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sections (H(n,n), %Li(n,a), 1%B(n,a), 10g(n,ay), Au(n,¥)). For
reasons which will become clear later on, some other cross sec—
tions are involved as well (°Li(n,n), !%B(n,n)). Following the
intent of this meeting, we not only consider the state of the
evaluations of these data but the evaluation process as well.

It should be clear from the outset that an evaluator is not
expected to derive his opinion of the subject of the evaluation
but the best knowledge of it. Nuclear data evaluations can be
divided in historic terms into an

'Age of Archaic Evaluations',

where unjustifiable and subjective evaluation methods were used,
an
'Age of Enlightenment',

where it was recognized that the archaic evaluation techniques
had severe drawbacks, and an

'Age of Renaissance’,

where it was discovered that exact solutions techniques were
developed some 180 years ago. As in other areas of history,
these periods cannot be sharply divided. But clearly, about
10 years ago, evaluation procedures for nuclear data were still
in the 'Dark Ages' where archaic techniques were well entrenched,
and appropriate methods were used only infrequently. Wild lines
were drawn through data points and subjective opinion carried
the day. It has been recognized in the last few years that
appropriate techniqeus were well developed and applied in other
disciplines of science and engineering and should be employed
as well in the evaluation of nuclear data. Increasingly, im—
proved techniques were used, but unfortunately, the archaic age
is slow in dying: e.g., it would be easy to point out a number
of evaluated cross sections in ENDF/B-V which were based upon
one data set where many were available. Because of this staying
power of unscientific, archaic methods, techniques and argumen-—
tation, it will be hard to avoid to point out fallacies which
will be obviously recognized as such by many.

As we desire to derive the best knowledge of some quan—
tities existing in nature, we have to consider what this knowl-
edge consists of.

I.1l. The Best Knowledge

The philosophy or theory of knowledge, developed by many
important men, and culminating with Kant's 'Critique of Pure
Reason' [1], tells us that knowledge has two sources: 'a
priori', which is knowledge developed from reasoning along, and
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'a posteriori', which is knowledge after the fact, e.g., after
performing an experiment. As we are not in the area of logic or
mathematics, where knowledge may be derived purely ‘a priori', we
have to be concerned whether our knowledge is purely 'a posteriori'
or, to some extent, can be derived 'a priori's. Certainly, laws
of nature have been found in physics, but the area applying to
nuclear cross sections is still in a state of modeling and our
knowledge is empirical, thus it is derived 'a posteriori'. A
good example are cross sections which may be derived from the
optical model. The optical model was not conceived 'a priori'
but 'a posteriori' following the pioneering measurements of total
neutron cross sections by Barshall [2] which showed systematic
structure as a function of energy and nuclear mass. It was pos—
sible to predict other cross sections with this model. But, as
measurements for such predicted cross sections became available,
the model predictions were found in conflict with these experi-
mental results. The conflicts lead to refinements of the model,
in successive steps, changing the shape of the potential, adding
a surface absorption potential, spin-orbit coupling, introducing
non-local potentials, etc., always in response to disagreement
with new measurement results. As of now, the optical model is
still a model, of great value, but dependent on numerous parame-
ters derived from fitting experimental data. It obviously fol-
lows that predictions with the optical model cannot be better
than the quality of the whole of the experimental data base.

This does not mean that optical model predicitons cannot be
better, in some instances, than a singular experimental data

set. A case in point is the total cross section of 233y, The
ENDF/B~IV evaluation used a line through the available experi-
mental data. An optical model fit of these data would have pro-
vided a more physical shape but still erroneous values. It was
appropriately recognized by evaluators for ENDF/B-V [3] that the
experimental data for 233y in the energy range below 1 MeV were
in conflict with data for neighboring nuclei. A prediction based
on a parameterization with data for other nuclei was utilized
instead. However, then a new data set became available and the
evaluation was changed to match this data set. Experimental data
are uncertain, thus, the best knowledge of the 233y total neutron
cross section would be obtained by a simultaneous fit of the
transactinides with the optical model, accounting for uncer-—
tainties of the data and the model. Such simultaneous optical
model fitting is now being done, for example, by Madland and
Young [4] and Poenitz [5].

The best knowledge of the quantities to be evaluated is
derived by including all the direct and indirect information
available. The primary source is the experimental data base,
differential and integral, as our knowledge is 'a posteriori'.
nuclear models and integral systems models provide the link
between the data. Figure 1 shows a schematic of the maximum
information leading to our evaluated (or best knowledge) cross
section. This maximum information has been used, for example,
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Fig. 1. Information Available for Cross Section Evaluations.

by Schenter's group [6] for the evaluation of fission product
nuclei. The result of such evaluation (which includes the
integral data) is often called an adjusted cross section set.
An adjusted, best knowledge cross section set is justified
and desirable, specifically in cases of sparce differential
information, as in the case of fission product nuclear data.

One may require, however, another approach, based on the
intended use of the evaluated data. A separate evaluation of
the differential data with utilization of the nuclear models
provides for a "testing” of the integral systems modeling of
experimental integral values. The large number of parameters
involved in an integral system causes a diffusion of the lack
of knowledge for some parameters (discrepancies) by distributing
the blame between all of the parameters (cross sections). The
French library data on the components of stainless steel provide
an example. Though this library predicted available integral
data very well, it was due to compensation and a design calcula-
tion for a different compositon of stainless steel would have
resulted in erroneous predicitons [7].

Thus, in the following we restrict our considerations to
the evaluation of differential data of the primary data base and
the utilization of auxiliary information provided by the nuclear
models.

I.2. Outline of an Objective Evaluation Process

One of several features of an objective evaluation process
is not to select data based upon subjective judgment. However,
the fitting of the available experimental nuclear data with
nuclear models involves non-linear fitting of such monstrous
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proportions that it is obviously beyond the range of present
technology. This suggests to divide the evaluation process into
steps as shown schematically in Fig. 2. The first major step
consists of assembling the available experimental data, extrac-—
tion of actually measured quantities, and the application of
corrections to the reported values and their errors if such can
be proven to be required. Updating constants (Tj/2) etc., used
in the calculation of these values, recalculation of corrections
with improved techniques (Monte Carlo) and data used in their
calculations are acceptable. However, reintroduction of subjec—
tive methods (for example unjustified re—assignments of uncer-
tainties) must be rejected.

ASSEMBLING
OF
DATA FILE

APPLICATION n 2 TEST OF DATA
OF
CORRECTIONS .

NUCLEAR
MODEL
PREDICTIONS

LEAST SQUARES A PRIORI
CONSISTENCY FIT

NUCLEAR MODEL )
SMOOTHENING ]

RESULT
(NEW A PRIORI)

Fig. 2. Schematic of the Evaluation Procedure.

