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NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies
in the field of microscopic nuclear data. The primary objective is the
dissemination of information in the comprehensive form required for nuclear
technology applications. This Series is devoted to: a) measured microscopic
nuclear parameters, b) experimental techniques and facilities employed in
measurements, c) the analysis, correlation and interpretation of nuclear
data, and d) the evaluation of nuclear data. Contributions to this Series
are reviewed to assure technical competence and, unless otherwise stated,
the contents can be formally referenced. This Series does not supplant
formal journal publication but it does provide the more extensive informa-—
tion required for technological applications (e.g., tabulated numerical data)
in a timely manner.
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FAST-NEUTRON INTERACTIONS WITH 182y, 184y anq 186y*+
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P. T. Guenther, A. B. Smith and J. F. Whalen
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Argonne, Illinois 60439 U.S.A.

ABSTRACT

Neutron total cross sections of 182W, 184y and 185y are
measured from 0.3 - 5.0 MeV at intervals of $50 keV to accur-
acies of 1 - 3%Z. Differential neutron elastic~ and inelastic-
scattering cross sections of the same three isotopes are measured
at scattering angles in the range 20 - 160 deg. and at incident-
neutron energy intervals of =~100 keV from 1.5 - 4.0 MeV. Ap—-
proximately thirty scattered-neutron groups are observed for each
of the isotopes. Prominent of these are excitations attributed
to collective rotational and vibrational bands. The experimental
results are interpreted in terms of optical-statistical and coupled-
channels models with particular attention to the direct excitation
of ground-state-rotational and B- and Y-vibrational bands. The
strengths of the direct interactions and the magnitudes of the
collective deformations are inferred from the interpretations and
compared with similar values previously reported elsewhere. The
experimental results are used to deduce experimentally-based
evaluated data sets for 182W, 184y and 186y over the energy range
0.1 - ~5.0 MeV.

Keywords: Nuclear Reactions: Measured op(total) of 1BZW, 18“w, l86W,
0.3 - 5.0 MeV; Measured do/dﬂn (elastic and inelastic)
1.5 - 4.0 MeV, 20 -160 deg.; Optical-statistical and coupled-
channels model interpretations.
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I. INTRODUCTION

The fast-neutron interaction with the even isotopes of tungsten 1is of
basic and applied interest. Aggroximately 85% of the element consists of
the isotopes 182W, 18“w, and ! . These isotopes lie at the upper extreme
of a region of static deformation where the degree of deformation 1s ex-
pected to change significantly in four mass units (I-1). Thus, these
isotopes offer an unusual opportunity to study the effects of changing
deformation on the neutron interaction at few-MeV neutron energies. Such
interactions at these energies are a mixture of compound-nucleus and direct-
reaction processes not easily studied using charged-particle probes.
Neutron excitation of collective rotational and/or vibrational states can
be large (I-2), and anomalous excitation of the ground-state rotational
band in the complimentary region of changing deformation near A=150 has
been reported (I-3). It has been suggested that collective excitations
are charge dependent (I-4), a postulate that can be examined by comparing
parameters deduced from neutron measurements with those reported from charge-
sensitive studies (e.g., from proton scattering and coulomb excitation
measurements). It has been suggested that neutron total cross sections
in this region are sensitive to the character of the deformation (I-5)
and observed neutron total cross sections have been interpreted in terms
of quadrupole and hexadecupole deformations (I-6). Neutron differential-
elastic—-scattering distributions are also sensitive to deformation, par-
ticularly at large scattering angles (I-7) and the direct—neutron ex-—
citation of the ground-state rotational band can be much larger than the
compound-nucleus contribution in the several MeV region (I-8).

Elemental tungsten is employed in high-temperature nuclear-energy
systems. Some nuclear properties of the even isotopes of tungsten are simi-
lar to those of a number of nuclides in the fission—-product and actinide
regions (e.g., to even rare—earth, uranium, and plutonium isotopes) which
are of considerable applied importance but very difficult to experimentally
study. Because of these experimental difficulties recourse if often made
to theoretical models. The validity of such models is ultimately based upon
experimental observation and the present experimental studies of the even
isotopes of tungsten provide such a foundation.

