$\gamma_{70,12}(U)$	1051.4(2) $1057 \circ (2)$	0.002 (12) 0.0177 (16)			0.002 (12) 0.0177 (16)
γ70,11(U)	1007.0(0) 1065.1(1)	0.0177(10)			0.0177(10)
$\gamma_{71,12}(U)$	1000.1(1) 1072 f(0)	0.027(8)			0.027(8)
$\gamma_{69,9}(U)$	1073.0(2)	0.104(14)	(] [1]	0.0917 (F)	0.104(14)
$\gamma_{21,1}(\cup)$	1083.2(1)	0.53 (6)	(1/11)	0.0317(5)	0.51(0)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{17,0}(U)$	1085.3(3)	0.027(8)	[E2]	0.00950(14)	0.027(8)
$\gamma_{71,9}(U)$	1106.9(2)	0.083~(13)			0.083~(13)
$\gamma_{66,7}(U)$	1110.6(1)	0.062(12)			0.062(12)
$\gamma_{23,1}(U)$	1121.7(1)	0.257(41)	M1	0.0289(4)	0.25~(4)
$\gamma_{33,3}(U)$	1125.2(1)	0.36(8)	[E1]	0.00305~(5)	0.36(8)
$\gamma_{21,0}(U)$	1126.8(1)	0.303(40)	[E2]	0.00885~(13)	0.30(4)
$\gamma_{34,3}(U)$	1151.4(3)	0.032(10)	[E1]	0.00294(5)	0.032(10)
$\gamma_{76,11}(U)$	1153.5(3)	0.046(9)			0.046~(9)
$\gamma_{26,1}(U)$	1171.3(1)	0.091(13)	[E2]	0.00824(12)	0.090(13)
$\gamma_{66,5}(U)$	1173.1(1)	0.046(9)			0.046(9)
$\gamma_{71,8}(U)$	1182.1(2)	~ 0.0094			~ 0.0094
$\gamma_{27,1}(U)$	1193.77(2)	0.021~(6)	$\mathrm{E1}$	0.00277(4)	0.021~(6)
$\gamma_{77.9}(U)$	1217.3(1)	0.22(3)			0.22(3)
$\gamma_{-1.15}(U)$	1220.4(2)				0.062(12)
$\gamma_{27.0}(U)$	1237.3(3)	< 0.0094	${ m E1}$	0.00262(4)	< 0.0094
$\gamma_{40.3}(U)$	1241.2(1)	0.232(30)	(E2)	0.00740(11)	0.23(3)
$\gamma_{41,3}(U)$	1247.8(2)	0.022(6)	[E2]	0.00733(11)	0.022(6)
$\gamma_{42,3}(U)$	1252.6(2)	0.018(8)			0.018(8)
$\gamma_{43,3}(U)$	1256.5(1)	0.060(8)	[M1,E2]	0.014(8)	0.059(8)
$\gamma_{33,2}(U)$	1277.7(2)	0.047(9)	[M2]	0.0473(7)	0.045(9)
$\gamma_{45,3}(U)$	1292.8(1)	0.48(6)	M1	0.0199(3)	0.47(6)
$\gamma_{-1.16}(U)$	1296.4(2)				0.029(7)
$\gamma_{-1.17}(U)$	1301.2(2)				0.018(5)
$\gamma_{-1.18}(U)$	1327.0(2)				0.018(5)
$\gamma_{36,2}(U)$	1342.9(2)	0.012(5)	[E1]	0.00232(4)	0.012(5)
$\gamma_{37,2}(U)$	1352.9(1)	1.18(12)	M1	0.01766(25)	1.16(12)
$\gamma_{47,3}(U)$	1354.6(2)	0.14(4)	[E1]	0.00229(4)	0.14(4)
$\gamma_{38,2}(U)$	1359.0(1)	0.156(25)			0.156(25)
$\gamma_{39,2}(U)$	1389.6(2)	0.073(22)	[E1]	0.00222(4)	0.073(22)
$\gamma_{40,2}(U)$	1393.9(1)	2.11(21)	M1	0.01634(23)	2.08(21)
$\gamma_{49,3}(U)$	1397.5(2)	0.083(22)	[E1]	0.00220(3)	0.083(22)
$\gamma_{41,2}(U)$	1400.3(1)	0.182(30)	[E2,M1]	0.011(6)	0.18(3)
$\gamma_{43,2}(U)$	1409.1(2)	0.045(10)	L / J		0.045(10)
$\gamma_{35,2}(U)$	1414.4(2)	< 0.0028			< 0.0028
$\gamma_{51,3}(U)$	1426.9(1)	0.17(3)			0.17(3)
$\gamma_{36,1}(U)$	1442.8(2)	0.031(7)	[E1]	0.00212(3)	0.031(7)
$\gamma_{45,2}(U)$	1445.4(1)	0.32(5)	[M1]	0.01488(21)	0.32(5)
$\gamma_{43,2}(0)$ $\gamma_{27,1}(U)$	1452.7(1)	0.82(9)	[M1]	0.01468(21)	0.81(9)
$\gamma_{37,1}(U)$	1458.9(1)	0.094(23)	[1111]	0.01100 (=1)	0.094(23)
$\gamma_{36,1}(0)$ $\gamma_{46,2}(U)$	1475.8(2)	0.001(20) 0.008(4)			0.001(20) 0.008(4)
$\gamma_{40,2}(0)$	14854(2)	0.000(1) 0.030(7)	[M1]	0.01387(20)	0.030(7)
$\gamma_{50,3}(\cup)$ $\gamma_{57,2}(U)$	1488.0(2)	0.000(1) 0.014(6)		0.01001 (20)	0.000(1) 0.014(6)
$\gamma_{37,3}(0)$	1493.6(1)	0.011(0) 0.105(14)	[E2]	0.00531(8)	0.011(0) 0.104(14)
$\gamma_{50,1}(0)$ $\gamma_{50,2}(11)$	1496.0(2)	0.036(9)		0.00001 (0)	0.036(9)
$\gamma_{41,1}(U)$	1500.0(2)	0.0111(40)	$[\mathbf{E}2]$	0.00528(8)	0.000(0)
$\gamma_{41,1}(\bigcirc)$	1507.3(2)	0.0111 (40)		0.00020 (0)	0.011(4) 0.020(5)
$\gamma_{49.0}(U)$	15101.0(2)	< 0 0094			
	1010.1 (4)	<0.00 <i>3</i> 4			<0.00 <i>3</i> 4

CNDC /Huang Xiaolong, Wang Baosong

262

Pa - 23	34
---------	----

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{-1,20}(U)$	1520.7(2)				0.0094(9)
$\gamma_{-1,21}(U)$	1538.8(2)				0.014(4)
$\gamma_{49,2}(U)$	1550.1(1)	0.073(13)	[E1]	0.00196(3)	0.073(13)
$\gamma_{61,3}(U)$	1567.0(2)	0.0114(23)			0.0114(23)
$\gamma_{51,2}(U)$	1579.9(1)	0.073(22)			0.073(22)
$\gamma_{62,3}(U)$	1585.9(1)	0.146(17)			0.146(17)
$\gamma_{52,2}(U)$	1594.0(1)	0.312(40)	M1,E2	0.008(4)	0.31(4)
$\gamma_{54,2}(U)$	1618.3(2)	0.009(4)			0.009(4)
$\gamma_{55,2}(U)$	1627.3(1)	0.076~(11)			0.076(11)
$\gamma_{56,2}(U)$	1638.1(1)	0.210(21)	(M1)	0.01083~(16)	0.208(21)
$\gamma_{57,2}(U)$	1640.5(3)	0.010(4)			0.010(4)
$\gamma_{65,3}(U)$	1644.9(2)	0.010(4)			0.010(4)
$\gamma_{58,2}(U)$	1650.2(2)	< 0.006			< 0.006
$\gamma_{-1,22}(U)$	1655.7(1)				0.026~(4)
$\gamma_{-1,23}(U)$	1664.8(3)				0.018(7)
$\gamma_{59,2}(U)$	1668.4(1)	0.78~(9)	(M1)	$0.01035\ (15)$	0.77~(9)
$\gamma_{67,3}(U)$	1672.8(1)	0.034(11)			0.034(11)
$\gamma_{50,1}(U)$	1679.5(1)	0.077~(18)			0.077~(18)
$\gamma_{68,3}(U)$	1685.7(1)	0.31(4)			0.31(4)
$\gamma_{52,1}(U)$	1693.8(2)	0.7(1)			0.7(1)
$\gamma_{53,1}(U)$	1695.0(3)	0.27(7)			0.27(7)
$\gamma_{60,2}(U)$	1700.5(2)	0.104(14)			0.104(14)
$\gamma_{61,2}(U)$	1719.7(2)	0.018(6)			0.018(6)
$\gamma_{70,3}(U)$	1723.2(2)	0.016(4)			0.016(4)
$\gamma_{55,1}(U)$	1727.8(2)	0.020(5)			0.020(5)
$\gamma_{62,2}(U)$	1737.7(2)	0.075(11)			0.075(11)
$\gamma_{72,3}(U)$	1741.1(2)	0.049(8)			0.049(8)
$\gamma_{-1,24}(0)$	1743.2(2)	0.064(10)			0.033(8)
$\gamma_{58,1}(0)$	1750.0(1)	0.064(10)			0.064(10)
$\gamma_{-1,25}(0)$	1769.0(2)	0.020 (5)			0.024(6)
$\gamma_{59,1}(U)$	1708.0(3) 1770.8(2)	0.020(3)			0.020(3) 0.068(17)
$\gamma_{73,3}(U)$	1770.0(2)	0.008(17) 0.068(17)			0.008(17)
$\gamma_{63,2}(U)$	1773.0(2) 1783.7(2)	0.008(17) 0.025(7)			0.008(17) 0.025(7)
$\gamma_{64,2}(U)$	1703.1(2) 1707.1(1)	0.025(1)			0.025(1)
$\gamma_{65,2}(U)$	1805.8(3)	0.24(3) 0.0052(22)			0.24(3) 0.0052(22)
$\gamma_{75,3}(0)$	1805.3(3) 1815.3(3)	0.0052(22)			0.0052(22)
$\gamma_{66,2}(U)$	1819.8(3)	0.003(4) 0.0042(11)			0.003(4) 0.0042(11)
$\gamma_{6,3}(U)$	1815.0(0) 1825.1(3)	0.0012(11) 0.009(4)			0.0012(11) 0.009(4)
$\gamma_{07,2}(0)$ $\gamma_{-1.26}(U)$	1820.1(0) 1830.8(3)	0.000 (1)			0.0042(11)
$\gamma_{68,2}(U)$	1838.0(2)	0.0042(11)			0.0042(11)
$\gamma_{-1,27}(U)$	1849.8(2)				0.028(7)
$\gamma_{63,1}(U)$	1872.8(2)	0.035(9)			0.035(9)
$\gamma_{64,1}(U)$	1884.1 (3)	0.016(5)			0.016(5)
$\gamma_{71.2}(U)$	1890.1(2)	0.146(17)			0.146(17)
$\gamma_{72,2}(U)$	1893.4 (3)	~ 0.0062			~0.0062
$\gamma_{65,1}(U)$	1896.7(2)	0.104(23)			0.104(23)
$\gamma_{66,1}(U)$	1915.5(3)	0.020 (5)			0.020 (5)

	$\frac{\rm Energy}{\rm keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{74,2}(U)$	1925.4(2)	0.30(5)			0.30(5)
$\gamma_{-1,28}(U)$	1927.9(4)				0.054(12)
$\gamma_{-1,29}(U)$	1935.2(4)				~ 0.0094
$\gamma_{68,1}(U)$	1937.7(3)	0.042(11)			0.042(11)
$\gamma_{75,2}(U)$	1958.0(4)	0.010(3)			0.010 (3)
$\gamma_{76,2}(U)$	1971.2(4)	~ 0.0027			~ 0.0027
$\gamma_{70,1}(U)$	1977.4(4)	0.017(5)			0.017(5)
$\gamma_{71,1}(U)$	1989.6(4)	0.007(4)			0.007(4)
$\gamma_{76,1}(U)$	2072.2(4)	0.0042(22)			0.0042(22)

5 References

M.Curie, A.Debierne, A.S.Eve, H.Geiger, O.Hahn, S.C.Lind, S.Meyer, E.Rutherford, E.Schweidler, Rev. Mod. Phys. 3 (1931) 427 (Half-life) W.L.ZIJP, S.TOM, G.J.SIZOO, Physica 20 (1954) 727 (Half-life) S.BJORNHOLM, O.B.NIELSEN, Nucl. Phys. 30 (1962) 488 (Gamma-ray energies and intensities) A.H.WAPSTRA, Nucl. Phys. A97 (1967) 641 (Gamma-ray energies and intensities) A.H.WAPSTRA, Physica 37 (1967) 261 (Multipolarity, X-ray intensities) S.BJORNHOLM, J.BORGGREEN, D.DAVIES, N.J.S.HANSEN, J.PEDERSEN, H.L.NIELSEN, Nucl. Phys. A118 (1968) 261(Gamma-ray energies and intensities, Multipolarity) J.GODART, A.GIZON, J.BOUTET, R.HENCK, Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 300 (Gamma-ray energies and intensities) T.E.SAMPSON, Nucl. Instrum. Methods 98 (1972) 37 (Gamma-ray energies) G.ARDISSON, C.ARDISSON, Radiochem. Radioanal. Lett. 21 (1975) 357 (Gamma-ray energies and intensities) C.Ardisson, J.Dalmasso, G.Ardisson, Phys. Rev. C33 (1986) 2132 (Gamma-ray energies and intensities) H.L.SCOTT, K.W.MARLOW, Nucl. Instrum. Methods Phys. Res. A286 (1990) 549 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) Y.NIR-EL, Radiochim. Acta 88 (2000) 83 (Gamma-ray energies and intensities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods Phys. Res. A568 (2006) 734 (Gamma-ray energies, and emission probabilities) E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681 (Decay scheme and levels)

CNDC /Huang Xiaolong, Wang Baosong

264

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	1.159	(11)	\min
Q_{β^-}	:	2269	(4)	keV
Q_{IT}	:	73.92	(2)	keV
β^-	:	99.85	(1)	%
IT	:	0.15	(1)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
β_20	299(4)	0.00389(22)		6.8
$\beta_{0,30}^{-}$	332(4)	0.0108 (3)		6.6
$\beta_{0,29}^{-}$	358(4)	0.0452 (8)		6
$\beta_{0,28}^{-}$	394(4)	0.0258 (3)		6.4
$\beta_{0,27}^{-}$	406(4)	0.00311(19)		7.4
$\beta_{0,26}^{-}$	460(4)	0.0146 (7)		6.9
$\beta_{0,25}^{-}$	473(4)	0.0021 (3)		7.7
$\beta_{0,24}^{-}$	488 (4)	0.0357(18)		6.6
$\beta_{0,23}^{-}$	575(4)	0.0024 (3)		8
$\beta_{0,22}^{-}$	602(4)	0.0061 (3)		7.6
$\beta_{0,21}^{-}$	667(4)	0.00127(23)		8.5
$\beta_{0,20}^{-10}$	677(4)	0.0249(5)		7.2
$\beta_{0,19}^{-19}$	698(4)	0.00231(19)		8.4
$\beta_{0,18}^{-17}$	715(4)	0.0320 (6)		7.2
$\beta_{0,1}^{-1}$	768(4)	0.0131 (6)		7.7
$\beta_{0,10}^{-14}$	834 (4)	0.0092(11)		7.9
$\beta_{0,14}^{-12}$	1032(4)	0.0121(11)		8.2
$\beta_{0,13}^{-12}$	1095(4)	0.0046 (3)		8.7
$\beta_{0,0}^{-12}$	1224(4)	1.006(13)		6.5
β_0^{-4}	1459(4)	0.945(12)		6.8
$\beta_{0,2}^{-0,4}$	1483(4)	0.049 (3)		8
$\beta_{0,0}^{-}$	2269(4)	97.599(24)	Allowed	5.5
/ 0,0	× /			

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	0.856(19)	
e_{AK}	(U) KLL KLX KXY	71.776 - 80.954 88.153 - 98.429 104.51 - 115.59	0.0203 (3) } } }	
e_{AL}	(Pa)	5.9 - 20.9	0.048(4)	
$ec_{1,0\ L}$	(U)	21.73 - 26.32	1.030(19)	

		Ener ke'	rgy V	Electrons per 100 disint.]	Energy keV
$ec_{1,0}$ M	(U)	37.94 -	39.94	0.285(5)		
$ec_{1,0}$ N	(Ú)	42.05 -	43.11	0.0770(14)		
$ec_{1,0}$ L	(Pa)	52.82 -	57.19	0.103(8)		
$ec_{1,0 M}$	(Pa)	68.56 -	70.48	0.025(2)		
$\beta_{0,30}^{-}$	max:	299	(4)	0.00389(22)	avg:	83.0 (13)
$\beta_{0,29}^{-}$	max:	332	(4)	0.0108(3)	avg:	93.0(13)
$\beta_{0,28}^{-}$	max:	358	(4)	0.0452~(8)	avg:	101.0(13)
$\beta_{0,27}^{-}$	max:	394	(4)	0.0258 (3)	avg:	112.3(13)
$\beta_{0,26}^{-}$	max:	406	(4)	0.00311 (19)	avg:	116.0(13)
$\beta_{0,25}^{-}$	max:	460	(4)	0.0146~(7)	avg:	133.3(13)
$\beta_{0,24}^{-}$	max:	473	(4)	0.0021 (3)	avg:	137.4(14)
$\beta_{0,23}^{-}$	max:	488	(4)	0.0357~(18)	avg:	142.3(14)
$\beta_{0.22}^{-}$	max:	575	(4)	0.0024(3)	avg:	171.2(14)
$\beta_{0,21}^{-}$	max:	602	(4)	0.0061 (3)	avg:	180.1(14)
$\beta_{0,20}^{-}$	max:	667	(4)	0.00127~(23)	avg:	202.5(14)
$\beta_{0,19}^{-}$	max:	677	(4)	0.0249(5)	avg:	205.8(14)
$\beta_{0,18}^{-}$	max:	698	(4)	0.00231 (19)	avg:	213.3(14)
$\beta_{0,17}^{-}$	max:	715	(4)	0.0320~(6)	avg:	219.2(14)
$\beta_{0,16}^{-}$	max:	768	(4)	0.0131~(6)	avg:	237.6(15)
$\beta_{0,14}^{-}$	max:	834	(4)	0.0092(11)	avg:	261.1(15)
$\beta_{0,13}^{-}$	max:	1032	(4)	0.0121 (11)	avg:	333.1 (15)
$\beta_{0,12}^{-}$	max:	1095	(4)	0.0046~(3)	avg:	356.7(15)
$\beta_{0,9}^{-}$	max:	1224	(4)	1.006(13)	avg:	405.6(16)
$\beta_{0,4}^{-}$	max:	1459	(4)	0.945~(12)	avg:	496.0(16)
$\beta_{0,3}^{-}$	max:	1483	(4)	0.049(3)	avg:	505.3(16)
$\beta_{0,0}^{-}$	max:	2269	(4)	97.599(24)	avg:	820.5 (17)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.6185 - 20.7141		0.856(19)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(U) (U)	94.666 98.44		$\begin{array}{c} 0.1973 \ (25) \\ 0.316 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	110.421 111.298 111.964	} } }	0.115(2)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	114.407 115.012 115.377	} } }	0.0382(5)	$\mathrm{K}\beta_2'$
XL	(Pa)	11.3676 - 20.1126		0.046~(4)	

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(U)$	43.49 (2)	1.414(26)	E2	713 (11)	0.00198(2)
$\gamma_{8,7}(U)$	62.70(1)	0.0019 (6)	${ m E1}$	0.426(6)	0.0013(4)
$\gamma_{1.0}(\text{Pa})$	73.92(2)	0.15(1)	(M1 + E2)	10.6(4)	0.0129(9)
$\gamma_{2,1}(U)$	99.86(2)	0.0082(7)	E2	13.42(19)	0.00057(5)
$\gamma_{18,14}(U)$	135.32(8)	0.0000052(6)	[E1]	0.247(4)	0.0000042(5)
$\gamma_{11,8}(U)$	137.23(5)	0.000059(21)	[E1]	0.239(4)	0.000048(17)
$\gamma_{8,5}(U)$	140.1 (10)	< 0.008	M1+E2	5.3(18)	< 0.00127
$\gamma_{20,14}(U)$	166.5(1)	0.00000273(6)	[E1]	0.1514(22)	0.00000237(5)
$\gamma_{12,8}(U)$	185.0(4)	0.00172(15)			0.00172(15)
$\gamma_{9,6}(\mathrm{U})$	193.4 (8)	0.00133(28)	[E2]	0.847(18)	0.00072(15)
$\gamma_{14,13}(U)$	197.91(15)	0.000081(39)	[M1,E2]	2.0(12)	0.000027(7)
$\gamma_{11,7}(U)$	199.9(10)	0.0017(8)	(E0 + E2 + M1)	1.9(12)	0.00058(12)
$\gamma_{8,3}(U)$	203.3(8)	0.0029(5)	M1+E2	1.4(4)	0.00119 (9)
$\gamma_{23,18}(U)$	209.9(4)	0.00132~(15)			0.00132~(15)
$\gamma_{10,5}(U)$	235.9(3)	0.000096 (43)	[E1]	0.0673(10)	0.00009(4)
$\gamma_{-1,1}(U)$	243.5(8)				0.00050 (9)
$\gamma_{13,8}(U)$	247.7(8)	0.0019(8)	[M1, E2]	1.0(7)	0.00097~(22)
$\gamma_{9,3}(\mathrm{U})$	258.227 (3)	0.0778 (8)	(E1)	0.0548(8)	0.0738~(8)
$\gamma_{11,6}(U)$	275.5(8)	0.00056~(22)	[M1, E2]	0.8~(6)	0.00031~(6)
$\gamma_{10,3}(U)$	299(1)	0.00067~(14)	[E1]	0.0395~(7)	0.00064~(13)
$\gamma_{13,7}(U)$	311(1)	0.00054 (11)	[E1]	0.0363~(6)	0.00052(11)
$\gamma_{11,4}(U)$	316.7(1)	0.00022~(6)	[E2]	0.1597(23)	0.00019 (5)
$\gamma_{24,15}(U)$	338.1(8)	0.00113 (23)			0.00113 (23)
$\gamma_{11,3}(U)$	340.2(1)	0.000074~(22)	[E1]	0.0298~(5)	0.000072 (21)
$\gamma_{28,17}(U)$	357.5(10)	0.00080(17)			0.00080(17)
$\gamma_{24,14}(U)$	362.8(10)	0.00069(15)			0.00069(15)
$\gamma_{13,5}(U)$	387.6(8)	0.000512 (44)	[E2]	0.0899(14)	0.00047(4)
$\gamma_{12,3}(U)$	387.6(8)	0.00097(15)			0.00097(15)
$\gamma_{13,4}(U)$	427.4(2)	0.000020(5)	[E1]	0.0185(3)	0.000020(5)
$\gamma_{14,8}(U)$	445.91 (10)	0.000037(9)	[M1,E2]	0.20(14)	0.000031(7)
$\gamma_{13,3}(U)$	450.98 (10)	0.00385(16)	M1+E2	0.241(4)	0.00310(13)
$\gamma_{28,15}(U)$	453.58 (10)	0.00282(16)	[M1]	0.324(5)	0.00213(12)
$\gamma_{22,13}(U)$	456.7(10)	0.00095(20)	[M1]	0.318(5)	0.00072(15)
$\gamma_{17,10}(U)$	468.43(10)	0.00206(12)	[3, (+1]		0.00206(12)
$\gamma_{28,14}(U)$	475.74 (10)	0.00305(17)		0.285(4)	0.00237(13)
$\gamma_{18,10}(U)$	485.44(7)	0.0000217(28)	[M1, E2]	0.16(11)	0.0000187(17)
$\gamma_{19,10}(U)$	507.5(10)	0.00158(15)			0.00158(15)
$\gamma_{17,9}(0)$	509.2(8)	0.0022(3)		0.000 (4)	0.0022(3)
$\gamma_{20,10}(0)$	516.60(6)	0.00015(2)	(M1)	0.228(4)	0.0000122(16)
$\gamma_{18,9}(0)$	526.02(10)	0.0000110(12)		0.217(3)	0.00009(1)
$\gamma_{23,13}(U)$	543.98(10)	0.00349(15)		0.100(0)	0.00349(15)
$\gamma_{20,9}(U)$	557.24(6)	0.000098 (13)	(M1)	0.186(3)	0.000083(11)
$\gamma_{-1,2}(U)$	557.3(10)	0.00100 (00)	[]] /[] 1]	0.179.(9)	0.00072(17)
$\gamma_{25,13}(U)$	5/2(1)	0.00102(20)		0.1(3(3))	0.00087 (17)
$\gamma_{18,8}(U)$	581.19(10)	0.000117 (12)	[E1] [E1]	0.01006(14)	0.000080(9)
$\gamma_{14,4}(U)$	b24.b (10)	0.000117 (12)	[E1]	0.00877 (13)	0.000116(12)
$\gamma_{-1,3}(U)$	047.7 (8)				0.00158(15)

4.2 Gamma Transitions and Emissions

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	ке v	× 100			× 100
$\gamma_{14.3}(U)$	649(1)	0.000064(9)	[M1, E2]	0.08(5)	0.000059(8)
$\gamma_{16.6}(U)$	649 (1)	0.0010(3)	L , J		0.0010(3)
$\gamma_{23,11}(U)$	655.3(10)	0.00139(15)			0.00139(15)
$\gamma_{15,3}(U)$	670.8(10)	0.0004(1)	[M1,E2]	0.07(5)	0.00037(9)
$\gamma_{28,13}(U)$	673.9(10)	0.00071(14)	[M1]	0.1118(17)	0.00064(13)
$\gamma_{25,11}(U)$	683.4 (10)	0.00058(12)	[E1]	0.00741(11)	0.00058(12)
$\gamma_{16.4}(U)$	691.0 (3)	0.00898(19)		~ /	0.00898(19)
$\gamma_{23,10}(U)$	695.5(10)	0.00164(14)			0.00164(14)
$\gamma_{29,13}(U)$	699.02 (10)	0.0058(3)			0.0058(3)
$\gamma_{17.6}(U)$	702.0 (1)	0.00721(16)			0.00721(16)
$\gamma_{5,2}(U)$	705.94 (12)	0.0052(6)	[E1]	0.00698(10)	0.0052(6)
$\gamma_{6,2}(U)$	708.2 (10)	< 0.00072	[E2]	0.0219(4)	< 0.0007
$\gamma_{18.6}(U)$	719.01 (7)	0.0000271(24)	[M1+E2]	0.06(4)	0.0000256(20)
$\gamma_{30,13}(U)$	732.5 (10)	0.00130(15)			0.00130(15)
$\gamma_{19.6}(U)$	740.10 (8)	0.0118(3)			0.0118 (3)
$\gamma_{3,1}(U)$	742.813 (5)	0.0946(30)	$\mathrm{E1}$	0.00636(9)	0.094(3)
$\gamma_{20.6}(U)$	750.12 (6)	0.0000184(22)	(M1)	0.0841(12)	0.000017(2)
$\gamma_{-1.4}(U)$	760.3 (10)			· · · · ·	0.00158(15)
$\gamma_{18.4}(U)$	760.53(15)	0.0000046(10)	[M1]	0.0811(12)	0.0000043 (9)
$\gamma_{4.1}(U)$	766.361 (20)	0.3290(41)	(E2)	0.0187(3)	0.323(4)
$\gamma_{19.4}(U)$	781.75 (10)	0.00782(18)			0.00782(18)
$\gamma_{7,2}(U)$	783.4 (1)	0.000040(7)	[E2]	0.0179(3)	0.000039(7)
$\gamma_{3,0}(U)$	786.272 (22)	0.0539(7)	E1+M2	0.00573(8)	0.0536(7)
$\gamma_{20,4}(U)$	791.94 (5)	0.0000106(14)	[M1]	0.0728(11)	0.0000099(13)
$\gamma_{5,1}(U)$	805.75 (10)	0.0062(8)	[E1]	0.00549(8)	0.0062 (8)
$\gamma_{6,1}(U)$	808.2 (1)	0.00281(17)			0.00281(17)
$\gamma_{21,5}(U)$	818.2(5)	0.0010(3)			0.0010(3)
$\gamma_{28,10}(U)$	825.5(2)	0.0014(4)			0.0014(4)
$\gamma_{22,5}(U)$	844.1 (8)	0.00109(23)			0.00109(23)
$\gamma_{6,0}(U)$	851.6(1)	0.00707(15)	[E2]	0.01514(22)	0.00696 (15)
$\gamma_{28,9}(U)$	866.8(10)	0.00116 (16)			0.00116 (16)
$\gamma_{21,3}(U)$	880.52(4)	0.00392(5)			0.00392(5)
$\gamma_{7,1}(U)$	883.24(3)	0.00386(5)	E2	0.01409(20)	0.00381~(5)
$\gamma_{-1,5}(U)$	887.29(100)				0.00708(14)
$\gamma_{28,8}(U)$	921.72(10)	0.01275 (20)			0.01275 (20)
$\gamma_{7,0}(U)$	926.61(10)	0.00127(13)	(E2)	0.01284(18)	0.00125~(13)
$\gamma_{26,7}(U)$	936.3(10)	0.00102 (17)			0.00102~(17)
$\gamma_{10,2}(U)$	941.96(10)	0.00253 (9)	[E2]	0.01244~(18)	0.00250 (9)
$\gamma_{8,1}(U)$	$945.961 \ (16)$	0.01064~(14)	(E1)	0.00412~(6)	0.01060(14)
$\gamma_{25,5}(U)$	960(1)	0.0009(3)			0.0009(3)
$\gamma_{23,3}(U)$	996.1(20)	0.0059(17)			0.0059(17)
$\gamma_{9,1}(U)$	$1001.026\ (18)$	0.856(8)	E2	$0.01107\ (16)$	0.847(8)
$\gamma_{10,1}(U)$	1041.7(1)	0.00122 (8)	[E2,M1]	0.023~(13)	0.00119(8)
$\gamma_{28,6}(U)$	1059.4(8)	0.00111 (22)			0.00111 (22)
$\gamma_{28,5}(U)$	1061.86(10)	0.00224 (9)			0.00224 (9)
$\gamma_{11,1}(U)$	1081.9(10)	0.00094~(20)	(M1)	0.0318(5)	0.00091 (19)
$\gamma_{10,0}(U)$	$1084.25\ (10)$	0.00081 (40)	[E2]	0.00952(14)	0.0008(4)
$\gamma_{30,5}(U)$	1120.6(8)	0.00173 (15)			0.00173(15)

CNDC /Huang Xiaolong, Wang Baosong

Pa -	234	m
------	-----	---

	Energy keV	$\begin{array}{c} P_{\gamma+ce} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathrm{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{28,3}(U)$	1124.93 (10)	0.00347(9)			0.00347(9)
$\gamma_{11,0}(U)$	1124.93(10)	0.00039 (9)	[E2]	0.00888 (13)	0.00039 (9)
$\gamma_{12,0}(U)$	1174.2(10)	0.00192 (19)			0.00192 (19)
$\gamma_{13,1}(U)$	1193.77 (3)	0.01363~(18)	$\mathrm{E1}$	0.00277(4)	0.01359(18)
$\gamma_{-1,6}(U)$	1220.37(10)				0.00091 (9)
$\gamma_{13,0}(U)$	1237.28(10)	0.00529(11)	$\mathrm{E1}$	0.00262(4)	0.00528 (11)
$\gamma_{-1,7}(U)$	1353.0(15)				0.0015~(5)
$\gamma_{14,1}(U)$	1392.6 (9)	0.0029(11)	${ m E1}$	0.00221 (4)	0.0029(11)
$\gamma_{15,1}(U)$	1413.89(10)	0.00229 (8)	[E1]	0.00217 (3)	0.00229 (8)
$\gamma_{14,0}(U)$	1434.16(10)	0.00975 (16)	E1	0.00213 (3)	0.00973 (16)
$\gamma_{16,1}(U)$	1458.5(15)	0.0019(5)			0.0019(5)
$\gamma_{16,0}(U)$	1501(2)	0.0013			0.0013
$\gamma_{17,1}(U)$	1510.22(10)	0.01308(19)			0.01308(19)
$\gamma_{18,1}(U)$	1527.28(10)	0.00237(8)	M1+E2	0.009(4)	0.00235(8)
$\gamma_{19,1}(U)$	1550.1(10)	0.00137(15)			0.00137(15)
$\gamma_{17,0}(U)$	1553.77(10)	0.00826(14)		()	0.00826(14)
$\gamma_{20,1}(U)$	1558.4(10)	0.00074(9)	M1	0.01228(18)	0.00073(9)
$\gamma_{18,0}(U)$	1570.67(10)	0.00111(8)	M1	0.01204(17)	0.00110(8)
$\gamma_{19,0}(U)$	1593.5(6)	0.00235(12)	(3.51)		0.00235(12)
$\gamma_{20,0}(U)$	1601.8(15)	0.00048(22)	(M1)	0.01146(17)	0.00047(22)
$\gamma_{21,0}(U)$	1667.6(10)	0.00118(6)			0.00118(6)
$\gamma_{22,0}(U)$	1694.1 (10)	0.00038(2)			0.00038(2)
$\gamma_{-1,8}(U)$	1720.5(15)				0.00033(15)
$\gamma_{-1,9}(U)$	1(32.2(15)) 1727.77(10)	0.0014(9)			0.0019(3)
$\gamma_{23,1}(U)$	1750.81(10)	0.0214(3)			0.0214(3)
$\gamma_{-1,10}(U)$	1759.81(10) 1765.44(10)	0.0084 (6)			0.00140(5)
$\gamma_{25,1}(U)$	1705.44(10) 1706.2(0)	0.0064(0)			0.0064(0)
$\gamma_{24,0}(U)$	1790.3(9) 1800.05(10)	0.00031(3)			0.00031(3) 0.00276(7)
$\gamma_{25,0}(U)$	1809.03(10) 1810.60(10)	0.00370(7)			0.00370(7)
$\gamma_{26,1}(U)$	1819.09(10) 1831.37(10)	0.00089(3) 0.01759(23)			0.00039(3) 0.01759(23)
$\gamma_{27,1}(0)$	1851.57(10) 1863.09(10)	0.01759(25) 0.00120(5)			0.01759(25) 0.00120(5)
$\gamma_{26,0}(0)$	1867.7(1)	0.00120(0) 0.00932(12)			0.00120(0)
$\gamma_{28,1}(0)$	1874.9(1)	0.00352(12) 0.00819(14)			0.00352(12) 0.00819(14)
$\gamma_{27,0}(0)$ $\gamma_{20,1}(U)$	$1893\ 51\ (11)$	0.00019(14) 0.00218(6)			0.00019(14) 0.00218(6)
$\gamma_{29,1}(0)$ $\gamma_{28,0}(U)$	1930.91(11) 1911 20(11)	0.00218(0) 0.00628(9)			0.00210(0) 0.00628(9)
$\gamma_{28,0}(0)$ $\gamma_{20,1}(U)$	1926.5(10)	0.00020(0) 0.00045(4)			0.00020(0) 0.00045(4)
$\gamma_{30,1}(U)$	1920.0(10) 1937 01 (13)	0.00015(1) 0.00285(5)			0.00010(1) 0.00285(5)
$\gamma_{29,0}(U)$ $\gamma_{30,0}(U)$	1970.3(8)	0.00041(4)			0.00041(4)
$\gamma_{-1,11}(U)$	2022.24(12)				0.000186(3)
$\gamma_{-1,19}(U)$	2041.23(13)				0.00011(1)
$\gamma_{-1,13}(U)$	2065.80(13)				0.00007
$\gamma_{-1,14}(U)$	2093.19 (38)				0.00002
$\gamma_{-1.15}(U)$	2102.14 (15)				0.00006
$\gamma_{-1.16}(U)$	2136.69 (14)				0.00007
/ 1,10(-/					

5 References

N.FEATHER, E.BRETSCHER, Proc. Roy. Soc. (London) 165A (1938) 530 (IT Branching Ratio) H.BRADT, P.SCHERRER, Helv. Phys. Acta 18 (1945) 405 (IT Branching Ratio) F.BARENDREGT, S.TOM, Physica 17 (1951) 817 (Half-life) W.L.ZIJP, S.TOM, G.J.SIZOO, Physica 20 (1954) 727 (Half-life) ONG PING HOK, J.T.VERSCHOOR, P.BORN, Physica 22 (1956) 465 (Half-life) J.H.FORREST, S.J.LYLE, G.R.MARTIN, J.J.MAULDEN, J. Inorg. Nucl. Chem. 15 (1960) 210 (IT Branching Ratio) S.BJORNHOLM, O.B.NIELSEN, Nucl. Phys. 42 (1963) 642 (Gamma-ray energies, intensities and emission proba) A.H.WAPSTRA, Nucl. Phys. A97 (1967) 641 (Gamma-ray energies and intensities) M.SAEKI, K.KIMURA, T.ISHIMORI, Report JAERI-1178, Japan Atomic Energy Research Institute (1969) 25 (Half-life) R.DENIG, N.TRAUTMANN, N.KAFFRELL, G.HERRMANN, Proc. Int. Conf. on Protactinium, Schloss Elmau, Germany (1969) (Half-life) R.GUNNINK, J.F.TINNEY, Report UCRL-51086, Univ. California (1971) (Gamma-ray energies, intensities and emission proba) T.E.SAMPSON, Nucl. Instrum. Methods 98 (1972) 37 (Gamma-ray energies) J.GODART, A.GIZON, Nucl. Phys. A217 (1973) 159 (IT Branching Ratio) G.ARDISSON, C.MARSOL, Nuovo Cim. 28A (1975) 155 (Gamma-ray energies and intensities) Y.Y.CHU, G.SCHARFF-GOLDHABER, Phys. Rev. C17 (1978) 1507 (IT Branching Ratio) M.H.MOMENI, Nucl. Instrum. Methods 193 (1982) 185 (Gamma-ray emission probabilities) C.E.Moss, Radiat. Eff. 94 (1986) 81 (Gamma-ray emission probabilities) H.L.SCOTT, K.W.MARLOW, Nucl. Instrum. Methods Phys. Res. A286 (1990) 549 (Gamma-ray emission probabilities) P.JAGAM, J.J.SIMPSON, J. Radioanal. Nucl. Chem. 166 (1992) 393 (Gamma-ray emission probabilities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) K.SIEMON, R.A.ESTERLUND, J.VAN AARLE, M.KNAACK, W.WESTMEIER, P.PATZELT, Appl. Radiat. Isot. 43 (1992) 873(Gamma-ray emission probabilities) G.A.SUTTON, S.T.NAPIER, M.JOHN, A.TAYLOR, Sci. Total Environ. 130/131 (1993) 393 (Gamma-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) I.Adsley, J.S.Backhouse, A.L.Nichols, J.Toole, Appl. Radiat. Isot. 49 (1998) 1337 (Evaluated Gamma-ray emission probabilities) S.ANILKUMAR, N.KRISHNAN, M.C.ABANI, Appl. Radiat. Isot. 51 (1999) 725 (Gamma-ray emission probabilities) A.C.NZURUBA, Nucl. Instrum. Methods Phys. Res. A424 (1999) 425 (Compiled data) Y.NIR-EL, Radiochim. Acta 88 (2000) 83 (Gamma-ray energies and intensities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129 (Q)

H.YUCEL, H.KARADENIZ, M.A.CETINER, H.DEMIREL, S.TURHAN, J. Radioanal. Nucl. Chem. 258 (2003) 445 (Gamma-ray emission probabilities)

M.J.WOODS, S.M.COLLINS, Appl. Radiat. Isot. 60 (2004) 257

(Evaluated Half-life)

V.B.BRUDANIN, K.YA.GROMOV, S.I.VASILIEV, A.A.KLIMENKO, A.A.SMOLNIKOV, V.I.FOMINYKH, V.G.CHUMIN, Part. and Nucl., Lett. 122 (2004) 84

(Gamma-ray energies and intensities)

F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods Phys. Res. A568 (2006) 734 (Gamma-ray energies, and emission probabilities)

E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681

(Decay scheme and levels)

 $Pa - 234 \, m$

U - 232

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	70.6	(11)	У
$Q^{'}_{lpha}$:	5413.63	(9)	keV
α	:	100		%
SF	:	2.8	(6)	$\times 10^{-12}~\%$

2 α Emissions

	Energy keV	$\begin{array}{c} \text{Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,8}$	4460.86(9)	0.0000033(9)
$\alpha_{0,7}$	4502.77(9)	0.0000214(16)
$\alpha_{0,6}$	4810.01 (9)	0.000054(4)
$\alpha_{0,5}$	4931.00(9)	0.000048(4)
$\alpha_{0,4}$	4948.59(9)	0.000051~(6)
$\alpha_{0,3}$	4997.90(9)	0.00622 (9)
$\alpha_{0,2}$	5136.64(9)	0.325~(6)
$\alpha_{0,1}$	5263.48(9)	30.6~(6)
$lpha_{0,0}$	5320.24(9)	69.1(6)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Th)	5.8 - 20.3	11.62 (22)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00057 (8) } } }
$\begin{array}{c} ec_{2,1} \ {\rm K} \\ ec_{2,1} \ {\rm L} \\ ec_{2,1} \ {\rm M} \\ ec_{2,1} \ {\rm N} \\ ec_{1,0} \ {\rm L} \\ ec_{1,0} \ {\rm M} \\ ec_{1,0} \ {\rm N} \end{array}$	(Th) (Th) (Th) (Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0.01811 \ (33) \\ 0.1742 \ (33) \\ 0.0478 \ (8) \\ 0.01283 \ (24) \\ 22.4 \ (6) \\ 6.14 \ (16) \\ 1.646 \ (41) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		11.00 (24)	
$\begin{array}{c} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\ 93.351$		$0.00524 (11) \\ 0.00847 (16)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00301 (7)	$\mathrm{K}\beta_1'$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	} } }	0.001016 (29)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Th)$	57.752 (13)	30.8(8)	E2	153.2(22)	0.200(4)
$\gamma_{2,1}(Th)$	129.065(3)	0.325(5)	E2	3.74(6)	0.0686(7)
$\gamma_{6,4}(\mathrm{Th})$	140.999(20)	0.0000038(16)	${ m E1}$	0.217(3)	0.0000031(13)
$\gamma_{4,2}(\mathrm{Th})$	191.351(11)	0.000055(5)	E2	0.776(11)	0.000031(3)
$\gamma_{5,2}(\mathrm{Th})$	209.252~(6)	0.0000119(33)	E1	0.0848(12)	0.000011 (3)
$\gamma_{3,1}(\mathrm{Th})$	270.245(7)	0.00332(7)	${ m E1}$	0.0470(7)	0.00317~(7)
$\gamma_{3,0}(\mathrm{Th})$	328.004(7)	0.00292(7)	E1	0.0305~(5)	0.00283(7)
$\gamma_{6,2}(\mathrm{Th})$	332.371~(6)	0.0000505(31)	${ m E1}$	0.0297~(5)	0.000049(3)
$\gamma_{5,1}(\mathrm{Th})$	338.320(5)	0.0000381 (19)	E1	0.0285(4)	0.0000370(18)
$\gamma_{8,5}(\mathrm{Th})$	478.41(5)	0.0000014~(6)	E1	0.01379(20)	0.0000014~(6)
$\gamma_{7,3}(\mathrm{Th})$	503.819(23)	0.0000147(9)	E1	0.01243(18)	0.0000145 (9)
$\gamma_{8,3}(\mathrm{Th})$	546.454(21)	0.0000010 (6)	${ m E1}$	$0.01058\ (15)$	0.0000010 (6)
$\gamma_{7,1}(\mathrm{Th})$	774.05(9)	0.0000048 (8)	E2	0.01649(23)	0.0000047 (8)
$\gamma_{8,1}(\mathrm{Th})$	816.62(700)	0.00000083 (31)	M1+E2	0.0359(5)	0.0000008 (3)

5 References

J.W.GOFMAN, G.T.SEABORG, Report National Nuclear Energy Series 14B (1949) 1427 (Half life)
R.A.JAMES, A.E.FLORIN, H.H.HOPKINS JR., A.GHIORSO, Report National Nuclear Energy Series 14B (1949) 1604 (Half life)
P.A.SELLERS, C.M.STEVENS, M.H.STUDIER, Phys. Rev. 94 (1954) 952 (Half life)
G.SCHARFF-GOLDHABER, E.MATEOSIAN, G.HARBOTTLE, M.MCKEOWN, Phys. Rev. 99 (1955) 180 (Alpha-particle emissions)
F.ASARO, I.PERLMAN, Phys. Rev. 99 (1955) 37 (Alpha-particle emissions)

NPL /A. Pearce

C.M.LEDERER, Thesis, Report UCRL-11028, Univ. California (1963) (Alpha-gamma coincidence measurements) J.M.CHILTON, R.A.GILBERT, R.E.LEUZE, W.S.LYON, J. Inorg. Nucl. Chem. 26 (1964) 395 (Half life) G.Bertolini, F.Cappellani, G.Restelli, H.L.Scherff, Nucl. Phys. 68 (1965) 170 (Alpha-particle emissions) I.AHMAD, Thesis, Report UCRL-16888, Univ. California (1966) (Gamma-ray emission probabilities) S.A.BARANOV, L.G.ALIEV, V.M.KULAKOV, V.M.SHATINSII, Sov. J. Nucl. Phys. 4 (1967) 673 (Alpha-particle emissions) M.HERMENT, C.VIEU, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 1058 (Gamma-ray emission energies) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 594 (Gamma-ray emission energies) W.KURCEWICZ, N.KAFFRELL, N.TRAUTMANN, A.PLOCHOCKI, J, ZYLICZ, M.MATUL, K.STRYCZNIEWICZ, Nucl. Phys. A289 (1977) 1 (Gamma-ray emission energies and probabilities) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, J.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray emission energies) R.G.HELMER, Nucl. Instrum. Methods 164 (1979) 355 (Gamma-ray emission energies) S.K.AGGARWAL, S.B.MANOHAR, S.N.ACHARYA, S.PRAKASH, H.C.JAIN, Phys. Rev. C20 (1979) 1533 (Half life) A.L.NICHOLS, M.F.JAMES, Report AEA 1407, Winfrith (1981) (Previous evaluation) A.S.MAHAJAN, M.S.BIDARKUNDI, Ind. J. Pure Appl. Phys. 20 (1982) 701 (Conversion electron measurements) R.J.GEHRKE, V.J.NOVICK, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities) S.W.BARWICK, P.B.PRICE, J.D.STEVENSON, Phys. Rev. C62 (1985) 1984 (Cluster decay) M.F.BANHAM, R.MCCHROHON, Report AERE-11353 (1986) (Gamma-ray emission probabilities) J.DALMASSO, H.MARIA, G.ARDISSON, Phys. Rev. c36 (1987) 2510 (Gamma-ray emission energies) R.BONETTI, E.FIORETTO, C.MIGLIORINO, A.PASINETTI, F.BARRANCO, E.VIGEZZI, R.A.BROGIA., Phys. Lett. B241 (1990) 179 (Cluster decay and spontaneous fission) H.BALTZER, K.FRIETAG, C.GUNTHER, P.HERZOG, J.MANNS, U.MULLER, R.PAULSEN, P.SEVENICH, T.WEBER, B.Z.WILL, Z. Phys. a352 (1995) 47 (Gamma-ray emission energies) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X-ray and electron emissions) A.ARTNA-COHEN, Nucl. Data Sheets 80 (1997) 723 (Adopted levels and gamma transitions) R.BONETTI, A.GUGLIELMETTI, Phys. Rev. C62 (2000) 047304 (Spontaneous fission and cluster decay) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 596 (Electron and X-ray emissions) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray reference energies) A.H.WAPSTRA, G.AUDI, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKOYA, C.W.NESTOR, Report ANU-P/1684, Canberra (2004) (The BrIcc code for internal conversion coefficients)

U - 232

NPL /A. Pearce

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	159.1	(2)	$ imes 10^3$ y
$Q^{'}_{lpha}$:	4908.5	(12)	keV
α	:	100		%

2 α Emissions

	Energy	Probability
	keV	\times 100
$\alpha_{0,52}$	4087.3 (12)	0.0000144 (21)
$\alpha_{0,43}$	4309 (2)	0.0009
$\alpha_{0,38}$	4404(2)	0.0003
$\alpha_{0,37}$	4411(2)	0.0004
$\alpha_{0,35}$	4457(2)	0.0028
$\alpha_{0,34}$	4465(2)	0.003
$\alpha_{0,32}$	4483(2)	0.0014
$\alpha_{0,31}$	4503(2)	0.001
$\alpha_{0,30}$	4507(2)	0.012
$\alpha_{0,29}$	4513(2)	0.018
$\alpha_{0,26}$	4538(2)	0.004
$\alpha_{0,24}$	4565(2)	0.0023
$\alpha_{0,21}$	4590(2)	0.007
$\alpha_{0,19}$	4611(2)	0.006
$\alpha_{0,18}$	4615(2)	0.004
$\alpha_{0,17}$	4634(2)	0.01
$\alpha_{0,16}$	4641(2)	0.003
$\alpha_{0,15}$	4656(2)	0.005
$\alpha_{0,13}$	4664(2)	0.042
$\alpha_{0,11}$	4681(2)	0.01
$\alpha_{0,10}$	4687(2)	0.0028
$\alpha_{0,9}$	4701(2)	0.06
$\alpha_{0,8}$	4729(2)	1.61
$\alpha_{0,7}$	4751(2)	0.01
$\alpha_{0,6}$	4754(2)	0.163
$\alpha_{0,5}$	4758(2)	0.016
$\alpha_{0,4}$	4783.5(12)	13.2(2)
$\alpha_{0,3}$	4796(2)	0.28
$\alpha_{0,0}$	4824.2 (12)	84.3 (6)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Th)	5.8 - 20.3	0.01066 (20)
e_{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00076 (10) } } }

VECC Kolkata /G. Mukherjee
		Energy	Electrons
		$\rm keV$	per 100 disint.
ес _{8,6 L}	(Th)	4.839 - 9.000	0.339(20)
$ec_{4,3}$ M	(Th)	8.062 - 9.912	0.64(32)
$ec_{3,1 L}$	(Th)	8.713 - 12.900	1.31(17)
ес _{3,0 L}	(Th)	8.718 - 12.900	0.29(5)
$ec_{6,4 L}$	(Th)	8.919 - 13.100	0.083(15)
$ec_{4,3 N}$	(Th)	11.910 - 12.909	0.17(9)
ес _{13,9 L}	(Th)	17.352 - 21.500	0.0123(20)
$ec_{8,6 M}$	(Th)	20.129 - 21.979	0.0821 (48)
$ec_{4,1 L}$	(Th)	21.955 - 26.100	0.090(25)
$ec_{4,0}$ L	(Th)	21.963 - 26.100	19 (17)
$ec_{6,3 L}$	(Th)	22.161 - 26.300	0.457(25)
$ec_{3,1 M}$	(Th)	24.003 - 25.853	0.332(43)
$ec_{3,0 M}$	(Th)	24.008 - 25.858	0.069(13)
$ec_{6,4}$ M	(Th)	24.209 - 26.059	0.0200 (35)
$ec_{3,0 N}$	(Th)	27.860 - 28.855	0.0184 (34)
$ec_{9,6 L}$	(Th)	33.14 - 37.30	0.0612(33)
$ec_{8,4 L}$	(Th)	34.229 - 38.400	1.3(12)
$ec_{4,1}$ M	(Th)	37.245 - 39.095	0.025~(7)
$ec_{4,0 M}$	(Th)	37.253 - 39.103	5(5)
$ec_{6,3 M}$	(Th)	37.451 - 39.301	0.110(6)
$ec_{6,3 N}$	(Th)	41.300 - 42.298	0.0293 (16)
$ec_{13,8 L}$	(Th)	45.646 - 49.800	0.036(27)
$ec_{8,3}$ L	(Th)	47.474 - 51.600	0.0164(12)
$ec_{9,6 M}$	(Th)	48.43 - 50.28	0.0147(8)
$ec_{8,4}$ M	(Th)	49.519 - 51.369	0.37(30)
$ec_{6,1}$ L	(Th)	51.346 - 55.500	0.071~(6)
$ec_{6,0 L}$	(Th)	51.354 - 55.500	0.0109 (11)
$ec_{8,4 N}$	(Th)	53.370 - 54.366	0.10(8)
ес _{13,8 М}	(Th)	60.936 - 62.786	0.010(7)
$ec_{6,1 M}$	(Th)	66.636 - 68.486	0.0196 (15)
$ec_{8,0 L}$	(Th)	76.664 - 80.800	0.192(10)
$ec_{8,0 M}$	(Th)	91.954 - 93.804	0.0526(27)
$ec_{8,0 N}$	(Th)	95.810 - 96.801	0.0141(7)
-			

4 Photon Emissions

4.1 X-Ray Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		0.00936(21)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\ 93.351$		$\begin{array}{c} 0.00700 \ (18) \\ 0.01133 \ (28) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00403 (12)	$\mathrm{K}\beta_1'$

VECC Kolkata /G. Mukherjee

		Energy keV	Photons per 100 disint.
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	$ \} \\ $

4.2 Gamma Transitions and Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{10}(Th)$	0.0076	2.1			2.1
$\gamma_{4,3}(Th)$	13.244	0.86(25)	(M1)	358(5)	0.0024(7)
$\gamma_{4,3}(-1)$ $\gamma_{21,18}(Th)$	25.02(5)	0.00056(22)	(E1)	4.57(7)	0.00010(4)
$\gamma_{8.6}(Th)$	25.3106(8)	0.452(26)		213(3)	0.00211(12)
$\gamma_{15,12}(Th)$	25.3106(8)	0.0009	(M1)	213(3)	0.000004
$\gamma_{15,12}()$ $\gamma_{15,11}(Th)$	27.119	0.0123	(E2)	6130 (90)	0.000002
$\gamma_{9.8}(Th)$	28.288	0.0056(14)	(M1)	153.4 (22)	0.000036(9)
$\gamma_{3,1}(Th)$	29.1851(4)	1.76(24)	()	225(12)	0.0078(10)
$\gamma_{3,0}(Th)$	29.19	0.38(7)	M1	139.8 (20)	0.0027(5)
$\gamma_{6.4}(Th)$	29.3911(4)	0.110(19)	(M1)	137(2)	0.00080(14)
$\gamma_{17,13}(Th)$	32.453	0.00165(31)	(M1)	102.3(15)	0.000016(3)
$\gamma_{27,23}(Th)$	32.52(2)	0.0018(6)	(M1)	101.7(15)	0.000018(6)
$\gamma_{30,26}(Th)$	32.73(5)	0.00316(39)	(E1)	2.26(4)	0.00097(12)
$\gamma_{13,9}(Th)$	37.80(3)	0.0166(26)	(M1)	65.2(10)	0.00025 (4)
$\gamma_{4,1}(Th)$	42.431	0.123(34)	(E2)	684 (10)	0.00018(5)
$\gamma_{4,0}(Th)$	42.4349(2)	9.4 (29)	M1+E2	400 (400)	0.072(4)
$\gamma_{6,3}(\mathrm{Th})$	42.6333 (2)	0.618(33)	(M1)	45.8 (7)	0.0132(7)
$\gamma_{23,18}(Th)$	43.69(3)	0.0018(6)	(M1)	42.6 (6)	0.000042(14)
$\gamma_{32,28}(Th)$	44.80 (2)	0.00113 (36)	(M1)	39.5(6)	0.000028 (9)
$\gamma_{22,17}(Th)$	45.855	0.00034(6)	(M1)	36.9(6)	0.0000091(16)
$\gamma_{26,21}(Th)$	51.0(3)	0.0045(42)	(M1+E2)	150(130)	0.00003(1)
$\gamma_{19,14}(Th)$	52.60(3)	0.0026(8)	(M1)	24.7(4)	0.00010(3)
$\gamma_{9,6}(\mathrm{Th})$	53.6106(11)	0.0843(44)	(M1)	23.3(4)	0.00347(18)
$\gamma_{8,4}(\mathrm{Th})$	54.7039(11)	0.91(8)	M1+E2	110 (90)	0.0168(8)
$\gamma_{21,15}(\mathrm{Th})$	63.79~(6)	0.00044~(17)	(M1)	14.02(20)	0.000029(11)
$\gamma_{28,21}(Th)$	65.62(5)	0.000068 (14)	(E1)	0.358~(5)	0.00005(1)
$\gamma_{13,8}(Th)$	66.1183~(6)	0.032(10)	(M1+E2)	50(40)	0.00106~(6)
$\gamma_{8,3}(Th)$	67.9460(5)	0.0228 (16)	E2	70.2(10)	0.000320(23)
$\gamma_{19,12}(Th)$	68.81(3)	0.00122(28)	(M1)	11.23(16)	0.000100(23)
$\gamma_{17,9}(Th)$	70.2813(13)	0.0074(5)	(M1+E2)	11.74(17)	0.00058(4)
$\gamma_{6,1}(Th)$	71.812(8)	0.099(8)	E2	53.8(8)	0.00181(14)
$\gamma_{6,0}(\mathrm{Th})$	71.8159(20)	$0.0156\ (16)$	(M1+E2)	12.49(18)	0.00116(12)
$\gamma_{21,14}(Th)$	72.825	0.0206~(15)	(E2)	50.4(7)	0.00040 (3)
$\gamma_{11,6}(Th)$	74.542(5)	0.00187~(10)	(E1)	0.255(4)	0.00149(8)
$\gamma_{12,6}(Th)$	76.350(4)	0.000372 (37)	(E1)	0.240(4)	0.00030 (3)
$\gamma_{15,8}(Th)$	76.350(4)	0.000025	(E1)	0.240(4)	0.00002
$\gamma_{39,33}(\mathrm{Th})$	77.12(3)	0.000530 (49)	(E1)	0.233(4)	0.00043(4)
$\gamma_{22,13}(Th)$	78.21(5)	0.00068(11)	(M1+E2)	14.45(21)	0.000044~(7)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{9,4}(Th)$	83.0125 (20)	0.00256 (35)	M1+E2	12.20 (17)	0.000197(22)
$\gamma_{30,20}(Th)$	85.4221 (9)	0.000141(47)	(E1)	0.1779(25)	0.00012(4)
$\gamma_{31,22}(Th)$	86.3(3)	0.000362(29)	(M1 + E2)	8.52(17)	0.000038(3)
$\gamma_{35,27}(Th)$	86.3(3)	0.0023(7)	(E2)	22.5(5)	0.000099(23)
$\gamma_{18,9}(Th)$	87.25(4)	0.00197(49)	(E2)	21.4(3)	0.000088(22)
$\gamma_{21,12}(Th)$	89.39(7)	0.00162(19)	(M1)	5.24(8)	0.00026(3)
$\gamma_{20,11}(Th)$	89.9568(24)	0.00146(15)	(M1)	5.36(9)	0.000229(23)
$\gamma_{21,11}(Th)$	90.99(1)	0.00185(24)	(M1)	4.98(7)	0.00031(4)
$\gamma_{13,6}(Th)$	91.433	0.00074(13)	(E2)	17.14 (24)	0.000041(7)
$\gamma_{32,23}(Th)$	92.23(12)	0.00019(7)	(M1)	4.79(7)	0.000033(12)
$\gamma_{16.8}(Th)$	92.85(3)	0.00026(3)			0.00026(3)
$\gamma_{9.3}(Th)$	96.22(3)	0.0246(13)	$\mathrm{E}(2)$	13.49(19)	0.00170(9)
$\gamma_{8.0}(Th)$	97.1346(3)	0.282(14)	E2	12.91 (18)	0.0203(10)
$\gamma_{24,14}(Th)$	97.37(4)	0.0023(7)	(E1)	0.1259(18)	0.0020 (6)
$\gamma_{17.8}(Th)$	98.565	0.00053(9)	(M1+E2)	4.50 (7)	0.000097(16)
$\gamma_{29,19}(Th)$	99.95(15)	0.000021(7)	(E1)	0.1176(18)	0.000019(6)
$\gamma_{15.6}(Th)$	101.70(5)	0.000077(17)	(E1)	0.1123(16)	0.000069(15)
$\gamma_{30,19}(Th)$	103.73(10)	0.000070(21)	(E1)	0.1066(16)	0.000063(19)
γ_{21} o(Th)	111.93 (1)	0.000549(41)	(E1)	0.372(6)	0.00040(3)
$\gamma_{26,15}(Th)$	114.2(2)	0.00250(31)	(M1)	12.68 (19)	0.000183(23)
$\gamma_{20,10}(Th)$	116.3(2)	0.000162(31)	(E1)	0.342(5)	0.000121(23)
$\gamma_{22.9}(Th)$	116.3(2)	0.000032(6)	(E2)	5.84(10)	0.0000047(9)
$\gamma_{11,3}(Th)$	117.162(2)	0.00383(19)	E1	0.336(5)	0.00287(14)
$\gamma_{12,3}(Th)$	118.968(5)	0.00481(24)	(E1)	0.325(5)	0.00363(18)
$\gamma_{13.4}(Th)$	120.819(2)	0.0168 (9)	E2	4.95 (7)	0.00282(15)
$\gamma_{17.6}(Th)$	123.886(7)	0.00392(27)	(E2)	4.45 (7)	0.00072(5)
$\gamma_{38,28}(Th)$	125.04 (23)	0.000108(32)	(M1)	9.83(15)	0.000010(3)
$\gamma_{9.0}(Th)$	125.43(4)	0.00027(5)	E2	4.22 (6)	0.000051(10)
$\gamma_{28,15}(Th)$	129.514	0.00007596	(E1)	0.266(4)	0.00006
$\gamma_{15 4}(Th)$	131.22(8)	0.0000219(28)	(E1)	0.257(4)	0.0000174(22)
$\gamma_{31,17}(Th)$	132.1	0.0000154(31)	(E2)	3.39(6)	0.0000035(7)
$\gamma_{14.3}(Th)$	135.3390(5)	0.00244(12)	E1	0.239(4)	0.00197(10)
$\gamma_{38,27}(Th)$	139.3(3)	0.000170(19)	(M1)	7.24 (11)	0.0000206(23)
$\gamma_{35,20}(Th)$	139.3(3)	0.000014676	(E1)	0.223(4)	0.000012
$\gamma_{26,12}(Th)$	139.722(3)	0.00074(15)	(M1)	7.17 (10)	0.000090(18)
$\gamma_{27,11}(Th)$	141.95(10)	0.0000109 (18)	(E1)	0.213(3)	0.0000090(15)
$\gamma_{33,19}(Th)$	142.69(1)	0.000041 (6)	(E1)	0.211(3)	0.000034(5)
$\gamma_{22.8}(Th)$	144.42(2)	0.0010(1)	E2	2.34(4)	0.00030(3)
$\gamma_{19.6}(Th)$	145.35(2)	0.00208 (8)	(E1)	0.202(3)	0.00173(7)
$\gamma_{11.1}(Th)$	146.3462(6)	0.00779(36)	(E1)	0.198(3)	0.0065(3)
$\gamma_{25,9}(Th)$	146.9(5)	0.000116 (10)	· /	~ /	0.000116 (10)
$\gamma_{12,0}(Th)$	148.20 (2)	0.000474(24)	(E1)	0.193(3)	0.000397(20)
$\gamma_{29,14}(Th)$	152.62 (10)	0.0000130(35)	(E1)	0.179(3)	0.000011 (3)
$\gamma_{17.4}(Th)$	153.17 (4)	0.000105(9)	(E2)	1.84(3)	0.000037 (3)
$\gamma_{28,12}(Th)$	154.90(3)	0.000168(9)	(E1)	0.1732(25)	0.000143 (8)
$\gamma_{30,14}(Th)$	156.19(5)	0.0000421 (35)	(E1)	0.1698(24)	0.000036(3)
$\gamma_{26.9}(Th)$	162.45(4)	0.000062 (6)	(E1)	0.1546(22)	0.000054 (5)
$\gamma_{21,12}(Th)$	164 5	0.000622(12)	(E2)	1.385(22)	0.000261(5)

