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I R F U
Neutron-nucleus reactions

Reaction: • X + a → Y + b
• X(a,b)Y
• X(a,b)

Examples of
equivalent notations:

Reaction cross section  σ, expressed in barns,  1 b = 10–28 m2

Neutron induced nuclear reactions:
• elastic scattering (n,n)
• inelastic scattering (n,n’)
• capture  (n,γ)
• fission (n,f)
• particle emission (n,α), (n,p), (n,xn)

Total cross section σtot: sum of all reactions

238U + n → 239U*
238U + n → 239U + γ
238U(n,γ)

10B + 1n → 7Li + 4He
10B + n → 7Li + α
10B(n,α)
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I R F U
Neutron-nucleus reactions

Reaction: • X + a → Y + b
• X(a,b)Y

Cross section:
function of the kinetic energy of the particle a

Differential cross section:
function of the kinetic energy of the particle a
and function of the kinetic energy or the angle
of the particle b

Double differential cross section:
function of the kinetic energy of the particle a
and function of the kinetic energy and the angle
of the particle b

→→
aa

XX YY bb
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I R F U Cross sections σγ, σn et σf
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I R F U
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I R F U The nucleus as a quantum system

neutrons protons
–V0

0

level scheme representation:
excited states of a nucleus
(shell model and other states)
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I R F U The nucleus as a quantum system
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I R F U The nucleus as a quantum system
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I R F U The nucleus as a quantum system
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I R F U
Decay of a nuclear state

state with a life time τ:

definition (Heisenberg):

Fourier transform gives energy profile:

eigen state,
transitition E0→Ef
life time τ

Γ

E
0 E

I(E) =
Γ / 2π

(E − E0 )2 + Γ2 / 4

 
Γ =

h

τ

  Ψ(t) = Ψ0e
− iE0t / he−t / 2τ

E0

Ef
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I R F U Neutron-nucleus reactions

Solve Schrödinger equation of system to get cross sections.
Shape of wave functions of in- and outgoing particles are known, 
potential is unknown. Two approaches:

• calculate potential (optical model calculations, smooth cross section)
• use eigenstates (R-matrix, resonances)   

Conservation of probability density:
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I R F U R-matrix formalism

+

entrance channel

+

exit channelcompound nucleus

partial incoming wave functions:

partial outgoing wave functions:

related by collision matrix:

cross section:

Internal region (r<ac compound nucleus):
• wave function is expansion of eigenstates λ.

External region (r>ac, well separated particles):
• no interaction, Schrödinger equation solvable.
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I R F U Find the wave functions

separation distance

external region

internal region

match value and derivate of
Ψ

Internal region: very difficult, Schrödinger equation cannot be solved directly
solution: expand the wave function as a linear combination of its eigenstates.
using the R-matrix:

External region: easy, solve Schrödinger equation
central force, separate radial and angular parts.
solution: solve Schrödinger equation of relative motion:

• Coulomb functions 
• special case of neutron particles (neutrons): fonctions de Bessel
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I R F U The R-matrix formalism
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I R F U

D =100 keV
Sn =10 MeV

A+1X

AX

D =10 eV
n + σ

En

En

Compound neutron-nucleus reactions

compound 
nucleus reaction

+
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I R F U

The R-matrix formalism

• The R-matrix formalism is adapted to describe compound nucleus 
reactions.

• Typically used for neutron-induced reactions at low energy 
(En<10 MeV, resonance region).

• The resonance parameters are properties of the excited nuclear levels:

- in the resolved resonance region (RRR), 
to each level (resonance) corresponds a 
set of parameters:

- in the unresolved resonance region (URR)
average parameters are used:
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I R F U

• A same set of resonance parameters is used to produce all resonant reactions,
• at low energies mainly elastic scattering and capture (and fission). 

• In a measurement, one does not measure a cross section, but a reaction yield or
• transmission factor.

• The measured reaction yield is not equally sensitive to all parameters, additional
• constraints can be necessary to extract RP from measurement.

