## Second Advanced Workshop on Model Codes for Spallation Reactions

Saclay, February 8-11, 2010

# Results of the de-excitation code ABLA07

Aleksandra Kelić-Heil M. Valentina Ricciardi Karl-Heinz Schmidt

GSI Darmstadt, Germany

## ABLA07

see proceedings of the "Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions,, held in Trieste, Italy, 4-8 January 2008

## ABLA07

1. Emission of neutrons, LCP (Z=1, 2), IMF (Z>2) and  $\gamma$  is considered.

2.Particle decay widths based on Weisskopf-Ewing formalism, with:

- Energy dependent inverse cross sections based on nuclear potential
- Barriers for charged particles are calculated using the Bass potential
- Thermal expansion of the source is taken into account.
- Change of angular momentum due to particle emission is considered.
- 3. The fission decay width is described by including:
  - An analytical time-dependent approach to the solution of the Fokker-Planck equation,
  - The influence of the initial deformation on the fission decay width,
  - The double-humped structure in the fission barriers of actinides,
  - Symmetry classes in low-energy fission.
- 4. Particle emission on different stages, i.e. between ground state and saddle point, between the saddle and scission point, and from two separate fission fragments, of the fission process is calculated separately.
- 5. Kinetic-energy spectra from Maxwell-Boltzmann distribution
- 6. A stage of simultaneous break-up (MF) in the decay of hot excited systems is treated.

## **Neutron multiplicities**

## p(1200 MeV) + Fe – Neutron multiplicity distribution INCL45-ABLA07 ISABEL-ABLA07



#### p(1200 MeV) + Fe – Neutron multiplicity distribution

#### INCL45-ABLA07

#### INCL45-GEMINI++



#### p(1200 MeV) + Fe – Neutron multiplicity distribution

#### INCL45-ABLA07

#### **ALL MODELS**



## p(1200 MeV) + Pb – Neutron multiplicity distribution INCL45-ABLA07 ISABEL-ABLA07



### p(1200 MeV) + Pb – Neutron multiplicity distribution

#### INCL45-ABLA07

#### INCL45-GEMINI++



## p(1200 MeV) + Pb – Neutron multiplicity distribution INCL45-ABLA07 ALL MODELS



#### p + Fe – Average neutron (2-20 MeV) multiplicity



#### p + Fe – Average neutron (20+ MeV) multiplicity



#### p + Pb – Average neutron (2-20 MeV) multiplicity



#### p + Pb – Average neutron (2-20 MeV) multiplicity



#### p + Pb – Average neutron (20+ MeV) multiplicity



Neutron multiplicity

## **Neutron spectra**

#### p(63 MeV) + <sup>208</sup>Pb – Neutron spectrum

**INCL45-ABLA07 ISABEL-ABLA07** 104 104 10<sup>3</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>2</sup> ⁺⁺+} 10<sup>1</sup> 10<sup>1</sup> 10<sup>0</sup> d<sup>2</sup>o/dΩdE (mb/sr/MeV) 10<sup>0</sup> Ĥ₽**₽**₽ 10<sup>-1</sup> 10<sup>-1</sup> Ŧ Ŧ 10-2 10-2 I I 10<sup>-3</sup> 10-3 10<sup>-4</sup> 10-4 ncl45-abla07 isabel-abla07 24° (10<sup>1</sup>) guertin et al. 35° (10<sup>0</sup>) (10\*) guertin et al. 10<sup>-5</sup> 10-5 (10) - 55° (10 tendency well reproduced, despite low 80° (10 120° (10 10-6 impinging energy ! 100 Neution energy (mev) ivenuon energy (ivleV)

#### n(65 MeV) + Fe – Neutron spectrum



#### p(256 MeV) + Pb – Neutron spectrum

**INCL45-ABLA07 ISABEL-ABLA07** 104 104 double differential cross section (mb/sr/MeV) 10<sup>3</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>1</sup>  $d^2\sigma/d\Omega dE~(mb/sr/MeV)$ 100 10<sup>0</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-2</sup> 10-2 10-3 10-3 10<sup>-4</sup> 10 meier et al. meier et al. (10)(10 60° 60<sup>6</sup> (10)(10 (10)50 (10 10-5 10-3 0.5 10 100 500 0.5 1 10 100 500 Neutron energy (MeV) Neutron energy (MeV)

#### p(800 MeV) + Fe – Neutron spectrum



#### p(800 MeV) + Fe – Neutron spectrum



**INCL45-ABLA07** 

#### p(800 MeV) + Pb – Neutron spectrum



#### p(800 MeV) + Pb - Neutron spectrum



**INCL45-ABLA07** 

double differential cross section (mb/sr/MeV)

**ISABEL-ABLA07** 

#### p(1200 MeV) + Fe – Neutron spectrum



#### p(1200 MeV) + Pb – Neutron spectrum



#### p(1600 MeV) + Fe – Neutron spectrum



#### p(1600 MeV) + Pb – Neutron spectrum



#### p(3000 MeV) + Fe – Neutron spectrum



#### p(3000 MeV) + Pb – Neutron spectrum



## **Neutrons**

#### **Neutron average multiplicity**

Status: Good Improvement:?