U	 233
U.	200

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{14,1}(Th)$	164.5240(5)	0.00690(34)	(E1)	0.1500(21)	0.0060(3)
$\gamma_{21,6}(Th)$	165.61(3)	0.000467~(26)	(E1)	0.1476(21)	0.000407~(23)
$\gamma_{43,33}(\mathrm{Th})$	167.10(7)	$0.0000165\ (14)$			0.0000165(14)
$\gamma_{29,12}(Th)$	169.002(5)	0.000047~(7)	(E1)	0.1407(20)	0.000041~(6)
$\gamma_{29,11}(\mathrm{Th})$	170.809(24)	0.000114(7)	(E1)	0.1371(20)	0.000100~(6)
$\gamma_{30,12}(\mathrm{Th})$	172.39(10)	0.0000259~(25)	(E1)	0.1342(19)	0.0000228 (22)
$\gamma_{30,11}(Th)$	174.192(2)	0.000192~(10)	(E1)	0.1309(19)	0.000170 (9)
$\gamma_{28,9}(\mathrm{Th})$	177.91(16)	0.000030~(6)	(M1)	3.62(6)	0.0000066~(13)
$\gamma_{37,22}(\mathrm{Th})$	184.1(3)	0.000042 (9)	(E2)	0.897(14)	0.000022~(5)
$\gamma_{33,15}(\mathrm{Th})$	185.76(9)	0.0000087~(23)	(E1)	0.1124(16)	0.0000078(21)
$\gamma_{19,3}(\mathrm{Th})$	187.9670(3)	0.00207~(10)	(E1)	0.1093~(16)	0.00187~(9)
$\gamma_{37,21}(\mathrm{Th})$	188.65~(6)	0.0000277 (44)	(E1)	0.1083~(16)	0.000025~(4)
$\gamma_{34,15}(\mathrm{Th})$	192.26~(4)	0.0000397~(44)	(E1)	$0.1036\ (15)$	0.000036(4)
$\gamma_{28,8}(\mathrm{Th})$	205.75~(6)	0.000078 (8)	(M1)	2.40(4)	0.0000228(24)
$\gamma_{21,3}(\mathrm{Th})$	208.179(7)	0.00249(12)	(E1)	0.0859(12)	0.00229(11)
$\gamma_{36,15}(\mathrm{Th})$	209.08(8)	0.000019 (3)			0.000019 (3)
$\gamma_{38,19}(\mathrm{Th})$	210.90(8)	0.0000148 (26)	(E1)	0.0833~(12)	0.0000137~(24)
$\gamma_{18,0}(\mathrm{Th})$	212.36(3)	0.000416 (22)	(M1)	2.20(3)	0.000130(7)
$\gamma_{26,6}(\mathrm{Th})$	216.07(1)	0.000669 (32)	(E1)	0.0787(11)	0.00062(3)
$\gamma_{19,1}(Th)$	217.151(4)	0.00354 (17)	(E1)	0.0778(11)	0.00328 (16)
$\gamma_{34,12}(Th)$	217.8(2)	0.000003	(E1)	0.0773(11)	0.000003
$\gamma_{34,11}(Th)$	219.43(2)	0.000127~(6)	(E1)	0.0759(11)	0.000118~(6)
$\gamma_{30,8}(\mathrm{Th})$	223.37(3)	0.0000346(43)	(E2)	0.443(7)	0.000024(3)
$\gamma_{39,18}(\mathrm{Th})$	224.33(19)	0.00000139(43)	(E1)	0.0721(11)	0.0000013(4)
$\gamma_{23,3}(\mathrm{Th})$	226.2(2)	0.00020(7)	(M1)	1.84(3)	0.000070(23)
$\gamma_{37,17}(\mathrm{Th})$	230.17(2)	0.00015(5)	(M1+E2)	1.1(7)	0.000071(5)
$\gamma_{34,9}(\mathrm{Th})$	240.373(3)	0.00086(5)	M1+E2	1.09(6)	0.000413(22)
$\gamma_{29,6}(\mathrm{Th})$	245.350(1)	0.00732(40)	M1+E2	1.05(4)	0.00357(18)
$\gamma_{30,6}(\mathrm{Th})$	248.724(1)	0.00338(17)	(M1)	1.415(20)	0.00140(7)
$\gamma_{23,0}(Th)$	255.91(2)	0.000091(6)	(M1)	1.307(19)	0.0000393(25)
$\gamma_{27,3}(Th)$	259.31(2)	0.000350(18)	(M1)	1.260(18)	0.000155(8)
$\gamma_{28,4}(Th)$	260.53(2)	0.000229(13)	(M1)	1.244(18)	0.000102(6)
$\gamma_{24,1}(Th)$	261.957(4)	0.000495(27)	M1+E2	0.78(4)	0.000278(14)
$\gamma_{34,8}(Th)$	268.675(2)	0.000448(25)	M1+E2	0.82(5)	0.000246(12)
$\gamma_{39,14}(Th)$	272.39(2)	0.0000872(49)	(E2)	0.228(4)	0.000071(4)
$\gamma_{28,3}(Th)$	273.74(5)	0.0000323(35)	(M1)	1.085(16)	0.000155(17)
$\gamma_{29,4}(Th)$	2(4.735(1))	0.000680(41)	M1 + E2	0.62(5)	0.000420(22)
$\gamma_{30,4}(Th)$	2(8.108(2))	0.00177 (10)	M1+E2	0.57(4)	0.00113(6)
$\gamma_{33,7}(Th)$	284.29(11)	0.000093 (17)	(E1)	0.0419(6)	0.000089 (16)
$\gamma_{29,3}(Th)$	288.0290(9)	0.00140(37)	(M1+E2)	0.0(4)	0.00091(5)
$\gamma_{27,1}(Th)$	208.00 (3) 201.255 (0)	0.000227 (27)	(111)	0.938 (14)	0.00011((14))
$\gamma_{43,20}(Th)$	291.333 (9)	0.00002 (23)	M1 + E9	0.62.(2)	0.00002 (23)
$\gamma_{30,3}(Th)$	291.000 (9) 201.02 (4)	0.00703 (43)	W11+E2	0.03(3)	0.00403 (23)
$\gamma_{40,15}(Th)$	291.93(4)	0.000102(15)	እ / 1	0.000 (19)	0.000102 (13)
$\gamma_{34,6}(Th)$	293.990 (9) 202.000 (4)	0.000231 (13) 0.000149 (7)		0.890(13)	0.000122(1)
$\gamma_{28,0}(1h)$	302.989(4) 307.45(10)	0.000142(1)	(M1 E2)	0.620(12)	0.000073 (4)
$\gamma_{45,24}(1n)$	300.40 (19) 300.40 (2)	0.0000073 (29)	(1VII, EZ)	0.0(4)	0.0000000 (14)
743,19(1n)	JUJ.49 (J)	0.000003 (0)			0.000000 (0)

U	_	233
U		200

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{36.6}(Th)$	310.71(5)	0.000038(3)			0.000038(3)
$\gamma_{39.9}(Th)$	311.76(3)	0.0000651(41)	(E1)	0.0341(5)	0.000063(4)
$\gamma_{45,23}(Th)$	313.45(18)	0.0000056(11)			0.0000056(11)
$\gamma_{41,13}(Th)$	315.39(13)	0.0000173(26)	(M1)	0.734(11)	0.0000100(15)
$\gamma_{29.0}(Th)$	317.169(2)	0.0097(6)	M1+E2	0.371(22)	0.0071(4)
$\gamma_{33,4}(Th)$	317.169(2)	0.00047(19)	(M1)	0.723(11)	0.00027(11)
$\gamma_{30,0}(Th)$	320.547(1)	0.00371(20)	M1+E2	0.334(25)	0.00278(14)
$\gamma_{34,4}(\mathrm{Th})$	323.381(14)	0.00099(5)	M1+E2	0.280(17)	0.00077(4)
$\gamma_{37,8}(\mathrm{Th})$	328.758(19)	0.000112 (25)	(M1+E2)	0.4(3)	0.000080(4)
$\gamma_{34,3}(\mathrm{Th})$	336.63(1)	0.000731(44)	M1+E2	0.26(4)	0.00058(3)
$\gamma_{39,8}(\mathrm{Th})$	340.19(8)	0.0000026 (16)	(E1)	0.0284(4)	0.0000025(16)
$\gamma_{37,6}(\mathrm{Th})$	354.04(2)	0.000079(14)	(M1+E2)	0.32(22)	0.000060 (4)
$\gamma_{33,0}(\mathrm{Th})$	359.38(4)	0.0000074(23)	(M1)	0.513(8)	0.0000049(15)
$\gamma_{47,22}(\mathrm{Th})$	364.01(12)	0.0000064 (16)			0.0000064 (16)
$\gamma_{34,0}(\mathrm{Th})$	365.820(3)	0.00115~(6)	(M1)	0.489(7)	0.00077(4)
$\gamma_{44,14}(\mathrm{Th})$	371.34(9)	0.0000021 (10)	(M1)	0.469(7)	0.0000014(7)
$\gamma_{35,0}(\mathrm{Th})$	374.71(20)	0.0000055 (29)	(M1)	0.458(7)	0.0000038 (20)
$\gamma_{41,8}(\mathrm{Th})$	381.35(8)	0.0000056 (19)	(M1)	0.437(7)	0.0000039(13)
$\gamma_{37,4}(\mathrm{Th})$	383.43(3)	0.000123(18)	(M1+E2)	0.26(18)	0.000096(5)
$\gamma_{42,9}(\mathrm{Th})$	387.86(12)	0.0000012(3)			0.0000012(3)
$\gamma_{40,6}(\mathrm{Th})$	393.60(1)	0.0000130(12)	()		0.0000130(12)
$\gamma_{37,3}(\mathrm{Th})$	396.62(3)	0.0000047(11)	(E2)	0.0762(11)	0.0000044(10)
$\gamma_{49,20}(Th)$	402.22(2)	0.0000072(14)		0.0105 (0)	0.0000072(14)
$\gamma_{45,14}(Th)$	404.39(5)	0.00000133(41)	(E1)	0.0195(3)	0.0000013(4)
$\gamma_{41,6}(Th)$	406.58(5)	0.000021(5)	(M1)	0.367 (6)	0.000015(4)
$\gamma_{42,8}(Th)$	410.31(3) 432.00(14)	0.000012(1)			0.000012(1)
$\gamma_{40,4}(1n)$	425.09(14) 425.46(10)	0.00000002(14)			0.000000002 (14)
$\gamma_{49,18}(1n)$	423.40(10) 426.22(2)	0.00000000 (14)			0.00000000 (14) 0.0000025 (0)
$\gamma_{40,3}(11)$	430.23(2) 441.53(17)	0.0000033(9)			0.0000033(9)
$\gamma_{42,6}(11)$	441.00(11)	0.00000013(22)	(M1)	0.280(4)	0.00000073(22)
$\gamma_{41,3}(11)$	449.520(2) 455.48(25)	0.0000032(10) 0.00000117(21)	(1111)	0.200 (4)	0.0000004(8)
$\gamma_{43,6}(11)$	456.87(16)	0.00000117(21) 0.00000044(21)			0.00000117(21) 0.00000044(21)
$\gamma_{47,12}(11)$	450.01 (10) 459.81 (1)	0.00000044(21)			0.00000044(21) 0.0000076(11)
$\gamma_{40,9}(1h)$	465.37(12)	0.0000010(11) 0.00000047(23)			0.0000047(23)
$\gamma_{40,0}(1h)$ $\gamma_{42,4}(Th)$	471.06(1)	0.0000185(18)			0.0000185(18)
$\gamma_{42,4}(11)$ $\gamma_{48,11}(Th)$	474.41 (8)	0.00000077(11)			0.00000077(11)
$\gamma_{43,11}(11)$ $\gamma_{41.0}(Th)$	478.64(1)	0.00001829(16)	(M1)	0.236(4)	0.00001480(12)
$\gamma_{43,0}(==)$ $\gamma_{43,4}(Th)$	484.34(3)	0.0000028(12)	[M1]	0.228(4)	0.0000023(10)
$\gamma_{43,4}()$ $\gamma_{51,14}(Th)$	500.40(9)	0.00000070(23)	[]	0.110 (-)	0.00000070(23)
$\gamma_{420}(Th)$	513.20(5)	0.0000165(21)			0.0000165(21)
$\gamma_{52,20}(Th)$	514.81 (11)	0.0000112(18)			0.0000112(18)
$\gamma_{48.8}(Th)$	523.68 (6)	0.00000094(24)			0.00000094(24)
$\gamma_{50,9}(Th)$	531.54 (8)	0.00000070(23)			0.00000070(23)
$\gamma_{47,6}(\mathrm{Th})$	533.53(5)	0.00000128(25)	M1+E2	0.098(14)	0.00000117 (23)
$\gamma_{44,1}(\mathrm{Th})$	536.44 (12)	0.00000048 (23)	(E1)	0.01098 (16)	0.00000047 (23)
$\gamma_{49,8}(\mathrm{Th})$	540.52 (6)	0.00000164 (23)		· · ·	0.00000164 (23)
$\gamma_{46,4}(\mathrm{Th})$	542.41(13)	0.00000047 (23)			0.00000047 (23)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{50,8}(Th)$	559.87 (18)	0.00000023			0.00000023
$\gamma_{47,4}(\mathrm{Th})$	562.61(6)	0.0000015 (8)	M1+E2	0.075~(8)	0.0000014(7)
$\gamma_{45,0}(\mathrm{Th})$	569.19(2)	0.0000041 (16)	M1+E2	0.063(4)	0.0000039 (15)
$\gamma_{47,3}(\mathrm{Th})$	576.00(7)	0.00000096 (43)	M1+E2	0.064(8)	0.0000009(4)
$\gamma_{48,4}(\mathrm{Th})$	578.42(2)	0.0000034 (11)			0.0000034 (11)
$\gamma_{46,0}(\mathrm{Th})$	584.94(16)	0.0000023			0.0000023
$\gamma_{48,3}(Th)$	591.64(7)	0.00000070 (23)			0.00000070 (23)
$\gamma_{47,0}(\mathrm{Th})$	605.16(1)	0.0000051 (10)	M1+E2	0.072(7)	0.0000048 (9)
$\gamma_{49,3}(\mathrm{Th})$	608.15(5)	0.00000047~(23)			0.0000047~(23)
$\gamma_{50,4}(Th)$	614.45(7)	0.00000070 (23)			0.00000070 (23)
$\gamma_{48,0}(\mathrm{Th})$	620.81(3)	0.0000015~(6)			0.0000015~(6)
$\gamma_{50,3}(Th)$	627.70(8)	0.00000047~(23)			0.00000047~(23)
$\gamma_{49,0}(\mathrm{Th})$	637.25(10)	0.0000023			0.0000023
$\gamma_{52,8}(Th)$	652.79(19)	0.0000023			0.0000023
$\gamma_{50,0}(Th)$	656.89(5)	0.000004(1)			0.000004 (1)
$\gamma_{51,0}(Th)$	665.03(10)	0.0000023	M1+E2	0.06(4)	0.0000023
$\gamma_{52,4}(Th)$	707.41(2)	0.0000020 (9)			0.0000020 (9)
$\gamma_{52,3}(Th)$	720.62(11)	0.00000047~(23)			0.0000047~(23)
$\gamma_{52,0}(Th)$	749.8(9)	0.00000047 (23)			0.0000047~(23)

5 References

A.C.ENGLISH, T.E.CRANSHAW, P.DEMERS, J.A.HARVEY, E.P.HINCKS, J.V.JELLEY, A.N.MAY, Phys. Rev. 72 (1947) 253(229Th Half-life.) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, A.GHIORSO, G.T.SEABORG, Phys. Rev. 72 (1947) 252 (229Th Half-life.) E.K.Hyde, National Nuclear Energy Series 14B (1949) 1431 (233U Half-life.) F.HAGEMANN, L.I.KATZIN, M.H.STUDIER, G.T.SEABORG, A.GHIORSO, Phys. Rev. 79 (1950) 435 (229Th Half-life.) E.SEGRE, Phys. Rev. 86 (1952) 21 (233U Fission Half-life.) Y.P.DOKUCHAEV, I.S.OSIPOV, J. Nucl. Energy A11 (1959) 194 (233U Half-life.) D.S.POPPLEWELL, J. Nucl. Energy A/B 14 (1961) 50 (233U Half-life.) I.AHMAD, Thesis, Report UCRL-16888, Univ. California (1966) (229Th Gamma ray and X-ray.) B.M.Aleksandrov, A.S.Krivokhatskii, L.Z.Malkin, K.A.Petrzhak, At. Energy 20 (1966) 315 (233U Fission Half-life.) S.A.BARANOV, M.K.GADZHIEV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 5 (1967) 365 (233U alpha decay energy and intensity.) H.R.IHLE, E.LANGENSCHEIDT, A.P.MURRENHOFF, Report JUL-491-PC (1967) (233U Half-life.) R.L.G.KEITH, J. Nucl. Energy 22 (1968) 471 (233U Half-life.) F.L.OETTING, Proc. Symp. on Thermodynamics of Nuclear Materials with Emphasis on Solution Systems, STI/ PUB/162, IAEA, Vienna (1968) 55 (233U Half-life.) H.TON, S.ROODBERGEN, J.BRASZ, J.BLOK, Nucl. Phys. A155 (1970) 245 (229Th Gamma ray energies, halflives of the states.)

A.H.JAFFEY, K.F.FLYNN, W.C.BENTLEY, J.O.KARTTUNEN, Phys. Rev. C9 (1974) 1991 (233U Half-life.) L.A.KROGER, C.W.REICH, Nucl. Phys. A259 (1976) 29 (229Th Gamma ray energy, X-ray energy.) R.VANINBROUKX, P.DE BIEVRE, Y.LE DUIGOU, A.SPERNOL, W.VAN DER EIJK, V.VERDINGH, Phys. Rev. C13 (1976) 315(233U Half-life.) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Electron Binding Energies.) A.M.GEIDELMAN, YU.S.EGOROV, A.A.LIPOVSKII, A.V.LOVTSYUS, L.D.PREOBRAZHENSKAYA, M.V.RYZHINSKII, A.V.STEPANOV, YU.V.KHOLNOV, Bull. Acad. Sci. USSR, Phys. Ser. 43 (1979) 25 (233U Half-life.) A.CESANA, G.SANDRELLI, V.SANGIUST, M.TERRANI, Energ. Nucl. (Milan) 26 (1979) 526 (229Th Gamma ray and X-ray.) C.K.AGGARWAL, S.N.ACHARYA, H.C.JAIN, Radiochem. Radioanal. Lett. 42 (1980) 45 (233U Half-life.) H.R.VON GUNTEN, A.GRUTTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (233U Fission Half-life.) K.M.GLOVER, Int. J. Appl. Radiat. Isotop. 35 (1984) 239 (233U alpha energies and intensities.) I.Ahmad, Nucl. Instrum. Meth. 223 (1984) 319 (233U alpha energies and intensities.) C.W.REICH, R.G.HELMER, J.D.BAKER, R.J.GEHRKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 185 (229Th Gamma ray energies.) D.V.Aleksandrov, Yu.A.Glukhov, E.Yu.Nikolsky, B.G.Novatsky, A.A.Ogloblin, D.N.Stepanov, Izv. Akad. Nauk SSSR, Ser. Fiz. 49 (1985) 2111 (233U Cluster decay Half-life.) A.YA.BALYSH, A.A.GUROV, A.V.DEMEKHIN, A.G.ZELENKOV, I.V.KONDRATENKO, B.G.NOVATSKY, G.A.PIK-PICHAK, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.M.SHUBKO, Zh. Eksp. Teor. Fiz 91 (1986) 37 (233U Cluster decay Half-life.) S.J.GOLDSTEIN, M.T.MURRELL, R.W.WILLIAMS, Phys. Rev. C40 (1989) 2793 (229Th Half-life.) Y.A.AKOVALI, Nucl. Data Sheets 58 (1989) 555 (229Th gamma-ray energies, spins and parities of levels.) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (233U Total and spontaneous fission Half-life.) C.W.REICH, R.G.HELMER, Phys. Rev. Lett. 64 (1990) 271 (229Th Level energy of 1st excited state.) P.B.PRICE, K.J.MOODY, E.K.HULET, R.BONETTI, C.MIGLIORINO, Phys. Rev. C43 (1991) 1781 (233U Cluster decay Half-life.) O.EL SAMAD, C.ARDISSON, M.HUSSONNOIS, G.ARDISSON, J. Radioanal. Nucl. Chem. 164 (1992) 271 (229Th Gamma ray energies.) R.G.HELMER, C.W.REICH, Phys. Rev. C49 (1994) 1845 (229Th Gamma ray energies.) A.KOUA AKA, G.ARDISSON, V.BARCI, O.EL SAMAD, D.TRUBERT, I.AHMAD, Nucl. Instrum. Meth. Phys. Res. A369 (1996) 477 (229Th Gamma ray energies.) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Electron Binding energies.) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic Data.) E.Schönfeld, G.Rodloff, Report PTB-6.11-98-1, Braunschweig (1998) 1 (K-Auger electrons.) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) 1 (K- X-rays.) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger Electron emission probabilities.) V.BARCI, G.ARDISSON, G.BARCI-FUNEL, B.WEISS, O.EL SAMAD, R.K.SHELINE, Phys. Rev. C68 (2003) 034329 (229Th Gamma ray energies.)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Mass, Q-value.)

B.SINGH, J.K.TULI, Nucl. Data Sheets 105 (2005) 109

(233U Half-life compilation.)

B.R.BECK, J.A.BECKER, P.BEIERSDORFER, G.V.BROWN, K.J.MOODY, J.B.WILHELMY, F.S.PORTER, C.A.KILBOURNE, R.L.KELLEY, Phys. Rev. Lett. 98 (2007) 142501

(229Th Gamma-ray energies. Precission measurement of energy of the 1st Excited state.)

E.BROWN, J.K.TULI, Nucl. Data Sheets 109 (2008) 2657

 $(229 {\rm Th}$ level energies, gamma energies, level spin and parities.)

S.Pommé, T.Altzitzoglou, R.Van Ammel, G.Sibbens, R.Eykens, S.Richter, J.Camps, K.Kossert, H. Janssen, E.Garcia-Torano, T.Duran, F.Jaubert, Metrologia 46 (2009) 439 (2330 half-life.)

C.J.CAMPBELL, A.G.RADNAEV, A.KUZMICH, Phys. Rev. Lett. 106 (2011) 223001

(Laser excitation of 1st excited state in 229Th and quadrupole moment measurement.)

U - 233

U - 234

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.455	(6)	$ imes 10^5$ y
$Q^{'}_{lpha}$:	4857.7	(7)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,5} \\ \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 4108.6 \ (7) \\ 4150.6 \ (7) \\ 4275.2 \ (7) \\ 4603.5 \ (7) \\ 4722.4 \ (7) \\ 4774.6 \ (7) \end{array}$	$\begin{array}{c} 0.000007\\ 0.000026\\ 0.00004\ (1)\\ 0.210\ (2)\\ 28.42\ (2)\\ 71.37\ (2) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Th)	5.8 - 20.3	10.8 (4)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00029 (5) } } }
$ec_{1,0}$ L $ec_{1,0}$ M $ec_{1,0}$ N $ec_{2,1}$ L $ec_{2,1}$ M	(Th) (Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 20.9 \ (12) \\ 5.70 \ (32) \\ 1.53 \ (9) \\ 0.132 \ (12) \\ 0.0363 \ (34) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.118 - 19.504		10.2(4)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\ 93.351$		$\begin{array}{c} 0.00269 \ (25) \\ 0.0044 \ (4) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00155(15)	$\mathrm{K}\beta_1'$

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	} } }	0.00052(5)	$\mathrm{K}eta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Th)$ $\gamma_{2,1}(Th)$ $\gamma_{3,1}(Th)$ $\gamma_{5,2}(Th)$ $\gamma_{3,0}(Th)$ $\gamma_{4,1}(Th)$ $\gamma_{5,1}(Th)$ $\gamma_{5,1}(Th)$	$53.20 (2) \\120.90 (4) \\454.96 (5) \\503.5 (1) \\508.16 (5) \\581.7 (1) \\624.4 (1) \\677.6 (1)$	$\begin{array}{c} 28.7 \ (13) \\ 0.228 \ (48) \\ 0.000025 \ (6) \\ 0.0000095 \\ 0.0000152 \ (39) \\ 0.000012 \ (5) \\ 0.00005 \\ 0.00001 \end{array}$	E2+M3 E2 E1 [E2] E1 E2 E0+E2+M1 [E2]	$\begin{array}{c} 228 \ (7) \\ 4.92 \ (15) \\ 0.01526 \ (46) \\ 0.0418 \ (13) \\ 0.01221 \ (37) \\ 0.0300 \ (9) \\ 5.1 \ (20) \\ 0.0216 \ (6) \end{array}$	$\begin{array}{c} 0.1253 \ (40) \\ 0.0386 \ (32) \\ 0.000025 \ (6) \\ 0.0000095 \\ 0.0000150 \ (39) \\ 0.000012 \ (5) \\ 0.00000082 \\ 0.000001 \end{array}$

5 References

A.O.NIER, Phys. Rev. 55 (1393) 150 (U-234 half-life) M.CURIE, S.COTELLE, Compt. Rend. Acad. Sci. (Paris) 190 (1930) 1289 (Th-230 half-life) O.CHAMBERLAIN, D.WILLIAMS, P.YUSTER, Phys. Rev. 70 (1946) 580 (U-234 half-life) E.K.Hyde, Report National Nuclear Energy Series 14B (1949) 1435 (Th-230 half-life) C.A.KIENBERGER, Phys. Rev. 76 (1949) 1561 (U-234 half-life) A.S.GOLDIN, G.B.KNIGHT, P.A.MACKLIN, R.L.MACKLIN, Phys. Rev. 76 (1949) 336 (U-234 half-life) E.BALDINGER, P.HUBER, Helv. Phys. Acta 22 (1949) 365 (U-234 half-life) E.H.FLEMING JR., A.GHIORSO, B.B.CUNNINGHAM, Phys. Rev. 88 (1952) 642 (U-234 half-life) C.A.KIENBERGER, Phys. Rev. 87 (1952) 520 (U-234 half-life) A.GHIORSO, G.H.HIGGINS, A.E.LARSH, G.T.SEABORG, S.G.THOMPSON, Phys. Rev. 87 (1952) 163 (SF half-life) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Bull. Rus. Acad. Sci. Phys. 24 (1960) 1045 (Alpha emission) R.W.Attree, M.J.Cabell, R.L.Cushing, J.J.Pieroni, Can. J. Phys. 40 (1961) 194 (Th-230 half-life) G.E.KOCHAROV, G.A.KOROLEV, Bull. Rus. Acad. Sci. Phys. 25 (1961) 227 (Alpha emission) S.BJORNHOLM, M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha emission) W.R.NEAL, H.W.KRANER, Phys. Rev. 137 (1965) B1164 (53- and 174-kev levels half-life)

CEA/LNE-LNHB /V. Chisté, M.M. Bé

288

P.H.WHITE, G.J.WALL, F.R.PONTET, J. Nucl. Energy A/B 19 (1965) 33 (U-234 half-life) I.AHMAD, Report UCRL-16888, Univ. California (1966) (Gamma-ray energy and intensity) G.C.HANNA, C.H.WESTCOTT, H.D.LEMMEL, B.R.LEONARD JR., J.S.STORY, P.M.ATTREE, At. Energy Rev. 7,4 (1969) 3(U-234 half-life) J.W.MEADOWS, Report ANL-7610, Argonne National Laboratory (1970) 44 (U-234 half-life) P.DE BIEVRE, K.F.LAUER, Y.LE DUIGOU, H.MORET, G.MUSCHENBORN, J.SPAEPEN, A.SPERNOL, R.VANINBROUKX, V.VERDINGH, Chem. Nucl. Data, Canterbury (1971) 221 (U-234 half-life) M.LOUNSBURY, R.W.DURHAM, Chem. Nucl. Data, Canterbury (1971) 215 (U-234 half-life) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energy) H.W.TAYLOR, Int. J. Appl. Radiat. Isotop. 24 (1973) 593 (Gamma-ray energy) R.L.HEATH, Report ANCR-1000-2 (1974) 14 (Gamma-ray instensity and energy) C.E.BEMIS JR., L.TUBBS, Report ORNL-5297, Oak Ridge National Laboratory (1977) 93 (X-ray emission) A.M.GEIDELMAN, YU.S.EGOROV, A.V.LOVTSYUS, V.I.ORLOV, L.D.PREOBRAZHENSKAYA, M.V.RYZHINSKY, A.V. STEPANOV, A.A.LIPOVSKY, YU.V.KHOLNOV, B.N.BELYAEV, M.K.ADBULLAKHATOV, G.A.AKOPOV, V.S.BELYKH, E.A.GROMOVA ET AL., Bull. Rus. Acad. Sci. Phys. 44,5 (1980) 23 (U-234 half-life) J.W.MEADOWS, R.J.ARMANI, E.L.CALLIS, A.M.ESSLING, Phys. Rev. C22 (1980) 750 (Th-230 half-life) H.R.VON GUNTEN, A.GRÜTTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (SF half-life) N.E.HOLDEN, BNL-NCS-51320 (1981) (U-234 half-life) Y.A.AKOVALI, Nucl. Data Sheets 40 (1983) 523 (Spin, parity, Energy level) W.P.POENITZ, J.W.MEADOWS, Report ANL-NDM/84, Argonne National Laboratory (1983) 33 (U-234 half-life) M.DIVADEENAM, J.R.STEHN, Ann. Nucl. Energy 11 (1984) 375 (U-234 half-life) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 1081 (X-ray, alpha and gamma emission) W.P.POENITZ, J.W.MEADOWS, in Nuclear Standard Reference Data, TECDOC-335, IAEA, Vienna (1985) 485 (U-234 half-life) E.J.AXTON, in Nuclear Standard Reference Data, TECDOC-335, IAEA, Vienna (1985) 214 (U-234 half-life) A.LORENZ, A.L.NICHOLS, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) 63 (U-234 half-life, gamma et alpha intensity) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha emission) S.WANG, P.B.BRICE, S.W.BARWICK, K.J.MOODY, E.K.HULET, Phys. Rev. C36 (1987) 2717 (SF half-life) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (U-234 half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) Y.A.AKOVALI, Nucl. Data Sheets 69 (1993) 155 (Spin, parity, Energy level) Y.A.AKOVALI, Nucl. Data Sheets 71 (1994) 181 (Spin, parity, Energy level)

P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (X-ray emission)
E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)

I.M.Band, M.B.Trzhaskovskaya, C.W.Nestor Jr., P.O.Tikkanen, S.Raman, At. Data Nucl. Data Tables 81 (2002) 1

(Alpha)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 129

 (\mathbf{Q})

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	704	(1)	$ imes 10^6 { m y}$
Q_{lpha}	:	4678.3	(7)	keV
α	:	100		%
SF	:	7	(2)	$\times 10^{-9}~\%$

2 α Emissions

Energy	Probability
keV	\times 100
3976~(5)	≈ 0.0011
4013.2(8)	0.0396~(10)
4077.5(7)	0.016(12)
4152(5)	0.294(13)
4214.7(19)	5.95(12)
4219.5(7)	0.01732(12)
4227.6(7)	0.122~(6)
4248(5)	0.069(10)
4266~(5)	0.22(3)
4279.3(7)	0.0329(5)
4286.9(7)	0.065~(13)
4302.1(7)	0.00959 (13)
4322~(4)	3.33~(6)
4327.9(7)	0.405~(13)
4361.9(7)	0.206(21)
4366.1(20)	18.80(13)
4381.1(7)	0.106(16)
4397.8(13)	57.19(20)
4414.9(5)	3.01(16)
4437.9(40)	0.236(25)
4502.4(7)	1.28(5)
4556.0(4)	3.79(6)
4596.4(13)	4.74(6)
	Energy keV 3976 (5) 4013.2 (8) 4077.5 (7) 4152 (5) 4214.7 (19) 4219.5 (7) 4227.6 (7) 4227.6 (7) 42266 (5) 4266 (5) 4279.3 (7) 4366.9 (7) 4302.1 (7) 4322 (4) 4327.9 (7) 4361.9 (7) 4366.1 (20) 4381.1 (7) 4397.8 (13) 4414.9 (5) 4437.9 (40) 4502.4 (7) 4556.0 (4) 4596.4 (13)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	24(3)
$e_{\rm AK}$	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.381 (9) } } }
$e_{1,5 L} e_{1,0,7 L} e_{1,0 L}$	(Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 8.3 \ (29) \\ 1.09 \ (42) \\ 18.2 \ (32) \end{array}$

CNDC /Huang Xiaolong, Wang Baosong

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
ес _{7,5 М}	(Th)	26.407 - 28.257	2.2(8)
$ec_{7,5 N}$	(Th)	30.260 - 31.254	0.60(23)
$ec_{7,4}$ L	(Th)	30.709 - 34.900	6.8 (14)
ес _{9,6 L}	(Th)	33.602 - 37.800	0.1771(34)
ес _{10,7 М}	(Th)	35.9 - 37.8	0.26(10)
$ec_{1,0 M}$	(Th)	36.774 - 38.624	4.9(9)
$ec_{10,7 N}$	(Th)	39.8 - 40.8	0.070(27)
$ec_{1,0 N}$	(Th)	40.630 - 41.621	1.32 (23)
ес _{19,18} L	(Th)	43.87 - 48.00	0.1850(27)
ес _{7,4 М}	(Th)	45.999 - 47.849	1.87(39)
ес _{9,6 М}	(Th)	48.892 - 50.742	0.0484(8)
$ec_{7,4 N}$	(Th)	49.850 - 50.846	0.5(1)
ес _{9,6 N}	(Th)	52.740 - 53.739	0.01296 (22)
ес _{19,18} м	(Th)	59.16 - 61.01	0.0445~(7)
ес _{19,18} N	(Th)	63.01 - 64.01	0.01188 (18)
$ec_{2,0 L}$	(Th)	75.66 - 79.80	0.90(11)
$ec_{4,0 K}$	(Th)	76.072 (4)	5.06(8)
ес _{2,0 М}	(Th)	90.95 - 92.80	0.248(30)
$ec_{2,0 N}$	(Th)	94.8 - 95.8	0.067~(8)
$ec_{4,0 L}$	(Th)	165.25 - 169.40	1.020 (18)
$ec_{4,0}$ M	(Th)	180.54 - 182.39	0.2468(37)
$ec_{4,0 N}$	(Th)	184.390 - 185.387	0.0651(10)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.1177 - 19.5043		22(3)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$3.56 (9) \\ 5.76 (14)$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	2.06 (5)	$\mathrm{K}\beta_1'$
$\begin{array}{c} {\rm XK}\beta_2 \\ {\rm XK}\beta_4 \\ {\rm XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$108.509 \\108.955 \\109.442$	} } }	0.685 (18)	$\mathrm{K}\beta_2'$

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{7,5}(\mathrm{Th})$	31.60(5)	11.4(40)	M1+E2	667	0.017~(6)
$\gamma_{10,7}(Th)$	41.4(3)	1.5(6)	[M1]	49.9(13)	0.029(11)
$\gamma_{1,0}(Th)$	42.01(6)	24.7(43)	M1+E2	440(30)	0.056~(9)
$\gamma_{7,4}(\mathrm{Th})$	51.21(4)	9.4(19)	[E2]	274(4)	0.034(7)
$\gamma_{9,6}(\mathrm{Th})$	54.1(1)	0.24	[E2]	210(4)	0.00115
$\gamma_{2,1}(Th)$	54.25(5)	2.1	[M1+E2]	71(3)	0.0285
$\gamma_{19,18}(\mathrm{Th})$	64.45(5)	0.26	[M1]	13.6(2)	0.018
$\gamma_{10,5}(Th)$	72.7(2)	1.86	M1+E2	15(3)	0.116
$\gamma_{7,3}(\mathrm{Th})$	74.94(3)	0.064(8)	[E1]	0.252(4)	0.051~(6)
$\gamma_{2,0}(\mathrm{Th})$	96.09(2)	1.33(16)	[E2]	13.58(19)	0.091~(11)
$\gamma_{14,7}(\mathrm{Th})$	97(4)	0.22(7)	[E2]	13 (3)	0.016~(4)
$\gamma_{5,2}(Th)$	109.19(7)	1.81(14)	[E1]	0.0932(14)	1.66(13)
$\gamma_{10,3}(Th)$	115.45(5)	0.040(13)	[E1]	0.348(5)	0.03(1)
$\gamma_{3,1}(Th)$	120.35(5)	0.31	[M1]	10.95(16)	0.026
$\gamma_{16,8}(Th)$	136.55(5)	0.103	[M1]	7.66(11)	0.012
$\gamma_{7,2}(\mathrm{Th})$	140.76(2)	0.244(12)	[E1]	0.218(3)	0.20(1)
$\gamma_{20,18}(\mathrm{Th})$	142.40(5)	0.018	[E2]	2.48(4)	0.0051
$\gamma_{4,1}(\mathrm{Th})$	143.767(3)	13.20(8)	E1	0.207(3)	10.94~(6)
$\gamma_{18,7}(\mathrm{Th})$	150.936(15)	0.61(20)	[M1]	5.76(8)	0.09(3)
$\gamma_{5,1}(\mathrm{Th})$	163.356(3)	5.855(36)	(E1)	0.1526(22)	5.08(3)
$\gamma_{16,5}(\mathrm{Th})$	173(1)	0.007~(6)	[E1]	0.133(3)	0.006~(5)
$\gamma_{18,5}(\mathrm{Th})$	182.62(5)	1.70(22)	[M1]	3.36(5)	0.39(5)
$\gamma_{4,0}(\mathrm{Th})$	185.720(4)	63.41 (35)	E1	0.1124(16)	57.0(3)
$\gamma_{7,1}(\mathrm{Th})$	194.940(6)	0.693(11)	[E1]	0.1002(14)	0.63(1)
$\gamma_{8,1}(\mathrm{Th})$	198.894(14)	0.131(7)	M1	2.64(4)	0.036(2)
$\gamma_{18,4}(\mathrm{Th})$	202.12(1)	3.81(8)	[M1]	2.53(4)	1.08(2)
$\gamma_{5,0}(\mathrm{Th})$	205.316(4)	5.465(33)	(E1)	0.0887~(13)	5.02(3)
$\gamma_{19,7}(\mathrm{Th})$	215.28(4)	0.090(9)	[M1]	2.12(3)	0.029(3)
$\gamma_{6,0}(\mathrm{Th})$	221.386(14)	0.349(15)	M1	1.96(3)	0.118(5)
$\gamma_{13,2}(Th)$	228.76(5)	0.021	M1	1.79(3)	0.0074
$\gamma_{9,1}(\mathrm{Th})$	233.50(2)	0.102(11)	M1	1.687(24)	0.038~(4)
$\gamma_{8,0}(\mathrm{Th})$	240.88(4)	0.181(19)	M1(+E2)	1.45(22)	0.074(4)
$\gamma_{19,5}(Th)$	246.83(2)	0.134(7)	[M1]	1.445(21)	0.055~(3)
$\gamma_{15,2}(Th)$	255.365(10)	0.017	M1	1.315(19)	0.0074
$\gamma_{19,4}(Th)$	266.47(4)	0.0097~(7)	[E2]	0.245(4)	0.0078~(6)
$\gamma_{12,1}(Th)$	275.35(15)	0.094(11)	M1+E2	0.84(6)	0.051~(6)
$\gamma_{9,0}(\mathrm{Th})$	275.49(6)	0.065	M1(+E2)	1.02(12)	0.032
$\gamma_{16,2}(Th)$	281.42(5)	0.013	M1	1.005(14)	0.0063
$\gamma_{13,1}(Th)$	282.94(5)	0.013	[M1]	0.990(14)	0.0063
$\gamma_{17,2}(Th)$	289.56(4)	0.0142	[M1]	0.929(13)	0.0074
$\gamma_{18,2}(Th)$	291.65(3)	0.042~(6)	[E1]	0.0396~(6)	0.040~(6)
$\gamma_{11,0}(Th)$	301.7(1)	0.01	M1	0.829(12)	0.0053
$\gamma_{15,1}(Th)$	310.69(6)	0.011	(E2)	0.1517(22)	0.0094
$\gamma_{12,0}(Th)$	317.10(8)	0.0019	M1	0.723(11)	0.0011
$\gamma_{17,1}(Th)$	343.5(2)	0.0032			0.0032
$\gamma_{18,1}(Th)$	345.92(3)	0.041~(6)	[E1]	0.0272(4)	0.040(6)
$\gamma_{15,0}(\mathrm{Th})$	350(5)	0.009	M1	0.552(24)	0.006

4.2 Gamma Transitions and Emissions

CNDC /Huang Xiaolong, Wang Baosong

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{l} \gamma_{19,2}({\rm Th}) \\ \gamma_{18,0}({\rm Th}) \\ \gamma_{21,5}({\rm Th}) \\ \gamma_{19,1}({\rm Th}) \\ \gamma_{22,4}({\rm Th}) \end{array}$	$\begin{array}{c} 356.03 \ (5) \\ 387.84 \ (3) \\ 390.27 \ (20) \\ 410.29 \ (4) \\ 448.40 \ (6) \end{array}$	$\begin{array}{c} 0.0054 \\ 0.041 \ (6) \\ 0.040 \ (1) \\ 0.0033 \\ 0.0011 \end{array}$	[E1] [E1] [E1]	$\begin{array}{c} 0.0255 \ (4) \\ 0.0213 \ (3) \\ 0.0189 \ (3) \end{array}$	$\begin{array}{c} 0.0053 \\ 0.040 \ (6) \\ 0.040 \ (1) \\ 0.0032 \\ 0.0011 \end{array}$

5 References

A.O.NIER, Phys. Rev. 55 (1939) 150 (Half-life) G.B.KNIGHT, Report ORNL K-663, Oak Ridge National Laboratory (1950) (Half-life) G.J.SAYAG, Compt. Rend. Acad. Sci. (Paris) 232 (1951) 2091 (Half-life) E.H.FLEMING JR., A.GHIORSO, B.B.CUNNINGHAM, Phys. Rev. 88 (1952) 642 (Half-life) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (Half-life) F.L.CLARK, H.J.SPENCER-PALMER, R.N.WOODWARD, J. S.African Chem. Inst. 10 (1957) 62 (Half-life) E.WURGER, K.P.MEYER, P.HUBER, Helv. Phys. Acta 30 (1957) 157 (Half-life) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 24 (1960) 1035 (Alpha energies and intensities) R.C.PILGER, F.S.STEPHENS, F.ASARO, I.PERLMAN, Priv. Comm. (1962), cited in unpublished (1962) (Alpha energies and intensities) A.J.DERUYTTER, I.G.SCHRODER, J.A.MOORE, Nucl. Sci. Eng. 21 (1965) 325 (Half-life) P.H.WHITE, G.J.WALL, F.R.PONTET, J. Nucl. Energy A/B19 (1965) 33 (Half-life) B.M.Aleksandrov, A.S.Krivokhatskii, L.Z.Malkin, K.A.Petrzhak, At. Energ. 20 (1966) 315 (Half-life) R.GAETA, M.A.VIGON, Nucl. Phys. 76 (1966) 353 ([Alpha energies and intensities, gamma-ray energie) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies and intensities) A.H.JAFFEY, K.F.FLYNN, L.E.GLENDENIN, W.C.BENTLEY, A.M.ESSLING, Phys. Rev. C4 (1971) 1889 (Half-life) L.A.KROGER, C.W.REICH, J.E.CLINE, Report ANCR-1016 (1971) 75 (Gamma-ray energies and intensities) A.J.DERUYTTER, G.WEGENER-PENNING, Phys. Rev. C10 (1974) 383 (Half-life) A.GRUTTER, H.R.VON GUNTEN, V.HERRNBERGER, B.HAHN, U.MOSER, H.W.REIST, G.SLETTEN, Physics and Chemistry of Fission 1973, Proc. Symp. on the Physics and Chemistry of Fission, Vol I, STI/PUB/347, IAEA, Vienna (1974) 305 (Half-life) W.TEOH, R.D.CONNOR, R.H.BETTS, Nucl. Phys. A228 (1974) 432 (Gamma-ray energies and intensities) E.VANO, R.GAETA, L.GONZALEZ, C.F.LIANG, Nucl. Phys. A251 (1975) 225 (Gamma-ray energies and intensities) S.A.BARANOV, V.M.SHATINSKII, A.G.ZELENKOV, V.A.PCHELIN, Sov. J. Nucl. Phys. 26 (1977) 486 (Gamma-ray energies and intensities) H.R.VON GUNTEN, A.GRUTTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (Half-life)

CNDC /Huang Xiaolong, Wang Baosong

U - 235

R.VANINBROUKX, B.DENECKE, Nucl. Instrum. Methods 193 (1982) 191 (Gamma-ray energies and emission probabilities) C.BAKTASH, E.DER MATEOSIAN, O.C.KISTNER, A.W.SUNYAR, D.HORN, C.J.LISTER, Bull. Am. Phys. Soc. 28 (1983) 41(Gamma-ray emission probabilities) D.G.OLSON, Nucl. Instrum. Methods 206 (1983) 313 (Gamma-ray emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 35 (1984) 783 (Gamma-ray energies and emission probabilities) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Evaluated gamma-ray energies and emission intensities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Evaluated alpha intensities) W.-J.LIN, G.HARBOTTLE, J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities) C.C.BUENO, M.D.S.SANTOS, Appl. Radiat. Isot. 44 (1993) 567 (Half-life) H.RUELLAN, M.C.LÉPY, M.ETCHEVERRY, J.PLAGNARD, J.MOREL, Nucl. Instrum. Methods Phys. Res. A369 (1996) 651(Gamma-ray and X-ray intensities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) H.CHATANI, Nucl. Instrum. Methods A425 (1999) 277 (Gamma-ray emission intensities) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525 (Evaluated Half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Calculated ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (Decay scheme and levels) F.DAYRAS, N.CHAUVIN, Nucl. Instrum. Methods Phys. Res. A530 (2004) 391 (Alpha energies and intensities) R.SCHÖN, G.WINKLER, W.KUTSCHERA, Appl. Radiat. Isot. 60 (2004) 263 (Evaluated Half-life) E.Garcia-Toraño, M.T.Crespo, M.Roteta, G.Sibbens, S.Pommé, A.M.Sanchez, M.P.R.Montero, S. WOODS, A.PEARCE, Nucl. Instrum. Methods Phys. Res. A550 (2005) 581 (Alpha energies and intensities) F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK, Nucl. Instrum. Methods Phys. Res. A568 (2006) 734 (Gamma-ray emission probabilities) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

U - 235

U - 236

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	23.43	(6)	$\times 10^{6} \text{ y}$
$Q^{'}_{lpha}$:	4573.1	(9)	keV
α	:	100		%
SF	:	~ 9		$\times 10^{-8}$ %

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4168 \\ 4332 \ (8) \\ 4445 \ (5) \\ 4494 \ (3) \end{array}$	$\begin{array}{c} 0.00014 \ (5) \\ 0.149 \ (22) \\ 26.1 \ (40) \\ 73.8 \ (40) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Th)	5.8 - 20.3	10.1 (12)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.000139 (30) } } }
$ec_{1,0}$ L $ec_{1,0}$ M $ec_{1,0}$ N $ec_{2,1}$ L $ec_{2,1}$ M	(Th) (Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$19.2 (29) \\ 5.3 (8) \\ 1.41 (21) \\ 0.092 (15) \\ 0.0253 (41)$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.118 - 19.599		9.4 (10)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$\begin{array}{c} 0.00128 \ (22) \\ 0.0021 \ (4) \end{array}$	$K\alpha$
$\begin{array}{c} \mathrm{XK}\beta_3\\ \mathrm{XK}\beta_1\\ \mathrm{XK}\beta_5^{\prime\prime} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00074 (13)	$\mathrm{K}\beta_1'$

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$\begin{array}{c} 108.509 \\ 108.955 \\ 109.442 \end{array}$	} } }	0.00025(5)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Th) \ \gamma_{2,1}(Th) \ \gamma_{3,2}(Th)$	$\begin{array}{c} 49.46 \ (10) \\ 112.79 \ (10) \\ 171.15 \ (20) \end{array}$	$\begin{array}{c} 26.3 \ (40) \\ 0.150 \ (24) \\ 0.000142 \ (48) \end{array}$	E2 E2 E2	$\begin{array}{c} 324 \ (10) \\ 6.67 \ (20) \\ 1.186 \ (36) \end{array}$	$\begin{array}{c} 0.081 \ (12) \\ 0.0195 \ (31) \\ 0.000065 \ (22) \end{array}$

5 References

A.H.JAFFEY, A.HIRSCH - CITED IN E.K.HYDE,, The Nuclear Properties of the Heavy Elements, Vol. III, Prentice-Hall Inc., Englewood Cliffs, N.J. (1949) 75

(Half-life)

A.H.JAFFEY, H.DIAMOND, A.HIRSCH, J.MECH, Phys. Rev. 84 (1951) 785

(Alpha emission energies, Half-life)

E.H.FLEMING JR., A.GHIORSO, B.B.CUNNINGHAM, Phys. Rev. 88 (1952) 642 (Half-life)

A.P.KOMAR, G.A.KOROLEV, G.E.KOCHAROV, Zh. Eksp. Teor. Fiz. 38 (1960) 1436

(Alpha emission energies, Alpha emission probabilities)

H.Conde, M.Holmberg, J. Nucl. Energy 25 (1971) 331

(Half-life)

K.F.FLYNN, A.H.JAFFEY, W.C.BENTLEY, A.M.ESSLING, J. Inorg. Nucl. Chem. 34 (1972) 1121

(Half-life)

M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies)

H.R.VON GUNTEN, A.GRUETTER, H.W.REIST, M.BAGGENSTOS, Phys. Rev. C23 (1981) 1110 (Half-life)

S.N.BELENKY, M.D.SKOROKHVATOV, A.V.ETENKO, Sov. At. Energy 55 (1983) 528

(Half-life, Spontaneous fission probability)

S.F.Mughabghab, Neutron Cross Sections, Part B, Z = 61-100, Academic Press (1984)

(Production modes)

E.BROWNE, R.B.FIRESTONE, Table of Radioactive Isotopes, John Wiley and Sons Inc., N.Y. (1986) (X-rays energies and emission probabilities)

M.J.WOODS, A.S.MUNSTER, NPL Report RS (EXT) 95 (1988)

(LWM method for averaging numbers)

N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483

(Total and spontaneous fission half-lives)

J.L.ITURBE, Appl. Radiat. Isot. 43 (1992) 817

(Alpha emission energies, Alpha emission probabilities)

S.P.TRETYAKOVA, V.L.MIKHEEV, V.A.PONOMARENKO, A.N.GOLOVCHENKO, A.A.OGLOBLIN, V.A.SHIGIN, Pisma Zh. Eksp. Teor. Fiz. 59 (1994) 368

 $({\rm Cluster}~{\rm decay})$

E.Schönfeld, H.Janssen, Appl. Radiat. Isot. 52 (2000) 595

(X-ray emission probabilities, X-ray energies, Auger electron emission probabilities, Auger electron energies) D.MACMAHON, E.BROWNE, LWEIGHT v1.3, A Computer Program to Calculate Averages, unpublished (2000) (Software for evaluation) R.J.GEHRKE, J.D.BAKER, C.L.RIDDLE, Appl. Radiat. Isot. 56 (2002) 567

(Gamma-ray emission probabilities, Gamma-ray energies)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

M.-M.Bé, C.DULIEU, LWEIGHT v4, A Computer Program to Calculate Averages, unpublished (2005) (Software for evaluation)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., BrIcc Program Package v 2.0 ANU-P/1684 (2005)

(K ICC, L ICC, T ICC, Theoretical ICC)

E.BROWNE, Nucl. Data Sheets 107 (2006) 2579

(Atomic Data, Spin and Parity, T ICC, Multipolarities, Alpha emission energies, Alpha emission probabilities, Gamma-ray energies)

M.-M.BÉ, C.DULIEU, SAISINUC 2000 Manual, CEA/LNE-LNHB (2006)

(Evaluation software)

U - 236

IFIN-HH /A. Luca

U - 237

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	6.749	(16)	d
Q_{β^-}	:	518.6	(6)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	Proba × 1	ability 100	Nature	$\log ft$
$\beta_{0,9}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,5}^{-} \\ \beta_{0,2}^{-} $	$\begin{array}{c} 147.7 \ (6) \\ 186.2 \ (6) \\ 237.2 \ (6) \\ 251.1 \ (6) \\ 459.1 \ (6) \end{array}$	$ \begin{array}{r} 1.3 \\ 2.9 \\ 48.2 \\ 40.9 \\ 7 \end{array} $	(9)(9)(25)(31)(4)	Allowed Super-allowed 1st forbidden 1st forbidden 1st forbidden unique	7.32 7.28 6.39 6.54 8.1

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Np)	5.04 - 13.52	58.5(21)	
e_{AK}	(Np)		1.49(21)	
	KLL	73.50 - 83.13	}	
	KLX	90.36 - 97.28	}	
	KXY	107.10 - 114.58	}	
$ec_{2,1 L}$	(Np)	3.918 - 8.731	14.6(50)	
$ec_{6,5 M}$	(Np)	8.07 - 10.15	36.0(19)	
$ec_{1,0 L}$	(Np)	10.769 - 15.586	17.0(23)	
$ec_{6,5 N}$	(Np)	12.31 - 13.41	9.79(43)	
$ec_{9,7 L}$	(Np)	16.11 - 20.93	0.7(7)	
$ec_{3,1 L}$	(Np)	20.277 - 25.094	0.47	
$ec_{2,1 M}$	(Np)	20.606 - 22.681	3.9(5)	
$ec_{4,2}$ L	(Np)	20.996 - 25.813	3.2(5)	
$ec_{1,0 M}$	(Np)	27.457 - 29.532	4.3(7)	
$ec_{7,6}$ L	(Np)	28.58 - 33.40	0.19(8)	
$ec_{1,0 N}$	(Np)	31.695 - 32.793	1.16(17)	
$ec_{9,7}$ M	(Np)	32.80 - 34.88	0.2(2)	
$ec_{3,1}$ M	(Np)	36.965 - 39.040	0.12	
$ec_{9,7 N}$	(Np)	37.04 - 38.14	0.05~(5)	
$ec_{2,0 L}$	(Np)	37.114 - 41.931	28.6(22)	
$ec_{4,2}$ M	(Np)	37.684 - 39.759	0.84(14)	
$ec_{3,1 N}$	(Np)	41.203 - 42.301	0.032	
$ec_{4,2 N}$	(Np)	41.92 - 43.02	0.233~(37)	
$ec_{7,5 L}$	(Np)	42.40 - 47.22	0.387~(9)	
ес _{7,6 М}	(Np)	45.27 - 47.35	0.0479(21)	
$ec_{5,4 K}$	(Np)	45.94 (2)	0.363~(9)	
$ec_{7,6}$ N	(Np)	49.51 - 50.61	0.0127~(6)	

KRI /N.K. Kuzmenko, V.P. Chechev

		Energy keV	Electrons per 100 disint.	E	Energy keV
ес _{3,0 L}	(Np)	53.4 - 58.2	0.0354(7)		
ес _{2,0 М}	(Np)	53.802 - 55.877	7.7(3)		
$ec_{2,0 N}$	(Np)	58.040 - 59.138	0.846(24)		
$ec_{7,5 M}$	(Np)	59.09 - 61.17	0.096(2)		
$ec_{7,5 N}$	(Np)	63.33 - 64.43	0.0255(5)		
$ec_{5,2 K}$	(Np)	89.331 (10)	50.1(13)		
$ec_{5,1 K}$	(Np)	115.73 (4)	0.114(5)		
$ec_{5,4 L}$	(Np)	142.18 - 147.00	2.04(5)		
$ec_{5,0 K}$	(Np)	148.87 (4)	0.53~(3)		
$ec_{5,4 M}$	(Np)	158.87 - 160.95	0.565(14)		
$ec_{5,4 N}$	(Np)	163.11 - 164.21	0.1546(33)		
$ec_{5,2 L}$	(Np)	185.573 - 190.390	10.1 (3)		
$ec_{5,2 M}$	(Np)	202.261 - 204.336	2.45(7)		
$ec_{5,2}$ N	(Np)	206.499 - 207.597	0.662(14)		
$ec_{5,1 L}$	(Np)	211.97 - 216.79	0.040(2)		
$ec_{7,0 K}$	(Np)	213.69 (4)	0.0757~(18)		
$ec_{8,1 \text{ K}}$	(Np)	216.71 (4)	0.052~(7)		
$ec_{5,1 M}$	(Np)	228.66 - 230.74	0.0105~(5)		
$ec_{5,0 L}$	(Np)	245.11 - 249.93	0.172(9)		
$ec_{8,0 K}$	(Np)	249.92 (4)	0.0206 (9)		
$ec_{9,0 K}$	(Np)	252.259 (23)	0.046~(7)		
$ec_{5,0 M}$	(Np)	261.80 - 263.88	0.045(3)		
$ec_{5,0 N}$	(Np)	266.055 - 267.153	0.0123~(7)		
$ec_{7,0 L}$	(Np)	309.93 - 314.75	0.0733~(17)		
$ec_{8,1 L}$	(Np)	312.95 - 317.77	0.0108(3)		
$ec_{7,0\ M}$	(Np)	326.62 - 328.70	0.0197~(5)		
$\beta_{0,9}^-$	max:	147.7 (6)	1.3(9)	avg:	39.0(2)
$\beta_{0,7}^{-}$	max:	186.2 (6)	2.9(9)	avg:	49.8(2)
$\beta_{0,6}^{-}$	max:	237.2 (6)	48.2(25)	avg:	64.5(2)
$\beta_{0,5}^{-}$	max:	251.1 (6)	40.9(31)	avg:	68.6(2)
$\beta_{0,2}^{-}$	max:	459.1 (6)	7(4)	avg:	137.6(2)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	11.89 - 22.2		59.0 (21)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Np) (Np)	97.069 101.059		$\begin{array}{c} 14.8 \ (4) \\ 23.5 \ (6) \end{array}$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	$113.303 \\ 114.234 \\ 114.912$	} } }	8.57 (27)	$\mathrm{K}\beta_1'$

