Neutron Capture Studies of ²³⁵U and ²³⁸U via AMS

A. Wallner

VERA, Faculty of Physics, University of Vienna, Austria

 235,238 U(n, γ) 236,239 U vs Au + AMS IAEA, 14.10.2010

Content

- > Method: combination of activation and AMS
- neutron capture cross section of ^{235,238}U in the keV region a prime example for applying AMS
- > AMS at VERA overview
- first results
- > other nuclides for neutron reaction data via AMS outlook

Activation (I) → AMS-Measurement (II) fusion / fission / ADS products

(1) Recent neutron irradiations:

- FZ Karlsruhe: 3.7 MV Van de Graaff: ⁷Li(p,n)⁷Be: 25 keV Maxwell-Boltzmann, 120 keV, 180 keV, 500 keV, ...)
- IRMM Geel: 7 MV Van de Graaff: $(T(d,n)^4He: E_n = 14 20 \text{ MeV})$
- FZ Dresden/Rossendorf: 300 kV (T(d,n)⁴He: E_n = 13.3 14.9 MeV)
- Atominstitut Vienna: research reactor, thermal neutrons
- IKI Budapest: research reactor, thermal neutrons; cold neutrons

(2) AMS measurements e.g. at VERA: from Be to ²³⁸U, Pu

Motivation: ^{235/8}U(n,γ)

- ratio of capture to fission of the fissile isotopes: capture on ²³⁵U
- ²³⁵U: existing data via TOF and detections of prompt γ-rays;
- ²³⁸U also decay of ²³⁹Np
- since 1980 only 1 measurement in the keV region for ²³⁵U (1982 Corvi et al.)
- Activation + AMS is an independent method; no influence from fission channel
- may serve as proof-of-principle measurement - to be extended to other reactions

! discrepancy of evaluations !

Incident Energy (MeV)

10

10

ENDF Request 849, 2007-Nov-18,16:43:25

A. Wallner

ENDF Request 360, 2010-Apr-20,17:26:55 EXFOR Request: 46218/1, 2010-Apr-20 16:38:59

^{235,238}U(n,γ)^{236,239}U vs Au + AMS IAEA, 14.10.2010

ENDF Request 352, 2010-Apr-20,16:00:00

 235,238 U(n, γ) 236,239 U vs Au + AMS IAEA, 14.10.2010

A. Wallner

universität wien

^{235,238}U(n,γ)^{236,239}U vs Au + AMS IAEA, 14.10.2010

²³⁶U & ²³⁹U: Production & Decay

 235,238 U(n, γ) 236,239 U vs Au + AMS IAEA, 14.10.2010

Ist-irradiation FZK: 25 / 500 keV neutrons (EFNUDAT)

universität wien

^{235,238}U(n,γ)^{236,239}U vs Au + AMS IAEA, 14.10.2010 A. Wallner

irradiation at Budapest (IKI): cold neutrons $^{235/8}U(n,\gamma)^{236/9}U - EFNUDAT project$

- Neutron irradiations at Budapest
- activations with cold neutrons
- ➤ time integrated neutron flux from
- \succ γ -activities of gold foils and of
- Au powder mixed into the U sample
- hatU: ²³⁹Np activity as additional internal monitor

Au – (U+Au) – Au

^{235/8}U(n,γ)^{236/9}U – sample summary

- ➤ U samples with natural isotopic composition (0.72 % ²³⁵U & 99.28 % ²³⁸U)
- > IRMM-BC0206: certified for stoichiometry U_3O_8 & certified ²³⁵U/²³⁸U isotope ratio
- no enrichment; no reactor history
- selected sample: prior to neutron irradiation was found to be low (²³⁶U/²³⁸U few*10⁻¹²)
- > FZK: 25 keV irradiation finished (1.8*10¹⁵ n cm⁻²) 1 pellet 55 mg Au- U_3O_8 Au 500 keV irradiation finished (4.3*10¹⁵ n cm⁻²) 1 pellet 55 mg Au- U_3O_8 Au
- > IKI: cold neutrons finished (0.7 & $3*10^{14}$ n cm⁻²) 2 pellets 70 mg (Au- U₃O₈+Au) Au
- VERA: AMS measurements 2009-2010

expected isotope ratios: ²³⁶U/²³⁸U ca. 5-8*10⁻¹² and 2*10⁻¹¹

²³⁹Pu/²⁴²Pu: no background interference

 $^{238}U(n,\gamma)^{239}U \rightarrow ^{239}Np \rightarrow ^{239}Pu$ (24 kyr)