The second step is the evaluation of the experimental
data in a simultaneous least-squares fit as discussed below
which yields a consistent set of values which represent the
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est knowledge from the experiments. The third step is the
tilization of nuclear models which permit to use auxillary
ata information. The process is then repeated in iterative
teps in order to obtain further improvements.

II. THE MEASUREMENT PROCESS AND INTERPRETATION OF THE
EXPERIMENTAL DATA BASE

It is obvious that the evaluation process should be con-
sidered in context with the subject of the evaluation, the data
base. An understanding of the measurement-process and the quan-—
tities derived appears required. Mathematical procedures can
lead their own independent'life, but the answer will surely be
misleading if they are based upon a misconception of its elements.
This may well be a danger we are facing now, as more and more
evaluators become enchanted with powerful tools provided by
statistical analysis, but do not understand the data base and
thus "take off into a dream world".

II.1l. Types of Measurements, Originally Measured Quantities

It must be realized that experimenters in the area of cross
section measurements rarely present what they have measured. A
measurement of the shape of the ratio of two cross sections, say
on’f(235Ug/on,n(1H), will surely be presented as a measurement
of the 23 U(n, f) cross section after using some reference for the
H(n,n) cross section and normalization to some other absolutely
measured or more or less arbitrarily choosen value. Comparison
with other measurements are then made, differences pointed out
and possible explanations given. All of which is an exercise
in futility because the quantities measured were not the values
discussed. This does not mean that the measurement was meaning-
less, in the contrary, it may have been an very important input
for the quantity, for example a cross section shape, which was
actually measured.

The first task for the evaluator, who wants to derive the
best knowledge of one or several unknowns, is to rediscover the
actually measured quantities, thus to reduce the given informa-
tion to the truly new information obtained in the specific
experiment. An example for the problems resulting from ignoring
the originally measured quantities is the common procedure to
evaluate a specific cross section for which N measurements are
available without differentiating between K measurements which
were made relative to the same reference cross secton and N-K
absolute and independent measurements. Such procedure is iden-
tical to forming the average between 3 and 4 by calculating (3 +
3+ 4+ 4+ 4+ 4)/7 (assuming N=7 and K=5). Such fallacies may
not be very obvious if correct and sophisticated techniques are
used for the derivation of the evaluated cross section.

A measurement may have been presented as a cross section
measurement over an energy range (Eg,Ej) but in reality the
shape may have been measured in two segments, (Ey, Eg), (Ej,E1),
(with Ej < Eg) and a normalization point obtained at E, (with
Ey < En < Ei). The true information obtained from these measure-
ments which should be used as input for.the evaluation are three

sets of data: 1. the absolute value at E,, 2. the segment in
(Eg, Ex), and 3. the segment in (Ej,Ej). The composite cross
section should not be used, it will bias the evaluation as will
be seen later on.

The types of measurements used to derive the data under
present consideration are transmission experiments which yield
total cross sections, reaction cross section or ratio measure-
ments, shape measurements of cross sections or ratios which
leave the normalization of the data undetermined, and absorp-
tion cross section measurements. Total cross sections are
derived from the expression

CO(E) - b, - E boi(E)

1
o, (E) == 4n — * N £.(E) (1)
tot a C(E) - b 3 bi(E) 3 3

i

where a is the sample constant, b is a constant background and
by(E) an energy dependent background. The f4(E)'s are correc-
tion factors, for example for deadtime, resonance self-shielding,
etc. The Co(E) and C(E) are the detector counts without and
with the sample. Reaction cross sections are derived from

Cx(E) - b, - b3 bxi(E)

n a n £(@E, (@
g by

- i .
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where Cyx(E) and C,(E) are the count rates for the observed reac-
tion and the neutron detector, respectively. The aj are indepen-
dent on energy and stand for sample masses, efficiency calibra-
tions etc. The fj(E) are energy dependent corrections and the
energy dependence of the counting efficiencies. The same expres-
sion [2] applies for ratio measurements with CL(E) + Cy(E) and
0x(E) + Ryxy(E) = 04x(E)/0y(E). In a shape measurement (cross
section or ratio), the product Q aj remains undetermined and

only the energy dependence of the cross section is obtained:
S(E) = C . o(E) with C =1 aj an unknown factor. The central

expressions in (1) and (2) can be restated as
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which shows that background corrections are energy dependent
correction factors. Equations (1), (2) and (3), obvious to the
experimenter, were recounted here in order to show that i) no
additive terms occurs, and ii) the shape measurement is a
measurement of the energy dependence of the cross section with
an undetermined factor and not an undetermined bias. An evalu-—
ator who uses polynomials in fitting experimental data will not
find support for an interpretation of the aj-term of the polyno-

mial as a background of the measured values. In addition, the con-

stant background which enters as an energy dependent background-
to—-foreground ratio is usually small and well determined, thus of
negligible error and not adjustable.

IT.2. Overdetermination of the Data Base

If several measurements exist for the same unknown quantity,
it is well recognized that an overdetermination exists and it
is well accepted, that the best estimator for the quantity is
obtained as a weighted average of the measured values. This is
the least-squares—estimator, if it is based on the minimization
of the sums of the squares of the deviations between the measured
values and the average value.

Another form of overdetermination exists if a value was
measured for one quantity, another value for a second quantity,
and a third measurement was made, for example for the ratio or
sum of the two quantities. Obviously, three values were measured
for only two unknown quantities.

These two types of overdetermination are dealt with mathe-
matically identical. However, we note here that an important
difference may exist which makes the second type more valuable
for obtaining an unbiased estimator: Measurements of the same
quantity may be subject to similar errors, specifically the
psychological error explained below, and thus result in an biased
evaluated value. Measurements of different quantities are more
likely to be subject to different errors and therefore more
probably provide a data base with overall random errors.

Absolute measurements of several cross sections are of
equal value (assuming equal accuracy) and our best knowledge
of any one of these cross sections is determined by all of the
measurements 1f ratio measurements between them are available.
Because of the equivalence of any absolute measurement, a real
justification for declaring some cross sections "standards” or
even "primary standards” and "secondary standards" does not
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exist., However, defining some cross sections as “"standards"”
because their physical behavior provides for convenient detec-
tion schemes has resulted in a concentration of absolute

measurements on these cross sections. This permits us to limit

our considerations to these "standards” and some cross sections
which are important for applications and for which therefore
also absolute measurements were carried out.

Removal of the second type of overdetermination is sometimes
referred to as a consistency fit or a simultaneous evaluation
of several cross sections. Such simultaneous evaluations were
carried out, for example, for the thermal parameters [8], and for
standard, fission and capture cross sections [9,10}.

I1.3. Errors, Uncertainties, and Correlations

It is assumed that the experimental values have been reported
in terms of the following parameters.