KRI /N.K. Kuzmenko, V.P. Chechev

302

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Np) (Np) (Np)	117.476 117.876 118.429	} } }	2.95 (10)	${ m K}eta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{6,5}({\rm Np}) \\ \gamma_{2,1}({\rm Np}) \\ \gamma_{1,0}({\rm Np}) \\ \gamma_{9,7}({\rm Np}) \\ \gamma_{3,1}({\rm Np}) \\ \gamma_{4,2}({\rm Np}) \\ \gamma_{7,6}({\rm Np}) \\ \gamma_{2,0}({\rm Np}) \\ \gamma_{2,0}({\rm Np}) \\ \gamma_{4,1}({\rm Np}) \\ \gamma_{2,0}({\rm Np}) \end{array}$	$\begin{array}{c} \text{KeV} \\ \hline 13.81 \ (2) \\ 26.34463 \ (24) \\ 33.19629 \ (22) \\ 38.54 \ (3) \\ 42.704 \ (5) \\ 43.420 \ (3) \\ 51.01 \ (3) \\ 59.54091 \ (10) \\ 64.83 \ (2) \\ 69.76 \ (3) \\ 75 \ 899 \ (5) \end{array}$	$\begin{array}{c} \times 100 \\ \\ 48.8 (25) \\ 22 (5) \\ 23 (3) \\ 0.9 (9) \\ 0.65 \\ 4.3 (7) \\ 0.596 (25) \\ 73.7 (31) \\ 1.800 (26) \\ 0.0013 (3) \\ 0.05 \end{array}$	$\begin{array}{c} \mathrm{M1+0.1\%E2} \\ \mathrm{E1} \\ \mathrm{M1+1.66\%E2} \\ \mathrm{M1+15\%E2} \\ \mathrm{M1+1.66\%E2} \\ \mathrm{M1+16.8\%E2} \\ \mathrm{E1} \\ \mathrm{E1} \\ \mathrm{E1} \\ \mathrm{E1} \\ \mathrm{E1} \\ \mathrm{(E1)} \\ \mathrm{(E2)} \end{array}$	$\begin{array}{c} 492 \ (16) \\ 8 \ (2) \\ 175 \ (24) \\ 280 \ (210) \\ 75 \ (9) \\ 180 \ (23) \\ 0.753 \ (15) \\ 1.16 \ (7) \\ 0.400 \ (8) \\ 0.330 \ (7) \\ 53 \ 4 \ (11) \end{array}$	\times 100 0.099 (4) 2.43 (6) 0.130 (5) 0.0033 (20) 0.0085 0.024 (2) 0.340 (14) 34.1 (9) 1.286 (17) 0.00095 (19) 0.00091
$\begin{array}{l} \gamma_{3,0}(NP) \\ \gamma_{4,0}(Np) \\ \gamma_{5,2}(Np) \\ \gamma_{5,2}(Np) \\ \gamma_{5,2}(Np) \\ \gamma_{5,0}(Np) \\ \gamma_{5,0}(Np) \\ \gamma_{8,3}(Np) \\ \gamma_{8,2}(Np) \\ \gamma_{7,0}(Np) \\ \gamma_{7,0}(Np) \\ \gamma_{7,0}(Np) \\ \gamma_{9,1}(Np) \\ \gamma_{-1,2}(Np) \\ \gamma_{9,0}(Np) \\ \gamma_{9,0}(Np) \end{array}$	$\begin{array}{c} 102.959 \ (3)\\ 102.959 \ (3)\\ 164.61 \ (2)\\ 208.00 \ (1)\\ 221.80 \ (4)\\ 234.40 \ (4)\\ 267.556 \ (12)\\ 292.77 \ (6)\\ 309.1 \ (3)\\ 332.376 \ (16)\\ 335.38 \ (4)\\ 337.7 \ (2)\\ 340.45\\ 368.602 \ (20)\\ 370.928 \ (23)\\ \end{array}$	$\begin{array}{c} 0.0072 \ (10) \\ 5.02 \ (11) \\ 84.8 \ (19) \\ 0.0316 \ (13) \\ 0.189 \ (8) \\ 1.5 \ (4) \\ 0.0030 \ (9) \\ 0.00028 \\ 1.374 \ (19) \\ 0.162 \ (9) \\ 0.0101 \ (6) \\ 0.0016 \ (3) \\ 0.0675 \ (28) \\ 0.167 \ (8) \end{array}$	$\begin{array}{c} (12) \\ & E1 \\ & E2 \\ & M1+2.4\%E2 \\ & E2 \\ & M2 \\ E1+19.4\%M2 \\ & (E2) \\ & (E1) \\ & E2 \\ & M1+17.5\%E2 \\ & (E2) \\ \\ & M1(+E2) \\ & M1(+E2) \\ & M1+15.6\%E2 \end{array}$	$\begin{array}{c} 0.119 \ (3) \\ 1.70 \ (4) \\ 2.98 \ (7) \\ 0.547 \ (11) \\ 8.24 \ (16) \\ 1.06 \ (6) \\ 0.215 \ (4) \\ 0.0377 \ (8) \\ 0.146 \ (3) \\ 0.69 \ (8) \\ 0.139 \ (3) \end{array}$ $\begin{array}{c} 0.622 \ (13) \\ 0.53 \ (7) \end{array}$	$\begin{array}{c} 0.0064 \ (9) \\ 1.86 \ (3) \\ 21.3 \ (3) \\ 0.0204 \ (8) \\ 0.0205 \ (8) \\ 0.721 \ (10) \\ 0.0025 \ (7) \\ 0.00027 \\ 1.199 \ (16) \\ 0.0958 \ (22) \\ 0.0089 \ (5) \\ 0.0016 \ (3) \\ 0.0416 \ (17) \\ 0.109 \ (2) \end{array}$

5 References

L.MELANDER, H.SLATIS, Arkiv Mat. Astron. Fysik 36A (1948) No 15

(Half-life, energies and probabilities of beta-transitions)

F. WAGNER JR., M.S. FREEDMAN, D.W. ENGELKEMEIR, J.R. HUIZENGA, Phys. Rev. 89 (1953) 502

(Half-life , energies and probabilities of beta-transitions)

 $\rm J.O.Rasmussen, F.L.Canavan, J.M.Hollander, Phys. Rev. 107 (1957) 141$

(Energies and probabilities of beta-transitions)

- M.J.CABELL, T.A.EASTWOOD, P.J.CAMPION, J. Nucl. Energy 7 (1958) 81
- (Half-life)

 $\operatorname{P.S.SAMOILOV},$ Izv. Akad. Nauk SSSR, Ser. Fiz. 23 (1959) 1416

(Gamma-ray transition multipolarities)

 ${\rm F.Asaro,\ F.S.Stephens,\ J.M.Hollander,\ I.Perlman.,\ Phys.\ Rev.\ 117\ (1960)\ 492}$

(ICC for the anomalously converted gamma-ray transitions)

E.AKATSU, T.KUROYANAGI, T.ISHIMORI, Radiochim. Acta 2 (1963) 1 (Gamma-ray energies) J.L.WOLFSON, J.J.H.PARK, Can. J. Phys. 42 (1964) 1387 (E2/M1 admixtures) T.YAMAZAKI, J.M.HOLLANDER., Nucl. Phys. 84 (1966) 505 (Gamma-ray and X-ray energies and multipolarities, E2 admixtures, relative probability of conversion electrons) C.M.LEDERER, J.K.POGGENBURG, F.ASARO, J.O.RASMUSSEN, I.PERLMAN, Nucl. Phys. 84 (1966) 481 (Conversion electron data) H.-C.PAULI, K.ALDER, Z. Phys. 202 (1967) 255 (Anomalously converted E1 gamma-ray transitions) L.N.KONDRATEV, E.E.TRETYAKOV, Bull. Rus. Acad. Sci. Phys. 30 (1967) 393 (E2/M1 admixtures) R.DAMS, F.ADAMS, Radiochim. Acta 10 (1968) 1 (Gamma-ray energies) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies and emission probabilities) V.N.GRIGOREV, A.P.FERESIN, Sov. J. Nucl. Phys. 12 (1971) 361 (Anomalously converted E1 gamma-ray transitions) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) A.V.BUSHUEV, O.V.MATVEEV, V.N.OZERKOV, V.V.CHACHIN, Report INDC(CCP)-193, IAEA, Vienna (1982) 30 (Gamma-ray emission probabilities) M.F.BANHAM, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984) (Gamma-ray emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 36 (1985) 117 (Gamma-ray emission probabilities) H.WILLMES, T.ANDO, R.J.GEHRKE, Int. J. Appl. Radiat. Isotop. 36 (1985) 123 (X-ray and gamma-ray emission probabilities) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray probabilities) P.N.JOHNSTON, Nucl. Instrum. Methods Phys. Res. A369 (1996) 107 (ICC for the anomalously converted gamma-ray transitions) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) R.YANEZ, W.LOVELAND, D.J.MORRISSEY, K.ALEKLETT, J.O.LILJENZIN, E.HAGEBO, D.JERRESTAM, L.WESTER-BERG, Phys. Lett. B376 (1996) 29 (Gamma-ray energies) A.KOVALIK, E.A.YAKUSHEV, V.M.GOROZHANKIN, A.F.NOVGORODOV, M.RYSAVY, J. Phys. (London) G24 (1998) 2247 (Gamma transition multipolarities) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) M.S.BASUNIA, Nucl. Data Sheets 107 (2006) 3323 (Decay data evaluation, gamma-ray energies and multipolarities, decay scheme) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

KRI /N.K. Kuzmenko, V.P. Chechev

1 Half-life, Q-value and Decay mode

:	4.468	(5)	$\times 10^9$ y
:	4269.7	(29)	keV
:	100		%
:	5.45	(4)	$ imes 10^{-5}$ %
	: : :	$\begin{array}{rrrr} : & 4.468 \\ : & 4269.7 \\ : & 100 \\ : & 5.45 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$\begin{array}{c} 4038 \ (5) \\ 4151 \ (5) \\ 4198 \ (3) \end{array}$	$\begin{array}{c} 0.13 \ (3) \\ 22.33 \ (50) \\ 77.54 \ (50) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Th)	5.8 - 20.3	8.43 (25)
e _{AK}	(Th) KLL KLX KXY	68.406 - 76.745 83.857 - 93.345 99.29 - 109.64	0.00012 (4) } } }
$ec_{1,0 L} ec_{1,0 M} ec_{1,0 N} ec_{1,0 N} ec_{2,1 L}$	(Th) (Th) (Th) (Th)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16.3 (8) 4.46 (21) 1.19 (6) 0.080 (22)
$ec_{2,1 M}$	(Th)	108.3 - 110.2	0.022 (6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Th)	11.118 - 19.504		7.94(28)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Th) (Th)	$89.954 \\93.351$		$\begin{array}{c} 0.00109 \ (30) \\ 0.0018 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Th) (Th) (Th)	$104.819 \\ 105.604 \\ 106.239$	} } }	0.00063(17)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Th) (Th) (Th)	$\begin{array}{c} 108.509 \\ 108.955 \\ 109.442 \end{array}$	} } }	0.00021 (6)	$\mathrm{K}\beta_{2}^{'}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Th})$ $\gamma_{2,1}(\mathrm{Th})$	$\begin{array}{c} 49.55 \ (6) \\ 113.5 \ (1) \end{array}$	$\begin{array}{c} 22.5 \ (5) \\ 0.13 \ (3) \end{array}$	E2 [E2]	$\begin{array}{c} 321 \ (10) \\ 6.47 \ (19) \end{array}$	$\begin{array}{c} 0.0697 \ (26) \\ 0.0174 \ (47) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

C.A.KIENBERGER, Phys. Rev. 76 (1949) 1561 (Half-life) W.J.WHITEHOUSE, W.GALBRAITH, Phil. Mag. 41 (1950) 429 (SF half-life) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (SF half-life) A.F.KOVARIK, N.A.ADAMS JR., Phys. Rev. 98 (1955) 46 (Half-life) P.KURODA, R.R.EDWARDS, F.T.ASHIZAWA, J. Chem. Phys. 25 (1956) 603 (SF half-life) R.B.LEACHMAN, H.W.SCHMITT, J. Nucl. Energy 1 (1957) 38 (Half-life) F.L.CLARK, H.J.SPENCER-PALMER, R.N.WOODWARD, J. S.African Chem. Inst. 10 (1957) 62 (Half-life) P.KURODA, R.R.EDWARDS, J. Inorg. Nucl. Chem. 3 (1957) 345 (SF half-life) P.L.PARKER, P.K.KURODA, J. Inorg. Nucl. Chem. 5 (1958) 153 (SF half-life) G.E.KOCHAROV, A.P.KOMAR, G.A.KOROLEV, Sov. Phys. - JETP 36 (1959) 48 (Alpha probability) B.D.KUZMINOV, L.S.KUTSAEVA, V.G.NESTEROV, L.I.PROKHOROVA, G.P.SMIRENKIN, Sov. Phys. - JETP 37 (1959) 290(SF half-life) J.STEYN, F.W.E.STRELOW, Proc. Symp. Metrology of Radionuclides, STI/PUB/6, IAEA, Vienna (1960) 155 (Half-life) G.E.KOCHAROV, G.A.KOROLEV, Bull. Rus. Acad. Sci. Phys. 25 (1961) 227 (Alpha probability) R.L.FLEISCHER, P.B.PRICE, Phys. Rev. 133 (1964) B63 (SF half-life) A.Spadavecchia, B.Hahn, Helv. Phys. Acta 40 (1967) 1063 (SF half-life) J.H.ROBERTS, R.GOLD, R.J.ARMANI, Phys. Rev. 174 (1968) 1482 (SF half-life) D.GALLIKER, E.HUGENTOBLER, B.HAHN, Helv. Phys. Acta 43 (1970) 593 (SF half-life) M.P.T.LEME, C.RENNER, M.CATTANI, Nucl. Instrum. Methods 91 (1971) 577 (SF half-life) W.M.THURY, Acta Physica Austriaca 33 (1971) 375 (SF half-life) J.D.KLEEMAN, J.F.LOVERING, Geochimica et Cosmochimica Acta 35 (1971) 637 (SF half-life) A.H.JAFFEY, K.F.FLYNN, L.E.GLENDENIN, W.C.BENTLEY, A.M.ESSLING, Phys. Rev. C4 (1971) 1889 (Half-life) H.A.KHAN, S.A.DURRANI, Radiat. Eff. 17 (1973) 133 (SF half-life) K.N.IVANOV, K.A.PETRZHAK, Sov. J. At. Energy 36 (1974) 514 (SF half-life)

G.A. WAGNER, G.M. REIMER, B.S. CARPENTER, H.FAUL, R.VAN DER LINDEN, R.GIJBELS, Geochimica et Cosmochimica Acta 39 (1975) 1279 (SF half-life) V.EMMA, S.LO NIGRO, Nucl. Instrum. Methods 128 (1975) 355 (SF half-life) K.THIEL, W.HERR, Earth and Planetary Science Lett. 30 (1976) 50 (SF half-life) D.M.C.Rizzo, Ann. Acad. Brasil. Ciênc. 50 (1978) 303 (SF half-life) M.KASE, J.KIKUCHI, T.DOKE, Nucl. Instrum. Methods 154 (1978) 335 (SF half-life) E.R.V.SPAGGIARI, Ann. Acad. Brasil. Ciênc. 52 (1980) 213 (SF half-life) A.G.POPEKO, G.M.TER-AKOPIAN, Nucl. Instrum. Methods 178 (1980) 163 (SF half-life) Z.N.R.BAPTISTA, M.S.M.MANTOVANI, F.B.RIBEIRO, Ann. Acad. Brasil. Ciênc. 53 (1981) 437 (SF half-life) H.G.DE CARVALHO, J.B.MARTINS, E.L.MEDEIROS, O.A.P.TAVARES, Nucl. Instrum. Methods 197 (1982) 417 (SF half-life) Y.A.AKOVALI, Nucl. Data Sheets 40 (1983) 523 (Spin, parity, energy level, multipolarity) S.N.BELENKII, M.D.SKOROKHVATOV, A.V.ETENKO, Sov. J. At. Energy 55 (1983) 528 (SF half-life) R.VARTANIAN, Helv. Phys. Acta 57 (1984) 416 (SF half-life) R.VARTANIAN, Helv. Phys. Acta 57 (1984) 292 (SF half-life) J.-C.Roy, L.BRETON, J.-E.CÔTÉ, J.TURCOTTE, Int. J. Appl. Radiat. Isotop. 35 (1984) 899 (Gamma probability) M.P.IVANOV, G.M.TER-AKOPIAN, B.V.FEFILOV, A.S.VORONIN, Nucl. Instrum. Methods Phys. Res. A234 (1985) 152(SF half-life) B.AL-BATAINA, J.JÄNECKE, Radiochim. Acta 42 (1987) 159 (Half-life) K.KOMURA, M.YAMAMOTO, K.UENO, Nucl. Instrum. Methods Phys. Res. A295 (1990) 461 (Gamma probability) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha energy) Y.A.AKOVALI, Nucl. Data Sheets 71 (1994) 181 (Spin, parity, energy level, multipolarity) B.DUCHEMIN, N.COURSOL, M.M.BÉ, Nucl. Instrum. Methods Phys. Res. A339 (1994) 146 (Alpha and gamma probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data) H.RUELLAN, M.C.LÉPY, M.ETCHEVERRY, J.PLAGNARD, J.MOREL, Nucl. Instrum. Methods Phys. Res. A369 (1996) 651(Gamma probability) I.Adsley, J.S.Backhouse, A.L.Nichols, J.Toole, Appl. Radiat. Isot. 49 (1998) 1337 (Gamma probability) E.GARCIA-TORAÑO, Appl. Radiat. Isot. 52 (2000) 591 (Alpha probability) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Alpha) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 123 (Spin, parity, energy level, multipolarity) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 129 (\mathbf{Q})

J.C.HADLER, G.BIGAZZI, S.GUEDES, P.J.IUNES, M.ODDONE, C.A.TELLO, S.R.PAULO, J. Radioanal. Nucl. Chem. 256 (2003) 155 (SF half-life) R.SCHÖN, G.WINKLER, W.KUTSCHERA, Appl. Radiat. Isot. 60 (2004) 263 (Half-life)

U - 239

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	23.46	(5)	\min
Q_{β^-}	:	1261.5	(16)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.32}^{-}$	164.5(16)	0.0060 (5)		
$\beta_{0.31}^{-}$	212.3(16)	0.0059 (4)		
$\beta_{0.30}^{-}$	221.1(16)	0.0077 (4)		
$\beta_{0.29}^{-}$	247.9(16)	0.0074 (4)		
$\beta_{0.28}^{-}$	269.3(16)	0.0262 (9)		
$\beta_{0.27}^{-}$	295.0 (16)	0.0008 (2)		
$\beta_{0.26}^{-}$	297.3(16)	0.211 (3)		
$\beta_{0.25}^{-}$	302.3(16)	0.0284 (7)	1st forbidden	
$\beta_{0.24}^{-}$	398.1 (16)	0.0005 (2)		
$\beta_{0.23}^{-}$	412.0 (16)	0.0264 (4)	1st forbidden	
$\beta_{0.22}^{-}$	417.4 (16)	0.215 (3)		
$\beta_{0,21}^{-}$	442.2 (16)	0.228 (3)		
$\beta_{0.18}^{-1}$	566.3(16)	0.0118(11)		
$\beta_{0.17}^{-17}$	599.2 (16)	0.261 (6)	1st forbidden	7.35
$\beta_{0.15}^{-15}$	697.6 (16)	0.0247 (7)		
$\beta_{0.14}^{-,10}$	731.2 (16)	0.0029 (4)		
$\beta_{0,13}^{-,11}$	743.5 (16)	0.063 (2)		
$\beta_{0.12}^{-,10}$	787.1 (16)	0.0033 (4)		
$\beta_{0.4}^{-12}$	1143.9 (16)	2.2(4)	1st forbidden	7.4
$\beta_{0,3}^{-1}$	1186.5 (16)	72.8 (19)	1st forbidden	5.91
$\beta_{0,1}^{-}$	1230.4 (16)	9.4 (15)	Allowed	6.83
$\beta_{0,0}^{2,1}$	1261.5(16)	14.4 (22)	Allowed	6.7

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.	${ m Energy}\ { m keV}$
e_{AL}	(Np)	6.04 - 13.12	14.7 (7)	
$e_{\rm AK}$	(Np) KLL KLX KXY	73.501 - 83.134 90.358 - 101.054 107.19 - 118.66	0.0091 (13) } } }	
$ec_{1,0} L ec_{4,3} L ec_{3,1} L ec_{1,0} M$	(Np) (Np) (Np) (Np)	8.704 - 13.520 20.7 - 25.5 21.106 - 25.920 25.392 - 27.467	$14.0 (11) \\ 1.48 (28) \\ 3.72 (25) \\ 3.6 (3)$	

		Energy keV	Electrons per 100 disint.	Energy keV
ec _{10N}	(Np)	29.630 - 30.728	0.99(8)	
ec _{4.3 M}	(Np)	37.4 - 39.4	0.39(8)	
ec _{3.1 M}	(Np)	37.794 - 39.869	0.94(6)	
$ec_{4,3 N}$	(Np)	41.6 - 42.7	0.10(13)	
$ec_{3,1 N}$	(Np)	42.032 - 43.130	0.248(16)	
$ec_{2,0 L}$	(Np)	48.78 - 53.60	0.115(21)	
$ec_{3,0 L}$	(Np)	52.237 - 57.050	10.7(3)	
$ec_{2,0 M}$	(Np)	65.47 - 67.55	0.032(3)	
$ec_{8,3 \text{ K}}$	(Np)	67.48 (4)	0.049~(46)	
$ec_{10,8 \text{ K}}$	(Np)	68.61 (8)	0.010(9)	
$ec_{3,0 M}$	(Np)	68.925 - 71.000	2.64(8)	
$ec_{3,0 N}$	(Np)	73.163 - 74.261	0.704(21)	
$ec_{8,3 \rm \ L}$	(Np)	163.72 - 168.54	0.0186~(6)	
$\beta_{0,32}^{-}$	max:	164.5 (16)	0.0060 (5)	avg: $43.7(5)$
$\beta_{0,31}^{-}$	max:	212.3 (16)	0.0059(4)	avg: $57.3(5)$
$\beta_{0,30}^{-}$	max:	221.1 (16)	0.0077~(4)	avg: $59.9(5)$
$\beta_{0,29}^{-}$	max:	247.9 (16)	0.0074(4)	avg: $67.6(5)$
$\beta_{0,28}^{-}$	max:	269.3 (16)	0.0262 (9)	avg: $74.0(5)$
$\beta_{0,27}^{-}$	max:	295.0 (16)	0.0008(2)	avg: $81.7(5)$
$\beta_{0.26}^{-}$	max:	297.3 (16)	0.211(3)	avg: $82.4(5)$
$\beta_{0.25}^{-}$	max:	302.3 (16)	0.0284(7)	avg: $83.9(5)$
$\beta_{0.24}^{-}$	max:	398.1 (16)	0.0005(2)	avg: $113.4(5)$
$\beta_{0.23}^{-2}$	max:	412.0 (16)	0.0264(4)	avg: $117.8(5)$
$\beta_{0.22}^{-2}$	max:	417.4 (16)	0.215(3)	avg: 119.6 (5)
$\beta_{0,21}^{\circ,-}$	max:	442.2 (16)	0.228(3)	avg: 127.4 (5)
$\beta_{0.18}^{-1}$	max:	566.3 (16)	0.0118(11)	avg: $168.0(5)$
$\beta_{0.17}^{-17}$	max:	599.2 (16)	0.261(6)	avg: 179.0 (5)
$\beta_{0.15}^{0.15}$	max:	697.6 (16)	0.0247(7)	avg: 212.6 (5)
$\beta_{0.14}^{-}$	max:	731.2 (16)	0.0029(4)	avg: 224.3 (5)
$\beta_{0.13}^{-13}$	max:	743.5 (16)	0.063(2)	avg: 228.6 (5)
$\beta_{0,12}^{-12}$	max:	787.1 (16)	0.0033(4)	avg: 244.0 (5)
$\beta_{0.4}^{-1}$	max:	1143.9 (16)	2.2(4)	avg: 374.0 (5)
$\beta_{0,3}^{-}$	max:	1186.5 (16)	72.8 (19)	avg: 390.4 (5)
$\beta_{0,1}^{-1}$	max:	1230.4 (16)	9.4 (15)	avg: 406.8 (5)
$\beta_{0,0}^{-1}$	max:	1261.5 (16)	14.4(22)	avg: $418.6(5)$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(Np)	11.871 - 21.491	16.1(5)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	$97.069 \\ 101.059$	$\begin{array}{c} 0.091 \ (3) \\ 0.144 \ (5) \end{array}$	$K\alpha$

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy keV		Photons per 100 disint	
$\begin{array}{c} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	113.303 114.234 114.912	} } }	0.052(2)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	117.463 117.876 118.429	} } }	0.018 (1)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$ \begin{array}{c} \gamma_{1,0}({\rm Np}) \\ \gamma_{4,3}({\rm Np}) \\ \gamma_{3,1}({\rm Np}) \\ \gamma_{-1,1}({\rm Np}) \\ \gamma_{6,4}({\rm Np}) \\ \gamma_{2,0}({\rm Np}) \\ \gamma_{3,0}({\rm Np}) \\ \gamma_{3,0}({\rm Np}) \\ \gamma_{4,1}({\rm Np}) \\ \gamma_{15,11}({\rm Np}) \\ \gamma_{4,0}({\rm Np}) \\ \gamma_{-1,2}({\rm Np}) \\ \gamma_{-1,3}({\rm Np}) \end{array} $	$\begin{array}{c} 31.1310 \ (12) \\ 43.06 \ (2) \\ 43.533 \ (1) \\ 46.6 \\ 55.37 \ (5) \\ 71.210 \ (2) \\ 74.664 \ (1) \\ 86.72 \ (7) \\ 111.0 \ (2) \\ 117.727 \ (20) \\ 134.71 \ (13) \\ 142.5 \ (1) \\ 172.45 \ (5) \end{array}$	$\begin{array}{c} 19.0 \ (14) \\ 2.0 \ (4) \\ 9.3 \ (6) \\ 0.009 \ (4) \\ 0.0076 \ (25) \\ 0.141 \ (4) \\ 65.8 \ (17) \\ 0.065 \ (6) \\ 0.0202 \ (5) \\ 0.123 \ (10) \\ 0.0019 \ (3) \\ 0.0045 \ (6) \\ 0.021 \ (1) \end{array}$	M1+E2 M1+E2 E1 M1+E2 E2 E1 E1 E1	$\begin{array}{c} 263 \ (13) \\ 154 \ (18) \\ 1.14 \ (3) \\ 90 \ (30) \\ 71.9 \ (14) \\ 0.276 \ (6) \\ 0.186 \ (4) \\ 0.0841 \ (17) \end{array}$	$\begin{array}{c} 0.072 \ (4) \\ 0.013 \ (2) \\ 4.35 \ (28) \\ 0.009 \ (4) \\ 0.0000836 \ (20) \\ 0.00193 \ (4) \\ 51.6 \ (13) \\ 0.055 \ (5) \\ 0.0202 \ (5) \\ 0.113 \ (9) \\ 0.0019 \ (3) \\ 0.0045 \ (6) \\ 0.021 \ (1) \end{array}$
$\begin{array}{l} \gamma_{7,2}({\rm Np}) \\ \gamma_{-1,4}({\rm Np}) \\ \gamma_{8,3}({\rm Np}) \\ \gamma_{10,8}({\rm Np}) \\ \gamma_{9,7}({\rm Np}) \\ \gamma_{24,17}({\rm Np}) \\ \gamma_{-1,5}({\rm Np}) \\ \gamma_{-1,6}({\rm Np}) \\ \gamma_{21,16}({\rm Np}) \\ \gamma_{21,15}({\rm Np}) \\ \gamma_{30,19}({\rm Np}) \\ \gamma_{8,0}({\rm Np}) \\ \gamma_{-1,10}({\rm Np}) \\ \gamma_{-1,10}({$	$\begin{array}{c} 170.15 \ (5) \\ 174.07 \ (6) \\ 186.15 \ (4) \\ 187.28 \ (8) \\ 197.28 \ (12) \\ 201.18 \ (6) \\ 220.52 \ (4) \\ 236.28 \ (14) \\ 239.86 \ (5) \\ 255.37 \ (5) \\ 258.44 \ (6) \\ 260.80 \ (2) \\ 262 \ 80 \ (10) \end{array}$	$\begin{array}{c} 0.031 \ (1) \\ 0.0097 \ (3) \\ 0.10 \ (5) \\ 0.020 \ (9) \\ 0.0024 \ (3) \\ 0.0005 \ (2) \\ 0.0282 \ (7) \\ 0.00092 \ (18) \\ 0.00087 \ (23) \\ 0.0011 \ (2) \\ 0.00073 \ (18) \\ 0.00310 \ (21) \\ 0.0008 \ (3) \end{array}$	[M1+E2] [M1+E2] [E1]	$\begin{array}{c} 2.6 \ (16) \\ 2.6 \ (16) \end{array} \\ 0.0549 \ (11) \end{array}$	$\begin{array}{c} 0.031 \ (1) \\ 0.0097 \ (3) \\ 0.0288 \ (7) \\ 0.0056 \ (3) \\ 0.0024 \ (3) \\ 0.0005 \ (2) \\ 0.0282 \ (7) \\ 0.00092 \ (18) \\ 0.00087 \ (23) \\ 0.0011 \ (2) \\ 0.00073 \ (18) \\ 0.0031 \ (2) \\ 0.0008 \ (3) \end{array}$
$\begin{array}{l} \gamma_{-1,7}({\rm Np}) \\ \gamma_{-1,8}({\rm Np}) \\ \gamma_{28,18}({\rm Np}) \\ \gamma_{26,17}({\rm Np}) \\ \gamma_{32,20}({\rm Np}) \\ \gamma_{22,13}({\rm Np}) \\ \gamma_{-1,9}({\rm Np}) \\ \gamma_{-1,10}({\rm Np}) \\ \gamma_{30,18}({\rm Np}) \\ \gamma_{-1,11}({\rm Np}) \\ \gamma_{-1,12}({\rm Np}) \end{array}$	$\begin{array}{c} 262.89\ (19)\\ 265.44\ (17)\\ 296.93\ (13)\\ 301.95\ (3)\\ 312.05\ (3)\\ 326.21\ (7)\\ 330.14\ (14)\\ 332.06\ (14)\\ 345.13\ (8)\\ 348.23\ (18)\\ 351.33\ (15)\\ \end{array}$	$\begin{array}{c} 0.0008 \ (3) \\ 0.0009 \ (3) \\ 0.0024 \ (8) \\ 0.0018 \ (7) \\ 0.0006 \\ 0.0044 \ (2) \\ 0.00069 \ (13) \\ 0.0012 \ (2) \\ 0.0039 \ (2) \\ 0.0007 \ (3) \\ 0.0007 \ (2) \end{array}$	[M1+E2] [M1+E2]	$\begin{array}{c} 0.7 \ (5) \\ 0.6 \ (5) \end{array}$	$\begin{array}{c} 0.0008 \ (3) \\ 0.0009 \ (3) \\ 0.0014 \ (2) \\ 0.0011 \ (3) \\ 0.0006 \\ 0.0044 \ (2) \\ 0.00069 \ (13) \\ 0.0012 \ (2) \\ 0.0039 \ (2) \\ 0.0007 \ (3) \\ 0.0007 \ (2) \end{array}$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{-1.13}(Np)$	361.83(8)	0.0044(3)			0.0044(3)
$\gamma_{10,3}(Np)$	373.51(4)	0.034(10)	[M1+E2]	0.35(22)	0.025(6)
$\gamma_{11,3}(Np)$	378.06 (6)	0.0101(4)		()	0.0101(4)
$\gamma_{11,3}(Np)$	381.27(16)	0.0006(2)			0.0006(2)
$\gamma_{-1,14}(Np)$	393.01 (18)	0.0006(2)			0.0006(2)
$\gamma_{25,15}(Np)$	395.19(11)	0.0021(2)			0.0021(2)
$\gamma_{12,3}(Np)$	399.13 (13)	0.0016(3)			0.0016(3)
$\gamma_{-1.15}(\text{Np})$	400.55 (15)	0.0009(2)			0.0009(2)
$\gamma_{-1.16}(Np)$	404.84 (18)	0.0009(3)			0.0009(3)
$\gamma_{32,17}(Np)$	434.71 (4)	0.00122(20)	(E1)	0.0184(4)	0.0012(2)
$\gamma_{-1.17}(Np)$	445.81 (12)	0.0011(2)	~ /	~ /	0.0011(2)
$\gamma_{10.0}(Np)$	448.18 (2)	0.00920(31)	[E1]	0.0173(4)	0.0090(3)
$\gamma_{-1.18}(Np)$	452.17 (12)	0.0016(2)			0.0016(2)
$\gamma_{14,3}(Np)$	455.63 (6)	0.0008(3)			0.0008(3)
$\gamma_{12.0}(Np)$	474.36 (6)	0.0017(2)			0.0017(2)
$\gamma_{-1,19}(Np)$	478.13 (19)	0.00055(23)			0.00055(23)
$\gamma_{-1,20}(Np)$	479.55(14)	0.0010(2)			0.0010(2)
$\gamma_{13,1}(Np)$	486.87(3)	0.0627(14)	[E1]	0.0147(4)	0.0618(14)
$\gamma_{-1,21}(Np)$	490.33(13)	0.0007(1)			0.0007(1)
$\gamma_{15,2}(Np)$	492.76(7)	0.0050(2)			0.0050(2)
$\gamma_{14,1}(Np)$	499.1(1)	0.0021(2)			0.0021(2)
$\gamma_{-1,22}(Np)$	502.12(17)	0.0006(2)			0.0006(2)
$\gamma_{16,3}(Np)$	504.76(8)	0.00545(31)	[E2]	0.0488(10)	0.0052(3)
$\gamma_{-1,23}(Np)$	506.80(14)	0.0010(2)			0.0010(2)
$\gamma_{13,0}(Np)$	518.00(2)	0.00456(30)	[E1]	0.01300(19)	0.0045(3)
$\gamma_{18,6}(Np)$	522.12(10)	0.00274(33)	[M1+E2]	0.14(10)	0.0024(2)
$\gamma_{15,1}(Np)$	532.86(10)	0.0023(2)			0.0023(2)
$\gamma_{-1,24}(Np)$	541.32(10)	0.0029(3)			0.0029(3)
$\gamma_{17,4}(Np)$	544.48(9)	0.0041~(5)	[M1+E2]	0.13(9)	0.0036(3)
$\gamma_{16,1}(Np)$	547.99(12)	0.00202 (30)	[E1]	0.01170(24)	0.0020 (3)
$\gamma_{-1,25}(Np)$	558.46(17)	0.0006(2)			0.0006(2)
$\gamma_{29,11}(\rm Np)$	560.63(7)	0.0058(3)			0.0058(3)
$\gamma_{15,0}(Np)$	563.89(4)	0.0004(2)			0.0004(2)
$\gamma_{-1,26}(Np)$	567.88(18)	0.0004(1)			0.0004(1)
$\gamma_{-1,27}(Np)$	575.27(5)	0.0131(4)			0.0131(4)
$\gamma_{-1,28}(Np)$	577.15(14)	0.0014(3)			0.0014(3)
$\gamma_{-1,29}(Np)$	585.49(14)	0.0012(2)			0.0012(2)
$\gamma_{17,3}(Np)$	587.62(2)	0.0214(15)	[M1+E2]	0.11(7)	0.0193(5)
$\gamma_{23,8}(Np)$	588.70(8)	0.0055(3)			0.0055(3)
$\gamma_{-1,30}(Np)$	591.82(19)	0.0009(4)			0.0009(4)
$\gamma_{-1,31}(Np)$	599.13(15)	0.0007(2)			0.0007(2)
$\gamma_{-1,32}(Np)$	602.79(8)	0.0048(3)			0.0048(3)
$\gamma_{-1,33}(Np)$	604.85(6)	0.00096(27)			0.00096(27)
$\gamma_{23,7}(Np)$	607.96(15)	0.0013(3)			0.0013(3)
$\gamma_{-1,34}(Np)$	614.53(17)	0.0006(2)			0.0006(2)
$\gamma_{-1,35}(Np)$	618.03(16)	0.0007(2)	[12 +]	0.0001 (2)	0.0007(2)
$\gamma_{18,2}(Np)$	624.11(7)	0.00626(30)	[E1]	0.0091(2)	0.0062(3)
$\gamma_{-1,36}(Np)$	029.00 (11)	0.0027(3)			0.0027(3)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{17,1}(Np)$	631.10 (3)	0.0676(20)	[E1]	0.00892(17)	0.067(2)
$\gamma_{32,11}(Np)$	644.253 (30)	0.0019(4)			0.0019(4)
$\gamma_{21,6}(Np)$	646.26(10)	0.0029(3)			0.0029(3)
$\gamma_{-1,37}(Np)$	649.79(19)	0.0009(4)			0.0009(4)
$\gamma_{17,0}(Np)$	662.28(2)	0.171(5)	[E1]	0.00815(16)	0.170(5)
$\gamma_{18,1}(Np)$	664.17(9)	0.00544(40)	[E1]	0.00811(16)	0.0054(4)
$\gamma_{-1,38}(Np)$	668.76(18)	0.00055(18)			0.00055(18)
$\gamma_{-1,39}(Np)$	670.88(20)	0.0006(3)			0.0006(3)
$\gamma_{-1,40}(Np)$	691.01 (6)	0.0074(3)			0.0074(3)
$\gamma_{-1.41}(Np)$	692.61(13)	0.0016(3)			0.0016(3)
$\gamma_{18.0}(Np)$	695.23(2)	0.00363(30)	[E1]	0.00745(15)	0.0036(3)
$\gamma_{-1.42}(Np)$	701.21 (10)	0.0024(2)		~ /	0.0024(2)
$\gamma_{26.8}(Np)$	703.63 (10)	0.00235(20)	[E2]	0.0234(5)	0.0023(2)
$\gamma_{19,3}(Np)$	707.38 (9)	0.0022(2)			0.0022(2)
$\gamma_{20,3}(Np)$	710.35 (15)	0.003			0.003
$\gamma_{-1.43}(Np)$	714.22 (9)	0.0030(3)			0.0030(3)
$\gamma_{26.7(Np)}$	722.85(4)	0.0276(7)	[E2]	0.0222(4)	0.0270(7)
$\gamma_{23,5}(Np)$	727.52 (10)	0.0026(3)			0.0026(3)
$\gamma_{23,3}(-1)$	730.95(6)	0.0090(3)			0.0090(3)
$\gamma = 1,44(-1)$ $\gamma = 1.45(Np)$	746.06 (11)	0.0043(5)			0.0043(5)
$\gamma = 1,43(1\cdot P)$ $\gamma = 1,2(Np)$	748.09(3)	0.0890(4)			0.0890(4)
$\gamma_{21,2}(Np)$	752.84(8)	0.0013(3)			0.0013(3)
$\gamma_{29,8}(1, p)$ $\gamma_{-1.46}(Np)$	764.04(11)	0.0026(3)			0.0026(3)
$\gamma = 1,40(\text{PP})$ $\gamma = 1.47(\text{Np})$	768.15(11)	0.0020(0)			0.0020(2)
$\gamma = 1,47$ (Np) $\gamma = 1.48$ (Np)	769.52(17)	0.0020(2) 0.0004(1)			0.0020(2) 0.0004(1)
$\gamma = 1,48(\mathbf{P})$	772.94(9)	0.0001(1) 0.0029(2)			0.0001(1) 0.0029(2)
$\gamma_{22,2}(Np)$	$774\ 77\ (4)$	0.0025(2) 0.015(4)			0.0025(2) 0.015(4)
$\gamma_{23,3}(\mathbf{Np})$	77957(14)	0.010(1)			0.016(1)
730,8(Np)	788.19(7)	0.0000(1) 0.0049(2)			0.0000(1)
$\gamma_{21,1}(Np)$	700.13(7)	0.0045(2) 0.0075(2)			0.0045(2) 0.0075(2)
726,6(Np)	791.13(0) 705(13(15))	0.0013(2)			0.0013(2)
$\gamma = 1,49(10p)$	812.80(3)	0.0000(2)			0.0000(2)
$\gamma_{22,1}(\mathbf{Np})$	812.03(3) 810.26(3)	0.0000(3)			0.0000(3)
$\gamma_{21,0}(Np)$	819.20(0) 820.50(17)	0.123(3)			0.123(3)
$\gamma = 1,50$ (Np)	823.33(11) 831.80(0)	0.00040(13)			0.00040(13)
$\gamma = 1,51$ (Np)	841.45(4)	0.0021(2) 0.0025(4)			0.0021(2) 0.0025(4)
$\gamma_{25,4}(Np)$	841.40(4)	0.0023(4) 0.120(2)			0.0023(4) 0.120(2)
$\gamma_{22,0}(Np)$	844.10(3) 846.20(4)	0.139(3) 0.0224(12)	[M1 + F2]	0.04(3)	0.139(3)
$\gamma_{26,4}(\text{Np})$	840.39(4)	0.0324(13)		0.04(3)	0.0312(8)
$\gamma_{23,0}(\mathbf{N}\mathbf{p})$	869.44(9)	0.0020(2)			0.0020(2)
$\gamma_{-1,52(\text{Np})}$	802.30(18)	0.0004(1)			0.0004(1)
γ30,6(NP)	001.11(11)	0.00070(8)			0.00070(8)
$\gamma_{28,5}(Np)$	809.97(9)	0.0010(1)		0.090 (09)	0.0010(1)
$\gamma_{28,4}(Np)$	8(4.43(3))	0.00343(22)	[M1+E2]	0.038(23)	0.0033(2)
$\gamma_{25,3}(Np)$	884.45(5)	0.0086(2)			0.0086(2)
$\gamma_{25,2}(Np)$	887.97 (3)	0.0023(2)		0.000 (00)	0.0023(2)
$\gamma_{26,3}(Np)$	889.49 (4)	0.0217(7)	[M1+E2]	0.036(22)	0.0209(5)
$\gamma_{27,2}(Np)$	895.15 (15)	0.0008(2)			0.0008(2)
$\gamma_{-1,53}(Np)$	913.68~(9)	0.0019(1)			0.0019(1)
	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
----------------------	---------------	----------------------------	---------------	---------------	--
$\gamma_{28,3}(Np)$	917.40 (8)	0.00279(12)	[M1+E2]	0.034(22)	0.0027(1)
$\gamma_{28,2}(Np)$	920.95(8)	0.00261(10)	[E1]	0.00450 (9)	0.0026(1)
$\gamma_{30,4}(Np)$	922.83(13)	0.0006(1)			0.0006(1)
$\gamma_{25,1}(Np)$	928.05(3)	0.0051(2)			0.0051(2)
$\gamma_{31,4}(Np)$	931.51(5)	0.00547(33)	[M1+E2]	0.032(19)	0.0053(3)
$\gamma_{26,1}(Np)$	933.09(3)	0.0263(6)	[E1]	0.00439(9)	0.0262(6)
$\gamma_{29,3}(Np)$	938.98(8)	0.00031(8)			0.00031(8)
$\gamma_{-1,54}(Np)$	948.88 (19)	0.00024(10)			0.00024(10)
$\gamma_{25,0}(Np)$	959.18(3)	0.0078(3)			0.0078(3)
$\gamma_{28,1}(Np)$	960.99(5)	0.01054(30)	[E1]	0.00417(9)	0.0105(3)
$\gamma_{26,0}(Np)$	964.23(2)	0.0909(20)	[E1]	0.00415(8)	0.0905(20)
$\gamma_{-1,55}(Np)$	970.07(14)	0.0009(2)			0.0009(2)
$\gamma_{31,3}(Np)$	974.58(4)	0.00040(8)	[E2]	0.0123(5)	0.00040(8)
$\gamma_{-1,56}(Np)$	988.51(14)	0.00044(9)			0.00044(9)
$\gamma_{28,0}(Np)$	992.16(2)	0.00281(10)	[E1]	0.00395(8)	0.0028(1)
$\gamma_{-1,57}(Np)$	1002.40(13)	0.00049(9)			0.00049(9)
$\gamma_{-1,58}(Np)$	1005.27(13)	0.0006(1)			0.0006(1)
$\gamma_{-1,59}(Np)$	1009.38(18)	0.0003(1)			0.0003(1)
$\gamma_{30,0}(Np)$	1040.37(4)	0.0011(1)			0.0011(1)
$\gamma_{32,1}(Np)$	1065.76(12)	0.00060(8)	[M1+E2]	0.023(13)	0.00059(8)
$\gamma_{32,0}(Np)$	1096.99(3)	0.00164(10)	[M1+E2]	0.022(13)	0.0016(1)
$\gamma_{-1,60}(Np)$	1101.99(16)	0.00031(1)	-		0.00031(1)

5 References

A.C.G.MITCHELL, L.SLOTIN, J.MARSHALL, V.A.NEDZEL, L.J.BROWN, J.R.PRUETT, Report CP-597 (1943) (Half-life) N.FEATHER, R.S.KRISHNAN, Proc. Cambridge Phil. Soc. 43 (1947) 267 (Half-life) J.M.HOLLANDER, Priv. Comm. (1960), cited in F.Asaro et al., Phys. Rev. 117 (1960) 492 (1960) (Gamma transition multipolarities) K.J.BLINOWSKA, P.G.HANSEN, H.L.NIELSEN, O.SCHULT, K.WIEN, Nucl. Phys. 55 (1964) 331 (Gamma transition multipolarities, energies and absolute emission probabilities) L.N.YUROVA, A.V.BUSHUEV, V.G BORTSOV, Sov. J. At. Energy 18 (1965) 75 (Gamma-ray absolute emission probabilities) D.R.MACKENZIE, R.D.CONNOR, Nucl. Phys. A108 (1968) 81 (Gamma-ray absolute emission probabilities) J.B.HUNT, J.C.ROBERTSON, T.B.RYVES, J. Nucl. Energy 23 (1969) 705 (Half-life) J.E.CLINE, D.A.TRIPP, Priv. Comm. (1969) (Gamma-ray energies and absolute emission probabilities) D.ENGELKEMEIR, Phys. Rev. 181 (1969) 1675 (Gamma transition multipolarities) A.ARTNA-COHEN, Nucl. Data Sheets B6 (1971) 577 (Gamma-ray energies) J.C.Pate, K.R.Baker, R.W.Fink, D.A.McClure, N.S.Kendrick Jr., Z. Phys. A272 (1975) 169 (Gamma-ray energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE,, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) I.Ahmad, Nucl. Instrum. Methods 193 (1982) 9 (Gamma-ray energies)

S.P.HOLLOWAY, J.B.OLOMO, T.D.MCMAHON, B.W.HOOTON, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984)

(Gamma-ray absolute emission probabilities)

A.Abzouzi, M.S.Antony, V.B.Ndocko, J. Radioanal. Nucl. Chem. 135 (1989) 1 (Half-life)

D.SARDARI, T.D.McMAHON, S.P.HOLLOWAY, Nucl. Instrum. Methods Phys. Res. A369 (1996) 486 (Gamma-ray absolute emission probabilities)

R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl.2 (2002) 481

(SAISINUC software)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

E.BROWNE, Nucl. Data Sheets 98 (2003) 665

(Decay data evaluations, multipolarities, scheme)

 $\operatorname{E.L.Wong},\,\operatorname{H.C.Griffin},\,\operatorname{Nucl.}$ Instrum. Methods Phys. Res. A558 (2006) 441

(Gamma-ray emission probabilities and energies)

 $\rm H.C.GRIFFIN,$ Proc. 4th Int. Conf. on the Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida (2008)264

(X-ray and low energy gamma-ray absolute emission probabilities)

D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999

(Uncertainty of X-ray and absolute emission probability)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

U - 239

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	1.55	(8)	$\times 10^5$ y
Q_{β^-}	:	480	(50)	keV
Q_{EC}	:	930	(50)	keV
Q_{α}	:	5010	(50)	keV
EC	:	87.8	(6)	%
β^{-}	:	12.0	(6)	%
α	:	0.2	(6)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$ \begin{array}{c} \epsilon_{0,6} \\ \epsilon_{0,3} \\ \epsilon_{0,2} \end{array} $	$\begin{array}{c} 82 \ (50) \\ 620 \ (50) \\ 781 \ (50) \end{array}$	~ 0.096 87.8 (43) < 4.4	allowed 1st forbidden 1st forbidden unique	$14.6 \\ 14.1 \\ > 15.9$	$\begin{array}{c} 0.726 \ (8) \\ 0.74 \end{array}$	$\begin{array}{c} 0.6 \\ 0.201 \ (5) \\ 0.19 \end{array}$	$\begin{array}{c} 0.4 \\ 0.073 \ (2) \\ 0.07 \end{array}$

3 β^- Transitions

	Energy keV	Proba × 1	bility 100	Nature	$\log ft$
$\frac{\beta_{0,3}^{-}}{\beta_{0,2}^{-}}$	$\begin{array}{c} 174 \ (50) \\ 333 \ (50) \end{array}$	11.8 <1.6	(12)	1st forbidden 1st forbidden unique	14.5 > 16

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
$e_{\rm AL}$	(U)	6.07 - 21.68	128.8(19)	
e _{AK}	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.43 104.51 - 115.59	2.1 (3) } }	
$e_{\rm AL}$	(Pu)	6.19 - 23.10	10.7(3)	
e_{AK}	(Pu) KLL KLX KXY	75.26 - 85.36 92.61 - 103.73 109.93 - 121.78	0.021 (4) } } }	
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{2,1} \ L \\ ec_{2,1} \ M \\ ec_{3,2} \ K \end{array}$	(Pu) (Pu) (Pu) (Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 8.7 \ (5) \\ 2.42 \ (14) \\ 8.1 \ (6) \\ 2.28 \ (18) \\ 0.73 \ (8) \end{array}$	

		Energy keV	Electrons per 100 disint.	$\frac{\rm Energy}{\rm keV}$
$ec_{3,2 L} ec_{3,2 M}$	(Pu) (Pu)	$135.25 - 140.29 \\ 152.42 - 154.57$	5.4(6) 1.50(16)	
$\begin{array}{c} {\rm ec_{1,0}\ L} \\ {\rm ec_{1,0\ M}} \\ {\rm ec_{2,1\ L}} \\ {\rm ec_{2,1\ M}} \\ {\rm ec_{3,2\ K}} \\ {\rm ec_{3,2\ L}} \\ {\rm ec_{3,2\ M}} \end{array}$	(U) (U) (U) (U) (U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 63.9 \ (19) \\ 17.7 \ (5) \\ 58.6 \ (16) \\ 16.25 \ (47) \\ 6.6 \ (3) \\ 36.0 \ (18) \\ 10.0 \ (5) \end{array}$	
$\begin{array}{c} \beta_{0,3}^- \\ \beta_{0,2}^- \end{array}$	max: max:	$\begin{array}{ccc} 174 & (50) \\ 333 & (50) \end{array}$	$11.8 (12) \\ 1.6$	avg: 46 (15) avg: 92 (16)

5 Photon Emissions

5.1 X-Ray Emissions

		${ m Energy}\ { m keV}$		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		117.5(30)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		$\begin{array}{c} 20.2 \ (3) \\ 32.4 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	11.69(25)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\115.012 \\115.377$	} } }	4.00 (11)	$\mathrm{K}\beta_{2}^{\prime}$
XL	(Pu)	12.1246 - 21.984		12.1 (4)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 0.212 \ (23) \\ 0.33 \ (4) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	} } }	0.123(14)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$\begin{array}{c} 120.54 \\ 120.969 \\ 121.543 \end{array}$	} } }	0.043(5)	$\mathrm{K}\beta_2'$

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Pu})$	44.63 (10)	11.9(7)	E2	741 (15)	0.0161(9)
$\gamma_{1,0}(U)$	45.244 (2)	87.8 (6)	E2	589(12)	0.149(3)
$\gamma_{5,4}(U)$	56.6(5)	~ 0.08	(E2)	199(10)	~ 0.0004
$\gamma_{2,1}(\mathrm{Pu})$	102.82(2)	12.0(6)	E2	13.87(28)	0.81(6)
$\gamma_{6,5}(U)$	104.1(10)	~ 0.096	E2	11.1(6)	~ 0.008
$\gamma_{2,1}(U)$	104.234(6)	87.8(6)	E2	10.99(22)	7.32(13)
$\gamma_{3,2}(Pu)$	158.35(3)	11.8(12)	E2	2.14(4)	3.8(4)
$\gamma_{3,2}(U)$	160.307(3)	87.8 (43)	E2	1.76(4)	31.8(15)
$\gamma_{4,2}(U)$	538.1(1)	~ 0.0008	E3	0.143(3)	~ 0.0007
$\gamma_{5,2}(U)$	594.5(3)	~ 0.008			~ 0.008
$\gamma_{4,1}(U)$	642.34(5)	~ 0.068	E1 + (M2 + E3)	0.15(2)	$\sim \! 0.059$
$\gamma_{4,0}(U)$	687.60 (5)	~ 0.021	E1 + (M2 + E3)	0.31(2)	~ 0.016

5.2 Gamma Transitions and Emissions

6 References

C.M.LEDERER, J.M.JAKLEVIC, S.G.PRUSSIN, Nucl. Phys. A135 (1969) 36 (Relative intensities of gamma-rays) O.DRAGOUN, Z.PLAJNER, F.SCHMUTZLER, Nucl. Data Tables A9 (1971) 119 (ICC aM / aL and aNO / aM) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Emission probabilities of gamma-rays in the decay of 240Pu) B.S.DZHELEPOV, L.N.ZYRYANOVA, YU.P.SUSLOV, Beta-processes, Nauka, Leningrad (1972) (Fractional probabilities in L-electron capture) Y.A.ELLIS, M.R.SCHMORAK, Nucl. Data Sheets B8 (1972) 348 (Systematics of nuclear level properties) D.W.ENGELKEMEIR, J.E.GINDLER, J.INORG., Nucl. Chem. 34 (1972) 1799 (Half-life) T.DRAGNEV, K.SCHARF, Int. J. Appl. Radiat. Isotop. 26 (1975) 125 (Gamma-ray emission probabilities in decay of 240Pu) H.OTTMAR, P.MATUSSEK, I.PIPER., Proc. 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy and Related Topics, Petten, Netherlands (1975) 658 (Emission probabilities of gamma-rays in decay of 240Pu) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Emission probabilities of gamma-rays in decay of 240Pu) W.L.Posthumus, K.E.G.Löbner, J.L.Maarleveld, H.P.Geerke, J.Konijn, Z. Phys. A281 (1977) 277 (ICC measurements) M.R.SCHMORAK, Nucl. Data Sheets 31 (1980) 283 (Systematics of nuclear level properties) M.Lindner, R.J.Dupzyk, R.W.Hoff, R.J.Nagle, J. Inorg. Nucl. Chem. 43 (1981) 3071 (Half-life, partial half-lives) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (Gamma-ray relative intensities and energies, KX-ray energies) M.R.SCHMORAK, Nucl. Data Sheets 63 (1991) 139 (Analysis of isomer levels in Np-236) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Beta minus-transition probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, J.K.TULI, Nucl. Data Sheets 107 (2006) 2579, 2649 (Decay scheme, level energies, gamma-ray multipolarities)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Np - 236

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	22.5	(4)	h
Q_{β^-}	:	537	(8)	keV
Q_{EC}	:	993	(13)	keV
EC	:	53	(1)	%
β^{-}	:	47	(1)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,4}$ $\epsilon_{0,1}$ $\epsilon_{0,0}$	$\begin{array}{c} 306 \ (13) \\ 948 \ (13) \\ 993 \ (13) \end{array}$	$\begin{array}{c} 1.64 \ (9) \\ 8.3 \ (30) \\ 43.1 \ (32) \end{array}$	1st forbidden allowed allowed	7.3 7.8 7.1	$\begin{array}{c} 0.621 \ (10) \\ 0.751 \ (1) \\ 0.753 \ (1) \end{array}$	$\begin{array}{c} 0.274 \ (7) \\ 0.184 \ (1) \\ 0.182 \ (1) \end{array}$	$\begin{array}{c} 0.105 \ (3) \\ 0.0652 \ (1) \\ 0.0646 \ (1) \end{array}$

3 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$\beta_{0,1}^{-}$ $\beta_{0,0}^{-}$	$\begin{array}{c} 492 \ (8) \\ 537 \ (8) \end{array}$	$\frac{11}{36}$	(4) (4)	Allowed Allowed	7.2 6.8

4 Electron Emissions

		$\frac{\rm Energy}{\rm keV}$	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	6.4 - 21.6	21.7(15)	
e _{AK}	(U) KLL KLX KXY	71.776 - 80.954 88.153 - 98.429 104.51 - 115.59	1.03 (17) } } }	
$e_{\rm AL}$	(Pu)	6.19 - 22.99	3.8(14)	
$\begin{array}{c} ec_{1,0 \ L} \\ ec_{1,0 \ M} \end{array}$	$\begin{array}{c} (\mathrm{Pu}) \\ (\mathrm{Pu}) \end{array}$	21.53 - 26.57 38.70 - 40.86	$8 (3) \\ 2.2 (8)$	
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{4,1} \ K \\ ec_{4,1} \ L \\ ec_{4,0} \ K \\ ec_{4,0} \ L \end{array}$	(U) (U) (U) (U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 6.9 \ (22) \\ 1.9 \ (6) \\ 0.121 \ (13) \\ 0.034 \ (4) \\ 0.064 \ (6) \\ 0.0199 \ (23) \end{array}$	
$\begin{array}{c} \beta_{0,1}^- \\ \beta_{0,0}^- \end{array}$	max: max:	$ \begin{array}{ccc} 492 & (8) \\ 537 & (8) \end{array} $	$\begin{array}{c} 11 \ (4) \\ 36 \ (4) \end{array}$	avg: 143 (3) avg: 158 (3)

KRI /V.P. Chechev, N.K. Kuzmenko

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.618 - 20.714		21.3(18)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		9.9 (10) 15.8 (15)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	5.7 (6)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \ \mathrm{XL} \end{array}$	(U) (U) (U) (Pu)	$\begin{array}{c} 114.407 \\ 115.012 \\ 115.377 \\ 12.124 - 21.984 \end{array}$	} } }	1.95(15) 4.2(16)	$\mathrm{K}\beta_{2}^{'}$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pu)$ $\gamma_{1,0}(U)$ $\gamma_{2,1}(U)$ $\gamma_{4,2}(U)$ $\gamma_{4,1}(U)$ $\gamma_{4,0}(U)$	$\begin{array}{c} 44.63 \ (10) \\ 45.242 \ (3) \\ 104.234 \ (6) \\ 538.11 \ (10) \\ 642.35 \ (9) \\ 687.60 \ (5) \end{array}$	$\begin{array}{c} 11.2 \ (37) \\ 9.6 \ (30) \\ 0.0143 \ (17) \\ 0.0143 \ (17) \\ 1.24 \ (8) \\ 0.383 \ (28) \end{array}$	$E2 \\ E2 \\ E2 \\ E3 \\ E1+(M2+E3) \\ E1$	$\begin{array}{c} 743 \ (15) \\ 589 \ (12) \\ 11.0 \ (2) \\ 0.143 \ (3) \\ 0.15 \ (2) \\ 0.31 \ (2) \end{array}$	$\begin{array}{c} 0.015 \ (5) \\ 0.016 \ (5) \\ 0.00119 \ (14) \\ 0.0125 \ (15) \\ 1.08 \ (6) \\ 0.292 \ (21) \end{array}$

6 References

R.A.JAMES, A.E.FLORIN, H.H.HOPKINS JR., A.GHIORSO, Report National Nuclear Energy Series 14B (1949) 1604

(Half-life)

P.R.GRAY, Phys. Rev. 101 (1956) 1306

(Relative probability of K-electron capture in the decay of 236m-Np) $\,$

J.E.GINDLER, R.K.SJOBLOM, J. Inorg. Nucl. Chem. 12 (1959) 8

(Probabilities of beta transitions)

J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 $\,$

(X-ray energies)

C.M.LEDERER, J.M.JAKLEVIC, S.G.PRUSSIN, Nucl. Phys. A135 (1969) 36

(Relative intensities of gamma-rays)

R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971)

(Emission probabilities of gamma-rays in the decay of $240\mathrm{Pu})$

O.DRAGOUN, Z.PLAJNER, F.SCHMUTZLER, Nucl. Data Tables A9 (1971) 119

(AM / aL and a NO / aM) \sim

B.S.DZHELEPOV, L.N.ZYRYANOVA, YU.P.SUSLOV, Beta-processes, Nauka, Leningrad (1972)

(Fractional probabilities in L-electron capture)

T.DRAGNEV, K.SCHARF, Int. J. Appl. Radiat. Isotop. 26 (1975) 125

(Gamma-ray emission probabilities in the decay of 240Pu)

H.OTTMAR, P.MATUSSEK, I.PIPER, Proc. 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy and Related Topics, Petten, Netherlands (1975) 658

(Emission probabilities of gamma-rays in the decay of 240Pu)

R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976)

(Emission probabilities of gamma-rays in the decay of 240Pu)

