Some Thoughts on Chi-Square Expressions
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As most of you know, I have been concerned from early in the Standards CRP
about differences in the 7¢* expressions used in EDA and in the other R-matrix and
generalized least-squares fitting codes. Recently I had the opportunity to revisit this
question during a mini-workshop on the standard cross sections at Los Alamos that
benefited from the presence of Don Smith and Ken Hanson to give guidance on statistical
matters. Although they were participating mainly to address issues associated with PPP
effects, the discussions I had with Ken, especially, helped me to get a fresh perspective
on our approach to chi-square data fitting. The result appears to be that the chi-square
expression used by EDA is very similar (but not identical) to the others when the
normalization parameters are adjusted at each stage to minimize the chi-square for a
given set of R-matrix parameters. This is actually the way EDA works, but I had not
considered the corresponding expression when making the comparison. Some details
follow:

Chi-square Expressions
The 7> expression used in EDA is
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in which R, are the relative values, and S the scale, for a set of measurements. For
simplicity, we consider only one such data set in these expressions, although in general
the chi-square expression is a sum of such terms. The experimental (one-sigma)
uncertainties for these quantities are denoted as AR;and AS, respectively. This form of
chi-square implies that the quantities R, and § are statistically independent, which is a
good approximation to the way most scattering measurements are made. Calculated
values of the experimental observables in terms of the R-matrix parameters p are denoted
as X,(p), and n is an adjustable normalization parameter associated with the experimental
scale S. Normally, the experimental value given for § is 1.0£AS, but it is left more
general in Eq. (1). This expression also applies to the situation where the measurements
are purely relative, in which case the second term of Eq. (1) vanishes, (AS—) and n
adjusts the calculation to most closely match the relative measurements, unconstrained by
a scale.

The expression in Eq. (1) is exactly quadratic in n:
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This is easily solved for the normahzatlon n, that minimizes 7 for fixed parameters p,
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In terms of the coefficients of Eq. (2), this defines the chi-square function
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by taking g,(p) =

which is involved in the distribution obtained by “marginalizing” ¥, ,over
normalizations, as will be discussed in the following section. Substituting the
expressions in Egs. (3) gives
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This can be put into a more reasonable form by defining the dimensionless vectors
(p) R,
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so that Eq. (6) becomes
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Now we consider the “standard” chi-square expression in which the
measurements are considered to be the products M, = R.S, and the deviations are
weighted by the inverse of their covariance matrix V,,,
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In this case, the covariance maéix that corresponds to the same assumptions as those

made in the EDA chi-square, namely
cov(R,R;)=(AR))*6,,

cov(S,S) = (AS)?, (10)
cov(R,,S) =0,
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is
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diagonal piece rank -1 piece
In terms of the same dimensionless vectors defined above in Eq. (7), Eq. (9) becomes
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Using a useful identity for inverses involving rank-1 matrices,
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Finally, the fact that
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makes the numerator of Eq. (14) the same as that of Eq. (8). This means that Xﬁo and
differ only by the interchange of calculated and measured values (x(p)<>r) in the
denominator. Near a solution, these vectors approach each other, so that the difference
between the two chi-square values is minimal. Thus, although they may give different
results away from the solution point, they are guaranteed to be similar near the chi-square
minimum.

Marginalized Distributions

A crucial point raised by Ken (and also discussed in Don’s book) is the fact that
when a distribution contains “non-essential” parameters, such as the normalization
parameter 7 in )}, [Eq. (1)], the proper distribution to use for the remaining parameters
(p) 1s “marginalized” (integrated) over n. In this case, it becomes
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Because of the quadratic dependence of ¥, on n expressed by Eq. (2), this integral can
be done analytically to obtain
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which, in view of Eq. (5), can be written as
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Near a solution, we expect B(p,) =-2A(p,). with the result that the argument of the

complimentary error function is ~ —4/A,/2, where A, = A(p,). Now A, is likely to be a
rather large number, since the calculated values of the observables should be much larger
than their experimental errors. Considering that erfc(-x) is a constant for x > 2, it can be
neglected in the marginalized probability function, and thus to a good approximation,
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and because of the arguments given at the end of the last section, one expects the
distribution given by exp[-3 %] to be similar near p=p,.



