Second Advanced Workshop on Model Codes for Spallation Models. Saclay, 8-11 Feb. 2010

Results with INCL4.5.(20)

J. CUGNON (Ulg) and the INCL4 Collaboration

- Introduction
- From INCL4.2 to INCL4.5
- Results INCL4.5 (coupled to ABLA07)
- Conclusion

1. Introduction

INCL4.2:

-parameter-free, nucleon d.o.f., minimum distance of approach -good description of data (with ABLA_v3p)

But:

- no composite emission
- no pion potential
- problems residue distributions
- problems at low energy

2. From INCL4.2 to INCL4.5

- 1. Introduction of a dynamical coalescence model for composites (INCL4.3) satisfactory at high energy
- 2. Development of INCL4.5 (and of ABLA07) in EUROTRANS

Main features of INCL4.5

Known phenomenology

- Isopin and energy-dependence of the nucleon mean field
- Pion potential
- Curved trajectories in the Coulomb field (in & out)

<u>Cluster emission</u>

- check for a particle trying to escape with E>Ethr (position)
- potential clusters are constructed (compactness criteria, a parameter per cluster for light clusters A>5)
- the most bound (per nucleon) cluster is emitted provided it tunnels through the Coulomb barrier (otherwise the driving nucleon is emitted, if it satisfies the same criterion)
- A≤4 clusters are not emitted if the direction of propagation is too tangential (cos 9 >0.3) (except for 1st cluster...)
- Short-lived clusters (ex: ⁵Li) are forced to decay

Pauli blocking

- •Two nucleons below Fermi level do not interact
- •Strict Pauli blocking on the first collision

Soft collisions and low energy

- •No soft collisions (below $\sqrt{s} = 1910 \text{ MeV}$)
- •No restriction on the first collision
- •"localE": correction of local Fermi energy on the first collision

Fuzzy Fermi surface or imperfect quasi-particles

- if after a collision or a Δ -decay, a nucleon has E<E_F+ ζ (18 MeV), it is considered as a spectator again
- cascade is stopped if t>t_{fin} or if $N_{part} = 0$ and N_{π} (inside)=0

3. Analysis of the INCL4.5 results

Neutron cross sections

Results shown (in figures): coupling to ABLA07

INC contribution easily isolated

p (800 MeV) + Pb -- Neutron spectrum

Fe

Pb

p (1600 MeV) + Pb -- Neutron spectrum

 10^{4}

Strong points:

- good overall predicting power
- evaporation spectra

A. Boudard (notes with penalties)

Weak points:

- underprediction of spectra in the energy range "above evaporation" due to either cascade or cluster formation
- overprediction at small angles and above 180 MeV probably due to energy-dependent potentials
- quasi-inelastic (Delta) region: shift which decreases with incident energy and with the target mass
- "accident at 10 MeV" only "visible" at low incident energy solution: remove (or smoothen) the "Isabel trick"

Trends:

- Agreement generally improves with increasing angles (except at very large angles)

- QE and QI peaks are less well described than the multi-collision contribution: a paradoxical theoretical problem
- Dispersion between models behaves as point 1 : another theoretical issue.

Neutron multiplicities (E>20MeV)

Average multiplicities

Exp. Unc. σ/<n> 7% 12% 16%

Exp. unc. 10% 11% 15%

Multiplicity distributions

Light charged particles

p

Overall satisfactory agreement(+good QE), but

- underprediction above the evaporation at small angles (composite formation)
- overprediction at low excitation energy
- "hole" at 10MeV

Overall satisfactory agreement

Peak-up too large Small angles are less good

Overall satisfactory agreement

- Peak-up too large
- Small angles are less good
- 2.5 GeV results are less good

 ^{3}He

Overall satisfactory agreement

- Bad shapes at low energy
- Peak-up too large
- Barrier and/or evaporation?

α

Overall satisfactory agreement

- Bad shapes at low energy
- Peak-up too large?
- Barrier and/or evaporation?

Statistics of the F-factors for spectra above 20 MeV

Pions

 π^+

Overall good agreement

Overprediction at low energy for heavy targets

 π^{-}

General good agreement Better than for positive pions Good isospin and Coulomb effects

Underprediction at 2.2 GeV (multi pion production)

Average H-factors

 π +

π-

Residues

A-distributions

Overall good agreement Also in details: A_{T} -residues, IMF, odd-even effects, low-A end of ER,...