#### **Neutron multiplicity distribution**

Status:

- INCL45+ any de-excitation and ISABEL+ any de-excitation: All models are too low at high neutron multiplicities (check E\* coming from INC models?)

- p(1200 MeV) + Fe: strange shape (only with ABLA07); maybe break-up?
Improvement: Test break-up contribution. Test shape of spectra with modified initial E\* distribution. Other?

#### Neutron double differential cross sections (starting from for $E_{neutron} = 256 \text{ MeV}$ )

Status: Good

Improvement: INC models?

**Proton spectra** 

#### p(62 MeV) + <sup>56</sup>Fe – Proton spectrum



#### p(62 MeV) + Bi – Proton spectrum

**ISABEL-ABLA07** 

**INCL45-ABLA07** 

104 10 double differential cross section (mb/sr/MeV) 10<sup>2</sup> 10<sup>2</sup> 100 100 10-2 10-2 10-4 10-4 d<sup>2</sup>σ/dΩdE (mb/sr/MeV) 10-6 10-6 isabel-abla07 incl45-abla0 15° (10) beitrand e 15° (10<sup>1</sup>) bertrand e ···· 20° (10° HH 20° (10°) 10<sup>-8</sup> 10-8 25° (101 ···· 25° (10<sup>-1</sup> 30° (1012 ·⊷ 30° (10<sup>-2</sup> нн 10<sup>-10</sup> 10<sup>-10</sup> 35° (10 ₩ 35° (10<sup>-3</sup> HH 37° (10" 37° (10 40° (10 ·++ 40° (10<sup>-5</sup> 10-12 10-12 ₩ 45° (10<sup>-6</sup> 45° (10 HH 50° (10 50° (10 ---- 55° (10<sup>-8</sup> 55° (10 10<sup>-14</sup> 10-14 ₩ 60° (10<sup>-9</sup> (10 60° ···· 70° (10<sup>-1</sup> 70° (10 10<sup>-16</sup> 75° 75° (10<sup>-1</sup> (10 10-16 HH 90° (10<sup>-1</sup> 90° 10 1100 0 HH 110° (10" 10<sup>-18</sup> 10-18 HH 120° (10" 120° 10 HH 135° (10" 135° 10 HH 160° (10 160° 10<sup>-20</sup> 10<sup>-20</sup> 10 10 100 100 Emitted particle energy (MeV) Emitted particle energy (MeV)

#### p(63 MeV) + <sup>208</sup>Pb – Proton spectrum



#### p(175 MeV) + Ni – Proton spectrum

**INCL45-ABLA07 ISABEL-ABLA07** 104 10 incl45-abla07A ++ isabel-abla07A ++ 15° (10<sup>1</sup>) fortsch et al. ++ 15° (10<sup>1</sup>) fortsch et al. н 20° (10°) 20° (10°) н 10<sup>2</sup> 10<sup>2</sup> 25° (10<sup>-1</sup>) 25° (10<sup>-1</sup>) н -30° (10<sup>-2</sup> 30° (10<sup>-2</sup>) нн нн 35° (10<sup>-3</sup> 35° (10<sup>-3</sup>) 10<sup>0</sup> 10<sup>0</sup> H 40° (10" 40° (10<sup>-4</sup> ----45° (10<sup>-3</sup> 45° (10<sup>-5</sup>) нн нн 10-2 50° (10° 50° (10°) 10-2 HH 1 H-1 55° (107 55° (10<sup>-7</sup>) **H** 60° (10<sup>-8</sup> 60° (10<sup>-8</sup> H-H **H** 65° (10"9 65° (10°) 10-4 10-4 --80° (10<sup>-10</sup>) 80° (10-10) d<sup>2</sup>σ/dΩdE (mb/sr/MeV) -90° (10<sup>-11</sup>) 90° (10<sup>-11</sup>) 144 10<sup>-6</sup> 100° (10<sup>-12</sup>) 10-6 100° (10<sup>-12</sup>) ÷ 120° (10<sup>-13</sup>) 120° (10<sup>-13</sup>) нн 10-8 10-8 10<sup>-10</sup> 10-10 10<sup>-12</sup> 10<sup>-12</sup> 10<sup>-14</sup> 10<sup>-14</sup> 10<sup>-16</sup> 10<sup>-16</sup> 10<sup>-18</sup> 10-18 10 10 100 1000 100 1000 1 Emitted particle energy (MeV) Emitted particle energy (MeV)

double differential cross section (mb/sr/MeV)

