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A method is described for generating the covariance matrix of a set of experimental nuclear data which has been collapsed in size
by the averaging of equivalent data points belonging to a larger parent data set . It is assumed that the data values and covariance
matrix for the parent set are provided . The collapsed set is obtained by a proper weighted-averaging procedure based on the method
of least squares . It is then shown by means of the law of error propagation that the elements of the covariance matrix for the
collapsed set are linear combinations of elements from the parent set covariance matrix . The coefficients appearing in these
combinations are binary products of the same coefficients which appear as weighting factors in the data collapsing procedure. As an
example, the procedure is applied to a collection of recently-measured integral neutron-fission cross-section ratios .

1. Introduction

In any experiment it is advisable to measure a par-
ticular quantity several times whenever possible . These
distinct but equivalent measurements ought to be per-
formed under somewhat different conditions, thereby
providing an opportunity for identifying possible sources
of systematic error. When several distinct quantities are
measured, e.g ., a nuclear-reaction cross section ratio at
several energies, the outcome of the experiment will
then be several distinct sets of values, with all the values
in any one set being equivalent to each other. A thor-
ough analysis of the uncertainties of the experiment will
lead to a covariance matrix applicable to the entire data
set (prior to collapsing through the averaging process).
For reporting purposes, or for subsequent analyses, it
may very well be desirable to appropriately average all
equivalent quantities (e.g ., all measured cross section
values corresponding to a particular energy) and thus
summarize the results of the experiment by presenting
only a single value for each distinct physical entity.
When this is done, it becomes necessary to derive a
corresponding covariance matrix for the collapsed data
set .

The objective of the present investigation is the
development of a method for accomplishing this task.
The formalism, which is based on the method of least
squares and the law of error propagation [1-5], is
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discussed in section 2, and an example is provided in
section 3 to demonstrate the method .

2. Formalism

Let x and Vx be the parent experimental data set
vector and its corresponding symmetric covariance ma-
trix . The objective is to collapse this data set to one of
smaller size by averaging equivalent elements xJ of x.
This exercise will produce a new data set vector desig-
nated as y. It is desired to develop a rigorous method
for obtaining both y and its corresponding symmetric
covariance matrix V,, .

For the present, assume that the relationship be-
tween y and x is known. That is, assume that the
functional expressions are established and that they can
be summarized by the set of equations

If the set x has size n and the collapsed set y has size
m (m < n), then eq. (1) can be written in the more
explicit form

Ya=Ya(x1 , XZ, --

	

, xl , --

	

, x.t)

	

(a=1, m) .

	

(2)
In reality, a particular element ya of y will probably
not depend functionally upon all of the elements of x,
but rather only on a subset which can be designated by
xJ C= (a) . For present purposes, any particular xJ is
assumed to be associated with only one subset ( a), i.e.,
with only one element ya of y. Thus, eq . (2) can be
more appropriately expressed as

ya=Y,(xie {a})

	

(a=1, m) .

	

(3)
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The law of error propagation [1-5] states that the
relationship between Vy and Vx is defined by the gen-
eral matrix formula

Vy = T+VxT .

	

(4)

where T is called the transformation matrix. The super-
script "+" indicates matrix transposition. Since the
dimensions of Vx and Vy are (n, n) and (m, m), respec-
tively, T has the dimension (n, m) . The elements of T
are partial derivatives, i.e .,

(T) al=(ayalax,)

	

(a=1, m and j=1, n) .

	

(5)

Eq. (4) is derived using the basic definition of the
covariance matrix for a multivariate probability density
function and first-order Taylor-series expansions of the
functional relationships between the elements of y and
those of x . If these relationships are nonlinear, then the
validity of eq. (4) depends upon the elements of x
having small variances . In practice, the variances associ-
ated with x will generally be small enough so that this
is not an issue . Furthermore, in all cases of interest for
present purposes it happens that the functional relation-
ships are actually linear. Consequently, the small-vari-
ance condition is irrelevant .

