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1.  Introduction 
 
Recent developments in metrology concerning measurement uncertainty were laid down 
in the ISO Guide to the expression of uncertainty in measurement (GUM) [1]. In the 
GUM, uncertainties are evaluated either by “statistical methods” (type A) or by “other 
means” (type B). Type A uncertainties can be evaluated from repeated or counting 
measurements, while Type B uncertainties cannot. They are, for instance, uncertainties 
given in certificates of standard reference materials or of calibration radiation sources 
which are used in the evaluation of a measurement.  
 
It is the distinction between the two ways (Type A and Type B), by which uncertainties 
are evaluated, which causes the problem with the statistical foundation of the GUM, i.e. 
whether it can be based or not on Bayesian and/or conventional statistics. Conventional 
statistics can only handle Type A uncertainties, but not Type B ones. Only by Bayesian 
statistics, uncertainties of both types can be consistently determined. Both types of un-
certainties express quantitatively the actual state of incomplete knowledge about the 
quantities involved. 
 
At the time of the first publication of the GUM, the statistical foundation of the GUM 
was not clear though a Bayesian theory of measurement uncertainty already existed 
providing a Bayesian foundation of GUM [2, 3].  
 
Meanwhile, a supplement [4] to GUM [1] has been published, dealing comprehensively 
with the treatment of measurement uncertainty using the Monte Carlo (MC) method in 
complex measurement evaluations. There it is stated for the first time that only Bayesian 
statistics is capable of providing the statistical basis. Furthermore, the Principle of Max-
imum (Information) Entropy [5] was explicitly applied in [4] to obtain the required 
probability density functions (PDFs) for the uncertainty analysis based on the con-
straints set by the available information. More details about this may be found in [4] or 
elsewhere [6]. 
 
Though many results of the conventional and the Bayesian approaches are numerically 
practically equal, they must not be confused with each other because the understanding 
of the term “probability” is completely different in both statistics. The conventional or 
frequentist view is “Probability is the stochastic limit of relative frequencies” while the 
Bayesian view is “Probability is a measure of the degree of belief an individual has in 
an uncertain proposition”. But, there are frequencies which do not represent probabili-
ties and there are probabilities which cannot be expressed as frequencies. Bayesian sta-
tistics provides a more intuitive assessment methodology than conventional statistics, 
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closer to the scientific thinking than conventional ones. For more details of these ques-
tions see e.g. [7 - 14].  
 
2.  The Concept of Intrinsic Discrepancy  
 
In Bayesian statistics, the intrinsic discrepancy p1,p2 is a very general measure of 
the divergence between two distributions of the random vector x described by their den-
sity functions p1 and p2 [15]:  
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The following characteristics hold for the intrinsic discrepancy [15]:  
 
“If p1(x | θ) and p2(x |λ) describe two alternative distributions for data x ∈ X, one of 
which is assumed to be true, their intrinsic discrepancy δ{p1, p2} is the minimum ex-
pected log-likelihood ratio in favour of the true sampling distribution.  
 
It may be shown that the intrinsic divergence is symmetric, non-negative (and it is zero 
if, and only if, p1(x) = p2(x) almost everywhere). The intrinsic discrepancy is invariant 
under one-to-one transformations of x. Besides, it is additive: if x = {x1, . . . , xn} and 




n

j
jii xqp

1
)()(x , then  

 
δ{p1, p2} = nδ{q1, q2}.  (2) 
 
The intrinsic discrepancy serves to define a useful type of convergence; a sequence of 

PDFs  1)( iip x  converges intrinsically to a PDF p(x) if (and only if)  

0),(lim  ppii   i.e., if (and only if) the sequence of the corresponding intrinsic 

discrepancies converges to zero. 
 
Last, but not least, it is defined even if the support of one of the densities is strictly con-
tained in the support of the other.” 
 