$^{235}U(n,\gamma)^{236}U(23 Myr)$ - simultaneously

universität wien

 235,238 U(n, γ) 236,239 U vs Au + AMS IAEA, 14.10.2010

2nd: AMS measurement

2nd: ^{235/8}U(n,γ)^{236/9}U via AMS

- > AMS determines isotope ratios
- no interfering isobaric background (<-> ICPMS)

(molecules are completely destroyed)

isotopic background strongly reduced

²³⁶U/²³⁵U isotope ratio at VERA

- isotope ratio via fast switching between "stable" and radioisotope (5 s⁻¹)
- precision limited due to beam losses along detection beamline + background
- ²³⁶U blank background of unirradiated sample

"²³⁹Pu/²³⁸U" isotope ratio at VERA

➢ isotope ratio via switching between reference isotope ²⁴²Pu and ²³⁹Pu

precision limited due to beam losses along detection beamline + background

➢ no significant background for ²³⁹Pu

²³⁵U(n,γ)²³⁶U: AMS results - 25 and 500keV

beamtime I

beamtime II

all data normalized to our in-house standard: +- 4 %

^{235,238}U(n,y)^{236,239}U vs Au + AMS IAEA, 14.10.2010

typical AMS-spectrum for Pu measurements

^{235,238}U(n,γ)^{236,239}U vs Au + AMS IAEA, 14.10.2010

A. Wallner

A. Wallner

A. Wallner

Status – preliminary data

	²³⁵ U(n,γ) ²³⁶ U	²³⁵ U(n,γ) ²³⁶ U	²³⁸ U(n,γ) ²³⁹ U	²³⁸ U(n,γ) ²³⁹ U
	this work	"recommended"	this work	"recommended"
σ _{thermal}	IKI-1: 102 ± 1 barn* IKI-2: 103 ± 2 barn*	98.96 barn 98.96 barn	IKI-1: IKI-2:	2.68 barn (2.72 barn JENDL)
O 25 keV	FZK-1: 591±25 mbarn	ENDF: σ this work (AMS ratio): σ	_{U-8} / σ _{U-5} = 0.61 _{U-8} / σ _{U-5} = 0.63	360 mbarn calculated (ENDF = JEFF)
O _{500 keV}	FZK-2: 158 ± 7 mbarn	160-185 mbarn (ENDF, JEFF) ?? Spectrum??	FZK-2_a: 112 ± 2 mbarr F mean: 109 mbarn ^{ri} FZK-2_c: 104 ± 2 mbarr	n** 109 mbarn (ENDF, JENDL) n** 119 mbarn (JEFF) n**
** slig	* relative to ²³⁶ U = data relative to ²³ ghtly different values exp ersität	/ ²³⁸ U in-house standar ³³ U-spike - 3.5% lower bected due to inhomogenou ³⁸ U(n,γ) ^{236,239} U vs Au +	rd - ok is activation AMS IAEA, 1	r^{-10} 10^{-5} 1 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} 10^{-2} 10^{-2} 10^{-4}

AMS: limitations

> isotope ratios (e.g. ²³⁶U/²³⁸U) measured:

- interference with background: VERA ca. < 10⁻¹² for ²³⁶U
 - isobaric interference (e.g. ²³⁵UH) not an issue for AMS
 - isotopic interference (e.g. ^{235}U , ^{238}U): e.g. $^{236}U/^{238}U < 10^{-12}$
 - ev. m/q interference (count-rate interference detector busy)
- number of nuclei in sample
 - determines statistical uncertainty
 - typical overall efficiency: 10⁻³ 10⁻⁴

Examples - limitations

U: isotope ratios

20 mg irradiated with 10¹⁵ n; 700 mb

 ${}^{236}U/{}^{235}U = 7*10^{-10}$ ${}^{236}U/{}^{238}U = 5*10^{-12}$ $N_{236} = 3*10^8 \rightarrow AMS: > 10^5 \text{ counts in detector}$

