Results of the de-excitation code ABLA07

Aleksandra Kelić <u>M. Valentina Ricciardi</u> Karl-Heinz Schmidt

GSI Darmstadt, Germany

- Improvements in ABLA07
- Stages of a spallation reaction
- Influence of the 1st stage on the results
- Comparison of ABRA, INCL4, ISABEL + ABLA07
- Conclusions

Improvements in ABLA07

see proceedings of the "Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions,, held in Trieste, Italy, 4-8 January 2008

ABLA07

New features (with moderate increase of computing time):

- Multifragmentation
- CN-decay channels γ, n, p, LCP, IMF, fission (continuous)
 - inverse x-sections from nuclear potential
 - treatment of angular momentum
 - fission transients from Fokker-Planck equation
 - barrier structure in low-energy fission
 - nuclide production in fission with 1 parameter set
 - from spontaneous fission to high E* for all CN
 - evaporation on fission path

Production of helium

Data: R. Michel et al., NIM B 103, C. M. Herbach et al., Proc SARE-5 meeting, 2000

Production of ⁷Be

mult xsec

2009/05/01 13.12

Fission cross sections

Low-energy fission \rightarrow influence of double-humped structure in fission barriers of actinides and symmetry classes at saddle

• exp data - Gavron et al., PRC13

- ABLA07

Multimodal fission around ²²⁶Th

Black: experimental data (GSI experiment) Red: model calculations (N=82, Z=50, N=92 shells) Possible fissionning systems in spallation of ²³⁸U!

Spallation ²³⁸U (1 A GeV) + ¹H

Multifragmentation

Longitudinal cuts in velocity

Multifragmentation:

One central component due to expansion of an homogenous source.

Binary decay:

2 separated forward and backward components due to Coulomb repulsion.

PhD, P. Napolitani

Stages of a spallation reaction

Stages of a spallation reaction

ABLA07 is 2nd part of ABRABLA07 (Abrasion-ablation code).

Fingerprints of the de-excitation process

The situation after the primary collision process can be expressed by the parameters of the compound nucleus. They define the starting point of

the de-excitation process.

The de-excitation process wipes out most of the properties of the heated thermalised system. Most of the characteristics of the final residues are fingerprints of the de-excitation process.

Experimental data (P. Armbruster et al., PRL 93 (2004) 212701)

Fingerprints of the de-excitation process

1 GeV p + ²³⁸U INCL4, ISABEL, ABRA + ABLA07

At first glance, nothing seems to change among the different 1st stage models, however ...

Influence of the 1st stage of the reaction

Parameters of the compound nucleus

- Composition in A and Z
 - Starting point on the chart of the nuclides
 - Fluctuations in N/Z
- Thermal excitation energy
 - Influence on emission rates
 - Reduced in de-excitation
- Angular momentum
 - Influence on barriers (mostly fission)
 - Modified in de-excitation
- Linear momentum
 - No influence on de-excitation
 - Signature of reaction channel
- Volume (extended)
 - Response to heating breakup

Excitation energy

Increase of beam energy leads to higher excitation energies after INC and to larger mass loss in evaporation.

Experimental Data

T. Enqvist et al., NPA 686, 481,

- NPA 703, 435
- B. Fernandez et al., NPA 747, 227
- L. Audouin et al., NPA 768, 1

Angular momentum

- Influence on barriers (mostly fission)
- Modified in de-excitation

Comparison of INCL4 ISABEL ABRA for 1 GeV p + ⁵⁶Fe, ²⁰⁸Pb, ²³⁸U

$1 \text{ GeV p} + {}^{56}\text{Fe}$

ISABEL remnants (%)

ISABEL ang. momentum (hbar)

17

14

12

10

8.3

4.9

4.1

3.4

7 5.8

30

25

1 GeV p + ⁵⁶Fe

1 GeV p + ⁵⁶Fe

1 GeV p + ⁵⁶Fe ABRABLA07

1 GeV p + ⁵⁶Fe INCL4+ABLA07

1 GeV p + ⁵⁶Fe ISABEL+ABLA07

10-2

1013

25 26 27 28 29

Neutron number

10-2

10-2

27.0 27.2 27.4 27.6 27.8 28.0

Neutron number

1 GeV p + ⁵⁶Fe ratio exp/calc

1 GeV p + ²⁰⁸Pb

INCL ang. momentum (hbar)

ISABEL ang. momentum (hbar)

ABRA ang. momentum (hbar)

1 GeV p + ²⁰⁸Pb

1 GeV p + ²⁰⁸Pb

1 GeV p + ²⁰⁸Pb ABRABLA07

1 GeV p + ²⁰⁸Pb ABRABLA07

1 GeV p + ²⁰⁸Pb INCL4+ABLA07

1 GeV p + ²⁰⁸Pb INCL4+ABLA07

1 GeV p + ²⁰⁸Pb ISABEL+ABLA07

1 GeV p + ²⁰⁸Pb ISABEL+ABLA07

1 GeV p + ²⁰⁸Pb ratio exp/calc

1 GeV p + ²³⁸U

ISABEL ang. momentum (hbar)

ABRA ang. momentum (hbar)

1 GeV p + ²³⁸U

1 GeV p + ²³⁸U

1 GeV p + ²³⁸U ABRABLA07

1 GeV p + ²³⁸U ABRABLA07

1 GeV p + ²³⁸U INCL4+ABLA07

1 GeV p + ²³⁸U INCL4+ABLA07

1 GeV p + ²³⁸U INCL4+ABLA07

10-3

125

130 135 140 Neutron number 10.3

136 138 140 142 144

Neutron number

146

145

1 GeV p + ²³⁸U ISABEL+ABLA07

1 GeV p + ²³⁸U ISABEL+ABLA07

1 GeV p + ²³⁸U ISABEL+ABLA07

10-3

125

130 135 140 Neutron number 10.3

136 138 140 142 144

Neutron number

146

145

1 GeV p + ²³⁸U ratio exp/calc

Conclusions

What can still be done in ABLA:

- Improvement of even-odd effect
- More physics content in the break-up stage (not so important for spallation reactions)

Further improvements:

 Necessity of fixing the initial conditions of the deexcitation process → Spaladin experiments