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 The GMA code has been updated to introduce the Chiba-Smith option (see report 
ANL/NDM-121, 1991) to address the problem of PPP.  To avoid confusion, we will refer to 
this code, and results obtained using it, as GMAP.  This code revision was accomplished with 
a minimum of intervention to the original version of GMA in order to avoid introducing 
coding errors. The Chiba-Smith approach was implemented by means of simple 
renormalization of the experimental absolute errors (square roots of the variances) after 
reading them in from the input file. This renormalization was applied to each “experimental” 
data point and for each class of data, e.g., cross sections, ratios, shape ratios, etc., as 
∆σ′(i)=∆σ×(σp(i)/σ), where σ represents the experimental data value (whatever it might be) 
∆σ is the uncertainty of this experimental data point, σp(i) is a prior value for this quantity – 
obtained after ith iteration, and ∆σ′(i) is the renormalized absolute uncertainty of the data after 
the ith iteration.  We use the term “experimental” rather broadly here because it is intended to 
eventually employ GMAP for merging R-matrix and experimental results, with the R-matrix 
results introduced as pseudo experimental data.  The original GMA code already included an 
option to iterate the runs with replacement of the prior σp(i) by the new posterior solution 
since the prior in GMA is assumed to be ad hoc and non-informative.  The convergence to the 
“true” posterior solution was very fast, usually a few iterations were enough even when first 
prior was intentionally made discrepant with a bulk of experimental data. 

 

 We refer to this option as a “technical” solution to exclude PPP since it is based on the 
subjective assumption by Chiba and Smith that when experimenters quote absolute total 
errors these are calculated by multiplying a fractional error (comparable to percent error) by 
the measured value.  Thus, it is supposed that it is the fractional error that actually reflects the 
accuracy that the experimenter intends to convey to the reader.  The PPP problem is a 
consequence of discrepancies, i.e., the scatter observed for various presumably comparable 
data obtained by different experimenters that is frequently beyond the quoted errors.  
Consequently, we believe that the Chiba-Smith approach should be introduced into an 
evaluation process only after applying the “physical” option, namely, that of identifying the 
outlying data points (those most discrepant with respect to the main body of evaluated data). 
Then, where possible, the observed discrepancies should be resolved by applying corrections 
that were overlooked (or possibly erroneously determined) by the original experimenters, by 
enhancing quoted errors to compensate for hidden uncertainties not realized by the 
experimenters, etc.  The intent is to reduce the PPP effect as much as possible by objective 
means before resorting to the above-mentioned “technical” solution. Such an approach is 
essential to the achievement of a good evaluation since the “corrected” data values are 
expected to then correspond more closely to the “truth.”  However, since the PPP 
phenomenon does not have a threshold and is continuous in nature (see Appendix), we believe 
that, after exhausting the possibilities for the abovementioned “physical” option, PPP should 



be excluded by applying a technical approach such as that of Chiba-Smith to correct for 
residual deficiencies in the database and deficiencies of the least-square procedure, even if the 
PPP effect is small. 

 

 While the example given in the Appendix is illustrative of PPP for a simple hypothetical 
situation, it is more convincing to explore the phenomenon in the “real world” using a 
realistic data set.  The TEST1 data set, which exhibits a large and clearly seen PPP bias, was 
adopted by the CRP and used to inter-compare different technical options for PPP exclusion.  
These data were employed in the various fits without any alterations, i.e., they were original 
data given by the experimenters. No values were adjusted, no errors were enhanced, etc.  
Those results indicated in Figs. 1 to 3 as “GMAP” were obtained with three computational 
steps in the framework of the Chiba-Smith approach to exclude the PPP: the first pass using 
the assumed prior (ENDF/B-VI), GMAP(1) – the result after one iteration, and GMAP(2) – 
the result after two iterations.  GMA presents results without any technical fixes applied to 
exclude PPP.  Therefore, it exhibits the full extent of the PPP bias.  GLUCS03 presents results 
obtained by S. Tagesen and H. Vonach with inclusion of the Chiba-Smith option in the 
GLUCS code.  GMAJ presents results obtained by Soo-Youl Oh (Table 3, p. 153, report 
INDC(NDS)-438, 2002) with the GMAJ code. GMAJ is a version of the GMA code 
completely rewritten by Chiba with inclusion of the Chiba-Smith option to exclude PPP.   Oh 
does not mention whether he iterates the solution obtained using GMAJ, so we will assume 
for present purposes that there is no iteration.  Results showing the use of Box-Cox 
transformation to exclude the PPP effect are also taken from paper by Soo-Youl Oh (Table 3, 
p. 153, report INDC(NDS)-438, 2002).  The PADE-2 model fit (S. Badikov, Private 
communication) also was performed without any technical fixes to exclude PPP.  Two fits 
obtained using the RAC R-matrix code – without technical options to exclude the PPP effect 
– are shown in the Figs. 1 and 2.  RAC(2002) presents the “old” fit, where selection of the 
prior parameters was rather free and problems were known to have existed with regard to 
ambiguity in the determination of parameters.  RAC(2003) presents the “new” fit, where 
parameters determined from the fit of a large number of data in different reaction channels 
leading to the formation of 7Li system were taken as the set of non-informative prior R-matrix 
parameters.  It may be the case that the RAC(2003) fit corresponds to a particular local 
minimum of the chi-square function and perhaps should not be compared to results from the 
other fitting procedures because of the major differences in the employed approaches. 

