Statistical Analyses and Rejected Data (legacy)

For several years, Paul and Schinner carried out statistical comparisons between experimental data of electronic stopping power and various tables and programs. See for example: H. Paul and A. Schinner (2001), "An empirical approach to the stopping power of solids and gases for ions from 3Li to 18Ar", Nucl. Instr. Meth. Phys. Res. B 179, 299.

The purpose is to determine the reliability of the tables and programs, and also to find unreliable experimental data sets (see sect. E below).

A. Method

For a certain range of Z1, for a certain range of target atomic numbers Z2, and for every data point in a certain range of specific energy E/A1 (where Z1 is the projectile’s atomic number, E its energy and A1 its mass number), we calculate the normalized difference . Here,  is the mass stopping power, ρ is the density, is the linear stopping power, and x is the path length. In every range of specific energy, we then determine the mean normalized difference  and its standard deviation , using our program „Judge“ [1]. Here,  signifies an unweighted average, Sexp is an experimental stopping power value taken from our collection, and Stable the corresponding value from a particular stopping power table or program. A small |Δ| usually signifies good agreement between table and data, and the standard deviation σ is related to the accuracy of the experimental data. If |Δ| is small, as we frequently find, σ may be taken as a measure of the accuracy of the table, as determined from experiment. The number of data points is also given in the tables, as an indication of the size of the data base.

The averages are unweighted, except for the data that were excluded from the analysis, i.e., given weight zero, since they were found in conflict with respect to other data of the same Z1-Z2-combination (where Z2 is the atomic number of the target element). Solids and gases (i.e., substances that solid or gaseous, resp., at normal temperature and pressure) are treated separately.


B. Statistical Analysis for Protons and Alphas in Elements

The following statistical analyses are taken from reference [2]. The data are compared to tables by Andersen and Ziegler [3]; Ziegler [4]; Janni [5]; Ziegler, Biersack and Littmark [6]; ICRU Report 49 [7]; and SRIM 2003 [8]. The latter two give the best agreement.


Table B1. Mean normalized difference Δ ± σ (in %) for H ions in 17 solid elements
(these are the solid elements covered by ICRU 49)

E/A1 (MeV)

0.001 - 0.01

0.01 - 0.1

0.1 - 1.0

1 - 10

10 - 100

0.001 - 100

No. of points

207

1272

2393

1156

196

5224

AZ 77

5.5 ±12

-1.2 ±12

-3.4 ±8.3

-1.1 ±3.9

-0.7 ±0.6

-1.9 ±8.9

J 82

11.7 ±12

2.1 ±11

-1.1 ±7.3

-0.9 ±3.7

-0.2 ±0.5

0.2 ±8.4

ZBL 85

-7.0 ± 24

-1.2 ± 12

-3.0 ± 7.8

-0.3 ± 4.2

0.3 ± 2.1

-2.0 ± 9.5

ICRU 49

5.8 ± 12

0.8 ± 11

-0.7 ± 7.1

-0.2 ± 4.1

0.0 ± 0.5

0.1 ± 7.9

SRIM 2003

4.8 ± 13

0.6 ± 11

-0.9 ± 6.8

-0.6 ± 3.8

-0.1 ± 0.6

-0.2 ± 7.7


Table B2. Mean normalized difference Δ ± σ (in %) for H ions in all elemental gases except F, Cl, Rn

E/A1 (MeV)

0.001 - 0.01

0.01 - 0.1

0.1 - 1.0

1 - 10

10 - 100

0.001 - 100

No. of points

116

329

535

303

11

1294

AZ 77

-1.2 ±6.5

-1.1 ±5.1

-1.8 ±4.2

-0.3 ±2.0

-0.1 ±0.3

-1.2 ±4.3

J 82

-1.1 ±9.4

-0.1 ±4.6

0.5 ±3.9

0.9 ±3.2

3.2 ±0.6

0.4 ±4.7

ZBL 85

23 ± 13

22 ± 11

0.4 ± 6.8

-1.1 ± 1.7

-1.0 ± 0.5

7.6 ± 13

ICRU

-0.7 ± 6.5

-1.1 ± 5.0

-1.2 ± 3.7

-0.8 ± 1.6

-0.2 ± 0.5

-1.0 ± 4.1

SRIM 2003

1.7 ± 4.9

-0.1 ± 4.7

-0.4 ± 3.6

-0.2 ± 1.6

0.2 ± 0.3

-0.1 ± 3.8


Table B3. Mean normalized difference Δ ± σ (in %) for He ions in 16 elemental solids
(These are the solid elements covered by ICRU 49)