The goal of the present work was an improved knowledge of the experi-
mental and calculational understanding of the fast-neutron interaction with
the even isotopes of tungsten in the few-MeV region. The experimental
methods are outlined in Section II. Section III presents the experimental
results and Section IV deals with their interpretation in the context of
optical-statistical and coupled-channels models. Section V presents a
limited experimentally-based evaluation of the cross sections dealt with
in the present study.



References, Section I.

I.1.

I.2.

I.3.

I.4,

105.

I.6.

I.7.

I.8.

Table of Isotopes, 7th Edition, Eds. C. M. Lederer and V. S. Shirley,
John Wiley and Sons, Inc., New York (1978).

D. Chase, L. Wilets and A. Edmonds, Phys. Rev., 110, 1080(1978).

D. Coope, S. Tripathi, M. Schell, J. Weil and M. McEllistrem,
Phys. Rev., Cl6, 2223(1977).

V. Madsen, V. Brown, S. Grimes, C. Poppe, J. Anderson, J. Davis and
C. Wong, Phys. Rev., Cl3, 548(1976).

R. Shamu, E. Berstein, D. Blondin, J. Ramirez and G. Rochau,
Phys. Lett., 45B, 241(1973).

Ch. Lagrange, National Soviet Conf. on Neutron Physics, Kiev (1975).

P. Guenther, "Elastic and Inelastic Neutron Scattering from the Even
Isotopes of Tungsten,” Univ. of Ill. Thesis (1977).

P. Guenther, D. Havel and A. Smithé "Fast-neutron Excitation of the
Ground-state Rotational Band of 23 U," Argonne Natl. Lab. Report,
ANL/NDM-16, (1975).



-3=

II. EXPERIMENTAL METHODS

A. Samples

The present measurements employed the three isotopically-enriched
tungsten samples defined in Table II-1. The samples were fabricated into
right-circular cylinders of metallic tungsten using powdered-metallurgical
procedures at Oak Ridge National Laboratory (II-1). The sample densities
approached that of the elemental metal. Chemical impurities were negli-
gible. It was assumed that the samples were of uniform density although
this assumption could not be verified by destructive assay. The similar-
ity of the respective cross sections of the prominent isotopes and the high
enrichments of the samples resulted in corrections for minor-isotope content
generally much smaller than the experimental uncertainties and thus such
corrections were ignored. All cross sections reported herein are stated
in terms of "effective atom” of the respective sample. The measurement
procedures involved reference-standard samples of hydrogen (polyethylene)
and verification samples of elemental carbon all of which were fabricated
to the same dimensions as the isotopic tungsten samples. Some ancillary
measurements employed elemental tungsten and the requisite samples were
machined from high—chemical-purity elemental bar stock.

Table II-1. Measurement Samples

Identification 182y 184y 186y
Weight (gm) 125.7 125.9 124.9
Radius (cm) 1.048 1.041 1.038
Height (cm) 1.996 1.994 1.989

Isotopic Abundance? in Atom—percent

180y <0.05 <0.05 <0.05
182y 94.9 1.38 0.58
183y 1.58 1.84 0.41
184y 2.39 98.88 1.34
186y 1.17 2.89 97.66

8Values provided by Oak Ridge National Laboratory assay.
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B. Neutron Total-cross—section Measurements

The neutron total-cross—section measurements were made using the mono-
energetic-pulsed-beam facility at the Argonne Fast Neutron Generator. This
facility and its application to total-cross~section measurements have been
described elsewhere, therefore only an outline is given here (1I-2).

The 7Li(p,n)7Be reaction was used as a neutron source with the source
dimensions confined to a 23 mm diameter spot (II-3). The proton beam was
pulsed at a 2 MHz repetition rate with a pulse duration of zl1 nsec. The
mean neutron energy was determined to within %10 keV by control of the
proton energy and verified by the observation of well known resonances in
a number of materials (e.g., carbon) (II-4,5). The neutron source was sur-
rounded by a massive shield with a 1 cm diameter collimating aperture at a
zero-degree source-reaction angle. The collimated beam was incident on the
transmission samples placed 225 cm from the collimator exit. The samples
were mounted upon a wheel with neutrons incident upon the sample-cylinder
bases. The wheel concurrently contained a number of measurement samples, a
carbon reference sample and one or more void positions and was rotated in a
stepping motion so as to change the sample (or void) positions twenty or
more times a minute. No independent monitoring of source intensity was
required. A proton-recoil-scintillation detector was placed 4-7 m from the
transmission samples on the neutron beam axis. The response of the detector
was determined in such a manner as to obtain the time—of-flight of the
neutrons from the source, through the sample position, to the detector.