W.L.Posthunus, K.E.G.Löbner, I.Piper E.A., Z. Phys. A181 (1977) 717

(ICC measurements)

F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313

(Auger electron energies)

E.A.GROMOVA, S.S.KOVALENKO, YU.A.NEMILOV, YU.A.SELITSKY, A.V.STEPANOV, A.M.FRIDKIN, V.B.FUNSHTEIN, V.A.YAKOVLEV, G.V.VALSKY, G.A.PETROV, Sov. At. Energy 56 (1984) 230

(Half-life)

F.LAGOUTINE, N.COURSOL, J.LEGRAND, ISBN-2-7272-0078-1 (LMRI, 1982-1987). (1987)

(Energy of Auger electrons)

M.R.SCHMORAK, Nucl. Data Sheets 63 (1991) 139

(Decay scheme, gamma-ray multipolarities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)

(Atomic data)

R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996)

(Decay scheme, LX-ray energies, multipolarities)

E.Schönfeld, G.Rodloff, Report PTB-6.11-1999-1, Braunschweig (1999)

(KX-ray energies and relative emission probabilities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Q)

M.-M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH, in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2004)

(Recommended Data by the Decay Data Evaluation Project working group)

 $Np - 236 \, m$

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.144	(7)	$ imes 10^6 { m y}$
$Q^{'}_{lpha}$:	4958.3	(12)	keV
α	:	100		%

2 α Emissions

$\begin{array}{ccc} \text{Energy} & \text{Probability} \\ \text{keV} & \times 100 \end{array}$	
$\alpha_{0,20}$ 4515.1 (19) 0.038 (4)	
$\alpha_{-1,1}$ 4550.5 (22) 0.011 (3)	
$\alpha_{0,18}$ 4573 (3) 0.048 (23)	
$\alpha_{0,17}$ 4578.6 (14) 0.393 (23)	
$\alpha_{0,16}$ 4599.1 (18) 0.373 (9)	
$\alpha_{0,15}$ 4619.7 (21) 0.032 (8)	
$\alpha_{0,14}$ 4640 (1) 6.43 (3)	
$\alpha_{0,13}$ 4665.0 (9) 3.46 (3)	
$\alpha_{0,12}$ 4676.4 0.38 (2)	
$\alpha_{0,11}$ 4698.2 (8) 0.535 (10)	
$\alpha_{0,10}$ 4708.3 (20)}	
$\alpha_{0.9}$ 4712.3 (20) $\{1.174 (13)\}$	
$\alpha_{0.8}$ 4741.3 (20) 0.019	
$\alpha_{0.7}$ 4766.5 (8) 9.5 (3)	
$\alpha_{0.6}$ 4771.4 (8) 23.0 (3)	
$\alpha_{0,4}$ 4788.0 (9) 47.64 (6)	
$\alpha_{0,3}$ 4803.5 (10) 2.02 (2)	
$\alpha_{0,2}$ 4816.8 (10) 2.430 (17)	
$\alpha_{0,1}$ 4866.4 (14) 0.51 (3)	
$\alpha_{0,0}$ 4872.7 (14) 2.41 (3)	

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
e_{AL}	(Pa)	5.90 - 21.01	47.1 (20)
e _{AK}	(Pa) KLL KLX KXY	70.08 - 78.82 85.99 - 95.86 101.87 - 112.59	0.167 (24) } }
$\begin{array}{c} ec_{13,5 \ K} \\ ec_{4,2 \ L} \\ ec_{14,12 \ L} \\ ec_{4,2 \ M} \\ ec_{6,2 \ L} \\ ec_{14,5 \ K} \\ ec_{14,12 \ M} \end{array}$	(Pa) (Pa) (Pa) (Pa) (Pa) (Pa) (Pa)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.59 \ (9) \\ 32.7 \ (15) \\ 0.37 \ (11) \\ 8.4 \ (4) \\ 0.075 \ (3) \\ 2.26 \ (22) \\ 0.090 \ (27) \end{array}$

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy keV	Electrons per 100 disint.
ес _{2,0 L}	(Pa)	35.999 - 40.371	48.9 (29)
$ec_{14,4 \text{ K}}$	(Pa)	38.82 (2)	0.80(12)
$ec_{6,2}$ M	(Pa)	41.17 - 43.09	0.0186(11)
$ec_{17,14 L}$	(Pa)	41.48 - 45.86	0.3(2)
$ec_{3,1 L}$	(Pa)	42.8 - 47.2	0.80(4)
$ec_{3,0 L}$	(Pa)	49.38 - 53.76	0.3(2)
$ec_{2,0 M}$	(Pa)	51.743 - 53.662	13.4(8)
ec _{17,14} M	(Pa)	57.23 - 59.15	0.08(6)
$ec_{3,1 M}$	(Pa)	58.5 - 60.5	0.220(9)
$ec_{3,0 M}$	(Pa)	65.13 - 67.05	0.08~(6)
$ec_{4,0 L}$	(Pa)	65.372 - 69.744	13.9(6)
$ec_{5,1 L}$	(Pa)	66.88 - 71.26	0.0183(6)
$ec_{5,0 L}$	(Pa)	73.54 - 77.91	0.070(7)
$ec_{4,0 M}$	(Pa)	81.116 - 83.035	2.7(7)
$ec_{5,0 M}$	(Pa)	89.28 - 91.20	0.0170(18)
$ec_{13,5 L}$	(Pa)	96.597 - 100.969	0.369(22)
$ec_{13,5 M}$	(Pa)	112.341 - 114.260	0.091(7)
ес _{14,5 L}	(Pa)	122.144 - 126.516	0.49(5)
ес _{14,4} L	(Pa)	130.309 - 134.681	0.257(10)
ес _{14,5 М}	(Pa)	137.888 - 139.807	0.121(12)
ec _{14,4} M	(Pa)	146.053 - 147.972	0.0654(34)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pa)	11.368 - 20.113		59.7(32)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pa) (Pa)	92.288 95.869		$\begin{array}{c} 1.813 \ (20) \\ 2.906 \ (20) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pa) (Pa) (Pa)	107.595 108.422 109.072	} } }	1.06 (10)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Pa) (Pa) (Pa)	$ 111.405 \\ 111.87 \\ 112.38 $	} } }	0.380 (9)	$\mathrm{K}\beta_2'$

Np - 237

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{7,6}(\text{Pa})$	5.18				0.220(5)
$\gamma_{5,4}(\mathrm{Pa})$	8.22(5)	≈ 9			$\approx 0.12 \ (5)$
$\gamma_{-1,1}(\text{Pa})$	21.5				0.352(13)
$\gamma_{-1,2}(\text{Pa})$	27.7				0.84(7)
$\gamma_{4,2}(Pa)$	29.374(20)	58.2(26)	${ m E1}$	3.07~(6)	14.3(6)
$\gamma_{14,12}(Pa)$	36.32(2)	0.50(14)	M1+1.20%E2	99(20)	0.005(1)
$\gamma_{6,2}(Pa)$	46.53(6)	0.209(8)	[E1]	0.914(18)	0.109(4)
$\gamma_{2,0}(\text{Pa})$	57.104(20)	67.4(40)	$\mathrm{E2}$	176(4)	0.381(21)
$\gamma_{17,14}(\text{Pa})$	62.59(10)	0.4(3)	[M1 + 50% E2]	60 (50)	0.006(2)
$\gamma_{3,1}(Pa)$	63.9(1)	1.10(5)	(E2)	102.3(20)	0.0107~(4)
$\gamma_{3,0}(Pa)$	70.49(10)	0.42(28)	[M1 + 50% E2]	38(26)	0.0107~(4)
$\gamma_{10,5}(\text{Pa})$	74.54(10)	0.13(3)	[M1]	9.84(20)	0.012(3)
$\gamma_{4,0}(\text{Pa})$	86.477(10)	29.8(10)	${ m E1}$	1.43(8)	12.26(12)
$\gamma_{5,1}(\text{Pa})$	87.99(3)	0.167(4)	[E1]	0.169(4)	0.143(3)
$\gamma_{5,0}({ m Pa})$	94.64(5)	0.75(8)	${ m E1}$	0.140(3)	0.66(7)
$\gamma_{9,2}(Pa)$	106.15(25)	0.523 (31)	[E2]	9.28(19)	0.0509(29)
$\gamma_{13,6}(\text{Pa})$	108.7	0.32(4)	M1 + 4.62% E2	3.5~(6)	0.071(3)
$\gamma_{12,4}(\text{Pa})$	115.40(35)	0.0029(14)	[M1+E2]	10(4)	0.0026(8)
$\gamma_{13,5}(\text{Pa})$	117.702(20)	2.26(12)	M1 + 8.26% E2	12.2~(6)	0.171(4)
$\gamma_{12,3}(Pa)$	131.101(25)	0.106~(6)	${ m E1}$	0.262(5)	0.084(5)
$\gamma_{14,6}(\text{Pa})$	134.285(20)	0.62(9)	[M1+E2]	8.0(11)	0.069(5)
$\gamma_{18,9}(\text{Pa})$	139.9(1)	0.00560 (49)	[E1]	0.225~(5)	0.0046(4)
$\gamma_{14,5}(\text{Pa})$	143.249(20)	3.3(3)	M1 + 7.76% E2	6.94(14)	0.42(4)
$\gamma_{14,4}(\text{Pa})$	151.414(20)	1.38(14)	M1 + 32.89% E2	4.9(6)	0.234(2)
$\gamma_{20,13}(\text{Pa})$	153.37(10)	0.021~(6)	[E2]	1.96(4)	0.007(2)
$\gamma_{13,2}(Pa)$	155.239(20)	0.103(9)	$\mathbf{E1}$	0.176(4)	0.088(8)
$\gamma_{10,1}(\text{Pa})$	162.41(8)	0.0382(12)	[E1]	0.158(3)	0.033(1)
$\gamma_{10,0}(\text{Pa})$	169.156(20)	0.0768(4)	[E1]	0.143(3)	0.0672(3)
$\gamma_{16,7}(Pa)$	170.59(6)	0.100(22)	[M1+13.79%E2]	4.0(5)	0.020(4)
$\gamma_{16,6}(\text{Pa})$	176.12(6)	0.070(16)	[M1+13.79%E2]	3.7(5)	0.015(3)
$\gamma_{14,2}(Pa)$	180.81(10)	0.0180(11)	[E1]	0.1223(25)	0.016(1)
$\gamma_{20,11}(\text{Pa})$	186.86(35)	0.003(3)	[E1]	0.1131(23)	0.003(3)
$\gamma_{17,7}(Pa)$	191.46(5)	0.074(9)	[M1+13.79%E2]	2.9(4)	0.019(1)
$\gamma_{16,4}(\text{Pa})$	193.26(5)	0.167(18)	[M1+13.79%E2]	2.8(4)	0.044(1)
$\gamma_{18,7}(Pa)$	194.67(20)				0.033(1)
$\gamma_{12,1}(Pa)$	194.95(3)	0.192(22)	${ m E1}$	0.1024(21)	0.174(20)
$\gamma_{17,6}(\text{Pa})$	196.86(5)	0.078~(6)	[M1+13.79%E2]	2.7(3)	0.0210(1)
$\gamma_{18,6}(\text{Pa})$	199.95~(6)	0.020(3)	[M1]	2.85(6)	0.0053(8)
$\gamma_{12,0}(\text{Pa})$	201.62(5)	0.0429(10)	$\mathbf{E1}$	0.0946(19)	0.0392(9)
$\gamma_{20,9}(Pa)$	202.9(2)	0.0052(21)	[E1]	0.0932(19)	0.0048 (19)
$\gamma_{16,3}(\text{Pa})$	209.19(5)	0.0163(16)	[E1]	0.0868(17)	0.0150 (15)
$\gamma_{13,0}(Pa)$	212.29(5)	0.184(11)	$\mathrm{E1}$	0.0839(17)	0.17(1)
$\gamma_{17,4}(\text{Pa})$	214.01(5)	0.115(13)	[M1+13.79%E2]	2.1(3)	0.037(2)
$\gamma_{16,2}(Pa)$	222.6(2)	. /		× 7	0.002(2)
$\gamma_{17,3}(\text{Pa})$	229.94(5)	0.015(3)	[E1]	0.0697(14)	0.014(3)
$\gamma_{14,0}(\text{Pa})$	237.86(2)	0.0610(6)	[E1]	0.0645(13)	0.0573(6)
$\gamma_{10,2}(P_2)$	248.95(10)	0.012(3)	[M1+13.79%E2]	1.37(16)	0.005(1)

4.2 Gamma Transitions and Emissions

	$\frac{\rm Energy}{\rm keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{20,7}(Pa)$ $\gamma_{20,6}(Pa)$ $\gamma_{20,4}(Pa)$ $\gamma_{-1,4}(Pa)$	$\begin{array}{c} 257.09 \ (20) \\ 262.44 \ (20) \\ 279.65 \ (20) \\ 288.3 \end{array}$	$\begin{array}{c} 0.048 \ (24) \\ 0.01120 \ (49) \\ 0.01320 \ (49) \end{array}$	[M1] [M1] [E2]	$\begin{array}{c} 1.41 \ (3) \\ 1.33 \ (3) \\ 0.222 \ (5) \end{array}$	$\begin{array}{c} 0.02 \ (1) \\ 0.0048 \ (2) \\ 0.0108 \ (4) \\ 0.0162 \ (5) \end{array}$

5 References

L.MAGNUSSON, T.LACHAPELLE, Report National Nuclear Energy Series 14B (1949) 39 (Half-life) F.P.BRAUER, R.W.STROMATT, J.D.LUDWICK, F.P.ROBERTS, W.L.LYON, J. Inorg. Nucl. Chem. 12, (1960) 234 (Half-life) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Gamma-ray energies and emission probabilities, ICC for the 86.5 keV gamma-ray) V.A.DRUIN, V.P.PERELYGIN, G.I.KHLEBNIKOV, Sov. Phys. - JETP 13 (1961) 913 (Spontaneous fission half-life) S.A.BARANOV, V.M.KULAKOV, P.S.SAMOILOV, A.G.ZELENKOV, Y.F.RODIONOV, Sov. Phys. - JETP 14 (1962) 1232(Alpha-transition probabilities) E.BROWNE, F.ASARO, Priv. Comm. (1969), see also Report UCRL-17989, Univ. California (1968) (Alpha transition energies and probabilities, gamma-ray emission probabilities, ICC for the 86.5 keV gamma-ray) E.BROWNE, F.ASARO, Report UCRL-17989, Univ. California (1968) 1 (Alpha-transition energies and probabilities, gamma-ray emission probabilities) W.HOEKSTRA, Thesis, Technische Hogeschool, Delft (1969) (Gamma-ray energies) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies) R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies) M.Skalsey, R.D.Connor, Can. J. Phys. 54 (1976) 1409 (Gamma-ray energies and emission probabilities) L.GONZALEZ, R.GAETA, E.VANO, J.M.LOS ARCOS, Nucl. Phys. A324 (1979) 126 (Gamma-ray energies and probabilities) M.F.BANHAM, A.J.FUDGE, J. Radioanal. Chem. 64 (1981) 167 (Gamma-ray probabilities) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 905 (X- and gamma- ray emission probabilities) M.F.BANHAM, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984) (Gamma-ray probabilities) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray probabilities) D.B.ION, R.ION-MIHAI, M.IVASCU, Rev. Roum. Phys. 33 (1988) 1075 (Spontaneous fission half-life) S.A. WOODS, P.CHRISTMAS, P.CROSS, S.M.JUDGE, W.GELLETLY, Nucl. Instrum. Methods Phys. Res. A264 (1988) 333; Addendum Nucl. Instrum. Methods Phys. Res. A272 (1988) 924 (Gamma-ray energies and emission probabilities, ICC for the 86.5 keV gamma-ray) I.M.LOWLES, T.D.MCMAHON, M.F.BANHAM, A.J.FUDGE, R.A.P.WILTSHIRE, Nucl. Instrum. Methods Phys. Res. A286 (1990) 556 (Gamma-ray energies and probabilities) G.Bortels, D.Mouchel, R.Eykens, E.Garcia-Toraño, M.L.Acena, R.A.P.Wiltshire, M.King, A.J.Fudge, P.BURGER, Nucl. Instrum. Methods Phys. Res. A295 (1990) 199 (Alpha-transition probabilities) I.M.LOWLES, T.D.MCMAHON, R.A.P.WILTSHIRE, D.CROSSLEY, A.J.FUDGE, Nucl. Instrum. Methods Phys. Res. A312 (1992) 339 (Half-life)

A.F.GRASHIN, A.D.EFIMENKO, Bull. Rus. Acad. Sci. Phys. 56 (1992) 66 (Spontaneous fission half-life)

U.SCHÖTZIG, E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 883

(X- and gamma- ray emission probabilities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (2000) 527

(EMISSION computer code)

G.SIBBENS, B.DENECKE, Appl. Radiat. Isot. 52 (2000) 467

(Alpha-transition probabilities, gamma-ray energies)

S.A.Woods, D.H.Woods, P.DE LAVISON, S.M.JEROME, J.L.MAKEPEACE, M.J.Woods, L.J.HUSBAND, S.LINEHAM, Appl. Radiat. Isot. 52 (2000) 475

(Gamma-ray emission probabilities)

I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1

(Theoretical internal conversion coefficients)

A.LUCA, S.SEPMAN, K.IAKOVLEV, G.SHCHUKIN, M.ETCHEVERRY, J.MOREL, Appl. Radiat. Isot. 56 (2002) 173 (KX - ray and gamma-ray emission probabilities)

M.J.WOODS, D.H.WOODS, S.A.WOODS, L.J.HUSBAND, S.M.JEROME E.A., Appl. Radiat. Isot. 56 (2002) 415 (Alpha-transition energies and probabilities and X-ray, gamma-ray emission probabilities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

G.Shchukin, K.Iakovlev, J.Morel, Appl. Radiat. Isot. 60 (2004) 239

(X-ray and gamma- ray emission probabilities)

B.SINGH, K.TULI, Nucl. Data Sheets 105 (2005) 109

(Decay scheme, gamma-ray multipolarities, admixture coefficients)

V.P.CHECHEV, N.K.KUZMENKO, Appl. Radiat. Isot. 64 (2006) 1403

D.J.DEVRIES, H.C.GRIFFIN, Appl. Radiat. Isot. 66 (2008) 1999

(Gamma-ray, KX-ray and LX-ray emission probabilities, and uncertainties of gamma-ray, KX-ray and LX-ray absolute emission probabilities)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Np - 237

Np - 238

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.102	(5)	d
Q_{β^-}	:	1291.5	(4)	keV
β^{-}	:	100		%

$\mathbf{2}$ β^- Transitions

	Energy keV	$\begin{array}{c} \text{Proba} \\ \times 1 \end{array}$	bility 00	Nature	$\log ft$
$\beta_{0,15}^{-} \\ \beta_{0,13}^{-} \\ \beta_{0,12}^{-}$	$\begin{array}{c} 89.0 \ (4) \\ 221.6 \ (4) \\ 263.0 \ (4) \\ \end{array}$	0.51 11.50 44.75	(6) (7) (19)	1st forbidden Allowed Allowed	6.57 6.44 6.09
$\beta_{0,11}^{-} \\ \beta_{0,10}^{-} \\ \beta_{0,9}^{-} \\ \beta_{-}^{-}$	$\begin{array}{c} 306.0 \ (4) \\ 308.4 \ (4) \\ 323.3 \ (6) \\ 228.7 \ (4) \end{array}$	0.49 0.27 0.082 1.25	(1) (3) (6) (1)	1st forbidden Allowed 1st forbidden	8.25 8.51 9.11 7.05
$\begin{array}{c} \rho_{0,8} \\ \beta_{0,5}^- \\ \beta_{0,4}^- \\ \beta_{0,1}^- \end{array}$	$\begin{array}{c} 528.7 (4) \\ 630.1 (4) \\ 686.4 (4) \\ 1247.4 (4) \end{array}$	$ 1.25 \\ 0.036 \\ 0.103 \\ 41.0 $	(1) (3) (25)	1st forbidden 1st forbidden Allowed	$ 10.44 \\ 10.08 \\ 8.38 $

3 **Electron Emissions**

		Energy keV	Electrons per 100 disint.	Energy keV
e _{AL}	(Pu)	6.19 - 22.99	29.7 (14)	
e_{AK}	(Pu) KLL KLX KXY	75.26 - 85.36 92.607 - 103.729 109.93 - 121.78	0.021 (8) } } }	
$ec_{1,0 L}$	(Pu)	20.97 - 26.01	58.6(17)	
$ec_{1,0 M}$	(Pu)	38.14 - 40.30	16.4(5)	
$ec_{2,1 L}$	(Pu)	78.78 - 83.82	2.65(10)	
$ec_{14,9 L}$	(Pu)	91.3 - 96.3	0.036(6)	
$ec_{2,1 M}$	(Pu)	95.95 - 98.10	0.74(3)	
$ec_{15,14}$ L	(Pu)	97.01 - 102.05	0.28(6)	
ес _{14,9 М}	(Pu)	108.5 - 110.6	0.0100(19)	
$ec_{15,14}$ M	(Pu)	114.18 - 116.34	0.070(7)	
$ec_{13,2}$ K	(Pu)	802.20 (2)	0.0258(11)	
ес _{10,1 К}	(Pu)	817.1 (1)	0.114(16)	
$ec_{12,1 K}$	(Pu)	862.66 (2)	0.242(8)	
ес _{13,1 К}	(Pu)	904.08 (2)	0.080(4)	
$ec_{12,0 K}$	(Pu)	906.75 (2)	0.160(3)	
ec _{10,1 L}	(Pu)	915.84 - 920.88	0.022(3)	
$ec_{12,1 L}$	(Pu)	961.35 - 966.39	0.055~(3)	
$ec_{12,1} M$	(Pu)	978.52 - 980.68	0.015(3)	
$ec_{13,1 L}$	(Pu)	1002.77 - 1007.81	0.0184(9)	

KRI /V.P. Chechev, N.K. Kuzmenko

		Ener ke	rgy V	Electrons per 100 disint.	E	Energy keV
ес _{12,0 L} ес _{12,0 M}	(Pu) (Pu)	1005.44 - 1022.61 -	$1010.48 \\ 1024.76$	$\begin{array}{c} 0.0405 \ (10) \\ 0.0101 \ (2) \end{array}$		
$\beta_{0.15}^{-}$	max:	89.0	(4)	0.51(6)	avg:	23.0(2)
$\beta_{0.13}^{-10}$	max:	221.6	(4)	11.50(7)	avg:	59.9(2)
$\beta_{0,12}^{-}$	max:	263.0	(4)	44.75(19)	avg:	72.0(2)
$\beta_{0,11}^{-}$	max:	306.0	(4)	0.49(1)	avg:	84.9(2)
$\beta_{0,10}^{-}$	max:	308.4	(4)	0.27(3)	avg:	85.6(2)
$\beta_{0,9}^{-}$	max:	323.3	(6)	0.082~(6)	avg:	90.1(2)
$\beta_{0,8}^{-}$	max:	328.7	(4)	1.25(1)	avg:	91.8(2)
$\beta_{0.5}^{-}$	max:	630.1	(4)	0.036(3)	avg:	189.2(2)
$\beta_{0,4}^{-}$	max:	686.4	(4)	0.103(3)	avg:	208.4(2)
$\beta_{0,1}^{-}$	max:	1247.4	(4)	41.0(25)	avg:	412.2(2)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.125 - 21.984		32.4(14)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Pu}) \\ (\mathrm{Pu}) \end{array}$	$99.525 \\ 103.734$		$\begin{array}{c} 0.210 \ (8) \\ 0.332 \ (12) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	} } }	0.122(5)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$\begin{array}{c} 120.54 \\ 120.969 \\ 121.543 \end{array}$	} } }	0.042(2)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathrm{P}_{\gamma} \times 100$
$\gamma_{1,0}(Pu)$	44.07(2)	80.7 (23)	E2	788(16)	0.1024(21)
$\gamma_{2,1}(Pu)$	101.88(2)	3.90(14)	E2	14.5(3)	0.252(8)
$\gamma_{-1,1}(\mathrm{Pu})$	103.74(2)	0.312(3)			0.312(3)
$\gamma_{14,9}(Pu)$	114.4(4)	0.055(10)	[E2]	8.47(17)	0.0058(10)
$\gamma_{-1,2}(\mathrm{Pu})$	116.27(8)	0.04			0.04
$\gamma_{-1,3}(\mathrm{Pu})$	117.27 (8)	0.074			0.074
$\gamma_{15,14}(Pu)$	120.11(5)	0.48(6)	M1(+E2)	3.8(6)	0.101(5)
$\gamma_{-1.4}(Pu)$	120.5	0.02			0.02
$\gamma_{-1,5}(\mathrm{Pu})$	121.70(8)	0.010(1)			0.010(1)

KRI /V.P. Chechev, N.K. Kuzmenko

332

	${ m Energy}\ { m keV}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{15,13}(Pu)$	132.5(1)	0.0018 (10)	[E1]	0.267(5)	0.0014(8)
$\gamma_{3,2}(Pu)$	157.42(5)	0.003	[E2]	2.19(4)	0.001
$\gamma_{15,12}(Pu)$	174.08(5)	0.0261 (9)	[E1]	0.142(3)	0.0229(8)
$\gamma_{-1,6}(\mathrm{Pu})$	220.87(11)	0.037(9)	(M2)	11.4(20)	0.0030(5)
$\gamma_{8,5}(Pu)$	301.37(7)	0.0128(12)	E2	0.208(4)	0.0106(10)
$\gamma_{14,6}(Pu)$	319.29(11)	0.013(3)	M1+E2	0.59(25)	0.0083(10)
$\gamma_{10,5}(Pu)$	321.75(20)	0.0013			0.0013 (8)
$\gamma_{11,5}(Pu)$	324.02(9)	0.0184(14)	M1+E2	0.26(7)	0.0146(8)
$\gamma_{7,4}(\mathrm{Pu})$	336.36(15)	0.00020(13)	[E1]	0.0324(7)	0.0002(1)
$\gamma_{8,4}(Pu)$	357.64 (7)	0.0612(17)	M1+E2	0.214(16)	0.0504(13)
$\gamma_{10,4}(Pu)$	378.05(13)	0.003			0.0030(5)
$\gamma_{11,4}(Pu)$	380.31 (10)	0.0180(8)	[M1]	0.623(9)	0.0111(5)
$\gamma_{14,5}(Pu)$	421.1 (1)	0.0309(15)	[M1]	0.472(7)	0.021(1)
$\gamma_{6,3}(Pu)$	459.8(2)	0.0023			0.0023(15)
$\gamma_{5,2}(Pu)$	515.51(7)	0.0386(11)	E1+M2	0.022(4)	0.0378(11)
$\gamma_{4,1}(\mathrm{Pu})$	561.14(5)	0.1072(15)	E1	0.0115(2)	0.106(2)
$\gamma_{4,0}(Pu)$	605.16(5)	0.078(2)	E1	0.0100(2)	0.077(2)
$\gamma_{5,1}(Pu)$	617.39(5)	0.0604(7)	E1+M2	0.0120(14)	0.0593
$\gamma_{6,2}(\mathrm{Pu})$	617.4	0.008(0)			0.008
$\gamma_{10,2}(Pu)$	836.96(7)	0.0210(8)	[E2]	0.0174(4)	0.0206(8)
$\gamma_{12,2}(Pu)$	882.63(3)	0.816(9)	(E2)	0.0157(3)	0.803(9)
$\gamma_{-1,7}(\mathrm{Pu})$	885	0.040(5)			0.040(5)
$\gamma_{7,1}(\mathrm{Pu})$	897.34 (10)	0.0074(10)	(E2)	0.0152(3)	0.0073(10)
$\gamma_{8,1}(Pu)$	918.70(4)	0.531(6)	E1	0.0047(1)	0.529(6)
$\gamma_{13,2}(Pu)$	923.99(2)	2.64(2)	(M1+E2)	0.014(1)	2.604(20)
$\gamma_{9,1}(Pu)$	924	0.065			0.065
$\gamma_{14,2}(Pu)$	936.60(5)	0.369(5)	[E1+M2]	0.0112(22)	0.365(5)
$\gamma_{10,1}(Pu)$	938.94 (10)	0.18(2)	E0+E2	4.4 (4)	0.0327(25)
$\gamma_{11,1}(Pu)$	941.40 (4)	0.504	[E1+M2]		0.504(6)
$\gamma_{8,0}(Pu)$	962.76(2)	0.648(8)	E1	0.00433(9)	0.645(8)
$\gamma_{9,0}(Pu)$	968.9(4)	0.017(6)	[M2]	0.116(3)	0.015(8)
$\gamma_{10,0}(Pu)$	983.0(3)	0.07(2)	[E2]	0.0128(3)	0.068(20)
$\gamma_{12,1}(Pu)$	984.45(2)	25.50(13)	M1+E2	0.0125(5)	25.18(13)
$\gamma_{13,1}(Pu)$	1025.87(2)	8.86(7)	M1+E2	0.0120(5)	8.76(6)
$\gamma_{120}(Pu)$	1028.54(2)	18.46(13)	E2	0.0117(2)	18.25(13)

5 References

M.S.FREEDMAN, A.H.JAFFEY, F.WAGNER JR., Phys. Rev. 79 (1950) 410 (Half-life)
D.C.DUNLAVEY, G.T.SEABORG, Phys. Rev. 87 (1952) 165 (Conversion electron measurements, gamma-ray multipolarities)
S.A.BARANOV, K.N.SHLYAGIN, At. Energ. 1 (1956) 52 (Conversion electron measurements, gamma-ray multipolarities)
W.G.SMITH, J.M.HOLLANDER, Phys. Rev. 101 (1956) 746 (Conversion electron measurements, gamma-ray multipolarities)
R.G.ALBRIDGE, J.C.HUBBS, R.MARRUS, Phys. Rev. 111 (1958) 1137 (Half-life)
F.ASARO, I.PERLMAN, Report UCRL-9566, Univ. California (1960) 50 (Conversion electron measurements, gamma-ray multipolarities)

R.G.Albridge, J.M.Hollander, Nucl. Phys. 21 (1960) 438 (Conversion electron measurements, gamma-ray multipolarities) G.G.AKALAEV, N.A.VARTANOV, P.S.SAMOILOV, Report NP-14688 (1965) $({\rm Conversion}\ {\rm electron}\ {\rm measurements},\ {\rm gamma-ray}\ {\rm multipolarities})$ S.M.QAIM, Nucl. Phys. 84 (1966) 411 (Half-life) B.BENGTSON, J.JENSEN, M.MOSZYNSKI, H.L.NIELSEN, Nucl. Phys. A159 (1970) 249 (924-keV gamma-ray energy and relative emission probability) W.J.B.WINTER, A.H.WAPSTRA, P.F.A.GOUDSMIT, J.KONIJN, Nucl. Phys. A197 (1972) 417 (Relative gamma-ray intensities) C.M.LEDERER, Priv. Comm. (1970), cited in C.M.Lederer et al., Table of Isotopes, 7th Ed., John Wiley and Sons Inc., N.Y. (1978) (Gamma-ray energy) C.M.LEDERER, Phys. Rev. C24 (1981) 1175 (Relative gamma-ray intensities) Y.CHANG, B.ZHU, C.YAN, G.SHI, J.CHIN, Chin. J. Nucl. Phys. 12 (1990) 65 (Relative gamma-ray intensities, absolute 984-keV gamma-ray emission probability) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays relative emission probabilities) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129 (Nuclear data evaluation for A=238)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (Q)

K.RENGAN, D.DEVRIES, H.GRIFFIN, Nucl. Instrum. Methods Phys. Res. A565 (2006) 612

(Gamma-ray energies, relative gamma-ray intensities, absolute 984-keV gamma-ray emission probability)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.356	(3)	d
Q_{β^-}	:	722.5	(10)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0.13}^{-}$	166.3(5)	0.0026	1st forbidden	9.7
$\beta_{0.12}^{-1}$	210.7(5)	1.56(16)	Allowed	7.3
$\beta_{0,11}^{-1}$	217.3(5)	0.0074	1st forbidden	9.7
$\beta_{0,10}^{-1}$	230.3(5)	0.02	1st forbidden	9.3
$\beta_{0.9}^{-}$	252.7(5)	0.0027	1st forbidden unique	9.9
$\beta_{0.8}^{-}$	330.9(5)	38.8(9)	1st forbidden	6.3
$\beta_{0.7}^{-,\circ}$	335.1(5)		2nd forbidden	
$\beta_{0.6}^{\circ,\circ}$	392.4(5)	9.4(14)	Allowed	7.4
$\beta_{0.5}^{}$	437.0(5)	43.0 (22)	Allowed	6.9
$\beta_{0.4}^{-,\circ}$	558.7(5)		2nd forbidden	
$\beta_{0.3}^{-1}$	646.8(5)		Allowed	
$\beta_{0.2}^{-,0}$	665.2(5)	0.4(72)	Allowed	
$\beta_{0,1}^{\circ,-}$	714.6(5)	6.5(10)	Allowed	8.4
$\beta_{0,0}^{\underline{0,1}}$	722.5(5)	. ,	2nd forbidden unique	

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
$e_{\rm AL}$	(Pu)	6.19 - 22.99	47.9 (26)	
e_{AK}	(Pu) KLL KLX KXY	75.26 - 85.36 92.61 - 103.73 109.93 - 121.78	1.36 (19) } } }	
$ec_{1,0} M$ $ec_{12,7} K$ $ec_{6,5} L$ $ec_{2,1} L$ $ec_{2,0} L$ $ec_{6,6} L$ $ec_{6,5} M$ $ec_{2,1} M$ $ec_{6,4} K$ $ec_{3,1} L$ $ec_{2,0} M$ $ec_{8,6} M$	 (Pu) 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$51 (6) \\ 0.1 \\ 8.3 (10) \\ 13.3 (3) \\ 20.8 (32) \\ 0.457 (11) \\ 2.12 (26) \\ 3.6 (9) \\ 0.08 (3) \\ 7.1 (21) \\ 5.8 (9) \\ 0.114 (3)$	

KRI /V.P. Chechev, N.K. Kuzmenko

		Energy keV	Electrons per 100 disint.	E	ènergy keV
ec ₂ 1 M	(Pu)	61.91 - 64.07	2.0(6)		
ec _{4 3 L}	(Pu)	64.96 - 70.00	0.054(30)		
ec7 5 L	(Pu)	78.86 - 83.90	0.084(21)		
есиз м	(Pu)	82.13 - 84.28	0.014(9)		
ecs 5 1.	(Pu)	83.02 - 88.07	4.9 (8)		
ec _{4 2 L}	(Pu)	83.37 - 88.41	0.42(7)		
ес <u>5</u> з к	(Pu)	87.962 (2)	7.76 (18)		
ес _{7 5 М}	(Pu)	96.03 - 98.18	0.023(6)		
ecs 5 M	(Pu)	100.19 - 102.35	1.30(21)		
$ec_{4,2}$ M	(Pu)	100.54 - 102.69	0.117(19)		
ec _{12.7 L}	(Pu)	101.3 - 106.3	0.024		
ec _{12.5 K}	(Pu)	104.59 (2)	0.52(3)		
ec _{8.4 K}	(Pu)	106	0.030(6)		
ec _{5.2 K}	(Pu)	106.392 (1)	21.4(8)		
ес _{6.3 К}	(Pu)	132.61 (3)	0.161(6)		
ec _{6.4} L	(Pu)	143.29 - 148.33	0.016(7)		
ес _{6.2 К}	(Pu)	151.05 (3)	0.092(4)		
$ec_{5.1 \text{ K}}$	(Pu)	155.808 (1)	16.1(7)		
ес _{12,6} L	(Pu)	158.59 - 163.63	0.066(2)		
$ec_{5,0 K}$	(Pu)	163.669 (2)	0.066(2)		
ес _{12,6 М}	(Pu)	175.76 - 177.92	0.0161(5)		
$ec_{5,3}$ L	(Pu)	186.65 - 191.70	1.71(4)		
$ec_{8,3 \text{ K}}$	(Pu)	194.089 (3)	0.0469(10)		
ес _{12,5 L}	(Pu)	203.28 - 208.32	0.105(7)		
$ec_{5,3 M}$	(Pu)	203.82 - 205.98	0.42(9)		
$ec_{5,2 L}$	(Pu)	205.08 - 210.13	4.48(16)		
$ec_{8,2 \text{ K}}$	(Pu)	212.519 (3)	0.0532(11)		
$ec_{12,5}$ M	(Pu)	220.45 - 222.60	0.0255 (18)		
$ec_{5,2}$ M	(Pu)	222.25 - 224.41	1.10(4)		
$ec_{6,3 L}$	(Pu)	231.3 - 236.3	0.0324 (11)		
$ec_{6,2 L}$	(Pu)	249.74 - 254.78	0.0186~(8)		
$ec_{5,1 L}$	(Pu)	254.50 - 259.54	3.28(9)		
$ec_{5,0 L}$	(Pu)	262.36 - 267.40	0.093~(3)		
$ec_{5,1 M}$	(Pu)	271.67 - 273.82	0.801~(18)		
$ec_{5,0\ M}$	(Pu)	279.53 - 281.68	0.0256~(6)		
$\beta_{0,13}^{-}$	max:	166.3 (5)	0.0026	avg:	44.2(2)
$\beta_{0.12}^{-}$	max:	210.7 (5)	1.56(16)	avg:	56.8(2)
$\beta_{0,11}^{-1}$	max:	217.3 (5)	0.0074	avg:	58.7(2)
$\beta_{0,10}^{-,11}$	max:	230.3 (5)	0.02	avg:	62.5(2)
$\beta_{0,9}^{-}$	max:	252.7 (5)	0.0027	avg:	74.7(2)
$\beta_{0.8}^{8}$	max:	330.9 (5)	38.8(9)	avg:	98.3(2)
$\beta_{0,7}^{-}$	max:	335.1 (5)	~ /	avg:	~ /
$\beta_{0,6}^{-}$	max:	392.4 (5)	9.4(14)	avg:	111.5(2)
$\beta_{0.5}^{-}$	max:	437.0 (5)	43.0 (22)	avg:	125.6(2)
$\beta_{0,4}^{-}$	max:	558.7 (5)	(-)	avg:	× /
$\beta_{0,4}^{-}$	max:	646.8 (5)		avg:	
$\beta_{0,3}^{-}$	max:	665.2 (5)	0.4(72)	ave:	
\sim 0,2	mun.	(0)	0.1(12)	av 6.	

		Ener ke	rgy V	Electrons per 100 disint.	F	Energy keV
$\beta_{0,1}^{-}$ $\beta_{0,0}^{-}$	max: max:	714.6 722.5	(5) (5)	6.5 (10)	avg: avg:	218.3 (2)

4 Photon Emissions

4.1 X-Ray Emissions

_		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.125 - 21.984		51.3(24)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 13.5 \ (4) \\ 21.4 \ (6) \end{array}$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	} } }	7.84 (25)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	2.72 (10)	$\mathbf{K}\beta_{2}^{\prime}$

4.2 Gamma Transitions and Emissions

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}}$ $\times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pu)$	7.861(2)	70 (8)	M1+0.3%E2	5716 (400)	0.0122(12)
$\gamma_{3,2}(Pu)$	18.430(4)	5.5(30)	[M1+E2]		0.02
$\gamma_{6,5}(Pu)$	44.663(5)	11.3(14)	M1 + 4% E2	86(8)	0.13(1)
$\gamma_{2,1}(\mathrm{Pu})$	49.415(3)	18(5)	M1+20%E2	126(8)	0.145(35)
$\gamma_{2,0}(Pu)$	57.273(4)	27(7)	E2	222 (5)	0.12(3)
$\gamma_{7,6}(\mathrm{Pu})$	57.3	≈ 0.012	M1(+E2)		≈ 0.012
$\gamma_{8,6}(Pu)$	61.460(2)	1.900(32)	${ m E1}$	0.473(10)	1.29(2)
$\gamma_{3,1}(Pu)$	67.841(7)	9.9(30)	E2	98.3(20)	0.10(3)
$\gamma_{4,3}(\mathrm{Pu})$	88.06(3)	0.078(44)	M1+20%E2	12(6)	0.006(2)
$\gamma_{7,5}(Pu)$	101.96(2)	0.12(3)	E2	14.4(3)	0.008(2)
$\gamma_{8,5}(Pu)$	106.125(2)	32.6(9)	E1(+M2)	0.26(3)	25.9(3)
$\gamma_{4,2}(Pu)$	106.50(3)	0.63(10)	E2	11.8(3)	0.049(8)
$\gamma_{12,7}(Pu)$	124.4	0.15	E2	13.6(3)	0.01
$\gamma_{6,4}(Pu)$	166.39(6)	0.12(5)	M1(+20%E2)	6.23(13)	0.016(7)
$\gamma_{12,6}(Pu)$	181.70(3)	0.497(14)	M1	4.78(10)	0.086(2)
$\gamma_{5,3}(\mathrm{Pu})$	209.753(2)	13.47(24)	M1+2%E2	2.94(6)	3.42(3)
$\gamma_{12,5}(Pu)$	226.38(2)	0.91(5)	M1+12%E2	2.58(8)	0.255(14)
$\gamma_{8,4}(Pu)$	227.83	0.54(11)	$M1{+}1.7\%E2$	0.0762(15)	0.5(1)
$\gamma_{5,2}(Pu)$	228.183(1)	38.6(12)	$\mathrm{M1{+}7.3\%E2}$	2.41(8)	11.32(22)
$\gamma_{6,3}(\mathrm{Pu})$	254.40(3)	0.314(10)	M1+2.5%E2	1.85(4)	0.110(3)

KRI /V.P. Chechev, N.K. Kuzmenko

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{6,2}(\mathrm{Pu}) \\ \gamma_{5,1}(\mathrm{Pu}) \\ \gamma_{5,0}(\mathrm{Pu}) \\ \gamma_{7,3}(\mathrm{Pu}) \\ \gamma_{8,3}(\mathrm{Pu}) \\ \gamma_{6,1}(\mathrm{Pu}) \\ \gamma_{8,2}(\mathrm{Pu}) \\ \gamma_{13,4}(\mathrm{Pu}) \\ \gamma_{11,3}(\mathrm{Pu}) \end{array}$	$\begin{array}{c} 272.84 \ (3)\\ 277.599 \ (1)\\ 285.460 \ (2)\\ 311.70 \ (2)\\ 315.880 \ (3)\\ 322.3 \ (2)\\ 334.310 \ (3)\\ 392.4 \ (5)\\ 429.5 \ (5) \end{array}$	$\begin{array}{c} 0.194 \ (8) \\ 34.8 \ (9) \\ 0.973 \ (13) \\ 0.002 \ (2) \\ 1.649 \ (10) \\ 0.006 \\ 2.107 \ (21) \\ 0.0016 \\ 0.0039 \end{array}$	$\begin{array}{c} \mathrm{M1+2.6\%E2}\\ \mathrm{M1+5\%E2}\\ \mathrm{E2}\\ (\mathrm{M1+E2})\\ \mathrm{E1(+0.006\%M2)}\\ (\mathrm{E2})\\ \mathrm{E1(+0.004\%M2)}\\ (\mathrm{E1}) \end{array}$	$\begin{array}{c} 1.52 \ (3) \\ 1.42 \ (6) \\ 0.248 \ (5) \end{array}$ $\begin{array}{c} 0.0372 \ (8) \\ 0.170 \ (4) \\ 0.0329 \ (7) \end{array}$	$\begin{array}{c} 0.077 \ (3) \\ 14.4 \ (1) \\ 0.78 \ (1) \\ 0.002 \ (2) \\ 1.59 \ (1) \\ 0.0052 \\ 2.04 \ (2) \\ 0.0016 \\ 0.0039 \end{array}$
$\begin{array}{l} \gamma_{10,2}(\mathrm{Pu}) \\ \gamma_{10,2}(\mathrm{Pu}) \\ \gamma_{11,2}(\mathrm{Pu}) \\ \gamma_{12,2}(\mathrm{Pu}) \\ \gamma_{9,0}(\mathrm{Pu}) \\ \gamma_{9,0}(\mathrm{Pu}) \\ \gamma_{10,1}(\mathrm{Pu}) \\ \gamma_{10,0}(\mathrm{Pu}) \\ \gamma_{11,1}(\mathrm{Pu}) \\ \gamma_{13,2}(\mathrm{Pu}) \\ \gamma_{12,1}(\mathrm{Pu}) \end{array}$	$\begin{array}{c} 434.7 (5) \\ 447.6 (5) \\ 454.2 (5) \\ 461.9 (5) \\ 469.8 (5) \\ 484.3 (5) \\ 492.3 (5) \\ 497.8 (5) \\ 498.7 \\ 504.2 (5) \end{array}$	$\begin{array}{c} 0.013\\ 0.00026\\ 0.00082\\ 0.0016\\ 0.0011\\ 0.001\\ 0.006\\ 0.0032\\ 0.001\\ 0.00078\end{array}$	E1(+M2) (M1) (E1) (E1) (E1) (E1) (E1) (E2)		$\begin{array}{c} 0.013\\ 0.00026\\ 0.00082\\ 0.0016\\ 0.0011\\ 0.001\\ 0.006\\ 0.0032\\ 0.001\\ 0.00078\end{array}$

5 References

M.S.FREEDMAN, F.WAGNER JR., D.W.ENGELKEMEIR, Phys. Rev. 88 (1952) 1155 (Beta-transition probabilities) L.WISH, Nucleonics 14 (1956) 105 (Half-life) S.A.BARANOV, K.N.SHLYAGIN, At. Energ. 1 (1956) 52 (Beta-transition probabilities) D.COHEN, J.C.SULLIVAN, A.J.ZIELEN, J. Inorg. Nucl. Chem. 11 (1959) 159 (Half-life) R.D.CONNOR, I.L.FAIRWEATHER, Proc. Phys. Soc. (London) 74 (1959) 161 (Beta-transition probabilities, half-life) G.T.EWAN, J.S.GEIGER, R.L.GRAHAM, D.R.MCKENZIE, Phys. Rev. 116 (1959) 950 (Gamma-ray energies) B.P.K.MAIER, Z. Phys. 184 (1965) 143 (Gamma-ray energies) M.QAIM, Nucl. Phys. 84 (1966) 411 (Half-life) C.B.BIGHAM, Can. J. Phys. 47 (1969) 1317 (Half-life) F.T.PORTER, Phys. Rev. C5 (1972) 1738 (Gamma-ray energies) K.S.KRANE, C.E.OLSEN, W.A.STEYERT, Phys. Rev. C5 (1972) 1671 (Gamma transition multipolarities) I.AHMAD, M.WAHLGREN, Nucl. Instrum. Methods 99 (1972) 333 (Gamma-ray absolute emission probabilities) R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies and absolute emission probabilities) L.N.YUROVA, A.V.BUSHUEV, V.I.PETROV, At. Energ. 436 (1974) 51 (Gamma-ray absolute emission probabilities) D.I.STAROZHUKOV, YU.S.POPOV, P.A.PRIVALOVA, At. Energ. 42 (1977) 319 (Gamma-ray absolute emission probabilities)

V.K.MOZHAEV, V.A.DULIN, Y.A.KAZANSKII, At. Energ. 47 (1979) 55

(Gamma-ray absolute emission probabilities)

H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251

(Gamma-ray energies)

I.AHMAD, Nucl. Instrum. Methods 193 (1982) 9

(Gamma-ray energies and absolute emission probabilities)

R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 1081

(Gamma-ray emission probabilities absolute)

Y.CHANG, Z.CHENG, C.YAN, G.SHI, D.QIAO, Radiat. Eff. 94 (1986) 97

(Gamma-ray absolute emission probabilities)

A.ABZOUZI, M.S.ANTONY, V.B.NDOCKO NDONGUE, D.OSTER, J. Radioanal. Nucl. Chem. 145 (1990) 361 (Half-life)

E.SIMECKOVA, P.CIZEK, M.FINGER, J.JOHN, P.MALINSKY, V.N.PAVLOV, Hyperfine Interactions 59 (1990) 185 (Gamma transition multipolarities)

Y.Shiokawa, M.Yagi, J. Radioanal. Nucl. Chem. 149 (1991) 51

(Gamma transition multipolarities, ICC)

YU.S.POPOV, D.KH.SRUROV, I.B.MAKAROV, E.A.ERIN, G.A.TIMOFEEV, Radiokhimiya 33 (1991) 3; Sov. J. Radiochemistry 33 (1991) 1

(Gamma-ray absolute emission probabilities)

M.A.HAMMED, I.M.LOWLES, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 308

(Gamma-ray absolute emission probabilities)

R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996)

(LX-energies, gamma-ray relative intensities, gamma-ray multipolarities)

S.A.Woods, D.H.Woods, M.J.Woods, S.M.JEROME, M.BURKE, N.E.BOWLES, S.E.M.LUCAS, C.PATON WALSH, Nucl. Instrum. Methods Phys. Res. A369 (1996) 472

(Gamma-ray absolute emission probabilities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999)

(KX-ray energies and relative emission probabilities)

G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

E.BROWNE, Nucl. Data Sheets 98 (2003) 665

(Gamma-ray and level energies, gamma-ray multipolarities, decay scheme)

Np - 239

Pu - 238

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	87.74	(3)	у
$Q^{'}_{lpha}$:	5593.20	(19)	keV
α	:	100		%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,14}$	4432.1(2)	$\sim \! 0.0000012$
$\alpha_{0,13}$	4472.1(2)	0.00000117(7)
$\alpha_{0,12}$	4492.5(2)	~ 0.0000002
$\alpha_{0,11}$	4526.3(2)	0.000000150 (16)
$\alpha_{0,10}$	4567.4(2)	0.0000023
$\alpha_{0,9}$	4587.9(2)	0.00000130(5)
$\alpha_{0,8}$	4661.7(2)	0.0000081
$\alpha_{0,7}$	4664.1(2)	0.000000075 (22)
$\alpha_{0,6}$	4702.8(2)	0.0001
$\alpha_{0,5}$	4726.0(2)	0.00000821 (16)
$\alpha_{0,4}$	5010.4(2)	0.00000680 (23)
$\alpha_{0,3}$	5208.0(2)	0.00292(4)
$\alpha_{0,2}$	5358.1(2)	0.104(3)
$\alpha_{0,1}$	5456.3(2)	28.85(6)
$\alpha_{0,0}$	5499.03(20)	71.04(6)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5.9 - 21.6	10.6(4)
$e_{\rm AK}$	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.43 104.51 - 115.59	0.0000110 (15) } } }
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{1,0} \ N \\ ec_{2,1} \ L \\ ec_{2,1} \ M \end{array}$	(U) (U) (U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 20.6 \ (6) \\ 5.7 \ (12) \\ 1.544 \ (39) \\ 0.0718 \ (17) \\ 0.01992 \ (49) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		10.63(8)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$		0.000106 (3) 0.000169 (5)	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	$110.421 \\ 111.298 \\ 111.964$	} } }	0.0000609 (22)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\ 115.012 \\ 115.377$	} } }	0.0000208 (6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{8,6}(U)$	41.82 (11)	0.0000026(14)	[E2]	863 (18)	0.000000030 (16)
$\gamma_{1,0}(U)$	43.498(1)	28.3(8)	E2	713(15)	0.0397(8)
$\gamma_{11,9}(U)$	62.70(1)	0.00000016 (4)	${ m E1}$	0.426(9)	0.00000011 (3)
$\gamma_{2,1}(U)$	99.852(3)	0.1060(23)	E2	13.42(27)	0.00735~(8)
$\gamma_{11,7}(U)$	140.15(2)	0.000000021 (7)	M1+63%E2	5.1(15)	0.000000035(7)
$\gamma_{3,2}(U)$	152.719(2)	0.00292(4)	E2	2.14(4)	0.000930 (7)
$\gamma_{13,8}(U)$	192.91(7)	0.0000000012 (4)	[E2]	0.856(17)	0.0000000066 (20)
$\gamma_{4,3}(U)$	200.97(3)	0.00000680 (23)	E2	0.734(15)	0.00000392 (13)
$\gamma_{11,5}(U)$	203.12(3)	0.000000021 (5)	$\mathrm{M1}{+}66\%\mathrm{E2}$	1.5(3)	0.000000085 (15)
$\gamma_{14,7}(U)$	235.9(3)	0.00000010 (5)	[E1]	0.0673(14)	0.00000009(5)
$\gamma_{13,5}(U)$	258.227 (3)	0.00000074(12)	(E1)	0.0548(11)	0.000000070 (11)
$\gamma_{14,5}(U)$	299.1(2)	0.00000046 (3)	[E1]	0.0395~(8)	0.00000044 (3)
$\gamma_{7,2}(U)$	705.9(1)	0.000000050 (13)	[E1]	0.00698(14)	0.00000050 (13)
$\gamma_{8,2}(U)$	708.3(2)	0.0000050 (3)	[E2]	0.0219(5)	0.0000049(3)
$\gamma_{12,3}(U)$	727.8(2)	0.000000028 (3)	(E2)	0.0207~(4)	0.000000027 (3)
$\gamma_{5,1}(U)$	742.813(5)	0.00000513 (13)	${ m E1}$	0.00636(13)	0.00000510 (13)
$\gamma_{6,1}(U)$	766.38(2)	0.0000223 (5)	E2	0.0187~(4)	0.0000219 (5)
$\gamma_{9,2}(U)$	783.4(1)	0.000000022 (3)	[E2]	0.0179~(4)	0.00000022 (3)
$\gamma_{5,0}(U)$	786.27(3)	0.00000322 (9)	${ m E1}$	0.00573(12)	0.00000320 (9)
$\gamma_{10,2}(U)$	804.4(3)	0.0000017	E0+E2	0.57	0.00000011 (5)
$\gamma_{7,1}(U)$	805.80(5)	0.00000056 (15)	[E1]	0.00549(11)	0.00000056 (15)
$\gamma_{8,1}(U)$	808.2(1)	0.0000041	E0+17%E2	4.3	0.00000767~(25)
$\gamma_{8,0}(U)$	851.7(1)	0.00000129 (4)	[E2]	0.01513 (30)	0.00000127~(4)
$\gamma_{12,2}(U)$	880.5(1)	≥ 0.00000015	(E0+E2)		≥ 0.00000015 (4)
$\gamma_{9,1}(U)$	883.24(4)	0.0000073 (4)	E2	0.01409(28)	0.00000072 (4)
$\gamma_{10,1}(U)$	904.37(15)	0.00000062 (11)	[E2]	$0.01346\ (27)$	0.00000061 (11)
$\gamma_{9,0}(\mathrm{U})$	926.72(1)	0.00000565 (25)	(E2)	0.01284(26)	0.000000558 (25)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{14,2}(U)$	941.94 (10)	0.000000472(23)	[E2]	0.01244(25)	0.00000466 (23)
$\gamma_{11.1}(U)$	946.00 (3)	0.000000092 (13)	(E1)	0.00412 (8)	0.000000092(13)
$\gamma_{12.1}(U)$	980.3(1)	0.000000042	(E2)	0.01152(23)	0.000000042
$\gamma_{13,1}(U)$	1001.03(3)	0.00000099(4)	E2	0.01107(22)	0.0000098(4)
$\gamma_{14,1}(U)$	1041.7(2)	0.0000002	(E0 + E2)		0.000000197(16)
$\gamma_{14.0}(U)$	1085.4(2)	0.00000078 (9)	(E2)	0.00950(19)	0.000000077(9)

5 References

A.H.JAFFEY, A.HIRSCH, Report ANL-4286, Argonne National Laboratory (1949) (Spontaneous fission half-life) A.H.JAFFEY, J.LERNER, Report ANL-4411, Argonne National Laboratory (1950) (Half-life) A.H.JAFFEY, L.B.MAGNUSSON, The Transuranium Elements Paper No. 14.2. National Nuclear Energy Series, Plutonium Project Record, Div. IV. 14B (1951) (Half-life) A.H.JAFFEY, Paper No. 2.2. National Nuclear Energy Series, Plutonium Project Record, Div. IV. (1951) (Half-life) G.T.SEABORG, R.A.JAMES, A.GIORSO, The Transuranium Elements Paper No. 14.2. National Nuclear Energy Series, Plutonium Project Record, Div. IV. 14B.Part II (1951) 978 (Half-life) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (Spontaneous fission half-life) K.W.JONES, R.A.DOUGLAS, M.T.MCELLISTREM, H.T.RICHARDS, Phys. Rev. 94 (1954) 947 (Half-life) F.Asaro, I.Perlman, Phys. Rev. 94 (1954) 381 (Alpha-particle energies and emission probabilities) E.L.CHURCH, A.W.SUNYAR, Phys. Rev. 98 (1955) 1186A (Gamma-ray energies) J.O.NEWTON, B.ROSE, J.MILSTED, Phil. Mag. 1 (1956) 981 (Gamma-ray energies) D.C.HOFFMAN, G.P.FORD, F.O.LAWRENCE, J. Inorg. Nucl. Chem. 5 (1957) 6 (Half-life) L.N.KONDRATEV, G.I.NOVIKOVA, V.B.DEDOV, L.L.GOLDIN, IZV. Akad. Nauk SSSR, Ser. Fiz. 21 (1957) 907. (Alpha-particle energies and emission probabilities) V.A.DRUIN, V.P.PERELYGIN, G.I.KHLEBNIKOV, Sov. Phys. - JETP 13 (1961) 913 (Spontaneous fission half-life) C.F.LEANG, Compt. Rend. 255 (1962) 3155 (Alpha-particle energies and emission probabilities) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha transition probabilities) J.W.HALLEY, D.ENGELKEMEIR, Phys. Rev. 134 (1964) A24 (LX-ray emission probabilities) F.LES, Acta. Phys. Polon. 26 (1964) 951 (E0+E2 transition probabilities) J.F.EICHELBERGER, G.R.GROVE, L.V.JONES, Report MLM-1238, Mound Laboratory (1965) (Half-life) K.C.JORDAN, Report MLM-1443, Mound Laboratory (1967) (Half-life) C.M.LEDERER, Priv. Comm. (1964), cited in C.M.Lederer et al., Table of Isotopes, 6th Ed., John Wiley and Sons Inc., N.Y. (1967) (E0+E2 transition probabilities) J.Byrne, W.Gelletly, M.A.S.Ross, F.Shaikh, Phys. Rev. 170 (1968) 80 (LX-ray emission probabilities)

L.SALGUEIRO, ET AL., Compt. Rend. Acad. Sci. (Paris) Ser. B 267 (1968) 1293 (LX-ray emission probabilities) K.L.SWINTH, Nucleonics in Aerospace, Ed. P.Polyshuk, N.Y., Plenum Press (1968) 279 (LX-ray emission probabilities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Nucl. Phys. 7 (1968) 442 (Alpha-particle energies and emission probabilities) S.R.AMTEY, J.H.HAMILTON, A.V.RAMAYYA, Nucl. Phys. A126 (1969) 201 (Conversion electron relative intensities) D.BENSON, Priv. Comm. (1969) (Half-life) C.M.LEDERER, F.ASARO, I.PERLMAN, Report UCRL-18667, Univ. California (1969) 3 (Gamma-ray energies and emission probabilities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Z.S.GLADKIKH, Yad. Fiz. 12 (1970) 1105 (Alpha-particle energies and emission probabilities) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray energies and emission probabilities) K.L.SWINTH, IEEE Trans. Nucl. Sci. 18 (1971) 125 (LX-ray emission probabilities) J.C.SOARES, J.P.RIBEIRO, A.GONCALVES, F.B.GIL, J.C.FERREIRA, Compt. Rend. Acad. Sci. (Paris) Ser. B 273 (1971) 985 (Alpha-particle energies and emission probabilities) A.I.MAKARENKO, L.A.OSTRETSOV, N.V.FORAFONTOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (1971) 2335 (Gamma-ray energies and emission probabilities) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies and emission probabilities) J.D.HASTINGS, W.W.STROHM, J. Inorg. Nucl. Chem. 34 (1972) 25 (Spontaneous fission half-life) M.Schmorak, C.E.Bemis Jr., M J.Zender, N.B.Gove, P.F.Dittner, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies) W.W.STROHM, K.C.JORDAN, Nucl. Soc. 18 (1974) 185 (Half-life) R.R.GAY, R.SHER, Bull. Am. Phys. Soc. 20 (1975) 160 (Spontaneous fission half-life) H.UMEZAWA, T.SUZUKI, S.ICHIKAWA, J. Nucl. Sci. Technol. (Tokyo) 13 (1976) 327 (Gamma-ray and emission probabilities) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) D.G.VASILIK, R.W.MARTIN, Nucl. Instrum. Methods 135 (1976) 405 (LX-ray emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, V.Y.GABESKIRIYA, A.P.CHETVERIKOV, At. Energ. 40 (1976) 61 (Half-life) C.E.BEMIS JR., L.TUBBS, Report ORNL-5297, Oak Ridge National Laboratory (1977) 93 (LX-ray emission probabilities) H.DIAMOND, W.C.BENTLEY, A.H.JAFFEY, K.F.FLYNN, Phys. Rev. C15 (1977) 1034 (Half-life) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313 (Auger electron energies) F.RÖSEL, H.M.FRIES, K.ALDER, H.C.PAULI, At. Data Nucl. Data Tables 21 (1978) 92 (Theoretical ICC) R.VANINBROUKX, G GROSSE, W.ZEHNER, Report CBNM/RN/45/79 (1979) (Gamma-ray emission probabilities) A.CESANA, G.SANDRELLI, V.SANGIUST, M.TERRANI, Energ. Nucl. (Milan) 26 (1979) 526 (Gamma-ray energies and emission probabilities) V.D.SEVASTYANOV, V.P.JARINA, Voprosi Atomnoi Nauki i Tekhniki, seriya Jadernie Konstanti. 5(44) (1981) 21 (Half-life)