E/A1 (MeV)

0 - 0.01

0.01 - 0.1

0.1 - 1.0

1 - 10

10 - 100

0 - 100

No. of points

94

942

1610

332

11

2989

Z 77

6.1 ±25

4.8 ±8.4

0.5 ±5.6

0.1 ±3.3

0.5 ±1.0

2.0 ±8.1

ZBL 85

19 ±24

3.5 ±8.1

0.7 ±5.8

-0.5 ±3.5

0.8 ±2.4

2.0 ±8.3

ICRU

4.9 ± 24

2.6 ± 7.9

0.2 ± 5.7

0.5 ± 3.4

0.9 ± 0.9

1.1 ± 7.6

SRIM 2003

10.2 ± 21

3.5 ± 7.8

0.5 ± 5.4

-0.1 ± 3.3

0.2 ± 0.9

1.7 ± 7.3


Table B4. Mean normalized difference Δ± σ (in %) for He ions in all elemental gases except F, Cl, Rn

E/A1 (MeV)

0 - 0.01

0.01 - 0.1

0.1 - 1.0

1 - 10

0 - 10

No. of points

5

181

669

205

1060

Z 77

-0.5 ±6.0

-1.6 ±3.6

1.0 ±3.3

1.6 ±2.2

0.7 ±3.3

ZBL 85

7.2 ±13

2.6 ±5.7

3.2 ±4.3

-0.7 ±1.5

2.4 ±4.6

ICRU

0.5 ± 6.8

-1.4 ± 3.5

0.3 ± 3.6

0.5 ± 1.2

0.1 ± 3.3

SRIM 2003

-5.4 ± 6.1

-0.1 ± 3.2

0.3 ± 3.2

-0.2 ± 1.1

0.1 ± 3.0

Remarkably, the experimental accuracy for measurements on gases is here, on the average, twice as good as for solids.

C. Statistical Analysis for protons and alphas in Compounds

The following comparisons with the tables from ICRU Report 49 [7] and SRIM 2003 [8] are taken from [14].

Table C1. Mean normalized difference Δ ± σ (in %) for He ions in ethylene

E/A1 (MeV)

0 – 0.03

0.03 – 0.3

0.3 – 3.0

0 – 3.0

No. of points

8

53

66

127

ICRU 49

-5.4 ± 5.1

-1.0 ± 2.4

2.7 ± 1.8

0.6 ± 3.3

SRIM 2003_26, CAB corrected

-23 ± 8.1

-3.8 ± 6.5

1.9 ± 1.4

-2.1 ± 7.7

In Table C1, there are eight different measurements for the same substance, in good agreement with each other. The large |Δ| for SRIM at low energy is evident, indicating that SRIM is too high there.


Table C2. Mean normalized difference Δ ± σ (in %) for H or He ions in about 150  compounds (CO and dimethyl sulfite omitted), compared to SRIM (CAB corrected)

Ions

Targets

E/A1 (MeV)

0 – 0.03

0.03 – 0.3

0.3 – 3.0

3 – 30

0 – 30

H

condensed

No. of pts.

62

441

817

172

1492

Δ ± σ

-3.2 ± 15

-0.3 ± 7.5

1.5 ± 6.3

-0.3 ± 3.8

0.6 ± 7.1

gaseous

No. of pts.

11

556

334

12

913

Δ ± σ

2.7 ± 4.6

-0.8 ± 4.2

-0.1 ± 3.3

-0.8 ± 2.2

-0.5 ± 3.9

He

condensed

No. of pts.

61

542

1268

7

1878

Δ ± σ

-3.3 ± 9.9

0.9 ± 6.7

-0.8 ± 4.1

-1.2 ± 3.3

-0.4 ± 5.3

gaseous

No. of pts.

73

1111

1496

0

2680

Δ ± σ

-16 ± 11

-1.4 ± 6.5

1.0 ± 2.8

 

-0.4 ± 5.7

Here, the results for H ions are rather similar to those for elements shown above. For low energy He ions in gases, there is again a large negative value Δ as in Table C1 above.