The resulting velocity spectra were stored in a digital computer in cor-
relation with the sample~void positions of the sample wheel. The neutron
velocity resolution was sufficient to resolve the primary neutron group of
the source reaction from the secondary-source group and from the time uncor—
related background and to define the spectral distribution of the neutron
beam to within 2100 keV.

The "observed” neutron total cross sections were calculated from the
measured sample transmissions in the conventional manner (II-6). 1In-
scattering corrections were estimated, found small, and neglected. Small
dead-time corrections were made using a reference—clock pulse introduced
into the data—acquisition system. Throughout the tungsten sample measure-
ments the neutron total cross sections of elemental carbon were concurrently
determined with good agreement with the values reported in the literature
(11-7).

c. Neutron Scattering Measurements

The neutron scattering measurements employed the pulsed-beam fast—
neutron time-of-flight technique and the multi-angle detection system at the
Argonne Fast Neutron Generator. This measurement apparatus and its appli-
cation have been extensively described elsewhere and thus the procedures are
only outlined here (II-8,9).
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The neutron source was again the 7Li(p,n)7Be reaction with the metallic
lithium film adjusted to provide incident—neutron energy spreads at the
scattering samples of ~10 to 50 keV (II-3). The average energy of the in-
cident neutrons was determined to within =10 to 20 keV by control of the
incident-proton beam. The source was- pulsed at a repetition rate of 1 or
2 MHz with a burst duration of x1 nsec. The scattering samples were placed
~13 cm from the source at a zero-degree source-reaction angle with the neu-
trons incident upon the cylindrical surfaces of the samples. The scattering
samples placed at the common focus of the flight paths. Massive shielding
defined the flight paths and protected the detectors from the primary neutron
source and various other background components. Most of the measurements
were made at scattered-neutron flight paths of 5.4 m. A few measurements
improved the scattered—-neutron velocity resolutions by using flight paths
of 220 m. The relative angular placement of the flight paths was determined
to within *0.5 degrees using optical methods. The absolute setting of the
relative angular system was then determined to within <1.0 degree by the
observation, at a fixed incident energy, of the energies of neutrons scat-
tered from hydrogen at a number of angles to both sides of the zero-degree
center line.

The neutron detectors consisted of proton-recoil scintillators 13 cm
in diameter and 2 cm thick (for measurements at =5 m flight paths) or
20 cm in diameter and 3 em thick (for measurements at =20 m flight paths).
Pulse-shape-sensitive circuitry was employed to suppress gamma-ray—induced
backgrounds in the detectors. An additional time-of-flight system, sup-
ported by an array of long counters, monitored the primary source intensity
(I1-10). The monitors were arranged so as to be insensitive to the physical
placement of the flight-path collimators. The relative energy-dependent
response of each of the detectors was determined by observation of the
neutrons emitted at the spontaneous fission of 252¢f and/or by the observa-
tion of neutrons scattered from hydrogen over a range of scattering angles
(II-11). The absolute normalizations of these relative responses were
determined by the observation of neutrons scattered from hydrogen at each
of the measurement energies. The responses of the ten detectors were
determined in a largely independent manner thus there was a considerable
degree of redundancy in the determination of cross section magnitudes.
These calibration and measurement procedures imply that the tungsten scat-
tering cross sections were measured relative to the well known H(n,n) cross
sections (II-12). Throughout the scattering measurements the fidelity of
the measurement system was verified by the concurrent measurement of the
well known C(n,n) cross sections (II-7).

The eleven measured velocity spectra (ten scattering channels and a
monitor channel) and associated detector proton—-recoil responses were stored
in a digital computer system. Subsequent off-line analysis reduced the ob-
served spectra to neutron cross sections in a manner described in Ref. II-9.
All of the cross section results, including those associated with the hydrogen
reference standard, were corrected for angular-resolution, beam-attenuation,
and multiple-event effects using a combination of Monte-Carlo and analytical
brocedures as described in Ref. II-9.
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III. EXPERIMENTAL RESULTS

A. Neutron Total Cross Sections

The objective was energy-averaged neutron total cross sections com—
parable with the differential-scattering results and the predicitons of
energy—averaged models. Therefore the experimental resolutions were chosen
to be a20-50 keV and generally averaged fluctuating structure excepting,
possibly, at the very lowest energles of the present measurements. The
measurements were made during three different periods in each of which the
cross sections were determined from a few-100 keV to 5 MeV in steps of <50 kev.
The results of the three sets of measurements were generally consistent to
within the 1-3% statistical accuracies of the individual measurements.