E The average energy at which a value was measured,
AE The uncertainty of this energy,

Reg The energy resolution or energy spread,

J,R The measured cross section or ratio,

Ao The total uncertainty of the measured value,

Aogy The statistical uncertainty of the measured value

It is a basic feature of the measuring process to result in
uncertain values. The true uncertainty is composed of several
components, which may be subdivided as follows [9, 11, 12]:

Aog The normalization uncertainty, which is the uncer-
tainty of a,lz aj in Eqs. (1) and (2). This is

an energy independent systematic uncertainty and
thus totally correlated for all measured values
o(Ey). It contains the uncertainties of the
sample masses, calibration etc.
Ao The energy dependent systematic uncertainties
which were estimated or calculated from the uncer-
tainties of models and parameters used to cal-
culate corrections, background subtraction, energy
dependence of efficiencies, etc. Because of the
energy dependence of these uncertainties, these
errors correlate the measured values only par—

s
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tially, often causing larger correlations for
values at adjacent energies than between values
measured at substantially different energies.

Aoge The statistical uncertainty caused by the
limited number of events counted for the primary
reaction rates as well as for the background.
Note that the statistical error may become a

totally correlated systematic error if a shape
measurement is normalized to an absolute value or
if two segments are normalized to one another in
the overlap range.

boy The accidental error which may be revealed by
repeating the identical experiment (i.e. repro-
ducibility),

ao, The unknown error, which is systematic in nature

and_caused by not recognizing necessary corrections
or underestimating uncertainties,

Aops The psychological error which is caused by sat-—
isfaction with agreement obtained with values
reported by others, thus neglecting the search for
additional effects in the measuring process or
equipment which would require corrections, or, the
opposite, that is the dissatisfaction with a dis-
agreement with prior reported values and the sub-
sequent search for one-directional corrections.

The last three error sources affect the evaluation in a similar
way, that is, as an unkonwn error. However, their differences
help to understand some effects, for example historical trends
in reported cross sections as shown in Ref. 9.

We may differentiate between two types of correlations in
considering the interdependence between different measured values
caused by correlated errors:

i) Measurements of a cross section or ratio at different
energies in one experiment are usually made with the
same sample and detectors, thus all values are par-
tially correlated.

1i) Measurements of different cross sections may be based
upon the same neutron detection technique and thus
causes these measurements to be correlated. Correla-
tions between different measurements of the same cross
section may be caused because the same sample or the
same detector was used.
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Figure 3 shows schematically how the different types of errors

will influsnce an evaluation and what the correlation matrix for
the energy-dependent measurement will look like. We assume for
this demonatractlon an absolute measurement of a cross section as
a function of =nergy and one additional independent measurement
obtained only at one energye.
DOMINATING CORRELATION MEASUREMENTS/EVALUATION
ERRCR MATRIX - 1
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Fig. 1. The Effect of Dominating Errors on an Evaluation. The

Carrelation Matrix is Shown for the Energy-Dependent

Measuremeant.

Our knowledge is improved only at the energy where the addi-
tional measured value was obtained if the dominating error is
statistical. However, our knowledge is improved over the whole
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energy range by the additional independent measurement if the
dominating error is due to the normalization. The effect on
the evaluation result for dominant energy dependent errors is
similar as for the case of dominant normalization errors if the
energy dependence of the systematic errors is weak. Strongly
energy dependent systematic errors cause a "flexibility" of the
shape measured in the one experiment.

An additional cross section uncertainty is caused by the
energy dependence of the cross section and the energy uncer-
tainty, AE. This can be derived approximately from

2
2 2,9f
2 o (39)° pp2 ﬁ’_) (...i) 2
AoE (aa) AE€ + ¥ <3f 3% AE
i i
90 90 f

+2 X —-a—f—i———kAEZ (4)
1,k afi JE fk 9E

where the first term is the cross section uncertainty caused

by the energy dependence of the cross section and the second

term is that caused by the energy dependence of efficiencies

and corrections. The third term is a pairwise sum which causes

a reduction if two of the factors have the opposite energy depen—
dence. The first term usually suffices because of the second-
order nature of corrections and the choice of flat-efficiency
detectors. The same expression [4] applies for ratio measure-
ments with o0 + R. However, the cross section uncertainty of a
cross section measured relative to another cross section and

used as such in the evaluation is given by

dc 3o

2
2
2 = (3¢ 2 . (_R 2 _,90 R ,.2
8oy, (BE) AE +(3E) BE? - 2 o= —— 8EZ (5)

A measured value differs from the true cross section by the
true errors:

m 301
-— Af + v (6)

P
ik afi i i

o, = o°'+
k

k=1

where 04y is the measured value, 0, is the true cross section
304/3f4y is the sensitivity of the cross section to the k.th
factor used to derive the measured value, and Afj) 1is the
estimated uncertainty for this factor. The pj have some dis-
tribution (normal if the uncertainty is statistical) but are
unknown. Also unknown is the additional unknown error vy.

It is not possible to determine the true errors (along with the
true value 0,) because the system of equations obtained with
repeated measurements remains hopelessly underdetermined.
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[1.4. Eneryy Range, Average Cross Sections, Fluctuations
The energy range choosen for an evaluation which has the
alm of <btalning the best knowledge must be selected based on

reglons of available absolute data information. A limited
poergy range may be of interest for particular applications,
for example fast reactor design calculations. The best knowl-
gdge of the cross sections in this range is not only determined
by measurements within this range but by well known absolute
thermal and L4 MeV cross sections as well. Energy dependent
ahsolute and shape measurements provide the link between the
range of interest and such particular sources of information
as values at 0253 eV and 14 MeV.

We are interested here in the evaluation of average cross
gections. At thermal energy this is simply the value at
0.0253 &V, In the resolved resonance range bin average values
would be used. Above the resolved resonance range the cross
gection values at specific energies, averaged over fluctuatioms
which exist for =ome of the cross sections in the unresolved
egnergy range, are the subject of the evaluation. .

Experimental values measured in a range of fluctuating cross
gections depend on the resolution of the measurement and require
a correction in order to obtain average cross section values.
Such corrections can be obtained from high resolution measure-—
ments which are available for Au(n,Y), 23%U(n,Y) and 235y(n, £).
Where such measurements are not available (e.g. above 100 keV)
an error may be estimated by extrapolation from the high resolu-
tion data available at lower energies [15, 16, 17].

For many evaluations an energy grid is established for which
eross section values are obtained [9, 12, 13, 14, 17]. The
energy grid density should be choosen to present the gross
gtructure of the cross section. Somewhat different techniques
are used to obrain “experimental values" at these grid points.
The method used here and at previous occasions [12] is demon—
strated in Fig. 4. Experimental values from one data set which
are within the range given by the centers between neighboring
energy grid points are extrapolated to the grid point by using
the shape obtained from (in sequence of preference)

i) an analytical a priori representation of the cross
section (for example available for the H(n,n) cross
gectlon)

i1} & polynomial fit through neighboring points of an a
priori cross section.