Table C3. Mean normalized difference Δ ± σ (in %) for H and He ions in 23 compounds covered by ICRU 49

E/A1 (MeV)

0 – 0.03

0.03 – 0.3

0.3 – 3.0

3 – 30

0 – 30

No. of points

116

1036

1237

135

2524

ICRU Rep. 49

0.2 ± 8.9

1.4 ± 5.9

1.3 ± 5.2

1.0 ± 4.4

1.3 ± 5.7

SRIM 2003_26, CAB corrected

-7.8 ± 12

-1.0 ± 6.4

0.4 ± 5.6

-0.6 ± 4.0

-0.6 ± 6.6

Here, the ICRU table is clearly better than SRIM.


Table C4. Mean normalized difference Δ ± σ (in %) for H ions in 20 gaseous hydrocarbon compounds, with respect to two SRIM calculations

E/A1 (MeV)

0 – 0.03

0.03 – 0.3

0.3 – 3.0

3 – 30

0 – 30

No. of points

0

371

190

4

565

SRIM 2003, Bragg

 

3.0 ± 4.4

3.1 ± 2.5

-0.1 ± 1.0

3.0 ± 3.9

SRIM 2003, CAB, g

 

-1.1 ± 4.4

-0.7 ± 3.2

0.2 ± 1.3

-1.0 ± 4.0

Table C4 shows the positive effect of the CAB correction (which is very hard to discern generally): the corrections decrease Δ by 4 % and bring SRIM very close to the data.

D. Statistical Analysis for ions from 3Li to 18Ar

The following comparisons with the tables MSTAR [9, 10], SRIM 2003 [8], and ICRU Report 73 [11] have been taken from [12]. Comparisons with additional tables can be found in [11]. Separate results for the various ions (as compared to MSTAR) can be found in [10].

Table D1. Mean normalized difference Δ ± σ (in %) for ions from 3Li to 18Ar in the elemental solids covered by ICRU 73.

E/A1 (MeV)

0.025 - 0.1

0.1- 1

1 - 10

10 - 100

100-1000

0.025-1000

No. of points

1399

3452

1262

175

11

6299

MSTAR v.3, mode b

2.5 ± 9.9

0.1 ± 7.3

0.8 ± 5.5

0.1 ± 2.2

0.7 ± 1.4

0.8 ± 7.6

SRIM 2003.26

1.3 ± 9.7

-0.9 ± 7.0

-0.3 ± 5.6

-1.6 ± 2.9

-0.1 ± 1.6

-0.3 ± 7.4

ICRU 73

-11.4 ± 20

-6.8 ± 12

-3.0 ± 6.6

-0.8 ± 3.0

-0.8 ± 1.9

-6.9 ± 13


Table D2. Mean normalized difference Δ ± σ (in %) for ions from 3Li to 18Ar in aluminum oxide, kapton polyimide, polycarbonate (makrolon), polyethylene, polyethylene terephthalate (mylar), polypropylene, polyvinyl chloride, silicon dioxide, toluene, and water (liquid)

E/A1 (MeV)

0.025 – 0.1

0.1 – 1

1- 10

10 - 100

0.025-100

No. of points

133

586

368

13

1100

MSTAR v. 3, mode b

6.6 ± 10.4

1.6 ± 6.3

5.2 ± 4.0

0.0 ± 1.3

3.4 ± 6.6

SRIM 2003.26

-0.8 ± 8.3

-0.1 ± 5.2

-0.4 ± 5.0

-2.3 ± 1.7

-0.3 ± 5.6

ICRU 73

-11 ± 12

-2.1 ± 7.4

-1.0 ± 5.1

-0.5 ± 1.4

-2.8 ± 8.1


Table D3. Mean normalized difference Δ ± σ (in %) for ions from 3Li to 18Ar in all gases covered by MSTAR and ICRU 73 for which we have data.

E/A1 (MeV)

0.025 – 0.1

0.1 – 1

1- 10

10 - 100

0.025-100

No. of points

167

190

551

189

1097

MSTAR v. 3, mode b

-2.5 ± 10.3

-2.2 ± 13

0.2 ± 3.8

0.7 ± 2.4

-0.5 ± 7.3

SRIM2003.26

3.0 ± 10.1

-7.7 ± 12

-0.4 ± 5.2

-2.2 ± 3.9

-1.4 ± 8.1

ICRU 73

-50 ± 28

-2.9 ± 16

-2.0 ± 10.5

-0.1 ± 3.8

-9.1 ± 23


Evidently, MSTAR and SRIM describe the data about equally well. For the ICRU table, the agreement at low energy is generally worse.

