Analysis of ¹⁰²Tc, ¹⁰⁴Tc, ¹⁰⁵Tc, ¹⁰⁶Tc, ¹⁰⁷Tc, ¹⁰⁵Mo and ¹⁰¹Nb measurements

María Dolores Jordán

IFIC, CSIC-University of Valencia

Consultants' Meeting on "Total Absorption Gamma-ray Spectroscopy (TAGS)" IAEA Headquarters, Viena, 27-28 January 2009

- High priority request list
- Experiment
 - Experimental technique
 - Experimental setup
- Analysis of the data
- Results
- Conclusions

High priority request list

- Experiment
 - Experimental technique
 - Experimental setup
- Analysis of the data
- Results
- Conclusions

High priority request list

Radionuclide	Priority	Radionuclide	Priority	Radionuclide	Priority	1
35-Br-86	1	41-Nb-99	1	52-Te-135	2	
35-Br-87	1	41-Nb-100	1	53-I-136	1	1
35-Br-88	1	41-Nb-101	1	53-I-136m	1	1
36-Kr-89	1	41-Nb-102	2	53-I-137	1	1
36-Kr-90	1	42-Mo-103	1	54-Xe-137	1	1
37-Rb-90m	2	42-Mo-105	1	54-Xe-139	1	
37-Rb-92	2	43-Tc-102	1	54-Xe-140	1	1
38-Sr-89	2	43-Tc-103	1	55-Cs-142	3	
38-Sr-97	2	43-Tc-104	1	56-Ba-145	2	1
39-Y-96	2	43-Tc-105	1	57-La-143	2	
40-Zr-99	3	43-Tc-106	1	57-La-145	2]
40-Zr-100	2	43-Tc-107	2			
41-Nb-98	1	51-Sb-132	1			

High priority request list

Experiment
Experimental technique

Experimental setup

- Analysis of the data
- Results
- Conclusions

The experiment

- Ion Guide Isotope Separator On-Line (IGISOL) facility, University of Jyväskylä (Finland).
- Use of the JFL TRAP as a high resolution separator (first time that this kind of setup was used combined with a TAS)

JFLTRAP mass resolution

IGISOL layout

- 1) Ion guide
- 2) K130 cyclotron beamline
- 3) Beam dump
- 4) Acceleration chamber
- 5) Dipole magnet
- 6) Switchyard
- 7) RFQ cooler
- 8) Tandem penning trap
- 9) Miniquadrupole deflector
- 10) Electrostatic deflector and beamline to upstairs
- 11) Experimental setups

Some details...

Fission Ion guide: 2700 ions/s per mb, eff. of 1.6x10⁻⁴ relative to the production in the target

Details of our experiement:

- Beam: 30 MeV proton (4 µA)
- Target: natural U
- Target thickness: 15 mg/cm²
- Target dimensions: 10x50 mm, tilted 7 degrees

IGISOL layout

- 1) Ion guide
- 2) K130 cyclotron beamline
- 3) Beam dump
- 4) Acceleration chamber
- 5) Dipole magnet
- 6) Switchyard
- 7) RFQ cooler
- 8) Tandem penning trap
- 9) Miniquadrupole deflector
- 10) Electrostatic deflector and beamline to upstairs
- 11) Experimental setups

Our experimental setup

- High priority request list
- Experiment
 - Experimental technique
 - Experimental setup
- Analysis of the data
- Results
- Conclusions

Analysis of the data

$$d_i = \sum_j R_{ij} f_j$$
 or $\mathbf{d} = \mathbf{R} \cdot \mathbf{f}$

R is the response function of the spectrometer,

 R_{ii} means the probability that feeding at a level j

gives counts in data channel *i of the spectrum*

Level scheme:

- For low energies: high resolution measurements from databases
- For unknown part: statistical model (level densities, strength function)
- Response for β and γ: Monte Carlo simulation