For this kind of abservables, there is a definite (and limited) influence of the cascade stage

It is hard to identify the respective merits of INCL4.5 and ABLA07: A deficiency of one may be compensated by an opposite deficiency of the other Low mass end of ER (in Pb @1GeV):

-more large E* events in INCL4.5 \leftarrow composite, V(E), V(pion), ? -emission of IMF in ABLA07

NB: 1. reconciled with results at 500 MeV

2. still not satisfactory @300 MeV

High mass end of ER (in Fe, Pb @1 GeV) -too few events with small E* ← 1collision, either X-sections or INCL model

not the case at lower energy and for U
Fission: too high (1.5) for Pb @ 1GeV
Either E* or x distributions of INCL4.5,
Or fission model of ABLA (fission yield depends on many parameters)

casc04

 $\sigma\left(mb\right)$

Mass number (A)

200 220

PHITS-jam

Isabel-SMM p (1000 MeV) + Pb208 -- Residue mass production 10^{3} Mass distn. enqvist et al. ···· isabel-smm 10^1 $\sigma \, (mb)$ 10⁻¹ 10-2 Mass number (A)

MCNPX-Bert

PHITS-BERT

PHITS-jam

Isabel-SMM p (1000 MeV) + Pb208 -- Residue mass production 10^{3} Mass distn. enqvist et al. ···· isabel-smm 102 10^1 10 $\sigma \, (mb)$ 10⁻¹ 10-2 10 10 40 60 80 100 120 140 160 180 200 220 Mass number (A)

casc04

MCNPX-Bert

p (1000 MeV) + U238 -- Residue mass production

10

 10^{2}

 10^1

10-

10-2

10-3 0

50

100

Mass number (A)

150

200

250

Mass distn. gsi et al.

mcnpx-bert-dres

PHITS-jam

p (1000 MeV) + U238 -- Residue mass production 10^{3} Mass distn. gsi et al. phits-jam 10^{2} 10^1 $\sigma\,(mb)$ 10^{0} 10-1 10-2 10 0 50 100 150 200 250 Mass number (A)

PHITS-BERT

MCNPX-Bert

PHITS-BERT

PHITS-jam

p (1000 MeV) + U238 -- Residue mass production 10^{3} Mass distn. gsi et al. phits-jam 10^{2} 10^1 $\sigma\,(mb)$ 10^{0} 10-1 10-2 10 0 50 100 150 200 250 Mass number (A)

Z-distributions

Same conclusions

Isotopic distributions

Shift in the middle of the ER peak toward n-rich side Pb and Tl distributions are depleted

Too many protons are emitted in the cascade and/or evaporation

under

over

factor 10 factor 5

factor 4 factor 3 factor 2

factor 2 factor 3 factor 4

factor 5 factor 10

V. Ricciardi, Vienna

H-factor

p(1GeV) + Pb

CEM0303

Isabel-ABLA07 Cascade-asf

INCL4.5-ABLA07

H-factor

1000

p(1GeV) + U

Excitation functions

Fe

cascade-asf

INCL4.5-ABLA07

Pb

cascade-asf

INCL4.5-ABLA07

Plus

4. Conclusion

- INCL4.5 generates good (and consistent) results
- Improves significantly over INCL4.2 (thanks to EUROTRANS)
- On: composites, pions, neutron multiplicities, excitation functions,..
- But not on: neutron spectra, residues (close to the remnant),...
- See the experts for evaluation

2500 MeV p + au197, He3 spectra

INCL4.5 is slightly better p underestimated

Similar results for p(1.2 GeV) on ¹⁹⁷ Au and ¹⁸¹ Ta

Conclusion (on composites): satisfactory results, except on p @HE and n @LE

63 MeV p + pb208, He3 spectra

slightly less good

INCL4.5: better or not?

virtue of ABLA

p(1GeV)+56Fe

Conclusion:

- INCL4.5 is slightly better
- persistent problem for residues close to the projectile
- end of spallation peak and IMF emission?

4. Conclusion

- INCL4.5: sophistication, empirism
- Cluster production is improved
- Nucleon spectra are less good
- Slight improvement on the residues (but this implies de-excitation models)
- Development is going on