E. Rejected or omitted data

These data were rejected because of obvious discrepancies with other data for the same Z1 – Z2 – combination.

Table E1. Rejected proton and alpha data from [2], with later additions that include also some compounds.                                                                                                June, 2008

Z1

Target name/File no.

Reason for rejection (or omission)

Ref.

1

Ag.003

low compared to many others

Wa49

Ag.011, Au.024, Cu.010

low

No75

Au.053, Pd.003

wrongly rejected before June, 2008

Vs00

C.018, C.019

5 - 10% high compared to others

Op75

Ce.002, Yb.003

much lower than Kn80 (“obviously incorrect” acc. to Kn80)

Si72

Cu.031

very low

Gt62

D2Oc.001

Temporarily rejected (low compared to tables)

Ad77

H.008, He.006

low compared to many others

Cr42

He.011, He.012

Uncertainty about threshold effect

Gl91, RG01

LiF.003, 004

Temporarily rejected awaiting new Bauer data

Mö04

N.017

solid gas

Bö82a

Nb.002

low compared to Si84, Bi86

Bh73

Si.001

very low

Ar69

Si.014

low

Gm76

Ta.008

low compared to Lu79, Si84, etc.

Si72

Ti.004, Ti.005

high compared to Or71

Gt62

Ti.006

high compared to Or71

Ar69

Al2O3.007

strange results with very large stated errors

Rt72

GaSb.001

25 % error

Hl74

LiF.001

60% too high according to P. Bauer

Ed97

SiC.001

Data for O and Al ions low w.r.t. Zha03b

Js04

ZnTe.002

Low compared to ZnTe.001; uncertain density required for conversion from linear stopping power

BL74

2

[Cr.06,Cu.18, Mo.08, Ni.22]

Based on ranges (5 - 100 keV). The stopping values go down to 0.01 keV, but these are not really measured. Rather, they are extrapolated down from 100 keV using the shape of SRIM 95 stopping. Data not rejected, but replaced by reevaluated values from 5 to 100 keV.

Sp98

Ag.26

low compared to Gt62, Th81

No75

Ag.24

very high compared to Gt62, Th81

Te57

Air.04, CO2.05, He.08

Data differ markedly from other similar data

Hb72

Au.26, C.14

high compared to many others

Pe81

Au.33

low compared to Bl80, Th80, Kr82

No75

H2Ov.01

Apparently replaced by Pl80

Pl78

Ne.06

Too steep compared to others

Fu99

Ta2O5.01, SiO2.04

Off by large factors

SB76

ZnTe.01

Uncertain density, and discrepancy with ZnTe.02 (PH77)

BL74

Targets CO and Dimethyl sulfite were omitted from statistical analysis because of very large Bragg corrections in SRIM; the large Bragg correction for SF6 was set to zero.


Table E2. Rejected or omitted heavy ion data from [1], with later additions to the original list.                                                                                                                             20 Oct 2010

Ion

Target.File-number

Reason for rejection (or omission)

Ref.

238U

Air.1, He.3, Kr.4

Differentiated range-energy curve; strange shape; large stated errors

Bez75

63Cu

H2.2, N2.2

Two single points from new ITEP setup; large stated errors

Fer06

58Ni

Cu.3

Data unusually low

Ay81b

40Ar

Au.8

low by a factor 2 – 3 compared to Sc82 (and Wr79)

Nd77

32S

Au.2

high by a factor 2 – 3 w.r.t. Sd75, Fs76, Am68 (error of Bt66: 25%)

Bt66

32S

Ag.2

low by a factor 1.5 – 2 w.r.t. Fs76 (error of Bt66: 25%)

Bt66

32S

Ni.2

in analogy, to avoid large discrepancies

Bt66

28Si

Au.2

In analogy to other  Nd77 data (see Table B of [1])

Nd77

24Mg

Ag.3,Au.2,Cu.1,Fe.2,Mo.1,Pt.1, Ti.1,W.1

omitted (see p. 308 of [1])

At90

24Mg

Co.1,Hf.1,Nb.1,Pd.1, Re.1,V.1

In analogy, although not covered by MSTAR (8 Jul 03)

At90

24Mg

Ni.3

in analogy, to avoid large discrepancies, see p. 13/3

At90

24Mg

Ta.1

in analogy, p. 17/5

At90

26Mg

Ge.1, Si.1

omitted (see text by Paul I, p. 308)

