
no prior knowledge of !lO. and that we are concerned with location parameters, for which a non-
informative uniform distribution ought to be considered. These conditions lead us to the posterior-
distribution formula p(!lI1l,Y)d!l (1 exp[( -1/2)(1l -:!2 1!) + y-l(1l -:!2 !l)]d!l which is indeed normal in !l.

The method of least squares, as discussed in Chap. 12, can then be used without ambiguity to obtain a
best estimate for !l.

Example 11.16

Suppose that all of the parameters to be estimated, and all of the observables to which they are
related, are inherently positive, i.e., ~ > 0, for k = 1,m, and Yi > 0, for i = 1,n. Furthermore, assume
that the parameters and observables are related through products and quotients of factors, i.e., Yi =
nk=1Im~b, where (for convenience) b = bki, for k = 1,m and i = 1,n, is any real number which can
vary arbitrarily with i and k. We also assume that we are considering location parameters, for which we
have no prior knowledge. As in Ex. 11.15, we suppose that 11 and yare obtained from experimental
measurements of the observables y. The relationship between .D and y is not linear, so the posterior
distribution derived from the Bayesian method is not a Gaussian. However, if we make the variable
transformations zi = k Yi, for i = 1,n, sk = k ~, for k = 1,m, and ~i = k 1Ji, for i = 1,n, we then
have the expression Zi = k Yi = ~k=1Im bki k ~ = ~k=1Im bkisk, for i = 1,n. The covariance matrix
for !, which we shall call ~, is simply the relative covariance matrix corresponding to y. There is a
linear relationship between! and ~, which we can denote by! = :Q. ~. We are not completely past our
difficulties, however, for we still have to consider the matter of the prior distribution for ~ (the
transformed parameter set). At this point, it is necessary to make an approximation. We suppose that
the likelihood L(111 !) is well localized (i.e., that y implies small errors ). Then, we can assume that the
non-informative prior distribution for ~ is approximately uniform over the region of significant
likelihood. What is involved in this assumption? Since sk = k ~, dsk = d(}k/ ~. We require that
p( ~)d ~ = P(sk)dsk in order to preserve probability in the transformation of variables. Actually,
p(~)d~ IX d(}k. Therefore, P(sk)dsk IX exp(sk)dsk. Our assumption that P(sk) is constant is thus
equivalent to assuming that exp(sk) is approximately constant over the region of significant likelihood.
The transformation we have been describing, which leads to a log-normal distribution (see Sec. 7.1.11),
is quite handy whenever it is applicable. It conveniently avoids some very serious difficulties, like the
one to be discussed below.

We now turn to a discussion of certain hazards associated with attempting to
circumvent the rigorous Bayesian approach to parameter estimation. It is convenient to
use a particular example for demonstration purposes. This example was suggested by R.
Peelle [Pee87], and it has come to be known as "Peelle's Pertinent Puzzle" ("PPP" for
short). Several individuals participated recently in a detailed examination of PPP and its
implications for nuclear applications of statistical methodology [Chi9O, FrogO, MeagO,
PergO, VongO, ZhagO]. The present discussion of this issue is derived largely from the
unpublished memoranda which emerged out of this debate. The viewpoints that have been
expressed on this issue diverge significantly. Since no consensus exists at present on
precisely how to deal with the specific problem raised by PPP (which, in fact, is a
relatively simple one), it is clear that there is much work left to be done before the nuclear
community can agree on suitable approximation methods to use for parameter-estimation
within the general framework of Bayesian methodology. We shall now examine PPP in
more detail:

Example 11.17

Let us suppose that our objective is to determine best values for a parameter x and its variance.
However, x is not directly observable but is derived as the quotient of two positive observable quantities
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a and c, i.e., x = a/c. We suppose that there exist two independent determinations of a, namely,
a1:!: 0"1 and a2 :!: 0"2. On the other hand, c has been measured only once, with the result co :!: 0"0. The
measurement of c is independent of those for a. We further suppose that both a and c are location
parameters and that there exists no prior information on any of these parameters. Peelle's Pertinent
Puzzle (PPP) emerges in addressing the matter of finding a best estimate for x, not one for a or c. It
deals with a fundamental dilemma which arises when considering the relationships between the various
processes of measurement, data reporting, and data evaluation. For the sake of argument, let us assign
values to the measured results: a1 = 1.5, 0"1 = 0.15, a2 = 1.0, 0"2 = 0.1, co = 1.0, and 0"0 = 0.2. We
note at the outset that the experimental determinations of a are quite discrepant (differ significantly
relative to the given errors). Furthermore, the errors in all the measured results, particularly for co, are
quite substantial. The Bayesian procedure which we have been describing in this section leads us
immediately to the posterior distribution function