#### p(175 MeV) + Ni – Proton spectrum



**ISABEL-ABLA07** 


#### n(542 MeV) + Bi – Proton spectrum



## p(800 MeV) + <sup>208</sup>Pb – Proton spectrum



#### p(800 MeV) + <sup>208</sup>Pb – Proton spectrum



#### p(1200 MeV) + Ta – Proton spectrum



# p(1200 MeV) + Ta – Proton spectrum



## p(1200 MeV) + Au – Proton spectrum



#### p(1200 MeV) + Au – Proton spectrum



## p(2500 MeV) + Au – Proton spectrum



## p(2500 MeV) + Au – Proton spectrum

**INCL45-ABLA07 ISABEL-ABLA07** 10<sup>3</sup> 10<sup>3</sup> incl45-abla07A ++ isabel-abla07A ++ double differential cross section (mb/sr/MeV) 30° (10<sup>1</sup>) letourneau et al. 🛏 30° (10<sup>1</sup>) letourneau et al. н 75° (10° 75° (10° ----105° (10<sup>-1</sup>) 105° (10<sup>-1</sup>) н н 10<sup>2</sup> 150° (10<sup>-2</sup>) 10<sup>2</sup> 150° (10<sup>-2</sup>) нн нн 10<sup>1</sup> 10<sup>1</sup>  $d^2\sigma/d\Omega dE \ (mb/sr/MeV)$ 10<sup>0</sup> 10<sup>0</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-2</sup> 10-2 10<sup>-3</sup> 10-3 10-4 10-4 10 100 1000 10 100 1000 3000 3000 Emitted particle energy (MeV) Emitted particle energy (MeV)

# **Deuteron spectra**

#### p(62 MeV) + <sup>56</sup>Fe – Deuteron spectrum



#### p(62 MeV) + Bi – Deuteron spectrum

**ISABEL-ABLA07** 10<sup>3</sup> 103 100 100 ₩<sup>₽₽₽</sup>₽₽₩₩ 10-3 10-3 10-6 10-6  $d^2\sigma/d\Omega dE \ (mb/sr/MeV)$ incl45-abla07 isabel-abla07 15° (10<sup>1</sup>) bertran 15° (10<sup>1</sup>) bertrand ···· 20° (10° ···· 20° (10°) 10-9 10-9 - 25° (10<sup>-1</sup>) ·⊷ 25° (10<sup>-1</sup>) ++ 30° (10<sup>-2</sup>) → 30° (10<sup>-2</sup>) HH 35° (10<sup>-3</sup> HH 35° (10<sup>-3</sup> H 37° (10"4 37° (10" 10-12 10-12 ↔ 40° (10<sup>-5</sup> ·++ 40° (10<sup>-3</sup> ₩ 45° (10<sup>-6</sup> HH 45° (10" H 50° (10-7) HH 50° (10" - 55° (10<sup>-8</sup>) ···· 55° (10<sup>-8</sup> 10-15 10-15 ₩ 60° (10<sup>-9</sup> ₩ 60° (10" ·-- 70° (10<sup>-10</sup> ·-- 70° (10<sup>40</sup> ↔ 75° (10<sup>-11</sup>) ·++ 75° (10<sup>11</sup> HH 90° (10<sup>12</sup> ·-- 90° (10<sup>-12</sup> 10<sup>-18</sup> 10<sup>-18</sup> HH 110° (1€<sup>-13</sup> +++ 110° (10<sup>-13</sup> ···· 120° (10<sup>-14</sup> HH 135° (10<sup>-15</sup> ↔ 135° (10<sup>-15</sup> HH 160° (10-16 HH 160° (10-16

**INCL45-ABLA07** 

10

Emitted particle energy (MeV)

double differential cross section (mb/sr/MeV)

10<sup>-21</sup>

emitted-particle energy (MeV)

100

10-21

10

Emitted particle energy (MeV)