 

 Results from fits obtained by various means are shown in Fig. 1 as ratios to the 
GMAP(2) fit.  The PPP biases observed in the GMA, RAC(2002) and PADE-2 fits are rather 
large.  The RAC(2003) fit (irrespective of the comment in the preceding paragraph), and all 
other fits that aim to provide technical exclusion of PPP, give results that are relatively close. 
It is therefore difficult to judge which approach yields the “best” result since we do not know 
the true values to which these real data should correspond. Figs. 2a and 2b show in more 
detail the differences between the GMAP results (one and two iterations, respectively) and the 
various other approaches used to exclude the PPP effect.  It is evident that the Box-Cox 
approach gives slightly higher values than the other methods.  The GMAP and GLUCS03 fits 
are based on the same technical fix to exclude PPP (Chiba-Smith).  Nevertheless, they exhibit 
some differences that can probably be explained in terms of the precision of the numerical 
solutions of different equations.  Because of such issues related to numerical precision, it is 
seems unreasonable to claim that one approach is better than another when the observed 
differences are quite small. 

 



 We have found that two distinct effects can lead to the presence of PPP in data 
evaluated by the least-squares method (see Appendix).  One effect can be attributed to the 
different shapes of distinct strongly correlated data sets.  We choose to label the PPP effect 
that results from these strong correlations as maxi-PPP.  The second effect arises when there 
is a spread of data and absolute uncertainties are assigned. Two data points with the same 
percent uncertainty (same accuracy), but having different values, will then be weighted 
differently by the least-squares evaluation process. The lowest point will be assigned the 
heaviest weight since the weighting factor corresponds to the reciprocal square of the absolute 
error.  We will refer to the PPP effect due to an apparent over-weighting of low values as 
mini-PPP.  The contribution of the mini-PPP effect for the standards data is rather small due 
to the generally small spread encountered for standard-reaction experimental data values.  The 
contribution of these two components for the TEST1 case can be seen in Fig. 3a and 3b.  The 
thick solid line shows the full PPP bias, based on our assumption that the Chiba-Smith 
approach, as manifested in GMAP calculations with two iterations, gives the best value.  The 
thin solid line shows the effect of mini-PPP for these five TEST1 data sets.  For this particular 
calculation, all non-diagonal elements of the correlation matrices of all experimental data sets 
were set to 0, i.e., no correlations (nc). So, in this case the difference between the GMA and 
GMAP results shows the mini-PPP effect explicitly for the rather discrepant TEST1 database.  
As we see from Figs. 3a and 3b, this effect is not large. However, we believe it still should be 
addressed and corrected.  Since the thin dashed line in Figs. 3a and 3b shows the ratio of the 
GMA result with no correlations between data to the comparable GMAP result, it is 
demonstrated that exclusion only of the correlations is not enough to consider a fit to be 
effectively free from PPP at levels of accuracy consistent with the requirements for the 
standard cross sections. 