The weighted average value is then obtained at the grid
energy point. The error of this point consists of the minimum
systematic error of the contributing data values and a reduced
statistical error.
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Fig. 4. Energy Grid and Procedure to Obtain "Experimental”
Values at a Grid Energy.

Another approach is used by Schmittroth and Schenter [14],
who introduce triangle or "roof” functions centered around the
grid point. This procedure corresponds to the above, using
linear extrapolation. Bhat [13] uses a polynomial fit of the
difference between the experimental values and an a priori cross
section. The latter procedure requires that grid values are
only picked where data are in the vicinity of the grid energy.
Tagesen et al. [27] form the average of data points adjacent to
‘the grid point (correcting for the energy dependence of the
cross section) and assign as an error the average error which
appears to be an overestimate.

III. THE EVALUATION OF THE EXPERIMENTAL DATA

III.1. The Least-Squares—Estimator

The method of least-squares—evaluation of overdetermined
data was devised by Gauss [18] (in prep school) and independently
by Legendre [19] about 180 years ago. Though Legendre's publica-
tion on the subject actually preceded that by Gauss, the latter
appears to be most frequently credited with this method in the
literature, presumably because it has been generally accepted
that he used the technique for some 10-15 years prior to its pub-
lication in all his calculations, and because he provided a
foundation for the theory of least—squares—estimation (actually
three successive explanations, the second basing on maximum
likelihood estimation, previously derived by Bernoulli, and the
third, the most general; based on the requirement of an unbiased
estimator of minimum variance).
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The unknown guantities in our consideration are the cross
spotions ag(Eg), where L refers to a specific reaction and Ej to
rhe energy grid values. The energy grid must be identical for
all ecross sectiong; however, not all cross sections need to be
fneluded at all grid points. Additional unkonwn quantities are
the normalization factors, ag, of the cross section shape and
raria shape measurements. WHe denote the unknowns in consecutive
arder with o, 07 ««s T4, 8}, a2 ecs 3R, where 01, 02 oo Of
are the cross sections at consecutive energy grid points for one
of the cross sectlons, 4], 0§42 esee Ok those for another, etc.

The values obtained from the experimental data at the grid
points with the procedure described above provide the n measured

yalues

m, = flay, o2 Opsh a1, a2 eee ag) 7
L

i=1 eee n

which overdetermine the system of j + & unknown quantities with
n— j- & degrees of freedom. The least—squares—procedure to
remove the overdetermination is to make ad justments, Vi, on the
measured values, my, in order to obtain a consistent set of
values

o = m + v - (8)

Making such adjustments, vy, is justified because the measured
values have errors, £4, and we may set vy = €5. We minimize the
adjustments such that

T A Min (9)

In order to obtaln a linear relationship between the measured
values, errors, and variables, oy, ak, we make a Taylor-series
expansion of £ around prior estimated values of o, a, which we
denote 8, &

f(s], O, ses G35 815 8y eee ag) = f(al, 62 cee 6j; d), 8y e ag)
df of
- = s y - ) — + cee
+ (o = 81) 55|, T (02 - 92 5,
y 8 8,a
P T, PR (10)
T =Toda) “
~18,4

and neglect the hipner order terms. In addition, we substitute
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S, N SENE § ,k=_k___k (11)

and make a transformation of the measured values

A ~ A

m, — £(8,,8p, «e. 8.3 A1,82 oo dp)

- 1 h|
M; = Bm (12)

where Amy is the squareroot of the variance of the measured
value, mj, i.e. the standard deviation. The set of linear
equations which we obtain is

3.
M= Z% 61 + € for cross section measurements (13a)
61/6k 61/6k
M = i 6i v 6k + € for ratio measurements (13b)
6i 6k
M=—6,+-— 6 + ... + € for total cross section
Am i Am 'k
measurements (13¢)
alai
M= 61 + e p‘ + € for cross section shape (13d)
measurements
4,8,/8, azai/ak azai/ak
Mo % "~ St —m PtE
for a ratio shape measurement, and (l3e)
M= ciéi + Citl 61+1 + cee e0e + E (13f)
¢, O, 8,
C, = —=—F—"5—"*" 7+— for an average cross section

1 z<"kAEk bm measurement.

Equations (l3a-f) give the expressions obtained for the dif-
ferent types of measurements considered here. Expressions for
other quantities can be obtained as easily.

These equations can be written as a matrix equation
M=A6+c¢ (14)
where M is the measurement vector, A is the coefficient matrix,
§ is the vector of the unknowns (actually containing p as well),

and € is the error vector. We obtain the least-squares estimator
for 6 by minimization of the scalar

F=e' Cj'e=(M~A8)Cyl (M~ A8) {15)

where Cy is the variance - covariance matrix of M, and T denctes
the transpose. We assume that the variance — covariance matrix,
Cyy of the measurements, my, is known and obtain the wvariance -
covariance matrix, Cy, from

Cy = QCqy Q (16)

where for a linear transformation, as above,

dMy dMz
dm; om; "
aM M=
Q= 1 .
dmg ding s (17)

Choosing the transformation Eq. (12) results in the correlation
matrix of the ariginally measured values

VAR=COVAR (M) = l:” = COR (m) . (18)
According ro the Gauss—Markov—=theorem, extended to correlated
measurements by Altken, the least-squares-estimator is an
unblased estimator with minimum variance. Minimization of F is
achieved with

aF

which ylelds the normal equations for 6,

Te-ly (20)

FENER) -
6 = (acpla) L a -

and following from error propagation
D s 3
G5 = (A CH A) (21)

88 the wvarlance — covariance matrix of the least-squares-
egtimator §. The results for the o'"s are derived from the &'s
and the varlance - covariance matrix, as above, from Cj
- 3 T R -
o= {1I'+6) =8 ,a=((+p) 8 ,Ci=0C0 , 22)

@, of course, derived from the different transformation.



Using, as an approximation, the assumption of uncorrelated
data yields

the identity matrix, and therefore

§ = (ATA)~! ATM (23)

with
C. = (ATA)~! (24)

We note that ATC~!A and ATC™!M in Eq. 20 have the same structure
and we can include M as an additional column vector in A. Instead
of inverting C we could then resolve the linear equation system
A = CB, where B = ATC'IAr+1, which is computationally faster and
more accurate. Likewise, the solution, 6, can be obtained from
the resolution of the linear equation system (ATBr)G = ATBr+1, if
we are not interested in the variance - covariance of the solu-
tion, ¢.

The formalism summarized above is represented in textbooks
too many to reference here, some of the more handy for applica-
tions are given in Ref. 20. In some of these FORTRAN Yrograms
ready to use for obtaining the solution, & = (ATc~la)~! (aTc-1lm),
are given, but usually only usable for small n. Software pack-
ages for matrix inversions and the resolution of linear equation
systems are readily available. At Argonne, a software package,
LINPAC, is available which was developed at Argonne in coopera-
tion with other laboratories and universities and is extremely
efficient [21].