It was believed that systematic experimental uncertainties were generally
smaller than the statistical uncertainties.

The above "observed” cross sections are strictly relevant only to the
specific samples employed in the measurements. It has been shown by Poenitz
et al. (III-1) that self-shielding perturbations can be significant in broad-
resolution neutron-total-cross—section measurements involving heavy nuclides
in the few-100 keV region. The "observed" value can be considerably smaller
than the "true" or infinitely-thin-sample value. The correction of the
"observed value"” for self-shielding can be calculated from the statistical
properties of the underlying fluctuating structure, as described in Ref. III-1,
or determined experimentally using a wide range of transmission~sample
thicknesses. The latter approach was not explicitly possible in the present
case as the integrity of rare samples could not be destroyed. Therefore, the
calculational procedures of Ref. III-1 were followed. The potential cross
sections and average resonance properties were derived from optical-model
phase shifts using an optical potential that described the low energy
behavior of the observed neutron total cross sections. Assuming a single-
level Breit~Wigner resonance formulation, average level spacings from a fermi
8as model and Wigner and Porter-Thomas distributions of level-spacings and
width-fluctuations, respectively, a monte-carlo simulation of the resonance
Cross sections was constructed from which the correction factors applicable
to the present experiments were inferred. The details of the calculational
procedure are contained in Ref. III-1. The resulting correction factors can
be large at low energies as illustrated in Fig. III-1A where, for the present
samples, the effect is nearly 207% at 100 keV; decreasing with energy to a
negligible effect at 1 MeV.

It is possible to experimentally test the above calculated correction
factors in an elemental context. Assuming the element consists of only the
Present three isotopes (285% abundance), corrections applicable to elemental
Measurements can be derived from the above isotopic correction factors.
These elemental correction factors were applied to the results of elemental
neutron-total-cross—section measurements made with a wide range of sample
thicknesses and incident energies with the results illustrated in
Fig. III~1B. The elemental cross-section results obtained with a wide range
of sample thicknesses, when corrected with the above deduced factors, are
constant with sample thickness to well within their respective statistical
accuracies and to generally better than 1%. This experimental test gives
confidence in the correction factors that were applied to all of the present
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isotopic neutron—total-cross—section results. Similar corrections were made
to the low—energy results previously obtained at this laboratory as the
identical samples were involved (III-2).

The three sets of corrected data from the present measurements were
combined and averaged over 50 keV intervals to 2.0 MeV and over 100 keV inter-
vals at higher energies. The uncertainties in the averaged quantities were
defined as the RMS values of the statistical uncertainties of the individual
components making up the respective average quantity. These average results
are illustrated in Fig. III-2. Qualitatively, the neutron total cross sec—
tions of these three isotopes are very similar. However, there are magnitude
differences, particularly in the energy range 20.3 - 2.0 MeV where the total
cross sections of 184y and 188y are nearly identical while those of 182y are
systematically smaller. There are also energy—dependent shape differences
that cannot be attributed to erroneous sample densities. The possible
physical implications of these differences are discussed in Sec. IV, below.

There are only three sets of previously reported data that are directly
comparable with the present results. Whalen et al. (III-2) have reported
neutron—total-cross—section results for all three isotopes from 0.1 to 0.65 MeV.
As corrected (see above), the results of Ref. III-2 are in very good agreement
with those of the present work. They do display more fluctuating structure
due to their finer resolution. Martin et al. (III-3) have reported neutron
total cross sections for the three isotopes from ~0.7 - 15 MeV. The 8%y and
186y results of Ref. III-3 are not qualitatively consistent with those of the
present work in either shape or magnitude (as 1llustrated in Fig. III-2) with
the lower—energy region deviating by 10% or more from the present results and
from an extrapolation of the values of Ref. III-2. The differences are energy
dependent and not simply attributable to sample-density effects or to the
above self-shielding phenomena. Foster and Glasgow (III-4) have reported
neutron total cross sections of the present three isotopes over the energy
range 2.5 — 15.0 MeV. Their results are generally consistent with those of
the present work as illustrated in Fig. I1I-2. The isotopes of the present
study make up ~85% of the element. Thus, assuming the neutron total cross
gections of the remaining x~15% of the isotopes are similar to those of the
even isotopes measured here, the weighted average of the present results
should agree with the neutron total cross sections reported for the natural
element (III-5). An inspection of the available information indicates that
is true within the respective experimental uncertainties.

