ripl logo Nuclear Data Sheets Journal

Reference Input Parameter Library (RIPL-3)

R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii and P. Talou

Nuclear Data Sheets - Volume 110, Issue 12, December 2009, Pages 3107-3214
 
 

Introduction

We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations.

The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 118 datasets (Z from 0 to 117) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in April 2014. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.

Nuclear Mass Segment

Experimental mass excesses

Experimental mass excesses evaluated by Audi and Wapstra[1] are included along with the FRDM and HFB-14 results below.

References:
[1] G. Audi and A.H. Wapstra (1995) Nucl. Phys. A595, 409.

FRDM

Ground state properties calculated within the Finite Range Droplet Model (FRDM)[1-3].

References:
[1] P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki (1995) At. Data and Nucl. Data Tables 59, 185
[2] P. Moller, J.R. Nix (1981) At. Data and Nucl. Data Tables 26, 165
[3] G. Audi, A.H. Wapstra, and C. Thibault (2003) Nucl. Phys. A729, 337

Data File (762kB)      README File (3.3kB)

HFB-14

Ground state properties calculated within the Hartree-Fock-Bogoliubov (HFB) method[1-2].

References:
[1] S. Goriely, M. Samyn, and J.M. Pearson, (2007) Phys. Rev. C75, 064312
[2] G. Audi, A.H. Wapstra, and C. Thibault (2003) Nucl. Phys. A729, 337

Data File (963kB)      README File (4.3kB)

Duflo-Zuker96

FORTRAN code for estimating nuclear masses with the 10 parameter formula of J. Duflo and A.P. Zuker[1,2].

References:
[1] J. Duflo and A.P. Zuker (1995) Phys. Rev. C52, 23.
[2] J. Duflo and A.P. Zuker (1996) at http://csn-srv3.in2p3.fr/AMDC/theory/du_zu_10.feb96fort

Code (12kB)      README File (1.6kB)

Natural Abundances

Reformatted data from the Nuclear Wallet cards, as retrieved from Brookhaven National Laboratory[1].

References:
[1] J.K. Tuli, Nuclear Wallet Cards (NNDC, Brookhaven National Laboratory), 2005.

Data File (9.4kB)      README File (0.9kB)

Retrieval of Mass Excesses
and Natural Abundances

Atomic number (Z)  
Mass number (A)    
(blank for all)

Q-value calculation

Set atomic (Z) and mass (A) numbers for target and projectile and specify the num­ber of emitted particles.

ZA
Target nuclide
Projectile
Emitted particles No. of
particles
neutrons
protons
deuterons
tritons
He-3
alphas

Nuclear Matter Densities - HFB14

Neutron and proton distributions predicted within the Hartree-Fock-Bogolubov (HFB) method based on the BSk2 Skyrme force[1-3].

References:
[1] S. Goriely, M. Samyn, and J.M. Pearson, Phys. Rev. C75, 064312 (2007)
[2] G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003)
[3] I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004)

README File (2.7kB)

Retrieval of Nuclear
Matter Densities - HFB14

Atomic number (Z)  
Mass number (A)    

Nuclear Matter Densities - D1S

Predictions of the deformed density distribution obtained within the Hartree-Fock-Bogoliubov method with the D1S Gogny effective interaction[1-2].

References:
[1] J. Decharge and D. Gogny, Phys. Rev. C21, 1568 (1980)
[2] S. Hilaire and M. Girod, Eur. Phys. J. A33, 237 (2007)

README File (2.8kB)

Retrieval of Nuclear
Matter Densities - D1S

Atomic number (Z)  
Mass number (A)    

Nuclear Levels Segment

Discrete Levels and Decay Data (Updated on December 2021)

Compilation of nuclear level schemes extracted from the ENSDF including additional information retrieved from NUBASE. Missing spins were inferred uniquely from spin distributions constructed using the available spins up to the highest known level. Missing Internal Conversion Coefficients (ICC) were calculated using inferred or available spins. Decays other than electromagnetic are given if available.

README File (2021)      README File (2020)
README File (2015)      README File (2002)

Click here to download all LEVELS files

Retrieval of Discrete Levels

Atomic number (Z)  
Mass number (A)    
        

Discrete Levels
in the GNASH Format

Atomic number (Z)     
Mass number (A)       
        

Cumulative Plot

Atomic number (Z)     
Mass number (A)       
Max Excitation Energy  MeV

Level Parameters (analysis of level schemes)

Cut-off energies (Umax) for completeness of level schemes and completeness of spins (Uc) for a given level scheme as determined from the constant temperature fit of nuclear levels. Parameters for calculation of nuclear level densities (nuclear temperature, 'back-shift' and spin cut-off) and some additional parameters are also given.