100

## p(63 MeV) + <sup>208</sup>Pb – Deuteron spectrum

**INCL45-ABLA07 ISABEL-ABLA07** 10<sup>2</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>1</sup> 10<sup>0</sup> 10<sup>0</sup> 10-1 10<sup>-1</sup> 10<sup>-2</sup> 10-2 10-3 10-3 10-4 d<sup>2</sup> o/dΩdE (mb/sr/MeV) 10-4 10-5 10-5 10-6 10-6 10-7 10-7 🛏 isabel-abla07 incl45-abla07 10-8 10-8 25° (10<sup>1</sup>) guertin et al. 25° (10<sup>1</sup>) guertin e ···· 35° (10° ···· 35° (10⁰ 10-9 - 45° (10<sup>-1</sup> 45° (10<sup>-1</sup> 10-9 HH 55° (10 ₩ 55° (10<sup>°</sup> 10<sup>-10</sup> 65° (10<sup>-3</sup> 10-10 65° (10°3 75° (10<sup>-4</sup> 75° (10<sup>-4</sup> HH 85° (10 10<sup>-11</sup> 85° (10 10-11 HH 95° (10<sup>-6</sup> ↔ 95° (10° H 115° (10" + 115° (10 10<sup>-12</sup> 10-12 ••• 135° (10<sup>-8</sup> HH 135° (10° HH 155° (10<sup>-9</sup> HH 155° (10<sup>-9</sup> 10<sup>-13</sup> 10-13 10 10 100 100 Emitted particle energy (MeV) Emitted particle energy (MeV)

double differential cross section (mb/sr/MeV)

#### p(175 MeV) + Ni – Deuteron spectrum



#### n(542 MeV) + Bi – Deuteron spectrum



#### p(1200 MeV) + Ta – Deuteron spectrum



#### p(1200 MeV) + Au – Deuteron spectrum

INCL45-ABLA07

**ISABEL-ABLA07** 



#### p(2500 MeV) + Au – Deuteron spectrum



#### p(2500 MeV) + Au – Deuteron spectrum

**INCL45-ABLA07** 

10<sup>3</sup> 10<sup>3</sup> incl45-abla07A ++ isabel-abla07A ++ double differential cross section (mb/sr/MeV) 30° (10<sup>1</sup>) letourneau et al. 30° (10<sup>1</sup>) letourneau et al. 🛏 н 75° (10° 75° (10° н 105° (10<sup>-1</sup>) 105° (10<sup>-1</sup>) 10<sup>2</sup> 10<sup>2</sup> 150° (10<sup>-2</sup> 150° (10<sup>-2</sup>) нн нн 10<sup>1</sup> 10<sup>1</sup> ١R 10<sup>0</sup> 10<sup>0</sup>  $d^2\sigma/d\Omega dE \ (mb/sr/MeV)$ 10<sup>-1</sup> 10<sup>-1</sup> 10-2 10-2 ALT 10-3 10-3 10-4 10-4 H#H 10-5 10-5 0.5 1 10 100 2500 0.5 1 10 100 1000 2500 1000 Emitted particle energy (MeV) Emitted particle energy (MeV)

emitted-particle energy (MeV)

#### **ISABEL-ABLA07**

# **Tritium spectra**

#### p(62 MeV) + <sup>56</sup>Fe – Tritium spectrum



#### p(62 MeV) + Bi – Tritium spectrum

INCL45-ABLA07





## p(63 MeV) + <sup>208</sup>Pb – Tritium spectrum



### p(175 MeV) + Ni – Tritium spectrum



#### n(542 MeV) + Bi – Tritium spectrum

INCL45-ABLA07





#### p(1200 MeV) + Ta – Tritium spectrum



#### p(1200 MeV) + Au – Tritium spectrum



#### p(2500 MeV) + Au – Tritium spectrum

**INCL45-ABLA07** 

10<sup>3</sup> 10<sup>3</sup> incl45-abla07 ++ isabel-abla07 🕶 double differential cross section (mb/sr/MeV) 16° (10<sup>1</sup>) bubak et al. 16° (10<sup>1</sup>) bubak et al. ----10<sup>2</sup> 10<sup>2</sup> 20° (10<sup>0</sup> 20° (10° 35° (10<sup>-1</sup> 35° (10<sup>-1</sup> 50° (10 50° (10 нн 10<sup>1</sup> 10<sup>1</sup> 65° (10" 65° (10)80° (10<sup>-</sup> 80° (10" 100° (10<sup>-</sup> 100° (10<sup>-5</sup> 10<sup>0</sup> 10<sup>0</sup> H-1 10<sup>-1</sup> 10-1 d<sup>2</sup> o/dΩdE (mb/sr/MeV) 10-2 10-2 10-3 10-3 10-4 10-4 ÷н., 10-5 10-5 10-6 10-6 10-7 10-7 10-8 10-8 10<sup>-9</sup> 10-9 10 100 10 100 1000 2000 1000 2000 Emitted particle energy (MeV) Emitted particle energy (MeV)

emitted-particle energy (MeV)