At91

26Mg

Ta.2

very similar to 24MgTa.1 (At90)

Ku91

20Ne

Al.5, Al.8

high energy points too low compared to Po61, Sha73 and Ang00

Tp62

20Ne

Au.3

In analogy to other  Nd77 data (see Table B of [10]

Nd77

16O

Ag.14

high compared to BG65, Sk86, Am68, Wr72

Bt66

16O

Au.11

high w.r.t. Ku88, BG65, Sk90, Am68

Sd74

16O

Au.15

too steep, in part too high w.r.t. Wr79, Po60, Ab93, Sa92

Nd77

14N

Au.11

too steep, in part too high w.r.t. Wr79, Sa91, Sc82, Po61, Ld85

Nd77

14N

CH4.1

In analogy to some other Tp62 data

Tp62

15N

Ar.6, He.5

high compared to And69 data for Ar, Ef75 for N2, Rl60 for O2, and Tp62 for air and Ar targets (p. 169 of [13])

Pr93

14N

He.1, Kr.1, Ne.2, Xe.1

12C

Au.9

In analogy to other Nd77 data

Nd77

12C

W.1

Too high as seen by statistical analysis (Judge)

Ant91

11B

Al.2, Al.3

low compared to Rä91,Zh98a

Tp62

11B

CH4.1

In analogy to some other Tp62 data

Tp62

7Li

Ag.6

too low compared to Se90, Sa84b, Li86

Tp62

7Li

Cu.5

high; apparently replaced by Me80 (which is in good agreement with An80)

Me79

7Li

Air.3, Ar.4, H2.3, He.4

Low compared to other comparable data, especially to An78

All56

7Li

CH4.1

In analogy to some other Tp62 data

Tp62

7Li

W.1

Too high as seen by statistical analysis (Judge)

Ant91

2<Z1<27

Si

Data shown on figures for Li, B, C, N, O, Si, P are all low compared to others.

Whl02b

F. Compounds treated in statistical analyses

The list shows the compounds treated up to now (1 Dec. 2005) in our statistical analyses. The list gives names, formulae, short file designations, physical state, the Bragg corrections (in percent) according to SRIM 2003 (for p and α), and an identification number. Compounds with ID < 300 are in the ICRU 49 table. A “g” in the "state" column indicates that the substance is gaseous at normal temperature and pressure (NTP). Many substances that are not gaseous at NTP, have been measured at reduced pressure in gaseous form; this is indicated by a "v" at the end of the file name, and a "g" in the "state" column.


