

Deviation factors

A.Yu. Konobeyev

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

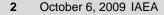
Universität Karlsruhe (TH) Research University · founded 1825

How to compare correctly results of calculations obtained using different nuclear models ?

Distribution of experimental points $\sigma_{exp}(i)$ (Z,A,E)

Distribution of calculated values $\sigma_{calc}(i)$ (Z,A,E)

Is the difference between distributions statistically significant?

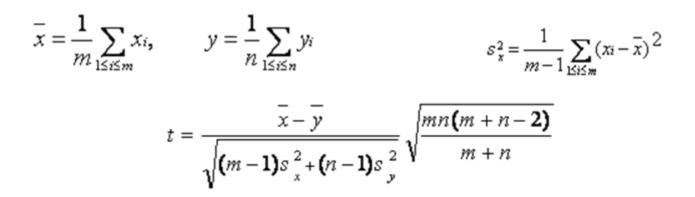


orschungszentrum Karlsruhe n der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH Research University · founded 182

Null hypothesis H_0 : distribution functions are identical Alternative hypothesis H_1 : H_0 does not hold

Normal distribution: t-test (Student's), Fisher test etc



 α (0.05), (n-m+2) degrees of freedom degrees, tables of t-distribution : t_{crit}

$$|t| < t_{crit}$$
 : H_0

Deviation of results of calculations from measured data. The type of the distribution.

Examples

Measured data: cross-sections reactions: (p,x) targets : Z from 12 to 83 proton incident energy : from 20 to 150 MeV Total number of (Z,A,Ep) points : 9452