Data File (total 355kB)      README File (2.7kB)

Retrieval of Level Parameters

Atomic number (Z)  
Mass number (A)    
(blank for all)
        

Average Resonance Spacings Segment

Average Spacings of Neutron Resonances

296 average spacings for s-wave neutron resonances and 82 average spacings for p-wave neutron resonances.

References:
[1] Sukhoruchkin, S.I. et al. in Low Energy Neutrons and their Interaction with Nuclei and Matter. Ed. H.Schopper, Springer-Verlag, Berlin, 2000, v.16B.
[2] Ignatyuk A.V. Contribution to the Second CRP Meeting on RIPL-2 (Verenna, June 2000).

Data File with s-wave Resonances (22kB)
Data File with p-wave Resonances (9.4kB)
README File (5.1kB)

Retrieval of Average Spacings
of Neutron Resonances

Atomic number (Z)  
Mass number (A)    
(blank for all)

Plot of Average Spacings of
Neutron Resonances in
Function of Mass Number (A)

Atomic number (Z)  
(blank for all) s- or p-wave

Optical Model Parameter Segment

Data required for preparing inputs for optical model calculations and, in addition, one FORTRAN code for microscopic calculation of optical model parameters. See README File (2.9kB) for further information.

Optical Model Potential (OMP) Parameters

Phenomenological OMP Library

The library contains all phenomenological optical model potentials that have been compiled, with a Users File that is a subset of the archival file with all single-energy potentials removed and an index file. See also the References.

Index of Users File ordered by Lib. No. (42kB)
Index of Users File ordered by Z-Range (42kB)
Users File (2.2MB)
References (11kB)      README File (15.3kB)

Retrieval of OMP Index

Atomic number (Z) of Target  
Mass number (A) of Target    
Incident Particle            
        

Retrieval of OMP Data

Atomic number (Z) of Target    
Mass number (A) of Target      
OMP Index                      
Minimum Incident Energy [MeV]  
Maximum Incident Energy [MeV]  
        

Deformation Parameters

Recommended deformation parameters (beta-2 and beta-3) for 1643 collective levels retrieved from the JENDL-3.2 evaluations, ENSDF and the literature[1-3].

References:
[1] S. Raman, C. W. Nestor, S. Kahane, and K. H. Bhatt; Atomic Data and Nucl. Data Tables, 42, 1 (1989).
[2] S. Raman, C. W. Nestor, and P. Tikkanen; Atomic Data and Nucl. Data Tables, 78, 1 (2001).
[3] T. Kibedi and R. H. Spear; Atomic Data and Nucl. Data Tables, 80, 35 (2002).

Data File (95kB)      README File (4.2kB)

Retrieval of Deformation Parameters

Atomic number (Z)  
Mass number (A)    
(blank for all masses)

Codes

Utility Codes for Optical Model Parameters

FORTRAN codes for updating, indexing and sorting the RIPL-3 optical model parameter library.

Code (654kB)            README File (3.2kB)
Modify OMP database     List OMP database

Code for Retrieving Optical Model Potentials

FORTRAN code and associated files that can be used to prepare inputs for the SCAT2000, ECIS and OPTMAN optical model codes using the RIPL-3 OMP libraries. The code can also be used to tabulate parameters in function of incident energy.

Code (216.4kB)      README File (5.8kB)      Content

Code MOM

FORTRAN code from Bruyeres-le-Chatel for semi-microscopic calculation of nucleon-nucleus spherical optical model potential by folding the target radial matter density with an OMP in nuclear matter based on the Brueckner-Hartree-Fock work of Jeukenne, Lejeune and Mahaux.

Code (66kB)      README File (1.7kB)      Manual (PS, 213kB)

Level Densities Segment

Total Level Densities

Back-Shifted Fermi Gas Model (BSFG)

Level density parameters for the BSFG model obtained by fitting the Fermi-gas model formula to the recommended spacings of s-wave neutron resonances and to the cumulative number of low-lying levels.

Data File (34.3kB)      README File (2.2kB)

Gilbert-Cameron Model

Level density parameters for the Gilbert-Cameron model obtained by fitting the Fermi-gas model formula to the recommended spacings of s-wave neutron resonances and by matching the corresponding level density to discrete levels.