The coefficient matrix, A, is of size N(=n) x R(=j+f). 1Its
structure is shown in Fig. 5. The elements, ajx, are the coef-
ficients from the Taylor series expansions (Eqs. 13a-f). Usually
no more than three elements in a row are nonzero. However, for
total cross section values, each partial cross section has a
nonzero entry. For average cross section data as many entries
as there are unknowns for this cross section are nonzero. Col-
umns are similarly nearly empty. But for shape data there are
as many entries as experimental values in the set. The coef-
ficient matrix consists of submatrices given by the experimental
data sets as Indicated in Fig. 5.

The correlation matrix, Cy, is of size N x N and its struc—
ture is shown in Fig. 6. It consists of submatrices around the
diagonal which correspond to the correlation matrices of par-
ticular data sets, and nonzero off-diagonal blocks which contain
the correlation coefficients between different experiments.
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Fige 5. The Entries into the Fig. 6. Schematic of the Cor-

Loefficient Matrix, A. relation Matrix, C.
A consistency least-squares-fit of measured values for two
activation cross sections of llsln, a ratio between them, and an
absorption cross section at thermal energy [22] may serve as a
very simple example for the application of the above formalism
to nuclear data. Four experimental values were available for
only two unknowns and a least-squares~fit provided a consistent
set of values. The same procedure was used to obtain consistent
data for several energy-dependent cross sections by employing
Eq. 23 [9]., The formalism has been applied more recently for the
evalu§tf:n of single cross sections as a function of energy using
Eq. 20 [42, 14].

The size of the presently considered system is not quite
that simple., We are concerned about the simultaneous evalua-
tion of ~10) cross sections, an energy grid of ~100 points ap-
pears desirable, and about 10 measurements are available per
cross scection (less for some, more for others; also ratio and
total cross section measurements would have to be counted).
Thus, we estimate that N ~ 10%. We find that the correlation
matrix, C, alone exceeds computer core memory by several orders
of magnitude. Since we recognized that many elements of the
coefficient matrix, A, and the correlation matrix, C, are zero,
sparce matrix storage and handling might be used (a sparce
matrix sofiware package, for example is available at the Harwell
Software Library). Inversion of the correlation matrix as
well as the subsequent matrix multiplication would take days
and appears cost—prohibitive.
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III.2. Approximations Used to Avoid the Monstrous System of
Normal Equations and Their Shortcomings

The easiest way out of the seemingly huge system of normal
equations (Eq. 20) would be to find approximations which are
well justified. Before considering such approximations, let
us first consider a procedure which is commonly used (probably
without realization that it is an approximation to the correct
least-squares procedure) and yields a biased estimator which is
not of minimum variance. .

T It is common practice to normalize cross sections, most
often obtained-relative to another cross section, at thermal
energies. Evaluators use such data by updating to the most
recent reference cross sections and thermal cross section value.
Then they obtain an (hopefully weighted) average values at all
energies higher than thermal. Subsequently the possible agree-
ments or discrepancies are pointed out and commended or lamented.
The procedure appears to be logical as the thermal value is the
preferable absolute value available for these measurements.
However, this procedure represents a separation of the general
least—squares prohblem into two steps, each of which may have been
handled by the least—squares method. The separation introduces
an approximation and results in a biased estimator which does not
have minimum variance. The difference between the "logical” use
of the available information and the least-squares procedure is
shown in Fig. 7. The answer is, of course, different. The dif-
ference (the bias) can be easily estimated. It will be $0.3%

if the shape values differed by ~10%, thus it is small compared
with the data difference. However, the difference for the
variance may be much larger, depending on its derivation for the
"logical" procedure.

"LOGICAL’

LEAST-SQUARES
EVALUATION

Fig. 7. Comparison of a "Logical” and the Least-Squares Evalua-
tion.
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Next, we consider approximations intentionally made to avoid
the size of the system given with Eq. 20. The major problem
appears Lo be the correlations which require Eq. 20 to be used
instead af Egq. 23. Correlations between experimental data sets
can be casily removed. Three different cross sections measured
by the same cxperimentalists using the same neutron flux detec—
tion technique or the same calibrated neutron detector provide
informatfon for one of these cross sections, say ¢,(E), and
the ratio between the other two, Ryp3(E) = 0,(E)/03(E). Measure-
ments of a4 cross section with the same sample as used in another
measurement of the same cross section can be used as a shape data
set, The correlations are _removed in each of these examples
without loosing much information. Most other sources for cor-
relations between different data sets were already removed by
using the originally measured quantities, e.g. ratios, for the
evaluation.

The major source of correlations between values of one data
set seems Lo be due to the normalization (mass, efficiency, etc.).
To give an example: The recent absolute measurements of the
ratioc between the cross sections 23%U(n,f) and H(n,n) by Kari [23]
have a total uncertainty of ~3% of which ~2.5% are due to the
normalization and ~1% due to statistics. Other measurements,
mostly for the shape of a cross section or ratio, have small
systematic and thus negligible correlated errors. For example,
the measurements of the shape of on’f(2350)/0n n(H) by Carlson
and Parrick [24] have an uncertainty of ~2-3% but only a 0.5%
systematic uncertainty.

This suggests to separate the evaluation of the shape from
the evaluation of the normalization. The data would be treated
as totally uncorrelated for the shape evaluation and as totally
correlated for the evaluation of the normalization. We immedi-
ately recognize that we obtain a biased estimator as a con-
sequence of separating the evaluation into two steps as shown
above. However, because the bias appears to be very small, this
will be acceptable. This procedure was used in various evalua-
tions [9, 12, 25].

The evaluation of the shape can be carried out in several
WaAYS:

1) The energy dependent absolute data and the shape data
are normalized to an 'a priori' cross section and then
a least-squares estimator is obtained [9]. The dis-
continuity of the available data information may result
in a dependence on the a priori cross section which
might not be removed in iterative steps.

17—Tie unknown normalization contained in the equations

ti31 can be removed by Gaussian elimination. This

corresponds to forming the ratio of the measured shape
data (or absolute data) to a value at any energy, Rix =
a*o(Ej)/a*o(Ex). The evaluation of the ratios, Rjy,

by least~squares methods then defines the shape of

the cross section [25].
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iii) Another method recently devised to avoid the small bias
introduced by separating the shape evaluation from the
normalization evaluation consists of shifting the shape
"up or down" parallel to the ¢ - axis.
to adding or subtracting a constant to the measured
values which appears to be in contradiction to the way
the experimental data are derived (see Eqs. 1-3, the
normalization is a factor, thus "shifting” would be
only permissible on a logarithmical scale). The prob-
lems this procedure creates can be easily demonstrated
if the shape measurements change over a large range.