Appendix 

 

Mini- and Maxi- PPP for Peelle’s Original Problem 
 

 An examination of both simple and complex data evaluation problems by the least 
squares method shows that the phenomenon known as Peelle’s Pertinent Puzzle (PPP) 
inevitably occurs when data scatter and absolute uncertainties are employed in the evaluation.  
This appears at a more fundamental level to be attributable to the fact that the least-squares 
formalism is an approximation to the fundamental Bayesian evaluation approach.  Robert 
Peelle of Oak Ridge National Laboratory first demonstrated the PPP phenomenon, at least to 
the nuclear data community, in an informal memorandum that he distributed in 1987.  Since 
then, PPP has been the subject of numerous debates within the data evaluation and data 
adjustment communities.  Qualitatively speaking, the PPP phenomenon tends (on average) to 
lead to evaluated results that are intuitively “too low”.  Quantitatively, the bias known as PPP 
resulting from applications of the least-squares methodology can range continuously from 
zero to values that affect the quality of an evaluation significantly. 

 

 A closer examination of the PPP phenomenon shows that it is actually comprised of two 
components.  One component – that for the purpose of convenience will be denoted by mini-
PPP – tends to have lesser magnitude.  It is observed even when no correlations are present in 
the uncertainties of data to be evaluated, only scatter.  A second aspect of PPP, denoted here 
by maxi-PPP, is manifested when uncertainty correlations are present.  Often this component, 
which can never be separated from the mini-PPP effect, tends to be the larger effect.  In the 
evaluation of real data with uncertainties, scatter (i.e., discrepancies), and error correlations, 
one encounters total-PPP, or simply PPP as a composite of the mini-PPP and maxi-PPP 
components. 

 

 In this appendix we demonstrate the effect of both mini-PPP and maxi-PPP by 
considering Peelle’s original problem.  Two data are averaged.  One has a value 1.5 and the 
other 1.0. Each has a random uncertainty of 10% and they both have a fully correlated error of 
20%.  These data are obviously discrepant, and blind application of the least-squares method 
leads to the non-intuitive result 0.88 ± 0.22 for the evaluated solution!  Since both values 
appear to have the same precision, the intuitive best solution would appear to be 1.25.  This is 
the solution obtained using the method proposed by Chiba and Smith (see report ANL/NDM-
121, 1991) to eliminate the PPP effect.  Peelle’s original problem has been examined using 
both a spreadsheet routine (EXCEL) and the least squares code LSMOD developed by Smith 
(see report ANL/NDM-128).  The first set of calculations, done with EXCEL, involved 
switching off the error correlation parameter and varying the discrepancy between these data 
from zero to 40% (40% corresponds to Peelle’s original problem since 0.5/1.25 equals 0.4).  
The deviation from the Chiba-Smith solution (1.25) varies from zero to about 8% (low) as is 
seen in the top graph of Fig. A.1.  This is the mini-PPP effect.  The second set of calculations 
was performed with LSMOD. The data values 1.5 and 1.0 were retained as originally given, 
as were the magnitudes of the error components.  However, the degree of correlation was 
varied from zero to 100% (100% corresponds to Peelle’s original problem).  The results are 
shown in the bottom graph of Fig. A.1.  The correlation strength ranges from 0 to 1.0 (100% 
correlation).  The “mini-PPP effect appears as an 8% reduction for zero correlation strength 
whereas the full PPP effect at 100% correlation strength is about 30% for this example.  The 
difference is attributed to the maxi-PPP component.  Maxi-PPP can be demonstrated only as 



an observable difference between the reduction seen for total-PPP and that obtained when 
correlations are neglected (mini-PPP). 

 

 

Figure A.1.  Demonstration of mini- and maxi-PPP effects 
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Fig. 1. Ratios of different fits of 
6
Li(n,t) cross sections to the GMAP(2) iterative fit (Chiba-Smith option).
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Fig. 2a. Ratios of different fits of 
6
Li(n,t) cross sections to the GMAP(2) iterative fit (Chiba-Smith option). 
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Fig. 2b. Ratios of different fits of 
6
Li(n,t) cross sections to the GMAP(2) iterative fit (Chiba-Smith option). 
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Fig. 3a. Ratios of different fits of 6Li(n,t) cross sections showing the presence of PPP in TEST1 data 
and the contribution from its components. GMAP result corresponds to two iterations.
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Fig. 3b. Ratios of different fits of 6Li(n,t) cross sections showing the presence of PPP in TEST1 data 
and the contribution from its components. The GMAP result corresponds to two iterations.
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