Data File (42.8kB)      README File (2.4kB)

Enhanced Generalized Superfluid Model (EGSM)

Level density parameters for the Enhanced Generalized Superfluid Model (EGSM), which takes into account collective enhancement of the nuclear level density in addition to shell and superfluid effects. The parameters were obtained by fitting the corresponding model formulas to the recommended spacings of s-wave neutron resonances and by matching level densities to discrete levels.

Data File (26.1kB)      README File (2.4kB)

Z Systematics:
Data File (1.3kB)      README File (1.3kB)

Retrieval of Total Level Density Parameters

Atomic number (Z)  
Mass number (A)    
(blank for all mass numbers)

Plot of Total Level Density
Parameters (a-parameters)

Select one of below and input no.:
Atomic number  (Z)  
Mass number    (A)  
Neutron number (N)  

X-axis:
        

Plot of Total Level Densities

Atomic number (Z)  
Mass number (A)    
        

HFB Total Level Densities

The data files (*.dat) contains the HFB plus combinatorial nuclear level densities at ground state deformations[1]. The nuclear level density is coherently obtained on the basis of the single-particle level scheme and pairing energy derived at the ground state deformation based on the BSk14 Skyrme force[2]. Additionally, the phenomenological level density parameters ctable and ptable are tabulated in files (*.cor) by fitting the HFB calculated curve to the RIPL II recommended spacings of s-wave neutron resonances D0 and to the cumulative number of low-lying levels.

References:
[1] S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus compbinatorial method, Phys. Rev. C78 (2008) 064307
[2] S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C75 (2007) 064312

HFB Data Files (total 486.6MB)      HFB README File (3.1kB)

HFB corrections File (30kB)      HFB corrections README File (2kB)

Retrieval of HFB
Total Level Densities

Atomic number (Z)  
Mass number (A)    
        

Shell Correction prescriptions

Shell corrections calculated with the Myers-Swiatecki mass formula[1].

References:
[1] W.D. Myers and W.J. Swiatecki, Ark. Fizik. 36, 343 (1967).

Data File (280kB)      README File (2.1kB)

Shell corrections calculated with the Mengoni-Nakajima mass formula[1].

References:
[1] A.Mengoni and Y.Nakajima. J. Nucl. Sci. Tech. 31 (1994) p.151-162.

Data File (322kB)

Retrieval of Level Densities
Data and Shell Corrections

Atomic number (Z)  
Mass number (A)      
(blank for all mass numbers)

Single-Particle Levels

FRDM Single-Particle Levels

Single-particle level schemes calculated with the FRDM approach. The deformations and single-particle level schemes (energies, parities and spins for neutron and proton gases) are provided.

README File (1.9kB)

HFB Single-Particle Levels

Single-particle levels calculated within the Hartree-Fock-BCS model[1]. The deformations, pairing strengths and single-particle level schemes (energies, parities and spins for neutron and proton gases) are provided.

References:
[1] S. Goriely, F. Tondeur and J.M. Pearson, At. Data and Nucl. Data Tables 77, 311 (2001).

README File (2.2kB)

Code for Retrieving Single-Particle Levels

Code for extracting single-particle levels from the FRDM and HFB libraries. The internal subroutine GET_SPL can be implemented in any code that needs single-particle levels.

Code (8.7kB)      README File (1.8kB)

Retrieval of
Single-Particle Levels

Atomic number (Z) Mass number (A)

Gamma-ray Segment

Experimental Giant Dipole Resonance (GDR) Parameters

The values and errors of giant dipole resonance (GDR) parameters are presented which were obtained by a fit of the theoretical photoabsorption cross sections to the experimental data for 121 nuclides from 12-C through 239-Pu. The values and errors of the shape parameters of the Lorentzian-like curves corresponding to the giant dipole resonance excitation are presented.[1-8]