For example, suppose two measurements of 23 U(n,f) were
quoted at thermal energy with 587b and 585b and at

30 keV with 2b and 1.9b, respectively, and they were
shifted to a new normalization value of 583b at thermal.
The result at 30 keV would be -1.05b.

III.3. The Solution of the Least-Squares Problem

We realize that Gauss and his contemporaries must have faced
a similar problem (as we do today) with the large number of the
normal equations. Of course, their data base was small compared
to ours, maybe 100-200 values where we have 10%, However, they
did not have a computer. And indeed, Gauss points out in his
supplement on the theory of least-squares [26] that, if a new
data value becomes available, the calculation does not have to be
repeated but the new value can be easily combined with the prior
result. Gauss proceeds to provide proof for this and draws the
obvious conclusion that reduced calculational effort will result
by subdividing a large data base and to obtain subset-estimators
which are to be combined in a subsequent step.

Using this suggestion, we first rearrange the sequence of
the experimental data sets in such a way, that those which are
correlated appear in one block. This results in a correlation
matrix shown in Fig. 8. A convenient feature of a super-matrix
of this type is that its inverse has the same structure and con-
sists of the inverses of the submatrices. The subdivision of
the matrix is given by the correlated and uncorrelated data sets.
The simple rules of matrix multiplications immediately lead to
the conclusion that C~!A has again a subdivision by data blocks,
as shown also in Fig. 8. Multiplication with the transpose of
the coefficient matrix, AT, however, does not retain this separa-
tion. But we realize that the resulting matrix B = ATC™!A has
elements, Bj), which are additive contributions from the dif-
ferent data blocks. The triple products which contribute to the
element, Byi, can be arranged in a similar geometric structure
as the structure of the matrix, C. The result of the above is
that we do not need to store the huge correlation matrix, C, we
do not need to invert it, which reduces the problem of computer

70

This corresponds

ATc A

Fig. 8.

time and

c/

| ¢, ; c'

CiA T

=

The Reordered Correlation MatrixT C, and the Separation
of Experimental Data Blocks in AIC A.

ftorage space by several c.:ders of magnitude. The con~-

tributions of the matrix product ATC™1A to the elements By
can be obtained by handling one correlated or uncorrelated data

block at
employed
required

The
obtained,
has been

Ehe time. Sparce matrix storage and handling can be
‘or the A matrix which further reduces the size of the

0D - loops.

Jﬁdition of a new data set, once a solution has been
decomes as straightforward as shown by Gauss [26] and

“xtended to correlated data as well [28]. The solution

after evaluating 1 experimental data blocks and obtaining a new,

(1 + 1)tt

obrained

! block which is uncorrelated with the previous data is
[rom

= Cy N (25)
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It has been shown by Schmittroth [45] that the inversion of the
matrix in Eq. (26) which is required for use in Eq. (25) can be
avoided.

It appears that the simplest procedure to add new informa-
tion would be to do this directly by addition to the matrix
elements, Bjk. A new measurement which is correlated with a
data set previously included in the evaluation would require to
first subtract the contribution from this set, combine it with
the new data and then to add the new correlated block. Use of
iterative steps in the evaluation appears also more straight-
forward by working directly with the Bjiy's.

I1I.4. The Variance - Covariance of the Result

Using the evaluation method outlined above provides the
variance - covariance matrix of the result, (ATC™!A)~! for cor-
related data, and (ATA)™! for uncorrelated data. We note that
off-diagonal nonzero correlation coefficients occur even if the
original data were (or were assumed to be) uncorrelated. The
source for these correlations of the result are the ratio and
total cross section measurements. It seems to be an obvious
advantage to obtain the variance - covariance matrix as integral
part of the evaluation process. In contrast, subsequent deriva-
tion of the uncertainty information appears to lead to many
problems. For example, if the evaluation was biased, the sub-
sequent derivation of the uncertainty will be unsymmetric.

The large amount of data contained in the correlation matrix
usually causes it to be given in a reduced form. Care must be
taken not to improperly extrapolate such information. The evalu-
ated results still have a random error contribution. Thus
.extrapolation should not be to the diagonal 1.0 but to a lower
value (see Fig. 9). However, if the evaluation result of the
experimental data was subsequently fitted with a nuclear model,
correlation increases for adjacent energies and a shape of the
correlation matrix indicated by the dashed line in Fig. 9 can be
expected.

The variance - covariance matrix in the above formalism is
derived from error propagation, based on the assumption of random
errors. Thus the variance of the estimator of a set of values,
0y, with weights, wy, is given by

L w (o, - a)2

V-0 «

(27)

i

NUCL. MODEL £
FIT ;

EXP. DATA EVAL.

Fig. 9. Graphical Representation of the Correlation Matrix of
the Result.

‘This probably will underestimate the true uncertainty of the

result as the errors are not truely random. The problem has
been often discussed but no unique answer exists. Grigoryan

et al. [29] adjust the variance based upon differences between
the external and internal errors by various combinations thereof,
based upon prior work by Birge [30]. Tagesen et al. [27] select
the larger of the external or internal error. Peelle [31] used

a x2 test and suggests to increase the uncertainties by sz.

III.5. The Use of the Solution and its Variance - Covariance in
Iterative Steps and Additional Analysis.

There are several reasons for using iterative steps, e.g.
repeating the evaluation after a result was obtained. A rather
trivial reason is that the Taylor-series expansions, Eqs. (13a-f),
result in some cases in non-zero higher order terms. Of greater
concern must be the influence of discrepant data on the result,
specifically if such data are quoted with small (internal) errors.
Usachev [32] points out that the evaluator obtains an improved
knowledge of the quantity and thus has a means to find possible
unknown errors of individual measurements. The problem is widely
discussed in the literature [33] but procedures differ and have
some subjective character. These methods range from rejection
(Chauvenet's criterion) to error adjustment. It appears in the
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area of nuclear data more often than once that a new measurement
resulted in values which were in disagreement with prior reported
data sets of good consistency but were later proven to be correct
or at least in the "right direction". Thus, the rejection of
data, employed for example by Tagesen et al. [27] is not to be
recommended. Introduction of weights based on the evaluators
judgment [10] appears to introduce subjective elements. The best
procedure seems to be to add an unknown error to the discrepant
measurement based upon a criterion for the probability that the
measurement result represents the true values. A lesser than
2.3% (2 standard deviations) probability seems to be sufficiently
cautious.

A more detailed analysis may be carried out and error
reassignment refined. A xz-test of the shape of a data set would
reveal whether statistical errors were appropriately accounted
for, or accidental errors occurred. It can be tested whether the
unknown error was due to the normalization or energy dependent
systematic effects. The reassigned error can then be accounted
for as totally or partially correlated.