ISABEL-ABLA07

#### p(2500 MeV) + Au – Tritium spectrum



double differential cross section (mb/sr/MeV)

# <sup>3</sup>He spectra

#### p(62 MeV) + Bi – <sup>3</sup>He spectrum



**ISABEL-ABLA07** 



#### p(62 MeV) + Bi – <sup>3</sup>He spectrum

**ISABEL-ABLA07** 

#### INCL45-ABLA07



#### p(63 MeV) + <sup>208</sup>Pb – <sup>3</sup>He spectrum

**ISABEL-ABLA07** 

INCL45-ABLA07



#### p(175 MeV) + Ni – <sup>3</sup>He spectrum



# p(1200 MeV) + Ta – <sup>3</sup>He spectrum

10<sup>2</sup> 10<sup>2</sup> incl45-abla07 ++ isabel-abla07 🕶 double differential cross section (mb/sr/MeV) 30° (10<sup>1</sup>) herbach et al. 30° (10<sup>1</sup>) herbach et al. 🛏 75° (10°) 75° (10°) н н 150° (10<sup>-1</sup>) +++ 150° (10<sup>-1</sup>) ++ 10<sup>1</sup> 10<sup>1</sup> 10<sup>0</sup> 10<sup>0</sup>  $d^2\sigma/d\Omega dE \text{ (mb/sr/MeV)}$ 10<sup>-1</sup> 10<sup>-1</sup> 10-2 10-2 10-3 10-3 **Here** 10<sup>-4</sup> 10-4 10-5 10-5 10 100 800 10 100 800 1 1 Emitted particle energy (MeV) Emitted particle energy (MeV)

emitted-particle energy (MeV)

**ISABEL-ABLA07** 

**INCL45-ABLA07** 

# p(1200 MeV) + Au – <sup>3</sup>He spectrum

**ISABEL-ABLA07** 

10<sup>2</sup> 10<sup>2</sup> incl45-abla07 ++ isabel-abla07 🕶 double differential cross section (mb/sr/MeV) 16° (10<sup>1</sup>) budzanowski et al. 16° (10<sup>1</sup>) budzanowski et al. н ы 20° 20° (10° 10<sup>1</sup> 0.0 10<sup>1</sup> 35° (10° 35° (10)50° нн (10 10<sup>0</sup> 10<sup>0</sup> нн 10-1 10<sup>-1</sup> : Hale 10-2 10-2  $d^{2}\sigma/d\Omega dE~(mb/sr/MeV)$ 1112 10-3 10-3 10<sup>-4</sup> 10-4 10-5 10-5 10-6 10-6 10-7 10-7 10-8 10-8 10-9 10<sup>-9</sup> 10 100 10 800 800 100 Emitted particle energy (MeV) Emitted particle energy (MeV)

emitted-particle energy (MeV)

#### INCL45-ABLA07
## p(2500 MeV) + Au – <sup>3</sup>He spectrum



## p(2500 MeV) + Au – <sup>3</sup>He spectrum



# <sup>4</sup>He spectra

p(62 MeV) + <sup>56</sup>Fe – <sup>4</sup>He spectrum



## p(62 MeV) + Bi – <sup>4</sup>He spectrum

**ISABEL-ABLA07** 

INCL45-ABLA07



## $p(63 \text{ MeV}) + {}^{208}\text{Pb} - {}^{4}\text{He spectrum}$

**INCL45-ABLA07 ISABEL-ABLA07** 10<sup>2</sup> 10<sup>2</sup> 10<sup>0</sup> 100 10-2 10-2 10-4 10-4  $d^2\sigma/d\Omega dE \,(mb/sr/MeV)$ 10-6 10-6 10-8 10-8 isabel-abla07 25° (10<sup>1</sup>) gue -abla0 guertin et al. 0 guertin et 85° (10°) 45° (10<sup>-1</sup> 10-10 10-10 (10)(107 (10)85° (10 10<sup>-12</sup> 10<sup>-12</sup> 95° (10" 5° (10 135° (10 155° (10 10<sup>-14</sup> 10-14 5 10 10 80 80 5 Emitted particle energy (MeV) Emitted particle energy (MeV)

double differential cross section (mb/sr/MeV)