Compound Name Formula File Name State Bragg p Bragg α ID
A-150 Tissue equivalent plastic A150 0 0 99
Acetaldehyde vapor C2H4O AcAlv g -2.76 0.97 300
Acetone C3H6O Acet l -2.43 1.39 301
Acetone vapor C3H6O Acetv g -2.43 1.39 302
Acetylene C2H2 C2H2 g 2.7 6.2 101
Air, dry Air g 0 0 104
Alcohol, Amyl C5H11OH AAlc l -2.83 1.12 769
Alcohol, Butyl C4H9OH BAlc l -3.08 0.84 767
Alcohol, ethyl C2H5OH EAlc l -4.07 -0.24 303
Alcohol, ethyl, vapor C2H5OH Ealcv g -4.07 -0.24 304
Alcohol, Heptyl C7H15OH HpAlc l -2.51 1.46 773
Alcohol, Isopropyl C>7OH IPAlc l -3.45 0.44 765
Alcohol, methyl CH3OH MAlc l -5.29 -1.57 305
Alcohol, methyl, vapor CH3OH Malcv g -5.29 -1.57 306
Alcohol, Nonyl C9H19OH NAlc l -2.32 1.67 777
Alcohol, propyl C3H7OH PAlc l -3.45 0.44 307
Alcohol, propyl, vapor C3H7OH Palcv g -3.45 0.44 308
Allene, 1,2-Propadiene C3H4 Alle g 3.41 7.54 309
Aluminum oxide Al2O3 0 0 106
Ammonia NH3 g -3.19 0.51 310
Anthracene C14H10 Anthr 1.27 5.15 314
Barium chloride BaCl2 0 0 320
Barium fluoride BaF2 0 0 322
Benzene C6H6 C6H6 l 1.58 5.56 329
Benzene vapor C6H6 C6H6v g 1.58 5.56 330
Butadiene C4H6 Butad g 2.03 6.15 334
Butane C4H10 But g -0.91 3.27 340
Butanone vapor 2- C4H8O Butov g -2.25 1.63 716
Butene C4H8 Bute g 0.41 4.56 342
Butyne C4H6 Buty g 0.33 4.38 344
Butyraldehyde vapor C4H8O BtAdv g -2.25 1.63 718
Cadmium Telluride CdTe CdTe 0 0 346
Calcium Fluoride CaF2 CaF2 0 0 130
Carbon Dioxide CO2 CO2 g -6.4 -3.46 134
Carbon Dioxide, solid CO2 CO2c -6.4 -3.46 135
Carbon disulfide vapor CS2 CS2v g 0.09 -6.14 348
Carbon Monoxide CO COg g -18.86 5.61 350
Carbon Tetrachloride CCl4 CCl4 l 4.39 0.28 360
Carbon Tetrachloride CCl4 CCl4v g 4.39 0.28 361
Carbon Tetrafluoride CF4 CF4 g -4.14 -4.31 370
Chloroform CHCl3 Clfm 4.07 0.63 380
Chloroform vapor CHCl3 Clfmv g 4.07 0.63 381
CR-39, PADC nucl. track detector C12H18O7 CR39 0 0 390
Cycloheptane C7H14 CyHp l 4.7 9.03 392
Cyclohexadiene vapor 1,3- C6H8 CyHdv g 0.37 4.39 394
Cyclohexane C6H12 CycH l -1.56 2.51 400
Cyclohexane vapor C6H12 CycHv g -1.56 2.51 401
Cyclohexanone vapor C6H10O CyHov g -2.53 1.32 728
Cyclohexene C6H10 CyHe l -0.66 3.38 729
Cyclohexene vapor C6H10 CyHev g -0.66 3.38 730
Cyclooctane C8H16 CycO l -1.56 2.51 731
Cyclooctane vapor C8H16 CycOv g -1.56 2.51 732
Cyclopentane C5H10 CycP l -1.56 2.51 403
Cyclopentane vapor C5H10 CycPv g -1.56 2.51 404
Cyclopentene C5H8 CyPe l -0.47 3.57 405
Cyclopentene vapor C5H8 CyPev g -0.47 3.57 406
CycloPropane (CH2)3 Cycpr g -1.56 2.51 410
Decane C10H22 Dec l -1.28 2.83 411
Decane vapor C10H22 Decv g -1.28 2.83 412
Decanol C10H21OH DAlc l -2.26 1.75 779
Decene C10H20 Dece l -0.77 3.33 502
Diamond Diam 806
Dichloromethane CH2CL2 DClM 3.56 1.2 414
Dichloromethane vapor CH2CL2 DClMv g 3.56 1.2 415
Diethyl ether (C2H5)2O DEtE l -3.76 0.14 735
Diethyl ether vapor (C2H5)2O DEtEv g -3.76 0.14 736
Difluoroethane, Freon 152 C2H4F2 Dflea g -2.3 -0.21 418
Difluoroethylene C2H2F2 Dfley g -0.6 1.13 417
Dimethyl amine (CH3)2NH DMAm g 12.29 16.79 748
Dimethyl disulfide vapor C2H6S2 DMDSv g 3.86 1.26 750
Dimethyl ether (CH3)2O DME g -5.2 -1.41 752
Dimethyl sulfide vapor C2H6S DMSdv g 2.11 1.74 754
Dimethylsulfite vapor (CH3O)2SO DMSfv g -16.78 -16.13 420
Dioxane vapor 1,4- C4H8O2 Dioxv g -12.71 -9.35 740
Dodecane C12H26 Dod l -1.33 2.78 756
Erbium oxide Er2O3 0 0 422
Ethane C2H6 g -0.37 3.9 424
Ethyl bromide C2H5Br CH5Br l -2.7 0.2 426
Ethyl cellulose C12H22O5 EthCl 0 0 428
Ethyl iodide C2H5I CH5I l -2.41 -3.69 430
Ethylamine C2H5NH2 EtAm g 1.93 1.93 431
Ethylene, Ethene C2H4 Ethyl g 2.38 6.61 155
Ethylene oxide C2H4O EthO g -6.83 -6.83 432
Ethylene sulfide vapor C2H4S EthSv g 0.68 0.68 434
Ethynylbenzene vapor C8H6 EthBv g 1.61 5.52 436
Formvar C5H8O2 Form -1.33 -1.33 760
Freon-114-B2 C2Br2F4 C2BrF l -4.93 -4.21 438
Freon-116 C2F6 g -4.28 -4.23 441
