The SNS in the Viewpoint of Users of Spallation models

Benchmark of Spallation Models October 7, 2009 Franz Gallmeier

Outline

- SNS facility
- Application of SNS neutronics analyses
 - Moderator neutron performance
 - Radionuclide Inventory
 - Shielding
 - Residual radiation fields
 - Material damage
 - Energy deposition
- Which MCNPX physics to use?
- Uncertainties in transport analyses
- Who are the users?
- User's different interest in benchmark

SNS Setup

Target Region within Target Monolith

for the U.S. Department of Energy

The Viewpoint of Users

The Target Monolith (designed and being built at Oak Ridge National Lab.)

Neutron Performance Calculations

(a) Top Moderators

(b) Bottom Moderators

Proton and neutron distributions in the SNS target

Neutron Performance Evaluations

SNS produced first neutrons on April 28, 2006

CD4 Beam Line 7 Intensity Measurement

10 Managed by UT-Battelle for the U.S. Department of Energy

Shielding: Target Monolith Model (1)

11 Managed by UT-Battelle for the U.S. Department of Energy

Horizontal Dose Rate Map

12 Managed by UT-Batte for the U.S. Departme

Verification of Shielding Calculations

By Moyer type hand calculations: D=D_o/R^{2*}exp(-λ*t)
By discrete-ordinates calculations

13 Managed by UT-Battelle for the U.S. Department of Energy

Mercury Radionuclide Inventory

• Critical for safety analyses: Hg203, Hg199, Gd148

Top Ten contributors to activity

-	×		
		Activity	Fraction
Nuclide	Half-life	after 40 yrs	of total
	(S)	(Ci)	activity
Hg203	4.03E+06	1.79E+05	0.10
Hg197	2.31E+05	1.16E+05	0.07
Hg199*	2.56E+03	1.15E+05	0.07
Au198	2.33E+05	1.01E+05	0.06
H 3	3.89E+08	5.86E+04	0.03
Au195	1.61E+07	3.53E+04	0.02
Hg195	3.56E+04	3.43E+04	0.02
Au193	6.35E+04	2.72E+04	0.02
Pt191	2.51E+05	2.47E+04	0.01
Au199	2.71E+05	1.98E+04	0.01
total		7.10E+05	0.41

indicates the metastable state

Impurity of 0.1ppm U almost makes 40-year irradiated Hg a trans-uranic waste

Target Vessel Activation and Handling

10% spallation products plated out

15 Managed by UT-Battelle for the U.S. Department of Energy

Target Vessel Activation and Handling

time (d)

16 Managed by UT-Battelle for the U.S. Department of Energy

The Viewpoint of Users

Material damage and lifetime studies

As a test case for the tip of the innermost mercury container nose, the results of the new mesh tally technique were compared with older results given in Barnett et al., *AccApp99 Proceedings*, pp. 555-559, ANS, 1999, and Proceedings, IWSMT-4, *J. Nucl. Mater.*, Vol. **296**, pp. 54-60, 2001. Good agreement was obtained (total, 36 dpa/yr or 21 dpa/SNS yr).

Helium and Silicon production in Al6061 moderator cans

 DPA cross sections, and He/Si production cross sections are applied with neutron and proton fluxes

18 Managed by UT-Battelle for the U.S. Department of Energy

Energy-deposition in Rotating Target of a Second SNS Target Station

19 Managed by UT-Battelle for the U.S. Department of Energy

The Viewpoint of Users

Energy Deposition (J/cc) per Pulse: Gaussian proton beam profile

The Viewpoint of Users

Central D2O Channel

20 Managed by UT-Battelle for the U.S. Department of Energ

60 rpm Heat Removal

21 Managed by UT-Battelle for the U.S. Department of Energy

Temperature ⁰C

Isotope harvesting of target materials

Request for positron source from AI:

Quantity	Option 1	Option 2
Aluminum Volume (cm ³)	236	78
Na-22 Production Rate (1/s)	1.21 10 ¹²	9.45 10 ¹¹
Irradiation Time for producing 1Ci Na-22 at 200 kW (days)	42	53

Request for Hf-177 in second metastable state for military application (energy release by stimulated decay)

Next-generation RIB facility projects in Europe and US

Which MCNPX physics model to use?

- Started with MCNPX_2.1.5: Bertini, Dresner, MPM: at LANL existed a significant body of experience and benchmarking for LAHET and was extended to MCNPX for the APT project
- Cem97 was just implemented and not stable yet and too slow at that time (factor 5-8)
- Isabel was not tested well and a factor 10 slower
- Use only frozen, documented, and publicly released versions
- Setting not changed till now
- With second target station we are rethinking our options

Uncertainties

- All simulations performed for design 2MW power with 1.4MW nominal power
- No safety factors applied in neutronics analyses
- Thermal and structural analyses applied safety margin
- DPA limits defined to be on the safe side by a factor of $2 \rightarrow$ lifetime of components \rightarrow may be increased as we learn
- Radionuclide inventory calculations within a factor of 2 (from NEA-1994 report), for isotopes far off the target nucleus used factor 10
- MCNPX manual reminds users to run application near benchmark cases
- Accuracy of moderator neutron performance analyses known by comparison of measurement and calcualation from Lujan Center/LANL and IPNS/ANL
- Radionuclide and energy-deposition benchmarks exist for **Bertini/Dresner at LANL**

Uncertainties in transport analyses

- Geometry modeling details
- Material composition
- Tabulated nuclear data (completeness of secondary particle yields, heating numbers ...)
- Neutron moderation in thermal region (S(a,b)-Kernels)
- Physics models
- Probability of typo
- Normalization error

Who are the users?

- Spallation model developers (30-50)
- Users of spallation models
 - Nuclear data evaluater generating and evaluating cross sections and cross section data bases (50-100)
 - Developers of particle transport codes (50-100)
 - Users of particle transport codes (5000-10000)
- Users of information generated by spallation models and/or particle transport codes, design engineers, operators of nuclear and accelerator facilities, regulators (50000-100000)

Users' interest in benchmark

- Spallation model developers have highest interest and need most detailed information.
- Nuclear data evaluator and transport code developer want to know performance characteristics.
- Users of transport codes want to get guidance in as few numbers as possible (which they probably will not get); wish that guidance is hardwired by code developers, use best code/parameter setting for specific mass/energy range.
- Engineers and regulators want to have confidence that the values they receive is within a factor x.
- Factor x has impact on savety margins applied in design.

