

Overview of ongoing/planned TAS measurements

Jose L. Tain

tain@ific.uv.es http://ific.uv.es/gamma/

Instituto de Física Corpuscular

C.S.I.C - Univ. Valencia

The TAS technique

 Total Absorption Spectroscopy is the best method to measure beta intensities/strengths for complex decay schemes

• Avoids the "Pandemonium effect" (displacement of β -intensity to low E_x) of the high resolution spectroscopy

Relation between β -strength S_{β} and β -intensity I_{β} :

$$S_{i} = \frac{I_{i}}{f(Q_{\beta} - E_{i})T_{1/2}}$$

The importance of I_{β} / S_{β}

- It is a characteristic and basic property of the nuclei
- It is (very) sensitive to the nuclear wave function
- \rightarrow we can learn about nuclear structure
- Decay γ -ray, β -ray and ν distributions can be deduced

An accurate knowledge of the distribution of the β -decay probability over the daughter-nucleus levels provides information for the understanding of the structure of nuclei of importance on its own or for other fields as astrophysics

 Basic process: simple and sensitive to the wave function

$$\left|\left\langle \Psi_{f} \left| au^{\pm} \ or \ \sigma au^{\pm} \right| \Psi_{i} \right
angle
ight|^{2}$$

• In general the bulk of the strength lies outside the Q_{β} window

Exception: • β+/EC for A~150, A~100, N~Z

Mono-energetic neutrino beams ("beta beams")

Improved neutrino oscillation experiments exploiting the energy dependence:

$$\begin{split} P(\nu_e \to \nu_\mu) &\simeq s_{23}^2 \, \sin^2 2\theta_{13} \, \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E}\right) + c_{23}^2 \, \sin^2 2\theta_{12} \, \sin^2 \left(\frac{\Delta m_{12}^2 L}{4E}\right) + \\ &\quad + \tilde{J} \, \cos \left(\delta - \frac{\Delta m_{13}^2 L}{4E}\right) \, \frac{\Delta m_{12}^2 L}{4E} \sin \left(\frac{\Delta m_{13}^2 L}{4E}\right), \end{split}$$

Accelerated (γ~100) and stored β⁺/β⁻ emitters
variable end-point V_e and V
_e
monochromatic V_e ?

¹⁴⁶ Gd	ID	Parent Nucleus	Daugther Nucleus	Half-life	(EC+β+)/α branch of the decay	EC int. [%] (to the level of interest)	Ex Daugther Level [keV]	 [%]	Q value [keV]	Yield (ISOLDE) [atoms/µC]
region	1	¹⁴⁸ 65Dys2	¹⁴⁸ 65Tb83	3.1 m	100*	92.5	620	96	2678	2.9x10 ⁸
	2	¹⁴⁸ 68Er80	¹⁴⁸ 67H081	4.6 s	100*	8.8	0.0 (+?)	70 (+?)	6800	5
	3	¹⁵⁰ 68Er82	¹⁵⁰ 67H083	18.5 s	100*	59.4*	476+X	99.6	4108	7x10 ⁶
	4	¹⁵⁰ 86DY84	150 ₅₅ Tbas	7.17m	64/36	64.0*	397+ ¥	64	1794	2.4x10°
	5	¹⁵² 70YD82	¹⁵² 69Tm83	3.1s	100*	29.0	482	88	5470	×
	6	¹⁵² 69Tm83	¹⁵² 68Ef84	8s	100*	50	4300	Res.	8700	Υ.
	7	¹⁵² 58Er84	¹⁵² 67H085	10.3s	(10/90)	8.0	179.4	10%	3105	7x10 ⁷
	8	¹⁵⁴ 72Hf ₈₂	¹⁵⁴ 71LU83	2s	100*		-	2.	6700	(Difficult)
	9	¹⁵⁴ 70Yb84	¹⁵⁴ 69Tm85	0.404s	(7.2/92.8)	3.3	133.2	7.2	4490	2x10 ³
	10	¹⁵⁴ 60Ef66	⁴⁵⁴ 57H087	3.73m	99.53/0.47	96.8	26.9	99.53	2032	6x10 ^a
	11	¹⁵⁶ 72Hf ₈₄	¹⁵⁶ 71LU85	25ms	(alpha>81%)	-	-	-	5910	-
	12	¹⁵⁶ 70Yb ₈₆	¹⁵⁶ 69Tm87	26.1s	90/10	61.0	115.2	90	3570	3.2x107
	13	15588E#88	156 ₆₇ H089	19.5m	<u>100*</u>	58 (+38)	82.1 (+87.5)	58 (+38)	1370	6x10 ^s

EC beam candidates:

- "single" state populated
- large EC/ β^+ ratio
- appropriate half life
- small other-radioactivities
- good production

Old LBL TAS @ GSI data reanalyzed!

data reanalyzed!

Other candidates to be investigated ... ISOLDE?

Region of shape coexistence: neutron deficient Pb, Hg, Pt isotopes

Lucrecia @ ISOLDE

Recent measurement (Nov08) using RILIS of ^{192,190,188}Pb

A. Algora et al. Debrecen, Madrid, Surrey, Valencia IGISOL separator + ion guide source: refractory elements

TAS measurementsJYFLTRAP Penning trap:@ Univ. Jyvaskylaisotopic purification

Measurement of Nb, Mo and Tc isotopes for Reactor Decay Heat

Valencia, Jyvaskyla, Debrecen, Gatchina, Surrey

Table 3: Requested TAGS Measurements.