U: number of nuclei; example: ${}^{238}U(n,\gamma){}^{239}U \rightarrow (0.5 h) \rightarrow {}^{239}Np \rightarrow (2.4 d) \rightarrow {}^{239}Pu (t_{1/2} = 24\ 000\ a)$

N ₂₃₉	=	10 ⁷ ! (required for AMS counting -> \approx 10 ³ detected)				
σφ	=	1barn*10 ¹⁵ n cm ⁻²				
	=	10 ⁻⁹				
N ₂₃₈	=	N ₂₃₉ / σφ (required U-atoms)				
	=	10 ¹⁶ ats (4 ug material)	+ extraction of ²³⁹ Pu from U-bulk (with well-known spike)			

Collaboration:

- VERA (Univ. Vienna): A. Wallner, O. Forstner, R. Golser, W. Kutschera, A. Priller, P. Steier, F. Quinto, K. Buczak, C. Lederer, G. Wallner
- **FZK (Karlsruhe) / GSI:** F. Käppeler, I. Dillmann
- IKI BudapestT. Belgya, L. Szentmiklosi
- IAEA (Vienna): A. Mengoni
- > Atominstitut (Vienna): M. Bichler

....

>

$^{238}U(n,\gamma)^{239}U \rightarrow ^{239}Pu/^{242}Pu$ with AMS

- pellet was divided into 3 to 4 individual pieces
- > dissolved
- well-known ²³³U + ²⁴²Pu spike added
- > U / Pu column separation
- > U- and Pu-Oxide powder
- > pressed into AMS sample holder
- AMS: U: ²³⁶U vs ²³³U and vs ²³⁸⁽²³⁵⁾U
- AMS: Pu: ²³⁹Pu vs ²⁴²Pu

$$Z = N \cdot \sigma_{E_n} \cdot \Phi_{tot} \cdot f_b$$
$$\sigma_{E_n} = \frac{Z}{N} \cdot \frac{1}{\Phi_{tot} \cdot f_b}$$

A. Wallner

e.g.
$$\sigma_{E_n} = \frac{{}^{239}U}{{}^{238}U} \cdot \frac{1}{\Phi_{tot}} = \frac{{}^{239}Pu}{{}^{238}U} \cdot \frac{1}{\Phi_{ot}} \text{ for } T_{wait} >> T_{1/2}({}^{239}U)$$

= $\frac{{}^{239}Pu}{{}^{242}Pu} \cdot \frac{{}^{242}Pu}{{}^{238}U} \cdot \frac{1}{\Phi_{tot}} \text{ for } {}^{238}U(n,\gamma){}^{239}U$

AMS mass Au

preliminary data

+ adjust for broad neutron energy distribution

^{235,238}U(n,γ)^{236,239}U vs Au + AMS IAEA, 14.10.2010

Summary U-activations

> new AMS measurements for thermal, 25 keV (MB) and 500 keV neutron energy

data evaluation in progress: 500 keV -> < 5% (3%) uncertainty seems reasonable</p>

²³⁵U(n,γ)²³⁶U:

- thermal value as reference for 25/500 keV
- in-house AMS standard
- ²³³U spike as additional standard

²³⁸U(n,γ)²³⁹U:

• thermal value as reference for 25/500 keV

A. Wallner

• ²⁴²Pu spike as additional standard

Extension to other minor actinides

U: isotope ratios

20	mg	irradiated	with	10 ¹⁵ n	cm ⁻² ;	700	mb
----	----	------------	------	--------------------	--------------------	-----	----

 $^{236}U/^{235}U = 7^{*}10^{-10}$

 $^{236}U/^{238}U = 5*10^{-12}$ (natural sample)

N₂₃₆ 3*10⁸ atoms -> AMS: ~ 10⁶ counts in detector

Am: example: ${}^{241}Am(n,\gamma){}^{242g}Am \rightarrow (16h) \rightarrow {}^{242}Cm (163 d)$

N₂₄₂ 10⁷! (required for AMS counting -> \approx 10³ detected) 700 mb*10¹⁵ n cm⁻² σφ **7*10**⁻¹⁰ Ν₂₄₂ / σφ N₂₄₁ 10^{16} ats (< 0.01 mg material) + !! Extract Cm from Am-bulk!! = (400 cts ... 5 % statistics: 10^{15} ats (< μ g!) \leftrightarrow lon source contamination! (²⁴¹Pu) universität Wien