## p(160 MeV) + AI – <sup>4</sup>He spectrum



## p(160 MeV) + Au – <sup>4</sup>He spectrum



Emitted particle energy (MeV)

Emitted particle energy (MeV)

4

200

emitted-particle energy (MeV)

double differential cross section (mb/sr/MeV)

p(175 MeV) + Ni – <sup>4</sup>He spectrum



## p(1200 MeV) + Ta – <sup>4</sup>He spectrum

**INCL45-ABLA07 ISABEL-ABLA07** 10<sup>3</sup> 10<sup>3</sup> incl45-abla07 ++ isabel-abla07 🕶 double differential cross section (mb/sr/MeV) 30° (10<sup>1</sup>) herbach et al. 🛏 30° (10<sup>1</sup>) herbach et al. 75° (10°) 75° (10°) н н 150° (10<sup>-1</sup>) ++ 150° (10<sup>-1</sup>) ++ 10<sup>2</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>1</sup>  $d^2\sigma/d\Omega dE \text{ (mb/sr/MeV)}$ 10<sup>0</sup> 10<sup>0</sup> 10<sup>-1</sup> 10<sup>-1</sup> н 10<sup>-2</sup> 10-2 10-3 10-3 10-4 10-4 10 100 500 10 100 500 1 Emitted particle energy (MeV) Emitted particle energy (MeV)

## p(1200 MeV) + Au – <sup>4</sup>He spectrum



**ISABEL-ABLA07** 



## p(2500 MeV) + Au – <sup>4</sup>He spectrum



## p(2500 MeV) + Au – <sup>4</sup>He spectrum



# **Light Charged Particles**

## LCP double differential cross sections (starting from $E_{proton} = 175 \text{ MeV}$ )

## Status

- Not so good with ISABEL + ABLA07
- Quite good with INCL45+ABLA07 for light target; not that good for heavy target
- Visible differences between INCL45 plus ABLA07 / SMM / GEMINI++
- But the spectra depend also on the INC (even in the low energy part of the spectrum) Improvement: Complicate!
- Concerning ABLA07:
- Tunneling through barrier (now taken into account only for calculating decay widths)
- Coulomb barriers (from Bass prescription) could be adjusted
- Apparently, in evaporation from deformed nuclei the emission could not be isotropic (to be demonstrated)

The empirical nuclear potential of R. Bass

$$-V_N(s) = \frac{C_1 \cdot C_2}{C_1 + C_2} \cdot \frac{1}{A \cdot \exp\left(\frac{s}{d_1}\right) + B \cdot \exp\left(\frac{s}{d_2}\right)}$$

$$A = 0.333 \text{ MeV}^{-1} \text{ fm},$$
 $B = 0.007 \text{ MeV}^{-1} \text{ fm},$  $d_1 = 3.5 \text{ fm},$  $d_2 = 0.65 \text{ fm}.$ 

$$C_{i} = R_{i} \cdot \left(1 - \frac{(0.9984 \text{fm})^{2}}{R_{i}^{2}}\right), \quad R_{1} = \left(1.28 \cdot A_{f}^{\frac{1}{3}} - 0.76 + \frac{0.8}{A_{f}^{\frac{1}{3}}}\right) \text{fm},$$
$$R_{2} = \left(1.28 \cdot A_{2}^{\frac{1}{3}} - 0.76 + \frac{0.8}{A_{2}^{\frac{1}{3}}} + d\right) \text{fm}, \quad d = \begin{cases} 3 \text{ fm}, & 1\text{H} \\ 0 \text{ fm}, & 2\text{H} \\ 0 \text{ fm}, & 3\text{H} \\ 0 \text{ fm}, & 3\text{He} \\ 1 \text{ fm}, & 4\text{He} \end{cases}$$

#### Coulomb potential

## **Residues**

# Fingerprints of the de-excitation process

1 GeV p + <sup>238</sup>U INCL4.5, ISABEL + ABLA07





mass number A

## $p(300 \text{ MeV}) + {}^{56}\text{Fe} - \text{final residues}$



charge number Z



#### $p(300 \text{ MeV}) + {}^{56}\text{Fe} - \text{final residues}$



**ISABEL-ABLA07** 



cross section (mb)



mass number A



charge number Z

#### INCL45-ABLA07

**ISABEL-ABLA07** 



#### INCL45-ABLA07

#### **ISABEL-ABLA07**





mass number A



charge number Z

cross section (mb)