B. Elastic Neutron Scattering

The primary elastic-scattering~measurement problem was the experimental
resolution of the elastic—neutron group from the inelastic neutron component
corresponding to the excitation.of the first level at =110 keV. Most of the
measurements were made with flight paths of =5 m and resolved the elastic com~
ponent to energies of ~2.5 MeV as illustrated by the time distribution of
Fig. III-3. At higher incident energies and forward scattering angles the
resolution was less complete therefore selected measurements were made at
flight paths of =20 m. With these longer flight paths the resolution improved
as illustrated in Fig. I1II-4. However, the =20 m flight-path measurements
were tedious and thus undertaken only at selected energies (e.g. 2.5, 3.0
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and 3.5 MeV) and the results used to correct lesser-resolution =5 m flight-
path results obtained at nearby incident energies for the partially resolved
inelastic-neutron contaminent.

Measurements were generally made at intervals of =200 keV from 1.5 to
4.0 MeV with incident-neutron resolutions of <20 keV and at 220 scattering
angles distributed between 20-160 deg. At some incident energies a large
number of distributions were obtained over a period of time (e.g. at 3.0 MeV),
cumulatively amounting to more than 100 differential cross section values,
each with essentially independent normalizations. In these highly redundant
cases the data were averaged to obtain distributions consisting of 20-30 dif-
ferential values. The resulting differential-elastic—scattering cross sec-
tions are summarized in Figs. III-5A, B and C. The quality of these distri-
butions varies depending upon the statistical accuracies of the particular
measurements, the care taken with the detector normalizations, the experi-
mental resolutions employed in the particular measurements and the number of
independent components of a given distribution. Generally, the statistical
accuracies of the differential measurements were several percent and fre—
quently x1%. The detector normalizations were reproducible to 3-5%. Cor-
rection procedures, e.g. those correcting for multiple events, generally
introduced an additional 1-5% uncertainty except near the extreme cross-—
section minimia where uncertainties due to the correction factors could become
larger. Uncertainties associated with the knowledge of the H(n,n) reference
cross section were relatively small (i.e. £1.0%). A primary concern in
estimating uncertainties was the effect of varying experimental resolutions.
In some cases the resolution was relatively good and its influence could be
quantitatively determined as illustrated by the gaussian fitting of the time
distribution of Fig. III-3. In other cases the estimate of the effect of
resolution was far more subjective but was made with a conservative philosophy.
These various factors contributing to the uncertainties associated with the
differential-elastic-scattering data are reflected by the error bars indicated
in the three portions of Fig. III-5.

The measured differential-elastic-scattering cross sections were least-
square fitted with a Legendre-polynomial series of the form

8

do o
Fromalv el Rl 2 , wePy (1I1-1)
2=1

where wg and Py are conventional omega coefficients and Legendre
polynomials, respectively. The fitting procedure was constrained to be
consistent with Wick's Limit (III-6) at zero degrees and to provide a
relatively smooth energy dependence of the extrapolation to 180 deg. cross—
section values. The results of these fitting procedures are illustrated

in Figs. III~5 and 7. Generally, the behavior of the distributions derived
fFom the fitting follows a smooth—energy dependence with the largest devia-
tions confined to those cases where only a limited number of experimental
values were available. The fitting procedures also provided the angle-
integrated elastic scattering cross sections shown in Fig. III-6. The
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®stimated uncertainties in these angle-integrated cross sections varied
from 5 ¢t 7% and the individual results were consistent to well within this
€stimate,

Previously Teported elastic measurements of neutron scattering from
these isotopes of tungsten appear to be confined to the lower energy work
of Lister et al. (III~7) and the 3.4 MeV results of Delaroche et al. (III-8).
The Present resultg reasonably extrapolate to the lower-energy values of
Lister e al. as illustrated in Fig. III-6. The present 3.5 MeV results
generally agree with those reported by Delaroche et al. to within the
Tespective éxperimental uncertainties as illustrated in Fig. III-7.