Resonance parameters
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I R F U Neutron-nucleus reactions

Optical model calculations
• gross structure
• average cross sections
• optical model potential 
• high energy, many channels

R-matrix resonance description
• fine structure (resonances)
• highly fluctuating cross sections
• resonance parametrization
• low energy, few channels
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I R F U
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I R F U
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I R F U Statistical model

The nucleus in the vicinity of Sn is described 
by the Gaussian Orthogonal Ensemble
(GOE)

The matrix elements are random variables 
with a Gaussian distribution.

• Consequences:
• The partial width have a Porter-Thomas
distribution.

• The spacing of levels with the same 
Jπ have approximately a Wigner
distribution.
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I R F U Distribution of the spacing of two consecutive levels
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I R F U Distribution of  neutron widths

N(Γt ) = N(0) P(x)dx
Γt

∞

∫
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I R F U Level density

Sn

Separated states are available
- at low excitation energy
- in the region just above Sn
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I R F U Known nuclei
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I R F U Known nuclei

stable
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I R F U Known nuclei

stable
β–

EC, β+

α



Frank Gunsing, CEA/Saclay         Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies, Trieste, 26-5-2008             28

I R F U Level spacing D0
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I R F U Level spacing D0
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I R F U Level spacing D0
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I R F U Neutron separation energy

N

Z

4 - 10 MeV
pour noyaux stables
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I R F U Neutron separation energy
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I R F U Fission of 235U+n and 238U+n

239U

238U

fission
activation

Sn = 4.8 MeV

6.6 MeVn + 6.2 MeV

236U

235U
fission
activation

Sn = 6.5 MeV

n + 
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I R F U Measurement of (n.xn) by gamma-ray spectroscopy

182W

181W

180W 6.7 MeV

8.1 MeV

gamma
signature

excitation
byneutron

9/2+

0+

0+

example: 182W(n,3n)180W

183W

6.2 MeV

1/2–
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I R F U
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I R F U Moderation of neutrons
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I R F U Evaluated nuclear data libraries

Libraries
• JEFF - Europe
• JENDL - Japon
• ENDF/B - US
• BROND - Russia
• CENDL - China

Common format:
ENDF-6

Contents:
Data for particle-induced reactions (neutrons, protons, gamma, other)
but also radioactive decay data

Data are indentified by “materials”
(isotopes, isomeric states, (compounds) )
ex. 16O: mat =  825

natV: mat = 2300
242mAm: mat = 9547
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I R F U The library JEFF-3.1



Frank Gunsing, CEA/Saclay         Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies, Trieste, 26-5-2008             39

I R F U Files for a material
from report ENDF-102

1 General information                                         
2 Resonance parameter data                                    
3 Reaction cross sections                                     
4 Angular distributions for emitted particles                 
5 Energy distributions for emitted particles                  
6 Energy-angle distributions for emitted particles                       
7 Thermal neutron scattering law data                         
8 Radioactivity and fission-product yield data                                
9 Multiplicities for radioactive nuclide production           

10 Cross sections for photon production                        
12 Multiplicities for photon production                        
13 Cross sections for photon production                        
14 Angular distributions for photon production                 
15 Energy distributions for photon production                  
23 Photo-atomic interaction cross sections                               
27 Atomic form factors or scattering functions for photo-atomic interactions                                             
30 Data Covariances obtained from parameter covariances and sensitivities      
31 Data covariances for nubar
32 Data covariances for resonance parameters                                   
33 Data covariances for reaction cross sections                                
34 Data covariances for angular distributions                                  
35 Data covariances for energy distributions                                   
39 Data covariances for radionuclide production yields                         
40 Data covariances for radionuclide production cross sections                 
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I R F U Example: part of an evaluated data file



Frank Gunsing, CEA/Saclay         Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies, Trieste, 26-5-2008             41