#### INCL45-ABLA07

#### **ISABEL-ABLA07**



#### **INCL45-ABLA07**

#### **ISABEL-ABLA07**





mass number A



charge number Z

#### INCL45-ABLA07

**ISABEL-ABLA07** 



#### INCL45-ABLA07

**ISABEL-ABLA07** 



p(1000 MeV) + <sup>208</sup>Pb – final residues



mass number A

mass number A

p(1000 MeV) + <sup>208</sup>Pb – final residues

#### INCL45-ABLA07

#### **ISABEL-ABLA07**



p(1000 MeV) + <sup>208</sup>Pb – final residues



mass number A

mass number A
p(1000 MeV) + <sup>208</sup>Pb – final residues



mass number A

### **INCL45-ABLA07**



**ISABEL-ABLA07** 

250



cross section (mb)





charge number Z

### INCL45-ABLA07



p(1000 MeV) + <sup>238</sup>U – final residues

### INCL45-ABLA07



p(1000 MeV) + <sup>238</sup>U – final residues



 $p(1000 \text{ MeV}) + ^{238}\text{U} - \text{final residues}$ 

### **INCL45-ABLA07** <sup>238</sup>U(p,x)Rb <sup>238</sup>U(p,x)Sr <sup>238</sup>U(p,x)Y <sup>238</sup>U(p,x)Rb <sup>238</sup>U(p,x)Sr <sup>238</sup>U(p,x)Y 10<sup>2</sup> $10^{2}$ 10<sup>2</sup> 10<sup>2</sup> 102 (Z=38)gsi incl45\_abla07 i (Z=38)gsi isabel₂abla07 нanii 10<sup>1</sup> $10^{1}$ $10^1$ 10<sup>1</sup> 10<sup>1</sup> n 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10-1 10<sup>-1</sup> Ŧ 10<sup>-2</sup> 10<sup>-2</sup> 10-2 10-2 10-2 10-3 10-3 10-3 10-3 10-3 75 80 85 90 95 100 105 75 80 85 90 95 100 105 80 85 90 95 100 105 11 75 80 85 90 95 100 105 75 80 85 90 95 100 105 95 100 105 110 80 85 90 <sup>238</sup>U(p,x)Zr <sup>238</sup>U(p,x)Nb <sup>238</sup>U(p,x)Mo <sup>238</sup>U(p,x)Nb <sup>238</sup>U(p,x)Mo <sup>238</sup>U(p,x)Zr 10<sup>2</sup> $10^{2}$ 10<sup>2</sup> 102 10<sup>2</sup> $10^{1}$ $10^1$ 10<sup>1</sup> $10^{1}$ 10<sup>1</sup> 2 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> þ ţ, 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-2</sup> 10<sup>-2</sup> 10-2 10-2 10-2 10-3 10-3 10-3 10<sup>-3</sup> 10-3 95 100 105 110 100 105 110 115 100 105 110 11 80 90 85 90 95 85 90 95 80 85 90 95 100 105 110 85 95 100 105 110 115 95 100 105 110 115 85 90 85 90 <sup>238</sup>U(p,x)Tc <sup>238</sup>U(p,x)Ru <sup>238</sup>U(p,x)Rh <sup>238</sup>U(p,x)Ru <sup>238</sup>U(p,x)Rh <sup>238</sup>U(p,x)Tc 10<sup>2</sup> $10^{2}$ $10^{2}$ 102 10<sup>2</sup> 10<sup>1</sup> 10<sup>1</sup> $10^{1}$ 101 101 4 ¢ 100 10<sup>0</sup> ÷0 -0 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> ł ٦ 10<sup>-1</sup> 10<sup>-1</sup> 10-1 10<sup>-1</sup> 10<sup>-1</sup> 10-2 10-2 10-2 10-2 10-2 10-3 10-3 10-3 10-3 10<sup>-3</sup> 95 100 105 110 115 120 95 100 105 110 115 120 90 95 100 105 110 115 12 95 100 105 110 115 120 95 100 105 110 115 120 95 100 105 110 115 120 90 90 90 90 90 mass number A