References
[1] J. Kopecky, in Handbook for calculations of nuclear reaction data. Reference Input Parameter Library (RIPL), IAEA-TEDOC-1034, 1998, Ch.6
[2] T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely, M. Herman, A.V. Ignatyuk, S. Kailas. A. Koning, P. Oblozinsky, V. Plujko, P. Young. Handbook for calculations of nuclear reaction data: Reference Input Parameter Library-2, IAEA-TECDOC-1506, Vienna, 2006, Ch.7.
[3] V.A. Plujko, I.M. Kadenko, E.V. Kulich, S. Goriely, O.I. Davidovskaya, O.M. Gorbachenko, in Proceeding of Workshop on Photon Strength Functions and Related Topics, Prague, Czech Republic, June 17-20, 2007, Proceedings of Science, PSF07, 2008
[4] S.S.Dietrich, B.L.Berman; At. Data Nucl. Data Tables., 199, 38(1988).
[5] M.B. Chadwick, P. Oblozinsky, P.E. Hodgson, G. Reffo. Phys.Rev. C44(1991)814.
[6] M.B.Chadwick, P.Oblozinsky, A.I.Blokhin, T.Fukahori, Y.Han, Y. O.Lee, M.N.Martins, S.F.Mughabghab, V.V.Varlamov, B.Yu, J.Zhang. Handbook on photonuclear data for application. Cross sections and spectra. IAEA TECDOC 1178, Vienna, 2000
[7] Experimental Nuclear Reaction Data Library EXFOR
[8] CERN Program Library, MINUIT (D506), Function Minimization and Error Analysis

README File (16kB)
Standard Lorentzian model (SLO) (22,3kB)      Modified Lorentzian model (MLO) (22,0kB)

Theoretical GDR Parameters

Predictions of the GDR energies and widths using Goldhaber-Teller model for about 6000 nuclei with 14<=Z<=110 lying between the proton and the neutron driplines.

Data File (281kB)      README File (3.5kB)

Retrieval of GDR Parameters

Atomic number (Z)  
Mass number (A)      
(blank for all mass numbers)

Microscopic E1 Photoabsorption Strength-Functions

Predictions of the E1-strength functions for 3317 nuclei with 8<=Z<=84 lying between the proton and the neutron driplines. The E1-strength functions are determined within the QRPA model based on the SLy4 Skyrme force[1,2].

References
[1] S. Goriely, E. Khan, Nucl. Phys. A706, 217 (2002).
[2] E. Khan et al., Nucl. Phys. A694 (2001) 103.

README File (2.8kB)

Retrieval of Microscopic E1
Photoabsorption Strength-Functions

Atomic number (Z)  
Mass number (A)    
        

Fission Segment

Empirical Fission Barriers

The file contains double-humped fission barrier parameters, i.e inner and outer barrier height and width. The pairing correlation function required to estimate the nuclear level density at the fission saddle points is also given[1].

References:
[1] G.N. Smirenkin (1993) IAEA-Report INDC(CCP)-359.

Data File (3.8kB)      README File (1.5kB)

HFB Fission Barriers

The file contains the HFB fission barrier parameters and renormalization factors of the microscopic nuclear level density (NLD) obtained by fitting the neutron-induced fission cross section[1]. The HFB fission path[2] have been used initially and both the inner and outer barrier heights adjusted independently. For the lightest actinides (Th,Pa,U) three barriers are estimated. The barrier width is either the one predicted by the HFB model or for the some Th, Pa, Am or Cm cases the value adjusted to optimize the fission cross section. As far as the NLD are concerned, the HFB plus combinatorial model[3] is used at each fission saddle points. In some cases, the NLD have been renormalized through the alpha and delta parameter (see TecDoc) to optimize the fit to the fission cross section. The corresponding alpha and delta values are also given in the present file.

References:
[1] S. Goriely, S. Hilaire, A.J. Koning, M. Sin, R. Capote, Phys. Rev. C79 (2009) 024612
[2] S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C75 (2007) 064312
[3] S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C (2008) in press

Data File (3.5kB)      README File (2.6kB)
Non-Parabolic barriers

Code for Liquid Drop Fission Barriers

Subroutine can return the barrier height, the ground-state energy and the angular momentum at which the fission barrier disappears.

References:
[1] A. Sierk, Phys. Rev. C33 (1986) 2039.

Code (15kB)      README File (3.5kB)

Retrieval of Fission Barriers

Atomic number (Z)  
Mass number (A)    
(blank for all mass numbers)

Level Densities at Saddle Points Calculated within HFB

The files contains the HFB plus combinatorial nuclear level densities at saddle and isomer deformations[1]. The nuclear level density is coherently obtained on the basis of the single-particle level scheme and pairing energy derived at the saddle point deformation or shape isomer deformation. The same BSk14 Skyrme force[2] is used to estimate the fission saddle and isomeric points.