Freon-12 CCl2F2 CCl2F g 1.31 -1.33 444
Freon-13 CClF3 g -2.56 -0.97 448
Freon-13B1 CBrF3 CBrF3 g -4.72 -4.28 452
Freon-C-318 C4F8 g -4.52 -4.1 455
Gallium antimonide GaSb 0 0 458
Gallium Arsenide GaAs 0 0 460
Gallium Nitride GaN 0 0 462
Gallium Phosphide GaP 0 0 465
Genetron-21 CHCl2F CHClF g 2.32 -0.2 468
Glycerol C3H8O3 Glyc l -6.92 -3.41 469
Graphite C Graph 0.24 3.8 906
Havar Havar 0 0 470
Heptane C7H16 Hept l -1.17 2.96 471
Heptane vapor C7H16 Heptv g -1.17 2.96 472
Heptene C7H14 Hepe l -0.43 3.68 503
Heptyne vapor C7H12 Hptyv g -0.53 3.53 473
Hexane C6H14 Hexa l -1.11 3.03 474
Hexane vapor C6H14 Hexav g -1.11 3.03 475
Hexanol C6H13OH HAlc l -2.65 1.32 771
Hexene C6H12 Hexe l -0.25 3.88 478
Hexene vapor C6H12 Hexev g -0.25 3.88 479
Hexyne vapor C6H10 Hxyv g -0.34 3.71 482
Hydrogen sulfide H2S g 3.7 -1.85 485
Indium oxide In2O3 0 0 490
Indium phosphide InP 0 0 492
Isooctane C8H18 Isoo l -1.22 2.91 494
Lithium fluoride LiF 0 0 185
Lithium niobate LiNbO3 LiNbO 0 0 500
LR-115, Nuclear track detector C6H8O9N2 L115 0 0 510
Methane CH4 CH4 g 0.48 4.89 197
Methylamine CH3NH2 MAm g 23.5 23.5 512
Mu Metal MuMet 0 0 514
Mylar C10H8O4 Mylar -4.3 -0.83 222
Nitric Oxide NO g 0 0 520
Nitrous oxide N2O g -2.86 -0.12 521
Nonane C9H20 Non l -1.26 2.86 522
Nonane vapor C9H20 Nonv g -1.26 2.86 523
Octane C8H18 Oct l -1.22 2.91 524
Octane vapor C8H18 Octv g -1.22 2.91 525
Octanol C8H17OH OAlc l -2.41 1.58 775
Octene C8H16 Octe l -0.58 3.54 504
Pentadecane C15H32 Pend l -1.37 2.73 527
Pentane C5H12 Pent l -1.03 3.13 528
Pentane vapor C5H12 Pentv g -1.03 3.13 530
Pentanone vapor 3- C5H10O Pntov g -2.12 1.79 742
Pentene C5H10 Pnte g 0.02 4.15 531
Pentene vapor C5H10 Pntev g 0.02 4.15 532
Pentyne vapor C5H8 Pntyv g -0.08 3.97 533
Perfluoropropane C3F8 g -4.35 -4.19 535
Permalloy 4750 Perma 0 0 540
Plastic Scintillator NE-111 NE11 0 0 216
Pliolite S-5A (C12H14)n Pliol 0 0 550
Pliolite S-5A C7.429H7.714 551
Polycarbonate, Lexan, Makrofol C16H14O3 Polyc -2.24 1.43 219
Polyethylene (C2H4)n Polye -1.56 2.51 221
Polyethylene naphtalate? C7H5O2 PEN 560
Polyimide, Kapton C22H10O5N2 Polyi 0 0 179
Polypropylene (C3H6)n Polyp -1.56 2.51 225
Polystyrene (C8H8)n Polys 0.35 4.28 226
Polysulfone C27H22O4S PSU 0 0 564
Polyvinyltoluene, NE102 pl. scint. (C9H10)n PolVT 0 0 570
Potassium titanyl arsenate KTiOAsO4 KTA 0 0 572
Propane C3H8 C3H8 g -0.72 3.49 238
Propylene C3H6 Prope g 1.07 5.25 574
Propylene oxide C3H6O PrpOv g -5.39 -1.68 800
Propylene sulfide C3H6S PrpSv g 0.92 1.09 802
Propyne C3H4 Propy g 1.06 5.1 576
Scandium oxide Sc2O3 0 0 580
Silicon carbide SiC 0 0 590
Silicon dioxide SiO2 0 0 245
Silver gallium diselenide AgGaSe2 AgGSe 0 0 593
Silver gallium disulfide AgGaS2 AgGaS 0 0 594
Styrene, Ethylene-benzene C8H8 Styr 1.58 5.56 600
Sulfur dioxide SO2 g 0 0 610
Sulfur hexafluoride SF6 SF6 g -34.94 -36.93 614
Tantalum pentoxide Ta2O5 0 0 620
Teflon (C2F4)n Tefl -4.52 -4.1 227
Terphenyl C18H14 Terph 1.35 5.25 630
Tetradecane C14H30 Tetr l -1.36 2.74 632
Thiophene vapor C4H4S Thphv g 3.08 3.28 640
Tissue eq. Gas (methane based) TEGM g 0 0 263
Titanium nitr. oxide TiN1.1O0.27 TiNO 0 0 650
Titanium oxide TiO2 0 0 652
Toluene C7H8 Tol l 1.04 5.03 266
Toluene vapor C7H8 Tolv g 1.04 5.03 268
Tridecane C13H28 Trid l -1.35 2.76 659
Trimethylamine (CH3)3N TMAm g 7.45 11.79 656
Trimethylene sulfide C3H6S TMSv g 0.92 1.09 658
Tungsten trioxide WO3 0 0 660
Undecane C11H24 Und l -1.31 2.8 662
Undecanol C11H23OH UAlc l -2.2 1.81 781
Uranium oxide UO2 0 0 670
Vinyl bromide C2H3Br CH3Br g -1.29 1.41 680
Vinyl methyl ether C3H6O VMEt g -3.23 0.56 684
Vyns, copolymer C22H33 O2Cl9 Vyns 0 0 690
Water Vapor H2Ov g -6 2 277
Water, cond. H2O -6 2 276
Water, heavy, cond. D2O D2O 286
Zinc selenide ZnSe 0 0 700
Zinc silicon diphosphide ZnSiP2 ZnSiP 0 0 704
Zinc Telluride ZnTe 0 0 710