p(a,c I a1,0"1,a2,0"2,co,O"o)dadc IX

exp{(-1/2)[Ei=h2(ai -a) 2/ O"i2] + (-1/2)[(cO -c)2/ O"o2]}dadc

From this distribution function we can easily compute the expected values for a and c and their
respective variances, namely, <a> = (alO"l-2 + a20"2-2)/(0"1-2 + 0"2-2), var(a) = (0"1-2 + 0"2-2)-1, <c> =
co, and var(c) = 0"02. The results for a and var(a) conform completely with Ex. 11.14. If we now insert
numerical values for the data, we find that <a> = 1.154 and var(a) = 0.006923. But, we must not get
sidetracked here; our objective was to determine x and var(x). In order to accomplish this within the
framework of Bayesian methodology, we shall make a change of variables and transform the posterior
distribution accordingly. We transform the variable set (a,c) to the equivalent set (x,c). Since x = a/c,
a = cx. For convenience, we let II .(jJ" stand for all the experimental data (a1,O"ha2,0"2,CO, and 0"0). Our

task is then to transform p(a,c I .(jJ)dadc to the equivalent p(x,c I .(jJ)dxdc. Referring to Sec. 6.2 and,
specifically, to Eq. (6.14), we see that p(x,cl.(jJ) = p(a,cl.(jJ)/IJI, where IJI is the absolute value of
the Jacobian J, for this transformation. In this simple case, J is quite easy to calculate. Thus, I J I =
(l/c) and p(x,c 1.(jJ) IX c exp{(- 1/2)[~i=1,2(ai -cx)2/O"i2] + (- 1/2)[(CO -c)2/0"02]}. This is the
correct posterior distribution for the evaluation of best estimates for x and c. This distribution is !!.2!
normal in x and c. There is no easy way to "read off" the answers we desired. What we should do, for
completeness, is to evaluate <x>, <c>, and their associated 2 x 2 covariance matrix Yxc consisting of
the elements V xx = <Ox2>, Vxc = V cx = <OxOc> = <&Ox>, and V cc = <&2>, where Ox = x- <x>
and & = c -<c>. We are really concerned only with <x> and var(x) = <Ox2>. Therefore, we turn
to "brute force" numerical integration to evaluate them. Our result is <x> = 1.21 and var(x) = 0.09
(Method 1). This is the rigorous solution to ppp, in the context of the Bayesian formation. The
marginal probability distribution for x (i.e., the posterior distribution integrated with respect to c) is
skewed considerably toward larger x, relative to what our naive intuition might lead us to think is the
best value for x, namely, <a>/co = 1.154. Since x = a/c, we have a simpler (albeit approximate) option
for dealing with this problem, i.e., the logarithmic transformation approach described in Ex. 11.16. This
transformation eliminates the non-linearity introduced by the quotient x = a/c, since k x -k a =
-k c. We shall not go into the details, but it can be shown that this leads to a best estimate for x of
1.225 :!:0.260 (Method 2), a result which does not differ by too much from a completely rigorous
treatment involving numerical integration.

The Bayesian procedure is both appealing and rigorous, in principle, but we cannot avoid facing
up to the question of how to deal in a practical way with parameter estimation problems which involve a
substantial number of parameters, extensive data, and complex relationships between the observables and
parameters. Brute force numerical integration, even when Monte-Carlo techniques are pursued, is
scarcely an option to be considered. The logarithmic transformation works in a limited number of
situations. What is to be done? We shall return to this question, but first let us explore a serious trap
into which we may be easily seduced if we are not careful in our quest for convenient approximations.