mass number A

### INCL45-ABLA07



p(1000 MeV) + <sup>238</sup>U – final residues



p(1000 MeV) + <sup>238</sup>U – final residues



mass number A

p(1000 MeV) + <sup>238</sup>U – final residues

### **INCL45-ABLA07 ISABEL-ABLA07** <sup>238</sup>U(p,x)Ta <sup>238</sup>U(p,x)Ta <sup>238</sup>U(p,x)W <sup>238</sup>U(p,x)Re <sup>238</sup>U(p,x)W <sup>238</sup>U(p,x)Re 10<sup>2</sup> 10<sup>2</sup> 10<sup>2</sup> 102 102 i⇔ (Z=74)gsi ➡ isabel-abla07 (Z=74)gsi ю incl45-abla07 10<sup>1</sup> $10^{1}$ 10<sup>1</sup> 10<sup>1</sup> 10<sup>1</sup> 0 10<sup>0</sup> 10<sup>0</sup> $10^{0}$ 10<sup>0</sup> 100 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10 10-2 10-2 10<sup>-2</sup> 10<sup>-2</sup> -2 10-2 10-3 10-3 10-3 10-3 10<sup>-3</sup> 160 165 170 175 180 185 190 195 160 165 170 175 180 185 190 195 165 170 175 180 185 190 195 20 160 165 170 175 180 185 190 195 160 165 170 175 180 185 190 195 165 170 175 180 185 190 195 200 <sup>238</sup>U(p,x)Ir <sup>238</sup>U(p,x)Ir <sup>238</sup>U(p,x)Pt <sup>238</sup>U(p,x)Os <sup>238</sup>U(p,x)Pt <sup>238</sup>U(p,x)Os 10<sup>2</sup> $10^{2}$ 102 10<sup>2</sup> $10^{2}$ 10<sup>1</sup> $10^{1}$ 10<sup>1</sup> 10<sup>1</sup> 10<sup>1</sup> $0^1$ 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 0<sup>6</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-2</sup> 10<sup>-2</sup> -2 10-2 10-2 10-2 10-3 10-3 10-3 -3 10-3 10<sup>-3</sup> 165 170 175 180 185 190 195 200 170 175 180 185 190 195 200 205 170 175 180 185 190 195 200 20 165 170 175 180 185 190 195 200 170 175 180 185 190 195 200 205 170 175 180 185 190 195 200 205 <sup>238</sup>U(p,x)Au <sup>238</sup>U(p,x)Hg <sup>238</sup>U(p,x)Tl <sup>238</sup>U(p,x)Au <sup>238</sup>U(p,x)Hg <sup>238</sup>U(p,x)Tl $10^{2}$ 10<sup>2</sup> $10^{2}$ 10 102 10<sup>1</sup> $10^{1}$ 0 10<sup>1</sup> 10<sup>1</sup> 101 10<sup>0</sup> 10<sup>0</sup> 100 10<sup>0</sup> 10<sup>0</sup> o<sup>0</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10-1 10-1 4 10<sup>-2</sup> -2 10-2 10-2 10-2 10-2 ъ 10-3 10-3 10-3 10-3 10-3 175 180 185 190 195 200 205 210 180 185 190 195 200 205 21 175 180 185 190 195 200 205 175 180 185 190 195 200 205 210 180 185 190 195 200 205 210 175 180 185 190 195 200 205

mass number A

p(1000 MeV) + <sup>238</sup>U – final residues

### INCL45-ABLA07



### <sup>238</sup>U(p,x)Pa <sup>238</sup>U(p,x)U 10<sup>2</sup> 10<sup>2</sup> $10^{2}$ i≤i (Z=92)gsi incl45-abla07 H⊶ (Z=92)gsi H⊶ isabel-abla07 $10^{1}$ $10^{1}$ $10^{1}$ $10^{0}$ 10<sup>0</sup> 10<sup>0</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-2</sup> 10-2 10<sup>-2</sup> 10<sup>-3</sup> 10-3 10<sup>-3</sup> 210 215 220 225 230 235 240 210 215 220 225 230 235 240 210 215 220 225 230 235 240 mass number A

**ISABEL-ABLA07** 

### **INCL45-ABLA07**



# Residues

Status: Good

Improvement: Difficult to establish how to disentangle INC and de-excitation...

Concerning ABLA:

- 1) improve the description of even-odd ( $\rightarrow$  gamma decay strength)
- 2) improve structural effects (could be relevant for very light residues)

3) fission

# **Excitation functions**

# natFe(p,x)<sup>3</sup>He (cumulative)

INCL45-ABLA07



# natPb(p,x)<sup>3</sup>He (cumulative)

INCL45-ABLA07



# **General conclusions**

We (all here in this workshop) did a good job!

General tendencies and behaviors are well reproduced → we have understood the main physics behind!

Left to do: refinements...

Concerning ABLA07

Overall behavior satisfactorily, but there is still work to do

- neutron multiplicity distributions (INC or de-excitation?)

- LCP spectra: barriers, tunneling, break-up?

- Residues: even-odd effect, structural effects, fission

Strength of ABLA07: high physics content relatively low computing time (we want to keep this feature)

**Thanks EU contribution (EUROTRANS)**