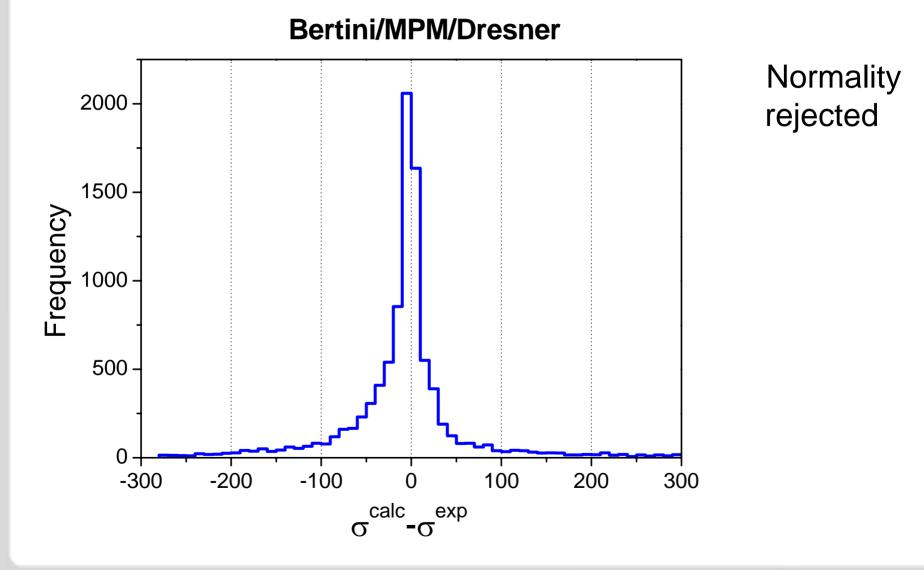
Calculations: Bertini / MPM / Dresner

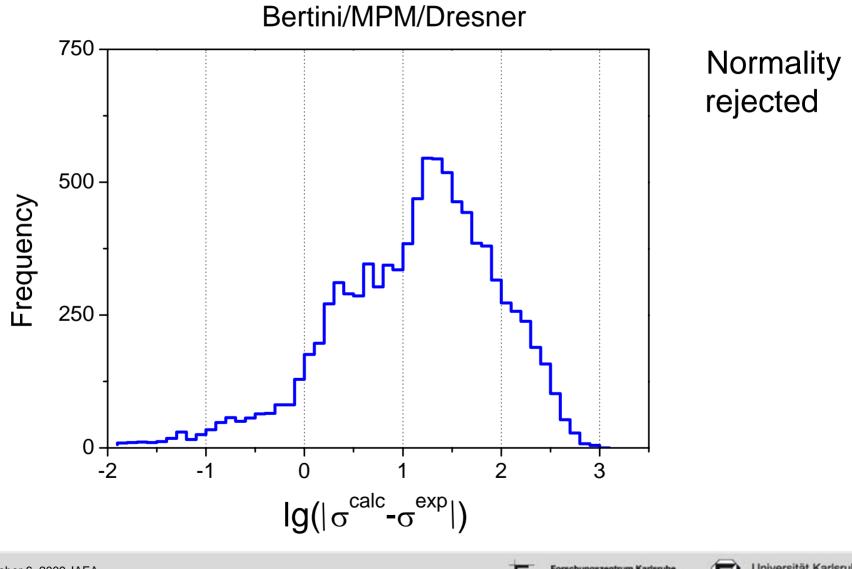
Tests of goodness of fit

Chi-squared goodness-of-fit test

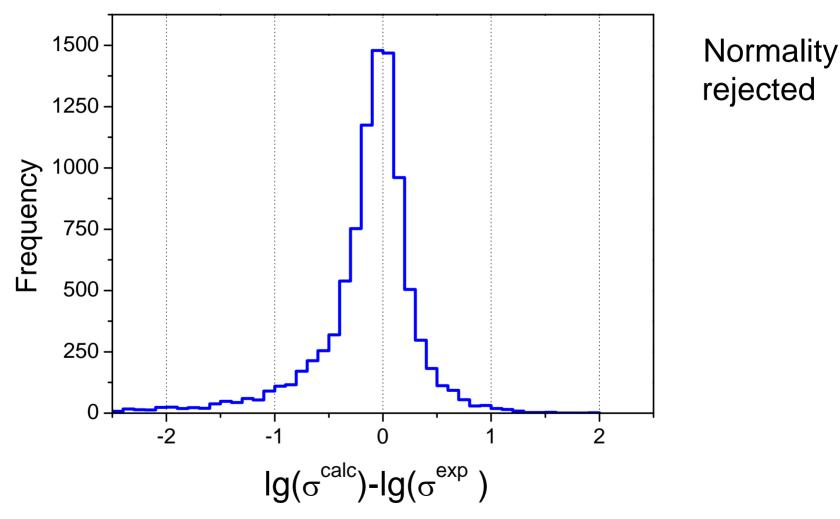
Shapiro-Wilk test for normality

Search for normal or lognormal distribution





Bertini/MPM/Dresner



Solution: use of nonparametric tests

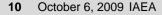
No certain assumptions about distributions

Wilcoxon Mann-Whitney test for comparing two populations

Null hypothesis: two populations have identical distribution functions

Use of Wilcoxon Mann-Whitney or Mann–Whitney test

- I. The comparison of measured data and results of calculations using a certain code
- II. The comparison of difference between measured data and results of calculations using various codes
- Answer the question: is the difference between two codes statistically significant ?

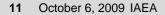


Deviation factors

I.
$$H = \left(\frac{1}{N}\sum_{i=1}^{N} \left(\frac{\sigma_i^{exp} - \sigma_i^{calc}}{\Delta \sigma_i^{exp}}\right)^2\right)^{\frac{1}{2}}$$

Model "deficiency"

$$C_{H} = \frac{H}{H'} = \frac{H}{H(0.1 < \sigma_{i}^{calc} \, / \, \sigma_{i}^{exp} < 10)}$$



Example

(p,x) reaction cross-sections from EXFOR targets Z from 12 to 83 proton incident energy : from 20 to 150 MeV total number of (Z,A,E_p) points ~ 9500

Factors	Bertini/MPM/ Dresner	CEM03	TALYS
н	49.8	28.0	14.2
H'	15.7	17.7	10.4
C _H	3.2	1.6	1.4

$$\textbf{II.} \qquad \textbf{R}^{CE} = \frac{1}{N} \sum_{i=1}^{N} \frac{\sigma_i^{calc}}{\sigma_i^{exp}}$$

and

$$\mathsf{R}^{\mathsf{EC}} = \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \frac{\sigma_i^{\mathsf{exp}}}{\sigma_i^{\mathsf{calc}}}$$

Factors	Bertini/MPM/ Dresner	CEM03	TALYS
R ^{CE}	1.3	1.3	1.1
REC	5.2	<u>82.</u>	3.8

$$\textbf{III.} \qquad D^{CE} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\sigma_i^{exp} - \sigma_i^{calc}}{\sigma_i^{exp}} \right|$$

and

$$D^{EC} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\sigma_i^{exp} - \sigma_i^{calc}}{\sigma_i^{calc}} \right|$$

Forschungszentrum Karlsruhe in der Heimholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University · founded 1825

IV. Deviation factors proposed by R.Michel

Variants

R.Michel et al, NIMB129 (1997) 153

$$\langle F \rangle = 10^{\frac{1}{n_s}} \sqrt{\sum_{i=1}^{n_s} [\log(\sigma_{exp,i}) - \log(\sigma_{theo,i})]^2}$$