3.  Intrinsic Discrepancy for Benchmarking Spallation Codes  
 
In the former model and code intercomparisons [16, 17] methods of descriptive statis-
tics were used to calculate global numbers for the agreement between experimental and 
calculated data. A metrological foundation of these general measures, i.e. figures of 
merit [16] and deviation factors [17], was not given and was also not intended. In order 
to put such measures on a actual metrological basis, here it is proposed to test the ap-
plicability of the concept of intrinsic discrepancy as a method of judgement about the 
agreement of experimental and theoretical data for benchmarking spallation codes, 
 
To this end, a cross section as a function of energy or of mass or charge of residuals is 
understood as a probability density function (PDF), i.e. the probability of a particular 
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reaction to occur as a function of energy, mass or charge. Any such PDF may be looked 
at with or without normalization in the region of interest of the independent variable.  
 
That was indicated without normalization in my talk as Concept I. Then the concept of 
intrinsic discrepancy reads for the cross sections: 
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with ,...,, ZAEx   . 
 
If the intrinsic discrepancy in form of equation 3 is used to compare different reactions, 
the numbers obtained are biased in the sense that more probable reactions are yielding 
higher numbers. Moreover, neither )(exp x  nor )(calc x  fulfill the necessary condition 

of a PDF, namely that  1d)(
max

min
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x

x
xx  should hold. After some discussions with Alexan-

dre Konobeev we came to the conclusion that what I called Concept II in my view-
graphs should be used. 
 
The problems can be avoided by normalizing the experimental and calculated cross sec-
tions to the integral cross section of the experimental respectively calculated data in the 
region of interest (Concept II): 
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Then the intrinsic discrepancy reads: 
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with ,...,, ZAEx   . 
 
 
3.1 Practical Application to Mass and Charge Distributions 
 
Using the concept of intrinsic discrepancy for comparison of experimental and calculat-
ed mass and charge distributions is simple and straight forward. Given 

),...,1()( expexp niAi  in a mass interval of interest ],[ maxmin AA  and calculated ones 

)(calc iA for the same masses. Then one normalizes both, the experimental and calcu-

lated cross sections to the integral experimental cross section: 
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Then, the intrinsic discrepancy between the experimental and calculated cross sections 
is calculated by: 
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For charge distributions replace A by Z in equations 6 - 8. 
 
3.2 Practical Application to Excitation Functions 
 
The application of the concept of intrinsic discrepancy to excitation functions is a little 
bit more difficult since some integrals have to be evaluated. This may cause problems if 
applied also in cases where only a few experimental data exist. For experimentally well 
established excitation functions, i.e. many experimental cross sections in the energy 
region of interest, it can be more easily applied. The following procedure is proposed. 
 
Let be ),...,1()( expexp niEi   the experimental cross sections in an interval of interest 

],[ maxmin EE  and ),...,1()( calccalc njE j   a set of calculated data, then one normal-

izes both, the experimental and calculated cross sections, by the integral experimental 

cross section 
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E
EE  in the energy region of interest: 
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The intrinsic discrepancy between the experimental and calculated cross sections is de-
fined by: 
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Equation 10 can be further evaluated and one obtains (leaving away the limits of the 
integration): 
 









































 













 



EE

EE
E

E

E
E

EE

EE
E

E

E
E

EE

d)(

d)(
lnd

)(

)(
ln)(

,
d)(

d)(
lnd

)(

)(
ln)(

min

)}(),({

calc

exp

exp

calc
calc

exp

calc

calc

exp
exp

calcexp

















 (11) 

 
The problem of practical calculation is to evaluate the integrals given the discrete exper-
imental and calculated cross sections at certain energy points. This problem can, how-
ever, be solved by interpolation and averaging. 
 
4.  Conclusion 
 
The intrinsic discrepancy provides a useful measure for comparing experimental and 
theoretical data for benchmarking spallation codes which is well founded on metrologi-
cal methods used today for uncertainty analysis. It has favorable characteristics, u. o. an 
appropriate convergence of )}(),({ calcexp EE    which becomes zero if the distribu-

tions are identical. It also allows for the global comparison of many different reactions. 
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