C. Neutron Inelastic Scattering

The majority of the neutron-inelastic-scattering measurements were made
with x5 o flight paths distributed over the angular range 20-160 deg. Some
additiona) Meéasurements employed 220 m flight paths in order to improve the
fesolution of the elastic component from the nearby inelastic contributions
a8 1llustrated ip Fig. III-4. There were a number of experimental results
with varying detector angles, detector sensitivities and scattered-neutron
Tesolutiong, The definition of a given inelastic-neutron group was optimum
Over a limited energy range and sensitive to the particular instrument con-

fguration, Therefore the measurements were made in systematic incident-
eNergy steps so that the inelastic-neutron groups identified in regions of
Optimuym definition could be followed into regions of marginal resolution.
Thig approach ig illustrated in Fig. III-8. Where at all possible, artifacts
due to multiple-events and/or to contributions from the second neutron—-group
from the S0urce reaction were identified and removed. Such corrections
introdyceq bome additional uncertainties in both the excitation energies and
the corresponding Cross sections.

The observed Inelastic-neutron excitation energies were determined from
the Velocity gpectrs using the measured flight times, incident energies and
flight pathg. The energy scales were verified by the observation of well
known 1nelastic-neutron groups (e.g. that resulting from the excitation of
the 846 Koy state in 5%Fe). A neutronm group was accepted for the excitation-—
€nerpy determination only if observed with reasonable reliability on at
least five occasions each involving several independent detectors. Some
of the Prominent inelastic-neutron groups were clearly observed more than
100 timeq, The "observed” excitation energy was defined as the simple
average of the individual measured values with the uncertainty expressed as
the RMgS deviation frop the mean. In this manner approximately 30 scattered-
Jeutron groups were ldentified for each of the three isotopes as summarized
In Table 1IT-1A, B and c. Many of these correspond to excitation energies
of 21.5 Mey where the experimental resolution was not comparable to
the detaf] of the expected structure. Even at excitation energies of
<1.5 Mey it was 8pparent that many of the observed levels were composites
of contributiong from a number of true levels generally closer-spaced than
the €xperimenta] resolution. Qualitative plots of observed level density
Vérsug exclitation energy behaved in the expected approximately exponential
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Table III-1A. Observed Excitation Energies for 182ya

No. Ex (keV) No. Ex (keV)
1 102 £ 8 19 2059 * 25
2 326 15 20 2121

3 671 = 14 21 2185

4 1138 * 16 22 2247

5 1229 * 12 23 2299

6 1281 *= 22 24 2382 + 28
7 1309 + 18 25 2468 £ 15
8 1357 = 21 26 2543 % 22
9 1428 % 38 27 2615 * 15
10 1492 £ 15 28 2690

11 1539 * 16 29 2768

12 1618 * 24 30 (2819)

13 (1678) 31 (2867)

14 1745 £ 23 32 (2932)

15 1792 £ 20 33 (2979)

16 1858 £ 20 34 (3022)

17 1914 % 20 35 (3062)

18 1988 % 21

3Uncertainties are RMS values determined from at least four measurements.
Parenthesis indicate tentative assignments of observed quantities often
due to the excitation of several levels. No uncertainty is given 1f less
than five observations were available.
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Table III-1B. Observed Excitation Energies for 8%y
No. E, (keV) No. Ey (keV)
1 111 * 10 16 1911 £ 25
2 365 = 20 17 2008 * 30
3 737 * 32 18 2105 * 37
4 905 * 24 19 2155 % 34
5 1000 = 24 20 2240 % 25
6 1125 £ 17 21 2324 * 24
7 1237 % 31 22 2440
8 1323 * 43 23 2520
9 1376 * 23 24 2580
10 1435 = 17 25 2638
11 1528 * 12 26 2663
12 1613 * 18 27 2735
13 1667 £ 13 28 (2811)
14 1725 * 29 29 (2866)
15 1787 % 32 30 (2918)
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Table III-1C. Observed Excitation Energies for 186y
No. Ex (keV) No. Ex (keV)
1 121 = 7 19 2004 = 15
2 399 = 10 20 2073 £ 12
3 742 = 7 21 2118 * 12
4 858 * 18 22 2177 £ 13
5 950 * 21 23 2241 * 26
6 1028 * 32 24 2347 * 18
7 1182 + 26 25 2406 * 12
8 1296 * 31 26 2462
9 (1397 £ 35) 27 2552
10 1449 £ 24 28 2643
11 1515 £ 35 29 (2713)
12 1589 £ 19 30 (2768)
13 1656 * 21 31 (2820)
14 (1685 £ 10) 32 (2868)
15 1728 + 25 33 (2933)
16 1805 = 15 34 (2979)
17 1893 + 29 35 (3023)
18 1942 £ 35 36 (3063)