S.K.Aggarwal, A.V.Jadhav, S.A.Chitambar, K.Raghuraman, S.N.Acharya, A.R.Parab, C.K.Sivaramakrishnan, H.C.JAIN, Radiochem. Radioanal. Lett. 46 (1981) 69 (Half-life) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (KX-ray energies) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (KX-ray energies) P.DRYAK, YU.S.EGOROV, V.G.NEDOVESOV, I.PLKH, G.E.SHUKIN, Proc. 34th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Alma-Ata (1984) 540 (LX-ray emission probabilities) V.V.OVECHKIN, V.M.CHESALIN, I.A.SHKABURA, Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1029 (Gamma-ray energies and emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 35 (1984) 1067 (Gamma-ray energies and emission probabilities) G.BORTELS, B.DENECKE, R.VALNINBROUKX, Nucl. Instrum. Methods 223 (1984) 329 (Alpha-particle, gamma-ray and LX-ray energies and emission probabilities) L.M.BAK, P.DRYAK, V.G.NEDOVESOV, S.A.SIDORENKO, G.E.SHUKIN, K.P.YAKOVLEV, Proc. 34th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Alma-Ata (1984) 541 (LX-ray emission probabilities) I.Ahmad, Nucl. Instrum. Methods 223 (1984) 319 (Alpha-particle energies and emission probabilities) P.A.BURNS, P.N.JOHNSTON, J.R.MORONEY, Priv. Comm. (1984) (Alpha-particle energies and emission probabilities) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha-particle energies and emission probabilities) YU.A.SELITSKY, V.B.FUNSHTEIN, V.A.YAKOVLEV, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku (1988) 131 (Spontaneous fission half-life) YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Sov. Radiochem. 32 (1990) 425 (MX-ray emission probability) P.N.JOHNSTON, J.R.MORONEY, P.A.BURNS, Appl. Radiat. Isot. 42 (1991) 245 (Alpha-particle energies) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies) M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10 (LX-ray energies and emission probabilities) D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Gamma-ray emission probabilities) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (LX-ray energies and emission probabilities) E.Schönfeld, H.Janssen, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha-particle energies and emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies) Y.NIR-EL, Radiochim. Acta 88 (2000) 83 (Gamma-ray energies) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (LX-ray and Auger electron emission probabilities) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (Spontaneous fission half-life) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, J.K.TULI, Nucl. Data Sheets 108 (2007) 681 (Level energies and data from 234Pa and 234Np decays) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Pu - 238

Pu - 239

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	24100	(11)	у
$Q^{'}_{lpha}$:	5244.51	(21)	keV
α	:	100		%

2 α Emissions

	Energy	Probability
	keV	\times 100
$\alpha_{0.53}$	4059.1 (3)	0.00000021(5)
$\alpha_{0.52}$	4116.78 (25)	0.00000093(9)
$\alpha_{0,51}$	4180.6 (3)	0.0000020(3)
$\alpha_{0,50}$	4186.53 (27)	0.00000077(7)
$\alpha_{0,49}$	4202.4(3)	0.00000041 (4)
$\alpha_{0,48}$	4204.42(21)	0.00000061 (15)
$\alpha_{0,47}$	4279.70(26)	0.000000199(12)
$\alpha_{0,46}$	4305.79(28)	0.00000098 (13)
$\alpha_{0,45}$	4325.5(10)	~ 0.00000042
$\alpha_{0,44}$	4326.92(21)	0.000000228 (12)
$\alpha_{0,43}$	4349.15(21)	0.0000030 (3)
$\alpha_{0,42}$	4364.42(22)	0.00000084 (14)
$\alpha_{0,41}$	4390.20(21)	0.00000101 (11)
$\alpha_{0,40}$	4392.08(28)	0.000000247 (19)
$\alpha_{0,39}$	4400.0(4)	0.0000103~(12)
$\alpha_{0,38}$	4400.26(21)	0.000027 (3)
$\alpha_{0,37}$	4408.36(22)	$0.00000103 \ (17)$
$\alpha_{0,36}$	4419.14(26)	0.0000034 (4)
$\alpha_{0,35}$	4448.46(21)	0.00000213 (9)
$\alpha_{0,34}$	4464.68(21)	0.0000114(3)
$\alpha_{0,33}$	4467.37(21)	0.00000707 (13)
$\alpha_{0,32}$	4496.90(21)	< 0.00000034
$\alpha_{0,31}$	4503.24(21)	0.00000631(11)
$\alpha_{0,30}$	4508.72(21)	0.0000264(6)
$\alpha_{0,29}$	4529.52(22)	0.00000322(21)
$\alpha_{0,28}$	4534.08(22)	0.0000284(7)
$\alpha_{0,27}$	4558.75(22)	0.000012(4)
$\alpha_{0,26}$	4632.35(21)	0.00086(3)
$\alpha_{0,25}$	4655.27(27)	0.0000033(7)
$\alpha_{0,24}$	4690.29(21)	0.00056(5)
$\alpha_{0,23}$	4718.39 (21)	0.0000400(11)
$\alpha_{0,22}$	4737.05 (21)	0.00570(5)
$\alpha_{0,21}$	4748.81 (21)	0.00075(11)
$\alpha_{0,20}$	4770.01 (21)	0.00125(3)
$\alpha_{0,19}$	4795.73 (21)	0.000944(17)
$\alpha_{0,18}$	4805.33 (22)	0.000017(4)
$\alpha_{0,17}$	4823.80 (22)	≈ 0.000022
$\alpha_{0,16}$	4829.38(21)	0.00354(7)
$\alpha_{0,15}$	4800.91 (21)	0.0018(5)
$\alpha_{0,14}$	4870.38(21)	0.0007 (3)
$\alpha_{0,13}$	4911.09 (21)	0.0030(10)

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,12}$	4935.00 (21)	0.0050(7)
$\alpha_{0,11}$	4962.83(21)	0.007~(1)
$\alpha_{0,10}$	4988.13(21)	0.0034(10)
$\alpha_{0,8}$	5008.70(21)	0.0182~(27)
$\alpha_{0,7}$	5029.51(21)	0.013(4)
$\alpha_{0,6}$	5055.34(21)	0.0375(12)
$\alpha_{0,5}$	5076.28(21)	0.052(8)
$\alpha_{0,4}$	5105.81 (21)	11.87(3)
$\alpha_{0,3}$	5111.21 (21)	< 0.02
$\alpha_{0,2}$	5143.82 (21)	17.14(4)
$\alpha_{0,1}$	5156.59(14)	70.79 (10)
$\alpha_{0,0}$	5156.65 (21)	~ 0.03

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5.9 - 21.6	4.66 (19)
$e_{\rm AK}$	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.34 104.42 - 115.40	0.00045 (6) } } }
$\begin{array}{c} {\rm ec}_{2,1} \ {\rm M} \\ {\rm ec}_{5,4} \ {\rm L} \\ {\rm ec}_{4,2} \ {\rm L} \\ {\rm ec}_{3,0} \ {\rm L} \\ {\rm ec}_{4,1} \ {\rm L} \\ {\rm ec}_{4,2} \ {\rm M} \\ {\rm ec}_{6,3} \ {\rm L} \\ {\rm ec}_{4,1} \ {\rm M} \\ {\rm ec}_{5,2} \ {\rm L} \\ {\rm ec}_{8,4} \ {\rm L} \end{array}$	(U) (U) (U) (U) (U) (U) (U) (U) (U) (U)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 15.4 \ (6) \\ 0.0259 \ (11) \\ 2.61 \ (16) \\ 0.0286 \ (16) \\ 6.09 \ (15) \\ 0.70 \ (4) \\ 0.0276 \ (13) \\ 1.68 \ (4) \\ 0.021 \ (6) \\ 0.0139 \ (12) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.	
XL	(U)	11.619 - 20.714	4.66(5)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(U) (U)	$94.666 \\98.44$	$\begin{array}{c} 0.00418 \ (4) \\ 0.00661 \ (9) \end{array}$	} Κα }

		Energy keV		Photons per 100 disint.	
$\begin{array}{l} {\rm XK}\beta_3\\ {\rm XK}\beta_1\\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(U) (U) (U)	110.421 111.298 111.964	} } }	0.00239 (3)	$\mathrm{K}\beta_1'$
$\begin{array}{l} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(U) (U) (U)	$114.407 \\115.012 \\115.377$	} } }	0.00131(6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(U)$	0.0765(4)	100	$\mathrm{E3}$	1×10^{10}	~ 0.00000001
$\gamma_{2,1}(U)$	12.975(10)	20.7(8)	M1+0.19(2)%E2	607(17)	0.0341(9)
$\gamma_{-1,1}(U)$	14.22 (3)	>0.006			>0.0055 (4)
$\gamma_{5,4}(\mathrm{U})$	30.04(2)	0.0346(14)	(M1)	157(3)	0.000219(8)
$\gamma_{4,2}(U)$	38.661(2)	3.56(21)	M1+22.2(16)%E2	339(19)	0.01047(21)
$\gamma_{-1,2}(U)$	40.41(5)	>0.0002			>0.000163 (16)
$\gamma_{10,7}(U)$	41.93(5)	0.0097~(5)	(M1)	58.6(12)	0.000163(8)
$\gamma_{3,0}(U)$	46.21(5)	0.0389(21)	M1+1.8(5)%E2	52.6(27)	0.000726 (13)
$\gamma_{11,8}(U)$	46.68(3)	0.0044~(13)	M1 + 9(5)% E2	86(24)	0.000050~(6)
$\gamma_{7,5}(U)$	47.60(3)	0.00259(11)	(M1)	40.4(8)	0.0000625~(25)
$\gamma_{4,1}(U)$	51.624(1)	8.38(18)	E2	310(6)	0.02694 (26)
$\gamma_{12,10}(U)$	54.039(8)	0.00560 (14)	M1	27.8(6)	0.0001943~(28)
$\gamma_{6,3}(U)$	56.828(3)	0.0382~(18)	M1 + 5.0(8)% E2	32.6(15)	$0.001136\ (15)$
$\gamma_{14,12}(U)$	65.708(30)	0.00095~(29)	M1 + 4(6)% E2	19(6)	0.0000473 (25)
$\gamma_{9,6}(U)$	67.674(12)	0.00283~(12)	M1 + 3.6(11)% E2	16.9(5)	0.000158~(5)
$\gamma_{5,2}(U)$	68.696~(6)	0.029(8)	$\mathrm{E2}$	78.6(16)	0.00036(10)
$\gamma_{8,5}(U)$	68.73(2)	0.0036 (17)	(M1+20%E2)	27	0.00013~(6)
$\gamma_{-1,3}(U)$	74.96(10)	>0.00004			>0.000038~(6)
$\gamma_{7,4}(U)$	77.592(14)	0.0068 (38)	M1(+20(32)%E2)	17(10)	0.000380~(6)
$\gamma_{13,9}(U)$	78.43(2)	0.0026 (15)	M1(+20(32)%E2)	16(10)	0.0001533 (28)
$\gamma_{17,13}(U)$	89.39(6)	~ 0.000015	[M1]	6.40(13)	~ 0.000002
$\gamma_{10,5}(U)$	89.64(3)	0.00040 (22)	(M1+E2)	14(8)	0.000027~(2)
$\gamma_{12,7}(U)$	96.14(3)	0.00064(3)	[E2]	16.0(3)	0.0000379 (19)
$\gamma_{15,11}(U)$	97.6(3)	0.0007~(5)	M1+20(19)%E2	7.0(19)	0.00009~(6)
$\gamma_{8,4}(U)$	98.78(2)	0.0204(17)	$\mathrm{E2}$	14.1(3)	0.00135(11)
$\gamma_{6,0}(U)$	103.06(3)	0.00273(9)	$\mathrm{E2}$	11.58(23)	0.000217~(6)
$\gamma_{11,5}(U)$	115.38(5)	0.00362(40)	E2	6.87(14)	0.00046(5)
$\gamma_{7,2}(U)$	116.26(2)	0.0077(15)	M1+24(36)%E2	12.2(26)	0.000581(19)
$\gamma_{10,4}(U)$	119.70(3)	0.00021(9)	(M1+E2)	9(4)	0.000021(3)
$\gamma_{14,10}(U)$	119.76(2)	0.000063(14)	[E2]	5.99(12)	0.000009(2)
$\gamma_{12,6}(U)$	122.35(12)	0.00000125(17)	(E1)	0.312(6)	0.0000095(13)
$\gamma_{37,29}(U)$	123.228(5)	0.00000021(5)	(M1)	12.19(24)	0.000000016(4)
$\gamma_{21,14}(U)$	123.62(5)	0.000310(13)	[M1]	12.08(24)	0.0000237(9)
$\gamma_{9,3}(U)$	124.51(3)	0.000413(13)	E2	5.06(10)	0.0000681(19)
$\gamma_{10,3}(U)$	125.21 (10)	0.0000730(21)	[E1]	0.296(6)	0.0000563(16)
	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
--	---------------	----------------------------	---------------	------------------	--
$\gamma_{7,0}(U)$	129.296 (1)	0.00805 (6)	E1	0.275(6)	0.00631(4)
$\gamma_{19,12}(U)$	141.657 (20)	0.000296(11)	[M1]	8.22 (16)	0.0000321(10)
$\gamma_{12,5}(U)$	143.35 (20)	0.000110(46)	[M1+E2]	5.3(26)	0.0000174 (8)
$\gamma_{15,8}(U)$	144.201 (3)	0.00106(3)	E2	2.72(5)	0.000285(7)
$\gamma_{13,6}(U)$	146.094 (6)	0.000432(12)	E2	2.57(5)	0.000121(3)
$\gamma_{10,2}(U)$	158.1(3)	0.000029(3)	[E2]	1.86(4)	0.00000101(10)
$\gamma_{18,11}(U)$	160.19(5)	0.0000172(36)	[E2]	1.77(4)	0.0000062(13)
$\gamma_{16,11}(V)$ $\gamma_{16,10}(U)$	161.450(15)	0.000814(42)	(M1)	5.67(11)	0.000122(6)
$\gamma_{17.9}(U)$	167.81(5)	0.000074(20)	[E2]	1.47(3)	0.0000030 (8)
$\gamma_{10,0}(U)$	171.393(6)	0.0001255(34)	[E1]	0.141(3)	0.000110(3)
$\gamma_{42,28}(U)$	172.560(8)	~ 0.000000017	M1	4.70(9)	~ 0.00000003
$\gamma_{12,28}(0)$ $\gamma_{12,4}(U)$	173.70(5)	0.0000071 (18)	[E2]	1.28(3)	0.0000031(8)
$\gamma_{12,4}(0)$ $\gamma_{12,2}(U)$	179.220(12)	0.0000739(22)	[E 1]	0.127(3)	0.0000656 (19)
$\gamma_{12,3}(0)$ $\gamma_{-1,4}(U)$	184.55(5)	0.000010(3)	[M1]	3.87(8)	0.0000021 (6)
$\gamma_{14.6}(U)$	188.23(10)	0.0000123(12)	[E1]	0.1140(23)	0.0000110(11)
$\gamma_{21,12}(U)$	189.36(1)	0.00027(11)	[M1+E2]	2.3(14)	0.0000820(14)
$\gamma_{21,12}(0)$ $\gamma_{-1.5}(U)$	193.13(12)	>0.000009		1 .0 (11)	>0.0000090 (9)
$\gamma_{10,10}(U)$	195.679(8)	0.000456(11)	M1	3.30(7)	0.000106(2)
$\gamma_{-1.6}(U)$	196.87(5)	>0.000004			>0.0000037 (4)
$\gamma = 1, 0(0)$ $\gamma_{16, 7}(U)$	203.550(5)	0.002224 (49)	M1	2.95(6)	0.000563(9)
$\gamma_{21,11}(U)$	218.0(5)	>0.000002		2.000 (0)	>0.0000012 (10)
$\gamma_{21,11}(0)$ $\gamma_{12,0}(U)$	225.42(4)	0.0000161(4)	[E1]	0.0747(15)	0.0000150(4)
$\gamma_{12,0}(0)$ $\gamma_{10,7}(U)$	237.77(10)	0.0000422(18)	[M1]	1.91 (4)	0.0000145(6)
$\gamma_{19,7}(0)$ $\gamma_{26,14}(U)$	242.08(3)	0.0000209(14)	[M1]	1.82(4)	0.0000074(5)
$\gamma_{20,14}(0)$ $\gamma_{21,10}(U)$	243.38(3)	0.000053(18)	[M1 + E2]	1.1(7)	0.0000254(7)
$\gamma_{24,10}(0)$ $\gamma_{14,3}(U)$	244.92(5)	0.0000054(5)	[]	0.0618(12)	0.0000051(5)
$\gamma_{24,3}(0)$ $\gamma_{24,12}(U)$	248.95(5)	0.0000188(16)	[M1]	1.68(3)	0.0000070 (6)
$\gamma_{24,12}(0)$ $\gamma_{22,10}(U)$	255.384(15)	0.000204(6)	[M1]	1.57(3)	0.0000795(20)
$\gamma_{22,10}(1)$ $\gamma_{20,7}(U)$	263.95(3)	0.0000629(26)	M1	1.43(3)	0.0000259(10)
$\gamma_{20,7}(0)$ $\gamma_{30,20}(U)$	265.7(3)	0.0000017(4)	[E1]	0.0514(10)	0.0000016(4)
$\gamma_{16,4}(U)$	281.2(2)	0.0000036(12)	[M1 + E2]	0.7(5)	0.0000021(3)
$\gamma_{10,4}(1)$ $\gamma_{10,5}(U)$	285.3(2)	0.0000032(12)	[M1+E2]	0.7(5)	0.0000019(4)
$\gamma_{22,7}(U)$	297.46(3)	0.000100(3)	[M1]	1.025(21)	0.0000492(13)
$\gamma_{22}, 10(U)$	302.87(5)	0.0000097(8)	[M1]	0.976(20)	0.0000049(4)
$\gamma_{24,10}(1)$ $\gamma_{26,12}(U)$	307.85(5)	0.0000101(8)	[M1]	0.933(19)	0.0000052(4)
$\gamma_{20,12}(1)$ $\gamma_{21.6}(U)$	311.78(4)	0.0000266 (8)	[E1]	0.0361(7)	0.0000257(8)
$\gamma_{23,7}(U)$	316.41(3)	0.0000248(10)	M1	0.865(17)	0.0000133(5)
$\gamma_{23,1}(v)$ $\gamma_{16,2}(U)$	319.68 (10)	0.0000073(19)	[M1+E2]	0.50(35)	0.0000049(5)
$\gamma_{10,2}(0)$ $\gamma_{10,3}(U)$	320.862(20)	0.0000558(12)	[E1]	0.0337(7)	0.0000540(12)
$\gamma_{24,8}(U)$	323.84 (3)	0.0000960(25)	M1	0.811(16)	0.0000530(13)
$\gamma_{16,0}(U)$	332.845(5)	0.000503(8)	$\mathbf{E1}$	0.0313 (6)	0.000488 (8)
$\gamma_{26,11}(U)$	336.113(12)	0.000192(5)	M1	0.733(15)	0.0001111 (26)
$\gamma_{20,4}(U)$	341.506 (10)	0.0001106(24)	M1	0.701(14)	0.0000650(13)
$\gamma_{24,7}(U)$	345.00(2)	< 0.000084	(M1)	0.682(14)	< 0.00005
$\gamma_{225}(U)$	345.013(4)	0.000922(15)	M1	0.682(14)	0.000548 (8)
$\gamma_{-1.7}(U)$	350.8(3)	>0.000002		(11)	>0.0000018 (4)
$\gamma_{10.2}(U)$	354.0(5)	0.0000085(33)	[E2]	0.1150(23)	0.0000076(30)
$\gamma_{26,10}(U)$	361.89(5)	0.0000187(11)	[M1]	0.598(12)	0.0000117(7)
/20,10(~)			[]	()	

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{19,0}(U)$	367.073(25)	0.0000893(21)	[E1]	0.0254(5)	0.0000871 (20)
$\gamma_{21,3}(U)$	368.554(20)	0.0000899(14)	[E1]	0.0252(5)	0.0000877(14)
$\gamma_{22,4}(U)$	375.054(3)	0.002376(37)	M1	0.543(11)	0.001540(21)
$\gamma_{20,2}(U)$	380.191(6)	0.000460(7)	M1	0.523(10)	0.000302(4)
$\gamma_{26,8}(U)$	382.75(5)	0.000387(7)	M1	0.513(10)	0.000256(4)
$\gamma_{24,5}(U)$	392.53(3)	0.000179(24)	M1	0.479(10)	0.000121(16)
$\gamma_{20,1}(U)$	393.14(3)	0.000619(25)	M1	0.477(10)	0.000419(17)
$\gamma_{23,3}(U)$	399.53(6)	0.00000625(27)	[E1]	0.0213(4)	0.00000612(26)
$\gamma_{25,6}(U)$	406.8(2)	0.0000030(7)	[E1]	0.0204(4)	0.000029(7)
$\gamma_{27,11}(U)$	411.2 (3)	0.000010(4)	[M1]	0.422(8)	0.0000069(30)
$\gamma_{42,20}(U)$	412.49(6)	~ 0.00000018	[E1]	0.0199(4)	~ 0.00000018
$\gamma_{22,2}(U)$	413.713(5)	0.00207(3)	M1	0.415(8)	0.001464(21)
$\gamma_{24,4}(U)$	422.598(19)	0.0001669(30)	M1	0.392(8)	0.0001199(20)
$\gamma_{22,1}(U)$	426.68(3)	0.0000256(6)	[E2]	0.0699(14)	0.0000239(6)
$\gamma_{24,3}(U)$	428.4(3)	0.00000103(10)	[E1]	0.0184(4)	0.00000101(10)
$\gamma_{26,6}(U)$	430.08(10)	0.00000437 (19)	[E1]	0.0183(4)	0.00000429 (19)
$\gamma_{23,0}(U)$	445.72(3)	0.00000892 (26)	${ m E1}$	0.0170(3)	0.00000877 (26)
$\gamma_{-1,8}(U)$	446.82(20)	0.0000009(1)			$0.00000085 \ (13)$
$\gamma_{26,5}(U)$	451.481(10)	0.000223 (25)	M1(+50%E2)	0.19(13)	0.000187(3)
$\gamma_{27,8}(U)$	457.61(5)	0.00000199(4)	[M1]	0.316~(6)	0.00000151 (3)
$\gamma_{24,2}(U)$	461.25(5)	0.00000242(5)	[E2]	0.0575(12)	0.00000229(5)
$\gamma_{25,3}(U)$	463.9(3)	0.000000284 (30)	[E1]	0.0157(3)	0.0000028 (3)
$\gamma_{24,0}(U)$	473.9(5)	0.000000061 (30)	[E1]	0.0150(3)	0.0000006 (3)
$\gamma_{26,4}(U)$	481.66(12)	0.00000485(11)	[E2]	0.0517(10)	$0.00000461\ (10)$
$\gamma_{26,3}(U)$	487.06(10)	0.00000269 (19)	[E1]	0.0142(3)	0.00000265 (19)
$\gamma_{31,10}(U)$	493.08(5)	0.00000089 (3)	[E1]	0.0139(3)	0.0000088 (3)
$\gamma_{-1,9}(U)$	497.0(5)	0.00000044 (25)			0.00000044 (25)
$\gamma_{27,5}(U)$	526.4(4)	0.000000059 (19)	[E2]	0.0419(8)	0.00000057 (19)
$\gamma_{-1,10}(U)$	538.8(2)	0.00000031 (2)			0.000000309 (19)
$\gamma_{33,8}(U)$	550.5(2)	0.000000440 (25)	(E1)	0.01120(22)	0.000000435~(25)
$\gamma_{-1,11}(U)$	557.3(5)	0.00000004 (2)			0.00000038 (19)
$\gamma_{36,10}(U)$	579.4(3)	0.000000091 (20)	[E2]	0.0337~(7)	0.00000088 (19)
$\gamma_{31,5}(U)$	582.89(10)	0.000000624 (26)	[E1]	0.0100(2)	0.000000618 (26)
$\gamma_{29,4}(U)$	586.3(3)	0.000000155 (16)	[E1]	0.0099(2)	$0.000000153\ (16)$
$\gamma_{43,12}(U)$	596.0(5)	0.00000040 (12)	[E2]	0.0317~(6)	0.00000039(12)
$\gamma_{33,6}(U)$	597.99(5)	0.00000179(6)	[E2]	0.0314(6)	0.00000174(6)
$\gamma_{36,8}(U)$	599.6(2)	0.00000204 (25)	[E1]	0.00948(19)	0.00000202(25)
$\gamma_{40,10}(U)$	606.9(2)	0.000000136 (15)	M1(+E2)	0.12(3)	0.000000121(13)
$\gamma_{-1,12}(U)$	608.9(2)	0.0000012(2)			0.000000117(12)
$\gamma_{31,4}(U)$	612.83(3)	0.0000096(5)	E1	0.00910(18)	0.0000095(5)
$\gamma_{35,6}(U)$	617.1(1)	0.00000154(9)	[M1]	0.142(3)	0.00000135(8)
$\gamma_{31,3}(U)$	618.28(6)	0.00000212 (8)	(E2)	0.0292(6)	0.00000206(8)
$\gamma_{33,5}(U)$	619.21(6)	0.00000122 (8)	[E1]	0.00892(18)	0.00000121(8)
$\gamma_{32,3}(U)$	624.78(3)	< 0.00000025	(M1)	0.137(3)	< 0.00000022
$\gamma_{29,2}(U)$	624.78(5)	0.00000464 (19)	[E1]	0.00877(18)	0.000000460 (19)
$\gamma_{28,0}(U)$	633.15(6)	0.0000286(7)	M1(+E2)	0.122(11)	0.0000255(6)
$\gamma_{29,1}(U)$	637.73(5)	0.0000065(6)	[E1]	0.00844(17)	0.0000064(6)
$\gamma_{29,0}(U)$	637.80(5)	0.00000197(20)	E2	0.0273(5)	0.00000192 (19)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{38.7}(U)$	639.99(10)	0.00000869(21)	[E2]	0.0271(5)	0.00000846(20)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{30,2}(U)$	645.94 (4)	0.00001502(30)	E1	0.00824(16)	0.0000149(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{334}(U)$	649.32(6)	0.00000073(5)	[E1]	0.00816(16)	0.00000072(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,13}(U)$	650.53(6)	0.00000027(4)	L]	()	0.00000027 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{34.4}(U)$	652.05(2)	0.00000668(20)	${ m E1}$	0.00809(16)	0.00000663(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{33,3}(U)$	654.88(8)	0.00000233(5)	(E2)	0.0258(5)	0.00000227(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{30.1}(U)$	658.86(6)	0.00000967(26)	E1	0.00794(16)	0.00000959(26)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{31,0}(U)$	664.58(5)	0.000001712(41)	E2	0.0251(5)	0.00000167(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{36,5}(U)$	668.2(5)	0.00000040(12)	[E1]	0.00773(15)	0.00000040(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{43,8}(U)$	670.8(5)	≤ 0.00000009 (3)			≤ 0.00000009 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{32,0}(U)$	670.99(4)	≤ 0.00000009 (3)	[M1+E2]	0.06(4)	≤ 0.00000009 (3)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\gamma_{35,3}(U)$	674.05(3)	0.00000556 (22)		0.1120(22)	0.00000050 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{40,5}(U)$	674.4(5)	0.000000111 (11)	(M1)	0.1120(22)	0.00000010 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,14}(U)$	685.97(11)	0.00000127~(6)	$\mathrm{E1}$	$0.00736\ (15)$	0.00000126~(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,15}(U)$	688.1(3)	0.000000114(11)			0.000000112(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{34,2}(U)$	690.81(8)	0.0000059(5)	${ m E1}$	0.00727(15)	0.00000059(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma_{-1,16}(U)$	693.2(5)	0.00000033(13)	(<u> </u>		0.00000032(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{46,10}(U)$	693.81(1)	0.00000019(7)	(E2)	0.0229(5)	0.00000019(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{41,5}(U)$	697.8(5)	0.00000076(15)			0.00000074(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,17}(U)$	699.6(5)	0.0000008(2)		0.00(4)	0.00000080(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{33,0}(U)$	701.1(2)	0.00000555(29)	[M1+E2]	0.06(4)	0.00000524(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{34,1}(U)$ (II)	(03.68(5))	0.0000413(13)	EI	0.00702(14)	0.00000410(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,18}(0)$	(12.90(5))	0.000000002(0)	Бð	0.0915(4)	0.000000002(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{44,7}(U)$	(14.(1(14)))	0.000000001(8) 0.00000278(6)	E2 F1	0.0213(4) 0.00677(14)	0.000000079(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{39,4}(U)$	710.0(5) 720.3(5)	0.00000278(0)	171	0.00077(14)	0.00000270(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2(4 = 10)	720.5(3) 720.55(3)	0.00000029(3)			0.000000029(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{47,10}(0)$	720.00(0) 727.9(2)	0.000000020(2) 0.000000136(8)	M1	0.0911.(18)	0.000000020(2) 0.000000125(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{41,4}(0)$	736.5(5)	0.000000130(0)	M1+59(8)%E2	0.0311(10) 0.0481(10)	0.000000129(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{40,7(0)}$	742.7(5)	0.000000031(0)	NII + 00(0)/0112	0.0101 (10)	0.000000038(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{27,2}(U)$	747.4(5)	0.000000082(11)	$\mathbf{E}1$	0.00629(13)	0.000000081 (16)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{37,2}(0)$ $\gamma_{38,2}(0)$	756.23(6)	0.0000029(5)	[M1+E2]	0.05(3)	0.0000028(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{39,2}(0)$ $\gamma_{39,2}(U)$	756.4(4)	0.00000069(19)	[E1]	0.00615(12)	0.00000069(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{47,7}(U)$	762.6(2)	~0.00000001	[]	()	~0.00000001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{45,5}(U)$	763.60 (15)	>0.000000042	E0(+M1)	0.9	>0.000000022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{41,2}(U)$	766.47 (3)	0.00000065(11)	E0+M1	4.0(4)	0.0000013(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{51,12}(U)$	767.29(4)	0.00000014(3)			0.00000014(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma_{38.1}(U)$	769.15 (8)	0.0000153(32)	M1+E0	2.0(2)	0.0000051(10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{39,1}(U)$	769.4(5)	0.0000068(12)	${ m E1}$	0.00596(12)	0.0000068(12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\gamma_{-1,20}(U)$	777.1(3)	0.00000028(7)			0.00000028 (7)
$\begin{array}{cccccccc} \gamma_{-1,21}(\mathrm{U}) & 786.9 & (2) & 0.00000089 & (9) & \mathrm{E2} & 0.0177 & (4) & 0.00000087 & (9) \\ \gamma_{-1,22}(\mathrm{U}) & 788.5 & (3) & 0.00000035 & (7) & & & & & & & \\ \gamma_{42,2}(\mathrm{U}) & 792.68 & (6) & 0.00000020 & (4) & & & & & & & & & & \\ \end{array}$	$\gamma_{41,1}(U)$	779.43(3)	0.000000147(10)	M1	0.0759(15)	0.00000137 (9)
$\begin{array}{cccc} \gamma_{-1,22}(\mathrm{U}) & 788.5 \ (3) & 0.00000035 \ (7) & 0.00000035 \ (7) \\ \gamma_{42,2}(\mathrm{U}) & 792.68 \ (6) & 0.00000020 \ (4) & (E1) & 0.00565 \ (11) & 0.00000020 \ (4) \end{array}$	$\gamma_{-1,21}(U)$	786.9(2)	0.00000089 (9)	E2	0.0177~(4)	0.00000087 (9)
$\gamma_{42,2}(U)$ 792.68 (6) 0.00000020 (4) (E1) 0.00565 (11) 0.00000020 (4)	$\gamma_{-1,22}(U)$	788.5(3)	0.00000035 (7)			0.00000035 (7)
	$\gamma_{42,2}(U)$	792.68(6)	0.00000020 (4)	(E1)	0.00565(11)	0.00000020 (4)
$\gamma_{-1,23}(U)$ 796.9 (3) 0.00000015 (3) 0.00000015 (3)	$\gamma_{-1,23}(U)$	796.9(3)	0.00000015 (3)			0.00000015 (3)
$\gamma_{-1,24}(U) = 803.2(2) = 0.00000064(5) = 0.00000064(5)$	$\gamma_{-1,24}(U)$	803.2(2)	0.00000064 (5)			0.00000064 (5)
$\gamma_{42,1}(U) = 805.65(6) = 0.00000029(4) = E2 = 0.0169(3) = 0.00000028(4)$	$\gamma_{42,1}(U)$	805.65(6)	0.00000029 (4)	E2	0.0169(3)	0.00000028 (4)
$\gamma_{43,2}(U)$ 808.21 (4) 0.000000130 (6) M1 0.0690 (14) 0.000000122 (6)	$\gamma_{43,2}(U)$	808.21(4)	0.00000130 (6)	M1	0.0690(14)	0.000000122 (6)

	Energy keV	$\begin{array}{c} P_{\gamma+ce} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{46,4}(U)$	813.7(2)	0.00000048(5)	M1	0.0677(14)	0.00000045 (5)
$\gamma_{50,9}(U)$	816.0(2)	0.00000026 (4)	[M1+E2]	0.042~(25)	0.00000025 (4)
$\gamma_{43,0}(U)$	821.25(4)	0.000000050 (11)	E1+M2		0.000000050 (11)
$\gamma_{51,10}(U)$	821.3(2)	~ 0.00000006			~ 0.000000006
$\gamma_{-1,25}(U)$	826.8(3)	0.00000018~(6)			0.00000018~(6)
$\gamma_{-1,26}(U)$	828.9(2)	0.00000014(1)			0.00000134 (8)
$\gamma_{52,12}(U)$	832.2(2)	0.00000030 (4)			0.00000030 (4)
$\gamma_{-1,27}(U)$	837.3(2)	0.00000020 (4)			0.00000020 (4)
$\gamma_{47,4}(U)$	840.4(2)	0.00000056 (6)	M1(+E0)	0.14(2)	0.00000049(5)
$\gamma_{44,1}(U)$	843.78(1)	0.000000147 (9)	M1(+E0)	0.09(1)	0.00000135(8)
$\gamma_{47,2}(U)$	879.2(3)	0.00000037 (4)	[M1+E2]	0.035~(20)	0.00000036 (4)
$\gamma_{47,1}(U)$	891.0(3)	0.00000076 (8)	[E2]	0.0139(3)	0.00000075 (8)
$\gamma_{-1,28}(U)$	895.4(3)	0.00000008 (3)			0.0000000076 (25)
$\gamma_{-1,29}(U)$	898.1(3)	0.00000018 (4)			0.00000018 (4)
$\gamma_{-1,30}(U)$	905.5(3)	0.00000008 (3)			0.0000000076 (25)
$\gamma_{-1,31}(U)$	911.7(3)	0.00000014 (3)			0.00000014 (3)
$\gamma_{49,4}(U)$	918.7(3)	0.00000009 (3)			0.000000088 (30)
$\gamma_{-1,32}(U)$	931.9(3)	0.00000013 (4)			0.00000013 (4)
$\gamma_{50,3}(U)$	940.3(3)	0.00000051 (5)	[E2]	$0.01250\ (25)$	0.00000050 (5)
$\gamma_{48,2}(U)$	955.41(2)	0.000000321 (31)	M1+27(13)%E2	0.036~(4)	0.00000031 (3)
$\gamma_{49,2}(U)$	957.6(3)	0.00000032 (3)			0.00000032 (3)
$\gamma_{48,1}(U)$	968.37(2)	0.00000029(5)	M1+27(20)%E2	0.035~(19)	0.00000028
$\gamma_{51,2}(U)$	979.7(3)	0.00000029(5)	[M1+E2]	0.026~(15)	0.00000028 (5)
$\gamma_{-1,33}(U)$	982.7(3)	0.000000011 (3)			0.000000107 (25)
$\gamma_{53,7}(U)$	986.90(4)	0.00000021 (5)	${ m E1}$	0.00383~(8)	0.000000021 (5)
$\gamma_{51,1}(U)$	992.64(3)	0.00000027~(4)			0.00000027 (4)
$\gamma_{52,4}(U)$	1005.7(3)	0.00000018 (3)			$0.000000177\ (25)$
$\gamma_{-1,34}(U)$	1009.4(3)	0.00000014(3)			0.000000139(25)
$\gamma_{52,0}(U)$	1057.3(2)	0.00000045(7)			0.00000045(7)

5 References

F.Asaro, I.Perlman, Phys. Rev. 88 (1952) 828 (Alpha-transition energies and probabilities) E.SEGRÈ, Phys. Rev. 86 (1952) 21 (SF half-life) G.I.NOVIKOVA, L.N.KONDRATEV, Y.P.SOBOLEV, L.L.GOLDIN, Zh. Eksp. Teor. Fiz. 32 (1957) 1018 (Alpha-transition energies and probabilities) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, Zh. Eksp. Teor. Fiz. 14 (1961) 1227 (Alpha-transition energies and probabilities) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 255 (1962) 3155 (Alpha-transition energies) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha-transition energies and probabilities) S.A.BARANOV, V.M.KULAKOV, S.N.BELENKY, Nucl. Phys. 41 (1963) 95 (Alpha-transition energies and probabilities) F.ASARO, S.G.THOMPSON, F.S.STEPHENS JR., I.PERLMAN, Priv. Comm. (1957), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-transition energies and probabilities) F.HORSCH, Z. Phys. 183 (1965) 252 (Alpha-transition energies and probabilities)

E.F.TRETYAKOV, L.N.KONDRATEV, IZV. Akad. Nauk SSSR, Ser. Fiz. 29 (1965) 242 (Gamma-ray and conversion electron energies and emission probabilities) I.AHMAD, Thesis, Report UCRL-16888, Univ. California (1966) (Alpha-transition and gamma-ray energies and emission probabilities) F.HORSCH, Z. Phys. 194 (1966) 405 (Gamma-ray energies and emission probabilities) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) J.E.CLINE, Nucl. Phys. A106 (1968) 481 (Gamma-ray energies and emission probabilities) K.L.SWINTH, Nucleonics in Aerospace, Ed. P.Polyshuk, N.Y., Plenum Press (1968) 279 (LX-ray emission probabilities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7 (1968) 442 (Alpha emission energies) F.L.OETTING, Proc. Int. Conf. on Plutonium and Other Actinides, 4th, Santa Fe, New Mexico, M.A.Musil, Ed., The Metallurgical Soc., New York, Pt.1 (1970) 154 (Half-life) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies and emission probabilities) K.L.SWINTH, IEEE Trans. Nucl. Sci. 18 (1971) 125 (LX-ray emission probabilities) S.A.BARANOV, V.M.SHATINSKY, Sov. J. Nucl. Phys. 22 (1975) 346 (Alpha-transition energies) B.M.Aleksandrov, V.T.Antsiferov, L.S.Bulyanitsa, A.M.Geidelman, Y.S.Egorov, et al., Bull. Rus. Acad. Sci. Phys. 39 (1975) 20 (Half-life) K.M.GLOVER, R.A.P.WILTSHIRE, F.J.G.ROGERS, M.KING, Report UKNDC(75)-P-71 (1975) 55 (Half-life) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-transition probabilities) A.H.JAFFEY, H.DIAMOND, W.C.BENTLEY, K.F.FLYNN, D.J.ROKOP, A.M.ESSLING, J.WILLIAMS, Phys. Rev. C16 (1978) 354(Half-life) S.R.GUNN, Int. J. Appl. Radiat. Isotop. 29 (1978) 497 (Half-life) L.L.LUCAS, J.R.NOYCE, B.M.COURSEY, Int. J. Appl. Radiat. Isotop. 29 (1978) 501 (Half-life) S.F.MARSH, R.M.ABERNATHEY, R.J.BECKMAN, R.K.ZEIGLER, J.E.REIN, Int. J. Appl. Radiat. Isotop. 29 (1978) 509(Half-life) A.PRINDLE, J.EVANS, R.DUPZYK, R.NAGLE, R.NEWBURY, Int. J. Appl. Radiat. Isotop. 29 (1978) 517 (Half-life) P.W.SEABAUGH, K.C.JORDAN, Int. J. Appl. Radiat. Isotop. 29 (1978) 489 (Half-life) J.ALMEIDA, T.VON EGIDY, P.H.M.VAN ASSCHE, H.G.BORNER, W.F.DAVIDSON, K.SCHRECKENBACH, A.I.NAMENSON, Nucl. Phys. A315 (1979) 71 (Gamma-ray and conversion electron energies) M.DESPRÉS, Report CEA-R-5065, Commissariat a l'Energie Atomique (1980) (Gamma-ray energies and emission probabilities) A.Rytz, in Proc. Int. Conf. on Atomic Masses and Fundamental Constants, East Lansing, Eds J.A.Nolen Jr., W.Benensen, Plenum Press, N.Y. (1980) 249 (Absolute alpha-particle energy measurement) I.AHMAD, Report INDC(NDS)-126, IAEA, Vienna (1981) 28 (Alpha-transition energies and probabilities) F.BROWN, Priv. Comm. (1981), cited in N.E. Holden, Report BNL-NCS-35514 (1984) 1, see also Nucl. Stand. Ref. Data, TECDOC-335, IAEA, Vienna (1981) (Half-life)

H.UMEZAWA, Report INDC(NDS)-126, IAEA, Vienna (1981) 38 (Gamma-ray emission probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (KX-ray energies) R.G.HELMER, C.W.REICH, R.J.GEHRKE, J.D.BAKER, Int. J. Appl. Radiat. Isotop. 33 (1982) 23 (Gamma-ray energies and emission probabilities) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (KX-ray energies) A.M.GEIDELMAN, P.DRYAK, YU.S.EGOROV, ET AL., Proc. II Int. Symp. Meth. of Prod. and Meas. of Standard Sources and Solutions, Chopak, Hungary Vol.II (1984) 381 (U LX-ray energies) M.DIVADEENAM, J.R.STEHN, Ann. Nucl. Energy 11 (1984) 375 (Half-life) Y.IWATA, Y.YOSHIZAWA, T.SUZUKI, S.ICHIKAWA, S.OKAZAKI, Int. J. Appl. Radiat. Isotop. 35 (1984) 1 (Gamma-ray emission probabilities) G.BORTELS, B.DENECKE, R.VANINBROUKX, Nucl. Instrum. Methods Phys. Res. 223 (1984) 329 (U LX-ray energies) I.AHMAD, Nucl. Instrum. Methods Phys. Res. 223 (1984) 319 (Alpha-transition probabilities) A.A.DRUZHININ, V.N.POLYNOV, A.M.KOROCHKIN, E.A.NIKITIN, L.I.LAGUTINA, Sov. At. Energy 59 (1985) 628 (SF Half-life) S.MIRZADEH, Y.Y.CHU, S.KATCOFF, L.K.PEKER, Phys. Rev. C33 (1986) 2159 (235U level energies, 235Pa beta- decay) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha-transition probabilities) V.P.CHECHEV, N.K.KUZMENKO, V.O.SERGEEV, K.P.ARTAMONOVA, Evaluated Decay Data of Transuranium Radionuclides, Handbook, Publishing House Energoatomizdat, Moscow (1988) (Evaluation of 239Pu decay data) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life) K.M.GLOVER, A.L.NICHOLS, Report AERE-R-13822 (1990) (Half-life) S.V.ANICHENKOV, YU.S.POPOV, Sov. J. Radiochemistry 32 (1990) 401 (Alpha-transition probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-transition energies and probabilities) C.J.BLAND, J.MOREL, E.ETCHEVERRY, M.C.LÉPY, Nucl. Instrum. Methods Phys. Res. A312 (1992) 323 (LX and gamma-ray emission probabilities) C.J.BLAND, J.TRUFFY, Appl. Radiat. Isot. 43 (1992) 1241 (Alpha-transition probabilities) N.COURSOL, N.CORON, D.MASSE, H.STROKE, J.W.ZHOU, P.DE MARCILLAC, J.LEBLANC, G.ARTZNER, G.DAMBIER, J.BOUCHARD, G.JEGOUDEZ, J.P.LEPELTIER, G.NOLLEZ, C.GOLBACH, J.-L.PICOLO, Nucl. Instrum. Methods Phys. Res. A312 (1992) 24 (Gamma-ray emission probabilities) E.A.FROLOV, Appl. Radiat. Isot. 43 (1992) 211 (Alpha-transition energies) G.BARCI-FUNEL, J.DALMASSO, G.ARDISSON, Appl. Radiat. Isot. 43 (1992) 37 (LX and gamma-ray emission probabilities) E.GARCIA-TORAÑO, M.L.ACENA, G.BORTELS, D.MOUCHEL, Nucl. Instrum. Methods Phys. Res. A334 (1993) 447 (Alpha-transition probabilities) M.R.SCHMORAK, Nucl. Data Sheets 69 (1993) 375 (Decay Scheme) J.MOREL, E.ETCHEVERRY, M.VALLÉE, Nucl. Instrum. Methods Phys. Res. A339 (1994) 232 (X- and gamma-ray energies and emission probabilities) W.RAAB, J.L.PARUS, Nucl. Instrum. Methods Phys. Res. A339 (1994) 116 (Alpha-transition probabilities) D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Alpha-transition probabilities) M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10 (LX-ray emission probabilities)

M.-C.LÉPY, K.DEBERTIN, Nucl. Instrum. Methods Phys. Res. A339 (1994) 218 (LX-ray emission probabilities) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (U LX-ray energies and emission probabilities) R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Decay scheme, gamma-ray energies and multipolarities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Alpha-transition probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) L.L.VINTRO, P.I.MITCHELL, O.M.CONDREN, M.MORAN, J.VIVES I BATLLE, J.A.SANCHEZ-CABEZA, Nucl. Instrum. Methods Phys. Res. A369 (1996) 597 (Alpha-transition probabilities) A.V.BUSHUEV, V.N.ZUBAREV, E.V.PETROVA ET AL., At. Energ. 82 (1997) 117 (Gamma-ray emission probabilities) R.O.KOROB, S.L.FIGUEROA, Radiochim. Acta 77 (1997) 161 (Gamma-ray emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) A.M.SANCHEZ, P.R.MONTERO, Nucl. Instrum. Methods Phys. Res. A420 (1999) 481 (Alpha-transition probabilities) F.DAYRAS, Nucl. Instrum. Methods Phys. Res. A490 (2002) 492 (Alpha-transition probabilities) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q})

E.BROWNE, Nucl. Data Sheets 98 (2003) 665

(Evaluation of 239 Pu decay data, 235U level energies, gamma-ray emission probabilities, alpha-transition probabilities)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	6561	(7)	У
$Q^{'}_{lpha}$:	5255.75	(15)	keV
α	:	100		%
SF	:	5.7		$ imes 10^{-6}$ %

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0.10}$	4217.6 (2)	< 0.0000001
$\alpha_{0,9}$	4223.8 (4)	< 0.0000013
$\alpha_{0,8}$	4226.1(3)	< 0.00000017
$\alpha_{0,7}$	4264.3(3)	0.00000065 (8)
$\alpha_{0,6}$	4436.4(2)	0.00000013 (7)
$\alpha_{0,5}$	4492.0(2)	0.0000193~(4)
$\alpha_{0,4}$	4654.5(2)	0.000047~(5)
$\alpha_{0,3}$	4863.5(2)	0.001082(18)
$\alpha_{0,2}$	5021.1(2)	0.0863~(18)
$\alpha_{0,1}$	5123.6(2)	27.16(19)
$lpha_{0,0}$	5168.13(15)	72.74(18)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(U)	5.01 - 21.60	10.3 (8)
e_{AK}	(U)		0.0000027(4)
	$\widetilde{\mathrm{KLL}}$	71.78 - 80.95	}
	KLX	88.15 - 98.43	}
	KXY	104.51 - 115.59	}
$ec_{1,0 L}$	(U)	23.486 - 28.076	19.8(6)
$ec_{1,0 M}$	(U)	39.696 - 41.690	5.48(15)
$ec_{1,0 N}$	(U)	43.803 - 44.865	1.483 (40)
$ec_{2,1 L}$	(U)	82.475 - 87.067	0.0571(10)
$ec_{2,1 M}$	(U)	98.687 - 100.680	0.01585(33)
,	. /		

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		10.34(15)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(U) (U)	94.666 98.44		$\begin{array}{c} 0.0000260 \ (6) \\ 0.0000416 \ (9) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	110.421 111.298 111.964	} } }	0.0000150 (4)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	114.407 115.012 115.377	} } }	0.00000513 (16)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	${\rm P}_{\gamma+{\rm ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{1,0}(U)$	45.244(2)	27.3 (8)	E2	589 (12)	0.0462(9)
$\gamma_{2,1}(U)$	104.233(5)	0.0856(14)	E2	10.99(22)	0.00714(7)
$\gamma_{3,2}(U)$	160.308(3)	0.001116 (17)	E2	1.76(4)	0.0004045 (22)
$\gamma_{4,3}(U)$	212.46(5)	0.0000464 (48)	E2	0.599(12)	0.000029(3)
$\gamma_{5,2}(U)$	538.1(1)	0.00000168(14)	E3	0.143(3)	0.000000147(12)
$\gamma_{5,1}(U)$	642.34(5)	0.00001449 (43)	E1 + (M2 + E3)	0.15(2)	0.0000126(3)
$\gamma_{5,0}(U)$	687.56(10)	0.00000466(14)	E1	0.31(2)	0.00000356(9)
$\gamma_{6,1}(U)$	698.94	< 0.00000025			< 0.00000025
$\gamma_{9,2}(U)$	810.8	< 0.00000043			< 0.00000043
$\gamma_{7,1}(U)$	874.0(2)	0.0000059(6)	(E2)	0.0144(3)	0.00000058 (6)
$\gamma_{8,1}(U)$	912.4(3)	< 0.00000007	(M1)	0.050(1)	< 0.00000007
$\gamma_{9,1}(U)$	915.1(3)	< 0.00000063	(M1 + E0)		< 0.00000063
$\gamma_{10,1}(U)$	921.2(2)	< 0.00000022	E1	0.00432(9)	< 0.00000022
$\gamma_{8,0}(U)$	958.0(2)	< 0.0000001			< 0.0000001
$\gamma_{9,0}(U)$	960.3	< 0.00000005			< 0.00000005
$\gamma_{10,0}(U)$	966.9(2)	< 0.0000000501985	E1	0.00397~(8)	< 0.00000005

5 References

E.F.WESTRUM, Phys. Rev. 83 (1951) 1249
(Half-life)
M G.INGHRAM, D.C.HESS, P.R.FIELDS, G.L.PYLE, Phys. Rev. 83 (1951) 1250
(Half-life)
F.ASARO, I.PERLMAN, Phys. Rev. 88 (1952) 828
(Alpha emission energies and probabilities)
E.M.KINDERMAN, Report HW 27660, Hanford Laboratory (1953)
(SF Half-life)
F.R.BARCLAY, W.GALBRAITH, K.M.GLOVER, G.R.HALL, W.J.WHITEHOUSE, Proc. Phys. Soc. (London) 67A (1954) 646

(SF Half-life) O.CHAMBERLAIN, G.W.FARWELL, E.SEGRÈ, Phys. Rev. 94 (1954) 156 (SF Half-life) G.FARWELL, J.E.ROBERTS, A.C.WAHL, Phys. Rev. 94 (1954) 363 (Half-life) J.P.BUTLER, T.A.EASTWOOD, T.L.COLLINS, M.E.JONES, F.M.ROURKE, R.P.SCHUMAN, Phys. Rev. 103 (1956) 634(Half-life) L.L.GOLDIN, G.I.NOVIKOVA, E.F.TRETYAKOV, Phys. Rev. 103 (1956) 1004 (Alpha emission energies and probabilities) L.M.KONDRATEV, G.I.NOVIKOVA, Y.P.SOBOLEV, L.L.GOLDIN, Zh. Eksp. Teor. Fiz. 31 (1956) 771; Sov. Phys. -JETP 4 (1956) 645 (Alpha emission energies and probabilities) P.S.SAMOILOV, Sov. J. At. Energy 4 (1958) 102; At. Energ. 4 (1958) 81 (Gamma-ray energies) YA.P.DOKUCHAEV, At. Energ. 6 (1959) 74 (Half-life) E.F.TRETYAKOV, L.N.KONDRATEV, G.I.KHLEBNIKOV, L.L.GOLDIN, Zh. Eksp. Teor. Fiz.36 (1959) 362; Sov. Phys. - JETP 9 (1959) 250 (Gamma-ray energies) V.L.MIKHEEV, N.K.SKOBELEV, V.A.DRUIN, G.N.FLEROV, Zhur. Eksptl. i Teoret. Fiz. 37(1959)859; Sov. Phys. -JETP 10 (1960) 612 (Half-life) D.E.WATT, F.J.BANNISTER, J.B.LAIDLER, F.BROWN, Phys. Rev. 126 (1962) 264 (SF Half-life) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 255 (1962) 3155 (Alpha emission energies) L.Z.MALKIN, I.D.ALKHAZOV, A.S.KRIVOKHATSKY, K.A.PETRZHAK, Sov. J. At. Energy 15 (1964) 851; At. Energ. 15 (1963) 158 (SF Half-life) F.Asaro, S.G.THOMPSON, F.S.STEPHENS JR., I.PERLMAN, Priv. Comm. (1957), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha emission energies and probabilities) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha emission energies and probabilities) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) P.H.WHITE, Priv. Comm. (1967), cited in N.E.Holden, D.C.Hoffman, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (1967) (SF Half-life) P.FIELDHOUSE, D.S.MATHER, E.R.CULLIFORD, J. Nucl. Energy 21 (1967) 749 (SF Half-life) F.L.OETTING, Proc. Symp. on Thermodynamics of Nuclear Materials with Emphasis on Solution Systems, STI/PUB/ 162, IAEA, Vienna (1968) 55 (Half-life) C.M.LEDERER, J.M.JAKLEVIC, S.G.PRUSSIN, Nucl. Phys. A135 (1969) 36 (Alpha emission energies and probabilities) K.L.SWINTH, IEEE Nuclear Science Symp. 4 (1970) 125 (LX-ray emission probabilities) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies and probabilities) M.Schmorak, C.E.Bemis Jr., M.J.Zender, N.B.Gove, P.F.Dittner, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and probabilities) J.E.CLINE, R.J.GEHRKE, L.D.MCISAAC, Report ANCR-1069 (1972) (Gamma-ray energies) D.J.GORMAN, A.RYTZ, H.V.MICHEL, Compt. Rend. Acad. Sci. (Paris) Ser. B 275 (1972) 291 (Alpha emission energies) R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies)

T.DRAGNEV, K.SCHARF, Int. J. Appl. Radiat. Isotop. 26 (1975) 125 (Gamma-ray emission probabilities) H.OTTMAR, P.MATUSSEK, I.PIPER, Proc. 2nd Int. Symp. on Neutron Capture Gamma Ray Spectroscopy and Related Topics, Petten, Netherlands (1975) 658 (Gamma-ray energies and emission probabilities) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities) H.UMEZAWA, T.SUZUKI, S.ICHIKAWA, J. Nucl. Sci. Technol. (Tokyo) 13 (1976) 327 (Gamma-ray emission probabilities) S.A.BARANOV, V.M.SHATINSKII, Yad. Fiz. 26 (1977) 461; Sov. J. Nucl. Phys. 26 (1977) 244 (Alpha emission energies and probabilities) A.H.JAFFEY, H.DIAMOND, W.C.BENTLEY, D.G.GRACZYK, K.P.FLYNN, Phys. Rev. C18 (1978) 969 (Half-life) C.Budtz-Jorgensen, H.-H.Knitter, NEANDC(E)-202 Vol.III (1979) 9 (SF Half-life) J.MOREL, Priv. Comm. (1981), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1981) (Gamma-ray emission probabilities) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 32 (1981) 829 (Gamma-ray energies and emission probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (K X-ray energies) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (K X-ray energies) G.BORTELS, B.DENECKE, R.VANINBROUKX, Nucl. Instrum. Methods 223 (1984) 329 (L X-ray energies) F.J.STEINKRUGER, G.M.MATLACK, R.J.BECKMAN, Int. J. Appl. Radiat. Isotop. 35 (1984) 171 (Half-life) L.L.LUCAS, J.R.NOYCE, Int. J. Appl. Radiat. Isotop. 35 (1984) 173 (Half-life) R.J.BECKMAN, S.F.MARSH, R.M.ABERNATHEY, J.E.REIN, Int. J. Appl. Radiat. Isotop. 35 (1984) 163 (Half-life) A.A.ANDROSENKO, P.A.ANDROSENKO, YU.V.IVANOV, A.E.KONYAEV, V.F.KOSITSYN, E.M.TSENTER, V.T.SHCHE-BOLEV, Sov. J. At. Energy 57 (1984) 788; At. Energ. 57 (1984) 357 (SF Half-life) I.AHMAD, Nucl. Instrum. Methods 223 (1984) 319 (Alpha emission probabilities) C.R.RUDY, K.C.JORDAN, R.TSUGAWA, Int. J. Appl. Radiat. Isotop. 35 (1984) 177 (Half-life) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Gamma-ray emission probabilities) YU.A.SELITSKY, V.B.FUNSHTEIN, V.A.YAKOVLEV, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku (1988) 131 (SF Half-life) N.Dytlewski, M.G.Hines, J.W.Boldeman, Nucl. Sci. Eng. 102 (1989) 423 (SF Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies) S.V.ANICHENKOV, YU.S.POPOV, Radiokhimiya 32 (1990) 109; Sov. J. Radiochemistry 32 (1991) 401 (Alpha emission probabilities) YU.V.IVANOV, A.E.KONYAEV, V.F.KOSITSYN, E.A.KHOLNOVA, V.T.SHCHEBOLEV, M.F.YUDIN, Sov. J. At. Energy 70 (1991) 491; At. Energ. 70 (1991) 396 (SF Half-life) C.J.BLAND, J.TRUFFY, Appl. Radiat. Isot. 43 (1992) 1241 (Alpha emission probabilities) G.BARCI-FUNEL, J.DALMASSO, G.ARDISSON, Appl. Radiat. Isot. 43 (1992) 37 (X-ray energies) D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Alpha emission probabilities)

M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10

(L X-ray energies and emission probabilities)

M.-C.LÉPY, K.DEBERTIN, Nucl. Instrum. Methods Phys. Res. A339 (1994) 218

(L X-ray energies and emission probabilities)

A.M.SANCHEZ, F.V.TOME, J.D.BEJARANO, Nucl. Instrum. Methods Phys. Res. A340 (1994) 509

(Alpha emission probabilities)

W.RAAB, J.L.PARUS, Nucl. Instrum. Methods Phys. Res. A339 (1994) 116

 $({\rm Alpha\ emission\ probabilities})$

P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229

(L X-ray energies and emission probabilities)

L.L.VINTRO, P.I.MITCHELL, O.M.CONDREN, M.MORAN, J.VIVES I BATLLE, J.A.SANCHEZ-CABEZA, Nucl. Instrum. Methods Phys. Res. A369 (1996) 597

(Alpha emission probabilities)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999)

(K X-ray energies and relative emission probabilities)

E.Schönfeld, H.Janssen, Appl. Radiat. Isot. 72 (2000) 595

(SF half-life) $% \left(\left({{{\rm{SF}}} \right)_{{\rm{B}}} \right)$

N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

M.-M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH, in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2004) 247

(240Pu Decay Data Evaluation)

G.SIBBENS, S.POMMÉ, Appl. Radiat. Isot. 60 (2004) 155

(Alpha emission energies and probabilities)

V.P.CHECHEV, Proc. Int. Conf. on Nuclear Data for Science and Technology, 26 Sept.-1 Oct. 2004, Santa Fe, New Mexico; AIP Conf. Proc. 769 (2005) 91

(240Pu Decay Data Evaluation)

E.BROWNE, J.K.TULI, Nucl. Data Sheets 107 (2006) 2649

(Decay scheme, 236U level energies, gamma-ray multipolarities, data from 236Pa and 236Np decays)

I.AHMAD, F.G.KONDEV, J.P.GREENE, M.A.KELLETT, A.L.NICHOLS, Nucl. Instrum. Methods Phys. Res. A579 (2007) 458

(Half-life)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	14.33	(4)	У
Q_{β^-}	:	20.8	(2)	keV
Q_{lpha}	:	5140.0	(5)	keV
β^{-}	:	99.99756	(2)	%
α	:	0.00244	(2)	%

2 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,0}^-$	20.8(2)	99.99756(2)	1st forbidden	5.8