REFERENCES

  [1] H. Paul and A. Schinner, "An empirical approach to the stopping power of solids and gases for ions from 3Li to 18Ar, Nucl. Instr. Meth. Phys. Res. B 179 (2001) 299

  [2] H. Paul and A. Schinner, “Judging the reliability of stopping power tables and programs for protons and alpha particles using statistical methods”, Nucl. Instr. Methods B 227 (2005) 461

  [3] H.H. Andersen and J.F. Ziegler, The Stopping and Ranges of Ions in Matter, Vol. 3, Pergamon New York, 1977

  [4] J.F. Ziegler, Helium: Stopping Power and Ranges in all Elemental Matter, The Stopping and Ranges of Ions in Matter, Vol. 4, Pergamone, New York, 1977

  [5] J.F. Janni, Atomic Data Nucl. Data Tables 27 (1982) 147

  [6] J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Ranges of Ions in Matter, Vol. 1, Pergamon, New York, 1985

  [7] ICRU Report 49, International Commission on Radiation Units and Measurements, Bethesda, MD, USA, 1993

  [8] SRIM 2003, obtained from http://www.srim.org. The more recent program SRIM 2006 yields the same stopping powers

  [9] A. Schinner and H. Paul, Program MSTAR v. 3 (2003), see this internet site

[10] H. Paul and A. Schinner, “Empirical stopping power tables for ions from 3Li to 18Ar and from 0.001 to 1000 MeVnucleon in solids and gases”, Atomic Data Nucl. Data Tables 85 (2003) 377

[11] ICRU Report 73, International Commission on Radiation Units and Measurements, J. ICRU 5 (1) (2005)

[12] H. Paul, "A comparison of recent stopping power tables for light and medium-heavy ions with experimental data, and applications to radiotherapy dosimetry", Nucl. Instrum. Methods B 247 (2006) 166

[13] H. Paul and A. Schinner, "An empirical approach to the stopping power of solids and gases for ions from 3Li to 18Ar, Part II, Nucl. Instr. Meth. Phys. Res. B 195 (2002) 166

[14] H. Paul and A. Schinner, "Statistical analysis of stopping data for protons and alphas in compounds", Nucl. Instrum. Methods B 249 (2006) 1