We begin by examining what often happens in the "real world" of measurers and evaluators. It
is the task of an evaluator to determine a best value for x. He refers to the literature and finds only two
relevant experiments. Experiment 1 provides the measured result xi = 1.0 % 0.22. while experiment 2
yields x2 = 1.50 % 0.34. If the evaluator is not very sophisticated, he may very well assume that these
are totally independent measurements, accept the given errors at face value, and derive the result 1.148
% 0.185 (Method 3), a simple weighted average, for his evaluated estimate. It is not a bad result from a

numerical point of view, but we know that this approach is conceptually flawed for several reasons, as
mentioned above. Let us suppose next that our evaluator is more thorough. He digs into the papers
that document these two experiments and discovers that, in both works, the authors interpret x to be
a/c. Each measures a independently with a 10% error, i.e., at = 1.5 (% 10%) and a2 = 1.0 (% 10%).
But, the evaluator also discovers that both experiments use the same value of c, i.e., CQ = 1.0 (% 20%),
which they have drawn from a third literature source, as a normalization standard. What is the
evaluator to do now? Before applications of covariance methodology became commonplace in the nuclear
field, the normal procedure was to evaluate a first. The weighted average of at and a2 is just
1.154 % 0.0832 (see above). Since c is, unambiguously, CQ = 1.0 %0.2, we are led to the evaluated result
1.154 % 0.246 (Method 4), following simple division and an exercise in conventional error propagation.

This result does not differ by much from the value obtained via completely naive weighted averaging.
So, where is the reward for the evaluator's additional effort? Let us proceed even further and suppose
that the evaluator wishes to take into account the obvious correlation introduced by a common
normalization factor. He treats the quantities xi = ai/cQ = 1.0 and x2 = a2/cQ = 1.5 as data, with an
associated 2 x 2 covariance matrix y whose values are derived from the information given above. The
matrix elements are: Vii = (0.2236)2 = 0.05, Vi2 = V2i = (0.2)(0.3) = 0.06, and V22 = (0.3354)2 =
0.1125. Note that in deriving these matrix elements the given data values and percent errors are used to
obtain the absolute errors. More likely than not, he will then proceed to use the least-squares method,
as discussed in Sec. 12.1.1, to obtain his evaluated result. Since we have been describing the Bayesian
procedure, we will assume that he takes this approach (in this instance it makes no difference). He treats
x as a location parameter. Since there is no prior information, the non-informative uniform prior
distribution is employed. With these considerations in mind, he writes down the posterior distribution,

namely,

p(XIXt.X2,Y)dx IX exp[(-1/2)15~+ y-l15!Jdx,

where 6:! is a vector with components 15xi = xi -x, for i = 1,2. This probability function is normal in
x. Determination of <x> and var(x) is straightforward (see Secs. 2.1.1, 7.1.10 and 12.1.1) .However,
the analysis yields <x> = 0.8824 and var(x) = 0.0476 (Method 5), a result which is quite alarming! The
only way this could be a correct result would be if Xu x2, and y were the QnJ.y available information, and
we did not know that x = a/c, with data given for a and c. This is not the case here. Actually, it was
this strange, non-intuitive result which led Peelle to bring the whole matter to the attention of several of
his colleagues, in the form of PPP [Pee87]. As a way out of this dilemma, and desiring all the while to
preserve the least-squares method as a viable approach for dealing with problems of this nature, Zhao
and Perey [Zha90, Per90] suggested that the problem could be dealt with by altering the manner in
which the covariance matrix y is evaluated. They treat xI = 1.0 and x2 = 1.5 as data, but argue that
the computation of the elements of y should be carried out using co = 1.0 for c, and the weighted
average of al and a2 (namely, 1.154) for a, not the directly measured values al = 1.0 and a2 = 1.5 (as
was the case for Method 5). This is a very rational suggestion. With this assumption, the elements of
yare: V 11 = 0.07575, V 12 = V 21 = 0.05325, and V 22 = 0.06325. Application of the least squares
method (see Sec. 12.1.1) then leads to the much more reasonable result 1.154 :!: 0.245 (Method 6) for the
best estimate of x and its error. Finally, let us assume that there exists a true value, xo, but we do not
know exactly what it is. However, two experimental attempts to determine xo have produced the results
xI = 1.0 and x2 = 1.5. Furthermore, our statement of errors indicates that each of these measurements
involved a 10% random error and a 20% fully correlated error. Consequently, we make the assumption
that the absolute errors are computed in terms of these percentage errors and the true (unknown) value
which we shall call xo. We shall refer to this approach (suggested by Chiba [Chi90] and this author) as
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Method 7. The result for the covariance matrix y is: V 11 = 0.05 xO2, V 12 = V 21 = 0.04 xO2, and V 22 =