From eqs. (1)-(5), and related definitions in the
preceding paragraph, it is evident that the elements of
Vy are given in terms of the elements of Vx by the
expression

(V,)sa= E 7 E (ayß/ax,)(Vx)+,(aya/ax,) .
x,E(ßf x~e(a)

For convenience, let the coefficient Ba! represent the
partial derivative indicated in eq . (5) . Obviously the
elements of Vy are linear combinations of the elements
of Vx , and the coefficients involved in these combina-
tions are binary products of the coefficients B.J . That
is,

(VY)ßa= 1: Y_ Bß,B«,(Vx),, .
x,E(P) x' c (a)

Next, attention must be given to the task of develop-
ing the appropriate formulas for collapsing the data set
x to form the set y . In other words, the form of the
functional relationship implied by eq. (3) must be
established . The method to be used resembles the ap-
proach which is commonly employed in converting
fine-group structures to coarser-group structures in
nuclear-reactor-technology applications, e.g., in the
NJOY group-cross-section processing procedures devel-
oped by Muir and MacFarlane [6] . In these applica-
tions, the collapsing process employs as its principal
constraint the conservation of neutron fluence
throughout the group-conversion process. Conse-
quently, the collapsed group-cross-section sets which
result are found to be weighted by the group parameters
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of the neutron spectrum that is involved in the analysis .
The present situation is somewhat different since the
matter of a neutron spectrum (with its attendant con-
straint of fluence conservation) does not enter into
consideration. Nevertheless, in forming the elements of
y, attention does have to be given to the proper weight-
ing of the elements of x which enter into the analysis.
The method of choice here is that of least squares. The
justification for this approach is discussed elsewhere
[4,7] and will not be pursued further in this paper .

Some notation is now introduced. Let n a (n. > 1)

represent the number of elements x. of x (i .e ., the set
x. E {a)) which are to be averaged to form the element

ya of y . Furthermore, let the vector xa of dimension
(na, 1) explicitly represent this collection of xJ . For
convenience, envision grouping the elements of x so
that it can be represented as a collection of subvectors,
with xa being a typical member of that collection. The
notation Vxa is chosen to designate the covariance ma-
trix for xa . Quite clearly, Vxa is a submatrix of Vx with
dimension (n ., n .) which is located along the diagonal.
Furthermore, let A a be a vector of dimension (n., 1),
all of whose elements are unity . Then, according to ref.
[7], the value for ya which corresponds to the least-
squares solution is obtained using the formulas

ya = CaAa Vxalxa+

Ca = (AaVza1Aa)
1

The superscript "-1"designates matrix inversion. It is
evident that Ca is a matrix with dimension (1, 1), i.e ., a
constant . In fact, it is just the variance of ya, more
commonly designated by var(ya ) . The variance, of
course, is the square of the standard deviation .

It is convenient to define a vector Ba of dimension
(n, 1) according to the formula

where the elements of Ba are designated as B., for
simplicity, Thus it is evident that the elements of y and
x are linearly related . The analytic procedure for de-
termining ya which is described here must be repeated
for all the other elements of y, e.g., for yß . In summary,
the coefficients Bal, which are needed both to de-
termine the elements of the collapsed data vector y and
of its covariance matrix Vy according to eqs . (12) and
(7), respectively, are deduced from eq . (11) .

In practice, considerable care is required in execut-
ing this procedure. In particular, if the values x. which
are averaged to form a particular element ya are seri-
ously discrepant, i.e ., they scatter much more than

Ba = (CaAaVxa1)
(11)

Then, eq. (9) can be written in the form

ya - Ba xa - E Baj x, , (12)
x~E(a)



would be indicated by the covariance submatrix Vx.,
then the method described here will very likely produce
dubious results. A simple numerical test can be applied
to determine whether the input data which are averaged
are indeed discrepant [4,7] . After the solution y has
been obtained, the quantity X2 (called the chi-square)
given by the formula

Xa2 = (x.-Y.Aj+ VX.1 (x. -Y~Aa)
is calculated . If the input data are consistent, then
X«/(na - 1) <<- 1 will be obtained . However, if X21(n .
- 1) >> 1, then the input data are discrepant . Various
approaches for dealing with discrepant data have been
suggested in the literature, but in the final analysis there
appears to be no entirely satisfactory way to deal with
such discrepancies other than to identify their origins
and thereby eliminate them by the application of suita-
ble corrections (e.g., refs . [4,5,7]) . Discussion of this
issue is, however, beyond the scope of the present
investigation.