IV. THE USE OF AUXILIARY INFORMATION

The result obtained from the evaluation of the experimental
data can be further improved by utilizing nuclear models. The
first obvious benefit comes from a fit of the evaluated data
with a nuclear model. The evaluated experimental data will show
local fluctuations which are caused by statistical (uncorrelated)
errors, data inccnsistencies and an insufficient number of input
data at some energy grid points. A nuclear model fit will remove
these fluctuations and provide a result which is highly correlated
for adjacent energies. This is shown for the capture cross
section of 238y in Fig. 10.

The nuclear model may also be used to obtain cross section
information which is independent on the evaluated experimental
cross sections, if other experimental data are available to
determine the model parameters. In case of the capture cross
section of 238U, the major parameters are

v The real optical potential strength,

Vg The energy-dependence of V,

Rp The radius of the real potential,

AR The diffusness of the real potential,

1Y) The imaginary optical potential strength,
Wg The energy—-dependence of W,
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Fig. 10. Theoretical Model Calculations for 238U(n,y).
Ry The radius of the imaginary potential,
A The diffusness of the imaginary potential,
Vsn The spin—orbit potential strength,
a The level density parameter related to nuclear
temperature, B
a The spin-cut—-off parameter of the level density,
Eg The energy of the giant dipole resonance,
I'g The width of the giant dipole resonance,
Ey,Jy,my Parameters of low lying levels of the target nucleus,
TTfU The gamma width over the average level spacing near

the binding energy.
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More refined models require the introduction of more parameters.
The optical model parameters, V through Vgp, can be determined
with total and scattering cross section measurements. Values
for the level density parameters are known from a variety of
sources. FY/D may be calculated from the level density formula
and the giant dipole resonance, however, the resulting values
are in substantial discrepancies with measured values. Thus,
one prefers to use FY/D as determined experimentally close to
the neutron binding energy.

In order to combine the cross section obtained from the
nuclear model calculation with the directly evaluated data,
its uncertainty has to be known. It consists of several
components:

i) The data uncertainties used to derive the model
parameters cause uncertainties of these parameters

ii) The model approximations cause uncertainties of the
predictions.

The former can be quantitatively determined, however, the latter
are much more difficult to assess. The next step is the deter—
mination of the sensitivity of the calculated cross section to
the model parameters and to obtain its uncertainty.

The cross sections obtained from the fit of the evaluated
experimental data can now be combined with the cross section
obtained from the nuclear model calculation which is based upon
other auxiliary data information by obtaining a weighted average.
This is shown in Fig. 10 using again 238U(n,Y) as an example.
Another approach would be to include the model prediciton with
its uncertainty in the original least-squares fit as an input
set.

V. COMPARISON OF VARIOUS EVALUATIONS

The least—squares fitting program used in 1970 [9] which
based on Eq. 23 was modified in order to include correctly cor—
relations according to Eq. 20. This program is called GMA
(for Gauss-Markov-Aitken) and follows the outline given in Sec-
tions III.1l and III.3. Results obtained with this program may
be compared with other evaluations for which approximations
were used. A first run was made using as input only data for
235y(n, f) and ratios to H(n,n) above 100 keV. This permits to
compare the GMA result with the evaluations by Konshin et al.
{34], Poenitz [12], and Bhat [35]. The data base used by
Konshin et al. was somewhat different from the one used by
Poenitz and by Bhat. Konshin et al [34] included correlations
in the determination of weights for the experimental data.
Their procedure differs from the commonly used method which
was summarized in Section III.l, however, should be expected
to lead to similar results. Poenitz [12] used approximations
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to handle correlations as outlined in Section III.2. Bhat
[35] emploved a technique of data fitting which was developed
by Forsvthe [36], neglecting correlations. Fission spectrum
average ..rogs sections were used by Poenitz but not by
Konshin et al. nor Bhat. The results from these evaluations
are compared in Fige. 11 with the result from GMA. Interative
steps [(see Section III.5) and nuclear model smoothening were
not yet applied in GMA.

< M7 T T TTTTT0 T T T TTTTIT0
i =
L 235U(n,f1
i =] GMA US DATA ONLY
| - POENI TZ/ANL/NDK
- %&llﬂ

Ll 11t 1)l |+ 111l

18] .0 10.0 20.0

NEUTRON ENERGY,MEV

Fig. 1l, Comparison of Several 235U(n,f) Evaluations.

The Agreement between the evaluations by Poenitz [12] and
by Bhat [353] is very good in the energy range from 100 keV
to & MeV and confirmed by the present GMA result. The evalua-
tion by Konshin et al. [34] differs by 2-3% in the energy
ranges 0. 8-1,5 MeV and 3.5-6 MeV. The difference appears to
be due to saveral factors: i) one particular data set has
an excessively high weight between 1 and 6 MeV, ii) the cross
section uncertainties due to energy uncertainties were not
taken inta account, and iii) the data base was lacking some
of the newer sets included by Poenitz [12] and by Bhat [35].



Konshin et al. [34] obtained between 8 and 12 MeV ~2.5%
higher values as a consequence of their higher values between
3.5 and 6 MeV, this means that they agree in shape with the
evaluation by Poenitz [12], a result also confirmed by GMA.
The evaluation by Bhat [35] differs above 8 MeV by ~2.5% and
more than 47 at 16 MeV. This appears to be the consequence
of not taking into account the correlated errors.

A more direct comparison can be made by consideration of
the ratio between values in the 8.0-8.5 MeV range vs. the
5.0-5.5 MeV range:

Experimental values

Kari [37] 1.687 * .028
Czirr and Sidhu [39] 1.688 £ .019
Poenitz [40] 1.745 = 061
Smith et al. [41] 1.625 = .036

Average 1.681 * ,015

Ratios from Evaluations

Konshin et al. [34] 1.703 £ ,029

Poenitz {12} 1.710
Bhat [35] 1.736
GMA (present) 1.680 = ,016

Correlated errors were taken into account in the calculation of
the experimental ratio values.
The least-squares consistency fit of data for 235U(n £),

197 Au(n,y), 238u(n, Y) and 6Li(n,a) resulted 10 years ago in
substantially lower 2 U(n f) cross section values than the
direct measurements would have indicated (Poenitz [9]). This
difference appears to be much less for the present data base,
e.g. the consistency of the experimental data has greatly im—
proved. Figure 12 shows the difference between the GMA result
for 235y(n, f), using 235U(n,f) data alone and using data on
235U(n,f), 238y(n,Y), 97Au(n Y), H(n,n), ®Li(n,a), ®Li(n,n),
108(n,a), 198(n,ay), and 19B(n,n), and ratios as well as total
cross sections for these reactions. This result may somewhat
change as all data were not yet included in the fit.
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Fig. 12, The Difference for 235(n, £) between an Evaluation of
31390({n, f) Data and a Simultanecus Evaluation of Several

Cross Sections.