3 α Emissions

	Energy keV	$\begin{array}{c} \text{Probability} \\ \times 100 \end{array}$
$\alpha_{0,10}$	4694(3)	≈ 0.0000007
$\alpha_{0,9}$	4733(3)	≈ 0.0000007
$\alpha_{0,8}$	4744(5)	≈ 0.0000017
$\alpha_{0,7}$	4785.1 (11)	0.0000005(2)
$\alpha_{0,6}$	4798.0 (5)	0.000029(3)
$\alpha_{0,5}$	4853.8(5)	0.000295(8)
$\alpha_{0,4}$	4897.3(5)	0.00203(4)
$\alpha_{0,3}$	4973.1(5)	0.000032(3)
$\alpha_{0,2}$	4999.2(5)	0.0000100(12)
$\alpha_{0,1}$	5043.4(5)	0.000025(2)
$lpha_{0,0}$	5054.6(5)	0.0000086 (10)

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(U)	5.9 - 21.6	0.00117 (6)	
e _{AK}	(U) KLL KLX KXY	71.776 - 80.954 88.153 - 98.429 104.51 - 115.59	0.000031 (5) } } }	
$\beta_{0,0}^-$	max:	20.8 (2)	99.99756(2)	avg: 5.8 (1)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.619 - 20.714		0.001166(40)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(U) (U)	94.666 98.44		$\begin{array}{c} 0.000300 \ (7) \\ 0.000479 \ (10) \end{array}$	$K\alpha$
$egin{array}{l} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(U) (U) (U)	110.421 111.298 111.964	} } }	0.000179(5)	$\mathrm{K}\beta_1'$
$\begin{array}{c} {\rm XK}\beta_2\\ {\rm XK}\beta_4\\ {\rm XKO}_{2,3} \end{array}$	(U) (U) (U)	114.407 115.012 115.377	} } }	0.000059(2)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	${\rm P}_{\gamma+{\rm ce}} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{5,4}(U)$	44.18 (3)	0.000258(17)	M1+1.7(5)%E2	60.4(29)	0.0000042 (2)
$\gamma_{2,1}(U)$	44.86(10)	0.000111 (25)	[M1+15(4)%E2]	131 (25)	0.00000084(10)
$\gamma_{2,0}(U)$	56.30(12)	0.00051~(4)	(E2)	204(4)	0.0000025(2)
$\gamma_{6,5}(U)$	56.76(10)	0.0000280 (41)	M1 + 1.1(13)E2	27(3)	0.0000010(1)
$\gamma_{3,1}(U)$	71.64(9)	0.000189(14)	(E2)	64.3(13)	0.0000029(2)
$\gamma_{4,3}(U)$	77.01(4)	0.000225~(6)	(M1)	9.86(20)	0.0000207~(4)
$\gamma_{6,4}(U)$	100.94(11)	0.00000099	(E2)	12.8(3)	0.000000072
$\gamma_{4,2}(U)$	103.680(5)	0.000536(14)	[M1+0.47(1)%E2]	4.20(9)	0.000103~(2)
$\gamma_{7,4}(U)$	114(1)	0.0000067 (13)	${ m E1}$	0.0883(17)	0.0000062~(12)
$\gamma_{5,3}(\mathrm{U})$	121.22(5)	0.0000097(10)	(M1)	12.8(3)	0.00000070 (7)
$\gamma_{4,1}(U)$	148.567(10)	0.001500(27)	[M1+2.8(1)%E2]	7.05(14)	0.0001863(8)
$\gamma_{4,0}(U)$	159.96 (2)	0.0000179 (4)	(E2)	1.78 (3)	0.00000645 (9)

6 References

M.S.FREEDMAN, F.WAGNER JR., D.W.ENGELKEMEIR, Phys. Rev. 88 (1952) 1155
(Beta-transition energy, gamma-ray energies)
F.ASARO, Thesis, Report UCRL-2180, Univ. California (1953)
(Alpha-transition energies)
K.N.SHLIAGIN, Izv. Akad. Nauk SSSR, Ser. Fiz. 20 (1956) 891
(Beta-transition energy)
H.L.SMITH, J. Inorg. Nucl. Chem. 17 (1961) 178
(Beta-transition probability)
B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, Zh. Eksp. Teor. Fiz. 46 (1964) 1517
(Alpha-transition energies)
S.A.BARANOV, M.K.GADZHIEV, V.M.KULAKOV, V.M.MATINSKII, Yad. Fiz. 1 (1965) 557
(Alpha-transition energies)
I.A.BARANOV, V.V.BERDIKOV, A.S.KRIVOKHATSKII, A.N.SILANTEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 29 (1965) 163

(Alpha-transition energies and probabilities, gamma-ray energies) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Yad. Fiz. 7 (1968) 727 (Alpha-transition energies) F.L.OETTING, Phys. Rev. 168 (1968) 1398 (Average beta-transition energy) I.Ahmad, A.M.Friedman, J.P.Unik, Nucl. Phys. A119 (1968) 27 (Alpha- and gamma transition energies, alpha/beta-branching) R.GUNNINK, R.J.MORROW, Report UCRL-51087, Univ. California (1971) (Gamma-ray energies) J.E.CLINE, R.J.GEHRKE, L.D.MCISAAC, Report ANCR-1069 (1972) (Gamma-ray energies and emission probabilities) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-transition energies and probabilities) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (Gamma-ray energies and emission probabilities, alpha/beta-branching) H.UMEZAWA, T.SUZUKI, S.ICHIKAWA, J. Nucl. Sci. Technol. (Tokyo) 13 (1976) 327 (Gamma-ray energies and emission probabilities) R.VANINBROUKX, J.BROOTHAERTS, P.DE BIEVRE, B.DENECKE, M.GALLET, NEANDC(E)-192 Vol.III (1977) 55 (Alpha/beta-branching) J.K.DICKENS, J.S.EMERY, R.M.FREESTONE, T.A.LOVE, J.W.MCCONNELL, K.J.NORTHCUTT, R.W.PEELLE, Report ORNL/NUREG/TM-223, Oak Ridge National Laboratory (1978) (Gamma-ray emission probabilities) Y.A.ELLIS, Nucl. Data Sheets 23 (1978) 123 (Decay scheme) A.CESANA, G.SANDRELLI, V.SANGIUST, M.TERRANI, Energ. Nucl. (Milan) 26 (1979) 526 (Gamma-ray energies) S.F.MARSH, R.M.ABERNATHEY, R.J.BECKMAN, J.E.REIN, Int. J. Appl. Radiat. Isotop. 31 (1980) 629 (Half-life) P.DE BIEVRE, M.GALLET, R.WERZ, NEANDC(E)-242 Vol.III (1983) 53 (Half-life) K.M.GLOVER, Int. J. Appl. Radiat. Isotop. 35 (1984) 239 (Alpha-transition energies) S.K.Aggarwal, A.R.Parab, S.A.Chitambar, H.C.Jain, Phys. Rev. C31 (1985) 1885 (Half-life) A.A.DRUZHININ, V.N.POLYNOV, A.M.KOROCHKIN, E.A.NIKITIN, L.I.LAGUTINA, At. Energ. 59 (1985) 68 (Half-Lives of the Spontaneous Fission of 241Pu) R.G.HELMER, C.W.REICH, Int. J. Appl. Radiat. Isotop. 36 (1985) 117 (Gamma-ray energies and probabilities) H.WILLMES, T.ANDO, R.J.GEHRKE, Int. J. Appl. Radiat. Isotop. 36 (1985) 123 (Gamma-ray energies and emission probabilities) G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, At. Energ. 60 (1986) 343 (Half-life) V.P.CHECHEV, N.K.KUZMENKO, V.O.SERGEEV, K.P.ARTAMONOVA, Evaluated Decay Data of Transuranium Radionuclides, Handbook, Publishing House Energoatomizdat, Moscow (1988) (Evaluation of 241Pu decay data) J.L.PARKER, R.N.LIKES, A.GOLDMAN, Appl. Radiat. Isot. 40 (1989) 793 (Half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-transition energies) T.DRAGNEV, Appl. Radiat. Isot. 44 (1993) 613 (Gamma-ray energies) D.T.BARAN, Appl. Radiat. Isot. 45 (1994) 1177 (Gamma-ray emission probabilities) Y.A.AKOVALI, Nucl. Data Sheets 74 (1995) 461 (Decay scheme, multipolarities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)

R.B.FIRESTONE, V.S.SHIRLEY, C.M.BAGLIN, S.Y.F.CHU, J.ZIPKIN, Table of Isotopes, 8th Ed., John Wiley and Sons Inc., N.Y. Vol.II (1996) (Decay scheme, gamma-ray energies, multipolarities and level energies) P.DE BIEVRE, A.VERBRUGGEN, Proc. Int. Conf. on Nuclear Data for Science and Technology, 19-24 May 1997, Trieste, Italy (1997) 839 (Half-life) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (r0 of 237U) O.DRAGOUN, A.SPALEK, M.RYSAVY, A.KOVALIK, E.A.YAKUSHEV, V.BRABEC, A.F.NOVGORODOV, N.DRAGOUNOVA, J.RIZEK, J. Phys. (London) G25 (1999) 1839 (Beta-transition energy) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) E.A.YAKUSHEV, V.M.GOROZHANKIN, O.DRAGOUN, A.KOVALIK, A.F.NOVGORODOV, M.RYSAVY, A.SHPALEK, Proc. 49th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Dubna (1999) 118 (Beta-transition energy) O.DRAGOUN, A.SPALEK, M.RYSAVY, A.KOVALIK, E.YAKUSHEV, V.BRABEC, J.FRANA, D.VENOS, Appl. Radiat. Isot. 52 (2000) 387 (Beta-transition energy) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) N.FOTIADES, G.D.JOHNS, R.O.NELSON, ET AL., Phys. Rev. C69 (2004) 024601 (Placement of 121.2 keV gamma transition) M.J.MARTIN, Nucl. Data Sheets 106 (2005) 89

(Evaluation of beta-transition energy, alpha/beta -branching) M.S.BASUNIA, Nucl. Data Sheets 107 (2006) 2323

(decay scheme, multipolarities)

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	3.73	(3)	$\times 10^5$ y
$Q^{'}_{lpha}$:	4984.5	(10)	keV
α	:	100		%
SF	:	5.5		$\times 10^{-4}$ %

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,3} \ lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 4600.1 \ (10) \\ 4756.2 \ (10) \\ 4858.2 \ (10) \\ 4902.3 \ (10) \end{array}$	$\begin{array}{c} 0.00084 \ (6) \\ 0.0304 \ (13) \\ 23.44 \ (17) \\ 76.53 \ (17) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(U)	5.9 - 21.6	8.40 (19)
e _{AK}	(U) KLL KLX KXY	71.78 - 80.95 88.15 - 98.43 104.51 - 115.59	0.00000188 (29) } } }
$ec_{1,0} L ec_{1,0} M ec_{1,0} M ec_{2,1} L$	(U) (U) (U) (U)	23.157 - 27.747 39.367 - 41.360 43.474 - 44.536 81.74 - 86.33	17.1 (5) 4.72 (14) 1.28 (4) 0.0209 (11)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(U)	11.62 - 21.73		8.71 (21)	
$XK\alpha_2$	(U)	94.666		0.0000180(13)	$K\alpha$
$XK\alpha_1$	(U)	98.44		0.0000288(21)	}
$XK\beta_3$	(U)	110.421	}		
$XK\beta_1$	(U)	111.298	}	0.0000104 (8)	$\mathrm{K}eta_1'$
$ ext{XK}eta_5^{\prime\prime}$	(U)	111.964	}		
$XK\beta_2$	(U)	114.407	}		
$XK\beta_4$	(U)	115.012	}	0.00000355(27)	$\mathrm{K}eta_2'$
$XKO_{2,3}$	(U)	115.377	}	· · ·	-

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(U)$ $\gamma_{2,1}(U)$ $\gamma_{3,2}(U)$	$\begin{array}{c} 44.915 \ (13) \\ 103.50 \ (4) \\ 158.80 \ (8) \end{array}$	$\begin{array}{c} 23.5 \ (7) \\ 0.0313 \ (16) \\ 0.00084 \ (6) \end{array}$	E2 E2 E2	$\begin{array}{c} 610 \ (12) \\ 11.36 \ (23) \\ 1.83 \ (4) \end{array}$	$\begin{array}{c} 0.0384 \ (8) \\ 0.00253 \ (12) \\ 0.000298 \ (20) \end{array}$

4.2 Gamma Transitions and Emissions

5 References

F.Asaro, Thesis, Report UCRL-2180, Univ. California (1953) (Alpha-particle energies and emission probabilities) J.P.BUTLER, M.LOUNSBURY, J.MERRITT, Can. J. Chem. 34 (1956) 253 (Half-life) J.P.BUTLER, T.A.EASTWOOD, T.L.COLLINS, M.E.JONES, F.M.ROURKE, R.P.SCHUMAN, Phys. Rev. 103 (1956) 634 (Half-life, SF half-life) J.P.HUMMEL, Report UCRL-3456, Univ. California (1956) (Alpha-particle energies and emission probabilities) L.M.KONDRATEV, G.I.NOVIKOVA, Y.P.SOBOLEV, L.L.GOLDIN, Zh. Eksp. Teor. Fiz. 31 (1956) 771; Sov. Phys. -JETP 4 (1956) 645 (Alpha-particle energies and emission probabilities) J.F.MECH, H.DIAMOND, M.H.STUDIER, P.R.FIELDS, A.HIRSCH, C.M.STEPHENS, R.F.BARNES, D.J.HENDERSON, J.R.HUIZENGA, Phys. Rev. 103 (1956) 340 (Half-life, SF half-life) M.H.STUDIER, A.HIRCH, Priv. Comm. (1956), cited in J.F.Mech et al., Phys. Rev. 103 (1956) 340 (1956) (SF half-life) V.A.DRUIN, V.P.PERELYGIN, G.I.KHLEBNIKOV, Sov. Phys. - JETP 13 (1961) 913 (SF half-life) L.Z.MALKIN, I.D.ALKHAZOV, A.S.KRIVOKHATSKY, K.A.PETRZHAK, Sov. J. At. Energy 15 (1963) 851; At. Energ. 15 (1964) 158 (SF half-life) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Nucl. Phys. 7 (1968) 442 (Alpha-particle energies) C.E.BEMIS JR., J.HALPERIN, R.EBY, J. Inorg. Nucl. Chem. 31 (1969) 599 (Half-life) R.W.DURHAM, F.MOLSON, Can. J. Phys. 48 (1970) 716 (Half-life) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and emission probabilities) L.S.BULYANITSA, A.M.GEIDELMAN, Y.S.EGOROV, L.M.KRIZHANSKII, A.A.LIPOVSKII, L.D.PREOBRAZHENSKAYA, A.V.LOVTSYUS, Y.V.KHOLNOV, Bull. Rus. Acad. Sci. Phys. 40 (1976) 42 (Half-life) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Sov. At. Energy 41 (1976) 987 (Alpha-emission probabilities) D.W.OSBORNE, H.E.FLOTOW, Phys. Rev. C14 (1976) 1174 (Half-life) J.W.MEADOWS, Report BNL-NCS-24273, Brookhaven National Laboratory (1978) 10 (Half-life, SF half-life) S.K.AGGARWAL, S.N.ACHARYA, A.R.PARAB, H.C.JAIN, Phys. Rev. C20 (1979) 1135 (Half-Life) N.A.KHAN, H.A.KHAN, K.GUL, M.ANWAR, G.HUSSAIN, R.A.AKBAR, A.WAHEED, M.S.SHAIKH, Nucl. Instrum. Methods 173 (1980) 163 (SF half-life)

A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Evaluated decay data)

R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 37 (1986) 1167 (Alpha-, gamma-ray emission probabilities)

YU.A.SELITSKY, V.B.FUNSHTEIN, V.A.YAKOVLEV, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Baku (1988) 131

(SF half-life)

YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Radiokhimiya 32 (1990) 2; Sov. J. Radiochemistry 32 (1990) 425

(MX-, LX- ray relative emission probabilities)

A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205

(Alpha-emission energies)

M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10

(LX-ray energies and emission probabilities)

E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)

E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999)

(KX-ray energies and relative emission probabilities)

E.Schönfeld, H.Janssen, Appl. Radiat. Isot. 52 (2000) 595

(X-ray and Auger electron emission probabilities, EMISSION code)

N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life)

F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129

(Decay Scheme, 238U level energies, gamma-ray multipolarities)

G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337

 (\mathbf{Q})

M.-M.Bé, V.CHISTÉ, C.DULIEU, E.BROWNE, V.CHECHEV, N.KUZMENKO, R.HELMER, A.NICHOLS, E.SCHÖNFELD, R.DERSCH, in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2004)

(242Pu Decay Data Evaluation)

V.P.CHECHEV, Proc. Int. Conf. on Nuclear Data for Science and Technology, 26 Sept.-1 Oct. 2004, Santa Fe, New Mexico; AIP Conf. Proc. 769 (2005)

(242Pu Decay Data Evaluation)

T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Am - 241

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	432.6	(6)	у
$Q^{'}_{lpha}$:	5637.82	(12)	keV
α	:	100		%

2 α Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
0/0.00	4757 58 (13)	0.00004 (3)
C(0,36	4707.50(13)	0.00004 (3)
α _{0,34}	$4834\ 15\ (13)$	0.000000
0,33 00.20	$4888 \ 98 \ (15)$	0.0001
α _{0,32} Ω _{0,32}	$4956\ 06\ (15)$	
$\alpha_{0,30}$	4961.63(14)	
$\alpha_{0,29}$ $\alpha_{0,28}$	4963.83 (13)	
$\alpha_{0,28}$ $\alpha_{0,27}$	5007.07(14)	0.0001
$\alpha_{0.25}$	5055.36(13)	
$\alpha_{0,23}$	5065.97(15)	0.00011
$\alpha_{0,23}$	5092.06 (13)	~ 0.0004
$\alpha_{0.22}$	5099.08(13)	~ 0.0004
$\alpha_{0,21}$	5106.72 (16)	
$\alpha_{0,20}$	5117.21 (13)	0.0004
$\alpha_{0,19}$	5132.8 (2)	
$\alpha_{0,18}$	5155.12(13)	0.0007
$\alpha_{0,17}$	5179.35(13)	0.0003
$\alpha_{0,16}$	5181.63(13)	0.0009
$\alpha_{0,15}$	5190.17(23)	0.0006
$\alpha_{0,14}$	5217.26(13)	
$\alpha_{0,13}$	5225.08(13)	0.0013
$\alpha_{0,12}$	5232.6(3)	
$\alpha_{0,11}$	5244.13(13)	0.0022 (3)
$\alpha_{0,9}$	5280.99(13)	0.0005
$\alpha_{0,8}$	5321.87(13)	0.014(3)
$lpha_{0,6}$	5388.25(13)	1.66(3)
$\alpha_{0,5}$	5416.28(13)	~ 0.01
$\alpha_{0,4}$	5442.86(12)	13.23(10)
$\alpha_{0,3}$	5469.47(12)	< 0.04
$\alpha_{0,2}$	5485.56(12)	84.45(10)
$\alpha_{0,1}$	5511.46(12)	0.23(1)
$lpha_{0,0}$	5544.11(12)	0.38(1)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Np)	6.04 - 13.52	33.4 (17)
e_{AK}	(Np)		0.000114(16)
	KLL	73.50 - 83.13	}
	KLX	90.36 - 97.28	}
	KXY	107.10 - 114.58	}
$ec_{2,1 L}$	(Np)	3.92 - 8.73	14(5)
$ec_{1,0 L}$	(Np)	10.769 - 15.590	15.9(21)
$ec_{3,1 L}$	(Np)	20.28 - 25.09	0.31~(7)
$ec_{2,1}$ M	(Np)	20.606 - 22.681	3.7(5)
$ec_{4,2}$ L	(Np)	20.99 - 25.81	8.8(12)
$ec_{1,0}$ M	(Np)	27.46 - 29.53	4.0(6)
$ec_{1,0 N}$	(Np)	31.70 - 32.79	1.08(16)
$ec_{6,4 L}$	(Np)	33.13 - 37.95	0.87(11)
$ec_{3,1 M}$	(Np)	36.97 - 39.04	0.076~(17)
$ec_{2,0 L}$	(Np)	37.114 - 41.930	30.2(22)
$ec_{4,2}$ M	(Np)	37.68 - 39.76	2.3(4)
$ec_{3,1 N}$	(Np)	41.2 - 42.3	0.021~(5)
$ec_{4,2 N}$	(Np)	41.92 - 43.02	0.65~(9)
$ec_{6,4}$ M	(Np)	49.82 - 51.90	0.228(30)
$ec_{3,0 L}$	(Np)	53.5 - 58.3	0.0232~(4)
$ec_{2,0 M}$	(Np)	53.802 - 55.877	8.12(25)
$ec_{6,4 N}$	(Np)	54.06 - 55.16	0.062(8)
$ec_{6,2 L}$	(Np)	76.54 - 81.36	0.225~(5)
$ec_{6,2}$ M	(Np)	93.23 - 95.31	0.0625~(16)
$ec_{6,2 N}$	(Np)	97.47 - 98.57	0.0171 (4)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	11.89 - 22.2		37.66(17)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Np) (Np)	97.069 101.059		$\begin{array}{c} 0.001134 \ (30) \\ 0.00181 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	$113.303 \\ 114.234 \\ 114.912$	} } }	0.000658 (21)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Np) (Np) (Np)	117.463 117.876 118.429	} } }	0.000226 (8)	$\mathrm{K}\beta_2'$

KRI /V.P. Chechev, N.K. Kuzmenko

$\gamma_{2,1}(Np)$ $\gamma_{-1,1}(Np)$ $\gamma_{1,0}(Np)$ $\gamma_{3,1}(Np)$ $\gamma_{4,2}(Np)$ $\gamma_{14,10}(Np)$ $\gamma_{6,4}(Np)$	$\begin{array}{c} 26.3446 \ (2) \\ 32.183 \\ 33.1963 \ (3) \\ 42.704 \ (5) \\ 43.420 \ (3) \\ 51.01 \ (3) \\ 55.56 \ (2) \\ 57.85 \ (5) \end{array}$	$\begin{array}{c} 21 \ (5) \\ 0.0174 \ (4) \\ 21.3 \ (30) \\ 0.42 \ (9) \\ 12.1 \ (16) \\ 0.000046 \ (21) \end{array}$	E1 anomalous M1+1.66%E2 (M1+ \approx 1.7%E2) M1+16.6%E2	8(2) 175(24)	$\begin{array}{c} 2.31 \ (8) \\ 0.0174 \ (4) \\ 0.1215 \ (28) \end{array}$
$\begin{array}{l} \gamma_{-1,1}({\rm Np}) \\ \gamma_{1,0}({\rm Np}) \\ \gamma_{3,1}({\rm Np}) \\ \gamma_{4,2}({\rm Np}) \\ \gamma_{14,10}({\rm Np}) \\ \gamma_{6,4}({\rm Np}) \end{array}$	$\begin{array}{c} 32.183\\ 33.1963 \ (3)\\ 42.704 \ (5)\\ 43.420 \ (3)\\ 51.01 \ (3)\\ 55.56 \ (2)\\ 57.85 \ (5) \end{array}$	$\begin{array}{c} 0.0174 \ (4) \\ 21.3 \ (30) \\ 0.42 \ (9) \\ 12.1 \ (16) \\ 0.000046 \ (21) \end{array}$	M1+1.66%E2 (M1+ \approx 1.7%E2) M1+16.6%E2	175(24)	0.0174(4) 0.1215(22)
$\begin{array}{l} \gamma_{1,0}(\mathrm{Np}) \\ \gamma_{3,1}(\mathrm{Np}) \\ \gamma_{4,2}(\mathrm{Np}) \\ \gamma_{14,10}(\mathrm{Np}) \\ \gamma_{6,4}(\mathrm{Np}) \end{array}$	$\begin{array}{c} 33.1963 \ (3) \\ 42.704 \ (5) \\ 43.420 \ (3) \\ 51.01 \ (3) \\ 55.56 \ (2) \\ 57.85 \ (5) \end{array}$	$21.3 (30) \\ 0.42 (9) \\ 12.1 (16) \\ 0.00006 (21) $	M1+1.66%E2 (M1+ \approx 1.7%E2) M1+16.6%E2	175(24)	0 1915 (90)
$\begin{array}{l} \gamma_{3,1}(\mathrm{Np})\\ \gamma_{4,2}(\mathrm{Np})\\ \gamma_{14,10}(\mathrm{Np})\\ \gamma_{6,4}(\mathrm{Np}) \end{array}$	$\begin{array}{c} 42.704 \ (5) \\ 43.420 \ (3) \\ 51.01 \ (3) \\ 55.56 \ (2) \\ 57.85 \ (5) \end{array}$	$\begin{array}{c} 0.42 \ (9) \\ 12.1 \ (16) \\ 0.000046 \ (21) \end{array}$	$(M1 + \approx 1.7\% E2)$ M1+16.6%E2	$a/7\Gamma$ (7)	0.1210(28)
$\begin{array}{l} \gamma_{4,2}(\mathrm{Np}) \\ \gamma_{14,10}(\mathrm{Np}) \\ \gamma_{6,4}(\mathrm{Np}) \end{array}$	$\begin{array}{c} 43.420 \ (3) \\ 51.01 \ (3) \\ 55.56 \ (2) \\ 57.85 \ (5) \end{array}$	$12.1 (16) \\ 0.000046 (21) $	M1 + 16.6% E2	≈15(1)	0.0055~(11)
$\gamma_{14,10}(\mathrm{Np})$ $\gamma_{6,4}(\mathrm{Np})$	51.01 (3) 55.56 (2) 57.85 (5)	0.000046 (21)		180(23)	0.0669(29)
$\gamma_{6,4}(Np)$	$55.56(2) \\ 57.85(5)$	_ · · · / · · `	E1	0.753(11)	0.000026~(12)
	57.85(5)	1.19(16)	M1+17.5%E2	65~(6)	0.0181~(18)
$\gamma_{-1,2}(Np)$					0.0052~(15)
$\gamma_{2,0}(Np)$	59.5409(1)	77.6(25)	E1 anomalous	1.16(7)	35.92(17)
$\gamma_{14,9}(Np)$	64.83(2)	0.000196(28)	E1	0.400(8)	0.00014(2)
$\gamma_{8,6}(Np)$	67.50(2)	0.013(4)	(M1+17%E2)	29(6)	0.00042(10)
$\gamma_{4,1}(Np)$	69.76(3)	0.0039(5)	(E1)	0.330(7)	0.0029(4)
$\gamma_{3,0}(Np)$	75.90(1)	0.032	(E2)	53.1(11)	0.0006
$\gamma_{5,1}(Np)$	96.79(3)	0.000047(16)			0.000047(16)
$\gamma_{6,2}(Np)$	98.97(2)	0.329(10)	E2	15.2(3)	0.0203(4)
$\gamma_{4.0}(Np)$	102.98(2)	0.0218(5)	E1	0.1189(24)	0.0195(4)
$\gamma_{-1.3}(Np)$	106.42(5)			~ /	0.000015
$\gamma_{20.13}(Np)$	109.70(7)	0.000051	[E2]	9.44(19)	0.0000049
$\gamma_{21,13}(Np)$	120.36 (8)			~ /	0.0000045
$\gamma_{84}(Np)$	123.05(1)	0.00675(30)	E2	5.75(12)	0.00100(4)
$\gamma_{6,1}(Np)$	125.30(2)	0.00533(26)	(E1)	0.299(6)	0.0041(2)
$\gamma_{29} \gamma_{22}(Np)$	139.44 (8)	0.000023(5)	[E2]	3.37(7)	0.0000053(11)
$\gamma_{11.6}(Np)$	146.55(3)	0.00172(5)	E2	2.73(6)	0.00046 (1)
$\gamma_{8,3}(Np)$	150.04(3)	0.000087(6)	[E1]	0.197(4)	0.000073(5)
$\gamma_{26,15}(Np)$	154.27(20)	0.000004	[M1]	7.06(14)	0.0000005
$\gamma_{29,20}(Np)$	159.26(20)	0.0000016(6)	[E1]	0.171(4)	0.0000014(5)
$\gamma_{24,13}(Np)$	161.54(10)	0.000011	[M1]	6.20(12)	0.0000015
$\gamma_{24,19}(N_{\rm P})$	164.61(2)	0.000178(9)	E2	1.70(4)	0.000066(3)
$\gamma_{13.6}(Np)$	165.81(6)	0.00011(5)	[M1 + E2]	3.7(22)	0.000023(1)
$\gamma_{18,8}(Np)$	169.56(3)	0.000427 (26)	E2	1.51(3)	0.00017(1)
$\gamma_{11,5}(Np)$	175.07(4)	0.000021(3)	[E1]	0.137(3)	0.000018(3)
$\gamma_{-1.7}(Np)$	190.4		LJ		0.0000022(5)
$\gamma_{25,11}(Np)$	191.96(4)	0.0000415(20)	[E2]	0.932(19)	0.0000215(10)
$\gamma_{20,11}(Np)$	196.76 (8)	0.00000054	[E1]	0.1045(21)	0.00000049
$\gamma_{-1.8}(Np)$	201.70(14)	0.0000008	[]	0.1010 (11)	0.0000008
$\gamma = 1, 3(1 + 1)$ $\gamma_{18,7}(Np)$	204.06(6)	0.00000226(7)	[E1]	0.0960(19)	0.00000206 (6)
$\gamma_{10,7}(10,P)$ $\gamma_{0,2}(Np)$	208.005(23)	0.00313(6)	M1 + 2.38% E2	2.98(6)	0.000786(9)
$\gamma_{3,2}(Np)$	221.46(3)	0.00011(5)	[M1+E2]	1.5(10)	0.0000434(8)
$\gamma_{13,4}(1,p)$ $\gamma_{26,10}(Np)$	232.81(5)	0.0000155(4)	[M1]	2.22(5)	0.00000482(9)
$\gamma_{20,10}(10p)$	$234\ 40\ (4)$	0.00000100(1)	M2	8.24(17)	0.00000087(8)
$\gamma_{26.0}(Np)$	246.73(10)	0.00000703(22)	[M1]	1.88(4)	0.00000244(7)
$\gamma_{13,3}(Np)$	248.52(3)	0.00000155(3)	[E1]	0.0612(12)	0.00000146(3)
$\gamma_{22} = \pi (Nn)$	261.00(7)	0.00000169(8)	[E2]	0.312(12)	0.00000129(6)
$\gamma_{12,2}(Np)$	264.88(3)	0.0000100(0)	[M1+E2]	0.9(7)	0.00000120(0)
$\gamma_{13,2}(\mathbf{P})$	267.54(4)	0.000010(1)	E1+19.4%M2	1.06(6)	0.00000000000000000000000000000000000
$\gamma_{3,0}(1)$	270.63(15)	0.000000 (2)	LI 10.T/01412	1.00 (0)	0.00002000(0)
$\gamma = 1.9(19P)$	270.05 (10)				0.0000000000(2)

4.2 Gamma Transitions and Emissions

Am - 241

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	ke V	× 100			× 100
$\gamma_{20.6}(Np)$	275.77(8)	0.000011(4)	[M1+E2]	0.8(6)	0.00000632(10)
$\gamma_{27,9}(Np)$	278.04 (15)	0.00000270(8)	[M1]	1.35(3)	0.00000115(3)
$\gamma_{13,1}(Np)$	291.3(2)	0.00000318(8)	[E1]	0.0430(9)	0.00000305(8)
$\gamma_{16,3}(Np)$	292.77(6)	0.0000173(4)	[E2]	0.215(4)	0.0000142(3)
$\gamma_{20.5}(Np)$	304.21 (20)	0.000000966(21)	[E1]	0.0391(8)	0.00000093(2)
$\gamma_{16,2}(Np)$	309.1(3)	0.00000210(31)	[E1]	0.0377(8)	0.0000020(3)
$\gamma_{22.5}(Np)$	322.56(3)	0.000257(7)	(M1 + 26.5% E2)	0.702(12)	0.000151(4)
$\gamma_{-1,11}(Np)$	324.69	0.0000018(3)			0.0000018(3)
$\gamma_{-1.12}(Np)$	329.69	0.0000011(2)			0.0000011(2)
$\gamma_{14.0}(Np)$	332.35(3)	0.000172(5)	E2	0.147(3)	0.000150(4)
$\gamma_{16,1}(Np)$	335.37(3)	0.00084(4)	M1+17.3%E2	0.69(8)	0.000496(7)
$\gamma_{17,1}(Np)$	337.7(2)	0.00000556(10)	(E2)	0.140(3)	0.00000488(9)
$\gamma_{-1,13}(Np)$	350.71	0.00000139(5)			0.00000139(5)
$\gamma_{20,3}(Np)$	358.25(20)	0.00000133(5)	[E1]	0.0275(6)	0.00000129(5)
$\gamma_{16,0}(Np)$	368.62(3)	0.000347(9)	(M1)	0.622(12)	0.000214(5)
$\gamma_{17,0}(Np)$	370.94(3)	0.000080(4)	M1 + 16% E2	0.53(7)	0.0000520(8)
$\gamma_{-1,14}(Np)$	374.83	0.00000313(5)			0.00000313(6)
$\gamma_{22,3}(Np)$	376.65(3)	0.000225(9)	(M1)	0.586(12)	0.000137(3)
$\gamma_{23,3}(Np)$	383.81(3)	0.000037(7)	[M1+E2]	0.33(23)	0.0000281(6)
$\gamma_{-1,15}(Np)$	389.0(3)	0.0000005			0.00000049
$\gamma_{-1,16}(Np)$	390.61(5)	0.00000573 (8)			0.00000573(10)
$\gamma_{29,7}(Np)$	400.78 (10)	0.0000018(5)	[M1+E2]	0.29(21)	0.00000014(3)
$\gamma_{30,7}(Np)$	406.35(15)	0.00000175(28)	[M1+E2]	0.28(20)	0.00000137(5)
$\gamma_{-1,17}(Np)$	411.27	0.0000018(4)			0.0000018(4)
$\gamma_{22,1}(Np)$	419.33(4)	0.000036(5)	[M1+E2]	0.26(18)	0.0000284(4)
$\gamma_{23,1}(Np)$	426.47(4)	0.000039 (9)	[M1+E2]	0.25(18)	0.000031~(6)
$\gamma_{-1,18}(Np)$	429.9(1)	0.00000109(5)			0.00000109(5)
$\gamma_{-1,19}(Np)$	440.63	0.00000056 (3)			0.00000056 (3)
$\gamma_{-1,20}(Np)$	442.81(7)	0.00000331 (7)			0.00000331 (8)
$\gamma_{35,13}(Np)$	446.15(6)	0.00000011(2)			0.00000011 (2)
$\gamma_{22,0}(Np)$	452.6(2)	0.00000251 (7)	[E2]	0.0635~(13)	0.00000236 (7)
$\gamma_{26,2}(Np)$	454.66(8)	0.0000129(2)	[M1]	0.351(7)	$0.00000953\ (12)$
$\gamma_{23,0}(Np)$	459.68(10)	0.0000043~(5)	[M1+E2]	0.20(14)	0.00000355~(7)
$\gamma_{29,5}(Np)$	462.34(8)	0.0000012	[M1+E2]	0.20(14)	0.000001
$\gamma_{30,5}(Np)$	468.12(15)	0.0000032 (4)	[M1+E2]	0.19(14)	0.00000269~(6)
$\gamma_{-1,21}(\rm Np)$	486.05	0.00000105~(6)			0.00000105~(6)
$\gamma_{28,4}(Np)$	487.13(4)	0.00000080 (6)	[M1]	0.291~(6)	0.0000062(5)
$\gamma_{-1,22}(Np)$	494.39	0.0000010(2)			0.00000010(2)
$\gamma_{-1,23}(Np)$	501.39	0.00000014(2)			0.00000014(2)
$\gamma_{27,1}(Np)$	512.5(3)	0.00000210 (41)	[E1]	0.0133~(3)	0.0000021 (4)
$\gamma_{26,0}(Np)$	514.0(5)	0.0000039(2)	[E1]	0.0132	0.0000038(2)
$\gamma_{30,3}(Np)$	522.06(15)	0.00000113(11)	[M1+E2]	0.14(10)	0.00000099(5)
$\gamma_{-1,24}(Np)$	525.14	0.0000016 (3)	<u> </u>		0.0000016(3)
$\gamma_{38,13}(Np)$	529.17(20)	0.00000072(5)	[E2]	0.0437(9)	0.0000069(5)
$\gamma_{-1,25}(Np)$	532.44	0.0000008 (2)			0.0000008(2)
$\gamma_{27,0}(Np)$	546.12(6)	0.0000025 (3)	[E1]	0.0117(2)	0.0000025(3)
$\gamma_{-1,26}(Np)$	548.15	0.00000005(2)			0.0000005(2)
$\gamma_{-1,27}(Np)$	555.25	0.00000009(2)			0.00000009(2)

KRI /V.P. Chechev, N.K. Kuzmenko

Am - 241

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{33.6}(Np)$	563.46 (2)	0.000000460 (21)	[E2]	0.0378 (8)	0.00000044 (2)
$\gamma_{36.8}(Np)$	573.94 (20)	0.00000142(12)	[M1+E2]	0.11(8)	0.00000128(5)
$\gamma_{-1.28}(Np)$	582.89	0.00000101(6)			0.00000101(6)
$\gamma_{31,2}(Np)$	586.59(20)	0.00000128(5)	[E2]	0.0346(7)	0.00000124(5)
$\gamma_{280}(Np)$	590.09 (4)	0.00000283(6)	[E1]	0.0101(2)	0.00000280(6)
$\gamma_{34} 6(Np)$	597.19(2)	0.0000080(5)	[M1+E2]	0.10(7)	0.00000729(11)
$\gamma_{-1,0}$ (Np)	600.26	0.00000022(3)			0.00000022(3)
$\gamma_{23.4}(Np)$	619.01(2)	0.000065(5)	[M1+E2]	0.09(7)	0.000060(2)
$\gamma_{38,4}(Np)$	627.18(20)	0.00000056(4)	[M1 + E2]	0.09(6)	0.00000051(2)
$\gamma_{32,1}(Np)$	632.93(15)	0.00000124(5)	[]	0100 (0)	0.00000124(5)
$\gamma_{-1,20}(Np)$	636.9	0.00000021(3)			0.00000021(3)
$\gamma = 1,30(1^{\circ}P)$ $\gamma_{26,6}(Np)$	641.32(4)	0.0000076(5)	[M1 + E2]	0.08(6)	0.00000704(10)
$\gamma_{30,0}(1^{1}P)$	65273(2)	0.0000410(25)	[M1 + E2]	0.08(6)	0.0000376(9)
$\gamma_{34,4}(Np)$	662.40(2)	0.0000110(20) 0.00045(10)	(E0+M1+E2)	0.00(0) 0.23(5)	0.000367(6)
$\gamma_{33,2}(Np)$	666.2(2)	0.00019(10)	$(\mathbf{L}0 + \mathbf{M}1 + \mathbf{L}2)$	0.20 (0)	0.000001(0)
$\gamma_{32,0}(\mathbf{Np})$	669.83(2)	0.00000055(7) 0.00000051(7)	[E1]	0.0080(2)	0.00000000000000000000000000000000000
(36,5(Np))	$675\ 78\ (13)$	0.00000001(7) 0.00000001(7)	$[\mathbf{E}_{1}]$	0.0000(2)	0.00000001(7) 0.00000085(5)
$\gamma_{37,5}(Np)$	670.70(13)	0.00000031(7) 0.00000334(8)	[E2,11]	0.07(0)	0.00000000000000000000000000000000000
$\gamma_{34,3}(Np)$	68872(4)	0.00000334(8)	[151] [F1]	0.00770(10) 0.00758(16)	0.00000331(8)
$\gamma_{33,1}(Np)$	603.12(4)	0.0000325(0)		0.00758 (10)	0.0000323(0)
$\gamma = 1,31$ (Np)	606 14 (2)	0.0000055(7)	[M1 + F2]	0.07(5)	0.00000514(8)
$\gamma_{34,2}(Np)$	090.14(2) 700.42(5)	0.00000000000000000000000000000000000		0.07(3)	0.00000017(8)
$\gamma = 1,32$ (Np)	709.42(3)	0.00000041(18)			0.00000041(19)
$\gamma_{-1,33}(\text{INP})$	712.0 721.06(2)	0.00000020(3)	[[[]]]	0.0070.(9)	0.00000020(3)
$\gamma_{33,0}(Np)$	721.90(2) 720.72(15)	0.000197(3)		0.0070(2)	0.000190(3)
$\gamma_{37,3}(Np)$	729.72(10)	0.00000131(0)		0.099(2)	0.00000137(3)
$\gamma = 1,34$ (Np)	796.69	0.00000040(4)			0.00000040(4)
$\gamma_{-1,35(\text{INP})}$	730.00 727.24 (5)	0.00000128(3)			0.00000128(3) 0.00000704(11)
$\gamma_{35,1}(Np)$	737.34(3)	0.00000794(8)			0.00000794(11)
$\gamma = 1,36$ (Np)	740.01 740.0(2)	0.00000019(3)			0.00000019(3)
$\gamma_{-1,37(\text{Np})}$	(42.9(3))	0.0000000000(2)			0.000000000(2)
$\gamma_{-1,38(\text{Np})}$	745.02	0.00000009(2)			0.00000009(2)
$\gamma_{-1,39(Np)}$	(50.39)	0.00000000 (2)	[17:1]	0.0004(1)	0.00000006(2)
$\gamma_{34,0}(Np)$	750.08(2)	0.00000789(11)		0.0004(1)	0.00000784(11)
$\gamma_{-1,40}(Np)$	739.3(1)	0.00000181(3)			0.00000181(3)
$\gamma_{-1,41}(Np)$	(03.31)	0.0000023(2)	[17:1]	0.00000 (10)	0.00000023(2)
$\gamma_{36,1}(Np)$	(00.02 (4))	0.0000004(6)	$[\mathbf{E}1]$	0.00623(12)	0.00000501(6)
$\gamma_{35,0}(Np)$	770.57(10)	0.00000481(5)	[]] [] []	0.0045 (15)	0.00000481(7)
$\gamma_{37,1}(Np)$	772.57 (12)	0.00000303(5)		0.0847(17)	0.00000279(4)
$\gamma_{-1,42}(Np)$	774.67	0.0000011(2)			0.00000011(2)
$\gamma_{-1,43}(Np)$	777.39	0.0000015(2)			0.0000015(2)
$\gamma_{-1,44}(Np)$	(80.53	0.0000031(2)			0.00000031(2)
$\gamma_{-1,45}(Np)$	782.2(5)	0.0000015			0.00000015
$\gamma_{39,3}(Np)$	786.00 (15)	0.0000062(0)			0.00000062
$\gamma_{-1,46}(Np)$	789.0(3)	0.0000042(6)			0.0000042(6)
$\gamma_{-1,47}(Np)$	792.6	0.0000003(1)			0.0000003(1)
$\gamma_{-1,48}(Np)$	794.92 (20)	0.00000094			0.00000094
$\gamma_{39,2}(Np)$	801.94 (20)	0.00000123(7)			0.00000123(7)
$\gamma_{-1,49}(Np)$	803.19	0.0000016 (3)			0.0000016(3)

Am	_	241
----	---	-----

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	Ke v	× 100			× 100
$\gamma_{37.0}(Np)$	805.77 (12)	0.00000033	[M1.E2]	0.05(3)	0.00000031
$\gamma_{-1.50}(\text{Np})$	811.9 (3)	0.0000063(6)		()	0.0000063(6)
$\gamma_{-1.51}(Np)$	819.33	0.00000043(6)			0.00000043(6)
$\gamma_{-1.52}(Np)$	822.21	0.00000024(6)			0.00000024(6)
$\gamma_{39.1}(Np)$	828.60 (12)	0.00000021(4)			0.00000021(4)
$\gamma_{-1,53}(Np)$	835.21	0.00000003 (1)			0.00000003 (1)
$\gamma_{-1,54}(Np)$	838.88	0.00000004(1)			0.0000004(1)
$\gamma_{-1,55}(Np)$	841.14	0.0000010(3)			0.0000010(3)
$\gamma_{-1,56}(Np)$	843.7	0.00000097(8)			0.00000097(8)
$\gamma_{-1,57}(Np)$	846.86	0.0000016 (3)			0.0000016 (3)
$\gamma_{-1,58}(Np)$	847.4(5)	0.0000003			0.00000027 (3)
$\gamma_{-1,59}(Np)$	851.6(10)	0.00000041~(6)			0.00000041~(6)
$\gamma_{-1,60}(Np)$	854.95	0.00000023 (4)			0.0000023 (4)
$\gamma_{-1,61}(Np)$	856.26	0.00000010 (3)			0.00000010 (3)
$\gamma_{40,2}(Np)$	861.34(20)	0.00000008			0.0000008 (3)
$\gamma_{39,0}(Np)$	861.80(12)	0.00000061~(6)			0.00000061~(6)
$\gamma_{-1,62}(Np)$	870.63	0.00000150 (3)			0.00000150 (4)
$\gamma_{-1,63}(Np)$	882	0.00000004(1)			0.0000004(1)
$\gamma_{-1,64}(Np)$	886.53	0.00000015(3)			0.00000015 (3)
$\gamma_{40,1}(Np)$	887.68(20)	0.00000033~(6)			0.0000033~(6)
$\gamma_{-1,65}(Np)$	890.38	0.00000032~(5)			0.0000032(5)
$\gamma_{-1,66}(Np)$	894.47	0.0000003 (1)			0.0000003 (1)
$\gamma_{-1,67}(Np)$	898.17	0.00000006 (2)			0.0000006 (2)
$\gamma_{-1,68}(Np)$	902.61	0.0000033 (3)			0.0000033 (3)
$\gamma_{-1,69}(Np)$	909.95	0.00000005 (1)			0.00000005 (1)
$\gamma_{-1,70}(Np)$	912.4	0.0000028 (3)			0.0000028 (3)
$\gamma_{40,0}(Np)$	920.88(20)	0.00000019 (3)			0.00000019 (3)
$\gamma_{-1,71}(Np)$	928.95	0.00000009(2)			0.00000009(2)
$\gamma_{-1,72}(Np)$	939.2	0.00000005 (1)			0.00000005 (1)
$\gamma_{41,0}(Np)$	946.06	0.000000010 (3)			0.000000010(2)
$\gamma_{-1,73}(Np)$	952.72	0.0000003 (1)			0.0000003 (1)
$\gamma_{-1,74}(Np)$	955.91	0.00000060 (5)			0.0000060 (5)
$\gamma_{42,0}(Np)$	962.19	0.00000004(1)			0.0000004(1)
$\gamma_{-1,75}(Np)$	969.09	0.0000003 (1)			0.0000003 (1)
$\gamma_{-1,76}(Np)$	980.84	0.0000003 (1)			0.0000003 (1)
$\gamma_{43,0}(Np)$	1014.33	0.0000010(2)			0.0000010(2)

5 References

J.K.BELING, J.O.NEWTON, B.ROSE, Phys. Rev. 86 (1952) 797
(Gamma-ray emission probabilities)
J.F.TURNER, Phil. Mag. 46 (1955) 687
(Gamma-ray emission probabilities)
H.JAFFE, T.O.PASSELL, C.I.BROWNE, I.PERLMAN, Phys. Rev. 97 (1955) 142
(Gamma-ray emission probabilities)
R.B.DAY, Phys. Rev. 97 (1955) 689
(Gamma-ray emission probabilities)
J.M.HOLLANDER, W.G.SMITH, J.O.RASMUSSEN, Phys. Rev. 102 (1956) 1372
(Gamma-ray emission probabilities)
L.L.GOLDIN, G.I.NOVIKOVA, E.F.TRETYAKOV, Conf. Acad. Sci. USSR Moscow (1956) 226

(Energies of alpha-particles, alpha-particle emission probabilities) S.ROSENBLUM, M.VALADARES, J.MILSTED, J. Phys. Radium 18 (1957) 609 (Energies of alpha-particles) L.B.MAGNUSSON, Phys. Rev. 107 (1957) 161 (Gamma-ray energies and emission probabilities) P.S.SAMOILOV, Columbia Tech. Transl. (Izv. Akad. Nauk SSSR, Ser. Fiz. 23 (1959) 1416) 23 (1960) 1401 (Gamma-ray energy, gamma transition probabilities and multipolarities) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Anomalous electric dipole gamma-ray transitions) C.F.LEANG, Compt. Rend. Acad. Sci. (Paris) Ser. B 255 (1962) 3155 (Energies of alpha-particles) J.L.WOLFSON, J.H.PARK, Can. J. Phys. (also Erratum Can. J. Phys. 48(1970)2782) 42 (1964) 1387 (Gamma-ray energies and multipolarities) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKY, Nucl. Phys. 56 (1964) 252 (Alpha-particle energies and emission probabilities) W.MICHAELIS, Z. Phys. 186 (1965) 42 (Alpha particle energies and emission probabilities) G.BERTOLINI, F.CAPPELLANI, G.RESTELLI, Nucl. Instrum. Methods 32 (1965) 86 (Gamma-ray emission probabilities) L.D.MCISAAC, Report IDO-17052 (1965) 31 (Gamma-ray emission probabilities) W.YAMAZAKI, J.M.HOLLANDER, Nucl. Phys. 84 (1966) 505 (Internal conversion probabilities) C.M.LEDERER, J.K.POGGENBURG, F.ASARO, J.O.RASMUSSEN, I.PERLMAN, Nucl. Phys. 84 (1966) 481 (Internal conversion coefficients) H.-C.PAULI, K.ALDER, Z. Phys. 202 (1967) 255 (Anomalous electric dipole gamma-ray transitions) C.GUNTHER, D.R.PARSIGNAULT, Nucl. Phys. A104 (1967) 588 (KX-ray emission probabilities) CH.BRIANÇON, M.VALADARES, R.J.WALEN, Compt. Rend. Acad. Sci. (Paris) Ser. B 265 (1967) 1496 (Gamma-ray emission probabilities) F.L.OETTING, S.R.GUNN, J. Inorg. Nucl. Chem. 29 (1967) 2659 (Half-life) L.N.KONDRATEV, E.F.TRETYAKOV, Bull. Rus. Acad. Sci. Phys. 30 (1967) 393 (Internal conversion probabilities) R.E.STONE, E.K.HULET, J. Inorg. Nucl. Chem. 30 (1968) 2003 (Half-life) R.W.JEWELL, W.JOHN, R.MASSEY, B.G.SAUNDERS, Nucl. Instrum. Methods 62 (1968) 68 (Gamma-ray energies) L.C.BROWN, R.C.PROPST, J. Inorg. Nucl. Chem. 30 (1968) 2591 (Half-life) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7 (1968) 442. (Energies of alpha-particles) R.KAMOUN, R.BALLINI, S.BERGSTROM-ROHLIN, J.-M.KUCHLY, P.SIFFERT, Compt. Rend. Acad. Sci. (Paris) Ser. B 266 (1968) 1241 (Energies of alpha-particles) A.PEGHAIRE, Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray emission probabilities) G.C.NELSON, B.G.SAUNDERS, Nucl. Instrum. Methods 84 (1970) 90 (Gamma-ray energies) V.N.GRIGOREV, A.P.FERESIN, Sov. J. Nucl. Phys. 12 (1970) 361 (Anomalous electric dipole gamma-ray transitions) J.E.CLINE, Report IN-1448 (1971) (Gamma-ray emission probabilities) R.L.WATSON, T.K.LI, Nucl. Phys. A178 (1971) 201 (LX-ray emission probabilities) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Energies of alpha-particle) E.KARTTUNEN, H.U.FREUND, R.W.FINK, Phys. Rev. A4 (1971) 1695 (MX-ray emission probability)

R.J.GEHRKE, R.A.LOKKEN, Nucl. Instrum. Methods 97 (1971) 219 (XL- and gamma -ray emission probabilities) J.JOVE, R.ROBERT, Radiochem. Radioanal. Lett. 10 (1972) 139 (Half-life) R.L.HEATH, Report ANCR-1000-2 (1974) (Gamma-ray energies and emission probabilities) W.J.GALLAGHER, S.J.CIPOLLA, Nucl. Instrum. Methods 122 (1974) 405 (LX- ray emission probabilities) J.L.CAMPBELL, L.A.MCNELLES, Nucl. Instrum. Methods 117 (1974) 519 (LX- and gamma - ray emission probabilities) W.W.STROHM, K.C.JORDAN, Trans. Am. Nucl. Soc. 18 (1974) 185 (Half-life) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, P.F.BAKLANOVA, Sov. J. At. Energy 36 (1974) 402 (Half-life) H.RAMTHUN, W.MULLER, Int. J. Appl. Radiat. Isotop. 26 (1975) 589 (Half-life) J.LEGRAND, J.P.PEROLAT, C.BAC, J.GORRY, Int. J. Appl. Radiat. Isotop. 26 (1975) 179 (Gamma-ray emission probabilities) J.Plch, J.Zderadicka, L.Kokta, Czech. J. Phys. 26B (1976) 1344 (Gamma-ray emission probability) R.GUNNINK, J.E.EVANS, A.L.PRINDLE, Report UCRL-52139, Univ. California (1976) (LX-, KX- and gamma-ray emission probabilities) A.GENOUX-LUBAIN, G.ARDISSON, Radiochem. Radioanal. Lett. 33 (1978) 59 (Gamma-ray energies and emission probabilities) V.V.OVECHKIN, Bull. Rus. Acad. Sci. Phys. 42(1) (1978) 82 (Gamma-ray energies and emission probabilities) A.GENOUX-LUBAIN, G.ARDISSON, Compt. Rend. Acad. Sci. (Paris) Ser. B 287 (1978) 13 (Gamma-ray emission energies and intensities) C.ARDISSON, A.GENOUX-LUBAIN, V.BARCI, G.ARDISSON, Radiochem. Radioanal. Lett. 40 (1979) 207 (Gamma-ray energies) D.D.COHEN, Nucl. Instrum. Methods 178 (1980) 481 (LX-ray emission probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (KX-ray energies) K.DEBERTIN, W.PESSARA, Int. J. Appl. Radiat. Isotop. 34 (1983) 515 (Gamma-ray emission probabilities) J.M.R.HUTCHINSON, P.A.MULLEN, Int. J. Appl. Radiat. Isotop. 34 (1983) 543 (Gamma-ray emission probabilities) I.AHMAD, J.HINES, J.E.GINDLER, Phys. Rev. C27 (1983) 2239 (LX-, KX-ray energies and KX-, gamma-ray emission probabilities) I.Ahmad, Nucl. Instrum. Methods 223 (1984) 319 (Alpha-particle emission probabilities) V.V.OVECHKIN, A.E.KHOKHLOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1032 (Gamma-ray energies and emission probabilities) G.BORTELS, P.COLLAERS, Appl. Radiat. Isot. 38 (1987) 831 (Alpha-particle emission probabilities) B.DENECKE, Appl. Radiat. Isot. 38 (1987) 823 (Gamma-ray emission probabilities) V.P.CHECHEV, N.K.KUZMENKO, V.O.SERGEEV, K.P.ARTAMONOVA, Evaluated Decay Data of Transuranium Radionuclides, Handbook, Publishing House Energoatomizdat, Moscow (1988) (Gamma-ray energies) D.D.COHEN, Nucl. Instrum. Methods Phys. Res. A267 (1988) 492 (LX-ray emission probabilities) J.H.HUBBELL, Report NIST 89-4144 (1989) (M fluorescence yield) L.J.MARTIN, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A312 (1992) 146 (Gamma-ray emission probabilities) C.J.BLAND, J.MOREL, E.ETCHEVERRY, M.C.LÉPY, Nucl. Instrum. Methods Phys. Res. A312 (1992) 323 (LX-ray emission probabilities)

M.-C.LÉPY, K.DEBERTIN, H.JANSSEN, U.SCHÖTZIG, Report PTB-Ra-31, Braunschweig (1993) (L X-ray emission intensities) I.AHMAD, Priv. Comm. (1993), cited in C.J.Bland, Nucl. Instrum. Methods Phys. Res. A339 (1994) 180 (1993) (Alpha-particle emission probabilities) M.-C.LÉPY, B.DUCHEMIN, J.MOREL, Nucl. Instrum. Methods Phys. Res. A353 (1994) 10 (LX-ray emission probabilities) C.J.BLAND, Nucl. Instrum. Methods Phys. Res. A339 (1994) 180 (Alpha-particle emission probabilities) Y.A.Akovali, Nucl. Data Sheets 74 (1995) 461 (Decay scheme) C.C.BUENO, J.A.C.GONÇALVES, M.D.S.SANTOS, Nucl. Instrum. Methods Phys. Res. A371 (1996) 460 (Alpha-particle emission probabilities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Alpha-particle emission probabilities) P.N.JOHNSTON, Nucl. Instrum. Methods Phys. Res. A369 (1996) 107 (Evaluated gamma-ray emission probabilities and internal conversion coefficients) A.ABDUL-HADI, J. Radioanal. Nucl. Chem. 231 (1998) 147 (Gamma-ray emission energies and intensities) A.KOVALIK, E.A.YAKUSHEV, V.M.GOROZHANKIN, M.NOVGORODOV, M.RYSAVY, J. Phys. (London) G24 (1998) 2247 (Conversion electron emission energies and intensities) Y.JANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha emission intensities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and emission probabilities) R.G.HELMER, C.VAN DER LEUN, Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma-ray energies) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (241Am spontaneous fission half-life) E.SCHÖNFELD, U.SCHÖTZIG, Appl. Radiat. Isot. 54 (2001) 785 (Calculated absolute emission probabilities of LX-rays) M.-M.Bé, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl. 2 (2002) 481 (Saisinuc software) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) A.Iwahara, M.A.L.Da Silva, A.E.Carvalho Filho, E.M.De Oliveira Bernardes, J.U.Delgado, Appl. Radiat. Isot. 63 (2005) 107 (Absolute emission probabilities of gamma-rays) M.S.BASUNIA, Nucl. Data Sheets 107 (2006) 2323 (241Am decay scheme, 237Np level energies and gamma-ray transition multipolarities) M.-C.LÉPY, J.PLAGNARD, L.FERREUX, Appl. Radiat. Isot. 66 (2008) 715 (Absolute emission probabilities of LX-rays) V.M.GOROZHANKIN, M.-M.BÉ, Appl. Radiat. Isot. 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions)

Am - 241

Am - 242

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	16.01	(2)	h
Q_{β^-}	:	664.5	(4)	keV
Q_{EC}	:	751.3	(7)	keV
β^-	:	83.1	(3)	%
EC	:	16.9	(3)	%

2 Electron Capture Transitions

_	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,1}\\\epsilon_{0,0}$	$\begin{array}{c} 706.8 \ (7) \\ 751.3 \ (7) \end{array}$	$\begin{array}{c} 10.6 \ (5) \\ 6.3 \ (6) \end{array}$	1st forbidden non-unique 1st forbidden non-unique	$7.26 \\ 7.55$	$\begin{array}{c} 0.7261 \ (23) \\ 0.7303 \ (22) \end{array}$	$\begin{array}{c} 0.2016 \ (15) \\ 0.1987 \ (15) \end{array}$	$\begin{array}{c} 0.0532 \ (10) \\ 0.0522 \ (10) \end{array}$

3 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$		Nature	$\log ft$
$egin{array}{c} & \beta_{0,1}^- \ & \beta_{0,0}^- \end{array}$	$\begin{array}{c} 622.4 \ (4) \\ 664.5 \ (4) \end{array}$	45.8 37.3	(23) (23)	1st forbidden non-unique 1st forbidden non-unique	$6.84 \\ 7.03$

4 Electron Emissions

		Energy keV	Electrons per 100 disint.		Energy keV
e_{AL}	(Pu)	6.09 - 13.83	9.9(5)		
$e_{\rm AK}$	(Pu) KLL KLX KXY	75.263 - 85.357 92.607 - 103.729 109.93 - 121.78	0.36 (4) } } }		
e_{AL}	(Cm)	6.19 - 14.46	15.4(10)		
$ec_{1,0 L} ec_{1,0 M+} ec_{1,0 T}$	(Cm) (Cm) (Cm)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 33.1 \ (18) \\ 12.7 \ (7) \\ 45.8 \ (23) \end{array}$		
$ec_{1,0 L} ec_{1,0 M+} ec_{1,0 T}$	(Pu) (Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.7 (4) 2.9 (2) 10.6 (5)		
$\begin{array}{c} \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: max:	$\begin{array}{ccc} 622.4 & (4) \\ 664.5 & (4) \end{array}$	$\begin{array}{c} 45.8 \ (23) \\ 37.3 \ (23) \end{array}$	avg: avg:	$\begin{array}{c} 185.92 \ (14) \\ 200.17 \ (14) \end{array}$

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.124 - 22.153		10.8(5)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 3.55 \ (17) \\ 5.6 \ (3) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	} } }	2.06 (11)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$\begin{array}{c} 120.54 \\ 120.969 \\ 121.543 \end{array}$	} } }	0.72(4)	$\mathrm{K}\beta_{2}^{\prime}$
XL	(Cm)	12.633 - 23.527		18.0 (11)	

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$P_{\gamma} \times 100$
$\gamma_{1,0}(\mathrm{Cm})$ $\gamma_{1,0}(\mathrm{Pu})$	$\begin{array}{c} 42.13 \ (5) \\ 44.54 \ (2) \end{array}$	$\begin{array}{c} 45.8 \ (23) \\ 10.6 \ (5) \end{array}$	E2 E2	$\begin{array}{c} 1155 \ (17) \\ 748 \ (11) \end{array}$	$\begin{array}{c} 0.040 \ (2) \\ 0.014 \ (1) \end{array}$