manner to excitation eénergies of 1.5 - 2.0 MeV then departed fronm the ex~
bponential form ag would be exXpected fropg Iincomplete eéxperimental resolutions.
Thus, the majority of excitationg given in Table III-1 should be interpreted
as observableg within the context of the éXperimental resolution. However,
the excitation energies are Teasonably consistent with Previously reported
level information as illustrated in Fig. IT1-9.

The neutron—inelastic-scattering Cross sections were derived from the
measured velocity Spectra inp g manner analogous to that employed in the con-
text of elastic Scattering., Due to the complexity of the inelastic velocity
Spectra subjective judgments were involved with consequent increased uncer-
tainties, Differential-inelastic-scattering Cross sections were accepted
when they were observed at 2 minimum of three Scattering angles and several
incident neutron eénergies. 1Ip the case of some of the prominent inelastic~
neutron groups severa] hundred independent differential—cross—section values
were available, With the better-resolution—measurements Cross sections for

At excitation energies £0.8 MeV neutron inelastic scattering from
the present three isotopes ig dominated by contributions from the ground-
State-rotational band; 2110 key (2+), 2350 key (4+) and (to a much less
extent) the 700 kev (6+) States, Angular-distribution anisotropy for the

angles and énergies were very similar to obtain the differential Cross section
distributions shown in Figs. I11-10 and -11. The anisotropy of the distribu-
tions is clearly evident ip these two figures. Qualitatively, these cross
Section magnitydesg for the three isotopes are similar but there are detailed
differencesg in both shape and magnitude. The angle-integrated inelastic scat-
tering crossg sections were determined by least-square fitting Eq. III-1 to
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bands as discussed below. Again, the differential cross sections were fitted
with legrendre series to obtain the angle—-integrated cross sections sum—
marized in Figs. ITI-12A, B and C. The fitting procedures always used low—
order polynomials (e.g.SPz) and often assumed isotropy. At higher excita-
tion energies the neutron-inelastic-scattering cross sections of the three
isotopes are noticeably different as one might expect form the level struc-
ture of Fig. III-9.

The uncertainties associated with the above differential and angle-
integrated inelastic-scattering cross sections varied from an optimum of 5%
in the best defined cases to 30-50% (or even more) in the marginally observed
cases. The respective uncertainties are shown in Figs. III-12A, B and C.
The origin of these uncertainties was similar to that outlined above in
the context of elastic scattering with much greater emphasis on subjective
judgments. The latter were felt to be conservative. The uncertainty esti-
mates were supported by the reproducibility of the results measured over
an extended period of time. In addition, the cumulative sum of the above
neutron—-inelastic—~ and elastic-scattering components is generally consistent
with the observed neutron total cross section over wide energy ranges as
discussed in Sec. V., below.

Apparently, only two previous measurements of neutron—-inelastic scat-—
tering from the present isotopes have been reported. Lister et al. (I1I-7)
have reported experimental values at energies of <1.5 MeV. Their results
very nicely extrapolate to the present values as illustrated in Figs. III-12A,
B and C. Delaroche et al. (III-8) have reported measured cross sections
for the excitation of the ground-state-rotational band at an incident neu-
tron energy of 3.4 MeV. Their results are compared with the present 3.5 MeV
values in Fig. III-14. There is qualitative agreement, largely within the
uncertainties of the respective measurements. However, there is some ten-—
dency for the magnitudes of the results of Ref. III-8 to be systematically
larger than those of the present work. There have been some experimental
studies of inelastic—-neutron scattering from elemental tungsten but those
results cannot be simply related to the present isotopic work.
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Figure Captions, Section III1.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

ITII-1A.

III-1B.

ITI-2.

III-3 .

I1I-4,

I1I-5.

I1I-6.

II1-7.

Neutron-total-cross—section self-shielding correction factors
for 186W. Vertical axis gives the correction factor, the
horizontal axis the sample thickness in nuclei/barn (n/b).
Curves correspond to various neutron energies distributed from
100 to 500 keV. One and two cm sample thicknesses are noted
by arrows.