Status 27-01-09	Radionuclide	Priority	Q _β (keV)	Half-life	Comments
	35-Br-86	1	7626(11)	55.1 s	
	35-Br-87	1	6852(18)	55.65 s	Complex known decay. Also (β^- , n) branch
-	35-Br-88	1	8960(40)	16.36 s	(β^-, n) branch.
	36-Kr-89	1	4990(50)	3.15 min	Incomplete decay scheme.
	36-Kr-90	1	4392(17)	32.32 s	Incomplete decay scheme.
	37-Rb-90m	2	6690(15)	258 s	Repeat of INL TAGS measurement – data check.
	37-Rb-92	2	8096(6)	4.49 s	Small (β^- , n) branch.
	38-Sr-89	2	1493(3)	50.53 d	
	38-Sr-97	2	7470(16)	0.429 s	Short half-life (0.429 s), and possible (β^- , n) branch.
	39-Y-96	2	7096(23)	5.34 s	
	40-Zr-99	3	4558(15)	2.1 s	
	40-Zr-100	2	3335(25)	7.1 s	
	41-Nb-98	1	4583(5)	2.86 s	
	41-Nb-99	1	3639(13)	15.0 s	
	41-Nb-100	1	6245(25)	1.5 s	
-	41-Nb-101	1	4569(18)	7.1 s	
	41-Nb-102	2	7210(40)	1.3 s	
	42-Mo-103	1	3750(60)	67.5 s	
-	42-Mo-105	1	4950(50)	35.6 s	
	43-Tc-102	1	4532(9)	5.28 s	
	43-Tc-103	1	2662(10)	54.2 s	
	43-Tc-104	1	5600(50)	18.3 min	
-	43-Tc-105	1	3640(60)	7.6 min	
-	43-Tc-106	1	6547(11)	35.6 s	
-	43-Tc-107	2	4820(90)	21.2 s	
	51-Sb-132	1	5509(14)	2.79 min	
	52-Te-135	2	5960(90)	19.0 s	
	53-I-136	1	6930(50)	83.4 s	Incomplete decay scheme.
	53-I-136m	1	7580(120)	46.9 s	
-	53-I-137	1	5877(27)	24.13 s	(β^{-}, n) branch.
	54-Xe-137	1	4166(7)	3.82 min	Incomplete decay scheme.
	54-Xe-139	1	5057(21)	39.68 s	
	54-Xe-140	1	4060(60)	13.6 s	
	55-Cs-142	3	7308(11)	1.69 s	(β^{-}, n) branch.
	56-Ba-145	2	5570(110)	4.31 s	Repeat of INL TAGS measurement – data check.
	57-La-143	2	3425(15)	14.2 min	Repeat of INL TAGS measurement – data check.
	57-La-145	2	4110(80)	24.8 s	Repeat of INL TAGS measurement – data check.

(Barcelona-Valencia-Madrid-Jyvaskyla-Debrecen-**Proposal approved** Gatchina-Surrey-Caen) at JYFL-Jyvaskyla

- Isotopes: ^{87,88}Br, ^{94,95}Rb, ¹³⁷I
- Production: U(p,f) or (d,f)
- Separation: IGISOL + Penning-Trap
- Detection: TAS + $4\pi n$ + nTOF
- (+ β -det + Ge-det)

ß detector

Side view

- Determine: I_{β} , P_{n} , E_{n}
- Interest for r-process
- Reactor decay-heat and reactivity
- Testing of principles

New Surrey-Valencia Total Absorption Spectrometer

- efficient, compact
- cascade multiplicity
- good timing (neutron bckg. reduction)
- gain stabilized (α-peaks)

Also for experiments at ALTO, DESIR, ...

Both measurements are subject to several sources of systematic error: No reason to believe Rudstam et al. superior to Greenwood et al.

Comparison of average γ- and β-energies from TAS (Greenwood et al. NIMA 390, 95) with direct measurements (Rudstam et al. ADNDT 45, 239)

Consistency check for R:

 $\langle \boldsymbol{E}_{\gamma} \rangle + \langle \boldsymbol{E}_{\beta} \rangle + \langle \boldsymbol{E}_{\nu} \rangle = \boldsymbol{Q}_{\beta}$

Reactor neutrino spectrum: neutrino oscillations and homeland security

How well known is the reactor anti-neutrino spectrum?

New collaboration: M. Fallot, L. Giot (Subatech-Nantes) D. Lhuillier (CEA Saclay)

Neutron capture is the source of elements heavier than iron

The interplay between β -decay and (n,γ) determine the isotopic abundances

• For the s-process (close to stability) the relevant quantity (except at branching points) is $\sigma_{(n,\gamma)}$ (experimental)

For the r-process (very far from stability) the relevant quantity is T_{1/2} (theoretical)
 trimming of the codes to reproduce S_β may help to improve their predictive power

Example: Ni isotopes (taken from A. Lisetskiy)

Quenching for GT operator: up to q=0.37! (Standard value is 0.70-0.75)

Anomalous quenching or wrong S_{β} distribution?

Example: ¹⁰⁴Tc QRPA: P. Möller & K.L. Kratz T1/2=2.7 min (Exp: 18.3 min)

A related but more general nuclear structure question: Is the shell structure altered at extreme isospin values?

DESPEC experiment of the NUSTAR collaboration

New TAS under development

Valencia, Madrid, Gatchina, Darmstadt, Debrecen, St. Petersburg, Surrey

Fast ions active stopper: Stack of DSSSD

GANIL/SPIRAL1/SPIRAL2 facility layout

Regions of the Chart of Nuclei Accessible with SPIRAL 2 Beams : LINAG & RIB