3. An example

(13)

In order to demonstrate the procedure described in
section 2, consideration is given here to a set of integral
neutron-fission cross-section ratio data measured in this
laboratory [8] . In this experiment, the ratios were mea-
sured in the neutron spectrum produced by bombarding
a thick beryllium-metal target with 7 MeV deuterons.
The deposits of fissionable material used in the experi-
ment were evaporated onto thin metal plates, and these
were placed back-to-back in a low-mass fission detector
for the irradiations. Ultimately, a measured value for
every included integral fission cross-section ratio was
obtained with the detector positioned at each of two
distinct distances from the neutron source . In this ex-
ample, only four of these measured ratios are treated.
One pair of these ratios involves neutron fission of
232Th and 235U (232Th/ 235U) . The other pair involves
neutron fission of 237Np and 235U (237Np/235U) . The
equivalent ratios (measured at the two distinct dis-
tances) are averaged to collapse the four-component
parent data set to two final values . The properties of the
parent data set which are needed for this analysis ap-
pear in table 1.

Since this example involves only the averaging of
pairs of values, the expressions used in the calculations
are quite simple. It is instructive to present these for-
mulas in explicit detail :
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Table 1
Properties of the parent data set of measured integral neutron-
fission cross-section ratios a>

Correlation matrix

a) For clarity, the covariance information is presented in terms
of standard deviations (in percent) and the correlation ma-
trix .

Var(Y2 ) - (VY)22 = B23V33 + 2 B23B24V43 + B24V44

cov(y2> Yl)=(VY)21=B11B23V31+B11B24V41

+B12B23V32 + B12B24V42 ,

B11 = (V22 - V21)/(Vil+V22 -2V21),

B12
= (V11 -

V21)/(Vll+ V22 -2V21),

B23
=

(V44
-

V43)/(v33 + V44 - 2V43),

B24 = (V33 - V43)l(V33 + V44 - 2V43),

Table 2
Properties of the collapsed integral neutron-fission cross-sec-
tion ratio data set which is derived by the weighted averaging
of pairs of equivalent values from the parent set (table 1) a)

Chi-square values
Xi = 01482
X z = 0.1443

Correlation matrix

36 3

(17)

(18)

(19)

(20)

(21)

(22)

1 2 3 4
1 1
2 0.8666 1
3 0.3481 0.4005 1
4 0.3242 0.3950 0.7028 1

Data point Experimental Average Standard
index a ratio value y deviation

in y (%)
1 232Th/235u 0.097569 2.374
2 237Np/235U 1.2534 2.089

Y1 = Bllx1 + B12x2 > (14) 1 1

Yz = B23x3 +B24x4 1 (15) 2 0.4006 1

var(y1) _ (VY)11 = Bi1V12 + 2B11B12v2 1 + Blzvzz,
e) For clarity, the covariance information is presented in terms

of standard deviations (in percent) and the correlation ma-
(16) trix.

Data point
index i

Experimental
ratio

Measured
value x,

Standard
deviation
in x, (%)

1 232 Th/235U 0.09727 2.452
2 232 ,rh/235U 0.09792 2.462
3 237Np/235U 1.252 2.110
4 237N

p/
235U 1.261 2.617
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The notation used in these formulas is consistent with
section 2, except that V,, is employed as a convenient
representation for the covariance matrix element (VX),, .

The numerical results from this analysis appear in
table 2 . An investigation was made of the consistency of
the input data for this example using the chi-square
formula (eq. (13)) . It was found (see table 2) that the
input data are very consistent . In this example the
averaging process does not lead to a significant reduc-
tion in the ratio errors because the error correlations for
the equivalent measured values in the parent set are
substantial (see table 1) . This implies that the systematic
error sources, which cannot be reduced by averaging,
are dominant.
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