Fast Neutron-Induced Gamma-Ray Reference Cross Sections

R. O. Nelson LANSCE-NS Los Alamos National Laboratory

IAEA Consultants Meeting

On Cross Section Standards

13 - 15 October, 2010

Fast Neutron-Induced Gamma-Ray Reference Cross Sections – Previous Status & Goals

- Fe(n,n'γ) 2+ -> 0+ Cross Section resolve discrepancies
 - LANL data
 - GEEL data
- Cr(n,n'γ) 2+ -> 0+ Cross Section resolve discrepancies
 - LANL data
 - GEEL data
- Identify improved gamma-ray reference cross section candidates and accurately characterize them
 - Nb
 - **A**u
 - Ti

- LANL Background subtractions were performed on the LANSCE data reported in 2004 (ND2004)
 - Results agree very well with EXFOR Nelson data (= renormalized 2004 data)
 - Background was due to neutrons hitting Fe in setup, thus similar effect to change in normalization
 - JEF 3.1, ENDF/B-VII.0, and LANL data agree well from 4 to 15 MeV, some small differences to 20 MeV
- GEEL (A. Plompen) normalization issues due to fission chamber were discovered
 - Investigated and corrected signal issues, reduced cross section values – closer, but not in agreement
 - Efficiency issues –fragment losses in foils of GEEL fission chamber (A. Carlson identified) are being corrected now
 - Corrections will reduce cross sections for better consistency with other results
 - Final cross sections expected by Dec 2010

Comparison of EXFOR Nelson 2004 data and background subtracted data – excellent agreement

Comparison of LANL data with JEF 3.1 and ENDF/B-VII.0 – good agreement is observed

- LANL work is still needed on the Cr data sets Good agreement with other data sets at 14 MeV
- GEEL excitation function shape is somewhat different from expectations and other data
 - Same fission chamber issues as Fe data
 - Shape difference may be due to problems with the selection of background gates, but not certain
 - Work is still needed

Potential Neutron-Induced-Gamma-Ray Cross Section Standards Gamma Rays and Cross Sections

• "Best" reference cross sections for (n,n') and (n,2n) reactions

Element	Isotope	Εγ	reactio	n σ(14 MeV)	Εγ	reaction	σ(14 MeV)	Εγ	reaction	σ(14 MeV)
Niobium	93	949	Ə (n,n')	264	501	(n,2n)	263	357	(n,2n)	239
Gold	197	147	.8 (n,2n)	490	547.5	(n,n') 5.0	358			
Titanium	48	984	1 (n,n')	666	160	(n,2n+n')	404			
Iron	56	84	7 (n,n')	785	1238	(n,n'+2n)	393			
Chromium	52	143	4 (n,n')	695	935	(n,n'+2n)	210			
Manganese	55	150	6 (n,2n)	542	126	(n,n')	383	212	(n,2n)	299
Magnesium	24	136	9 (n,n')	450	472	(n,p) 20ms	105			
Vanadium	51	22	6 (n,2n)	368	320	(n,n')	313			
Bismuth	209	100	6 (n,2n)	210	565.3	(n,2n)	125	650.7	(n,2n)	130

GEANIE data was acquired on Nb, Au, and Ti, preliminary analysis results

- GEANIE measured single elements and relative to Cr
- Nb not suitable as cross section standard
 - 949 keV gamma shows feeding from unknown long-lived isomer
 - Work to identify properties of long-lived level for structure knowledge
- Au poor as reference standard
 - 547.5 keV gamma is very close to strong background lines, making separation an issue
 - Feeding from isomers is also a problem
- Ti appears to be suitable
 - Better physical properties than Cr
 - Less abundant in shielding, structures, etc. than Fe
 - (n,p) beta background exists, but (n,p) cross section is roughly ½ that for Fe, and half life is 43.7 h (vs 2.6 h for Fe) resulting in reduced gammas during experiment

The (n,p) cross sections and β -decay half life determine production of neutron-induced gamma ray backgrounds

Neutron Inelastic Scattering Cross Section for ⁴⁸Ti(n,n' γ) Are Similar to ⁵⁶Fe

Summary

- LANL Fe cross section data was corrected, good agreement with JEF 3.1 and ENDF/B-VII.0 – to be published
- GEEL (A. Plompen) Fe data problems with fission chamber flux have been identified correction work is continuing
- Work on LANL Cr data is continuing
- GEEL Cr data have same normalization issues as Fe and excitation function shape differences are unresolved
- Nb, Au, and Ti were investigated at potential reference cross sections using GEANIE at LANSCE
 - Nb, Au look unsuitable due to isomers and backgrounds
 - Ti is promising for reference cross sections
- New relative cross section data on Cr-Ti was acquired with GEANIE at LANSCE – analysis is planned