International Codes and Model Intercomparison for Intermediate Energy Activation Yields," NSC/DOC(97)-1 (Jan. 1997)

$$\langle F \rangle = 10. ** SQRT(\langle (\log \sigma_{exp} - \log \sigma_{theo})^2 \rangle)$$

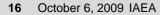
 $\langle (\log \sigma_{exp} - \log \sigma_{theo})^2 \rangle = \sum_i (\log \sigma_{exp,i} - \log \sigma_{theo,i})^2 / NS$

$$\overline{F} = 10^{\frac{1}{N} \sum\limits_{i=1}^{N} \left[log(\sigma_i^{exp}) - log(\sigma_i^{calc}) \right]}$$

and
$$< F > = 10^{\left(\frac{1}{N}\sum\limits_{i=1}^{N} \left[log(\sigma_{i}^{exp}) - log(\sigma_{i}^{calc})\right]^{2}\right)^{\frac{1}{2}}}$$

(symbols from NIMB129 (1997) 153)

Factors	Bertini/MPM/ Dresner	CEM03	TALYS
F	0.72	0.83	0.87
<f></f>	3.17	3.15	2.21



Model "deficiency"

$$C_{F} = \frac{<\!F\!>}{<\!F\!>'} = \frac{<\!F\!>}{<\!F\!> (0.1\!<\!\sigma_{i}^{calc}\,/\,\sigma_{i}^{exp}\!<\!10)}$$

Factors	Bertini/MPM/ Dresner	CEM03	TALYS
<f></f>	3.17	3.15	2.21
<f>'</f>	2.11	1.96	1.78
C _F	1.5	1.6	1.2

V. Modified F factor including experimental errors

D.Smith, private communication, 2007

$$exp\left(\frac{1}{N}\sum_{i=1}^{N}\left[\frac{ln(\sigma_{i}^{exp}) - ln(\sigma_{i}^{calc})}{\left(\frac{\Delta\sigma_{i}^{exp}}{\sigma_{i}^{exp}}\right)}\right]^{2}\right)^{\frac{1}{2}}$$

$$S = 10^{\left(\sum\limits_{i=1}^{N} \left[\frac{lg(\sigma_{i}^{exp}) - lg(\sigma_{i}^{calc})}{\left(\Delta\sigma_{i}^{exp} / \sigma_{i}^{exp}\right)}\right]^{2} \sum\limits_{i=1}^{N} \left[\frac{\sigma_{i}^{exp}}{\left(\Delta\sigma_{i}^{exp}\right)}\right]^{-2}\right)^{\frac{1}{2}}$$

$$C_{F} = \frac{S}{S'} = \frac{S}{S(0.1 < \sigma_{i}^{calc} \, / \, \sigma_{i}^{exp} < 10)}$$

Factors	Bertini/MPM/ Dresner	CEM03	TALYS
S	1.83	1.63	1.31
S'	1.76	1.52	1.288
Cs	1.04	1.07	1.02

VI. H.Leeb et al. Santa Fe (2004)

$$L = \left[\sum_{i=1}^{N} \left(\frac{\sigma_{i}^{calc}}{\Delta \sigma_{i}^{exp}} \right)^{2} \left(\frac{\sigma_{i}^{calc} - \sigma_{i}^{exp}}{\sigma_{i}^{calc}} \right)^{2} / \sum_{i=1}^{N} \left(\frac{\sigma_{i}^{calc}}{\Delta \sigma_{i}^{exp}} \right)^{2} \right]^{1/2}$$

Factor	Bertini/MPM/ Dresner	CEM03	TALYS
L	0.875	0.534	0.343

VII.

$$P_{1.3} = N_{1.3}/N$$
, $N_{1.3}$: 0.77 < $\sigma_i^{calc} / \sigma_i^{exp}$ < 1.3

$$P_{2.0} = N_{2.0}/N$$
, $N_{2.0}$: 0.50 < $\sigma_i^{calc} / \sigma_i^{exp}$ < 2.0

$$P_{10.0} = N_{10.0}/N$$
, $N_{10.0}$: 0.1 < $\sigma_i^{calc} / \sigma_i^{exp}$ < 10.0

N can be total number of experimental points or points available for each set of the calculation

Factors	Bertini/MPM/ Dresner	CEM03	TALYS
P _{1.3}	0.35	0.35	0.44
P _{2.0}	0.68	0.70	0.82
P _{10.0}	0.94	0.95	0.98

Number of points available in one set of model calculations

 $N_{\text{calc}}(m) \leq N_{\text{exp}}$

Factors:

H, R^{CE}, D^{CE}, L: $\sigma_i^{calc} = 0$ can be included

R^{EC}, D^{EC}, <F>, S: not

It is reasonable to exclude zeroes from the consideration and calculate values for all factors with the same number of points N_{calc}(m)

Relative number of available points as an additional characteristics of calculations

Example

(p,x) reaction cross-sections from EXFOR targets Z from 12 to 83 proton incident energy : from 0 to 150 MeV

	Bertini/MPM/ Dresner	CEM03	TALYS
N _{calc}	16139	15162	19021
N _{calc} /N _{exp}	0.85	<u>0.80</u>	1.00

Number of points N_{calc}(m) and deviation factors

The difference in N_{calc}(m) can be important for the comparison of models of different "quality"

Example

Individual N_{calc}(m)

Points available in all calculations

Factors	Bertini/ Dresner	CEM03	TALYS	Factors	Bertini/ Dresner	CEM03	TALYS
Н	70.0	35.3	14.0	н	11.9	14.6	7.1
R	1.53	1.54	1.16	R	1.11	1.34	1.06
<f></f>	2.76	2.60	2.59	<f></f>	2.41	2.23	2.21
N _{calc}	4006	4008	3975	N _{calc}	3869	3869	3869

(p,x) reactions, Z=12-83, E_p=50-150 MeV

Deviation factors

- H, R^{CE}, R^{EC}, D^{CE}, D^{EC}, **F**, <**F**>, **S**, **L**
- P_x , $N_{calc}/_{Nexp}$, C_H , C_F , C_S

Two types of the comparison:

- a) with individual $N_{calc}(m)$
- b) with reduced number of points available in all sets of calculations

"Badness" of the model

The conclusion about the predictive power

$$\mathsf{B}_{\mathsf{m}} = \frac{\mathsf{H}_{\mathsf{m}} < \mathsf{F} >_{\mathsf{m}}}{\mathsf{H}_{\mathsf{ref}} < \mathsf{F} >_{\mathsf{ref}}}$$

or

$$\mathsf{B}_{\mathsf{m}} = \frac{\mathsf{H}_{\mathsf{m}} \, \mathsf{S}_{\mathsf{m}}}{\mathsf{H}_{\mathsf{ref}} \, \mathsf{S}_{\mathsf{ref}}}$$

In the case of small N_{calc}/N_{exp} values: $B_m (N_{calc}/N_{exp})^{-1}$

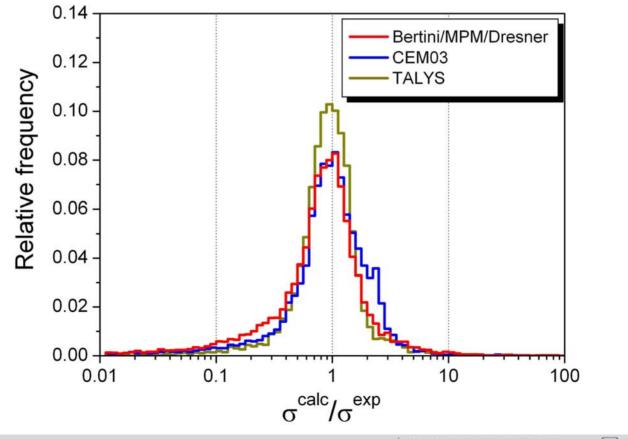
Choice of "reference values": best result or averaged value

Example

Factors	Bertini/MPM/ Dresner	CEM03	TALYS
Н	49.8	28.0	14.2
D	0.85	0.73	0.53
R ^{CE}	1.32	1.31	1.15
<f></f>	3.17	3.15	2.21
N _{calc} /N _{exp}	1.00	0.98	1.00
В	5.0	2.8	1.0

(p,x) reactions, Z=12-83, E_p=20-150 MeV

Visualization



Conclusion

For the comparison of various sets of calculations with measured data can be used deviation factors:

values

$$P_x$$
, $N_{calc}/_{Nexp}$, C_H , C_F , C_S

product of factors

B=H<F>/(H_{ref}<F>_{ref}) or H S /(H_{ref} S_{ref})

The promising ones: S –factor, B

Mann-Whitney test

Is the difference between two set of calculations statistically significant?

Factors	ISABEL/MPM/ Dresner	ISABEL/MPM/ ABLA
Н	43.4	47.1
D	0.89	1.19
R	1.36	1.80
F	3.56	3.15
L	0.72	0.73
P _{1.3}	0.30	0.29
P _{2.0}	0.63	0.59
P _{10.0}	0.93	0.95
N _{calc} /N _{exp}	0.99	0.99

(p,x) reactions, Z=12-83, E_p=20-150 MeV