References:
[1] S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C (2008) in press
[2] S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C75 (2007) 064312

Data Files      README File (4.0kB)

Retrieval of Level Densities at Saddle Points

Atomic number (Z)  
Mass number (A)    
        

Codes


SCAT2000

O. Bersillon
CEA, DAM, DIF
F-91297 Arpajon, France

Content     ReadMe File

OPTMAN

E.Sh. Soukhovitskii
Joint Institute for Power and Nuclear Research
Sosny, BY-220109 Minsk, Belarus

Content     ReadMe File

ECIS

J. Raynal
Service de Physique Theorique
CEN Saclay
91191 Gif-sur-Yvette Cedex, France

Content     ReadMe File

PFNS - Los Alamos Model

P. Talou
Los Alamos National Laboratory
Los Alamos, NM 87544, USA
R. Capote Noy
NAPC-Nuclear Data Section - IAEA
A-1400 Vienna, Austria

Content     ReadMe File


Contacts



R. Capote Noy
NAPC-Nuclear Data Section
International Atomic Energy Agency
A-1400 Vienna, Austria
E-mail: r.capotenoy@iaea.org


M. Herman
National Nuclear Data Center
Brookhaven National Laboratory
Upton, NY 11973, USA
E-mail: mwherman@bnl.gov


P. Oblozinsky
National Nuclear Data Center
Brookhaven National Laboratory
Upton, NY 11973, USA
E-mail: oblozinsky@bnl.gov


P.G. Young
Los Alamos National Laboratory
Los Alamos
NM 87544, USA
E-mail: pgy@lanl.gov


S. Goriely
Universite Libre de Bruxelles
BE 1050 Brussels
Belgium
E-mail: sgoriely@astro.ulb.ac.be


T. Belgya
Institute of Isotope and Surface Chemistry
Chemical Research Center
H-1525 Budapest, Hungary
E-mail: belgya@alpha0.iki.kfki.hu


A.V. Ignatyuk
Institute of Physics and Power Engineering
249033 Obninsk
Russia
E-mail: ignatyuk@ippe.obninsk.ru


A.J. Koning
Fuels Actinides and Isotopes
NRG Nuclear Research and Consultance Group
NL-1755 Petten, The Netherlands
E-mail: koning@nrg-nl.com


S. Hilaire
CEA, DAM, DIF
F-91297 Arpajon
France
E-mail: stephane.hilaire@cea.fr


V.A. Plujko
Taras Shevchenko National University
03022 Kiev
Ukraine
E-mail: plujko@univ.kiev.ua


M. Avrigeanu
National Institute of Physics and Nuclear Engineering "Horia Hulubei"
077125 Bucharest-Magurele
Romania
E-mail: mavrig@ifin.nipne.ro


O. Bersillon
CEA, DAM, DIF
F-91297 Arpajon
France
E-mail: olivier.bersillon@cea.fr


M.B. Chadwick
Los Alamos National Laboratory
Los Alamos
NM 87544, USA
E-mail: mbchadwick@lanl.gov


T. Fukahori
Japan Atomic Energy Agency
Tokai-mura, Naka-gun, Ibaraki-ken
319-1195 Japan
E-mail: fukahori.tokio@jaea.go.jp


Zhigang Ge
China Institute of Atomic Energy
Beijing
102413 China
E-mail: gezg@ciae.ac.cn


Yinlu Han
China Institute of Atomic Energy
Beijing
102413 China
E-mail: hanyl@ciae.ac.cn


S. Kailas
Bhabha Atomic Research Center
Trombay
400085 Mumbai, India
E-mail: kailas@barc.gov.in


J. Kopecky
JUKO Research
NL-1817 Alkmaar
The Netherlands
E-mail: juko@wxs.nl


V.M. Maslov
Joint Institute for Power and Nuclear Research
Sosny
BY-220109 Minsk, Belarus
E-mail: maslov@sosny.bas-net.by


G. Reffo
Ente Nuove Tecnologie
Energia e Ambiente (ENEA)
40129 Bologna, Italy

M. Sin
Nuclear Physics Department
Bucharest University
077125 Bucharest-Magurele, Romania
E-mail: mihaela.sin@gmail.com


E.Sh. Soukhovitskii
Joint Institute for Power and Nuclear Research
Sosny
BY-220109 Minsk, Belarus
E-mail: esukhov@sosny.bas-net.by


P. Talou
Los Alamos National Laboratory
Los Alamos
NM 87544, USA
E-mail: talou@lanl.gov