6 References

T.K.KEENAN, R.A.PENNEMAN, B.B.McINTEER, J. Chem. Phys. 21 (1953) 1802 (Half-life) S.A.BARANOV, K.N.SHLYAGIN, Conf. Acad. Sci. USSR (1955) 183 (Gamma-ray energies, Beta minus/Electron Capture ratio, Conversion electron probabilities/Beta probabilities ratio, EC and Beta branching fractions) R.W.Hoff, H.Jaffe, T.O.Passell, F.S.Stephens, E.K.Hulet, S.G.Thompson, Phys. Rev. 100 (1955) 1403 (Beta minus/Electron Capture ratio) R.F.BARNES, D.J.HENDERSON, A.L.HARKNESS, H.DIAMOND, J. Inorg. Nucl. Chem. 9 (1959) 105 (EC branching fraction) R.W.HOFF, E.K.HULET.M.C.MICHEL, J. Nucl. Energy 8 (1959) 224 (Beta minus/Electron Capture ratio) F.Asaro, I.Perlman, J.O.Rasmussen, S.G.Thompson, Phys. Rev. 120 (1960) 934 (Beta minus/Electron Capture ratio) R.MARRUS, J.WINOCUR, Phys. Rev. 124 (1961) 1904 (Spin state) B.M.Aleksandrov, M.A.Bak, V.V.Berdikov, R.B.Ivanov, A.S.Krivokhatskii, V.G.Nedovesov, K.A.Petrzhak, YU.G.PETROV, YU.F.ROMANOV, E.A.SHLYAMIN, Sov. At. Energy 27 (1969) 724 (Half-life, Beta minus/Electron Capture ratio, Alpha Decay) R.GASTEIGER, G.HOEHLEIN, W.WEINLAENDER, Radiochim. Acta 11 (1969) 158 (Beta minus/Electron Capture ratio) V.YA.GABESKIRIYA, Sov. At. Energy 32 (1972) 201 (Beta minus/Electron Capture ratio) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies)

IAEA /A.L. Nichols

TS.VYLOV, V.M.GOROZHANKIN, ZH.ZHELEV, A.I.IVANOV, R.B.IVANOV, V.G.KALINNIKOV, M.YA.KUZNETSOVA, N.A.LEBEDEV, M.A.MIKHAILOVA, A.I.MUMINOV, A.F.NOVGORODOV, YU.V.NORSEEV, SH.OMANOV, B.P.OSIPENKO, E.K.STEPANOV, ET AL., Spectra of Radiations of Radioactive Nuclides, Ed. K.Ya. Gromov, FAN Publishing, Tashkent, USSR (1980) (X-ray and Gamma-ray Energies and Emission Probabilities) K.WISSHAK, J.WICKENHAUSER, F.KAPPELER, G.REFFO, F.FABBI, Nucl. Sci. Eng. 81 (1982) 396 (Half-life) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-rays, LX-rays, Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays) Y.A.AKOVALI, Nucl. Data Sheets 96 (2002) 177 (Nuclear levels) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

Am - 242

IAEA /A.L. Nichols

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	143	(2)	У
Q_{lpha}	:	5637.10	(25)	keV
Q_{IT}	:	48.60	(5)	keV
IT	:	99.54	(1)	%
α	:	0.46	(1)	%
SF	:	$<\!\!4.8$		$ imes 10^{-9}~\%$

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,68}$	4975(3)	0.000009(5)
$\alpha_{0,64}$	5027.3(15)	0.00009(5)
$\alpha_{0,59}$	5068(3)	0.0012(3)
$\alpha_{0,57}$	5082.6(12)	0.00014(5)
$\alpha_{0,56}$	5091.9(7)	0.0009(3)
$\alpha_{0,48}$	5143.07(26)	0.0258(11)
$\alpha_{0,47}$	5153.2(15)	0.00009(5)
$\alpha_{0,42}$	5173.45(26)	0.00009(5)
$\alpha_{0,41}$	5175.4(10)	0.00009(5)
$\alpha_{0,36}$	5207.15(25)	0.409(9)
$\alpha_{0,35}$	5215.4(7)	0.00014(5)
$\alpha_{0,28}$	5248.15(25)	0.0018(5)
$\alpha_{0,27}$	5248.21 (26)	0.0018(5)
$\alpha_{0,25}$	5249.64(26)	0.00009(5)
$\alpha_{0,23}$	5251.80(25)	0.00009(5)
$\alpha_{0,20}$	5272.96(25)	0.0046~(5)
$\alpha_{0,14}$	5314.95(25)	0.0028(5)
$\alpha_{0,11}$	5331.97(25)	0.0007~(5)
$\alpha_{0,9}$	5367.73(25)	0.0051 (9)
$lpha_{0,6}$	5410.13(25)	0.0046 (9)
$\alpha_{0,3}$	5458.68(25)	0.00064 (18)
$\alpha_{0,1}$	5517.93(25)	0.000014(14)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Am)	6.26 - 23.70	22.1 (11)
e_{AL}	(Np)	6.036 - 13.516	0.35(4)
eAK	(Np) KLL KLX KXY	73.501 - 83.134 90.358 - 101.054 107.19 - 118.66	0.0019 (7) } } }

IAEA /A.L. Nichols
		Energy keV	Electrons per 100 disint.
ес _{1,0 L}	(Am)	24.8 - 30.10	47.1 (10)
$ec_{1,0 M}$	(Am)	42.47 - 44.78	37.6(9)
$ec_{1,0 N}$	(Am)	46.98 - 48.15	11.9(3)
$ec_{1,0}$ O	(Am)	48.23 - 48.49	2.71~(6)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Am)	12.377 - 22.836		25.0(11)	
XL	(Np)	11.871 - 21.491		0.37~(4)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Np) (Np)	$97.069 \\ 101.059$		$\begin{array}{c} 0.019 \ (9) \\ 0.030 \ (14) \end{array}$	$K\alpha$
$\begin{array}{l} {\rm XK}\beta_3 \\ {\rm XK}\beta_1 \\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	113.303 114.234 114.912	} } }	0.011 (5)	$\mathrm{K}\beta_1'$
$\begin{array}{l} {\rm XK}\beta_2 \\ {\rm XK}\beta_4 \\ {\rm XKO}_{2,3} \end{array}$	(Np) (Np) (Np)	117.463 117.876 118.429	} } }	0.0037(17)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\begin{array}{c} \gamma_{3,2}(\rm Np) \\ \gamma_{1,0}(\rm Np) \\ \gamma_{11,10}(\rm Np) \\ \gamma_{9,6}(\rm Np) \\ \gamma_{19,11}(\rm Np) \\ \gamma_{10,6}(\rm Np) \\ \gamma_{10,0}(\rm Am) \\ \gamma_{6,3}(\rm Np) \\ \gamma_{14,9}(\rm Np) \end{array}$	keV 24.34 (1) 26.427 (2) 32.64 (1) 43.11 (1) 43.33 (1) 46.833 (3) 48.60 (5) 49.371 (3) 53.67 (1)	$\begin{array}{c} \times \ 100 \\ \hline \\ 0.021 \ (3) \\ < 0.24 \\ 0.0026 \ (4) \\ 0.0040 \ (9) \\ 0.00112 \ (18) \\ 0.00037 \ (7) \\ 99.54 \ (1) \\ 0.244 \ (8) \\ 0.097 \ (13) \end{array}$	$\begin{array}{c} {\rm M1+E2} \\ {\rm E4} \\ {\rm E1} \\ {\rm M1+E2} \end{array}$	$\begin{array}{c} 322 \ (5) \\ 338 \ (5) \\ 136.4 \ (20) \\ 61.3 \ (9) \\ 126.7 \ (18) \\ 48.8 \ (7) \\ 704000 \ (8000) \\ 0.821 \ (12) \\ 46.0 \ (7) \\ \end{array}$	\times 100 0.000064 (9) <0.000708 0.000019 (3) 0.000064 (14) 0.0000087 (14) 0.0000074 (14) 0.0001414 (22) 0.134 (4) 0.0021 (3)
$\begin{array}{l} \gamma_{30,19}({\rm Np}) \\ \gamma_{9,5}({\rm Np}) \\ \gamma_{3,1}({\rm Np}) \\ \gamma_{36,20}({\rm Np}) \\ \gamma_{28,14}({\rm Np}) \\ \gamma_{6,2}({\rm Np}) \\ \gamma_{19,10}({\rm Np}) \end{array}$	$\begin{array}{c} 53.85 \ (2) \\ 57.51 \ (1) \\ 60.247 \ (3) \\ 66.92 \ (1) \\ 67.92 \ (2) \\ 73.72 \ (1) \\ 75.98 \ (1) \end{array}$	$\begin{array}{c} 0.00011 \ (6) \\ 0.0015 \ (4) \\ 0.132 \ (12) \\ 0.0205 \ (6) \\ 0.100 \ (8) \\ 0.0101 \ (7) \\ 0.00052 \ (8) \end{array}$	$\begin{array}{c} {\rm M1+E2} \\ {\rm E1} \\ {\rm M1+E2} \\ {\rm E1} \\ {\rm M1+E2} \\ {\rm E1} \\ {\rm E2} \end{array}$	$\begin{array}{c} 37.2 \ (6) \\ 0.549 \ (8) \\ 23.1 \ (4) \\ 0.368 \ (6) \\ 24 \ (3) \\ 0.285 \ (4) \\ 52.8 \ (8) \end{array}$	$\begin{array}{c} 0.0000028 \ (14) \\ 0.00097 \ (23) \\ 0.0055 \ (5) \\ 0.0150 \ (5) \\ 0.0040 \ (3) \\ 0.0079 \ (6) \\ 0.0000097 \ (14) \end{array}$

	Energy	$P_{\gamma+ce}$	Multipolarity	$lpha_{ m T}$	P_{γ}
	$\rm keV$	$\times 100$			\times 100
(2.2.)		0.0000 (0)		26 (4)	0.000104 (00)
$\gamma_{11,6}(Np)$	79.48(1)	0.0033(8)	M1+E2	26(4)	0.000124(23)
$\gamma_{27,11}(Np)$	85.10(7)	0.020(7)	M1+E2	19(3)	0.0010(3)
$\gamma_{3,0}(Np)$	86.674 (2)	0.205(7)	M1+E2	(.95(12))	0.0229(7)
$\gamma_{-1,1}(Np)$	89.60(5)	0.0013(3)	171	0 1574 (00)	0.0013(3)
$\gamma_{9,3}(Np)$	92.48(1)	0.00324(35)	E1	0.1574(22)	0.0028(3)
$\gamma_{11,5}(Np)$	93.88(1)	0.0042(5)	EI	0.1513(22)	0.0030(4)
$\gamma_{14,6}(Np)$	90.78(1)	0.0059(10)	E2	10.90(24)	0.00033(0)
$\gamma_{30,11}(Np)$	97.18(2)	0.00013(7)	EZ	10.38(24)	0.000007 (4)
$\gamma_{36,14}(Np)$	109.61(1)	≤ 0.14	M1+E2	0.1(1)	≤ 0.0184
$\gamma_{6,1}(Np)$	109.018(3)	≤ 0.02		0.1010(15) 0.0074(14)	≤ 0.0184
$\gamma_{14,5}(Np)$	111.18(1) 100.01(1)	0.0027(5)	EI M1 + E0	0.0974(14)	0.0025(4)
$\gamma_{19,6}(Np)$	122.81(1)	0.00039(18)	M1+EZ	9.0(9)	0.00004(2)
$\gamma_{36,11}(Np)$	120.92(1) 121.50(5)	0.0008(4)	EZ	0.03(7)	0.00013(7)
$\gamma_{23,8}(Np)$	131.30(3) 135.91(3)	0.00054(8)		0.208(4)	0.00027(0)
$\gamma_{28,8}(Np)$	133.21 (2) 126.045 (2)	0.0080(3) 0.0118(2)		0.231(4) 0.247(4)	0.0008(4)
$\gamma_{6,0}(Np)$	130.043 (2) 120.05 (2)	0.0118(3)		0.247(4) 0.225(4)	0.0094(3)
$\gamma_{28,7}(\text{Np})$	139.00(3) 120(11(9))	≤ 0.00014		0.233(4)	≤ 0.00011
$\gamma_{8,1}(Np)$	139.11(2) 151.01(2)	≤ 0.00049	E2 F1	5.40(0)	≤ 0.00011
$\gamma_{30,7}(Np)$	131.01(3) 152(70(2))	0.000099(22)		0.194(3)	0.000083 (18)
$\gamma_{19,4}(Np)$	152.70(2) 152.72(1)	≤ 0.00082		0.189(3)	≤ 0.00009
$\gamma_{9,1}(Np)$	152.75(1) 152.10(1)	≤ 0.00082		0.189(3) 0.187(2)	≤ 0.00009
$\gamma_{11,2}(Np)$	153.19(1) 152.97(1)	0.00057 (4)	E1 M1 + E2	0.167(3)	0.00031(4)
$\gamma_{20,5}(Np)$	155.07 (1) 156.451 (2)	0.0200(6)	M1+D2 F1	7.02(10) 0.1784(25)	0.00552(10) 0.00027(5)
$\gamma_{10,1}(Np)$	150.451(5) 160.61(2)	0.00052(3)	EI	0.1764(20)	0.00027(3)
$\gamma_{-1,2}(Np)$	100.01(2) 162(1(5))	(2)	M1 + F9	20(5)	< 0.00041 (10)
$\gamma_{34,8}(Np)$	163.20(1)	≤ 0.079	M1 + E2 M1 + E2	3.9(5)	≤ 0.0101
$\gamma_{36,9}(Np)$	105.29(1) 165.07(15)	≤ 0.019	M1+D2	3.9(0)	≤ 0.0101 0.000046 (23)
$\gamma_{-1,3}(Np)$	105.97(15) 170.7(8)	0.000040(23)	M1 + F2	34(5)	0.000040(23)
$\gamma_{45,13}(Np)$	170.7(8) 174.76(6)	0.00280(22) 0.00720(16)	M1 + E2 M1 + E2	3.4(0) 3.1(4)	0.00003(5)
(48,14(Np))	174.70(0) 176.66(2)	0.00120(10)	E2	1.985(18)	0.00017 (4)
(30,6(Np))	170.00(2) 182.878(2)	0.00000(3) 0.00103(4)	E1	0.1238(18)	0.000023(14)
(10,0) (Np)	182.070(2) 189.10(1)	0.00103(4)	E1	0.1236(16) 0.1146(16)	0.00032(5)
$\gamma_{11,1}(Np)$	100.10(1) 190.88(5)	0.00030(3) 0.00012(3)	E1	0.1140(10) 0.1121(16)	0.00021 (9)
$\gamma_{23,4}(Np)$	194.59(2)	0.00012(5)	E1	0.1121(10) 0.1072(15)	0.000100(24) 0.00142(5)
$\gamma_{28,4}(Np)$	191.09(2) 196.52(1)	0.00101(5)	E1	0.1012(10) 0.1048(15)	0.00112(6)
$\gamma_{19,2}(Np)$	206.39(1)	0.00011(0) 0.0027(3)	E2	0.1040(10) 0.711(10)	0.00010(0)
$\gamma_{30,0}(Np)$	213.19(1)	0.0021(0)	M1+E2	1.73(25)	0.00155(18)
$\gamma_{20,2}(Np)$	215.19(1) 215.522(4)	0.00010(0)	E1	0.0847(12)	0.000059(10)
$\gamma_{11,0}(Np)$	210.022(1) 232.43(1)	0.00001(10) 0.00060(3)	E1	0.0011(12) 0.0712(10)	0.00055(10)
$\gamma_{19,1}(Np)$	232.10(1) 233.69(10)	0.00000(3) 0.00013(3)		0.0112 (10)	0.00030(3)
$\gamma_{25,2}(Np)$	236.90(10)	0.00010(5)	M1 + E2	1.27(19)	0.000046(23)
$\gamma_{25,2}(\mathbf{Np})$	238.35(7)	0.00017(9)	E1	0.0673(10)	0.000016(20)
$\gamma_{17.0}(Np)$	250.33(3)	< 0.0012	(M1 + E2)	1.08(16)	< 0.00056
$\gamma_{30,2}(Nn)$	250.37(2)	<0.0006	E1	0.0602(9)	<0.00056
$\gamma_{424}(Np)$	270.55(7)	0.000030(9)	E1	0.0506(7)	0.000029 (8)
$\gamma_{25,1}(Np)$	272.80(6)	0.000069(15)	M1+E2	0.85(13)	0.000037(8)
$\gamma_{36,2}(Np)$	280.11(1)	0.000063(7)	E1	0.0468(7)	0.000060 (6)

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\mathbf{P}_{\gamma} \times 100$
$\gamma_{25,0}(Np)$	299.23(6)	0.000046 (23)	M1+E2	0.65(10)	0.000028 (14)

5 References

K.STREET JR., A.GHIORSO, G.T.SEABORG, Phys. Rev. 79 (1950) 530 (Approximate half-life) R.F.BARNES, D.J.HENDERSON, A.L.HARKNESS, H.DIAMOND, J. Inorg. Nucl. Chem. 9 (1959) 105 (Branching fraction (alpha)) F.Asaro, I.Perlman, J.O.Rasmussen, S.G.Thompson, Phys. Rev. 120 (1960) 934 (Resolution of isomers) J.T.CALDWELL, S.C.FULTZ, C.D.BOWMAN, R.W.HOFF, Phys. Rev. 155 (1967) 1309 (SF half-life) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) S.A.BARANOV, V.M.SHATINSKII, L.V.CHISTYAKOV, Sov. At. Energy 47 (1980) 1022 (Alpha emission energies, Alpha emission probabilities) A.G.ZELENKOV, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.M.SHUBKO, Sov. At. Energy 47 (1980) 1024 (Half-life, Branching fraction (alpha)) TS.VYLOV, V.M.GOROZHANKIN, ZH.ZHELEV, A.I.IVANOV, R.B.IVANOV, V.G.KALINNIKOV, M.YA.KUZNETSOVA, N.A.LEBEDEV, M.A.MIKHAILOVA, A.I.MUMINOV, A.F.NOVGORODOV, YU.V.NORSEEV, SH.OMANOV, B.P.OSIPENKO, E.K.STEPANOV, ET AL., Spectra of Radiations of Radioactive Nuclides, Ed. K.Ya. Gromov, FAN Publishing, Tashkent, USSR (1980) (X-ray and Gamma-ray Energies and Emission Probabilities) A.G.ZELENKOV, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.S.SHIRYAEV, V.M.SHUBKO, Sov. At. Energy 60 (1986) 492 (SF half-life) R.W.HOFF, S.DRISSI, J.KERN, W.STRASSMANN, H.G.BORNER, K.SCHRECKENBACH, G.BARREAU, W.D.RUHTER, L.G.MANN, D.H.WHITE, J.H.LANDRUM, R.J.DUPZYK, R.F.CASTEN, W.R.KANE, D.D.WARNER, Phys. Rev. C41 (1990) 484 (Alpha emission energies, Alpha emission probabilities, Gamma-ray energies, Gamma-ray emission probabilities, transition types, mixing ratios) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (X(K), X(L), Auger electrons)Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, radius parameter) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (X(K))Y.A.AKOVALI, Nucl. Data Sheets 96 (2002) 177 (Nuclear levels) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129 (Nuclear levels) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Am - 243

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	7367	(23)	У
Q_{α}	:	5438.8	(10)	keV
α	:	100		%
SF	:	3.8	(7)	$\times 10^{-9}~\%$

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,16}$	4695 (3)	0.0017(5)
$\alpha_{0,15}$	4919(3)	0.000085
$\alpha_{0,14}$	4930(3)	0.00018
$\alpha_{0,13}$	4946(3)	0.00034
$\alpha_{0,12}$	4997(3)	0.0009(4)
$\alpha_{0,11}$	5008(3)	0.0009(4)
$\alpha_{0,10}$	5029(3)	0.0020~(6)
$\alpha_{0,9}$	5035~(3)	0.0020~(6)
$\alpha_{0,8}$	5088(5)	0.0055~(6)
$\alpha_{0,7}$	5113(1)	0.010(1)
$\alpha_{0,6}$	5181(1)	1.383(7)
$\alpha_{0,4}$	5233.3(10)	11.46(5)
$\alpha_{0,3}$	5275.3(10)	86.74(5)
$\alpha_{0,1}$	5321 (1)	0.192(3)
$\alpha_{0,0}$	5349.4(23)	0.240(3)

3 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Electrons per 100 disint.
e_{AL}	(Np)	6.04 - 13.52	18.4 (11)
e _{AK}	(Np) KLL KLX KXY	73.501 - 83.134 90.358 - 101.054 107.19 - 118.66	0.00058 (9) } } }
$\begin{array}{c} ec_{1,0} \ L\\ ec_{4,3} \ L\\ ec_{3,1} \ L\\ ec_{1,0} \ M\\ ec_{1,0} \ N\\ ec_{6,4} \ L\\ ec_{4,3} \ M\\ ec_{3,1} \ M\\ ec_{4,3} \ N\\ ec_{3,1} \ N\\ ec_{3,1} \ N\end{array}$	(Np) (Np) (Np) (Np) (Np) (Np) (Np) (Np)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 9.4 \ (22) \\ 7.4 \ (8) \\ 5.04 \ (11) \\ 2.4 \ (6) \\ 0.65 \ (15) \\ 1.10 \ (33) \\ 1.95 \ (26) \\ 1.266 \ (28) \\ 0.53 \ (6) \\ 0.336 \ (7) \end{array}$

LBNL /E. Browne, CEA/LNE-LNHB /M.M. Bé, INE /R.G. Helmer

		Energy keV	Electrons per 100 disint.
ес _{3,0 L}	(Np)	52.23 - 57.05	13.91 (32)
$ec_{6,4 N}$	(Np)	53.679 - 54.777	0.08(2)
$ec_{4,1 L}$	(Np)	64.28 - 69.10	0.0485(14)
ес _{3,0 М}	(Np)	68.92 - 71.00	3.44 (8)
$ec_{3,0 N}$	(Np)	73.16 - 74.26	0.917(21)
ec _{6.3} L	(Np)	76.073 - 80.890	0.17(2)
$ec_{4.1}$ M	(Np)	80.97 - 83.05	0.01194(36)
ec _{6.3 M}	(Np)	92.761 - 94.836	0.05(1)
ec4 0 1.	(Np)	95.41 - 100.23	0.0361(32)
$ec_{6,3 N}$	(Np)	96.999 - 98.097	0.010(2)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	11.871 - 21.491		18.9(7)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	$97.069 \\ 101.059$		0.0058(4) 0.0092(7)	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Np) (Np) (Np)	113.303 114.234 114.912	} } }	0.00335(25)	$\mathrm{K}\beta_1'$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	$\begin{array}{c} (\mathrm{Np}) \\ (\mathrm{Np}) \\ (\mathrm{Np}) \end{array}$	117.463 117.876 118.429	} } }	0.00115 (9)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Np)$ $\gamma_{4,3}(Np)$	31.14(3) 43.1 42.52(2)	12.7 (30) 10.1	M1+3.08%E2 M1+12.6%E2	263 (13) 154 (18) 142 (16)	0.048 (11) 0.065 (10)
$\gamma_{3,1}(\mathrm{Np})$ $\gamma_{6,5}(\mathrm{Np})$ $\gamma_{6,4}(\mathrm{Np})$	$\begin{array}{c} 43.53 (2) \\ 50.6 (10) \\ 55.18 (5) \end{array}$	$\begin{array}{c} 12.02 (23) \\ 0.011 (2) \\ 1.81 (26) \end{array}$	(E1) M1+26.4%E2	$\begin{array}{c} 1.143 (16) \\ 0.77 (5) \\ 107 (14) \end{array}$	$\begin{array}{c} 5.89(10) \\ 0.0062(10) \\ 0.0168(11) \end{array}$
$\gamma_{3,0}(\mathrm{Np})$ $\gamma_{4,1}(\mathrm{Np})$	74.66(2) 86.71(2)	85.7(16) 0.41(1)	E1 E1	0.276(4) 0.186(3)	$\begin{array}{c} 67.2 \ (12) \\ 0.346 \ (9) \end{array}$
$\gamma_{6,3}(Np)$ $\gamma_{4,0}(Np)$	$98.5 (2) \\117.60 (15) \\141.90 (6)$	$\begin{array}{c} 0.25 \ (4) \\ 0.62 \ (5) \\ 0.141 \ (10) \end{array}$	(E2) E1 E1	$\begin{array}{c} 15.6 (3) \\ 0.0842 (13) \\ 0.224 (4) \end{array}$	$\begin{array}{c} 0.0151 \ (21) \\ 0.57 \ (5) \\ 0.115 \ (8) \end{array}$
$\gamma_{7,2}(Np)$ $\gamma_{9,5}(Np)$	$ \begin{array}{c} 169\\ 195.0 (18) \end{array} $	0.0014 0.001	(E1) (E1)	$\begin{array}{c} 0.121 (1) \\ 0.149 (3) \\ 0.107 (3) \end{array}$	0.0012 0.00085

LBNL /E. Browne, CEA/LNE-LNHB /M.M. Bé, INE /R.G. Helmer

5 References

M.-M.Bé, V.Chisté, C.Dulieu, E.Browne, V.Chechev, N.Kuzmenko, R.Helmer, A.Nichols, E.Schönfeld, R.DERSCH., in Table of Radionuclides (Vol.2 - A = 151 to 242), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres () (Am-241 half-life) F.STEPHENS, J.HUMMEL, F.ASARO, Phys. Rev. 98 (1955) 261 (Am-243 alpha-particle emission probabilities) J.P.HUMMEL, Thesis, Report UCRL-3456, Univ. California (1956) (Am-243 alpha-particle emission probabilities) R.F.BARNES, D.J.HENDERSON, A.L.HARKNESS, H.DIAMOND, J. Inorg. Nucl. Chem. 9 (1959) 105 (Am-243 half-life) F.Asaro, F.S.Stephens, J.M.Hollander, I.Perlman, Phys. Rev. 117 (1960) 492 (Am-243 gamma-ray emission probabilities) A.B.BEADLE, D.F.DANCE, K.M.GLOVER, J.MILSTED, J. Inorg. Nucl. Chem. 12 (1960) 359 (Am-243 half-life) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKY, Nucl. Phys. 56 (1964) 252 (Am-243 alpha-particle energies and emission probab) C.M.LEDERER, J.K.POGGENBURG, F.ASARO, J.O.RASMUSSEN, I.PERLMAN, Nucl. Phys. 84 (1966) 481 (Am-243 alpha-particle emission probabilities) B.A.GVOZDEV, B.B.ZAKHVATAEV, V.I.KUZNETSOV, V.P.PERELYGIN, S.V.PIROZKOV, E.G.CHUDINOV, I.K.SHVETSOV, Sov. Radiochem. 8 (1966) 459 (Spontaneous fission branching) S.A.BARANOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 7 (1968) 442 (Am-243 alpha-particle energies) G.BERZINS, M.E.BUNKER, J.W.STARNER, Nucl. Phys. A114 (1968) 512 (Am-243 half-life) J.R.VAN HISE, D.ENGELKEMEIR, Phys. Rev. 171 (1968) 1325 (Am-243 gamma-ray energies and emission probabilities) D.ENGELKEMEIR, Phys. Rev. 181 (1969) 1675 (Am-243 gamma-ray energies) B.M.Aleksandrov, O.I.Grigorev, N.S.Shimanskaya, Sov. J. Nucl. Phys. 10 (1970) 8 (Am-243 gamma-ray emission probabilities) I.AHMAD, M.WAHLGREN, Nucl. Instrum. Methods 99 (1972) 333 (Am-243 gamma-ray emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, V.Y.GABESKIRIYA, A.P.CHETVERIKOV, Sov. J. At. Energy 37 (1975) 1103 (Am-243 half-life) J.C.PATE, K.R.BAKER, R.W.FINK, D.A.MCCLURE, N.S.KENDRICK JR., Z. Phys. A272 (1975) 169 (Am-243 gamma-ray energies and emission probabilities) D.I.STAROZHUKOV, YU.S.POPOV, P.A.PRIVALOVA, Sov. At. Energy 42 (1977) 355 (Am-243 gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Atomic electron binding energies) F.RÖSEL, H.M.FRIES, K.ALDER, H.C.PAULI, At. Data Nucl. Data Tables 21 (1978) 92 (Gamma-ray theoretical internal conversion coefficients) YU.S.POPOV, D.I.STAROZHUKOV, V.B.MISHENEV, P.A.PRIVALOVA, A.I.MISHCHENKO, Sov. At. Energy 46 (1979) 123(Am-243 gamma-ray emission probabilities) S.K.Aggarwal, A.R.Parab, H.C.Jain, Phys. Rev. C22 (1980) 767 (Am-243 half-life) I.Ahmad, Nucl. Instrum. Methods 193 (1982) 9 (Am-243 gamma-ray energies and emission probabilities) R.VANINBROUKX, G.BORTELS, B.DENECKE, Int. J. Appl. Radiat. Isotop. 35 (1984) 1081 (Am-243 gamma-ray emission probabilities) W.L.ZIJP, Report ECN FYS/RASA-85/19 (1985) (Discrepant Data - Limited Relative Statistical Weight Method) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Am-243 recommended half-life)

E.BROWNE, Nucl. Instrum. Methods Phys. Res. A265 (1988) 541 (Uncertainties in alpha-particle emission probabilities) W.BAMBYNEK, T.BARTA, R.JEDLOVSZKY, P.CHRISTMAS, N.COURSOL, K.DEBERTIN, R.G.HELMER, A.L.NICHOLS, F.J.SCHIMA, Y.YOSHIZAWA, X-ray and Gamma-ray Standards for Detector Calibration, TECDOC-619, IAEA, Vienna (1991) (Am-243 recommended half-life) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Am-243 alpha-particle energies) E.GARCIA-TORAÑO, M.L.ACENA, G.BORTELS, D.MOUCHEL, Nucl. Instrum. Methods Phys. Res. A312 (1992) 317 (Am-243 alpha-particle energies and emission probabilities) Y.A.AKOVALI, Nucl. Data Sheets 66 (1992) 897 (Am-243 recommended half-life) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data, X-rays, Auger electrons) D.SARDARI, T.D.MCMAHON, S.P.HOLLOWAY, Nucl. Instrum. Methods Phys. Res. A369 (1996) 486 (Am-243 gamma-ray energies and emission probabilities) S.A.Woods, D.H.Woods, M.J.Woods, S.M.Jerome, M.Burke, N.E.Bowles, S.E.M.Lucas, C.Paton, Nucl. Instrum. Methods Phys. Res. A369 (1996) 472 (Am-243 gamma-ray emission probabilities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Am-243 alpha-particle energies and emission probabilities) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electron energies) Y.A.AKOVALI, Nucl. Data Sheets 84 (1998) 1 (Alpha decay, Radius parameter of even-even nuclei) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha emission intensities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities) F.DAYRAS, Nucl. Instrum. Methods Phys. Res. A490 (2002) 492 (Am-243 alpha-particle energies and emission probabilities) R.SAMPATHKUMAR, P.C.KALSI, A.RAMASWAMI, J. Radioanal. Nucl. Chem. 253 (2002) 523 (Am-243 spontaneous fission branching) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (2003 Atomic Mass Adjustment) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (Evaluated data (ENSDF for nuclei with A=239)) S.K.AGGARWAL, D.ALAMELU, P.M.SHAH, N.N.MIRASHI, Nucl. Instrum. Methods Phys. Res. A571 (2007) 663 (Am-243 half-life) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical Internal Conversion Coefficients)

LBNL /E. Browne, CEA/LNE-LNHB /M.M. Bé, INE /R.G. Helmer

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	10.1	(1)	h
Q_{β^-}	:	1427.3	(10)	keV
β^{-}	:	100		%

2 β^- Transitions

	Energy keV	$\begin{array}{c} \text{Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$
$\beta_{0,9}^{-}$	387.1 (10)	100	1st forbidden non-unique	5.63

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e_{AL}	(Cm)	6.19 - 14.46	86(9)	
едк	(Cm)		0.213(27)	
	KLL	78.858 - 89.973	}	
	KLX	97.226 - 109.267	}	
	KXY	115.57 - 128.23	}	
$ec_{1,0 L}$	(Cm)	18.439 - 24.000	73(15)	
ес _{3,2 К}	(Cm)	25.622 (2)	3.3~(7)	
$ec_{1,0 M}$	(Cm)	36.628 - 38.956	$21 \ (4)$	
$ec_{1,0 N}$	(Cm)	41.281 - 42.500	5.7(12)	
$ec_{2,1 L}$	(Cm)	74.857 - 80.410	70(15)	
$ec_{4,3 \text{ K}}$	(Cm)	77.334 (4)	0.049(11)	
$ec_{2,1 M}$	(Cm)	93.046 - 95.374	20(4)	
$ec_{2,1 N}$	(Cm)	97.699 - 98.910	5.5(12)	
$ec_{3,2}$ L	(Cm)	129.337 - 134.890	36(8)	
$ec_{3,2}$ M	(Cm)	147.526 - 149.854	10.2(21)	
$ec_{3,2 N}$	(Cm)	152.179 - 153.390	2.8(6)	
$ec_{4,3 L}$	(Cm)	181.049 - 186.600	0.19(4)	
$ec_{4,3}$ M	(Cm)	199.238 - 201.566	0.053~(12)	
$ec_{4,3 N}$	(Cm)	203.891 - 205.100	0.0147(34)	
$ec_{9,4 K}$	(Cm)	410.161 (16)	0.019~(6)	
$ec_{9,3 \rm K}$	(Cm)	615.736 (5)	3.9(5)	
$ec_{9,3 L}$	(Cm)	719.451 - 725.010	0.86(11)	
$ec_{9,3}$ M	(Cm)	737.640 - 739.968	0.21(3)	
$ec_{9,3 N}$	(Cm)	742.293 - 743.510	0.058~(8)	
$ec_{9,2 K}$	(Cm)	769.599 (7)	0.34(10)	
$ec_{9,2 L}$	(Cm)	873.31 - 878.87	0.10(3)	
$ec_{9,2}$ M	(Cm)	891.50 - 893.83	0.026~(7)	
$\beta^{0,9}$	max:	387.1 (10)	100	avg: 109.6 (3)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Cm)	12.633 - 23.527		100 (10)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Cm) (Cm)	104.59 109.271		$\begin{array}{c} 2.2 \ (3) \\ 3.4 \ (4) \end{array}$	} Κα }
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Cm) (Cm) (Cm)	122.304 123.403 124.124	} } }	1.29 (16)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Cm) (Cm) (Cm)	126.889 127.352 127.97	} } }	0.45(6)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Cm)$ $\gamma_{2,1}(Cm)$ $\gamma_{3,2}(Cm)$ $\gamma_{4,3}(Cm)$ $\gamma_{9,4}(Cm)$ $\gamma_{9,3}(Cm)$ $\gamma_{0,2}(Cm)$	$\begin{array}{c} 42.965 \ (10) \\ 99.383 \ (4) \\ 153.863 \ (2) \\ 205.575 \ (4) \\ 538.402 \ (16) \\ 743.977 \ (5) \\ 897 \ 840 \ (7) \end{array}$	$\begin{array}{c} 100 \ (21) \\ 100 \ (22) \\ 72 \ (15) \\ 0.66 \ (15) \\ 0.69 \ (20) \\ 71 \ (9) \\ 28 \ (8) \end{array}$	E2 E2 E2 E2 E2 M1+0.46%E2 E2	$\begin{array}{c} 1050 \ (15) \\ 19.3 \ (3) \\ 2.81 \ (4) \\ 0.887 \ (13) \\ 0.0495 \ (7) \\ 0.077 \ (5) \\ 0 \ 01697 \ (24) \end{array}$	$\begin{array}{c} 0.096 \ (20) \\ 5.0 \ (11) \\ 19 \ (4) \\ 0.35 \ (8) \\ 0.66 \ (19) \\ 66 \ (8) \\ 28 \ (8) \end{array}$

5 References

S.E.VANDENBOSCH, P.DAY, Nucl. Phys. 30 (1962) 177 (Half-life, Beta emission probabilities, Conversion electron emission probabilities, Relative gamma-ray emission probabilities) P.G.HANSEN, K.WILSKY, C.V.K.BABA, S.E.VANDENBOSCH, Nucl. Phys. 45 (1963) 410 (Nuclear levels, Mixing ratio) R.P.SCHUMAN, Report IN-1126 (1967) 19 (Relative gamma-ray emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) R.W.HOFF, T.VON EGIDY, R.W.LOUGHEED, D.H.WHITE, H.G.BORNER, K.SCHRECKENBACH, G.BARREAU, D.D.WARNER, Phys. Rev. C29 (1984) 618 $\,$ (Relative gamma-ray emission probabilities, Multipolarities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (KX-rays, LX-rays, Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger Electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC)

I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1
(Theoretical ICC)
G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337
(Q)
Y.A.AKOVALI, Nucl. Data Sheets 99 (2003) 197
(Nuclear levels)
T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202
(Theoretical ICC)

Am - 244

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	26	(3)	\min
Q_{β^-}	:	1516	(3)	keV
Q_{EC}	:	164	(9)	keV
β^-	:	99.964	(1)	%
EC	:	0.036	(1)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,0}$	164(9)	0.036(1)	allowed	6.37	0.24(5)	0.53(4)	0.168 (12)

3 β^- Transitions

_	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$	y Nature	$\log ft$
$\begin{array}{c} \beta_{0,11}^{-} \\ \beta_{0,10}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,2}^{-} \end{array}$	$\begin{array}{rrrr} 410 & (3) \\ 432 & (3) \\ 496 & (3) \\ 531.1 & (30) \\ 1473 & (3) \\ 1516 & (3) \end{array}$	$\begin{array}{cccc} 0.35 & (9) \\ 0.56 & (13) \\ 0.08 & (2) \\ 1.36 & (16) \\ 31 & (9) \\ 67 & (9) \end{array}$	(1st forbidden non-unique) (allowed) (allowed) allowed allowed	$ \begin{array}{r} 6.8\\ 6.67\\ 7.7\\ 6.58\\ 6.74\\ 6.45 \end{array} $

4 Electron Emissions

		Energy keV	Electrons per 100 disint.	Energy keV
e _{AL}	(Pu)	6.19 - 22.99	0.0124(11)	
e_{AK}	(Pu) KLL KLX KXY	75.263 - 85.357 92.607 - 103.729 109.93 - 121.78	0.000253 (45) } } }	
e_{AL}	(Cm)	6.19 - 14.46	10.6(23)	
e _{AK}	(Cm) KLL KLX KXY	78.858 - 89.973 97.226 - 109.267 115.57 - 128.23	0.00125 (27) } } }	
$ec_{1,0}$ L $ec_{1,0}$ M+ $ec_{6,0}$ T $\beta_{0,11}^{-1}$	(Cm) (Cm) (Cm) max:	18.439 - 23.995 36.628 - 42.965 856.66 - 984.91 $410 \qquad (3)$	23 (7) 9 (3) 1.0 (1) $0.35 (9)$	avg: 116.9 (7)

		Energy keV		Electrons per 100 disint.	Energy keV	
$\begin{array}{c} \beta_{0,10}^{-} \\ \beta_{0,7}^{-} \\ \beta_{0,6}^{-} \\ \beta_{0,1}^{-} \\ \beta_{0,0}^{-} \end{array}$	max: max: max: max: max:	432 496 531.1 1473 1516	(3) (3) (30) (3) (3)	$\begin{array}{c} 0.56 \ (13) \\ 0.08 \ (2) \\ 1.36 \ (16) \\ 31 \ (9) \\ 67 \ (9) \end{array}$	avg: avg: avg: avg: avg:	$\begin{array}{c} 123.7 \ (7) \\ 144.0 \ (7) \\ 155.7 \ (7) \\ 495.8 \ (9) \\ 512.3 \ (9) \end{array}$

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Cm)	12.633 - 23.527		12.3(27)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Cm) (Cm)	$104.59 \\ 109.271$		$\begin{array}{c} 0.013 \ (4) \\ 0.020 \ (6) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{''} \end{array}$	(Cm) (Cm) (Cm)	122.304 123.403 124.124	} } }	0.0076 (21)	$\mathrm{K}\beta_1'$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Cm) (Cm) (Cm)	126.889 127.352 127.97	} } }	0.0027 (8)	$\mathrm{K}\beta_{2}^{\prime}$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(Cm)$	42.965(10)	32(9)	E2	1050(15)	0.030(9)
$\gamma_{6,1}(Cm)$	941.95(3)	0.36(12)	E2	0.01547(22)	0.35(12)
$\gamma_{7,1}(Cm)$	977.80(4)	0.08(2)	E0(+M1+E2)		
$\gamma_{6,0}(\mathrm{Cm})$	984.91(2)	1.0(1)	E0		
$\gamma_{10,1}(Cm)$	1041.22(3)	0.19(6)	(M1+E2)		0.19(6)
$\gamma_{11,1}(Cm)$	1062.95(3)	0.30(9)	anomalous E1	0.11(3)	0.27(8)
$\gamma_{10,0}(\mathrm{Cm})$	1084.181(14)	0.37(12)	anomalous $(E2)$	0.041~(11)	0.36(12)
$\gamma_{11,0}(\mathrm{Cm})$	1105.91(2)	0.05(2)	anomalous $(E1)$	0.17(4)	0.04(2)

6 References

K.STREET JR., A.GHIORSO, G.T.SEABORG, Phys. Rev. 79 (1950) 530
(Half-life)
A.GHIORSO, S.G.THOMPSON, G.R.CHOPPIN, B.G.HARVEY, Phys. Rev. 94 (1954) 1081
(Half-life)
P.R.FIELDS JR., J.E.GINDLER, A.L.HARKNESS, M.H.STUDIER, J.R.HUIZENGA, A.M.FRIEDMAN, Phys. Rev. 100
(1955) 172
(Electron Capture/Beta minus ratio)

S.E.VANDENBOSCH, P.DAY, Nucl. Phys. 30 (1962) 177 (Spin and Parity) R.VANDENBOSCH, P.R.FIELDS, S.E.VANDENBOSCH, D.METTA, J. Inorg. Nucl. Chem. 26 (1964) 219 (Am243(n,gamma)Am244 cross-section ratio, Spin) V.YA.GABESKIRIYA, A.P.CHETVERIKOV, V.V.GRYZINA, V.V.TIKHOMIROV, Sov. At. Energy 41 (1976) 1008 (Branching fraction (EC)) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Auger electron energies) R.W.HOFF, T.VON EGIDY, R.W.LOUGHEED, D.H.WHITE.H.G.BORNER, K.SCHRECKENBACH, G.BARREAU, D.D.WARNER, Phys. Rev. C29 (1984) 618 (Gamma-ray emission probabilities, Multipolarities) T.VON EGIDY, R.W.HOFF, R.W.LOUGHEED, D.H.WHITE, H.G.BORNER, K.SCHRECKENBACH, D.D.WARNER, G.BARREAU, Phys. Rev. C29 (1984) 1243 (Spin and Parity, Nuclear level energy of Am244m) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K and LX-rays, Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (Auger electrons) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-rays) S.RAMAN, C.W.NESTOR JR., A.ICHIHARA, M.B.TRZHASKOVSKAYA, Phys. Rev. C66 (2002) 044312 (Theoretical ICC) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 81 (2002) 1 (Theoretical ICC) Y.A.AKOVALI, Nucl. Data Sheets 99 (2003) 197 (Nuclear levels) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Am - 244 m

Cm - 242

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	162.86	(8)	d
$Q^{'}_{lpha}$:	6215.56	(8)	keV
α	:	100		%
SF	:	6.36		$ imes 10^{-6}$ %

2 α Emissions

	Energy	Probability
	keV	\times 100
$\alpha_{0.15}$	4869.43 (23)	0.00000052(14)
$\alpha_{0,14}$	4904.44 (23)	0.00000055(15)
$\alpha_{0,13}$	5005.64(19)	0.00000031(10)
$\alpha_{0,12}$	5101.21 (10)	0.0000037(10)
$\alpha_{0,11}$	5111.1(3)	≤ 0.0000002
$\alpha_{0,10}$	5146.07(12)	0.0000017(5)
$\alpha_{0,9}$	5165.95(16)	0.00000113(21)
$\alpha_{0,8}$	5186.95(12)	0.000035(7)
$\alpha_{0,7}$	5366.22(15)	≤ 0.00000022
$\alpha_{0,6}$	5462.47(14)	0.000013(3)
$\alpha_{0,5}$	5517.75(11)	0.00025(5)
$\alpha_{0,4}$	5607.76(16)	0.00002
$\alpha_{0,3}$	5816.39(11)	0.0046(5)
$\alpha_{0,2}$	5969.24 (9)	0.034(2)
$\alpha_{0,1}$	6069.37 (9)	25.94(7)
$\alpha_{0,0}$	6112.72(8)	74.06(7)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pu)	6.19 - 22.99	8.99 (21)
e _{AK}	(Pu) KLL KLX KXY	75.2 - 85.3 92.6 - 103.6 109.8 - 121.5	0.0000082 (15) } } }
$ec_{1,0 L} \\ ec_{1,0 M} \\ ec_{2,1 L}$	(Pu) (Pu) (Pu)	20.98 - 26.02 38.15 - 40.31 78.82 - 83.86	$\begin{array}{c} 18.8 \ (6) \\ 5.25 \ (15) \\ 0.0263 \ (16) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.12 - 23.07		9.92(23)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 0.000082 \ (9) \\ 0.000130 \ (15) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	$116.244 \\117.228 \\117.918$	} } }	0.000048 (6)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	0.0000165 (19)	$\mathrm{K}\beta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	α_{T}	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pu)$	44.08(3)	26.0(8)	$\mathrm{E2}$	787(16)	0.0330(7)
$\gamma_{2,1}(\mathrm{Pu})$	101.92~(4)	0.0388~(22)	E2	14.45(21)	0.00251 (14)
$\gamma_{3,2}(\mathrm{Pu})$	157.42(9)	0.0046~(5)	[E2]	2.19(4)	0.00145~(16)
$\gamma_{4,3}(\mathrm{Pu})$	210.20(14)	0.00002052	E2	0.710(14)	0.000012
$\gamma_{8,5}(\mathrm{Pu})$	336.36(15)	0.00000072 (31)	[E1]	0.0323~(6)	0.0000007 (3)
$\gamma_{9,5}(\mathrm{Pu})$	357.64(7)	0.000000055(11)	M1+E2	0.214(15)	0.000000045 (9)
$\gamma_{7,3}(\mathrm{Pu})$	459.8(2)	0.00000006 (3)			0.00000006 (3)
$\gamma_{6,2}(\mathrm{Pu})$	515.25(19)	0.0000046~(12)	E1+M2	0.022(3)	0.0000045 (12)
$\gamma_{5,1}(\mathrm{Pu})$	561.02(10)	0.000152~(40)	${ m E1}$	$0.01153\ (23)$	0.00015~(4)
$\gamma_{5,0}(\mathrm{Pu})$	605.04(10)	0.000106 (30)	${ m E1}$	0.00999(20)	0.000105 (30)
$\gamma_{6,1}(\mathrm{Pu})$	617.20(12)	0.0000080(21)	E1+M2	0.0120(12)	0.0000079 (21)
$\gamma_{7,2}(Pu)$	617.22(13)	0.00000016			0.00000016
$\gamma_{10,2}(Pu)$	$837.01\ (15)$	0.00000019~(6)	[E2]	0.0174(3)	0.00000019 (6)
$\gamma_{12,2}(Pu)$	882.63(3)	0.000000068 (15)	(E2)	0.0157(3)	0.000000067 (15)
$\gamma_{8,1}(Pu)$	897.33(10)	0.000022~(6)	(E2)	0.0152(3)	0.000022~(6)
$\gamma_{9,1}(\mathrm{Pu})$	918.7(2)	0.00000054 (15)	E1	0.00469 (9)	0.00000054 (15)
$\gamma_{10,1}(Pu)$	938.91 (10)	0.00000097~(33)	E0+E2	4.4(4)	0.00000018~(6)
$\gamma_{9,0}(\mathrm{Pu})$	962.8(2)	0.00000053 (15)	E1	0.00432~(8)	0.00000053 (15)
$\gamma_{11,1}(Pu)$	974.5(3)	0.0000002			0.0000002
$\gamma_{13,2}(Pu)$	979.8(2)	0.00000026 (8)			0.0000026 (8)
$\gamma_{10,0}(\mathrm{Pu})$	983.0(3)	0.00000051 (18)	[E2]	$0.01276\ (25)$	0.00000050 (18)
$\gamma_{12,1}(\mathrm{Pu})$	984.5(1)	0.0000020 (6)	M1+E2	0.01279(26)	0.0000020 (6)
$\gamma_{12,0}(\mathrm{Pu})$	1028.5(2)	0.0000016(5)	E2	0.01171(23)	0.0000016 (5)
$\gamma_{13,1}(Pu)$	1081.7(3)	0.00000005 (2)			0.00000005 (2)
$\gamma_{15,2}(\mathrm{Pu})$	1118.3(3)	0.00000017 (9)	[E2]	0.01001(20)	0.0000017 (9)
$\gamma_{14,1}(\mathrm{Pu})$	1184.6(3)	0.00000050 (15)	E2	0.00899(18)	0.00000050 (15)
$\gamma_{15,1}(\mathrm{Pu})$	1220.2(3)	0.0000035(11)	E0 + E2 + (M1)	0.26(3)	0.0000028 (9)

KRI /V.P. Chechev

5 References

G.C.HANNA, B.G.HARVEY, N.MOSS, Phys. Rev. 78 (1950) 617 (Half-life) G.C.HANNA, B.G.HARVEY, N.MOSS, P.R.TUNNICLIFFE, Phys. Rev. 81 (1951) 466 (SF half-life) D.C.DUNLAVEY, G.T.SEABORG, Phys. Rev. 87 (1952) 165 (Conversion electron measurements, gamma-ray multipolarities) F.Asaro, S.G.Thompson, I.Perlman, Phys. Rev. 92 (1953) 694 (Alpha emission energies and probabilities) K.M.GLOVER, J.MILSTED, Nature 173 (1954) 1238 (Half-life) W.P.HUTCHINSON, A.G.WHITE, Nature 173 (1954) 1238 (Half-life) S.A.BARANOV, K.N.SHLYAGIN, J. Nucl. Energy 3 (1956) 132 (Conversion electron measurements, gamma-ray multipolarities) W.G.SMITH, J.M.HOLLANDER, Phys. Rev. 101 (1956) 746 (Gamma-ray energies and multipolarities) L.N.TREIMAN, R.A.PENNEMAN, B.BEVAN, unpublished, cited in J. Inorg. Nucl. Chem. 5 (1957) 6 (Half-life) L.N.KONDRATEV, V.B.DEDOV, L.L.GOLDIN, Izv. Akad. Nauk SSSR, Ser. Fiz. 22 (1958) 99 (Alpha emission energies and probabilities) F.ASARO, I.PERLMAN, Report UCRL-9566, Univ. California (1960) 50 (Conversion electron measurements, gamma-ray multipolarities) C.M.LEDERER, Report UCRL-11028, Univ. California (1963) (Absolute gamma-ray emission probabilities) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Sov. Phys. - JETP 18 (1964) 937 (Alpha emission energies and probabilities) G.G.AKALAEV, N.A.VARTANOV, P.S.SAMOILOV, Report NP-14688 (1965) (Conversion electron measurements, gamma-ray multipolarities) K.F.FLYNN, L.E.GLENDENIN, E.P.STEINBERG, Nucl. Sci. Eng. 22 (1965) 416 (Half-life) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 4 (1967) 798 (Alpha emission energies and probabilities) R.J.ARMANI, R.GOLD, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 621 (SF half-life) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) J.BYRNE, R.J.D.BEATTIE, S.BENDA, I.COLLINGWOOD, J. Phys. (London) B3 (1970) 1166 (Experimental LX-ray absolute emission probability) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha emission energies) J.C.POST, A.H.W.ATEN JR., Radiochim. Acta 15 (1971) 205 (Gamma-ray energies) K.L.SWINTH, IEEE Trans. Nucl. Sci. 18 (1971) 125 (Experimental LX-ray absolute emission probability) W.J.B.WINTER, A.H.WAPSTRA, P.F.A.GOUDSMIT, J.KONIJN, Nucl. Phys. A197 (1972) 417 (Gamma-ray energies) I.AHMAD, R.K.SJOBLOM, R.F.BARNES, F.WAGNER JR., P.R.FIELDS, Nucl. Phys. A186 (1972) 620 (Gamma-ray energies) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Sov. J. Nucl. Phys. 14 (1972) 614 (Alpha emission energies) W.J.KERRIGAN, C.J.BANICK, J. Inorg. Nucl. Chem. 37 (1975) 641 (Half-life) H.DIAMOND, W.C.BENTLEY, A.H.JAFFEY, K.F.FLYNN, Phys. Rev. C15 (1977) 1034 (Half-life) HUAN-QIAO CHANG, JIN-CHENG XU, TONG-QING WEN, Chin. J. Nucl. Phys. 1 (1979) 21 (SF half-life)

J.K.DICKENS, J.W.MCCONNELL, Phys. Rev. C22 (1980) 1344 (Experimental X-ray energies) A.V.JADHAV, K.A.MATHEW, K.RAGHURAMAN, C.K.SIVARAMAKRISHNAN, Proc. of the Nucl. Chem. and Radiochem. Symp., Waltair (1980) 184 (Half-life) C.M.LEDERER, Phys. Rev. C24 (1981) 1175 (Gamma-ray energies and probabilities) S.USUDA, H.UMEZAWA, J. Inorg. Nucl. Chem. 43 (1981) 3081 (Half-life) S.K.AGGARWAL, A.V.JADHAV, S.A.CHITAMBAR, Radiochem. Radioanal. Lett. 54 (1982) 99 (Half-life) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (Experimental X-ray energies) K.Raghuraman, N.K.Chaudhuri, A.V.Jadhav, C.K.Sivaramakrishnan, R.H.Iyer, Radiochem. Radioanal. Lett. 55 (1982) 1 (SF half-life) H.UMEZAWA, Report INDC(NDS)-138, IAEA, Vienna (1982) 32 (SF half-life) R.A.P.WILTSHIRE, Nucl. Instrum. Methods 223 (1984) 535 (Half-life) A.LORENZ, in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1986) (Half-life evaluation) A.G.ZELENKOV, V.A.PCHELIN, YU.F.RODIONOV, L.V.CHISTYAKOV, V.S.SHIRYAEV, V.M.SHUBKO, Sov. At. Energy 60 (1986) 492 (SF half-life) S.USUDA, H.UMEZAWA, Int. J. Radiat. Appl. Instr. D16 (1989) 247 (SF half-life) YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Sov. J. Radiochemistry 32 (1990) 425 (Experimental relative LX-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-emission energies) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (Experimental relative LX-ray emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha-transition probabilities) E.Schönfeld, G.Rodloff, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities, EMISSION code) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525; Erratum Pure Appl. Chem. 73 (2001) 1225 (SF half-life) F.E.CHUKREEV, V.E.MAKARENKO, M.J.MARTIN, Nucl. Data Sheets 97 (2002) 129 (Nuclear data evaluation for A=238) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) V.P.CHECHEV, Phys. Atomic Nuclei 69 (2006) 1188 (242Cm decay data evaluation-2005) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202

(Theoretical ICC)

KRI /V.P. Chechev

Cm - 243

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	28.9	(4)	У
Q_{lpha}	:	6168.8	(10)	keV
Q_{EC}	:	7.5	(17)	keV
α	:	99.71	(3)	%
EC	:	0.29	(3)	%

2 Electron Capture Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\log ft$	P_K	P_L	P_{M+}
$\epsilon_{0,0}$	7.5(17)	0.29(3)	1st forbidden	7.2	0 (0)	0 (0)	1.000 (0)

3 α Emissions

	Energy	Probability
	keV	\times 100
$\alpha_{0,27}$	5231 (15)	0.00039
$\alpha_{0,26}$	5268(3)	0.0015
$\alpha_{0,25}$	5317(3)	0.001
$\alpha_{0,24}$	5324(3)	0.003
$\alpha_{0,23}$	5333(3)	0.003
$\alpha_{0,22}$	5520.1(11)	0.002
$\alpha_{0,21}$	5533~(3)	0.006
$\alpha_{0,20}$	5538(3)	0.002
$\alpha_{0,19}$	5569.9(10)	0.007
$\alpha_{0,18}$	5576~(3)	0.007
$\alpha_{0,17}$	5583.2(10)	0.009
$\alpha_{0,16}$	5588(3)	0.02
$\alpha_{0,15}$	5594(3)	0.01
$\alpha_{0,14}$	5605.1(11)	≤ 0.01
$\alpha_{0,13}$	5613(3)	0.03
$\alpha_{0,12}$	5624~(5)	0.06
$\alpha_{0,11}$	5640(3)	0.14
$\alpha_{0,10}$	5647(3)	0.03
$\alpha_{0,9}$	5682(1)	0.2
$\alpha_{0,8}$	5686.1(10)	1.6(1)
$lpha_{0,7}$	5742.5(10)	11.3(2)
$lpha_{0,6}$	5786.4(10)	73.4(4)
$\alpha_{0,5}$	5877.6(14)	0.7
$\alpha_{0,4}$	5906.1(10)	0.1
$\alpha_{0,3}$	5992.7(10)	5.7(2)
$\alpha_{0,2}$	6010.8(10)	1.05(12)
$\alpha_{0,1}$	6059.4(10)	4.4(2)
$\alpha_{0,0}$	6067.2(10)	1.3(2)

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
$e_{\rm AL}$	(Pu)	6.19 - 22.99	49.3(15)
елк	(Pu)		1.34(19)
1111	KLĹ	75.263 - 85.357	}
	KLX	92.607 - 103.729	}
	KXY	109.93 - 121.78	}
$ec_{1,0 M}$	(Pu)	1.93 - 4.09	63.0(45)
$ec_{1,0 N}$	(Pu)	6.30 - 7.44	17.4(12)
$ec_{3,2}$ M	(Pu)	12.50 - 14.66	0.6~(6)
ес _{3,2 N}	(Pu)	16.87 - 18.01	0.16(16)
ес _{7,6 L}	(Pu)	21.559 - 26.606	9.4(16)
$ec_{2,1 L}$	(Pu)	26.308 - 31.355	18.4(12)
$ec_{2,0 L}$	(Pu)	34.169 - 39.216	9.67(14)
$ec_{8,7 L}$	(Pu)	34.2 - 39.2	1.720(24)
ес _{7,6 М}	(Pu)	38.730 - 40.888	2.36(49)
$ec_{7,6 N}$	(Pu)	43.104 - 44.239	0.66(12)
$ec_{2,1 M}$	(Pu)	43.479 - 45.637	4.96(34)
ес _{7,4 К}	(Pu)	44.60 (6)	0.079(34)
ес _{3,1 L}	(Pu)	44.737 - 49.784	14.3(36)
$ec_{2,1 N}$	(Pu)	47.853 - 48.988	1.36(10)
ес _{2,0 М}	(Pu)	51.340 - 53.498	2.700(42)
ес _{8,7 М}	(Pu)	51.4 - 53.5	0.419(6)
ec _{8,7} N	(Pu)	55.7 - 56.9	0.1142(16)
ec _{2,0} N	(Pu)	55.714 - 56.849	0.742(11)
$e_{3,1}$ M	(Pu)	61.908 - 64.066	4(1)
$c_{4,3}$ L	(Pu)	64.96 - 70.00	0.01633~(23)
$c_{3,1 N}$	(Pu)	66.282 - 67.417	1.10(28)
$ec_{8,6}$ L	(Pu)	78.86 - 83.90	0.0837~(12)
с _{9,6 L}	(Pu)	83.021 - 88.068	0.056~(10)
$ec_{4,2}$ L	(Pu)	83.37 - 88.41	0.1284(18)
ес _{6,3 К}	(Pu)	87.962 (2)	8.42(29)
$ec_{5,3}$ L	(Pu)	94 - 99	0.442(19)
ес _{8,6} м	(Pu)	96.03 - 98.18	0.02344~(40)
ес9,6 м	(Pu)	100.192 - 102.350	0.0148(27)
$ec_{4,2}$ M	(Pu)	100.54 - 102.70	0.0360~(6)
$ec_{6,2}$ K	(Pu)	106.392 (2)	21.4(7)
$ec_{5,3}$ M	(Pu)	111.2 - 113.3	0.123~(6)
$ec_{5,3}$ N	(Pu)	115.5 - 116.7	0.0340(14)
$ec_{7,3}$ K	(Pu)	132.61 (3)	0.160(15)
$ec_{7,4}$ L	(Pu)	143.29 - 148.33	0.016~(7)
ес _{7,2 К}	(Pu)	151.08 (9)	0.096(12)
$ec_{6,1 K}$	(Pu)	155.808 (2)	16.0(5)
$ec_{6,0 K}$	(Pu)	163.669 (2)	0.0615 (19)
$ec_{6,3}$ L	(Pu)	186.649 - 191.696	1.68(6)
ес _{8,3 К}	(Pu)	189.9 (2)	0.0143(18)
	(-)		