0.05 XO2. It happens, for this simple example, that the unknown factor, xO2, in the elements of y

actually cancels when the least-squares condition is invoked. Therefore, we are led to the solution <x>
= 1.250 :I: 0.265. This is fairly close to the result from Method 1. Method 7 can also be invoked in

problems involving more than two random variables. However, it is then necessary to seek a solution

through an iterative procedure.

Why should those seven distinct approaches (Methods 1 -7) to solving this simple problem
generally lead to noticeably different answers, including one which appears to defy common sense? The
reason is really quite simple and should come as no surprise: Each method is unique in concept and each
treats the available experimental information differently. One should expect that different answers would
emerge. In PPP, the differences are exaggerated because the data errors are quite large ( especially that
for the normalization factor, CO) and the measured data for a are seriously discrepant. In short, the
posterior probability distribution is quite skewed.

Let us summarize the lessons to be learned from PPP (Ex. 11.17): Knowledge of
the mean values and their uncertainties (through a covariance matrix) for observables
enables us to write down a posterior probability distribution which is normal, provided
that the parameters in question are location parameters ( or, for practical purposes, can be
treated as such so that non-informative priors can be used), and that there is either a
direct or, at the very worst, a linear relationship between the observables and the
parameters to be estimated. Then, the least-squares, maximum likelihood, and full
Bayesian estimation techniques are completely equivalent. However, more complex
problems call for the use of approximation methods if the determination of requisite
expectation values with respect to the posterior distributions is prohibitively difficult.
Great care must be taken in applying these approximate methods, since they can lead
readily to rejection of valuable information, with disastrous consequences. There are
differences of opinion on this issue which need to be resolved eventually. In other words, a
consensus must be sought on how one ought to proceed with making these approximations.

With the exception of Method 5, the results produced for PPP by these methods
tend to fall into two distinct groups. Methods 1 and 2 are linked to the true Bayesian
approach. Therefore, the best estimate given in each case is essentially the mean value of a
skewed, non-Gaussian posterior probability distribution, i.e., <x> ~ 1.22. The other
methods (including Method 5) all yield estimates of the most probable value, Xmp ~ 1.15.
According to decision theory, the most probable value is not the best estimate, but for
skewed distributions it may be easier to determine. We can take the following general
approach, known as saddle-point integration, and avoid the pitfall illustrated by the
Method 5 solution to PPP (see Ex. 11.17): We approximate the true posterior distribution
by a Gaussian with the same maximum location and curvature (second-order terms in a
Taylor series expansion). This surrogate distribution is intended to be a valid approx-
imation only in the vicinity of the most probable solution. In short, we abandon our quest
for the correct mean values, as a mathematical expedient. If the posterior distribution is
based on measured data ( consisting of estimates of mean values and their covariance
matrix), and we assume a non-informative prior distribution, i.e., the parameters are (for
all practical purposes) treatable as location parameters, we note that the posterior
probability can be written in the form p(fll 9J)dfl = exp( -X2/2)dfl. Saddle-point integra-
tion then involves maximizing the exponential function and thus minimizing the expression
X2 ( thereby establishing a link to the usual least-squares procedures discussed in Sec.
11.2.2 and Chap. 12). The only point to remember is that we must not be overzealous in
our attempts to simplify X2 by throwing away those terms of a Taylor's series approxi-
mation that contain valuable information, thus ending up with a situation akin to that
which we encountered in the Method 5 approach to ppp .



We have avoided mentioning a chi-square test for the solution (Sec. 11.3.2). It is
strictly valid only if the posterior probability distribution for the estimated parameters is
normal. The approximation procedures we have described are predicated ( either explicitly
or implicitly) on substituting a normal distribution for the true distribution whenever it is
not normal. Therefore, it makes sense to apply the chi-square test in practical
applications, to determine the consistency of the data and solution. In PPP (Ex. 11.17),
each solution method led to a value of chi-square per degree of freedom much larger than
unity due to the measured data discrepancies.
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