The thermal cross section of *320(n,f) evaluated by
Leonsrd [37] (583.54 £ 2,92 b) was used as input for the fir.
The fitcing result is 588.6 % 2.5 by in better agreement with
a wvalue which would be obtalned from a consistency fit of the
2200m sec data (Lemmel [39]). The thermal cross section for
874fn,a) obtained from the GMA Fir fg 942.4 % 2.4 b in contrast
with 935.9 B presently used an ENDF/B-V. ﬂJ:UhgTr"DﬂﬁtLF"
appears to be that the GMA evaluated value for 235y(n, £) at
~14 MeV is lower than any of the measured values (by ~1.5%).

An interesting consideration is the H{n,n) cross section.
It is sometimes pointed out that cross sections measured
relative to the H{n,n) cross section should be preferred (or
heavier weighted) in an evaluatlon because the H{n,n) cross
gection is so well known. This appears to be a pseudological
or incomplete logical argument because the uncertainty of a
Cross section measurements does not depend on the uncertainty of
the reference cross section alone, but on its implementation as
well (besides other factors). The H{n,n) cross section is well
known because it is identical to the rotal cross section (above
thermal energles), but In c¢ross section ratio measursments it
ig used as a reaction cross section and the problems associated
With the determination of the reaction rate seem to have caused
discrepancies up to ~30%. The present fit indicates somewhat
lower ¢ross secrions for On j(l} at higher energies (>3 MaV).
This may be a consequence of 2331 U{n, ) absolute data which are
lower than those measured relative to H{n,n)
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VI. CONCLUSIONS AND RECOMMENDATIONS =
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It was shown that the simultaneous evaluation of the most Wl . ARAMINOWICZ. DRESLER [73] w [N
imgortant cross sections (standards and 238U(n,Y), probably ol 7 BARRALLET AL. [8a] ¥
23%py(n, f) to be added) is feasible. It is therefore recommended E X ﬂi;h;f:f:Ls'?;ﬁﬁ .
that these cross sections should be obtained from such evaluation B = | w MENLOVE ET AL. |87
for ENDF/B-VI. The merit of “"randomizing” the systematic errors % .| = picanD. wilLiamson (es] X
by involving several cross sections in a simultaneous evaluation S lia EaesTWOOL: (58] =
can be seen in Fig. 13. The average differences of two evalua- 52 o il e
tions in the 25 keV - 1 MeV energy range relative to the present i o
GMA result (average standard deviations are shown by dashed lines) ﬁ 1 "
are shown. In three out of four cases the prediciton from the =3 :
objective evaluation technique using a least—-squares consistency A 4
fit proved better than other evaluations at that time [43] and 2 . e i
even fall within the (somewhat optimistic) standard deviations g M o
of the GMA result. The fourth case is a standoff. 39
o
10 2 | S - S
% EN.DF/B-"I % ENDF/B- 111 12.00 13.00 14 00 1500 16.00 17,00 18.00 18.00 20.00 21.00
——_——, - ENERGY, MEV
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LS/POENITZ Fig. 14. Eﬁﬁa(n,?n}. A Sore Data Base and an Objective Evalua-
’s e T T T T T T 6— - tion.
10 \ 5uin,f) o L_LS Liln,al
1970 U 1970 1980
correct remains to be seen, but for now it may be noted that
5 20 : the evaluation which used all the available data appears to
¢ ENDF/B-1ll % ENDF/B-111 agree better with a prediction by Pearlstein's method for cal-
¢ " culating these cross sections.
aMA | wale e shieame se aeg GMA
! * ) == e ey = VI.2. Data Reporting and Data Files
° LS T
LS Fagt data reporting has been insufficlent, speecifically
' 187, when larger amounts of data were involved. The information
- 1 _ 238“'"”' 20 Auln.y) nesded from the experimenter is, besides the values E, AE,
1970 1980 1970 1980 Res, Ao, Aogy (gee Section IIL1.3), the error components for
each data point. This could be stored in a standard format on
Fig. 13. Comparison of ENDF/B-III and a Least-Squares Evaluation a data file, for example
with Present GMA Results. The Average Differences are
Shown in Chronological Order. 4op (normalization uncertainty, in percent)
Subjective evaluation might be very temptin specificall
if the data base is ver poor% An examgle 12 shE;n En Fig. 14? (E, V, AE/E, Res/E, &Vpqe/V, &Vge/V, &g, 1 = 1 so.kly,
Available data for the 23Na(n,2n) cross section are discrepant g
and some evaluators choose one data set above all the others. o LS

The evaluation shown in the graph was based upon all available
data (Adamski et al. [44]). Which evaluated result will prove
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for example in 2E10.4, 15F4.1. Here E is the energy, V the
measured quantity, AE/E the energy uncertainty, Res/E the
resolution, AVpo¢/V the total error, 4Vgy/V the statistical
error, and A{ the 11 most important energy-dependent error
components; all but E and V in percent. The most important
point is that the experimenter gives this information for the
actually measured quantity and all the subsets obtained in
the experiment. It seems not required that the experimenter
derives the variance - covariance matrix for his data, it
certainly would be undesirable if that is given instead of
the information requested above. The variance - covariance
matrix reduces the detailed information and besides requires
more storage space.

VI.3. Improvement of Knowledge

Our knowledge of the cross sections important for practical
applications is determined by the experimental data base. In
order to improve our knowledge we have two options:

i) to reanalyze the data base at hand
ii) to add to this data base improved information.

A decision which choice to make will depend on the cost-
efficiency much more than anything else. A recent study of past
measurements of v of 252Cf cost about one man year {45]. Ten
measured values are in that data base of which four were re-
analyzed. We have to deal with ~104-10% data values in several
hundred data sets. This suggests an expenditure of ~100 man
years and we suggest that this will not be cost-effective. Past
data give us a standard deviation of ~1% for the evaluated cross
section of 235U(n,f) and ~2-3% for 238U(n,y). Working these
data over which have at best 2-3%Z uncertainties and differ by

up to 10% for 235U(n,f), and have uncertainties of ~3-5% and
differ up to 20% for 238U(n,y) will not improve our knowledge
significantly. It is suggested that instead of reshuffling

the same old data, a new generation of measurements should be
made. These new measurements must be usable to test the sig-
nificance of our prior kowledge. For 2isU(n,f)~and 238y(n,y)
this means that only measurements with <1% and <27%, respec-
tively, will have any significance.
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snother Important question which should be ask is whether
j£ will be cost-effective to attempt to recover all the
decalled error information of past experiments. An answer can
he obtained by assuming the extreme cases for these unknown
arrors (see Fig. 3). If the results are not significantly dif-
ferent, it will not be cost-effective to expend the resources
on the task of improving our knowledge of the detailed errors.
4 test of this kind was made with GMA and showed that for the
presently considered cross sections and their data base the
results are not sipgnificantly different.
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