Relative fully-corrected measured neutron total cross sections
of elemental tungsten at illustrative energies of 98, 325 and
475 keV as a function of sample thickness given in nuclei/barn
(n/b). Error bars indicate experimental statistical accuracies.

Neutron total cross sections of 182w, 184y and 186y, The present
experimental results are indicated by data points. Curves denote
averages of previously reported experimental results referenced
as follows: A = 10 keV average of Ref. III-2, B = 100 keV aver-
age of Ref. III-3, and C = 100 keV average of Ref. III-4.

Neutron time-of-flight spectrum obtained by scattering 1.8 MeV
neutrons from 186W at an angle of 115 deg. (Histogram). The
flight-path was 5.5 m. The smooth curve indicates the result
of fitting two gaussian distributions to the measured values
corresponding to the elastic- and inelastic—(observed Ey =

122 keV) neutron groups.

Representative 186W time—of-flight spectra obtained at an incident
energy of 3.0 MeV with a flight path of ~20 m. Scattering angles
are noted on the individual figures. The elastically—-scattered
neutron group is to the right of each figure, the inelastic group
(Ex 121 keV) to the left. All distributions are normalized to
the same maximum heights. Small (x5%) backgrounds have been
subtracted. Maximum events per measurement time vary from several
times 103 to several times 102.

Measured differential-neutron-elastic-scattering cross sections
of 182y(A), 184W(B) and 186W(C). Data points indicate the
measured values and curves the results of least—square fitting
Eq. III-1 to the measured results as described in the text.
(Cross—sections are given in b/sr and scattering angle in lab.—
deg.)

Measured neutron elastic-scattering (circular symbols) and total
(crosses) cross sections of 182w, 184y and 186W. The elastic scat-
tering values at energies below 1.5 MeV were taken from Ref. I11-7.
Curves are “eye-guides" described in Sec. V of the text.

Illustrative measured neutron differential-elastic—-scattering cross
sections of 182W(A), 184W(B) and 186W(C). The present experimental
results are noted by circular data points, those of Ref. III-8

by crosses. Curves denote the results of a least—-square fit

of Eq. III-1 to the present measured values as described in the
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Figure Captions, Section III. (Contd.)

Fig,

Fig,

Fig,

Fig.

Fig.

Fig.

Fig.

III-8 .

III-Q .

I11-11.

I11-12.

II1-13.

I1I-14,

Representative TOF spectra for 186y obtained at several incident
energies. Primed quantities indicate Scattering from the second
Source-reaction group. Incident energies (MeV) and specific
observed excitation energies (keV) are numerically noted. Plural
scattering is algo indicated. The inelastic neutron groups are
emphasized with 8aussian eye-guides. The gradual losg of resolu-~
tion, as well ag the increased complexity of the spectra,

with incident énergy is evident.

Excitations observed in the pPresent neutron—scattering experiments
(boxes) compared with the level Structure given in the compilation
of Ref, IIT-9. Reported excitation energies in MeV and g7 values
are given to excitations of ®l.2 MeV. More details of the struc-
ture information are given in Ref. ITI-9.

Angular distributions of neutrons resulting from the excitation
of the 2+ member of the ground-state rotational band of 182w,

84W and 186y, Measured values are indicated by data points.
Curves denote the results of a least-square fit of Eq. III-1 to
the measured values. Scattering angle is given in lab.~deg. and
¢ross section in b/sr,

Angular distributions of neutrons resulting from the excitation
of the 4+ member of the ground-state rotational band of 182W,
184y and 186y, Notation is identical to that of Fig. III-10.

Inelastic—neutron—scattering excitation cross sections of;

(A) 18ZW, (B) 18“w, and (c) 186y, Circular data points indicate
Reasured values where those at energies of less than 1.5 MeV are
taken from Ref. III-7. Crossed data points indicate measured

Some illustrative differential—neutron—scattering €ross sections
of the 186y ;4 an incident neutron energy of 3.0 MeV. Data points
indicate measured values with excitations given ipn keV. Curves
are the results of least square fitting Procedures as described
in the text. Scattering angle is given in lab-degrees and cross
section in b/sr.

work at an incident energy of 3.5 MeV, crosses the results of
Delaroche et a]. (II1-9) at an energy of 3.4 MeV. Cross section
is given in b/sr and scattering angle in lab-deg.
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