KRI /V.P. Chechev

		Energy keV	Electrons per 100 disint.
ес _{6,2 L}	(Pu)	205.079 - 210.126	4.27 (14)
$ec_{6,3 N}$	(Pu)	208.194 - 209.329	0.1112(38)
ес _{6,2 М}	(Pu)	222.250 - 224.408	1.038(33)
$ec_{6,2 N}$	(Pu)	226.624 - 227.759	0.282(9)
$ec_{7,3 L}$	(Pu)	231.3 - 236.3	0.0323(30)
$ec_{7,2 L}$	(Pu)	249.77 - 254.81	0.0193(24)
$ec_{6,1 L}$	(Pu)	254.495 - 259.542	3.22(11)
ес _{6,0 L}	(Pu)	262.36 - 267.40	0.0869(27)
$ec_{6,1 M}$	(Pu)	271.666 - 273.824	0.784(25)
$ec_{6,1 N}$	(Pu)	276.040 - 277.175	0.213(7)
$ec_{6,0 M}$	(Pu)	279.53 - 281.68	0.0238(7)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.1246 - 21.9844		52.1(16)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 13.34 \ (28) \\ 21.1 \ (5) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	} } }	7.75 (21)	$\mathrm{K}\beta_1'$
$egin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	2.69 (8)	$\mathrm{K}\beta_2'$

5.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pu)$	7.861 (2)	85.5	M1+E2	5700 (400)	0.015
$\gamma_{3,2}(Pu)$	18.430(4)	0.8	(M1 + E2)	8000 (6200)	0.0001
$\gamma_{7,6}(Pu)$	44.663(5)	12.7(23)	M1+E2	96 (13)	0.131(16)
$\gamma_{2,1}(\mathrm{Pu})$	49.414 (2)	25.4	M1+E2	126 (8)	0.2
$\gamma_{2,0}(\mathrm{Pu})$	57.273 (4)	13.38	E2	222(4)	0.06
$\gamma_{8,7}(Pu)$	57.30 (2)	2.368	[M1]	28.6(4)	0.08
$\gamma_{9,7}(Pu)$	61.460(2)	0.0222(19)	E1	0.473(7)	0.0151(13)
$\gamma_{3,1}(Pu)$	67.841 (7)	20(5)	E2	98.5(14)	0.20(5)
$\gamma_{4,3}(Pu)$	88.06(3)	0.024	M1+E2	12.26(18)	0.0018
$\gamma_{8,6}(Pu)$	101.96(2)	0.123	E2	14.42 (21)	0.008
$\gamma_{9,6}(\mathrm{Pu})$	106.125(2)	0.373(34)	E1(+M2)	0.26(4)	0.296(25)

Cm - 243

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{4,2}(Pu)$	106.47(4)	0.192	E2	11.80 (17)	0.015
$\gamma_{5,3}(Pu)$	117.1 (10)	0.7(0)	[E2]	7.6(4)	0.08
$\gamma_{7,4}(\mathrm{Pu})$	166.39(6)	0.12(5)	M1	6.22(9)	0.016(7)
$\gamma_{6,3}(Pu)$	209.753(2)	13.95(45)	M1+E2	3.24(5)	3.29(10)
$\gamma_{6,2}(Pu)$	228.183(2)	37.7(11)	M1+E2	2.56(4)	10.6(3)
$\gamma_{7,3}(Pu)$	254.40(3)	0.314(29)	M1+E2	1.85(3)	0.11(1)
$\gamma_{7,2}(Pu)$	272.87(9)	0.201(25)	M1+E2	1.518(22)	0.08(1)
$\gamma_{6,1}(\mathrm{Pu})$	277.599(2)	34.3(10)	M1+E2	1.448(21)	14.0(4)
$\gamma_{6,0}(\mathrm{Pu})$	285.460(2)	0.910(25)	E2	0.247(4)	0.73(2)
$\gamma_{8,3}(Pu)$	311.7(2)	0.0350(42)	M1+E2	1.06(3)	0.017(2)
$\gamma_{9,3}(\mathrm{Pu})$	315.880(3)	0.0187(21)	E1(+M2)	0.0372(9)	0.018(2)
$\gamma_{7,1}(Pu)$	322.3(2)	0.0082(12)	[E2]	0.1699(24)	0.007(1)

E1(+M2)

0.0329(6)

0.024(2)

0.0248(21)

6 References

 $\gamma_{9,2}(Pu)$

Am-1,-1511

334.310(3)

S.G.THOMPSON, A.GHIORSO, G.T.SEABORG, Phys. Rev. 80 (1950) 781 (Half-life) F.Asaro, S.G.Thompson, I.Perlman, Phys. Rev. 92 (1953) 694 (Gamma-ray energies) F.ASARO, Thesis, Report UCRL-2180, Univ. California (1953) (Half-life) J.F.SCHOOLEY, J.RASMUSSEN, Report UCRL-2932, Univ. California (1955) 63 (Alpha-particle and gamma-ray energies) J.O.NEWTON, B.ROSE, J.MILSTED, Phil. Mag. 1 (1956) 981 (Gamma-ray energies) F.Asaro, S.G.Thompson, F.S.Stephens Jr., I.Perlman, Bull. Am. Phys. Soc. 2 (1957) 393 (Alpha-particle energies) G.R.CHOPPIN, S.G.THOMPSON, J. Inorg. Nucl. Chem. 7 (1958) 197 (Total and EC decay half-life, alpha-particle energies and emission probabilities) G.T.EWAN, J.S.GEIGER, R.L.GRAHAM, D.R.MCKENZIE, Phys. Rev. 116 (1959) 950 (Conversion electron intensities and ICC) R.B.IVANOV, A.S.KRIVOKHATSKII, V.G.NEDOVESOV, Izv. Akad. Nauk SSSR, Ser. Fiz. 26 (1962) 976 (Alpha-particle energies) C.M.LEDERER, Thesis, Report UCRL-11028, Univ. California (1963) (Alpha-particle energies) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Zh. Eksp. Teor. Fiz. 45 (1963) 1360 (Alpha-particle energies and emission probabilities) F.ASARO, S.G.THOMPSON, F.S.STEPHENS JR., I.PERLMAN, Priv. Comm. (1957), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies and emission probabilities) I.A.BARANOV, A.S.KRIVOKHATSKII, A.N.SILANTEV, Izv. Akad. Nauk SSSR, Ser. Fiz. 28 (1964) 1255 (Gamma-ray energies) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies) B.P.K.MAIER, Z. Phys. 184 (1965) 143 (Gamma-ray energies) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Yad. Fiz. 4 (1966) 1108 (Alpha-particle energies and emission probabilities) J.Byrne, R.J.D.Beattie, S.Benda, I.Collingwood, J. Phys. (London) B3 (1970) 1166 (Alpha-particle energies)

KRI /V.P. Chechev

Cm - 243

S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Yad. Fiz. 14 (1971) 1101 (Alpha-particle energies) F.T.PORTER, I.AHMAD, M.S.FREEDMAN, R.F.BARNES, R.K.SJOBLOM, F.WAGNER JR., P.R.FIELDS, Phys. Rev. C5 (1972) 1738 (Gamma-ray energies) I.AHMAD, M.WAHLGREN, Nucl. Instrum. Methods 99 (1972) 333 (KX-ray and gamma-ray emission probabilities) K.S.KRANE, C.E.OLSEN, W.A.STEYERT, Phys. Rev. C5 (1972) 1671 (E2/M1 mixing ratios) I.AHMAD, H.DIAMOND, J.MILSTED, J.LERNER, R.K.SJOBLOM, Nucl. Phys. A208 (1973) 287 (Alpha-transition probabilities) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-particle energies) V.I.VAKATOV, H.SODAN, R.KALPAKCHIEVA, Y.T.OGANESYAN, Y.E.PENIONZHKEVICH, V.N.POLYANSKII, L.P.CHELNOKOV, Report JINR-P7-10123, Joint Institute of Nuclear Research, Dubna (1977) (Alpha-particle energies) H.G.BORNER, G.BARREAU, W.F.DAVIDSON, P.JEUCH, T.VON EGIDY, J.ALMEIDA, D.H.WHITE, Nucl. Instrum. Methods 166 (1979) 251 (Gamma-ray energies) I.Ahmad, Nucl. Instrum. Methods 193 (1982) 9 (Gamma-ray energies) G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, At. Energ. 60 (1986) 286 (Half-life) V.N.POLYNOV, A.A.DRUZHININ, A.M.KOROCHKIN, E.A.NIKITIN, V.A.BOCHKAREV, V.N.VYACHIN, V.G.LAPIN, M.YU.MAKSIMOV, At. Energ. 62 (1987) 277 (SF half-life) E.SIMECKOVA, P.CIZEK, M.FINGER, J.JOHN, P.MALINSKY, V.N.PAVLOV, Hyperfine Interactions 59 (1990) 185 (E2/M1 mixing ratios) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies) G.Audi, A.H.Wapstra, C.Thibault, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) E.BROWNE, Nucl. Data Sheets 98 (2003) 665 (243Cm alpha decay scheme and alpha decay data evaluation) Y.A.Akovali, Nucl. Data Sheets 103 (2004) 515 (243Cm EC decay scheme and EC decay data evaluation) A.TRKOV, G.L.MOLNAR, ZS.REVAY, S.F.MUGHABGHAB, R.B.FIRESTONE, V.G.PRONYAEV, A.L.NICHOLS, M.C.MOXON, Nucl. Sci. Eng. 150 (2005) 336 (239Pu gamma-ray emission probabilities in decay of 239Np) V.P.CHECHEV, N.K.KUZMENKO, in Table of Radionuclides (Vol.4 - A = 133 to 252), Monographie BIPM-5, Bureau International des Poids et Mesures, Sevres (2008) (Pu-239 gamma-ray intensities from Np-239 decay) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions) F.G.KONDEV, I.AHMAD, M.P.CARPENTER, C.J.CHIARA, J.P.GREENE, R.V.F.JANSSENS, M.A.KELLETT, T.L.KHOO, T.LAURITSEN, C.J.LISTER, E.F.MOORE, A.L.NICHOLS, D.SEWERYNIAK, S.ZHU, Proc. 13th Int. Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Cologne, Germany, 25-29 Aug.2008; AIP Conf. Proc. 1090 (2009) 199

(Alpha-transition probabilities)

Cm - 243

KRI /V.P. Chechev

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	18.11	(3)	У
$Q^{'}_{lpha}$:	5901.74	(5)	keV
α	:	100		%
SF	:	1.36		$ imes 10^{-4}$ %

2 α Emissions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$
$\alpha_{0,9}$	4882.12 (8)	0.0000047(11)
$\alpha_{0,8}$	4919.24(7)	0.000050 (5)
$\alpha_{0,7}$	4958.20(9)	0.000149(16)
$\alpha_{0,6}$	5166.58(7)	0.0000042(30)
$\alpha_{0,5}$	5217.24(7)	0.000055 (9)
$\alpha_{0,4}$	5315.3	0.00004
$\alpha_{0,3}$	5515.29(6)	0.00352(18)
$\alpha_{0,2}$	5665.41(5)	0.0204(15)
$\alpha_{0,1}$	5762.65(5)	23.3(4)
$\alpha_{0,0}$	5804.77(5)	76.7(4)

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Pu)	6.19 - 22.99	8.09 (20)
e _{AK}	(Pu) KLL KLX KXY	75.263 - 85.357 92.607 - 103.729 109.93 - 121.78	0.0000061 (9) } } }
$ec_{1,0 L}$ $ec_{1,0 M}$ $ec_{2,1 L}$	(Pu) (Pu) (Pu)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 16.9 \ (6) \\ 4.72 \ (16) \\ 0.0164 \ (11) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV	Photons per 100 disint.
XL	(Pu)	12.125 - 21.984	8.92 (23)
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Pu) (Pu)	99.525 103.734	$\begin{array}{ccc} 0.000061 & (4) & \ \\ 0.000097 & (5) & \ \\ \end{array} \right\} \mathrm{K}\alpha$

		Energy keV	Photons per 100 disint.
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	
$\begin{array}{l} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	

4.2 Gamma Transitions and Emissions

	Energy keV	$\mathbf{P}_{\gamma+\mathrm{ce}} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Pu})$	42.824 (8)	23.4(8)	E2	905 (18)	0.0258(7)
$\gamma_{2,1}(\mathrm{Pu})$	98.860(13)	0.0239(16)	E2	16.6(3)	0.00136(9)
$\gamma_{3,2}(Pu)$	152.63(2)	0.00355(18)	(E2)	2.48(5)	0.00102(5)
$\gamma_{4,3}(\mathrm{Pu})$	202.4	0.00004	(E2)	0.817(16)	0.000022
$\gamma_{8,6}(Pu)$	251.47(6)	0.0000121(24)	(E1)	0.0606(12)	0.0000114(23)
$\gamma_{7,5}(Pu)$	263.37(8)	0.000065(9)	(E1)	0.0547(11)	0.000062(9)
$\gamma_{9,6}(Pu)$	289.21(7)	0.0000048 (48)	E2+M3	7(7)	0.0000006 (3)
$\gamma_{8,5}(Pu)$	302.98(6)	0.0000198(31)	(E1)	0.0405(8)	0.000019(3)
$\gamma_{9,5}(Pu)$	340.72(7)	0.0000018(9)			0.0000018(9)
$\gamma_{6,2}(Pu)$	507.16(5)	0.0000088(28)	(E1)	0.01401 (29)	0.0000087(28)
$\gamma_{5,1}(Pu)$	554.52(4)	0.000088(11)	(E1)	0.01179(24)	0.000087(11)
$\gamma_{5,0}(\mathrm{Pu})$	597.34(4)	0.000054(7)	(E1)	0.01024(21)	0.000053(7)
$\gamma_{6,1}(\mathrm{Pu})$	606.03(4)	0.0000081(14)			0.0000081(14)
$\gamma_{8,2}(Pu)$	758.63(5)	0.0000141(19)	(E2)	0.0212(4)	0.0000138(19)
$\gamma_{7,1}(\mathrm{Pu})$	817.89(7)	0.000069(9)	(E2)	0.0182(4)	0.000068(9)
$\gamma_{8,1}(\mathrm{Pu})$	857.50(4)	0.0000057(8)			0.0000057(8)
$\gamma_{7,0}(\mathrm{Pu})$	860.71(7)	0.0000082(20)	(E0)		0.0000082(20)
$\gamma_{9,1}(Pu)$	895.24(6)	0.0000019(7)	E1+M2	0.07(7)	0.0000018(6)
$\gamma_{8,0}(\mathrm{Pu})$	900.32(4)	0.0000013(6)			0.0000013(6)
$\gamma_{9,0}(\mathrm{Pu})$	938.06 (6)	0.0000004 (4)			0.0000004 (4)

5 References

A.GHIORSO, G.H.HIGGINS, A.E.LARSH, G.T.SEABORG, S.G.THOMPSON, Phys. Rev. 87 (1952) 163 (SF half-life)
A.M.FRIEDMAN, A.L.HARKNESS, P.R.FIELDS, M.H.STUDIER, J.R.HUIZENGA, Phys. Rev. 95 (1954) 1501 (Half-life)
C.M.STEVENS, M.H.STUDIER, P.R.FIELDS, J.F.MECH, P.A.SELLERS, A.M.FRIEDMAN, H.DIAMOND, J.R.HUIZENGA, Phys. Rev. 94 (1954) 974 (Half-life)
J.P.HUMMEL, Thesis, Report UCRL-3456, Univ. California (1956) (Alpha-transition probabilities)
W.G.SMITH, J.M.HOLLANDER, Phys. Rev. 101 (1956) 746 (Conversion electron measurements, gamma-ray multipolarities)
F.ASARO, I.PERLMAN, Priv. Comm. (1960) (Alpha-transition probabilities, alpha-emission energies)

KRI /V.P. Chechev

412

W.T.CARNALL, S.FRIED, A.L.HARKNESS, J. Inorg. Nucl. Chem. 17 (1961) 12 (Half-life) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (E0 gamma and alpha transition probabilities) B.S.Dzhelepov, R.B.Ivanov, V.G.Nedovesov, V.P.Chechev, Sov. Phys. - JETP 18 (1964) 937 (Alpha-transition probabilities, alpha-emission energies) L.Z.MALKIN, I.D ALKHAZOV, A.S.KRIVOKHATSKII, K.A.PETRZHAK, L.M.BELOV, Sov. J. At. Energy 16 (1964) 170(SF half-life) D.METTA, H.DIAMOND, R.F.BARNES, J.MILSTED, J.GRAY JR., D.J.HENDERSON, C.M.STEVENS, J. Inorg. Nucl. Chem. 27 (1965) 33 (SF half-life) J.A.BEARDEN, Rev. Mod. Phys. 39 (1967) 78 (X-ray energies) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 4 (1967) 798 (Alpha-transition probabilities, alpha-emission energies) R.J.ARMANI, R.GOLD, Proc. Symp. on Standardization of Radionuclides, STI/PUB/139, IAEA, Vienna (1967) 621 (SF half-life) W.C.BENTLEY, J. Inorg. Nucl. Chem. 30 (1968) 2007 (Half-life) C.L.DUKE, W.L.TALBERT JR., Phys. Rev. 173 (1968) 1125 (Conversion electron measurements, gamma-ray multipolarities) M.R.SCHMORAK, ET AL., Int. Conf. Radioact. Nucl. Spectroc. Tech. And Appl., Nashville (1969) 22 (Gamma-ray energies and probabilities) M.R.SCHMORAK, Nucl. Data Sheets B4 (1970) 661 (Gamma-ray energies and probabilities) D.M.BARTON, P.G.KOONTZ, J. Inorg. Nucl. Chem. 32 (1970) 769 (SF half-life) B.GRENNBERG, A.RYTZ, Metrologia 7 (1971) 65 (Alpha-particle energies) H.J.SPECHT, J.WEBER, E.KONECNY, D.HEUNEMANN, Phys. Lett. 41B (1972) 43 (Level energies) I.AHMAD, R.F.BARNES, R.K.SJOBLOM, P.R.FIELDS, J. Inorg. Nucl. Chem. 34 (1972) 3335 (Gamma-ray energies) J.D.HASTINGS, W.W.STROHM, J. Inorg. Nucl. Chem. 34 (1972) 3597 (SF half-life) W.J.KERRIGAN, R.S.DORSETT, J. Inorg. Nucl. Chem. 34 (1972) 3603 (Half-life) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and probabilities) C.M.Lederer, V.S.Shirley, E.Browne, J.M.Dairiki, R.E.Doebler, A.A.Shihab-Eldin, L.J.Jardine, J.K.Tuli, A.B.BUYRN, Table of Isotopes, 7th Ed., John Wiley and Sons Inc., N.Y. (1978) (Gamma-ray energies and probabilities) C.M.LEDERER, Priv. Comm. (1967), cited in C.M.Lederer et al., Table of Isotopes, 7th Ed., John Wiley and Sons Inc., N.Y. (1978) (Gamma-ray energies and probabilities) J.K.DICKENS, J.W.MCCONNELL, Phys. Rev. C22 (1980) 1344 (Experimental X-ray energies) H.-C.HSEUH, E.-M.FRANZ, P.E.HAUSTEIN, S.KATEOFF, L.K.PEKER, Phys. Rev. C23 (1981) 1217 (Gamma-ray energies and probabilities) G.BARREAU, H.G.BORNER, T.VON EGIDY, R.W.HOFF, Z. Phys. A308 (1982) 209 (Experimental X-ray energies) V.G.POLYUKHOV, G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, Sov. Radiochem. 24 (1982) 408 (Half-life) P.A.BURNS, P.N.JOHNSTON, J.R.MORONEY, Priv. Comm. (1984), cited in Decay Data of the Transactinium Nuclides, Technical Reports Series No. 261, IAEA, Vienna (1984) 147 (Alpha-transition probabilities) J.PEARCEY, S.A.WOODS, P.CHRISTMAS, Nucl. Instrum. Methods Phys. Res. A286 (1990) 563 (Conversion electron measurements, gamma-ray multipolarities)

YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Cov. J. Radiochemistry 32 (1990) 425 (Experimental relative LX-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-emission energies) E.A.FROLOV, Appl. Radiat. Isot. 43 (1992) 211 (Alpha-emission energies) A.K.PANDEY, R.C.SHARMA, P.C.KALSI, R.H.IYER, Nucl. Instrum. Methods Phys. Res. B82 (1993) 151 (SF half-life) P.N.JOHNSTON, P.A.BURNS, Nucl. Instrum. Methods Phys. Res. A361 (1995) 229 (LX-ray emission probabilities) A.M.SANCHEZ, P.R.MONTERO, F.V.TOME, Nucl. Instrum. Methods Phys. Res. A369 (1996) 593 (Alpha-transition probabilities) C.C.BUENO, J.A.C.GONCALVES, M.DAMY DE S.SANTOS, Nucl. Instrum. Methods Phys. Res. A371 (1996) 460 (Alpha-transition probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) J.KASAGI, H.YAMAZAKI, N.KASAJIMA, T.OHTSUKI, H.YUKI, J. Phys. (London) G23 (1997) 1451 (Alpha-transition probabilities) J.YANG, J.NI, Nucl. Instrum. Methods Phys. Res. A413 (1998) 239 (Alpha-transition probabilities) E.GARCIA-TORAÑO, Appl. Radiat. Isot. 49 (1998) 1325 (Alpha-transition probabilities, alpha-emission energies) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-energies and relative emission probabilities) N.E.HOLDEN, D.C.HOFFMAN, Pure Appl. Chem. 72 (2000) 1525 (Spontaneous fission half-life) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (X-ray and Auger electron emission probabilities, EMISSION code) F.DAYRAS, Nucl. Instrum. Methods Phys. Res. A490 (2002) 492 (Alpha-transition probabilities) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) F.E.CHUKREEV, BALRAJ SINGH, Nucl. Data Sheets 103 (2004) 325 (Decay scheme, 240Pu level energies, gamma-ray multipolarities and probabilities) V.P.CHECHEV, Phys. Atomic Nuclei 69 (2006) 1188 (244Cm decay data evaluation-2005) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Cm - 245

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	8250	(70)	у
$Q^{'}_{lpha}$:	5622.3	(5)	keV
α	:	100		%

2 α Emissions

$\begin{array}{llllllllllllllllllllllllllllllllllll$		Energy keV	Probability × 100
$\begin{array}{ccccc} \alpha_{0,7} & 5234.4 \ (12) & 0.32 \\ \alpha_{0,6} & 5303.6 \ (12) & 5.0 \ (1) \\ \alpha_{0,5} & 5361.8 \ (12) & 93.2 \ (5) \\ \alpha_{0,4} & 5371.4 \ (5) & 0.0210 \ (9) \\ \alpha_{0,3} & 5371.7 \ (5) & 0.39 \ (22) \end{array}$	$\alpha_{0,8}$	5152(3)	≤ 0.005
$\begin{array}{cccc} \alpha_{0,6} & 5303.6 \ (12) & 5.0 \ (1) \\ \alpha_{0,5} & 5361.8 \ (12) & 93.2 \ (5) \\ \alpha_{0,4} & 5371.4 \ (5) & 0.0210 \ (9) \\ \alpha_{0,3} & 5371.7 \ (5) & 0.39 \ (22) \end{array}$	$\alpha_{0,7}$	5234.4(12)	0.32
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\alpha_{0,6}$	5303.6(12)	5.0(1)
$\begin{array}{lll} \alpha_{0,4} & 5371.4 \ (5) & 0.0210 \ (9) \\ \alpha_{0,3} & 5371.7 \ (5) & 0.39 \ (22) \end{array}$	$\alpha_{0,5}$	5361.8(12)	93.2(5)
$\alpha_{0,3}$ 5371.7 (5) 0.39 (22)	$\alpha_{0,4}$	5371.4(5)	0.0210 (9)
	$\alpha_{0,3}$	5371.7(5)	0.39(22)
$\alpha_{0,2}$ 5436.1 (5) 0.04	$\alpha_{0,2}$	5436.1(5)	0.04
$\alpha_{0,1}$ 5488.5 (5) 0.83	$\alpha_{0,1}$	5488.5(5)	0.83
$\alpha_{0,0}$ 5530.4 (4) 0.58	$\alpha_{0,0}$	5530.4(4)	0.58

3 Electron Emissions

		${ m Energy}\ { m keV}$	Electrons per 100 disint.
$e_{\rm AL}$	(Pu)	6.19 - 22.99	50.1(13)
e_{AK}	(Pu)		1.91(27)
	KLL	75.263 - 85.357	}
	KLX	92.607 - 103.729	}
	KXY	109.93 - 121.78	}
$ec_{5,1 K}$	(Pu)	11.290 (2)	24.7(7)
$ec_{6,2 \text{ K}}$	(Pu)	14.365 (9)	0.70(14)
$ec_{7,3}$ K	(Pu)	18.067 (16)	0.032 (32)
$ec_{1,0 L}$	(Pu)	18.868 - 23.915	28.1(16)
$ec_{2,1 L}$	(Pu)	30.703 - 35.750	2.43(15)
$ec_{6,5 L}$	(Pu)	33.79 - 38.83	2.30(22)
$ec_{1,0}$ M	(Pu)	36.039 - 38.197	7.16(42)
$ec_{4,0 K}$	(Pu)	39.894 (1)	0.0135~(6)
$ec_{1,0 N}$	(Pu)	40.413 - 41.548	1.96(11)
$ec_{3,2}$ L	(Pu)	42.431 - 47.478	0.32(17)
$ec_{7,6}$ L	(Pu)	46.133 - 51.180	0.15 (9)
$ec_{2,1}$ M	(Pu)	47.874 - 50.032	0.615(37)
$ec_{6,5 M}$	(Pu)	50.96 - 53.12	0.62~(6)
$ec_{2,1 N}$	(Pu)	52.248 - 53.383	0.168(10)
$ec_{5,0 K}$	(Pu)	53.2613 (14)	40.0(11)
$ec_{6,5 N}$	(Pu)	55.33 - 56.47	0.169(17)
$ec_{5,2 L}$	(Pu)	56.169 - 61.216	1.9(6)
$ec_{3,2} \rm \ M$	(Pu)	59.602 - 61.760	0.081 (44)

		Energy	Electrons
		ke v	per 100 distitt.
ес _{7,6 М}	(Pu)	63.304 - 65.462	0.035(26)
$ec_{3,2 N}$	(Pu)	63.976 - 65.111	0.022~(13)
ec _{7,6} N	(Pu)	67.678 - 68.813	0.010(7)
$ec_{6,1 \text{ K}}$	(Pu)	68.17 (1)	0.502(34)
$ec_{2,0 L}$	(Pu)	72.676 - 77.722	0.153(32)
$ec_{5,2}$ M	(Pu)	73.340 - 75.498	0.52(15)
$ec_{5,2 N}$	(Pu)	77.714 - 78.849	0.144(49)
$ec_{7,2}$ K	(Pu)	83.602 (16)	0.013(12)
$ec_{2,0 M}$	(Pu)	89.846 - 92.004	0.043(9)
$ec_{2,0 N}$	(Pu)	94.220 - 95.355	0.0118(25)
$ec_{7,5 L}$	(Pu)	102.99 - 108.03	0.028(8)
$ec_{5,1 L}$	(Pu)	109.977 - 115.024	5.40(16)
$ec_{6,2 L}$	(Pu)	113.052 - 118.099	0.231(19)
$ec_{7,3 L}$	(Pu)	116.754 - 121.801	0.0160(45)
$ec_{5,1 M}$	(Pu)	127.148 - 129.306	1.329 (39)
$ec_{6,2 M}$	(Pu)	130.223 - 132.381	0.059(6)
$ec_{5,1 N}$	(Pu)	131.522 - 132.657	0.362(10)
$ec_{6,2 N}$	(Pu)	134.597 - 135.732	0.0162(17)
$ec_{4,0 L}$	(Pu)	138.581 - 143.628	0.0915(41)
$ec_{5,0}$ L	(Pu)	151.948 - 156.995	8.40 (22)
$ec_{4,0 M}$	(Pu)	155.752 - 157.910	0.0256(11)
ес _{6,1 L}	(Pu)	166.861 - 171.908	0.1357(45)
$ec_{5,0}$ M	(Pu)	169.119 - 171.277	2.05(5)
$ec_{5,0 N}$	(Pu)	173.493 - 174.628	0.560(15)
$ec_{6,1 M}$	(Pu)	184.032 - 186.190	0.0343 (11)

4 Photon Emissions

4.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Pu)	12.1246 - 21.9844		51.7(10)	
$\begin{array}{l} {\rm XK}\alpha_2 \\ {\rm XK}\alpha_1 \end{array}$	(Pu) (Pu)	$99.525 \\ 103.734$		$\begin{array}{c} 19.0 \ (5) \\ 30.1 \ (7) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Pu) (Pu) (Pu)	116.244 117.228 117.918	} } }	11.06 (30)	$\mathrm{K}\beta_1'$
$\begin{array}{l} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(Pu) (Pu) (Pu)	$120.54 \\ 120.969 \\ 121.543$	} } }	3.84 (12)	$\mathrm{K}\beta_2'$

Cm - 245

KRI /V.P. Chechev

	Energy keV	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}} \\ \times 100 \end{array}$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(Pu)$	41.972(1)	38.2 (22)	M1+E2	102.4(20)	0.369(20)
$\gamma_{2,1}(Pu)$	53.807(1)	3.34(20)	M1+E2	44.7 (11)	0.073(4)
$\gamma_{6,5}(Pu)$	56.89(3)	3.16(17)	M1+E2	87(7)	0.0359(21)
$\gamma_{3,2}(Pu)$	65.535(3)	0.45(22)	M1+E2	24(12)	0.018(2)
$\gamma_{7,6}(Pu)$	69.237(18)	0.20(4)	M1(+E2)	28(14)	0.007(3)
$\gamma_{5,2}(Pu)$	79.2728(18)	2.8(7)	M1+E2	22(6)	0.120(7)
$\gamma_{2,0}(Pu)$	95.7795(12)	0.221(47)	E2	19.3(3)	0.0109(23)
$\gamma_{7,5}(Pu)$	126.09(4)	0.046(13)	[E2]	5.59(8)	0.007(2)
$\gamma_{5,1}(Pu)$	133.081(2)	34.7(10)	M1+E2	11.36(17)	2.81(7)
$\gamma_{6,2}(Pu)$	136.156(9)	1.13(12)	M1+E2	9(1)	0.113(4)
$\gamma_{7,3}(Pu)$	139.858(16)	0.064(33)	[M1, E2]	7(4)	0.008(1)
$\gamma_{4,0}(Pu)$	161.685(1)	0.210(9)	E2	1.96(3)	0.071(3)
$\gamma_{5,0}(Pu)$	175.0523(14)	61.0(16)	M1+E2	5.21(8)	9.83(22)
$\gamma_{6,1}(\mathrm{Pu})$	189.965(10)	0.889(42)	M1+E2	3.36(16)	0.204(6)
$\gamma_{7,2}(Pu)$	205.393(16)	0.028(13)	[M1,E2]	2.1(14)	0.009(1)
$\gamma_{6,0}(Pu)$	231.935(9)	0.0175(27)	[E2]	0.498(7)	0.0117(18)
$\gamma_{-1,1}(\mathrm{Pu})$	388.16(5)	0.019(1)			0.019(1)

4.2 Gamma Transitions and Emissions

5 References

E.K.HULET, S.G.THOMPSON, A.GHIORSO, Phys. Rev. 95 (1954) 1703 (Half-life) A.M.FRIEDMAN, A.L.HARKNESS, P.R.FIELDS, M.H.STUDIER, J.R.HUIZENGA, Phys. Rev. 95 (1954) 1501 (Half-life) C.I.BROWNE, D.C.HOFFMAN, W.T.CRANE, J.P.BALAGNA, G.H.HIGGINS, J.W.BARNES, R.W.HOFF, H.L.SMITH, J.P.MIZE, M.E.BUNKER, J. Inorg. Nucl. Chem. 1 (1955) 254 (Half-life) I.PERLMAN, F.ASARO, F.S.STEPHENS, J.P.HUMMEL, Report UCRL-2932, Univ. California (1955) 59 (Gamma-ray energies) J.R.HUIZENGA, H.DIAMOND, Phys. Rev. 107 (1957) 1087 (Half-life) W.T.CARNALL, S.FRIED, A.L.HARKNESS, J. Inorg. Nucl. Chem. 17 (1961) 12 (Half-life) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Zh. Eksp. Teor. Fiz. 45 (1963) 1360 (Alpha-particle energies and emission probabilities) E.K.HYDE, I.PERLMAN, G.T.SEABORG, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies and emission probabilities) F.ASARO, I.PERLMAN, Priv. Comm. (1960), cited in E.K.Hyde et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall Inc., Englewood Cliffs, N.J. (1964) (Alpha-particle energies and emission probabilities) S.A.BARANOV, Y.F.RODIONOV, V.M.KULAKOV, V.M.SHATINSKII, Yad. Fiz. 4 (1966) 1108 (Alpha-particle energies and emission probabilities) A.M.FRIEDMAN, J.MILSTED, Phys. Lett. 21 (1966) 179 (Alpha-particle energies and emission probabilities) D.N.METTA, H.DIAMOND, F.R.KELLY, J. Inorg. Nucl. Chem. 31 (1969) 1245 (Half-life) K.W.MACMURDO, R.M.HARBOUR, R.W.BENJAMIN, J. Inorg. Nucl. Chem. 33 (1971) 1241 (Half-life) S.A.BARANOV, V.M.SHATINSKY, Yad. Fiz. 22 (1975) 670 (Alpha-particle energies and emission probabilities)

S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting on Transactinium Nucl. Data, Karlsruhe, Vol.III, IAEA-186, IAEA, Vienna (1976) 249 (Alpha-particle energies and emission probabilities) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 311 (Atomic electron binding energies) J.K.DICKENS, J.W.MCCONNELL, Phys. Rev. C22 (1980) 1344 (Gamma-ray energies and emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, V.V.KALYGIN, P.A.PRIVALOVA, Radiokhimiya 24 (1982) 490; Sov. Radiochemistry 24 (1982) 408 (Half-life) A.A.DRUZHININ, V.N.POLYNOV, S.P.VESNOVSKY, A.M.KOROCHKIN, A.A.LBOV, E.A.NIKITIN, Dok. Akad. Nauk SSSR 280 (1985) 1351 (SF half-life) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life) YU.S.POPOV, D.KH.SRUROV, I.B.MAKAROV, E.A.ERIN, G.A.TIMOFEEV, Radiokhimiya 33 (1991) 3; Sov. J. Radiochemistry 33 (1991) 1 (Gamma-ray energies and emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-particle energies and emission probabilities) R.DANIELS, Thesis, Univ. Manchester (1992) (Gamma-ray energies and emission probabilities) J.A.SHANNON, W.R.PHILLIPS, B.J.VARLEY, I.AHMAD, L.R.MORSS, Nucl. Instrum. Methods Phys. Res. A339 (1994) 183 (Gamma-ray energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data) D.H.White, R.W.Hoff, H.G.Borner, K.Schreckenbach, F.Hoyler, G.Colvin, I.Ahmad, A.M.Friedman, J.R.ERSKINE, Phys. Rev. C57 (1998) 1112 (Gamma-ray energies and emission probabilities) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (Calculation of emission probabilities of X-rays and Auger electrons) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) M.J.MARTIN, Nucl. Data Sheets 106 (2005) 89 (245Cm alpha decay scheme, 241Pu levels, gamma-ray energies and multipolarities) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2007) 202 (Band-Raman ICC for gamma-ray transitions) F.G.KONDEV, M.A.KELLETT, I.AHMAD, J.P.GREENE, A.L.NICHOLS, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22-27 April 2007, Nice, France (2008) (Half-life) F.G.KONDEV, I.AHMAD, M.P.CARPENTER, C.J.CHIARA, J.P.GREENE, R.V.F.JANSSENS, M.A.KELLETT, T.L.KHOO, T.LAURITSEN, C.J.LISTER, E.F.MOORE, A.L.NICHOLS, D.SEWERYNIAK, S.ZHU, Proc. 13th Int. Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Cologne, Germany, 25-29 Aug.2008; AIP Conf. Proc. 1090 (2009)

(Half-life)

Cm - 246

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	4723	(27)	У
Q_{lpha}	:	5476.7	(9)	keV
α	:	99.97385	(7)	%
SF	:	0.02615	(7)	%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$lpha_{0,2} \ lpha_{0,1} \ lpha_{0,0}$	$\begin{array}{c} 5242.5 \ (10) \\ 5343.7 \ (9) \\ 5387.5 \ (9) \end{array}$	$\begin{array}{c} 0.020 \ (2) \\ 20.81 \ (22) \\ 79.17 \ (22) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.	
$e_{\rm AL}$	(Pu)	6.19 - 22.99	7.20(21)	
$ec_{1,0} L ec_{1,0} M ec_{1,0} M ec_{2,1} L$	(Pu) (Pu) (Pu) (Pu)	21.441 - 26.488 38.612 - 40.770 42.986 - 44.121 79.7 - 84.7	15.1 (6) 4.22 (17) 1.161 (47) 0.0135 (15)	

4 Photon Emissions

4.1 X-Ray Emissions

		${ m Energy}\ { m keV}$	Photons per 100 disint.	
XL	(Pu)	12.125 - 21.984	7.95(24)	

4.2 Gamma Transitions and Emissions

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times 100 \end{array}$
$\gamma_{1,0}(\mathrm{Pu})$ $\gamma_{2,1}(\mathrm{Pu})$	$\begin{array}{c} 44.545 \ (9) \\ 102.8 \ (1) \end{array}$	$\begin{array}{c} 20.82 \ (22) \\ 0.020 \ (2) \end{array}$	E2 E2	$\begin{array}{c} 746 \ (22) \\ 13.86 \ (42) \end{array}$	$\begin{array}{c} 0.0279 \ (8) \\ 0.00134 \ (14) \end{array}$

5 References

A.M.FRIEDMAN, A.L.HARKNESS, P.R.FIELDS, M.H.STUDIER, J.H.HUIZENGA, Phys. Rev. 95 (1954) 1501 (Half-life) C.I.BROWNE, D.C.HOFFMAN, W.T.CRANE, J.P.BALAGNA, G.H.HIGGINS, J.W.BARNES, R.W.HOFF, H.L.SMITH, J.P.MIZE, M.E.BUNKER, J. Inorg. Nucl. Chem. 1 (1955) 254 (Half-life) J.P.BUTLER, T.A.EASTWOOD, H.G.JACKSON, R.P.SCHUMAN, Phys. Rev. 103 (1956) 965 (Half-life) P.R.Fields, M.H.Studier, H.Diamond, J.F.Mech, M.G.Inghram, G.L.Pyle, C.M.Stevens, S.Fried, W.M.Manning, A.GHIORSO, S.G.THOMPSON, G.H.HIGGINS, G.T.SEABORG, Phys. Rev. 102 (1956) 180 (SF Half-life) S.M.FRIED, G.L.PYLE, C.M.STEVENS, J.R.HUIZENGA, J. Inorg. Nucl. Chem. 2 (1956) 415 (SF Half-life) W.T.CARNALL, S.FRIED, A.L.HARKNESS, J. Inorg. Nucl. Chem. 17 (1961) 12 (Half-life) L.M.BELOV, B.S.DZHELEPOV, R.B.IVANOV, A.S.KRIVOKHATSKII, V.G.NEDOVESOV, V.P.CHECHEV, Sov. J. Radiochemistry 5 (1963) 362 (Alpha-decay transition energies and probabilities) B.S.DZHELEPOV, R.B.IVANOV, V.G.NEDOVESOV, V.P.CHECHEV, Sov. Phys. - JETP 18 (1963) 937 (Alpha-decay transition energies and probabilities) D.METTA, H.DIAMOND, R.F.BARNES, J.MILSTED, J.GRAY JR., D.J.HENDERSON, C.M.STEVENS, J. INOR. Nucl. Chem. 27 (1965) 33 (SF Half-life) S.A.BARANOV, YU.P.RADIONOV, V.M.KULAKOV, V.M.SHATINSKII, Sov. J. Nucl. Phys. 4 (1967) 798 (Alpha-decay transition energies and probabilities) D.N.METTA, H.DIAMOND, F.R.KELLY, J. Inorg. Nucl. Chem. 31 (1969) 1245 (Half-life, Alpha/SF ratio) K.W.MACMURDO, R.M.HARBOUR, R.W.BENJAMIN, J. Inorg. Nucl. Chem. 33 (1971) 1241 (Half-life) J.E.MCCRACKEN, J.R.STOKELY, R.D.BAYBARZ, C.E.BEMIS JR., R.EBY, J. Inorg. Nucl. Chem. 33 (1971) 3251 (Half-life, Alpha/SF ratio) E.EICHLER, N.R.JOHNSON, C.E.BEMIS JR., R.O.SAYER, D.C.HENSLEY, M.R.SCHMORAK, Report ORNL-4706, Oak Ridge National Laboratory (1971) (Gamma-ray transition energies) M.SCHMORAK, C.E.BEMIS JR., M.J.ZENDER, N.B.GOVE, P.F.DITTNER, Nucl. Phys. A178 (1972) 410 (Gamma-ray energies and emission probabilities) V.G.POLYUKHOV, G.A.TIMOFEEV, P.A.PRIVALOVA, V.YA.GARBESKIRIYA, A.P.CHETVERIKOV, Sov. J. Radiochemistry 19 (1977) 414 (Half-life) F.P.LARKINS, At. Data Nucl. Data Tables 20 (1977) 313 (Electron shells binding energies) W.Spreng, F.Azgui, H.Emling, E.Grosse, R.Kulessa, Ch.Michel, D.Schwalm, R.S.Simon, H.J.Wollersheim, M.MUTTERER, J.P.THEOBALD, M.S.MOORE, N.TRAUTMANN, J.L.EGIDO, P.RING, Phys. Rev. Lett. 51 (1983) 1522(Gamma-ray energies) V.M.Shatinskii, Sov. J. At. Energy 56 (1984) 282 (Alpha-decay energies and transition probabilities) N.E.HOLDEN, Pure Appl. Chem. 61 (1989) 1483 (Half-life, evaluation) A.Rytz, At. Data Nucl. Data Tables 47 (1991) 205 (Alpha-decay energies and transition probabilities) M.U.RAJPUT, T.D.MCMAHON, Nucl. Instrum. Methods Phys. Res. A312 (1992) 289 (Evaluation techniques) S.I.KAFALA, T.D.MCMAHON, P.W.GRAY, Nucl. Instrum. Methods Phys. Res. A339 (1994) 151 (Evaluation techniques) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Fluorescence yields) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-98-1, Braunschweig (1998) (K Auger electron energies)

ANL /F.G. Kondev

A.ARTNA-COHEN, Nucl. Data Sheets 84 (1998) 901 (Half-life, evaluation) E.SCHÖNFELD, G.RODLOFF, Report PTB-6.11-1999-1, Braunschweig (1999) (KX-ray energies and relative emission probabilitie) $\rm N.E.Holden, \ D.C.Hoffman,$ Pure Appl. Chem. 72 (2000) 1525 (SF half-life evaluation) E.SCHÖNFELD, H.JANSSEN, Appl. Radiat. Isot. 52 (2000) 595 (Program Emission) Y.A.AKOVALI, Nucl. Data Sheets 94 (2001) 131 (250Cf half-life) M.-M.Bé, R.HELMER, V.CHISTÉ, J. Nucl. Sci. Technol. (Tokyo) suppl. 2 (2002) 481 (Saisinuc and supporting software) I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR, P.O.TIKKANEN, S.RAMAN, At. Data Nucl. Data Tables 91 (2002) 1 (ICC) Y.A.AKOVALI, Nucl. Data Sheets 96 (2002) 177 (242Pu Decay scheme) R.D.DESLATTES, E.G.KESSLER, P.INDELICATO, L.DE BILLY, E.LINDROTH, J.ANTON, Rev. Mod. Phys. 77 (2003) 35(K and L X-ray energies) G.AUDI, A.H.WAPSTRA, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) D.MACMAHON, A.PEARCE, P.HARRIS, Appl. Radiat. Isot. 60 (2004) 275 (Evaluation techniques) V.P.CHECHEV, http://www.nucleide.org/DDEP WG/DDEPdata.htm (2006) (244Cm Half-life) F.G.KONDEV, I.AHMAD, J.P.GREENE, M.A.KELLETT, A.L.NICHOLS, Appl. Radiat. Isot. 65 (2007) 335 (Half-life, Alpha-decay transition probabilities)
Cm - 246

ANL /F.G. Kondev

Cf - 252

1 Half-life, Q-value and Decay mode

$T_{1/2}$:	2.6470	(26)	у
Q_{α}	:	6216.87	(4)	keV
α	:	96.914	(3)	%
SF	:	3.086	(8)	%

2 α Emissions

	Energy keV	$\begin{array}{l} {\rm Probability} \\ \times \ 100 \end{array}$
$\begin{array}{c} \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} \end{array}$	$5826.3 \\5976.6 \\6075.64 (11) \\6118.1 (1)$	$\begin{array}{c} 0.0019 \\ 0.23 \ (4) \\ 15.1 \ (3) \\ 81.7 \ (3) \end{array}$

3 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Cm)	6.3 - 24.5	5.02 (13)
e _{AK}	(Cm) KLL KLX KXY	78.858 - 89.973 97.226 - 109.267 115.57 - 128.23	0.0000025 (4) } } }
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{1,0} \ N \\ ec_{2,1} \ L \\ ec_{2,1} \ M \\ ec_{2,1} \ N \end{array}$	(Cm) (Cm) (Cm) (Cm) (Cm) (Cm)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 10.93 \ (33) \\ 3.08 \ (9) \\ 0.856 \ (26) \\ 0.159 \ (27) \\ 0.045 \ (8) \\ 0.0125 \ (21) \end{array}$

4 Photon Emissions

4.1 X-Ray Emissions

_		Energy keV		Photons per 100 disint.	
XL	(Cm)	12.634 - 23.319		6.07(14)	
$\begin{array}{l} \mathbf{X}\mathbf{K}\alpha_2\\ \mathbf{X}\mathbf{K}\alpha_1 \end{array}$	(Cm) (Cm)	$104.59 \\ 109.271$		$\begin{array}{c} 0.0000257 \ (7) \\ 0.0000402 \ (11) \end{array}$	$K\alpha$
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5^{\prime\prime} \end{array}$	(Cm) (Cm) (Cm)	$122.304 \\ 123.403 \\ 124.124$	} } }	0.0000151 (5)	$\mathrm{K}\beta_1'$

CEA/LNE-LNHB /M.M. Bé, V. Chisté

		Energy keV		Photons per 100 disint.	
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4\\ \mathrm{XKO}_{2,3} \end{array}$	(Cm) (Cm) (Cm)	126.889 127.352 127.97	} } }	0.00000530 (19)	${ m K}eta_2'$

4.2 Gamma Transitions and Emissions

	Energy keV	${\rm P}_{\gamma+ce} \ imes 100$	Multipolarity	$lpha_{ m T}$	$\begin{array}{c} \mathbf{P}_{\gamma} \\ \times \ 100 \end{array}$
$\gamma_{1,0}(\mathrm{Cm})$ $\gamma_{2,1}(\mathrm{Cm})$ $\gamma_{3,2}(\mathrm{Cm})$	$\begin{array}{c} 43.399 \ (25) \\ 100.2 \ (4) \\ 154.5 \ (6) \end{array}$	$\begin{array}{c} 15.2 \ (3) \\ 0.232 \ (39) \\ 0.00192 \end{array}$	E2 E2 E2	$\begin{array}{c} 1000 \ (15) \\ 18.5 \ (5) \\ 2.76 \ (6) \end{array}$	$\begin{array}{c} 0.0152 \ (4) \\ 0.0119 \ (20) \\ 0.00051 \end{array}$

5 References

F.Asaro, F.S.Stephens, B.G.Harvey, I.Perlman, Phys. Rev. 100 (1955) 137 (Alpha emission energies and intensities) S.BJORNHOLM, C.M.LEDERER, F.ASARO, I.PERLMAN, Phys. Rev. 130 (1963) 2000 (Alpha spectra) D.METTA, H.DIAMOND, R.F.BARNES, J.MILSTED, J.GRAY JR., D.J.HENDERSON, C.M.STEVENS, J. Inorg. Nucl. Chem. 27 (1965) 33 (Half-life) A.DE VOLPI, K.G.PORGES, Inorg. Nucl. Chem. Letters 5 (1969) 699 (Half-life) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Sov. J. Nucl. Phys. 11,3 (1970) 393 (Alpha emission energies and intensities) B.M.Aleksandrov, M.A.Bak, V.G.Bogdanov, S.S.Bugorkov, L.V.Drapchinskii, Z.I.Soloveva, A.V.Sorokina, Sov. At. Energy 28 (1970) 462 (Spontaneous fission half life) R.L.WATSON, T.K.LI, Nucl. Phys. A178 (1971) 201 (Gamma-ray energies and emission intensities) J.D.HASTINGS, W.W.STROHM, Report MLM-1845, Mound Laboratory (1971) 1 (Spontaneous fission half-life) S.A.BARANOV, V.M.SHATINSKII, V.M.KULAKOV, Sov. J. Nucl. Phys. 14,5 (1972) 614 (Alpha emission energies) B.J.MIJNHEER, E.VAN DEN HAUTEN-ZUIDEMA, Int. J. Appl. Radiat. Isotop. 24 (1973) 185 (Half-life) V.SPIEGEL, Nucl. Sci. Eng. 53 (1974) 327 (Half-life) V.T.SHCHEBOLEV, Z.A.RAMENDIK, E.A.SHLYAMIN, Sov. At. Energy 36 (1974) 507 (Half-life) S.A.BARANOV, A.G.ZELENKOV, V.M.KULAKOV, Proc. Advisory Group Meeting Transactinium Nucl. Data, Karlsruhe, IAEA-186, IAEA, Vienna B6 (1976) 249 (Alpha emission intensities) V.K.MOZHAEV, Sov. At. Energy 40 (1976) 200 (Half-life) F.LAGOUTINE, J.LEGRAND, Int. J. Appl. Radiat. Isotop. 33 (1982) 711 (Half-life) W.G.Alberts, et al., Report PTB-Mitteilungen 93, Braunschweig (1983) 315 (Half-life) M.DIVADEENAM, J.R.STEHN, Ann. Nucl. Energy 11 (1984) 375 (Neutron number)

CEA/LNE-LNHB /M.M. Bé, V. Chisté

J.R.SMITH, S.D.REEDER, R.J.GEHRKE, Report EPRI NP-3436 (1984) (Half-life) R.A.P.WILTSHIRE, Nucl. Instrum. Methods Phys. Res. A236 (1985) 514 (Alpha spectra) E.J.AXTON, A.G.BARDELL, Metrologia 21 (1985) 59 (Half-life) A.RYTZ, R.A.P.WILTSHIRE, M.KING, Nucl. Instrum. Methods Phys. Res. A253 (1986) 47 (Alpha emission energies) E.A.SHLYAMIN, I.A.KHARITONOV, in Proc. of an Advisory Group Meeting on Properties of Neutron Sources, TECDOC-410, IAEA, Vienna (1987) 225 (Half-life) CHEN KELIANG, ET AL., China Nucl. Information Centre Beijing, CNIC-I-004 (1988) 23 (Half-life) YU.S.POPOV, I.B.MAKAROV, D.KH.SRUROV, E.A.ERIN, Sov. J. Radiochemistry 32 (1990) 425 (X-ray emission probabilities) A.Rytz, At. Data Nucl. Data Tables 47,2 (1991) 229 (Alpha emission energies and intensities) V.T.Shchebolev, N.N.Moiseev, Z.A.Ramendik, Sov. At. Energy 73 (1992) 1015 (Half-life) A.K.PANDEY, R.C.SHARMA, P.C.KALSI, R.H.IYER, Nucl. Instrum. Methods Phys. Res. B82 (1993) 151 (Alpha to fission branching ratio) I.A.KHARITONOV, Report INDC(CCP)-362, IAEA, Vienna (1994) (Half-life) E.SCHÖNFELD, H.JANSSEN, Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (L X-ray emission intensities) YU.S.POPOV, D.KH.SRUROV, N.P.LEONTEV, V.I.BORISENKOV, G.A.TIMOFEEV, Radiochemistry 41 (1999) 43 (Spontaneous fission half-life) Y.A.AKOVALI, Nucl. Data Sheets 87 (1999) 257 (Spin and Parity) M.BALASUBRAMANIAM, R.K.GUPTA, Phys. Rev. C60 (1999) 064316 (Theoretical half-life) G.AUDI, A.H.WAPSTRA, C.THIBAULT, Nucl. Phys. A729 (2003) 337 (\mathbf{Q}) T.KIBÉDI, T.W.BURROWS, M.B.TRZHASKOVSKAYA, P.M.DAVIDSON, C.W.NESTOR JR., Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (ICC)

Cf - 252

CEA/LNE-LNHB /M.M. Bé, V. Chisté

CONTRIBUTORS TO DRAFTING AND REVIEW

Bé, MM.	Laboratoire National Henri Becquerel/Commissariat à l'énergie atomique, France
Chechev, V.P.	V.G. Khlopin Radium Institute, Russian Federation
Huang Xiaolong	China Nuclear Data Center, China Institute of Atomic Energy, China
Kellett, M.A.	International Atomic Energy Agency
Kondev, F.G.	Argonne National Laboratory, United States of America
Luca, A.	Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
Mukherjee, G.	Variable Energy Cyclotron Centre, India
Nichols, A.L.	International Atomic Energy Agency
Pearce, A.	National Physical Laboratory, United Kingdom

ORDERING LOCALLY

In the following countries, IAEA priced publications may be purchased from the sources listed below or from major local booksellers.

Orders for unpriced publications should be made directly to the IAEA. The contact details are given at the end of this list.

AUSTRALIA

DA Information Services

648 Whitehorse Road, Mitcham, VIC 3132, AUSTRALIA Telephone: +61 3 9210 7777 • Fax: +61 3 9210 7788 Email: books@dadirect.com.au • Web site: http://www.dadirect.com.au

BELGIUM

Jean de Lannoy Avenue du Roi 202, 1190 Brussels, BELGIUM Telephone: +32 2 5384 308 • Fax: +32 2 5380 841 Email: jean.de.lannoy@euronet.be • Web site: http://www.jean-de-lannoy.be

CANADA

Renouf Publishing Co. Ltd.

5369 Canotek Road, Ottawa, ON K1J 9J3, CANADA Telephone: +1 613 745 2665 • Fax: +1 643 745 7660 Email: order@renoufbooks.com • Web site: http://www.renoufbooks.com

Bernan Associates

4501 Forbes Blvd., Suite 200, Lanham, MD 20706-4391, USA Telephone: +1 800 865 3457 • Fax: +1 800 865 3450 Email: orders@bernan.com • Web site: http://www.bernan.com

CZECH REPUBLIC

Suweco CZ, spol. S.r.o. Klecakova 347, 180 21 Prague 9, CZECH REPUBLIC Telephone: +420 242 459 202 • Fax: +420 242 459 203 Email: nakup@suweco.cz • Web site: http://www.suweco.cz

FINLAND

Akateeminen Kirjakauppa PO Box 128 (Keskuskatu 1), 00101 Helsinki, FINLAND Telephone: +358 9 121 41 • Fax: +358 9 121 4450 Email: akatilaus@akateeminen.com • Web site: http://www.akateeminen.com

FRANCE

Form-Edit

5 rue Janssen, PO Box 25, 75921 Paris CEDEX, FRANCE Telephone: +33 1 42 01 49 49 • Fax: +33 1 42 01 90 90 Email: fabien.boucard@formedit.fr • Web site: http://www.formedit.fr

Lavoisier SAS

14 rue de Provigny, 94236 Cachan CEDEX, FRANCE Telephone: +33 1 47 40 67 00 • Fax: +33 1 47 40 67 02 Email: livres@lavoisier.fr • Web site: http://www.lavoisier.fr

L'Appel du livre

99 rue de Charonne, 75011 Paris, FRANCE Telephone: +33 1 43 07 50 80 • Fax: +33 1 43 07 50 80 Email: livres@appeldulivre.fr • Web site: http://www.appeldulivre.fr

GERMANY

Goethe Buchhandlung Teubig GmbH

Schweitzer Fachinformationen Willstätterstrasse 15, 40549 Düsseldorf, GERMANY Telephone: +49 (0) 211 49 8740 • Fax: +49 (0) 211 49 87428 Email: s.dehaan@schweitzer-online.de • Web site: http://www.goethebuch.de

HUNGARY

Librotade Ltd., Book Import PF 126, 1656 Budapest, HUNGARY Telephone: +36 1 257 7777 • Fax: +36 1 257 7472 Email: books@librotade.hu • Web site: http://www.librotade.hu

INDIA

Allied Publishers

1st Floor, Dubash House, 15, J.N. Heredi Marg, Ballard Estate, Mumbai 400001, INDIA Telephone: +91 22 2261 7926/27 • Fax: +91 22 2261 7928 Email: alliedpl@vsnl.com • Web site: http://www.alliedpublishers.com

Bookwell

3/79 Nirankari, Delhi 110009, INDIA Telephone: +91 11 2760 1283/4536 Email: bkwell@nde.vsnl.net.in • Web site: http://www.bookwellindia.com

ITALY

Libreria Scientifica "AEIOU"

Via Vincenzo Maria Coronelli 6, 20146 Milan, ITALY Telephone: +39 02 48 95 45 52 • Fax: +39 02 48 95 45 48 Email: info@libreriaaeiou.eu • Web site: http://www.libreriaaeiou.eu

JAPAN

Maruzen Co., Ltd. 1-9-18 Kaigan, Minato-ku, Tokyo 105-0022, JAPAN Telephone: +81 3 6367 6047 • Fax: +81 3 6367 6160 Email: journal@maruzen.co.jp • Web site: http://maruzen.co.jp

NETHERLANDS

Martinus Nijhoff International Koraalrood 50, Postbus 1853, 2700 CZ Zoetermeer, NETHERLANDS Telephone: +31 793 684 400 • Fax: +31 793 615 698 Email: info@nijhoff.nl • Web site: http://www.nijhoff.nl

Swets Information Services Ltd.

PO Box 26, 2300 AA Leiden Dellaertweg 9b, 2316 WZ Leiden, NETHERLANDS Telephone: +31 88 4679 387 • Fax: +31 88 4679 388 Email: tbeysens@nl.swets.com • Web site: http://www.swets.com

SLOVENIA

Cankarjeva Zalozba dd Kopitarjeva 2, 1515 Ljubljana, SLOVENIA Telephone: +386 1 432 31 44 • Fax: +386 1 230 14 35 Email: import.books@cankarjeva-z.si • Web site: http://www.mladinska.com/cankarjeva_zalozba

SPAIN

Diaz de Santos, S.A. Librerias Bookshop • Departamento de pedidos Calle Albasanz 2, esquina Hermanos Garcia Noblejas 21, 28037 Madrid, SPAIN Telephone: +34 917 43 48 90 • Fax: +34 917 43 4023 Email: compras@diazdesantos.es • Web site: http://www.diazdesantos.es

UNITED KINGDOM

The Stationery Office Ltd. (TSO) PO Box 29, Norwich, Norfolk, NR3 1PD, UNITED KINGDOM Telephone: +44 870 600 5552 Email (orders): books.orders@tso.co.uk • (enquiries): book.enquiries@tso.co.uk • Web site: http://www.tso.co.uk

UNITED STATES OF AMERICA

Bernan Associates 4501 Forbes Blvd., Suite 200, Lanham, MD 20706-4391, USA Telephone: +1 800 865 3457 • Fax: +1 800 865 3450 Email: orders@bernan.com • Web site: http://www.bernan.com

Renouf Publishing Co. Ltd.

812 Proctor Avenue, Ogdensburg, NY 13669, USA Telephone: +1 888 551 7470 • Fax: +1 888 551 7471 Email: orders@renoufbooks.com • Web site: http://www.renoufbooks.com

United Nations

300 East 42nd Street, IN-919J, New York, NY 1001, USA Telephone: +1 212 963 8302 • Fax: 1 212 963 3489 Email: publications@un.org • Web site: http://www.unp.un.org

Orders for both priced and unpriced publications may be addressed directly to:

IAEA Publishing Section, Marketing and Sales Unit, International Atomic Energy Agency Vienna International Centre, PO Box 100, 1400 Vienna, Austria Telephone: +43 1 2600 22529 or 22488 • Fax: +43 1 2600 29302 Email: sales.publications@iaea.org • Web site: http://www.iaea.org/books

High quality decay data are an essential input across a wide range of nuclear applications, and none more so than in the case of the actinides and their related decay chain data. Well defined nuclear data are essential to ensure safe procedures within mining operations, various nuclear fuel cycles for energy generation, environmental monitoring, specific analytical techniques, and diagnostic and radiotherapeutic treatments in nuclear medicine. A major objective of the IAEA nuclear data programme is to promote improvements in the accuracy and quality of nuclear data used in science and technology. The contents of this report constitute the results of a coordinated research project established to assemble an updated decay data library for actinides. Recommended half-lives and decay scheme data have been comprehensively evaluated, and are tabulated in terms of a carefully selected set of actinide radionuclides.