Analysis of the data

$$d_i = \sum_j R_{ij} f_j$$
 or $\mathbf{d} = \mathbf{R} \cdot \mathbf{f}$

- Analysis techniques:
 - J.L. Taín, D. Cano-Ott, Nucl. Instr. And Meth. A 571 (2007) 728
 - D. Cano-Ott, J.L. Taín, A. Gadea, B. Rubio, L. Batist, M. Karny, E. Roeckl, Nucl. Instr. And Meth. A 430 (1999) 333

Some relevant data

Isotope	T _{1/2} [s]	Q _β [keV]	Predicted number of levels	Beta intensity to g.s. [%] (HR)	g.s. J¤ (Parent) (HR)	g.s. J ^π (Daughter) (HR)
¹⁰¹ Nb	7.1(3)	4569(18)	4537	40 (13.5 keV)	(5/2⁺)	1/2+
¹⁰² Tc	5.28(15)	4532(9)	372	92.9	1+	0+
¹⁰⁴ Tc	1098(18)	5516(6)	2030		(3⁺)	0⁺
¹⁰⁵ Tc	456(6)	3746(6)	1769	<9	(3/2-)	3/2⁺
¹⁰⁵ Mo	35.6(16)	4950(50)	82058	<4	(5/2-)	(3/2-)
¹⁰⁶ Tc	35.6(6)	6547(11)	68358		(1,2)	0+
¹⁰⁷ Tc	21.2(2)	4820(90)	44572	22	(3/2-)	(5/2)⁺

- High priority request list
- Experiment
 - Experimental technique
 - Experimental setup
- Analysis of the data
 - Results
- Conclusions

Results for ¹⁰¹Nb

Results for ¹⁰²Tc

Results for ¹⁰⁴Tc

Results for ¹⁰⁵Tc

Results for ¹⁰⁵Mo

Results for ¹⁰⁶Tc

Results for ¹⁰⁷Tc

- High priority request list
- Experiment
 - Experimental technique
 - Experimental setup
- Analysis of the data
- Results
 - Conclusions

In numbers...

	Nuclide	Energy Type	ENDF/B-VII (& Jeff 3.1) [keV]	TAS Experiment [keV]	Differences [keV]
	¹⁰¹ Nb	beta	1833 (307)	1797	-36
	(7.1 s)	gamma	244	445	201
	¹⁰² Tc	beta	1945 (15)	1933	-12
	(5.28 s)	gamma	81 (10)	110	29
	¹⁰⁴ Tc	beta	1590 (75)	930	-660
	(1098 s)	gamma	1890 (30)	3229	1339
	¹⁰⁵ Tc	beta	1310 (173)	764	-546
	(456 s)	gamma	668 (19)	1825	1157
	¹⁰⁵ Mo	beta	1902 (122)	1076	-826
	(35.6 s)	gamma	548	2347	1799
_	¹⁰⁶ Tc	beta	1938 (69)	1463	-475
	(35.6 s)	gamma	2190	3119	929
	¹⁰⁷ Tc	beta	2030 (254)	1276	-754
	(21.2 s)	gamma	511	1795	1284

Energies

$$\begin{split} E_{\beta} &= \sum_{i} r(E_{i}) \frac{f_{\beta}(-E_{i})}{f_{0}(-E_{i})} \qquad E_{\gamma} = \sum_{i} r(E_{i})(Q_{\beta} + E_{i}) \\ f_{\beta}(-E) &= \int_{1}^{-E/-mc^{2}+1} mc^{2}(E_{0} - 1)pE_{0} \bigg(\frac{-E}{mc^{2}} + 1 - E_{0} \bigg)^{2} F(Z_{d}, E_{0}) dE_{0} \\ r(E_{i}) &= \frac{I_{\beta}(E_{i})}{\sum_{i} I_{\beta}(E_{i})} \end{split}$$

Results of the analysis for ¹⁰²Tc