I R F U

A+1X

Ex

Neutron Capture Gamma-Ray Detection

A+1X
radioactive

• Activation
- cross sections integrated over 

known neutron spectrum 
- applicable to some nuclei only
- no time of flight

• Total energy detection
- εc∼Ex, requires weighting function
- neutron insensitive detector

example: C6D6 liquid scintillator

• Total absorption detection
- requires Ω = 4π, efficiency 100%
- capture/fission discrimination in 

possible, example BaF2 total absorption 
calorimeter

• Level population spectroscopy
- applicable to some nuclei only
- feasible with HPGe detectors, 
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I R F U Measuring a reaction yield using the 
time-of-flight technique

time zero

sample

production target,
neutron source 

reaction product
detector 

flight length L

Pulse of 
charged 
particles
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I R F U Measuring a reaction yield using the 
time-of-flight technique
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I R F U Measuring a reaction yield using the 
time-of-flight technique
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I R F U Measuring a reaction yield using the 
time-of-flight technique

sample

production target,
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flight length L
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I R F U Measuring a reaction yield using the 
time-of-flight technique

sample

production target,
neutron source 

flight length L

time of flight t

Kinetic energy of the neutron by time-of-flight

reaction product
detector 

Pulse of 
charged 
particles
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I R F U
Resolution

The resolution can be expressed equivalenty in time, distance and 
energy:

• neutron time-of-flight:
• flight length:
• neutron kinetic energy:

L
t

neutron
start

distribution

neutron
stop

Neutron time-of-flight 
experiment

time-energy relation
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I R F U Measured reaction yield

isolated Breit-Wigner
resonance, decaying 
quantum state with half-
life τ=h/Γ
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I R F U Measured reaction yield

isolated Breit-Wigner
resonance, decaying 
quantum state with half-
life τ=h/Γ

Doppler broadened
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I R F U Measured reaction yield

resolution broadened and
shifted

isolated Breit-Wigner
resonance, decaying 
quantum state with half-
life τ=h/Γ

Doppler broadened
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I R F U Measured reaction yield

real measurement 
with background

Doppler broadened

isolated Breit-Wigner
resonance, decaying 
quantum state with half-
life τ=h/Γ

resolution broadened and
shifted
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• C. Wagemans, The Nuclear Fission Process, CRC, (1991).
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I R F U Conclusion

• Neutron induced reactions are important nuclear data necessary for a 
wide range of fields ranging from nuclear structure and astrophysics to 
advanced nuclear technology applications.

• The R-matrix formalism is adapted to describe compound nucleus 
reactions at low energy (En<10 MeV, resonance region).

• Resolved resonances need to be measured accurately, they cannot be 
predicted by nuclear models.



Frank Gunsing, CEA/Saclay         Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies, Trieste, 26-5-2008             54

I R F U

Rapport de branchement 209Bi + n

209Bi
Jπ=9/2+

210Bi
Jπ=1–

Jπ=9–

β– (5 d)

α (3x106 y)

210Po
Jπ=0+ α (138 d)

271 keV

210Bi*neutron
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I R F U L’origine des déchets nucléaires

U (94.5%)

Pu (1%)
autres actinides (0.5%)
produits de fission (4%)

combustible
usé

238U (97%)

235U (3%)

combustible
fraisQuantité des déchets en France:

2500 kg/an par habitant
dont 1 kg radioactif
dont 20 g hautement radioactif

Loi Bataille:
recherche 1991 - 2006

• séparation et transmutation
• stockage profonde
• conditionnement et

entreposage
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I R F U Réduire la radiotoxicité:
la transmutation en complément de stockage

• produits de fission • actinides mineurs
transmutation par capture de neutrons   transmutation par fission induite par
dans flux de neutrons thermique neutrons dans flux de neutrons rapide

Composition des déchets
Clefs CEA 46 (2002)



Frank Gunsing, CEA/Saclay         Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies, Trieste, 26-5-2008             57

I R F U Réduire la radiotoxicité des déchets: 
le cylce du thorium

N

Z
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I R F U

99Tc

β– (2x105 y)
99Ru

100Tc

β– (15.8 s)
100Ru

(n,γ)

γ

100Tc*

β– (12 h)
130Xe

129I

130I

β– (1.6x107 y)
129Xe

(n,γ)

γ

130I*

Réduire la radiotoxicité des déchets: 
la transmutation
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I R F U Produits de fission:
temps de vie versus rendement 
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I R F U
Resolution

GELINA (0o)n_TOF
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I R F U
Resolution
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